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Chapter 1

Introduction

Frequency domain techniques have longly being proved to be particularly fruitful and
simple in the design of (linear time invariant) SISO ! control systems. Less appealing
have appeared for many years the attempts of generalizing such nice techniques to the
MIMO 2 context. This partially motivated the great deal of interest which has been
devoted to time domain design methodologies starting in the early 60’s. Indeed, this
stream of research originated a huge number of results both of remarkable conceptual
relevance and practical impact, the most celebrated of which is probably the LQG 3
design. Widely acknowledged are the merits of such an approach: among them the rel-
atively small computational burden involved in the actual definition of the controller
and the possibility of affecting the dynamical behavior of the control system through
a guided sequence of experiments aimed at the proper choice of the parameters of
both the performance index (weighting matrices) and uncertainty description (noises
intensities). Equally well known are the limits of the LQG design methodology, the
most significant of which is the possible performance decay caused by operative con-
ditions even slightly differing from the (nominal) ones referred to in the design stage.
Specifically, the lack of robustness of the classical LQG design originates from the fact
that it does not account for the uncertain knowledge or unexpected perturbations of
the plant, actuators and sensors parameters.

The need of simultaneously complying with design requirements naturally specified
in the frequency domain and guaranteeing robustness of the control system in the face
of uncertainties and/or parameters deviations, focused much of the research activity
on the attempt of overcoming the traditional and myopic dichotomy between time
and frequency domain approaches. At the stage, after about two decades of intense
efforts on these lines, the control system designer can rely on a set of well established
results which give proper answers to the significant instances of performance and
stability robustness. The value of the results achieved so far partially stems in the
construction of a unique formal theoretical picture which naturally includes both the
classical LQG design (RH> design), revisited at the light of a transfer function-like
approach, and the new challenging developments of the so called robust design (RH
design), which encompasses most of the above mentioned robustness instances.

The design methodologies which are presented in the book are based on the mini-
mization of a performance index, simply consisting of the norm of a suitable transfer

1Single-input single-output
2Multi-input multi-output
3Linear quadratic gaussian
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function. A distinctive feature of these techniques is the fact that they do not come
up with a unique solution to the design problem; rather, they provide a whole set
of (admissible) solutions which satisfy a constraint on the maximum deterioration of
the performance index. The attitude of focusing on the class of admissible controllers
instead of determining just one of them can be traced back to a fundamental result
which concerns the parametrization of the class of controllers stabilizing a given plant.
Chapter 3 is actually dedicated to such a result and deals also with other questions
on feedback systems stability. In subsequent Chapters 4 and 5 the main results of
RH> and RH,, design are presented, respectively. In addition, a few distinguishing
aspects of the underlying theory are emphasized as well, together with particular,
yet significant, cases of the general problem. Chapter 5 contains also a preliminary
discussion on the robustness requirements which motivate the formulation of the so
called standard RH,, control problem. Chapter 6 and 7 go beyond the previous
ones in the sense that the design problems to be dealt with are setting in a more
general framework. One of the most interesting examples of this situation is the so
called mixed RHy/RH,, problem which is expressed in terms of both RHy and RH,
norms of two transfer functions competing with each other to get the best tradeoff
between performance and robustness. Other problems that fall into this framework
are those related to regional pole placement, time-domain specification and structural
constraints. All of them share basically the same difficulty to be faced numerically.
Indeed, they can not be solved by the methodology given in the previous Chapters but
by means of mathematical programming methods. More specifically, all can (after a
proper change of variables) be converted into convex problems. This feature is impor-
tant in both practical and theoretical points of view since numerical efficiency allows
the treatment of real-word problems of generally large dimension while global opti-
mality is always assured. Chapter 7 is devoted to the controllers design for systems
subject to structured convex bounded uncertainties which models in an adequate and
precise way many classes of parametric uncertainties with practical appealing. The
associated optimal control problems are formulated and solved jointly with respect
to the controller transfer function and the feasible uncertainty in order to guarantee
minimum loss in the performance index. One of such situation of great importance
for its own is the design problem involving actuators failure. Robust stability and
performance are addressed for two classes of nonlinear perturbations, leading to what
are called Persidiskii and Lur’e design. In general terms, the same technique involving
the reduction of the related optimal control design problems to convex programming
problems is again used. The main point to be remarked is that the two classes of non-
linear perturbations considered impose additional linear and hence convex constraints,
to the matrices variables to be determined.

Treating these arguments requires a fairly deep understanding of some facts from
mathematics not so frequently included in the curricula of students in Engineering.
Covering the relevant mathematical background is the scope of Chapter 2, where
the functional (Hardy) spaces which permeate all over the book are characterized.
Some miscellaneous facts on matrix algebra, system and control theory and convex
optimization are collected in Appendix A through I.



Chapter 2

Preliminaries

2.1 Introduction

The scope of this chapter is twofold: on one hand it is aimed at presenting the ex-
tension of the concepts of poles and zeros, well known for single-input single-output
(SISO} systems, to the multivariable case; on the other, it is devoted to the intro-
duction of the basic notions relative to some functional spaces whose elements are
matrices of rational functions (spaces RLy, RL.,, RHy, RH,,). The reason of this
choice stems from the need of presenting a number of results concerning significant
control problems for linear, continuous-time, finite dimensional and time-invariant
systems.

The derivation of the related results takes substantial advantage on the nature
of the analysis and design methodology adopted; such a methodology was actually
developed so as to take into account state-space and frequency based techniques at
the same time.

For this reason, it should not be surprising the need of carefully extending to multi-
input multi-output (MIMO) systems the notions of zeros and poles, which proved so
fruitful in the context of SISO systems. In Section 2.5, where this attempt is made,
it will be put into sharp relief few fascinating and in some sense unexpected relations
between poles, zeros, eigenvalues, time responses and ranks of polynomial matrices.

Analogously, it should be taken for granted the opportunity of going in depth
on the characterization of transfer matrices (transfer functions for MIMO systems)
in their natural embedding, namely, in the complex plane. The systems considered
hereafter obviously have rational transfer functions. This leads to the need of provid-
ing, in Section 2.8 the basic ideas on suitable functional spaces and linear operators
so as to throw some light on the connections between facts which naturally lie in
time-domain with others more suited with the frequency-domain setting.

Although the presentation of these two issues is intentionally limited to few basic
aspects, nevertheless it requires some knowledge on matrices of polynomials, matrices
of rational functions, singular values and linear operators. To the acquisition of such
notions are dedicated Sections 2.3-2.7.
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2.2 Notation and terminology

The continuous-time linear time-invariant dynamic systems, object of the present
text, are described, depending on circumstances, by a state space representation

£ = Az + Bu
y=Cx+ Du

or by their transfer function
G(s)=C(sI-A)"'B+D

The signals which refer to a system are indifferently intended to be in time-domain
or in frequency-domain all the times the context does not lead to possible misun-
derstandings. Sometimes, it is necessary to explicitly stress that the derivation is in
frequency-domain. In this case, the subscript "L” indicates the Laplace transform
of the considered signal, whereas the subscript ”L0” denotes the Laplace transform
when the system state at the initial time is zero (typically, this situation occurs when
one thinks in terms of transfer functions). For instance, with reference to the above
system, one may write

yro = G(s)ur
yr, = yro + C(sI — A)~'z(0)

Occasionally, the transfer function G(s) of a system X is explicitly related to one of
its realizations by writing

G(s) = (A, B,C, D)

A| B
C\|D

The former notation basically has a compactness value, whereas the latter is mainly
useful when one wants to display possible partitions in the input and/or output ma-
trices. For example, the system

or

G(s) =

T = Az + Byw + Bou
z = CllL' + D12U
Yy = Cox + Doqw

is related to its transfer function G(s) by writing

Al B B
G(S) = Cl 0 D12
CQ D21 0

When a purely algebraic (i.e. nondynamic) system is considered, these notations

become
oo
0| D

G(s) =X(0,0,0,D) =
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Referring to the class of systems considered here, the transfer functions are in fact
raticnal matrices of complex variable, namely, matrices whose generic element is a
rational function, i.e., a ratio of polynomials with real coefficients. The transfer
function is said to be proper when each element is a proper rational function, i.e., a
ratio of polynomials with the degree of the numerator not greater than the degree of
the denominator. When this inequality holds in a strict sense for each element of the
matrix, the transfer function is said to be strictly proper . Briefly, G(s) is proper if
lim G(s) = K < o0
8§—00
where the notation K < oo means that each element of matrix K is finite. Analo-
gously, G{(s) is strictly proper if
lim G(s) =0
§— 00
A rational matrix G(s) is said to be analytic in Re(s) > 0 (resp. < 0) if all the
elements of the matrix are bounded functions in the closed right (resp. left) half
plane.
In connection with a system characterized by the transfer function

Al|B
C|D
the so-called adjoint system has transfer function

-A| -
B | D ]

G(s) = (2.1)

G~ (s) :=G'(-s) =

whereas the transfer function of the so-called transpose system is

A

G'(s) = 5D

System (2.1) is said to be input-output stable if its transfer function G(s) is analytic
in Re(s) > 0 (G(s) is stable, by short). It is said to be internally stable if matrix A
is stable, i.e., if all its eigenvalues have negative real parts.

Now observe that a system is input-output stable if and only if all elements of
G(s), whenever expressed as ratio of polynomials without common roots, have their
poles in the open left half plane only. If the realization of system (2.1) is minimal,
the system is input-output stable if and only if it is internally stable.

Finally, the conjugate transpose of the generic (complex) matrix A is denoted by
A™ and, if it is square, A;(A) is its i-th eigenvalue, while

re(A) = m?x|)\i(A)|

denotes its spectral radius.

2.3 Polynomial matrices

A polynomial matriz is a matrix whose elements are polynomials in a unique unknown.
Throughout the book, such an unknown is denoted by the letter s. All the polynomial
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coefficients are real. IHence, the element n;;(s) in position (Z,7) in the polynomial
matrix N(s) takes the form

nij(s) = a8’ +a,_18" M+ +as+ag, ax €R, Yk

The degree of a polynomial p(s) is denoted by deg[p(s)]. If the leading coefficient «,
is equal to one, the polynomial is said to be monic.

The rank of a polynomial matrix N(s), denoted by rank[N(s)], is defined by
analogy from the definition of the rank of a numeric matrix, i.e., it is the dimension
of the largest square matrix which can be extracted from N(s) with determinant not
identically zero.

A square polynomial matrix is said to be unimodular if it has full rank (it is
invertible) and its determinant is constant.

Example 2.1 The polynomial matrices

w25 w20 2]

are unimodular since det[N:(s)]=det[N2(s)]=3. 0

A very peculiar property of a unimodular matrix is that its inverse is still a polynomial
(and obviously unimodular) matrix. Not differently from what is usually done for
polynormials, the polynomial matrices can be given the concepts of divisor and greatest
common divisor as well.

Definition 2.1 (Right divisor) Let N(s) be a polynomial matriz. A square polyno-
mial matriz R(s) is said to be a right divisor of N(s) if it is such that

N(s) = N(s)R(s)
with N(s) a suitable polynomial matriz. O
An analogous definition can be formulated for the left divisor.

Definition 2.2 (Greatest common right divisor) Let N(s) and D(s) be polynomial
matrices with the same number of columns. A square polynomial matriz R(s) is said
to be a Greatest Common Right Divisor (GCRD) of (N(s), D(s)) if it is such that

i) R(s) is a right divisor of D(s) and N(s), i.e.

N(s) = N(s)R(s)
D(s) = D(s)R(s)

with N(s) and D(s) suitable polynomial matrices

ii) For each polynomial matriz R(s) such that

N(s) = N(s)R(s)
D(s) = D(s)R(s)

with N(s) and D(s) polynomial matrices, it turns out that R(s) = W(s)R(s)
where W (s) is again a suitable polynomial matriz. O
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A similar definition can be formulated for the Greatest Common Left Divisor (GCLD).

It is easy to see, by exploiting the properties of unimodular matrices, that, given
two polynomial matrices N(s) and D(s), there exist infinite GCRD’s (and obviously
GCLD’s). A way to compute a GCRD (resp. GCLD) of two assigned polynomial
matrices N(s) and D(s) relies on their manipulation through a unimodular matrix
which represents a sequence of suitable elementary operations on their rows (resp.
columns). The elementary operations on the rows (resp. columns) of a polynomial
matrix N(s) are

1) Interchange of the i-th row (resp. i-th column) with the j-th row (resp. j-th
column)

2) Multiplication of the i-th row (resp. i-th column) by a nonzero scalar

3) Addition of a polynomial multiple of the i-th row (resp. i-th column) to the j-th
row (resp. j-th column).

It is readily seen that each elementary operation can be performed premultiplying
(resp. postmultiplying) N(s) by a suitable polynomial and unimodular matrix T(s).
Moreover, matrix T(s)N(s) (resp. N(s)T(s)) turns out to have the same rank as
N(s).

Remark 2.1 Notice that, given two polynomials ro(s) and r1(s) with deg[ro(s)]>deg[r1(s)],
it is always possible to define two sequences of polynomials {r;(s), ¢ = 2,3,---,p + 2} and
{qi(s), 1 =1,2,---,p+ 1}, with 0 < p <deg|ri(s)], such that

7i(s) = git1(8)rit1(8) + riy2(s) , 1 =0,1,---,p
deg[ri+2(s)] < deg[riyi(s)], ¢ =0,1,---,p

Tp+2(s) =0
Letting
Ti(s) := [ (1) —qi(s) ] , ni(s) = [ 7“;:(1559) } , 1=1,3,5,---
Ti(s) = [ _qj(s) (1) } , mi(s) = [ Tji(ls(l) } , i=2,4,6,--

T(s) = [ [ Tos1-i(s)

and noticing that T'(s) is unimodular (product of unimodular matrices), it turns out that

T(s)na(s) = [ T“é(s) } , p=1,3,5-

0
Tp+1(8)

T(s)nl(s) = |: :| ’ p:274767"'
For instance, take ro(s) = s* 4+ 2s* — s +2, r1(s) = s* + 5 — 2. It follows that qi(s) = s,
q2(8) = 5 — 1, 72(s) = 8% + s + 2 and r3(s) = 0. O

By repeatedly exploiting the facts shown in Remark 2.1, it is easy to verify that, given
a polynomial matrix N(s) with the number of rows not smaller than the number of
columns, there exists a suitable polynomial and unimodular matrix T'(s) such that

T(s)N(s) = [ ) }



8 CHAPTER 2. PRELIMINARIES

where R(s) is a square polynomial matrix.

Algorithm 2.1 (GCRD of two polynomial matrices) Let N(s) and D(s) be two
polynomial matrices with the same number, say m, of columns and with n,, and ng
rows, respectively.
1) Assume that m < ng + n,, otherwise go to point 4). Let P(s) := [D'(s) N'(s)]’
and determine a polynomial and unimodular matrix 7T'(s) such that

R(s) ] } m rows

Notice that T'(s) can be partitioned as follows

. T 1(3) Tnl(s) } m rows
T(s) = [ Tole) T ]

——
ng columns

2) Letting S(s) := T~!(s) and writing

| Sai(s)  Saa(s) } m rows
S(s) = [8:1(8) S:g(s)]

——
ng columns

it turns out

D(s) = Sa1(s)R(s)
N(s) = Sp1(s)R(s)

so that R(s) is a right divisor of both D(s) and N(s).

3) It also holds that
R(s) = Ty1(8)D(s) + Tn1(s)N(s) (2.2)

Hence, suppose that R(s) is any other right divisor of both D(s) and N(s).
Therefore, for some polynomial matrices D(s) and N(s) it follows that D(s) =
D(s)R(s) and N(s) = N(s)R(s). The substitution of these two expressions
in eq. (2.2) leads to R(s) = [T41(s)D(s) + Tn1(s)N(s)]R(s) so that R(s) is a
GCRD of (N(s), D(s)).

4) If m > ng + nn, take two matrices D(s) and N(s) both with m columns and ng
and n, rows, respectively

vl
~

w
)

[

[I 0 0]

N(s)=[1 0 0]

and let

0 }m—nd—nnrows
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Thus, D(s) = D(s)R(s) and N(s) = N(s)R(s). Hence, R(s) is a right divisor
of both D(s) and N(s). Assume now that R(s) is any other right divisor, i.e.
there exist two polynomial matrices D(s) and N(s) such that D(s) = D(s)R(s)
and N(s) = N(s)R(s). By substituting these two last expressions in eq. (2.3)
one obtains

Ds) 1
R(s):=| N(s) | R(s),

so leading to the conclusion that R(s) is a GCRD of (N(s), D(s)).

Example 2.2 Consider the matrices

2 2
s — 8 S
D(s) = [252+95+5 232+5s+5]

N(s) = [s°4+1 s°+2s+1 |

Now take
1 00 1 —s
Ti(s)=| -2 1 0 , Ta(s) = 1 -11
| -1 0 1 L0 0 1
1 —s/3 0 1.0 0
Ta(s)=|0 1 0 , Tu(s)=]0 1 6
L0 s/6 1 L 0 1
(o o 1 10 0
Ts(s)=1 0 -1 0 , Te(s) = 1 —51/14
L1 0 0 L0 0 1
M1 0 0 ! 0
To(s)=| 0 14/103 0| , Te(s)=[{0 1 0
L 0 —196s/309 1 L0 -1 1
Then
7
T(s) = [[ Ts-s(s) =
1=0
(3s —2)/2 s/6 (6 —11s)/6
= —(24s +93)/103 (3s — 14)/103 (18s + 70)/103
(1125 + 2525+ 196)/103  (—14s> + 285 + 14)/103  —(84s? + 70s + 70)/103
so that 9
1 (=17 +65+6)/6
T(s)P(s) :=T(s) [ ]l\)/%:; ] =0 s
0 0
and

1 (—17s* +65+6)/6 ]
S

Finally, notice that

A ]
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with
Sun(s) = g(s -1) (17333 - 23322 + 65+ 6)/6
25°+9s+5 (34s° 4 1415”4+ 31s — 54)/6
Sm(s) = [ 8 +1 (175* —65° +17s+6)/6 |
It is then easy to verify that D(s) = Sa1(s)R(s) and that N(s) = Snp1(s)R(s). ]

The familiar concept of coprimeness, easily introduced for polynomials, can be prop-
erly extended to polynomial matrices as follows.

Definition 2.3 (Right coprimeness) Two polynomial matrices N(s) and D(s) hav-
ing the same number of columns, are said to be right coprime if the two equations

D(s) = D(s)T(s),
where N(s) and D(s) are suitable polynomial matrices, are verified by a unimodular
polynomial matriz T(s) only. O
Example 2.3 The matrices
N(s) = -1 D(s) = 252 +6s+4
7 482 —s-3 | T T| £ 438742

are not right coprime. Actually, it turns out that

N(s) = N(s)R(s), N(s)= [ sz—f—;sl—S ] , R(sy=s+1
D(s) = D(s)R(s), Dis)= [ iy }
and R(s) is not unimodular (det[R(s)]=s+ 1). O

Of course, an analogous definition can be stated for the left coprimeness. Definitions
2.1-2.3 also yield that two matrices are right (resp. left) coprime if all their common
right (resp. left) divisors are actually unimodular. In particular, each GCRD (resp.
GCLD) of two right (resp. left) coprime matrices must be unimodular. In view of
Algorithm 2.1, this entails that a possible way to verify whether or not two matrices
are right (resp. left) coprime, is computing and evaluating the determinant of a
greatest common divisor. As a matter of fact, if a GCRD (resp. GCLD) is unimodular,
then all other greatest common divisors are unimodular as well. More precisely,
if R1(s) and Ry(s) are two GCRD’s and R;(s) is unimodular, it results Ri(s) =
W (s)Ra(s), with W(s) polynomial. Since det[R;(s)] # 0 it follows that det[Rs(s)]
# 0 as well.

Again from Algorithm 2.1 (step 1) it can be concluded that two polynomial ma-
trices D(s) and N(s) with the same number of columns, say m, are right coprime if
the rank of P(s) := [D'(s) N'(s)]’ is m for any s. As a matter of fact, coprimeness
is equivalent to R(s) being unimodular so that rank[T'(s)P(s)] must be constant and
equal to m. Since T(s) is unimodular, rank[P{s)] must be constant and equal to m
as well.
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Lemma 2.1 Let N(s) and D(s) be two polynomial matrices with the same number
of columns and let R(s) be a GCRD of (N(s), D(s)). Then,

i) T(s)R(s) is a GCRD of (N(s), D(s)) for any polynomial and unimodular matriz
T(s)

i) If R(s) is an arbitrary GCRD of (N(s), D(s)), then there exists a polynomial
and unimodular matriz T(s) such that

Proof Point i) Being R(s) a GCRD of (N(s), D(s)) it follows that

N(s) = N(s)R(s) , D(s) = D(s)R(s)
N(s) = N(s)R(s), D(s)= D(s)R(s)
R(s) = W(s)R(s)

where N(s), D(s), N(s), D(s) and W(s) are suitable polynomial matrices. Taken an
arbitrary polynomial and unimodular matrix T(s), let R(s) := T(s)R(s). It follows
that N(s) = N(s)R(s), N(s) = N(s)T~(s), D(s) = D(s)R(s), D(s) = D(s)T~(s).
Furthermore, it is R(s) = W(s)R(s), W(s) = T(s)W(s). Hence, R(s) is a GCRD of
(N(s),D(s)) as well.

Point ii) If R(s) and R(s) are two GCRD’s of (N(s),
able polynomial matrices W (s) and W(s), it results R(s =
W (s)R(s). From these relations it follows that rank[R(s)] <r
Therefore, rank[R(s)] = rank|[R(s)]. Let now U(s) and U(s)

unimodular matrices such that

oo 41]. o= )]

where the two submatrices H(s) and
rank[R(s)]. Consequently,

D(s)), then, for two suit-

W(s)R(s) and R(s) =

fi) k[R(s)] < rank[R(s)].
t

wo polynomial and

(s) have the same number of rows equal to

and



12 CHAPTER 2. PRELIMINARIES

=T(s) [ H(gs) ]
_ [ Tu(s) Tia(s) H(s)
- [ Fgl(s) F22($) :| |: 0 :| (25)
From eq.(2.4), {2.5) it follows that
0 = y1(s)H(s) (2.6)

0= f‘zl(S)H(S)

Being R(s) and R(s) square, matrices H(s) and H(s) have ranks equal to the number
of their rows, which is obviously not greater than the number of their columns. There-
fore, from egs. (2.6) and (2.7) it follows that T'y;(s) = I'3;(s). Equations (2.4),(2.5)
outline that matrices T'12(s), T'ya(s), T'12(s) and Ty (s) are in fact arbitrary. Hence,
one can set ['12(s)=T"12(s) = 0 and I'ya(s) = ['y2(s) = I. Based on these considera-
tions, one can henceforth assume that I'(s) and T'(s) have the form

=[5 0] ro- [T 0]

so that, from eqs. (2.4) and (2.5) it follows
= Y
SR

In particular, it is H(s) = I'11(s)['11(s)H(s), so that, recalling the properties of H(s),
it results I = T'11(s)T11(s). Hence, both T'3;(s) and T'y;(s) are unimodular, since
their inverses are still polynomial matrices. The same holds for I'(s) and I'(s) as well.
Finally,

and T'(s) is actually unimodular since it is the product of unimodular matrices. O

Remark 2.2 In view of the results now proved and the given definitions, it is apparent
that when the matrices are in fact scalars it results: (z) a right divisor is also a left divisor
and vice-versa; (it) two GCRD’s differ only for a multiplicative scalar, since all unimodular
polynomials p(s) take the form p(s) := a« € R, a # 0; (ii4) two polynomials are coprime if
and only if they do not have common roots. a

Right coprime polynomial matrices enjoy the property stated in the following lemma,
which provides the generalization of a well known result relative to integers and poly-
nomials (see also Theorem A.1).
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Lemma 2.2 Let N(s) and D(s) be two polynomial matrices with the same number
of columns. Then, they are right coprime if and only if there exist two polynomial
matrices X (s) and Y(s) such that

X(s)N(s)+Y(s)D(s)=1 (2.8)
Proof Based on the results illustrated in Algorithm 2.1, it is always possible to write

a generic GCDR R(s) of (N(s), D(s)) as R(s) = X(s)N(s) + Y (s)D(s). Moreover, if
N(s) and D(s) are coprime, R(s) must be unimodular so that

where X (s) := R™1(s)X(s), Y(s) := R (s)Y (s).
Conversely, suppose that there exist two matrices X (s) and Y(s) satisfying eq.
(2.8) and let R(s) be a GCRD of (N(s), D(s)), i.e.
N(s) = N(s)R(s) , D(s) = D(s)R(s)
It is then possible to write I = [X (s)N(s) + Y (s)D(s)]R(s) yielding
R7Y(s) = X(s)N(s) + Y (s)D(s) (2.9)

The right side of equation (2.9) is a polynomial matrix. This entails that R(s) is a
unimodular matrix so that N(s) and D(s) are right coprime. 0

Example 2.4 Consider the two polynomial matrices

N(s):{%:_l 215} 7 D(s):[283+s 252]

They are right coprime. As a matter of fact

| 288 -2+ 1 —2s
- 25t + 257 +s2 2572 +1

252 + 2
Y(s) = [ —2s% 252 — 51 ]

are such that X (s)N(s) + Y (s)D(s) = I. Moreover, taken

—s2—s?+1 -5 s§*+s
T(s) := s +s 1 —s—1
-8 0 1

one can easily realize that it is unimodular and that

with

which is unimodular as well. O
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Of course, a version of the result provided in Lemma 2.2 can be stated for left co-
primeness as well. An important and significant canonical form can be associated
with a polynomial matrix, namely the so called Smith form. This canonical form
is formally defined in the following theorem whose proof also provides a systematic
procedure for its computation.

Theorem 2.1 (Smith form) Let N(s) be a n x m polynomial matriz and consider
that rank[N(s)] := r < min[n,m]. Then two polynomial and unimodular matrices
L(s) and R(s) exist such that N(s) = L(s)S(s)R(s) with

a(s) 0 0 0
0  a(s) --- 0 0
se)=| i i
0 0 - af(s) O
0 0 - 0 0 f}n—rrows

~~
m — 7 columns

where each polynomial a;(s) is monic and divides the next one, i.e. a;(8)|a;+1(8), i =
1,2,---,r — 1. Matriz S(s) is said to be the Smith form of N(s).

Proof The proof of the theorem is constructive since the procedure to be described
leads to the determination of the matrices S(s), L(s) and R(s). In the various steps
which characterize such a procedure, the matrix N(s) is subject to a number of ma-
nipulations resulting from suitable elementary operations on its rows and columns, i.e.
pre-multiplications or post-multiplications by unimodular matrices. These operations
determine the matrices L(s) and R(s). For simplicity, let n;;{s) be the (¢, j) element
of the matrix which is presently considered.

1) Through two elementary operations on the rows and the columns of N(s), bring
a nonzero and minimum degree polynomial of N(s) in position (1,1).

2) Write the element (2,1) of N(s) as no1(s) = n11(s)v(s) + B(s), with 5(s) such
that deg[3(s)] <deg[ni1(s)]. Now multiply the first row by v(s) and subtract the
result from the second row. In this way the (2,1) element becomes 3(s). Now, if
B(s) = 0 go to step 3), otherwise interchange the first row with the second one and
repeat again this step. This causes a continuous reduction of the degree of the element
(2,1) so that, in a finite number of iterations, it results no;(s) = 0.

3) As exactly done in step 2), bring all the elements of the first column but element
(1,1) to zero.

4) Through elementary operations on the columns bring all the elements of the
first row but n11(s) to zero.

5) If step 4) brought the elements of the first column under n1;(s) to be nonzero,
then go back to step 2). Notice that a finite number of operations through steps
2)-4) leads to a situation in which n11(s) # 0, nu(s) =0, i = 2,3,---,n, ny;(s) =
0, 7 =2,3,---,m. If, in one of the columns aside the first one an element is not
divisible by n31(s), add this column to the first one and go back to step 2). At
each iteration of the cycle 2)-5) the degree of ny;(s) decreases. Hence, in a finite
number of cycles one arrives to the situation reported above where ny1(s) divides
each element of the submatrix Ni(s) constituted by the last m — 1 columns and
n — 1 rows. Assume that ni;(s) is monic (otherwise perform an obvious elementary
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operation) and let a;(s) = m11(s). Now apply to the submatrix N;(s) (obviously
assumed to be nonzero) the entire procedure performed for matrix N(s). The (1,1)
element will be now «»(s) and, in view of the adopted procedure a;(s) will be a
divisor of az(s). Finally a;(s) # 0, i = 1,---,r since an elementary operation does
not affect the matrix rank. m]

Example 2.5 Consider the polynomial matrix

2 3
s“+1 s°+s
N(S)_[s+1 s }

and the two polynomial and unimodular matrices

| P2 os—1 __2 §3 — 57+ 2s
L(S)_[(s+l)/2 1 ]’R(S)_ 0 ~1/2 }

It follows that N{(s) = L(s)S(s)R(s) where

2.4 Proper rational matrices

This section deals with matrices F(s) whose elements are ratios of polynomials in the
same unknown. Therefore, the generic element f;;(s) of F(s) has the form

£i(s) a(s) ¥ + oy 1887 4+ as +ag
i S)l= —— =
! b(s) ﬂusﬂ"ﬂ@uflsufl‘f‘“"f‘ﬂls‘*’ﬁo

o ER, i=0,1,v, BER i=01,-pu

The relative degree reldeg[fi;(s)] of fi;(s) is defined as the difference between the
degree of the two polynomials which constitute the denominator and numerator of
fij(s), respectively. Specifically, with reference to the above function, and assuming
o, #0and 3, #0, it is

reldeg(fy;(s)] := deg[b(s)] — degla(s)] = p — v

A rational matrix F(s) is said to be proper (resp. strictly proper) if reldeg[fi;(s)] > 0
(resp. reldeg[fi;(s)] > 0) for all 7, j. Throughout the section it is implicitly assumed
that the rational matrices considered herein are always either proper or strictly proper.

The rank of a rational matrix F(s) is, in analogy with the definition given for
a polynomial matrix, the dimension of the largest square submatrix in F(s) with
determinant not identically equal to zero.

A rational square matrix is said to be unimodular if it has mazimum rank and
its determinant is a rational function with zero relative degree. Hence, a unimodular
rational matrix admits a unimodular rational inverse and vice-versa.

Example 2.6 The matrix

(s +2s+3)/(s*-1) 2
1

F(s) = s/(s+1)
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is unimodular. Actually, det[F(s)]= (—s? + 45 + 3)/(s® — 1). Moreover,

(2 —1)/(—s*+4s+3) (—25% +2)/(—5* + 45+ 3)

FRO= | G )/t ds43) (424 3)/(—s" + 45+ 3)

0

The concepts of divisor and greatest common divisor, already given for polynomial
matrices, are now extended to rational matrices in the definitions below.

Definition 2.4 (Right divisor) Let F(s) be a rational matriz. A rational square
matriz R(s) is said to be a right divisor of F(s) if

F(s) = F(s)R(s)
with F(s) rational. O
A similar definition could be given for a left divisor as well.

Definition 2.5 (Greatest common right divisor) Consider two rational matrices
F(s) and G(s) with the same number of columns. A Greatest Common Right Di-
visor (GCRD) of (F(s),G(s)) is a square rational matriz R(s) such that

i) R(s) is a right divisor of (F(s),G(s)), i.e.

with F(s) and G(s) rational.

i) If R(s) is any other right divisor of (F(s),G(s)), then R(s) = W (s)R(s) with
W (s) rational.

O

A similar definition holds for a Greatest Common Left Divisor (GCLD). By exploiting
the properties of the rational unimodular matrices, it is easy to see that, given two
rational matrices F(s) and G(s), there exist more than one GCRD (and GCLD). A
way to compute a GCRD (resp. GCLD) of an assigned pair of rational matrices F(s)
and G(s) calls for their manipulation via a rational unimodular matrix resulting from
a sequence of elementary operations on their rows (resp. columns). The elementary
operations on the rows (resp. columns) of a rational matrix F(s) are:

1) Interchange of the i-th row (resp. i-th column) with the j-th row (resp. j-th
column) and vice-versa

2) Multiplication of the i-th row (resp. i-th column) by a non zero rational function
with zero relative degree

3) Addition of the i-th row (resp. i-th column) to the j-th row (resp. j-th column)
multiplied by a rational function with zero relative degree

Obviously, each of these elementary operations reduces to premultiplying (resp. post-
multiplying) matrix F(s) by a suitable rational unimodular matrix 7'(s). Moreover,
matrix T'(s)F(s) (resp. F(s)T(s)) has the same rank as F(s).
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Remark 2.3 Given two scalar rational functions f(s) and g(s) with relative degree such
that reldeg[f(s)] < reldeg|g(s)], then reldeg[g(s)/f(s)] > 0. Hence, considering the rational
unimodular matrix

1 0
Ter=1 g
f(s)

it follows that
f(s) f(s)
T(s =
) [ o(s) 0
By recursively exploiting this fact, it is easy to convince oneself that, if a rational matrix

F(s) does not have more columns than rows, it is always possible to build up a rational
unimodular matrix 7T'(s) such that

T(s)F(s) = { R(()S) }

with R(s) square and rational. Moreover, the null matrix vanishes when F(s) is square. O

A GCRD of two rational matrices can be computed in the way described in the
following algorithm, which relies on the same arguments as in Algorithm 2.1.

Algorithm 2.2 Let F(s) and G(s} be two rational matrices with the same number,
say m, of columns and possibly different numbers of rows, say ny and n,4, respectively.

1) Assume first that m < njy + ng, otherwise go to point 2). Let H(s) :=
[F'(s) G'(5)] and determine a rational unimodular matrix T'(s) such that

Then R(s) is a GCRD

2) If m > ny + ny, then

is a GCRD m]
Example 2.7 Consider the two rational matrices

F(s) = [ (s+1)/s 1/(s+2) |

o) = {(SJrl)/(s—l) 8/(82+1)}

1 s/(s+1)
Take now
1 0 —(s+1)/s 1 01
Ti(s) = 1 —(s+1)/{s—1) | , Ta(s) = [ 1 0 0]
L0 0 1 01 0
(1 0 0
T5(s) = | O 1 0]
L 0 (s*+s*+4s)/(1—5*) 1
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It follows that

F(s) (1 s/(s+1)
BEnERE | 60 | = |0 e/
L O 0
so that
N T -V

R(s) 0 —(s+1)/(s+2) , F(s)= [ (s+1)/s 1 ]

G(s) = { (4 D/lo=1) ("4 +45)/(s" =) ]
and F(s) = F(s)R(s), G(s) = G(s)R(s). O

Also for rational matrices it is possible to consistently introduce the concept of co-
primeness.

Definition 2.6 (Right coprimeness) Two rational matrices F(s) and G(s) with the
same number of columns are said to be right coprime if the relations

F(s) = F(s)T(s)

G(s) = G(s)T(s)

with F(s) and G(s) rational matrices, are verified only if T(s) is a rational unimodular
matriz. a

Example 2.8 The two matrices

Fs) = | G D/GEDT (6 D/(+ (" +39)
1/(s+1) s/(s* = 1)

G(s) = [1/(3—{-1) (2s+1)/(s+1)(s+3)]

are not right coprime since it results

F(S) — [ (3‘1)/(3"'1) (32+1)/(32+3s) :|R(S)

1 s/(s—1)
G(s) = [ 1 (2s+1)/(s+3) | R(s)
with R(s) = 1/(s + 1) which is not unimodular. O

An analogous definition holds for left coprimeness. From Definition 2.6 it follows
that two rational matrices are right (resp. left) coprime if all their common right
(resp. left) divisors are unimodular. In particular, each GCRD (resp. GCLD) of
two rational right (resp. left) coprime matrices must be unimodular. Therefore, a
necessary condition for matrices F(s) and G(s) to be right (resp. left) coprime is
that the number of their columns be not greater than the sum of the number of their
rows (resp. the number of their rows be not greater than the sum of the number of
their columns), since, from Algorithm 2.2 point 2) in the opposite case one of their
GCRD would not be unimodular. Moreover, a way to verify whether or not two
rational matrices are right (resp. left) coprime consists in the computation through
Algorithm 2.2 of a greatest common divisor and evaluation of its determinant. As a
matter of fact, as stated in the next lemma, if a greatest common divisor is unimodular
then all the greatest common divisors are unimodular as well.
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Lemma 2.3 Let F(s) and G(s) be two rational matrices with the same number of
columns. Let R(s) be a GCRD of (F(s),G(s)). Then,

i) T(s)R(s) is a GCRD for any rational unimodular T'(s)

i) If R(s) is o GCRD of (F(s),G(s)), then there exists a rational unimodular
matriz T'(s) such that R(s) = T(s)R(s)

Proof The proof follows from that of Lemma 2.1 by substituting there the term
"rational” in place of the term ”polynomial” and symbols F(s) and G(s) in place of
N(s) and D(s), respectively. i

A further significant property of a GCRD of a pair of rational matrices F(s) and
G(s) is stated in the following lemma, whose proof hinges on Algorithm 2.2.

Lemma 2.4 Consider two rational matrices F(s) and G(s) with the same number
of columns and let R(s) be a GCRD of (F(s),G(s)). Then, there exist two rational
matrices X (s) and Y(s) such that

X(s)F(s)+Y(s)G(s) = R(s)

Proof Let ny and ng be the number of rows of F(s) and G(s), respectively, and m
the number of their columns. Preliminarily, assume that ny +ngy > m and let T'(s)
be a unimodular matrix such that

ol e |- ae mo]lan ][] ew

Based on Algorithm 2.2, matrix R(s) turns out to be a GCRD of (F(s),G(s)).
Hence, thanks to Lemma 2.3, there exist a unimodular matrix U(s) such that R(s) =
U(s)R(s), that is, in view of eq. (2.10),

R(s) =U(s)T1(8)F(s) + U(s)T12(8)G(s) = X (5)F(s) + Y (s)G(s)

On the contrary, if m > ny 4+ ng, Algorithm 2.2 entails that

R(s) = U(s)R(s)

= X(8)F(s)+Y(s)G(s)
where U(s) is a suitable rational and unimodular matrix. a

The following result, that parallels the analogous one presented in Lemma 2.2, can
now be stated.
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Lemma 2.5 Let F(s) and G(s) be two rational matrices with the same number of
columns. Then, F(s) and G(s) are right coprime if and only if there ezist two rational
matrices X(s) and Y (s) such that

X(s)F(s) + Y(s)G(s) = I

Proof Recall that two matrices are right coprime if each one of their GCRD’s is
unimodular. Hence, if R(s) is a GCRD of (F(s),G(s)), thanks to Lemma 2.4, it
results R(s) =X (s)F(s) + Y (s)G(s), with X(s) and Y (s) suitable rational matrices.
From this last equation it follows

I =R Ys)X(s)F(s)+ R (s)Y(s)G(s) := X(s)F(s) + Y(5)G(s)

Conversely, let R(s) be a GCRD of (F(s),G(s)) derived according to Algorithm 2.2
point 1), as the number of their columns must be not greater than the sum of the
numbers of their rows, so that

where T (s) is a suitable rational and unimodular matrix. Hence,
[E = [ R0 = [ S S ][ B9]

so that
I'=X(s)F(s)+Y(s)G(s) = [X(s)S11(s) + Y (5)S21(s)| R(s)

shows that R(s) is unimodular (its inverse is rational). Therefore, (F(s), G(s)) are
right coprime. ]

Example 2.9 Consider two rational matrices
F(s)=[1/(s*+s) (2®+25—2)/(s* +2s) |
- —s/(s+1) s/(s+1)
Gls) = { (s —s~1)/(s*+5) (52 +25+2)/(s* +25) }

These matrices are right coprime. Actually,

o] 59]-[ "]

where
1 sf—s2—25—1 -2+ S$+stP-—s5-1
T(s) = — s34+ 2%+ 3452 -2 25" —s
(s) -3 2 — 5% —2s $3

with p(s) := 2s® — 3s — 2 and

R(s) = [ s/(s_—li—l) (s+1){(s+2) ]

that is a rational and unimodular matrix. Moreover, taking

1 —2s* — 95 — 1352 — 85— 2

X = i) { 26% 4 6! 4 267~ 75"~ Ts = 2 ]
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and
1 —925° — 65 — 45 + 252 + 25 25° + 85t +10s% + 252 — 45— 2
Y(s) = 3 5 s e
p(s)q(s) s° + 35"+ 2s s° —4s 58 — 2
with g(s) := 25 + 4s + 1, it follows X (s)F(s) + Y(s)G(s) = I. O

Also for rational matrices there exist a particularly useful canonical form, which is
called Smith-McMillan form. This form is precisely defined in the following theorem,
whose proof also provides a procedure for its computation.

Theorem 2.2 (Smith-McMillan form) Let G(s) be a proper rational matriz with n
rows, m columns and rank[G(s)]= r <min[n,m]. Then there exist two polynomial
and unimodular matrices L(s) and R(s) such that G(s) = L(s)M{s)R(s), where

fisy 0 -~ 0 0
0 f(s) - 0 0
Me)=| -
0 0 - fils) O
0 0 -+ 0 0]}n—rrows
—~—

m — 1 columns

with

and
e £,(s) and ¢¥;(s) are monic, i =1,2,---r
o £;(s) and ¢;(s) are coprime i =1,2,---r
o gi(s) divides €;11(s), i =1,2,---7
o ;1 divides ¢;, 1 =1,2,---1
Matriz M(s) is the Smith-McMillan form of F(s).

Proof Let 1(s) be the least common multiple of all polynomials at the denominators
of the elements of F'(s). Therefore, matrix N(s) := ¢(s)F(s) is polynomial. If S(s)
is the Smith form of N(s) (recall Theorem 2.1) it follows that

1 1
F(s) = 2/}(S)N(s) = WL(S)S(S)R(S)
Hence,
_ S(s)
)= 36)

once all the possible simplifications between the elements of S(s) and the polynomial
¥(s) have been performed. This matrix obviously has the properties claimed in the
statement. O
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Remark 2.4 The result stated in Theorem 2.2 allows one to represent a generic rational
p X m matrix G(s) with rank[G(s)] ;= r < min[m, p] in the two forms

G(s) = N(s)D '(s) = D™ (s)N(s)

where the polynomial matrices N(s) and D(s) are right coprime, while the polynomial ma-
trices D(s) and N(s) are left coprime. Actually, observe that letting

M 1 (s) 0 0
0 d)Q(s) . 0
U(s) := . . ] :
[ o o els)
81(8) 0 0
0 52(5) 0
E(s) := . :
L 0 0 er'(s)

it follows

Now, defining

one can easily check that G(s) = N(s)D~(s) = D~!(s)N(s). In order to verify that N(s)
and D(s) are right coprime, one can resort to Lemma 2.2. Actually, considering the two
matrices X (s) and Y (s) defined by

M z1(s) 0 e 0 0

0 z2(s) -~ 0 0 .

X(s) = : L™ (s)

: z-(s) O
L 0 0 0 0
M yi(s) 0 0 o0
0 y2(s) 0 0

Y(s) := ) R(s)
yr(s) 0
L o 0 0 I

it turns out that X (s)N(s)+Y (s)D(s) = I for a suitable choice of the polynomials z;(s) and
yi(s) (recall that the polynomials v;(s) and &;(s) are coprime and take in mind Theorem
A.1). From Lemma 2.2 it follows that the two matrices N(s) and D(s) are right coprime.
Analogously, one can verify that N(s) and D(s) are left coprime. O
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Example 2.10 Consider the rational matrix

F(s) = 1 38+ 77 +3s—1 4s°+8s° +25—2
T F | 28 44t +s— 1 35% 4 557 — 2

Now applying what has been indicated in the proof of Theorems 2.1, 2.2 it follows that
F(s) = L(s)M(s)R(s), with

Liey— | BT +4s=1)/3 (65 +5)/12
©=1 242513 (2s+1)/6
Ris) = g ~2s —334+23+6]
I RCERVICETD 0
M(s) = 0 (s +1)*(s+2)/s }

Moreover, by following the arguments in Remark 2.4,
| s+1 0
E(s) = [ 0 (s+1)%(s+2) ]

W(s) = |: s (sO— 1) 2 }

it turns out that

B 1 [ 4(38°+ 7+ 35— 1) 65" +295° + 50s° + 375+ 10
N(s) = L(s)E(s) = 12 [ 4(28% 4+ 45% +5—1)  2(26" + 95 + 145 + 95 + 2)
R _ L[ 4(s®—s) s(25° +35° — 25— 6)
D(s) =R (s)¥(s) = 5 [ 0 3

_ | 3(s+1) —25*—55—s*+85+6
N(S) = E(S)R(S) = |: 0 4(83 +482 + 55 + 2) }
N 252(2s2 =5 —1) —5%(6s> —s—5)
Dls) = ()L™ (s) = [ —45(25> + 25— 1) 4s(35% + 45— 1) }

d

Many of the results provided till now can be straightforwardly extended to the subset
of proper, rational and stable functions, namely the subset constituted by the matrices
whose generic element f;;(s) is a proper, rational function with poles in the open
left half plane only. This extension calls for the introduction of a suitable scalar
associated with a generic proper rational scalar function f(s). Precisely, rhpdeg[f(s)]
will indicate the number of finite nonnegative real part zeros of f(s) plus reldeg[f(s)].
For example

ls) = (s—1)(s —;— 2)

(s+4)

is such that rhpdeg[f(s)] = 3 since reldeg[f(s)] = 2 and f(s) has a zero in s = 1.

Moreover, the function
s

fs) = s+1

is such that rhpdeg[f(s)] = 1, since f(s) has a zero in s = 0 and reldeg|f(s)] = 0. Tt
will conventionally be set thpdeg[0] = —oc. Preliminarily, observe that the definitions
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of divisor and greatest common divisors of rational matrices (Definitions 2.4 and 2.5)
can be trivially generalized to the subset of stable matrices by actually requiring the
stability property. As for the generalization of the concept of unimodular matrix T'(s),
it suffices requiring, besides the stability of T'(s), also that rhpdeg[det[T(s)]] = 0. In
this way, the stable matrix T'(s) has a stable inverse as well.

The three elementary operations on the rows (columns) of a rational matrix are
extended to stable rational matrices by simply requiring that in the second operation
the multiplying function f(s) be stable with rhpdeg[f(s)] = 0 and simply that in the
third operation f(s) be stable.

Lemma 2.6 Let f(s) and g(s) be two stable rational scalar functions with g(s) # 0
and rhpdeg[f(s)] > rhpdeg|g(s)]. Then, there exists a stable rational function q(s)
such that

rhpdeg(f(s) — g(s)q(s)] < rhpdeg[g(s)] (2.11)

Proof If rhpdeg[g(s)]= 0, then g~!(s) is rational, proper and stable so that equa-
tion (2.11) is obviously satisfied with q(s) = g7!(s)f(s). Therefore, suppose that
rhpdeg[g(s)]:= v # 0 and write

__ng(s) _ ngt(s)ng”(s)
9) = Ggle) T dgls)

where the polynomials ng(s) and dg(s) are coprime whereas ng™(s) has roots in the
closed right half plane only and ng~ (s) in the open left half plane only. Moreover, let
(s+1)"ng™(s)

h(s) := a905)

so that both h(s) and h~!(s) are proper stable rational functions. Of course, it results

_ h(s)ng*(s)
AU
Also, write
_ nf(s)

where the two polynomials nf(s) and df(s) are coprime. Notice that, being f(s)
stable, the zeros of df(s) are in the open left half plane. This entails that df(s) and
ng™(s) are coprime. By exploiting Lemma A.2, one can claim that there exist two
polynomials ¢(s) and ¥(s) with degfp(s)]<deg[df(s)] such that

ngt (s)e(s) + df (s)y(s) = (s + 1) 'nf(s)
From this relation it follows

ngt(shpls) | wls) _ nf(s)
df(s)(s+1)»~1 ~ (s+ 1)1 df(s)

Let now

(s 4 D)als)
1) = " hls)
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and observe that such function is rational, proper and stable. This conclusion derives
from properness and stability of h=!(s) and the fact that ¢(s)/df (s) is strictly proper
and stable. Moreover, let

()
r(s) = #——_(s—}— D
then,
(s + Dp(s)da(s)ng*(shng=(s) . (s)
($)9(8) +7(8) = = Wi (syng- ()dg(s) T (s 4 Do
_ (e leleng"() |t
Gt s e
i)
=2 5o

Thus, being f(s), g(s)} and ¢(s) proper, rational and stable, the function r(s) =
f(s) — q(s)g(s) is rational, proper and stable as well. Finally, recalling the definition
of r(s), one can conclude that

rhpdeg[r(s)] < v — 1 < v = rhpdeg[g(s)]
O

Remark 2.5 Lemma 2.6 allows one to discuss further what has been shown in Remark
2.3, in the context of stable matrices. As a matter of fact, let f(s) and g(s) be two rational
stable scalar functions with

rhpdeg(f(s)] > rhpdeg[g(s)]

In view of Lemma 2.6 there exists a stable rational matrix g(s) such that

rhpdeg[f(s) — q(s)g{s)] < rhpdeg{g(s)]

Then, the unimodular stable matrix

is such that
) | _ | Fls)—a(s)gls) | _ | F'(s)
Tits) [ g(s) } B [ 9(s) } . { g'(s) ]

By iterating this operation with stable unimodular matrices of the given form (or, alterna-
tively, of the form corresponding to its transpose), one get

T o] f& ][ £
HT"*Z(S’ [ 9(s) } - [ g"(s) }

with either rhpdeg[f™(s)]= 0 or rhpdeg[g"(s)]= 0. Assuming, for instance, that the first
situation has occurred, it follows that

fs)y | | fHs)
12 HIE

i=—1
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where

— 1 0
m =(f"(s) ") 1
Then, one can conclude that, given two stable rational scalar functions f(s) and g(s), there
exists a unimodular stable matrix T'(s) such that

2972 [0
with r(s) stable and rhpdeg[r(s)] = 0. O

The arguments used in Remark 2.5 are well suited to be extended in the context of
proper stable rational matrices. The same occurs for Lemmas 2.3, 2.4 provided that
Definition 2.6 on coprimeness is adapted to this new setting. With these arguments
in mind, it is possible to state the following lemma, which specializes Lemma 2.5 to
the case of stable rational matrices.

Lemma 2.7 Let F(s) and G(s) be two stable rational matrices with the same number
of columns. Then F(s) and G(s) are right coprime (in the setting of proper stable
matrices) if and only if there exist two stable rational matrices X (s) and Y (s) such
that

X(8)F(s)+Y(s)G(s)=1

Example 2.11 Consider the two stable rational functions

542 _ (s+2)°
f(S)_—S-f-]_’ g(S)_(S+1>2
They are (right) coprime. Actually, taking
s +1 i (s +1)?
o) = g1y 0 YT Gy

it follows
z(s)f(s) +y(s)g(s) =1

On the other side, consider the stable unimodular matrix

Then

with f(s) stable and unimodular. O

2.5 Poles and zeros

This section is devoted to a schematic presentation of the main properties of the poles
and zeros of a linear and time-invariant dynamic system X,

&= Az + Bu
y=Cx+ Du
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with n states, m inputs and p outputs. It will be of main importance in the sequel to
distinguish between two cases. In the first one, reference is only made to an input-
output description of the system, i.e to its transfer function

G(s)=C(sI - A 'B+D

whereas in the second case a state-space description of the system is considered. In or-
der to rule out trivialities and make simpler the exposition, it is assumed, throughout
all the section, that G(s) has full rank, i.e. rank[G(s)]=min[p, m]:=r.

Definition 2.7 (Zeros and poles of a rational matrix) Consider the rational ma-
triz G(s) and its associated Smith-McMillan form

fils) 0 0 0
0 fals) 0 0
Me=| ot
0 0 - fi(s) O
0 0 - 0 0
with
fils) = S i ra

T ils)’ ’

and define the polynomials mp(s) and m,:(s) as
Tp(8) 1= Y1(s)a(s) - - ¥r(s)
mai(s) == e1(s)ea(s) - - - &,.(s)

The poles of G(s) are defined as the roots of mp(s) and the zeros of G(s) as those of
Wzt(s). a

The definition of zeros and poles of G(s) coincides with that of transmission zeros
and transmission poles of a system having G(s) as transfer function. As customary,
the transmission poles will be simply referred to as poles of the system.

Definition 2.8 Consider a linear time invariant system Y with transfer function
G(s). The transmission zeros (resp. poles) of & are the zeros (resp. poles) of G(s).0

Example 2.12 Consider the linear system ¥(A, B, C, D) defined by matrices

0 1 0 0 0

—10 7 0 0 1

A= 0 0 5 0 » B= 2
1 -1 1 0 0

-13 5 0 0 1
¢= |: 0 01 0 :l » D= [ 1 ]
The transfer function and its Smith-McMillan form are given by

Gls) = (s=3)(s+1)/(s=5)(s=2) | _| s+1 1 (s —3)/(s—5)(s—2)
(s —3)/(s—5) s—2 1 0

Therefore there is only one transmission zero in s = 3. m]
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Remark 2.6 In general, two polynomials €;(s) and v¥:(s), i # 7, can have common roots.
This entails that a multivariable system may admit coincident poles and zeros even in case
of minimallity of its state-space description. O

The Smith-McMillan form of G(s) allows one for an alternative characterization of
the transmission zeros in terms of vectors belonging to the kernel of G(s) or G'(s), as
proved in the following lemma.

Lemma 2.8 (Rank property of transmission zeros) Consider a transfer function
G(s) of rank r := min[p,m|. The complex number X is a transmission zero of G(s) if
and only if there exists a non zero vector z such that

lim G{s)z=0 ifp>m

§—00

lim G'(s)2=0 ifp<m

S§—00

Proof Consider first the case p > m and let M(s) be the Smith-McMillan form of
G(s), so that G(s) = L(s)M{s)R(s), where L(s) and R(s) are suitable polynomial
and unimodular matrices of dimensions p and m, respectively. It is possible to write

(recall Remark 2.4) B
M(s) = [ FOVE }

where E(s) := diag{e1(s), - ,em(5)}, ¥(s) := diag{e1(s), -, ¥m(s)}. Further, de-
note by ex(h) the k-th column of the h-dimensional identity matrix and let A be
a zero of G(s), root of the polynomial &,(s) of E(s). Since ¢x(A) # 0 and R(A)
is nonsingular, it then follows that z = R™1()\)ex(m) satisfies the condition of the
theorem.

Conversely, if there exists z # 0 such that G(s)z — 0 as 2z — A, then, necessarily,

E(A) lim ¥~ (s)R(\)2 = 0

so that A is a root of at least one of the polynomials €,(s), ¢ = 1,---r. The proof of
the lemma in the converse case (p < m) formally proceeds along the same route by
replacing G(s) with G'(s). O

A quite different definition of transmission zeros and poles makes reference to the
minors of G(s). A k-degree minor of a matrix A is the determinant of any square
k-dimensional submatrix of A. It is possible to prove that the polynomial 7,(s) of the
poles of G(s) is given by the least common denominator of all the non zero minors
of any order of G(s). Analogously, the polynomial 7,:(s) of the transmission zeros
of G(s) is the greatest common divisor of all numerators of the minors of order r of
G(s) provided that they have been adjusted so as to present the polynomial mp(s) as
their denominator.

Remark 2.7 (Transmission zeros of a square system) In the particular case where
G(s) is square, it follows (recall Theorem 2.2)

Tzt (8)

Tp(s)

Notice, however, that the presence of possible cancellations avoids in general to catch all
transmission zeros and poles of G(s) from its determinant. o

det[G(s)] =
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The transmission poles and zeros of a system (4, B, C, D) enjoy an important input
output characterization. As for the transmission zeros, reference is made to the
so called blocking property, which deals with the possibility of getting identically
zero forced output when the input is suitably chosen in the class of exponential and
impulsive signals. Before formally stating the relevant result, it is advisable to stress
that the transmission zeros of G(s) and G'(s) actually coincides (recall the appropriate
definition and Lemma 2.8). The same occurs for (transmission) poles. Let now
indicate with 6(t) := 69 (t) the impulsive ”function” and with §%)(t) its k-th order
derivative (recall that (55}6) = s*). Moreover define

& [ X ifp>m ©on | G(s) ifp>m
E'*{Z’ fp<m G(s)'_{G’(s) ifp<m (2.12)

Theorem 2.3 (Time domain characterization of transmission zeros and poles)
Let G(s) be the transfer function of a system ¥. Then

i) The complex number A is a pole of ¥ if and only if there exists an impulsive

mput
u(t) = Zaié(i)(t)
i=0

of &, with a; suitable constants, v > 0, such that the forced output ys(+) of X is
yi(t) = yoe, ¥t >0

it) The complex number X is a transmission zero of ¥ if and only if there exists an
exponential /impulsive inpul

u(t) = upet + Z ;6 (t)
i=0
of ﬁ], with o, suitable constants, v > 0, ug # 0, such that the forced output ys(-)
of ¥ is
yf(t) =0, Yt >0

Proof Consider the Smith-McMillan form M (s) of G(s), introduced in Theorem 2.2,
so that G(s) = L(s)M(s)R(s), where M(s) is the max[m,p] x r matrix M(s) =
[diag{e;(s)/v:(s)} 0]'. The polynomial matrices L(s) and R(s) are unimodular.
Denote by I;(s) and r/(s) the i-th column and i-th row of L(s) and R(s), respectively.

It turns out that
(s
YfLo = Zl ) ri(s)ur,

Point i) Assume that X is a pole of G(s), i.e. a root of the polynomial Ui (s).
Hence v(s) := (s — A) "'k (s) is a polynomial. Then the input u;, defined as

ug = R(s)™' | () | < k-throw (2.13)
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is a polynomial vector since R™!(s) is a polynomial matrix. Therefore 7/(s)u;, =
0,7 # k and r},(s)ur, = ¥(s). It then turns out that ysro = (s — A) “Hk(s)ex(s). Since
A is not a root of g (s),

Yoo =yo(s — )7 + B(s)

where g is a suitable constant vector and §(s) a suitable polynomial vector. Trans-
forming back this expression in the time domain for £ > 0, the conclusion follows.

Conversely, assume that there exists an input, with polynomial Laplace transform
ur, such that the Laplace transform of the forced output is ysro = yo(s—A) "1+ 3(s),
being 3(s) a polynomial vector. Then

YrLo = Z li(s) ;}:((Z)) ri(s)ur = yo(s — A) ™" + B(s)

This means that at least one polynomial 1;(s) must possess A as a root.

Point i) Assume now that X is a zero of G(s), root of the polynomial e (s).
Choose uy, as in eq. (2.13) with v(s) := (s — A) 7141 (s). Since A is not a root of 1 (s)
such an input matches the form given in the statement. Moreover ri(s)ur = 0,7 # k
and 7} (s)ur = (s — A) " "x(s), so that yrro = (s — A\)"UUk(s)ex(s) is a polynomial
vector whose inverse Laplace transform is zero for strictly positive time instants.

Conversely assume that there exists an input of the form u; = up(s — ) =1 +3(s),
with ug # 0 constant and ((s) polynomial such that

d l(s) ’ —
=3 1i(5) 22 (s) (wo(s — N)7F + B(s))
Yfro 2 wi(s) 0

is polynomial. A little thought shows that, besides other things, y;ro may well be
polynomial only if A is a root of at least one polynomial €;(s). O

The terminology adopted for the transmission zeros derives from the fact that
they basically make reference to the transfer function (transmittance) of the system
at hand. In the simple case of single input single output systems, the transfer function
can be given the form
_ Cadj[s] — A|B

Gls) = det[sI — A] +D

where adj[s] — A] is the matrix whose generic element (%, 7) is given by the determinant,
multiplied by (—1)**7, of the matrix obtained by (sI — A) ruling out its j-th row and
i-th column. The transmission zeros coincide with the roots of the numerator once all
the possible cancellations between the polynomial Cadj[sI— A] B and the characteristic
polynomial have been actually performed. As shown in the sequel, all the roots of
Cadj[s] — A|B + Ddet[sI — A] are still properly called zeros of the system. These
roots actually constitutes the so called invariant zeros. In the general multivariable
framework, the definition of such zeros calls for the introduction of the polynomial
matrix

o= ot ]

which is referred to as system matriz.
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Definition 2.9 (Invariant zeros) Consider system % and let P(s) be the associated
system matriz with v :=rank|[P(s)]. Moreover, let S(s) be the Smith form of P(s),
i.e.

ar(s) O 0 0

0 as(s) - 0 0

S&=| 1 i
0 0 - as) O

0 o - 0 0

A complex number X is said to be an invariant zero of X if it is a root of the polynomial

i (8) 1= ar(s)aa(s) - - ay(s)

O

Remark 2.8 Notice that v =rank[P(s)|= n+rank|G(s)]. As a matter of fact, simple
computations show that

P(s) := [ sng ;;3 ]

1 sI-A 0 (s —A)~! 0 sI-A -B
- C I 0 G(s) 0 I

Therefore, the claim on the rank of P(s) is proved by noticing that in the right hand side
of the above equation the first and last matrices above are nonsingular, while the remaining
one has rank equal to n + rank[G(s)]. O

Like the transmission zeros, also the invariant zeros admit a rank characterization,
which in this case concerns the kernel of either P(s) or P'(s).

Lemma 2.9 (Rank property of invariant zeros) Let P(s) be the system matriz of
a system X with transfer function G(s) = C(sI — A)"'B + D with rank|[G(s)] =
minlp, m]. The complex number X\ is an invariant zero of the system if and only if
P(s) looses rank in s = A, i.e. if and only if there exists a nonzero vector z such that

PXNz=0 ifp>m
P'XNz=0 ifp<m

Proof Consider first the case p > m and let S(s) be the Smith form of P(s), so that
P(s) = L(s)S(s)R(s), where L(s) and R(s) are suitable polynomial and unimodular
matrices of dimensions p 4+ n and n 4+ m, respectively, whereas S(s) is as in Definition
2.9. Let ex(h) be the k-th column of the h-dimensional identity matrix. Recall also
that matrix R~!(s) is polynomial and unimodular as well. Hence, if X is an invariant
zero of the system, root of the polynomial ay(s) in S(s), then it is P(A\)z = 0 with
z = R7'(Neg(n + m). Conversely, if there exists 2 # 0 such that P(\)z = 0, then,
necessarily, S(A\)R(A\)z = 0, which in turn implies that A is a root of at least one
polynomial «;(s), since R(A)z # 0.

The proof in the case p < m develops along the same lines, once P(s) has been
replaced by P’(s). O
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Example 2.13 Consider again the system defined in Example 2.12. It results

s -1 0 0 0
10 s—7 0 0 -1

0 0 s-5 0 -2

Ple)=| _1 1 s-6 0
13 5 0 0 1

0 0 1 0 1

As for the effective computation of the invariant zeros, one can actually utilize the result
stated in Lemma 2.9, by looking for the vectors z = [z1 22 --- 25|’ in the kernel of P(\),
i.e. those vectors z such that P(A)z = 0. A nonzero solution of the relevant equations can
be found only if A = 3 or A = 6, which are therefore invariant zeros. Recall (Example 2.12)
that only A = 3 is a transmission zero. O

As apparent from their definition, the invariant zeros are not affected by a change
of basis in the state space, as stated in the following lemma.

Lemma 2.10 (Invariant zeros vs. changes of basis) The set of the invariant zeros
of a system X is invariant with respect to a change of basis.

Proof If the triple (4, B,C), with A = TAT™!, B = TB, C = CT!, describes,
together with matrix D, system 3 in a new basis, it follows

Ps) = siI-A -B]_[T 0 sI-A —-B T 0
Y= ¢ D |T|oI c D 0o I
so that P(s) and P(s) have the same Smith form. Hence both systems %(4, B, C, D)
and ¥(A4, B,C, D) have the same invariant zeros. 0

Also the invariant zeros enjoy a blocking property, which stems on the existence of
an exponential input yielding identically zero forced output.

Theorem 2.4 ( Time domain characterization of invariant zeros ) The complex
number X\ is an invariant zero of ¥ if and only if at least one of the two following
conditions holds

i) X is an eigenvalue of the unobservable part of ¥;

i) there exist two vectors g and ug # 0 such that the forced output of 3 corre-
sponding to the input u = upe,t > 0 and initial state x(0) = xo is identically
zero fort > 0.

Proof It is sufficient to prove the theorem in the case p > m, since the proof in the
converse case easily follows by replacing ¥ with ¥’. Hence assume 3 = ¥,

Let now A be an invariant zero of ¥ and let P(s) be the system matrix. Thanks
to Lemma 2.9 there exists a non zero vector z = [v" w'})’ such that P(A)z =0, i.e.

(M — Ayv = Bw (2.14)
Cv+Dw=0 (2.15)

Letting z(0) := v and ug := w, it is now verified that the input u(t) = we*! produces,
together with the initial state z(0) = v, an identically zero output for ¢t > 0. The
Laplace transform of the input is uz, = (s — A) 71w and that of the state is z, =
(sI — A) v+ Bw(s—\)71]. Eq. (2.14) entails (s — ) "' Bw = (s —A) " 1(A[ - A)v, so
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that 7 = (s—A)"!v and, from eq. (2.15), [Czr+Dw(s—X) " (s—A) = y(s—A) = 0.
Since y(0) = 0 (eq. (2.15)), the conclusion is drawn that y(¢) = 0, > 0. In particular,
if w # 0 then condition %) is verified, whereas, if w = 0, then eqs. (2.14),(2.15) entail,
in view of the PBH test, that condition ¢) holds.

Conversely, assume without any loss of generality (recall Lemma 2.10), that the
system at hand is from the very beginning in the standard Kalman canonical form
for observability, i.e.

A:[Z 23},3:{31},02[01 0]

where the pair (A;, C}) is observable. If condition 7) holds (namely A is an eigenvalue
of As) choose z = [0 £’ 0}, where £ # 0 is such that (A] — A3)¢ = 0. Then, obviously,
P()\)z = 0so0 that A is an invariant zero of . If condition #7) holds, let, according to
the structure of A, zg := [zf; z42l’- Being yr, = 0, it follows

s—)\):O

B D
Ci(sI — A7t [3501 + Ll } ( o

(s=A)
By noticing that

I (sT— A)~ (M - A)
(S — )\) 01
y(O) = Cixzo1 + Duyg

(SI — Al)_ll'()l =

it then follows
01(81 — Al)_l[(/\l — Al)x(n — Bluo] =0

The first term of such an equation is the Laplace transform of the (free) output of
the system ¥(A;,0,C1,0) when the initial state is (A — Aj)xo; — Biug. Since this
system is observable it follows that (Al — A1)xg; — Biug = 0. Choose

ze=[ 2 & up ]
where & := (Al — A3) ' (Asxo; + B2ug). Obviously, P(\)z = 0 so that A is an invariant
zero of 3. O

The theorem above points out the circumstances under which the output of 3 is
zero for all ¢t > 0. Actually, a part from the trivial case of zero initial state and input,
the output of ¥ can be such if and only if 3 possesses invariant zeros. As already
said, for SISO systems the invariant zeros are the roots of Cadj[(s] — A) !B +
Ddet|[(sI — A)] whereas (in general) only a part of these roots are transmission zeros.
This relationship holds for MIMO systems as well.

Theorem 2.5 (Invariant vs. transmission zeros) A transmission zero of a system
3} is also an invariant zero of 3.

Proof Consider first the case p > m and let A be a transmission zero of ¥. Thanks
to Theorem 2.3 there exists an exponential/impulsive input

u(t) = upe + Zaié(i)(t)
i=0
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with «; and ug # 0 suitable constants, such that the forced output of X is, V¢ > 0,

t v
yr(t) = C/ eAt=7) Bluge ™ + Zaié(i)(T)]dT + Duge* =0
0

i=0
Letting
Go
o
T = [ B AB ... AYB ]
Qy

it follows that
t v
Cettag = C’/ eA(t_T)BZ ;6% (1)dr
0

=0
so that

i
ys(t) = Cetag + / e~ Bugedr + Duge™ =0, Yt >0
0

This last expression coincides with the output response of system X when the initial
state is £(0) = z¢ and the input is u(t) = upe**. Such response is obviously continuous
from the right, so that the output is zero at ¢ = 0 as well. Theorem 2.4 ensures that
A is an invariant zero of X.

The proof of the Theorem in the case p < m can be derived in complete analogy
by considering system X' instead of X. (]

The following result clarifies and completes the relationships between transmission
and invariant zeros.

Theorem 2.6 ( Transmission vs. invariant zeros of a system in minimal form )
The transmission and invariant zeros of a reachable and observable system do coin-
cide.

Proof As already seen in Theorem 2.5, a transmission zero is also an invariant zero.
It is then left to show the converse statement when (A, B) is reachable and (A, C)
is observable. Consider the case p > m since the other case is easily proved by
transposition. Let A be an invariant zero. Thanks to Lemma 2.9 there exists a nonzero
vector z = [v' w')’ such that P(A\)z = 0. Notice that if w = 0 and v # 0, then this
condition implies that Av = Av and Cv = 0, contrary to the observability assumption
of (A, C) (recall Lemma D.1). Hence w # 0. Moreover, thanks to Theorem 2.4, the
system response when the initial state is £(0) = v and the input is u(t) = we’t is
identically zero, i.e.

t
C [e"“v +/ eA(t_T)Bwe’\TdT] + DweM =0, Vt>0 (2.16)
0

Recalling Theorem 2.3, A is a transmission zero if there exists an input of the form

u(t) = uge™ + Z ;69 (1)
i=0
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which yields an identically zero forced output (for ¢ > 0), i.e. if
t v
C / A Bluge®™ + > 0i6(7)]dr + Duge* =0, Vit >0
0 i=0

Hence the theorem is proved if one shows that there exist real coefficients «; such
that

t v
Cetty = / CeAt-T)B Z ;69 (7)dr
0 i=0

=Ce? Y A'Ba;, Vt>0 (2.17)
i=0
Any vector & := {af, &} -+ al] such that
[ B AB --- AB" Ja=v

satisfies eq. (2.17). Notice that a vector a exists corresponding to v = n — 1 since
(A, B) is reachable so that the Grammian matrix [B AB --- AB"~!] has full row
rank. O

The invariant and transmission zeros do not exhaust the totality of zeros which
can be defined for a system. Actually, consider an unobservable system with p < m. It
may well happen that an eigenvalue of the unobservable part, say A, is such that P(\)
does not loose rank. Associated with such an eigenvalue there exists an eigenvector
(initial state) z(0) such that the free motion of the output y(-) is identically zero.
Therefore the complex number A can be still considered as a zero of the system, whose
nature is different from that of the zeros previously introduced . In complete analogy,
an unreachable system X, with p > m, can admit an eigenvalue of the unreachable
part, say A, which is such that the associated system matrix P(\) does not loose rank.
Hence A is not an invariant zero. However, it is well known that there exists an initial
state for ' (eigenvector associated with \) capable of zeroing the free output of ¥,
Again, A can be fairly considered as a zero of system %. Such zeros will be referred
to as decoupling zeros.

Definition 2.10 (Output decoupling zeros) Consider (A, B,C, D) a n-dimensi-
onal system and the polynomial matrix

Pos) { o1~ 4 }
Let

So(s) = { diag{%&?(S)} ]

be the Smith form of Po(s). A complex number X is said to be an output decoupling
zero if it is a root of the polynomial
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Definition 2.11 (Input decoupling zeros) Consider L(A, B,C, D) a n-dimension-
al system and the polynomial matriz

Pg(s):=[sI—-A —-B|

Let

Su(s) = | ding{aP(s)} 0]
be the Smith form of Pg(s). A complex number X\ is said to be an input decoupling
zero if it is a root of the polynomial

a¥(s) = ol (s)az (s) - oy (5)

d

Definition 2.12 (Input-output decoupling zeros) Consider (A, B,C, D) a sys-
tem, its associated polynomial matrices Pco(s), Pg(s) with their Smith forms Sc(s)
and Sg(s), and the polynomials o (s) and oP(s), respectively. A complex number A

is said to be an input-output decoupling zero if it is a root of both polynomials o (s)
and a®(s). O

The decoupling zeros are not affected by a change of basis in the state-space of
the system as it can be checked by resorting to the same arguments exploited in the
proof of Lemma 2.10. Further, they can be characterized in terms of the kernels of
Pc(A) and P5(A). The relevant results are presented in the following lemmas given
without proofs since completely similar to that of Lemma 2.9.

Lemma 2.11 (Rank property of the output decoupling zeros) A compler num-
ber A is an output decoupling zero if and only if there exists z # 0 such that

Pc(/\)z =0

Lemma 2.12 (Rank property of the input decoupling zeros) A complex number
A is an input decoupling zero if and only if there exists w # 0 such that

Pp(Nw=0

Lemma 2.13 (Rank property of the input-output decoupling zeros) A complex
number A is an input-output decoupling zero if and only if there exist z # 0 and w #£ 0
such that

Pc()\)z =0
Pr(Nw=0

In Tables 2.1 and 2.2 the definitions and basic properties of the zeros introduced so
far are schematically illustrated.

Remark 2.9 Based on Lemmas 2.11-2.13, and on the PBH tests relative to observability
and reachability (Lemmas D.1- D.2), it is straightforward to realize that a system in minimal
form does not possess decoupling zeros. a

It is worth pointing out that the given definitions put in relief possible relations
between invariant and decoupling zeros. In fact, if the number of inputs does not
exceed the number of outputs, it is immediately seen that the output decoupling
zeros are invariant zeros as well. Analogously, in the converse case, i.e. when the
number of outputs is not greater than the number of inputs, the input decoupling
zeros are particular invariant zeros. However, as shown in the example below, there
may well happen that a system has decoupling zeros which are not invariant.
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| Type | Definition | Rank property
lim G(s8)z=0 ifp>m
s—A
Transmission .. (A) =0 lim G'(s)z=0 if p<m
s—A
. . PANz=0 ifp>m
Invariant i (A) =0 P(Nz=0 ifp<m
Output Cryvy -
decoupling (A =0 Po(A)z =0
Input By, , .
decoupling a?(A) =0 PpX)z =0
Input — output a®\) =0 Pc(M\)z=0
decoupling aB(\) =0 Pr(M)z=0
Table 2.1: Rank properties of the zeros
r Type | Definition | QOutput property |
o B z(0) =0, Ju(") 8
Transmission (X)) =0 yi(8) =0, Ve >0 on X
. L 2(0) =0, Ju(") B
Invariant 7i(A) =0 y(t) =0, vt >0 on %
Output Ciy Jz(0)£0, u(-)=0
decoupling @A) =0 y(t)=0, vVt >0 on
Input By Fz(0) #£0, u(-) =0 ,
decoupling a”(A) =0 y(t) =0, vt >0 on %
Input — output a®N) =0 Fz(0) #0, u(-)=0 on 3
decoupling aB(A) =0 y(t) =0, Vt>0 ¥

Table 2.2: Qutput properties of the zeros

Example 2.14 Consider again the system defined in Example 2.13. It is obvious that
the invariant zero A = 6 is also an output decoupling zero. However, there exists an input
decoupling zero, A = 5, which is not invariant. Actually, matrix P(5) has full rank (equal to
five), even though the first four rows are linearly dependent, so that Pg(s) = [s] — A — B]
looses rank for s = 5. a

It should be now evident the relation existing between invariant and decoupling zeros
when the system at hand is square.

Lemma 2.14 (Decoupling vs. invariant zeros for square systems) Consider a sys-
tem with the same number of inputs and outputs (square system). Then the set of
decoupling zeros is a subset of the set of invariant zeros.

Proof If X is a decoupling zero, one or both of the two matrices Po(s) and Pp(s)

must loose rank for s = A. Hence matrix P(s) looses rank in s = A as well. O

In case of nonminimal systems, the set of invariant zeros does not coincide with
that of transmission zeros. Moreover, there may be decoupling zeros which are not
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invariant. These fact motivates the definition below.

Definition 2.13 (System zeros) The set Z; of system zeros is defined as
Zs = Zt U Zi—o ) Zofi U Zio

where Z; is the set of transmission zeros, Z;_, is the set of input decoupling zeros
which are not also output decoupling, Z,_; is the set of output decoupling zeros which
are not also input decoupling, and Z;, is the set of input-output decoupling zeros. O

Lemma 2.15 The set of invariant zeros of a system X(A, B, C, D) is a subset of the
set of the system zeros.

Proof The lemma will be proved in the case p > m, as the converse case being easily
handled by transposition. One has to show that if A is an invariant zero, it is also
either a transmission or a decoupling zero. Without any loss of generality, assume
that the system is decomposed accordingly to the Kalman canonical decomposition,
i.e.

A Ay Az Ay By
_ 0 A5 0 AG _ B2 _
A= 0 0 A A , B=17, , C=[0 C1 0 Cy]
0 0 0 Ag 0

where X(As, Ba, C1, D) constitutes a subsystem which is completely observable and
reachable. Of course, if A belongs to the unreachable and/or unobservable part of the
system, then it is a decoupling zero, so that the proof would be over.

Let A be an invariant zero and assume that it is not an eigenvalue of any of
the matrices Ay, A7, Ag. Then, there exists z # 0 such that P(A\)z = 0, with
2= [2] zb 2% 2} wp]’. Since A is not an eigenvalue of Ag, it turns out that z4 = 0 so
that

(/\I — A5)_122 — BQUO =0 N 0122 + DUO =0

Hence A is a transmission zero of the reachable and observable part $(As, Ba, C1, D)
of the system, and hence of the system itself, provided that [z} up])’ # 0. If it were
not so, it would happen that (Al — A1)z; — Agzz = 0 and (A — A7)z3 = 0. Since A is
not an eigenvalue neither of A7 nor of Ay, it would follow z; = 0 and z3 = 0 so that
z = 0, a contradiction. O

Remark 2.10 In view of Lemma 2.15 and Theorem 2.4 it is easy to conclude that the
set of systems zeros coincides with that of invariant zeros, relative to square systems. If in
addition the system is in minimal form, the three sets (of transmission, invariant and system
zeros) do actually coincide. O

At the light of what has previously been said, the set of system zeros constitutes
the totality of the zeros defined till now. It can be expressively partitioned in its
subsets, as shown in fig. 2.5 with reference to the case m > p, m =p, and m < p. In
the figure, the symbols ¢, i, d;, d,, d;, denote, respectively, the transmission, invariant,
input decoupling, output decoupling and input-output decoupling zeros. The presence
of one of this symbols in a part of the figure indicates that this part is contained in
the set of the zeros under consideration.

This section ends with a brief discussion on the concept of inverse system in the
simple case where p = m and det[D] # 0. For the more general case, the reader is
referred to specialized texts.
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Z,di
m>p t’l lvdio
iy do do
Zadi
m=p t,1 i, dio
i, d,
l,di dl
m<p t, 1 i, dio
Z7d0

Figure 2.1: The zeros of a system

Definition 2.14 (Inverse system) Consider a square system Y.(A,B,C,D) such
that det|D] # 0. Then, the inverse system is

F |G
Einv =
H | E
where F:= A— BD™'C,G:=BD™ ', H:= -D7'C, E:=D"!. O

The reason why system X;,, is called the inverse system can be simply explained
as follows. Let ¥ and ¥,,, be described by

& = Ax + Bu
y=Cx+ Du

and
£E=(A-BD'C)¢+BD v
0=-D'CE+ Dy

respectively. Now, build up the series connection of the systems, according to the
following two cases:

i) v =y, so that ¥;,, follows ¥ (system ¥;,,%)
ii) u =40, so that ¥,,, precedes 3 (system ¥¥,,,)
In the first case, letting z := § — z it follows
5 =(A-BD™'0)z
=—-DCz+u
whereas in the second
= Az
y=-Cz+v
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In both cases, the transfer function of the resulting system is the identity. Hence, if
G(s) is the transfer function of X, the transfer function of X;,, is exactly G~1(s).

Theorem 2.7 Consider a square system L.(A, B,C, D) where D is nonsingular and
let 3iny be tts associated inverse system. Then:

i) The set of transmission zeros of X coincides with the set of poles of X, and,
conversely, the set of poles of ¥ coincides with the set of transmission zeros of
Einv-

ii) The set of eigenvalues of X coincides with the set of invariant zeros of Yiny and,
conversely, the set of invariant zeros of ¥ coincides with the set of eigenvalues
Of Einv-
Proof Point i) It suffices to verify that, if M (s) is the Smith-McMillan form of the
transfer function of ¥, then TM ~!(s)T is the Smith-McMillan form of the transfer
function of ¥;,,, where

00 -~ 01
00 -- 10
Te=1: @ -
01 -~ 00
10 --- 00

The conclusion then follows from the definition of poles and transmission zeros (Def-
initions 2.7 and 2.8).

Point ) Assume that ) is an invariant zero of X;,,, i.e. (A —(A—BD™1C))w; —
BD 'wy =0and —D7'Cw; + D 'wy = 0, with w := [w] w}]’ # 0. These equations
imply that w; # 0 and Aw; = Aw;, so that X is an eigenvalue of 3. Also these
considerations can be easily reversed. Finally, assume that A is an invariant zero
of &, iie. (Al — A)wy — Bwe = 0 and Cw; + Dws = 0 with w = [w] wh]’ # 0.
Hence wy = ~D~'Cw;, w; # 0, so that (A — BD 'C)w; = Aw; implies that X is
an eigenvalue of ¥,,,. Reversing the procedure proves the validity of the converse
statement as well. O

2.6 Singular values

In this section, some of the most significant properties of the singular values of a
matrix are reported along with the so-called singular value decomposition. Reference
is made to constant vectors and matrices with complex elements. Recall that the
symbol "~ denotes the operation of conjugate transposition. The norm adopted for
vectors is the one induced by the usual inner product in C".

Definition 2.15 (Singular values of a matrix) Let A be a n x m complexr matriz.
The square roots o;(A),i = 1,---m of the eigenvalues of A~ A are called singular
values of A. m|

Notice that the singular values of A are real and nonnegative, since A™~ A is a hermitian
and positive semidefinite matrix. Of course, m~rank[A] singular values of A are in
fact zero. The singular values of A can be put into evidence by the so-called singular
value decomposition of A, whose existence is established in the theorem below. Its
proof, which is reported in Appendix B, is based on a few preliminarily steps that
provide a way, although not optimal for the computational burden, to determine such
a decomposition.
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Theorem 2.8 (Singular value decomposition) Let A be a n X m matriz such that
rank[Al= k. Then, there exist two unitary matrices U and V such that

UTAV =8

where the only nonzero elements of S are those in positions (i,1),i = 1,---k. Such
elements are positive and nonincreasing.

The elements of S in positions ¢ = 1,--, min[n,m], are the singular values of A.
Further,
AYA=VSYUNUSV™ =VS~SV™Y =VDV™

where D = diag{o?(A),i = 1,---,m}. Of course, if m > n, matrix A possesses at
least m — n singular values at the origin. The greatest and least singular values of
A are indicated with a(A) and o(A), respectively. The unitary matrices U and V
specify the singular value decomposition of A.

Remark 2.11 Based on Theorem 2.8, matrix S has the same dimensions as A and exhibits

the following structure
[ A0 ] if n<m

S A if n=m
A .
[0} if n>m

The ”meaningful” part of S is therefore constituted by the diagonal matrix A with dimension
min[n,m]. For such a reason, the singular value decomposition is sometimes presented in a
different way, distinguishing two different situations:

1) Case n > m : There exist two matrices Uy and V of dimensions n x m and m x m,
respectively, such that A = U AV™, with V™V = VV™ = [ and UTU; = I. The
diagonal matrix A is m-dimensional and contains the singular values of A.

2) Case n < m : There exist two matrices U and Vi of dimensions n X n and m x n,
respectively, such that A = UAV)”, with U~U = UU~ = I and V1V{© = I. The
diagonal matrix A is n-dimensional and contains the singular values of A.

With reference to what said in Theorem 2.8, it is immediate to check that U = [Ur Us],
S=[AQ],ifn>m whereas V = [V} V3], S=[A 0], if n < m. O

Remark 2.12 The pseudoinverse of A can be found in a very simple way once the singular
value decomposition of A is known. Actually, let

r

~ 20
UTAV =8 = NE
with ¥ square and nonsingular. Letting
0] ,,. ~
B:=V 0 0 Ur:=vru

it follows that

BAB =VTUTUSV™VITU™ =VTSTU” =VITU~ =B
ABA=USVTVTUTUSV™ =USTSV™ =USV™ = A

These relations show that B is the pseudoinverse of A. O
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The most significant properties of the singular values of a matrix are reported in the
following lemmas. The symbol ||z|| indicates the usual norm induced by the inner
product in C™, i.e. ||z||? = z~z and recall that \;(A) is the i-th eigenvalue of A and
rs(A) is the spectral radius of A. The proof of the following lemmas are reported in
Appendix B.

Lemma 2.16 Given o matriz A, the following relations hold:

1)
A

o) = ma

= min |Ax||

2(A) = o

Lemma 2.17 Let A be a matriz. Then 6(A) =6(A™)

Lemma 2.18 Let A be a square matriz. Then

1)
a(4) < h(4)] < a(4)

2)
rs(A) < a(A)

Moreover, if A is nonsingular, then

3) .
Q(A) = 5(A_1)
4) .
o(A4) = a(A~1)
Finally, if A is hermitian, then
5)
rs(A) = 5(A)

Lemma 2.19 Let o € C be an arbitrary scalar and A o matriz. Then,
oi(ad) = |aloi(A)
Lemma 2.20 Let A and B be two matrices with the same dimensions. Then,
d(A+B)<a(A)+a(B)
Lemma 2.21 Let A and B be two matrices such that AB makes sense. Then,
5(AB) < 6(A)&(B)
Lemma 2.22 Let A and B be two matrices with the same dimensions. Then,

og(A)~a(B) <g(A+B) <a(A)+35(B)
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Lemma 2.23 Let A and B be two matrices with the same number of rows. Then,
max(o(4),5(B)] < 5([ A B ]) < VZmax[5(4),5(B)]
Lemma 2.24 Let A be a square matriz. Then,

Z 02(A) = trace[A~ 4]

The quantity ||A||F := \/trace(A~A) is the so called Frobenius norm of A.

Lemma 2.25 Let m be the number of columns of a matrix A and denote by A;; its
element in position (i,7). Then,

max |Aj;| < 5(A) < mmax Ayl
7 .7

2.7 Basic facts on linear operators

In this section some facts on the theory of linear operators are recalled. Since no
confusion can arise in the present context, the term linear will be often disregarded.

Definition 2.16 (Operator) A (linear) operator T is a linear map acting between
two linear spaces. ]

For an operator T': X — Y acting between two normed linear spaces X and Y, it is
possible to introduce the notion of boundedness, norm and continuity.

Definition 2.17 (Boundedness of an operator) Let X andY be two normed linear
spaces and T : X — Y an operator. This operator is said to be bounded if there exists
a constant M such that

|Tz|| < Mlz||, Vz € X (2.18)

O

Definition 2.18 Let X and Y be two normed linear spaces and T : X — Y a bounded
operator. The smallest constant M satisfying eq. (2.18) is called norm of T and
denoted by || T O

Remark 2.13 Thanks to linearity and Definitions 2.17, 2.18, the norm of an operator can
be significantly characterized as follows

k]

||} = sup Tz
20 hel=1

In the particular case where T is actually a complex matrix, it follows, in view of Lemma
2.16, that ||T|| = 6(T). O

Definition 2.19 (Continuous operator) Let X and Y be two normed linear spaces
and T : X —'Y an operator. If, chosen a vector £ € X, for any € > 0 there ezists a
6 > 0 such that

le—¢l <6 =Tz -T¢| <€

then T is said to be continuous. O



44 CHAPTER 2. PRELIMINARIES

The concept of rank, which is well understood for operators defined in finite dimen-
sional spaces, can be extended to the general case as follows.

Definition 2.20 (Rank of an operator) Let X and Y be two normed linear spaces
and T : X — Y an operator. The rank of T is the dimension of the closure of the
range of T. |

Also the concept of eigenvalue and eigenvector, which are familiar in the context
of linear operators in finite dimensional spaces (matrices), can be extended in an
analogous way.

Definition 2.21 (Eigenvalue and eigenvector of an operator) Let T : X — X be
an operator and A a complex number. If

Tr=MXx, z#0
then X and x are called eigenvalue and eigenvector of T, respectively. O

Remark 2.14 1t is well known that, in the case of finite dimensional spaces over the field
of complex numbers, an operator admits at least one eigenvalue. This is not true, in general,
if X is not finite dimensional. For example, the operator J (integral) acting on the space of
polynomials p(s) with real coefficients defined as

Si+1

J:iaisi Hiaiiq—l
i=0 i=0

does not admit eigenvalues. Actually Jp(s) = Ap(s) holds only for p(s) = 0. On the contrary,
the (derivative) operator D acting again in the space of polynomial with real coefficients,

defined as
n "
A
D: g ais” — E jo s
i—0 i=0

admits A = 0 as an eigenvalue, since Dp(s) = 0 for p(s) = ao # 0. Furthermore, if the
rank of the operator is finite, then it admits at least one eigenvalue even if X is not finite
dimensional. a

IfT: X — Y is a bounded operator and X and Y are Hilbert spaces (so that suitable
inner products are there defined along with the induced norms), it is possible to
define the adjoint operator of T, hereafter indicated with 7. To this aim, consider
an operator T : X — Y and the map S :=Y — X defined by the equation

<Tr,y>=<uz,Sy> Ve e X, WyeY

The map S is easily shown to be a linear and bounded operator. Hence the following
definition is in order.

Definition 2.22 (Adjoint operator) Let X and Y be two normed linear Hilbert
spaces with the norm induced by the (relevant) inner products. Let T : X — Y
be a bounded operator. The adjoint operator T* is defined by

<Tz,y>=<z,T"y> Vre X, VyeyY
O

The linear operators enjoy a number of useful properties, some of them gathered in
the following theorem, whose proof can be easily found in any specialized text.
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Theorem 2.9 Let X and Y be two linear Hilbert spaces and let T : X — Y and
S:Y — X two bounded operators. Then,

1) T* is bounded and ||T|| = ||T*|.

2) IT°T| = |TT°|| = | T,

3) (T+ Sy =T*+85".

4) Ifa e C, (aT) = a™~T*.

5) (TS)* = 8*T*.

6) If T~ exists and is bounded, then (T~1)* = (T*)~1.
7) (T5)*=T.

A particular case occurs when an operator 7' : X — X coincides with its adjoint. In
this case T is said to be self-adjoint. For example, the operator T*T is self-adjoint:
its eigenvalues, if any, are real and nonnegative.

2.8 Functional spaces of rational matrices

The present book often refers to some functional spaces whose elements are proper
rational matrices endowed with peculiar properties. To say the true, these elements
could be viewed as belonging to suitable subspaces of more general linear spaces whose
elements are not necessarily rational functions. However, undertaking this broader
perspective is not strictly necessary in the present context, so that the exposition is
restricted to the smaller world of rational functions.

Being the elements of the spaces under consideration rational matrices, it should
be necessary, for a more rigorous notation, to indicate time by time the dimensions
of the relevant matrices. However, this choice is completely useless, since the context
widely clarifies the dimensions of the matrices under consideration. Therefore, it will
be said that the n x m matrix A belongs to X instead of X™*™ and so on and so
forth. Counsistently, the identity (resp. null) matrix will be simply indicated by I
(resp. 0).

Definition 2.23 (The space RL) The set of the rational matrices F(s) such that

sup | F(jw)]| = sup o[F ()] < o0

constitutes the space RL. O

Definition 2.24 (Norm in RL.) Let F(s) be an element of RLy,. The norm of
F(s) is the scalar

[F(8)|loo := sup o [F(jw)]
w
|
Remark 2.15 Based on the given definitions it should be obvious that a matrix belongs

to RL if any element is a proper rational function without poles on the imaginary axis. In
the scalar case, the norm coincides with the peak value of the frequency gain. O



46 CHAPTER 2. PRELIMINARIES

An important subspace of RL., is that of the rational matrices which are bounded
in the right half plane.

Definition 2.25 (The space RH.,) The set of rational functions F(s) such that

sup |[F(s)|| < oo
Re(s)>0

constitutes the space RH,. a

Remark 2.16 In view of the given definitions, it results that the elements of RH, are
rational, proper and stable matrices. Moreover, being RHo, a subspace of RL, the norm
adopted for the former can be the same as that utilized for the elements of the latter. Further,
thanks to a well known property of analytic functions, if F(s) € RHs, then

[F(s)lloc = sup OIIF(S)II

Re(s)2

Example 2.15 Let consider the functions

RO = oranTg e PO=5 BO-
] s—1 1
RO = trere BT BO=5g
_[GHD/E -0 s+ 1)/ 4y _ [ s/s+3)
Fa(s) = i (s—1)/(s+2) ] » Bl = [ V1) ]

Fos)= [ 1 (s=D/(s+1) 1/(s+2) ]

Among these functions, F1(s), Fs(s), Fa(s), F5(s), Fs(s), Fs(s) and Fy(s) belong to RLo,
whereas Fy(s), F5(s), Fs(s) and Fs(s) belong also to RHoo. O

In the space RH,, there are functions which are particularly meaningful. Among
them, the so called inner and outer functions are the object of the two definitions
below.

Definition 2.26 (Inner function) A function F(s) € RH, is said to be inner if
F~(s)F(s)=1, Vs
a

Definition 2.27 (Outer function) A function F(s) € RH, is said to be outer if
there exists a function X(s), analytic in Re(s) > 0, such that

F(s)X(s)=1, Vs
O

Remark 2.17 The definition of outer function can be equivalently formulated by requiring
that F'(s) has full row rank for any s with Re(s) > 0. Obviously, if F(s) is a square matrix
belonging to RH., together with its inverse, then it is outer. Moreover, if F'(s) and G(s)
belong to RHs and are left coprime in the setting of proper stable matrices, then matrix
[F'(s) G(s)] is outer.

In the restricted case of scalar functions, it is readily seen that a function F'(s) € RH is
inner if lim, . F(s) = 1 and the zeros and poles are symmetrically positioned, with respect
to the origin, in the complex plane. On the other hand, a function F(s) € RHs is outer
(minimum phase) if it has no zeros with positive real part. a
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It is possible to prove that any matrix F'(s) € RH, can be decomposed in the product
of an inner matrix and an outer matrix (inner outer factorization). Precisely, given
F(s) it is always possible to find two matrices F;(s) and F,(s) such that F(s) =
Fi(s)F,(s). In the scalar case, such a decomposition is simply performed in the way
indicated in the proof of the following theorem.

Theorem 2.10 (Inner outer factorization of scalar functions) Let F(s) € RHy
be a scalar function. Then, there exist a scalar inner function F;(s) and a scalar
outer function F,(s) such that

F(s) = Fi(s)F,(s)
Moreover, if F(jw) #0, 0 <w < oo, then F;(s) € RHo.

Proof Let z;, i =1,2,---,v be the zeros of F'(s) with positive real parts (taken with
their multiplicity). Moreover, let

Observe that the zeros of F,(s) are the zeros of F(s) with nonpositive real part and
the opposite of the zeros of F'(s) positive real part. Hence, if F(s) does not have zeros
on the extended imaginary axis, then rhpdeg[F,(s)] = 0, so that F, 1(s) € RH,. O

Example 2.16 Let consider the functions

s s—1
F =1, F = 2 =
1(5) ’ 2(5) s+1° 3(5) s+ 1
s—1 s+1
E = F =
a(s) s+2" 5(5) s+3
F1(s) and F3(s) are inner, whereas Fi(s), Fz(s) and F5(s) are outer. The function Fy(s)
is neither inner nor outer. For this function, take Fy;i(s) = (s — 1)/(s + 1) and Fy, =
(s +1)/(s + 2), so that Fy(s) = Fui(s)Fuo(s). Since F(s) has no zeros on the extended
imaginary axis, the function Fyo(s) admits as inverse an element of RH. ]

Another meaningful subspace of RL, is now defined.

Definition 2.28 (The space RL;) The set of rational functions F(s) such that
1 oo
ﬂ/ trace[ F™~ (jw) F (jw)]dw < o0

constitutes the space RLs. |

It is easy to figure out that, taken two rational functions F(s) and G(s), both belong-
ing to RL4, the scalar

1 o0
o= é;/ trace[G™ (jw) F (jw)|dw < oo

satisfies all axioms which characterize the inner product, so that the following defini-
tion is in order.
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Definition 2.29 (Inner product in RL;) The inner product of two functions of RLy
15 defined as

< G(s), F(s) >= % /00 trace|G™ (jw) F(jw)]dw
0

The space RLs is therefore a pre-Hilbert space. To say the true, it is possible to show
that RLy is complete, and this implies that it is actually a Hilbert space. Accordingly
to what said before, the norm in RLs can be induced by its inner product.

Definition 2.30 (Norm in RL>) Let F(s) be an element of RLy. The norm of F(s)
1s the scalar

00 1/2
1F (s = [% [ tracel e Pl
O

The space RL, can be decomposed into the direct sum of two subspaces, RH, and
RHS, ie
RL, = RH, ® RH>

where the subspaces RHy and RHs are defined as follows.

Definition 2.31 (The subspaces RH> and RH3") The subspace RHy is constituted
by the functions of RLy which are analytic in the right half plane. Conversely, the
subspace RHs is constituted by the functions RLy which are analytic in the left half
plane. m]

Remark 2.18 The given definitions imply that a matrix belongs to RLs if its elements
are strictly proper rational functions without poles on the imaginary axis. It belongs to RH»
(resp. RHs ) if its elements are strictly proper rational functions without poles in the closed
right (resp. left) half plane. Obviously, it turns out that RH> C RH. a

Remark 2.19 The elements in the spaces RL2, RH> and RHy (which are rational func-
tions of complex variable) can be related to the elements of the spaces RL2(—o0 00),
RL>[0 o0), and RL2(—co 0], which are functions of the real variable ¢. Such functions are
characterized by having rational Fourier transform and being square integrable in the inter-
vals (—o0 0), [0 00), and (—~o0 0], respectively. Moreover, the elements of RLy(—o0 0]
and RL2[0 oco) are zero for t > 0 and t < 0, respectively, so that both of them be-
long to RLa(—o0 oo). Notice that any element of RL;(—o00 o0) can be uniquely written
as the sum of an element of RL32[0 o0) and one of RLa(—oo 0]. Hence RLa(—o00 00) =
RL3[0 00) @ RL2(—00 0].
For example, the matrix of functions for which there exists the integral

/°° e Y f(t)dt := F(jw)
0

and such that -
/ trace[f'(t)f(t)]dt < oo
0

is an element of RL2[{0 oo), which can be put into correspondence with the element F(s) €
RH,, provided that this matrix is rational. m]
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Example 2.17 With reference to the functions Fj(s) defined in Example 2.15, it follows
that F1(s), F3(s), Fa(s) and Fs(s) are elements of RL,. Moreover, F4(s) and Fg(s) are also
elements of RH, and Fi(s) is an element of RH3 . Finally, notice that

s+1 1 N 4
(s+2)(s—3)  5(s+2) 5(s—3)
= F15(8)+F1a(8)

F](S) =

where Fis(s) € RH, and Fi,(s) € RH5 . Hence, an element of RL> has been shown to equal
the sum of a stable function and an antistable one. o

Remark 2.20 In linear system theory, the norm of a function in RH: lends itself to
particularly significant characterizations. To put them into light, consider the time-invariant
system

& = Az + Bw, z(0) =0
z="Cx

and assume that it is completely reachable and observable. If the matrix A is stable, its
transfer function F(s) is an element of RH>. Now, consider the m-dimensional input vector
w(t) = 8(t)ei(m), where i = 1,---m, e;(m) is the i-th column of the m-dimensional
identity matrix and 6(t) is the ”impulsive” function. Let z{* be the corresponding forced
response of the output z and Z(¥(jw) its Fourier transform. One wants to evaluate the

quantity
m %)
Ji = / z(i)/z(i)dt

By exploiting the well known Parceval theorem and the properties of the trace operator, it
follows

IEGIE= o [ trace [F'(- jw)F(je)] do
= % 2 ei(m) F'(—jw)F(jw)ei(m)dw

1 & i)’ . i)y .
— %/ ZZ() (—]w)Z( )(]w)dw
0 =1

g / PRI QP Ty &
i=1 70

As for the computation of the scalar Ji, observe that

/ FLRIPLP / trace {ei(m)’B'eA/tC'CeAtBei(m)} dt
0 0
so that

Ji = Z/ trace [ei(m)'B/eA,tC'CeAtBei(m)} dt
i=1 /0

= Z/ trace [eA/tC/CeAtBei(m)ei(m)'B'} dt
i=1+0

o0
= / trace
0

At et Z Be; (m)ei(m)'B'] dt

=1
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= /°° trace [eAItC'CeAtBB'} dt
0
= trace [B' / b eA’tc’ceAtdtB] (2.19)
0
:qwmk/wdwgﬁmwi (2.20)

0

As well known, the value of the last two integrals which appear in egs. (2.19),(2.20) can be
computed by resorting to two suitable Lyapunov equations. More precisely, it follows

trace [B// eA/tC'CeAtdtB] = trace [B'POB]
0

trace [C/ eAtBB'eA'tdtC/] = trace [CPTC'] (2.21)
0
where P, and P, are the unique solutions of the Lyapunov equations (in the unknown P)
0=A'P+PA+C'C

0= AP+ PA + BB’

respectively. As a matter of fact, stability of A implies that these equations admit a unique
solution, which is also positive semidefinite (recall Lemma C.1).
Consider again the system defined at the beginning of this remark and let now the input
w be a white noise with identity intensity. Associated with such a system, consider the
quantity
Jp = lim E [2/(t)2(t)]
t— oo

It follows that

Jo = lim E [trace [z/(t)z(t)]]

t—o0

lim E [trace [z(t)zl(t)”

t—o0

lim trace {E [/t &(t, T)w(r)dr /t w'(a)@'(t,a)do“
treo 0 0

= lim trace {/ o(t,T) /t E [w(’r)w’(g)] q>’(t,o)d0'd7']
0 0

t— o0

t
lim trace [/ Q(t,T)@/(t,T)dT]
0

t—o00

where ®(£,9) := Ce*¢~® B. Letting = t — 7 one obtains

¢
J2 = lim trace [C/ e*"BB'e? "dnC']
0

t— oo

= trace [C/ eA"BB’eA'"dnC'} =J
0

where the last equality follows from what previously shown. Finally, consider again the
system fed by a white noise w with identity intensity, and let

1 T
J3 = lim =E [/ z'zdt}
Tooo T 0
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From the analysis performed for the scalar J2, one can easily check that
t 7
E [¢/(t)2(t)] = trace [C / et "BB’eA"dnC’] = trace [CP(t)C']
0
with
¢ !
P(t) ::/ e*BB'¢* dn (2.22)
0
Therefore,
P0)=0
P(t) = e BB et
so that, taking into account eq. (2.22), it follows
P(t) = AP(t) + P(t)A’ + BB’

By integrating both sides of this equation from 0 to 17" and recalling that P(0) = 0, one gets

mTy:/Tpuwh:A/TP@Mt+/TPUMUV+BBT

Letting

it then follows that

A+ BB (2.23)
Observe that, thanks to eq. (2.22), it is
T ’

lim P(T) = lim / e*"BB'e¢* dn = P,

T— o0 T—oo Jo
so that, taking the limit as T — oo of both members of eq. (2.23), it turns out that

0=AY +YA + BB’ (2.24)
where
X(T)

Y := lim ——
im —

T—oc
Since the solution of eq. (2.24) is unique, one can conclude that Y = P, and consequently
Js = J1. Od

Remark 2.20 also indicates how the computation of the norm of a function in the
space RH, can be actually performed. As a matter of fact, it is sufficient to solve
a Lyapunov equation. Of course, the problem of computing the norm of a function
F(s) in RHj, is easily solved by observing that G(s) := F~(s) € RH, and that

IFOIE = 5 / trace[F™ (juw) F (juw))dw
1 o0

=5 | trace[F(jw)F™ (jw)]dw

= % /_C: trace[G™ (jw)G(jw))dw

IG(s)l13
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Hence, the norm of F(s) € RHy can be computed by solving a Lyapunov equation
associated with G(s) = F~(s) € RHa.

Finally, the problem of computing the norm of a function F(s) in the space RL,
is easily solvable by writing a decomposition of such a function into the sum of an
element of RH, and another one in RHs. The following result is then provided,
whose proof is obvicus and then omitted.

Theorem 2.11 Let F(s) = F,(s) + F(s) with F,(s) € RHy and F,(s) € RH,.
Then,

i) < Fa(s), Fo(s) >=0
i) [|F(s)||5 = l1Fa(s)l13 + |1 Fs(s)]l3

Example 2.18 Consider the function

F(s) =

8

(s+1)(s—1) ¢ RL,

Letting
1 1

———, F(s)i= ———

-1 B =

it follows that F(s) = Fs(s) + Fu(s) and Ga(s) := F;'(s) = —1/2(s + 1). With the func-
tions Fs(s) and Ga(s) let associate the two (minimal) realizations (A, Bs, Cs, Ds) and
¥(Aq, Ba, Ca, Do), respectively, with A, = As = -1, B, = B, = 0.5, Cs =1, C; = —1 and
D, = D, = 0. It turns out that

F.(s):=

1B ()13 = 1Ga(s)l3 = %

so that 1
IF@)lz = ;
O

Remark 2.21 It is worth noticing that the norm of a generic function F(s) € RLo co-
incides with that of a suitable function F'(s) € RHeo, which is easily derived from F(s).
Actually, notice that the least common multiple of all denominators of the elements of F(s),
denoted by 1(s), can be always factorized as 9(s) := 1. (s)t)s(s), where, since F(s) € RL,
the polynomial ), (s) has all its roots in the open right half plane and v,(s) has all its roots
in the open left half plane. Hence, if

P(s)
F(s) i = —————
)= 50,0
being P(s) a polynomial matrix, then
- P(s)

PO = S o

is such that, F(s) € RHo and F~(s)F(s) = F~(s)F(s). Consequently, ||F(s)]jcc =
()l oo- 0

’1j>

The norm of a function F'(s) € RL, thought of as the transfer function of a linear
system, can be meaningfully related to the norm of the input and output signals,
both assumed to be square integrable. Precisely, the following result, besides further
characterizing the concept of norm in RL,, for dynamical systems, also provides an
alternative definition of such a norm.
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Theorem 2.12 Let F(s) € RLy,. Then

F
1P()oo = sup IE)ullz
vt flulle
uERLy

Proof Observe first that, thanks to Remark 2.21, one can assume, without any loss
of generality, that F(s) € RH,,. As a consequence, it results that F(s)u € RLy if
u € RLy. Now, notice that

F(s)ul2 F(s)-£53
qup WE@l o IFG) 25 (2.25)
2y Ml g SIS

where 1 is a generic constant vector with suitable dimension. Recall that the time
response of a system with transfer function F(s) fed by the input u = pe is, if A
does not coincide with any poles of F(s), y = F(\)ue*t, provided that a suitable
initial state is chosen. Then,

F(s)—2 = F()

s— A s— A

AR,

where f € RH> is the Laplace transform of the output free response, whereas the left
hand side of the equation corresponds to the output forced response. Since F'(A)£y €

RHj, it follows that (recall Theorem 2.11)

K2 B2 2 P
= > .
1) 3 = 1) LS B+ @I 2 1P L8 (220
From egs. (2.25), (2.26) it follows that
7 = B2
oz lullg recpzo IS5
2
o ap IEOI
Re(A)>0 HNH
1150
> sup [[F(V]?
Re(A)>0
> [[F ()]s (2.27)

[n getting the above expression, the following two facts have been exploited:

1) If K is a constant, then |- >\H2 = K~K|| 213 = IK|?]l5 1/\||2

A 2
2) sup,,o LR = |FOV)|?

On the other hand, letting e; denote the i-th column of the identity matrix (the
context will clarify the relevant dimension), and defining

wi=| uey - ue, |
it follows that
sup | F'(s)ul3 s ffooo trace [u™ (jw) F™~ (jw) F (jw)u(jw)] dw
w0 [lull3 w0 [ trace [u™ (jw)u(jw)] dw

uw€RLy wERLy
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= sup ffooo i=1 €U (JW)FN(JM)F(jw)u(jw)eidw

LR, f. 1 e (jw)u(jw)eidw
- 2im1 f | F(jw)u(jw)e;||*dw
S0 R J2o u(jw)es||2dw
3 11L VE G Rlhuio)es] 2
T Tl ulwePde
< 1£(s) H2 Dic f [|u(jw)e;||2dw
T Xl uGe)e]Pde
< PO 229
From equations (2.27),(2.28), the result follows. O

The computation of the norm of F(s) € RLy, can be easily performed by exploiting
the result provided in the following theorem, which refers to functions in RH,, only.
As explained in Remark 2.21, this does not entail any loss of generality.

Theorem 2.13 Let F(s) = C(sI — A)"*B+ D, with A stable and 5(D) < ~y. More-
over, let A(y) := A+ B(y*I — D'D)™'D'C and
Z(7) = A(’Y) B(y*I-D'D)"'B

Ul -ou-yopyie -AG)

Then, the following conditions are equivalent:
a) [|F(s)lleo <7
b) All the eigenvalues of Z(~y) do not lie on the imaginary axis

c) The subspace generated by the (generalized) eigenvectors of Z(v), associated
with the eigenvalues with negative real parts, is complementary to Im[[0 I]']

d) There exists a symmelric, positive semidefinite and stabilizing solution S(v) of
the algebraic Riccati equation (in the unknown S) associated with Z(7y)
0=SA(y) +A'(V)S+C'(I-~2DD)"'C+ SB(y*I - D'D)"'B'S
namely, such that matriz A(y) + B(y2I — D'D)"'B'S(v) is stable.

Proof Preliminarily observe that the assumption on the norm of D ensures, thanks to
Lemma B.11 that both matrices (I — v 2DD’) and (21 — D’'D) are positive definite
so that the statement of the theorem is well defined.
a) = b) Assume, by contradiction, that Z(y) has an eigenvalue in jw and let
¢ := [z’ ¥']' # 0 be an associated eigenvector. From Z(v){ = jwé it follows
(jw— A(y)x = B(y*I ~ D'D) ™ B'y
~(jw+ A'(7)y=C"(I-7*DD')"'C
By recalling the definition of A(v) and the identity (I —y~2DD')~' = I + D(¥*I —
D'D)~'D’' (Lemma B.9), these expressions can be rewritten as follows
(jw — A)x = B(y*I — D'D)""(B'y + D'Cx) (2.29)
—(jw+ Ay =C'Cx+ C'D(v*I — D'D)"Y(D'Cx + B'y) (2.30)
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Let now
v:= (v*I — D'D)"Y(B'y + D'Cxz) (2.31)
z:=Cx+ Dv (2.32)

In view of eqs. (2.29),(2.30) and thanks to the stability of A, these last expressions
become

z = (jwl — A)"'By (2.33)
y = —(jwl + A")"1C"2 (2.34)

which, substituted into egs. (2.31),(2.32) yield
z = F(jw)v, v?v = F'(—jw)z

that is
F'(—jw)F(jw)v = ¥*v

Being v # 0 (otherwise, both z and z would be zero and thus also y), it results

2 _ v (jw) F(jw)v

_IFGw)]?
o]
P Gw)v]?
=S e
< |F(w)])?
< sup [ Fjo)|* = 1P ()

which is a contradiction.

b) = a) Conversely, suppose that ||[F(s)|l« > 7. Since, by assumption, ||D| =
lim,, oo ||F(w)]l < 7, by a continuity argument there exists a real number w such
that ||F(jw)|| = . Therefore, 42 is an eigenvalue (actually the maximum one) of
F~(jw)F(jw) so that there exists a nonzero vector v such that F™(jw)F (jw)v = v?v.
Being v # 0, it also follows that 2z := F(jw)v # 0. Now define two vectors z and y
as in egs. (2.33),(2.34). With such definitions, simple computations show that also
eqs. (2.29)-(2.32) hold. From eq. (2.31) one can conclude that & := [z’ y/]’ # 0 since,
on the contrary, v would be zero. Finally, eqs. (2.29),(2.30) imply that Z(y)£ = jwé,
which is a contradiction.

d) = b) The existence of a stabilizing solution of the Riccati equation introduced
in the statement implies, by a well known result, that the eigenvalues of Z(~y) do not
lie on the imaginary axis.

b) = d) Notice first that, as obvious, stability of A guarantees stabilizability of
the pair (A, B) and, recalling the definition of A(v), also that of the pair (A(y), B).
This condition implies also the stabilizability of the pair (A(v), B(y*I — D'D)~'B’).
To see this, suppose by contradiction that, for a certain z # 0 and A, Re(A\)} > 0, it
is A'(v)x = Az and B(v*I — D'D) "B’z = 0 (recall the PBH test). It follows that
™~ B(y*T-D'D) !B’z = 0so that B’z = 0 thanks to the fact that (y27—D'D)~! > 0.
The conditions 2 # 0, Re()\) > 0, A'(y)z = Az and B’z = 0, finally violate the

stabilizability of (A(v), B). Lemma C.3 can now be applied to the Riccati equation,
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ensuring the existence of its symmetric and stabilizing solution S(~). It is only left to
show that such a solution is actually positive semidefinite. To this aim, rewrite the
Riccati equation as follows

0= S8(y)A+AS(H)+C'C+[S(y)B+C'D](v*I - D'D)"*[S(v)B + C'D]
= S(y)A+ A'S(v) + W(v)

where W () > 0. Thanks to Lemma C.1, it can be concluded that S(v) > 0.

¢) = b) Condition ¢) implies that the subspace generated by the (generalized)
eigenvectors of Z(v) associated with the eigenvalues with negative real part has the
same dimension n as the system. Hence Z(v) has n eigenvalues with negative real
part and, obviously, has no eigenvalues on the imaginary axis.

b) = ¢) Since condition b) has already been proved to be equivalent to condition
d), it follows that the stabilizing solution S(v) is such that Im[[I S(¥))’], which is
obviously complementary to Im[[0 I]'], is actually the subspace generated by n (gen-
eralized) linear independent eigenvectors of Z(y) associated with the n eigenvalues
with negative real part. |

Theorem 2.14 Let F(s) := C(sI — A)"'B + D and 7 a positive scalar. Then, the
following two conditions are equivalent:

a) The matriz A is stable and |[F(8)||oo < ¥

b) (D) < v and there exists the positive semidefinite stabilizing solution S(v) of
the algebraic Riccati equation (in the unknown S)

0=SA(y) +A(\)S+C'(I —~+~2DD")"'C + SB(v*I — D'D)"'B'S
i.e. such that
A(v)+ B(*I - D'D)"'B'S(y) = A+ B(v*I — D'D)"Y(B'S(~) + D'C)

is stable.
Proofa) = b) If | F(s)|lcc < 7, then, obviously 6(D) < «y since D = lim,,_,o F(jw).
Therefore, Theorem 2.13 guarantees the existence of S(7).

b) = a) Preliminarily observe that (D) < ~ implies, thanks to Lemma B.11,

that matrices (I —y 2DD’) and (y2I — D'D) are positive definite so that the Riccati

equation is well defined. Such an equation can be equivalently rewritten as (recall the
definition for A(vy) and Lemma B.9)

0=SA+AS+(SB+C'D)¥*I-D'D)"YB'S+D'C)+C'C
The stabilizing solution S(7) is also a solution of the Lyapunov equation
0=SA+ A'S+N()AH)
where
N (7)A() :=[S()B+C'D)(v*I = D'D)~} [B'S(y) + D'C] + C'C

The proof is concluded by showing that the pair (A4, A(7)) is detectable. Actually, in
this case, Lemma C.1 implies that A is stable, so that the proof follows directly from



2.8. FUNCTIONAL SPACES OF RATIONAL MATRICES a7

Theorem 2.13. Therefore, assume by contradiction that this pair is not detectable.
Based on the PBH test (recall Lemma D.2) it follows that

Az = Az, Re(A\) >0, z#0
Aly)z =0

Recalling the definition of A’(v)A(y), the second equation implies that
N (y)A(v)z = 2™[S(y)B+ C'D|(y* I — D'D)~'[B'S(y) + D'Clz + z~C'Cr = 0

so that, in particular,
[B'S(y)+ D'Clz =0

thanks to the fact that C’C > 0 and (vy?I — D'D) > 0. Hence,
{A+ B(y?I - D'D)"'[B'S(y) + D'C)}x = Ax = Az
This is obviously a contradiction, since x # 0, Re(A) > 0 and S(v) is stabilizing. O

Example 2.19 Consider the rational function

0 0 1 ‘ 0
. —-10 -2 1
F(s) s24+2s+10 10 0 ’ 0

It turns out that |F(jw)|* = 100/(w? — 16w? 4 100) so that |F(s)||ec = 5/3 =~ 1.66. Taken
~ = 1.67, the eigenvalues of Z(v) are +0.067 + 2.83j whereas for v = 1.66 the eigenvalues of
Z(v) are £2.925 and +2.73j. a

Remark 2.22 Theorems 2.13 and 2.14 call for a Riccati equation which resembles the one
utilized in the context of optimal LQ control. In view of Lemma 2.16 and Remark 2.13, it
results that
IFGw)ll = g[F(jw)] = a[F'(=jw)] = | F'(jw)|
so that
IF(s)llee = I1F'(8)lloc
Hence, the two relevant theorems can be equivalently reformulated with reference to F'(s) =

B'(sI — AY™'C’ 4 D' instead of F(s). As a consequence, the relevant Riccati equation
becomes the following

0= SA(y) + A()S+ B(I =+~ *D'D)"'B' + SC'(y*1 - DD')'CS
which resembles the equation involved in the optimal filtering problem. )

The previous results on the characterization of an upper bound of ||F(s)||e for
F(s) being a function in RH, are all expressed in terms of the existence of a sym-
metric, positive semidefinite and stabilizing solution of an algebraic Riccati equation
(recall Theorems 2.13 and 2.14) which are of particular importance to get the results
of Chapter 5. However, in Chapter 6 reference is made to the following similar results
which are alternatively expressed in terms of Riccati inequalities with no additional
requirement concerning the stability of their solutions.

Theorem 2.15 Let F(s) := C(sI — A)™'B and v a positive scalar. Then, the fol-
lowing conditions are equivalent:

a) Matriz A is stable and || F(s){ls <7y
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b) There exists a symmetric and positive definite matriz S satisfying the Riccati
inequality

SA+ A'S+~472SBB'S+C'C <0 (2.35)

¢) There exists a symmetric and positive definite matriz P satisfying the Riccati
inequality
PA' + AP +~y72PC'CP+ BB <0 (2.36)

Proof That points b) and ¢) are equivalent is straightforward. Indeed, the positive
definite solutions (if any) of both inequalities are related one to the other by P =
20-1
Al
b) = a) Since there exists S > 0 satisfying (2.35), it also satisfies the Riccati
equation

0=SA+A'S+~+2SBB'S+C'C (2.37)
where ¢’ = [C’ E'] for some matrix E such that E'E > 0. From the Extended
Lyapunov lemma the stability of matrix A follows. With S > 0 being a solution of
(2.37), define the auxiliary Riccati equation

0=X(A+vy?BB'S)+(A+~ *BB'SYX -y XBBX+E'E (2.38)
Using the fact that A is stable and E'E > 0, from Lemma C.3 it is readily verified
that it admits a symmetric and positive semidefinite solution X > 0 such that matrix

Ax := A+~ % BB'S—~"2BB'X

= A++472BB'(S - X) (2.39)
is stable. Defining W := S — X and using (2.37) together with (2.38) we get
0=WA+ AW+~ 2WBB'W +C'C

Moreover, since A is stable, this means that W > 0 and from (2.39) matrix A +
v~ 2BB'W is stable. From Theorem 2.14 the conclusion is that part @) holds indeed.
a) = b) Let us define the transfer function

F(s):= ] (sI-A)™'B

C

Vel
where € > 0 is a scalar to be determined. It is a simple matter to verify that for all
weER B B

F'(=jw)F(jw) = F'(—jw)F(jw) + €G'(—jw)G(jw)
where G(s) := (sI — A)"!B. Hence
1F(s)lI3 < IIF(s)lI3 + ellG(s)II3

and choosing the scalar € such that
7~ |F(s)l%

IG(s)I%
which is always possible since by assumption, matrix A is stable and ||F(s)|loc < 7

then we get ||F(s)||co < 7. Using again Theorem 2.14 the conclusion is that there
exists a symmetric and positive semidefinite solution S > 0 to the Riccati equation

0=SA+A'S+~ 2SBB'S+C'C +el

O<e<

which obviously satisfies the Riccati inequality (2.35) and in view of Lemma C.1 is
actually positive definite. The proof of the theorem proposed is complete. a
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Theorem 2.16 Let F(s) := C(sI — A)™'B and v a positive scalar. Under the as-
sumption that the pair (A, B) is reachable, the following conditions are equivalent:

a) Matriz A is stable and |[F(s)]loo <7y

b) There exists a symmetric and positive definite matriz S satisfying the Riccati
inequality
SA+A'S+~72SBB'S+C'C<0 (2.40)

c) There exists a symmetric and positive definite matriz P satisfying the Riccati
inequality
PA' + AP +472PC'CP + BB <0 (2.41)

Proof The equivalence of points b) and ¢} is immediate. The positive definite matrices
satisfying inequalities (2.40) and (2.41), if any, are related one to the other by S =
~2pP1.

b) = a) Assuming (2.40) admits a positive definite feasible solution then P =
72871 is feasible for inequality (2.41) which together with the reachability of the pair
(A, B) implies that A is stable. On the other hand, for all w € R, inequality (2.40)
can be rewritten as

(—jw—ANS + S(jw—A) -y 2SBB'S - C'C >0
from which and G(s) := vI —y~'B'S(sI — A)~! B we have
F'(—jw)F(jw) < 7T = G'(=jw)G(jw)
< nyI , YweR

consequently ||F(s)||c < - which is the desired result.

a) = b) From Theorem 2.15 we only need to prove that if ||F(s)||« = v then the
Riccati inequality (2.40) is still feasible for some positive definite matrix. To this end,
consider the sequence of matrices C,, := /€,C with ¢, being an arbitrary element of
an increasing sequence of scalars such that 0 < ¢, < 1 and ¢, goes to 1 as n goes to
infinite. By virtue of

Cn(sI = A) ' Bllos = Ven [|F(s)]loo
= Ve v <7 (2.42)

we already know that the Riccati equation (in the unknown S)
0=SA+ A'S+~72SBB'S + C,,C, (2.43)

admits an unique symmetric, positive semidefinite solution S, such that matrix
A, = A+ vy ?BB'S, is stable. Additionally, the sequence S,, > 0, n = 1,2, --
is nondecreasing because as it can be verified

0= (Sn—H - Sn)An + A;(Sn+1 - Sn) +
+772(Sn+1 - Sn)BB/(Sn+1 - Sn) + (€n+l - en)C,C

Once again, due to (2.42), the Riccati equation (in the unknown P)

0=PA + AP+~ %PC/C,P + BB’ (2.44)
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also admits an unique symmetric, positive semidefinite and stabilizing solution P,
which in fact is positive definite since A stable and (A, B) reachable yield

P, > / BB et > 0
0

Using the same reasoning adopted before we can show that the sequence P, > 0,
n =1,2,--- is nondecreasing as well. Hence the sequence of positive matrices S, :=
v2P, ! is nonincreasing and satisfy the Riccati equation (2.43). Moreover, defining
matrix A, := A+~ 2BB'S,, we have from (2.44) with P = P,

P A P! = Po(A+ BB'PTY P
=—(A+~y72P,C.C,)

implying that —A,, is stable. Finally taking into account that S,, and S, solve the
Riccati equation (2.43) we get

0= (Sn — Sp)An + AL(S, — Sp) + 7 2(Sn — Sp)BB'(S,, — S,)

which shows from the stability of matrix A, that S, < S,. This last inequality
together with the fact that the sequence S, > 0, n = 1,2,--- is nondecreasing and
the sequence S, > 0, n = 1,2,--- is nonincreasing allow the conclusion that both
sequences converge to some matrices such that
0< Sy := lim S, < lim S, := 54
n—oo n—oo
At this point, it remains to prove that S, is positive definite even though some

eigenvalues of matrix A lie on the imaginary axis. Indeed, assume by contradiction
that S > 0. Since it solves the Riccati equation

0=58,A+AS,+~v25,.BB S +C'C

from Lemma C.1 and the PBH test there exits 2 # 0 such that Az = Az, B'Seex =0
and Cz = 0, that is A,z = A\z. However, being A stable, this is impossible since, as
proved before, all eigenvalues of matrix A,, are located on the right part (including
the imaginary axis) of the complex plane. a

Example 2.20 Consider the rational function F(s) defined in Example 2.19. We notice
that for this transfer function the pair (A4, B) is reachable and the pair (A, C) is observable.
Taking v = 5/3, matrices Soo and S (recall the proof of Theorem 2.16) are found to be

[0

Seo =

[ 55.56 5.56
* =1 556 5.56

It is interesting to see that, in this case, the eigenvalues of matrices Ao = A+ 2BB'Se =
Ao are £2.837. That is, the corresponding Riccati equation solution Sy, is no more stabiliz-
ing but still, for v = 5/3 = || F(8)||co, there exists a symmetric and positive definite matrix
satisfying the Riccati inequality (2.40). One of such matrices is exactly Sec. m]

Example 2.21 Consider the rational function F(s)

I s+1 . 9 _3
s+2  s2+43s+2

F(s) =
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so that ||F(s}||ec = 1/2. It is apparent that the pair (A, B) is reachable but the pair (A, C)
is not observable. With v = 0.5 the following matrices appearing in the proof of Theorem
2.16 have been calculated

0.50 0.50 0.50 0.50 5
Soo = [ 0.50 0.50 ] = [ 0.50 1.00 } = o0

In this case, matrix S is positive semidefinite and the eigenvalues of Ago are 0 and —1. On
the other hand, matrix Se is positive definite and the eigenvalues of A are 0 and 1. By
construction, matrix S, satisfies the Riccati inequality (2.40). 0

An important role in the development of the discussion in Chapter 5 will be played
by a few linear operators acting on the spaces previously defined.

Definition 2.32 (The Laurent operator with symbol F) Let F(s) € RL.. The
map Ap : RLy — RLo defined as

Ap : G(s) — ApG(s) :== F(s)G(s)
is called the Laurent operator with symbol F(s). 0

Notice that the operator Ap is obviously linear and, thanks to Theorem 2.12, |Ap|| =
IE'(s)|loo so that Ap is bounded.

Definition 2.33 (Orthogonal stable and antistable projections) Let G(s) be a ge-
neric element of RLy such that G(s) 1= Gs(s) + G4(s) with Gs(s) € RHy and
Gu(s) € RHY . The map I, : RLy — RHo, defined by

II; : G(s) — II,G(s) := G4(s)

is called the stable (orthogonal) projection , whereas the map 11, : RLy — RH5,
defined by
I, : G(s) — IG(s) := Gu(s)

is called the antistable (orthogonal) projection. m]

It is immediate to check that II; and IT, are actually linear operators.

Definition 2.34 (The Hankel operator with symbol F) Let F(s) € RL,,. The
map Up : RHy- — RH, defined by

I'r:G(s) = T'rpG(s) .= M;ArG(s)
is called the Hankel operator with symbol F. a

Remark 2.23 It should be evident from the above definition that the Hankel operator
is the result of the composition of the Laurent operator with the stable projection, i.e.
I'r = 1I;AFr. Hence, I'r is indeed an operator. 0

Remark 2.24 Sometimes the Hankel operator is defined as mapping RH» to RH5 in
such a way that I'r = [IoAr. This should not be surprising. Actually, given the existing
isomorphism between RH» and RHs5", the deep understanding of the basic facts of the under-
lying theory is certainly not blurred by the presence of these different (although equivalent)
definitions. O
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Remark 2.25 Thanks to Definition 2.34, it turns out that only the strictly proper and
stable part of F'(s) contributes to ['rG(s). As a matter of fact, letting F(s) = Foo + Fo(s) +
F,(s), where Foo = lims_—.oo F(8), Fs(s) € RH2, F,(s) € RHJ, it follows

TrG(s) = II;ArG(s)
— L F(s)G(s)
= ILs [Foo + Fs(s) + Fa(s)] G(s)
=Tk, G(s)

Hence, I'r = I'F,. a

Example 2.22 A way to compute the components Foo, Fu(s) and Fs(s) of F(s) € RLw,
calls for a (minimal) realization X(A4, B,C, D) of it. Let n, (resp. n,) be the number of
eigenvalues of A with negative (resp. positive) real parts and define X, (resp. X,) as the
ns dimensional (n, dimensional) subspace generated by ns (resp. n,) linear independent
generalized eigenvectors of A associated with the eigenvalues with negative (resp. positive)
real part. Such subspaces are obviously complementary and can be identified by the image
of suitable full rank matrices X, and X,, namely Xs; = Im[X,] and X5 = Im{X,]. Then,
matrix [Xs X,] is invertible and, letting T := [X Xa]_l, it results

A — -1, _ As 0
A:=TAT ._[ 0 Aa]

where A; is stable and A, antistable. Now, let

R B, . _
B::TB::[BG] , C:=CT 1:Z[Cs Ca]

so that
F(s) = C(sI—A)'B+D

sl — As 0 [ B,
[ C C"]{ 0 sJ—Aa] [Ba]+D

= Cs(s] — As) "By + Co(sI — Aa) 'Bo + D
= Fo(8) + Fo(s) + Foo

Specifically, consider the function

2
F(s):E(A,B,C,D):%ERLOO
with
01 0 _ _
A:{l 0], B:[l], c=[2 1], p=1
It follows
1 1
Xs_[—l} ’ Xa_[lJ
and Ay = — , Bs = —1/2, B, = 1/2, Cs = 1, Cq = 3 so that Fow = 1, Fi(s) =

1, Ao = 1, B,
—1/2(s+ 1) and F,(s) = 3/2(s —1). Let now

k

G(s) = Z # , Re(p;) >0

i=1
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It turns out that F(s)G(s) = G(s) — G(s)/2(s + 1) + 3G(s)/2(s — 1) so that

I'rG(s) = IL[F(s)G(s)] = — 26(’;(111))
On the other hand
k
FC0) = ~5 Ty + O e Rep) >0
where 3; are suitable scalars. Hence
[ G(s) = ILIF ()G = gt

]

The adjoint Laurent and Hankel operators are now defined in the two lemmas below
according to Definition 2.22.

Lemma 2.26 (The adjoint Laurent operator with symbol F) The adjoint Laurent
operator with symbol F is the Laurent operator with symbol '™, i.e.

:AFN

Proof Let G(s) and Ga(s) be two generic elements of RLs and F(s) € RLs,. Then,
by recalling Definition 2.22,

< G1(8), ARGa(8) > = < ApGi(s), Ga(s) >
= o | traceG ) ()Gl
= < G(s), F7(s)Ga(s) >
= < G1(s), Ap~Ga(s) >
Being G1(s) arbitrary, from this expression it follows
A%Ga(s) = Ap~Ga(s)
so that A% = Ap~, since G2(s) is arbitrary too. m|

Lemma 2.27 (The adjoint Hankel operator with symbol F) The adjoint Hankel
operator with symbol F' is the operator I'y = II A} = Il Ap~

Proof Let G(s) € RH5-, H(s) € RHy and F(s) € RL.,. Preliminarily observe that

< G(8),TrpH(s) > =<TpG(s),H(s) >
= < II; AFG( ) ( ) >
= <II,F(s)G(s), H(s) >=< F(5)G(s), H(s) >
since F(s)G(s) = II;F(s)G(s )+ [1,F(s)G(s) and being H(s) € RH,, it turns out
that < I, F(s)G(s), H(s) >= 0 (recall Theorem 2.11). Analogously, F~(s)H(s) =
s

s s
I F~(s)H(s)+1I,F~ ( YH (s ) so that Theorem 2.11 implies < G(s), I, F~(s)H(s) >
=0, since G(s) € RH4. Taking in mind this fact, it follows

< F(8)G(s), H(s) >=< G(8), F~(s)H(s) >=< G(s), 11, F~(s)H(s) >
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8o that
< G(8),TRH(s) >=< G(3), I, F~(s)H(s) >=< G(s), I, Ap~H(5) >

Since G(s) is arbitrary it follows that I'zH(s) = II,Ap~H(s). Finally, being H(s)
arbitrary, it results I'y = I, Ap~ = 1A% O

Interestingly, one can associate with a generic Hankel operator, defined in the
frequency domain, a suitable function of time. Precisely, consider the operator I'p
and assume, without any loss of generality, (recall Remark 2.25), that

AlB
C|o0

with A stable and £(A, B, C,0) in minimal form with order n. Then, the function

F(s):=

0 <0
1 ::{ CeM'B £ >0

is the inverse Laplace transform of F(s). The map
I'y: RLy(—00 0] = RLy[0 o)
defined by

0 t<0
I‘f : u(t> = Ffu(t) = y(t) = { Cett fo GVATBU(T)dT >0

is easily shown to be an operator, which is legitimated to be considered as the time
domain counterpart of the operator I'r. Actually, the Laplace transform of y equals
the stable projection of the product of F(s) with the Laplace transform of u, i.e.

yrL = (Ffu)L = FF’(LL (245)

It is also useful to characterize further the operator I'y as follows. Consider the system
¥(4, B,C,0) and assume that its initial state at { = —oo is zero, i.e. z(—o0) = 0.
Now apply to the system an input u(-) which is different from zero only for nonpositive
time instants. Hence,

0

z(0) :/ e " Budr

hade o}
Moreover, consider the free output y, defined for nonnegative time instants, due to
the above defined initial state at ¢ = 0. It turns out that the operator I'y maps the
input » (¢ < 0) to the output y (¢ > 0), through z(0). As such, I'y can be viewed as
the composition of two operators ¥, : RLy(—o0 0] — R™ and ¥, : R* — RL[0 c0),
defined by

0
U, u(t) — Veut) =z := / e~ AT Budr

— o0
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Actually, it results I'y = ¥,¥,.. The observability operator ¥, is obviously injective
(the unique element of R™ which is mapped in zero is the zero element), thanks to
the assumed observability condition. Slightly less obvious is to recognize that the
operator VU, is surjective. In fact, thanks to the reachability condition, any element
of R™ is the result of the transformation of a suitable element of RLa(oco 0]. To see
this, let £ € R™ be a fixed element . The input

0 t>0
= ’ ’ -1
u(t) . B/efA t [fi) e—AoBB/e—A ado.] z, t< 0

X0

is such that ¥,.u = z. Actually, recalling the discussion in Remark 2.24, it follows

0 [e's)
/ e A" BB e A do — / BB eA s = P,

oo 0

where P, is the unique solution of the Lyapunov equation (in the unknown P} PA’ +
AP+ BB’ = 0. Moreover, such solution is positive definite (for this consider points 7)
and %) of the ”dual” version of Lemma C.1, i.e. when the pair (A, C') is replaced by the
pair (A’, B')). Hence u is well defined. Moreover, since A is stable, u € RLo(—00 0].
Finally,

-1

0 0
\I'Tu — / e—ATBB/e-A/TdT |:/ e——AaBB/e—A’JdO, r=x

— 00 —00

By resorting to Definition 2.22 it is easy to determine the adjoint operators of ¥, and
U,. It results that ¥ : R* — RLy(—o0 0] and ¥} : RLy[0 oo) — R™ are defined by

/1, —A't
\Il::xH\Iljmzzu(t):z{oBe . iig
Wry(t) — Uly(t) i=x = / eA,“C’ydo

0

respectively. By exploiting the fact that I'y = ¥, ¥, and taking into account the above
expressions, it follows, in view of Theorem 2.9, that I'} : RL»[0 00) — RLa(—oc 0] is
defined by

. . . [ Bt I eATCydr <0
7oy(t) = Diy(t) == ult) == { 0 £ 0

This operator is legitimated to be the time domain counterpart of the operator I'}y.
Actually, the Laplace transform of u equals the antistable projection of the product
of F~(s) with the Laplace transform of ¥, i.e.

ur, = (T3y)r = TryL (2.46)

The operators ¥, and ¥, have rank equal to n, i.e. equal to the dimension of the
minimal realization ¥.(A, B, C,0). Moreover, since U, is surjective and ¥, is injective,
it turns out that I'y = ¥, ¥, and, obviously, I'r have rank equal to n. Therefore
the self adjoint operator I'.I'r has rank n and, thanks to Remark 2.14 it admits
eigenvalues.
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Remark 2.26 The operator I'tI'r has a zero eigenvalue. Actually, write F(s) € RH»
as F(s) = N(s)/v¥(s), where N(s) is a polynomial matrix and ¥(s) is the least common
multiple of all denominators of the elements of F(s). Moreover, let H(s) € RH3 be such
that

G(s) :=1(s)H(s) € RHy

Then,

I'rG(s) = I, F(s)G(s)
_ NG
- HS w(s) w(s)H(s)
=II,N(s)H(s) =0

since N(s)H(s) € RH;. Consequently, T5T'rG(s) = 0 = 0G(s) so that A = 0 is an
eigenvalue. a

Example 2.23 Let F(s) =1/(s+ 1). Taken G(s) = 1/(s — 1), it turns out that

TrG(s) = T, F(s)G(s) = C;‘t? _ _2(81+ .

On the other hand,

1 1 1
wT =T |- | = F(s) |- o—r | = =
IrreG(s) =TF [ 2(s+1)] I (s) [ 2(s+1):| 4G(s)
so that A = 1/4 is an eigenvalue and G(s) an eigenvector of ['y'r. a

The operator I';.I'r enjoys the interesting properties stated in the following result,
for the proof of which the reader is referred to specialized texts.

Theorem 2.17 Let F(s) € RLy. The eigenvalues of I';I'p are real and nonnega-
tive. The greatest of them 1is || pl|?.

Example 2.24 Consider the function F(s) = 1/(s + 1) already introduced in Example
2.23. It is easy to check that the equation I'n[rG(s) = AG(s), with G(s) € RH3 and
G(s) # 0, is satisfied only for A = 0 or A = 0.25. Hence, I't.T'r has two distinct eigenvalues,
which are real and nonnegative. The norm of I'x=I'r is equal to 0.25 and ||T'r|| = 0.5 (recall
Theorem 2.9, point 2)). ]

The operators W, W and ¥V, map the space R" into itself and, as such, can be
represented by suitable (real) n-dimensional matrices. Actually, as for the former, it
follows

Ty i — \IJT\I/:.TO

0
’
= / e ATBB'e 4 "drzg

— 00

e o]
= / eA"BB'e* Tdrzy = P,z
0

where P, again represents the unique solution of the Lyapunov equation in the un-
known P (recall Lemma C.1)

0= AP+ PA + BB’ (2.47)
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Such a solution is also positive definite. Since the equation W, ¥}xo = Przq holds for

any zg, it results
v, =P, (2.48)

As for the operator V!V, it follows that, for any zy,
o0 !
x5 =V 0,0 = / eATC'Cedrzy = Poxg
o

where, thanks to what has been shown in Remark 2.20, matrix P, is the unique
solution of the Lyapunov equation in the unknown P

0=PA+A'P+C'C (2.49)

Such a solution is positive definite (recall points ¢) and ¢ii) of Lemma C.1). Hence,
since xy is arbitrary,
U, = P, (2.50)

The link previously expressed between I'r and I'y allows one to precisely state the
following important result, which also provides a procedure for the computation of
the eigenvalues of I'x.I'r and hence the norm of I'p.

Theorem 2.18 The operator I'zI'r and the matriz PP, share the same nonzero
eigenvalues.

Proof Let A # 0 be an eigenvalue of I';I'r. In view of eqs. (2.45),(2.46) it is easy
to check that, if 0 # uy, € RHj is an associate eigenvector, then its inverse Laplace
transform, u 7 0, is an eigenvector of '}, associated with the same eigenvalue.
Moreover, in view of Theorem 2.9, it is I'; = WTWE so that

U9 U,y = Ay (2.51)

Premultiplying both sides of this equation by ¥,. and defining x¢ := ¥,u, one obtains
(recall egs. (2.48),(2.50))
PTPOI() = /\1‘0 (252)

Notice that zy # 0. Actually, if not, then ¥, u = 0 and, from eq. (2.51), Au = 0.
Hence A # 0 would imply w = 0, a contradiction.

Conversely, if A # 0 is an eigenvalue of P, P,, then there exists xg # 0 such that
eq. (2.52) holds. Premultiplying this expression by ¥*PF,, defining u(t) := ¥*P,xo,
and recalling eqs. (2.48),(2.50), eq. (2.51) is derived. It is left to show that u # 0. If
it were not so, egs. (2.52),(2.48) would imply Azp = 0, a contradiction. Hence u is
an eigenvector of I'}T'y associated with A and its Laplace transform is an eigenvector
of I';.I'F, associated with the same eigenvalue. O

Remark 2.27 (Computation of the norm of the Hankel operator) As already said,
Theorem 2.18 provides a procedure for the computation of ||I'r||. It can be summarized in
the following steps, with reference to the case in which F(s) € RH,. Such situation can be
always be matched by using the arguments discussed in Remark 2.20.

1) Determine a minimal realization X(A, B, C,0) of F(s).

2) Solve the two Lyapunov equations (2.47),(2.49).
3) Compute the greatest eigenvalue \3; of P, P,
)

4) ITFll = An
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Example 2.25 Take again the function F(s) = 1/(s + 1) considered in Examples 2.23,
2.24. Being F(s) = ¥(-1,1,1,0), eqgs. (2.47),(2.49) have solutions P, = P, = 0.5, so that
PP, =0.25 and |Tr| = 0.5. O

At the end of the present section, it is presented an important result, the so called
Nehari theorem, which sets at the basis of an operatorial technique for the solution
of the control problem in the RH, context, treated in Chapter 5. The proof of this
result is not simple and therefore is not reported here.

Theorem 2.19 (Nehari theorem) Let F'(s) € RLy,. There exists X°(s) € RHu
such that
xei I () = X(8)lloo = [IF(s) = X*(s) oo = [IT~|

The Nehari theorem concerns the problem of finding a stable function X (s) which
approximate an assigned function of RLy, by minimizing the distance between X (s)
and F(s). Such a distance is defined as the RLo, norm of the difference F(s) —
X(s). The theorem comes out with two important conclusions: first, the existence
of a function X°(s) € RH,, which represents the best approximation of F(s) and,
second, that the minimal distance is given by the norm of the Hankel operator with
symbol F~. It should be apparent, consistently with such an interpretation, that
if F'(s) is stable, the minimal distance is zero, since one can choose X°(s) = F(s).
In general, the optimal approximation is not unique. A way to compute an optimal
approximation will be presented in Chapter 5, in the case where F(s) is a scalar.

Example 2.26 Consider the function F{s) = v/(s — 8) with 8 > 0 and v > 0. Then,
F~(s) = —v/(s + 8). Based on Remark 2.27 one finds that ||I's~|| = |v/28|. O

2.9 Notes and references

More about the material of this chapter can be found in many places. Restricting the
attention to system and control theory point of view (which is the one mostly pursued
in the present book), it is worth quoting the following sources with reference to the
various sections. Sections 2.3 and 2.4: the books of Kailath [29], Maciejowski [43] and
Vidyasagar [60]. Section 2.5: besides the books [29], [60], the papers by MacFarlane
and Karcanias [42] and Kouvaritakis and MacFarlane [33], [34]. Section 2.6: the book
of Lawson and Hanson [38]. Section 2.7: any text of functional analysis, for instance
that of Rudin [55]. Section 2.8: the book of Francis [19], the paper by Boyd et al.
[9] on the computation of the H,, norm and the book of Power [52] for the Nehari
theorem.



Chapter 3

Feedback Systems Stability

3.1 Introduction

One of the most significant problems of linear control theory is no doubt that of
characterizing the set of all controllers which stabilize a given system. The present
chapter is devoted to this problem, which is also conceptually linked with the results
presented in the forthcoming Chapters 4 and 5.

In order to avoid any possible misunderstanding, it is well advisable to place in the
right context the problem covered in the present treatment. Therefore, consider the
system shown in fig. 3.1 where X is a given time invariant and finite dimensional lin-
ear system and X5 is a controller which receives informations from the system through
the output variable y only and can drive the system through the control variable u. Its
duty is rendering the feedback connected system in fig. 3.1 (asymptotically) stable.
An obvious necessary condition for a stabilizing regulator to exist is stabilizability and
detectability of system ;. This condition is also sufficient if 35 can be chosen in the
class Cp, of linear time invariant finite dimensional systems. This is precisely the class
to which the present discussion will be limited.

The actual determination of an element of C;s(21), the subset of Cp constituted
by the stabilizing controllers for ¥;, can be worked out by resorting to a number of
classical techniques. Among them, it is worth recalling the optimal linear quadratic
Gaussian control or the pole assignment technique. Greatly more difficult is rather
the problem of individuating the whole set Cpg(X1), in the sense of establishing a
significant correspondence between an element of the set and a suitable free parameter.

In Section 3.4 it will be shown how the set C;5(¥1) can be parametrized as a

X

3

Figure 3.1: The feedback connection of two systems
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Ry

Q(s)

Figure 3.2: The set Crg(31)

n uy n

G1 (S)

Y2 G, (s) Uz ()

Figure 3.3: The system ¥ - feedback connection of G1(s) and Ga(s)

function of a free parameter Q(s). Specifically, it will be proved that: ¢) each element
of Crs(X1) can be represented accordingly to the block scheme in fig. 3.2, where Ry
is a system which is determined from the given system ¥; once for ever, whereas
Q(s) is a linear system belonging to a suitable subset of RH; i2) chosen an element,
one obtains an element of Crg(%2;). In order to present the relevant results, some
preliminary facts are now introduced. In particular, Section 3.2 is devoted to discuss
the basic relationships between internal and BIBO (external) stability of a feedback
system, whereas in Section 3.3 the important concept of double coprime factorization
is introduced.

3.2 Internal and external stability

Consider system ¥ depicted in fig. 3.3 where each one of the two blocks with transfer
functions G (s) and G3(s) is a detectable and stabilizable system (otherwise 3 should
never be stable). The aim of this section is presenting some simple results which
establish precise connections between the (internal) stability of ¥ and the (external)
stability of some transfer functions defined in the block-scheme of fig. 3.3. Notice
that the (stable} dynamic matrix of the unreachable and/or unobservable parts of
the two subsystems which constitute 3 do not affect anyone of the transfer functions
which can be defined in the scheme of fig. 3.3. For this reason reference will be made,
without loss of generality, to minimal realizations of both G;(s) and Ga(s), i.e.

Gi(S) = CZ(SI — Ai)AlBi +D,, i= 1,2
with

x'i:Ai:ci—i—Biui, 121,2
yi =Cizi + Dy, i=1,2

Uy =v1 + Y2
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Uy = V2 + 1

where, for i = 1,2, the pair (A;, B;) is reachable and the pair (A;, C;) is observable.
Obviously, the above equations make sense only provided that the matrix A =
(I — D3Dy) (or, equivalently, matrix Ajq := (I — D;D5)) is nonsingular. Letting

x = [z} 2h] € R™, u:= [u] uh), v := [v] vy]’, a realization of X is given by
& = Az + Bv
u=Cz+ Dv
with
[ A+ BiAy DoCy B4, Cy
A=
ByALCy Az + BaA) D1Cy
Bi1Ay'  BiA'Ds
B =
| B2AL Dy BoAp)
[ AZ'D.Cy AT,
C =
ALC  ALDICy
[ Ay AYD,
D =

| AL DL A

having exploited Lemma B.9. Letting T'(u,v;s) := C(sI — A)~'B + D denote the
transfer function from the input v to the output u, the following result can be proved.

Theorem 3.1 The system ¥ in fig. 8.3 is internally stable if and only if T(u,v;s) €
RH,.

Proof If matrix A is stable, then, obviously, T'(u,v;s) € RHy. In order to prove the
converse statement it will be shown that all the eigenvalues of A coincide with the
poles of T'(u,v; s), or, in other words that the four matrices (A, B, C, D) constitute a
minimal realization of T'(u, v; s). The proof is worked out by exploiting the PBH test
(see Lemmas D.1 and D.3).

Recall that the pair (A, C) is observable if and only if

rank[Pc(\)] := rank H M(; A H =n, VA

Moreover, the matrix

I 0 B 0
oo |01 0 B,

>~ 10 0 I ~ A DAy
0 0 —AL DAy I

is nonsingular since the Schur formula for the computation of the determinant of a
block matrix (see Lemma B.13) gives

I _A2_11D2A12 _ Al . B
et H —AL DAy I = det[l — Ay D181 8y DaAgs] = det{Ay]
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Thus,

rank[Pc(A)] = rank[T, Po (M)

M — A 0
_ 0 A — As _
= rank 0 Cy =n, VA
Ch 0

since, for ¢ = 1,2, the pair (A;, C;) is observable. In a similar way the pair (A, B) is
proved to be reachable. To this aim, let

I 0 0 0

P I 0 0

Tl 0 —Cy —Ag DAL I
-C; 0 I ~App DAY

Simple computations show that (recall also Lemma B.9)

Pg(NT.,=[ M —-A -B|T.
[ A=A, 0 0 -B
- 0 M—-—A4, —By 0

In view of the PBH test the pair (A, B) is reachable if and only if rank[Pg(}\)] =
rank([T, Pg(A)] = n,VA. This condition holds thanks to the reachability of the pair
(A, By), i =1,2. O

Example 3.1 Let Gi(s) = G1(s) := —1/(s—1) and G2(s) = (s —1)/(s+1). The dynamic
matrix of a particular realization of system ¥ is

a=[ 3 2]

the eigenvalues of which are Ay = —2 and A2 = 1, so that ¥ is not internally stable.
Consistently, the matrix

o (s+1)/(s+2) (s—1)/(s+2)
T(u,v;s) = [ —(s+1)/(s=1)(s+2) (s+1)/(s+2)

does not belong to RHs. On the contrary, if Gi(s) = 61(5) := 1/(s + 2), the dynamic
matrix of a particular realization of 3 is

a=[ 1 3

whose eigenvalues are A; 2 = —14j+/2, so that the system is internally stable. Consistently,
the matrix

Twvs) = a9sg3 | (41 (s+1(6+2)

is an element of RH . m|

1 [(s+1)(8+2) (s —1)(s+2)

This result can be specialized to the case where one of the two transfer functions
G1(s) or Gy(s) is stable, leading to the following theorem where T;;(u,v;s), i = 1,2,
j = 1,2 denotes the transfer function from v; to u;.



3.2. INTERNAL AND EXTERNAL STABILITY 73

Theorem 3.2 Let Go(s) be stable. Then the system ¥ in fig. 3.3 is internally stable
if and only if To1(u,v;s) € RHo.

Proof In view of Theorem 3.1, the present theorem is proved once it is shown that
stability of Ts;(u,v;s) implies stability of T1(u,v;s), Tiz(u,v;s), Toa(u,v;s). By
exploiting Lemma B.9 one has

I+ Go(s)Tar(u,v58) = I + Ga(8)G1(8)[I — Ga(s)G1(s)] !
= [I = Go(s)G1(s)] ! = T11(u,v; 5)

so that, if T (u,v;s) € RHo, also T11(u,v; s) € RHy. Similarly, by exploiting once
more Lemma B.9,

T+ To1(u,v;8)Gols) = I+ [I — G1(s)Ga(s)] 1 G1(s)Ga(s)
=[I — G1(s)Ga(s)] ' = Tra(u,v;s)
so that, again, if Toi(u,v;s) € RHy, Too(u,v;s) € RHy, as well. Finally, be-

ing Tio(u,v;s) = Ti1(u,v; 8)Ga(s) then stability of Ty;(u,v;s) entails stability of
T12(u, v; 8). O

Example 3.2 Again consider the functions G1(s) and G2(s) defined in Example 3.1. Being
G2(s) stable, the internal stability of £ can be tested by checking the stability of T2 (u, v; s)
only. When G1(s) = G1(s), Ta1(u,v;s) is not stable, whereas To1(u,v;s) € RHe when
Gi(s) = él(s), consistently with ¥ being stable only in the second case. O

A further specialization of the above results can be found when both transfer functions
G1(s) and G(s) are stable.

Theorem 3.3 Assume that Gi(s) € RHy,, i = 1,2. Then the system X depicted in
fig. 3.3 is internally stable if and only if

det[] — G1(s)Ga(s)] #0, Re(s) >0
Proof Preliminarily notice that the transfer function of the system

Ay BiCs B D,
Ea = 0 A2 B2

—C, —DiCy | Ay

is I — G1(s)G2(s). By exploiting Lemma B.9 and recalling Definition 2.14 it is easy
to check that the dynamic matrix of X7 is precisely A. Moreover, any common root
of the polynomial 7.(s) of the transmission zeros and m,(s) of the poles of system
I — G1(s)G2(s) must necessarily lie in the open left half plane, since such a system is
stable.
Now suppose that det[] — G1(s)Ga(s)] # 0, Re(s) > 0, so that, in view of Remark
2.7,
721(8)
mp($)
which implies that all transmission zeros of ¥, have negative real part. The stability
of ¥, (notice that A, is stable, ¢ = 1,2, since G;(s) € RHy, i = 1,2, and the
associated realizations are minimal) entails that any invariant zero of it which is not
a transmission zero must lie in the open left half plane. Hence, thanks to Theorem

=det[] — G1(s)G2(s)] £ 0, Re(s) >0
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2.7, all the eigenvalues of £, ! have negative real part, matrix A is stable and in turn
system X is internally stable.

Conversely, if system X is internally stable, then matrix A is stable and system
Y71 is internally stable, so that, in view of Theorem 2.7, all invariant zeros of system
3, are in the open left half plane. Since the set of transmission zeros is contained in
the set of invariant zeros (Theorem 2.4), all the transmission zeros of system X, have
negative real part. Then, from Remark 2.7, it follows

det[I — G1(s)G2(s)] #0, Re(s)>0
]

Example 3.3 Consider the functions G1(s) = 51(3) and G2(s) defined in Example 3.1.
Both of them are stable and system X is internally stable if and only if det[] — G1(s)G2(s)]
is not zero in the closed right half plane. Actually, it is

s24+25+3

det[T — G, (8)Ga(s)] = (s+1)(s+2)

the zeros of which have negative real part, consistently with the (already established) internal
stability of system X. a

3.3 Double coprime factorizations

The definitions of right and left coprimeness for rational matrices which, together
with some related properties, have been presented in Section 2.4, are now exploited
in order to introduce an intermediate result on the way of presenting the so called
parametrization of all stabilizing controllers in the next section.

Theorem 3.4 Let G(s) be any proper rational matriz. Then there exist eight matri-
ces M(s), N(s), M(s), N(s), X(s), Y(s), X(s), Y(s), all belonging to RH,, such
that

a)

G(s) = N(s)M~'(s) = M~ (s)N(s)

2 Ko T 1 v

The matrices M(s), N(s), M(s), N(s) constitute a double coprime factorization of
G(s).

Proof First notice that, if the statement of the theorem is correct, the matrices M(s)
and N(s) are right coprime in view of Lemma 2.5, while M(s) and N(s) are left
coprime thanks to the ”left version” of the same lemma.

Now let G(s) = X(A, B,C, D) and assume that the triple (A4, B, C) is stabilizable
and detectable. Further, let F' and H be any two matrices such that (A + BF') and
(A+ HC) are stable and set C := C + DF, B := B+ HD. Define

A+ BF | B
F 1

A+BF | B

M(s) := o D

, s) = (3.1)
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A+ BF | H | A+BF | H
Xe) = | Y= ] (3.2)
. A+ HC | H | R A+ HC| B
M(s) = LC_T . N(s) = +c 5 (3.3)
. A+HC|B | . A+ HC | H
X(s):= 7 7 ,  Y(s):= 7 0 (3.4)

Point a) It is obvious that the four matrices M(s), N(s), M(s), N(s) belong to
RH,. Moreover, M(s) and M(s) have inverses since

lim M(s)=1, lim M(s)=1

5—00 §—00
Now consider system ¥; (with input v and outputs y and u) defined by
& =(A+ BF)z + Bv

y=Cx+ Dv
uw=Fzr+wv

Thus, ¥; is nothing but system G(s) after the control law v = Fx + v has been
implemented. It follows

uro = M(s)vg,
yro = N(s)ur
so that y o = G(s)urg = N(s)M~1(s)uro. Hence
G(s) = N(s)M~1(s) (3.5)
Consider system Yo (with inputs u and y and output ) defined by

¥ = A9+ Bu + Hp
n=C0+Du—y

Thus, 37 is nothing but a state observer for the system with transfer function G(s),
so that 7 is the output observation error, namely

n=C{-2)
which is well known not to depend on w, since ¥ — & = (A + HC)(d — x). Therefore,

neo = [C(sI — (A+HC))™'B + Duy, —

[C(sI — (A+ HC)) 'H + IyLo
(s)ur — M(s)yw

= [N(s) = M(5)G(s)]ur =0

= |

which implies

G(s) = M~Y(s)N(s) (3.6)
Point a) is then proved in view of egs. (3.5),(3.6).
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Point b) Consider system %3 (with inputs u and y and output «) defined by
ft=(A+ HC)u+ Bu— Hy
y=u—Fpu
so that yzo = X(s)ur — Y(s)yr. Then in the series connection L3 it is
YLo = X(S)ULO — Y (s)yro = [X(s)M(s) = Y ()N (s)]ur

However, g — & = (A+ HC)(p — x) and v = v — F(u — ¢) which implies that the
transfer function from v to «y is I, that is

X(s)M(s) - Y(s)N(s) =1 (3.7)
Now consider system ¥4 (with input w and outputs y and u) defined by
2=(A+BF)z+ Hw

y=Cz—w
u=Fz
so that yro = —X (s)wy and ury = =Y (s)wy. Then in the series connection 9%y it

nzo = N(syuzo — M(s)yzo = [~ N(s)Y (s) + M(s)X (s)]wr

However, 2 — 9 = (A+ HC)(z — ¥) and 7 = w — C(z — ¥) which implies that the
transfer function from w to 7 is I, that is

— N(s)Y(s) + M(s)X(s) =1 (3.8)
Finally, in the series connection X3¥, it is

2o = X(s)uro = Y(8)yro = [~ X ()Y (5) + Y () X (s)]wr,

However it is 2 — it = (A+ HC)(z — u) and v = F(z — p) which implies that the
transfer function from w to «y is 0,

—X(s)Y(s)+Y(s)X(s) =0 (3.9)
From eqs. (3.5),(3.6) it follows that M(s)N(s)— N(s)M(s) = 0 which, together with
egs. (3.7)-(3.9), proves point b). O

Remark 3.1 The proof of Theorem 3.4 outlines the fact that, corresponding to a given
function G(s), there exists an infinite number of distinct double coprime factorizations in
RH, (recall that matrices F and H can be chosen in an almost arbitrary way). O

Example 3.4 Consider the rational matrix

_| P ts=1/(s7~5)  s/(s 1)
Gle) = { (252 - 1)/(s*—5)  $*/(s*—1) }

which admits the quadruple

010 0 1
A=]1 00|, B=|10
0 0 0 1 0
1 0 1 0 0
c=ls 9] 2=]0 Y]
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as a minimal realization. Chosen
-4 0
F::{_? Vg é],H:: -4 0
1 0

it is easy to check the stability of matrices A + BF and A + HC and then computing the
eight matrices referred to in Theorem 3.4. It results

_ s/(s+1) 0
M =1 g@s+1)/(s+ D(s2+s+1) (5= D/(s>+s+1)
N(s) = [ (S +1)/(s+ 1)(P+s5+1) s/(s+s+1) ]
B /(s> +s+1) s2/(s2+s+1)
X(s) = [ (®+5s2+5—5)/(s+1)(s>+s54+1) 0
5= —(9s+5)/(s° + s+ 1) 1
Y(s) = 1/(s+1) 0 ]
—(125% + 265+ 13)/(s + 1)(s* +s+1) 0
N _ [ s(s—1)/(s+1)? 0
M(s) = | —@s+1)/(s+1)? 1 ]
N(s) = [ (s +s—-1)/(s+1)° s2/(s+1)°
T (2 +39) /(s +1)3 (P 4352+ 8)/(s+ 1)
X(s) = [ (® 445> +7s+5)/(s +1)° s/(s+1)°
VT @ -55-13)/(3+1)°  (P+4s —4s—1)/(s+1)°
o[ s=D/s+1)* 0
Yis) = —12s/(s+1)2 0
These matrices verify Theorem 3.4. 0O

Theorem 3.4 allows one stating an equivalence condition between internal and
external stability for a feedback system as the one depicted in fig. 3.3 which is
different from the condition presented in Theorem 3.1. As done in the preceding
section, it is assumed that a minimal realization of the two systems G(s) and Ga(s)
is considered and their feedback connection is well defined (the matrix (I — Dy D3)
is nonsingular, D; := lims .o, G;(s),t = 1,2). For i = 1,2, let N;(s) and M;(s)
be elements of RH, such that G;(s) = N;(s)M,; '(s) with N;(s) and M;(s) right
coprime. Then the system in fig. 3.3 can be represented as in fig. 3.4 as well. With
reference to this figure let z 1= [2] 25}, u = [u] u}]) and v := [v] v5]'. Then the
following result holds.

Theorem 3.5 The system in fig. 3.4 is internally stable if and only if the transfer
function T(z,v;8) from the input v to the output z is stable.

Proof In view of Theorem 3.1, the proof consists in showing that the matrix T(z, v; s)
is stable if and only if the transfer function T'(u, v; s) from the input v to the output
u is stable.

Sufficiency With reference to fig. 3.4 it is

uro = T(z,v;8)uL
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Gu(s)
v U1 | Ml_l(S) ,,,,, z_l_ Nl(s) W?
Na(s) %) M{l(s) Uz ()
Ga(s)

Figure 3.4: Feedback connection of two systems

- [ Nlo(s) NQ()(S) ]ZL0+UL

_ 0 Na(s) .
= H Ny(s) 0 T(z,v;s)+ 1| vL
Therefore, if T(z,v;8) € RHy also T(u,v;s) € RHy, since, for i = 1,2, N;(s) €
RH.

Necessity Being N;(s) and M;(s), ¢ = 1,2, right coprime, there exist matrices
X;(s) and Y;(s), ¢ = 1,2, which are elements of RH,, and such that

[Xl(s) 0 ][Ml(s) 0 ]+

0 Xa(s) 0 Ma(s)
18 o 11N e |-

so that

0 Xa(s) ]u“’ + Ya(s) é ] (ugo —v) =
B H Wi o }T(u’”;s)_ [ ) o ””L
T(

Being X;(s), Yi(s), ¢ = 1,2, and T'(u,v;s) all elements of RH,,, also H{s} must be
such. a

Thanks to Theorem 3.5 it is possible to prove a result useful for the discussion in
the next section. It clarifies the circumstances under which a system with transfer
function G1(s) is internally stabilized by a system with transfer function G2(s) when
they are feedback connected as shown in fig. 3.4, where, for i = 1,2, matrices N;(s)
and M;(s) possess the above mentioned properties.
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Theorem 3.6 With reference to fig. 3.4, system Ga(s) internally stabilizes system
G1(s), that is, the resulting system is internally stable, if and only if G™'(s) € RH,,

where M ) N )
L 14S 2(8
Gls) = [ Ni(s) Ma(s) ]

Proof Preliminarily observe that matrix G(s) is nonsingular, so that the statement
makes sense. Indeed, one can write

N e = Lae M ]

For the first matrix on the right hand side of this equation it is

511_{20 det H Glj(s) GQI(S) H = Slg{.lo det[I — G1(s)Ga(s)]
= det[[ — D]DQ]

having exploited the Schur formula for the determinant of a block matrix (see Lemma
B.13). Thus, matrix G(s) is nonsingular since it is the product of two nonsingular
matrices (recall that, for i = 1,2, M; '(s) exists).

By taking into account fig. 3.4 one has

Mi(s) —Nafs) }z _ [ My (s)z100 — Na(s)zar0 ]
Lo —Ni(s)z100 + Ma(s)z210

_ | Lo +viL —Uiro
Ugp — U2r0 + U2L0

so that, thanks to Theorem 3.5, G2(s) internally stabilizes G1(s) if and only if

Mi(s) —Na(s)

T(z,v;8) := { “Ni(s)  Mals) ]1 € RH,

Finally, T(z,v;s) € RH if and only if G7*(s) € RH.. In fact,

rewo=[3 el ]

O

Example 3.5 Consider the functions Gi(s) and Gz(s) defined in Example 3.1. Being
G2(s) stable one can set (see the proof of Theorem 3.4)

NQ(S) = N MQ(S) =1

whereas for G1(s) = G1(s), the choice F = —3 entails (see the proof of Theorem 3.4)

Nifs) = Nifs) = =5, Mi(s) = Mh(s) =

s—1
s+ 2

Finally, being 51(3) stable, for G1(s) = Gs (s), one can set

1

—5 M) =M(s)=1

Ni(s) = Ny(s) =
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G(s)

K(s)

Figure 3.5: Feedback connection of two systems

Thus,

[ s=D/s+2) (s=1/s+1) ]
¢ (8)_[ ~1/(s+2) 1 }

[ (s+1)/(s—1) -1
(s+1/(s*+s-2) (s+1)/(s+2)

which does not belong to RH., consistently with G1(s) not being stabilized by Ga(s),
whereas

~ 1 (s-1)/s+1) 1
G (s) = [ 1/(s +2) 1

(8P 4+35+2)/(s*+25+3) —(s*+s5—2)/(s* +25+3)
- —(s+1)/(s*+25+3) (s®+35+2)/(s*+25+3)

belongs to RHso, consistently with 51(3) being stabilized by G2(s). m]

3.4 The set of stabilizing controllers

The so called parametrization of all stabilizing controllers is presented in this section.
This result is particularly significant as it allows to completely characterize the set
of all linear, finite dimensional and time invariant controllers K(s) which stabilize a
given system with transfer function G(s), if connected to it according to the block-
scheme of fig. 3.5. It will be shown that the system in fig. 3.5 is internally stable if and
only if the controller transfer function can be given a very simple form in terms of a
free parameter which, besides ensuring the well-posedness of the feedback connection,
has to comply with a single constraint only, namely being an element of the space
RH.

Obviously, there exist stabilizing controllers for system G(s) := C(sI—A)"1B+D
only provided that the pair (A, B) is stabilizable and the pair (A4, C) is detectable.
Therefore, such an unavoidable assumptions will be done throughout the subsequent
discussion.

Consistently with Theorem 3.4, let the eight matrices N(s), M(s), N(s), M(s),
X (s), Y(s), X(s), Y(s) specify a double coprime factorization in RHy, of the transfer
function G(s). These matrices are derived according to egs. (3.1)-(3.4) and are such
that
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and

X(s) ~Y(é) M(s) Y(s)] _
~N(s) M(s) } [ N(s) X(s) ] =1 (3.10)
It is now possible to state the following result.

Theorem 3.7 (Youla parametrization) The set of all rational and proper transfer
functions K(s) which internally stabilize G(s) is defined by controllers of the form

Y ()= M) (s) - N(s) <s>] 1
= [X(5) = Q)N [V(5) ~ Q) (s)] (3.11)

where the matriz Q(s) is any element of RHo. such that

K(s)

det[] — Dslingc Q)] #0 (3.12)

Proof Preliminarily notice that the existence of the inverse matrices in eq. (3.11) is
ensured by egs. (3.1)-(3.4) and (3.12) (also recall Lemma B.8).
For any matrix Q(s), eq. (3.10) implies that

—M(8)Q(s) + Y (s) } (3.13)

The (1,2) block of the product of the two last matrices in eq. (3.13) is zero, i.e.

[X(5) = Q)N (s)][=M (5)Q(5) + Y (5)] =
~[Y(s) = Q)M()][-N(s)Q(s) + X (s)] = 0 (3.14)

so that the second equality sign in eq. (3.11) is proved.
Now the system with transfer function

where Q(s) € RHx satisfies condition (3.12), is proved to internally stabilize G(s).
To this aim, let U(s) = Y(s) ~ M(s)Q(s), V(s) := X(s) — N(5)Q(s), U(s) :=
Y(s) — Q(s)M(s), V(s) := X(s) — Q(s)N(s), so that K(s) = U(s)V 1(s). From eq.
(3.10) it follows ) )
[ Vis) —Uls) } [ M(s) Uls) ] g
—N(s) M(s) N Vv
that is
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The matrix on the right hand side of this last equation belongs to RH, (each block
in it is an element of RH,), so it does the inverse on the left hand side. Hence,
thanks to Theorem 3.6, the system in fig. 3.5 is internally stable.

Conversely, assume that K(s) stabilizes G(s). In order that the feedback system
in fig. 3.5 is well defined, matrix K (s) must satisfy the condition

det [I — DK] #0 (3.15)

where K := lim,_,, K(s). Let U(s) and V(s) be two right coprime elements of RH
such that K(s) = U(s)V 1(s) and consider the identity

{ X(s) ?S)H M(s) U(s)
~N(s) M(s) (8) (S)

0 —N(s)U(s ) (8) (s)
which follows from eq. (3.10). The two matrices on the left hand side of eq. (3.16)
have inverses in RH,, the first one thanks to eq. (3.10), the second one thanks to
Theorem 3.6. Hence also the matrix on the right hand side has inverse in RH,, so
that P=1(s) := [-N(s)U(s) + M(s)V(s)]™' € RH,,. Therefore the matrix Q(s) :=
—[X(s)U(s) — Y(s)V(s)|P~1(s) belongs to RH, too. Now notice that from egs.
(3.1)-(3.4) it follows

I =D Jim Q(s) =1+ D lim [[X(s)U(s) ~ Y (s)V(s)] -
[FNEU(s) + M)V ()]

=1+ D lim [[X(S)U(S)V_l(s) —Y(s)]V(s)V™Ys) -

[N EUEV T (s) + ()7
=14+ DK(I - DK)™!
=(I-DK)™"

where the last equality sign is due to Lemma B.9. Hence Q(s) satisfies condition
(3.12) in view of eq. (3.15).
From eq. (3.16) one obtains
[ M(s) Y(s) ] [ X(s) =Y(s) ] M(s) U(s) ] _
NG X(s) || =8(s) s1(s) || M) v
(s)
(s)

which, in view of eq. (3.10), becomes

56 va - [he X e

This last equation implies
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so that

K(s) =U(s)V™(s)
= [Y(s) — M(s)Q(s)][X(s) — N(s)Q(s)] 7"

according to eq. (3.11). O

The controller Ky(s) corresponding to the somehow most natural choice of Q(s),
namely Q(s) = 0, is usually referred to as the central controller. In view of eq. (3.11)
such a controller is given by

and therefore only depends on the particular double coprime factorization of G(s)
which has been selected. Further, in spite of corresponding to the simplest matrix
Q(s) € RH,, which satisfies condition (3.12), the central controller is not, in general,
the lowest order stabilizing controller.

Example 3.6 Let G(s) = 1/s and choose F' = H = —1, thus obtaining N(s) = N(s) =
1/(s+1), M(3) = N(3) = 5/(5+1), X(s) = X(s) = (s42)/(s1), Y(5) = V() = —1/(s+1).
From eq. (3.11) it follows

1+ sQ(s)
K(s)= ——1 5%
T
so that, corresponding to the choice Q(s) = 0 it is Ko(s) = —1/(s+2), while, if Q(s) = 1, it
is K(s) = —1 (note that the first controller, the central one, is a dynamic system of order 1,

while the second one is purely algebraic). Vice-versa, by making use of the expressions for
Q(s) given in the proof of Theorem 3.7, one gets

V(s)+ (s+2)U(s)

Qls) = - sV(s) —U(s)

where U(s) and V (s) are such that K(s) = U(s)V "'(s). As an example, if K(s) = —1/(s+1),
then Q(s) = 1/(s* + s 4 1). g

The set of all stabilizing controllers can be further analyzed in order to enlighten
interesting connections with other results of linear control theory. A preliminary
result is presented in the forthcoming lemma, where reference is made to a double
coprime factorization of G(s) satisfying eq. (3.10).

Lemma 3.1 The set of proper rational transfer functions which internally stabilize
G(s) is given by

K(s) = Ko(s) = X1 ()Q(s)[T = XM (s)N(5)Q(s)] ' X ' (s)
where Ko(s) = Y ()X~ 1(s) = X~ 1(s)Y(s) and Q(s) € RHo is such that

det[I — D lim Q(s)] #0

Proof By exploiting the results in Lemma B.9 and the expression of a generic stabi-
lizing controller (Theorem 3.7), one obtains

(8)Q()]X (5) = N(s)Q(s)]
(8)QKI — N(s)Q(s)X T (s)] X ()}~

s K
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

=~ X (N()Q() X H(s)}
= Ko(s) + Ko(s)N(s)Q(s) = X (s)N(s)Q(s)] !
X7Hs) = M(s)Q(s)X!(s) -
{I+NSQB) = X (s)N()Q(s)] ' X~ ()}
= Ko(s) + Ko(s)N(s)Q(s)[] = X' (s)N()Q(s)] " -
X7Hs) = M(s)Q(s)XH(s)I] = N(s)Q(s)X ™" (s)] 7"
= Ko(s) + Ko(s)N(s)Q(s) = X (s)N(s)Q(s)]
X 7Hs) = M(s)Q(s)I = XN ()N (s)Q(s)] "X (s)
= Ko(s) + [Ko(s)N(s) — M(s)|Q(s)

so that K(s) is given by
K(s) = Ko(s) = X 1(5)Q() = X (s)N(5)Q(s)] ' X ' (s)

and the lemma is proved. a

The form of K(s) as given by Lemma 3.1 shows that the generic stabilizing con-
troller is constituted by two subsystems in feedback connection. The first subsystem,
denoted with R(s) in fig. 3.6, only depends on the particular double coprime factor-
ization which has been selected for G(s), while the second one is simply constituted
by the system with transfer function Q(s). In fact, it is straightforward to check that
the transfer function from y to u of the controller depicted in fig. 3.6 is precisely
K(s). In view of this fact it is particularly meaningful to look for a realization of the
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subsystem Rj(s), since the generic stabilizing controller must result from the feed-
back connection of it with a stable system @(s) which is only constrained to actually
produce a well defined overall system (condition (3.12)).

With reference to fig. 3.6, the transfer function of system R(s) from the two
inputs y and y; to the two outputs uw and u; is

_[ Koy X9
M= x5 x9N Gs)
Preliminarily a realization is presented for each one of the transfer functions appearing
in R¢(s). The proof of Theorem 3.4 (as for the form of N(s), X(s), Y(s), X(s)) and

Section 2.5 (as for the form of the inverse system) are expedient to such an operation.
Letting C:=C + DF, B:= B+ HD and A:= A+ BF + HC, one obtains

A+BF 0| B
X"Ys)N(s) = HC A | HD
¢ ¢ | b

It is easy to ascertain that a lower order realization can be found by performing a
change of variables which put into evidence an unobservable part and is defined by

the matrix
I 1
Tl = li 0 I ]
namely,
» i|B
X (s)N(s) = oD
In a similar way one gets
A 0 ’ H
Ko(s)=Y(s)X Y(s)=| HC A+BF | H
0o  -F | o

simplified to

A|H
Hol) = m%

through the change of variables defined by the matrix

[ -1 I
0 I

L

which put into evidence an unreachable part. Finally, one has

Al H . Al B
ﬂﬂ K= ﬂT

Thus a realization for system Ry(s) is

X Y(s) =

AlH B A| -H -B
Re(s)=| —F|0 —-I| = F| 0 -I
C|I D -C I D
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Figure 3.7: A realization of R¢(s)

This particular realization corresponds to the block-scheme depicted in fig. 3.7. This
scheme clearly shows that when y; = 0, that is when Q(s) = 0 or, in other words,
when the central controller has been adopted, the stabilizing controller generates the
control variable u through the law u = F¢, £ being the state of an observer with
dynamic matrix A + HC. Thus the central controller coincides with the controller
designed via the well known pole placement technique and any stabilizing controller
for G(s) can be said to be ”built around” a state observer.

Finally, the eigenvalues of the resulting control system, that is of the system in fig.
3.5 with K(s) given by the block-scheme of fig. 3.6 where R¢(s) is specified by the
block-diagram of fig. 3.7, are those of matrices A + BF and A + HC together with
those of the dynamic matrix of Q(s) := £(Aq, By, Cq, Dg). In fact, denoting by x and
x4 the state variables of G(s) and Q(s), respectively, the choice x; := [z' — £ z 2]’
as state variables of resulting system, yields the (closed loop) dynamic matrix

A+ HC 0 0
Ay = B,C A, 0
~B(F+D,C) —BC, A+BF

3.5 Notes and references

The line of reasoning pursued in this chapter and the derivation of some results
presented herein are inspired by the books of Francis [19] and Maciejowski [43]. The
result on the parametrization of stabilizing controllers can be found in the pioneering
paper by Youla et al. [63].



Chapter 4

RH9 Control

4.1 Introduction

This chapter presents the most significant results concerning the control problem
in the RH, context: it simply consists in minimizing the RHs norm of a transfer
function. As it will be apparent in the sequel, a number of connections can be estab-
lished between this problem (more precisely, between the subproblems which actually
constitute its frame) and the most celebrated set of results in optimal filtering and
control problems, the well known Linear Quadratic Gaussian theory. Approaching
these problems within the RHy setting gives a somehow more complete picture of the
structure of the results (sce the forthcoming Remarks 4.3, 4.10, 4.19).

Throughout this chapter reference will be made to a controlled system described
by the following equations

T = Ax + Biw + Bou (4.1)
z=Ciz+ Dyyw+ Diu (4 2)
Yy = CQSC + Dglu) + D22u (43)

The measured output variable y is the input to the controller, which is constrained to
be a finite dimensional, linear, time invariant system, while the control variable v is
its output. Therefore, the controller takes on the form

§=FE+Gy (4.4)
w=H¢ + Ey (4.5)

Figure 4.1: The standard control system



88 CHAPTER 4. RH; CONTROL

The situation is summarized in the block-scheme of fig. 4.1, where P(s) and K(s)
denote the transfer functions of the controlled system and the controller, respectively.
More precisely,

A|B B,
P(S) = 01 D11 D12
Co | Dar Do

K(s):= %%

It is apparent that the feedback connection of system (4.1)-(4.3) with system (4.4),(4.5)
is well defined only if the controller is such that

det[I — EDQQ] 79 0 (46)

that is only if the algebraic loop deriving from its implementation can be solved.

The structure of system (4.1)-(4.3) is typical of the control problems stated within
the RH; and RH,, context. Indeed, it is sufficiently general so as to encompass
the most meaningful situations. A fairly comprehensive discussion on this aspect is
presented at the beginning of Chapter 5 to adequately motivate the significance of
the results there presented for the RH,, control problems.

The input variable w collects all exogenous signals which can be viewed as dis-
turbances acting on the control system, while the output performance variable z is
expedient to specify an index of the performances to be attained by the control sys-
tem.

With reference to the control system depicted in fig. 4.1, the main objective is
minimizing (with respect to K(s)) the RH3 norm of the transfer function T'(z, w; s)
from the input w to the output z.

If T'(z,w; s) has to belong to RHs, then it must necessarily be strictly proper and
stable. The first requirement is equivalent to the condition

Dy + Dlg(I — EDQQ)_IED21 =0 (47)

As for the second requirement, it is no doubt satisfied if the internal stability of the
control system is ensured, that is if the controller (4.4),(4.5) internally stabilizes the
controlled system (4.1)-(4.3), which simply amounts to asking for the stability of the
dynamic matrix of the resulting system, namely

Re(M(Ap)) <0 , Vi (4.8)

where

Ap = A+ BQ(I — EDQQ)_lECQ BQ(I — EDQQ)_IH (4 9)
B G[I+ D22(1 — EDQQ)_lE]CQ F+ GDQQ(I— EDZQ)_lH )

In view of the discussion above the notion of admissible controller is introduced in
the following definition.

Definition 4.1 (Admissible controller in RH») A controller K (s) is said to be ad-
missible in RHo for P(s) if conditions (4.6)-(4.9) are verified. O
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Three problems will be discussed in the forthcoming Sections 4.2 - 4.4: (i) the full
information problem; (ii) the output estimation problem; (iii) the partial information
problem. Each of these problems refers to a particular structure of the controlled
system P(s) and exhibits deep and significant mutual connections. Indeed, the last
one presents an interesting separation property and will be dealt with by exploiting
the solutions relevant to the first two, which, in turn, are characterized by strong
duality properties.

The main result concerning each one of the above problems provides the answer to
three important questions: (¢) the existence of the optimal controller; (i7) the actual
form of such a controller; (¢ii) the parametrization of suboptimal controllers. The
material will be presented according to the scheme formally stated in Problem 4.1
which refers to the feedback connected system shown in fig. 4.1 and to the set Fo,
of controllers which are admissible in RHs for P(s) and such that ||T(z,w;s)|2 is
bounded by a given positive scalar .

Problem 4.1 (Standard problem in RH-) Find

a) The minimum value (if any) of | T(z, w; s)||2 attainable by a controller K(s)
which is admissible in RHy for P(s).

b) An admissible controller which minimizes ||T(z,w; s)||2.

¢) A set of controllers Fay, C Fon, whose elements generate the whole set of func-
tions T'(z,w; 8) which are generated by the elements of Foy.

Remark 4.1 An obvious necessary condition for the existence of a stabilizing con-
troller (and therefore for the existence of an admissible controller in RHy for P(s))
is the stabilizability of the pair (A4, By) and the detectability of the pair (A, Cs). The
statement of Problem 4.1 makes sense only if both properties actually hold true. O

In the forthcoming sections the parametrization of the controllers in the family F,.,
will be presented in specific remarks which follow the main theorems concerning the
solution of Problem 4.1. Hence, the issues relative to the family F», and those relative
to Problem 4.1 will be treated separately.

Problem 4.1 will be tackled in the subsequent sections by assuming Dq; = 0 in eq.
(4.2). Actually, this assumption does not cause any loss of generality. In fact, assume
that the set of matrices E which satisfy egs. (4.6),(4.7) is not empty (otherwise the
problem would not admit any solution in RHs) and let E be one of such matrices. It
is straightforward to check that the situation Dj; = 0 is recovered after the output
feedback

quy—i—v

has been implemented.

4.2 The full information problem

In this section Problem 4.1 is considered by assuming that the output signal y of
system (4.1)-(4.3) is constituted by the state vector x and the disturbance vector w.
Moreover, no direct influence of the input signals w and u exists on the outputs z and
Yy, respectively. As a consequence, the controlled plant, whose transfer function from
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| Pri(s)

Figure 4.2: The full information problem

[w' u'] to [¢' y'] will be denoted by Pr;(s), is described by

&= Az + Biw+ Byu (4.10)
z = Ciz + Dysu (4.11)
y = (1 vl (4.12)
==z (4.13)
Yo =w (4.14)

Furthermore, the following assumptions will be made.

Assumption 4.1 The pair (A, By) is stabilizable and no eigenvalue of the unobserv-
able part of the pair [(A — B2D{,Ch), (I — D12 D5)C4] lies on the imaginary axis.

Assumption 4.2 D{,Dqy =1.

In the theorem below reference is made to the block-scheme of fig. 4.2 where Ky (s)
is a generic controller admissible in RH; for Pr;(s). In this diagram T'(z,w; s) is the
transfer function from w to z.

Theorem 4.1 (Full information) Consider Problem 4.1 relative to system (4.10)-
(4.14). Then, under Assumptions 4.1, 4.2, it has the solution

a)
min ||T(z, w; s)||2 = || Pe(8)B1ll2 = 4/ trace[B{ P2 Bj]

gl o o
0| F, 0O
¢) The set Foyy of the controllers Kpir(s) is defined by the diagram of fig. 4.3,

where Q(s) 1= B(Ay, By, Cy,0) with A, stable and |Q(s)|13 < v — || P.(s) B1]|3.

b)

Kgi(s) =

In the three points above, v is a positive scalar such that v > || P.(s)Bill2 and

FQ = -—BéPg - D/1201 (415)
Ps) = A.— ByByPy |1 i
T Cle—DByRy | 0 '

AC = A - BQD/DCl, Clc = (I — DlgD/m)Cl (417)
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F

O Q(s)

Krie()

Figure 4.3: The set Fy,, of the controllers K¢y, (s)

where Py is the symmetric, positive semidefinite and stabilizing solution of the Riccati
equation (in the unknown P)

0= PA,+ ALP — PByB,P + C}.Cy. (4.18)
i.e. such that matriz A.. defined by
Ao = A. — BoBLPy = A+ By Fy (4.19)
is stable.

Proof First observe that the necessary condition for the problem at hand to make
sense (recall Remark 4.1) is satisfied. Indeed, being measurable the state of the
system, detectability of the pair (A,Cs) trivially holds, while, on the other hand,
stabilizability of the pair (A, By) is guaranteed by Assumption 4.1.

Points a) and b) Notice that the pair (A, Bs) is stabilizable if and only if the
pair (A, B2) is such (recall that state feedback does not modify the stabilizability
property). Therefore, Assumptions 4.1 and 4.2 together with Lemma C.4 guarantee
the existence of the symmetric, positive semidefinite and stabilizing solution P, of eq.
(4.18), so that the matrix A.. defined by eqs. (4.19),(4.15) is stable.

Furthermore, let

vi=u— Fhx (4.20)

Equation (4.20) apparently defines the control law
u:=uv+ Fyx (4.21)
From egs. (4.10),(4.11),(4.21) it follows
zro = Pe(s)Bywr + U(s)vg (4.22)

where
U(S) = E(AC — BQBQPQ, BQ, Clc — D12Bépg, Dlg) (423)
The variable v defined by eq. (4.20) is one of the output of the system
T = Ax + Byw + Byu
P,s):=X v=—-Fxr+u
y=W ', m=z, p=w
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P,(s)

KFI(s)

Figure 4.4: The equivalent full information problem

In order to evaluate the transfer function T'(z,w;s) (relevant to the scheme in fig.
4.2} by means of eq. (4.22), it is convenient to make reference to the block-diagram in
fig. 4.4 and to the related transfer function T'(v,w; s) from the input w to the output
v. From eqs. (4.10)-(4.14) and the definition of P,(s) it follows that the systems in
fig. 4.2 and 4.4 are well defined for all Kg;(s), since condition (4.6) is satisfied in
both cases. Therefore, it is possible to write

T(z,w;s) = P.(s)B1 + U(s)T (v, w; s) (4.24)

From egs. (4.10)-(4.14) and the definition of P,(s) it also follows that the system
in fig. 4.4 is stable if and only if the system in fiz. 4.2 is such. Moreover, letting
Kpr{) := [E1 Es), it is T(z,w; 00) = D12 Es and T'(v,w;00) = Es. Thus, D12Es =0
if and only if Fo = 0 since, thanks to Assumption 4.2, the matrix D;s has rank equal
to the number of its columns. Therefore, the function T'(z,w; s) is strictly proper if
and only if the function T'(v,w;s) is such. In conclusion, it can be claimed that the
controller Kry(s) is admissible in RHy for Pr;(s) if and only if it is such also for
P,(s).

From Assumption 4.2 it follows that (I — D12D}5)D12 = 0, so that C{, D12 = 0.
This fact, together with Lemma C.5 implies that the function U(s) defined by eq.
(4.23) is inner and U~ (s)P.(s) € RHj .

In view of eq. (4.24), it follows that

IT (2, w; s)l|3 = [|Pe(s)Bull3 + U ()T (v, w3 )13 +
+2 < U(s)T(v,w;s), P(s)B1 > (4.25)

for any controller Kr;(s) admissible in RH; for Pry(s). Being U(s) an inner function,
one gets

NU ()T (v,w;8)||2 = < U(s)T (v, w; s),U(s)T (v, w; s) >
= < T(v,w;s), T(v,w;s) >=||T(v,w; s)|13

while, being U~ (s)P.(s) € RH3-, it is
<U(8)T(v,w;s), P(s)B1 >=< T(v,w;s),U~(s)P.(s)B; >=0
since T'(v,w;s) € RHs (recall Theorem 2.11). Then, eq. (4.25) becomes
IT (2, w; 8) 113 = ||Pe(s)Brll3 + | T (v, w; 5) 13 (4.26)

so that
min ||T(z,w; $)||2 = ||Pe(s)B1||2 + min ||T(v, w; s)||?
Ke(s) I17°( Nz = 1Pe(s)B1llz Kei(s) I17°( B
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The minimum is by sure attained if ||T(v,w;s)||3 = 0, that is if v = 0. This is the
case if

Now observe that P, being a solution of eq. (4.18), is also a positive semidefinite
solution of the Lyapunov equation (in the unknown P)

0= PAe+ AL P+ P,ByByP; + Cl Che

where A.. is defined by eq. (4.19). Matrix A.. is the dynamic matrix of the system
(4.10)-(4.14),(4.27), namely
T = Agex + Biw (428)
z = (Clc - DlgBéPQ)x (429)
The norm of the (optimal) transfer function of system (4.28), (4.29) may be computed

by exploiting what has been presented in Remark 2.20. To this aim, notice that from
Assumption 4.2 and C{.D12 = 0 it follows

(C1e — D12BLP2) (Cre — D12B4YPy) = PaBoBY Py + C1.Che

and recall that P solves the above Lyapunov equation. Therefore, ||T(z,w;s)||3 =
trace[B] P2B;]. Points a) and b) are thus proved.
Point ¢) Let a generic controller Kp;(s) € Foy be described by the equations

£ = L&+ Mz + Mow
u=NE+ Oz + Ow

If v is given by eq. (4.20), then the same arguments exploited for proving points a)
and b) lead to eq. (4.26), so that

1T (v, wis)l13 < 2% = | Pe(s) Ball3

Recall that if Kp;(s) is admissible in RHs for Ppj(s), then it is also admissible in
RH, for P,(s). Therefore, T'(v, w; s) can be written as

T(v,w;s) == Q(s) := X(Aq, Bq, Cy,0)
with A, stable. A realization of Q(s) can be easily derived by recalling the definition

of P,(s) and the above given expression for Kp/(s). It results
d = LY + Myo + Mow
0= ByNY + (A + BQOl)U + (Bl + BQOQ)U)
v=NJ+ (01 *FQ)O"‘I‘OQ’U)
The controller Kpy.(s) defined by these equations and v = Foz + v is now shown to
belong to the set F».,. Obviously, it possesses the structure of the system in fig. 4.3.
Moreover, thanks to eqs. (4.10),(4.11), the equations of the system resulting from the
feedback connection of Ppy(s) with Kry,.(s) are, letting ¢ := o — x,
T = Az + Biw+ Bou
9 = LY+ Mz + Myw + Mye
£ = (A + B2F2>€
u=NO+ O1z+ (07 — Fr)e + Oqw
z = Cl.’IJ + D12u
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The comparison of these equations with those relevant to the feedback connection
of system Pry(s) with the controller Kp;(s) allows one to derive the following two
conclusions: first, the transfer functions from w to z are equal in the two cases; second,
the system having Kpr,(s) as a controller is stable because the system having Kr;(s)
as a controller is such and matrix A + BoF5 is stable.

Vice versa, if Krr,.(s) belongs to the set described in fig. 4.3, then it is v = For+v
where v is the output of the system T'(v, w; s) = X(Aq, By, Cy,0), with A, stable and
T (v, w; 8)|13 < v* — || P.(s)B1]|3. The same arguments exploited in proving points a)
and b) imply that Kr,.(s) is admissible in RH; for Pry(s) and, thanks to eq. (4.26),
1T (2, w; 8) I3 <+ D

Example 4.1 Consider system (4.10)-(4.14) with

ofg] ae[2] o

Clz[a 1],D12:1

where o # 0 and let u = u,, + uz. The classic way of designing a controller which reduces
the effect of the disturbance w on the output z is trying to zeroing the transfer function
from w to z by means of a suitable controller Kpc(s) with input w and output u,, which
performs a direct compensation. In the problem at hand such a transfer function vanishes
(namely, z does not depend on w) if

2(s+ )

Kool =% fiva

However, it is apparent that the resulting control system can not be stabilized (by means of
a control law u = wuy, +u; which makes u, to depend on z in a suitable manner) if Kpc(s) is
not stable by itself. Hence, if a > 0, a perfect direct compensation of the disturbance can be
achieved. On the contrary, if @ < 0, this is no more possible. By resorting to Theorem 4.1
one obtains, correspondingly to Q(s) = 0, u = —az; — z2 and T(z,w;s) = 0, when « > 0,
while, when o < 0, one gets u = azx; — v1 — 4az; and

200+ (1 — /1 —4a)s

T{(z,w;s) =2
(z,w;s) 82+ /1 ~4as—«

]

Remark 4.2 The structure of the controllers Kri-(s) which are admissible in RH> for
Pr(s) and defined by the block-scheme in fig. 4.3 allows one to easily conclude that the
eigenvalues of the resulting control system are those of matrix A+ B, F> and those of matrix
Aq. 0

Remark 4.3 (Parametrization of the set F3,) Observe that the set ., is a proper
subset of the set Fa,. In fact, consider a generic controlier Kr;(s) admissible in RH for
Pgr(s) which is purely algebraic and makes the control variables to depend on the state
variables only. Namely, let

u=Az (4.30)

with A # F». Such a controller certainly exists because of a continuity argument, since the
controller K5 (s) actually has the form given in eq. (4.30).

Within the set Fayr the only element with the form given in eq. (4.30) is Kg;(s), so
that it is necessary to resort to a dynamic controller in the set F3., in order to generate the
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same transfer function T'(z,w;s). As an example, for the system Pr;(s) given by

T=w+u

1 0
Lol 1)
|z
Y= 1 w
the controller (admissible in RH» for such a Pr;(s)) described by

u=—3zx (4.31)

has a ”corresponding element” in the set F2,- given by (recall what has been shown in the
proof of Theorem 4.1, point c))

6 =—30+w (4.32)
u=-x—20 (4.33)

Indeed, by exploiting eq. (4.31), it follows

T(z,w;s) ! { _é }

:s—+—3

which coincides with the expression deriving from eqgs. (4.32),(4.33).

A parametrization of the set Fa, is now presented. Consider the system Pr(s) which
is obtained from system (4.10)-(4.14) after the control law (4.21) has been implemented,
namely the system

._ | Pru(s) Pria(s)
Pp(s): = [ P;l(s) Pr22(s) }
Ace | B1 B
Chr 0 D12

I8

where eqs. (4.19) and (4.15) have been taken into account and

Cir = Cio — D12B3 P,

The set of controllers Kr(s) which stabilize Pr(s) apparently coincides with the set of
controllers which stabilize Pra2(s), the latter being the system

Acc BZ
Pp22 (8) = I 0
0 0

consistently to what has been previously defined. In view of Theorem 3.7, such a set can be
expressed as

Kr(s) = [Y(s) = M(5)0(s)][X(s) — N()0(s)] ™"

with ©(s) € RHo. Notice that condition (3.12) is no doubt satisfied in the present context,
since Ppa2(s) is strictly proper. From the proof of Theorem 3.4 it follows that, being the
matrix A.. stable, the choice

Y(s)=0, M(s)=1I, X(s)=1, N(s)= Praa(s)
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is admissible, so that
Kr(s) = —O(s)[I — Pra2(s)O(s)] " (4.34)

In the closed loop situation it is
yro = Pro1(s)wr — Pra2(s)O(s)[I — PF22(3)9(5)]—13/L0
By exploiting Lemma B.9, this equation can be written as
yro = [I — Praz(s)O(s)| Prai(s)we
which, in turn, can be utilized to obtain
210 = Pry1(s)wr — Pria(s)O(s){I — Pra2(s)0(s)] 'yro
= [Pr11(s) — Pri2(s)O(s) Pra1(s)]wr
so that, when the controller described by
uro = Faxro + Kr(s)yLo
is adopted, the closed loop transfer function from w to z is
To(z,w;s) = Pr11(s) — Pri12(s)©(s)Pra1(s)

On the other hand, if a controller Kry-(s) of the set Fa~ is adopted, namely, a controller
described by
uro = Forro + Q(s)wr,

with (recall point (c) in the statement of Theorem 4.1) Q(s) € RH>, and ||Q(s)||3 < ¥* —
1P(s)B12 = 4% — || Pr11(s)||2, one gets

zro = [Pr11(s) + Pri2(s)Q(s)]we
Therefore, the set of the Kpi-(s) generates the set of transfer functions from w to 2z
To(z,w;s) = Pri11(s) + Pr12(s)Q(s)

By equating the transfer functions Tg(z,w;s) and Te(z,w; s) it is possible to characterize
the set of functions ©(s) associated with controllers K r(s) admissible in RH»> for Pr(s) and
such that | Te(z, w; s)||2 < 7. In so doing one obtains

Pr12(s)[O(s) Pra1(s) + Q(s)] =0

Letting ®(s) := (sI — A.)™!, from Assumption 4.2 it follows that the rank of Pri2(s) =
C1r®(s)B2 + D12 equals the number of its columns, so that the above written equation is
equivalent to

O(s)Pra1(s) = —Q(s) (4.35)

A particular solution of this equation is

since
Pror(s) = [ ®(s)B, ]
Thus, the general solution of eq. (4.35) is
O¢q(s) = O(s) + O(s)
where ©(s) denotes any solution in RHs of the homogeneous equation

@(S)Ple(S) =0
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Figure 4.5: The generic admissible controller for Pr;(s)

Letting ©(s) := [©1(s) Oz(s)], from the last equation it follows that ©2(s) = —©1(s)®(s)B,
so that

O(s) = O (s)[I — O(s)B]

belongs to RH if and only if ©1(s) € RHy, since ®(s) € RH, being A.. a stable matrix.
Therefore, the set of functions ©¢(s) which generate controllers Kr(s) admissible in
RH; for Pr(s) and such that [|Te(z,w;s)||z < v is defined by

Oq(s) = [01(s) —[Q(s) + O1(s)®(s)Bl]

O1(s) € RHoo, Q(s) € RHz2, [|Q(9)]l2 < +* = |Pr1a(s)]13
By exploiting Lemma B.9, from eq. (4.34) it follows
Kp(s) = =1 — ©q(s)Pr22(s)] " Oq(s)
[T —©1(s)®(s)B2] " -
1=01(s) [Q(s) + ©1(s)®(s)B1]] (4.36)

since ©g(s)Pra2(s) = ©1(s)®(s)B:. In conclusion, by recalling eq. (4.21), the generic
controller Kr;(s) in the set F2, is described by
Kri(s) = [I - ©1(s)®(s)Bz] " -
[=01(s) [Q(s) +O1(s)®(s) B} + [F2 0]

©1(s) € RHoo, Q(s) € RHa, |1Q(3)ll3 < 7* = |Pr11(s)]l3

Such a set is depicted in fig. 4.5. In the controller shown in this figure it is

vLo = ©1(8)(s)[~ 7 (s)aL + Bavro + Biwe] + Q(s)we
= —01(s)P(s)x(0) + Q(s)wr,

having taken into account egs. (4.10) and (4.21). Therefore, the effect of the parameter

©1(s) (which is responsible of the difference between the controllers in F3, and those in

Fo~r) amounts to a term which only depends on the initial state of system (4.10)-(4.14).
With reference to the example previously considered it is easy to verify that the algebraic

controller characterized by u = —3x corresponds to the choice
2 s+1

= — s e = 2
Qs)=——5 . &) =221
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Remark 4.4 (Optimal control problems) The control problem to which Theorem 4.1
can be applied is strictly related to the linear quadratic deterministic (LQ) or stochastic
(LQS) control problem with measurable state. This connection can be made explicit by
exploiting what has been presented in Remark 2.20.

LQ Problem Consider the n-th order system

i = Az + Bu (4.37)
z(0) = 2o (4.38)
and the cost functional
Ji= /000 [« (1)Qa(t) + 22" (t) Su(t) + ' (t)Ra(t))] dt (4.39)
where
[g z]::L:L’ZO, R>0 (4.40)

Observe that L > 0 and R > 0 imply that
Q:=Q-SR'S' >0

since Q = Z'LZ with Z' := [I — SR™!]. Let C1; € R™*™ be a factorization of Q, so that

C1iCi=Q (4.41)

and define
Cy = [ R‘CI'};S’ ] ; Dia = [ ? ] (4.42)
w:=RY?*4, z:=Ciz+ Disu (4.43)

It is easy to verify that it is
o0
J1 :/ 2 (t)z(t)dt
0

On the other hand, the state free motion can always be interpreted as the forced motion
caused by an impulsive input acting on the system through a suitable input matrix. There-
fore, if eqs. (4.41)-(4.43) are taken into account, system (4.37),(4.38) can be described by

&= Az + Biw + Bou (4.44)
z = Ciz 4+ D1au (4.45)

with w := 8(¢), By := o, B2 := BR™Y/? and z(0) = 0.
The optimal control problem at hand (LQ problem) consists in finding a controller of
the form

£=Ft+ G (4.46)
uw=H¢+ Nz (4.47)

such that the system (4.44)-(4.47) is stable and the performance index J, is minimized.
Notice that the feedback connection of any controller of the form (4.46),(4.47) to the sys-
tem (4.44),(4.45) is well defined and the relevant transfer function T'(z,w; s) from w to z is
strictly proper. Therefore, if system (4.44)-(4.47) is stable, then the controller (4.46),(4.47)
is admissible in RH> for system (4.44),(4.45). Further, in view of Remark 2.20, any con-
troller (4.46),(4.47) which is admissible in RH; for system (4.44),(4.45) is such that J, =
T (2, w; s)I3.
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If the pair (A, B) is stabilizable and no eigenvalue of the unobservable part of the pair
(A—BR™'S’,C11) lies on the imaginary axis, Assumptions 4.1 and 4.2 are satisfied. In fact,
from one hand, Assumption 4.2 is readily ascertained to hold in view of eqs. (4.41)-(4.43).
On the other hand, by performing the required substitutions, it is still straightforward to
check that the unobservable part of the pair [(A — B2D1,C1), (I — D132D13)C4] coincides
with the unobservable part of the pair [(A— BQR—1/2S/), Ch1]. Finally, observe that the pair
(A, B») is stabilizable if and only if the pair (A, B) is such (recall the definition of By).

If stated in terms of the system (4.44),(4.45) with the additional output equation y =
[x" w}, the control problem addressed to by Theorem 4.1 is solved by a controller of the
form (4.46),(4.47). Therefore, the controller defined at point (b) of Theorem 4.1 constitutes
the solution of the L@ control problem, too.

However, observe that within the context of the classical optimal control theory the linear
quadratic problem is stated without requiring the stability of the resulting control system.
Thus the assumptions which are necessary to guarantee the existence of the solution in that
context (stability of the observable and unreachable part of system ©(A—BR™'S’, B, C11,0))
are weaker than those required within the RH> context. As an example, consider system
(4.37) and the performance index (4.39) with

5] o[t e [3) mer e

where @ = 1 or @« = —1. Within the framework of the classical optimal control the-
ory the solution of this problem is given by the control law ug, (z) = —[0 1]z to which
there corresponds the value Jio(x(0)) = x3(0). The resulting control system is stable
when & = —1 and unstable when o = 1. In the RH> context the optimal control law is
ufy, () = —[4 3le when o = 1. Correspondingly, the value of the performance index is
iR, (2(0)) = 823(0) + 8z1(0)x2(0) 4+ 325(0). When a = —1 the same control law as in the
classical setting is found. In the RH; framework the resulting control system is stable in
both cases. Finally, notice that Jicr,(z(0)) < Jirg, (2(0)), Vz(0).

LQS Problem Assume that the controlled system is
* = Az + Biw + Bu

where w is a zero mean white noise with identity intensity. Let the pair (A, B) be stabilizable
and consider either the cost functional

Jy = lim E [« ()Qu(t) + 22/ (t)Su(t) + w' (t) Ru(t)]

or the cost functional

Jz = lim E[%/O [m'(t)Qz(t)—’er'(t)Sa(t)+ﬂ'(t)Rﬂ(t)]dt}

T—o0
where matrices Q, R, S satisfy eq. (4.40). From eqs. (4.41)-(4.43) it follows

Jo = lim E[Z'(t)z(t)]

t— oo

: Lt
Js = lim E [T/Q z (t)z(t)dt}

T—o0

and the controlled system is described by

= Az + Biw + Bau (4.48)
Z = C1SE + Dlzu (449)
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KDF(S)

Figure 4.6: The disturbance feedforward problem

ke |

]

Figure 4.7: The auxiliary full information problem

The optimal control problem at hand (L@S problem) consists in finding a controller of the
form given in eqs. (4.46),(4.47) such that stability of the resulting system is ensured and
Ja or Jz is minimized when it is connected to system (4.48),(4.49). The same arguments
exploited for the LQ problem lead to Jy = Js = [|T(z, w; s)||3. If system (4.48),(4.49) verifies
the same assumptions as system (4.44),(4.45), then the solution of the LQS problem is again
the one specified under point (b) of Theorem 4.1. O

Remark 4.5 (Disturbance feedforward) Here reference is made to the block-scheme
of fig. 4.6, where Ppr(s) is described by the equations

z = Az + Biw + Bou (450)
z = Ciz + Dig2u (4.51)
y=Coxr+w (4.52)

while Kpr(s) is a generic controller admissible in RHy for Ppr(s).

It is assumed that the pair (A, B2) is stabilizable and no eigenvalue of the unobservable
part of the pair [(A — B2D1,C1), (I — D12D15)C4] lies on the imaginary axis. Moreover
the matrix A — B1C> is supposed to be stable and D},D12 = I. Observe that stability of
A — B1C; implies detectability of the pair (A, C2) which, together with the stabilizability of
the pair (A, B2), guarantees the fulfillment of the necessary condition reported in Remark
4.1.

Now, notice that system Ppr(s) is equal to system P(s) defined in Lemma E.2. Moreover,
let

Al B B,
il 0 D

Fero):=1 1 1 o
ol 1 o

Observe that: (i) System Prr(s) is equal to system P(s) defined in Lemma E.2; (ii) System
Pr1(s) is equal to system Pr(s) relative to which the full control problem has been stated.

Lemma E.2 (which can be exploited, thanks to stability of matrix A — B1C?) ensures
that the controller Kr(s) connected to system Pr;(s) as shown in fig. 4.7, stabilizes system
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Ky(s)

/)
v Jxv hy

RF[(S)

K(s)

Figure 4.8: The structure of the controller K(s) in terms of Kp;(s)

Pri(s) if and only if the controller K (s), defined in the block-scheme of fig. 4.8, where
A - BlC2 | Bl B2

0 0o I
Ku(e) = 1 0 o0
—c |1 o

stabilizes 15(3) to which it is connected according to the scheme shown in fig. 4.9, this latter
scheme being identical to the one depicted in fig. 4.6. Moreover, the transfer function from
w to z in fig. 4.7 and the transfer function from @ to 2 in fig. 4.9 are equal. Therefore, the
solution of Problem 4.1 relative to system Ppr(s) (fig. 4.6) can be found by solving the same
problem relative to system Prj(s) (fig. 4.7) via Theorem 4.1. Notice that such a theorem
can be exploited because the assumptions made for system Ppg(s) imply the fulfillment of
Assumptions 4.1 and 4.2. Thus

a) min [|T(z,w;s)||2 = [|[Pe(s)Bil||2 = \/trace[B] PaBi1};

b) The optimal controller is given by

A—BC2+ BoFs | By ]

Kpr(s) = [ B | 0

¢) The set Fa,r of the controllers Kppr(s) is defined by the block-scheme of fig. 4.10

where
A—B,C2+ By F | B, By
Nz(s) = F 0 I
-C; I o

Q(s) := %(Aq, By, Cq, 0), 1Q(8)]|2 < ¥* — || P-(s)B1]3 and A, is a stable matrix.

In the three points above v is a positive scalar such that v > || P.(s)B1]|2 and reference has
been made to eqs. (4.15)-(4.20). The problem at hand is referred to as the disturbance
feedforward problem in view of the following discussion.

Preliminarily, observe that, if in eq. (4.52) C, = 0, then y = w so that the disturbance
w can be measured (direct compensation). However, in such a case the controller Kpp(s) is
connected to the controlled system Pprp(s) in an open rather than closed loop configuration
(see also fig. 4.6), so that the stability assumption of the matrix A — B;Cs simply reduces
to the stability assumption of the controlled system, which is obviously necessary to ensure
the stability of the resulting control system.

If, on the contrary, Co # 0, it is still possible to get the disturbance w in terms of the
variables u and y. In fact, from egs. (4.50),(4.52) it follows

YLo — le(s)u}L + PQQ(S)UL (453)



102 CHAPTER 4. RHy; CONTROL

&
>

Ppr(s)

[

[

Kpr(s)

Figure 4.9: The equivalent disturbance feedforward problem

Nz(s)

Q(s)

Kpp(s)

Figure 4.10: The set Fa4, of the controllers Kpp,(s)

A | By A | Bs
Pri(s) = [‘C’Q_—*T:I , Pay = I:?Q’T]

System P (s) is invertible (recall what has been presented in Section 2.5) so that from eq.
(4.53) one gets

where

wr = Py (8)lyro — Paa(s)ur]

1 A— Blcg Bl
Pyy(s) = C I
—C2

Now define a precompensator Kr;pr(s) by means of the equations

with

€ = (A - B1C2)€ + Bau + Buy (4.54)
Ww=-Caf+y (4.55)

Comparing eqs. (4.50),(4.52) with eq. (4.54) leads to the conclusion that, letting ¢ := { —z,
£ = (A — BlCQ)E (4.56)

Thus, o = €10 and, from egs. (4.52),(4.55), also wy = Wro, so that, also when C; # 0,
it is still possible to think to w as being measurable by resorting to a suitable dynamical
system (4.54),(4.55) (indirect compensation).

Therefore, one can consider Problem 4.1 relative to system (4.50)-(4.52), rather than to
system (4.50),(4.51) with the additional equation

§i= [ N ] (4.57)

w

The new problem has the very structure of a full information problem. Thus, the controller
Kri(s) which solves Problem 4.1 relative to system (4.50),(4.51),(4.57) must be connected
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Yy £ u
Kripr(s) Kri(s)
T w
Kpr(s)

Figure 4.11: Kpp(s) in terms of the precompensator Kpipr(s)

to system (4.54),(4.55) in order to obtain the controller Kpr(s) (see also fig. 4.11). The
resulting system includes an unreachable part (recall eq. (4.56)) which is nevertheless stable,
thanks to the stated assumptions. Moreover, it is easy to check that whenever the controller
solving Problem 4.1 relative to system (4.50),(4.51),(4.57) belongs to the set of controllers
Krir(s), then the controller which is obtained by substituting Krr(s) with Kg;,-(s) in fig.
4.11 belongs to the set of controllers Kppr(s). In other words, the procedure just now
presented for solving Problem 4.1 leads to the results previously found.

Finally, notice that Fa» = F2y. In fact, by recalling what has been said at the end of
Remark 4.3, resorting to the controller K¢;(s) rather than to the (simpler) controller Krs,(s)
implies adding the term O1(s)®(s)£(0) to the control variable uzo. Such a term depends on
the initial state of the precompensator Kp;pr(s) only, so that the transfer function from y
to u is independent of the parameter ©,(s). Alternatively, from eqs. (4.21),(4.54),(4.55) one
gets

Er0 = ©(s)(Bavro + Biwro)

where ®(s) := (s — A — BoF2)™'. Hence, by recalling eq. (4.36),

vro = [I — ©1(s)®(s)Ba] ™ {=01(5)®(s)(Bavro + Bitiro) +
+[Q(s) + ©1(s)®(s) B1]wro}
= [I - ©1(s)®(s)Ba] [Q(s)tbo — ©1(s)®(s) Bavro]
Therefore, it follows
VLo = Q(S)ww

so that, in view of eq. (4.21),
uro = Folro + Q(8)Wro

which, thanks to egs. (4.54),(4.55), implies that the transfer function of the generic controller
Kpr(s) is independent of O1(s). O

Example 4.2 Consider system (4.50)-(4.52) with

SR HENN

Ci=[1 a], Ca=[1 1], D=1
where a # 0. The classical synthesis procedure for a controller which reduces the influence of
the disturbance w on the output z consist in trying to make zero the transfer function from w

to z by introducing a controller K;c(s) with input y and output u (indirect compensation).
In the problem at hand such a transfer function is zero (hence z does not depend on w) if

2(as + 1)

K = ——
1c(s) 24+ (a+2)s+3
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However, it is easy to verify that the resulting system is stable when a > 0, while it is not
stable when o < 0. Thus, in this second case it is no more possible to perform a (perfect)
indirect compensation of the disturbance w. On the contrary, by resorting to Remark 4.5,
one gets K3 p(s) = Kic(s) when a > 0 and

1—as

K7 =-2—
br(s) $2+(2-a)s+3

when a < 0. O

Remark 4.6 Assumption 4.2 is restrictive though standard in control problems. It implies
that matrix D12 has rank equal to the number of its columns. Whenever such an assumption
is not verified one has to tackle the so called singular problem the solution of which (if it
exists) calls for a theoretical development far beyond the scope of this book.

On the contrary, notice that the condition D, D12 = I can be replaced by D{, D12 = R,
with R > 0. Indeed, the here presented case can be easily recovered by a suitable redefinition
of the control variable, according to eq. (4.43).

Finally, it is often set Di,C; = 0. This simplifying orthogonality assumption, be-
sides greatly reducing the notational burden, corresponds to the absence of the cross term
Z'(t)Su(t) in the performance index of the optimal control problems dealt with in Remark
4.4, a

Remark 4.7 The Riccati equation (4.18) coincides with the one encountered within the
(classical) Optimal Regulator problem defined in terms of the system

T = Acx + Bau

and the performance index

J ::/ [#'C1eChez + v/ u]dt
0
O

Remark 4.8 Under Assumption 4.2, the fact that the no eigenvalue of the unobservable
part of the pair [(4 — B2D1,C1), (I — D12D}5)C1] lies on the imaginary axis (Assumption
4.1) is equivalent to the subsystem of Pr;(s) corresponding to the transfer function Ppri2(s)
from the input u and the output z (namely system (A, Bz, Ci, D12)) not to have invariant
zeros with Re(s) = 0. In fact, in view of the material in Section 2.5 and recalling that the
dimension of u is not greater than the dimension of z, if it exists A with Re(A) = 0 such that

(M — A)z — Bou=0

Cizx+ Dppu=0
with [z u']’ # 0, then from the identity Dj, D12 = I it follows

!
u=—-D;,Cix

and hence also

(A — BgD'uCl)a: = Az

(I — D12D1)Ciz =0
Being x # 0, since, otherwise, also u = 0, this violates the assumption that no eigenvalue
of the unobservable part of the pair [(A — B2D13,C1), (I — D12D1,)C1] lies on the imaginary
axis (recall Lemma D.1, part (a)). By going the other way on, if the last two equations hold

corresponding to x # 0, the proof of the above mentioned equivalence can be carried out by
letting u := —D1,Ch . a
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Po E(s)

Kog(s)

Figure 4.12: The output estimation problem

4.3 The output estimation problem

The problem of optimally observing a linear combination of the state variables is faced
in this section by following an approach which relies on RH; techniques.
Counsider the system

T = Az + Biw+ Bau (4.58)
z=Ciz+u (4.59)
y = Cox + Dyyw (4.60)

and let Pog(s) denote its transfer function. With reference to the block-scheme in fig.
4.12, suppose that Kog(s) is a RHy admissible controller for Pog(s) which makes
“small” ||T(z,w; s)||2 (the norm of the transfer function from w to z). Then, the
variable u provides a "good” estimate of the linear combination —Cjx of the state
variables. Indeed, should T(z,w;s) = 0 (namely, z;9 = 0) then it would follows
urg = —Cixro. In such a case the signal © apparently constitutes the best possible
estimate of —Cz (when x(0)=0). The following assumptions are now introduced.

Assumption 4.3 The pair (A, Cs) is detectable and no eigenvalue of the unreachable
part of the pair [(A — B1D5,Cs), B1(I — D}, Da1)] lies on the imaginary azis.

Assumption 4.4 Dy Dy, = 1.
Assumption 4.5 A — B>C; is stable.

Under these assumptions it is possible to state the following theorem.

Theorem 4.2 (Output estimation) Consider Problem 4.1 relative to system (4.58)-
(4.60). Then, under Assumptions 4.3 - 4.5, it has the solution

a)
min|| T (z,w; s)||2 = ||C1 P¢(s)|l2 = /trace[C I1,CY]

Aj = ByCi — TLGYC, | Ly
¢ I

b)

Kop(s) =

¢) The set Fo,, of controllers Kop,(s) is defined by the block-scheme in fig. 4.13,

where
Af — BoCy — 11,C5CY | Ly —By

MQ(S) = Cl 0 I
Cy I 0
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Mz(s)

Q(s)

KOEr(s)

Figure 4.13: The set Fa,, of the controllers Kogr(s)

with Q(s) 1= S(Ay, By, Cg,0), |Q(8)]|2 < v% — |C1 Ps(s)||3 and A, stable.
In the three preceding points v is a positive scalar such that v > ||Cy Ps(s)l|2, while

L2 = —Hgoé - BlDl21 (461)
Ay —T,CL0, | Biy — I,Cy Dy
Py(s) = 7 ; 0 (4.62)
Af = A — B1D’2102 s Blf = Bl(I — D/21D21) (463)

where Iy is the symmetric, positive definite and stabilizing solution of the Riccati
equation (in the unknown I)

0= HA:: + AfH — HC;CQH + BlfBif (4.64)
that is such that matric As. defined by
Afc = Af — HQC&CQ = A+ L,Cy (465)

is stable.

Proof Preliminarily, notice that Assumption 4.5 implies that the pair (A4, By) is
stabilizable. This fact, together with the assumed detectability of the pair {A, Cs),
makes the necessary condition in Remark 4.1 satisfied.

Now consider system Ppg(s) obtained from system Ppp(s) by transposition. From
egs. (4.58)-(4.60) it follows that it is described by

£ =F&+ G+ Gap

w=H&£+ En

o =H{+(
where

F.=4A", E:=Dj (4.66)
and, for ¢t =1, 2,

Gi = Cll s Hi = B: (467)

Therefore, system Ppp(s) possesses the very same structure of system Ppp(s) con-
sidered in Remark 4.5. Thus, Problem 4.1 relative to system Pop(s) is solved as it is
mentioned in such a remark (relatively to Pog(s)). Indeed, the assumption required
for system Ppp(s) are precisely Assumptions 4.3 - 4.5. Thanks to Lemma E.1, the
results concerning system Ppop(s) can be derived by transposition of those relevant
to system Pog(s), provided that eqs. (4.66),(4.67) are taken into account. O
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Example 4.3 Consider system (4.58)-(4.60) with

SERIEE TR Y

Ci=[1 1], Ce=[1 0], Du=[0 1]
One obtains Ly = [~v/3 — 1]’ and ||C1P;(s)||3 = 4.46. Taken * = 9 and

-1 0 ‘ 1
Q=] 0 -2 |1
110
it is |T(z,w; 8)||2 = 5.88 < 42, consistently with 1.42 = ||Q(s)||3 < 7* — 4.46. O

Remark 4.9 The structure of a generic controller Kog(s) admissible in RH; for Pog(s)
as defined by the block-scheme of fig. 4.13 allows one to easily verify that the eigenvalues of
the resulting control system are those of matrices A+ L2Co, A— B2C1 and A,. In fact, letting
Zm and x4 be the state variables of systems M2 (s) and Q(s), respectively, and choosing the

state vector of the resulting control system as z; := [&’ + 2, «}, «]’, its dynamic matrix is
A+ L0y 0 0
At == BQCQ Aq 0

ByCy  ByC, A-By(i

the eigenvalues of which are precisely those above mentioned.

Observe that the order of the resulting system is 2n + ng, where n is the order of system
(4.58)-(4.60) and n, is the order of system Q(s). Moreover, when Q(s) = 0 it results
T(z,w;s) = C1(sI — Asc) " (B1 + L2Da1), so that the transfer function from w to z does not
depend on Bs (recall that, in view of egs. (4.61),(4.63),(4.64), L1 is independent of B2). O

Remark 4.10 (Parametrization of the set Fz,) Notice that F2y, = Far. In fact,
as shown in the proof of Theorem 4.2, the RH» admissible controllers for Pog(s) can be
obtained by transposing those which are admissible for Po e(s), this last system possessing
the structure of system Ppr(s) considered in Remark 4.5. Having proved that Fay = Fayr
relative to Ppr(s), the same conclusion must hold for Pog(s). |

Remark 4.11 (Optimal filtering) The control problem relative to system Pog(s) can
be interpreted as an optimal filtering problem relative to the n-th order system

= Ax + Cl + Bou (468)
§=Cz+ G (4.69)
where ¢ := [¢] (5] is a zero mean, Gaussian white noise with intensity

W e I: Wi Wi

; , Waa >0 4.70
Wig W22} 2 (4.70)

If an asymptotic estimate of a generic linear combination Sz of the system state has to be
found, then one of the two functionals

Js:= lim F [[Saz(t) — ()] [Sz(t) - u(t)]]

t—oc
and

T
Js = lim E [1 / [Sz(t) — w(®))'[Sz(t) — u(t))dt
0

T—oc
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may conveniently be associated with the system. Notice that W = Wi — Wia W2_21W1'2 >0,
since W > 0 and Waz > 0. Indeed, it is W = Z'W Z, with

1
7 = _
{ _W221W112 }

Let the n x n matrix B1, be a factorization of W, so that

BuBj, =W (4.71)
and define
Doy :=[0 I], By:=[Bi Wi2W;'? (4.72)
y =Wy, Cr:i=Wy'?C (4.73)
z:=Ciz+u, Cy:=-S5 (4.74)

Then system (4.68)-(4.70) can be rewritten as

T = Az + Biw + Bou (475)
z=Ciz+u (4.76)
y = Coz + Dayw (4.77)
where w is the zero mean Gaussian white noise with identity intensity which satisfies the
equation
—1/2
Cl — Bll WIZVII/?g w (478)
G2 0 Wy
Observe that
BiBy =W, BiDj =WiuWy''?, DauDhy =1 (4.79)

It is easy to verify that
Jo = lim E[Z'(t)z(1)]
t—oo

and

T
j— 1 1 /
Js _TIET;OE {T/o z (t)z(t)dt}
The problem at hand consists in finding a controller of the form

£=F¢+ Gy (4.80)
u= H¢+ Ny (4.81)

such that the control system (4.75)-(4.81) is stable and either the criterion Jy or Js is
minimized. Observe that the feedback connection of any controller of the above form with
system (4.75)-(4.79) is always well defined, while the transfer function T'(z,w; s) from w to
z relevant to such a connection is strictly proper if and only if ND2; = 0, that is, in view
of eq. (4.72), if and only if N = 0. Therefore, if system (4.75)-(4.81) is stable and N = 0,
then the controller (4.80),(4.81) is RH, admissible for system (4.75)-(4.79). Further, from
Remark 2.20, any RH; admissible controller for system (4.75)-(4.79) is such that

Ja=Js = ||T(z,w;8)l3

If the pair (A, C) is detectable and no eigenvalue of the unreachable part of the pair [(A —
Wia W2_2101), Bi1] lies on the imaginary axis, then Assumptions 4.3 and 4.4 are verified. In
fact, eqs. (4.71)-(4.74),(4.79) are readily seen to imply the fulfillment of Assumption 4.4,
while, by performing the required substitutions, it is easy to ascertain that the unreachable
part of the pair [(A — W12W5,'C1), B11] coincides with the unreachable part of the pair
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[(A — B1Dy,C5), B1(I — Dy Da21)]. As for detectability of the pair (A, C2), it is equivalent
to the detectability of the pair (A4, C), thanks to eq. (4.73).

Finally, if matrix A+ B».S is stable, so that also Assumption 4.5 is satisfied, then Theorem
4.2 (point (b)) ensures that the controller which solves the underlying problem relative to
system (4.75)-(4.79) has the form (4.80),(4.81) with N = 0. Precisely, the controller is

£ = (A— ByC) + LaCo)€ + Loy (4.82)
uw=Cé (4.83)

and provides a solution of the considered filtering problem. Here Lo is given by egs.
(4.61),(4.63) and (4.64). However, the filtering problem for system (4.68)-(4.70) could have
been more classically tackled via Kalman theory, yielding the filter

€k = (A+ LxC)ékx — Lky (4.84)
ug = S¢k (4.85)

where ug is the optimal estimate of Sz. In eq. (4.84) it is
Ly = —(HKC/ + le)W;Ql

and Il is the symmetric, positive definite and minimal solution of the Riccati equation (in
the unknown II)

0 =I(A — WiaWsy' C) + (A — WiaWyo O — TIC' Wy CTL + W

where, again, W =Wy — W12W2_21W1/2. Notice that this equation coincides with eq. (4.64)
once the substitutions (4.71)-(4.73) have been performed.

The assumption which guarantees the existence of IIx (namely, the stability of the
unobservable but reachable part of system %(A — Wi, W5,'C, w2 ¢, 0)), is weaker than
those assuring the existence of the stabilizing (i.e. mazimal) solution of eq. (4.64). Hence,
in general, I1x might exist and Il> not exist; moreover it can also happen that I1x # Il3 so
that the RH2 and Kalman filtering problems may substantially differ one from the other.

However, if the Kalman filter is required to be stable, then Il = Ilx and L, =
LxWasa. Despite of being the stable Kalman filter a device different from the RH» con-
troller, the transfer function from the input noise ¢ to the estimation error S(x —x) (system
(4.68),(4.69),(4.84) and (4.85)) coincides with the transfer function from the input noise w to
the estimation error z = C1(z + &) (system (4.75)-(4.77),(4.82) and (4.83)). On the contrary,
the two devices do coincide in the particular case where Bz = 0, W12 = 0 and A stable. O

Example 4.4 Consider system (4.68)-(4.70) with

A—[(l) (1)],32:[_(1)],0:[1 0 ]

0
1 0
W11=[0 1],W12= . , Wa =1

The Kalman filter relative to the linear combination 7 := Sz with S = [1 1] is described by
the equations

€k = (A+ LxC)éx + Bou — Lk
UK = Sf

where L = —[1.35 0.41] and (A + Lk C) is stable since the relevant Riccati equation admits
a unique symmetric and positive definite solution which is also stabilizing.
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PFC (8)

(2] ey |
2 Kro(s)

Figure 4.14: The full control problem

If, on the contrary, Theorem 4.2 has to be exploited according to Remark 4.11, the
controller (corresponding to the choice Q(s) = 0) is obtained

£ = (A= BCr+ LaCo)E+ Loy
u = 015

where C1 = =S, C2 = C, y =4, Ls = Lx. Thus the optimal estimate of 5 is —C1&. o

Remark 4.12 (Full control) Here reference is made to the block-scheme of fig. 4.14
where the control vector u is partitioned into two components u; and us. Assume that the
first one of them acts in a direct way on the state derivative only, while the second one
directly affects the performance output only. More precisely, the considered system Prc(s)
is described by the equations

& = Az + Byw + [T Olu (4.86)
2=Ciz+01u (4.87)
y = Coz + Dayw (4.88)
u = [u} up] (4.89)

Further, let the pair (4, C2) be detectable, D21 D5, = I and assume that no eigenvalue of
the unreachable part of the pair [(A— B1Dj,C2), B1(I — D3, Da2,1)] lies on the imaginary axis.

First, observe that it makes sense dealing with Problem 4.1 relative to the system above
since the necessary condition in Remark 4.1 is verified. Indeed, stabilizability of the pair
(A, Bz) is guaranteed by the form of matrix Bj, while detectability of the pair (A, Cz) holds
by assumption. Now consider system Prc(s) := Ppc(s). From egs. (4.86)-(4.89) it follows
that Prc(s) is described by

£€=F&+Gi(+Gan
w=H¢{+En

so=“]£+[?]c

F:=A'", E:=D) , H =B

where

and, for ¢ = 1,2,
Gi = C{

Therefore, system Ich(s) possesses the same structure as system Ppr(s) which has been
considered in Section 4.2. The assumptions on system Pr¢(s) make system f’pc(s) to satisfy
Assumptions 4.1, 4.2, so that the results concerning the solution of Problem 4.1 relative to
system Prc(s) can be derived, thanks to Lemma E.1, by transposing those concerning system
Ppc(s) which, in turn, coincide with those supplied by Theorem 4.1 for the full information
problem. Thus one obtains

a)
min [|T(z, w; s)|l2 = [|C1 Py (s)||2 = \/trace[C1112C]]
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Uy Yy
La

U2

Q(s)

Krcr(s)

Figure 4.15: The set Fa,. of the controllers Krc,(s)

Uui
N\
o 1
~1(s) L
U2

)

Q(s)

C1¥(8)61(s) — C2¥(3)B1(s)

Figure 4.16: The generic admissible controller for Prc(s)

b)
0|0
K?vc(s) = @ L2
6| o

¢) The set Fayr of the controllers Krcr(s) is defined in the block-scheme of fig. 4.15,
where Q(s) := X(A,, By, C,,0), with the matrix A, stable and |Q(s)||3 < ¥ —
1C1Py(s)]13-

In the three points above v > ||C1.P(s)]j2 and reference has been made to egs. (4.61)-(4.65).

Finally, the set F2, of the RH admissible controllers for system Prc(s) can easily

be found by exploiting (through transposition) the content of Remark 4.3 (which refers to
system Ppr(s)). Therefore, this set is described by the block-scheme of fig. 4.16 (which has
been obtained by ”transposing” fig. 4.5), where ©1(s) € RHoo and ¥(s) := (s] — Ay.)™". O

Remark 4.13 Assumption 4.4 is somehow restrictive though customary in estimation the-
ory. It implies that matrix D2, has rank equal to the number of its rows. Should this as-
sumption not be verified one would have to face a singular problem the solution of which, if
any, requires a discussion far beyond the scope of this book.

On the contrary, observe that the condition D21 D%, = I can be substituted, without
troubles, by DayDj; = R with R > 0. Indeed, the present derivation can be exploited by
redefining the output variable as shown in eq. (4.73).

Finally, the orthogonality assumption Ds; B = 0 is often made. Besides making simpler
the notation, such an assumption implies that the noises (; and (s, introduced in Remark
4.11 when dealing with filtering problems, are uncorrelated (W; = 0). ]
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Remark 4.14 The Riccati equation (4.64) is the one encountered in deriving the Kalman
filter for the system & = Az + wi, y = C2x + wa, where the zero mean Gaussian white noise
w = [w] ws]’ has intensity
W [ BiBi BiDj ]
= | DuB, I
O

Remark 4.15 Under Assumption 4.4, the eigenvalues of the unreachable part of the pair
[(A — B1D5,C2), Bi(I — D31 D21)] do not lie on the imaginary axis (Assumption 4.3) if and
only if the invariant zeros of the subsystem of Pog(s) corresponding to the transfer function
Pog21(s) from the input w to the output y, namely the system X(A, By, Ca, D21), all have
real part different from zero. In fact, from Section 2.5 and by recalling that the number
of components of the disturbance w is not smaller than the number of components of the
output y, if a scalar A with Re(\) = 0 exists such that

(M- A)x—Chy=0
Biz + Dyy =0
with [z’ y']’ # 0, then, from the identity D21 D5y = I it follows
y=—Da Bz
so that
(A" — CyD21Bi)x = Ax
(I = D3, D21)Bix =0
Being x # 0, since, otherwise, also y = 0, these two equations would violate the assumption
that no eigenvalue of the unreachable part of the pair [(A — By D4,C3), B1(Ip21’ D21)] lies on
the imaginary axis (recall Lemma D.3, point (a)). On the contrary, if the two last relations

hold true for a certain x # 0, then letting y := —D2; Bix and proceeding in the reverse way
the conclusion straightforwardly follows. m]

Remark 4.16 The above results can be generalized to the fairly frequent case in which
the output variable y explicitly depends on the control variable u, that is when eq. (4.60) is
substituted by
Yy = Cox + Disw + Doou (490)
Indeed, letting
4§ 1=y — Dau = Cox + Dipw (4.91)
Problem 4.1 relative to system Pog(s) (described by eqs. (4.58),(4.59), (4.91)) admits the
solution presented in Theorem 4.2. If Kog/(s) is a RH, admissible controller for Pog(s), then
the controller Kog(s) defined in the block-scheme of fig. 4.17 is apparently a RH2 admissible
controller for system Por(s) (described by eqgs. (4.58),(4.59),(4.90)), only provided that it
is well defined. This is certainly the case since the set of controllers Ko £(8) is constituted
by strictly proper systems (see Theorem 4.2). ]

4.4 The partial information problem

In the control problem considered in the present section only a partial information
on the system state is available to the controller. Therefore, the controlled system is
described by
&= Az + Biw+ Byu (4.92)
z=Ciz + Disu (493)
y = Coz + Dyw (4.94)
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—Da2 —

]

I?OE(S)

KOE(S)

Figure 4.17: The controller Kpg(s) when y directly depends on u

P(s)

K(s)

Figure 4.18: The partial information problem

and its transfer function is denoted by P(s). Further, the following assumptions are
done.

Assumption 4.6 The pair (A, By) is stabilizable and the pair (A, Cy) is detectable.
Assumption 4.7 D},D1s = I.

Assumption 4.8 The eigenvalues of the unobservable and unreachable part of the
pairs [(A — BaD},C1) (I — D12D'5)C1] and [(A — B1 D4, Cs), B1(I ~ Db, Day)] respec-
tively, do not lie on the imaginary axis.

Assumption 4.9 Do D}y, = 1.

In the forthcoming theorem reference is made to the block-scheme of fig. 4.18 where
K (s) denotes a generic RH> admissible controller for P(s) and T'(z, w; s) is the transfer
function from w to z.

Theorem 4.3 (Partial information) Consider system (4.92)-(4.94). Then, under
Assumptions 4.6 - 4.9, Problem J.1 has the following solution.

a)
min [T(z,wi )3 = [[Pe(s)B1l3 + [|F2Py(s)]3
= || Pe(s)Loll3 + IC1 Py ()13
= (7°)?
b)

. A+ BoFs + LyCy | —Lg
K°(s) = =) |' 0
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S2(s)

Q(s)

Krir(s)

Figure 4.19: The set Fa,, of the controllers Kpy,(s)

¢) The set Fayy of the controller K,(s) is defined by the block-scheme of fig. 4.19

where
A+ BoFs + Ly(Cy | —Ly By
Sa(s) == F, 0 I
—Cy I 0

Q(s) == X(4,, B;,C,,0), the matriz A, is stable and ||Q(s)|3 < v* — (v°)2.

In the three points above reference has been made to eqs. (4.15)-(4.18) and (4.61)-
(4.64), while v is a positive scalar such that v > +°.

Proof First observe that Assumption 4.6 coincides with the necessary condition for
the problem at hand to make sense (see Remark 4.1). Then notice that the above
assumptions guarantee, thanks to Lemma C.3, the existence of the solutions P, and
I, of the Riccati equations (4.18) and (4.64) endowed with the relevant properties.
Repeat now the first part of the proof of Theorem 4.1 (egs. (4.20)-(4.26)) by making
reference to fig. 4.18 and 4.19 rather than to fig. 4.2 and 4.3, respectively, and defining
the system F,(s) in fig. 4.4 as

A | BI B
PU (S) = — F2 0 I
CQ Dy, 0

Then, one gets
1T'(2, w; 5)113 = [1Pe(s) Bull3 + | T'(v, w; 8) 13

On the other hand, system P, (s) has the same structure as system Pog(s) (the system
considered in Section 4.3) and equals it if one let —Fy = C;. It is easy to ascertain
that under Assumptions 4.6 - 4.9, Assumptions 4.3 - 4.5 are verified for system P, (s).
This is straightforward as for the first two of them, while Assumption 4.5, namely
stability of the matrix A — B2C; = A + BsF3, follows from P; being the stabilizing
solution of the Riccati equation (recall eq. (4.19)). Since the set of RH; admissible
controllers for P(s) coincides with the set of RH> admissible controllers for P,(s),
it is possible to minimize ||T{v,w;s)||2 by resorting to Theorem 4.2. Thus the first
equality sign in point a) and points b) and ¢) follow.

As for the second equality sign in point @), notice that system P(s) := P'(s) has
the same structure as P(s). Therefore, the solution of Problem 4.1 relative to system

P(s) is fully described by the statement of Theorem 4.3 apart, for the moment being,
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from the second part of point a). The relevant results can be utilized also for system
P(s), thanks to Lemma E.1. In particular, if a cap sign marks the items concerning
system P(s) which correspond to those introduced for system P(s), in view of point
(a) of Theorem 4.3, first equality sign, one obtains

min | T(2,%; 8)[15 = [|12a(5) Bull3 + [ F2 Pr(s)13
= [|Pe(s)Lall3 + ICL Py (3) 3
since P!(s) = Ps(s), B, =, P}(s) = P.(s) and F} = Ly, as it can be verified. O

Example 4.5 Consider system (4.92)-(4.94) with

(2] a2 ] ] o]

01:“ 8},02:[1 0], Du=[0 1]

One obtains F» = —[1 \/2_], Ly = _[\/5 1]" and
(v*)? := [|Pe(s)Bulf3 + | F2 Py (s)|I3 = 10.85

Taken v = 16 and

-1 0 ! 1
Q=] 0 =3 |1
T
it is [|T(z,w; s)]|2 = 12.02 < 4%, consistently with 1.17 = [|Q(s)[|3 < v* — (v°)%. O

Example 4.6 Consider system (4.92)-(4.94) with

0 1 0
A:|:O Ojl s B1=B2:|:11| s Dio=Dy =1

Ci=[1 B8], Ca=[1 a]

where a # 0 and 3 # 0. It is easy to verify that the controller which makes the control
variable u to depend on the output variable y through the transfer function

Bs+1

Kol =~ far s +2

performs the indirect perfect compensation of the disturbance w, since the transfer function
from w to z is zero. However, the resulting system is stable only for « > 0 and 3 > 0.
Therefore, this kind of solution is no more feasible for all other values of the pair («, 3).

On the contrary, by applying Theorem 4.3 one obtains (corresponding to the choice
Q(s) =0) K°(s) = Krc(s) when a > 0 and 8 > 0, otherwise

oy _ (20 + B)s — 1
K(S)_82~(a+ﬂ)s+2a2+2aﬂ+2 » @<0, 5<0
° —1

K(S)ZSQ_-{‘—_ZiS——B)Sﬁ 5 a>0, ﬂ<0

K°(s) = (20— f)s 1 a<0, >0

T s24 (B-a)s+ 2 -2aB+2
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Remark 4.17 The structure of a generic RH; admissible controller for P(s) (as defined
by the block-scheme of fig. 4.19) allows checking that the eigenvalues of the resulting control
system are those of the matrices A 4+ BoFb, A 4+ L2Cy and A,. In fact, letting z; and x4
denote the state variables of systems Sa(s) and Q(s), respectively, the dynamic matrix of

the resulting system (with state z; := [z’ — z§ 2 2]’} is
A+ LyCy 0 0
A=| B A, 0

BzFQ BQCq A + BQFZ
O

Remark 4.18 The optimal controller given in point b) of Theorem 4.3 may be interpreted
as the result of a synthesis procedure made up of two independent steps. The first one consists
in solving the full information problem (dealt with in Section 4.2) yielding matrix F>. The
second step tackles the output estimation problem (dealt with in Section 4.3) relative to the
linear state combination Fhx, that is relative to system (4.58)-(4.60) with C; = —F5. O

Remark 4.19 (Parametrization of the set F,,) Notice that 52, = Fayr. In fact, as
it was done in the proof of Theorem 4.3, recall that the set of RHs admissible controllers
for P(s) coincides with the set of RH, admissible controllers for P,(s). However, the latter
system has the same structure as system Pog(s) (considered in Section 4.3), so that, in view
of Remark 4.10, the above claim is correct. |

Remark 4.20 The control problem addressed to in Theorem 4.3 can be viewed as an
optimal linear quadratic stochastic problem with unmeasurable state. In fact, consider the
n-th order system

T=Ax+Bi+( (4.95)
y=Cr+ G (4.96)
where ¢ := [(] (5] is a zero mean white Gaussian noise with intensity
Wi Wi
W .= 1% 0 4.97
[ W{2 W22 :I ] 22 > ( )

Also consider the cost functionals

Jo = lim E[2' #)Qx(t) + 2x'(t)Su(t) + ' (t) Ru(t)]

and
T
J7 = Tlim E[% / ' (0)Qz(t) + 2x'(t)Su(t) + w (t)Ru(t)]dt
Do 0
where
Q S _,
[ $ R } =L=L">0, R>0
Letting

Q:=Q— SRS, W:=Wi — WiaWs, ' Wi,
which are positive semidefinite (recall Remarks 4.4 and 4.11) and
C{lcn = Q s Ch € Ran R BllBil = W, By € Rnxn
By := BR™'Y? | By :=[Bu WiWgy'?
Do :=[0 I, Cp:=Wy'*C

C 0 _
C1 = [ R—JIQS/ ] , Dz = [ I ] , u:=R"%g

Y= W2_21/2§/ , 2:=Ciz+ Diou
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system (4.95)-(4.97) can be rewritten as

z=Ciz+ D2 (499)
y = Cox + Dn (4.100)

where w is a zero mean white Gaussian noise with identity intensity and dimension n + p
which satisfies the equation

| Bun Wi W2_21/2
¢= 1/2 w
0 W3

It is also easy to verify that
Jo := lim E[2'(t)z(¢)]

t—o0

and

1 /7
Jr = TlilnooE {T /0 z'(t)z(t)dt]
The problem under consideration is finding a controller of the form

£ =F¢+Gy (4.101)
u=Hf+ Ny (4.102)

such that system (4.98)-(4.102) is stable and Jg or J7 is minimized. Notice that the feedback
connection of any controller described by eqs. (4.101),(4.102) with system (4.98)-(4.100) is
well defined and the relevant transfer function from w to z is strictly proper if and only if
ND3; = 0, that is if and only if N = 0 (recall the definition of D21). Thercfore, if system
(4.98)-(4.102) is stable and N = 0, then the controller (4.101),(4.102) is RH> admissible for
system (4.98)-(4.100). In view of Remark 2.20 any RH; admissible controller for system
(4.98)-(4.100) is such that
Jo = Jr = | T(z,w;s)|3

Assume that neither the eigenvalues of the unobservable part of the pair [(A— BR™'S’), C1]
nor those of the unreachable part of the pair [(A — W12W5,'C), B11] lie on the imaginary
axis. Moreover, assume that the pair (A, C) is detectable and the pair (A, B) is stabilizable.
With the same kind of reasoning developed in Remark 4.11 it is easy to see that these
assumptions are equivalent to Assumptions 4.6 and 4.8, while Assumptions 4.7 and 4.9 are
satisfied because of the definition of D12 and Das;.

Therefore, Theorem 4.3 can be applied to system (4.98)-(4.100) and supplies the optimal
controller which is described (with reference to system (4.95)-(4.97)) by

£ = Af + Bu+ L(C¢ — %) (4.103)
a = He (4.104)
if the relevant substitutions have been done. In egs. (4.103),(4.104) it is L := —(TI.C" +

Wi2)W,,', H := —~R™Y(B'P; + 5’), P> and TI» being the symmetric, positive semidefinite
and stabilizing solutions of the Riccati equations (in the unknown P and II, respectively)

0=PA.+ AP PBR'B'P+Q-SR'Y
0 = A} + ATl - TIC' W' CTL+ Wiy — Wia W, Wi,

with A, := A—BR™'S', A; := A—W2W,,'C. Notice that in the controller (4.103),(4.104)
itis N =0.

Equation (4.103) is the equation of the stable (see Remark 4.11) Kalman filter for system
(4.95)-(4.97). Thus, the controller (4.103),(4.104) can be considered as a Kalman filter on
the state of which the control law has been implemented (eq. (4.104)) which is optimal and
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stabilizing for the Linear Quadratic problem with infinite horizon defined on system (4.95)
with {1 = 0 and performance index

Jr = / oo[x'(t)Q:n(t) + 22" (t)Sa(t) + @' (t) Ra(t)]dt

The criterion J; is the ” deterministic version” of the functional J7. This structural separation
of the solution (optimal filtering and regulator problem) is outlined also by the spectrum of
the dynamic matrix of the resulting system. In fact, letting e := £ — x, from eqs. (4.95)-
(4.97),(4.103),(4.104) it follows

e=(A+ LCYe — (1 — LG
#=(A+BH)x+ BHe+ (1

The problem of minimizing either the functional Jg or the functional J7 under the unique con-
straint expressed by eqs. (4.95)-(4.97) is known as the linear quadratic Gaussian (LQG) prob-
lem. The solution of such a problem (whenever it exists) is specified by eqs. (4.103),(4.104),
where, however, the two matrices Il and P, which determine L and H, respectively, may
not be the stabilizing solutions of the relevant Riccati equations. Consequently, system
(4.95)-(4.97), (4.103),(4.104) may be unstable. This outcome is consistent with the absence
of any stability requirement put forth by the classical LQG theory. As a matter of fact,
the assumptions required by such a theory (stability of the unreachable but observable part
of system (A — BR™'S’, B,C11,0) and of the uncbservable but reachable part of system
(A - W12W2_216’, Bi11,C,0)) are weaker than those required within the RHs context. ]

Remark 4.21 The solution of the output estimation problem (see Section 4.2) can be
derived as an application of Theorem 4.3 to a particular case. In fact, it suffices to set
D13 = I in Assumptions 4.6 - 4.9 in order to conclude that Assumptions 4.3 - 4.5 are satisfied.
In particular, it results Ci. = 0 so that the (unique) symmetric, positive semidefinite and
stabilizing solution of the Riccati equation (4.18) is P = 0. In such a context, the conclusions
of Theorem 4.3 are immediately redrawn to those of Theorem 4.2. In a similar way, the
solution of the disturbance feedforward problem dealt with in Remark 4.5 can be obtained
by solving the partial information problem in the particular case D;; = I. Indeed, letting
D21 = I in Assumptions 4.6 - 4.9, it is easy to verify that the assumptions made in Remark
4.5 are satisfied. In particular, it results B1y = 0 and hence IIs = 0, so that the conclusions
of Theorem 4.3 coincide with those illustrated in Remark 4.5. 0O

Remark 4.22 The contents of Remark 4.6 (as for matrix D;2) and of Remark 4.13 (as for
matrix Ds1) apply with no changes to the problem dealt with in the present section. a

Remark 4.23 In view of Remarks 4.8 and 4.15 it can be said that, under Assumptions
4.7 and 4.9, Assumption 4.8 amounts to requiring that the two subsystems of P(s) having
transfer functions Pia(s) (that is, system X(A, Be, C1, D12) with input u and output z) and
P>1(s) (that is, system (A, By, Ca, D21) with input w and output y), respectively, do not
have zeros on the imaginary axis. (]

Remark 4.24 The discussion in Remark 4.16 can be applied with no changes to the present
context. Therefore, the results presented in Theorem 4.3 can be extended with no difiiculty
to encompass the case in which eq. (4.94) is replaced by

y = Cox + Dayw + Dagu
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4.5 Notes and references

The material of this section mostly relies on the paper by Doyle et al. {17]. However,
the assumptions under which Theorems 4.1, 4.2, 4.3 have been stated are more general
than those adopted in such a paper. Moreover the results concerning the parametriza-
tion of the admissible controllers have been modified so as to encompass the remark
put forward by Mita et al. [44]. Further insight on the connections existing between
the LQG and RH, problems was given by Kucera [35].



This Page Intentionally Left Blank



Chapter 5

RH~o Control

5.1 Introduction

The control problem for linear time-invariant systems has been classically tackled
in the frequency domain. A typical, though not completely general, context is the
one shown in fig. 5.1, where G(s) and K (s) are the transfer functions of the process
to be controlled (possibly including actuators and sensors) and of the controller to
be synthesized. The disturbances d., d,, d, act on the controlled variable ¢, on the
process input variable u, and on the feedback path, respectively. Finally, ¢° is the
oppostte of the set point.

As well known, the aim in designing K(s) is, loosely speaking, guaranteeing the
stability of the control system and achieving satisfactory performances. Usually, such
performances are evaluated in terms of the behavior of suitable variables of interest
to be specified according to the problem at hand and must be attained in spite of the
disturbances acting on the system and inaccurate knowledge of the process model.

In general, the philosophy underlying the adopted synthesis procedure strongly
affects the result: for instance, having either ignored or taken into account the inac-
curate knowledge of the process model makes the controller quite different. Moreover,
the design procedure significantly depends on the adopted description of the uncer-
tainty: thus, subdividing the relevant discussion (and consequently this section) into
three parts, appears to be a fairly natural strategy. First, the design problem is faced
in nominal conditions, that is the process is supposed perfectly known. Second, some

dy de

K(s) G(s) O

Figure 5.1: A typical control system
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typical situations in which the process model is not precisely known are shown to
be conveniently described by inserting a suitable perturbation A(s) into the block
scheme of fig. 5.1. The topology of this scheme does therefore reflects the particular
nature of the considered uncertainty. Third, the design problem is tackled in a robust
way, namely it is stated within various uncertainty scenarios, modeled in accordance
with the previous discussion.

5.1.1 Nominal design

The process under control is assumed to be perfectly described by its nominal transfer
function G,(s) so that in the block scheme of fig. 5.1 G(s) = G,(s). The transfer
functions which are suited to evaluate the effects of the disturbances and hence can
be exploited to express meaningful performance requirements are the following:

Sals) = [I = Ga(s)K ()] (5.1)
Tu(s) = Gu(9)K(8)[ — Gr(8)K(s)] ™" (5.2)
Va(s) = K()[I — Gu(5)K (s)] (5.3)

The function S, (s), usually referred to as sensitivity function, describes the effect of
the disturbance d. on the controlled variable ¢ and the effect of the signal ¢° on the
controller input variable y. The function T),(s), which is readily recognized to equal
Sn(s) — 1, is, for such a reason, referred to as complementary sensitivity function and
accounts for the effect of ¢® or d, on the controlled variable. Finally, the function
Vi (s) is responsible of the effect of ¢°, d, or d. on the process input: thus, it will be
referred to as input sensitivity function.

A good solution to the design problem spontaneously calls for making small, in
some suitable sense to be specified, the effects of the disturbances on the variables
of interest. Thus, the desire of making small the above introduced transfer functions
naturally arises.

In the scalar case (that is the case where all the relevant variables are scalar), the
desire of making small a transfer function ¢(s) is consistent with the request that
the absolute value of p(jw) be, for each frequency w, smaller than a given (possibly
frequency dependent) quantity, namely | p(jw) |< #(w),Vw. For this to make sense,
it is necessary that no poles of ¢(s) lie on the imaginary axis: in the here considered
framework this requirement is naturally fulfilled since, in view of the unavoidable
stability constraint, all the transfer functions of interest must belong to RHy,. The
natural extension of this philosophy to the multivariable case leads to asking that
an inequality of the above type be verified by the mazimum singular value of p(jw),

namely
dle(jw)] < Hw), Vw (5.4)

Let W(s) € RH,, be any matrix such that W~1(s) € RH,, and ¢[W!(jw)] =
¥(w). Then, the inequality (5.4) is no doubt satisfied if

F[W(jw)e(iw)l <1, Vw

that is if
[(W(s)e(s)]loo <1 (5.5)

since, in view of Lemma 2.21,
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The function W (s) is usually referred to as shaping function.
For the control system of fig. 5.1 the more classical request is the sensitivity
performance one, which, consistently with eq. (5.5), can be expressed as

| Wi(s)Sa(s) lloo< 1 (5.6)

Not at all less meaningful are the requests related to the complementary sensitivity
performance and input sensitivity performance which can be expressed as

I Wa(s)Tu(s) lloo< 1 (5.7)

and
| Wa(s)Va(s) o< 1 (5.8)

respectively.

Equally of interest are the requests calling for the simultaneous satisfaction of more
than one of the inequalities (5.6)-(5.8). As an example, a common request involves
both the sensitivity and the complementary sensitivity performance by asking for the

fulfillment of
ez ]l < -

since (recall Definition 2.24 and Lemmas 2.17 and 2.23) if (5.9) holds, then both (5.6)
and (5.7) hold. It should be apparent that a multiple goal as the one expressed by eq.
(5.9) must not ignore the intrinsic constraints existing among the involved functions.
A wise selection of the shaping functions W;(s) to be associated with the performance
functions S,,(s), To(s), Vi,(s) is therefore mandatory.

With reference to the particular case of eq. (5.9), the selection of the shaping
functions must reflect the identity S,(s) —T,(s) = I. In general, 5[5, (jw)] is asked to
be small at low frequencies in order to endove the control system with good capabilities
of tracking the set point, whose bandwidth is usually limited from above. This can
be achieved by selecting a shaping function W;(s) such that ¢{W; '(jw)] is small
at low frequencies and equal to 1 at higher frequencies. On the contrary, &[T, (jw)]
is requested to be small at high frequencies in order to effectively counteract, for
instance, the disturbances in the feedback path, as their spectra are usually located
at high frequency. Consistently, the shaping function Ws(s) can be selected so as
to have (‘f{W{l( jw)] equal to 1 at low frequencies and as small as possible at higher
frequencies.

5.1.2 Uncertainty description

It is often more realistic to assume that the process model belongs to some specified
set G rather than being perfectly known. Moreover, the so called nominal model
Gr(s) is usually taken as an element of the set G and therefore viewed as a first order
approximation of the true model G(s). Consistently, a description of the set G can be
performed by parametrizing it by means of a transfer function A(s) belonging to a
suitable set Dy the perturbations which G, (s) may undergo are then defined by the
adopted parametrization and the structure of the set D,,.

Here reference will be made to unstructured perturbations only, that is to per-
turbations which are qualified only in terms of their amplitude as specified by the
set

Do = {A(8) | A(s) € RHuo , ||A(S)]l0 < o} (5.10)
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Figure 5.2: Different uncertainty models

Some particularly meaningful examples of parametrization of G are presented in the
following equations, where the parameter A(s) is any element of the set D, defined
by eq. (5.10):

G = {G(s) | G(s) = Gn(s) + A(s)} (5.11)
G = {G(3) | G(s) = Gn(s)[I + A(s)]} (5.12)
G :={G(s) | G(s) = [I + A(s)|Gn(s)} (5.13)
G :={G(s) | G(s) = [I — A(s)] 1 Gn(5)} (5.14)
G :={G(s) | G(s) = [I — Gu(s)A(s)] ' Gn(s)} (5.15)

It is easy to verify that each one of the sets (5.11)-(5.15) is suited to describe meaning-
ful types of uncertainties in a fairly natural way (see also fig. 5.2 where a block-scheme
version of egs. (5.11)-(5.15) is presented). The set (5.11) may model an uncertain lo-
cation of right half plane zeros of G(s) (as an example: G, (s) = (s—2)/(s+1)(s+2),
A(s) = /(s + 1)(s+ 2)). The sets (5.12) and (5.13) may suitably account for
neglected high frequency poles as well as right half plane zeros (as an example:
A(s) = —es/(1 +es) or A(s) = =2/(1 + s), so that 1 + A(s) = 1/(1 + €s) and
1+ A(s) = (s —1)/(1 + ), respectively). These sets can obviously be exploited in de-
scribing the model uncertainties of both actuators and sensors as well. The set (5.14)
can easily model neglected right half plane poles (as an example: A(s) = 10/(1 + s),
so that [1 — A(s)]™! = (1 +s)/(s —9)). Finally, the set (5.15) can easily account
for the uncertain location of a right half plane pole (as an example: A(s) = e,
Gn(5) =1/(s—1), so that G(s) = 1/(s — 1 —¢)).
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5.1.3 Robust design

The design problem in an uncertain environment consists in selecting a controller
K (s) which ensures stability as well as satisfactory performances not only in nominal
conditions (e.g., G(s) = G,(s)), but also when the plant undergoes finite perturba-
tions. As for the basic stability requirement, a controller K(s) is said to guarantee
robust stability if, given a set Dy, the control system is stable for each G(s) € G. In a
similar way, a controller K (s) is said to guarantee robust performances if, given a set
D, the control system satisfies some specified performance requirements (like those
defined through egs. (5.6)-(5.9)) for each G(s) € G.

Within this framework a natural question arises, namely whether a control system
which has been designed in nominal conditions can, for a given set G and some finite
«, guarantee robust performances and/or stability relative to the set D,. Whenever
possible, the answer to such a question is supplied by the so called procedures for the
robustness analysis of a control system.

The same approach adopted for the nominal design problem can be exploited for
the robust design problem, provided that reference is made to sensitivity functions
defined in terms of G(s) rather than of G,,(s), namely

S(s)=[I - G(s)K(s)] " (5.16)
T(s) = G(s)K(s)[I — G(s)K(s)]™* (5.17)
V(s) = K(s)[I - G(s)K(s)]™* (5.18)

Accordingly, the robust sensitivity performance, the robust complementary sensitivity
performance and the robust control sensitivity performance are guaranteed if, given
the sets G and D, the control system is stable for all G(s) € G and

W1 (s)S(s)lleo <1, VG(s)€G (5.19)
W2 (s)T(s)lloc <1, VG(s)€G (5.20)
[Wa(s)V(s)llew <1, VG(s) €G (5.21)

respectively.

Not differently from the nominal design framework, it is possible to call for the
simultaneous matching of two or even all the inequalities (5.19)-(5.21). Thus, for
instance, a design problem could be stated requiring that

Wi(s)S(s)
H[ Wa(s)T(s) ]Hw <1, VG(s)eg (5.22)

Finally, under some circumstances, the controller might be required to guarantee
robust stability together with satisfactory performances (as specified by the inequali-
ties presented in this section) in nominal conditions only (nominal design with robust
stability).

The next section is devoted to showing how the design problems introduced in this
section can all be reduced to a unique standard problem in the RH,, context which
is completely defined in terms of G, (s) and G only.

5.2 The standard problem

Consider the block-structure depicted in fig. 5.3 where P(s) is the so called augmented
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Figure 5.3: The standard 2-block configuration

system and K(s) is the controller to be designed. It is now shown that the controller
K(s) in fig. 5.1 which solves one of the design problems defined in Section 5.1 is the
same controller that in fig. 5.3 guarantees stability and the boundedness of the RH,
norm of the transfer function T(z;w, s) from w to z. The interest in reformulating
the original design problem in terms of the block structure of fig. 5.3 lies on the
fact that the augmented plant P(s) depends only on the nominal plant G,(s), on the
particular set G of the given perturbations and on the performances requested to the
control system.

The procedure at the basis of such a reformulation, i.e. the definition of the
system P(s) and signals w and z, comes up to be very simple when dealing with a
design problem in nominal conditions, henceforth referred to as nominal design. Such
procedure is now presented at the light of simple, but illustrative, examples, which
also serve as preliminaries in the cases not specifically considered herein.

Nominal design: sensitivity performance With reference to fig. 5.1 and fig. 5.3,
define z := Wi(s)y and w := ¢°, or z := Wi(s)y and w := d,., or z := Wj(s)c and
w := d,. Then, in the three cases,

P(s) = { W1]<s) Wlész(cin(s) ]

Nominal design: complementary sensitivity performance With reference to fig.
5.1 and fig. 5.3, define 2z := Wa(s)c and w :=d, or w := ¢°. Then, in both cases,

ro =[5 MEH" ]

Nominal design: input sensitivity performance With reference to fig. 5.1 and fig.
5.3, define z := W3(s)up and w := d, or w := ¢°, or w := d.. Then, in all the three

cases, P(s) = { ? gjgz; ]

Nominal design: joint sensitivity and complementary sensitivity performance
With reference to fig. 5.1 and fig. 5.3, define z := [y'Wi(s)' ¢/Wa(s)') and w = ¢°
or w := d,. Then, in both cases,
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G1(s)

Ga(s)

Figure 5.4: Feedback connection of two systems

Restating in terms of the block-structure of fig. 5.3 the synthesis problems in uncertain
conditions requires a preliminary result (usually called small gain theorem) which
refers to the feedback connection of fig. 5.4.

Theorem 5.1 Let G1(s) € RH, be an assigned p x m transfer function and Ga(s) €
RH, an arbitrary m X p transfer function with ||G2l|e < @ # 0. Then

i) The feedback connected system of fig. 5.4 is stable for any Ga(s) if |G1(8){|c <
-1
«

i) If |G1(8)||oo > a7, there exists a transfer function Ga(s) which destabilizes the
feedback connected system of fig. 5.4.

Proof If ||G1(s)||ec < a ! then, recalling Lemma 2.21, Remark 2.13 and Remark
2.16, it follows that [G1(s) Ga(s)] < 1, VRe(s) > 0. Hence, Lemma 2.18 entails
that all eigenvalues of G(s)Ga(s) have modulus less than one in the closed right half
plane, so that det[] — G1(5)Ga(s)] # 0, VRe(s) > 0. In view of Theorem 3.3 the
conclusion is drawn that system in fig. 5.4 is (internally) stable.

On the contrary, suppose that ||G1(s)||lcc = ¢ 1(1 +€) := p~1,¢ > 0 and con-
sider the case m < p. Write a singular value decomposition of G1(jw) as G;(jw) =
U(jw)Z(jw)V™(jw) with L(jw) = [S(jw)" 0]/, where S(jw) is a square and m-
dimensional matrix. Letting Gs(jw) := pV (jw)TU™ (jw), where T =[I 0] isam x p
dimensional matrix, it follows that

1

derls = G (je)Gatio)] = det [1 - putie) | G 0 o)

[ ]

= det[] — pS(jw)]
Since ||G1(8)]|ec = p 1, there exists a frequency @ such that lim,, . (G (jw)] = p L.
Then, recalling that S(jw) = diag{c;[G1(jw)]}, it follows that one of the nonzero
entries of pS(jw) tends to one so that lim,, .5 det[] — G (jw)G2(jw)] = 0. In view of
Theorem 3.3 the system in fig. 5.4 is unstable. The case m > p can be dealt with in
a similar way. O

Remark 5.1 (Stability of an uncertain matrix) Theorem 5.1 allows one to give a
simple answer to a peculiar problem which concerns the stability of an uncertain linear
system. Consider a system described by

T = (A+AA)$
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Figure 5.5: An uncertain system in feedback configuration

where A is stable and A 4 represents the uncertainty which is assumed to belong to a set of
perturbations specified by
Aa=BC, |9 <~y7"

where B and C are two assigned matrices and ~y is an assigned positive scalar. Notice that
it is possible, through a suitable choice of matrices B and C, to effectively describe various
situations, for instance the case in which only a parameter of the system dynamic matrix is
really uncertain. Looking at fig. 5.5 it is apparent that the uncertain system can be viewed
as a closed loop system obtained by performing the control law v = Qy on the system with
transfer function G(s) = C(sI — A)"'B. Then, it can be concluded that, if |G(s)|lcc < 7,
the stability is guaranteed for any Q such that ||Q| <y~

Thanks to Theorem 2.14, the condition [|G(s)|lc < < is equivalent to the existence
of a symmetric positive semidefinite stabilizing solution Ss of the Riccati equation (in the
unknown S)

0=SA+A'S+~y"2SBB'S+C'C

Remark 5.2 (Covariance bound) Consider the stochastic system described by
t=(A+ As)z+ Biw

where A is stable, w is a zero-mean white noise with identity intensity. Similarly to Remark
5.1, the perturbation A4 is assumed here to be described by

Ax=Be0C , Q] <7}

where By and C are specified matrices and v a positive scalar. It is also assumed that the
system is stable for any perturbation A4 of the given form. Hence, it makes sense to tackle
the problem of finding a meaningful (i.e. ”small”) upper bound of the asymptotic covariance
matrix X,(£22) of the system state.

Let 3 > 0 be fixed and assume for the moment that there exists a symmetric positive
semidefinite and stabilizing solution Ps(3) to the algebraic Riccati equation (in the unknown
P)

0=PA + AP+~ *PC'CP + B2By + 37 °B1B;
It is now proved that 52 P.(8) is a solution of the problem stated above. Recall that the
asymptotic state covariance X,({22) is the (unique) solution of the Lyapunov equation (in
the unknown X)
0= (A+ By0%C)X + X (A + B2Q:C) + BB}

This fact can be readily verified by exploiting arguments similar to those used in Remark
2.20 for the computation of Js.
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8"t B I/s c
— Ba A
B F(s,5)
W
(97
y)

Figure 5.6: The covariance bound problem

Now, let S(Q2,8) := B2Ps(8) — X.(Q2), and subtract the Lyapunov equation from the
Riccati one. Then, S(€22, 3) satisfies the following equation (in the unknown S)

0= (A + B202C)S + S(A+ B20C) +
+(BY I PC — yBB22)(By T PC’ — v8B2Qs) +
+8°Ba(I — v920200) By

Being (A + B22:C) stable, Lemma C.1 leads to the conclusion that S(Q2,8) > 0, i.e.
B2Pe(B) > Xa(22) , Vs, [|Q2[le <77

This inequality raises the interest in determining the value of 8 to which the ”minimum”
value of the bound of X,(£22) corresponds. Let B be the set of §’s for which the solution
P,() of the Riccati equation actually exists. Observe that the existence of a solution Ps{3)
entails that the system shown in fig. 5.6 is stable for any 0 := [Q} Q5] ||Q| < v~ *. This
is simply verified in view of Theorems 5.1, 2.13 and Remark 2.22 since ||[F(s,8)]lcc < 7,
with F(s,3) := C{sI — A)"'B(8), and B(B3) := [87'B:1 Ba|. Hence, V3 € B it results
1F(s,B)|lc <. In order to show that B # @, it is sufficient to observe that |F(s, 8)|/ec is
a monotonic nonincreasing function of 8 and

Jim ||E(s, B)lloe = 00, lim [[F(s, 8) oo = IC(s] — A) Bl <y

where the last inequality follows from the assumed stability of A + B2Q2C, ||22]] <y %

In conclusion, there exists 1 such that || F(s,51)]lec = v and B = ($1,00). The prob-
lem of finding a meaningfully optimal value of 8 (namely, a 3° to which a "small” bound

ﬂ°2 P,(3°) of X,(Q2) corresponds) can easily be faced since it can be proven that for 3 € B
d® o
W[B Py(B)] > 0

This entails that, for instance, trace[3? P;(3)] is a convex function of 3 so that the problem
inf t ’P,
Inf trace["P:(5))

actually admits a solution. m|
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Figure 5.8: The standard 3-block configuration

Uncertain design: robust stability Assume that one of the parametrizations of G
in eq. (5.11)-(5.15) has been adopted to account for the uncertain knowledge of the
plant. It is then obvious how important would be the choice of a controller K(s)
which guarantees closed loop stability for an assigned set of perturbations, i.e. for an
assigned value of the scalar variable a (recall the definition of Dy, eq. (5.10)). Along
these lines the control problem that spontaneously arises is a robust stability design
problem. Such a problem is easily reformulated in that of determining (if any) a
controller K(s) that, with reference to the scheme of fig. 5.3, guarantees stability and
is such that the RH., norm of the transfer function T'(z,w; s) is less than a suitable
scalar 3. The augmented plant P(s) depends on the choice of the particular set G, as
now shown for the sets in egs. (5.11) and (5.13). Dealing with the remaining cases
is simple at the light of these examples. Considering the set G given by eq. (5.11)
(additive perturbations) is equivalent to considering the control system of fig. 5.7.
Then, define z := ¥ and w := ¢ and observe that the control system of fig. 5.8 is
completely equivalent to that of fig. 5.7 if

PO=11 6o

In view of Theorem 5.1, K(s) guarantees stability for any A(s) € D, if and only if
T (2, w; 8)||oc < B:=a! in the system of fig. 5.3.

Analogously, consider the set G given by eq. (5.13) (multiplicative perturbations)
and observe that this corresponds to considering the scheme in fig. 5.9, which, in
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A(s)

K(s) Gn(s)

C

Figure 5.9: A control system with multiplicative perturbations

— Wa(s) A*(s) Ws(s) —

U/

— 4O i

Figure 5.10: A less primitive description of uncertainty

turn, is completely equivalent to that of fig. 5.8 if z := ¥, w := ¢ and

P =[9 &0

Hence, stability for any A(s) € D, is guaranteed if and only if, in the system of fig.
5.3, ||T(z,w;s)!|oo < f:= a~ L.

Remark 5.3 At the light of what has been now shown, a less primitive class of uncertainty
than the one defined in eq. (5.10) can readily be introduced by substituting the set D, with

Dy = {A(s) | A(s) = Ws(s)A™()Wa(s) , A*(s) € RHuo , |A™(8)loo < a}  (5.23)

where Wa(s) and W5(s) are assigned elements of RHs. Without any loss of generality, one
can assume ||[Ws(s)|lw = 1.

The two shaping functions Wu(s) and Ws(s) allows one to more finely qualify the pertur-
bations which affect the control loop, in terms of both their harmonic components (nature
of the functions) and their very structure (configuration of the matrices). With reference to
the set D}, given in eq. (5.23), it is possible to substitute A*(s) for A(s) in fig. 5.8, provided
that z := Wa(s)9 and w := Wy ' (s)p (recall fig. 5.7, 5.9, 5.10).

In conclusion, the controller K(s) is stabilizing for any A(s) € D% if and only if
IT(z,w;s)||looc < 8 := a ' in the system of fig. 5.3, where (recall fig. 5.7, 5.9) the aug-
mented plant P(s) is given, in the two considered cases, by

Pls) = [ Wits) VGV:Eji }

and
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z2

A*(s)

ol

Hj K(s) Gls) I

Figure 5.11: The control system with multiplicative perturbations

respectively. O

Remark 5.4 Assume that one of the (single performance) nominal design problem previ-
ously introduced has been performed and let K(s) be the resulting controller. In view of
Theorem 5.1 such a controller also guarantees the robust stability relatively to suitable sets G
(of the type of those defined in egs. (5.11)-(5.15)) and D}, (of the type of that defined in eq.
(5.23)). Actually, the controller that satisfies the constraint || T'(z, w; s)||e < 8 in fig. 5.3 also
guarantees the stability of the control system for any perturbation A*(s), ||A*(8)]lec < 871
acting between the signals z and w. Hence stability is ensured for any A(s) € D%, a < 871
with W5(s) = I and Wu(s) depending on the shaping function which is possibly introduced
in the formulation of the performance objective (recall eqs. (5.6)-(5.8)).

As an example, consider a controller that solves the nominal design problem in terms
of the input sensitivity performance. It also guarantees the robust stability with respect
to the perturbations in the set (5.11) with W4(s) = Ws(s). On the contrary, a controller
that solves the nominal design problem for the sensitivity {(complementary sensitivity) per-
formance guarantees the robust stability with respect to the perturbations in the set (5.14)
(resp. (5.13)) with Wy(s) = Wi(s) (resp. Wa(s) = Wa(s)). O

Remark 5.5 If the shaping function W4(s) is suitably scaled, one can assume o = 1 in eq.
(5.23) so that for given Wy(s) and Ws(s), ||[Ws(s)||coc = 1, the reference set is

D" = {A(s) | A(s) = Ws(s)A™(s)Wa(s) , A™(s) € RHeo , [[A™(8)lloo <1} (5.24)

O

Uncertain design: robust stability and nominal performances Consider the control
system depicted in fig. 5.1 and assume that a description of the uncertainty, based on
two sets G and D*, has been selected (recall egs. (5.11)-(5.15) and (5.24)). The design
problem is that of determining a controller K (s) which guarantees the robust stability
and the fulfillment, in nominal conditions, of preassigned performance requirements
(of the type of those specified in egs. (5.6)-(5.9)).

For example, if one is interested in the sensitivity performance (eq. (5.6)), being
the set G specified by eq. (5.13), the problem is stated by requiring the determination
of K(s) such that (see fig. 5.11) [|W1(s)Sn(s)|lcc < 1 and ||W4(s)T,(s)Ws(s)|loc < 1.
Recalling now what has been said about eq. (5.9), Lemma 2.21 and the fact that
IW5(s)|loo = 1, it is apparent that the design specifications are met with if

[V ] <
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Figure 5.12: The control system with additive perturbations

ie. if |[T(z,w;8)|[ec < 1 in the block-scheme of fig. 5.3, with

; Wi(s) Wi(s)Gn(s)
z = [ zl } , P(s):= 0 Wi(8)Gr(s)
2 I Gr(s)

On the contrary, if the set G is the one defined in eq. (5.11), the sensitivity performance
requirement is met with if (see fig. 5.12)

[Rftateed S

ie. if |T(z,w;s)]leo < 1 in the block-scheme of fig. 5.3, with

; Wi(s) Wi(s)Gn(s)
z= [ ! } , P(s):= 0 Wy(s)
= I Gal(s)

The statement of the design problems aimed at contemporarily achieving robust
stability and robust sensitivity performances requires the result presented in the fol-
lowing lemma.

Lemma 5.1 Let X(s) and Y(s) be assigned elements of RL. and ¥(s) a generic
element of RLu, such that |U(s)]|ee < 1. If

sgp{ (X Gl + 1Y (w)l| } <1 (5.25)

then
sup [X(Gw) <1 (5.26)
sup Y (G) I = ¥(juw) X (jw)] ' <1 (5.27)

Proof Eq. (5.26) derives directly from eq. (5.25). If X(s) = 0, eq. (5.27) follows
trivially from eq. (5.25). Hence, let X(s) # 0. Remark 2.13 and Lemmas 2.21 and
2.18 (point 3), entail that, for each w,

1Y ()T — W)X (o)) ™ < Y Gl - I — W (eo) X (o))
_vge)l
ol — U (ju) X ()

(5.28)
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But, for each w,

— [ X (Gl (5.29)

The above relations have been written by exploiting Lemma 2.22 (first inequality),
Lemma 2.21 (second inequality) and the assumption on the norm of ¥(jw) (last
inequality). From egs. (5.28) and (5.29) it follows that, for each w,

1Y (Gl
1= XGw)

Thanks to eq. (5.25), the right hand side of this inequality is less than one, so that
eq. (5.27) is proven. O

1Y (Gl = ¥(jw) X (jw)] 7 <

Uncertain design: robust sensitivity performances First consider the case where
the uncertainty is described by means of the sets G and D* defined in egs. (5.13) and
(5.24), respectively (notice also fig. 5.11). Then,

S(s) =1 = G(s)K(s)] "

=[l- (1+W5() *($)Wa(s))Gul(s)K (s)]
= [I = Gn(s)K(s) = W5(s)A™(s)Wa(s)Gr () K (s)] "
= {[I = Ws(s) A" ()Wa(s)Gu(s) K (s)(I — Gn(s)K (5)) '] -
I = Ga(s)K(s)]}
= Sn(8)[I — Ws()A™ (s)Wa(s)Tn(s)] ™"

Thus the robust sensitivity performance can be expressed as
IW1(5)Sn ()T — Ws(s) A (s)Wa(8)Tn(8)) oo < 1
VA*(s) € RHoo , ||A*(8)]loo < 1 (5.30)
whereas the robust stability requirement is stated as
[Wa(s)Tn(s)Ws(s)lloo < 1 (5.31)

It is easy to verify that egs. (5.30) and (5.31) are satisfied if

”[ %gi’ng ]Hoo : \/75 (5.32)

Actually, letting X(s) = Wa(s)Tn(s)W5(s) and Y(s) := Wi(s)Sn(s), eq. (5.32)

implies that (recall that ||W5(s)||co = 1)
Y(s) 1| 1
X(s) 2

o0
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Figure 5.13: Sensitivity and complementary sensitivity constraints

and this is equivalent to
sup { X G + 1Y Gl } < 5
This last relation implies (see fig. 5.13)
sup { [ X (Gw)l + 1Y (Gw)ll } <1

so that, thanks to Lemma 5.1, one can conclude about the correctness of what is
claimed above. Notice that the simultaneous request of both robust stability and
robust performance has lowered, not really surprisingly, the bound on the value of
the norm.

Let now consider the case where the uncertainty is described by means of the sets
G and D* defined in egs. (5.11) and (5.24), respectively (consider also fig. 5.12).
Then, in strict analogy to what has been done in the previous case,

S(s) = Su(s)[I — Ws(s)A*(5)Wa(s)Va(s)] ™
Thus, the robust sensitivity performance can be expressed in the following way
[W1(5)Sn(s)[T — W (s) A" (8)Wa(8) V()] oo < 1,
VA*(s) € RHoo , [[A™(8)]lo <1
whereas the robust stability requirement is formulated as
[Wa(s)Va(s)Ws(s)lloe <1

The previously presented arguments can be exploited again to conclude that the goal
of the design problem is achieved if the controller K(s) is such that

Wi(5)Sa(s) ][ V2
Wa(s)Va(s) i, 2
The foregoing discussion has shown that a number of meaningful control problems
can be treated in a unified fashion. As a matter of fact, it has been shown that they
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are all amenable to the problem of synthesizing a controller K(s) which stabilizes the
control system in fig. 5.3 and is such that the RH,, norm of the transfer function
T(z,w; s) from the input w to the output z is less than one. However, if such objective
is not achievable, it makes sense to look for a controller that, besides stabilizing the
control system, is such that ||T(z,w; s)|/cc is minimized.

The so resulting design problem is apparently well posed only if the augmented
plant P(s) is stabilizable: given this, its precise statement is presented in the re-
maining part of this section, whose development closely follows the one presented in
Section 4.1 within the RH, framework.

First of all, it is convenient to introduce the following time domain description of
the process under control (augmented plant), which will be frequently quoted in the
development of the present chapter.

z = C’la: + DHU) + D12’u (534)
y= Cox + Doyw + Doou (535)

The controller is constrained to be a finite dimensional, time invariant, linear system,
described by:

E=Ft+QGy (5.36)
u=H¢+ Ey (5.37)
Hence,
A | B, B
Pis)y=] Cy | D D K(s) = FlG
s) = 1 11 12 ) s) = HI|E
Cy | D21 Dy

Of course, the feedback connection of system (5.33)-(5.35) with system (5.36),(5.37)
must be well defined. For such a condition to be verified it is necessary that

det[] — EDg) # 0 (5.38)

so that the algebraic loop which is created by the insertion of the controller is au-
tomatically solvable. With reference to the block structure of fig. 5.3, the primary
scope is that of determining K(s) in such a way that the RH,, norm of the transfer
function T'(z,w; s) is less than a specified positive value ~.

Notice that T'(z, w; s) € RH, entails that such a function is stable: this objective
is obviously satisfied if the internal stability of the closed loop system is ensured, i.e.
if K(s) in (5.36),(5.37) internally stabilizes system (5.33)-(5.35). This is equivalent
to requiring the stability of the dynamic matrix of the closed-loop system, i.e.

Re(Xi(Ar)) <0, Vi (5.39)

Aw = A+ BQ(I - EDQQ)_lECQ BQ(I — EDQQ)_lH (5 40)
F= | GII + Dyo(I — EDgy) 'E|Co F +GDoy(I — EDy) 'H '
In view of the above considerations, it is useful to precisely formalize the concept of
admissible controller.

Definition 5.1 (Admissible controller in RH..) A controller K(s) is said to be ad-
missible in RHo for P(s) if conditions (5.38)-(5.40,) are verified. O
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Pri(s)

KFI(S)

Figure 5.14: The full information problem

In Sections 5.3, 5.5 the attention will be focused on three main problems, each
of them associated with a particular structure of the system P(s): they are referred
to as the full information problem, the output estimation problem and the partial
information problem. More in detail, the last problem will be tackled by exploiting
the solutions of the former ones, which, in turn, are strictly related each to the other
by structural relations: the complete picture put into sharp relief important duality
and separation properties.

The main result relevant to these problems will concern the solution of two precise
points, following the scheme formally presented in Problem 5.1 below: the existence of
a controller such that ||T'(2, w; 8)||e < 7 and the parametrization of such controllers.
Problem 5.1 refers to the feedback configuration of fig. 5.3 and to the set F,
which represents the family of all admissible controllers in RH, for P(s) such that
1Tz, w; )lloc < -

Problem 5.1 (Standard problem in RHy) Let a positive scalar v be fized.

a) Find a necessary and sufficient condition for the existence of a controller K(s)
which is admissible in RHo for P(s) and such that ||T{z, w; $)|ec < 7.

b) Find a family of controllers Fooyr C Fooy whose elements generate the whole
set of functions T'(z, w; s) which are generated by the elements of Foor.

Remark 5.6 An obvious necessary condition for the existence of a stabilizing controller
(and therefore for the existence of an admissible controller in RHy for P(s)) is the sta-
bilizability of the pair (A, B») and the detectability of the pair (A,C2). The statement of
Problem 5.1 makes sense only if both properties actually hold true. O

In the forthcoming sections the parametrization of the controllers in the family F,
for all the considered cases will be presented. Such parametrization will be the sub-
ject of specified remarks which follow the main theorems concerning the solution of
Problem 5.1. In other words, the issues relative to the family F.., and those relative
to Problem 5.1 are treated separately. Actually, a unified treatment would further
weight down the solution of Problem 5.1.

5.3 The full information problem

As in Section 4.2, the output signal y is constituted by the state variable z and the
disturbance vector w relevant to the controlled plant. Therefore the plant is described
by the equations
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Figure 5.15: The set F, of the controllers Kprr(s)

T = Az + Biw + Bou (5.41)
z=Ciz+ Diou (5.42)
y=[v1 va] (5.43)
n==c (5.44)
Yo = w (5.45)

while the transfer function from [w’ '}’ to [’ y')’ will be denoted with Pg;(s). A
complete answer to Problem 5.1 can be given under the following assumptions.

Assumption 5.1 The pair [(A — BoD/{,Ch), (I — D12D15)C4] is detectable and the
pair (A, By) is stabilizable.

Assumption 5.2 D{,Diy = 1.

The main result of this section makes reference to the block-diagram of fig. 5.14,
where Kpy(s) is any controller RH, admissible for Pri(s) (recall Definition 5.1). In
this diagram the transfer function from w to z is, as usual, denoted by T'(z, w; s).

Theorem 5.2 (Full information) Consider Problem 5.1 relative to system (5.41)-
(5.45). Then, under Assumptions 5.1, 5.2, it has the solution

a) The existence of a symmetric, positive semidefinite and stabilizing solution Ps
of the Riccati equation (in the unknown P)

0= PA.+ AP~ P(ByB, —~v72B,B})P + C} Ci. (5.46)
i.e., such that the matriz A.. given by
Age := A. — BoByPoy + v 2B B Py, (5.47)
is stable. In egs. (5.46),(5.47)
Ac:=A—ByD1,C1, Ci.:=(I — D12D},)Cy (5.48)

b) The set Fooyr of the controllers Kpi.(s) is defined by the diagram of fig. 5.15,
where
Fy = —B}Py — D},C4 (5.49)

and Q(s) := X(Aq, By, Cq, Dy) with A, stable and [|Q(s)|loo < 7.
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Figure 5.16: The modified full information problem

Proof First observe that the necessary condition for the problem at hand to make
sense (recall Remark 5.6) is satisfied. Indeed, being measurable the state of the
system, detectability of the pair (A,C5) trivially holds, while, on the other hand,
stabilizability of the pair (A, By) is guaranteed by Assumption 5.1.

Let now

ue = u+ D},Ciz (5.50)

which simply amounts to defining a control law as shown in fig. 5.16. The resulting
system Prj.(s) is therefore described by

& = A.x + Byw + Bau, (5.51)
z = Crex + Dioue (5.52)
y= [ vl (5.53)
Y1 =x (5.54)
Yo = w (5.55)

Being measurable the state, solving Problem 5.1 relative to system Pp.(s) is equiv-
alent to solving the same problem relative to system Pp;(s). As for point (b) in
particular, the solution relative to system Prj(s) follows from that relative to system
Ppic(s) by recalling eq. (5.50).

The proof is organized into three main parts. In part (i) it will be shown that
the observability of the pair (A., Cy.) can be assumed without any loss of generality.
Then, in part (i7), the necessity of point a) will be proved. Finally, part (i) is
devoted to proving sufficiency of point a) and point b).

Part (i) With reference to fig. 5.16, denote by T'(z,w;s) the transfer function
from w to z and suppose that a controller Kgr.(s) admissible in RH,, exists such
that ||T(z, w; 8)|leo < 7.

Now it will be shown that there is no loss of generality in assuming the pair
(Ac, Cy.) observable rather than simply detectable. To this aim, let this pair already
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Figure 5.17: The canonical decomposition of the modified problem

be in Kalman’s canonical observability form, namely

A, 0
ACZI:AC; Acg] , Cie=[ Cia 0]

with the pair (A1, Cle1) observable, and, accordingly, decompose the matrices By

and B; as
Bu Ba
B = , Ba=
! [ Bia ] 2 [ Bao
Finally, consider the state equations for Kpy.(s)
é =F¢+ Giz1 + Goxg + Gsw (55
Ue = Hf + Eiz1 + Baxs + Fsw (55

6)
7)

5)
7)

where x, and x5 are the components of the state vector z = [z} z5]’ of system Ppy.(

in Kalman’s canonical form. The overall system can then be viewed (see also fig. 5.1
as resulting from the feedback connection of the subsystem Pry;(s)

I = Aaz1 + Briw + Bojue (5.58)

z = Ciax1 + Dioue (5.59)

with the controller Kpr.1(s) which, in turn, is constituted by Krr.(s) (see egs.
(5.56),(5.57)) and the subsystem Prjea(s)

i‘g = Acgwl + Acg.’Eg + Blg’w + BQQUC

Indeed, by substituting eq. (5.57) for u., the controller Kpj.(s) for the system
Prre1(s) (which is defined by eqs. (5.58),(5.59)) turns out to be described by
é = F€+ Goxo + Giz1 + Gaw
#g = BogHE 4 (Acs + BaoEa)xa + (Aco + B By )1y
+(Bi2 + Baa E3)w
U, = HE + Eyxo + Eyzy + Esw
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Obviously, the controller Kpy.1(s) is admissible in RH, for system Pgj.1(s) since
Kpre(s) is such for Prrc(s).

Finally, observe that (the simple check is left to the reader) if P;, is the symmetric,
positive semidefinite and stabilizing solution of the Riccati equation (in the unknown
P)

0=PiAy + A P, — P/(ByB)y, — v 2B B P+ C1 . Cral (5.60)

i.e., such that A, := Ac ~ (Ba1 By — v 2B11B];) Pioo is stable, then

Piw O
Pw::[ 10 0]

is a symmetric and positive semidefinite solution of eq. (5.46). Moreover, such a solu-
tion is stabilizing since the eigenvalues of the matrix A.., defined by eqs. (5.47),(5.48),
are those of the matrix A.3 (which is stable by assumption, because the pair (A¢, Ci.)
is detectable) together with those of the matrix Acc:.

Having proved that the existence of a controller Kp;.(s) admissible in RH, for
system Pp;.(s) and such that [|T(z,w; s)(|le <~y implies the existence of a controller
Krie1(s) admissible in RHo, for system Prre(s) and such that ||T(z, w; $)|le < 7,
the necessity of the existence of the solution of the Riccati equation (5.46) is proved,
thanks to eq. (5.61), once the necessity of the existence of the solution of eq. (5.60)
has been ascertained. It is therefore possible to assume the pair (A, Cy.) to be
observable from the very beginning.

Part (ii) With reference to system Ppj.(s) (recall egs. (5.51),(5.55)), consider the
control law

(5.61)

ue = v — ByPax (5.62)

where P, is the symmetric, positive semidefinite and stabilizing solution of the Riccati
equation (in the unknown P)

0=PA,+ AP — PByB,P + C}.C. (5.63)

Indeed, such a solution exists (recall Lemma C.4) because the pair (A., Cj.) is ob-
servable and the pair (A., B2) is stabilizable. This latter claim derives from the
stabilizability assumption on the pair (A, By) which is equivalent to that of the pair
(A;, Ba), in view of the form of A.. Moreover, P, > 0 due to the observability
property.

From eqgs. (5.51),(5.52) and (5.62) it follows

zro = Pe(s)Biwr, + U(s)vg, (5.64)
where

Py(s) == X(A. — BaByP,I,C1. — D12 By P, 0)
U(s) := X(A. — BoBy Py, B, Cy. — D12 By Py, Di2)

It is now shown that the quadruple (A., Ba, Ci., D12) verifies the assumptions which
are required by Lemma C.5.

Indeed, from one side it is Dj,Dy2 = I because of Assumption 5.2, while, on the
other side, from the same assumption and eq. (5.48) it is C{.D12 = 0. Moreover, P,
is the symmetric, positive definite and stabilizing solution of eq. (5.63). Thus, from
Lemma C.5 it follows that system

F(s):=[U(s) U'(s) ] (5.65)
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is square and inner and it results

A.— ByByP; | By, —P;'C Dt
Bp, |0 0

BiP(s)F(s) = (5.66)

where
Ut (s) := £(A, — ByByPy, — Py 'C} D15, Cie — D12 By Py, D)

and Dg; is such that the matrix [D12 Di;)] is orthogonal, i.e., such that Diy D5 = T
and D%Q’ D15 = 0. Consider now the vector space

Q:= {q: { g; ]’Q1€RH2L7(12€RL2}

(which is a subspace of RLs) and the operator = : Q@ — RHs defined by {recall
Definition 2.33)

= [ Z; ] — I, B, P (s)F(s) [ g; } = (5.67)

Now it will be shown that the operator E* : RHy — Q defined by (again recall
Definition 2.33)

o U™ (s)
=L w U'LN(S)

] P.(s)Byw:=gq (5.68)

is, consistently with the adopted symbol, the adjoint of the operator =.
In fact, from < w,2q >=< Z*w,q >,Vq € Q,Yw € RHs, it follows that

<w,Zg>=<wILBPX(s)U(s)q1 >+ < w,ILB P (s)U™(s)g2 >
= <w,BIP(s)U(s)q > + < w, BLPZ (s)U(s)go >
= < U~(s)P.(s)Biw,q1 > + < UL~ (s)P.(8) Biw, go >
= < I,U™(8)P.(s)Biw,q1 > + < U+~ (s)P.(s) Biw, g2 >
< { I(I}sz(s) ]Pc(s)Blw, [ Z; ] >
=< Z'w,q >

In the above equations the two identities < Il o, ¢7 >=< a,q1 > and < w, 8 >=<
w,dgB >, which hold whenever q; € RH5 and w € RH,, have been exploited now
and then. Since F(s) is square and inner, then F~(s)F(s) = F(s)F~(s) = I and
therefore, recalling Definition 2.30,

Izl = [1F™(s)zLll2 (5.69)

Now suppose that a controller exists which is admissible in RH, for Pr.(s) and
such that ||T(z,w; $)||lec < - Therefore, with reference to the block-scheme of fig.
5.16, it is

2 2
sup |[|zl3 <~
wERH2
llwllz=1
from which it follows
inf 2 2
sup inf - lzllz <

wERHy UcE
lwlizg=1
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As a matter of fact, this inequality is fulfilled when wu., rather than being suitably
chosen in RHs, is the output of the controller Kpj.(s) (observe that such an output
belongs to RHj, because the controller is admissible and w € RHa).

By recalling eq. (5.62) and « € RH>, it then follows

s inf 242 5.70
S | b 2]l <~ (5.70)
wlig=1

Egs. (5.70),(5.69),(5.65) and (5.64) imply

v? > sup inf ||z||§

weRH, VERHy

llwllg=1
2
i | @R B+ U
> wselfla:I;Z vel%ilz [ UL~ (s)P.(s)Byw + U+~ (s)U(s)v )
fwiig=1
: U~(s)Pe(s)Biw + v 2
” wsel}zBQ velggfz [ UL~ (s)P.(s)Biw ) (6.71)
lwllp=1

The identities U™ (s)U(s) = I and U+~ (s)U(s) = 0 which are consequences of F(s)
being inner, have been taken into account in writing down eq. (5.71). Moreover, by
defining

£:=v+I,U~(s)P.(s)Brw

and noticing that £ € RH, and
1,U~(s) P(s)Byw + U™ () Pe(s) Byw = U™ (s) P.(s) Byw
from eqs. (5.71) and (5.68) it results

2 . 2
¥ > sup inf |z
weRHy EERHo I=]12
lwlp=1
2
> sup inf
weRHy EERH

{ U~ (s)P.(s)Biw + & ]
U+~ (s)Pe(s)Byw

lwlig=1 ?
€ 2
> wsel}& 561%%2 =" w + [ 0 ] , (5.72)
[lwllo=1
But
5 2
HE*m [ 0 ] = 2" w3 + €13 + 2 < € WU~ (s)Pe(s) Byw >
2
= = w]i? + (€3 (5.73)

since £ € RHo,, while II,U~(s)P.(s)Biw € RHs . Therefore, from eqs. (5.72) and
(5.73) it follows

2 . 2

> su inf |z

v wERII)-Iz €RH, ” ”2
lwllg=1

> su inf =*w||? 2
sup it (ISl + eI}
lwllg =1
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> |IE|?

The last equality sign follows from Theorem 2.9. Then, by recalling Remark 2.13, it
is

sup [|Zg|lz <7 (5.74)

9€Q

llglte=1
By exploiting Lemma G.2, applied to the operator = defined in eq. (5.67) and to
the system specified in eq. (5.66), from eq. (5.74) the conclusion can be drawn that

a symmetric, positive semidefinite and stabilizing solution W exists for the Riccati
equation in the unknown P (recall that Di;Diy = I — D13D},)

0= P(AC - BQBéPQ) + (AC - BQB&PQ)/P +
+y72PP; 10 ,C1. Py PP + PB By P; (5.75)
Lemma G.2 also implies that r,(W L) < v~2, where L, solves the Lyapunov equation
(in the unknown L)
0= L(A. — BeB{P,)' + (Ac — BoByP,)L +
+P;1C;.CrePyt + By By (5.76)
By recalling that P solves eq. (5.63), it is easy to verify that P; ! satisfies the
Lyapunov equation (5.76) so that it actually coincides with L., as such an equation
admits a unique solution, thanks to Lemma C.1 (all the eigenvalues of the matrix
A, — By B5 P, have negative real parts). Therefore, L. = Py and r,(WP; ') < 42,

that is (recall Lemma B.11)
VP —W >0 (5.77)

The Hamiltonian matrix Zy associated with the Riccati equation (5.75) is
g _ | Ac=BaByPy 4 Py O CrePy
W7 | -PBiB\Py —(Ac.— B2ByPy)

By letting

2 -1
_| T B
T— [ AR ]

and recalling that P, solves eq. (5.63), it is easy to verify that

AC 7~2BIB1 — BgBé :I

' Che Y (5.78)

Zoo i=TZyT ! = [ B

The matrix Z is the Hamiltonian matrix associated with the Riccati equation (5.46).
Now, remember that, being W a stabilizing solution of eq. (5.75), it is

we[4]- 4]

where V is a stable matrix. By taking into account eq. (5.78) it then follows

|- ][ 4]
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Figure 5.18: The set Fooyer of the controllers Kprer(s)

so that Im[T[I W]'] is the Z.-invariant subspace associated with the stable eigenval-
ues of such a matrix. Finally, being

ol L] I+ PTW
w —* P

from Lemma C.3 it can be concluded that
VPo(VI — Py W) ! = P Py(vP Py — W) TPy

is the (unique) symmetric and stabilizing solution Py, of the Riccati equation (5.46).
In view of eq. (5.77) such a solution is positive definite: hence Py, possesses all the
properties listed in the statement of the theorem and the necessity of point a) is
proved.

Part (iii) Here reference is made to fig. 5.16 and the symmetric, positive semidef-
inite and stabilizing solution P, of eq. (5.46) is supposed to exist. Denote with
Fooyer the set (described in fig. 5.18) of controllers Krjcr(s) for the system Ppr.(s).
By comparing fig. 5.14, 5.15 with fig. 5.16, 5.18 and recalling egs. (5.49),(5.50) it
is apparent that proving that the controllers K. (s) of the set Fur are admissi-
ble in RH, for Ppi(s) and (|T(z,w;$){le < ¥ is completely equivalent to proving
that the controllers Kpy..(s) of the set Fu e are admissible in RHy, for Ppr.(s)
and [|[T'(z,w; s)|lsc < . Moreover, the set Fooyer solves point (b) of Problem 5.1 for
system Pry.(s) if and only if the set Fu., solves point b) of the same problem for
system Pgj(s). As far as the sufficiency of point (a) and point b) are concerned, it is
therefore correct considering Problem 5.1 relative to the system Prr.(s) and the set
Fooyer- Consequently, it will first be shown that if a controller Kr/.-(s) belongs to
Foorer, then it is admissible in RH, for Pprc(s) and ||T(z, w; s)||0 < v (part (iii.1)).
Second, it will be proved that if a controller admissible in RH, for Pr;.(s) exists and
T (2, w; 5)||oc < 7, then there exists in the set Fooyer a controller which generates the
same transfer function T'(z,w; s) (part (iii.2)).

Part (iii.1) Consider the block-scheme of fig. 5.18. If the system Q(s) with
realization Q(s) := X(Aq, Bq, Cq, Dy) is stable and such that ||Q(s)||ec < 7, 1 =
w — ¥y 2B Pyx, q == u. + ByPsx, then (recall eqs. (5.51)-(5.55)) the resulting
system (that is the system of fig. 5.16 with Kp.(s) given by the block-scheme in fig.
5.18) with transfer function T'(z,w; s) is described by T'(z,w; s) = ¥(A,, B,,C,, D.),
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where
[ A.— ByByPo —y 2ByD B, Py, ByC,
= { ~y"2B,B,P,, A, (579)
B, = [ 1 +B2 } (5.80)
C.=] Clc D12B2 — 7 2D13DyB{ Py, D12Cy | (5.81)
D, =D (5.82)

The system (5.79)—(5.82) coincides with the one referred to in Lemma E.3 and illus-
trated in fig. E.5. The conditions under which such a lemma can be applied are
verified, so that it can be deduced that matrix A, is stable and ||T'(z, w; s)|lco < -

Part(iii.2) Suppose that there exists a controller Kp.(s) which is admissible in
RH, for Pr;.(s) and such that ||T(z, w; s)]lec < . Let this controller be described
by the equations

£ =LE+ Myw+ Maz (5.83)
Now define the variable q := u, + B} Poox and let w := r++~ 2B} P,ox. By putting

together egs. (5.83),(5.84) with eqs. (5.51)-(5.55) it is straightforward to verify that
a possible realization of the transfer function Q(s) from r to g is given by

9 = LY + (My +~ M B} Poo)o + Myr (5.85)
& = BaNVI + (Ac + B202 + v 2By B P +

+772By0, B{ Pyy)o + (By + BoOy)r (5.86)
q= N9+ (0s+ ByPy +7 201B;Py,)o + Oyr (5.87)

The controller Kpgy.-(s) described by these equations and by

= —BiPxx+q (5.88)

ri=w—v 2B} Pz (5.89)

is now shown to be an element of the set Foycr. The structure of such a controller
apparently coincides with the one in fig. 5.18. Moreover, from eqgs. (5.51)-(5.55),

(5.85)-(5.89), it follows that, letting € := o —z, the system resulting from the feedback
connection of Pry.(s) with Kgj.-(s) is described by the equations

T = Az + Biw + Bou,
=LY+ (My +~72M, B, P.,)e + Myx + Myw
é = (Ac — BaByPy +7 2B B Py)e
= N9 + Ozz + O1w + (O2 + ByPo, + 77201 B P
z = Ciex + Dipuc

so that a comparison of these last equations with those relevant to the feedback
connection of Pry.(s) with Kp.(s) (egs. (5.51)-(5.55) and (5.83),(5.84)) leads to
the following conclusions: First, the transfer functions from w to z are the same
in both cases; second, the stability of the system which adopts Krj.-(s) is entailed
by the stability of the system which utilizes Kry.(s), since matrix A, — Bo B, Py, +
v72B, B} Py, is stable.
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Figure 5.19: The RH,, performances of the controllers LQ) and H

It is only left to be proved that any controller possessing the structure shown in
fig. 5.18, admissible in RH, for Pp;.(s) and such that ||T(z, w; s)|loc < v belongs to
the set Fooyer or, in other words, that Q(s) := (Aq, By, Cy, Dy) is stable (A, is stable)
and {|Q(s)||loc < . These conclusions are immediately drawn by exploiting Lemma
E.3. O

Example 5.1 Consider system (5.41)-(5.45) with

o[ ] me[t] 2]
@ ]-[31] oe-t]

A stabilizing controller is sought which makes small the effects of the disturbance w over the
first component z; of the output z. This goal can be attained by looking for the controller
which is admissible in RH,, for the given system and minimizes ||T(z, w; s)||co. Notice that,
in so doing, some kind of uncertainty in the knowledge of the system dynamics can be taken
into account as well. It is in fact apparent (recall fig. 5.8), that perturbations of the matrix
A amounting to Aax = B1QC)1 are effectively counteracted (under the stability point of
view) by such a controller.

Eq. (5.46) admits a symmetric, positive semidefinite and stabilizing solution for v >
0.71 := ~ar, while this does not happen when v < 0.705 := 7, so that the minimal value
attainable by ||T(z,w; s)||s belongs to the interval (ym, va].

For v = ~yar it results Foe = —[0 0.89]. The performances of the resulting controller,
labeled with H, are compared with those, labeled with L@, relative to a controller designed
within the RH> framework with Q = 0 (F = —[0 0.41]}. The quantities ||T(21, w; 8)|lo and
|T(z1,w; s}||2 are plotted against the damping factor £ := (1 — ©)/2 in fig. 5.19 and 5.20
respectively. It is fairly apparent the more satisfactory behavior of the H controller. O

Remark 5.7 The proof of Theorem 5.2 presents a result which deserves some interest per
se. More precisely, the existence of a symmetric, positive semidefinite and stabilizing solution
of eq. (5.46), that is such that the matrix

Ace = Ac — BoBbPoy + v 2 B1 B} P
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(1T (21, w; s)|i2

0.2

Figure 5.20: The RHs performances of the controllers LQ and H

is stable, also entails the stability of the matrix
Acoo 1= Ac — BgBéPoo = A+ By F

which is the dynamic matrix of the control system resulting from the choice Q(s) = 0 in
the controller scheme of fig. 5.15. The correctness of this result is implicitly guaranteed by
the proof of Theorem 5.2 but can be verified with a different argument too. The matrix
P, = P, > 0, being the stabilizing solution of eq. (5.46), is also the solution of the
Lyapunov equation (in the unknown P)

where

W := P (B2Bj + v °B1B})Px + C1,Cic
If the pair (Acoo, W) is detectable, then stability of matrix Aceo follows from point (i) of
Lemma C.1. Detectability is readily proved by contradiction. Indeed, if Acoox = Az, Re(A) >
0,Wz =0,z # 0, then B} Pooz = 0 and, consequently, Accx = Acoo® = Az, so that A would
be an eigenvalue, with nonnegative real part, of A.., which is stable by assumption. a

The assumption that the pair [(A — BaD{5C1), (I — D12 D'5)C1] is detectable is not
exploited in the proof of part (b) and of sufficiency of part (a) of Theorem 5.2. More-
over, the existence of the stabilizing solution of eq. (5.46) implies, thanks to Remark
5.7, the stabilizability of the pair (A4, By). It is therefore possible to state the follow-
ing corollary which can be viewed as a useful side-product of the result presented in
Theorem 5.2.

Corollary 5.1 Suppose that Assumption 5.2 holds. If, for a given positive scalar v,
there exists the symmetric, positive semidefinite and stabilizing solution of the Riccati
equation (5.46), then there exists a controller Kp(s) which is admissible in RHy, for
Pri(s) and such that ||T(z,w; s)||ec < . Moreover, the set of controllers defined by
point (b) in the statement of Theorem 5.2 constitutes the set Fooryr.

Remark 5.8 It is worth noticing that when v — oo the RH controller of fig. 5.15 (with
Q(s) = 0) tends to the RH, controller of fig. 4.3 (with Q(s) =0). O
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Remark 5.9 (Parametrization of the set F..) A parametrization of the set Fooy
will be presented now. To this aim, consider the system Pp(s) which results from system
(5.41)-(5.45) after the control law

U= Feox +v (5.90)

has been implemented, where F, is defined by eq. (5.49), namely the system

_ | Prui(s) Praza(s)
PF(S) - [ P§21(8) PF22(8) ]
Acoo ‘ B, B
Cleo 0 D12

] 6]

Acoo i= A+ B3Fs , Cioo i= Cic — D12 B Pos

having taken into account eq. (5.48). The set of controllers Kr(s) which stabilize Pr(s)
obviously coincides with the set of controllers which stabilize Pr22(s). By mimicking the
discussion in Remark 4.3 (recall that, thanks to Remark 5.7, matrix A is stable) and
adopting the same kind of notation, it follows

[1+777Q(s) Bi P ®(s)Bz] ' Q(s)[I = v > B} Puo®(s) B1] = —O(s)Pra1 (5)

where ®(s) := (s] — Acoo) ™', 0(s) € RHoo, Q(s) € RHoo. Letting

where

A(s) := T+~ 2Q(s) By P ®(5) B2
the last equation can be rewritten as

AY($)Q(s) [~ 2B Pwo I)Prai(s) = —O(s)Prai(s)

Proy(s) = l: (s) By :|

since

I

Assuming, for the moment being, that Afl(s) € RH, it is easy to verify that a particular
solution in RH of such an equation is

O(s) = A7 ()Q(s)Y *Bi P — 1]
The general solution in RH is therefore

8q(s) = O(s) + O(s)
where ©(s) is any solution in RH, of the homogeneous equation
O(s)Pr21(s) =0

Letting O(s) := [A7 (s)O1(s) ©2(s)], this last equation implies that ©.(s) is given by
O4(s) = —~A7(5)01(s)®(s)B1 and thus

O(s) = A H(s)01(s)[I — ®(s)By]

Notice that ©(s) is an element of RH,, if and only if ©,(s) is such, since A~!(s) has been
assumed to belong to RH., and ®(s) € RHs being Ao, stable. Therefore, the set of
functions ©¢(s) giving rise to controllers Kr(s) which are admissible in RHo, for Pp(s) and
such that ||7'(z,w; )]l < 7 is defined by

Bq(s) = A ' (s)A(s)
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Figure 5.21: The generic admissible controller for Prr(s)

where
A(s):=[ ©1(s) +77°Q(s)B1Poc  —[Q(5) + ©1(5)2(5)B1] |
©1(s) € RHoo, Q(5) € RHoo, [[Q(8)]loc <

Thus, the transfer function (from [z’ w']’ to v) of a generic controller which is admissible in
RH for Pr(s) is (again, recall what has been presented in Remark 4.3)

Kr(s) = —[I - ©q(s)Praa(s)] 'Oq(s)
= —[I — A7} (s)A(5)Praa(s)] "' AT (5)A(s)
—[A(s) = A(s) Praz(s)] "' A(s)
(I —©1(s)®(s)B2] " -
[ =77?Q(5)BiPos — ©1(s)  Q(s) + ©1(s)®(s)B1 |

By exploiting this equation, the generic controller which is admissible in RHo, for Pri(s)
can be represented by the block-scheme depicted in fig. 5.21. Such a scheme shows that

vro = ©01(s)®(s)[~® *(s)xr + Bovro + Biwr] +
+Q(s)(wr — 7~ * Bl Poor)
= —01(s)P(s)z(0) + Q(s)(wr — ¥ 2B Pyzxy)

having taken into consideration egs. (5.41) and (5.90). Therefore, the effect of the parameter
©1(s) (which is responsible for the difference between the elements of the set Fooy and those
of the set Fooyr) on the control variable u;, amounts to a term which depends on the initial
conditions of system (5.41)-(5.45), only.

It remains to verify that A™'(s) € RHy. First, recall that P, being the stabilizing
solution of eq. (5.46), is the stabilizing solution of the Riccati equation (in the unknown P)

0= PAeoo + Ao P+ PByBLP + C.Cic + v PB1 B P

as well. In writing down this equation reference has been made to egs. (5.48) and (5.49).
This implies, thanks to Theorem 2.13, that system

ACO()

is such that || T(s)||cc < 1, which, in turn, entails (recall Lemma 2.23, Definition 2.23 and
Remark 2.16) that
Iy Bl Poo®(s) Blloo < 1
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Figure 5.22: Proving stability of A=1(s)
Being {|Q(8)||cc < 7, the system shown in fig. 5.22 is internally stable thanks to Theorem
5.1. The transfer function from u to e of such a system is precisely A7 (s). O
Remark 5.10 (Linear quadratic!differential game) The control problem whose so-
lution has been presented in the preceding theorem may be viewed as a linear quadratic

determanistic differential game (LQDG) with measurable state.

LQDG Problem Counsider the n-th order system with initial state 2(0) = xo

& = Az + Biw + Bt (5.91)
together with the cost functional
Jii= B [ 2'() @'(t) |L =) | _ v (t) Riw(t) ¢ dt (5.92)
A a(t) '

where
| Q@ S
L.—[S, Ry >0, Ry >0, R >0
Notice that the sign assumptions on L and Rp imply that
Q:=Q-SR;'S' >0 (5.93)

since Q = Z'LZ with Z’' = [I — SR; . Let C11 € R™ ™ be a factorization of Q, so that

C1,C1n =0 (5.94)
and define
Ci1 0

o

1
u:=R}u, z:=Ciz+ Dpu, w:=R{w (5.96)

_1 _ 1
BQ = BQR2 2 s Bl = BIR1 2 (597)
In view of egs. (5.93), (5.97), egs. (5.91)-(5.92) become

z = Az + Byw + Bau (5.98)

Ji :/ [2'(1)z(t) — v*w' ()w(t))dt (5.99)

The solution of the differential game consists in finding the controller which stabilizes
the resulting system and generates the control u € RH; so as to minimize the functional J;
corresponding to the worst input (disturbance) w € RHo, that is corresponding to the input
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w which mazimizes the same functional. Thus, the differential game is defined by eq. (5.98)
and

inf  sup J 5.100
UGRHZweRII)-Ig ! ( )

Notice that lim_.o z(t) = 0 since the resulting system is stable and w € RH,.
Assume that there exists the stabilizing solution P., = P5, > 0 of the Riccati equation
(5.46). Then, in view of eqgs. (5.46),(5.48) and (5.98), it follows

d., _
7 [ (D Pooze(t)] = —[ICrz(@®)* =¥ 72| Bl Pz ()| +
+[[(D12C1 + By Poo)z()|1* +
+2 < w(t), Bi Poo(t) > +
+2 < u(t), By Poox(t) > (5.101)

for generic inputs w and w. In view of the preceding definitions, eq. (5.101) may also be
written as

%[w’(t)Pomt)] =~z + VPllw@®)|? +
—7*lw(t) — ¥ 2Bl Pwz(t)|* +
Hllut) — Fooz(t)|?

By integrating both sides of this equation from 0 to co and recalling that z(occ) = 0, it
follows
Ji = = lw — 7" B{ Pootz3 + [Ju = Foozl|3 + 2 Pooto

so that, consistently with eq. (5.100), the optimal control is given by
u=Fezr

while the worst disturbance is
w= 7_2B1 Pox
Od

Remark 5.11 (Robust stabilizability) Consider a system characterized by a dynamic
matrix which is not exactly known. More precisely, let

T = (A+ AA):E+ Bou
where the uncertainty introduced with the matrix A 4 is defined by the equation
AA = B1 QC1

Matrices By and C) are thought as known, while an upper bound of the value of the norm
is the only information available for matrix {2, that is

o <~

with v a given positive scalar. Matrices By, C1,€) are constant. An algebraic control law
u = Kz is sought such that the resulting control system is stable for each , ||| < y71.
Apparently, the conditions under which this problem admits a solution constitute sufficient
conditions for the robust stabilizability of the given system as well.

Suppose that there exists the symmetric, positive semidefinite and stabilizing solution
P, of the Riccati equation (in the unknown P)

0=PA+ AP+ P 2BB] — B:B,)P + Ci{Ch
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Figure 5.23: The block-scheme for robust stabilizability
Then, K = —BjP,, solves the above stabilization problem. This claim is easily proved.

First, consider the system P.(s) defined by

T = Az + Biw + Bou

LT

and depicted in fig. 5.23. Apparently, system P,(s) is obtained from the original one,
with © = 0, by adding the performance output z and the disturbance input w. Therefore,
Corollary 5.1 can be applied to this system when @ = 0, leading to the conclusion that the
control law © = — B} Py, corresponding to the choice Q(s) = 0, is stabilizing and such that
IT(z,w; 8)||oc < <. From this last inequality it follows

v > Tz wis)llze = sup l2|I3

wERH,
llwllg=1

= sup. {2113 + l|22li3}

llwlig=1

Il

IV

sup |21 2
wERHy
llwig=1

1T (21,03 8) |5

v

In view of Theorem 5.1, the system in fig. 5.23 is stable, V @, [|Q| <~~ . O
Example 5.2 Consider the system

T = (A+AA)$+B1?,U1 + Bou
z1=Ciz+u

where
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Figure 5.24: The performances of the controllers R and H
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Figure 5.25: The disturbance feedforward problem

For Q = 0 the Riccati equation (5.46) relevant to this system admits the positive semidefinite
and stabilizing solution whenever v > 1.62, while such a solution does not exist if v < 1.61.
Taken v = 1.62, it results Foo = —[367.68 227.58]. The corresponding controller will be
denoted with the label H.
By proceeding along the same lines as in Remark 5.11, an output z; is defined as

22::[0 1]3:

and an input ws is introduced, acting on the system through the matrix [1 1] .
Corresponding to Q@ = 0, the eq. (5.46) relevant to the new system characterized by
the disturbance w := [wi wo] and the performance output z := [z1 22|, admits a positive
semidefinite and stabilizing solution for v > 2.46, while such a solution does not exist if
v < 2.45. Taken v = 2.46 it results Foor = —~[333.04 286.98]. The controller adopting such
a Foor will be denoted with the label R. The graphs of ||T'(z1,w1; )]0 corresponding to
the adoption of the two controllers R and H are shown, as functions of , in fig. 5.24. The
controller R apparently behaves better for high values of Q. a

Remark 5.12 (Disturbance feedforward) A problem similar to the one discussed in
Remark 4.4 can be dealt with in the RHo, context as well. Consider the system depicted in
fig. 5.25 where Ppr(s) is described by

T = Az 4+ Biw + Bou

z=Ciz + Diou

y=Chr+w
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Figure 5.26: The set Fo, of the controllers Kpp,(s)

while Kpr(s) is any controller which is admissible in RHo for Ppr(s).

Assume that the pair (A, Bs) is stabilizable, the pair [(A — BoD1,C1), (I — D12D1,)C4]
is detectable, the matrix A — B1C5 is stable and D}, D12 = 1.

By proceeding as done in the RH; setting (in particular, observe that Lemma E.2 can
be applied in the present RHo, context as well) it is possible to directly give the solution of
Problem 5.1 relative to system Ppr(s)

a) Existence of the symmetric, positive semidefinite and stabilizing solution P., of the
Riccati equation (5.46);

b) The set Fooyr of the controllers Kprr(s) is defined by the block-scheme of fig. 5.26

where
A—B1Cy + BoFo l By B

Neo(s) = Foo 0 I
—Ca—7y?BiPs | I 0
Q(s) 1= 5(Aq, By, Cyq, Dy), with Aq stable, [|Q(s)|ec <y and Fis given by eq. (5.49).

Finally, notice that Fooyr = Fooy. In fact, what has been said concerning the problem
in the RH, setting can be applied with no modifications in the present framework, coming
up to the same conclusions. ]

Example 5.3 Consider the system

T = (A+AA)ZE+Blw+Bzu
z = Chiz + Disu
y = Cox+w

where

A:[_(l) _” . Aa=LOM, Blng:L:{

—_

|

The only uncertain system parameter is {2: its nominal value is 0 and corresponds to a
damping factor £ := (1 — Q)/2 = 0.5. A stabilizing controller is sought which makes the
RHy norm of the transfer function from w to z small. If the perturbation 2 is ignored
(2 = 0), it is possible to design a controller, denoted by the label IC and with input y
and output u, which achieves a perfect indirect compensation of the disturbance, that is a
controller such that T'(z,w; $) = 0. More in detail, the transfer function of this controller is

Ci=C;=[1 0], M=[0 1], Dip=1

1

Kiel) = ~5 33
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Figure 5.27: The performances of the controllers IC' and R

On the contrary, by exploiting what has been presented in Remark 5.11, a controller (denoted
with the label R) can be designed which can account for Q not being 0 in a more effective
way. Notice that being L = B it is useless introducing a further disturbance input, while
being M # C; it is mandatory adding a new performance variable 2z, = Mx to the formerly
existing one z. Thus, the resulting problem has the same structure as those considered in
Remark 5.12.

The Riccati equation relevant to the so restated problem does not admit the positive
semidefinite and stabilizing solution when ~ < 0.7, while such a solution exists if v > 0.71.
Associated with this last value of vy it results Fow = —[1 0.89].

In fig. 5.27 the plots of ||T'(z, w; s)||e corresponding to the above controllers are shown.
The controller R apparently behaves better for small values of the actual damping factor;
moreover, its performance is somehow less sensitive (in terms of the RH, norm) to the
variations of such a parameter. On the contrary, the controller IC is to be preferred, as it
should be expected, whenever the parameter (2 is rather precisely known. O

Remark 5.13 The content of Remark 4.6 concerning the rank of D12 and the condition
D13D12 = I applies to the RH,, setting with no changes. It is also apparent that the above
given expressions get much simpler under the orthogonality assumption Di,C; = 0 a

Remark 5.14 Under Assumption 5.2, the detectability of the pair [(A — B2D1,Ch), (I —
D12 D},)C1] (Assumption 5.1) is equivalent to asking the subsystem of Pr(s) corresponding
to the transfer function Prji2(s) between the input u and the output 2 (that is, system
¥ (A, Bz, C1, D12) not to have zeros in Re(s) > 0. This claim can easily be checked by means
of the same arguments exploited in Remark 4.8. |

5.4 The output estimation problem
In this section the problem of observing linear combinations of the state variables is
dealt with in the RH, context. The system considered here is described by the state

equations

& = Az + Byw + Bou (5102)
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Figure 5.28: The output estimation problem

z=Ciz+u (5.103)

Yy = CQ.T + D21'w (5104)
As it has been done in Section 4.3, Pog(s) denotes the transfer function of this system,
while T'(z, w; s) is the transfer function from w to z in the block-scheme of fig. 5.28.
The structure of system Ppg(s) clearly indicates that solving Problem 5.1 for such a
system can be really viewed as finding a "good” estimate (in the RH, sense) of the
linear combination —Cix of the state variables. Indeed, should the controller Ko g(s)
be capable of zeroing T'(z,w;s) so that z;o = 0, then, apparently, upy = —Cizro
would represent the best possible estimate of that linear combination.

The statement of the result below requires the following assumptions.

Assumption 5.3 The pair [(A — B1D4,Cs), B1(I — D), D21)] is stabilizable and the
pair (A, Cy) is detectable.

Assumption 5.4 Dy D}, = 1.
Assumption 5.5 A — By(C; is stable.

It is now possible to prove the next theorem which makes reference to fig. 5.28.

Theorem 5.3 {Output estimation) Consider Problem 5.1 relative to system (5.102)-
(5.104). Then, under Assumptions 5.3 - 5.5, it has the solution

a) The existence of the symmetric, positive semidefinite and stabilizing solution
I of the Riccati equation (in the unknown I1)

0 = A’ + Al — I(C5C, — v ~2CC)IL + B¢ By (5.105)
i.e., such that the matriz A, given by
Age = Ap —o(C3Cy — 7 2C1Ch) (5.106)
is stable. In eqs. (5.105), (5.106)
Af:= A - B D} Cy, By := Bi(I - Dj Do) (5.107)

b) The set Foorr of the controllers Kop,(s) is defined by the diagram of fig. 5.29,
where
Af — H000502 — BgCl l Lo —B2 — ’y_QHOOC{
MOO(S) = Cl 0 I
Cs I 0
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Figure 5.29: The set Foor of the controllers Kogr(s)

Q(s) := X(Aq, By, Cq, Dg) with Aq stable and ||Q(s)||oc < 7y, having defined

Lo = —T1oCly — B\ D}, (5.108)

Proof First observe that Assumption 5.5 implies that the pair (A4, By} is stabilizable.
This fact, together with the assumed detectability of the pair (4,C3), makes the
necessary condition of Remark 5.6 satisfied.

Now consider the system Pog(s) := P,g(s). Then, from egs. (5.102)-(5.104) it
follows that such a system is given by

£ = FE+GiC + Gan

w=H&+ En

o =Hy{+(¢
with

F:=A", E:=Dj (5.109)
and, for i = 1,2,

G;:=C}, H;:=B, (5.110)

System Py £(8) possesses the structure of system Ppp(s) which has been introduced
in Remark 5.12. Therefore, Problem 5.1 relative to system Pog(s) is solved in the
very same way, since the requirements there are satisfied by Assumptions 5.3 - 5.5.
Thanks to Lemma E.1 the results concerning system FPpg follow by transposition of
those concerning system POE(s), provided that egs. (5.109) and (5.110) are taken
into account. a

Example 5.4 This example is aimed at pointing out an important difference existing be-
tween the solution of the estimation problem carried out in the RH: context and that
obtained in the RHo one. Thus, consider system (5.102)-(5.104) with

A:[g (1)],31:1, Bzz[(l)],Cb:[l 0]

D21=[01],C1=[1 a],a>0

Assumptions 5.3 - 5.5 (and therefore also Assumptions 4.3 - 4.5) are satisfied for each value
of a. The RH> problem calls for the determination of the matrix II; which is the stabilizing
solution of the Riccati equation (4.64). Such a matrix is independent of C1, so that also the
matrix Lg is such (recall Theorem 4.2). As a consequence of this fact and the structure of
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system M2(s), the transfer function from the input w to the state estimation error € := 2+zm
does not depend on C; (recall that z.,, the state of system Maz(s), is the opposite of the
estimate of the state of system Pog(s), since the relevant linear combination of the state
variables is —Ciz). Indeed, for any Q(s), it results

T((z + &), w; s) = [s] — (A + L2C2)]" (L2D21 + Bh)

This property in no more verified in the RH, context. In fact, matrix Il., which is the sta-
bilizing solution of the Riccati equation (5.105), and, consequently, matrix Lo too, depends
on C; (see Theorem 5.3). This fact, together with the structure of system Mo (s), implies
that the transfer function from the input w to the state estimation error € := x 4 p,, where
Zm s the state variable of system M. (s), is given by

T((z 4 zm), w; 8) = (8] — (A+ LooC2)] *(Loc D21 + Bi)

when Q(s) = 0. This function, though formally identical to that resulting in the RHs-
context, depends on C1, that is from the actual linear combination of the state of Pog(s)
which one is willing to estimate.

With reference to the considered system, for instance, if « is set equal to 10 or equal to
100, one obtains, corresponding to v = 130, L = —[1.00 1.00] and L. = —[6.81 8.17,
respectively. O

Remark 5.15 (Parametrization of the set F.,) Observe that Fooy = Fooyr. In fact,
as in the proof of Theorem 5.3, the RHo admissible controllers for Pog(s) can be obtained
by transposition of those which are RHo, admissible for Pog(s), this last system possessing
the structure of system Ppr(s) (see Remark 5.12). Therefore, being Fooy = Foonyr for system
Ppr(s), the same conclusion must hold for system Pog(s). O

Remark 5.16 (Optimal state filtering) The control problem associated with system
Por(s) can be viewed as an (optimal) state filtering problem in RH for the stable system
described by

i'=A$+Blw1
y = Cox 4+ wy

The signals w; and wa belong to the set
W = {wqs | wa € RL3[0,00) , ||wall2z £ a}

A filter is sought for a given linear combination Sz of the state variables such that, denoting
with u the filter output, it results

J= min sup [lu— Szl2
uCRL3[0,00) w;ew
woEW

Define w := [w] w5]’, B1 := [B1 0], D21 := [0 I], C1 := —8, 2z := C1x +u. Then the problem
can conveniently be stated by considering the system described by the equations

= Az + Biw

z=Ciz+u

Yy = Cox 4+ Doyw

and seeking for the controller-filter such that the RHy, norm of the transfer function from
w to z is less than a given positive scalar v. Indeed, observing that |Jwllz < av/2 := 3, it

results
- _ Izll2
sup |[[zll2 < sup [lzllz =8 sup
wy EW wE€RHy wERHo HUJHQ
wp €W lwlg<B w0
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Figure 5.30: The RH> norm of the four filters

so that J < B||T(z,w; 8)||co. Thus, the smaller the value of v, the tighter would be the upper
bound of the maximum attainable value of J. What has previously been shown in Theorem
5.3 can now be applied to the so recast problem, since the underlying system possesses the
very same structure of system Pog(s) and Assumptions 5.3 - 5.5 are verified (recall the
definition of Ds;, the stability of matrix A and notice that B1Dj, = 0 and By = 0). O

Example 5.5 Consider the system

i':Al‘+Blw1
y = Cox + wa

where w; and w2 are noises the features of which are to be specified later on, while

ao[2 ] am[2] e o

The parameter 2 accounts for the uncertain knowledge of the system damping factor &.
Indeed, the characteristic polynomial of A is 1(s) = s2 + s(1 — Q) + 1 = 5% + 2wns + w2,
with damping factor £ = (1 — Q)/2 and natural frequency w, = 1.

The performances of four different filters for the whole state vector are now compared.
Three of them, denoted with K3, K2 and K3, respectively, are standard Kalman’s filters
which have been designed under the assumption that w; and ws are uncorrelated, zero-
mean, Gaussian white noises. In the considered cases, their intensity are W, = Wy =1 for
the K, filter, W1 = 0.5, Wa = 1 for the K filter, W7 = 1, W, = 0.5 for the K3 filter.

On the contrary, the fourth filter, denoted with the label H, is designed accordingly
to what has been presented in Remark 5.16. The adopted value for the scalar v is 1.001
(notice that for v < 1 the positive semidefinite and stabilizing solution of the relevant Riccati
equation does not exist).

The design of the four filters is carried out in nominal conditions (2 = 0 & £ = .5),
while their performances are evaluated by connecting them to the system perturbed in cor-
respondence with various values of £.

Two performance criteria have been adopted. Both of them make reference to the transfer
function T'(z,w; s), where w := [w1 wo]" and z is the state estimation error. The criteria are
the RH; and RHo, norms of T(z,w; s), respectively: their plots against £ are shown in fig.
5.30 and 5.31.
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Figure 5.31: The RH, norm of the four filters

The two graphs show that the filter designed within the RH. framework is somehow
less sensitive with respect to £ and entails lower values of the norm for small values of the
damping factor, namely close to instability. a

Remark 5.17 Analogously to what has been done in Remark 5.7 with reference to the
Riccati equation (5.46), the existence of the symmetric, positive semidefinite and stabilizing
solution of eq. (5.105), i. e. , such that

Afe = Ay — oo (C5C2 — v 2C1Ch)
is stable, also implies the stability of
Afoo = Af — HwCéCQ =A4+ L .Cs

which is the dynamic matrix of the RH, state observer discussed in Remark 5.16 when
Q(s) = 0. The proof of this claim is identical to the one presented in Remark 5.7. O

It is easy to verify that the proof of point (b) and of the sufficiency part of point (a)
of Theorem 5.3 does not exploit the assumption that the pair [(A— By D}, Cs), By (I —
D}, D91)] is stabilizable. Moreover, the existence of the stabilizing solution of eq.
(5.105) implies, thanks to Remark 5.17, the detectability of the pair (A, Cy). There-
fore, it is possible to state the following corollary which has to be viewed as a useful
side-product of Theorem 5.3.

Corollary 5.2 Suppose that Assumptions 5.4 and 5.5 hold. If, for a given positive
scalar vy, there exists the symmetric, positive semidefinite and stabilizing solution of
the Riccati equation (5.105), then there exists a controller Kog(s) which is admissible
in RHo for Pog(s) and such that | T(z, w; 8)|| e < . Moreover, the set of controllers
defined by point (b) in the statement of Theorem 5.3 constitutes the set Fooryr.

Remark 5.18 It is worth noticing that, also in the output estimation case, when v — co
the RHo, controller of fig. 5.29 (with Q(s) = 0) tends to the RH> controller of fig. 4.13
(with Q(s) = 0). |
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Remark 5.19 (Robust parametric filtering) An interesting role is played by the Ric-
cati equation (5.105) also when the problem at hand is filtering the state of a system affected
by parametric uncertainty and contemporarily looking for a meaningful (namely, small) upper
bound to the filtering error. More precisely, consider the n-th order stochastic system

z=(A+Ar)z+ Biw

y=Czx+v
with the matrix A stable and the pair (A4, B;) reachable. Moreover, the inputs w and v are
zero mean, uncorrelated white noises with identity intensity. The perturbation A 4 is defined
by

Aa:=B0C, |19 <!

where the matrices B, C1 and the positive scalar v are given. The problem of robust
parametric filtering with cost @ consists in finding a stable state filter of the form

€= A6+ Kpy

and a positive semidefinite matrix @ which provides an upper bound for X, (2), the asymp-
totic covariance matrix of the estimation error

e=¢{—1z

correspondingly to any perturbation A4 of the above specified form. In other words, it is
required that
Xea) = lim Be@®) <Q, VI <y
t—o0

Let C2(B) := BC, B(B) := [#~'B: B:]. Then it will be proved that, for each 8 > 0
belonging to the set of the 8's for which the Riccati equation (in the unknown II)

0= Al +TIA" + TI(y7*C1C: — C3(B)Ca(8))IL + B(B)B'(8) (5.111)

admits the stabilizing solution Il (3) = IT,,(8) > 0, the matrices
App = A+ T (B) (v 2C1Ch — B7C0O) (5.112)
K = 0’ Nlo(B)C", Qs = le () (5.113)

define a solution of the above stated problem.
Remark 5.2 is exploited to prove this claim. In fact, let n := [¢’ ¢']’ and ¢ = [w’ V'],
then the connection of the system with the filter is described by the equation

7 =(F+Ar)n+ Gy

where
Fo— A—KfC Af+KfC~A G .= —Bi Kf
- —-K;:C A+ K;C ’ o 0 Ky
_ B,
AFZIBQC:Z[ 0 :!9[01 —Cl ]

Of course, matrix F is stable since matrices A and Ay are both stable. Corresponding to
the given matrices Ky and Ay, assume that there exists the stabilizing solution O« (3) =
©,,(8) > 0 of the Riccati equation (in the unknown ©)

0=0OF + FO+~ ?0C'Co+ BB +87°G¢ (5.114)
Then, in view of Remark 5.2 it follows

Xpal®) = lim Bl(0)/ (9] < 50(8) , ¥ 0 <77
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so that, by partitioning matrix © consistently with the structure of F', that is letting

1 ©11 B
0= [ 02 O ]

it results

Xea(§2) < 8700011 (B) , VIO <7
Further, if the matrices Ay and K are given by egs. (5.112) and (5.113), then it is straight-
forward to verify that

satisfies eq. (5.114), provided that the stabilizing solution S (3) = S (B) > 0 exists of the
Riccati equation (in the unknown S)

0=AS+ SA +~728CC1S + B(B)B'(B) (5.115)
Notice that ©(3) is a solution of the Lyapunov equation (in the unknown ©)
0=0OF + FO +~720(8)C'CO(B) + BB + 8 °G¢’
Hence, from Lemma C.1, the stability of matrix F entails that ©(3) > 0. Moreover,

—92 = ~ A Afﬁ 0

FHy0WCe=1 " arysa@oia

where the symbol ”%” denotes a matrix of no interest. Hence, ©(3) is also stabilizing, so
that ©(8) = O (). Observe that, in view of Remark 5.2, it is

Xeal®) 1= lim Bla(t)e' (1] < 3*S(8) , ¥ |2 <77

As for the existence of the solutions IIo(3) and S (8), first notice that the arguments
exploited in Remark 5.2 can be applied here, thus allowing one to make reference to a
nonempty set B of 3’s corresponding to which a solution Soc{3) of eq. (5.115) exists.

Second, observe that for 3 € B, S.(8) is nonsingular because the pair (A4, Bi1) is
reachable. In fact, consider eq. (5.115) (which is solved by S (8)) and suppose that
Sec(B)z = 0, = # 0. If both sides of eq. (5.115) are premultiplied by =’ and postmulti-
plied by z, then, in view of the definition of B(f3), one can conclude that Biz = 0 and
Soc(B)A’z = 0. Tf both sides of eq. (5.115) are now premultiplied by z' A and postmulti-
plied by A'z, one can conclude that BiA’z = 0 and So.(8)(A')%x = 0. By iterating these
operations it follows

z’ [ B, AB; A231 cee An71B1 ] =0

which contradicts the reachability of the pair (A, B).
Since S (0} is nonsingular, its inverse satisfies the Riccati equation (in the unknown
S~1Y which results from premultiplying and postmultiplying by S™! eq. (5.115), namely

0=S8T'TA+A'S ' +~72CiC, +ST'B(B)B'(B)S ! (5.116)

Third, recall that for 3 € B, A+~ 25, (8)CiC1 is stable, so that if both sides of eq. (5.115)
with S = S..(3) are premultiplied by S} (3) one gets

oo (BY)A + 77780 (B)C1C1]Sw () = —[A + B(B)B'(8)5% (8))

from which it follows that matrix

A. = -[A+ B(B)B'(8)S%'(8)]
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is stable. Then the Riccati equation (in the unknown V')

0 =V[A+ B(B)B'(8)Sx (0)] + [A+ B(B)B'(6)SZ (B)]'V +
+VB(B)B'(B)V — C2(8)C2(B) (5.117)

which can equivalently be written as
0=VAs+ AV = VB(B)B'(B)V + C2(B)Ca(8)

admits the stabilizing solution Ve (8) = V% (8) > 0 since matrix A; is stable (recall Lemma
C.4). Therefore, Aos(B8) = S3'(B) + Vo (B) is positive definite because Sz is positive
definite. By summing up eq. {5.117) to eq. (5.116) one can conclude that A (3) solves the
Riccati equation (in the unknown A)

0=AA+ A'A+ AB(B)B'(B)A +~72C1C1 — C3(B)C2(B) (5.118)

Thus, its inverse (which actually exists because Ao () > 0) solves the equation which derives
from eq. (5.118) after both sides have been premultiplied and postmultiplied by A™*. Such
an equation coincides with eq. (5.111) which therefore admits a symmetric, positive definite
solution given by
Moo (B) = Ao (B) = [Seo' (8) + Voo (B)]
It is only left to be proved that such a solution is the stabilizing one. By exploiting the
fact that II{0) solves eq. (5.111), it results

As — B(B)B'(8)Vio(8) = —A — B(8)B'(B)T1, (8)
= —[All(8) + B(B)B'(8)I1 ()
= o (B)[A” + (v 2C1C1 — C5(B)C2(B)) -
Tloo (B))1T (B)

so that A’ +(y72C1C1 —C5(8)C2(8)) 1o () is stable because As — B(3) B’(8) Vo (3) is stable
(recall that Voo(03) is the stabilizing solution).

In order to tighten as much as possible the so obtained bound for X.q(f2), the best value
for the parameter 3 should be found: this task may be performed by means of a suitable
(iterative) searching method. O

Example 5.6 Consider the system described in Example 5.5. A filter, labeled with the
symbol R, is to be designed according to what has been presented in Remark 5.19. More
precisely, letting wy and we be zero mean white noises with identity intensity, a filter is
sought which supplies an as small as possible upper bound to the trace of the asymptotic
estimation error covariance matrix. This goal corresponds to minimizing trace[5*Il(8)]
with respect to the parameter 3, where I1(3) is the stabilizing solution of eq. (5.111). A
suitable computer routine gives 3° = 1.13. The performance of the corresponding filter are
compared with those of the Kalman’s filter K and observer H which have been designed in
Example 5.5. The same performance criteria (namely, RH, and RHo, norms of the transfer
function from w := [w; ws]) are adopted. The more satisfactory behavior of the robust (with
respect to parameter variations) filter for small values of the system damping factor is put
into evidence in fig. 5.32 and 5.33. m]

Remark 5.20 (Full control) The problem considered in Remark 4.12 can be dealt with
also within the RHo context. The problem refers to the system Prc(s) depicted in fig. 5.34
and described by the equations

&= Az+ Biw+[I Olu

z=Ciz+[0 Ilu

y = Cox + Dy1w

u=[u] uy)
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Figure 5.32: The RHs norm of the three filters

In fig. 5.34 Kpc(s) is a generic controller admissible in RHo for Prc(s). Assume that
the pair (A4, Cs) is detectable, the pair [(A — B1 D5, C2), B1(I — D51 D21)] is stabilizable and
D21 D3, = I. By exploiting also in the present framework what has been utilized in the RH>
context (in particular, note that Lemma E.1 can be applied both in the RHy and RH
settings), it is possible to directly claim that Problem 5.1 relative to system Prc(s) has the
solution

a) Existence of the symmetric, positive semidefinite and stabilizing solution Il of the
Riccati equation (5.105);

b) The set Feonr of the controllers Krcr(s) is defined by the block-scheme of fig. 5.35
where Q(s) := (A4, By, Cq, Dy), with A stable and ||Q(s)]|oo < 7.

Finally, the set Fooy of the controllers which are RHo, admissible for Prc(s) can be easily
obtained by exploiting (via transposition) what has been shown in Remark 5.9 with reference
to system Pr;(s). The block-scheme which defines such a set is shown in fig. 5.36 (note that
it is the "transpose” of fig. 5.21) where @1(s) € RHoo, U(s) := (8] — A — LooCs) ™ . O

Remark 5.21 The comments on the matrix D2y presented in Remark 4.13 for the RHs
setting can be done with no changes in the present context too with reference to Assumption
5.4. Further, many of the above given formulas greatly simplify if the additional orthogo-
nality assumption D21 B} = 0 is done. 0

Remark 5.22 Under Assumption 5.4, the stabilizability of the pair [(A—B1D5,C>), B1(I~
D41 D21)] (Assumption 5.3) is equivalent to requiring that the subsystem of Pog(s) corre-
sponding to the transfer function Pogo1 between the input w and the output y, that is
system 3(A, By, Ca, D2y), does not have zeros in the closed right half plane. The proof of

this claim exploits the same arguments adopted in proving an analogous result in Remark
4.15. o

Remark 5.23 The discussion in Remark 4.16 concerning a possible direct dependence of
the output variable y on the control variable u applies to the RHo, setting as well. In fact,
suppose that eq. (5.104) is substituted by

y= Cox 4+ Dorw + Dasu (5119)
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Figure 5.33: The RH,, norm of the three filters

w z
Prc(s)

(el e
“ Kro(s)

Figure 5.34: The full control problem

Letting
Yyi=y— Dosu = Cox + Dayw (5120)

the solution to Problem 5.1 relative to the system Pog(s), namely to the system described
by egs. (5.102), (5.103), (5.120), is supplied by Theorem 5.3. If Kog(s) is a RHoo admissible
controller for Pog(s), then the controller Kog/(s) defined in the block scheme of fig. 5.37 is
apparently RH. admissible for Pog(s), provided that it is well defined, that is, provided
that matrix I + Dg D22 is nonsingular. a

5.5 The partial information problem

The partial information problem in RH, is discussed now. As in Section 4.4, only
the output variable y can be measured: consistently, the system under control is
described by

5.121
5.122

& =Axr+ Byw + Byu )
)
5.123)
)

z=Ciz + Diau
y = Cox + Dojw

o o~ —

while its transfer function is denoted by P(s). Notice that system (5.121)-(5.123
is less general than system (5.33)-(5.35) however, the latter can be redrawn to the
former by exploiting Remark 5.24. The solution of Problem 5.1 relative to system
(5.121)-(5.123) will be presented under the following assumptions.
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u Ly
i A\lji Loo i
_7211000{
U2 ]
: Q(s)
Krer(s)

Figure 5.35: The set Foy, of the controllers Kpc,(s)
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Figure 5.36: The generic admissible controller for Pre(s)

Assumption 5.6 The pair [(A — ByD},C1), (I — D12D}5)CY] is detectable and the
pair [(A — B1 D5, Cs), B1(I — D5, Day)] is stabilizable.

Assumption 5.7 The pair (A, By) is stabilizable and the pair (A, Cs) is detectable.
Assumption 5.8 D},D, = I.
Assumption 5.9 Dy D, =1.

The result in Theorem 5.4 below makes reference to the block-scheme of fig. 5.38
relative to which the transfer function from w to z is denoted by T(z,w;s), while
K(s) is a generic RH, admissible controller for P(s).

Theorem 5.4 (Partial information problem) Consider Problem 5.1 relative to sys-
tem (5.121)-(5.128). Then, under Assumptions 5.6-5.9, it has the solution

al) Ezistence of the symmetric, positive semidefinite and stabilizing solution Py, of
the Riccati equation (in the unknown P)

0=PA.+ AP — P(ByB, — v 2B,B})P + C} .Che (5.124)
that is, such that

Ao = A, — BoByPs + v 2B, B} Py (5.125)
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—D3s A,

. _ _
Roz(s) y

Kog(s)

Figure 5.37: The controller structure when Dsy # 0

P(s)

K(s)

Figure 5.38: The partial information problem

is stable. In the above equations

AC = A BQDIIQCl, Clc = (I - D12D,12)Cl (5126)

a2) Ezistence of the symmetric, positive semidefinite and stabilizing solution Iy, of
the Riccati equation (in the unknown I1)

0 =14} + A1 - II(C5Cy — v 2C1C1)IL + Biy B¢ (5.127)
that is, such that
Agg = Af — I1sCHCy + v * T C1Cy (5.128)
is stable. In the above equations
Aj:=A— B1DyCy, Bij:=Bi(I - Dy Dn) (5.129)

a8)
rs(Poollog) < 7 (5.130)

b) The set Fooyr of the controllers K,(s) is defined by the diagram of fig. 5.39,
where

Acc + ZooLoo(C2 + 7_2D21B1Poo) ' _ZooLoo +ZooBZ<>o

Seo(8) = F 0 I
—Cy — 772Dy B{ Py I 0
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Soo(s)

Q(s)

Krir(s)

Figure 5.39: The set Foor of the controllers Kpz,(s)

Py(s)

K(s)

Figure 5.40: The equivalent output estimation problem

where
Fo := —BLP,, — D},C) (5.131)
Lo := —I1,,Cy — B, D}, (5.132)
Zoo = (I =y Moo Poo) * (5.133)

B := By + ’YhQHOOC{DIZ
and Q(s) 1= £(Aq, By, Cyq, Dy) with A, stable and ||Q(s)]|c < 7.

Proof First observe that Assumption 5.7 coincides with the necessary condition of
Remark 5.6.

Sufficiency of parts al) - a3) and part b) Assume that points (al)-(a3) hold true
and define the variables v and g as

w =71+ 2B} Pz (5.134)
g:=u-~ Fyx (5.135)

By utilizing these equations into egs. (5.121) and (5.123) one obtains the system (see
fig. 5.40)

A | BL B
P(s)==| —Fx | O 1 (5.136)
Cot | Dy O
where
Ay = A+~y72B, B Py (5.137)

Cyt := Cy 4+ v 2Dy B| Py (5.138)
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It is easy to ascertain that Lemma E.4 can be applied to the couple of systems shown
in fig. 5.38 and 5.40, so that this part of the proof can be carried over by making
reference to the system in fig. 5.40 only.

Observe that system P;(s) has the same structure as system Ppg(s) dealt with
in Section 5.4, where the output estimation problem was discussed. When dealing
with system P;(s) Assumptions 5.3-5.5 become: (al) the pair (4; — B1D5;Ca¢, Biy)
is stabilizable; (a2) the pair (A;,Cy) is detectable; (a3) D21 Dy, = I; (ad) the
matrix A; + ByF, is stable. The stability of this last matrix trivially follows from
eq. (5.125),(5.126),(5.131),(5.137). Condition («3) is Assumption 5.9.

Condition (1) is immediately derived by acknowledging that A; — By D5, Co =
Af +~72B1;Bj Pw, so that such a condition is equivalent to the stabilizability of the
pair (A -+ 2By B Py, Bis), which, in turn, is implied by Assumption 5.6, thanks
to the invariance of the stabilizability property with respect to state feedback. The
discussion on condition (a2} is postponed.

Therefore, the sufficiency part of the theorem and point (b) are proved once the
existence is ascertained of a symmetric and positive semidefinite solution Il;o, of the
Riccati equation (in the unknown II;) which is relevant to the output estimation
problem for system P;(s), namely, the equation

0 = Al + I A, + I (Y °F) Foo — C;Coy)I; + B1y By (5.139)

where
Att = At - BlDélcgt (5140)

Moreover, the solution II;,, must be stabilizing, i. e. such that the matrix A, +
oo (72 F! Fs — C5,Cy;) is stable. To this aim, consider the Hamiltonian matrix
associated with the Riccati equation (5.139)

T — Ay Y2 F Foo — C5,Cy
te = | _B;BY, — Ay

and the one associated with the Riccati equation (5.127)

L[ A e - o0
* —BisBy; —Ay

By exploiting the fact that Py, solves eq. (5.124), it is not difficult to verify that the
two Hamiltonian matrices Jioo and J., are similar. Indeed, it results

Jioo = TJT !
with

— I _7~2Poo
T:= [ 0 1 ]

Being II,, a solution of eq. (5.127), one has

el ||| ]
JiooTlm H . H el H I ” = H I H

so that
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Therefore, the subspace

et R (!

is Jyoo-invariant. It is also complementary to Im[[0 ]'] because condition (a3) guar-
antees that the matrix I — v~ 2P, I, is nonsingular (see the proof of Lemma B.11).
Finally, the subspace S is generated by the (generalized) eigenvectors of Jio relative
to the eigenvalues with negative real parts. Indeed, being I1, a stabilizing solution,

wnl[ ] -w[[ ]}

with A stable, so that J;oS = SA. Therefore, in view of Lemma C.2, it can be
concluded that there exists a stabilizing solution Il;,, of eq. (5.139) which is given by

Moo = Hoo(I — 7 2PTlo) ! (5.141)

Moreover, such a solution turns out to be positive semidefinite thanks to Lemma B.11.

Tt is left to prove condition («2), namely, the detectability of the pair (A, Coy).
Remark 5.17 applied to eq. (5.139) leads to the conclusion that matrix Ay —I1,C5,Coy
is stable, which, in turn, implies that the pair (A, Ca¢) is detectable. By recalling the
definition of the matrix Ay (see eq. (5.140)), the detectability of the pair (A, Co;),
i. e. condition (a2), follows too, since the stabilizability property of the pair (A}, C%,)
is invariant with respect to the state feedback.

Finally, the form of the set F.-, given in the statement follows by applying
Theorem 5.3 to system P;(s).

Necessity of part a) With reference to fig. 5.38, assume that there exists a con-
troller K (s) admissible in RH, for system P(s) such that ||T(z,w; s)|lcc < . Then,
the controller

KF](S) = K(S) [Cg Dgl]

is admissible in RH, for the system Pp;(s) which is the system defined by eqgs. (5.121)
and (5.122) with the output vector constituted by [z’ w']’. Moreover, || T(z, w; $)|jco <
7 also for system Ppj(s). This system coincides with the system Pg 1(s) considered in
Section 5.3. The Assumptions 5.1 and 5.2 which are required for the result relevant
to the full information problem (Theorem 5.2), are verified since they constitute a
subset of Assumptions 5.6-5.9. Therefore, Theorem 5.2 guarantees the existence of
the solution of eq. (5.124) endowed with all the properties specified in the statement
of the present theorem. The request of the existence of the solution of eq. (5.127) can
be proved in a similar manner by making reference to the system in fig. 5.41, where
P(s) := P'(s) and K(s) := K'(s). Thus, system P(s) is described by

E=AE+C12+Chy (5.142)
W= Bi€& + Dy (5.143)
i = Byt + D)y (5.144)

From Lemma E.1, K (s) is admissible in RH, for P(s) and ||T(1, 2; 5)||oo < 7 because
K(s) is admissible in RH, for P(s) and ||T(z,w;s)||oc < 7. The above exploited
argument can be applied in the very same way leading to the conclusion that the
controller

Kri(s) = K(s) [By Di)
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Figure 5.41: The transposed partial information problem

is admissible in RH, for system Pp;(s) (described by eqs. (5.142) and (5.143) and
having the vector [¢’ 2']' as measurable output) and is such that ||T(w, 2; 5)|loe < 7-
System Prr(s) has the same structure as system Pgy(s) which has been defined for
the full information problem (see Section 5.3). Since the assumptions required by
Theorem 5.2 to be applied to system T:’FI(s) are a subset of Assumptions 5.6-5.9, it
is possible to claim that there exists a solution of eq. (5.127) which possesses the
properties requested by the statement of the present theorem.

Further, it is easy to check that also the conditions for Lemma E.4 to be applied
are verified, so that, with reference to the block-scheme of fig. 5.40, it is possible
to conclude that the controller K(s) is admissible in RH,, for system P;(s) and
IT(q,7; )|l < v (recall the definition of P,(s) given in egs. (5.136)-(5.138)). As
already said, system P;(s) has the same structure as system Ppg(s) which was intro-
duced in Section 5.4 when dealing with the output estimation problem. Assumptions
5.3 - 5.5 which are relevant to Theorem 5.3, are now shown to be verified. These
assumptions, if expressed in terms of system P;(s), are precisely those which have
been denoted as (al), (a2), (a3) and (o4) in the sufficiency part of the proof.

First observe that condition (a2) (detectability of the pair (A, Ca;)) is obviously
satisfied. In fact, it is apparently necessary in view of the already established stability
of the system in fig. 5.40 (again, recall the structure of system Pi(s) given in eq.
(5.136)). Second, in the sufficiency part of the proof it has already been shown that
condition (al) is equivalent to Assumption 5.6. Condition (a3) is straightforward.
Finally, condition (a4) precisely amounts to requiring the stability of matrix A.. (see
eq. (5.125)).

Thus, the conditions for Theorem 5.3 to be applied to system P,(s) are satisfied.
Therefore, this theorem guarantees the existence of a positive semidefinite and stabi-
lizing solution II;, of the Riccati equation (5.139). By applying in reverse order what
has been shown in passing from II,, (a solution of eq. (5.127)) to ;s (a solution of
eq. (5.139)), it follows

Moo := Moo (I + 7 2 PooTlioo) ! (5.145)

Note that the existence of the inverse in eq. (5.145) is guaranteed by the fact that
matrix Py Il;0 has nonnegative eigenvalues, thanks to Lemma B.10. From eq. (5.145)
it follows

Moo = (I — 7 Moo Poo )Mo (5.146)

so that
Moo = (I — v 2o Pso) Mo
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since the existence of the inverse in this last equation can easily be proved. In fact,
let, by contradiction,

(I =7y MePs) =0, z#0 (5.147)
so that, from eq. (5.146), also z'Il,, = 0. But this would imply, in view of eq.
(5.147), © = 0. By recalling that II;,, > 0, one can conclude that condition (a3) in
the statement is verified, thanks to eq. (5.141) and Lemma B.11 . O

The following result, which constitutes an interesting side-product of Theorem
5.4, can be stated in view of what has been presented in connection with the full
information problem (Corollary 5.1) and the output estimation problem (Corollary
5.2).

Corollary 5.3 Assume that Assumptions 5.8 and 5.9 hold. If, for a given positive =,
there exist the symmetric, positive semidefinite and stabilizing solutions of the Riccati
equations (5.124) and (5.127) and such solutions satisfy eq. (5.130), then there exists
a RH, admissible controller K(s) for P(s), corresponding to which |T(z,w; s)|loc <
v. Moreover, the set of controllers described in point (b) of Theorem 5.4 constitutes
the set Fooyr-

Example 5.7 Consider system (5.121) - (5.123) with

[ 4] ae[2] e 3]

Ci=[0 0], Ca=[-1 1], Dip=Dyn=1
Because of the particular form of matrices B, and C, the Riccati equations (5.124) and
(5.127) do not depend on . The stabilizing solutions of these equations are

4 4 4 8
Pm_{zl 4]’H°°‘{8 16]

respectively. Moreover, 75(PocIlee) = 144 so that, according to Corollary 5.3, an admissible
controller in RH, exists for the system if v > 12 (recall eq. (5.130)).

Now consider the nominal plant G, (s) := (s - 1)/(s* — s — 2) subject to perturbations
of the form (5.10),(5.11). Then, what is the maximum value of « corresponding to which a
stabilizing controller exists? This question can be answered by applying Theorem 5.1 to an
enlarged plant which coincides with the controlled system considered in the present example.
Thus, a stabilizing controller exists only provided that o < 1/12. 0O

Remark 5.24 (Loop shifting) Theorem 5.4 can be applied to systems exhibiting a more
general structure than that of system (5.121) - (5.123). Indeed, consider system PV (s)
given by
AW | B0 BY
PG = [0 | D DY
o | o) by
and depicted in fig. 5.42. Assume that the variables w®, ¥, 2y of such a system
have dimension g, m, r, p, respectively, and suppose that rank[Dg)] =m, rank[Dgll)] =p.
Then, if one performs the 6 operations described below (the effects of which can be
easily understood by making reference to fig. 5.42), it is generically possible to successively
transform system P(l)(s) into systems

A® | BY Y
PO = | e [ DY b
oo | vy ol
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w™ - w® = 208 = ,(® m— M
- W — - V. i
‘ w® = w®  per, L) = @ 3

Figure 5.42: The loop shifting

which are characterized by the inputs w® and u® and the outputs 2 and y(i), in such a
way that
A® | BO B
o 0 o)
of [0 o

P(7)(s) =

with D3’ D{}) = 1, DY DS = 1.

Operation 1 : Let
@ = @ _ py,™

y
ORI C SOl

w? = w 2@ =M

so that
AP =AW | B® = BV =12

cP=cl, i=12
2 1 2 1 2 1
Dil) = D§1) ) D§2) = Dgz) ) Dél) = Dé1)
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and

D =0
Operation 2 : Find four matrices V, v+, W, W' with orthonormal columns and such
that

Im[V] = Im[D{3] , Im[V*] =Im[D{)]*
Im[W] = m[DF], Im[W*] = Im[D$"]*

Such matrices do exist thanks to the assumptions rank[D'})] = m, rank[D{}))] = p and
the fact that D12 = Dg) and Dézl) = Dgll). Obviously, if Dg) is a square matrix (hence
nonsingular), V" = @ and V = I. A similar comment is in order if D;QI) is a square matrix

(hence nonsingular).
Then it follows

v 0
vol = | Vo= g |

DY [wt w]=[0 8 ]

DRV,

Observe that matrices V,, and V, are orthogonal and matrices S, and S, are nonsingular.
Then let

w® = Vlf)wm , u® = g,u?
A3 = V@ O g1y

so that
A® = A® | B _ g@y,  B® _ p® g1
OO - viof | e —spe DY — VD
Dg) =0

and

DQ—%M%T:[?}’%?:gmﬁm:[OI]

Note that, thanks to the orthogonality of matrices V., and V,,, the transfer functions from
w® to z® and from w'? to z(? have the same RH,, norm.
Operation 3 : Consider the following partition of the r x ¢ matrix Dﬁ)

D@ ._ Di11n Dine
- Dii21 Dii22

where the submatrix D122 is m X p (recall that the assumptions on the rank of matrices Dg)
and Déll) imply » > m and ¢ > p). Let As be the matrix (whose existence is guaranteed by
Theorem F.1 which supplies its expression, too) which minimizes {|A(A)]||, where

| Dun D112
A = |: D21 Duse +A }

o 1= max Dun D“”
Dy 1112
then, thanks to the above quoted theorem, [A(Ax)|| = @. By defining
W@ i p® @y g ®
@ ._

3 4 3
@ =@

z z s Y
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one obtains
A(4) _ A(3) B(S)A C(3)
B§4) B(3) +B<3)A D21 , B(4) _ B(3)
Cf‘l) — C§3) + DI:;))AOOCQB) , C(4) C(3)
DY = A(A)

4 (3 0 4 3

D§2):D12) [1}7 DgRZDél):[O I]
D =0

Now consider the feedback connection of system P®)(s) with the controller defined by u( ) =

A(s )yi ), with limy oo A(jw) = As. Then, the scalar o constitutes a lower bound to the
RH,, norm of the transfer function from w'® to 2. Indeed, as w — oo, the limiting value
of such a function is precisely

4 3 3 3
Dgl) = Dgl) + Dgz)AooDéﬁ = A(AOO)

Operation 4 : Define the variables z(® and w® by means of the equation
(5) (5)
z w
|: w(4) ] = Fl@FZ |: Z(4) ]
T 0 _ |+ 0
rl._{o 74[] , r2._[ / 1}

9:2[911 912]

where

while

O21 O

is any matrix such that: (i) @0 = 00’ = I; (ii) ©12 and O are square matrices of
dimension r and g, respectively; (ii1) 0 < v~' < o~ '. In particular, from these features
it follows that ||©22] < ||®|| = 1 (recall Lemma 2.16), so that the matrices ¥y := (yI —

Dﬁ)@m)_l and ¥y := (vI — @22Dﬁ))_1 are well defined because ||Dﬁ)|| = a (recall also
Lemma 2.18, point (2) and Lemma 2.21). Further let

u® =@ @

In so doing, one obtains
A® — 4@ 4 Bl g,0,,0
B® = yB9w,0, , B® = B® + BY 0,050
CP =40,,0,C , Y = Y + DY 020201
DY = 4(01 + ©:12D{} ¥:041) , Dg) = DY 9,05, D7
DY) = 401201 Dy, DY =D 0,04
Notice that if the feedback connection of system P®*)(s) with the controller described by

(4) = A(s)y( ) results in a stable system and the RH., norm of the transfer function
T( (4) w®; s) from the input w® to the output z4) is less than v, then also the feedback
connectlon of system P®)(s) with the controller described by by u(Ls) = A(s)yg’) results in
a stable system and the RHs norm of the transfer function T(z(s), w®; s} from the input
w® to the output 2 is less than ~. In fact, notice that

_ Y011 O12
Iher, = {: O21 7 'O ]
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and ||[y'O22| € 47, so that it is possible to apply Theorem 5.1 and conclude about
stability. As for the transfer functions norms, observe that, from the definition of the new
variables z(® and w®, it follows

(5) (5)
z = Yw
{ yu'® } - e[ 2 ]

so that, thanks to the properties of ©,
12713 + 22w @3 = 12915 + 1w ™ |13

that is

12713 = 7l = 112115 = 7l ™ 13

The left (resp. right) hand side of this equation is negative if and only if || T(2®, w®; 8)||oc <
v (resp. ||T(z®,w®;s)||leo < ) (see Theorem 2.12), so that the RHo, norm of the first
transfer function is less than «y if and only if the norm of the second one is such. Now let

O11 = —’Y*IDY;) , O =({~- 772D§§)Dﬁ)/)1/2

On1 = (I — 7_2D§?)/Dﬁ))1/2 R Y ’771Dﬁ)/
By applying Lemma F.1 it is easy to verify that the matrix © satisfies the equation @' =
00’ =1.

Finally, one obtain
DY =0

Operation 5 : While performing Operation 4 it might be happened that Dg) # 0. Should
this be the case, one has to apply the procedure outlined in Operation 1 above by letting

y(® = y® _ DOy

w® = y® | GO =y LE) e
so that

A® = A® | B® = B® =12

C®=0®, i=1,2

DY =0, DE =D, D =D
and

DY =0

OPeration 6 : While performing Operation 4 it might be also happened that the matrices
Dlg)'Dg) and/or Désl)Désl)', though positive definite, are different from the identity matrices.
Should this be the case, one has to apply the procedure outlined in Operation 2 above by
letting

where the matrices Vw, S, V. and S’y are computed in such a way as to comply with the
same requirements expressed in Operation 2, so that

AT Z A | BO = BO, | BY = BO S,
P — Vo, o) =870, DY =0
Pl
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and
0

7 - 6) &— &— 5
iy = VD8 = l Il DR =80V =[0 TI]

Finally, given a controller K ( ) which is admissible in RHoo for system P )( )} and such

that || 7(z",w7; s)||ec < 9, it is fairly apparent how to design a controller KM (s) which
is admlss1ble in RH for system P™)(s) and such that |[T(z™", wV; 8)]|e < 7 (see also fig.
5.42). a

Example 5.8 Consider system P! (s) with

ey 01 m_[10 ®_1|0

A lool’31”01’32 1

1) 10 (1 _ (1 _

cl_[l 1},0 =[1 0], D =1
11 [0

e IR I B SRy

By performing the operations described in Remark 5.24 one obtains

1 1 1
V.=1, Vw_E{_1 1l , Su=1, S,=V2
1 1 0 2
Aoo‘—_%, 7>\/§, ell__ﬁ[l O:l
1 2 -
O12 = —= ’Y
V2 0 27—
1 22_
O21 = —= ’y
YV2 0 27—
1 1
O = —= 0
w2 |2 0
DY) =0, V.=V, =1
S’u,: i 2 >Sy: 7
292 -1 v2 -2

0

Remark 5.25 It is worth noticing that the well known separation property of the control
system eigenvalues (which has been discussed in Remark 4.17 within the framework of the
RH; partial information problem) does not hold anymore in the RHs setting. However,
it is possible to read Theorem 5.4 in the light of a weak separation principle. In fact, the
controller resulting from the choice Q(s) = 0 in fig. 5.39, may be written as

€ = AE + Bou + B1tby + ZooLoo(Caf + Dartin, — )
U = Foo

where

Wy =7 2By P
In view of egs. (5.131) - (5.133), (5.138), (5.141), it is easy to verify that ZooLoo =
—I1;00C% — B1Dj,, so that it coincides with the gain of the filter for the linear combi-
nation Fox (recall the solution of the output estimation problem for system P:(s) defined
by eqgs. (5.136)-(5.138)). Further, ., can be seen as the worst input for the control problem
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with full information (recall Remark 5.10 concerning differential games and see fig. 5.15,
too). Therefore, it can be concluded that the controller for the partial information problem
is the filter for the control law of the full information problem when the worst disturbance
wp 1= v 2B} Psx acts on the system. This claim is correct in the RH> setting too (recall
Remark 4.19), if w,, is set equal to zero (hence w,, = 0 as well). o

Remark 5.26 (Parametrization of the set Foo,) Observe that Fooy = Fooyr. In fact,
the set of controllers which are admissible in RHo, for P(s) has been shown to coincide
with the set of controllers which are admissible in RHo, for P,(s) (see the proof of Theorem
5.4). Therefore, the claim is true thanks to Remark 5.15 which can be exploited because the
structure of P;(s) is identical to that of Pog(s). O

Remark 5.27 Theorem 5.3 of Section 5.4 (which is relative to the output estimation
problem in the RH., setting) can be derived as a particular case of Theorem 5.4. In fact,
it suffices to set D12 = I in Assumptions 5.6 - 5.9 in order to conclude that Assumptions
5.3 - 5.5 are satisfied. In particular, it results Ci. = 0 so that the (unique) symmetric,
positive semidefinite and stabilizing solution of the Riccati equation (5.124) is P, = 0,
which implies Zo, = I. In such a context, the conclusions of Theorem 5.4 are immediately
redrawn to those of Theorem 5.3. In a similar way, the solution of the disturbance feedforward
problem dealt with in Remark 5.12 can be viewed as the solution of a particular case of the
partial information problem, namely the case in which D2y = I. Indeed, letting Doy = 1
in Assumptions 5.6 - 5.9, it is easy to verify that the assumptions made in Remark 5.12
are satisfied. In particular, it results Biy = 0 and hence Iloc = 0, Zoo = I, so that the
conclusions of Theorem 5.4 coincide with those illustrated in Remark 5.12. O

Remark 5.28 (Partial information and parametric perturbations) Consider Prob-
lem 5.1 relative to the system Po(s) described by

&= (A+ A4z + Biwi + Bau (5.148)
21 = C’]QZ + Dlzu (5149)
Yy = Cox + D21w1 (5150)

The structure of the perturbation A4 is taken to be
Aa:=LOM, Q] <! (5.151)

The robust (with respect to the parametric perturbations) control problem in RH, consists
in designing a controller which, for all ©, ||Q|| < 87!, is such that: (i) it is admissible in
RH, relative to Pq(s); (i) the RHo norm of the transfer function from the input w; to
the output z; (from now on denoted by Tn(z1,ws;s)) is less than a certain positive scalar
«. This problem can be tackled by considering the system P(s)

§ = At + Biw + Bou

z2=C1¢+ Disu

y = Cof + Da1w

where

w

I
—

By =] L], Du:=[Da 0]

B
L D1z L Cy
o[ ] o= 5]

Observe that P(s) = Pa(s) if wa = Qzs. If Assumptions 5.6 - 5.9 are verified for system
Py(s), that is for system Pqo(s) in nominal conditions (2 = 0), then they are verified also for
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Figure 5.43: The performances of the controllers R and H

system P(s). Therefore Theorem 5.4 can be applied to such a system with v := min[e, §].
The solution of the relevant problem is then a solution also for the original problem. In fact,
the controller which solves Problem 5.1 for system P(s) is such that ||T'(z, w; $)|lec < 7 which
implies J := ||z||53 — ¥*||w||3 < 0,Yw € RH>. This controller, when applied to system Pq(s),
is such that ||To(z1,w1;5)||ec < @, which implies Ji := ||z1|3 — o?||w1||3 < 0,Yw: € RHo.
Indeed, by recalling that we = 2z, it follows

= a3 — o flwi 3
< 21l =¥l ]l
< 202 = llz2llz — ¥ llwll3 + 7 lwell2
< J = [|z2ll3 + 7 flwellz
< J = |lz2ll3 + 7192213
< J—|lzl31 - ¥*121%)
<J—|zlh(1-487%)
<J<0

It is left to be proved that the controller which solves Problem 5.1 for P(s) stabilizes
Pa(s),¥, |9 < 87" as well. This result is a direct consequence of Theorem 5.1. O
M=[0 1], Gi=[¢" o], Ca=[¢ 0]

0
1
Dis=Da=1, =1, @::\/5

A controller is sought which, for each 2, ||| < 87, is admissible in RHo for system
Pqo(s) and is such that ||T(21,w; 8)||eo < @. Letting a = 3, a controller, labeled with R, is
designed according to what has been shown in Remark 5.28. On the contrary, the label H
denotes the controller resulting from Theorem 5.4 when applied to system Fy(s) and for the
choice Q(s) = 0. The performances of the two controllers are compared in fig. 5.43 where
(1T (21, w1; 8)||oo is plotted against the system damping factor £ := (1 — 2)/2. The controller
R is weakly sensitive and apparently behaves in a much better way for low values of &. O

Example 5.9 Consider the system (5.148)-(5.151) with

A:[_(IJ _}],Blz[%l]’Bz:[g]’L:[
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Figure 5.44: The performances of the controllers R and H (M = MS)

3

L:[O},Clz[l 2], Co=Di=[1 0], Da=1

Example 5.10 Consider the system defined by the matrices

0 1 0 0
a<[ 2 s n-[ 2] e[

while M = M S :=[2 0] or M = MU := [0 2]. The parameter §? has nominal value equal to
0 and describes the uncertainty which is supposed to affect the system under consideration.
A stabilizing controller is sought which makes small the effect of the disturbance w on the
output z = Ci1z + Di2u. By utilizing the first component only of the control variable u it is
possible to design a controller, labeled with IC, which makes zero the transfer function from
w to z in nominal conditions. The transfer function of such a controller (which achieves the
perfect indirect compensation of the disturbance) is

1+ 2s
s2+3s+3
If, on the contrary, the uncertain knowledge of the parameter ) has to be somehow taken
into account, a controller, labeled with R, can be designed according to the discussion in
Remark 5.28. Consistently, a new variable z, := Mz + uz is added to the system. When

M = MS one finds, independently of the value of v, Py, = Il = 0 because the matrices
Ac and Ay are stable and Ci. = 0, By = 0. Correspondingly,

O = R

This is no more the case when M = MU, so that, for v = 0.275 (notice that for v = 0.270 a
solution of eq. (5.25) with the required properties does not exist) one obtains

Foo:[ 7.67 *4'43},%:{ 0}

K]c(s) =

-30.87 6.67 -1

The performances of the two controllers are compared in fig. 5.44 and 5.45 for the considered
cases. The choice of the set of values of the parameter 2 reflects the need of stability for the
control system resulting from the insertion of the controller IC. In both cases, the better
behavior of the controller R is apparent, especially for small values of . O
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17(2, w; 8)loo

Figure 5.45: The performances of the controllers R and H (M = MU)

Remark 5.29 It is worth noticing that, also in the partial information case, when v — co
the RH controller of fig. 5.39 (with Q(s) = 0) tends to the RH, controller of fig. 4.19
(with Q(s) = 0). m]

Remark 5.30 The contents of Remark 5.13 (as for matrix Di2) and of Remark 5.21 (as
for matrix Do) apply with no changes to the problem dealt with in the present section. O

Remark 5.31 In view of Remarks 5.14 and 5.22 it can be said that, under Assumptions
5.8 and 5.9, Assumption 5.6 amounts to requiring that the two subsystems of P(s) having
transfer functions Pio(s) (that is, system X(A, Bg, C1, D12) with input w and output z) and
Py1(s) (that is, system (A, B1,C2, Da1) with input w and output y), respectively, do not
have zeros in the closed right half plane. |

5.6 The operatorial approach

This section is aimed at tackling the partial information problem in the RH, setting
from a point of view which is rather different from the one adopted in Section 5.5.
In fact, reference will be made to the theory of linear operators applied to dynamical
systems. The minimum norm problem will be presented by constraining the attention
to the scalar case only, as the general multivariable situation is substantially more
complex to be handled.

Recall that the problem at hand consists in designing a controller K(s) which,
with reference to fig. 5.46, is admissible in RH, for P(s) and such that the RHo,
norm of the transfer function T'(z,w;s) from w to z is less than a given positive
scalar 4. Indeed, it will be shown that, having restrained the attention to the case
in which the variables w,u, z,y are scalar, it is fairly easy to design that controller
K°(s) which minimizes ||T(z,w; s)||oo. Preliminarily, partition the matrix P(s) into
the four (scalar) transfer functions P;;(s), so that

[ ]-[ e e v ]
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P(s)

K(s)

Figure 5.46: The partial information problem

and assume that system P(s) can be made internally stable by implementing a feed-
back loop from y to u. It is obvious that a RH., admissible controller for P(s) exists
if and only if such an assumption is verified. This is equivalent to the internal sta-
bilizability (from y) of the subsystem Pao(s). Further, if K(s) is a RH., admissible
controller for Pys(s), then it is RH,, admissible also for P(s) and the set of controllers
endowed with this property coincides with the set of controllers which stabilize Pas(s).

Second, observe that, if K(s) is any controller corresponding to which the control
system in fig. 5.46 is well defined, that is if

lim det[] — Doa K (s)] #£0

§—00

where Doy := limg o, Poo(s), then
T(z,w;8) = P11(8) + Pra(s)[I — K(8)Paa(s)] " K (s) P21 (s) (5.152)

Hence, the problem of designing a RH,, admissible controller for P(s) such that
IT(z,w; 8)|leo < 7 is equivalent to selecting a controller which verifies this last in-
equality among those which internally stabilize Pso(s).

Theorem 3.7 supplies the parametrization of the set of all controllers which sta-
bilize Ps2(s) on the basis of a double coprime factorization in RHy, of Pag(s) (also
recall Theorem 3.4). More precisely, if

Poy(s) = N(s)M~1(s) = M~(s)N(s) (5.153)
X(s) =Y(s) ][ M(s) Y(s) ] _
N e JLNG X ]=1 (G154

where all the functions N(s), M(s), M(s), N(s), X(s), Y(s), X(s), Y(s) belong to
RH., then any controller K(s) which stabilizes Pa2(s) can be given the form

K(s) = [X(s) = Q)N (s)] [V () — Q(s)M(s)] (5.155)

where Q(s) := X(Aq, By, Cy, Dy) is any element of RH, such that det[/ —DyyDg] # 0.

Thanks to the explicit expression of the stabilizing controllers given by eq. (5.155),
it is easy to prove that the transfer function T'(z,w;s) is a linear function of the
parameter ()(s), as stated in the following theorem where reference is made to the
functions

T1(s) := Pi1(s) + Pi2(s) M(s)Y () Pa1(s) (5.156)
Ty(s) := Pra(s)M(s) (5.157)
Ts(s) := M(s)Pa(s) (5.158)
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Theorem 5.5 The functions T;(s), i =1,2,3 defined in egs. (5.156)-(5.158) belong
to RHo,. Moreover, if K(s) is given by eq. (5.155), then
T(z,w;s) = T1(s) — Ta(s)Q(s)T3(s)

Proof Consider a realization of P(s)

A| B B
P(S) = Cl D11 D12
Cy | Dy Dy

with the pair (A, By) stabilizable and the pair (A, C3) detectable. Further, let F' and
H be two matrices such that A + BoF and A + HC, are stable. Consistently with
the discussion in the proof of Theorem 3.4, choose

M(s) :== Z(A+ ByF, By, F,I)

M(s) := S(A+ HCy, H,Cy,I)

Y(s):= S(A+ HCy, H,—F,0)
Denote with ; (resp. 7;), ¢ = 1,---,5 the state (resp. output) variables of the five
systems Po1(s), Y(s), M(s), Pi2(s), P11(s), taken in their order of appearance. If ¢,

and v; denote the output and input variables of system T3 (s), respectively, then such
a system is described by (recall eq. (5.156))

_ = Ap1 + By
Pa(s) = { m = Cap1r + Doy

- { p2 = (A+ HCy)pa + Hm
n2 = —Fg
' =(A+ B F)(P3+BQ7]2
M(s) = 3 = ( 2
() { ns = Foz +
Y4 = Apa + Bans
P
ras) = { N1 = C1pa + Drams
p @5 = Aps + Biin
1 ns = Cirps + Dy

h=m+mns
Letting 1 := 1 — @5 and €9 := 4 — (3, it is easy to verify that

= AEl
= A€2
and that a realization of the transfer function T7(s) can be built up by exploiting the
state variables @9, @3, 5 only. Further, by defining €3 := 5 +2 and €4 1= 5+ @3,
one obtains
&:3 = (A + HCQ)€3 + (Bl + HD21)I/1 (5159)
€4 = —ByFeg + (A + BQF)E4 + By (5160)
1 = —D19Feg + (01 + D12F)€4 + D1y (5.161)
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These equations define a simpler realization of T} (s) which allows one to claim that
T1(s) € RH, since the eigenvalues of the dynamic matrix of the system described
by egs. (5.159)-(5.161) are those of matrix A + BoF together with those of matrix
A+ HCs, both matrices being stable by construction.

Now, let o, (resp. 1;), ¢ = 6,7 be the state (resp. output) variables of the two
systems M (s) and Pja(s), taken in their order of appearance. If ¥2 and v denote
the output and input variables of system T5(s), respectively, then such a system is
described by (recall eq. (5.157))

$6 = (A + B2F)ps + Baro
M(s) =
(5) { ne = Fe + 12
_ ) ¢7=Apr+ Bane
Prals) = { nr = Cipr + Dizme

U2 =17
Letting &5 := g — 7, it is easy to verify that
é5 = A65

and that a realization of the transfer function T5(s) can be built up by exploiting the
state variables g only. The dynamic matrix of such a realization is A+ BoF', so that
Ty(s) € RHy too.

Finally, let ¢; (resp. 7;), i = 8,9 be the state (resp. output) variables of the two
systems Py1(s) and M(s), taken in their order of appearance. If 93 and v3 denote
the output and input variables of system T3(s), respectively, then such a system is
described by (recall eq. (5.158))

_ | ¢8=Aps+ By
Pans) = { ns = Cops + Darvs

- P9 = (A+ HC2)pg + Hng
M =
(s) { no = Capg + 18
U3 =19

Letting g := g + @y, it is easy to verify that

e = (A+ HCs)eg + (By + HDoy)vs

V3 = Cage + Da1v3
so that a realization of the transfer function T5(s) is characterized the dynamic matrix
A+ HC5. Hence, T3(s) € RH.

As for the expression of T'(z,w;s), first observe that, in view of eqs. (5.153)-
(5.155), it is

[T~ K(s)Paa(s)] ! = [T = [X(s) - Q)N (s)) -



186 CHAPTER 5. RH., CONTROL

A

(s
QU (M(s) ~ NN ()| M}
M(5)[X(s) —~ Q)N (s)

and

so that ) )
[ — K(s)Pa2(s)] T K (s) = M(s)[Y (5) — Q(s)M(5)]
Then, by recalling also egs. (5.152),(5.156)-(5.158), it follows

T(z,w; s) = Pi1(s) + Pra(s)[I — K(s)Pa2(s)] " K(s)Pai(s)

) (
= Pi1(s) + Pra(s)M(s)[Y (s) — Q(s)M(s)]Pa1(s)
= Pi1(s) + Pra(s)M(5)Y (s)Pay (s) —
~Pyy(s)M(s)Q(s)M(s) Pa(s)
=Ti(s) — T(s)Q(s)T3(s)

Y (s)N(s)M™ <>+Q<s>M<s>N<s)M-1<s>}}”
= {[X(s) - QN [X(5)M(5) = V()N (s)-
(

)

(]

In view of this theorem the problem of designing a RH., admissible controller
K (s) for system P(s) such that ||T(z, w; s)|jeo < v is apparently equivalent to that of
finding a function Q(s) € RH, such that ||T1(s) — Ta(s)Q(8)T5(s) ]l < 7v. Indeed,
it will be shown that, under a suitable assumption, a function Q°(s) € RH. can be
found which minimizes such a norm: the so called model matching problem is solved
in this way and the original control problem has got an optimal answer (in the sense

of making as small as possible |T(z, w; s)||0) at the same time.

The following simple examples show that solving the model matching problem is
not trivial in general, as there are cases where the solution exists and other ones where

it does not.
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Example 5.11 Let

s—1

s+1

while T1(s) is any element of RH. Then it follows, for any Q(s) € RHo (recall Definition
2.24),

Tg(S) =1 3 TQ(S) =

[T1(s) — T2()Q(s)lloo > [T1(1) — T2(1)Q(1)| = [T1(1)]
so that

o1, IT3(8) = To(s)QUs) | 1= a2 [T3()]

Chosen T _—
Qo(s) = 1(8%2—(8)1( )

it is easy to verify that Q°(s) € RHx {(observe that the zero of T>(s) is canceled out because
the numerator of Q°(s) vanishes for s = 1). On the other side,

Ti(s) — Ta(s)Q"(s) = Ta(1)
and therefore a < [|[T1(s) — T2(s)Q°(8) || = |T1(1)] £ @, so that

|1 T1(s) = To()Q°(5) ]l = @

Example 5.12 Let T3(s) =1 and

1 1
Ti(s) = panE To(s) = Gr1)2
Define +1
8
e = s 1
Q:(s) p—— 0<ex
so that

€s
(s+1)(es+1)

The diagram of |T1(jw) — T2(jw)Q:(jw)| lies always below . Therefore, it is ||T1(s) —
T2(5)Q:(8)]leo < &, s0 that

Ti(s) — To(s)Qe(s) =

inf [|73(s) — T2(s)Qe (s)lloo = 0

This value of the norm is attained in correspondence of a Q¢(s) which is such that 71(s) —
T2(s)Q2(s) = 0, namely Q2(s) = s+ 1 ¢ RHe. m]

The result to be presented in the next theorem makes reference to two functions
f(s) and g(s) which are derived from a generic scalar function F'(s) € RLs in the
following way. Let F,(s), Fs(s), Feo be such that

F(s) = Fa(s) + Fu(s) + Fx (5.162)

where
F,(s) € RHY, F.(s)€ RH,, F, := lim F(s) (5.163)
A|B
Clo

Further, let

Fo(s) = (5.164)
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and suppose that the triple (A, B, C) constitutes a minimal realization of F,,(s). Then,
denote by P, > 0 and P, > 0 the unique solutions (recall Lemma C.1) of the two
Lyapunov equations {in the unknown P)

0=-PA — AP + BB’ (5.165)
0=—-PA-A'P+C'C (5.166)

respectively. Moreover, let A2, be the maximum eigenvalue of the matrix P, P, (recall
Lemma B.10 and the fact that all the eigenvalues of this matrix are different from 0,
since it is nonsingular) and § a corresponding eigenvector, so that

P,P.3 = )\%\46 , B#0 (5167)
and define
= M\ P (5.168)
Now the following functions
£(s) = L T (5.169)
T : ’

g(s) = [%%] € RHj (5.170)

can be associated with the scalar function F(s) € RLy,. The two functions defined
by eqgs. (5.169),(5.170) are endowed with the property stated in the following lemma,
where '~ and ', are the Hankel operator with symbol F~ and its adjoint, respec-
tively (recall Definition 2.34 and Lemma 2.27).

Lemma 5.2 Let F(s) € RLy be a scalar function and f(s) € RHy and g(s) € RHy-
be two functions derived from F(s) according to eqs. (5.162)-(5.170). Then

Lr~g(s) = Am f(s)
w~f(8) = Amg(s)

Proof From eq. (5.165) it follows

C(sI — A)"Y(P.A' + Pps — sP, + AP,)(s] + A")™18 =
=C(sI —A)"'BB/(sI + A')"'8

Therefore, by taking into account egs. (5.164)-(5.169), one obtains

C(sI — A)"YP(sT + A') — (s — A)P)(s] + A')"'B =
= Fo(s)f(s)

from which it follows
C(sI — A 'P,B—CP.(sI + A)7'8 = F,(s)f(s) (5.171)
On the other hand, eq. (5.168) is equivalent to

PT/BZ/\MX
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so that, by recalling egs. (5.170),(5.171), it results
Aug(s) — CPr(sI + A') '8 = Fu(s) f(s)

If the antistable orthogonal projection operator II, is applied to both sides of this
equation (recall Definitions 2.32 - 2.34, Remark 2.25 and Lemmas 2.26, 2.27) one
obtains

Arg(s) = Tpp f(s) = T~ f(5)
In a similar way, from eq. (5.166) it follows

B'(sI+ A)) " YA'Py + 5P, — Pos + Py A) (s — A) "'y =
= B'(s] + A) " 1C'C(sI — A)~1

so that, by taking into account eqs. (5.164), (5.167), (5.168), (5.170), one has
B'P,(sI — A 'x — B'(sI + A) '8 y = —F(s)g(s)
In view of eq. (5.169), if the stable orthogonal projection operator II, is applied

to both sides of this equation (recall Definitions 2.32 - 2.34 and Remark 2.25), one
obtains

Avf(s) =Try f(s) =Tp~f(s)

O

Theorem 5.6 Let F(s) € RLy, be a given scalar function. Then, the function

ITF~llg(s)
X(s):=F(s) — ———+ 5.172
(5) 1= Ple) - L8 (5172)
is such that
. o — ] .
1F(s) = X5l = | nfF(5) = Xl

In eq. (5.172) the two functions f(s) and g(s) are specified by eqs. (5.162)-(5.170).

Proof First observe that, thanks to Nehari’s theorem (Theorem 2.19), there exists a
function X°(s) € RH,, such that |I'p~| = ||[F(s) — X°(5)|lc- Then, define h(s) :=
[F(s) — X°(s)]f(s) and notice that h(s) € RL2, because F(s) — X°(s) € RLs and
f(s) € RHy. Tt follows

1h(s) = T~ f(8)]13 = < h(s) = T~ f(s), hls) = T~ f(s) >
= < h(s),h(s) >+ < T~ f(8), 5~ f(s) > —
=2 < h(s), [~ f(s5) >

By taking into account that T'%.. f(s) € RH3, X°(s)f(s) € RHy and Lemma 2.27,
one obtains

< h(s),Tp~f(s) > = < I h(s),Ti~ f(s) >
= <IL[F (S)—X"( Nf(s), Th~ f(5) >
= <IF(s)f(s), T~ f(s) >
= <Ip~f(s),Tp~f ()>
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Therefore,

Ih(s) = Th~ f(s)13 = < h(s), h(s) > = < T~ f(5), Tion f () >
= [I[F(s) = X°(s)F ()15 -
— < f(8), Tp~Te~ f(s) >
= [|[F(s) = X ()1 F ()13 = A1 £ ()13 (5.173)

since, by Lemma 5.2, Tp~T%~ f(s) = A3, f(s). In view of Theorem 2.12 it follows

IF(s) = X°()] ()3 < 1 (s) = X() 2 F ()12

and therefore from eq. (5.173) one has

Ih(s) = Ti~ F()1Z < [1F(s) = X°(s)]1% ~ A3g] I £ (8)II3 = O

because Ay = |[[Tp~| = ||[F(s) — X°(s)||ec (recall Remark 2.27). Thus, h(s) =
I't.~ f(s) and, thanks to Lemma 5.2, [F(s) — X°(s)]f(s) = h(s) = Amg(s), which
implies, in turn,

X°(s) = F(s) — “Jf é()s) = F(s) -

ICe~lg(s)
f(s)

Example 5.13 Let

Then

and the solutions of eqs. (5.165), (5.166) are P. = (2a)™* and P, = ¢*(2a)™!, respectively.
Therefore, Anr = ||(22) 7, B =1, x = |¢|~*. From eqgs. (5.169) and (5.170) one obtains

f8) = — | gls) = —S— ||

s+a s—a

so that

T 2
O

Theorem 5.7 Let T;(s) € RHy,i = 1,2, be two given scalar functions. If T5(s) does
not have zeros on the extended imaginary axis, then there exists a function Q°(s) €
RH, such that

ITi(5) - ToQ () lew = 8t IT3(5) = Ta(5)Q(s) e
Proof Let T5;(s) € RHy and Ts,(s) € RHy be two functions, inner and outer,
respectively, such that To(s) = T2;(s)T2.(s) (recall Theorem 2.10) and notice that,
being Th(jw) # 0, 0 < w < 00, it is Ty,'(s) € RHu. Then, taking into account the
identity T5;(s)T2:(s) = I, one obtains

IT2(s) = T2(8)Q(8)lloo = 1 T2i(8) 15" (8)T1(8) — T20(5)Q(5)]
= 175" (5)T1(5) — Tao(5)Q(5)
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Define F(s) := Ty, " (s)T1(s) and X(s) := T20(s)Q(s). Then the problem of minimizing
IE(s) — X(8)]|oc with respect to X(s) € RHy is equivalent to that of minimizing
1T,  (8)T1(8) — T20(5)Q(5)|loo With respect to Q(s) € RHc, since, once the optimal
X°(s) € RHy, has been found, it is

Q°(s) = Ty, () X°(s) € RHoo
Therefore, the theorem follows from Theorem 5.6. a

Remark 5.32 The request that the function T%(s) has no zeros on the extended imaginary
axis is a sufficient condition only. Indeed, consider the case in which

1

TQ(S) = m

while T} (s) is an element of RHy. By defining 77 := lim;_oo 71(s), one has
[ T3(s) = T2(8)Q(s)lloo = lim [|Ta(s) — Ta(s)Q(s)|

> |71, V Q(s) € RHuo

so that A
ot ITi(s) = To(8)Q(8) oo = a2 |T3|
Chosen . A
A I Ti(s) — T
Q(s) := YO

it is easy to verify that such a function belongs to RH and
a < |T1(s) = Ta(s)Q(s)lloe = 11| <
which implies Q(s) = Q°(s). O
Remark 5.33 In view of the above results a procedure for the computation of Q°(s) can
be established as follows.
1) Find a double coprime factorization in RHoo of Paa(s), thus getting M(s), M(s), Y (s).

2) Compute Ti(s), i = 1,2, 3 from eqs.(5.156)-(5.158). If no zero of Ty(s) := Ta(s)Ts(s)
lies on the complete imaginary axis, go to point 3) below, otherwise stop.

3) Find an inner-outer factorization of T4(s), so that T4(s) = T4:(8)Tao(s).

4) Find the antistable and strictly proper part Fy(s) of F(s) := T, (s)T1(s).

5) Find a minimal realization (A, B, C) of Fy(s).

6) Solve the Lyapunov equations (5.165) and (5.166).

) Find the maximum eigenvalue A\, of P, P, and f(s) and g(s) from eqs. (5.167)-(5.170).
8) Compute X°(s) (eq. (5.172)).

) Set Q°(s) = T (5)X ().

Example 5.14 Consider the control system shown in fig. 5.47, where
s—1
(s—2)(s+1)

A controller K(s) is sought which stabilizes the system corresponding to the widest possible
class of perturbations A(s) of the form

Gn(s) =

A(s) € {A(s) | A(s) € RHoo , ||A(S)|leo < a}
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A(s) -

Figure 5.47: A control system with additive perturbations

that is, corresponding to the maximum possible value of the scalar a. Letting

0 I
P(s) := I: I Guls) ]

the problem can be solved, thanks to the here presented results, by following the procedure
outlined in Remark 5.33. If the adopted (minimal) realization of Gn(s) is

0 1] 0
Gn(s) = 2 1 L | :=%(A,,B.,C.,0)
-1 1|0

and the chosen matrices F' and H are
F=[-3 -3, H=[-3 —6

(observe that A. + B.F and A; + HC, are stable), one obtains

R s —2 N 27
= = Y = —
Ms) = Ni() = 222 ¥ = -2
Further, from eqgs. (5.156)-(5.158) it results
§—2 s—2
Ti(s) = —27(8 1 To(s) = Ts(s) = o
so that )
(s-2)
Ta(s) = —%
a(s) e

The function T4(s) has no zeros on the complete imaginary axis. Therefore, starting from
its inner-outer factorization given by

_ (s —2)? B (s+2)2

Tul) = 3oz » Tl = Gy
it follows )
F(s) = —a7— 5+

(s +1)%(s - 2)
A realization of the antistable part F,(s) of F(s) is

28
Fo(s) = [_46*7]
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so that, from eqs. (5.165)-(5.170), one obtains

4
P.=16, P,=9, \y=12, 8=1, X=3

8 8
o) =0 s =——
Then, from eq. (5.172) it follows
o (s+2)(s+7/4)
X =12—————"
(s) G1i)
which implies
o s+7/4
=12
Q) = 12211

Finally, from eq. (5.155) and by taking into account what has been shown in the proof of
Theorem 3.4, one obtains

s+1

s—7

Therefore, the widest class of perturbations corresponding to which stability is guaranteed
is characterized by the value oo = )‘X41 = 1/12. Compare this conclusion with the one given
in Example 5.7. ]

K°(s) = —12

5.7 Notes and references

Since the pioneering work of Zames [64], a great deal of attention has been devoted
to robust control and related topics. The material collected in Sections 5.1 and 5.2
partly concerns classical issues of control theory suitably revisited so as to account
for the basic instances of robustness. In particular, reference has been made to the
books of Francis [19], Doyle et al. [16] and Maciejowski [43]. Further reading on
related topics are Ackermann [1], Doyle [13] and Stein and Doyle [57]. No mention
has been done to the somehow more realistic case of structured plant perturbations.
The interested readers are referred to the papers by Doyle et al. [18], Doyle [14] and
[15]. Sections 5.3, 5.4 are mainly based on the paper by Doyle et al. [17]. Again, the
results concerning the parametrization of the admissible controllers follow the lines
traced in the paper by Mita et al. [44]. More on the connections between differential
games and H, theory can be found in the book by Basar and Bernhard [2]. The
robust stabilization problem of Remark 5.11 has been previously faced by Barmish
[3], Khargonekar et al. [31] and Haddad and Bernstein [27]. The design of RH> filters
in the presence of uncertainties (as in Remark 5.19) has been studied by Petersen and
McFarlane [51] and Bolzern et al. [8], whereas the same problem in the RH,, context
was tackled by De Souza et al. [12] and Fu et al. [20]. The paper by Safonov and
Limebeer [56] has been exploited in writing down Remark 5.24 in Section 5.5. The
rest of the section still relies on the paper by Doyle et al. [17]. A recent book on the
H, control problem is that by Stoorvogel [59] who has also explored the so called
singular problem [58]. Finally, Section 5.6 deeply exploits the content of the book by
Francis [19]. The here neglected approaches which rely on the gap metric and the
polynomial framework are exploited in the paper by Georgiou and Smith [21] and by
Kwakernaak [36].
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Chapter 6

Nonclassical Problems in RH,
and RH o

6.1 Introduction

This chapter introduces nonclassical problems in RH; and RH, spaces which, roughly
speaking, can not be solved in general by the machinery provided in the previous chap-
ters. For a given stable transfer function the RH, norm is a measure of the level of
a fixed input disturbance present in the output. The minimization of the RHs norm
preserves the system against external disturbances. On the other hand, the RH,
norm of the same transfer function kept bounded above by a certain prescribed value
~ > 0, imposes to the system a stable behavior against unmodeled dynamics with
RH,, norm less than 1/v. The key observation is that RH> and RH,, norms com-
pete one with other. Indeed, when v — oo the central RH, controller approaches
the optimal RH> controller, meaning that a level v < oo can be imposed only at
the expense of some performance level. Being so, it is in many cases important to
determine a controller which, in some sense, expresses a desired tradeoff between both
norms. This characterizes the so called mixed RHy/RH,, optimal control problem.
Its solution can not be addressed by means of classical methods based on Riccati
equation solvers. Accordingly, our attention has to be moved to other numerical tools
as for instance convex programming methods discussed in Appendix L.

6.2 Parameter Space Optimization

In this section, basic control synthesis problems involving stability, RH> and RH,
optimization are analyzed in the parameter space generated by the free elements of
the feedback law. The main idea is to convert such nonconvex problems into convex
ones in order to determine their global solutions by means of very powerful numeric
procedures. First of all we need to introduce some concepts and definitions which are
also discussed in Appendix H.

Definition 6.1 (Convex sets) A set Q in R™*™ is convex if V X1, X2 € Q the point
X =aX1+ (1 —a)X2 €0 for every a € [0, 1]. O



196 CHAPTER 6. NONCLASSICAL PROBLEMS IN RHy AND RH ,

Definition 6.2 (Convex functions) A function f(-) € R defined in a convez set
is convezr if ¥V X1,X0 € Q and X = aX; + (1 — @)X there holds f(X) < af(Xy) +
(1 —a)f(X2) for every o € [0, 1]. O

There is another characterization of convexity which is in many instances simpler to
apply. A real valued function f{-) defined in a convex set 2 C R™*™ is convex if and
only if for each X € Q there exists a matrix Ag of appropriate dimension such that

HX) = f(Xo)+ < Ao, X — Xo > (6.1)

for all X € Q. In the above inequality (6.1) the inner product of matrices is defined
by < A, X >:= trace[A’X| which induces the Frobenius norm. The set Jf(Xj) of all
matrices Ag satisfying (6.1) is called the subdifferential of f(-) at X = Xg. If f(-) is
differentiable at X = X, then Ag = Vf(Xy) € 0f(Xo) is unique.

Convexity is a key concept because any relative minimum of a convex programming
problem formulated as to minimize f(X) over a closed convex subset of (2 is a global
minimum. Additionally, given a convex set 2 and a point Xo € €2, it is always
possible to determine an hyperplane which separates Xy from €. The same result can
be generalized to cope with Xy in the boundary of €.

When dealing with linear system stability and optimization, one of the most im-
portant sets to be handled is P, composed by all square, real, symmetric and positive
semidefinite matrices with fixed and know dimension. Naturally, P is a subset of S,
the set of all real symmetric matrices with the same dimension and P is a convex set.
To show this, let us recall that X € P if and only if for any vector z of appropriate
dimension '’ Xz > 0. Hence, for every X1, X5 € P, the convex combination of them
satisfies

¥ Xr =o' X1z + (1 — )z’ Xz

for all & € [0, 1] implying that X € P. The convexity of P follows from Definition
6.1. This result is a particular case of a more general one given in the next lemma.

Lemma 6.1 Suppose the matriz function A(X) is affine and its range is contained
in §. The set of all matrices X such that A(X) is positive semidefinite is convez.

Proof Since A(X) is affine, for all & € [0, 1] it follows that the convex combination
X of arbitrary matrices X1, Xo satisfies

AX) = aA(X)) + (1 — @) A(X2) (6.2)

Using the fact that the range of A(-) is a subset of S, then A(X) > 0 is equivalent to
' A(X)zx > 0 for all vectors z of compatible dimension. The above equality yields

7T A(X)z = ax’ A(X1)z + (1 — o)’ A(X2)z (6.3)
and so, A(X) > 0 whenever A(X;) > 0 and A(X3) > 0, proving thus the lemma
proposed. ]

Remark 6.1 Lemma 6.1 says that the set of all matrices X such that A(X) € P is convex.
In particular, the choice A(X) = X shows once again that P is convex. Under the same
assumptions of Lemma 6.1, the set of all matrices X such that A(X) < 0 is also convex.
The real valued function f(X) defined as

F(X) = max AACX)]
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with A(X) affine and with range in S is convex as well. To show this, considering X as a
convex combination of arbitrary Xi, X2, the conclusion is that

2 A(X)z
F(X) = IB;%()){ ki
< amaxiw + (l—oz)maxgE’A(,iXQ)ﬂlj
z#0 T x#0 r'x
< af(X1) + (1 -a)f(Xz)
holds for all & € [0, 1]. O

Remark 6.2 It is important to keep clear that the range of A(X) being a subset of S is
essential to get the above result. In fact, consider A(X) an affine matrix function but with
its range not included in §. This means that A(X) is not necessarily symmetric and the set
of all n X n matrices X such that Re[A(A(X))] <0, i=1,---,n is not convex in general.
This can be verified by means of a simple counterexample. For A(X) = X let us take

1 4 1 0
AN IR IR

X =05X1+05X, = [ -2 ]

and

2 -1
It is clear that matrices X, and X, belong to the previously defined set. However, matrix X

which is a convex combination of X; and X does not belong to it. The conclusion is that
the set of all 2 x 2 matrices under consideration is not convex. O

Remark 6.3 Notice that the convex function f(X) introduced in Remark 6.1 is not affine.
It is not difficult to making use of inequality (6.1) for the determination of matrix Ag. As
an example, consider the simplest case where A(X) = X € §. Given Xy € 8 let 29 be
an unitary norm eigenvector associated to its largest eigenvalue. Obviously the equality
Xoxo = f(Xo)zo holds and for all X € § we have

f(X) = max ' Xz

llz|l=1
> X 2o
> f(X0)+ < $0$6,X - X0 >
Comparing this inequality with (6.1) it is apparent that Ag = zoxy. Function f(.) is not
differentiable unless the multiplicity of the maximum eigenvalue of Xg is one. In this case
Ao = zozg € Of(Xo) is the only matrix satisfying (6.1) at X = Xo.
Another important function is f(X) = trace[B’' X ~! B}, defined for all nonsingular X € P.

This function is differentiable and convex. Let us show this by means of inequality (6.1).
Considering arbitrary nonsingular matrices X, Xo € P we have

f(X) = trace|B'X ' B]
= f(Xo)— < Xg'BB'X5', X — Xo > +
+trace[B' Xy (X — Xo) X (X — X0)X, ' B
> f(Xo)+ < —X;'BB'Xy ', X — Xo >
and again Ao = ~ X7 'BB'X;"' € 8f(Xo) is unique. These examples show that inequality

(6.1) is an easy and useful way to characterize convexity of matrix functions.
Given matrices A and Q = Q’, the sets of all matrices X € S such that

AX)=AX+XA+Q<0
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or
AX)=AX+ XA +Q <0

are both convex. This is an immediate consequence of Lemma 6.1. Furthermore, given

matrices A, B and Q@ = Q’, the sets of all matrices X = X’ > 0 and Y such that

B(X,Y)=(A+BY)X +X(A+BY)+Q<0

or
B(X,Y)=(A+BY)X +X(A+BY) +Q <0

are both nonconvex. The second one however can be converted into an equivalent convex
set. Indeed, since X is symmetric and positive definite the change of variables Y := ZX !
provides

AX,Z2)=AX+BZ+XA' +Z' B +Q<0
which is convex because A(X, Z) is jointly affine in the variables X, Z. Finally, the set of
all (X,Y, Z) matrices such that X = X’ > 0 and Y'X 'Y — Z < 0 is convex as well. This

follows immediately from the Schur complement formula (recall Lemma B.14) which states
that this set is equivalent to the set of all (X, Y, Z) matrices such that

X Y
>
X>0, [ vz ] >0
This is one of the most important result to be exhaustively used in the sequel. a

6.2.1 Stabilizing controllers

A convex parametrization of all stabilizing matrix gains of a linear system is provided.
Consider the following linear and time-invariant dynamic system

& = Az + Byu (6.4)

with n states, m inputs and where the state variable is available for feedback. When
dealing with optimal control problems in RH; and RH,, spaces, we have to restrict
our attention to those m X n matrix gains F such that with v = Fz the closed loop
system is stable, that is

FekK.:={FeR™™: A4 B,F stable} (6.5)

The sentence ”A + BoF stable” means that the closed loop system is internally
stable, that is Re[A;(A+ B2F)] <0, i=1,---,n. Since A(F) = A+ ByF is affine
with respect to F' but its range is not in S the conclusion, as discussed before (recall
Remark 6.2) is that the set K, is not convex in general. Any optimal control problem
formulated in the parameter space generated by the (free) elements of F' and having
K. as the feasible set is not convex. At most only local optimal solutions can be
numerically determined by the machinery available in the literature to date. The fact
that the set X, is not convex, introduces one of the major difficulties to be faced in
this section.

To circumvent this difficulty let us proceed as follows. Define the extended p X p
and p x m matrices ( p:=n+m)

Mczz[gl %],Nc:z[ﬂ (6.6)

where the null space of N/, is spanned by all v € RP such that N/v = 0 or equivalently
by all vectors in RP having the form v = {2’ 0] with z € R™ arbitrary. Then, it is
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apparent that the set AV, of vectors v in the null space of N/ with ||v|| = 1 equals the

set of all v = [¢/ 0] with # € R"™ and |z|| = 1. Define also the p X p symmetric
matrices W and Q). partitioned as
_ | W W _ | Qe O
W.—[WQ, WS},QC._[ A (6.7)

where in both matrices, the (1, 1) block has dimension n x n.
Theorem 6.1 Assume Q1. is a positive definite matriz and consider the set
Coo={W : W>0, VO W) <0, Vve N} (6.8)
where ©.(W) := MW + WM.+ Q.. The following hold
a) C. 1s a conver set.
b) Each W € C, is such that Wy > 0.
¢) Ke={WiW; ' : WeCl}.

Proof Each part of the theorem is proved separately. Notice that W is symmetric
and the matrix valued function O.(-) is affine.

Point a) Since the empty set is convex, let us proceed by considering X; and X,
two arbitrary matrices belonging to C,. Taking X = aX; 4+ (1 — )X with « € [0, 1]
we first notice that X > 0 since the set of all positive semidefinite matrices is convex.
Furthermore, taking into account that the matrix valued function ©.(X) is affine we
get

VO X ) = av'O(X1)v + (1 — a)v'O.(X2)v <0
for all v € N.. Consequently X € (..

Point b) Let us prove this point by contradiction. Assume for some W € C, there
exists © # 0 € R" such that Wix = 0. Since W > 0, using the partitioning (6.7) we
must have Wiz = 0. On the other hand W € C, and v = [z’ 0] € N, imply that

0> 0. (W)
> (AW + W1 A"+ BaWy + WaBy + Qi) @
Z lelcx
which is an impossibility because (1. > 0.
Point ¢) The proof of this part is done by construction. First assume K. # 0,
take F' € K. and recall that @Q;. is positive definite. From the Extended Lyapunov
lemma, (see Appendix C), there exists a symmetric positive definite solution to the

linear equation
(A4 ByF)P+ P(A+ BoF) + Q1. =0

Consequently, choosing

w:[ P PF,}

FP FPF'

it is readily seen that such a matrix W is feasible, that is W € C, and WQ’Wf1 =
FPP~! = F. Conversely, assume C, # () and take W € C.. From point b) we already
know that W; > 0 and Vv € N, yields
0> 0. (W)
>’ (AWy + Wi A’ + BoWg + WaBh + Qi) x
> [(A+ BoWoWi YWy + Wi(A+ BoWyW Y + Qre] = (6.9)
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-
) oKe | S C
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P PF ]

W= [ FP FPF’

Figure 6.1: Relationship between sets K. and C,

The vector z in the third inequality of (6.9) being arbitrary implies that F = WiW; ! €
K¢. In fact, assume by contradiction that there exist an eigenvalue A and an eigen-
vector x of matrix A+ BoWiW, ! such that Re(\) > 0 and ||z|| = 1. From inequality
(6.9) it follows that 2Re(A)z~ Wiz + 2~ Q1.2 < 0 which contradicts the assumption
that Q1. is positive definite. The proof is concluded because, from the above, if one
of the sets K. or C. is empty then both are empty. a

Figure 6.1 gives an interpretation of this result. Point ¢) of Theorem 6.1 provides
a nonlinear mapping namely WiW~ ! which generates the set K. from all matrices W
in the convex domain C,.. In some sense, the nonconvexity involved has been isolated
in the nonlinearity WQ’Wl_l. Furthermore, notice that for V v € N, the quantity
1v'0.(W)v depends only upon the blocks W; and W5 of matrix W. Consequently for
given Wi and W5 such that v/0.(W)v <0, Vwve N, it is always possible to select
W3 > WiW, W, (recall Appendix B) in order to have W > 0 and W € C.. This
degree of freedom will be important for solving optimal control problems in RH» and
RH,, spaces.

Remark 6.4 From Theorem 6.1 it is clear that the pair (A, Bs) is stabilizable if and only
if C. # ®. This follows from the fact that when W varies in C. then all stabilizing state
feedback gains are generated from F' = WQ’WI_I. If such a matrix does not exist, it is clear
that C. = 0. O

Let us now move our attention to the output feedback case. The linear system to
be dealt with is

& = Az + Bau (6.10)
y=Cor (6.11)

with n states, m inputs and r outputs. The controller structure is given by

§=(A+BF){+ L(C2¢ — y) (6.12)
u=F¢ (6.13)
where both gains F and L have to be determined in order to assure the closed loop
connection of the system and controller is internally stable. Simple algebraic ma-

nipulations (recall Section 4.1 and the separation property) bring to light that the
dynamic matrix Ap of the resulting system satisfies

det[s] — Ap| = det[s] — (A + BoF)|det[s] — (A + LCs)] (6.14)
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Hence, as far as stability is concerned, the determination of both gains which defines
completely the dynamic controller (6.12) - (6.13) have to be such that F' € K. and

LeKs:={LeR"™ :A+LC, stable} (6.15)

However, keeping in mind that the eigenvalues of any matrix and its transpose are
the same, all elements of K¢ can be generated by the dual version of Theorem 6.1.
Indeed, following (6.6) let us define the ¢ x ¢ and ¢ x r extended matrices (¢ := n+r)
namely,

M}c::[c“}2 8],Nf:=[?] (6.16)

It is clear that the null space of NV JQ spanned by all vectors v € R? such that N j’cv =0,
exhibits again the structure pointed out before, that is v = [z’ 0]’ with x € R™. The
set Ny is composed by all vectors v € R? in the null space of N J’c with unitary norm.
Partitioned accordingly to the dimensions of the plant state and output vectors, the
symmetric matrices

V::[“g, %},Qf::[%f 8] (6.17)

are on the basis for the next result, dual of the one provided in Theorem 6.1.
Theorem 6.2 Assume Q15 is a positive definite matriz and consider the set
Cr:={V : V>0, vOpV)v<0, YoeNs} (6.18)
where O (V) := M}V + V My + Q5. The following hold
a) Cs is a convez set.
b) Fach V € Cy is such that Vi > 0.
o) Ky ={V{'Va : Ve€Cs}.

Remark 6.5 Form Theorem 6.2 it is clear that the pair (A, Cs) is detectable if and only
if C¢ # 0. This is the dual of the property discussed in Remark 6.4. O

Matrices F and L which define a stabilizing controller are thus determined from
completely decoupled convex sets. This is possible because the dimension of the dy-
namic controller (6.12) - (6.13) equals the system dimension. The controller structure
is based on the internal model of the plant and as expected, the error dynamics
g := £ — x is completely defined by the poles of matrix A + LC5 and so independent
upon the choice of ' € K.. For this reason, the controller (6.12) - (6.13) is called
observer-based controller and, as will be seen in the next sections, it plays a central
role in nonclassical control design.

6.2.2 RH, control design

Control design problems in RHy space have been studied in Chapter 4. The standard
problem, divided in three related topics has been solved. The main purpose of this
section is to analyze once again the same problems but in the context of convex anal-
ysis. Under the same assumptions introduced in Chapter 4 it is possible to show that
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PE(S)

F

Figure 6.2: The state feedback control system

the standard problem in RH5 can be converted to an equivalent convex programming
problem.

Before giving an alternate solution to the Full information, Output estimation and
Partial information problems, let us consider the following linear system

& = Az + Biw + Bou (6.19)
z=Ciz + Disu (620)
y==z (6.21)

where, as indicated, the whole state vector is available for feedback. The structure of
controller is simply a static state feedback gain so that

u=Fz (6.22)

Calling Pg(s) the transfer function of (6.19) - (6.21), the feedback system is depicted
in fig. 6.2. Any state feedback gain matrix F' € K, is called feasible. For any feasible
gain, the transfer function T'(z,w;s) belongs to RH3 and its norm can be evaluated
as being

IT(z,w; 8)[3 = I(C1 + D12F)[sI — (A + BaF)]| 7' BulJ3
= trace[B] P, Bi]
= trace[(01 + D12F)Pr(01 + DlgF)l]

where P, and P, are the unique solutions of the Lyapunov equations

0= A, Py + PyAec + ClClc (6.23)
0= AP+ P.A. + BB, (6.24)

with A.. == A+ BoF and C,. := C; + D12 F. We are now in position to introduce
the problem to be solved.

Problem 6.1 (State feedback problem in RH,) Find a feasible state feedback gain
F which minimizes | T(z,w; s)||2. In other terms, find the global optimal solution of

the problem
min {||T(z,w;s)ll3 : F € K.}

Before solving this problem we observe that it is a particular case of the Full
information problem treated in Chapter 4 and Assumptions 4.1 - 4.2 of the Full in-
formation problem are again made. That is, i) The pair (A, Bs) is stabilizable and
no eigenvalue of the unobservable part of the pair [(A — ByD{,C1), (I — D12D15)C1]
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lies on the imaginary axis of the complex plane and ii) D{, D12 = I. Under these as-
sumptions, K. #  and the Full information problem and the State feedback problem
shares the same optimal solution because as we already know (recall Theorem 4.1) at
the optimal solution of the former, the gain corresponding to w is zero. The solution
of Problem 6.1 is thus

F°=Fy=—ByP, — D},C, (6.25)

where P; is the symmetric, positive semidefinite and stabilizing solution of the Riccati
equation (in the unknown P)

0= PA.+ ALP -~ PByB,P + C;.Ciec (6.26)

with A, := A~ BoD},Cy and Cy. = (I — D12D7,)C1. With u = Faz the closed loop
minimum performance is given by

min ||7'(z,w; s)||3 = trace[B} P2 B,] (6.27)

Remark 6.6 The solution of the State feedback problem (as well as the Full information
problem) does not depend upon matrix Bi. Indeed, for any matrix B; the optimal feedback
gain F; is completely characterized by means of (6.25) and (6.26) which do not depend of the
aforementioned matrix. This aspect will be important in the sequel. In order to determine
a convex problem equivalent to the State feedback problem it will be necessary to introduce
an additional assumption, namely B, B7 > 0. To see that this can be done with no loss of
generality, consider ByB] > 0 and define B; := [B; /elI] where ¢ is a positive constant.
Obviously matrix B; exhibits the desired property By B} > 0 for any ¢ > 0 chosen. On the
other hand, solving the State feedback problem we get

min ||T(z,w; s)||3 = min ||T(z,w; s)||3 + etrace|Ps]

That is, the minimum value of the modified transfer function differs from the previous one
by an amount of order ¢ which can be made arbitrarily small by a proper choice of this
parameter. a

Remark 6.7 It is important to keep in mind that the set of admissible controllers for the
State feedback and Full information problems in RH, are quite different. In the Full infor-
mation problem we have considered as admissible, any dynamic controller K(s) satisfying
Definition 4.1 and we have proven (recall Theorem 4.1) that the optimal controller is given
by

. 0|0 0
K(s)=Kgi(s) = { ]

0| F, 0

In the State feedback problem stated before, we have considered as admissible only the
static and stabilizing state feedback gains, namely v = Fz such that F' € K.. Since this
structure is a particular case of the former and K%;(s) given above implies that u = Fex
then F' = F» € K. is the optimal solution of the State feedback problem. The proof of
this fact could be done in a different way which as expected is simpler than the proof of
Theorem 4.1. Actually, making use of (6.23) we can restate the State feedback problem as
to determine F € K. and P = P’ > 0 such that

min {trace[Bi PB1] : 0= AP + PAcc + CecCec }

The Lagrangian function associated to this problem (A = A’ being the matrix of Lagrange
multipliers associated to the equality constraint) is

L(F, P,A) = trace[By PBi] + trace[A(AL.P + PAce + CL.Cee))
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So, the necessary conditions for optimality are readily obtained by simple differentiation of
L(-) with respect to the unknown matrices F, P and A, providing

0= AP+ PAce + CoeCc
0= AcA+AAL. + BB}
0 = (F+ D1,C1 + By P)A
A possible solution to this set of nonlinear equations is obtained by first setting F' =
—B4P — D1,C1. This equality together with the first equation imply that P must solve the

Riccati equation
0= PA.+ AP — PByB,P + C{.Cic

Under the previous assumptions, this equation admits a stabilizing solution P = P, yielding
F = F;. Noticing that F» € K, the second equation has a solution with respect to A namely,

o0
Ay = / e(A+32F2)fBlBie(A+32F2) tdt
0

consequently the conclusion is that the triple (F2z, P2, A2) satisfies the necessary conditions
for optimality. It remains to prove that this is in fact the global solution of the proposed
problem. To this end, consider F € K. an arbitrary stabilizing state feedback gain. Simple
algebraic manipulations show that

(A+BoFY(P—P2) + (P —P)(A+ BoF) +(F— B) (F—F2) =0

and (recall Appendix C) so
P=P +/ ATB DY ) (F — Fy)elAtP2tg > p,
0

For u = Fz the closed loop transfer function satisfies

| T(z, w; s)||3 = trace[By PBi]
> trace[B1P2B1] , YF €K,

proving thus that the static matrix gain F, generated by the stabilizing solution P> of the
Riccati equation (6.26) is the global optimum of the State feedback problem indeed. Once
again, it is noticed that its solution does not depend upon matrix Bj.

However, for By given it is in principle possible to determine F' # F5 which equals the
global minimum. In fact, P is equal to P only if F = F, but trace[B]{PBi] may be equal
to trace[B; P, B1] even though F # Fy. Let F € K. satisfying the necessary conditions for
optimality with A > 0 be such that (F — F;)A = 0. Taking into account that

o0
A:/ eATB2E By BlelATBRE) gy
0

together with the relationship between P and P we get the desired result
0 = trace[(F — Fb)'(F — F2)A]
= trace |:/°° B{e(AJrBzF)/t(F — B (F — F)eAtB2Dtp gt
0
= trace[B{(P ~ P2)Bi]

From this it is apparent that the way to prevent this pathological situation is to impose
A > 0,¥F € K.. Thanks to the Extended Lyapunov lemma (recall Appendix C), this is
always verified whenever B1B] > 0, a condition just discussed in the previous remark. O
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It is simple to verify that Problem 6.1 is not convex (recall Appendix H). This
conclusion follows immediately from the fact that the set of admissible gains K. is
not convex. Furthermore, its objective function is not convex as well. Defining the
syminetric matrices

Cy BB, 0
Rc = l: D/112 } [ Cl D12 ] 1 QC = li 10 ! 0 } (628)

the next theorem provides a convex problem equivalent to Problem 6.1.

Theorem 6.3 (State feedback) Assume BB is a positive definite matriz and con-
sider the following convexr programming problem

W := argmin {trace[R.W| : W € C.} (6.29)
Then, F = WiW ' solves Problem 6.1.
Proof It is done in two main steps. First, consider matrix W given by

W L A2 A2F2/
T FQAQ FQAQFQ/

where (recall Remark 6.7) Wy = A; > 0 due to the assumption B;Bj > 0. On the
other hand, it is simple to verify that WiW, ! = Fy, W > 0 and for all v € N,

U/@c(W)’U = .’L"[(A + BQFQ)AQ + AQ(A + BQFQ), + BlBi].’E =0
implying that W € C.. The same matrix, together with (6.28) also provides

(6.30)

i) <m0 1w | 5 ]

12
= trace [(Cl + DlgFg)AQ(Cl -+ DlgFg),]
= trace|B] P2 B1]

min [|T(z, w; s)I3

which means that matrix W is feasible and generates the optimal solution of Problem
6.1. It remains to prove that matrix W is actually the optimal solution of the convex
programming problem (6.29). To this end, let us keep in mind (recall Theorem 6.1)
that all W € C. are such that F = WiW, ! € K. and

1T (2, w; s)||5 = trace [(Cy + D1aWyWy ") P(Cy + DWW Y|
where P, > 0 solves the linear matrix equation
0= (A4 BWiW P, + P.(A+ BoWiW Y + By B]
However, any W € C. is such that W1 > 0 and satisfies the inequality
(A+ BoWiWT YWy + Wi(A+ BaWaW Y + BiB; <0

which enables us to conclude that W7 > P.. Furthermore, W > 0 and W7 > 0 is
equivalent, to W3 > WiW; W, and we finally get

trace[R. W) = min ||T(z, w; s)||3
< T(z,w;9)3
< trace [(C + DWW Hhwh (Cy + D12W2'Wf1)’]
< trace[R.W] — trace[Dyo(Ws — WoW; ' Wa) Dl
< trace[R W]
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trace{R- W] = 1

Figure 6.3: The state feedback control problem

which being true for all feasible W € C. completes the proof. a

Remark 6.8 Theorem 6.3 opens a very attractive way to solve optimal control problems in
RH; spaces by means of many powerful methods available to date. The convexity property
is the key issue to be sure the global solution is always attained. However, in order to
guarantee a selected numerical convex programming method can effectively solve Problem
6.1 it is necessary to prove that the feasible convex set C. is bounded. Unfortunately, this is
not true. In fact, the set C. is a convex and unbounded cone. To show this take any W € C.
and A > 1. Then AW > 0 and Vv € N,

V8. AW = M O(W)v + (1 — N Qv
< M'O(W)w <0

implying that AW € C,.

However, a weaker condition exists to guarantee Problem 6.1 is numerically solvable even
though the feasible set is not bounded. The situation is illustrated in fig. 6.3 where the set C.
is an unbounded cone but the objective function trace[ R.W] has a global and finite optimum

at W = W. This occurs because the convex set
Cop :=Cc N {W : trace[R-W] < u}

is bounded for all z such that trace[R.W] < pu < co. To show that Problem 6.1 has this
property we proceed as follows. By contradiction assume that for some finite p as specified
before, the set C., is unbounded. In this case, thanks to its convexity, there exist W € C.,
and W # 0 such that W 4+ AW € Ccy for A > 0 arbitrarily large. Then, W must satisfy

trace[R.W] = 0
W >0
V(MW + WMo <0, YweN,

Using the structure of the symmetric positive semidefinite matrix R, the first two equa-
tions are equivalent to [C1 D12)W'/% = 0 and all its solutions are also solutions of

(¢ DulW=[C Du][WI V:Vi’]:o

Wy Wi

Making reference to Appendix B, this equation is solvable provided CrcW1 =0 yielding

- I - ,
W= [ e ]Wl[l —CiDy> |
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which replaced in the previous conditions allows us to express them in terms of Wy only,
that is we have to get W) # 0 such that

CicW1 =0
Wy >0
ACW1 + W1Alc <0

Once again making use of a result included in Appendix C, there is no matrix Wi #0
satisfying these conditions provided the pair (—A., C1.)} is detectable. Therefore, to be sure
the set C., is bounded we need to change the assumption i) of the State feedback problem
to i) the pair (A, B2) is stabilizable and no eigenvalue of the unobservable part of the pair
(A, Cre) = [(A— B2D'14,Cy), (I — D12D'3)C1] lies on left part (including the imaginary axis)
of the complex plane. If the detectability assumption is violated then 1141 # ( satisfying the
above conditions may exist. In the example

0
')

this occurs because the pair (—A., Ci.) fails to be detectable. ]

AC:I:; _?]70162[10]7W1:|:8

Example 6.1 To illustrate the geometry of the convex problem introduced in Theorem
6.3, let us consider the system Pg(s) given by

t=z+V2w+u

T

The optimal solution of the State feedback problem is characterized by

1
P=1+4+V2, F2:—(1+\/§), A2=7§

and ||T(z,w; s)||3 = 2(1 + v/2) = 4.82. For this simple example, Problem 6.29 is written as

: W, W
m1n{W1+W3:W1+W2+1§0, [W; Wz}>0}

or in other terms, after using Schur complements

2
min{W1+—3//~2 : W1+W2+1§0, W1>O}
1

The optimal solution is given by (recall the proof of Theorem 6.3)

wo | A MR ) 070 -170
| BAy BAE | T | —1700 402

Figure 6.4 illustrates the feasible set which lies below the line indicated and the set
of points such that the objective function is equal to p = 1,2,3 and 4.82. For the last
value of u = 4.82 the curve is tangent to the feasible region yielding the global minimum
W = W. This example illustrates also that it is possible to eliminate matrix W3 from the
set of variables by setting W3 = W2’W171W2. Of course this can only be done at the expense
of changing a linear objective function to a nonlinear (although convex) objective function
to be minimized. =]
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@" -

-1 N:Q’

Figure 6.4: Feasible region and objective function

Remark 6.9 (Linear matrix inequalities - LMI) The State feedback problem can also
be stated only in terms of Linear matrix inequalities, that is the feasible set is defined by
affine constraints only. The importance of this approach is mainly the standard formulation
of many optimal control problems.

As we already know, the solution of the State feedback problem depends upon the deter-
mination of matrix P, the positive semidefinite stabilizing solution of the Riccati equation
(6.26). To this purpose, we assume that the pair (A., Ci.) is observable to guarantee that
P, > 0 and notice that all P = P’ solving

0> PA.+ AP — PB2 B3P + C1.Che

are such that 0 < P» < P. To show this notice that for any P satisfying this inequality,
there exists Ci. such that C].Ci. > C1.Cic for which the equality holds. Consequently
F = — B} P entails A, + B F stable and for all zop € R™ we get (recall that C1.Dy2 = 0)

zh(P — P)xo = zhPzo — Jmin |(Crc + D12F) [sI — (Ac + BoF)] ™! xOHj

2
> & Pro — H(clc — D1ByP) [sI — (A — BaByP)] o
2

o0

> x6 I:/ e(Ac—BngP) t(é{célc . CiCC1C)€(Ac_BzBQP)tdt:| o
0

>0

and P = P, is the minimum of trace[B} PBi] over all feasible P. Defining X = P~!, the
previous inequality can be rewritten as

A X + XA, — BsBy + XC,.C1.X €0
which after use of the Schur complements is equivalent to

AcX + XA, — BBy, XCl.

A(X) = CrX

Finally, from these calculations we have shown that matrix P, is the optimal global solution
of the problem
min {trace[B{X_lBl] X >0, AX)< O}
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Po(s)

K(s)

Figure 6.5: The output feedback control system

Clearly, the feasible set as well as the objective function are convex (recall Remark 6.3).
Moreover, the feasible set is completely defined by affine functions only. a

Remark 6.10 (Full information) As discussed before, the solution of the Full informa-
tion problem is the same as the solution of the State feedback problem. For the sake of
completeness the solution of the former is now restated. Consider the Problem 4.1 relative
to system (4.10)-(4.14). Under Assumptions 4.1 and 4.2, it has the optimal solution :

a)

min ||T(z,w; )|l = /trace[R.W)
b)
Ko1(s) = 0 0 0 jl
R AT

where matrix W partitioned as indicated in (6.7) solves the convex programming problem
(6.29). a

Now, our attention is moved to the following situation. Consider the linear system
described by

& = Ax + Byw + Bau (6.31)
z = Clx + Dlgu (632)
Yy = CQZE + Dglw (633)

where only the partial information of the system state provided by the measured
output y is available for feedback. Accordingly to the results of Chapter 4, the
controller structure is fixed as being

K(s):= (6.34)

A+ ByF 4+ LCy | —L
F | 0

which as indicated is completely parametrized by matrices F' and L. The rationale
behind the choice of this structure is that the optimal solution of the Partial infor-
mation problem can be obtained by a proper choice of the unknown matrices. With
Py(s) being the transfer function of (6.31)-(6.33), the situation is illustrated by the
block-scheme of fig. 6.5. The feedback connection has a state space realization of the

form .
B
0

EF =

Y| s
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where the indicated matrices are

A _ A+BZF B2F
a 0 A+ LC,

and
. B
B= [ —B; — LD
being thus clear that to preserve internal stability we have to consider only matrices
(F,L) such that F € K. and L € K;. All pairs of matrices with this property are

called feasible and for any feasible pair the transfer function 7'(z, w; s) belongs to RHs
and its norm is easily determined by

:l 3 62[01+D12F Dle]

Tz ws )| = ICls — A1 Bl
= trace[B'P,B]
= trace[CP,C"]

where P, and P, are the unique solutions of the Lyapunov equations associated with
the closed-loop system, that is

0=AP,+P,A+C'C (6.35)
0= AP, + P.A' + BB (6.36)

For all feasible pairs (F, L) the above equations are always solvable thanks to the
stability of matrix A. As far as stability is concerned, the constraints on matrices
F and L are completely decoupled. So, the control problem to be dealt with can be
formulated as follows :

Problem 6.2 (Qutput feedback problem in RH>) Find a pair of feasible matrices
(F, L) which minimizes ||T(z,w; s)||2. In other terms, find the global optimal solution
of problem

min {||T(z,w;s)ll3 : F€K., LeKy}

The difficulty to solve this problem stems from the fact that the objective function
depends in a very unusual way on the unknown matrices. Fortunately, taking into ac-
count that the constraints are decoupled the optimality conditions can be expressed
in terms of two separable subproblems, yielding each one, the optimal matrices F
and L. It should be clear that the Output feedback problem is a particular case
of the Partial information problem introduced in Chapter 4 since the structure of
the controller (6.34) has been fixed and completely described by means of only two
unknown matrices. As a consequence, the Assumptions 4.6 - 4.9 are again consid-
ered, that is i) The pair (A, Bs) is stabilizable and the pair (A, C3) is detectable, ii)
D! 5Dy = I, iii) The eigenvalues of the unobservable and unreachable part of the pairs
[(A - BQDIIQCl) (I — D12D/12)Cl] and [(A - BlDImCQ), Bl (I - D§1D21)] I‘espectively,
do not lie on the imaginary axis and iv) D91 D5, = I. Under these assumptions,
K. # 0, K¢ # 0 and the optimal solution of the proposed problem is provided by
Theorem 4.3, that is

Fe=F, L°=1L, (6.37)

which defines the optimal controller K°(s). With the optimal controller, the minimum
cost is given by

min [|T(z, w; 8) 13 = | Pe(s) L3 + ICLPr(s) 113
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where the transfer functions P.(s) and Py(s) are provided by Theorems 4.1 and 4.2
respectively. At this point, the key observation is that these two transfer functions
defines completely the optimal solution of the problem under consideration and can
be calculated by means of two decoupled problems. Indeed, simple calculations show
that

Pt = | DR L ]
Che — DisByPy | 0
A+ B | Ly
REEENAR
and
A; —TLCLCs | Big — 204Dy
C1Ps(s) = [ . c, 2 { ! 0 2 ]
A+ LGy | By + Ly Doy
I e }

which together with the solution of the State feedback problem, allows us to say that
matrix L° = Lo solves the auxiliary state feedback problem

ICyPr(s)ll5 = Juin {|Cy[s] - (A + LCo)]™H(B1 + LDy)|f3 (6.38)
F

while having obtained matrix L, it is apparent that the remaining unknown matrix
F5 is the optimal solution of another auxiliary state feedback problem

| Pe(s)Lall3 = Pl}éllg (C1 + D1oF)[sI — (A+ BoF)] ™" Loll3 (6.39)

The above solution to the Output feedback problem admits a very important
interpretation. First it can be decomposed in two decoupled problems. The first one
depends only on the system data and can be readily solved. Its solution provides the
gain matrix Lo which is used to define the objective function of the other optimization
problem yielding the matrix gain F5. This decomposition of the Output feedback
problem is on the basis of what is called the Separation Principle which is valid for
many optimal control problems with the controller structure given by (6.34).

Remark 6.11 Following the same lines of Remark 6.7, it is worth noticing that the solution
of the Output feedback problem can also be obtained by means of mathematical programming
arguments. The key observation is that all feasible controllers are constrained to have the
structure (6.34) and the goal is to determine matrices F € K., L € K; and P > 0, such that

min {trace[élf’é] c:0=A'P+PA+ C~’/C~'}
Using A = A’ as the matrix of Lagrange multipliers associated to the equality constraint,
the partial derivatives of
L(F,L, P, A) := trace[B' PB] + trace[A(A'P + PA + C'C)]
give the necessary conditions for optimality
0=AP+PA+C'C
0=AA+AA + BB

oL
0=3F
oo 0L

T oL
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which are simple to be solved from the observation that for F' = F; and L = L, the solution
of the two first conditions are

s | P 0 s | a4+ X2 Il
P_[O YQ]’A_[ —I1» Hz]

where matrices Xo and Y5 are solutions to the Lyapunov equations (in the unknown X and
Y respectively)

0=(A+B:F2)X + X(A+ B:F) + LoLs
0= (A + LQCQ)IY + Y(A + LQCQ) + FzFr_;

At the same point under consideration, the last two partial derivatives of the Lagrangian
with respect to F' and L are given by

oL oc

= _(F— g, —

5p = F—F2)Xe, 7 =Y2(l — L)
showing that the pair (F2, Ly) satisfies the necessary conditions for optimality indeed. The
importance of the calculations introduced here is to make explicit the structure of the matrix
variables P and A at the optimal solution of the Output feedback control problem. This
result will be of great importance in the sequel. O

We already know that the Output feedback problem can be converted in two
decoupled State feedback problems, hence it is not convex. Defining the extended
matrices

!
By €161 0 ] (6.40)

Rf:|:D21j||:Bi D/21]7Qf:|: 0 0
both problems (6.38) and (6.39) can be converted in two convex programming prob-

lems as is indicated in the next theorem.

Theorem 6.4 (Output feedback) The global optimal solution of the Output feed-
back problem can be calculated by means of the following procedure involving convex
programming problems only.

a) Solve the convex programming problem

V := argmin {trace[R;V] : V € (s}, (6.41)

b) Redefine the extended matriz
ViRVt oo
Qee=| 1 P (6.42)

and solve the convex programmang problem

W := argmin {trace[R.W] : W € C.} (6.43)

Then, matrices F = WiW; " and L = V"'V, solve Problem 6.2.

Proof It follows from the decomposition of Problem 6.2 in terms of (6.38) and (6.39).
The result of Theorem 6.3 is used to convert them to equivalent convex programming
problems. O
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Remark 6.12 Remark 6.6 applies to both optimization problems defined in Theorem 6.4.
If matrices C;C; and LI’ are not strictly positive definite then C} and L = V;"'V; have to
be replaced, with no loss of generality, by [C] v/el] and [L \/el| respectively where € is an
arbitrarily small positive parameter. O

Remark 6.13 It is important to discuss under which condition problem (6.41) can be
effectively solved by a chosen convex programming procedure. As discussed in Remark 6.8,
we have to impose conditions assuring that the set

Csu:=Cs N {V : trace[RsV] < u}

is bounded for all . such that trace[R;V]} < p < oo. Following the same reasoning, this
occurs provided the pair (—Ay, Byy) is stabilizable. Therefore to have both sets Cc. and
Cs. bounded, the assumption iii) of the Output feedback problem has to be changed to iii)
The eigenvalues of the unobservable and unreachable part of the pairs [(A — B2 D1,C1) (I —
D12D'3)Ch] and [(A — B1D%,Cs), B1(I — Dj; D2y)] respectively, do not lie on the left part
(including the imaginary axis) of the complex plane. m]

Remark 6.14 It is simple to be verified that in the State feedback problem, the set of
all F € K. such that ||T(z,w;s)||2 is bounded above by a given positive scalar v can be
generated by (recall the definition of the convex set C., in Remark 6.8)

F=W,W[', WeC n {W : trace[R-W] <~*}

Our purpose now is to generalize this result to the Output feedback problem in the case
that the matrix gain L is fixed and equals the optimal value L. = Ly. For any F' € K. the
transfer function T'(z, w; s) belongs to RH> and

| T(z,w; s)||5 = trace[CP.C']
where P, is the solution of the linear equation (6.36). Simple algebraic manipulations show

that

5 | o+ X 12
PT|: _H2 H2 ]

where matrix X is the solution of
0=(A+ ByF)X + X(A+ BoF) + LoL),

It is very interesting to compare this result to the ones given in Remark 6.11. Matrix P, has
the same structure as matrix A and the only difference, due to have considered now F € K.
arbitrary, is restricted to the definition of matrix X above which equals matrix X5 provided
F = F». Using this we also have

1T (z,w; s)||§ = trace[C1I12C1] + trace[(Cy + D12 F)X(C1 + D12FY]
= trace[C1112C1} + [|(C1 + D12 F)[sI —~ (A + BoF)] ' LaDa |3

Finally, taking into account Theorem 6.4 it is clear that
F=W,W"', WeC n {W : trace[R:W] < v* — trace[C111oC1] }

generates all matrices F' such that, in the Output feedback problem, the internal stability is
assured while || T'(z,w; s)||2 is bounded above by a given positive scalar . O

Remark 6.15 (Output estimation) The Output estimation problem as defined in the
Chapter 4 can also be solved by means of convex programming tools. The main observation
is that Assumptions 4.3 - 4.5 of the Output estimation problem imply the assumptions of
the Output feedback problem are all verified with D;2 = I. Furthermore, the assumption
A. = A — By(C) stable yields P, = 0 and the associated stabilizing matrix F» = —C;. Then,
Problem 4.1 relative to system (4.58)-(4.60) has the optimal solution :
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min ||T(z, w; s)|]2 = v/trace[R;V]
b)
A= ByCi+ V(s | —VI'Va
—a |0

Kop(s) =

where matrix V partitioned as indicated in (6.17) solves the convex programming problem
(6.41). o

Remark 6.16 (Partial information) For completeness we give here the solution of the
Partial information problem. The additional result is the value of the objective function
written in terms of matrices provided in Theorem 6.4. Consider the system (4.92)-(4.94)
and Assumptions 4.6 - 4.9 then Problem 4.1 has the following solution :
a) B
min |T(z, w; s)||5 = trace[R; V] + trace[R. W]
b)
KO( ) A+ BQWQIWfl -+ ‘_/1_1‘7202 | —V;1V2
s) = I
0

Wiw!
where matrices W and V solve the convex optimization problems intrdbduced in Theorem 6.4.
Finally, it is important to notice again that these matrices can be determined separately. O

6.2.3 RH., control design

This section presents the convex analysis counterpart of Chapter 5. The State feed-
back and Output feedback control design problems are again addressed but in a slight
different setting. Indeed, not only the set of all controllers which impose to the plant a
certain RH., norm level vy is obtained but we also address the problem of determining
the controller such that v is minimized. Particular attention must be payed to the
fact that in many instances, on the contrary of what has been done in Chapter 5, the
constraints involving RH, norms are not taken strictly:
Let the systermn under consideration be defined as

= Az + Biw + Bou (6.44)
z=Ciz + Diau (645)
y=1x (6.46)

and illustrated in fig. 6.2 for which the controller is simply given by v = Fz where
matrix F € K. is such that T(z,w;s) belongs to RH. For all FF € K., those
that additionally satisfies the constraint ||7(z,w;s)|lcc < 7 with v being a positive
scalar are characterized from the result of Theorem 2.14 which states that there exists
a symmetric and positive semidefinite stabilizing solution of the algebraic Riccati
equation (in the unknown S)

0= SAcoo + AL oS +772SB1B1S + ClosCeoo (6.47)

with Acs := A+ BoF and C.o := C; + D12F. An equivalent condition is obtained
from Theorem 2.15 which requires the existence of a symmetric and positive definite
feasible solution to the Riccati inequality

SAcoo + AL S+~ 28BB{S +C!  Ceoo < 0 (6.48)
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in this case no further stabilizing condition is needed. However, it is a simple matter
to see (recall Remark 2.22) that ||77(z, w;s)||ec = ||T(z, w; $)||cc meaning that the
same set of controllers can also be characterized by the existence of a symmetric
and positive semidefinite stabilizing solution of the algebraic Riccati equation (in the
unknown P)

0= AP+ PA.L +77?PCL,.Ceoc P+ B1 B; (6.49)

or equivalently from Theorem 2.15 the existence of a symmetric and positive definite
feasible solution to the Riccati inequality

AeooP + PAL +v2PC!_C.oP+ BB, <0 (6.50)

As well as, the set of all F' € K. such that additionally ||7(z,w; s)|le < v is com-
pletely characterized from the results of Theorem 2.16 which requires the existence
of symmetric and positive definite feasible solutions to the nonstrict versions of the
Riccati inequalities (6.48) and (6.50). Moreover, in the above Riccati inequalities each
feasible solution are related one to the other by P = ¥2S~!. Although equivalent, to
our purpose, inequality (6.50) or its nonstrict version are more convenient to handle.

With « being an arbitrary and positive scalar (not fixed a priori), the pair (F,~)
is called feasible whenever (F,~) € K. where

Kie={(F,v):Fek., v>0, |[T(z,w; $)]leo <7} (6.51)

which makes clear that the set .. is a subset of K.. Based on our previous discussion,
it is now a fact that the above defined set is not convex. Fortunately it can be
converted to an equivalent convex set as indicated in the next theorem.

Theorem 6.5 Assume B1Bj is a positive definite matriz and consider the set
Coc:={(W,p) : W>0, p>0, V0, W,u)v<0, Vve N} (6.52)
where O.(W, p) := O.(W) + u 'WR.W. The following hold
a) Cy. is a convez set.

b) Each (W, u) € Cyc is such that Wy > 0.

¢) Kye = {(WQ'WI_l, Vi) o (Wop) e CWC}'

Proof Notice that function ©,.(W, i) is not affine but it can be converted to an affine
one by using Schur complements.

Point a) It is clear that we only need to prove that the set of all (W, u) such that
V'O, (W, p)v <0, Vv € M, is convex. Since R, > 0 and all v € N, can be obtained
from v = U.x where U, = [I 0]’ and ||z|| = 1, then this set is equivalently described
as

0> UlO(W)U. + u~ ' UWRY2RY*WU,

which for p > 0, after using of the Schur complement formula becomes

| ve. WU, U'WRL?

AW, 1) = <0
o) RVPwu,  —ur | S

Since A(W, 1) is affine, the convexity of C,. follows directly from Lemma 6.1.
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Point b) Since for each (W, ) € C,. the matrix W is positive semidefinite, if there
exists a nonzero vector x € R™ such that Wiz = 0 then for the same vector Wiz = 0,
yielding Wv = 0 and obviously

0> v'Oyc(W, p)v = || Byz||*

which is an impossibility due to the fact that, by assumption, By B] > 0.

Point ¢) Suppose K. # 0 and the pair (F,~) is feasible for the set K... In this
case, there exists a symmetric and positive definite matrix P satisfying the Riccati
inequality (recall Theorem 2.16)

AP + PA, +~72PC. Ceoo P+ BB} <0
Choosing p = v? and
P PF’
W= [ FP FPF’ }

it is a simple matter to verify that (W, u) € C,. and WiW, ' = F. Conversely, assume
Cye # 0 and consider any (W, u) € C., for all v € N, we get

0> v'0,.(W, p)v
> @' [(A+ BaWoW YWy + Wi(A+ BoWaWi )+
+1 "W (Cr + DWW Y (Cy + DieWyWi YWy + BiBi]z (6.53)

where the factorization is possible since from point b) it has been already proven that
W1 > 0. Choosing P = Wy, F = WiW Vand v = /I, this inequality assures that
F € K, and the existence of a symmetric and positive definite matrix P = W; > 0
satisfying the Riccati inequality

AcwP + PA, +7v ?PC.CoosP+ B1B; <0

Hence, using Theorem 2.16 it is verified that || T(z, w; s)||ec < <y which, from (6.51)
implies that the pair (F,v) = (W4W; ', /i) € K,c. From the above, if one set K.
or Cy is empty both are empty. The proof is then complete. |

The joint convexity of the set C,. with respect to both variables (W, ) is of
great importance. To get some insight on this fact let us consider the problem of
determining the feasible pair (F,~y) which solves

min {y : (F,7) € Ky} (6.54)

This nonconvex problem has not been directly addressed in Chapter 5 although it
is possible, in principle, to get its solution iteratively with the results provided in
Theorem 5.2 (recall the forthcoming Remark 6.20). It is equivalent to the convex
programming problem

min {p @ (W,p) € Cye} (6.55)

Indeed, at the optimal solution the value of y is the minimum which preserves feasi-
bility implying that for v = /i there exists a matrix F' such that (F,7) € K.

Let us now introduce the problem to be dealt with in the sequel. It resembles
the Full information problem treated in Chapter 5. To this end it is first needed to
put in evidence only the feasible pairs (F,~y) such that ||T(z,w;s)|lec < 7, that is all
(F,v) € int K., where

int Kye:={(F,7): Fek., v>0, |T(z,w;$)||oo <7}
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Problem 6.3 (State feedback problem in RH.) Given a scalar v > 0, determine
the conditions for the existence of a state feedback matriz F such that the pair (F,~)
is strictly feasible, that is (F,v) € int KCye.

The Full information problem as stated and solved in Theorem 5.2 is much more
general than its State feedback version. However, the last captures the essential fea-
tures of the former in the sense that the existence of a solution to the Full information
problem, under Assumptions 5.1 - 5.2, is agsured provided there exists a symmetric,
positive semidefinite and stabilizing solution Py, of the Riccati equation (in the un-
known P)

0=PA.+ AP — P(ByB), — v *B|B,)P + C} .C\. (6.56)

As in the proof of Theorem 5.2 let us proceed by assuming that i) The pair [(A —
ByD}5C4), (I — D12D}5)C] is observable and the pair (A, By) is stabilizable and ii)
Diy;Dyp = 1.

Theorem 6.6 (State feedback) Assume matriz B B] is positive definite and let v
a positive scalar be given. There exists a strictly feasible pair (F,~) € int K, if and
only if there exists W such that (W,~?) € int C,., where

int Coe :={(W,pn) : W>0, u>0, vO,.,(W,n)v<0, Yo e N}

Proof Under the assumptions made, the State feedback problem is solvable if and
only if there exists P = P, > 0 solution of the Riccati equation (6.56). However, the
existence of a stabilizing state feedback control such that the transfer function norm
T (2, w; s)||oo is strictly less than «y implies that there exists 0 < 4 < « for which the
State feedback problem is also solvable. Consequently (recall Theorem 5.2) we can
say that there exists a strictly feasible pair (F,~) if and only if there exists a positive
definite and stabilizing solution P, of the Riccati equation (in the unknown P)

0= PA.+ AP~ P(ByB, — 57 2B, B})P + C} Ch.

Hence, the necessity is proved if we are able to calculate a matrix W such that
(W,~+?) € int Cc. Such a matrix is

p—1 p—1 71

A2 _" 09 _" % 0
Woo =" B Pl ELPLIFL

where Fi,, = — B} Py, — D},C1. Actually, it suffices to observe that, from the previous
Riccati equation, the inequality
V'O (Woo, V)0 = (7Pl 2) [ALPs + P Ac—
—Poo(B2By — v *B1B}) Py + C1.C1c] (vPy'x)
=[1- (/9] 1B=ll* <0

holds for all v € A,. The converse follows readily from Theorem 2.15. a

It is interesting to analyze the optimal solution of problem (6.55) on the light
of this result. Suppose the global optimum of (6.55) has been calculated yielding
p = p°. Then, F = WiW; ' and v° = /u® are such that (F,7°) € K,.. On the
other hand, Theorem 6.6 assures that the Riccati equation (6.56) is solvable for any
v > 7° providing thus F, = —B4P,, — D},C which is also strictly feasible, that is
(Fso,v) € int Kye.
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Remark 6.17 The discussion made in Remark 6.6 concerning the assumption on matrix
By, namely, B1B; > 0 is still valid in the present case. Indeed, assume BiB; > 0 and
define B; := [By y/¢I] with € > 0 arbitrarily small. Clearly we now have B; B} > 0 and for
all F € K., it is true that the transfer function T(z, w;$) := Ceoo(SI — Acoo) ™ Bi1 can be
factorized as

T(z,w; —jw)T' (2, w; jw) = Tz, w; —jw)T’ (2, w; jw) + €G(~jw)G'(jw) , YwER
where G(5) 1= Croo (8] — Acoo)™*. The consequence is that

1T (2 w; 8)loo < I1T(2, w3 8)l|oo

and also
IT (2, w; 5) |2 = sup IT" (2, w; jw)®
< sup IT" (2, w; jw)lI* + sup IGGw)II?
ST (2,03 8) 2 + el Ceoo (8T — Acso) Iz

which means that ||T(z,w; 8)]jec < v implies ||T(z, w; 8)}joo < v and both norms differs one
from the other by an amount of order e. a

Remark 6.18 Based on the result of the previous theorem, it is readily seen that if we
want to involve the set int C,c in an optimization problem them it is possible to work with
the approximation

int Cre={(W,p) : W20, p>0, vO,(W,m)v< —€, YveN}

where the scalar € > 0 must be taken sufficiently small. Notice that this is exactly equivalent
to replace matrix B, by matrix [B; 1/el]. The obvious advantage is that in doing this the
above approximation is always a closed convex set. m]

Remark 6.19 Theorem 5.2 makes possible the existence of a state feedback controller
u = Fox called central controller which solves the Full information problem under the
assumptions i) The pair [(A — B2 D1,C1), (I — D12D}2)C1] is detectable and the pair (A, Ba)
is stabilizable and ii) D}, D12 = I. Using mathematical programming arguments only, it can
be obtained as follows. Given v > 0, determine F € K. and P = P’ > 0 such that

min {trace[BiPBi] : 0= Ao P + PAcoo + 7 °PB1BP + CiooCoeoo }

Writing the associated Lagrangian (recall Remark 6.7) with A = A’ being the matrix
of Lagrange multipliers associated to the equality constraint, the necessary conditions for
optimality are

0= AP+ PAcoo + 7 *PB1BIP + Croo Cexo

0 = (Acoo + 7 BiBiP)A + A(Avoo +7 2B1BiP) + B1B;

0 = (F+ D}3Cy + B3P)A
Restricting ourselves to the solutions such that matrix Aceo +7 7281 B} P is stable then with
By B} > 0 we necessarily have A > 0. Solving the last equation for F, the first one yields

F = Fo = —B}P. — D},C; where, under the previous assumptions, P, is the symmetric,
positive semidefinite and stabilizing solution of the Riccati equation (in the unknown P)

0=ALP+ PA. — P(BaBj — 4 2B B})P + C1.Ci.
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Moreover, since A.. = A+ B2 F + 77231 B P calculated for F = Fi,, and P = P, is stable
then B B] > 0 assures that

o>
Avo ;:/ eftect B Blefectdt > 0
0

and consequently (Fu, Poo, Aco) is the unique solution of the necessary conditions for opti-
mality. It remains to verify that it is actually the global solution of the proposed problem .
To show this, let F' € K. be arbitrary which is the same to say that only the first necessary
condition is satisfied for some positive semidefinite and stabilizing matrix P. Some simple
algebraic manipulations gives

0= Ace(P = Poo) + (P — Poo) Ace —
—"3(P — P)BiBi(P — Py) 4 (F — Foo) (F — Fxo)
The stability of matrix A.. together with the result of Lemma C.4 imply that there exists
P — Py, > 0 solution to this Riccati equation so that the objective function attains the global
minimum at P = Py. The problem introduced here deserves an additional interpretation

to be used in the analysis of mixed RH2/RH, optimal control problems. For any F € K.
it is simple to verify that

trace[By PB1] = trace [/ BieAlcwt('y_QPBlB{P + Céchm)eAc‘x’tBldt:l
0

x>
> trace [/ BieACOOtC’éooCcooeA“‘”tBldt}
0
> ||IT(z,w; s)|3

which enables us to say that the central controller actually minimizes an upper bound (and
so provides a sub-optimal solution) to the problem

inf {||T(z,w;s)”§ s Feke, |[T(z,w;8)]leo < 7}

which is a mixed RH,/RH, optimal control design problem to be deeply studied in the
forthcoming section. For the moment notice that when v — oo the mixed problem tends to
the State feedback problem in RH2. The necessary optimality conditions reduce to those of
Remark 6.7. O

Remark 6.20 The central controller can also be used to determine an approximate solu-
tion to the problem

Yopt = 1nf {y : (F,7) € int Ky}
The basic algorithm can be stated as follows. For a given -, > 0 suppose that Ps > 0 is
stabilizing. To make clear the dependence on v of the transfer function T'(z, w; s) when the
central controller is used, it is denoted as Tk (z, w; s).

1} Choose Yo > Yopt (possibly vo = 00).
2) Iterate until convergence vi1 = {|Tk (2, w; 8)||co-

It is immediate to see that this procedure approaches to ~vop: as k goes to infinite since
Yet1 = ||[Tx (2, w; $)||oo < Y, however the speed of convergence may be very slow when -y,
becomes close to Yop:. This feature is numerically illustrated with the system of Example
5.2 for & = 0. The system is

.’EIA$+B1UJ1 +BQU
z=Cix+u

y=x
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where

<[ 4] me 3] e[1] anto

It has been calculated that 1.61 < 7,p: < 1.62 while the first six iterations of the previous
algorithm furnish

{e}o_o = {c0,2.30,2.00,1.88,1.82,1.78,1.76}

The importance of problem (6.55) is now apparent. It is jointly convex on the variables
(W, 1) and so can be solved more efficiently. O

Remark 6.21 It is numerically attractive to get a priori bounds such that Yimin < Yopt <
Ymaz. Indeed, a possible value to Ymas is simply determined from any (F,Vmaz) € Kye, as
for instance F' = F» yields

Ymaz = [|T(2,w; 8)]|oo

The determination of vmin is much more involved. It follows from the factorization

MW + WM, + p '"WRW + Q. = Qe — puM R M, +
+u7 (MR + W)Ree(pMeRZ + W)
> Qe — pM R M

where Rec := R. + el and € > 0. The left hand side of this inequality goes to ©.,.(W, u) as
€ goes to zero then if we set

N2 = lim min {1 :v'(Qe— pMRIM)v <0, Yo €N}

for any p < 72, there exists a vector @ € N, such that ¥'(Q. — pM.Rz.'M/)s > 0 and so
7' Oy (W, 1)t > 0 enabling the final conclusion that (W, u) € Cy. which from Theorem 6.5
is the same to say that there is no F matrix such that the pair (F,v) € K,. for all v < v,
Unfortunately, the calculation involved to get «.. is prohibitive. However, assuming B; of
full column rank, restricting v = [’ 0]' € N, to & = B1(B{B1)™ '€ and defining the matrix
V := (B{B1)"'Bi|A B2] we get

Yoo 2 limmin {u: /(I — VR VIESO, Vg =1}
> lin%min {,u pT < EVRIIVE, V€| = 1}

> lim A, (VYY) o= Y
This limit can be easily calculated numerically and is a valid lower bound to vop: since as
we have shown p = ~2,;, <72, is always infeasible. a

Remark 6.22 The numerical solution of problem (6.55) by means of convex programming
algorithms depends on the boundedness of the feasible set C,.. Following the same lines of
Remark 6.8, we have to analyze the conditions under which, for some g > 0, there exists
(W, 11) € Cye and W # 0 such that W+AW € C,. with A > 0 arbitrarily large. Unfortunately,
the only constraint involving the sub-block W3 imposed by W € Cy. is W5 > WoW~ W,
and so the above conditions are always satisfied for the matrix (other possibilities exist)

< 0 0
consequently, the set C,. is not bounded even though p < co. In order to circumvent this

difficulty we first notice that
Cye C{p:p>0}xCe
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where with no loss of generality (recall Remark 6.21) the unbounded set ¢ > 0 can be
replaced by the bounded one v2,;, < tt < ¥2,4.. Second, we already know that the set C. is
not bounded but the set

Ceg :=Cc N {W : trace[R.-W] < 8}

is bounded for all finite 3 (recall Remark 6.8) provided the pair (—A., Ci.) is detectable.
Under this assumption, the conclusion is that we can always solve an approximate version
of problem (6.55), namely

min {p @ (W,u) € Cye , trace[R-W] < g8}

which has a bounded feasible domain and the optimal solution is arbitrarily close to the
optimal solution of problem (6.55) provided the parameter 3 is chosen appropriately large.
This problem has another interesting and important interpretation for robust control design
to be discussed in the next section. m|

Remark 6.23 (Linear matrix inequalities - LMI) As in the RH, design (recall Re-
mark 6.9), the State feedback problem in RH. can also be stated only in terms of Linear
matrix inequalities. Assuming the pair (A, Cic) is observable, then any P > 0 satisfying
the Riccati inequality

0> AP+ PA. — P(B2By —~v *BB})P + C1.Ch.

assures that with F = —BLP — D},Ci, the closed-loop transfer function is such that
|7 (2, w; 8)||oc < . Defining X = P! and applying the Schur complement formula, the
above inequality turns out to be equivalent to the linear matrix inequality

| AcX 4+ XAL- BBy +4v?BiBl XCi,

AX) CreX 1

<0

On the other hand, from Remark 6.19 it is clear that X = P! is the global solution of
min {trace[B{X_lBl] X >0, AX) < 0}

which is a convex programming problem. Furthermore, it reduces to that of Remark 6.9 as
7 goes to infinity. O

‘We consider now the Partial information problem. Let the linear system be defined
by the standard state space representation

z=Ciz + Digu (658)
Yy = 02.73 + D21w (659)

where the output variable y is available for feedback. The situation is illustrated in
fig. 6.5 where K (s) is the controller transfer function. We call the controller K(s)
strictly feasible if it assures that T'(z, w;s) belongs to RHy and ||T(2,w; 8)|lec < 7-
The so called central controller is then obtained from part b) of Theorem 5.4 with
Q(s) = 0. Notice that the central controller does not exhibits the classical observer-
based structure. Indeed, it is given by

A + BQFoo + ’772B1B1Poo + ZooLooCZOO | “ZooLoo
K(s):= " ‘ 0

(6.60)
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where Caoo := Co + v 2Dq B} Po,. However, the existence of a solution to the Par-
tial information problem depends only upon the existence of a symmetric, positive
semidefinite and stabilizing matrix P, together with the existence of a symmetric,
positive semidefinite and stabilizing matrix II, of the Riccati equation (in the un-
known II)

0 =TA} + A - T(C5C, —y~2C1C)IL + By By (6.61)

satisfying the additional constraint r4(PsIls) < 72. Based on this, the following
problem is stated and solved.

Problem 6.4 (Output feedback problem in RH..) Given a scalar v > 0, deter-

mine the conditions for the existence of a strictly feasible output feedback controller
K(s).

Recall Theorem 5.4 where the complete solution of the Partial information prob-
lem is provided. Here, we consider the following assumptions i) The pair [4 —
By D',C4), (I—D12Dj,)C1] is observable and the pair [(A—B1 D}, Ca), B1(I—D%; D2, )]
is reachable, ii) The pair (A, Bz) is stabilizable and the pair (4, Cs) is detectable and
iii) DigD1s = I and D91 D) = I. The first assumption assures that matrices Puo
and I, are both symmetric, positive definite and stabilizing. Furthermore, it is also
assumed that By Bj and C{C; are positive definite matrices.

Before proceed we need to define the dual version of the convex set Cy, it is

Cop i ={(Vop) : V>0, p>0, vO,5(V,u)v <0, Yo € Ny} (6.62)

where ., ¢(V, ) := ©4(V) + p~'VR;V. Clearly this set is convex as well (recall the
proof of Theorem 6.5).

Theorem 6.7 (Output feedback) Consider the previous assumptions and let v a
positive scalar be given. There exists a strictly feasible controller with transfer function
K(s) if and only if there exist W such that (W,~?) € int Cye, V such that (V,4?) €
int C,s satisfying the convex coupling constraint (W,V,v) € int Z.5, where

Zes :={(W,V,v) : [EYV} VVf ] 20} (6.63)

Proof Under the assumptions made, the Output feedback problem is solvable if and
only if Py, > 0 solves the Riceati equation (6.56), Tl > 0 solves the Riccati equation
(6.61), both with ~ replaced by a suitable 0 < 4 < 7 and r5(PsIly) < 7% We have
already shown (recall Theorem 6.6) that (Wy,7?) € Cye. On the other hand, it can
be verified that matrix

Vo = ,),2 _HO,O _

with Lo, = —I1,oCh — By D, is such that
U'G,Yf(VOO,VQ)v = (fyf[golx)’ [Afl:Ioo + rooA’f—
~Too(C5C2 — v 2C1C) + BiyBi ] (Vi )
= [1~ (/)] Crzl* <0

holds for all v € N, proving that (Vo,v?) € int Cys. Finally, using the Schur
complement formula it is also verified that the coupling constraint is satisfied for
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Wy = y2PZ' and Vi = v2TI! since 74 (Poolle) < 72 < ¥2. The converse is immediate
from the previous result of Theorem 6.6. ]

We have interest to reduce v to the minimum value keeping feasibility of all con-
straints introduced in Theorem 6.7. The main goal is to generate a convex problem,
similar to (6.55), valid in the output feedback case. Unfortunately, the change of
variable defined previously, namely u = v? destroys the convexity of the set Z.¢. The
other possibility comes to light from the simple observation that (y~1W,~?) € Cye de-
fines a convex set with respect to the new pair of variables (W, ) where Wo=~"1W.
The same occurs for the set C. ¢, that is (y~'V,7?) € C,; defines a convex set with
respect to the new pair of variables (f/,v) where V := v~'V. Furthermore, the set

Z.y, rewritten as
- Wy T
Zep = (W,V) - - | =0
! {( ! [1 vl] }

makes clear that convexity is once again preserved. Based on these facts we are able
to conclude that Theorem 6.7 can equivalently be stated in terms of the existence
of a triple (W,V,W) € int O, with O,y being a convex set. Naturally, the output
feedback counterpart of (6.55) is the convex programming problem

min {7 (W, V,y) e ch} (6.64)

which provides the minimum value ~° keeping the Output feedback problem solvable
for any v > ~°. In other words, for v > «° the associated Riccati equations admit sta-
bilizing solutions P, and II,, respectively. These solutions may be used to calculate
from (6.60), the (central) feasible controller.

Remark 6.24 Remark 6.17 applies to the set C,5 also. If matrix C7C; is not strictly
positive definite then C] must be replaced by [C{ +/eI] where € > 0 is arbitrarily small. This
is done with no loss of generality and is important to have V; > 0 for all V € C,5. a

Remark 6.25 The set C,; is not bounded but fortunately, the same reasoning of Remarks
6.21 and 6.22 applies to it. First the set u > 0 can be replaced by the bounded one
2 < < vEae and second, the convex set

Cyr N {V : trace[R;V] < G}
has a bounded domain for all finite 5 provided the pair (—Ay, B1y) is stabilizable. m

The results of this section put in evidence the potentialities of the convex program-
ming approach to deal with optimal control problems formulated in RHs and RH,
spaces. The same manipulations will be used in the next sections to handle more
involved problems. To ease the presentation, the technical assumptions involving the
positive definiteness of, for instance, matrices By B} and C|C} are assumed through-
out. Actually, as discussed before they can be enforced with no loss of generality.

6.3 Mixed RH, / RH,, control

The main goal of the so called mixed RHy/RH, control problem is to take into
account the two major features of any control system design. First it is desirable to
optimize performance. Second it is important to be aware that the model at hand
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L

Figure 6.6: The mixed control design structure

always represents a nominal system while the true system is subject to uncertainties.
In order to improve practical needs, these two aspects have to be accommodated
in the same design problem. It consists on the optimization of the RHs norm of a
transfer function while the RH., norm of another transfer function is constrained to
be less than a certain prescribed level.

The situation is represented in fig. 6.6 where X is a linear time-invariant system
and ¥, is the controller. The mixed RHy/RH, optimal control problem is to find
(if one exists) a controller . such that, for v > 0 given

inf {7 (z0,38)[3 = IT(z1,38) oo < 7} (6.65)

A controller solving this problem imposes to the closed loop system an optimal per-
formance against exogenous perturbation in the channel w to zy while robust stability
is guaranteed to all model uncertainty expressed as z; = Aw such that ||A]je < 1/7.
The solution of this problem can not be obtained from matrix Riccati manipulations.
We show here the difficulties we have to face and the manipulations and approxi-
mations we have to introduce in order to solve it by means of convex programming
methods. Before all, based on the results of the previous section, it is to be noticed
that if instead of Problem (6.65) we solve

min{HT(zo,w;s)H% s || T(21,w; 8o < 'y} (6.66)

then its optimal solution (if any) provides a suboptimal solution to Problem (6.65)
with v replaced by 4 > v and the degree of suboptimality becomes arbitrarily small
provided ¥ is chosen arbitrarily close to .

6.3.1 State feedback design

Consider v > 0 be a fixed scalar and let the systems ¥ be defined as follows

& = Ar + Byw + Bau (6.67)
zo = Cox + Dyu (6.68)
21 = Cix + Dysu (6.69)

Y=z (6.70)

where the whole state vector is available for feedback. It is assumed that i) the pair
(A, B2) is stabilizable and ii) Dj, D12 = I. Furthermore, the controller 3, is assumed
to be given by

u=Fz (6.71)

where the gain matrix F' is to be determined. To guarantee that the constraint
IT (21, w; s)||oo < 7y is satisfied, we have to consider F' € K., which is the same to
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say that F' € K. and there exists P > 0 satisfying the Riccati inequality (recall that
Theorem 2.16 applies since By B} > 0).

0> AexoP+ PA, 4+~ 2PC. Ceoo P+ B, B} (6.72)

with Aeeo := A+ BoF and Ceo := C1 + D12F. On the other hand, for the same
control gain F' € K., the transfer function from the input w to the output zo belongs
to RHs and

| T (20, w; 8)||3 = trace [(Co + DoF)P.(Co + DoF)'] (6.73)

where P, > 0 solves the Lyapunov equation
0= AP+ P.AL + B1B] (6.74)

Simple comparison of inequality (6.72) with equality (6.74) puts in evidence that
P > P,. Consequently, any feasible P for inequality (6.72) provides an upper bound
for the norm of the transfer function under consideration, that is

1T (20, w; s)||3 < trace [(Co + Do F)P(Cy + DoF)'] (6.75)

In the optimal control problem (6.66), the quantity ||7(2q,w; s)||3 is then replaced
by the quantity in right hand side of (6.75). It must be clear that this simplifies the
problem to be dealt with at the expense of optimality. In fact, the minimum of the
proposed upper bound may not coincide with the optimum of the true design problem
(6.66). The next Theorem shows that this problem is convex which opens again the
possibility of solving it by means of efficient numerical methods.

Theorem 6.8 Let v > 0 be given and define the symmetric and positive semidefinite
extended matric

RoS:[gZJ[Co Dy |

Let W be the optimal solution of the convex programming problem
Jsup 1= min {trace[ROW] (W) € Cvc} (6.76)

Then, F = WiW[! € K,. minimizes an upper bound of the objective function of
problem (6.66) in the sense that ||T(zo,w;s)||3 < trace[RoW], for all (W,+?) € Cye.

Proof From Theorem 6.5 it follows that (W,+?) € C,. implies F = WiW, ! € K,..
On the other hand, for any (W,~?) € C,. we have Wi > P,., consequently
trace| RoW) = trace[(Co + DoWiW . YW1 (Co + DoWiW 1] +
+trace[Do(Ws — WaW, ‘W) Dj]
> trace[(Co + DoWyWi 1) Po(Co + DWW Y]
> 17 (20, w; 5)lI3

and the proof is complete. a

The joint convexity of the set C,. is crucial for the introduction of another mixed
problem, called the inverse mixed RHs/RH,, design problem, it is

min{p : trace[RoW] <3, (W, p) € Cye} (6.77)
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where [ is a fixed positive scalar. For a given 8 > 0, the constraint ||7(zg, w; s)||z <
/B is satisfied while the upper bound on the admissible perturbation ||Alle < 1//B
is maximized. Needless to say that as 0 goes to infinity, its optimal solution goes to
the solution of problem (6.55) already treated in the last section. Another problem
of practical interest is

min {p + Btrace[RoW] , (W, ) € Cyc} (6.78)

where 6 is a fixed positive scalar. In this case, the scalar > 0 can be interpreted as the
dual variable associated to the inequality constraint of problem (6.77), that is 4 is the
tradeoff, to be fixed by the designer, between the norms of the two transfer functions
of system (6.67)-(6.70). Finally, it is important to stress that (recall Remark 6.18)
if matrix B is replaced by [B; v/eI] with € > 0 arbitrarily small them the optimal
solutions of all previous mixed problems are strictly feasible, that is they belong to
int Cye.

Example 6.2 To get some feclings on the previous results, let us consider the following
numerical example. The system is defined as

I = Az + Biw + Bsu
20 = Cox +u
zn=Ciz+u

y==z

o[ 4] me ] e8] ante

Two different situations have been considerated :

1) With Cp = [1 0] the mixed optimization problem (6.76) has been solved for 1.65 < v <
3.00. The optimal solution provided the controller M. For comparison purpose we have
also determined the central controller C associated to the constraint ||T'(z1,w; s)||c0 <
«. Fig. 6.7 shows the optimal upper bound J,us as well as the quantity ||T°(z0, w; 8)||3
for each controller. It is useful to observe that, in this case, the controller M obtained
by the mixed problem is always better than the central controller. This behavior
is expected for large values of 7 since in this situation, the gap between Jg,5 and
|7 (20, w; 8)||3 becomes arbitrarily small. On the contrary, for small values of v the
aforementioned gap is important and it is possible to build examples for which the
central controller performs better than the one provided by the optimal solution of
the mixed problem.

where

2) With Cy = C1 the mixed optimization problem (6.76) has been solved again for the
~ in the same interval. As predicted in Remark 6.19, the optimal mixed controller
M coincides with the central controller. For comparison, the performances of these
controllers together with the upper bound Jg,s are depicted in fig. 6.8.

Based on this, we can say that in many instances, the mixed problem (6.76) provides a
controller that performs well when compared to the central controller. This suggestion
becomes a fact for moderate and large values of . The main point to be retained however is
that the controller M is only suboptimal for the true mixed RH,/RHo problem. Numerically
speaking, one of the main attractive features of problem (6.76) is that it is convex and so
easy to solve. m]

Remark 6.26 (Post-optimization procedure) The optimal solution of the mixed op-
timization problem (6.76) is, generally, a suboptimal solution to the true mixed problem
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Jsub

[T (20, w; 5)113

Figure 6.7: The performances of the controllers M and C

(6.66) since for F' = Fgyp provided by (6.76) the constraint ||T'(z1,w;s)|lc < 7 is not

satisfled with equality. Hence we are now concerned to determine a new state feedback
gain, still suboptimal, but with a smaller value of the objective function ||T(z0,w;s)||2. To
ease the algebraic manipulations involved we assume the pair (A, Bs) is stabilizable, the
pair (A — B2D(Co, (I — DoD{)Co) is detectable and D{Do = I. For F = Fu. we get
| T (20, w; 8)||3 = trace[B) Psus B1] where Pey, > 0 solves the Lyapunov equation

0= (A + B2Fsub)/Psub + Psub(A + BZFsub) + (CO + DOFsub)/(CO + DOFsub) (679)
Defining the state feedback gain
Fy:= (1 — 0)Fsup — a( B4Po + D(Co) (6.80)

where « is a scalar to be determined such that A+ B2 F, is stable and P, solves the Lyapunov
equation

0= (A+ B2Fa) Pa + Pa(A+ BaFo) 4 (Co 4+ DoFa) (Co + DoFy) (6.81)

the following conclusions can be drawn. First, it is clear that for F' = F,, the associated cost
function is written as ||T(z0, w; 8)||3 = trace[B} P, B1] and, the equality

0= (A + B2Fsub)/(Psub - Pa) + (Psub - Pa)(A + B2Fsub) + a(2 - OZ)Fﬂ‘;ubF_‘sub

valid for Fyup := Faup + BaPa + D{Co guarantees an improvement in the RHo norm provided
«a € [0,2] since under this condition Ps > P,. Second, from (6.80) and (6.81) simnple
algebraic manipulations put in evidence that matrix P, satisfies the Riccati equation (in the
unknown P)

0=ALP+ PAy — PB2u B P + C)oCou (6.82)
where
Ag = A+ By [(1 = )* Foup + afa — 2) DyCh |

Bga = B2 AV 200 — Ot2

Coa = Co+ Do [(1 — &) Feup — aDyCo)
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2]

IT (20, w; 5)13

Figure 6.8: Performances of controllers M and C

The pairs (Aa, B2o) and (Aa,Con) are stabilizable and detectable, respectively. In fact,
stabilizability easily follows from stabilizability of (A, By), whereas detectability is implied
by detectability of the pair (A — B2 D{Co, (I — DoDg)Co) and by noticing that

Ao = A— BQD(,)C() + Bg(l — a)[(l — Ot)(Fsub + DE)C())]
Coa = (I — DoDE))Co + Do[(l - Ot)(Fsub + DE)C())]
0= Dé([ - DOD(I))CO

Such an equation (see Lemma C.4 of Appendix C) admits a stabilizing solution whenever
a € [0,2]. Actually, under the stated assumptions, this solution is also the unique positive
semidefinite one. In order to check the stability of A + ByF,, with F, given by (6.80),
consider equation (6.81) and notice that

A+ ByFs = A~ ByD{Co + Ba|(1 — &) (Feus + DGCo) — aB3 Pa)
Co + DoF,, = (I — DoD})Co + Do[(1 — @) (Fsus + DoCo) — B3 Pa]
0 = Do(I — DoDG)Co

Thus, the detectability of the pair (A — B2 DCo, (I — DoDy)Co) together with the above
equations imply that the pair (A + B2Fa,Co + DoFy) is detectable as well. This fact and
the existence of a solution P, > 0, entails, (see Lemma C.1 of Appendix C) that A+ ByF,
is a stable matrix.

The above results can be exploited in the following way. With the state feedback gain
Fqyp such that A+ By Fyyp is stable and ||T(21, w; 8)||co < v an one dimensional search in the
interval [0, 2] for & with equation (6.82) taken into account allows to determine the value of
a® corresponding to which the control law u = F,z minimizes the RHs norm while keeping
the RHy norm not greater than +. Incidentally, notice that the choice @ = 1 corresponds
to the optimal unconstrained RHg control law.

The solution P, of equation (6.82) is a function of the parameter o which enjoys a
symmetry property, namely P, = P2_,. Denoting with ', the matrix which is the derivative
of P, with respect to « it is possible to verify that it satisfies the following Lyapunov equation

0=ATs+TadAn —2(1 — a)Fhup Fsus (6.83)

where A, := A, — B2, B, P» is a stable matrix since P, is a stabilizing solution of (6.82).
Hence it follows from (6.83) that ', < 0 for a € [0,1] and T'q > 0 for « € [1,2]. Therefore
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«’ is given by

a’ = min{l — ay,az — 1}
a1 := max {a : ||T(z1,w;s)]|ec <~}
«€[0,1]

ag := min {a : ||T(z1,w;s)|]ec < v}
a€(1,2]

Finally, it is important to stress that the above developments remain valid for any state
feedback gain Fi.p such that A + B2 Fgys is stable and ||T'(21,w; 8)|| < 7 and not just for
the one provided by the solution of the mixed optimization problem (6.76). For instance,
in view of the previous discussion (recall Example 6.2), we also have interest to adopt Fius
as the matrix gain defined by the central RHs controller. Obviously, «® and the relevant
value for the RH3 norm depend on the chosen gain Fyp.

To put in evidence the improvement obtained by this post-optimization procedure, let
us consider the system defined in Example 6.2 with Co = [1 0] and v = 2. First take Fi.s as
the feedback gain which is the solution of the convex programming problem (6.76), that is
Foup = [—1.1879 — 0.5965] and the associated cost ||T(z0, w; $)||3 = 0.1556. Corresponding
to the best choice o, we obtain

Fo=] —1.1829 —0.5829 |, ||T(z0,w;s)|[3 =0.1504 , ||T(21,w;$)||oc = 2
If, on the contrary, we adopt Fsup» as the state feedback gain corresponding to the central
controller, that is Feup = [—1.6 — 1.2], the best choice of « yields

Fo=] —1.278 ~0.6076 |, ||T(20,w;s)||3=0.1439 , ||T(21,w;$)||oo = 2

In this case, it is apparent that the post-optimization procedure supplies a better result when
starting from a worse gain. m]

Remark 6.27 (Nash game approach) The mixed state feedback problem can also be
approached by the following Nash game when the system (6.67) - (6.70) satisfies the addi-
tional assumptions Co = Cy, Do = D12 and D},C; = 0. Defining the criteria

Ji(u,w) = / [Vw' (w(t) — 21 (t)z1 (¢)]dt
0
Jo(u,w) = / 20(t)20(t)dt
0
the aim is to find the equilibrium strategies (u*,w*) which satisfy the Nash equilibria con-
ditions

Ji(u  w) < Ji(w,w), Ywe RH;

Jo(u*,w*) < J()(’U,,’LU*) , Yu€ RH>

It can be proven that the optimal strategies are given by

u*(t) = FQQ}(t) s F2 = —Bépz
w(t) = Fz(t), F:=—y ‘BiP

provided there exist matrices P; < 0 and P, > 0 solutions to the coupled Riccati equations

92 ’ !
. ) Y “B1B7 BB, 5!
O_Ap1+P1A~ClC1—[P1 P2][ B,B} BzBé}[B]

_ / ’ 0 ’Y—QBlBi Pl
0=AP+PA+CICI— [ P PQ][72BlBi B.B; Fa
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Based on these optimality conditions, the following interpretation can be drawn. The first
Riccati equation rewritten as

0= (A+ B:2F2)'Pr + Pi(A+ B2 Fy) — v *PuB1B1 Py — (C1 + D12 F2)' (C1 + D12 F)

implies that ||T'(z1,w; s)]ee < ¥ since P; < 0 and stabilizing. On the other hand, the second
Riccati equation, factorized as

0= (A+B1F1) P, + P2(A+B,F\) = PB:B3Py + C1C)

shows that the criterion Jy for w = w* attains its minimum value at v = u* as required by
the Nash game. It is then clear that for w # w* the control v = Fhz is merely a suboptimal
policy for the mixed design problem. Unfortunately this is frequently the case because for
1T (21, w; s)jfoo < -y the worst input w = w* is not the one which produces the output z;
such that ||z1]]2 = ||T(21, w; 8)| o |{wl|2. For comparison purpose let us consider the following
numerical example

T=2zr+w+3u
3 0
zlz[o]m+[1]u
20 = 21
y==
and v = 0.4. The pair (P, P») = (—6.84,10.05) is a solution of the coupled Riccati equations

which provides the optimal Nash gain F» = —30.16. The closed-loop system exhibits the
performances

1T (20, w; 8)||3 = 5.19 , [T (21, w;s)|loo = 0.34 < 7

Then, problem (6.76) has also been solved. It provides the feedback gain F = —8.05 which
imposes to the closed-loop system

IT(20,w; 8)||2 = 1.66 , | T (21, w; 5)lloo = 0.38 <

From these results it is clear that, in this case, the mixed design introduced in Theorem 6.8
is much better than the Nash game approach. O

Remark 6.28 (Structured robust stability and performance) Consider a linear sys-
tem depending on uncertain parameters, more precisely

2= (A+As)z+ Bow+ (B2 + Ap,)u
20 = Coz + Dou
y==z

with
Aa = BufhCn, A, := B122:Ci2

where the only information available for matrices €21 and €22 is that
[l <1, [ <1

Defining the matrices

BIZ[BII Bl2], 01:[0011] ) D12=[C?2},
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the above system can be rewritten as

= Az 4+ Bow + Biywi + Bau
zZ1 = Cllv + D12’u

Wy :QZ1
z0 = Coz + Dou
y=r

where matrix Q := diag[Q1, Q2] satisfies |[{€2|| < 1. Our first goal is to determine (if one exists)
a matrix F such that with v = Fz the closed-loop system stability is assured for all feasible
parametric perturbations. A way we already know to solve this problem is to introduce the
constraint ||T(z3, ws; 8)||c < 1. Indeed, a controller which satisfies this constraint solve the
stated problem. However, this approach produces frequently very conservative results since
the block-diagonal structure of the uncertainty (represented by matrix €2) is not taken into
account. In a slightly more general setting, we consider matrix {2 composed by N square
blocks, that is
Q= diag[Q, -, Qn], 9] <1

which together with the matrix
A= diag[M1, -, ANI]

where each sub-block has the same dimension as the corresponding sub-block of matrix £
and Ay > 0,---, An > 0, enable us to say that QAQ' <A, V [|Q < 1.
The closed loop system stability depends on the stability of matrix

Aq = Acoo + B120 oo

where as before, Acoo = A+ B2 F and Cooo = C1 + D12 F. This property follows from the
following inequality which holds for any symmetric matrix P

BiQC.ooP + PCL Y B, = BIQAQYB) + PCLoA ' Croo P —
—(BiQAY? = PCL ATV (BQAY? — PCL AT
< BIAB; + PCL A" Cooo P

Indeed, if there exist a symmetric and positive definite matrix P, a positive definite matrix
A with the above structure and a matrix F' such that the inequality

AcooP + PAl o + PClooA™ ' Ceoo P + B1AB; < 0
holds then (recall Theorem 2.15) the transfer function
Ta(z1,ws;s8) 1= A‘l/QT(zl,wl;s)Al/2

belongs to RHo and ||Ta(21,w1;8)]je < 1. Since the scaling matrix A can also be used
to redefine the parametric perturbation as Q4 := A™'/?QAY? such that ||Q4lle < 1, from
Theorem 5.1 the stability of Aq follows. In addition, the above property is not lost if the
previous Riccati inequality is replaced by (assuming again that BoBj, > 0)

AcooP + PALo + PCloo A" Ceoo P + B1AB + BoBj < 0
However, doing this we now have
AP+ PAq+ BBy <0, Y [Q<1

yielding an upper bound to the RH2 norm of the transfer function from the input w to the
output zg, that is

1T (20, w; 8)|13 < trace[(Co + DoF)P(Co + DoF)’]
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which is valid for all ||| < 1. The minimization of this upper bound keeping stability is a
mixed RHy/RH o, problem with an additional matrix variable, namely the scaling matrix A.
It is somewhat surprising that this problem can be converted into a convex one. Actually,
let us define the set

Crc={(W,A) : W=>0, A>0, vOr(W,A)v <0VveN.}
where

C1
Di,

+[%]A[B{ 0]+[](3)°][Bg 0]

Following the proof of Theorem 6.6, we see that it remains true in the present case. The
set Cac is convex and any feasible pair (W, A) € Ca. provides F = WiW, ', P = W; and A
which satisfy the previous Riccati inequality. Finally, in the present context, the associated
mixed RHz/RH control design problem is (recall Theorem 6.8)

Oac(W,A) = MCW+WM;+W[ ]Al[ Ci D |W+

Jsup := min {trace[RoW] : (W, A) € Cac}

which is jointly convex on both variables (W, A). Its optimal solution provides a robust
control gain F = WiW, ' imposing in addition [|T(20,w;s)||z2 < vJeu for all structured
parametric perturbations || < 1. o

Remark 6.29 Following the same lines of Remark 6.22, any convex programming method
is effective to solve problem (6.76) provided the convex set

Cye N {W : trace[RoW] < 3}

is bounded for any finite 8 > 0. Based on our previous discussion, this occurs whenever the
pair [—(A — B2DyCo), (I — DoDg)Co] is detectable. O

6.3.2 Output feedback design

In this case, with v > 0 being a fixed scalar the system ¥ is defined as follows

z = Az + Byw + Bou
zg = Cox + Dou

z1 = Cix + Disu

y = Cor + Dyyw

and the controller X, has to be determined from the solution of problem (6.65). As
in the State feedback case, the complete solution to this problem is not known up
to now. 'So, we search for a suboptimal and easy to calculate solution. The main
idea to be pursued is to propose a structure to the controller ¥, depending on only
one unknown matrix in such way the Output feedback design problem reduces to the
State feedback design problem already solved.

To this end, we make the following assumptions i) the pair (A, Bs) is stabilizable
and the pair (4,C3) is detectable and ii) D{,D12 = I and Dy Dy = I. We also
assume that there exists I, a positive semidefinite and stabilizing solution of the
Riccati equation (in the unknown II)

0 =I1A%} + AfI1 — II(C5Ca — v 2C1C1)IL + Bis By ¢ (6.88)
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which, once it has been calculated, enables us to define matrices

Ao 1= A+ 2. ClCy
Booo := By + 7 2T C)| D1y

and Lo, = —II,C% — B1D5;. The controller 3, with transfer function K(s) given by

K(s):= 2F’ 2% 0

(6.89)

has the important properties provided in the following lemma.

Lemma 6.2 For all F such that there exists a symmelric, positive semidefinite and
stabilizing solution to the Riccali equation

0= (A + B2oo F)X + X(Ao + B2oo F)' +
+v2X(Cy + D12 F) (Cy + D12 F)X + Lo L (6.90)

the controller 3, with transfer function K(s) given in (6.89) imposes to the closed
loop system the following properties :

a) It is stable and |T(z1, w; $)||oo < 7y
b) || T(z0,w; s)||3 < trace[Coll,Ch] + trace[(Co + Do F)X (Co + Do F)|

Proof The feedback connection indicated in fig. 6.6 has the state space representation

where the indicated matrices are

i A + B2F BQF
Y o Cl(CL + D12F) A+ LooCo + v 2N C(Cy + D12 F)
By B,
B =
[ —B1 — LoD

and
Co=[ Co+DoF DoF ], Ci=[Cy+DiF DyF ]

Point a) Assuming there exists Xo, satisfying (6.90), simple although tedious
algebraic calculations show that the Riccati equation

0= AP+ PA' 4+~ 2PCIC\P + BB’ (6.91)
has a positive semidefinite stabilizing solution given by

D o__ Hoo + Xoo _Hoo

P= 1L, 0. (6.92)
which yields the conclusion from Theorem 2.14 that the closed loop system is stable
and ||T(z1, w; 8)|loo < 7.
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Point b) From the above, it is know that matrix A is stable then, we proceed by
making the calculation of the indicated norm, that is

(e o] . < -
T (20, w; s)||3 = trace [C’o/ eMBB'eA tdtC(')]
0
< trace [C‘opé’é}
< trace [CollooCy] + trace [(Co + Do F) X (Co + Do F)']
concluding thus the proof of the lemma proposed. a
No major difficulty has to be faced to state and prove similar results using Riccati
inequalities. Furthermore, it is to be noticed that the assumption on the existence

of a solution for the Riccati equation (6.90) is always verified whenever the unknown
matrix gain F' is such that Ay, + Baoo F is stable and

||(Cl -+ DlgF)[SI - (Aoo + BQOOF)]VILOOD21||OO <7y

Therefore, from the first part of Lemma 6.2 these values of F' preserve admissibility
of the controller X, that is ||T(z1,w;$)||ec < 7 and in the context of the mixed
design we have to calculate one among them which minimizes the upper bound on
1T (20, w; s)||3 provided in the second part of the same lemma. This is accomplished
if the State feedback design is applied to the auziliary plant

2 = Ao + LogDo1w + Boosott (6.93)
zg = Cox + Dyu (6.94)
z1 = Cix + Disu (6.95)

y=c (6.96)

that is, problem (6.76) should be solved with the feasible set C,. being defined for
matrices A, B, and B; replaced by matrices Ay, Booo and Lo, Ds; respectively.

Remark 6.30 The particular structure of matrix P in (6.92) does not means that some
conservativeness has been introduced in our calculations. To show this assume the Partial
information problem is solvable and P > 0. It is possible to verify that for

F=F.=FxZs
the Riccati equation (6.90) is solvable in X providing
Xoo =723 Pt =7°P5' — T

which is positive definite since rs( PooTloo) < ¥. Moreover, for F' = F,, the transfer function
of the controller K(s) turns out to be

[ Aoo + BQooFc + LOOC2 | "Loo
Kels) = F, | o
] F | o
[ Acc + ZooLoo(CQ + 7‘2D2IB;_POO) | _ZooLoo
Tl Fo | o

showing that the transfer function K.(s) meets exactly the transfer function of the central
RH, controller. ]
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Figure 6.9: The performances of the controllers M and C

Example 6.3 We solve again the Example 5.7 but making use of the results of this section.
Consider the system (6.84) - (6.87) with

SN

Ci=[0 0], Co=[-1 1], Dia=Dn=1
Co=[-1 0], Do=1

The Partial information problem is solvable for v > 12.0 hence we consider the interval
12.5 < < 100.0. In this particular case the auxiliary plant does not depend on v, however
the Riccati equation (6.90) admits a positive solution only if v > 12.0. The State feedback
design has been applied to the auxiliary plant and the mixed problem provided the controller
M which minimizes the upper bound introduced in part b) of Lemma 6.2. Fig. 6.9 shows
the actual value of ||T(zo, w; 8)||3 as well as the minimum upper bound Js,» as +y varies in the
given interval. The same figure shows also the performance in terms of ||7(20,w; s}||3 when
the RHo. central controller is used (it is indicated by C). It is interesting to observe that for
moderate values of v (approximately in the interval 12.5 < v < 35.0) the central controller
is even better than the mixed controller as far as the RH; norm of the transfer function
T'(zo0,w; s) is concerned. As expected, this behavior is reversed for large values of v when so
the central controller performs worse than the mixed controller. This example is important
because it shows practically the existence of systems for which the mixed design does not
furnish a good solution to the problem under consideration. However, it is important to
stress that the mixed problem as introduced here, is convex and due to this fact it can be
solved very efficiently. a

6.4 RH, control with regional pole placement

The performance of a system can be expressed in terms of RH; and RH,, of certain
closed loop transfer functions. However, as it is simple to notice from the results of
the last sections, the pole locations of the resulting controlled system are naturally
defined by the optimality conditions of the associated optimal control problem. For
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Figure 6.10: The pole placement region

instance, once a mixed RHy/RH,, design problem is solved, the optimal controller
imposes the closed-loop poles to be in certain places of the open left complex plane
which may not be changed by the designer. The present section aims to combine the
RH> design with regional pole placement.

In practice, a very popular design specification is expressed as

and
Ewp 2 o (6.98)

where the constraint (6.97) imposes a minimum damping ratio and the constraint
(6.98) imposes a minimum decay of the time response of the closed-loop system. This
is illustrated in Fig. 6.10 where it is also represented the circular region

R:={s : |s+(a+7)|<r} (6.99)

with a > 0 and radius 7 > 0. The radius r can be calculated such that this region is
inside the sector defined by constraints (6.97) and (6.98) and so meets the closed loop
poles location requirements. The circular region as indicated in Fig. 6.10, tangent to
the sector boundary defined by a > 0 and 8 = sin~(&n4n), is given in (6.99) with

. acos(6)
1 — cos(f)

The rationale behind the choice of the circular region R instead of the sector will
be clear in the sequel. The main point is that the circular region imposes convex
constraints on the optimal RH> control design problem. The next lemma characterizes
by means of a modified Lyapunov inequality the matrices with all eigenvalues inside
a given circular region K.

Lemma 6.3 Let the circular R be given. Matriz A with dimension n x n has all its
eigenvalues inside R if and only if for any matriz Q = Q' > 0, there exists a matric
P =P >0 such that

0> AoP + PA, +r 1A, PAL +Q (6.100)
where A, := A+ al.
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Proof Let us first prove the necessity. Assume all eigenvalues of matrix A are in the
circular region R. It is a simple matter to verify that all eigenvalues A of the matrix
A:=77A+ (a+r)I] are such that |A\| < 1 which implies that matrix

A=A-DYA+D

is stable. From the Extended Lyapunov lemma we can say that for any Q = Q' > 0
chosen, there exits P = P’ > 0 satisfying the linear inequality

0> AP+ PA +2r Y(A-D'QA -7}
or equivalently o
0>APA' - P+r7'Q

Using the definition of matrix A, we then conclude that inequality (6.100) holds.
For the sufficiency, take x an eigenvector of matrix A’ associated to an arbitrary
eigenvalue A. Multiplying inequality (6.100) to left by =™ and to the right by x it
follows that

0> [2Re(A+a) +r 1A+ of*] 2~ Pz + 2~ Qx

which together with the positive definiteness of both involved matrices provides
[2Re(A +a) +7 A +af*] <0
Finally, using this fact we get
r A+ atr)?=r2 [IA+ al? + 2Re(A + o)r + 7"2]

=r '[2Re(A+a)+r A+ a’] +1
<1

which proves that A € R. The sufficiency is proved because A and A’ have the same
eigenvalues. U

For a given circular region R and a given matrix A, the inequality (6.100) defines
a convex constraint with respect to P. This is clearly true because its right hand side
is an affine function of P. More surprisingly is that convexity still holds when A is
not constant but depends upon a state feedback gain matrix.

6.4.1 State feedback design

Let a circular region R be given. The dynamic system under consideration has the
following state space representation

z=Ciz + Dou (6.102)
y=u1 (6.103)

where the only assumption we a priori need is i) D1,D12 = I. The goal is to determine
a state feedback control law of the form

u=Fz (6.104)
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such that the gain matrix F' solves the optimal control problem
min {||T(z,w;s)|3 : F € Kg}

where Kr denotes the set of matrices F' such that all eigenvalues of matrix A.. =
A + BoF are in the circular region R. It is clear that since R is a circular region
on the left part of the complex plane then F' € Kp always provides T(z,w;s) in
RH,. Of course, we need the set Kg be nonempty which is the case if and only if the
unreachable part of (A4, By) has all eigenvalues belonging to R. This problem is not
exactly solved. Instead we propose here an overbounding objective function which
has the main advantage to preserve convexity. Throughout this section we redefine
the matrix

L A+C¥I Bg
MC._[ ; 0]

which has the same structure of matrix M. defined in (6.6). All other matrices remain
unchanged.

Theorem 6.9 Consider By B > 0, let the circular region R be given and define the
set

Cr:={W : W>0, vOr(W)v<0, Vve N} (6.105)
where Og(W) := O.(W) + r M, WM_. The following hold
a) Cr is a convez set.
b) Each W € Cg is such that W1 > 0.
¢) Krp={WW[' : WeCg}.
d) The optimal solution W of the convex programming problem
Joup := min {trace[R.W] : W €Cr} (6.106)

provides F' = V_VQ’Wfl € Kgr such that the upper bound of the RHs norm
IT(z,w; s)||2 < trace[R W], valid for all W € Cg, is minimized.

Proof The proof of Points a) and b) follow immediately from the fact that Cr C C,
and the matrix function © (W) is afline together with Theorem 6.1.
Point c¢) Assume Kg # 0, for an arbitrary F € Kg, Lemma 6.3 applies for
@ = B Bj providing thus a symmetric and positive definite matrix P satisfying
the inequality
0> (Ace +al)P+ P(Aee + ) +
+r7 Y (Aee + al)P(Ace + o) + B1 B}

Choosing

FP FPF'
it is seen that W > 0 and all v € N, yields

W:[ P ppf]

VORW) =2 [(Ace + @I )P + P(Aee + o)+
+r7 Y (Ace + al)P(Ace + al) + B1Bj| «
<0
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implying that W € Cgr. Since, in addition WQ’Wf1 = FPP~! = F, the necessity is
proved. Conversely, with Cr # @, for any W € Cr and any v € N, we get
0> v'Or(W)
> ' [(Aq + BaWoWT YW1 + Wi(Aa + BoWW, 1) +
+17 A + BoWiW YW1 (Aa + BaWIW Y + B Bi+
417 By (W3 — WiW, ' W) BS] z
> 2 [(Aa + BoWoW Wi + Wi (Ag + BaWiW ) +
+r7 N Aa + BaWIWT YW1 (A + BaWIWT Y + BB o
which shows, from Lemma 6.3 that F' = W3W,* € Kg. The result follows from the
fact that Kr = 0 implies Cr = 0 and vice versa.

Point d) This point follows from the fact that W € Cg generates F = WiW, ! €
Kg. Furthermore, any W € Cg satisfies

0> AWy + WiAL, + By B
which imposes that W1 > P,, where
0= AP+ P.A .+ B B
Simple calculation of the RH; norm then shows that
trace[R.W] = trace [(Cl + DWW Hw,(Cr + D12W2W1_1)’] +
+trace [Dlg(VVg — W2’W1_1W2)D'12]
> trace [(C1 + D1aWoW Y P.(Cy + DioWo Wy t)']
> | T(z,w; s)13

holds for all W & Cg and the proof is complete. o

If the convex programming problem (6.106) admits a solution then the optimal
feedback gain places the closed-loop poles in a desired circular region and minimizes
an upper bound of ||T(z,w;s)||3. Clearly, we can not say that this norm has been
minimized.

Remark 6.31 Since Cg C C., the same conclusion related to the boundedness of the

feasible set of problem (6.106) applies. Its numeric solution by means of convex programming
methods depends on the assumption that the pair (— A, C1c) is detectable. D

Remark 6.32 As perhaps already occurred to the reader, there are many other regions in
the complex plane that can be recasted in the same framework of the circular region.
For o > 0 fixed and r arbitrarily large, the circular region degenerates to

R ={s : Re(s) < —a}

and Lemma 6.3 and Theorem 6.9 still hold.

Any region in the complex plane that can be written as a convex set of matrices W such
that Wi > P, is also handled with no additional theoretical difficulty. One of such regions
is the vertical strip defined as

Rs:={s : —f < Re(s) < —a}

with 8 > o > 0. Notice however, that we have to work with the intersection of two regions
generating thus a feasible set which is the intersection of two convex constraints in the same
variable W. Consequently, only the sufficient part of Theorem 6.9 still holds. O



240 CHAPTER 6. NONCLASSICAL PROBLEMS IN RHy AND RH o,

Im(s)

Figure 6.11: Closed-loop poles

Example 6.4 (Root locus) Let us consider the system (6.101) - (6.103) with

SEHESHESH

_| P 0 _ 10
Cl_ |: O 0 ] ’ Dlg_ |: 1 :|
where 0 < p < 20.

First, the State feedback problem in RH: has been solved for all values of p in the
given interval. The optimal feedback gain Fy as a function of this parameter has been
determinated. The root locus of the closed-loop system is then plotted in fig. 6.11. By
inspection, it is possible to verify that the root locus never enters in the circular region
defined by the parameters o = 1 and r = 1/(v/2 — 1). For p = 0 the optimal gain is
F, = [0 — 2] which imposes to the system a performance such that ||T(z, w; s)||3 = 2.

Again, for p = 0 and imposing the above circular region for pole placement, the convex
programming problem (6.106) has been solved, providing Fe.s = [—3.0678 — 4.9841] and
the associated upper bound on the minimum cost Jsup = 51.9434. The closed-loop poles are
also shown in fig. 6.11. This example illustrates a very important fact. Indeed, there is no
possibility to choose a penalty term in the (1,1} entry of matrix C) such that the poles of
the closed-loop system are all inside the circular region which corresponds to a minimum
damping factor &min = 1/4/2 or in other terms § = m/4 radians. Of course the design
procedure introduced in Theorem 6.9 circumvents this drawback of the pure State feedback
design in RH>. O

6.4.2 Output feedback design
The system to be dealt with is of the form
& = Az + Biw + Bau (6.107)

z=Ciz + Diau (6108)
y = Cyr + Daw (6.109)
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and the controller with transfer function K (s) has to be determined in order to place
the closed-loop poles in a desired circular region while the quantity ||T(z, w; s)|2 is
minimized. Let us elaborate more on this point. First all feasible controllers are
parametrized as

K(s):= (6.110)

A+ ByF + LCy | —L
F | 0

for all pairs of matrices (F,L). The rationale behind this choice has been put on
evidence before. The closed-loop system has the state space representation (recall fig.

6.5)
B
0
where the indicated matrices are

/i . A“r‘ B2F BQF
N 0 A+ LC,y

EF =

QI :Dz

and

- B, .
B*[Bl—LDzl] , C=[Ci+DpF DpF |

From the very particular structure of matrix At is apparent that the closed loop
poles are those of matrix A + BoF and A 4+ LCs. As far as pole placement is under
consideration, in principle it is possible to determine (F, L) such that all poles of
the closed loop system lie in some region of the complex plane. However, since the
state reconstruction from the output depends only on matrix L, in our present design
procedure it is imposed as the optimal solution of the Output estimation problem,
that is L = L. Thus, for a given circular region R, the Output feedback design
problem is formulated as

min { [T (z, w;s)|3 : FeKgr}

where it is only necessary to make explicit the dependence of ||T(z,w;s)||2 with
F. The optimal solution of this problem is not possible to be determined exactly.
So, we proceed by overbounding its objective function. The assumptions i) The
pair (A, C5) is detectable and no eigenvalue of the unreachable part of the pair
[(A — B1D5,Cs), B1(I — D4, Day)] lies on the imaginary axis and ii) D],D1s = [
and D9y D4, = I are made. Under these assumptions, there exists IIo a positive
semidefinite and stabilizing solution of the Ricecati equation (in the unknown II)

0 :HA}+AfH—HCéCQH+B1fBif (6.111)

which provides Ly = —T1,C4 — By Dj,. The controller defined in this way has the
following important design property which arc obtained as a limit case of Lemma 6.2.

Lemma 6.4 For oll F € K., the symmetric and positive semidefinite solution to the
Lyapunov equation

is such that the controller with transfer function K(s) given in (6.110) imposes to the
closed-loop system the performance

T (2, w; 8)||3 = trace[C1T1,C}] + trace](Cy + D12 F) X (Cy + D12 F)] (6.113)
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Proof The state space representation of the closed-loop system being given by X,
enables us to get immediately (recall Remark 6.14)

T (2, w; s)||2 = trace|C P.C"]

where P,., solution of the linear equation (6.36) is given by

~ | I+ X I,
=

Simple substitution shows that equality (6.113) holds, proving thus the lemma pro-
posed. O

This result opens the possibility to reduce the Output feedback design problem
to the previous State feedback design problem. In fact, once the equality L = Lo
holds, the transfer function K(s) of the output feedback controller is completely
parametrized by matrix F only. The impact of this decision in the global cost is the
first term in (6.113) which does not need to be considered further since it remains
constant for all possible choices of F. Hence, if the state feedback design problem is
applied to the auziliary plant

T = Azx + L2D21w + Bgu (6114)
z=Ciz + Dyou (6.115)
y==z (6.116)

that is, if problem (6.106) is solved with Bj replaced by Ly Do) then the optimal gain
F = W/W;! is such that the controller

A+ BaWW ! + LoCh | —Lo
ww; ! | o

K(s):= (6.117)

imposes all the eigenvalues of matrix A + BoWiW Lin the circular region R while
the upper bound

IT(z,w;s)|2 < \/trace[Cll'IgC{] + Joub

is globally minimized. Unfortunately, as illustrated before, the global minimization
of this upper bound does not necessarily means that the global optimum of the true
design problem is attained.

6.5 Time-domain specifications

One of the most important time-domain specifications of control systems design is the
limitation, to some prespecified level, of the time-response overshoot. This section is
completely devoted to generalize the previous results to this particular situation. Once
again, the important feature is that convexity is preserved and similar manipulations
for both the state and output feedback cases are allowed. Some few preliminary
calculations are needed before we define and solve the associated optimal control
problem.



6.5. TIME-DOMAIN SPECIFICATIONS 243

Consider the system, specified by the following state space minimal realization

#=Az+ Bw, z(0)=0 (6.118)
2=Cr (6.119)
where matrix A is assumed to be stable, the pair (A, B) is reachable and w €

RIL5[0 o0). The quantity we want to compute depends on the transfer function
T(z,w; s) of the above system and is defined as

G(T(z,w;s)):= sup |zlleo (6.120)

flwllz<1

where, for the norm of the output variable ||z||», two different cases are considered,

namely
[2]lo0 = sup VA (t)2(t) (6.121)

and
[[2lloc := sup max |z;(t)| (6.122)
t>0 ¢

where z;(t) denotes the i-th scalar component of z(t). We are now in position to
interpret the function G(-) defined above. Suppose, for a certain positive scalar «,

G(T(z,w;8)) <«

then for each time ¢ > 0 the worst case overshoot of 2(¢) is limited by «. Hence,
the possibility to take into account this time constraint in control system design is of
great practical interest.

Lemma 6.5 Let P be the symmetric and positive definite solution of the Lyapunov
equation
0=AP + PA' + BB’ (6.123)

The following are true

a) For the norm (6.121) then G(T(z,w;s)) = )\ng(C’PC”) where Apmqz(-) denotes
the mazimum eigenvalue of (-).

b) For the norm (6.122) then G(T(z,w;s)) = d;,{gz(C’PC’) where dpay(-) denotes
the mazimum diagonal element of ().

Proof Define v(x) := 2'P~'x and consider the system (6.118) - (6.119) with an
arbitrary input w satisfying ||w||2 < 1. The time derivative of v(-) along a trajectory
of that system yields

o(z) =2 (AP '+ P 1Az +20'B' P 'z
=—2z'P7'BB'P 'z +2w'B'P 'z
=w'w— (w— B'P '2)(w—BP'z)
< Jwlf?

which, after integration of both sides from 0 to t > 0 provides

v(a(t)) = 2/ ()P~ a(t) < Jwl} < 1
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This inequality means that, in the state space, the trajectories x(t) , for all £ > 0 are
confined in the set 2’ P~'x < 1 whenever w remains bounded by |Jwl||2 < 1.
Point a) With z = Cz and % := P~1/2z, we have

G(T(z,w;5))? = sup |2lI%
Jrwll2 <1

< max {x'C'Ca: ' Plr < 1}

< max {:Z:’PI/ZC’CPl/Q:i - #E < 1}
< Amaz(PY2C'CPY?)

< Amaz(CPC")

and it remains to show that there exists a feasible trajectory w(t) such that |||/, is
arbitrarily close to Apqr(CPC’). To this end, consider T > 0 fixed but arbitrary

T
0< S(T):= / eMBBeNtdt < P
0

and the input signal such that w(t) =0 for all t > T and
w(t) = BeT-05T) V2, 0<t<T

where ¢ is a vector to be determined. Simple calculations show that

00 T
Jewll? = / W (tw(t)dt = / W (tw(t)dt = '

and .
z(T) = C/ eAT =7 By(r)dr = CS(T) /%y
0
Consequently, choosing ¢ as being the unitary norm eigenvector associated to the

maximum eigenvalue of matrix S(T)'/2C"CS(T)/?, the feasibility of the input signal
w is guaranteed and

l12l|%, = sup 2'(¢)=(¢)
t>0
> ¢IS(T)1/QC/CS(T)1/2¢
> Anae(CS(T)C")

the proof is then concluded because S(T') becomes arbitrarily close to P as T increases.
Point b) With z; = Cyz with C; being the i-th row of matrix C and & := P~'/2z,
we have

G(T(z,w;5))* = sup ||z]%,
Jwll2<1

< max {x'C{CZ-:E 2Pl < 1}
z,i

< max max {;E’Pl/QC’;C’iPl/Qi' ; 3'E < 1}
< max Amaz(PY2CICPV/?)
< max C; PC;|

< dimas (CPCY)
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As before, it remains to determine a feasible input such that the equality holds. This
is accomplished by the same function w(t) already defined and a convenient choice
of vector ¢¥. Indeed, take 1; as being the unitary norm eigenvector associated to
the maximum eigenvalue of matrix S(T)Y2C!C;S(T)/?, and choose ¥ = vy where
C;S(T)CL < C,S(T)CY for all index ¢ =1,2,-- -, then w is feasible and

2112, = sup max zj(t)zi(t)
>0 i

> max 1)’ S(T)Y2CIC;iS(T) %y

> CS(T)Cy
> dmae (CS(TYC)

the proof is then concluded since as said before, S(T') becomes arbitrarily close to P
as T increases. d

Remark 6.33 In the proof of Lemma 6.5, it is assumed that the solution of the linear ma-
trix equation (6.123) is positive definite. This occurs whenever the pair (A4, B) is reachable.
If this assumption is not verified, the result still holds true. In this case, using Kalman’s
canonical controllability form, it is immediate to see that the output z(¢) in (6.119) depends
only on the reachable part of the system. O

Remark 6.34 The relationship between both G(-) for the norms (6.121) and (6.122) are
dmaz(CPC/) S )\maz(CPC/) S trace(CPC/)
which also implies, in both cases, that G(T(z,w; s)) < ||T(z, w; s)||2. O

Remark 6.35 (Convexity) The real valued function g{X) : P — R defined as g(X) :=
Amaz{(X) is convex (recall Remark 6.3). The same is true for the function g(X) := dpaz(X).
To prove this, take Xo € P and eo the column of the identity matrix such that e;Xoep =
9(Xo). For all X € P we get

9(X) = dmaz(X)
> e{)Xeo
> g(Xo)+ < eoeg, X — Xo >

and inequality (6.1) is verified for Ag = epeg, then convexity follows. Notice further that
both functions are not differentiable in P and are non decreasing functions in the sense that
for any X1, X2 € P such that X1 < X3 then g(X1) < g(X2). O

Example 6.5 Consider the system (6.118) - (6.119) with

0 1 0 2
A=] 0 o0 1], B=]| -2 ,cz{géﬂ
-10 -9 —4 4
Our purpose is to illustrate the result of Lemma 6.5. The definite positive solution P of the
Lyapunov equation (6.123), provides

M2(cpCcy = 216
T 1 8)) = g
G(T(zw:9)) {dir{fz(cpcf) = 168

On the other hand, taking 7" = 5 it can be verified that S(7") ~ P and so, corresponding to
the input
1 A(T~t) p-1/2
w(t) = B'e P v, 0<t<T
0 , t>7T
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Figure 6.12: Norms of the output z(t)

the system produces the output z(t) which enables us to calculate the time varying function

. Zl(t)2 + ZZ(t)2

for each norm used to define G(-). These functions are shown in fig 6.12 where the labels
Amaz and dmay identify the norms introduced in (6.121) and (6.122) respectively. In fig.
6.13 the corresponding inputs w(t) are also shown. It is interesting to verify that in both

cases
max f(t) = G(T(z,w;s))

and |w||2 & 1 as required in the proof of Lemma 6.5. O

Throughout the remaining of this section, we define the convex function
g(CPC") := G(T(z,w; s))? (6.124)

to indicate both cases treated before. Since this function is convex in the domain
P, the constraint g{CPC’) < a, for a > 0 fixed, can be handled with no additional
difficulty because convexity is preserved. The same obviously occurs if g(CPC’) is
used as a objective function to be minimized. This case, generalizes the control design
problem in RH> in the sense that it is obtained from the above formulation for the
choice g(CPC’) = trace(CPC").

6.5.1 State feedback design

The dynamic system is described by the equations

T = Az + Biw + Bou (6125)
z = Clﬂf + Dlgu (6126)
y=a (6.127)
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25

Figure 6.13: The inputs w(t)

where our purpose is to determine the optimal matrix F' such that with ©w = Fz the
following control problem is solved

min {G(T(z,w;s)) : F e K.} (6.128)

To this end we only consider the assumption i) Dj;D12 = I. For each F' € K, then
T(z,w;s) is in RHy which means that if IC. # 0 then (6.128) is well-posed. The main
feature of the result to be presented is that the optimal global solution of (6.128) is
actually attained.

Theorem 6.10 Consider B1 B} > 0 and define the matriz
R.:=[C1 Dy | (6.129)
The convex programming problem
Jopt :=min {g(R-WR.) : W eC.} (6.130)
is equivalent to problem (6.128) in the sense that both present the same global solution.

Proof Recall Theorem 6.1 where it is proved that all elements of the set K. are
generated from those of C.. Hence, as far as feasibility is concerned, both problems
are equivalent. We proceed by assuming that problem (6.128) has an optimal solution.
In this case, from Lemma 6.5 there exist matrices P > 0 and F' € K. such that

gl(Cy + D12 F)P(Cy + D12 F)'] = min G(T(z,w; s))

and
0= (A+ ByF)P+ P(A+ ByF) + B.B]

Defining the matrix
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simple algebraic manipulations yield the conclusion that W € C, provides the mini-
mum cost. It remains to prove that W is the global optimum of problem (6.130). To
this end, taking any feasible W we have F' = Wo,W le K. and
G(T(z,w;8)) = g[(C1 + D1oWiW; 1) P.(Cy 4 D1aWaW )]
where W7 > P,.. Using again the fact that W > 0 together with the Schur complement
formula we get
g(R:WR,) = min G(T(z,w;s))
< G(T(z,w;s))
< g[(C1 + DWW YW1 (Cy + DigWaWw )]
< g[R-WR,, — D12(W3 — WiW'W,) Dl,]
< g[R-WR,)
which being true for all W € C. completes the proof. |

The proof of this theorem is almost the same of that of Theorem 6.3 where the
special case g(-) = trace(-) has been considered. Notice further that the above proof
depends basically on the convexity and on the non decreasing property of the function
g(+) introduced in Remark 6.35. Consequently, the same result also applies to any
other function with these properties.

6.5.2 Output feedback design

Once again consider the system

z = Az + Byw + Bau (6.131)
z=Ciz + Disu (6.132)
y = Coz + Daw (6.133)

where the transfer function K(s) of the output controller is to be determined. It is
adopted the same reasoning as before, that is all feasible controllers are completely
parametrized by only one matrix F' which is used to meet the design requirements.
Its transfer function is given by

A+ BoF + LoCo | —Lo
K(s):= 7 i 0

(6.134)

being thus apparent that the choice L = Ls is the best we can do as far as the
reconstruction of the state from the output is concerned. Let us keep in mind that

Ly = —T1,CY — By D}, where I3 is the positive semidefinite and stabilizing solution
of the Riccati equation (in the unknown II)
0 =A%} + AfII - TICyCoIT 4 By By ¢ (6.135)

The feedback connection drawn in fig. 6.5 puts in evidence that the internal stability
of the closed-loop system is assured if F' € K. and so our goal is to solve the associated
optimal control problem

min {G(T(z,w;s)) : FeK.}

The next lemma provides the generalization of the result introduced in Lemma 6.4 to
deal with its objective function.
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Lemma 6.6 For all F € K. the symmetric and positive semidefinite solution to the
Lyapunov equation

0= (A+ ByF)X + X(A+ BoF) + LoL}, (6.136)

is such that the controller with transfer function K(s) given in (6.134) imposes to the
closed-loop system the performance

G(T(z,w; s)) = g|[C111uC + (C1 + D12 F) X (Cy 4+ D12 F)'] (6.137)

Proof From Lemma 6.5 together with the state space realization of the closed-loop
system, yields

G(T(z,w;s)) = g[CP.C"]
where P,, solution of the linear equation (6.36) is given by

5 I+ X Iy
Pl ]

Furthermore, simple calculations enables us to write
CP,C" = C1T1,C} + (Cy + D12 F)X(Cy + Dy FY (6.138)
which proves the lemma proposed. ]

The equality (6.138) is of particular importance. With it, the specific properties of
the function ¢(-) is not used in the proof of the above lemma. Consequently, the same
result also holds for any other function g(-). For those functions under consideration
in this section, the Output feedback problem is reduced to the State feedback problem
applied to the auziliary plant

T = Ax + LoDoyw + Bau (6139)
z = Ciz + Disu (6140)
y=cz (6.141)

Doing this, it is important to keep in mind that both, matrix B; should be replaced
by LoDs2; and the objective function to be minimized over C. should be replaced
accordingly, leading to

Jopt = min {g[C111,C] + RWRL] : W e C.} (6.142)
which again is a convex programming problem.
Remark 6.36 Due to the fact that
glC1II2C1 + R-WR] < g[C1I1oCp] + g[R-WR]]
it is possible to simplify the objective function of Problem (6.142) by retaining in the op-
timization problem, only the second term in the above expression (since the first one is

constant). Unfortunately, this may produces an important degree of sub-optimality because
the overbound is, in general, very conservative. a
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Example 6.6 Consider the system (6.139) - (6.141) with the matrices as indicated below

NS

01:[(1) 8],02:[1 0], Dau=[0 1]

Solving the Riccati equation (6.135) we get Lo = —[1.7321 1}' and

amd:[

1.7321 0O
0 0

Then we solved problem (6.142) considering g(-) = trace(:}, g(*) = Amaxz(-) and g(-) =
dmaz(+). The optimal controllers and the minimum cost associated, for each case are respec-
tively

—3.145 — 0.99
Kopi(s) = ——20 Z2099 5 1.
pi(8) = T3 a5 r a0 Jort = 1085
—4.595 — 1.32
Kopt(s) = 2228 7 292 5 g,
vi(8) = Fi03sr 631 ot = 8%
4265~ 1.4
Kopt(s) = bs 7 Jopt = 5.73

82+ 3.44s+5.44

Each controller and the associated cost are quite different which indicates that the optimum
of each problem solved are distinct, even though they obey the inequality given in Remark
6.34. The optimal solution of the upper bound of all g(-) namely trace(-) may furnish a poor
suboptimal solution to the other cases under consideration.

Following the discussion in Remark 6.36, we also calculated the following suboptimal
cost

Jsup = g(C1I12C1) + min {g[RCWR’C] . We Cc}
for each function ¢(-) as before. The result is

—3.145 — 0.99
Ksu = e T s sub — 10.
o(8) = B 3145 1 a4q o = 1085
—4.165 —1.16
Ksu = TS e T oS sub = 2
o(8) = Fissss 15880 w0
Kous(s) = -3.60s ~ 1.19 Tous = 6.35

524+ 3.27s+4.86 '
Comparing these controllers with the optimal ones, it can be verified an important loss on
the performance index. This occurs in all cases but the first one on which the trace function
is used. g

6.6 Controllers with structural constraints

In practice one is frequently faced to control design problems where the controller must
exhibit some desired structure. For instance, if the system to be controlled is com-
posed by many coupled subsystems, robustness considerations requires the controller
should use only local informations for feedback, that is, in the state feedback case,
the matrix gain F' must present a block-diagonal structure. This particular structure
defines the important class of Decentralized control design problems. As well as, if
only the system output is available for feedback we already know how to design a
dynamic controller to meet certain performance criteria. However, it is also of great
interest to determine (if any) a static feedback gain with the same paradigm. This is
on the origin of the so called Static output control design problems. This section is
entirely devoted to analyze these problems in the framework of convex analysis.
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| Interconnections
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Figure 6.14: The interconnected System

6.6.1 Decentralized control design

The system to be dealt with is represented in Fig. 6.14. It is composed by a number N
of subsystems each of them with transfer function P;(s), coupled together by means of
an interconnection structure. The dynamic model of the i-th subsystem with transfer
function P;(s) is given by

N

#; = A%x; + Biw + Biu; + Z Aij:cj (6.143)
J#i
z; = Ciz; + Diyu; (6.144)

In order to impose to the overall system a desirable performance, it is asked to design
N local controllers, each of then using only the information available in the local state
variable z; , i1 = 1,2,---, N. That is,

w =Fx;, i=1,2-- N (6.146)

Clearly, if the overall system is rewritten in the standard form

Z = Ax + Byw + Bsu (6.147)
z=Cix+ Dpu (6148)
y==z (6.149)
then the control is given by
w=Fz , F =Dblockdiag[Fy, Fs,---, Fy] (6.150)

where each block of F' is the local matrix gain with appropriate dimension. To ease
the presentation, let us introduce the following notation. The subscript ”D” in a
matrix, for instance Fp means that this matrix is constraint to have a block-diagonal
structure. In other words, Fp is obtained from any F' by simply zeroing all off block-
diagonal elements. The problem to be faced in this section is how to incorporate the
above structural constraint in several design procedures of interest. It is important to
keep in mind that the results of this section are related to the general linear system
(6.147)-(6.149) and do not depend upon any particular system structure like that of
system (6.143)-(6.145).
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The first important feature to be analyzed is the internal stability of the closed-
loop system. Clearly, internal stability is guaranteed whenever there exist F' such
that

F=Fpelk,

Furthermore, all decentralized matrices Fp with this property constitute the set of
all stabilizing decentralized gains for the system under consideration. This set is not
convex and in many cases may be constituted by disjoint subsets. So, we work here
with a particular subset of it defined as follows

Definition 6.3 (Structural D - Stabilizability) The pair (A, B2) is said to be struc-
turally D - stabilizable if there exist matrices Pp symmetric and positive definite and
Fp such that

0> (A+BQFD)PD+PD(A+B2FD)/+Q (6.151)

for some matriz Q = Q' > 0. The set of all such matrices Fp is denoted Kp. O

We want to stress that Fp € Kp implies that Fp € K. but the converse is not
necessarily true. Moreover, it is possible to have KX p = § while there exists Fp € K..
The additional constraint in Definition 6.3 is that the Lyapunov inequality (6.151)
must present a block-diagonal solution P = Pp. At a first glance, it may appears
that the existence of a pair (Fp, Pp) depends on a particular choice of matrix @.
Fortunately this is not true as can be simply demonstrated as follows. For a given
matrix Fp, suppose Pp satisfies the Lyapunov inequality (6.151) with Q@ = Q > 0.
For any other matrix Q > 0, choosing the scalar 3 > 0 such that SQ > Q, it is
simple to verify that (6.151) is also satisfied for Pp = 8Pp > 0. Hence, matrix
@ > 0 in Definition 6.3 can be chosen arbitrarily. Before presenting the next result
we introduce the notation used for the partitioned matrix W. The subscript ”D” is
used as follows

_ | Wip Wzp
Wp = [ o }

which indicates that only the sub-blocks W7 and W5 have to present the decentralized
structure, namely

Wip = blockdiag[Wi1, Wia, - -+, Win]
WQD = blockdiag[ng, WQQ, Ty WQN]

with Wy; and Wy; being n; x n; and n; X m; matrices where n; is the local state
vector dimension and m; is the local control vector dimension respectively for all
i=1,2,---,N.

Theorem 6.11 Consider By B} > 0 and define the set
Cp={W . W=Wp} n C, (6.152)
The following are true
a) Cp is a convez set.
b) Each W € Cp is such that Wi > 0.

¢) Kp={WjW"' : WeClp}.
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Proof Since the constraint W = Wp is linear and the set C. is convex then point
a) is proved. Moreover, the proof of point b) is a consequence of By B > 0 together
with Cp C C..

Point c) For the necessity, assume Fp € Kp # . Setting Q = BB} in (6.151), it
is simple to verify that

Pp PpF),

W=Wo=| pp, FpPoF}

eC,

which is the same to say that W € Cp. Furthermore, WQ'Wfl = FDPDPB1 = Fp.
Conversely, for any W € Cp # 0 and any v € N we get

0>v0. (W)
> 2’ [(A+ BeWW Wi + Wi(A+ BeWW ) + B1 By «
which shows that inequality (6.151) holds for Pp = W7 = Wip and Fp = WQ/Wfl —

W;,Wip, that is both matrices exhibit the desired block-diagonal structure. From
the above, the equality in point c) also holds when Kp =@ or Cp = 0. 0

The linear constraint W = Wp is essential to get this result. It provides all
stabilizing decentralized matrices F' = Fp and the quadratic function

N
v(z) =W gz = Zx;W{ilmi
i=1
is a Lyapunov function associated to the closed-loop system with w = 0 since, its
time-derivative along an arbitrary trajectory of the system is

b(z) = —|BiWpz||> <0, Vz#0

The interpretation of Theorem 6.11 is now clear. It generates all stabilizing matrices
Fp such that the closed-loop system stability is tested by an additively separable
Lyapunov function.

In this framework, it is possible to solve an approximate version of the decentral-
ized state feedback design problem in RH5, written in the form

min {|T(z,w; s)|3 : FeKp} (6.153)

which makes once again explicit that the feasible set is restricted to those gains
satisfying Definition 6.3.

Theorem 6.12 Assume B1 B} > 0 and let W be the optimal solution of the convex
programming problem

Jsub := min {trace[R.W] : W € (Cp} (6.154)

Then, F = Fp = WQ’WI'I € Kp minimizes an upper bound of the objective function
of Problem (6.153) in the sense that | T(z,w; s)||% < trace[R.W], for all W € Cp.

Proof The infeasibility of one problem implies the same is true to the other and
vice versa. Hence, assuming they are feasible, that the optimal solution of Problem
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(6.154) provides WiW, ' € Kp is a consequence of Theorem 6.11. Additionally, for
any W € Cp we have Wip > P, where

0= (A+ BaWypWip) Pr + Po(A+ BoWip W) + B1Bj
yielding

trace[R.W| = trace [(Cy + D1oWjp, W, p)Wip(Cy + DiaWipWip)'] +
+trace [D12(Ws — Wy, Wip Wap) Dy,
> trace [(C1 + D1oWipWip ) P(Cy + DiaWip W5 )]
> | T (2, w;8)|13

completing the proof. |

At this point it is important to keep in mind why Problem (6.154) corresponds
to minimize only an upper bound to the objective function of Problem (6.153). The
reason is that even though W € Cp generates all feasible gains F' = Fp, the matrix
P, used to determine the corresponding value of ||T(z,w;s)||3 does not necessarily
satisfies the decentralized constraint P, = (P,)p. Generally the inequality Wyip > P,
is only strictly satisfied for all W € Cp.

Remark 6.37 The exact Decentralized state feedback design in RH3 is the optimal control
problem
min{HT(z,w;s)Hg : F=Fpc¢ ICC}

Using Theorem 6.1, this is equivalent to
min {trace[R-W] : W e Ccp}
where
Cep = {W : WaWy ' = (WaW; )p}ncCe

Unfortunately, the nonlinear equality constraint present in the set C.p makes it nonconvex.
The way to circumvent this difficulty is to impose the decentralized structure on matrix W
and W; simultaneously, as required by Definition 6.3. 0O

Remark 6.38 The convex constraint W = Wp can be added to any other design problem
in order to search a decentralized stabilizing control. For instance, any W belonging to the
convex set,

C’yD = {W W= WD} M C»yc

provides F = Fp € K. 0

Example 6.7 Consider the interconnected system (6.143) - (6.145) composed by N = 2
local subsystems with matrices (i = 1, 2)

0

1

w_ | 01 i |1 i
vl a ] me ] e

Ci=[05 0], Di=1

coupled together by the interconnection matrices

12 421 | -1 0
A% = _[ ! 0]
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P(s)

G

Figure 6.15: The static output feedback control system

Solving the optimal control problem in RH2, the optimal feedback gain and the associated
minimum cost are

F2:{—2.84 -2.15 -0.34 —-0.15

034 —0.15 —2.84 —2.15] v Jopt = | T(z,w;9)3 = 21.79

while the optimal solution of Problem (6.154) provides

o | —362 —2.50 0 0
b= 0 0 —3.62 —2.50

:| , Jsub = 30.27

However, for F = Fp the exact value of the objective function can be calculated as being
I1T(z,w; s)||3 = 23.04 which confirms numerically the fact that only an upper bound of the
true cost has been minimized. O

6.6.2 Static output control design

The system to be analyzed is given in fig. 6.15. The transfer function P(s) has the
state space realization

z = Az + Biyw+ Bau (6.155)
z=Ciz + Dpu (6156)
y = Cox (6.157)

where in opposition to the Output feedback control problems solved before, the mea-
sured output variable y(-) € R" is not corrupted by the external disturbance w(t).
Moreover it is assumed that Cy is full row rank. The goal is to design a static output
feedback law of the form

u= Gy (6.158)

where the internal stability as well as some previously defined performance behavior
are assured.

The control law (6.158) can be rewritten as u = Fox, where the subscript 70" in
matrix F means that there exists G such that Fp = GC5,. In this case the internal
stability of the closed-loop system is preserved by means of the static output control
law (6.158) provided F' = Fp € K. Before proceed, let us made the assumption that
matrix Cy presents the following structure

Co=[1 0]

If this is not the case, it is always possible to put the system in this form by a suitable
choice of a similarity transformation. Under this assumption, matrix Fo must present
the particular structure

Fo=[F 0]
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which implies that G = F} as required before. For a symmetric matrix P the subscript
70" has a slightly different meaning, that is

o o P11 0
p_po_[ ! Pm}

where P1; and Pa are 7 X r and n — r X n — v symmetric sub-matrices respectively.
Unfortunately, the set of all stabilizing output feedback gains, being

F=Fyck,

is nonconvex and in many instances may be constituted of disjoint subsets. To cir-
curnvent this difficulty, we work here with a subset of it which as will be proven can
be converted to a convex set. This subset is characterized by the following definition

Definition 6.4 (Structural O - Stabilizability) The triple (A, By, C3) is said to be
structurally O - stabilizable if there exist matrices Po symmetric and positive definite
and Fp such that

0> (A+BQFO)PO+PO(A+B2FO)/+Q (6.159)
for some matriz Q = Q' > 0. The set of all such matrices Fp is denoted Ko. a

For any matrix such that F = Fp, it can be factorized as F' = GC5 for some G,
consequently structural O - stability implies that the eigenvalues of the closed-loop
matrix A+ BoF = A+ BoGC5 are all in the open left hand side part of the complex
plane. However, as in the case of decentralized control, Definition 6.4 requires the
Lyapunov inequality solution, used to test stability presents a particular structure.
The consequence is that Fp € Ko implies Fp € K. but the inverse is not true in
general. The price to be paid to handle convex sets only is to retain a subset of
the entire set of static output feedback stabilizing gains. With no loss of generality,
matrix @ > 0 in definition 6.4 can be a priori fixed. This fact is proved with no
major difficulty since for any P = Py > 0 and any scalar 3 > 0 then P = 8P,
satisfies P = Pp. Considering a matrix W partitioned in four blocks, the subscript
”(” stands for W W

o 10 20
Wo = [ o }

which indicates that only the sub-blocks W; and W, have to present the output
structure, namely

| Wi 0 o Wy
WIO_|: 0 WQQ],W2O_|: 0 ]

with Wiy, Wag and Wy, being r X r, n —r X n —r and r X m matrices where n is the
state vector dimension, m is the control vector dimension and r is the output vector
dimension respectively.

Theorem 6.13 Consider B1 B} > 0 and define the set
Co={W : W=Wp} n C, (6.160)
The following are true

a) Co is a conver set.
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b) Each W € Co is such that W > 0.
c) Ko = {VVQ’Wfl : We CO}.

Proof As in the proof of Theorem 6.11, the constraint W = W is linear and hence
convex. This fact together with B; By > 0 and Co C C, prove both points a) and b).

Point ¢) For the necessity, assume Fp € Ko # (. Setting Q = B1Bj in (6.159), it
is simple to verify that

Po  PoF,

W=Wo = FoPo FoPoFl

€ Co

and W)W ! = FoPo P, 1 = Fp. Conversely, for any W € Co # § and any v € N,
we get
'O.(W)v

0>w
>z [ (A+ BoWoW, )W1 + Wi (A + BaWoW ) + BlBi] x

which shows that inequality (6.159) holds for Po = W) = Wi and Fop = WiW ™ -
W;3oW,, that is both matrices exhibit the desired output feedback structure. In
case one of the sets Ko or Co is empty then the equality stated in point ¢) follows
trivially. a

From this theorem, we can see that any feasible matrix W € Cp generates an
output feedback stabilizing gain which is very simple to be determined. Actually, the
imposed structure constraint

_ W11 0 _ W21
WIO*I: 0 WQQ] 9 W20_|: 0 :I

provides Fp € Ko which can be factorized as Fpo = GC5 where
G=F =WyW; (6.161)

in addi.tion7 the complete parametrization of the set Ko by means of point ¢) opens
the possibility, with no major difficulty, to involve it in an optimization procedure.
For instance consider the Static output feedback control design problem

min {|T(z,w;s)||5 : F €Ko} (6.162)

which makes once again explicit that the feasible set is restrict to those gains satisfying
Definition 6.4.

Theorem 6.14 Assume B1 B} > 0 and let W be the optimal solution of the convex
programming problem

Jsub := min {trace[R.W] : W € Cp} (6.163)

Then, F = Fg = WQ'V_Vf1 € Ko minimizes an upper bound of the objective function
of Problem (6.162) in the sense that | T(z,w;s)||3 < trace[R.W], for all W € Co.

Proof From Theorem 6.13, it suffices to consider that both problems are feasible. In
this case, the optimal solution of problem (6.163) provides WjW, ' € Kp. Addition-
ally, for any W € Co we have Wyp > P, where

0= (A+ BaWyoWi5) P + Pr(A+ BaWooWig) + BB
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yielding immediately trace[R.W| > ||T(2,w; s)||3. The proof is complete. a

In general, the optimal solution of problem (6.162) is not generated by means of
the global optimal solution of the convex problem (6.163). Even though all gains
in Ko are generated by the proposed convex parametrization, matrix P, needed to
calculate | T(z,w; s)||3 may not satisfy the constraint P, = (P,)o, in this case there
is no matrix W € Cp for which the equality W10 = P, holds.

Remark 6.39 Following the lines of Theorem 6.13 we notice that the set of all F = Fp €
K. can be generated by F = WiW, ' where

W eCeo:={W : Wa3W[ ' =WW; Yo} nCe

Unfortunately this set is not convex. The same theorem provides a subset of C.o, namely
Co which has the important property to be convex. O

Remark 6.40 Consider the system (6.155) - (6.157) and the matrix

s=[ %]

where E, is any matrix of appropriate dimension such that S™! exists. Defining the new
state variable ¥ := Sz, the new state space realization turns out to be such that y = Coi
where

Co=CoS'=[1 0]
The concept of Structural O - stabilizability depends on the similarity matrix S by means
of the arbitrary submatrix F,. The next lemma puts in evidence this important point.

Lemma 6.7 The following statements are equivalent:

a) The triple (A, Bz, C2) is stabilizable by output feedback, that is there exists G such that
the matriz A + B2GCy is stable.

b) There exists a matric Eo such that the triple (A, By, C2) in the new state space repre-
sentation is structurally O - stabilizable.

Proof To prove that a) implies b), let us suppose that there exists an output feedback
gain G such that A 4+ B2GC; is stable. From the Extended Lyapunov lemma, there exists
P = P’ > 0 solution to the linear equation

0 = (A+ B2GC3)P + P(A+ B2GCa) +Q

for @ = Q' > 0 given. Chosen Es = U,P™! where U, defines an orthogonal basis to the null
space of C3, that is CoUz = 0 and U3U> = I and multiplying the above equation to the right
by S’ and to the left by S we get

0= (A+ B:GCo)P 4 P(A+ BGCh)' +Q
where P := SPS’ and Q := SQS’. Simple calculations show that
Fi=GG=[G 0]=Fo
and

CaPCY, 0 ~

. B
P=5PS = e

meaning that point b) holds. The converse is immediate. 0O
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Remark 6.41 The numerical solution of problem (6.162) by means of convex programming
methods is very efficient. However the main drawback of this approach is that only a subset
of the true feasible set of stabilizing output feedback gains is considered. Let us verify the
difficulties we have to face for the numerical solution of the true Output feedback design
problem in RH>

min{||T(z,w;s)Hg : GCy € ICC}

which reduces to the determination of matrices G and P = P’ > 0 such that
min {trace[B] PB1] : 0= AL P+ PAcy + ClyCeq }

where Acy := A+ BaGCh and Coy := Cy + D12GC>. Defining A = A’ the matrix of
Lagrange multiplier associated to the equality constraint, the necessary optimality conditions
are (recall Remark 6.7)

0=ALP+ PAcg + CryCeq

0 = AcgA + AAL, + B1 B}

0 = (GCy + D},C1 + By PYACS

Assuming as before that B1Bj > 0 then for any GC> € K. matrix A is positive definite, in
which case the last equation yields

G = —(ByP + D},C1)AC(C2ACy) ™

This formula for the optimal gain couples the first two equations in a very nonlinear manner.
The optimal gain can not be expressed in terms of a Riccati equation unless matrix C; is
square and nonsingular. The following algorithm is useful for numerical purposes

1) Choose G such that Fy := GoC2 € K. and iterate until convergence with k = 0,1, - -.
2) Set Fi := GxC2 and let P, > 0 be the solution of the Lyapunov equation (in the
unknown P)

0= (A+ B2Fy)' P+ P(A+ B2Fi) 4+ (C1 + D12 Fy,) (Cy + D12 F)'

Determine F}, := —B, P, — D!,C\.

3) Let Agy1 > 0 and G4 be the solution of the nonlinear equations (in the unknown A
and G)
0 = (A + B2GC2)A + A(A+ B2GCs) + By B}

G = FL ACy(C2ACH) ™!
Lemma 6.8 With B1B} > 0, the above algorithm has the following properties

a) For allk=0,1,-- the gain Fey1 = Gey1Co € K.
b) For allk =0,1,--- the criterion Jyr1 := trace[ B} Pyy1B1] < trace| B} P B1] := Jy

Proof Point o) is a consequence of step 3). Actually, it implies that Agy1 > O satisfies
0=(A+ B2Fri1)Aps1 + Ap1 (A + BoFr1) + BBy

thus, Frt+1 = Gr+1C2 is a stabilizing gain.
Point b) Simple but tedious algebraic manipulations show that for two subsequent iter-
ations

0 = (A4 BaFe41) (Px — Piy1) + (Pe — Pe1)(A+ BoFpn) +
+(Fr — F) (Fy — Fy) = (Fig1 — Fi) (Fry1 — Fy)
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which allows us to determine the current value of the criterion as being
Ji — Jk41 = trace |:/ Ble('L‘ﬁLsz’““)t(Fgc — ﬁ‘k)'(Fk — Fk)e(A"'Br"F’““),tBidt:! —
0

—trace |:/ B16(A+B2Fk+1)t(Fk+1 _ ﬁk),(Fk+1 _ ﬁk)e(A+B2Fk+l)/tBidt:|
0
= trace [(Fk — Fe)A k1 (Fe — Fu)' — (Frg1 — Fe)Aks1 (Fir — Fk)/]
= trace [(Gk02 — Fk)Ak_H(GkCQ — Fk)/] —
—trace [(Gk+102 — ﬁ‘k)Ak+1(Gk+1C2 — Fk)l]
using now the value of Gy41 provided in step 3)
Grt1 = FeMpr1Co(Cahe1Cs) ™
we get
Jk — Jrk+1 = trace {(GkCQ — F‘k)Ak+1(GkCQ - ﬁk)l] —
—trace [Fk (Ak+1 - Ak+1Cé(C2Ak+1Cé)_IC2Ak+1) F;;]
= trace [GkCaMk11C2Gx — Gry1CaMi 1 CoGl—

—GrC2Ak11C5Ghyr + Gk+102Ak+1C§G;c+1]
= trace [(Gk — Gr11)C2Ak11C3(Gr — Gitr)']

This equality finally enables us to conclude that

Jx+1 = Ji — trace [(Gk — Gk+1)C2Ak+1C$(Gk — Gk+1)l]
< Jk

which proves point b) of the lemma proposed.

It is important to recognize that the second part of Lemma 6.8 is also a consequence
of the joint determination of matrices Agy1 and Gi4+1 in step 3) from the solution of two
simultaneous equations, one of then nonlinear. It would be very attractive to change the
previous algorithm in order to solve only linear equations. However, doing this it is no more
possible to be sure that

Fr, =GrCr € Ko = Fry1 = G102 € K¢
in which occurrence the properties introduced in Lemma 6.8 are both lost. Hence, we can say

that the price to be paid to keep these convergence features is to solve in step 3) a nonlinear
matrix equation. |

Example 6.8 Consider the system (6.155) - (6.157) with the following data

0 1 10 0
S IR ER R

01:[(1) 8},&2:[?},@:[0 1]

Solving the State feedback control problem in RH2 we get

Fy=[ —041 =091 | , Jop: = trace[P;] = 2.19
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Since matrix Cs is not in the standard form, from the discussion in Remark 6.39 we have
first defined a similarity transformation with

0 1
together with the optimal solution of problem (6.163) provides

Gous = —2.0, Jsup = 3.50

In this case, the optimal solution of the exact design problem (recall Remark 6.41) is known
to be Gopr = —0.81 with the associated cost Jope = 2.46. This example shows that the
quality of the solution provided by the solution of the convex problem (6.163) may be poor.
Of course the quality, measured in terms of the deviation from the optimal solution depends
on the similarity transformation matrix S which unfortunately is not easy to choose. Again,
the main attractive feature of problem (6.163) is its convexity. a

6.7 Notes and references

The various aspects of Convex Analysis, from the basic facts to most important and
deep results are included in the seminal book by Rockafellar [53]. The book [10]
exhaustively treats the most important topics related to systems and control theory
in the framework of Linear Matrix Inequalities so that the problems to be handled
are convex. As well as, this book is also an important source of references to those
interested in going deeper into optimal control design using convex programming
techniques. Section 6.2 is mainly based on papers [6], [22], [47], [48] and on the results
introduced in the previous chapters of this book. Section 6.3 follows the same lines of
[32] and connections to the results of [5] are put in evidence. The approach proposed
in [40] is summarized in Remark 6.28 where also a numeric example is included for
comparison purpose. In Section 6.4 the pole placement problem in a circular region
is analyzed in a convex programming view point. Other regions for pole placement
as well as a different approach to solve the same problem are considered in [28]. The
time-domain specifications treated in Section 6.5 is based on the result of Lemma
6.5 due to Wilson [62]. The proof of this result is different and new. The related
optimal control design problems appeared first in [54]. Finally, the Decentralized
control design in Section 6.6 parallels the results of [23]. In the same section the
Static output control design problem considered, first appeared in [39]. From this
reference comes both the Example 6.8 solved and the algorithm discussed in Remark
6.41. The proof of convergence is new.
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Chapter 7

Uncertain Systems Control
Design

7.1 Introduction

This chapter is devoted to uncertain systems control design. The main goal is to
provide a simple and easy to follow introduction to this important subject of control
theory. The necessity to analyze dynamic systems subject to uncertainties stems
from the fact that the model to be used for design purpose is generally only an
approximation of reality. In other words, for control design purpose we need to
handle simple models. However, the controller obtained must work when connected
to the real system. The way to take this feature into account is to consider a simplified
nominal model which is corrupted by uncertainties belonging to a prespecified domain.
To make clear this point it is interesting to remember the mixed RHs/RH,, control
design problem. The controller calculated from its solution imposes optimality to
the nominal closed loop system while stability is preserved against the considered
uncertainties. In this chapter, we go beyond this point. Indeed, not only robust
stability is considered but also robust performance is taken into account. That is,
the main purpose is to design controllers which preserve stability and minimize the
performance loss due to existence of uncertainties. In this way, two important concepts
are introduced, namely quadratic stabilizability and guaranteed cost which are both on
the basis of the results that follow. Once again, the optimal control problems to be
solved are all convex and so the same machinery provided in Chapter 6 is intensively
used. It is important to make explicit that only linear control design is considered.

7.2 Robust stability and performance

In this section we generalize the concepts of stability and optimality to deal with
uncertainties belonging to a precise although general domain. Control problems design
involving norms of transfer functions in RHy and RH,, spaces are considered in the
special case that the whole state is available for feedback.

The basic system structure is depicted in fig. 7.1 making explicit the linear state
feedback control law to be used. The transfer function Pp(s) depends on the subscript
D which will be made clear in the sequel. The linear system under consideration thus
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| PD (8) [

EE— F

Figure 7.1: The control system structure

have the following state space representation

T = Ax+Blw+Bgu (71)
z=Ciz+ Disu (7.2)
Y=z (7.3)

and the controller is completely defined by means of the matrix F' which has to be
determined (if any) such that with

u=Fx (7.4)

some desired performance is assured. Equations (7.1) - (7.3) represent an uncertain
linear system. That is, matrices A and B are not exactly known. On the contrary we
only know that they belong to some prespecified matrix set D. In this sense, equations
(7.1) - (7.3) represent in fact a family of linear systems any member of which has to
be controlled by means of the same control law. Of course it is important, if possible,
to determine F' such that all members of the family are internally stable and, at the
same time, some desired performance level is guaranteed.

To put this discussion in more precise terms, let us recall that for any pair (A4, By) €
D the internal stability of the corresponding system is assured whenever F' € K.
Consequently, the matrix gain F stabilizes all members of the family if and only if

FeKp= [ K. (7.5)
(A,BQ)ED

This fact has a very clear interpretation. The set Kp is composed by all matrices
F which stabilize each feasible pair (A4, B2) € D. The set Kp does not present any
important property as for instance convexity. A crucial point is that although each
element of the intersection above can be converted to a convex set (as has successfully
been done in Chapter 6), the same is not true for the intersection itself, that is for the
set Kp. A way to circumvent this difficulty is to work with a subset of it, characterized
by means of the following definition.

Definition 7.1 (Quadratic stabilizability) The pair (A, B2) is said to be quadratic
stabilizable if there exist matrices P, symmetric and positive definite, and F' such that

0> (A+ByF)P+ P(A+ByF)' +Q, V(A By)eD (7.6)

for some matriz Q@ = Q" > 0. The set of all such matrices F is denoted K. o
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Once again it is important to observe that in this definition, the choice of matrix
@ > 0 is immaterial as far as the existence of a matrix P > 0 satisfying (7.6) is
concerned. If this inequality is satisfied for P = P when Q = @ then for any other
@ > 0 the same inequality also holds true for P = 8P provided 8 > 0 is such that
B8Q > Q. Definition 7.1 has a very interesting interpretation. Pick from D a pair
(A, B), consider the system (7.1) with w(t) = 0 and define the Lyapunov function

v(z) =2’ Pz

If inequality (7.6) holds then the time derivative of v(-) along any trajectory of the
closed loop system satisfies

b(z) =2’ [(A+ BoF)YP™ 1+ P (A+ ByF)| @
=a2'P ' [(A+ BoF)P + P(A+ BoFY | Pz
< —2'P71QP 1z
< 0 ,Yz#0

showing that the closed-loop system is internally stable indeed. The point is that the
above calculation holds for any pair (A4, Bs) € D and so quadratic stability means
that only one Lyapunov function can be used to test stability of all systems generated
by all pairs (A, By) in D. Thus, it is clear that K¢ is only a subset of Kp defined
in (7.5) since for the latter many different Lyapunov functions can be used to test
stability.

Remark 7.1 An uncertain linear system is said to be robustly stabilizable if Kp # 0.
This means that there exists a feedback gain matrix F' such that for all (A, B2) € D, the
eigenvalues of A + B2 F lie in the open left complex plane. O

At this point we have to move our attention to the uncertainty domain D since
Definition 7.1 depends essentially on its mathematical description. There are several
possibilities for that. Let us consider one of such description whose generality will be
discussed in the sequel. Notice first that we are assuming only matrices A and Bs
of t':= open-loop system (7.1) - (7.3) to be uncertain. This is the same to say that
matiix (recall Chapter 6)

A B } (7.7)

M, = [ 0 0
is not exactly known but belongs to an uncertainty domain D, such that
(A,Bg) € D < M. € D.

Then, we proceed by defining the uncertainty domain D.. It is characterized as a
polyhedral convexr bounded domain given by

D.:=co{My,i=1,2,--- N} (7.8)

where co{-} denotes convex hull (recall Appendix H) generated by matrices M;,i =
1,2,---, N. From this, any matrix M. € D, can be determined by a convex combina-
tion of the extreme matrices M.;,i =1,2,---, N. More precisely,

N N
M,=Y &M, &>0, Y &=1 (7.9)
i—1 i=1
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Mc4

Figure 7.2: The uncertainty domain

This uncertainty description is very general. Any polyhedral and convex bounded
domain can be exactly represented by a proper choice of the extreme matrices M,;. On
the other hand, a convex domain (not necessarily polyhedral) can be represented only
approximately but the degree of approximation involved can be made arbitrarily small
if the number of extreme matrices becomes sufficiently large. This fact is illustrated
in fig. 7.2.

Remark 7.2 Another important uncertainty description is the so called norm bounded
domain defined as
Dy i={M. = M, + BoQC, - [|Q| £1}

where matrix M., defines the open-loop nominal system and matrices B, and C,, of appro-
priate dimension define the uncertainty structure. First of all, notice that this set is convex.
Indeed, the generic element M, is affine with respect to {2 which varies in a convex set de-
fined by the norm constraint ||Q2|} < 1. Furthermore, this set is not polyhedral in general
and so, as it has been commented before, only an approximation of it can be generated by
means of the convex hull (7.8). However, in some particular although important cases, it
degenerates to a polyhedral convex set. For instance, this occurs when the uncertain matrix
) is constrained to be diagonal. |

Example 7.1 Consider the following linear uncertain system
= Az + Bou

where matrices A and Bz are given by

0 a-1 a
o3t el

and the parameters a and (3, representing the uncertainties are such that
la—05/<03, [3-05/<03

Letting the nominal values for these parameters be ap = fp = 0.5, the norm bounded domain
Dy, is completely defined by matrices

0 -05 05 0.
Men = | 0.5 0 05|, Ba=

3 0
0 03
0 0 0 0 0
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since the uncertain parameters may be retained in matrix £2, which for any ||€2|| < 1 exhibits
the diagonal structure

Q:diag{a_o's ,8—0.5}

03 7 03

The same system can be modeled by means of a convex bounded domain D.. This is done
from the observation that N = 4 and the corresponding extreme matrices are generated from
the four vertex of the rectangle [0.2, 0.8] x [0.2, 0.8], giving thus

T 0 —08 0.2 0 —08 021
Ma=| 02 0 08 |, Mo=| 08 0 0.2
0 0 0 | 0 0 0]

Ma=| 02 0 08 0.8 0 02
0 0 0 0 0 0|

From this example we conclude that any uncertain system represented by matrix M. belongs
to a polyhedral uncertain domain whenever each entry of M. is an affine function of the un-
certainty. The number of independent uncertain parameters is immaterial since the domain
D. depends only on the extreme matrices M.;,t = 1,2,---, N which are a priori determined
from the data. m]

0 —-02 081 0 —0.2 087
5 Mc4:

We move now our attention to the characterization of uncertain systems optimal-
ity. Consider the closed-loop system of fig. 7.1 with the state space representation
(7.1) - (7.3) and assume that the performance index can be expressed in terms of the
transfer function from the input w to the output z, that is

T (M, F) := G(T(z,w; s))

where it is made explicit the dependence of the performance index with respect to
both the control gain F' and the open-loop uncertain matrix M,. The former has to
be determined such that J(-) is optimized in a sense to be precisely defined. Thus,
restricting our attention to the quadratic stabilizing gains ' € K, the following
definition is of particular importance.

Definition 7.2 (Guaranteed cost) The scalar p is said to be a guaranteed cost as-
sociated with the feedback gain matriz F € Kqg if

JMe, F)<p, ¥YM€D. (7.10)

The minimum value of p satisfying (7.10), denoted pg, is called the minimum guar-
anteed cost. |

From this definition, two points have to be kept in mind. The first one is that the
guaranteed cost is a function of F' € Kg. Indeed, any p > p(F) is also a guaranteed
cost provided

F) .= M., F
pF) = max J(Me, F)
and second, the best choice for the control gain matrix F' € K¢ is the one such that
the minimum of p(F) is achieved, that is
‘= mi F
pQ = jmain p(F)
Clearly, the scalar pg is the minimum guaranteed cost associated to the uncertain
system under consideration, it does not depend on a particular value of F' € K¢ and
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it is the optimal solution of a min/max optimization problem. Actually, to show this,
notice that

pQ = pin p(F)

= min max J(M,,F)
FEK:Q MCEDC

= min {p: J(M.,F)<p, VM. €D} (7.11)
p,FeKq

which allows a very interesting interpretation of the minimum guaranteed cost, in
terms of a game between Man and Nature. The Nature plays by fixing an open-
loop model M, € D, and the Man defines the best feedback gain matrix by choosing
F € Kg such that J(M,, F) is minimized. Once this information is available, the
Nature plays again but trying to destroy the Man’s action by choosing a new open-
loop model M. € D, such that J(M,, F') is maximized. The guaranteed cost pg is
the equilibrium of this game. The equilibrium value pg is generally very difficult to
be calculated and so it must be thought as a paradigm for uncertain systems control
design. A much more simple strategy, which is used in the sequel stems from the
determination of a function p(F'} such that

J(M.,F) < p(F), ¥V M. €D,

which allows the determination of a guaranteed cost pp and the associated feedback
gain by solving

5 min 5(F

PQ = jom p(F)

clearly implying that

=~ mia B(F
pQ Frg;ng()

> min max J(M., F)
FeKg M,eD,

> po

In the next sections, our goal will be to solve this problem for the class of linear
uncertain systems with polyhedral convex bounded domains. Once again, it will be
possible to convert the optimization problem to be dealt with into a convex program-
ming problem.

7.2.1 Quadratic stabilizing controllers

The main purpose here is to analyze the geometry of the set of all quadratic stabilizing
feedback gains K¢ defined before (recall Definition 7.1). Consider the uncertain linear
system

& = Az + Byu (7.12)

with n states, m inputs and where matrices A and By of appropriate and known
dimension are such that (A, By) € D or equivalently M, € D,. The set D, is a
polyhedral convex bounded domain. Assuming the whole state variable is available
for feedback, we want to characterize all state feedback gain matrices F' such that
with v = Fz, the uncertain closed-loop system is quadratic stable, that is

FekKg (7.13)
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To this end, we need to consider again the p x p matrices W and Q. with p := n+m,
partitioned as (recall Section 6.2.1)

—— W W . Qc 0
W._[Wz W;] : QC.—{ 01 0] (7.14)

where in both matrices, the (1,1) block has dimension n x n. We also consider, for
1=1,2,---, N the convex sets

Coi i ={W : W>0, vVO,(W)r<0, VYveN} (7.15)

where O.,(W) := MW + WM., + Q.. In other terms, the convex set defined in
(7.15) is exactly the same as C, but with matrix M, replaced by the extreme matrix
M,;. Of course, Theorem 6.1 remains valid for each extreme vertex of the polyhedral
convex bounded domain D.. More interestingly, these convex sets can generate all
quadratic stabilizing gains as is proved in the next theorem.

Theorem 7.1 Assume Q1. is a positive definite matriz and consider the set

N
Co =) Ce (7.16)
i=1

The following hold
a) Co is a conver set.
b) Each W € Cg is such that W1 > 0.
¢) Kg={W;Wwi' : WeCo}.

Proof The first two points follow immediately from Theorem 6.1 where it is proven
that for each i = 1,2,---, N the set C, is convex and each W ¢ C,; is such that
Wy > 0. Consequently, point a) and point b) are both true from the definition of Cg
which is the intersection of the former convex sets. The proof of the last part of the
theorem is much more involved.

Point ¢) It is done by construction. First take F' € K¢ # 0 and remember that
Q1. is positive definite. From Definition 7.1, there exists a symmetric positive definite
matrix P satisfying the matrix inequality

(A4 ByF)P+ P(A+ BoF) + Q1. <0

for all pairs (A, B2) such that M. € D.. Consequently, the same inequality holds true
for the NV pairs (A;, Bo;) corresponding to the extreme matrices M;,i =1,2,---, N.
Using this fact, it is readily seen that the matrix

P PF

W= [ FP FPF } € Coi

foralli=1,2,--- N that is, W € Cg and W2’W1_1 = FPP~!' = F. Conversely, pick
W € Cg # ¥ and notice that from (7.16) W € C,; for all i = 1,2,---, N. On the other
hand, we know that a generic matrix M. € D, can be written as

N N
M=) &M, &>0, > &=1
i=1

i=1
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which yields

O.(W):= MW + WM. + Q1.
N
> & (MW + WM, + Qxc)

= Z{i@ci(W) (7.17)

The consequence is that for all v € A, and V (A, Bs) € D

N
0> &v'Ou(W)u
i=1
> V' 0.(W)v
> &' [(A+ BoWsWi YWy + Wi(A+ BoWiWT ) + Qi) = (7.18)
This inequality, together with the fact that both matrices W7 and @, are positive
definite implies, by Definition 7.1, that F' = WQ’WI_1 € K¢ proving thus the theorem
proposed since the case in which one of the sets is empty follows immediately. |

This theorem is the uncertain systems stability counterpart of Theorem 6.1 proved
in Chapter 6. The main point to be retained in mind is that it provides a convex
description of the set of all quadratic stabilizing gains K¢ in terms of the same
nonlinear mapping namely W) Wl_1 but with W varying now in the convex set Cq.
As discussed before, this theorem shows how to generate the set g which is only a
subset of Kp. Thus, it is clear that using it we can not capture all robust stabilizing
gains as defined in Remark 7.1 but only those inside K¢ which are easily obtained by
a simple convex feasibility problem.

Remark 7.3 From part c¢) of Theorem 7.1 it is evident that the pair (A, B2) € D is
quadratic stabilizable if and only if the convex set Cg is not empty. Indeed, if there are no
matrices P > 0 and F satisfying Definition 7.1 then Co = 0. a

Remark 7.4 The matrix function ©.(W) defined in (7.17) is of great importance. For W
fixed, it can be viewed as an affine function of M, € D.. Since the uncertain domain D, is a
polyhedral convex and bounded set, each matrix M. can be written as a convex combination
(although unknown) of the extreme matrices M.;, i = 1,2,---, N. Consequently, it follows
that

Oc(W) =) &6u(W)

which means that ©.(W) < 0 if and only if @, (W) <0,:=1,2,---, N. In other words, we
can say that the uncertain system defined by the pair (A, By) is quadratic stabilizable if and
only if the collection of N systems represented by the pairs (A;, Ba;) is quadratic stabilizable.
The quadratic stabilizability of any other pair (A, B2) € D, is a mere consequence of the
quadratic stabilizability of the extreme matrices which define the domain D.. Even though
the set D. is composed by an infinity number of matrices M., only N of them have to be
used to check quadratic stabilizability.

To put in evidence the importance of Definition 7.1, let us proceed in the above dis-
cussion under the assumption that the collection of extreme matrices, namely (A;, B2:),1 =
1,2,---, N is robustly stabilizable (recall Remark 7.1). That is, there exists a matrix F
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such that the eigenvalues of A; + By F' are all in the open left complex plane. From the
Extended Lyapunov lemma, this is equivalent to the existence of matrices P; = P/ > 0 and
Q: = Q; > 0 such that

0> (A; + Bo,F)P, + P,(A; + Bo, F) + Qs
foralli=1,2,---, N. Since the right hand side of the inequality
0> (A4 BeF)P+ P(A+ BoF) +Q

is not a convex function of the unknown matrices A, By, P and @ then the robust stabi-
lizability of the collection of the extreme matrices does not provide enough information to
guarantee the same for all matrices in the convex domain D.. O

Remark 7.5 (Comparison between D, and D.) In many instances (recall Example
7.1) the uncertainty of a linear dynamic system can be modeled as M. € D, only at expense
to impose to matrix 2 a prespecified structure. In Example 7.1 this occurred since 2 was
taken to be a diagonal matrix. Let us analyze, in this particular case, the degree of conser-
vativeness introduced. From the definition of D,, in Remark 7.1, we notice that the nominal
matrices must be partitioned as

A() B20 Bl
Mm—[ o 0 },Bn-[ 0],6*":[01 Dy, |

The consequence is that there exists a stabilizing gain F' such that with u = Fz the closed
loop system is stable for all M, € D, if Ag + BaoF is stable and
“(Cl + D12F)[SI — (Ao =+ BQOF)]_IBluoo <1

Of course, if this is true then the closed-loop system is stable for all € such that ||2f| < 1. In
other words, this condition does not take into account the known fact that Q is a diagonal
matrix.

On the contrary, for this particular case (in which Q is diagonal), the same uncertain
domain can also be exactly described by D. and consequently, applying Theorem 7.1 the
whole set K¢ is generated which contributes to decrease the degree of conservativeness
involved. This feature is numerically addressed in the example that follows. m]

Example 7.2 Consider again the linear uncertain system (recall Example 7.1)
T = Ax + Bou

where matrices A and B, are given by

0 a-1 «
[3 ] e fin)

and the parameters a and [, representing the uncertainties are such that
la —0.5] <7, |3-05]<xy

Letting the nominal value for these parameters be apg = G = 0.5, the norm bounded domain
D, is completely defined by matrices (recall Remark 7.5)

0 -05 0.5
A”[os 0]’320_{0.5J
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Figure 7.3: Uncertain system closed-loop poles

where matrix D2 is such that D}, D12 = 1. In addition, matrix Q such that ||Q2|| < 1 exhibits

the diagonal structure
Q:diag{a_0'5, ﬁ—o.s}
v Y

The central controller which satisfies the RHo, constraint just discussed in the previous
remark is provided by the solution (if any) of the Full information problem, that is F =
Fo = —B4yPs — D,C1 where P, is the positive semidefinite and stabilizing solution of
the Riccati equation (in the unknown P)

0= PAcO + AICOP - P(BQOBéO - BlBi)P + C{cclc

with Agg := Ap — BagD'12C1 and Cy.. := (I — D12D1,)C:. Numerically, it is possible to verify
that the above Riccati equation admits a positive semidefinite and stabilizing solution for
v € [0,0.27]). Thus, setting v = 0.27, we can conclude that the associated state feedback
gain F' = Fo, = [3.80 — 21.49] is stabilizing for all M. € Dx.

On the other hand, the same system can also be modeled by means of a convex bounded
domain D,. This is done with N = 4 and the corresponding extreme matrices, whose entries,
depending on the parameter ~, are easily determined. From Theorem 7.1, we observe that
the convex set Cq depends on <. Numerically it is verified that with Q1. = I, the set Cq
is not empty for all v € [0,0.36]. The associated quadratic stabilizing gains, valid for all
M. € D, have been computed in two situations, namely

v=027= F=[ -013 191 |
v=036=>F=[ -026 —494 |

As we have said before, in this case, Theorem 7.1 provides a better result when compared
to the former one. Figure 7.3 shows the root locus of the uncertain closed-loop system
with the quadratic stabilizing gain above, corresponding to v = 0.36 which is obtained with
the parameters (o, 3) varying in the rectangle [0.14, 0.86] x [0.14, 0.86]. It is numerically
confirmed that the closed-loop system is in the limit of stability since there exists a closed-
loop pole with real part equal to —0.0058. Hence a small increase in v will move some
closed-loop poles to the right part of the complex plane, causing instability. O
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7.2.2 RH, guaranteed cost control

Let the uncertain linear system under consideration be

= Azr + Biw + Byu (7.19)
z = Clil? + Dlgu (720)
y==x (7.21)

and represented in fig. 7.1. It is assumed that i) the pair (A, Bs) is quadratic sta-
bilizable and ii) Dj;D12 = I. For this system, our interest is to determine a RH,
guaranteed cost control which is defined as follows. Choosing

G(T(z,w;5)) = ||IT'(z,w; 9)13 (7.22)
we have to determine an upper bound, depending only on F' € Kg such that
IT(z,w; s)||3 = (M, F) < p(F), ¥V M. €D, (7.23)
and solve the optimal state feedback control problem

PQ = min pF) (7.24)
Before we proceed, it is important to keep in mind that our main objective is to
convert the design problem (7.24) into an equivalent convex programming problem.
This fact of course has to be kept in mind during the determination of the upper
bound satisfying inequality (7.23). To this end we need to introduce the symmetric
matrices

e [ BB, 0
Rc~{ /112][01 D12]7Qc-—[ 01 0] (7.25)

which together with the next lemma define the function 5(-) which exhibits the prop-
erties just discussed.

Lemma 7.1 Assume B1 B} is a positive definite matriz, consider F' € K¢g arbitrary
and define the convex set

Co(F) =Co[ {W : Wi =FW1}

then
p(F) := min {trace[R.W] : W € Co(F)} (7.26)

is a valid upper bound to ||[T(z,w;s)||% for all feasible M, € D,.

Proof First notice that for any F € K¢ given, the set Co(F) is convex and nonempty.
The convexity follows from the fact that it is the intersection of a convex set (recall
Theorem 7.1) with another one defined by a linear and hence convex constraint. Again
from Theorem 7.1, W € Cg generates all quadratic stabilizing state feedback gains
and so for any I € K¢ fixed the linear constraint W3 = FW; must be satisfied for
some W € Cg. Let us now consider an arbitrary M, € D, which can be written as a
convex combination of the extreme matrices, that is

N N
MCZZ&M@, & >0, ZfiZl
i1

i=1



274 CHAPTER 7. UNCERTAIN SYSTEMS CONTROL DESIGN

and pick W € Co(F). For all v € N, we have

N
02> ¢/ 0u(W)
=1

>z’ [(A+ BoF)Wh + Wi(A+ BoF) + By Bz

which enables us to conclude that W; > P. where P. > 0 solves the linear matrix
equation

(A+ ByF)P, + P.(A+ BoF)+ BB, =0
On the other hand, applying the Schur complement formula to W > 0 it is simple

to see that W3 > FW{F’. Then, for the same matrix M, and using the fact that
W4 = FW;, we also get

!
trace[R. W] = trace [[ Ci D |W [ Cll H
12

= trace [(C) + D12 F)W;(C1 + D12 F)'| +
+trace [D12(W3 — FW1 F')D},]

> trace [(Cy + D12F)P.(Cy + D12 F)']

> T (=, w; 9)|3

Since this inequality holds for an arbitrary M, € D, and for all feasible W € Cqo(F),
the final conclusion is that p(F) defined in (7.26) satisfies

1T(z, w; 3)”% <p(F), Y M €D,
which proves the lemma proposed. ]

Remark 7.6 There are two reasons to define p(F) as indicated in (7.26). First, any feasible
W produces an upper bound to the RH> norm of the transfer function under consideration
but the optimal solution of the convex problem indicated in the previous lemma provides the
smaller upper bound as far as the choice of matrix W is concerned. Second, when N =1,
that is when D, is composed by only on matrix M. (there is no uncertainty at all) then from
the proof above it is easily verified that the optimal solution of problem (7.26) is

P. P.F i,
W= [ FP. FP.F } € Ce(F)

providing thus

p(F) = ||T(z,w;s)l3
In this special case, the function g(F’) reduces to the RH, norm of the closed-loop transfer
function. Thus, in the general case of uncertain systems with polyhedral convex bounded
domain D,, this function can be interpreted as a generalized RH> norm which is finite for
all quadratic stabilizing state feedback gains. O

We are now in position to solve the basic design problem (7.24) by means of
an equivalent convex programming problem. This result is summarized in the next
theorem.

Theorem 7.2 Assume ByB] is a positive definite matriz. Then,

min p(F) = min {trace[R.-W] : W € Cp} (7.27)
FcKqg

Furthermore, being F’_and_WAthe optimal solution of each problem they are related
one to each other by F = WiW .
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Proof The proof is a mere consequence of Theorem 7.1 together with Lemma 7.1.
Actually, the minimum of p(F') over F' € K¢ is obtained by the joint minimization
of (7.26) with respect to both F' and W. Due to the part ¢} of Theorem 7.1, this
joint minimization can be calculated in two independent steps. In the first one, the
optimal solution W of the convex programming problem in the right hand side of
(7.27) is determined. This solution allows the determination of the optimal gain
namely, F' = WQ'WI_I € K¢ in the second and last step. a

Remark 7.7 Assuming B;Bj > 0, the function p(F') introduced in Lemma 7.1 can also
be calculated as follows

p(F) = min {trace[CCCPCéc} : 0> AP+ PAL, + BlBi}
P>0

where Ae; := A; + B F for i = 1,2,---, N and C.. := C1 + D12 F. Since (recall Definition
7.1) the constraint set in the above problem is feasible if and only if ' € Kq then it is simple
to see that
po = min {trace[CecPCi] : 0> AeP+ PAL + B1By}
F,P>0

Defining A; = A} > 0 as being the Kuhn-Tucker multipliers associated to the i —th inequality
constraint, the Lagrangian function turns out to be

N
L = trace[Ce. PCL ] + Z trace [A;(Ae P+ PAy; + B1By)]

i=1

from which the Kuhn-Tucker necessary conditions for optimality can be written in terms of
the unknown matrices F', P > 0, Q; > 0 and A; > 0 satisfying

0> AP+ PA,, + B1B) = —Q;
N
0= Z (A/ciAi + AiAci) + CreClc

i=1

N
0= (F + D0 + Z BéiAi) P

=1

0 = trace [A;Q;]

These conditions put in evidence several nonlinear relationship among the unknown matrices
implying that they can be solved only in some special cases. Indeed, the third equation can
be used to determine the optimal gain matrix F' explicitly, however the second condition
alone is not of great help in finding matrices A;,7 = 1,2,---, N since it represents only one
equation with N unknown. The consequence is that putting aside the third equation, the
remaining ones have to be solved simultaneously. This is accomplished by solving the right
hand side of (7.27) directly. It is important to stress that this discussion is no longer true
in the particular case N = 1. The domain D, degenerates to a single matrix and the above
conditions reduce to those of Remark 6.7 with matrices P and A replaced one by the other
since the problem now under consideration is exactly the dual of the one treated there. O

Remark 7.8 The use of any convex programming method to get the global solution of the
optimal RH, guaranteed cost control problem

po = min {trace[R.-W] : W € Cq}

depends on the boundedness of the following convex set (recall Remark 6.8)

Cou :=Cq ﬂ {W : trace[R.-W] < u}
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Since the set Cq is itself an intersection of N convex sets, then the requirement that there
exists an index 1 < ¢ < N for which the pair (—Ac:, C1c) is detectable is a sufficient condition
for the boundedness of Cq, for all p such that po < p < 0. a

Remark 7.9 In this section we have defined the generalized norm p(F) satisfying
IT(z,w; s)ll2 < p(F), VM. € D.

Let us now verify the difficulties we have to face if we desire to work, instead of g(F'), with
the true generalized RH» norm

F) = T E
p(F) Mcgg;cll (z,w;8)|l2

Since F € K¢ assures that all closed-loop transfer functions 7'(z,w; s) are stable then with
Ace := A+ BoF and Ce. := C1 + D12 F we have

o0
p(F) = max trace [/ Cece™e* By Biee<'Cl dt
M €Dc 0

On the other hand, from Theorem 7.1 we already know that all F' € K¢ are generated by
F = Ws;W[ " with W € Cq. Then we get

= i F

PQ FI?;‘CHQ”( )
— . W/W—l
VénEng( W)

In the above problem the constraint W € Cq is convex. However, the difficulty is that it is
not easy to prove if the objective function is convex or not. In the affirmative case, no major
difficulty exists to approach the problem by means of convex programming methods. The
convexity of p(-) remains until now an open question. o

Remark 7.10 Let us now consider the RH, guaranteed cost control problem but with
norm bounded uncertainty, that is M. € D,. The uncertain system (7.19) - (7.21) is now
written with a slightly different notation

& = Az 4+ Bow + Bau
z0 = Cox + Dou
y=z

where ByBj > 0 and D{Do = I. Following Remarks 7.2 and 7.5, using u = Fz the closed-
loop system matrix can be expressed as

A+ BoF = Ace + BiQCoe , |9 <1

where A.. := Ao + B2oF and C.. := C; + Di2F. Notice that in this setting, the external
perturbation, and the parametric uncertainty enter in the system through two different
matrices, namely By and Bj respectively. First of all, it is claimed that for the above
uncertain system, the upper bound 5(F) is given by

p(F) = min trace[Bg P(8)Bo)
peB
> |T(z0,w;s)llz , ¥ Me € D

where B is the set of all # > 0 such that there exists a symmetric, stabilizing and positive
semidefinite solution P(8) to the Riccati equation (in the unknown P)

0=PAcc+ AL P+ BPB1B,P + 871C! .Cec + C5.Coc



7.2. ROBUST STABILITY AND PERFORMANCE 277

where Co. := Co + DoF. To show this, notice first that any 8 > 0 yields

C..OYBP+ PBQC.. = 37'C..O0C,.. + BPB{B P —
*(QCCC,B—I/? _ Bipﬂl/z)'(QCccﬂ_l/Z - BiPﬁlm)
< B71CLCec + BPBIB1 P

where to get the last inequality we have used the fact that ') < I. Using this inequal-
ity together with the previously defined Riccati equation, for all § € B we can draw two
important conclusions. The first one is that (recall Remark 7.5)

||CCC[SI — (Ao -+ BQoF)]‘lBlnoo <1

meaning that the closed-loop system matrix A + B2 F is stable for all M. € D,,. Second,
from the above inequality we also have

(A+ ByF) P(8) + P(B)(A + By F) + Ch.Co. < 0

for all M. € D, implying that

1T (20, w; s)||3 = trace [/ B(/)e(A+B2F)ltC(I)CCOCe(A+B2F)tBodt
0

trace[ By P(3) Bo)
p(F)

Based on this result, let us now determine the best guaranteed cost denoted py, that is

<
<

—— R B'P(3)B
N F{rél’erlstrace[ 0P(3)Bo)

The necessary conditions for optimality with respect to F is readily obtained (recall Remark
6.19) from the associated Lagrangian function. After tedious algebraic manipulations, a
solution to these conditions can be written as

F(B):=F — (14 8) " BypoW(B)
where R
Fi=—(1+8)"1(D}:C1 + BDsCo)
and W (3) := BP(3) solves the Riccati equation (in the unknown W)
0=WA+ AW +WNW + M
with
A = Ag + Bzo]‘:'
N := BiB} — (1 + )" 'BaoBby
M = (Ch + D12F)/(C1 + D12F) + B(Co + DOF)/(CO + DOF)

Finally, using this result we get

pn = min 3 "trace[BoW (8) Bo)
BeB

which is numerically easy to solve since it involves the search of only one positive parameter.
The main conclusion to be kept in mind is that the guaranteed cost associated to the un-
certain domain D, is numerically tractable by means of a unidimensional search procedure.
It must be clear that in the present case, it may occur that B = (), meaning that gy is
unbounded and so no guaranteed cost control is obtained. This aspect is illustrated in the
next example. )
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Figure 7.4: Actual value of the RH2 norm

Example 7.3 Let the uncertain system be again the one of Example 7.2. The state space
representation is

i = Az + Bow + Bau

z0 = Cox + Dou

y==x
where the uncertainty is modeled as M. € D, as well as M, € D,,. The main goal is to

determine the associated guaranteed RHo cost control. The data are those of Example 7.2
but with only one uncertain parameter obtained by imposing o« = 3 such that

lo —0.5] <

where v = 0.20. The controlled output is defined by matrices

0 1 1
302312\/5[’8 7],00:[0 O:I,DOZ{

']

1) First, assuming no uncertainty acts on the open-loop system, the Full information
problem in RH has been solved using the nominal data. The optimal solution found
is

Three different situations have been considered :

min||T(zo, w; s)||3 =0.32 = Fp=[ —1.00 —1.00 |
Using this state feedback gain, it is simple to verify that the closed-loop system remains
stable for all @ varying in the interval defined as above with y = (v/5—2)/2 = 0.1180.
This fact is illustrated in fig. 7.4 where it is clear that the corresponding value of
VT (20, w; 5)||3, denoted by the symbol ” F>”, becomes arbitrarily large as o goes to
0.3820. For all other values of «, the closed-loop system is unstable.
2) We considered M. € D.. In this case we have two extreme matrices only. The optimal
solution of the convex programming problem in Theorem 7.2 provides

po=118 = Fo=F=] —0.02 -239 ]

As indicated in fig.7.4, the closed-loop system is now stable in the whole interval
0.3 < a < 0.7 implying that the associated cost is always finite. This is an important
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improvement of the guaranteed cost control design proposed when compared with the
previous situation. It is interesting to notice that the closed-loop system transfer
function satisfies

. 2 — ey
0'32113%(0_7 1T (20, w; 8) ||z = 0.77 < pg

which illustrates the fact discussed before (recall Lemma 7.1) that function p(F) is
only an upper bound to the true value of the minimized cost.

3) In this situation we modeled the uncertainty as M. € D,. Following the results of
Remark 7.10, it has been verified that B = (0, 0.7] in order to preserve W(3) > 0.
Using this, an unidimensional search has been implemented to get the optimal 3 = 0.32
which provides

pn =245 = Fy=F(3=032)=[ -0.13 -252 |

Figure 7.4 shows that the closed-loop system is also stable for all values of a in the
real interval 0.3 < a < 0.7. There is no big difference between the cost variation in
the last two situations. However, comparing them, it is apparent that pg < py which
indicates that in this example the design based on D, is preferable.

Figure 7.4 illustrates also the advantages of the guaranteed cost control design when
compared with the nominal Full information control design. For the nominal system it is
obvious that the latter is better. However, the performance imposed by the optimal Full
information controller may become worse when a small change in the system parameters
occurs. Even the closed-loop stability can be lost. On the contrary, the guaranteed cost
controller assures closed-loop stability for the parameters varying in the prespecified range
and impose a reduced level of performance deterioration. m|

7.2.3 RH, guaranteed cost control

We now move our attention to the RH,, counterpart of the results provided in the
last section. The uncertain dynamic system under consideration is again the same
depicted in fig. 7.1 where as indicated the full state vector is available for feedback.
To ease the presentation the state space equations are given once again,

T = Az + Biw + Byu (7.28)
z=Ciz+ Disu (729)
y==x (7.30)

where A and B, are uncertain matrices such that is M. € D, and as before we assume
that i) the pair (4, Bg) is quadratic stabilizable and ii) D{,D12 = I. The above
equations define a family of linear dynamic systems for which our goal is to determine
an associated RH,, guaranteed cost control. Following the results of Chapter 6, let
v denotes an arbitrary positive scalar and choose

G(T(z,w;8)) := |T(z,w;s)||% (7.31)
Then the minimum guaranteed RH ., cost can be calculated from (7.11), yielding

po= min {p : J(M,F)<p, VM.eD.} (7.32)
p, FEKg

Parallel to the case of RH; guaranteed cost control problem, the solution of {(7.32) is
extremely difficult to get, then the strategy to be used is to define a suboptimal easy
to determine solution provided by

P = min {72 : (F,y) €Ky} = po (7.33)
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where K¢ is a subset of the set of all pairs (F,v) such that F € K¢ and
IT (2, w; 8)||2, = T (M, F) <+*, ¥ M, € D, (7.34)

It is clear that the choice of the set K¢ is crucial to get good suboptimal solutions in
terms of inequality (7.33). Besides it must be possible to convert it into an equivalent
convex set. To this end, considering matrix W partitioned as indicated in {7.14)
and matrices R, and Q). given in (7.25) let us define the following convex set (recall
Theorem 6.5) associated with each extreme matrix of the polyhedral convex bounded
uncertain domain D,,

Coii={W,p) : W>0, p>0, v/0,(W,p)v<0, Yo e N} (7.35)

where 0.,;(W, p) := O4(W)+p 'WR.W foreachi =1,2,---, N. Thus, it is apparent
that the above set has been obtained from C,. by simply replacing matrix M, by the
extreme matrix M.;. The next theorem provides the solution of the problem indicated
in (7.33).

Theorem 7.3 Assume By B] is a positive definite matriz and consider the set

N
Crg = )Cyi (7.36)
=1

The following hold

a) Cyq is a conver set.
b) Each (W,p) € Cyq is such that Wy > 0.

¢) The subset K¢ defined above can be chosen as
Ky = {W3Wih,vp) + (W,p) €Ciq} (7.37)

Proof The first two points are straightforward consequences of Theorem 6.5. Since,
both are true for each set Cy;, 1 = 1,2,.--, N then the same is also true for their
intersection.

Point ¢) We have to prove that any (W, p) € C,q provides F = WiW! € Ko
and v = /p such that (7.34) holds. This is proved by selecting an arbitrary pair
(W, p) € Cyq and noticing that O, (W) < ©.,;(W,p) for all ¢ = 1,2,---, N implies

(W,p) € Crq = W €Co

which from part c) of Theorem 7.1 allows us to conclude that F = WiW, ! € Kq.
Let us now pick an arbitrary matrix M, € D,. Recalling Theorem 6.5, for this matrix
the set C,. is well defined. So, expressing M, as a convex combination of the extreme
matrices

N N
MC:Z€iMCi7 §& >0, Z;ﬁizl

i=1

yields (recall Theorem 6.5) for all v € N,
V'O (W, p)v := v’ [@c(W) + p_lWRcW] v

N
V| & (W) + p ' WRW) | v
i=1

N
=Y 'O, (W, p)u <0 (7.38)

i=1
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which means that (W,p) € C,.. Since the inequality (7.38) is always true for all
M, € D, we get from part ¢) of Theorem 6.5 that

(F,y) = (W2,W1_17\/:5) € ﬂ Kye

M.€D.

which means that (7.34) actually holds. O

The importance of this theorem is twofold. First, Problem (7.33) which defines
the guaranteed RH ., cost reduces to

po =min{p : (W,p) € Cyo} (7.39)

and this is a convex programming problem which can be solved efficiently. Second, the
convex set C,g allows the determination of a set of feedback matrix gains such that
for a given v > 0, the closed loop system is quadratically stable and ||T(z, w; s)||oo is
bounded above by « for all M, € D,.

Remark 7.11 The boundedness of the set Cyo can be analyzed following the same lines of
Remark 6.22. The key property to assure the adequate use of convex programming methods
in solving the approximate version of Problem (7.39), namely

po ~min{p : (W,p)€Cq, trace[R.-W] < 3}

where the scalar 8 > 0 is finite and appropriately large, is to impose that there exists an
index 1 € ¢ < N for which the corresponding pair (—Ag;, Cic) is detectable. O

Remark 7.12 The convex set C,¢o presents two additional properties. First, in the case
of certain dynamic systems, the domain D. is defined by only one matrix, then C,¢ equals
the set C,. introduced in Theorem 6.5. As a consequence the optimal value of pg reduces
to the minimum possible RH~ norm level. Second, in the case of uncertain systems, with
~ arbitrarily large (W,v) € C,q implies W € Cg. Once again, the set of all quadratic
stabilizing feedback gains is obtained. m]

7.2.4 Miscellaneous design problems

This section is devoted to treat in the framework of uncertain systems control design
the other problems already solved in Chapter 6, namely Mixed RHy/RH 5, control,
RH 4 control with regional pole placement, time domain specifications and controllers
with structural constraints. The basic idea is to generalize the previous results on
guaranteed cost control to cope with the new performance constraints. All design
problems are solved for the special case of static linear state feedback controllers.
Let us first consider the Mixed RHy/RH o, control problem associated to the
linear dynamic system of fig. 7.1 and with the following state space representation

T = Az + Byw+ Bou (7.40)
zo = Cox + Dou (7.41)
z1 = Ciz + Diau (7.42)
y=z (7.43)

where it is assumed that the uncertainty is described by M. € D.. Furthermore, it
is also assumed that i) the pair (A, By) is quadratic stabilizable and ii) Djy D12 = 1.
The controller is given by u = Fx where matrix F' is to be determined. In the present
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context, the guaranteed mixed RH2/RH o, cost control problem can be formulated
as being to determine (if one exists) a state feedback gain matrix F' such that for a
given scalar v > 0, the closed-loop system is quadratically stable and

po=min{p : |T(z0,w;s)l3<p, |T(21,w;8)ll0 <7, ¥V Mc €D} (7.44)

Based on the previous results, a suboptimal solution of this problem is given in the
next theorem.

Theorem 7.4 Let v > 0 be given and let W be the optimal solution of the convex
programming problem

po = min {trace[RgW] : (W,7*) € Cyq} (7.45)
Then, F = WiW[ ' € Kg and pg > po.

Proof It follows immediately from the result of Theorem 7.2 together with the ones
of Theorem 7.3. Indeed, from the last theorem (W,4?) € C,q implies that F =
WiWw ! € Kg and

HT(Zlaw;s)”oo <v,VM. D,

Furthermore, using the fact that
(W, € Cyo = W €Cq
from Theorem 7.2 we conclude that
T (20, w; 8)|13 < trace[RoW] = pg , ¥ M. € D,
which proves the theorem proposed since (F, pg) is feasible for Problem (7.44). O

Example 7.4 Let us consider the following uncertain linear system (recall Example 6.2)

T = Az + Biw + Bau
20 = Cox +u
z21=Ciz+u

y==

where
0 1 1
A_[—l—i—a —1+2a] ’ Bl“{o}

By = [ 1*0(1/2} , Co=Ci=[0 -2]
The only available information concerning the uncertain parameter « is that 0 < o < 1. We
have first verified numerically that the set C,q is not empty for v > 4.10. Then we choose
~ = 5.00 for the calculations that follow. On the other hand, we observe that the dynamic
system handled in Example 6.2 corresponds to the above one calculated for &« = 0. This
system is called nominal. For the nominal system we solved the Mixed RH»/RH o control
problem introduced in Theorem 6.8. The optimal solution provided the state feedback gain
Fominat which has been used to calculate the closed-loop transfer function RH; norm
indicated in fig. 7.5. Simple calculation shows that the closed-loop system is internally
stable only for 0 < o < 0.5 which implies that Fy,pminat € K.
Moreover, solving the convex programming problem (7.45) we got

po = 4.83 = Fyugranteed = | —1.90 —7.20 |
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Figure 7.5: RH> norm and pg

Now, the closed-loop is internally stable for all « in the prespecified interval. Figure 7.5 also
shows the closed-loop system RH> norm compared with the minimum upper bound available.
It is interesting to observe that the behavior of the cost as a function of the uncertain
parameter is almost constant in the interval considered. Furthermore, fig. 7.6 shows the
magnitude of the transfer function 7T'(z,w; jw) against frequency for several values of « in
the given interval. From this figure we notice that the constraint [|7(z1, w;s)||cc <y =5 is
binding and is always verified. 0

We now move our attention to the problem of uncertain system root clustering in
a given circular region R. It is stated as follows, given the uncertain linear system

&= Az + Byw+ Bau (7.46)
z=Ciz + Diou (7.47)
y=x (7.48)

satisfying the assumption i) D{,D;2 = I, find (if one exists) an associated RHo
guaranteed cost control such that in addition the closed-loop system poles with u =
Fz are all inside the circular region R. More specifically, in the same framework
considered before, we seek for the solution of the following optimization problem

po =min{p : (F,p) € Krg} (7.49)
where Krg is a subset of the set of all pairs (F, p) such that F' € K,
IT(z,w;s)ll53<p, VM €D, (7.50)

and the closed-loop system poles are all inside the circular region R. As commented
before, the key step towards the solution of problem (7.49) is the definition of the
feasible set Ko (notice that now p is a variable to be determined). To this end let

us redefine the matrix
L A + al BQ
M, = [ fol B ]



284 CHAPTER 7. UNCERTAIN SYSTEMS CONTROL DESIGN

|T(21,w; jw)| (dB)

20 3 o 3 a3
10" 10 10 10 10

Figure 7.6: Bode diagram - magnitude

and accordingly the convex sets (recall Theorem 6.9) associated with each extreme
matrix of the convex domain D..

Cgri = {W : W>0, UIGRi(W)’U <0, Vv ENC} (751)

where Og; (W) := O,4(W) + r 'M,;WM/, for each ¢ = 1,2,---, N. In other words,
each set above is the same as Cr with matrix M, replaced by the extreme matrix M,;.

Theorem 7.5 Assume By B} is a positive definite matriz, let the circular region R
be given and consider the set

N
Crqg = nCRi (7.52)

i=1

The following hold
a) Crg is a convex set.
b) Each W € Cgrq 15 such that W, > 0.

c¢) The subset Krg defined above can be chosen as
Kro = {(WjW; ' trace[R.W]) : W € Crq} (7.53)

Proof The first two points are immediate consequences of Theorem 6.9. Both points
are valid for the intersection defining Crq.

Point ¢) It is apparent that Crg C Cq which from part c) of Theorem 7.1 means
that F = WjW, ' € Kq. Moreover, assume Crc # 0 and take an arbitrary but fixed
matrix W € Crp. For any M, € D,, from Theorem 6.9 the set Cr is well defined.
Let us first prove that if W € Cgr then W € Cp. Indeed, taking into account that
W >0, then W € Cgpr is equivalent to (by using Schur complement)

UlQ,(WU. UMW/
AW) = W1/2§\/I'<)Uc —rl
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forall i =1,2,---, N where U, = [I 0]'. Since A;(W) is affine with respect to M,
writing M, € D, as a convex combination of the extreme matrices we get

N
AW) =Y &A(W) <0

which implies that W € Cg indeed. From Theorem 6.9 the state feedback gain matrix
F=Ww ! places the closed-loop system poles inside the given circular region R.
Furthermore, from part d) of the same theorem we conclude that the linear function
trace[R.W] is a valid upper bound to the RH, norm of the closed-loop transfer
function T'(z,w; s). Since M, is an arbitrary matrix in D,, the result follows. From
this, the case on which one of the sets is empty trivially holds and so the theorem is
proved. O

From this theorem, we can now solve the guaranteed cost optimal control problem
stated before, namely (7.49)

po =min{p : (F,p) € Krq}
= min {trace[R.W] : W € Crq} (7.54)

which is once again a convex programming problem. It is interesting to observe that,
in general lines, the proof of this result follows the same pattern of the previous ones.
The main difference is that the matrix function ©g(-) depends nonlinearly on matrix
M., but thanks to the Schur complement formula it can be converted to an affine and
hence convex function from which the desired result is proved.

With this in mind it is possible to handle many other guaranteed cost optimal
control problems with no big additional difficulty. An interesting and practically
important case is to solve the guaranteed cost version of the Time-domain specification
problem. Recalling Theorem 6.10, the optimal solution of the convex programming
problem

po =min {g(R-WR,) : W eCq} (7.55)

provides F' = WiW, ' ¢ K¢ and the upper bound p satisfying
G(T(2,w;8)) <p, VM:€D.

is minimized. Of course this result follows from the fact that the function g(-) de-
fined in Chapter 6 is convex. The same reasoning can be adopted if the designer
wants to include convex structural constraints in the state feedback gain matrix like
decentralization or static output feedback. For that, it suffices to impose the linear
constraint

W=Wp or W=Wp

in the problem to be solved. Since these constraints involve only the matrix variable,
they do not change any property of the closed-loop system stability and the proposed
upper bounds of the transfer function norms meaning that all results obtained before
remain valid.

7.3 Actuators failure

The practical implementation of a given control is done by means of certain adequate
devices or actuators. Of course, in the real world these devices are possible to fail
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Figure 7.7: Practical control implementation

during the system operation. In this section we want to analyze the impact of ac-
tuators failure in control systems stability and performance. The basic tools to be
used are the ones related to robust stability and performance already introduced in
the previous section. It will be shown that the polyhedral convex bounded domain
D, plays a central role in this design problem.

Let us consider the linear dynamic system described by the state space equations

& = Axr + Biw + Bou (7.56)
z=Ciz + Dou (757)
y==x (7.58)

for which we seek a state feedback control of the form v = Fz where F' solves the
Full information control problem in RHo

min {|T(z,w;s)||3 : F € K.} (7.59)

Under the assumptions put in evidence in Chapter 4 this problem is feasible and
admits an optimal solution given by

F=F (7.60)

With the optimal gain F, at hand, its practical implementation needs the use of
m actuators (recall that m is the dimension of the control vector) as is indicated in
fig. 7.7. Each actuator is ideally modeled as a a simple gain 7;,¢ = 1,2,---,m such
that

m; = {0,1} (7.61)

meaning that it has only two states, namely in operation corresponding to 7m; = 1
and out of operation corresponding to m; = 0. From this, the control action in the
closed-loop system instead of u = Fyx is

u(t) = nFx(t) , = :=diaglm, e, -, Tm) (7.62)

Since the optimal gain Fy has been calculated using only informations of the
nominal open-loop system, during normal operation characterized by @ = I, the
closed-loop system evolves following an optimal trajectory. However, if a fail occurs
in some control channel, say i, the actuator state changes to zero. In this situation
the closed-loop system evolves with the control u = Fyx where F, is the same as F
but with the ¢ — th row equal to zero. Of course not only the optimality is lost but
even instability may be observed. A way to cope with this problem is to apply the
guaranteed control design procedure introduced before. To this end, consider instead
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of F5 in (7.62) a matrix F' to be determined. The closed-loop system matrix can be
written as
Ao = A+ BorF = A+ Boy(m)F

where Bo(w) := Bom. This makes clear that the input matrix By can be interpreted
as an uncertain matrix depending upon the occurrence of actuators failure. Hence,
in this framework the dynamic system (7.56) - (7.58) is an uncertain system where

B; € {BQ(TF) LT E H} (763)

with IT being a set of diagonal matrices which defines all combinations of actuators
failure. We assume that [ € Il and 0 ¢ II. The first condition is clearly necessary
because it imposes feasibility to the nominal system. The latter one is also necessary
because if it is violated then Bs = 0 is feasible and the system is stabilizable only if
it is stable. Suppose the set II is composed by N matrices m;,i = 1,2,---, N defined
before representing all actuators failure we want to take into account. With matrices

_ | A Ba(m) _
Mcz~—|:0 0 ) 1_1723"7N

the convex domain
D, ::CO{Mci y 1= 1727"'7N}

is the uncertain domain we have to consider since by construction it contains all
input matrices Ba(w) with m € II. Clearly, it contains many others, namely the
ones generated by convex combination of the pairs [A, Bz(w;)]. Fortunately, recalling
Remark 7.4, the uncertain system defined by M. € D, is quadratic stabilizable if
and only if the collection of systems defined by all extreme matrices M,; is quadratic
stabilizable. Hence, as far as quadratic stability is concerned, modeling actuators
failure as M, € D, instead of by means of (7.63) does not introduce any kind of
conservativeness in the results.

From the above discussion, let us proceed by replacing problem (7.59) by the
associated guaranteed cost control problem. It is given by (recall Theorem 7.2)

pa = min {trace[lR.W] : W € Cq} (7.64)

and the optimal solution (if one exists) provides F4 = WiW/, ! such that with the state
feedback u = Faz the closed-loop system is quadratically stable and || T'(z, w; s)||3 <
pa for all M. € D.. In other words, we can say that the closed-loop system with the
control u = wF sz is such that all eigenvalues of A.. = A+ BywF4 lie in the left open
part of the complex plane and

1T (z,w;8)||2 < pa, Vrmell

that is all control requirements are met. The next example illustrates this design
policy for a simple example.

Example 7.5 Let the dynamic system (7.56)-(7.58) be given by

)
01 1 1 0 0 10
A=(1 1 2|, Bb=|(0 1 0|, Bo=|0 O
1 1 0 0 1 0 1

2 2 0 10
Cl_[l 0 1]’012_{0 1]

—_
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| Failure | Eigenvalues [ IT(z,w;s)]3 |
m —1.91, —1.46+350.69, —1.46 — j0.69 6.50
m2 0.43, -0.72, —-2.37 o0
T3 1.94, -1.99, —0.13 oo

Table 7.1: Closed-loop system poles and performance

| Failure | Eigenvalues [ 1T(z,w; 8)]3 ]
m —10.56 , -0.39 4 ;0.12, —0.39 — j0.12 32.00
o —-3.11, —0.63 +30.18 , —0.63 — ;0.18 61.49
3 288, —1.62, —0.47 66.14

Table 7.2: Closed-loop system poles and performance

The optimal solution of Problem (7.59) provides

| =217 =267 -0.79 . CAN2
= [ 179 —312 —466 ] = min|T(z,w; s)||z =~ 6.50
For the practical implementation of this state feedback gain we need two actuators. It is
supposed that they can fail during operation. Since the open-loop system is unstable, it is
assumed that the actuators can not fail simultaneously. Hence the set II is composed by

matrices
T1o0 [0 o [1 0
M=l 1™ ]o1|"™% |0 o0

corresponding to normal operation (1), first control channel actuator failure (72) and second
control channel actuator failure (73) respectively.

Table 7.1 gives the eigenvalues of matrix Ac. = A+ Ba(w)F; for the three fault matrices.
Obviously, for m = m; = I the closed-loop system is internally stable. However, if one of
the two faults occurs then the closed-loop system becomes unstable. The optimal solution
of the Full information problem is not robust for this kind of severe perturbation. On the
contrary, the optimal solution of the guaranteed RH> cost control problem (7.64) gives

—-6.97 —-10.17 -13.56

Fa=| _370 _s00 —637

which as indicated in Table 7.2 preserves internal stability in front of any prespecified failure
occurrence. In this example, when compared with the nominal case, the price to be paid to
keep internal stability under actuators failure is high. A possible interpretation of this fact
is that the parametric perturbation caused by actuators failure is actually severe. a

Remark 7.13 It is possible also to characterize actuators failure by means of norm bounded
uncertainty. Actually, noticing that

BQ(’R‘) = Bomr = By + Bg(ﬂ' — I) = By + B)Q)
with Q := 7 — I and that 7 is always a diagonal matrix, it is immediate to get

1] < max [lr — I} = 1
well
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Hence, with matrices

A B By
Mcn:|:0 02:|73n:|:0:|7cn:|:0 1]

any actuators failure such that m € II may be alternatively described by (recall Remark 7.2)
M. € D, = {M. = M., + B-QC,, : ||Q] <1}

This characterization of the problem under consideration frequently leads, if any, to very
conservative results and so worse than the use of the polyhedral convex bounded domain D,
as we have done before. Indeed, the particular choice 2 = —I which obviously is a diagonal
matrix such that ||2|| = 1 produces

A 0
[ 0 0 } € Dn
which is stabilizable if and only if the open-loop system is stable. In other words, the use of
the uncertain domain D, includes by construction the spurious matrix 2 = —I being thus
equivalent to have m = 0 € II. This situation is avoided in the description of the set D, as
we have just shown in the solution of the previous example. 0

7.4 Nonlinear perturbations

In this section nonlinear robust stability and performance are considered. This topic
is a generalization of the ones introduced before in the sense that advantages are taken
into account from the a priori knowledgement of the class of nonlinear perturbations
acting in the open-loop model. Two main classes are of importance, namely multi-
plicative and additive nonlinear perturbations, leading to what we call Persidiskii and
Lur’e robust design procedures. In both cases, the control structure is assumed to be
linear and the whole state vector is available for feedback.

7.4.1 Persidiskii design

Let us first consider the robust control design of a class of nonlinear systems subject
to state dependent nonlinear perturbations called multiplicative perturbations. Once
again the proposed design procedure will be expressed in terms of convex programming
problems only. The block-scheme of the dynamic system to be dealt with is shown
in fig. 7.8. The perturbed system 2, is subject to the nonlinear perturbation f(x)
to be precisely defined in the sequel. For the moment, it is important to keep clear
that the open-loop system is subject to a class of perturbations such that, when they
occur, the whole state vector « changes to f(z). Then, the perturbation occurrence
changes also the measured output y accordingly.

Assuming the state vector has dimension n and the nonlinear function f(z) is
not exactly known, the only available information is that it belongs to the uncertain
domain Dy composed by all vector valued functions with the following properties :

1) Each component of f(x) namely f;(z), j = 1,2,---,n is a real valued function
such that

fi(@) = fi(zy) (7.65)

where z; € R denotes the j — th component of the vector z € R™.
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Figure 7.8: The bock-scheme of the perturbed system

2) Each component f;(x;), j =1,2,---,n is such that

£(0)=0 (7.66)
FE)E>0 VE£OER (7.67)
/0 £(€)d€ = 00 (7.68)

The first condition defines the perturbation structure. Roughly speaking, the
second condition says that the graph of f(-) must be contained in the first and third
quadrants of the (f, &) plane. Since f(z) = z € Dy the corresponding linear system
is called nominal system (X,) and it has the following state space representation

& =Ax+ Bou, z(0) =1z (7.69)
z=Ciz + Disu (7.70)
y==z (7.71)

Adapting the previous design goals to cope with nonlinear systems stability and per-
formance, we proceed trying to determine (if one exists) a linear state feedback control
law u = F'z for ¥, such that the origin x = 0 of £, which has the state space repre-
sentation

&= (A+ByF)f(z), z(0)= o (7.72)

is globally stable for all f € Df. Furthermore, among all state feedback gains with
this property, find the one, namely Fy, which solves the associated guaranteed cost
control problem

pf(zo) = min p(F, zo) (7.74)
where o
/ 2(t)'z(t)dt < p(F,z0) , ¥V f € Dy
0

Similarly the minimum value of g(F,zo) with respect to all F' preserving stability is
called the minimum guaranteed cost associated to the optimal feedback gain F' =
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Fy. To accomplish the first goal concerning the robust stability of ¥, we need to
introduce the following important result. To ease notation, for any square matrix P,
the subscript ”d” indicates that P = P; is constrained to be a diagonal matrix.

Theorem 7.6 (Persidiskii theorem) For any given state feedback matriz F' suppose
there exists a positive definite matrix Py such that

0> (A+ BoF)YPy+ Py(A+ BoF) +Q (7.75)

for some matriz Q@ = Q' > 0. Then, the origin x = 0 of the perturbed system %, is
globally asymptotically stable for all f € Dy.

Proof Using the given properties of f € Dy, let us take

z) = 2;ij /0 £3(€)de

as a Lyapunov function candidate associated to an arbitrary trajectory of X, such
that 2(0) = zq. Its time derivative can be written as

.T) = QZijfj(Ij)jZJ

j=1

2f(x) Py

f(@) [(A+ BoF) Py + Py(A+ By F)) f(x)
< —f(z)Qf(x)

0, Vz#0

Il

I [

AN

proving thus the theorem proposed. O

In the above calculations, it is clear that matrix () must be positive definite but
does not need to present any particular structure. Besides, the particular value of
this matrix is immaterial to get P = Py satisfying inequality (7.75). In fact, if there
exists P = Py satisfying (7.75) for a given Q = @ > 0 then the same is true for any
other choice @ > 0. This new degree of freedom is used in the next lemma to get the
upper bound defined in (7.74).

Lemma 7.2 Assume for all f € Dy there exist n positive and finite parameters such
that

z;(0) r
/O fj(é)dfsgj, j=12--,n (7.76)

For any state feedback control gain F such that there exists P = Py satisfying the
matriz inequality (7.75), it is possible to choose Q = Q' > 0 such that the upper
bound p(F,xg) is given by

p(F, o) ZPHTJ (7.77)

Proof Assume for F given, there exists P = P, such that the matrix inequality (7.75)
holds. In this case, we can choose matrix ¢ > 0 as being

Q = (C1 + D1oF)'(Cy + D12F) + el
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where € > 0 is an arbitrarily small parameter. From the previous theorem we already
know that the origin of the perturbed system X, is globally stable. Hence, using
(7.72) and (7.73) we immediately have

o(2(t) < —f(=(1) [(Cr + D12F)(C1 + D12F) + el] f(x(t))

<
< —z(t)2(t), Vt>0

Integrating both sides of this inequality from ¢ = 0 to ¢t = co we get

/000 2(t) 2(t)dt < v(z(0))

Using this inequality together with the definition of the Lyapunov equation introduced
in Theorem 7.6 and the upper bound on each element of function f(z) yield

[e%s) n z;(0)
/0 z(8) z(t)dt < 2Zij/O fi(6)d¢

j=1
n
<Y Py
j=1
which being true for all f € Dy proves that the upper bound (7.77) is valid. m|

Up to now we have always worked with the dual version of inequality (7.75) where
the system matrix transpose post-multiply the matrix variable. This fact was im-
portant to convert the associated optimal control problems to convex programming
problems. Here, due to the nonlinearity of the perturbation f(z) this is no longer pos-
sible. Even though, the guaranteed cost control problem (7.74) can be converted into
a convex one by means of Schur complements. To this end, consider the affine matrix
function which is defined by all pairs of matrices (X,Y") of appropriate dimension
with the first one being symmetric

AX +BY + XA +Y'B), XC{+Y'Dl,

Af(X,Y) = C1X + DpY 1

(7.78)
The following preliminary result is of particular importance towards the complete
solution of the guaranteed cost control problem stated before.

Theorem 7.7 Define the convex set
Cf = {(X,Y)  X=Xg>0, Af(X,Y) < O} (7.79)

The set of all state feedback matrices F such that (7.75) holds for some @ > 0, denoted
as Ky is alternatively given by

Ke={YX ' . (X)Y)eC(s} (7.80)

Proof It must be clear that the above defined set C; is convex. Actually, it is defined
by LMI’s and the linear constraint X = X4 which corresponds to impose that all off
diagonal elements of matrix X are zero. For the necessity, let us take an arbitrary
F € Ky # 0 and observe that in this case, there exists P = Py, positive definite such
that

0> (A+ ByF) Py + Py(A+ BoF) + (C1 4 D12F)' (Cy + D1oF)
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Multiplying this inequality to the left and to the right by P ! and using the Schur
complement formula, it is simple to verify that

(X,Y) = (P;Y, FP/ Y e Cs

and YX ! = FPd_lPd = F'. Conversely, take any (X,Y) € Cy # 0. Using again the
Schur complement to the LMI A¢(X,Y) < 0 and taking into account that X = X,
is positive definite and diagonal, we conclude that with Py = Xd_l and F = YX!
there exists € > 0 sufficiently small such that inequality (7.75) holds for

Q = (Cy + D1oFY(Cy + D1oF) + €l

and so the proof of the theorem proposed is complete by noticing that if one of the
sets in (7.80) is empty both are empty. O

From this result, we are able to generate by means of a feasibility convex problem
all gains belonging to the nonconvex set Ky. The elements of this set assure robust
stability of the nominal closed-loop system against all nonlinear perturbations f € Dy.
Besides, using Lemma 7.2 and defining the matrix

D :=diag| \/r1,/T2, -, /T ]

the elements of the set Cy allow the determination of the upper bound p(F, z¢) for all
F € Ky as being

p(F,20) =Y  Pyyr;
j=1
= trace [D'X ' D] (7.81)

valid for all (X,Y) € C; and F = YX !. From this fact the minimum guaranteed
cost is readily calculated from

prlan) = mip p(F.x0)

= inf {trace [D'X 'D] : (X,Y) € Cs} (7.82)

which is a convex programming problem (recall Remark 6.3). Once the global solution
of the right hand side of (7.82) is calculated, the corresponding state feedback gain,
optimal solution of the left hand side of the same equation is provided simply by
Fr=YX™1

Remark 7.14 1t follows that Ky C K. and Ky # 0 if and only if C; # 0. The stabilizability
of the pair (A, Bz) is not sufficient to guarantee that Cy # @ since besides internal stability,
the linear constraint X = Xy requires the inequality (7.75) to have a diagonal and positive
definite feasible solution. O

Remark 7.15 The effectiveness to solve problem (7.82) by means of convex programming
methods, under the assumption that Di;Di2 = I, is now addressed. The main point to be
considered is the boundedness of the set C;. Notice that if there exists an unbounded feasible
matrix X > 0 then it is one of the possible global solutions of Problem (7.82) because

0 < trace[D'X ' D)
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Figure 7.9: The bock-scheme of the perturbed system

and the right hand side approaches to zero as X increases. Using the same reasoning adopted
in Remark 6.8 it is now determined under which conditions this occurrence is avoided. Let
us assume that there exists (X,Y) € C; and (X,Y) # 0 such that (X,Y) + A(X,Y) € Cs
for A > 0 arbitrarily large. Then
X >0
AX +BY + XA +Y'By XC1+Y'Dy |
C1 X + DY 0 -

From Appendix C, these conditions are verified only if there exists a matrix X such that

where A. = A — ByD1,Cy and Ci. = (I — D12D7,)C1. As in Remark 6.8, this situation is
completely avoided if the open-loop system is such that the pair (—A., Cic) is detectable.
Under this mild assumption the optimal value of the objective function of Problem (7.82) is
strictly positive and finite. |

7.4.2 Lur’e design

Let us consider now another important robust control design for the class of output
dependent nonlinear additive perturbations. The basic block-scheme is given in fig.
7.9. Tt resembles the one used in the state feedback Mixed RH2/RH , control design.
The nominal system is denoted by X,. The perturbed dynamic system, namely %,
is subject to the nomlinear perturbation A(-) which is a vector valued function not a
priori known. The available information is that it belongs to the uncertain domain
Dy, composed by all functions presenting the following properties :

1) The vector valued function h(-) is defined for all £ € R and h(-) € R" where 7
is a positive integer less or equal the dimension of the state vector x € R™.

2) It is such that
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The first condition imposes that, in fig. 7.9, the vectors w and z; have the same
dimension. The second one implies that the nonlinear function —h(-) belongs to the
sector [0,00). In fact, in the one-dimensional case the graph of —h(£) in the plane
(h,&) is in the first and third quadrants. The state space equations of the nominal
open-loop system ¥,,, corresponding to h(-) = 0 € D), is the standard one

i =Azr+ Byw+ Bou, x(0)=x (7.85)
zo = Cox + Dou (7.86)
z1 = Cix + Digu (7.87)

Y=z (7.88)

As before, the goal is to design a state feedback control law, namely u = Fz such
that the closed-loop perturbed system X, obtained from X, together with w = h(z;)
presents the following properties associated with its state space representation

T = (A + BQF)JZ + Blh(zl) s I(O) = Zp (789)
zZ0 = (CO + D()F)I (790)
21 = (Cl + D12F):L‘ (791)

First, the origin x = 0 must be globally stable for all h € D;,. From all state feedback
gains with this property select (if possible) one, namely F}, which solves the following
guaranteed cost control problem

Pn(z0) == min A(F, zo) (7.92)
where

/ Zo(t)/ZO(t)dt S [_)(F, ZC()) N Vhe Dh
0

The guaranteed cost control problem (7.92) is similar to the Mixed RHy/RH 4, control
problem. The existence of the nonlinear function h € D, does not allow us to express
it in the frequency domain. Instead the guaranteed cost is given in terms of an upper
bound to the above integral of the controlled output. Accordingly, the exogenous
signal is replaced by an arbitrary initial condition x(0) # 0.

Theorem 7.8 (Passivity theorem) For any given state feedback matriz F suppose
there exists a symmetric and positive definite matriz P such that

B,P = (Cy + DyoF) (7.94)

for some matriz Q = Q' > 0. Then, the origin x = 0 of the perturbed system ¥, is
globally asymptotically stable for all h € Dy,

Proof Consider the Lyapunov function candidate
v(z) := 2’ Px
Its time derivate along any trajectory of X, is written as

0(x) = 22' Pz
=a'[(A+ BoF)'P+ P(A+ ByF)|x + 20/ PB1h(21)
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Making use of condition (7.94), for an arbitrary vector z we have
BiP:Z? = (Cl + D12F).T =2z
which together with the first condition (7.93) yields

(z) < —2'Qx + 2 h(21)
<0, Vz#0

where the last inequality holds due to (7.84). Hence, for any h € Dj, the origin x =0
of the perturbed system X, is asymptotically stable. O

Remark 7.16 Theorem 7.8 also holds in a more general setting. Indeed the function
h(-) can be considered time varying provided h(£,t) € Dy, for all t > 0. Furthermore, the
assumption that Q = Q' > 0, yields

o(z) < —alle|®, a:=minX(Q) >0
That is, the origin is in fact globally exponentially stable. a

Remark 7.17 Conditions (7.93) and (7.94) can be rewritten as follows

0> AP+ PA.+Q
B,P = C..

where A, := A+ B2F and C.. := C1 + D12F. Assume that for some @ = Q' > 0, there
exist F' and P = P’ > 0 satisfying them. In this case, summing and subtracting jwP, with
w € [0, o0), in the right hand side of the first condition, after simple algebraic manipulation
we have

0 < (—jwl — AL)T'P 4+ P(jwl — Ace) ™" ~ (—jwl — AV 'Qjwl — A~

Finally, multiplying this inequality to the left by B} and to the right by Bi, making use of
the second condition above and defining the closed-loop system transfer function

G(s) == Cee(s] — Ace) 'B1
we get

G™ (jw) + G(jw) > Bi(—jw — A) 'Q(jw — A) ' By
>0, Vwel0, o)

A transfer function with this property is called strictly positive real (SPR) and plays a
central role in the stability analysis of nonlinear systems. In this remark we have shown
that conditions (7.93) and (7.94) implies G(s) is strictly positive real. Under certain mild
additional assumptions the converse is also true and constitutes the well known Kalman-
Yacubovitch lemma. Notice that the above frequency domain characterization of a SPR
transfer functions does not include the limit point w = oo for which it is not satisfied
because G(joo) = 0. O

Remark 7.18 A transfer function Gg(s) is called extended strictly positive real (ESPR)
if it is SPR and

GE(joo) + Gr(joo) > 0
From this definition, it is obvious that the transfer function G(s) defined in the previous
remark is SPR but not ESPR due to the fact that G(joo) = 0. It is interesting to known
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that there is a very simple relationship between ESPR and RHo, norm. Indeed, a transfer
function Gg(s) is ESPR if and only if

lled — Ge(s)][ad + Ge(s)] oo < 1

where « is an arbitrary positive scalar. A proof of this property is not included here. We
only mention that it is based on the fact that the above inequality holds if and only if

o] + GE(jw)] ol = GE(jw)lled = Ge(jw)llel + Gr(jw)] ™ <1, Vw
or, equivalently
[oI = GE(jw)llal — Ge(jw)] < [al + GE(jw)lled + Ge(jw)] . YVw
After obvious simplifications, it provides
20(GE(jw) + Ge(jw)] >0, Vw

implying that Gg(s) is ESPR. Indeed, for transfer functions which are only SPR, as for
instance G(s), it is violated at w = co. In this case, the consequence is

lfal — G(s)llal +G(s)] Mo = sup o [lal = G(jw)][ed + G(jw)] "]

> & [[al — G(joo)][al + G(joo)] "]
> 1

which means that the previous constraint expressed in terms of a RH., norm is also violated.

It is interesting to observe what happen if we do not take care of the above results and
try to convert our control design problem to a state feedback problem in RH ., associated
to the auxiliary transfer function

H(s) := [al — G(s)][ad + G(s)] "

where G(s) is the transfer function defined in the previous remark. With no loss of generality
we adopt @ = 1. Routine calculations (recall in Chapter 2 the definition of inverse system)
show that the following is true

Acc“BICCC | Bl ]

I+ G(s))” z{ . ‘ 7

1 Acc - BICcc | Bl
Gs)lI +G(s)] ' = [ }

Ce |0

from which it follows that

ACC—BlCCC I Bl }

H(S):[ —9C. |1

Then, using the state space representation of the transfer function H(s), the determination
of a state feedback gain such that |H(s)lloc < 1 is reduced to the solution of the state
feedback problem in RH  for the auxiliary plant

i = Az + Biw + Bou
z = C'LT + Duw + D12U
u=Fux
where A = A — B101, Bl = Bl, B2 = BQ — B’1D1~27 é1 = —201, Dll := I and D12 =

—2D12. However, this is impossible because with ¢[D11] = 1, any state feedback gain such
that A + BoF is stable implies || T(z, w; $)|lcc > 1. 0
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In opposition to Theorem 7.6, the constraints (7.93) and (7.94) to be simulta-
neously satisfied, depend strongly on the particular choice of matrix ¢ > 0. Even
though, to be able to express the upper bound p(F, z¢) conveniently we need to impose

Q= (Co + D()F)/(Co + DoF) +el (7.95)

with € > 0 being an arbitrarily small parameter. Indeed, with this particular choice,
following the proof of Theorem 7.8 we have

o(z(t)) < —=(t)' Qx(t)

S —
< —z(t)z(t), Vt20

which after integration from ¢ = 0 to ¢t = oo provides
/ 20(t) 20(£)dt < v(z(0)) = 2P0
0
Based on this, it is natural to define

p(F,z0) = z(Pxg (7.96)

as a valid upper bound for all h € Dy. Furthermore, let us denote as K}, the set of all
state feedback gains F such that with @ > 0 given in (7.95) both constraints (7.93)
and (7.94) are simultaneously satisfied for some P > 0 and introduce the affine matrix
functions defined for all pairs of matrices (X,Y") of appropriate dimension with the
first one being symmetric

AX +BY + XA' +Y'By XCh+Y'Dj

An(X,Y) := CoX + DoY -1

and
Bn(X,Y):=C1X + D12Y — B}

The following theorem gives a complete parametrization of the set Ky in terms of a
convex set. It is the basis for the solution of the associated optimal guaranteed cost
control problem (7.92).

Theorem 7.9 Define the convex set
Ch ={(X)Y) : X>0, A(X,Y)<0, By(X,Y)=0} (7.97)
The set Ky, is alternatively given by
Kn={YX ' : (X,Y)eC} (7.98)

Proof Since the set Cj, is defined by means of affine functions only, it is convex. To
prove the necessity, assuming that F' € Ky # () then there exists P > 0 such that

0> (A+ B2F)' P+ P(A+ ByF) + (Co + DoF)'(C1 + DoF)

Multiplying both sides of this inequality by P~! and using the Schur complement it
is readily verified that
An(P7LFP7Y) <0
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On the other hand, multiplying (7.94) to the right by P~!, it can be rewritten as
By(P"L,FP™ 1) =0

hence, (X,Y) = (P~} FP~1) € C, and Y X! = F from which the necessity follows.
The sufficiency for Cp, # 0 is immediate. From this, it is also immediate to see that
(7.98) holds in case one of the indicated sets is empty. O

We have now all elements to face the optimal guaranteed cost control problem
(7.92). From Theorem 7.9 and (7.96) it reduces to the problem

pn(wo) = min p(F, o)

inf {20X 'zo : (X,Y) €Cy} (7.99)

which is a convex programming problem (recall Remark 6.3). Its global optimal solu-

tion provides both the minimum guaranteed cost (o) and the associated optimal
state feedback gain F, = Y X'

Remark 7.19 The inclusion K, C K. is obvious. It is also clear that the stabilizability
of the pair (A, Bz) is necessary but not sufficient to Cp # 0. The necessary and sufficient
condition is the existence of a state feedback gain F € K. such that the closed-loop system
transfer function G(s) is SPR (recall Remark 7.17). d

Remark 7.20 Following the same reasoning of Remark 7.15, the boundedness of the set
Ch is assured whenever the pair [— (A — B2 DyCo), (I — DoD§)Co] is detectable. O

Remark 7.21 Consider the convex programming problem
inf {zoX 'm0 : X >0, An(X,Y) <0}

which is the same as problem (7.99) but without the linear constraint B (-) = 0. Let us
search a solution of the above problem such that

Y = —Bé — DE)C()X

Using this formula, taking into account the standard assumption DyDo = I the Schur
complement implies that A, (X,Y) < 0 if and only if

AX + XAL - BBy, XC).

A(X) = CooX i

<0

where A, := A~ By D{Cy and Co, := (I — DoDg)Co. Hence, the problem under consideration
can be solved in two steps. The convex programming problem

inf {zX 'zo : X >0, A(X) <0}

provides the optimal matrix X > 0 and the previous formula gives matrix Y. The corre-
sponding state feedback gain turns out to be F = Y X!, Comparing the last problem with
respect to the determination of matrix X and Remark 6.9, it is seen that its optimal solution
is exactly the associated Riccati equation and so, in this particular case, the guaranteed cost
reduces exactly to the minimum RH; optimal cost. This gives a measure of the quality of
the upper bound p(F, zp) proposed. In the general case, this solution is no longer feasible
and the minimization must be done taking into account the linear constraint Bx(-) =0. O
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7.5 Notes and references

Uncertain systems design is nowadays a very wide topic in control theory. Concern-
ing stability by means of linear state feedback control, the paper of Barmish [4] is
important since, for the first time the author propose an effective and simple way
to handle uncertainties acting on both A and Bs system matrices. The notion of
guaranteed cost has been introduced by Chang and Peng in [11] related to a simple
LQ problem. Differently of what we have done in this chapter, the main idea was to
get an (nonlinear) upper bound to the associated Riccati equation. In section 7.2 the
problems already solved in Chapter 6 have been revisited. They have been solved in
a manner to cope with parameter uncertainty. Two of the most important classes of
uncertainty have been considered and compared, namely polyhedral convex bounded
and norm bounded uncertainty. For the first type, results from [65] have been used
in Remark 7.15 while the numerical example fully described in Example 7.65 and
analyzed throughout the section is also given in [50]. With this last paper the reader
can go deeper on the comparison of these two types of parameter uncertainty models
just mentioned. The main part of Section 7.2 related to RH2 and RH,, guaranteed
cost control problems is based on [24] and [49] while the other results are the nat-
ural generalizations, to cope with parameter uncertainties, of problems introduced
in Chapter 6. The stability and guaranteed cost control of dynamic linear systems
subject to actuators failure has been analyzed in [23]. In Section 7.3 this problem is
again solved but special attention is paid to the comparison and modeling this special
kind of uncertainty by means of the domain D,,. Once again, the convexity plays a
central role and it is possible to verify that the uncertainty description by means of
the convex domain D, leads in many instances to better results. Section 7.4 is entirely
devoted to control design problems involving nonlinear perturbations. The first one
called Persidiskii design is based on papers [30], [25] and [26]. The former paper also
provides many others and more general results and is an excellent reference on this
topic. Finally the second control design procedure called Lur’e design is based on the
classical results reported in the important book [61] where the notions of passivity
and strictly positive real transfer functions are addressed in a general and complete
setting.



Appendix A

Some Facts on Polynomials

The three results presented in this appendix can be found in many text of Algebra.

Lemma A.1 Let 7o(s) and ri(s) be two polynomials with deg[ro(s)] > deglri(s)].
Let r(s) be a greatest common divisor of ro(s) and r1(s). Then, there exist two
polynomials po(s) and ¢1(s) such that

wo(s)ro(s) + @1(s)ri(s) = r(s)

Proof The sequence of polynomials

ro(s) = ri1(s)qi(s) +ra(s) , deglra(s)] < degri(s)]
1(8) = r2(8)q2(s) + 73(s) , deg[rs(s)] < deg[ra(s)]
ra(s) = r3(s)ga(s) +ra(s) , deg[ra(s)] < deg[rs(s)]

Tp—l(S) = rp(s)QP(s) + Tp+1(5) ) deg[rzﬂ—l(s)] < deg[rp(s)]

Tp(s) = T'p+1 (S)Qp—H (s)

is well defined for a certain p < deg[ri(s)] — 1.

From such a sequence, it is easily checked that the polynomial r,i(s) divides
rp(s) and then also r,_1(s) and so on and so forth till 7 (s) and ro(s).

The single elements of the sequence can be written as

Hence, 7;(s) = r1(8)@pi2—i(8)+@pt1-i(5)T0(s), © > 1, where ppy1;(s) and pp_i12(s)
are suitable polynomials, so that r,.1(s) = ro(s)po(s) + r1(s)ei(s). Hence, any
common factor of the two polynomials r¢(s) and r1(s) is also a factor of r,11(s) so
that this last polynomial is a greatest common divisor of rq(s) and r1(s). Through
a suitable choice of ¢,11(s) such a polynomial can be made coincident with 7(s)
(recall that two greatest common divisors of two assigned polynomials differ for a
multiplicative factor). O
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Theorem A.1 Two polynomials ro(s) and r1(s) are coprime if and only if there exist
two polynomials @o(s) and ¢1(s) such that

ro(8)wo(s) + r1(s)p1{s) =1 (A1)

Proof If the two polynomials are coprime, i.e. 1 is a greatest common divisor, then
eq. (A.1) follows from Lemma A.1. Conversely, if eq. (A.1) holds, then ro(s) and
r1(s) are obviously coprime, because any common factor should appear at the right
hand side of this equation. ]

Lemma A.2 Let p(s), q(s) and r(s) be three polynomials with p(s) and q(s) coprime.
Then there exist two polynomials p(s) and ¥(s) with deglp(s)] < deg[q(s)] such that

p(s)p(s) + ¥(s)q(s) = r(s)
Proof Being p(s) and ¢(s) coprime, there exist, in view of Theorem A.1, two poly-
nomials cp( ) and %(s) such that @(s)p(s) + ¥(s)q(s) = 1, so that, letting ¢(s) :=
@(s)r(s), 9(s) := P(s)r(s), it follows

$(s)p(s) + P(s)a(s) = r(s)

If deg[@(s)] <deg[q(s)], the two polynomials ¢(s) and 9)(s) satisfy the conclusion of
the theorem, otherwise for each polynomial ¥(s) it results

p(s)[p(s) — 9(s)a(s)] + a(8)[d(s) + O(s)p(s)] = r(s) (A.2)

If one performs the division of ¢(s) by ¢(s) it follows

¢(s) = q(s)B(s) + als)

with deg[a(s)] <deg[q(s)]. It-is immediate to ascertain that the polynomials ¢(s) :=
¢(s) — B(s)g(s) and 9(s)) := ¢ (s) + 5(s)p(s) (set ¥(s) = B(s) in eq. (A.2)) verify the

claim. 0



Appendix B

Singular Values of Matrices

In this section the proofs of the results presented in Section 2.6 are reported, along
with a few useful matrix properties (Lemmas B.8-B.15) and hints on matrix manipu-
lations. The book by Lawson and Hanson [38] is the main reference for the singular
value decomposition. For the proof of Theorem 2.8 some preliminary results are
needed (Lemmas B.1-B.7).

Lemma B.1 Let v := [vy v2 -+ v,]" # 0. Then there exists a unitary matriz Q
(Householder matriz transformation) such that

Qv = —o||v|les
wheree; :=[10 --- 0 € R", o:= eJarg(vy)
Proof Take u := v + o||v||er and notice that u := [uy ug -+ uy,) # 0 since vy =

o(Jv1] + ||v|)) and v # 0. Moreover, let

~

Q::I—2¥
u-u
Then,
QQ=(I 22 )(I—22) = [ -2 g
u-u u-u u-u u-uu U

since uu™~uu™ = u~uuu™ (actually u™u is scalar). Hence, it has been shown that @
is an unitary matrix. On the other hand,
uu = (v + o [vlley) (v + ollvller)
= [[olf* + o P[[o]* + o™ [[v]|or + o7 o lv]|
= 2|[v[|* + 2w [[lv]
since |o| =1 and 0™v; = ovy’ = |v1|. Therefore,

Qv = Q(u —alv]er)
(- 2uu

)(u = allvller)

2u
=u—olvler —2u + —uio|v|
u~u

2u(vy’ + o [|vi)a]lv]
2(J|vll? + Jve[llvl})

—u—ollvlle; +

= —ollv[les
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The last equality follows from v” 4+ o™|v|| = o™~ (Jn1| + ||lv||) and c™~o = 1. O

Lemma B.2 Let v:=[v; v2]) #0 be an element of C? and let ¥; = arg(v;). Then
there exists a unitary matriz G (Givens transformation matriz) such that

_ [ lvlle?®
Gv = [ 0
Proof Take Ora)
._ |v1] |vgle? 1772 -1
G = [ |,U2|ej(192—191) —|w] lv|l

It is readily seen that G~G = I and Gv has the form claimed in the statement. O

Lemma B.3 Let B be a n x m matriz. Then there exists a unitary matriz Q such
that R := QB is upper triangular.

Proof In view of Lemma B.1 there exists a unitary matrix @1 such that

x X P €T
0

hB=
By

0

where the x’s are generic scalar numbers. Again in view of Lemma B.1 there exists
a unitary matrix P5 such that P, B; has the same structure as Q1 B. Then, defining
the unitary matrix

I 0
%= Pz]
it follows
r T x T
0 = =z T
QnB=|0 0
Do Bs
0 0

Tterating this procedure at most n — 1 times, one can conclude that matrix @, given
by Q := Qn—1Qn—2---Q2Q1, is such that QB is upper triangular. a

Lemma B.4 Let B be a n x m matric with rank[B] = k. Then, there ezist two
unitary matrices Q and P such that

R T }k:rows
apr=| ¢ 7|

Proof Let P be the permutation matrix (which is obviously unitary) such that the
first k£ columns of BP are linearly independent. In view of Lemma B.3 there exists
a unitary matrix  such that S := QBP is upper triangular. Obviously, the first k
columns of S are linearly independent. The i-th row of S is zero for ¢ > k, since,
otherwise, the triangularity of S would imply that rank[S]=rank[B] > k, which is a
contradiction. ]
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Lemma B.5 Let [R T] be a k x m matriz with rank[R] = k. Then there exists
o unitary matric W such that [R T|W = [R 0], with R nonsingular and lower
triangular.

Proof Lemma B.4 implies that there exist two unitary matrices 2 and P such that
R~ , [R
o[ -1 ]
with R~ upper triangular. Thanks to the assumption on the rank of R, the permuta-

tion matrix P is actually the identity matrix and R~ is nonsingular. The thesis now
immediately follows by letting W = Q™. O

Lemma B.6 Let B be a nxXm matriz with rank[B| = k. Then there exist two unitary
matrices H and K such that HYBK = R with

| Ru O
=]
where Ry1 s triangular and nonsingular.
Proof The proof is straightforward in view of Lemmas B.4 and B.5. a

Lemma B.7 Let A be a square nonsingular matriz. Then there exist two unitary
matrices U and V' such that U~AV = S, where S is diagonal with real positive
entries.

Proof Let V be a unitary matrix such that A~A = VDV"™ with D real diago-
nal and define S in such a way that its generic (¢,j) element is the square root
of the (i,j) element of D, so that S~S = S? = D. Let now U := AVS™! (re-
call that, being A~A > 0, matrices D and S are nonsingular). It follows that
UU = STWYAYAVS™! = STV~ VDV~VS~! = §7I1DS™! = I so that U is
unitary. Finally, USV~ = AVS~1SV~ = AVV™~ = A. Notice that, by suitably
choosing matrix V, it is possible to arrange the elements on the diagonal of D so that
they are nonincreasing. O

Proof of Theorem 2.8 Thanks to Lemma B.6, there exist two unitary matrices H
and K such that A = HRK"™ with

- RHO
e 0]

where Ry is k- dlmensmnal and nonsingular. In view of Lemma B.7 there exist two
unitary matrices U and V such that Ry = USV™ where matrix S is diagonal with
positive nonincreasing elements. Letting

. U o . Voo

U:'I:O ]}}n—krows ’ V::[O [:l}mkrows
S0

S:{O 0}}nkrows
S~
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it follows
Tt~ Rll 0 _
Usv™ = [ 0 0 ] =R
so that A= HRK~ = HUSV~K~ =USV™, with U := HU and V := KV. ]

Proof of Lemma 2.16 Point 1) Let T be a unitary matrix such that
TA~AT~ = D = diag{)\?}

Hence

| Az|? a z~ A~ Az
m. =max ————
«#0 || z|? z20 x~T~Tx
e~ T~TAYAT~Tx
max
z£0 z~T~Tzx
2~ Dz
= max
z=Tz#0 2™z

Zzzz

=) Z 22
z#0 Z z zz

On the other hand, if A~A¢ = 62(A)¢, £ # 0, it results

~A~A T~ A~ A
72 (A) = AT AL 6 < max r oA
§~§ z£0 T
Point 2) Analogous considerations as in Point 1) lead to the conclusion. ad

Proof of Lemma 2.17 The conclusion is straightforward if rank[A] = 0. Then, let
rank[A] # 0 so that 3(A) > 0 and there exists z # 0 such that A~ Az = 7%(A4)z.
From this relation it follows that AA~y = 3%(A)y with y := Az. Vector y is nonzero
otherwise #2(A)z = 0. Hence, 0?(A) is an eigenvalue of AA™ and then 2(A™) >
52(A). The same line of reasoning applied to A~ instead of A leads to the conclusion
that 5(A) > 6(A™). Hence, the thesis follows. 0

Proof of Lemma 2.18 Points 1) and 2) Let ' be an eigenvector associated with
A;(A). Then, recalling Lemma 2.16

™A~ Axr 2N A~ A T~ A~ Ax

*(A) = min < — " < max ——— = G>(A)
z#0 z~x Tt z#0 T~
Finally ' A . '
T~ A~ Ax _ TN (A)A(A)zt (A2 < r2(A4)
T~ gl i~ i i ="s

leads to the conclusion.
Point 3) Recall that the eigenvalues of an inverse matrix are the inverses of the
eigenvalues of the matrix. Then,

o?(A) = min )\;(A~A)
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. 1
N (A~ A
1 1

max  A\;((4~A4)7) Ve

K

where the last equality follows from Lemma 2.17.

Point 4) The correctness of the claim directly follows by interchanging A and A™!
in Point 3).

Point 5) By exploiting the assumption that A is hermitian and recalling that
Ai(A%) = \2(A), it follows

s

72(A) = max \; (A~ A) = max \;(A?) = max \2(A4) = r2(A)

O
Proof of Lemma 2.19 It turns out that
of(ad) = \i(a~ A Aa) = |a]*Xi(A™ A) = |al*0(4)
so that the thesis directly follows. O

Proof of Lemma 2.20 By recalling Lemma 2.16 and well known properties on the
norm of a vector, it results

(A + B) = max —H(A + B)a|
©70 (At
s+ B
T z#0 fl]]
el | IBel s
SO Tl TR ey oW B

O

Proof of Lemma 2.21 Preliminarily, by recalling Lemma 2.16 and the fact that in
general Im[B] may not coincide with C™, it follows

_ | Az|| lABz| _ [|ABz]
d(A) = max > max > , Vz
=20 |lz|| T =#0 [|Bz|| | B=|l
Henee lABa _ a(A)|B:
z o) z
0(AB) = max < ——— = g(A)a(B
UB =ms T = e — o)

Proof of Lemma 2.22 Preliminarily, observe that, Vz

Azl + 1B} _ [Az]  |Bal _ JAs|
R L

and that

[Azll = [ Bzf A=l Bl _ |14zl

ol 2 el Sl P
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From these expressions it follows that

sl + 1Ba ]
i W— <o) +a(B)

As for the second inequality, it turns out
o, A+ B)z]|
w0 a]
|Az + Bzx||
w70 ||z
_||Az|| + || Bz

< min <og(A)+ad(B
T Tl ) +2(B)

oc(A+ B) =

Analogously, as for the first inequality it turns out
L (A + Bz|
w0 all
||Az + Bz||
w20 |

o o I42) — 1Bz
s el

g(A+ B) =

> a(A) - 5(B)

Proof of Lemma 2.23 As for the first inequality, Lemma 2.16 implies that
JAz + Byl _ |lAa|| _

&([A B]) = inax { " } Z 7(A)
Lol Ly
G(AB) = max AzEBUl L WBYL g
v z y20 [y
i
As for the second inequality, from Lemma 2.16 it follows that
c ] + 3ol
sl G
o @l +a(B)lyl
HE [ ]H
llll + gl

< max|[g(4),d(B)

a i
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The thesis then follows since, V [z’ y']’ it results

el + vl _ 5

18l

0 < (llll = llyh)? = lizll* + llyll* = 2ll=] 1y

= 2(Jl 1 + lyll*) = Nz l* = llyll* = 2llzliy]
2

Actually,

z
=2 [ %] - et po?
Y
O
Proof of Lemma 2.24 It turns out that
Z o2(A) = Z Ai(A™A) = trace[A™ A
i i
O
Proof of Lemma 2.25 As for the first inequality, from Lemma 2.16 it follows
A
(4 = max 2L Sy aei i
w0 |||
where e; is the i-th column of the identity matrix. But,
lAeill = > {A} 2> max |{ A}
J
As for the second inequality, recalling Lemma 2.24 it results
F(A) <> oh(A)
h
< trace[A™ A
< Z{ANA}M
S m max{ANA}mv
<m m?XZ [{A}i;)?
J
<m max m max [{A};;|° = m? max|{A}; ;]
7 J .7
O

Lemma B.8 Let A and B be two matrices with dimensions n X m and m X n, re-
spectively. If A # 0 is an eigenvalue of AB, then it is also an eigenvalue of BA.

Proof Let x # 0 such that ABz = Az # 0. Hence y := Bx # 0, otherwise Az = 0.
Finally, BAy = BABx = ABx = Ay, that is A is an eigenvalue of BA . o
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Lemma B.9 Let A and B be two matrices with dimensions n x m and m X n, re-
spectively. Suppose also that 1 is not an eigenvalue of AB. Then

i) I+ AB(I — AB)™! = (I — AB)™!
ii) AB(I - AB)~' = (I — AB)~YAB = A(I - BA)"'B

Proof Preliminarily observe that (I — AB) and (I — BA) are nonsingular thanks to

the assumption on the eigenvalue of AB and Lemma B.8. Hence, the formulas are
well defined.
Point i) It is

I+AB(I - AB)™' = (I - AB)(I — AB)"! + AB(I — AB)™!
=(I—-AB+AB)(I-AB)'=(I-AB)™!

Point i) As for the first equality, it is

AB(I - ABY ™' = —I+ (I — AB)™!
= —(I- AB)"Y(I - AB) + (I - AB)™
=(I-ABY Y ~I+AB+1I)=(1-AB)"'AB

As for the second equality, it is B — BAB = (I — BA)B = B(I — AB), so that
B(I — AB)™' = (I — BA)~'B, which implies AB(I — AB)~! = A(I - BA)"'B. D

Lemma B.10 Let A = A’ > 0 and B = B’ > 0 be two matrices with the same
dimensions. Then the eigenvalues of C := AB are real and nonnegative.

Proof Let A be an eigenvalue of C' and £ # 0 an associated eigenvector, i.e. C¢ =
ABE = M, & # 0. From these expressions it follows that BABE = AB¢ so
that £~BABE = M~ BE. Being A and B positive semidefinite, the quantities o 1=
£~ BAB¢ and (3 := £~ BE are both real and nonnegative. If 3 # 0 then A = % is real
and nonnegative. If 5 =0, then B =0 and A = 0. |
Lemma B.11 Let A = A" > 0 and B = B’ > 0 be two matrices with the same
dimensions and y a positive scalar. If r(y 2AB) < 1, then

i) C:=(I—-~2AB)"1A>0
i) If A> 0, then C >0 and A~ >~7?B
Conversely, if C > 0, then
i) rs(y2AB) < 1

Proof Preliminarily observe that I — vy 2AB is singular if and only if v 2AB has
(at least) one eigenvalue equal to one. This is not possible thanks to the assumption.
Hence, matrix C is well defined. It is also symmetric in view of what has been shown
in the proof of Lemma B.9.

Point i) By exploiting Lemma B.9 and the definition of C, it is easy to check that

(=TI +~y?AB)C+C(~I+~y2BA)+24A=0

Thanks to the assumption on the spectral radius of v 2AB, it turns out that matrix
—I + v 2AB has all its eigenvalue in the open left half plane, i.e. it is stable. The
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equation above is therefore a Lyapunov equation in the unknown C, with stable
coefficient matrix and positive semidefinite known term 2A. In view of Lemma C.1
one can conclude that C is positive semidefinite.

Point i) If A > 0 then, recalling again Lemma C.1, it turns out that C > 0.
Moreover,

C= (-7 2AB) ' A=[A(A™ =y ?B)] ' A= (4" =7 72B)"!

so that (A~! — 4 2B) > 0, which is the thesis.

Point 7ii) Assume by contradiction that A > 1 is an eigenvalue of v~2AB (recall
that, thanks to Lemma B.10 the eigenvalues of AB are real and nonnegative). Since
C = (I — vy 2AB)~!A exists, such an eigenvalue can not be equal to 1. In view of
Lemma B.8, X is also an eigenvalue of 7~2BA so that there exists a vector £ # 0 such
that v 2BA¢ = A€, ie. (I -y 2BA)¢ = (1—\)¢ or, alternatively, (I -y 2BA)~1¢ =
(1 — X7t Hence &(1 - N1 =¢ (I -~ 2AB)~L. It follow that

§'A¢

v (I -~2AB)™" A¢

The left hand side of this equation is a nonpositive number (actually, the numerator
is nonnegative and the denominator is negative). The right hand side is nonnegative
in view of the assumption on C. Hence, it must be A¢ = 0 and hence, from (I —
¥ 2BA)¢ = (1 = M\)¢ =€ and X # 0 it follows that £ = 0, a contradiction. O

Lemma B.12 Let A = A’ > 0 and B = B’ > 0 be two matrices with the same
dimensions and « a positive scalar. Then rs(BA) > « if and only if there exists
x # 0 such that /(B — aA )z > 0.

Proof If r,(BA) > a, it must exist (recall Lemma B.10) a vector £ # 0 such that
BAE = M, A > a. Letting x := A€, it follows that Bx = AA~'z and also 2'Bx =
Az’ A7z > az’ A=z, which yields 2'(B — aA 1)z > 0.

Conversely, if rs(BA) < «, then, from Lemma B.11 it follows A=! > o~ !B
so that /(B — aA™!)x < 0,V # 0 and hence it does not exist x # 0 such that
(B —aA Yz > 0. O

Lemma B.13 Consider the block matriz

| By
o= |5 o]

where the submatrices ®1 and P4 are square. Then
i) If ®1 is nonsingular, det[®] = det[®;]det[®q — B3P By)
#) If & is nonsingular, det[®] = det[®4]det[®; — Po®; ' ®j]

Proof Point i) The identity

D, Dy - 1 0 b, )

D3 Dy | | B30t T 0 &y 030,'0,
is straightforward. By considering the determinant of the matrices on the left and
right hand sides, point ) follows.
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Point ii) The identity

®; D] [T @9, ][ & —D0;'®; O
®; &, | [0 I @3 @4

is straightforward. By considering the determinant of the matrices on the left and
right hand sides, point 7) follows. ]

Lemma B.14 (Schur complements) Consider the block symmetric matriz

P Py
o= |3 o]

where the submatrices ®; and ®3 are square. Then
i) If @y is positive definite, ® > 0 <= ®3 > <I>’2<I>1_1<I>2
i) If ®3 is positive definite, ® > 0 <= ®; > $o®; '),

Proof Point i) Considering the nonsingular matrix

I 0
r= [ ®p0;0 I ]
it is straightforward to verify the identity

) 0

— )
@“T[ 0 @3- 9,®7 ]T

from which point ¢) follows.
Point 4i) Considering the nonsingular matrix

[T 2,851
= "]

it is straightforward to verify the identity

[ - 9.970, 0 ..
@—T[ o o |T

from which point #3) follows. O

Lemma B.15 Consider A and D real matrices such that D'D = I. Then

min |4 - DZ|| = ||(I - DD")A]

and the optimal solution is Z° = D'A.

Proof Define A := Z — Z° = Z — D' A. From the fact that matrices D and (I — DD')
are orthogonal we have

lA~ DZ||* = ||(I - DD')A - DAJ?

= [max {IT - DD") Ax|® + | A||*}
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However, due to
min |A-Dz|* = mAin max {||(I — DD Az|?* + || Az|?}

> ”m”aX min {||(I — DD")Az|® + || Az|*}

”max |(I — DD")Az|?

> (I - DD")A|?
the lemma is proved by simple verification that the equality holds for Z = Z°. a

Remark B.1 From Lemma B.15 it follows that the linear equation A — DZ = 0,
with D'D = I, admits a solution namely Z = D'A if and only if (1 - DD')A=0. O
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Appendix C

Riccati Equation

The Lyapunov and Riccati equations play an important role in the analysis and
control of linear time-invariant systems. Here, for a given n-th dimensional system
(A, B, C, D), a few basic results on these equations are reported. Standard references
are the book by Bittanti et al. [7] and the paper by Doyle et al. [17].

Lemma C.1 (Extended Lyapunov lemma) Consider the Lyapunov equation
0=PA+A'P+C'C
Then

i) If A is stable, there exists a unique solution. Such a solution is symmetric and
positive semidefinite.

it) If the pair (A, C) is detectable and there exists a symmetric and positive semidef-
inite solution, A is stable.

ii1) If the pair (A, C) is observable, the solution at point i) is actually positive defi-
nite.

Proof Points i) and i) If A is stable, then
P = / MO Certdt
0

is well defined, symmetric and positive semidefinite. If (A, C) is observable, then P
is positive definite. In fact, if, by contradiction, Pxg =0, xzg # 0, then

o0 , o0
z(Pry := / zpe 1O CeMwodt = / y'ydt =0
0 0

where y is the free output of ¥ with initial state z(0) = zg. Hence, y(t) = 0,Yt > 0
contradicts the observability assumption.
Based on the definition of P, it follows

A/P+PA:/ %(eA’tcheAt)dt: “‘CIC
0
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Matrix P is the unique solution of the Lyapunov equation. In fact, if Pis any other
solution, it results X X
0=(P—P)A+ A (P-P)

Thanks to the stability of A and a well known result of linear algebra, this equation
admits the unique solution P — P=o.

Point i) Assume that P = P’ > 0 is a solution of the Lyapunov equation and,
by contradiction, that A is not stable, i.e. Az = Az,z #0, Re(A) > 0. From the
equation it then follows

0=z PAx + 2~ A'Px + 2~C'Cx = 2Re(N)2~ Pz + 2~C'Czx

Since the last term of this equation is the sum of two nonnegative elements, it turns
out that Cz = 0. But Az = Az,Czx = 0,z # 0, Re(\) > 0 contradicts the assumed
detectability of (A4, C) (recall Lemma D.2). O

Lemma C.2 (Stabilizing solution of the Riccati equation - 1) Consider the Ric-
cati equation
0=PA+A'P+PRP+Q

with R and @ real and assume that

A R
2= o u]

does not have eigenvalues lying on the imaginary azis.

a) The matric

b) Matrices R and Q are symmetric and n-dimensional.

If the subspace

X:ﬂme<D:[§} (C.1)

generated by the (generalized) eigenvectors associated with the negative real part eigen-
values of Z is complementary to the n-dimensional subspace

I:hmﬂ,f:[?} (C2)
then

i) The matriz Ps := Y X1 is a real, symmetric and stabilizing solution, namely
is such that (A + RP;) is stable.

i1) Ps is the unique stabilizing solution.
Proof 7 is an Hamiltonian matrix, i.e. it satisfies

JZ+7'J=0 (C.3)

[ 23]

is the so called sympletic matrix. Matrix Z has eigenvalues symmetric with respect
to the imaginary axis, since Z = —J~1Z'J. Assumption a) assures the existence of n

where
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eigenvalues of Z in the open left half plane. Tt is well known that the subspace X is
Z-invariant so that there exists a real matrix T' with eigenvalues in the open left half
plane (stable) such that

ZL=LT (C.4)

where L satisfies eq. (C.1). The proof is divided into four main steps.

Step 11t is here proved that X~Y = Y™~ X. Actually, letting W := X~Y - Y~ X,
it is immediate to check that W = L~JL so that, exploiting egs. (C.3), (C.4), it
follows WT = L~JZL = —-L~Z'JL = -T'W, i.e.

WT+T'W =0

Since T is stable, this Lyapunov equation admits the unique solution W = 0, which
is the claim.

Step 2 Matrix X is invertible since the subspace X is complementary to the n-
dimensional subspace Z (see eq. (C.2)), so that Ps = Y X! is well defined.

Step 3 It is here proved that Py is a real, symmetric and stabilizing solution of the
Riccati equation.

As for reality, observe that the columns of L = [X~ Y]~ can be chosen complex
conjugate in pair, so that, if X, and Y, are the complex conjugate of X and Y,
respectively, then

[ Xz Yo ]'r=[X~ Y~ ]
where I is a permutation matrix. Hence Ps = YX ! = V,IT 71X ! = Y. X! s0
that P; coincides with its conjugate, i.e. Ps is real.

As for symmetry, observe that, thanks to the identity (proved in Step 1) X~Y =
Y~ X it follows that P, = P = (X ")~ Y~ = (X" )" X~ YX =YX 1 =P,

As for the stabilizing property, from eq. (C.4) it follows that AX + RY = AX +
RYX™'X = (A+ RP,)X = XT so that A+ RP; = XTX~!. Therefore, A + RP,
and T are similar. Since T is stable, matrix A + RP; is stable as well.

It is now shown that P; is a solution of the equation. In fact, eq. (C.4) is equivalent
to

AX+RY =XT

—-QX -AY=YT
Premultiplying the first equation by Y™ yields Y~YAX + Y~RY = Y~ XT. More-
over, premultiplying the second equation by X~ gives — X~QX — X~A'Y = X~YT.
Recalling that X~Y = Y™~ X it then follows that

0=X"QX +X~AY + Y AX +Y~RY
Postmultiplying this equation by X ! and premultiplying it by (X ')~ it follows
0=Q+A(YX H+(¥YX HY A+ (YX H RYX
=Q+ A'P,+ P>A+ P RP,

Since it has been already shown that Ps is hermitian (P, = P;’), the conclusion is
straightforwardly derived.

Step 4 As for the uniqueness of the stabilizing solution, assume, by contradiction,
that there exist two stabilizing solutions, namely P, and P». Then

0=PA+ AP+ PRP +Q
0=PA+ AP+ PRP,+Q
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Subtracting term by term, it is easy to see that
0= (P, — P)(A+RP)+ (A+ RBP) (P, — P)

This equation can be considered as a linear equation in the unknown P; — P,. Being
both A+ RP; and A + RP, stable, a well known result of linear algebra implies that
there exists only one solution, precisely P, — P, = 0. a

Lemma C.3 (Stabilizing solution of the Riccati equation - 2) Consider the Ric-

cati equation
0=PA+A'P+PRP+Q

and suppose that matriz R is square, n-dimensional and either equal to BB' or —BB'.
Moreover, assume that

a) The pair (A, B) is stabilizable

b) The matriz

A R
7=| 4 4]

does not have eigenvalues lying on the imaginary axis
¢) The matriz @ is real and symmetric
Then,
i) The subspace

X :=TIml[L] L::[if}

generated by the (generalized) eigenvectors of Z associated with the negative real
part is complementary to the n-dimensional subspace

Im{f|, [:= { ?]
i) Ps := YX~! is a solution of the Riccati equation. It is real, symmetric and
stabilizing, i.e. such that (A + RP;) is stable.

iti) Ps is the unique stabilizing solution of the Riccati equation.

Proof In view of Lemma C.2, the proof of points i) and iii) is straightforward once
point i) has been proved, which, in turn, derives once the invertibility of X is proved.
To this aim, consider eq. (C.4) and assume, by contradiction, that there exists £ # 0
such that X¢ =0, L.e. £ € Ker[X]. It follows in particular that

AX +RY = XT (C.5)
Premultiplying this equation by Y™ and recalling that Y~X = X™Y, it follows
Y~AX+Y~RY = X~YT sothat £~ (Y~AX+Y~RY ~X~YT){ ={~Y~RYE{ = 0,
namely (recall that R = £BB’)

RYE=0, V¢ Ker[X] (C.6)
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This equation together with eq. (C.5) yields
XTE=0, V¢e Ker[X] (C.7)
On the other hand, eq. (C.4) entails that — QX — A’Y = YT so that
~AYE=YTE, V¢ Ker[X] (C.8)
For each £ € Ker[X] egs. (C.6)-(C.8) hold. In particular, eq. (C.7) implies T¢ €
Ker[X] so that T%¢ € Ker[X],Vi > 0. Now it is proved, by induction, that, from egs.
(C.7),(C.8), it follows
RANYYE=0, Yk>0, V€€ Ker[X] (C.9)

Actually, eq. (C.9) is true for k = 0 (eq. (C.6)) and, moreover, it results (see eq.
(C.8))
R(A)YE = R(ANVAYE = —RAVYTE =0

since T¢ € Ker[X]. Recalling that T°¢ € Ker[X],Vi > 0, from eq. (C.8) it follows
YTkEE = YTTF1€ = —A’YT*~1£. By repeatedly using this last equation, one obtains

YTFe = (-A*Ye, YE>0, V€€ Ker[X] (C.10)

For each polynomial v(s) it then follows V £ € Ker[X]

v(-=ANYE =Yu(T)E (C.11)
Ru(—A)YeE=0 (C.12)
v(T)¢ € Ker[X] (C.13)

Let now v,,(s) be the monic polynomial of minimum degree such that v, (7)€ = 0.
Notice that such a polynomial actually exists and its degree is not greater than the
degree of the minimal polynomial ¢(s) of T (in fact ¢(T) = 0). If A is a root of v, (s)
it follows that (A — s)u(s) = vin(s), with deg[u(s)] < deg[vm(s)]. Then,

vm(T)E = (M = T)p(T)¢ = 0 (C.19)

Observe that § := u(T)¢ # 0 due to the minimallity of v, (s), so that £ is an
eigenvector of T and A, being an associated eigenvalue, must have negative real part
(recall that T is stable). By exploiting eq. (C.14) and letting v(s) = vy, (s) in eq.
(C.11}, it turns out that, for £ € Ker[X]

Vin(~ANYE = (T + A)u(~A)YE = Y (T)E = 0

so that
Ap(-AYYE = -Mu(-A"Y¢E

with Re(—A) > 0, whereas eq. (C.12), letting v(s) = u(s), becomes
Ru(—AYY¢=+BB'u(-AYYE=0
which, in turn, implies B'u(—A")Y¢ = 0. Letting n:= pu(—A")YE, it then follows

A'nm= -\
B'n=0
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The assumption of stabilizability of the pair (4, B) and Re(—A) > 0, implies, in view
of the PBH test (Lemma D.4), that 5 = 0. From eq. (C.11) with v(s) = u(s) it then
follows that Y pu(T)€ = 0 so that u(T)€ € Ker[Y]. On the other hand, u(T)¢ € Ker[X],
so that L3 = 0 contradicts the fact that Tm[L] is a n dimensional subspace. Hence X
is invertible and point ) is proved. a

The preceding lemma, allows proving the following result which settles in the con-
text of the theory of optimal control with quadratic cost functionals.

Lemma C.4 Consider the Riccati equation
0=PA+ A'P+PRP+C'C, R:=—-BB
If P is a solution, then
Ker[P] C X, := Ker[C] NKer[CA] - --NKer[CA™ ]
Moreover, there exists a solution Py which is real, symmetric, stabilizing and positive
semidefinite if and only if

a) There do not exist eigenvalues of the unobservable part of the pair (A, C) lying
on the imaginary axis.

b) The pair (A, B) is stabilizable

Proof It is first proved that the kernel of P is contained in the unobservable subspace
X, of (A,C) . Let ¢ € Ker[P], so that P¢ = 0. From the Riccati equation it follows
that 0 = £&~(PA+ A'P + PRP + C'C)¢ = £€~C'C¢ so that C¢ = 0. Taking this into
account, again from the Riccati equation one obtains 0 = (PA+A'P+PRP+C'C)¢ =
PA¢ so that A¢ € Ker[P). Hence it has been proved that £ € Ker[P] = ¢ € Ker[C)|
and A¢ € Ker[P)]. By repeating again this argument for A one obtains A2¢ € Ker[P)
and £ € Ker[C 4] so that, in conclusion

Ker[P] C:= Ker[C] N Ker[CA]---NKer[CA™ '] = X,

It is now proved that assumptions a),b) imply condition b) of Lemma C.3. Assume, by
contradiction, that the Hamiltonian matrix Z associated with the Riccati equation has

an eigenvalue A = jw (on the imaginary axis), i.e. Zz = jwsz, with z := [z~ y™~]™ # 0.
Hence,

Az + Ry = jwzx (C.15)

—Qx — Ay = jwy (C.16)

where Q = C’C. Now add to the first equation, premultiplied by y™~, the second,
premultiplied by ™. It follows

jwE~y+y~z)—y Az + 2~ Ay =y Ry — 2~ Qzx (C.17)

The left hand side is a purely imaginary number, whereas the right hand side is real.
Hence, both sides must be equal to zero. In particular, being @ > 0 and R < 0, it
follows that Qz = 0 and Ry = 0, which in turn imply that Cz = 0 and B’y = 0.
These last equations, together with eqs. (C.15)-{C.17) entail

Az = jwz (C.18)
Cz=0 (C.19)
Aly = —jwy (C.20)
B'y=0 (C.21)
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In conclusion, since either z or y is different from zero, the above egs. (C.18)-(C.19)
violate either assumption a) (recall Lemma D.1) if z # 0 or the stabilizability as-
sumption b) (recall Lemma D.4) if y # 0. Assumptions a)-c¢} of Lemma C.3 are so
verified. Such lemma assures the existence of a real and symmetric solution P, such
that A + RP; is stable. Obviously, P; is a solution of the Lyapunov equation (in the
unknown P)

0=PA+A'P+Q+ P,RP,

which can be also rewritten as
0=P(A+ RP,)+ (A+ RP;)’P — P.RP; + Q

This is a Lyapunov equation whose coefficient matrix A+ RP; is stable and the known
term Q — P, RP; is positive semidefinite. Thanks to Lemma C.1 this equation admits
a unique solution, P;, which is positive semidefinite.

Conversely, assume that there exists a real, symmetric and stabilizing solution P,
of the Riccati equation. Necessity of condition b) is then obvious. Now suppose by
contradiction that condition a) does not hold, i.e. Az = jwz,Cz = 0 and = # 0.
Hence Zz = jwz where z := [z’ 0] # 0 and

A -BB
Z:= [ —c'c A ]

Hence, the Hamiltonian matrix Z has an eigenvalue on the imaginary axis, so contra-
dicting the existence of a stabilizing solution of the Riccati equation. ]

Lemma C.5 Let A, B, C and D be four matrices with dimensions n X n, n X m,
p x n and p X m, respectively. Assume also that C'D =0, D'D = I and there exists
the symmetric and stabilizing solution Ps of the Riccati equation

0=PA+ A'P-PBB'P+C'C

Let Aec := A — BB'P; and Cy.:= C — DB’P, and define the three systems

G(S) = E(Acc, Ia ClC? O)
U(S) = E(Acca B7 Clc’ D)
U (s) == B(Ace, ~P{C'D*, C1e, DY)

where PJ is the Moore Penrose pseudo-inverse of Py, i.e. the matriz such that
P,PIP, = P, and PIP.P! = P;, and D" is a matriz such that

w10 Dt

Then the system with transfer function
F(s):=[ U(s) U*(s) |
1§ square, inner and

H(s) :=G~(s)F(s) =%(Ac,| B —PIC'D* ],P,,[0 0])
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Proof Preliminarily, observe that matrix D with the requested properties actually
exists since D'D = I. Systems U(s) and U~ (s) have the same dynamical matrix and
output transformation. Hence, a realization of F(s) is simply

A | B —PlC'D*
C.|D Dt

F(s) =

The system with transfer function F(s) is square since | D D4 I is square. Now let
7 be the state of the system with transfer function F'(s) and £ the state of the adjoint
system, namely of the system with transfer function

— Alcc | _C{c
F~(s) = B’ D’
-pt'cpt| DY

Consider the series connection F™~(s)F(s). By exploiting the fact that C{.Ci. =
C'C + P,BB'P; = —A' P, — P;A.. and the properties of matrices C, D and D+, it
follows

(€ — Pa) = —AL (€ — Pom) — (I — P.P1)C'D ¢y (C.22)
li = B'(§— Pn) + 1 (C.23)
ly = —DY'C(PI¢ — ) + by (C.24)

where ; and 1) are the inputs of F(s) whereas l; and Iy are the outputs of F™~(s).
Lemma C.4 entails that Ker[P;] C Ker[C] so that C(I — PIP,)8 = 0, if 8 € Ker[P;].
On the other hand, (I — PIP,)3 = 0, if 8 € Ker[P;]*. In conclusion C({ — PIP,)3 =
0, V8. Hence, egs. (C.22)-(C.24) can be rewritten as

(6 - Psn) = _A,cc(§ - Psn)
ly = B'(€ — Psn) + 91
lo = ~D*'CP}(¢ — Pn) + ¥

These equations show that the transfer function from [y] ¥4]’ to [I1 15)', 1.e. F~(s)F(s),
is the identity. Hence, F(s) is inner.

Let now ¥ be the state of a realization of G™(s). A realization of G™(s)F(s) is
given by

)= —Al Y- Cv

1 = Acel) + By — PIC' Dy
v = Cien+ Dy + DH ey
o=1

where v and o are the input and output of G™(s), respectively. It is easy to check
that this realization is equivalent to

(19 - Pg) = _A::c(ﬂ — Psn)
77 = Accn + B'(/)l - PSTC,D‘L'(/Q
o= (80— Psm)+ Psn
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so that a possible realization of G™(s)F(s) is

A.|B —PiC'D*
P |0 0

G™(s)F(s) =

as claimed in the statement. O

Lemma C.6 Let A and C be matrices with dimensions n X n and p X n respectively
and assume the pair (— A, C) is detectable. Then the unique symmetric solution of

CP=0
P>0
AP+ PA' <0

is the trivial solution P = 0.

Proof By contradiction, suppose P = P’ = 0 is a solution. With no loss of generality,
one can assume that

o P10 o A1 AQ o
P[o 0],,4_{143 A4],c_[cl Gy |

with P; > 0. Actually, matrix P can be put in above form by means of a suitable

orthogonal transformation. Then, CP = 0 implies C; = 0 and AP + PA’ <0 yields

AP+ PlAll PlAl3 <0
A3P1 0 -

so that A3 = 0 and A, P, + P; A} < 0. Finally, the detectability of the pair

ao=(| " ] e e)

entails that matrix —A; is stable. In this case, all possible solutions of the inequality
AP+ PLAL <0

are such that —P; > 0 proving thus that P, > 0 is an impossibility. The final
conclusion is that the trivial solution P = 0 is unique. O
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Appendix D

Structural Properties

This section is devoted to the properties of reachability, observability, stabilizability
and detectability of a linear time invariant continuous time n-dimensional system
Y(A, B,C, D). All the material presented here can be found in any text of system
theory, see, e.g., the book by Kailath [29].

Controllability and reconstructability will not be treated in the present context
since they enjoy the same properties as reachability and observability, respectively.

In the forthcoming lemmas, whose proofs are easily available in specialized texts,
the basic characterizations of the above properties will be provided.

Preliminarily, define the matrices P (s), Pg(s), K, and K, as

Pc(s):=[515A] , Pp(s)=[sI-A B]

Ko:=[C AC - (A7 'C"]
K,.=[ B AB ... A™'B]

Lemma D.1 (Observability) System ¥ or, equivalently, the pair (A,C), is observ-
able if and only if the following equivalent conditions hold :

a) PBH test :
rank[Pe(s)]=n, Vs
The set of eigenvalues of the unobservable part of (A, C) coincides with the set
of values of s in correspondence of which matriz Po(s) looses rank.

b} Kalman test :
rank[K,] = n

¢) Wonham test : Given an arbitrary symmetric set A of n complex number, there
exists a matriz L such that the spectrum of A+ LC coincides with A

Lemma D.2 (Detectability) System X or, equivalently, the pair (A, C) is detectable
if and only if the following equivalent conditions hold :

a) PBH test :
rank[Pc(s)] =n, Re(s) >0
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b) Kalman test : The unobservable part of the system is stable.

¢) Wonham test : There ezists o matriz L such that A+ LC is stable.

Lemma D.3 (Reachability) System X or, equivalently, the pair (A, B) is reachable
if and only if the following equivalent conditions hold :

a) PBH test :
rank[Pg(s)]=n, Vs
The set of eigenvalues of the unreachable part of (A, B) coincides with the set

of values of s in correspondence of which matriz Pg(s) looses rank.

b) Kalman test :
rank[K,] =n

c) Wonham test : Given an arbitrary symmetric set A of n complex number, there
erists a matrix K such that the spectrum of A+ BK coincides with A

Lemma D.4 (Stabilizability) System ¥ or, equivalently, the pair (A, B) is stabiliz-
able if and only if the following equivalent conditions hold :

a) PBH test :
rank[Pg(s)] =n, Re(s)>0

b) Kalman test : The unreachable part of the system is stable.

c) Wonham test : There exists a matriz K such that A+ BK is stable.

At the light of what said in Section 2.5 for the zeros of ¥, one can now stress that %
is reachable (resp. observable) if and only if it does not possess input (resp. output)
decoupling zeros, and, analogously, system ¥ is stabilizable (resp. detectable) if and
only if it does not possess input (resp. output) decoupling zeros in the closed right
half plane.



Appendix E

The Standard 2-Block
Scheme

The material presented in this appendix is largely taken from the paper by Doyle et
al. [17]. However, the proof of Lemma E.3 is partially original.

Lemma E.1 Consider the systems P(s) and P(s) :== P'(s), where

A| BT B
P(s):=| C1| D1 D12
C2 | D1 Do

These two systems are connected in a feedback configuration to K(s) and K(s), re-
spectively, according to the block schemes of fig. E.1. Correspondingly, let T(a,b; s)
denote the transfer function from the generic input b to the generic output a. Then,
given K(s) and letting K(s) := K'(s) it follows T(%,1;s) = T'(z,w;s). Conversely,
given K(s) and letting K(s) := k’(s), it follows T(z,w;s) = T'(2,w;8). Moreover,
the eigenvalues of the two systems in fig. E.1 coincide.

Proof Let P;(s), i = j = 1,2, be the four transfer functions of P(s). It re-
sults T(2,35) = Ply(s) + Py ()R (5)1 — Pho(s)K ()] 1 PLy(s). T R(s) = K'(s)
it follows that T(2,w;s) = T'(z,w;s). Conversely, it results T(z,w;s) = P11(s) +
Pio(s)K(s)[I — Pay(s)K(s)] Py (s). If K(s) = K'(s) it follows that T(z,w;s) =
T'(2,10; 8).

w ~

z w
u P(s) j| Y 4 [
K(s) K(s)

(a) (b)
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Figure E.1: A feedback system and its transpose
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&
Nl

P(s)

]

81
]

K(s) [—

Figure E.2: A feedback system with full information

F |G
H\|\FE
be a controller such that the system of fig. E.1(a) is well defined, i.e. det[I — EDas]
is nonzero. It is easy to check that the dynamical matrix of the system of fig. E.1{(a)

is

A _ [ A+Bi(I-EDy)EC By(I — EDgp)™'H
| G[I + Dyo(I — EDg) 'E|Cy F +GDayo(I — EDy) 'H

whereas that of system of fig. E.1(b) where K(s) = K'(s) is

Now, let

K(s)=

A A"+ CYWI - E'Dyy) " 1E'B), CH(I - E'D}y)~ 16’
©7 | H'lI+ Djy(I - E' D’ ) "'E'|By  F'+ H'Djy(I — E'Dijy) ™G
Recalling Lemma B.9, it is easy to verify that A) = A, so that the two systems have
the same eigenvalues.

O
Lemma E.2 Consider the system

connected in feedback configuration with K(s) according to the block-scheme of fig
E.2. Moreover, consider system

connected in feedback configuration with K (s) as shown in fig. E.3. Finally suppose
that matriz A — B1Cs is stable. Then,

i) Given K(s) and letting K (s) := K(s)[Cy I] it follows
i1) K(s) stabilizes

P(s) if and only if K(s) stabilizes P(s)
i2) T(2,w;s) =T(Z,w;s)
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e
>

P(s)

[<3)

<>

K(s)

Figure E.3: A feedback system with partial information

i) Given K(s) and defining K(s) through the block-scheme of fig. E.4 where

A-BCy | Bi By

0 0

K,(s) =
() I 0 0
o, |1 o0

it follows

ii1) K(s) stabilizes P(s) if and only if K(s) stabilizes P(s)

12) T(2,; s) = T(z,w; s)
Proof Point i) Let

K(s) =

Q> D>>

%

Then, by keeping in mind fig. E.3 and the definition of P(s) it follows

A+BQDCQ BQC B, —l—BgD
T(z,w;s) = BCs A B
Cy+ D1;DCy  DypC ’ DysD

while K (s) = K(s)[C, I] implies

BC, B
K(s) = —2
DCy, D

Q) :]:n

It is easy to see (for instance by inspecting the state equations of the relevant sys-
tems with fig. E.2 and E.3 in mind) that the state representations of T'(%,; s) and
T(z,w; s) are equal, so that point i) is proved.

Point i) A state space representation of T'(2,0;s) in fig. E.3 is sought, when
K (s) is built according to fig. E.4. Hence, let &, /i and x, be the state variables of
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Ky(s)

[33

_j
_|zv Ny

Figure E.4: A controller structure for the partial information case

K(s)

Py(s)

Q(s)

Figure E.5: A feedback system

P(s), K(s) and K,(s), respectively. A state description of T'(Z,; s) is then given by

R T = Ai+ Biw+ Byi
P(S) = 2 = Cii+ Dot
g = Coz +w
. Ty = (A—BiCo)x, + Big+ Bat
K‘U(S) - { nv = —02_'[7] + g
7 ._ TS 4/1 + Blmv + B_277v
K(S) T { I— C/L + DlilTv + D27]v

Letting ¢ := z, — & it results ¢ = (A — B;Cy)e, which is by assumption a stable
system. Then, in order to evaluate the stability of system of fig. E.3 and to compute
the transfer function T'(Z,w;s) one can, without loss of generality, put ¢ = 0, i.e.
Z, = & in the relevant equations. It follows

A4 _Bng BQ_C’ ' By +‘BQD2
T(2,40;8) = By A By
C1 + D12D1 D12C | Dy2Ds

On the other hand, it is simple to verify that the feedback system of fig. E.2 is
described by the very same equations. Hence Point ii) immediately follows. O

Lemma E.3 Let v be a positive scalar and assume that there exists the symmeltric,
positive semidefinite solution P, of the Riccati equation (in the unknown P)

0= PA.+ AP+ P(v 2B,B] — BaB,)P + C1.Ch. (E.1)

that is such that
Age = Ao+ (v 2B1 B} — ByB}) Py (E.2)
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is stable. Further, consider the block-scheme of fig. E.5 where

A.— ByByPo | Bi By

Pq(S) = Clc — DlgBépoo 0 D12
—v2B|Py | I O
A, | B
Q(s) == ﬂf" :
Cq Dq
with
D}yCi. =0 (E.3)
DioDyy =1 (E.4)

and T(z,w;s) := X(A,, B,,C,, D,) is the transfer function from w to z. Then, A, is
stable and ||T(z,w; s)||leo < v if and only if Ay is stable and ||Q(s)|loo < 7.

Proof Sufficiency Let A, be stable and ||Q(s)]|lec < 7. The system in fig. E.5 with
transfer function T'(z,w; s) is described by

AZ BZ
T(z,w;s) =
C. | D:
where
_ [ Ac = Ba(By +77?DyB}) P B2C,y
A= [ —7 2B, B P 4q ()
B, = [ Bi+ BaDq ] (E.6)
Bq
C.:=[ Cic = Dia(By + 7 2DgBj)Ps  D15Cy | (E.7)
D. := DizD, (E8)

Since ||Q(8)lleo < 7, it results 6(D,) < «. Then, by recalling that A, is stable, Theo-
rem 2.13, applied to system X(Ay, By, Cy, D) entails that there exists the symmetric,
positive semidefinite solution S., of the Riccati equation (in the unknown S)

0= SAg + ALS + SByA1,B,,S + C Ay, C (E.9)
where
Aig = (VI -=D)Dg) ", Ayg:=(I—~2D,D})™" (E.10)
and
Ay == A, + B,ADC, (E.11)
Therefore, matrix :
Ag = Ag+ ByA1(D,Cy + B} Soo) (E.12)

is stable. From the definition of D, (eq. (E.8)) and eq. (E.4) it follows that

a(D.) < v (E.13)
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which is a necessary condition for |T(z,w; 8)||ec < . It is now shown that

P. 0
Vw'_{ 0 Soo}

is a symmetric and positive semidefinite solution of the Riccati equation (in the un-
known V)

0=VA,+ AV +VB,A,BV +C.A,,C, (E.14)
where
A= (I -D.D.)", Ag,:=(I—~y7°D,D})™" (E.15)
and
A=A, + B.AD.C, (E.16)

In fact, preliminarily observe that the right hand side of the Riccati equation (E.14)
can be rewritten (if egs.(E.15),(E.16) and Lemma B.9 are taken into account) as

VA, +AV+(VB,+C.D,)A,(VB,+C.D,) +C.C, :=

_ | (V) fr2(V)
=) ‘“[fm(V) Fn(V)

In view of egs. (E.5)-(E.8) it follows

v 4 — | PooAc— PoB2BiPoc =y 2P ByDBiPoe  PoBsC,
collz ~y28 BB, Ps, Sl

and, by recalling eqs. (E.3),(E.4),

—2 -1
! _ Y PooBlAlq
VooB, +C.D, = [ SwB, +C.D, (B.17)
C 1 Cz2
c'c,=|
‘ |: ,,z2 Cis }
where
Ca1 := C1,Cic + PssBaByPoo + ¥ *PsB1D, Dy Bi Ps +
+v7?Poo By Dy B{ Po, + 7> P B1.D, By P
Cez i= —PooByCq — 7 *Po B1DC,y
Cz3 = C;Cq
Thanks to egs. (E.4),(E.8),(E.10) and (E.15) it is
Ay, = A1q (E18)

so that

fll(Voo) = PooAc + A/cpoo - Poo(BQBé - 772B1B1)P00 +
+C.C1. =0
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since matrix P, is a solution of eq. (E.1). By direct substitution one finds f12(Voo) =
0. Finally,

f22(Vio) = Sec Ag + ASoc + (Seo By + Cy D) Ay -
(SeoBq + CyDy) + CC,

By recalling Lemma B.9 and egs. (E.10),(E.11) it is easy to check that foo(Vi)
coincides with the right hand side of eq. (E.9) and is therefore zero.
Now, let

A: = A + B AL(DC: + BlVi)
A.— ByB) Py, +~v72B B} Py, e
0 Ag + BgA1:(BSoo + Dy Cy)

where ® denotes a matrix of no interest in this context. In view of egs. (E.2),(E.12)
and (E.18), the conclusion is drawn that the eigenvalues of A, are those of A.. and
Ag. The solution Vi, of eq. (E.14) is therefore the stabilizing one since matrices

A, and A, are stable. Thus, by recalling eq. (E.13), it can be said that, thanks to
Theorem 2.14, || T(z, w; s)||eo < v and A, is stable.

Necessity Assume that ||T(z, w;s)||e < v and A, is stable. It has to be proved
that A is stable and ||Q(s)|lc < v. To this aim, consider the Hamiltonian matrix

7 A, B.Ay. B,
T —ClaC. A
and the relevant Riccati equation (in the unknown V)
0=VA, + A V+VB,A,BV +C.A;.C. (E.19)

In view of egs. (E.15) and (E.16) matrix Z, is associated with system T'(z,w;s) =
Y(A;, B,,C., D,) defined by egs. (E.5)-(E.8). By taking into account the equations
(E.3),(E.4),(E.1),(E.10) and (E.11), it will be now verified that, chosen

I 0 Pe O
\1/.:[_9 I],Q.:[ ° 0}

it is WZ, 01 = Z,, where

b, Lo Dy b,
. 10 A, @5 ByAyB,
Z, = 0 0 B, 0 (E.20)
0 —CrAC, @ -4,
The explicit expressions of the matrices ®;,i = 1,---,7 appearing in Z, are not given

since of no interest in the subsequent discussion. In order to verify eq. (E.20) observe
that by recalling egs. (E.15),(E.16) and Lemma B.9, it is

\IJZZ\I/_I — Cll Cl? :|
[ Ca1 —Ciy
where
Cll = Az + BzAlz(DlzCz + B/ZQ) ’ C12 = BZAlzB;
Co1:=-QA, — A0 — (OB, + C.D,)A1,(QB, + C.D,Y — C.C,
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Further, by taking into account egs. (E.3)-(E.8) and (E.10), one has

QBZ + C,Dz _ [ 7_2P00B1A1_q1 :|

LD,

so that, thanks to eq. (E.18),

o= ®, @,
T 0 Ag+ BgADLC,

In view of egs. (E.11) and (E.20) it follows that (11 coincides with the submatrix of
Z, made up of the elements belonging to the first two blocks of rows and columns.
In a similar way, thanks to egs. (E.18) and (E.6),

| ®3 Dy
G2 = ®; ByAB,

which coincides with the submatrix of Z, made up of the elements belonging to the
first two blocks of rows and the last two blocks of columns. Finally, one obtains,

g 0
czl—“g&]

with

91 := ~[PocAc + APoo — Poo(B2B) =7 BiB}) Poc + O Cic]
92 = —C;Cq - CéDquqD;Cq

By recalling eq. (E.1) it results g3 = 0, whereas from Lemma B.9 it follows g, =
—C(’IquCq. Therefore, (21 coincides with the submatrix of Zz made up of the elements
belonging to the last two blocks of rows and the first two blocks of colummns.

In conclusion eq. (E.20) has been proved. Now notice that the eigenvalues of Z,
are those of the matrices &1, 5 and

7 .= Aq Bququ’;
T ~ChAgCy —A4

Condition (E.13) is satisfied since |T'(z, w; s)||oo < -y and matrix A, is stable so that
from Theorem 2.13 it follows that the eigenvalues of Z, do not lie on the imaginary
axis. Thus also the eigenvalues of Z, do not have zero real part and the same can be
said of the eigenvalues of Z;, thanks to the above discussion.

Since the resulting system is stable (A, is stable), the pair (A, By) is stabilizable
and such is the pair (A,, (BquqB(’])l/?) too. In fact, first recall that in view of eq.
(E.11) the stabilizability of the pair (4,, B,) implies that also the pair (44, B,) is such
(state feedback does not affect this property). Second, notice that if (ByA14B})'/?z =
0, then also ByA1,Bjx = 0 and Byz = 0 (Ay, is positive definite), so that, in view of
the PBH test (Lemma D.4), should the pair (4,, (ByA14B;)1/?) not be stabilizable

then also the pair (Ag, B,) would not be such.

Therefore Lemma C.3 can be applied to system X(A,, By, Cq, D) yielding the
existence of the symmetric, positive semidefinite and stabilizing solution S,, of the
Riccati equation (in the unknown S)

0=SA,+ AlS + SBA1,B,S + C) Mg, C, (E.21)
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P(s)

K(s)

Figure E.6: A feedback system

The same lemma can be applied to eq. (E.19) since: () the pair (4., B,) is stabilizable
(indeed, matrix A, is stable); (ii) the eigenvalues of matrix Z, do not have zero real
part; (¢47) matrix CLA,,C, is symmetric; ({v) matrix B, A1, B., is positive semidefinite
(A1, > 0 thanks to Lemma B.11 and a(D,) < v (|T(2,w; s)|lcc < ). Therefore, the
stabilizing solution of eq. (E.19), which is unique in view of Lemma C.3, is given (see
the sufficiency part of the proof of the lemma) by

P 0
S

Matrix V,,, is positive semidefinite (see Theorem 2.13), hence also S is such.
Finally, Theorem 2.14 applied to system Q(s) (notice that eqs. (E.4) and (E.8)

imply o(D,) = 3(D,)) and eq. (E.21) lead to the desired conclusion, namely A4,

stable and ||Q(s)]|c0 < 7. O

Lemma E.4 Consider the system

Al B B
P(S) = Cl 0 D12
CQ Dgl 0

with DigD12 = I and, for a given v > 0, assume that there exists the symmetric, pos-

itive semidefinite and stabilizing solution P, of the Riccati equation (in the unknoun
P)

0=PA.+ AP+ P(y 2B,B} — B,B})P + C} .Che (E.22)
that is such that
Ace := Ac+ (v 2B1B| — ByBb) Py, (E.23)
is stable, where
AC = A - .BQD/126’17 Clc = (I - D12D/12)Cl (E24)

Further, consider the block-scheme in fig. E.6 and E.7, where
A+’y_2BlB’1Poo | Bl Bg

P(s) = B)P., + D1,Ch 0 I

Cy +’772D21B£P00 Doy 0

and let T(z,w;s) and T(q,r;s) be the transfer functions from w to z and from r to
q, respectively. Then, a controller K(s) is admissible in RHy, for P(s) and such that
IT(z,w;8)||oo < v if and only if it is admissible in RHy, for Pi(s) and such that
IT(g, 75 8)lloo < -
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Pq(s) (I
q ] T
L Py(s) |
Y U
N K(S) P |
- Q(s)

Figure E.8: A second auxiliary feedback system

Proof Consider the block-scheme in fig. E.8 where
A; — B3B) Peo | By Bg

Pq(s) = Clc - DnBéPoo 0 D12
—y2B!Py | I 0

and let x4 and z; be the state variables of P,(s) and Py(s), respectively. It is easy to
check that, by letting € := z, — z, it results

&= AccE
&4 = Azy + Biwg + Bou — Ba(By P + D15Ch)e
zq = C124 + Digu — Dy2(B5Po + D1,Ch)e

y = Coy + Doywy — (C2 + 7 2Da1 B Poo)e

Being matrix A.. stable, the system in fig. E.8 is internally stable if and only if the
system in fig. E.6 is such, since the equations for system P(s) coincide with the last
ones with € = 0. For the same reason T'(z,w;s) = T(zq, wq; s), where T'(2zq, wq; s) is
the transfer function from w, to z, of the system in fig. E.8.

Thus the lemma is proved in view of Lemma E.3. Indeed, the system in fig. E.8
is equal to the one depicted in fig. E.5 if in the former figure the system with input r
and output ¢ is denoted by Q(s). Further, the assumptions required by Lemma E.3
are satisfied. O



Appendix F

Loop Shifting

This appendix presents some results which are (mainly) exploited in Remark 5.24.
In particular, Lemmas F.1 and F.2 are almost standard in matrix algebra, while the
remaining material has been taken from the paper by Parrott [46].

Lemma F.1 Let A be a m x n dimensional matriz with ||A|| < 1. Then
AY(I — AAY2 = (1 — A~ A2 4~

Proof Preliminarily observe that both the matrices I — AA™ and I — A™A have
real square roots since they are positive semidefinite thanks to the assumption on
||A|l| which implies the nonnegativity of their eigenvalues. In fact, if, for instance,
(I — AA™)x = Az with A < 0 and » # 0, then 2~ AA~x = 2~2(1 — A\) > 2™~z which
implies ||A]| > 1.

The proof of the lemma is carried out by assuming m > n, the reverse case being
dealt with by modifying the subsequent discussion in an obvious way. By recalling
Remark 2.11 it is possible to write A = U1AV™ with Uy = U[I 0], U~U =UU™ =1,
UrU, =1, V™V =VV™ =TI and A diagonal and real. Therefore,

I—AA=T-VAUYULAV™ =T - VAV~ =V(I - A> )V~ = VD>V~
where D? := I — A? is diagonal. Then
(I — A~A)Y2A~ = VDV~VAUy = VDAU] = VADUY

having exploited the fact that VD*V~ = VDV~VDV™ (first equality sign) and the
fact that the product of two diagonal matrices commutes (last equality sign). Being
Uy =[10)U™ it follows

(I-A~A)2A~=VA[D 0]U~ (F.1)
On the other hand, by again exploiting the relation between U and U, it is

I—AA~ =1 -U, AV VAUY
=1-U, AU

:I—U[é]AZ[I 0o~
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2
—r-u| 4 4]

o4 e

0 I
so that
A~(I = AAMY2 = VAUTU [ g ? ] U~
~ D 0 ],,~
=VA[I O]UU[O I]U
D 0],
N 0][0 I]U
=VA[D 0]|U~ (F.2)
From egs. (F.1),(F.2) the lemma follows. a

Lemma F.2 Let A be a m x n dimensional matriz with rank[A] = r. Further, let
Ap = (A~A)Y? and Ap == (AA™~)Y/2. Then there exists a m x n dimensional matriz
T such that

a) A= TAR = ALT.
b) ART~T = Ag.
¢) T~"T<1.

Proof Consider the singular value decomposition (see Section 2.6) of A, namely
A=USV"™ with

U=[U Us] . s;:[D 0]

0 0

where U; is m x r dimensional and D is r x r dimensional. Define

D 0 D 0
se=|0 o] s=]0 o]

where Sg and Sy, are square and n x n and m x m dimensional, respectively, so that
5% = §'S and S? = SS’. Then it is now proved that

Ap=VSrV™, AL =US U™, T:[ U, O]VN (F.3)
verify the theorem. First observe that

AR AR = VSRV~VSgV™
=VSEV~
=VSssv~
=VSU~USV~ = A~A
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Thus Ag is a square root of A~ A. Second, notice that
ATAL, =US, U~USL U™
=USiU~
=USS'U~
=USV~VS'U™~ = AA™

Thus, Ay, is a square root of AA™.
Point o) From eq. (F.3) it follows that

TArp=[ U1 0]V VSRV~
— [0, 0]8aV™
=[U Uy |]SV"=A4
and
ALT=US .U~ [Uh 0]VY=USL [ é 8
Point b) Tt is

ART™T = VSRVNV[ o ] [0, 0]V~

I 0 ~
_vsa[1 0]v
=VSrV™ = Ap

Point ¢) It is

T =V UIN}[U1 0]V~

Lemma F.3 Consider the real matriz

e[ 9]

where the submatrices P, QQ and R satisfy the equations
PP+ RR=01
PP +QQ =o’1
with a a nonnegative scalar. Then

i) .
min [ M(Z)] = o

]VN:A

339
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i) Letting Z° := —TrP'Tq, where Tr and T are matrices such that the equalities
R=Tr(RR)'? and Q = (QQ")Y/*Tq hold, it is |M(Z°)|| = a.

Proof Preliminarily observe that matrices Tr and T3 exist thanks to Lemma F.2.
If & = 0, then, necessarily, P =0, Q =0, R =0, hence Z° = 0 and ||M(Z°)|| = 0.
If « >0,set A:=P/a, B:=Q/a, C:= R/a, so that

AA+CC=1 (F.4)
AA'+ BB =1 (F.5)
Moreover, for any real D set
A B
vy [4 2]

By recalling the definition of the norm of a matrix and the relevant properties (see
Section 2.7), it follows, for each D,

(& ¢ ] AA+C'C A'B+CD [«
VD)= max B'A+D'C BB+DD ||y

HE 18

sy AL OO |47
SEET TP Clle

Analogously,
IO =IND)E 21| g |1

Hence the conclusion is drawn that

woraml[ ][ e e

It is now shown that, chosen
D° = ToATg (F.7)

where Te and Ty are matrices (whose existence is guaranteed by Lemma F.2) such
that

C =T (C'C)Y/? (F.8)
B = (BB)'?Tg (F.9)
it is || N(D?)|| <1, so that, in view of eq. (F.6), | N(D?)|| = 1 and D° is optimal.

First notice that from eqgs. (F.4),(F.5), (F.7)-(F.9), Lemmas F.1, F.2 (points a)
and b)), it follows

C'D° = —(C'C)V*TLToA'Tp
(Cl ) /2A/
—(I- AA)WAT
—A'(I - AANY?Tg
—A(BB\?Tg = —A'B
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Therefore, C’D° + A’B = 0 and, by recalling eq. (F.4), one obtains

I 0

NI(DO)N(DO): 0 B'B—}—(DO)'DO

However, by exploiting Lemma F.2 (points a) and ¢)), egs. (F.5), (F.7) it is
B'B+ (D°)D° = Ty(BB')Y/?(BB')/?Tg + TLATLTo A' T
< TE;BB/TB + TéAA/TB
< Ty(BB' + AA")Tg
<TgTg<I
This implies that the maximum eigenvalue of B’B + (D°) D° is not greater than
1: consequently the maximum eigenvalue of N'(D°)N(D°) is equal to 1. Therefore,
IN(D°)|| = 1.
Now observe that for all D, letting Z := aD, it is aN(D) = M(aD) = M(Z), so

that
min [|M(2)]) = min | M(aD)] = amin | N(D)]

and
Z° = aD° (F.10)

On the other side, R = aC' = aT(C'C)Y/? = To(R'R)'/? and, analogously, Q =
aB = o(BB")'/*Tg = (QQ")*/?*Tp which imply Te = Tx and T = Tg. From egs.
(F.10) and (F.7) and the definition of A the expression of Z¢ follows. m

Theorem F.1 (Parrott’s theorem) Let B, C, D, P, X be real matrices such that

[ s e - LE T

i) There exists X° such that a = ||[N(X°)|| = miny |N(X)||.
i) If||P| <o, X°:=-D— B(a2l — P'P)~*P'C.

Proof Preliminarily, notice that, in view of the definition of «, the matrices

R:= 5
= | (a2I - P'P - B'B)!/?
Q:=[C (a*I-PP -CC)Y? ]

are real.
Point i) Letting
| 4 Z
Z = [ Zs 7 } (F.11)

with

define the matrix

P
M(Z) = { by }

Matrix M(Z) satisfies the assumptions of Lemma F.3 since

P'P+ RR=0d1 (F.13)
PP+ QQ = o*I (F.14)
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so that there exists a matrix

o[z z
z._[zglﬁ]

such that | M(Z°)| = c.
Note that for any matrix Z of the form (F.11),(F.12) it is | N(Z, — D)|| < |M(Z)].
Hence, by recalling that || N(X)|| > «, one obtains

a<|[N(Z7 - D)| < |M(Z°)]| = «

which proves point 7).

Point i) Preliminarily observe that, thanks to the assumption on the norm of P,
matrix o2] — P'P is nonsingular, so that X° is well defined.

By exploiting Lemma F.3 one has

Z =1 o]zo[é]
—[1 o]TRP'TQ[H
=[1 O]TRP/(QQ/)l/ZQ[é] (F.15)

In writing down the last part of eq. (F.15) the nonsingularity of matrix (QQ')'/? =

(I — PP")Y/2 (|| P|| < a) and the equality @ = (QQ')/?Tg have been taken into
account. In view of egs. (F.13),(F.14) and Lemma F.1, from eq. (F.15) it follows
0 | TrP' (a1 — PP 2C
=—[1 0]Tgr(c®I-P'P)~?PC
0 ]TR (R R) V2p'o
=—[1 O]R(RR'PC
= -B(a*I - P P) 1P C

By recalling that ||N(Z?)|| = a, point i) follows. w



Appendix G

Worst Case Analysis

This appendix makes basically reference to the paper by Doyle et al. [17].
Lemma G.1 Consider the system

& = Ax + Bg

z=Cx
with A stable, 2(0) = zo and ||G(s)||c < 7y, where G(s) := C(sI — A)~'B. Then

sup [[[2]I3 —¥*llall3] = 26Qo0o
q€ERH

where Qo 18 the symmetric, positive semidefinite and stabilizing solution of the Riccati
equation (in the unknown @)

0=QA+AQ+~y2QBB'Q+C'C
that is such that the matriv A + v 2BB' Qo is stable.
Proof The existence of the solution of the Riccati equation is guaranteed by the
assumption ||G{s)|lec < v (Theorem 2.13). Further, it is
i, / Y 2oy ' ’
T Qoo = ' A' Qoo + ¢ B' Qoo + ' Qoo Az + ' Qo Bg
= 2" (QuA+ A'Quo)z + ¢'B'Qooz + 2’ Qoo Bg
= 2 (C'C+ v ?QooBB Qo) + ¢ B' Qoo + ' Qo0 Bq
= —2'C'Cx — (¢ = 7' B'Quot) (va — 7' B'Qoo) + 7°¢'q
2+ 9%al? = +2llg =+ *B' Qoo

= —ll=]

Observe that x € RHy and z € RHy whenever q € RHs, since A is stable. Therefore,
by integrating over the interval [0, 00) the first and last terms of the this series of
equalities one obtains, for each ¢ € RHs,

12115 = 7?llall3 = 26Qo00 = 7*llg = 7 *B'Quozl3 < 2(Qo00

The choice ¢ = v 2B'Q..r is consistent with the above derivation since @ = (A +
v 2BB'Qu )z is a stable system by assumption. With this choice it is || 2|3 —~%(/q||3 =
zHQo0®0, the maximum possible value. a
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In the following lemma reference is made to the stable (II;) and antistable (II,)
orthogonal projections which have been introduced in Definition 2.33.

Lemma G.2 Consider the system

= Az + Biq1 + Bago (G.1)
z2=Cx (G.2)

with A stable. Further, consider the subspace of RLo
Q:={lgt ¢':=q, @ € RHy , @ € RLy}
and the operator 2 : @ — RHs defined by
E: ¢ Eq:=IL[Gi(s)q1 + Ga(s)ge]
where, fori=1,2, Gi(s) := C(sI — A)~"'B;. Then, denoting with v a positive scalar,

sup IZqll2 <~ (G.3)

qeE
llgliz=1
if and only if the following two conditions hold:

i) There exists the symmetric, positive semidefinite and stabilizing solution Qo of
the Riccati equation (in the unknown Q)

0=QA+AQ+vy2QB:ByQ+C'C
that is such that the matriz A + v 2BaB,Qo is stable.

ii) 7s(QooLr) < %, where L, is the solution of the Lyapunov equation (in the
unknown L)
0=LA"+ AL+ BB} + BB,

Proof Observe that

sup ||Zgllz >  sup  |[Zqll2
q9€Q qeEQ
llglig=1 llgll2=1 , q3=0
> sup [[ILG2(s)gl|2
q2€RLy
llagllz=1

> sup [Ga(s)gellz = |G2(s)llo

92 €RHy

llgzllz=1
where the last equality sign follows from Theorem 2.12. If condition (G.3) holds, then
Theorem 2.13 proves the necessity of condition (7). Therefore, the proof is carried
out by showing that, under condition (¢}, condition (i) is necessary and sufficient for
condition (G.3) to hold.

Notice that, for any q € Q, it is

t]

0
q=1,q+1,q= [ M,q2 :| +IL.q

Having decomposed ¢ into two orthogonal terms implies

I=qll3 = 2*llql3 = I1Eal3 — v*IMsqall3 — | Taqli3 (G-4)
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q1

B
1, I
q+2 1/s j C }Z I,

LI —

1
Y

Figure G.1: The block-scheme representation of =

Thanks to the linearity of Z, condition (G.3) is equivalent to (also recall Remark 2.13)

=112

=q
B =1
0#q€Q llall3

which implies that, for each ¢ € Q, ¢ # 0, ||Zq||? — v?|l¢||3 < 0. Therefore, condition
(G.3) is violated if and only if

sup [|[Eqll3 —+*(lgll3] > 0
0#£g€Q

By taking into account eq. (G.4), condition {G.3) is violated if and only if

sup [||Zqll3 — +*|IMsqll3 — 7*IMagll3] >0 (G-5)
0#£¢g€Q

With reference to fig. G.1 (which supplies a representation of the operator = where
the input go has been decomposed into its stable and antistable component), recall
that, in the time domain, a signal belonging to RHj is zero for t > 0, whereas
a signal belonging to RH is zero for t < 0. Therefore, the value of the state of
system (G.1),(G.2) at time ¢ = 0 only depends on the inputs which belong to RHs
so that, given z(0) := xzg, the maximization of the first two terms in eq. (G.5) can
be performed by ignoring the antistable part of the inputs to system (G.1),(G.2), so
that

= sup [[lzll3 — +*[lg2lI3]

sup_[IZ4ll3 ~ +*IML.all3] .
q2 2

0#£qeQ

z(0)=zxo z(0)=xo
Therefore,
sup [|IZqll3 —+*ITsqll3 — 7*[Magll3] =
0Face 2(0)=zo
= sup  [ll213 = 7*)lell?] — dnf gl (G.6)
07 a2 € RH, z(0)=z¢ 2 z(0)=z¢

Observe that sup[M — N] = sup[M] —inf[N] whenever the choice of M is independent
of the choice of N. This fact has been exploited in writing down eq. (G.6).

Assume, for the moment being, that the pair (A,[B; Bs]) is reachable. Thanks
to Lemma G.1, the first term on the right hand side of eq. (G.6) equals z;Q o0,
while the second term equals, as it will be shown later on, —y?z{ L, 1xq (observe that
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L, > 0 since the pair (A4, [B; By]) is reachable, see Lemma C.1). Thus, eq. (G.6)
becomes
sup {[1Zq(l3 — v*ITsqll3 — 72 (I Tagll3] = 25(Qoo = ¥* Ly M)z (G.7)
9€Q z(0)=x¢
Therefore, condition (G.5) is verified if and only if there exists xo such that the right
hand side of eq. (G.7) is nonnegative. Hence, condition (G.3) is violated if and only
if there exists xg such that
20(Qoo — ¥ Ly )20 > 0

that is if and only if 75(QeoLr) > 72 (recall Lemma B.12).
The equality
inf {lql3 = 1L,z
L [

can be proved by making reference to the (classical) optimal control problem relative
to the system

T = Az + Bqg
z(r)=0, z(0)=z9, 7<0

0
Jr = / q'qdt

where 7 is a given parameter. The Hamilton-Jacobi theory leads to recognizing

and the performance index

0 -1
@(t) = Ble= [/ e”A”BB'e_A/vdv] zo, t<0
T
as an optimal control, so that, as 7 — —oo (recall eq. (2.21) and what has been said
just after) it is
¢°(t) = lim q7(t)

T——00
-1

0

— Ble At [ / e AVBBe™4 “dv] zo
—00

= B'e_A/tLr_lxo , t<0

Notice that the so obtained control belongs to RHj since A is stable. Finally,

0
inf [l | ewewa
€ 3 —00

z{0)=xz¢

1

0
zyL? { / e ABBe fdt} Lt
— 00
= xyL; xg
The reachability assumption of the pair (A, [B; Bs]) is now relaxed. Assume to

have already decomposed the system into the reachable and unreachable parts, so
that  := [z]. z},]’ and

o Ar Az o Blr B27‘ _—
A._[ ! Au],B.—[ v B ],c._[cr Cu ]
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where the pair (A,, [By, Ba,]) is reachable. Obviously, the states g to be considered
in eq. (G.6) are only those belonging to the set Sy := {z | z = [z}, 0]’ }, so that
condition (G.5) is satisfied (hence condition (G.3) is violated) if and only if there
exists xg € Sy corresponding to which it is

sup  [[l21Z = 7*llq2l2] 20 (G3)

— inf g3
0#¢2€ RH> RH}

z(0)=z¢ z(0)=z¢

Observe that the stabilizing solution @, of the Riccati equation is given the form

— QT‘ Qw
Qe = { o QJ

where @, is the symmetric, positive definite and stabilizing solution of the Riccati
equation (in the unknown V)

0=VA, + AV +~y VBBV +C.C,

As already found, the first term on the left hand side of eq. (G.8) equals z7,Qr%ro,
while, by again exploiting the previous discussion about the optimal control problem
(relative to the reachable part only), it is easy to find that the second term on the
left hand side of eq. (G.8) is given by —y~2a/ L x,q, where L., is the solution of

the Lyapunov equation (in the unknown W)
0=WA, + AW+ By,B, + Bo, B,

Therefore, condition (G.3) is violated if and only if r4(Q, L) > ~2. It is straightfor-
ward to check that, thanks to the peculiar structure of matrices A and [B; Bs], the
unique solution of the Lyapunov equation referred to in the statement of the theorem

18
Ly 0
LT‘{ 0 0]

so that 7,(Q, L) > +? is equivalent to the condition r,(QeoL,) > 2. O
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Appendix H

Convex Functions and Sets

The material included in this appendix is standard in convex optimization. It is
mainly based on books [37], [41] and [53]. However, to our present needs, it is impor-
tant to keep in mind that here all variables and functions are defined in some subset
of R™*™. In other terms, instead of vectors we work with n x m dimensional matrices.
All sets to be handled are assumed closed.

First, let us introduce the algebraic structure to be dealt with. The inner product
of two matrices X and Y belonging to R™*™ is defined as

< X,Y >:= trace[X'Y]

which induces the so called Frobenius norm, that is

I X||lF := /< X, X > = \/trace[X'X]

The geometric interpretation is clear. Matrix X € R™*™ may be thought as a point
in R™*™ whose distance to the origin is | X||r just defined.

Definition H.1 (Convex sets) A set Q in R™*™ is convez if V X1, X2 € Q the point
X =aXi+ (1 —-a)Xs € Q for every a € [0, 1]. O

In other words the line segment between any two points in a convex set is entirely
contained in the set. The empty set is, by definition, a convex set. Furthermore,
the above definition can be alternatively stated in terms of a number, say N > 2, of
feasible points. Actually, for X; € 2,i=1,2,---, N the convexity of {2 assures that

N
X=) &Xieq (H.1)

i=1
for all scalars §;, i = 1,2,---, N such that

N

&0, Y &=1 (H.2)

i=1

This fact puts in evidence a very interesting property of convex sets. Given a
bounded convex set {2 it is always possible to choose N (possibly infinite) points
X;€,i=1,2---, N such that all X € Q can be written as (H.1). The points X;
with this property are called extreme points of Q. A precise definition of this concept
is as follows.
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Definition H.2 (Extreme point) Let X be a point belonging to a convex set Q. It
is an extreme point of Q if there are no points X; # X in Q, i = 1,2,---, N such
that, (H.1) holds for some &1,&2,- -, &N satisfying (H.2). O

Two convex sets of particular interest are the convex polyhedron and the convex
cone. The first is defined as a convex set with a finite number of extreme points. The
latter is a convex set such that if X € Q then AX € Q for all A > 0. With a slight
abuse of notation, we also call a convex cone any set for which the above property
holds for all A > Ay with Ay > 0.

Definition H.3 (Convex hull) Let I" be a subset of R"*™. The convex hull of T
denoted co(T") is the smallest convex set containing T O

Tt is clear, from the above definition that 2 = co(Q2) whenever 2 is a convex set.
Furthermore, if 2 is a convex polyhedron then

Q=co{X;,, 1=12,---,N}

where X1, X5,---, X are all extreme points of Q. The set of all symmetric positive
definite matrices
Q:{XER"X” : X >0}

is a convex cone. Obviously, the same is true for the set of all symmetric negative
definite matrices.

Let A be a nonzero matrix in R**™ and let X, be an arbitrary matrix (point)
in R™*™. An hyperplane is the set of all points X € R™ ™ such that X — Xj is
orthogonal to A, or in more precise terms

0 =<AX—Xo>= trace[A'(X — X0)]

Defining the scalar ¢ := trace[A’ Xy an hyperplane can be characterized by all matrices
X € R™™™ such that
trace[A'X] = ¢

which puts in evidence that an hyperplane in R"*™ is nothing more than a linear
variety of dimension nm — 1. This concept is useful to get the following results valid
for closed convex sets, that is, for convex sets which contain all boundary points.

Lemma H.1 (Separating hyperplane) Let ) be a closed convexr set and consider
Xo € 2. There exists a matriz Ag and a scalar cg such that the hyperplane defined
by < Ao, X >= cp separates Xo from §2. That is, the following two conditions hold
simultaneously :

i) < Ag, Xo >< ¢
i) <Aop, X >>¢p, VX
Proof The proof comes from the definition of the new matrix
Yy := argmin {|| X — Xo||r : X € Q}
which enables us to get

Ao =Yy - Xo, cg:=< Yo — Xo,Ys >
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such that both conditions are simultaneously verified.
Point 1) Using the above matrix we have

< Ao, Xog> —cp=<Yy—Xg,Xo>— <Yy — Xp, Yo >
= —[Yo - XollF <0

where the last inequality follows from the fact that Yy # Xg.
Point ii) From the definition of matrix Yy we have

I1X = Xoll# 2 1Yo ~ Xoll: , ¥ X €@
However, for any X € Q given, the point AX + (1 — A)Yp € Q for all A € [0, 1] by a
consequence of the convexity of €). In this case, the above inequality reveals that

A
<Yy—Xog. X =Yy >>— <§> X — Yo%

holds. Using this inequality for A — 0 we finally obtain
<Yy—-X0, X-Yy;>>0, VXeQ
This inequality, together with

<Ay, X >—co=<Yy—Xo, X >—-<Yy—Xo, Yo >
=<Yy—Xo, X =Yy, >

conclude the proof of the theorem proposed. o

Lemma H.2 (Supporting hyperplane) Let Q be a closed conver set and consider
Xy in the boundary of Q. There exists a matriz Ay and a scalar co such that the
hyperplane < Ay, X >= ¢ supports Q at Xy. That is, the following two conditions
hold simultaneously :

i) < Ao, Xo >=cp
Z’L) <Ag, X >>¢p, VXeEQ

Lemma H.1 says that given a convex set and an exterior point then it is always
possible to determine an hyperplane which contains the point in one of its half spaces
while the convex set lays entirely in the other half space. Lemma H.2 generalizes this
result to cope with a point in the boundary of a closed convex set.

Let us now turns our attention to real valued functions defined in R™*™. A
function f(X) : R™™ — R is conlinuous if for each Xy € R"*™

Jim 0 = £(Xo)

All functions handled here are continuous. The gradient of a continuous function f(-)
at X = Xy is a n x m matrix, denoted V f(X;) and defined as

of
BXij

Vf(Xo)::{ (Xo) , iAl,Q,n',n;j:l,Q,‘--m}
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For functions of matrices, a simple way to calculate gradients is from the concept of
directional derivative. The directional derivative of a differentiable function f(-) at
X € R™™ in the direction Y € R"*™ ig

DI, Y) i iy LA ) =)

= < Vf(X),Y >
= trace[Vf(X)'Y]

In other words, given a function f(-), if for any matrix Y € R™*™ it is possible to
write
f(X +€Y) = f(X) + etrace[G(X) Y] + O(¢?) (H.3)

such that lim,_oO(e?)/e = 0 then f(-) is differentiable and an adequate choice of
directions leads to

VI(X) = G(X) (IL4)

Example H.1 Using the above result, it is simple to calculate the gradient of the function
f(X) := det[X] where X € R™™"™ and nonsingular. Indeed, elementary matrices properties
yield, for € € R arbitrarily small

det[X + €Y] = det[X] det [T+ eX Y]
= det[X] J] [1+ex (x7'Y)]
i=1
= det[X] (1 + etrace [X 'Y]) + O(¢?)
showing that Vf(X) = det[X](X’)™!. The same steps can be adopted to evaluate the

gradient of the function f(X) := log det[X] defined for all X € R™*" such that det[X] > 0.
Indeed, from the above we get

FX+eY) = f(X)+ ) log [1+eh (X7'Y)]

= f(X) + etrace [Xle] +0O(€%)
implying that Vf(X) = (X'). O

Remark H.1 Equation (H.4) must be applied with care. In some important cases, it
does not apply directly. To clarify its correct use, consider a function f(-) : & — R, where &
denotes the set of all n x n symmetric matrices. It is clear that this is a function of n(n+1)/2
independent variables. Assuming that (H.3) holds for ¥ = Y’ we observe that

trace[G(X)/Y] = zn: G(X)uY'“ +2 Zn: Zn: G(X)”KJ

i=1 j>i

which provides
Vf(X) = G(X) + G(X) ~ diag[G(X)]

For instance, the gradient matrix of the linear function f(X) := trace[R’X| defined for all
square matrix X € R™™ is Vf(X) = R. On the other hand, the gradient of the same
function defined in § is Vf(X) = R+ R — diag[R). O

Definition H.4 (Convex functions) A function f(-) € R defined in a convex set §2
is convez if V X1, Xo € Q and X = aXy + (1 — &) X3 there holds f(X) < af(X1) +
(1 —a)f(X2) for every « € [0, 1]. O
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There are several different but equivalent ways to test a function for convexity. Of
course each one depends on the previous informations we have for the function we are
work with. The next lemma provides some equivalent tests for twice differentiable
functions.

Lemma H.3 (Convexity) Let f(-) be a twice differentiable function, defined in a
convez set Q C R™*™. Assume that £ contains an interior point. The following are
equivalent :

i) f(-) is convex over Q.
i) fY)> f(X)+<VfX),Y -X>, VX, YeQ
tit) The second order variation

VAX,Y) = ﬁ(X—}— Y)
T e ¢ =0
is such that V(X,Y) >0 for all X € Q and ollY € R**™.

Dealing with optimal control problems, it is frequently necessary to handle non-
differentiable functions. The next lemma characterizes convexity in this important
case.

Lemma H.4 (Convexity) Let f(-) be a function, defined in a convez set @ C R™*™.
Assume that Q0 contains an interior point. The following are equivalent :

i) f(-) is convex over (1.

it) For each X € Q) there exits a matriz A(X) with finite norm such that

JN) > f(X)+ <AX),Y-X>, VY €Q.

iii) The epigraph of function f, namely

epi f:=={(X,7) : Xe@, f(X)<nv}
is a conver set.

Proof The equivalence between points ) and #i¢) follows immediately from the ob-
servation that f is convex over € if and only if function g(X,«) := f(X) —+ is convex
over ) X R.

i1) = i) Consider X; and X, two arbitrary matrices in Q. Define X = aX; +
(1-a)X, for a € [0, 1]. Setting ¥ = X; and Y = X5 we have
f(X1) = f(X)+ <AMX), Xy - X >
f(Xa) 2 f(X)+ < AX), Xo - X >

Multiplying the first inequality by «, the second by 1 — « and adding terms we get
af(X1)+ (1 - a)f(X2) = f(X)

which is the desired result.
i) = 1) Under the assumption that f is convex, from part i) the set epi f is
convex as well. Using Lemma H.2, there exists a supporting hyperplane to epi f in
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the boundary point (Xg,~y) where v9 = f(Xp) and X € . That is, there exist a
matrix Ag and a scalar Ag such that all (X, ) € epi f satisfy

<Ap, X —Xo >+/\0(’)’—’Y()) >0

We notice that the above inequality imposes Ag > 0. In fact, it is simple to check
that (Xo,v) € epi f provided v < 7o leading to Ao(y — 7o) < 0. As a consequence we
have

v > f(Xo)+ < —Ap Ao, X — X >

which turns out to be true for all (X,v) € epi f. Then, it is verified for the particular
point (X,v) with v = f(X) of epi f. Defining A(Xo) := —Ag/Ao, the proof is
concluded. O

The level set of a function f(-) defined in € is the set of all X €  such that f(X)
is not greater than a fixed value. More precisely, let « be a fixed scalar, the level set
of fis

Lof={X : XeQ, f(X)<a}

It must be clear that the level set of a function is a subset of € for each value of &
given. On the contrary, the epi f is a subset of {2 x R. Then, it is not surprising that
while, convexity of f is equivalent to the convexity of epi f, the same is not true for
L. f. Indeed, if f is convex in € the level set L, f is convex for all @ € R but the
latter statement is not generally sufficient to assure convexity of f.

Definition H.5 (Subgradient) Let f(-) be a convex function defined in a conver set
Q C R*™™. Matrizx A € R™™ is said to be a subgradient of f at a point X if

FY) > fX)+<AY -X>
holds for all’Y € Q. The set of all subgradients of f at X is denoted 8f(X). a
Lemma H.5 The set 0f(X) is convex.
Proof Consider Ay, A; € 3f(X). From Definition H.5 we have, for all Y € Q2

FO) > f(X)+ <A, Y —X >
V) 2 f(X)+ <Az Y =X >

Multiplying the first inequality by «, the second one by 1—« and adding terms, yields
FOY) 2 F(X)+ <ahy + (1 - a)ha,Y — X >

implying that A := aA; + (1 — a)A; € f(X), which is the stated property. |

It is important to mention that the set of subgradients is in addition a closed set.

An important concept to deal with nondifferentiable convex functions is the one sided

directional derivative. The right directional derivative of function f at X € R**™ in
the direction Y € R™*™ is

Do FX.Y) = tim {E TS0

e—0t €
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as well as, the left directional derivative in the same direction is

D_F(X.Y) = lim LT = (X)

e—0— €

Simple calculations show that each one sided directional derivative is one related to
the other by the equation

D_f(X,Y) = -D4 f(X,-Y) (H.5)

indicating that, generally, they are different. Indeed, if they coincide then the function
under consideration is differentiable at X. This important feature is now discussed
from the result of the next lemma.

Lemma H.6 Let f(:) be a conver function defined in the conver set Q. At any
interior point of Q, it follows that

D, f(X,Y) = max {trace[A'Y] : A€ df(X)}
Proof For any A € 3f(X), the definition of subgradient yields

e—0+t €

> trace[A’Y]

the proof is then concluded from the fact that at any interior point of Q the set 9f(X)
is closed and bounded and both sides of the above inequality must be equal for some

A€ df(X). o

The above result used together (H.5) enables us to get
D_f(X,Y) = min {trace[A'Y] : A € df(X)}

which implies that both, the right and the left directional derivatives are equal in
any direction Y € R"*™ whenever the set of subgradients contains only one element.
In this case the function is differentiable, 0f(X) = {Vf(X)} and the directional

derivative is a linear function of the direction ¥ € R™**™.
Example H.2 Let us calculate the set of subgradients dg(X) of the function
g{(X) =max{fi(X) : i=1,2,--- N}

where all functions f;(-),2 = 1,2,---, N are supposed to be convex and differentiable in all
points of R**™. It is a simple matter to verify that function g is convex as well. Defining
the set

J(X)={j + fi(X)=g(X)}
and taking Y € R™*™ we get
g(Y) =max{f;(Y) : i =1,2,--- N}
> fi(Y)
> f[{{(X)+ < VHX),Y - X >
> g(X)+ <Vf(X),Y =X >

and so Vf;(X) € dg(X) for all j € J(X). Even more, V f;(X) is an extreme point of dg(X).
Taking into account the result of Lemma H.5 we then conclude that

9g(X) = co {Vf3(X) : jeJ(X)}

Accordingly, if there is only one index, say k € J(X) then g is differentiable and Vg(X) =
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Figure H.1: Level sets of function g(X)

When dealing with nondifferentiable convex functions, it is important to keep in
mind that many properties valid under differentiability may fail. For instance, if
f is differentiable at X € R"*™ then -Y = Vf(X) # 0 is a direction such that
the directional derivative is negative, as a consequence, there exists a step length
€ > 0 such that f(X + €Y) < f(X). On the other hand, if f is not differentiable
at X € R™™*™ this property may be lost. In other words, it does not hold if we just
consider an arbitrary direction —Y € 3f(X). This common situation is illustrated
in fig. H.1. The function g(X) is the one treated in Example H.2 where N = 3 and
fi(X),i = 1,2,3 are linear. At point X the function is not differentiable because
f1(X) and f2(X) coincide. Both indicated directions are in the set 9g(X). Even
though, the right directional derivative in the direction Y = —Y5 is clearly negative
but the right directional derivative in the direction Y = —Y} is positive. Hence, for
-Y =Y; € 8¢9(X) the previously mentioned descent property does not hold. In the
direction Y = —Y; the function increases.

For nondifferentiable functions, there is a way to determine the steepest descent
direction. It is given by {notice the constraint on the maximum length of the direction)

Y,, := argmin {D+f(X,Y) : ||Y||§; < 1}
which, from Lemma H.6 can be determined by solving

min  max_trace[A'Y]
IYI%<1 Acf(X)

Recalling that all constraints are convex, closed and bounded, this problem is equiv-
alent to

max min trace[A'Y]
Aedf(X) V1%t

The minimization is readily solved by keeping in mind that the objective function is
an inner product of two matrices whose minimum provides

Ast

Vi = -
' [ Astll

where Ay, is given by

Ag :=argmin {||A]|lFr : A€ df(X)}
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The steepest descent direction is obtained from the selection among all subgradients,
the one of minimum Frobenius norm. This task is, in general, very difficult to be ac-
complished numerically since the set §f(X) may not be explicitly known. In Example
H.2 (recall fig. H.1) Y;; = —Y5 is the steepest direction at point X. Finally, it is also
interesting to observe that under differentiability we get Ys: = —Vf(X)/|IVf(X)lir
as expected. Furthermore, in the steepest descent direction the right directional
derivative provides, for any other direction Y the lower bound

D, f(X,Y) > Dy f(X,Ya) = —||AstllF (H.6)

It is obvious that if 0 € 9f(X), the calculation needed to determine the steepest
descent direction Yj; can not be performed because Ay, = 0. The possible occurrence
of this fact is however of particular importance as indicated in the next lemma.

Lemma H.7 Let f(-) be a convex function defined in R™*™. Matriz X* minimizes
fif and only if 0 € Of(X*).

Proof Suppose 0 € 9f(X™*), from the convexity of f we have, for all X € R**™
FX) 2 F(X*)+<0,X — X" >> f(X7)

implying that X* minimizes f indeed. Conversely, if X* minimizes f then in any
direction Y € R™*™ the right directional derivative must be nonnegative. In view of
(H.6) this occurs provided Az = 0 implying that 0 € 9f(X*). ]

We are now in position to solve the following optimization problem
min {f(X) : X € X} (H.7)

which is called a conver programming problem provided i) the objective function
f(-) : @ — R is convex in  which by its turn is a convex subset of R**™ and i) the
constraint set X is a closed convex subset of 2. To avoid pathological cases, it is also
assumed that A" is bounded and contains an interior point.

Lemma H.8 Consider the convex problem (H.7). The following hold :
1) If X* is a minimum then it is a global minimum.

it) Matriz X* minimizes f over X if and only if there exists A* € Of(X™*) such
that
<A X-X">>0, VXe&X

Proof Only point i¢) will be proved since the first point restates an important but
very known property of convex problems.

Point i) Suppose there exists A* € df(X™*) with the above property. From the
convexity of f we have, for all X € X,

FX) 2 F(X)+ < A% X - X* > f(X7)

implying that X* minimizes f indeed. Conversely, if X* minimizes f over X’ then,
we first notice that due to the convexity of X', for any X # X* € A, the direction
Y = X — X* is always a feasible direction in the sense that

X" +eY e X
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for all € € [0, 1]. So, due to the fact that X* is optimal we must have
Dy f(X*Y)>0
Then, from Lemma H.6, it is true that for all X ¢ X

max <A X -—-X*">>0
AEBF(X*)
that is

min max <AX-X*>>0
XEX Acaf(X+)

Using the fact that all constraints in the above problem are convex, bounded and
closed, it can be written in the equivalent form

max min <A X ~X*>>0
A€Bf(X*) Xex

which allows us to conclude that there exists A* € 9f(X*) such that
min < A, X -X*>>0
Xex

which is the same to say that < A*, X — X* >> 0 for all X € X and the proof is
concluded. m|

Once again, it is to be noticed that under differentiability, Lemma H.7 reduces to
the classical property Vf(X™*) = 0 to characterize a minimum of a convex function.
As well as, under the same assumption, the second part of Lemma H.8 imposes that
<Vf(X*),X -X*>>0,V X € X for global optimality.

Problem (H.7) is frequently called Primal. With the purpose to solve it more
efficiently, convexity allows us to determine another equivalent but in many instances
easier problem to be solved called Dual. For convex problems the Primal and the
Dual versions are equivalent in the sense that both provide the same optimal solution.
Duality gap does not exist. The determination of the dual problem is based on the
following result.

Lemma H.9 (Minimax) Consider X and ) two closed and bounded conver sets.
Let the continuous function L(X,Y) be conver with respect to X and concave with
respect to Y. The following equality holds

max min L(X,Y) = min max L(X,Y) (H.8)
YeY Xex XexYey

Lemma H.9 states that under the given conditions, function L(-) admits a saddle
point which is in fact the optimal solution of the min/max problem. Adding to (H.7)
a new convex constraint, that is

min {f(X) : g(X) <0}

and defining the associated Lagrangian function
L(X,)Y) = f(X)+ <Y,g(X) >

in the domain

= > . 1 —
y: {Y_O : )I(neuz%L(X,Y)> oo}

the above lemma can be applied. Equality (H.8) provides a pair of equivalent prob-
lems. One of then is the primal while the other is the dual.



Appendix I

Convex Programming
Numerical Tools

In this appendix some convex programming numerical tools are discussed. The ma-
terial is mainly based on the natural generalization, to the nondifferentiable case, of
two classical convex programming algorithms described in the classical books [37] and
[41]. The method of centers is based on the book [10]. More efficient methods (but
also much more involved from a theoretical point of view) can be found in reference
[45].

The general form of a convex programming problem is

min {f(X) : X € X}

where f(-) is a convex function and X is a convex set. The concept of epigraph allows
us to rewrite it in the equivalent form

min{y : (X,v) € epi f}

which implies that, with no loss of generality, the objective function of a general convex
programming problem can be considered to be a linear function. In addition, all
problems we have manipulated in the previous chapters, are such that the convex set
epi f can be alternatively written (possibly by adding new variables and constraints)
as a LMI (Linear Matrix Inequality). Consequently, the general problem we have to
solve numerically is

min {dz : A(z) > 0} (I.1)

where ¢ and z are n dimensional real vectors and
n
A(I) = AO + E J}Z'Ai
i=1

with Ag, A1, -, A, being m X m dimensional symmetric matrices and z; € R denotes
the i-th entry of the n dimensional vector x. It is assumed that the feasible set defined
by all vectors © € R™ such that A(z) > 0 is bounded. This assumption is verified
in all problems of our interest already discussed in the previous chapters. Notice
however that this set is convex but not polyhedral then, in general, it has an infinite
number of extreme points.
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T2

Figure I.1: The set A(z) >0

There is no difficulty to consider more general problems with the structure (I.1)
and with an additional equality constraint Bx = b, where B € R"™*"™ is a matrix of full
row rank. If necessary, a preliminary change of variables, allows the partitioning B =
[B1 B2] where By € R™*" is nonsingular. Doing the same with vector x’ = [z} z}],
the linear constraint provides

zy = By'b— By ' Byzy
and adopting again the above partitioning to ¢/ = [¢] c}], the feasibility with respect
to the same equality constraint yields
dx =B+ o
where &, := ¢, — ¢; B; ' By and

Alz) = A ([ Bi'b— By ' Bz D

Z2
= Az (2)
The consequence is that the equality constraint can easily be handled by eliminating
itself and formulating a new problem as (I.1) which depends exclusively on the variable

Zo € R® 7. From the numerical point of view the remaining problem to be solved is
simpler since it presents a smaller number of free variables.

Example I.1 The geometry of the feasible set of problem (I.1) is now illustrated by means

of a simple example. Consider the LMI .A(z) > 0 be given by n = 2 and matrices
10 0 O 01 0 0 1 0 0 0
01 0 0 1 0 0 0 0 0 0 O
Ao = 0 0 1/2 0 A=l 01 0| %00 01
0 06 O 1 0 0 0 O 0 01 0

Figure 1.1 shows the convex set defined by this LMI. It is obtained by the intersection of the
convex regions xz > 22 — 1 and 2, > 3 — 1/2. a

Algorithm 1.1 (Separating hyperplane algorithm) This is one of the simplest al-
gorithms that can be applied to solve the stated convex problem (I.1). In the following
it is discussed its convergence as well as its limitations to handle large scale problems.
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1. Determine a convex polyhedral set Py containing the overall feasible set of
Problem I.1, that is
{r : Alz) =0} C Py

and set the iteration index k = 0.

2. Solve the linear programming problem
min{c'z : z € Py}

If it does not admit a feasible solution, the same is true for Problem 1.1 - stop.
Otherwise, let zx be its optimal solution.

3. If A(zy) > 0 then xj solves Problem I.1 - stop.

4. Determine a separating hyperplane ajx = ¢, which separates z;, from the fea-
sible convex set {z : A(z) > 0}. Define

Pri1 =P N{z : ajx > ck}
set the iteration index k£ < k + 1 and go back to step 2.

When the algorithm stops the global optimal solution (if any) of Problem I.1 is pro-
vided or it is answered that it is infeasible. m|

Several points have to be analyzed in details. The first one concerns the determi-
nation of the polyhedral set Py. It always exists from the boundedness assumption
on the feasible set of Problem 1.1 introduced before. For instance, it can be taken as

Poi={z : |z;|<p, 1=1,2,---,n}

where p > 0 is a scalar sufficiently large.

In step 2, it is more efficient to solve the stated linear programming problem by
means of a dual method. Doing this, it is possible to take advantage from the fact
that the sets Pry1 and Py differ one to the other by only one new linear constraint
added in step 4. Indeed, in iteration k + 1 a feasible dual solution is readily given by
Nog1 = Ay 0], where )y is the optimal dual solution already obtained in the previous
iteration.

In practice, the stopping condition in step 3 has to be changed to A(zx) > —c
where € > 0 is an arbitrarily small parameter. This is necessary because,

{x : Ax)>0}C---CPep1 CP, YE=0,1,-- (1.2)

implies that the algorithm evolves from the outside of the feasible set. Of course, the
number of iterations to reach a certain precision increases as ¢ decreases.

Finally, it must be clear how to calculate the separating hyperplane needed in step
4. We claim that the vector ar and the scalar ¢, can be taken as

ap = [ Z;CA1Zk Z;CAnZk ]/

cr = —2, Aoz

where z;, € R™ is any unitary norm eigenvector associated to the minimum eigenvalue
of A(xy). Actually, this important property follows immediately from the equality

a,T — cx = 2 A(T) 2k
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valid for all z € R™. Indeed, for all feasible vectors that is for those vectors such that
A(z) > 0 obviously a,z — ¢, > 0. On the other hand, for z = xj we get

afcxk —Cp = /\mm[A(Ik)] <0

since by construction the point zj is not feasible as it has been previously tested in
step 3. It is interesting to observe that if the feasible set of Problem 1.1 is not empty,
then {lag]| # 0. This is true because the function g(z) := Amin[A(z)] is concave and
so the inequality

6(z) < HA() 2
<ajx—cx
<glzp)+ap(z—z), VzER”

implies that ay € dg(zx) and ax = 0 is possible if and only if z; maximizes g(-). Since
g(zr) < 0 then it is impossible to have any other x € R™ such that g(z) > 0. So,
llak|] = 0 may occur if and only if the feasible set of Problem 1.1 is empty.

It remains to prove the global convergence of the Separating hyperplane algorithm
which is done in the next lemma.

Lemma I.1 Suppose the feasible set of Problem (I.1) is not empty and the Separating
hyperplane algorithm generates the sequence of points {zr}. Any limit point of this
sequence is a global optimal solution to Problem (I.1).

Proof In the k-th iteration of the Separating hyperplane algorithm, the linear con-
straint (cut) ajx > ¢ has been added to the linear programming problem to be solved
in step 2. Consequently in any subsequent iteration, say [ > k, it must be verified for
x = zy, that is ajz; > ¢, which yields

0<apx —cx
(afxy — cx) + ap(z) — k)
/\mm[.A(SCk)] + a;c(:cl — l'k)

IAIA

or equivalently
Amin[A(@r)] > @ (zx — 21) > ~[lax|| lze — 21|

Now, since |ja|| < oo in all iterations, the conclusion is that as k and I go to infinity,
the algorithm provides a vector x such that A(z) > 0, that is x is a feasible solution
to Problem (I.1). On the other hand, due to (I.2), in any iteration we have

dzp <min{dz : A(z) > 0}
which shows, by continuity, that the limit point z is optimal indeed. a

The Separating hyperplane algorithm has some important features. First, unlike
many nonlinear programming methods, it does not require any line search. The prac-
tical implementation is simple and depends basically on the development of a powerful
dual-simplex routine to solve the linear programming problem on step 2. The use of a
dual method also provides useful informations to drop non binding constraints, which
of course, keeps reduced the number of constraints to be handled and so increases nu-
merical efficiency. Unfortunately, the Separating hyperplane algorithm as presented
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before, may have a poor rate of convergence. Indeed, it can be estimated that it
converges arithmetically or at most geometrically with a ratio that goes to unity as
the dimension of the problem increases. More specifically

ka - xopt“ < aﬁk

for some constants a > 0 and 0 < 8 < 1 where 8 = 3{n) goes to one as n increases.
Based on this, it is predicted (and practically verified) that it does not perform well
for solving large scale problems.

It is also possible to recognize that the determination of the separating hyperplane
plays a central role in the numerical efficiency of the method. The deepness of the
cut added in each iteration, appears to be of great importance. This leads to the
introduction of the so called Supporting hyperplane algorithm which works with the
deepest cut that can be calculated in each iteration. For that we assume the feasible
set of Problem (I.1) is not empty and we have previously calculated an interior point
y € R"™ such that A(y) > 0. At any infeasible point xy, it is possible to calculate a
step size 0 < a;, < 1 which defines a point in the line di := y — xx and, in the same
time, is on the boundary of the constraint A(x) > 0. To this end, we have to find the
scalar ¢y solution to the nonlinear equation (in the unknown «)

0= /\mm[.A(y — adk)]
= AminlAy) — a(A(di) — A(0))]
which after simple algebraic manipulations provides
1
O ' — —
HE

where

i = Amas [A) 72 (Aldy) = A©0)) Ay) ]

All operations indicated above are well defined since A(y) > 0 implies that A(y) is
nonsingular. Furthermore, from the above, p; < 0 implies that

0> A(dx) — A(0)
> Aly) — A(zk)

that is A(zg) > A(y) > 0 which puts in evidence that for any infeasible vector zj, we
necessarily have ui > 0. The point

T =y — agdy

is, by construction, on the boundary of the feasible set of Problem (I.1) and for its
determination only an additional eigenvalue calculation is needed. The Supporting
hyperplane algorithm is stated in the sequel. The main idea is to use the above
information to define iteratively a supporting hyperplane at the boundary point Z.

Algorithm 1.2 (Supporting hyperplane algorithm) It is completely based on the
previous algorithm where the separating hyperplane is replaced by a supporting hyper-
plane. Although more eflicient, the limitation to handle large scale problems remains.

1. Determine an interior feasible point y € R", a convex polyhedral set Py con-
taining the overall feasible set of Problem 1.1, that is

{z : A(x)>0}C Py

and set the iteration index k = 0.
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2. Solve the linear programming problem
min {c'z : z € Py}
and let x; be its optimal solution.

3. If A(zx) > 0 then xj, solves Problem 1.1 - stop. Otherwise, calculate the point
Z on the boundary of the feasible set and go to the next step.

4. Determine a supporting hyperplane ajz = ¢ at the boundary point Z;. Define
Prt1:=PeN{z : apz > ck}
set the iteration index k « k + 1 and go back to step 2.

Once again, when the algorithm stops the global optimal solution of Problem L.1 is
provided. a

Let us now discuss an important class of convex programming methods, called
Interior point methods. These methods apply to the solution of an approximate
version of Problem (I.1) given in the form

inf {dz : A(z) > 0} (L.3)

Clearly, this problem is equivalent to Problem (I.1) provided the LMI A(z) > 0
admits an interior point, that is a vector £ € R™ such that A(z) > 0. In this case,
the equivalence between problems (I.1) and (I1.3) holds in the sense that their optimal
solutions are arbitrarily close one to the other. In the developments that follow, we
work with Problem (I.3).

The main idea comes from the definition of the analytic center of a LMI. The
analytic center of the LMI

Alz) = Ao+ Y _ziAi > 0
i=1
is the vector z,. € R™ such that
T := argmin {—log det[A(z)] : A(z) > 0} (1.4)

The objective function of the above problem can be interpreted as a barrier function
for the LMI under consideration. Indeed, as = goes to the boundary of the feasible
set, at least one eigenvalue of A(x) goes to zero and enforces the objective function
to be arbitrarily large. Moreover, the following properties are of great importance in
the calculations that follow.

Lemma 1.2 The function p(x) := —log det[A(z)], defined in the open conver set
A(z) > 0 is such that :

i) Function p(z) is convexr.
it) At any z | A(z) > 0, the gradient of p(x) is

Vp(z); := —trace [A(a:)"lAi] ,i=1,2---,n



APPENDIX I. CONVEX PROGRAMMING NUMERICAL TOOLS 365
w1) At any x | A(z) > 0, the Hessian matriz of p(z) is
H(z);; = trace [A(z) "AA(x)T"A;] L i, =1,2,--,n
Proof The proof is based on the concavity of the scalar function log(z) in the interval
z > 0 which implies that log(z) < z — 1 for all z > 0. Using this and any two vectors
such that A(z) > 0 and A(y) > 0, we get
p(y) —p(z) = —log det [A(z) ' Aly)]

=) "log A [A(z) 1 Ay)]
=1

v

= (N [A@) T AW - 1)

and consequently

p(y) > p(x) — trace [_A(x)*lA(y) _ []
> p(z) — trace [A(z) ' Aly) — A(z) " Ale)]
> p(x) — Ztrace [A(z) A (i — 24)
i—1
> p(z) + Vp(z)'(y — )

which proves the first two points of the lemma proposed. The last one is proved by
simple partial differentiation of Vp(z); with respect to the variable ;. The proof is
concluded. a

Example 1.2 For the same LMI of example 1.1, figure 1.2 shows the level set of det[.A(z)] =
a > 0 which for A(z) > 0 and 3 = —log(a) coincides with that of p(x) = 8. It is clearly
seen that in the interior of the LMI the level set for each value of a > 0 defines a convex
set. Moreover, the closed region approaches to the boundary of the LMI as « goes to zero.
Outside this region, there exist points for which the determinant of the affine function .4(z)
attains the same level but with an even number of negative eigenvalues. Finally, using part
i1) of Lemma 1.2 we solve Vp(z) = 0 to get the analytic center z., = [0.5902 0.4236). O

Further inspection reveals that function p(z) is in fact strictly convex which means
that the Hessian matrix H{x) is positive definite whenever the vector z € R" is such
that A(z) > 0. Hence, the analytic center of the LMI can very efficiently be calculated
by the following well known Modified Newton’s method.

Algorithm 1.3 (Modified Newton’s method) Assume an initial point z( such that
A(zp) > 0 is given. Then, perform the following iterations until convergence.

1. Determine the gradient vector Vp(xy) and the Hessian matrix H(xy).

2. Determine the descent direction dy := H(z1) 'Vp(xk). If within some prespec-
ified precision ||dx|| = 0 - stop. Otherwise, go to the next step.

3. Determine the optimal step length oy given by

ay = argmin p(xy — ady)
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I

Figure 1.2: The level set of det[A(z)]

3. Update g1 = zx — axdg, set the iteration index k «— k + 1 and go back to
step 1.

When the algorithm stops the analytic center is approximately given by 4. = zx. O

For the complete implementation of this algorithm, it remains to calculate the
optimal step length a4 defined in step 3. This is accomplished with no great difficulty.
Indeed, simple calculations put in evidence that

plzy — adg) = Z log|1 — aey] (1.5)
where
ert = N [.A(:rk)_lﬂ (A(di) - A(O))A(mk)*l/ﬂ
is the I-th component of the m dimensional real vector ex := [ ex1 g2 -+ €xm |-

Hence, the derivative of p(zy — ady) with respect to a provides

dp
do

€kl
1-— (07153 °%}

NE

(m;c — adk) =

1

o2
{ ki +€kl]
< [ B —en

where 3 := 1/c. Setting the right hand side of the above equation to zero and taking
into account that

I
NE

l

>0

Zekl — ﬂjk — adk)

do

a=0

since, dy is a nonzero descent direction, the optimal step size & = 1/8 solves the
nonlinear equation

—62=0
_ekl:| k
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The solution of this nonlinear equation is not simple to be determined unless we
realize it can be rewritten in terms of the following determinantal equation

det [87 — €}, (8] — Ex) 'ex] =0

where matrix E; € R™*™ is defined as Ejy := diag[ek1, €k2, - - -, €xm]- Finally, the last
equation together with some elementary determinant manipulations provides

det [BI — (Ex + 6 2exel)] =0

which makes clear that the optimal step size ay is given by

e @)

This shows that to determine the optimal steep size, we have to calculate all eigen-
values of a symmetric matrix in order to define the vector e and finally to calculate
the maximum eigenvalue of the symmetric matrix indicated in (I1.6). To reduce this
amount of calculations, in some cases, we have a great advantage to get a suboptimal
step size as indicated in the sequel. It comes to light from the observation that any
positive step size less than the optimal one may also be used to assure that function
p(z) is reduced in the direction —dg. To get such a suboptimal step size, we proceed
by establishing the following equality

Zekl xk - adk)

Oth)\

a=0
= dk (l’k)dk
= Vp(zi)'dy
d
= —ﬁ(mk — ady) -
= 62

which together with (1.6) implies that

-1
G = Amaz

me () (2))]

m
S )\maac [Ek] + 6]:2 Z eil
=1

S 1 + )\maz [Ek]
consequently, a suboptimal step size, denoted as a,j is given by
1
af =
1+ pg

where

[tk = Amaz [«4(%)_1/2 (Aldy) — A(0)) A(gc")“l/:z]

It is to be noticed that p > 0 since otherwise all ex; < 0 which implies from (I.5)
that the feasible set is unbounded, a situation avoided by our previous assumption.
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It is also interesting to see that the above formula for the suboptimal step size is very
similar to the one introduced before for the calculation of a point on the boundary of
the feasible set of the LMI under consideration.

Let us now use the concept of analytic center to calculate the optimal solution of
Problem (I.3). Obviously it can be equivalently stated in the form

inf{y : A(z)>0, v—cz >0}
or, in terms of only one augmented LMI
inf {y : B(z,v) >0} (L.7)

where

B(z,v) :== [ A(()x) ,Y_Oclz }

This LMI depends on both variables namely the vector x € R™ and the scalar .
However, for ~ fixed, let us define as before the analytic center

Zae(7y) := argmin {—log det[B(x,¥)] : B(z,v) > 0}

where it is indicated the dependence of the analytic center with respect to the scalar
~v and that the minimization must be done with respect to £ € R™ only. The curve
Zac(7y) obtained for all possible values of v is called the Path of centers and plays
a central role to the numerical solution of Problem (I.3) as indicated in the next
algorithm.

Algorithm I.4 (Method of centers) Assume an initial pair (zg,7o) is given, such
that simultaneously A(zp) > 0 and 9 > ¢/zg. Choose 0 < 6 < 1 and € > 0 sufficiently
small and perform the following iterations until convergence.

1. er1 = (1= 60)zg + Oy
2. Tpy1 = ZTac(Ve41)

3. If yiy1 — dxs1 < €/m - stop. Otherwise set the iteration index k «— k41 and
go back to step 1.

When the algorithm stops the optimal solution to Problem (1.7) is found withine. O

It is important to recognize that the rule in step 1, never produces infeasibility
on the analytic center determination in step 2. Actually, assume that in a generic
iteration k > 0 we have B(zy,vx) > 0. With the formula stated in step 1, we get

Yea1 — g = 0(yp — ) > 0

which implies that B(zg, 7x+1) > 0 and consequently the vector z; can be used to
initialize the Modified Newton’s method for the determination of the analytic center
Zae(Vet1). In practice, it is verified that this simple initialization procedure is very
effective as far as numerical efficiency is concerned.

Lemma 1.3 The Method of centers converges geometrically to the optimal solution
of Problem (1.3).
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Proof Denote (Zopt, Yopt) the optimal solution of Problem (I1.3). For v = x4 fixed,
Lemma [.2 enables us to write the optimality conditions to characterize the analytic
center Zu.(ve+1)- So, due to step 2 we must have

——CL/—— = trace [.A(:ck+1)71Ai] , 1=1,2,---.n
Ye+1 — CTk+1

which gives (recall that vop = '@ opt)

EM_I_%PE = trace [A(zr4+1) 7" (Al@ks1) — Al@opr))]
Ye+1 — CTk+1

Now, define the scalar ¢ as being

¢ := sup trace [A(l‘)_l (A(z) — Alzopt))]
A(z)>0

and observe that 0 < ¢ < m. Actually, the lower bound is obtained from the simple
observation that = ., is feasible and the upper bound is a consequence of the fact
that A(z,p:) > 0. Then, the inequality

OVer1 + Yopt 2 (1 + @) zpets
holds in all iterations. Using the update of step 1, namely

— 0vk 11
dx _ V42
k+1 T 1-9

simple algebraic manipulations put in evidence that

o+6
V42 — Yopt < ) (Ye+1 — Yopt)

which proves that the Method of centers converges geometrically. This concludes the
proof of the Lemma proposed. O

This proof is of great practical importance for two main reasons. First, if the
stopping criterion in step 3 is verified then

o1 — Yopt < O(Vh41 — ¢ Tht1)

<m(e/m)=c¢

and the optimal solution is found within the prespecified precision level € > 0 imposed
by the designer. Second, the ratio of geometric convergence, such that

0 < c'zg — Caop < afB(9)*

for some a > 0, is estimated as being

_o+0

Ale) = 51

which is an increasing function of ¢. The worst estimation is then obtained for ¢ = m
providing thus S(m). It is important to realize that, doing this, the conclusion is that
the Method of centers converges geometrically but with a ratio that goes to unity
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Figure 1.3: Convergence behavior

as the dimension of the problem to be solved increases. In other words, it performs,
under this worst case analysis, as the Separating hyperplane algorithm. However, it
is possible to introduce in the Method of centers a simple modification in order to
get much better convergence behavior. Indeed, if in the determination of the analytic
center z,.(y) the objective function is changed to

~log det[A(z)] — m log(y — c'z)

which is nothing more than to redefine the augmented LMI by replacing the scalar
v — 'z by the m x m diagonal matrix (y — ¢'z)I, then the same reasoning used in the
proof of Lemma 1.3 yields the new estimate for the ratio of geometric convergence

o+6m _1+86
B(¢) = <—

¢+m 2
The worst case for the ratio of convergence is now independent of the problem dimen-
sion. It depends only on the parameter 0 < # < 1 to be fixed by the designer.

<1 (1.8)

Example 1.3 Consider the LMI of example 1.1 and ¢’ = [0 1]. The optimal solution of
problem (1.1) is found to be Zop: = [0.3132 — 0.9018]" and Yopt = ¢'Topr = —0.9018. Figure
1.3 shows the objective function per iteration calculated by Algorithm 1.2 (dashed line) and
by Algorithm 1.4 (solid line). As expected, the first evolves through infeasible points and
the objective function is increasing. On the contrary, the second is always feasible and the
objective function is decreasing. m]

Finally it is also to be noticed that the determination of a feasible starting point
required for many algorithms can be done with no great difficulty. Given the LMI
A(z) > 0, the problem is to find (if one exists) a vector x such that A(z) > 0. This
is accomplished by solving the auxiliary convex problem

min{\ : A(z)+ Al > 0}

which presents two interesting properties. First, the pair (z,A) := (0,1 — Amin[4o)])
satisfies the LMI constraint strictly and second at the optimal solution A(z,) > 0 if
and only if A, < 0. Of course, the optimal solution of the above problem does not
need to be exactly calculated. If in some iteration the current value of the auxiliary
variable A becomes negative, the current value of the vector x is strictly feasible and
the search process may be stopped.
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