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Chapter 1 

Introduction 

Frequency domain techniques have longly being proved to be particularly fruitful and 
simple in the design of (linear time invariant) SISO ^ control systems. Less appealing 
have appeared for many years the attempts of generalizing such nice techniques to the 
MIMO ^ context. This partially motivated the great deal of interest which has been 
devoted to time domain design methodologies starting in the early 60's. Indeed, this 
stream of research originated a huge number of results both of remarkable conceptual 
relevance and practical impact, the most celebrated of which is probably the LQG ^ 
design. Widely acknowledged are the merits of such an approach: among them the rel-
atively small computational burden involved in the actual definition of the controller 
and the possibility of affecting the dynamical behavior of the control system through 
a guided sequence of experiments aimed at the proper choice of the parameters of 
both the performance index (weighting matrices) and uncertainty description (noises 
intensities). Equally well known are the limits of the LQG design methodology, the 
most significant of which is the possible performance decay caused by operative con-
ditions even slightly differing from the (nominal) ones referred to in the design stage. 
Specifically, the lack of robustness of the classical LQG design originates from the fact 
that it does not account for the uncertain knowledge or unexpected perturbations of 
the plant, actuators and sensors parameters. 

The need of simultaneously complying with design requirements naturally specified 
in the frequency domain and guaranteeing robustness of the control system in the face 
of uncertainties and/or parameters deviations, focused much of the research activity 
on the attempt of overcoming the traditional and myopic dichotomy between time 
and frequency domain approaches. At the stage, after about two decades of intense 
efforts on these lines, the control system designer can rely on a set of well established 
results which give proper answers to the significant instances of performance and 
stability robustness. The value of the results achieved so far partially stems in the 
construction of a unique formal theoretical picture which naturally includes both the 
classical LQG design {RH2 design), revisited at the light of a transfer function-like 
approach, and the new challenging developments of the so called robust design {RHoo 
design), which encompasses most of the above mentioned robustness instances. 

The design methodologies which are presented in the book are based on the mini-
mization of a performance index, simply consisting of the norm of a suitable transfer 

^Single-input single-output 
^Multi-input multi-output 
"^Linear quadratic gaussian 
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function. A distinctive feature of these techniques is the fact that they do not come 
up with a unique solution to the design problem; rather, they provide a whole set 
of (admissible) solutions which satisfy a constraint on the maximum deterioration of 
the performance index. The attitude of focusing on the class of admissible controllers 
instead of determining just one of them can be traced back to a fundamental result 
which concerns the parametrization of the class of controllers stabilizing a given plant. 
Chapter 3 is actually dedicated to such a result and deals also with other questions 
on feedback systems stability. In subsequent Chapters 4 and 5 the main results of 
RH2 and RHQQ design are presented, respectively. In addition, a few distinguishing 
aspects of the underlying theory are emphasized as well, together with particular, 
yet significant, cases of the general problem. Chapter 5 contains also a preliminary 
discussion on the robustness requirements which motivate the formulation of the so 
called standard RHoo control problem. Chapter 6 and 7 go beyond the previous 
ones in the sense that the design problems to be dealt with are setting in a more 
general framework. One of the most interesting examples of this situation is the so 
called mixed RH2/RH00 problem which is expressed in terms of both RH2 and RHoo 
norms of two transfer functions competing with each other to get the best tradeoff 
between performance and robustness. Other problems that fall into this framework 
are those related to regional pole placement, time-domain specification and structural 
constraints. All of them share basically the same difficulty to be faced numerically. 
Indeed, they can not be solved by the methodology given in the previous Chapters but 
by means of mathematical programming methods. More specifically, all can (after a 
proper change of variables) be converted into convex problems. This feature is impor-
tant in both practical and theoretical points of view since numerical efficiency allows 
the treatment of real-word problems of generally large dimension while global opti-
mality is always assured. Chapter 7 is devoted to the controllers design for systems 
subject to structured convex bounded uncertainties which models in an adequate and 
precise way many classes of parametric uncertainties with practical appealing. The 
associated optimal control problems are formulated and solved jointly with respect 
to the controller transfer function and the feasible uncertainty in order to guarantee 
minimum loss in the performance index. One of such situation of great importance 
for its own is the design problem involving actuators failure. Robust stability and 
performance are addressed for two classes of nonlinear perturbations, leading to what 
are called Persidiskii and Lur'e design. In general terms, the same technique involving 
the reduction of the related optimal control design problems to convex programming 
problems is again used. The main point to be remarked is that the two classes of non-
linear perturbations considered impose additional linear and hence convex constraints, 
to the matrices variables to be determined. 

Treating these arguments requires a fairly deep understanding of some facts from 
mathematics not so frequently included in the curricula of students in Engineering. 
Covering the relevant mathematical background is the scope of Chapter 2, where 
the functional (Hardy) spaces which permeate all over the book are characterized. 
Some miscellaneous facts on matrix algebra, system and control theory and convex 
optimization are collected in Appendix A through I. 



Chapter 2 

Preliminaries 

2.1 Introduction 

The scope of this chapter is twofold: on one hand it is aimed at presenting the ex-
tension of the concepts of poles and zeros, well known for single-input single-output 
(SISO) systems, to the multivariable case; on the other, it is devoted to the intro-
duction of the basic notions relative to some functional spaces whose elements are 
matrices of rational functions (spaces RL2^ RLoo, RH2^ RH^). The reason of this 
choice stems from the need of presenting a number of results concerning significant 
control problems for linear, continuous-time, finite dimensional and time-invariant 
systems. 

The derivation of the related results takes substantial advantage on the nature 
of the analysis and design methodology adopted; such a methodology was actually 
developed so as to take into account state-space and frequency based techniques at 
the same time. 

For this reason, it should not be surprising the need of carefully extending to multi-
input multi-output (MIMO) systems the notions of zeros and poles, which proved so 
fruitful in the context of SISO systems. In Section 2.5, where this attempt is made, 
it will be put into sharp relief few fascinating and in some sense unexpected relations 
between poles, zeros, eigenvalues, time responses and ranks of polynomial matrices. 

Analogously, it should be taken for granted the opportunity of going in depth 
on the characterization of transfer matrices (transfer functions for MIMO systems) 
in their natural embedding, namely, in the complex plane. The systems considered 
hereafter obviously have rational transfer functions. This leads to the need of provid-
ing, in Section 2.8 the basic ideas on suitable functional spaces and linear operators 
so as to throw some light on the connections between facts which naturally lie in 
time-domain with others more suited with the frequency-domain setting. 

Although the presentation of these two issues is intentionally limited to few basic 
aspects, nevertheless it requires some knowledge on matrices of polynomials, matrices 
of rational functions, singular values and linear operators. To the acquisition of such 
notions are dedicated Sections 2.3-2.7. 
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2.2 Notation and terminology 

The continuous-time linear time-invariant dynamic systems, object of the present 
text, are described, depending on circumstances, by a state space representation 

X = Ax + Bu 

y = Cx + Du 

or by their transfer function 

G{s) = C{sI-A)-^B + D 

The signals which refer to a system are indifferently intended to be in time-domain 
or in frequency-domain all the times the context does not lead to possible misun-
derstandings. Sometimes, it is necessary to explicitly stress that the derivation is in 
frequency-domain. In this case, the subscript "L" indicates the Laplace transform 
of the considered signal, whereas the subscript "LO" denotes the Laplace transform 
when the system state at the initial time is zero (typically, this situation occurs when 
one thinks in terms of transfer functions). For instance, with reference to the above 
system, one may write 

VLO = G{S)UL 

yL^yLo-^C{sI-A)-'x{0) 

Occasionally, the transfer function G{s) of a system E is explicitly related to one of 
its realizations by writing 

G{s) = E{A,B,C,D) 

or 
" A 

C 

B ' 
D 

G{s) 

The former notation basically has a compactness value, whereas the latter is mainly 
useful when one wants to display possible partitions in the input and/or output ma-
trices. For example, the system 

X = Ax + Biw -\- B2U 

z — Cix + D12U 

y = C2X + D21W 

is related to its transfer function G{s) by writing 

Gis) = 
• A 

Ci 

. '^2 

Bi 

0 

£•21 

B2 ' 

Du 
0 

When a purely algebraic (i.e. nondynamic) system is considered, these notations 
become 

G(s) = S(0,0,0,Z)) , ^ , ^ 
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Referring to the class of systems considered here, the transfer functions are in fact 
rational matrices of complex variable, namely, matrices whose generic element is a 
rational function, i.e., a ratio of polynomials with real coefficients. The transfer 
function is said to be proper when each element is a proper rational function, i.e., a 
ratio of polynomials with the degree of the numerator not greater than the degree of 
the denominator. When this inequality holds in a strict sense for each element of the 
matrix, the transfer function is said to be strictly proper . Briefly, G{s) is proper if 

lim G{s) ^ K < oo 

where the notation K < oo means that each element of matrix K is finite. Analo-
gously, G{s) is strictly proper if 

lim G{s) = 0 

A rational matrix G{s) is said to be analytic in Re{s) > 0 (resp. < 0) if all the 
elements of the matrix are bounded functions in the closed right (resp. left) half 
plane. 

In connection with a system characterized by the transfer function 

' A 

C 

B ' 

D 
G{s) 

the so-called adjoint system has transfer function 

G-{s) := G'{-s) 

(2.1) 

-A' 
B' 

-C ' 
D' 

whereas the transfer function of the so-called transpose system is 

G'{s) :-
' A' 

B' 
C" ' 
D' 

System (2.1) is said to be input-output stable if its transfer function G{s) is analytic 
in Re{s) > 0 (G(s) is stable, by short). It is said to be internally stable if matrix A 
is stable, i.e., if all its eigenvalues have negative real parts. 

Now observe that a system is input-output stable if and only if all elements of 
G(5), whenever expressed as ratio of polynomials without common roots, have their 
poles in the open left half plane only. If the realization of system (2.1) is minimal^ 
the system is input-output stable if and only if it is internally stable. 

Finally, the conjugate transpose of the generic (complex) matrix A is denoted by 
A^ and, if it is square, Xi{A) is its i-th eigenvalue, while 

rs{A) :=max|Ai(A)| 

denotes its spectral radius. 

2.3 Polynomial matrices 

A polynomial matrix is a matrix whose elements are polynomials in a unique unknown. 
Throughout the book, such an unknown is denoted by the letter s. All the polynomial 
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coefficients are real Hence, the element nij{s) in position (i, j ) in the polynomial 
matrix N{s) takes the form 

nij{s) = ajys"" 4- a^-i^' ' + ais + ao, ak E R , V/c 

The degree of a polynomial p{s) is denoted by deg[p(s)]. If the leading coefficient ajy 
is equal to one, the polynomial is said to be monic. 

The rank of a polynomial matrix N{s), denoted by rank[Ar(5)], is defined by 
analogy from the definition of the rank of a numeric matrix, i.e., it is the dimension 
of the largest square matrix which can be extracted from N{s) with determinant not 
identically zero. 

A square polynomial matrix is said to be unimodular if it has full rank (it is 
invertible) and its determinant is constant. 

Example 2.1 The polynomial matrices 

1 s + 1 
0 3 

N2{s) = s + 1 s - 2 
s + 2 s-1 

are unimodular since det[A/'i(s)]=det[A^2(5)]=3. 

A very peculiar property of a unimodular matrix is that its inverse is still a polynomial 
(and obviously unimodular) matrix. Not differently from what is usually done for 
polynomials, the polynomial matrices can be given the concepts of divisor Sind greatest 
common divisor as well. 

Definition 2.1 (Right divisor) Let N{s) be a polynomial matrix. A square polyno-
mial matrix R{s) is said to be a right divisor of N{s) if it is such that 

N{s) = N{s)R{s) 

with N{s) a suitable polynomial matrix. • 

An analogous definition can be formulated for the left divisor. 

Definition 2.2 (Greatest common right divisor) LetN{s) and D{s) be polynomial 
matrices with the same number of columns. A square polynomial matrix R{s) is said 
to be a Greatest Common Right Divisor (CCRD) of {N{s)^D{s)) if it is such that 

i) R{s) is a right divisor of D{s) and N{s), i.e. 

N{s) = N{s)R{s) 

D{s) = D{s)R{s) 

with N{s) and D{s) suitable polynomial matrices 

a) For each polynomial matrix R{s) such that 

N{s) = N{s)R{s) 

D{s) = D{s)R{s) 

with N{s) and L){s) polynomial matrices, it turns out that R{s) = W{s)R{s) 
where W{s) is again a suitable polynomial matrix. • 
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A similar definition can be formulated for the Greatest Common Left Divisor (GCLD). 
It is easy to see, by exploiting the properties of unimodular matrices, tha t , given 

two polynomial matrices N{s) and D{s), there exist infinite GCRD's (and obviously 
G O L D ' S ) , A way to compute a GCRD (resp. GCLD) of two assigned polynomial 
matrices N{s) and D{s) relies on their manipulation through a unimodular matr ix 
which represents a sequence of suitable elementary operations on their rows (resp. 
columns). The elementary operations on the rows (resp. columns) of a polynomial 
matr ix N{s) are 

1) Interchange of the i-th row (resp. i-th column) with the j - t h row (resp. j - t h 
column) 

2) Multiplication of the i-th row (resp. i-th column) by a nonzero scalar 

3) Addition of a polynomial multiple of the i-th row (resp. i-th column) to the j - t h 
row (resp. j - t h column). 

It is readily seen tha t each elementary operation can be performed premultiplying 
(resp. postmultiplying) N{s) by a suitable polynomial and unimodular matr ix T{s). 
Moreover, matr ix T{s)N{s) (resp. N{s)T{s)) turns out to have the same rank as 
N{s). 

R e m a r k 2.1 Notice that, given two polynomials ro(s) and ri(s) with deg[ro(5)]>deg[ri(s)], 
it is always possible to define two sequences of polynomials {ri{s), z = 2, 3, • • • ,p -h 2} and 
{gi(s), z = 1, 2, • • • ,p + 1}, with 0 < p <deg[ri(s)], such that 

ri{s) = qi^i{s)ri+i{s) -h r^^2{s) , z = 0,1, • • • ,p 

deg[ri+2(s)] < deg[ri+i(s) 

rp+2(5) = 0 

Letting 

T.{s) := 

T^{s) := 

I 1 

1 0 
-Qi{s) 1 

ni{s) := 

ni{s) := 

2 = 0 , 1 , -

ri-i{s) 
r^{s) 

ri{s) 
ri-i{s) 

i = 1,3, 5, • • 

2 = 2,4,6,--

T{S):=1[T,^,-,{S) 

and noticing that T(s) is unimodular (product of unimodular matrices), it turns out that 

T{s)ni{s) 

T{s)ni{s) 

0 

0 

p = 1,3,5, 

, p = 2,4,6. 

For instance, take ro{s) = s^ -h 2s^ — s + 2, ri(s) = s^ -\- s — 2. It follows that '̂1(5) = s, 
g2(s) = 8-1, r2{s) = 5^ + 5 -h 2 and rsis) = 0. D 

By repeatedly exploiting the facts shown in Remark 2.1, it is easy to verify tha t , given 
a polynomial matr ix N{s) with the number of rows not smaller than the number of 
columns, there exists a suitable polynomial and unimodular matr ix T{s) such tha t 

T{s)N{s) 
R{s) 

0 
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where R(s) is a square polynomial matrix. 

Algorithm 2.1 (GCRD of two polynomial matrices) Let N{s) and D{s) be two 
polynomial matrices with the same number, say m, of columns and with n^ and rid 
rows, respectively. 

1) Assume that m < rid-{-rim otherwise go to point 4). Let P{s) :— [D'{s) N'{s)Y 
and determine a polynomial and unimodular matrix T{s) such that 

R{s) 
0 Tis)Pis) 

Notice that T{s) can be partitioned as follows 

Tis) := 

} ' 

Tdiis) Tniis) 
Td2{s) r„2(s) 

rid columns 

2) Letting S{s) := T-'^is) and writing 

S{s) := 
Sdi{s) Sd2{s) 
Snl{s) Sn2{s) 

Ud columns 

it turns out 

D{s) = Sdi{s)R{s) 

N{s) = Sni{s)R{s) 

so that R{s) is a right divisor of both D{s) and N{s). 

3) It also holds that 
R{s) = Tdi{s)D{s) + Tni{s)N{s) (2.2) 

Hence, suppose that R{s) is any other right divisor of both D{s) and N{s). 
Therefore, for some polynomial matrices D{s) and N{s) it follows that D{s) — 
D{s)R{s) and N{s) = N{s)R{s). The substitution of these two expressions 
in eq. (2.2) leads to R{s) = [Tdi{s)D{s) +Tni{s)N{s)]R{s) so that R{s) is a 
GCRDoi{N{s),D{s)). 

4) If m > n^ + n^, take two matrices D{s) and N{s) both with m columns and rid 
and rin rows, respectively 

D{s) := [ 7 0 0 ] 

N{s) [I 0 0 ] 

and let 

R{s) := 
D{s) 
N{s) 

0 
(2.3) 

m — Ud — rin rows 
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Thus, D{s) = D{s)R{s) and N{s) = N{s)R{s). Hence, R{s) is a right divisor 
of both D{s) and N{s). Assume now tha t R{s) is any other right divisor, i.e. 
there exist two polynomial matrices D{s) and N{s) such tha t D{s) = D{s)R{s) 
and N{s) = N{s)R{s). By substi tuting these two last expressions in eq. (2.3) 
one obtains 

- D{s) 
R{s) := I N{s) I R{s), 

0 

so leading to the conclusion tha t R{s) is a GCRD of {N{s), D{s)). 

E x a m p l e 2.2 Consider the matrices 

^^^^ I 25^ + 95 + 5 25^ + 55 + 5 

N{s) = [ s^ + 1 s^ + 2s + 1 ] 

Now take 

Ti{s) 

Tsis) 

T5{s) 

Tris) 

1 0 0 
- 2 1 0 
- 1 0 1 

- 5 / 3 0 
1 0 

s/6 1 

0 0 1 
0 - 1 0 
1 0 0 

0 
14/103 

-196s/309 

T2(s) 

T4s) 

Teis) = 

Tsis) 

1 
0 
0 

1 
0 
0 

1 
0 
0 

0 
1 
0 

0 
1 
0 

0 
1 
0 

— 6 

- 1 1 
1 

0 • 

6 
1 _ 

0 
-51 /14 

1 

0 0 
1 0 

- 1 1 

Then 

T{s) = l[Ts-^{s) = 

(3s - 2)/2 s/6 
- (24s + 93)/103 (3s - 14)/103 

L (112s^ + 252s + 196)/103 {-Us^ + 28s + 14)/103 

D 

( 6 - l l s ) / 6 
(18s + 70)/103 

-(84s2 + 70s + 70)/103 

so that 

and 

Dis) 
N{s) 

Finally, notice that 

T{s)P{s) := T{s 

R{s) 

T-\s):=S{s) = 

1 (-17s2 + 6s + 6)/6 
0 s 
0 0 

1 (-17s2-h6s + 6)/6 
0 s 

Sdl(s) Sd2{s) 
Snlis) Sn2{s) 
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with 

Sdi(s) 
s{s - 1) (17s^ - 235^ + 6s + 6)/6 

2s^ + 95 + 5 (345^ + 141s^ + 31s - 54)/6 

Sni{s) = [ s ^ + l (17s^ - 65^ + 17s + 6)/6 ] 

It is then easy to verify that D{s) = Sdi{s)R{s) and that N{s) = Sni{s)R{s). • 

The familiar concept of coprimeness, easily introduced for polynomials, can be prop-
erly extended to polynomial matrices as follows. 

Definition 2.3 (Right coprimeness) Two polynomial matrices N{s) and D{s) hav-
ing the same number of columns, are said to be right coprime if the two equations 

N{s) = N{s)T{s) 

D{s) = D{s)T{s), 

where N{s) and D{s) are suitable polynomial matrices, are verified by a unimodular 
polynomial matrix T{s) only. • 

Example 2.3 The matrices 

N(^)=\ . 3 ^ £ 2 " \ , 1 , D{S)^ ^ ŝ  + 3s^ - s - 3 _̂  

are not right coprime. Actually, it turns out that 

N{s) = N{s)R{s) , N{s) = 

D{s) = D{s)R{s) , D{s) = 

2s^ + 6s + 4 
ŝ  + 3s^ + 2s 

r s - i 
[ ŝ  + 2s - 3 

' 2s + 4 ' 
ŝ  + 2s 

R{s) = s + 1 

and R{s) is not unimodular (det[i?(s)]=s + 1). Q 

Of course, an analogous definition can be stated for the left coprimeness. Definitions 
2.1-2.3 also yield that two matrices are right (resp. left) coprime if all their common 
right (resp. left) divisors are actually unimodular. In particular, each GCRD (resp. 
GCLD) of two right (resp. left) coprime matrices must be unimodular. In view of 
Algorithm 2.1, this entails that a possible way to verify whether or not two matrices 
are right (resp. left) coprime, is computing and evaluating the determinant of a 
greatest common divisor. As a matter of fact, if a GCRD (resp. GCLD) is unimodular, 
then all other greatest common divisors are unimodular as well. More precisely, 
if jRi(s) and R2{s) are two GCRD's and Ri{s) is unimodular, it results Ri{s) = 
W{s)R2{s), with W{s) polynomial. Since det[i?i(s)] 7̂  0 it follows that det[i^2(5)] 
7̂  0 as well. 

Again from Algorithm 2.1 (step 1) it can be concluded that two polynomial ma-
trices D{s) and N{s) with the same number of columns, say m, are right coprime if 
the rank of P{s) := [D'{s) N\s)Y is m for any s. As a matter of fact, coprimeness 
is equivalent to R{s) being unimodular so that Tdink[T{s)P{s)] must be constant and 
equal to m. Since T{s) is unimodular, rank[P(5)] must be constant and equal to m 
as well. 
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Lemma 2.1 Let N{s) and D{s) be two polynomial matrices with the same number 
of columns and let R{s) be a GCRD of {N{s)^ D{s)). Then, 

i) T{s)R{s) is a GCRD of{N{s), D{s)) for any polynomial and unimodular matrix 
Tis) 

a) If R{s) is an arbitrary CCRD of {N{s)^D{s)), then there exists a polynomial 
and unimodular matrix T{s) such that 

R{s) = T{s)R{s) 

Proof Point i) Being R{s) a GCRD of {N{s), D{s)) it follows that 

N{s) = N{s)R{s) , D{s) = D{s)R{s) 

N{s) = N{s)R{s) , D{s) = D{s)R{s) 

R{s) = W{s)R{s) 

where N{s)^ D{s), ^{^)^ ^{^) ^^^ W{s) are suitable polynomial matrices. Taken an 
arbitrary polynomial and unimodular matrix T{s)^ let R{s) := T{s)R{s). It follows 
that N{s) = N{s)R{s), N{s) = N{s)T-\s), D{s) = D{s)R{s), D{s) = D{s)T-^{s). 
Furthermore, it is R{s) = W{s)R{s), W{s) = T{s)W{s). Hence, R{s) is a GCRD of 
{N{s),D{s)) as well. 

Point a) If R{s) and R{s) are two GCRD's of {N{s)^D{s))^ then, for two suit-
able polynomial matrices W{s) and W{s)^ it results R{s) = W{s)R{s) and R{s) = 
W{s)R{s). From these relations it follows that rank[^(s)] < rank[i?(5)] < rank[^(5)]. 
Therefore, rank[i^(s)] = rank[^(5)]. Let now U{s) and U{s) be two polynomial and 
unimodular matrices such that 

U{s)R{s) 
H{s) 

0 
U{s)R{s) = 

H{s) 
0 

where the two submatrices H{s) and H{s) have the same number of rows equal to 
rank[i?(5)]. Consequently, 

H{s) 
0 

U{s)R{s) 

U{s)W{s)R{s) 

U{s)W{s)U-'^{s) 
H{s) 

0 

= r{s) 
H{s) 

0 

and 

H{s) 
0 

rii(s) ri2(s) 
r2i(s) r22(s) 

= U{s)R{s) 

= U{s)W{s)R{s) 

= U{s)W{s)U-\s) 

His) 
0 

(2.4) 

His) 
0 
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= f(.) H{s) 
0 

f l l ( s ) fi2(s) 
f2l(s) f22(s) 

H{S) 
0 

From eq.(2.4), (2.5) it follows that 

0 = T2i{s)H{s) 

0 = T2i{s)H{s) 

(2.5) 

(2.6) 

(2.7) 

Being R{s) and R{s) square, matrices H{s) and H{s) have ranks equal to the number 
of their rows, which is obviously not greater than the number of their columns. There-
fore, from eqs. (2.6) and (2.7) it follows that Tsijs) = f2i(5). Equations (2.4),(2.5) 
outline that matrices ri2(5), T22{s)^ ri2(s) and r2i(5) are in fact arbitrary. Hence, 
one can set r i2(5)=f 12(5) = 0 and T22{s) = 1̂ 22(5) = / . Based on these considera-
tions, one can henceforth assume that T{s) and f (5) have the form 

T{s) Til 0 
0 / 

f(s) f i i 0 
0 / 

so that, from eqs. (2.4) and (2.5) it follows 

His) 
0 

Til 
0 

Til 
0 

• H{s) -
0 

" f n 0 
0 1 

' - His) -
0 

In particular, it is H{s) = rii{s)Tii{s)H{s), so that, recalling the properties of H{s), 
it results / = r i i ( s ) r i i ( s ) . Hence, both r i i ( s ) and f i i (s) are unimodular, since 
their inverses are still polynomial matrices. The same holds for r (s) and f (s) as well. 
Finally, 

R{s) = U-'is) 
H{s) 

0 

u-Hs)fis) His) 
0 

= U-\s)f{s)U{s)R{s) 

:= T{s)R{s) 

and T{s) is actually unimodular since it is the product of unimodular matrices. • 

R e m a r k 2.2 In view of the results now proved and the given definitions, it is apparent 
that when the matrices are in fact scalars it results: (z) a right divisor is also a left divisor 
and vice-versa; (ii) two GCRD's differ only for a multiplicative scalar, since all unimodular 
polynomials p{s) take the form p{s) := a ^ R, a / 0; {Hi) two polynomials are coprime if 
and only if they do not have common roots. • 

Right coprime polynomial matrices enjoy the property stated in the following lemma, 
which provides the generalization of a well known result relative to integers and poly-
nomials (see also Theorem A.l). 
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L e m m a 2.2 Let N{s) and D{s) be two polynomial matrices with the same number 
of columns. Then, they are right coprime if and only if there exist two polynomial 
matrices X{s) and Y{s) such that 

X{s)N{s) + Y{s)D{s) (2.8) 

P r o o f Based on the results illustrated in Algorithm 2.1, it is always possible to write 
a generic GCDR R{s) of {N{s),D{s)) as R{s) = X{s)N{s)-\-Y{s)D{s). Moreover, if 
N{s) and D{s) are coprime, R{s) must be unimodular so tha t 

I = R-^i^s)R{s) 

= R-\s)[X{s)N{s) + Y{s)D{s)] 

= X{s)N{s)+Y{s)D{s), 

where X{s) := R-\s)X{s), Y{s) := R-\s)Y{s). 
Conversely, suppose tha t there exist two matrices X{s) and Y{s) satisfying eq. 

(2.8) and let R{s) be a GCRD of {N{s),D{s)), i.e. 

N{s) = N{s)R{s) , D{s) = D{s)R{s) 

It is then possible to write / = [X{s)N{s) + Y{s)D{s)]R{s) yielding 

R-\s) - X{s)N{s) + Y{s)D{s) (2.9) 

The right side of equation (2.9) is a polynomial matrix. This entails tha t R{s) is a 
unimodular matr ix so tha t N{s) and D{s) are right coprime. • 

E x a m p l e 2.4 Consider the two polynomial matrices 

N{s) 2s^ + 1 25 
s 1 

D(s) = [ 2s^ + s 2s^ ] 

They are right coprime. As a matter of fact 

X(5) 

y(5) := 

-Is-" - 2s^ + 1 
2s" + 2s^ + s^ 

2s^ + 2s 

- 2 s 
2s^ + l 

-2s^ - 2s^ - s - 1 

are such that X{s)N{s) + Y{s)D{s) = I. Moreover, taken 

T{s) :--

one can easily realize that it is unimodular and that 

T{s) 

with 

- . ^ 3 _ ^2 ^ ^ 

s^ -\-s 
—s 

—s 
1 
0 

s"^ -\-s 
- s - 1 

1 

N{s) 
D{s) 

R{s) 
0 

R{s) s' + l 

which is unimodular as well. 
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Of course, a version of the result provided in Lemma 2.2 can be stated for left co-
primeness as well. An important and significant canonical form can be associated 
with a polynomial matrix, namely the so called Smith form. This canonical form 
is formally defined in the following theorem whose proof also provides a systematic 
procedure for its computation. 

Theorem 2.1 (Smith form) Let N{s) be a n x m polynomial matrix and consider 
that rank[A^(s)] := r < min[n,m]. Then two polynomial and unimodular matrices 
L{s) and R{s) exist such that N{s) — L{s)S{s)R{s) with 

S{s) = 

ai{s) 
0 

0 
0 

0 
0:2(5) • 

0 
0 

0 
0 

• ar{s) 
0 

m — 

0 " 
0 

0 
0 _ }n-

r columns 

- r rows 

where each polynomial ai{s) is monic and divides the next one, i.e. ai{s)\ai^i{s), i = 
1,2, • • •, r — 1. Matrix S{s) is said to be the Smith form of N{s). 

Proof The proof of the theorem is constructive since the procedure to be described 
leads to the determination of the matrices S{s), L{s) and R{s). In the various steps 
which characterize such a procedure, the matrix N{s) is subject to a number of ma-
nipulations resulting from suitable elementary operations on its rows and columns, i.e. 
pre-multiplications or post-multiplications by unimodular matrices. These operations 
determine the matrices L{s) and R{s). For simplicity, let nij{s) be the (i,j) element 
of the matrix which is presently considered. 

1) Through two elementary operations on the rows and the columns of N{s), bring 
a nonzero and minimum degree polynomial of N{s) in position (1,1). 

2) Write the element (2,1) of N{s) as n2i{s) = nn(5)7(5) + /3(s), with l3{s) such 
that deg[/?(5)] <deg[nii(5)]. Now multiply the first row by 7(5) and subtract the 
result from the second row. In this way the (2,1) element becomes /3{s). Now, if 
f3{s) = 0 go to step 3), otherwise interchange the first row with the second one and 
repeat again this step. This causes a continuous reduction of the degree of the element 
(2,1) so that, in a finite number of iterations, it results n2i{s) = 0. 

3) As exactly done in step 2), bring all the elements of the first column but element 
(1,1) to zero. 

4) Through elementary operations on the columns bring all the elements of the 
first row but 77-11(5) to zero. 

5) If step 4) brought the elements of the first column under 7111(5) to be nonzero, 
then go back to step 2). Notice that a finite number of operations through steps 
2)-4) leads to a situation in which 77.11(5) 7̂  0, 77,̂ 1(5) = 0, z = 2,3, • • • ,71, 77,1̂ (5) = 
0, j = 2,3, • • •, 772. If, in one of the columns aside the first one an element is not 
divisible by 77,11(5), add this column to the first one and go back to step 2). At 
each iteration of the cycle 2)-5) the degree of 77-11(5) decreases. Hence, in a finite 
number of cycles one arrives to the situation reported above where 77,11(5) divides 
each element of the submatrix A î(5) constituted by the last m — I columns and 
77,-1 rows. Assume that 7211(5) is monic (otherwise perform an obvious elementary 
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operation) and let ai{s) = nii{s). Now apply to the submatrix Ni{s) (obviously 
assumed to be nonzero) the entire procedure performed for matr ix N{s). The (1,1) 
element will be now a2{s) and, in view of the adopted procedure 0:1(5) will be a 
divisor of 0:2(5). Finally 0^(5) 7̂  0, z = 1, • • • , r since an elementary operation does 
not affect the matr ix rank. D 

E x a m p l e 2.5 Consider the polynomial matrix 

N{s) 
s' + l 
5 + 1 

S^ +S 

and the two polynomial and unimodular matrices 

L{s) 

It follows that N{s) 

(s2 + l ) /2 s-1 
(s + l ) /2 1 

L{s)S(s)R(s) where 

S{s) :--

R{s) = 

0 
s' + s^ 

- 1 / 2 

2.4 Proper rational matrices 
This section deals with matrices F(s) whose elements are ratios of polynomials in the 
same unknown. Therefore, the generic element fij{s) of F{s) has the form 

a{s) ayS 
J^jy^) = UTS •= IT 

o^^-l Oj.- iS '^ ^H h O i 5 + Oo 

ai e R, i = 0 , 1 , • • •, î , Pi e R, z = 0 , 1 , • • • // 

The relative degree Te\deg[fij{s)\ of fij{s) is defined as the difference between the 
degree of the two polynomials which constitute the denominator and numerator of 
fij{s), respectively. Specifically, with reference to the above function, and assuming 
ô y ^ 0 and /3^ ^ 0, it is 

reldeg[/i^(s)] := deg[6(5)] - deg[a(5)] = /^ - u 

A rational matr ix F{s) is said to be proper (resp. strictly proper) if Te\deg[fij{s)] > 0 
(resp. reldeg[/ij(5)] > 0) for all z, j . Throughout the section it is implicitly assumed 
tha t the rational matrices considered herein are always either proper or strictly proper. 

The rank of a rational matr ix F{s) is, in analogy with the definition given for 
a polynomial matrix, the dimension of the largest square submatrix in F{s) with 
determinant not identically equal to zero. 

A rational square matr ix is said to be unimodular if it has maximum rank and 
its determinant is a rational function with zero relative degree. Hence, a unimodular 
rational matr ix admits a unimodular rational inverse and vice-versa. 

E x a m p l e 2.6 The matrix 

F{s) 
( 5 ' + 25 + 3)7(52-1) 

5/(5 + 1) 
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is unimodular. Actually, det[F(s)]= (-s^ + 4s + 3)/(s^ - 1). Moreover, 

F-\s) = (s^ - l)/{-s'' + 4s + 3) {-2s'' + 2)/{-s^ + 4s + 3) 
(-5=̂  4- 5)/(-s2 + 4s 4- 3) (s^ + 2s H- 3)/{-s^ + 4s + 3) 

The concepts of divisor and greatest common divisor^ already given for polynomial 
matrices, are now extended to rational matrices in the definitions below. 

Definition 2.4 (Right divisor) Let F{s) be a rational matrix. A rational square 
matrix R{s) is said to be a right divisor of F{s) if 

F{s) = Fis)R{s) 

with F{s) rational. • 

A similar definition could be given for a left divisor as well. 

Definition 2.5 (Greatest common right divisor) Consider two rational matrices 
F{s) and G{s) with the same number of columns. A Greatest Common Right Di-
visor (GCRD) of {F{s)^G{s)) is a square rational matrix R{s) such that 

i) R{s) is a right divisor of {F{s),G{s)), i.e. 

F{s) = F{s)R{s) 

G{s) = G{s)R{s) 

with F{s) and G{s) rational. 

a) If R{s) is any other right divisor of {F{s)^G{s)), then R{s) = W{s)R{s) with 
W{s) rational. 

D 

A similar definition holds for a Greatest Common Left Divisor (GCLD). By exploiting 
the properties of the rational unimodular matrices, it is easy to see that, given two 
rational matrices F{s) and G{s)^ there exist more than one GCRD (and GCLD). A 
way to compute a GCRD (resp. GCLD) of an assigned pair of rational matrices F{s) 
and G{s) calls for their manipulation via a rational unimodular matrix resulting from 
a sequence of elementary operations on their rows (resp. columns). The elementary 
operations on the rows (resp. columns) of a rational matrix F{s) are: 

1) Interchange of the i-th row (resp. i-th column) with the j-th row (resp. j-th 
column) and vice-versa 

2) Multiplication of the i-th row (resp. i-th column) by a non zero rational function 
with zero relative degree 

3) Addition of the i-th row (resp. i-th column) to the j-th row (resp. j-th column) 
multiplied by a rational function with zero relative degree 

Obviously, each of these elementary operations reduces to premultiplying (resp. post-
multiplying) matrix F{s) by a suitable rational unimodular matrix T{s). Moreover, 
matrix T{s)F{s) (resp. F{s)T{s)) has the same rank as F{s). 
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R e m a r k 2.3 Given two scalar rational functions f{s) and g{s) with relative degree such 
that reldeg[/(s)] < reldeg[5'(s)], then reldeg[p(s)//(s)] > 0. Hence, considering the rational 
unimodular matrix 

1 0 

it follows that 

T{s) 

T{s) 

£(£) 
m 

fis) 
0 

By recursively exploiting this fact, it is easy to convince oneself that, if a rational matrix 
F{s) does not have more columns than rows, it is always possible to build up a rational 
unimodular matrix T{s) such that 

T(s)F{s) = 
R{s) 

0 

with R{s) square and rational. Moreover, the null matrix vanishes when F{s) is square. • 

A GCRD of two rational matrices can be computed in the way described in the 
following algorithm, which relies on the same arguments as in Algorithm 2.1. 

A l g o r i t h m 2.2 Let F{s) and G{s) be two rational matrices with the same number, 
say m, of columns and possibly different numbers of rows, say Uf and Ug^ respectively. 

1) Assume first tha t m < Uf -\- Ug, otherwise go to point 2). Let H{s) := 
[F'{s) G^{s)y and determine a rational unimodular matr ix T{s) such tha t 

T{s)His) = Ris) 
0 

Then R{s) is a GCRD 

2) li m > Uf + Hg, then 

R{s) 
F{s) 
G{s) 

0 

is a GCRD 

E x a m p l e 2.7 Consider the two rational matrices 

F{s) = [ {s + l)/s 1/(5 + 2) ] 

D 

Take now 

Ti{s) 

Tsis) = 

G{s) 

1 0 
0 1 
0 0 

1 
0 

{s + l)/{s-l) s/{s' + l) 
1 s/{s^l) 

-{s + l)/s • 
- ( . + l ) / ( . - l ) 

1 

0 
1 

0 (s4 + s3 + 4 s ) / ( l - s 4 

T2{s) 
1 0 1 
1 0 0 
0 1 0 
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It follows that 

T3{s)T2{s)Ti{s) 
Fis) 
G{s) 

1 s/{s + 1) 
0 - ( s + l ) / (s + 2) 
0 0 

so that 

R{s) = 

G{s) 

1 s/(s + l) 
0 - ( s + l ) / (5 + 2) 

{s + l)/(s-
1 

1) (s^ + s^ + 4s)/{s^ 
0 

F{s)^[ {s + l)/s 1 

1) 

and F(s) = F(s)R{s), G{s) = G{s)R{s). D 

Also for rational matrices it is possible to consistently introduce the concept of co-
primeness. 

Def in i t ion 2.6 (Right coprimeness) Two rational matrices F{s) and G{s) with the 
same number of columns are said to be right coprime if the relations 

F{s) = Fis)Tis) 

G{s) = G{s)T{s) 

with F{s) and G{s) rational matrices, are verified only ifT{s) is a rational unimodular 
matrix. • 

E x a m p l e 2.8 The two matrices 

F{s) = 
s-l)/{s + lf (s2 + l ) / ( s+ l ) ( s2 + 3s) 

l/{s + l) s/{s'-l) 

G(s) = [ l / ( s + l) (2s + l ) / ( s + l)(s + 3) 

are not right coprime since it results 

F{s) (s- l ) / (^ + l) 
1 s/{s-l) 

R{s) 

G(s) = [ 1 (25 + l ) / (5 + 3) ]R{S) 

with R(s) — l / ( s + 1) which is not unimodular. • 

An analogous definition holds for left coprimeness. From Definition 2.6 it follows 
tha t two rational matrices are right (resp. left) coprime if all their common right 
(resp. left) divisors are unimodular. In particular, each GCRD (resp. GOLD) of 
two rational right (resp. left) coprime matrices must be unimodular. Therefore, a 
necessary condition for matrices F{s) and G{s) to be right (resp. left) coprime is 
tha t the number of their columns be not greater than the sum of the number of their 
rows (resp. the number of their rows be not greater than the sum of the number of 
their columns), since, from Algorithm 2.2 point 2) in the opposite case one of their 
GCRD would not be unimodular. Moreover, a way to verify whether or not two 
rational matrices are right (resp. left) coprime consists in the computation through 
Algorithm 2.2 of a greatest common divisor and evaluation of its determinant. As a 
mat te r of fact, as stated in the next lemma, if a greatest common divisor is unimodular 
then all the greatest common divisors are unimodular as well. 
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Lemma 2.3 Let F{s) and G{s) be two rational matrices with the same number of 
columns. Let R{s) be a GCRD of {F{s),G{s)). Then, 

i) T{s)R{s) is a GCRD for any rational unimodular T{s) 

a) If R{s) is a GCRD of {F{s)^G{s)), then there exists a rational unimodular 
matrix T{s) such that R{s) = T{s)R{s) 

Proof The proof follows from that of Lemma 2.1 by substituting there the term 
"rational" in place of the term "polynomial" and symbols F{s) and G{s) in place of 
N{s) and D{s)^ respectively. D 

A further significant property of a GCRD of a pair of rational matrices F{s) and 
G{s) is stated in the following lemma, whose proof hinges on Algorithm 2.2. 

Lemma 2.4 Consider two rational matrices F{s) and G{s) with the same number 
of columns and let R{s) be a GCRD of {F{s)^G{s)). Then, there exist two rational 
matrices X{s) and Y{s) such that 

X{s)F{s) -\-Y{s)G{s) = R{s) 

Proof Let Uf and Ug be the number of rows of F{s) and G(s), respectively, and m 
the number of their columns. Preliminarily, assume that uj -\- Ug > m and let T{s) 
be a unimodular matrix such that 

T{s) 
F{s) 
G{s) 

Tii(s) ri2(s) 
T2l{s) T22{s) 

Fis) 
Gis) 

Ris) 
0 

(2.10) 

Based on Algorithm 2.2, matrix R{s) turns out to be a GCRD of {F{s)^G{s)). 
Hence, thanks to Lemma 2.3, there exist a unimodular matrix U{s) such that R{s) = 
U{s)R{s), that is, in view of eq. (2.10), 

R{s) = U{s)Tn{s)F{s) + U{s)Ti2is)G{s) = X{s)F{s) + Y{s)G{s) 

On the contrary, if m > n / + n ,̂. Algorithm 2.2 entails that 

R{s) :--
Fis) 
G{s) 

0 

is a GCRD of {F{s),G{s)). In view of Lemma 2.3, it is possible to write 

R{s) = U{s)R{s) 

I 
F{s) + U{s) 

•.= X{s)Fis) + Y(s)G{s) 

where U{s) is a suitable rational and unimodular matrix. 

G{s) 

D 

The following result, that parallels the analogous one presented in Lemma 2.2, can 
now be stated. 
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L e m m a 2.5 Let F{s) and G{s) be two rational matrices with the same number of 
columns. Then, F{s) and G{s) are right coprime if and only if there exist two rational 
matrices X{s) and Y{s) such that 

X{s)F{s) + Y{s)G{s) = I 

P r o o f Recall tha t two matrices are right coprime if each one of their GCRD's is 
unimodular. Hence, if R{s) is a GCRD of {F{s)^G{s))^ thanks to Lemma 2.4, it 
results R{s) =X{s)F{s) + Y{s)G{s), with X{s) and Y{s) suitable rational matrices. 
From this last equation it follows 

/ = R-\s)X{s)F{s) + R-\s)Y{s)G{s) := X{s)F{s) + Y{s)G{s) 

Conversely, let R{s) be a GCRD of {F{s),G{s)) derived according to Algorithm 2.2 
point 1), as the number of their columns must be not greater t han the sum of the 
numbers of their rows, so tha t 

T{s) 
F{s) 
G{s) 

R{s) 
0 

where T{s) is a suitable rational and unimodular matrix. Hence 

Fis) 
G{s) 

R{s) 
0 

Sii{s) Suis) 

S2l{s) S22{S) 

R{s) 
0 

so tha t 
/ = X{s)F{s) + Y{s)G{s) = [X{s)Su{s) + Y{s)S2r{s)]R{s) 

shows tha t R{s) is unimodular (its inverse is rational). Therefore, {F{s)^G{s)) are 
right coprime. • 

E x a m p l e 2.9 Consider two rational matrices 

F{s) = [ 1/(5' + s) {2s^ + 2s - 2)/{s^ + 2s) ] 

G{s) - 5 / ( 5 + 1) 5/(5 + 1) 
(s^-s- l)/{s^ + s) {s^ + 2s + 2)/(s2 + 2s) 

These matrices are right coprime. Actually, 

Tis) 

where 

T{s) 

with p(s) := 2s^ — 3s — 2 and 

R{s) 

1 
p(s) 

F{s) 
G{s) 

s-" -s' -2s-l 
s^ + 2s^ + s 

R{s) 
0 

-s^ + s 
s^ + s^ 

s^ + s^ - s - 1 
- s ^ -2s^ -8 

„3 

s/(s + l) (s + l ) / ( s + 2) 
- 1 1 

that is a rational and unimodular matrix. Moreover, taking 

X{s) = 
1 

p{s)q{s) 
-2s^ - 9s' ̂ 13s^ - 8s - 2 

2s^ + 6s^ + 2s^ -Is^ -ls-2 
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and 

Y{s) 
p{s)q{s) 

-2s^ - 65^ - 45^ + 2s^ + 2s 2s^ + Ss"̂  + lOs^ + 2s^ As 

s^ + 35^ + 2s -5^ - 45^ - 5s - 2 

with q{s) := 2s^ + 4s + 1, it follows X{s)F{s) + Y(s)G{s) = / . D 

Also for rational matrices there exist a particularly useful canonical form., which is 
called Smith-McMillan form. This form is precisely defined in the following theorem, 
whose proof also provides a procedure for its computation. 

Theorem 2.2 (Smith-McMillan form) Let G{s) he a proper rational matrix with n 
rows, m columns and rank[G(s)]= r <min[n,m]. Then there exist two polynomial 
and unimodular matrices L{s) and R{s) such that G{s) = L{s)M{s)R{s), where 

M{s) 

his) 
0 

0 
0 

0 
/2(^) 

0 
0 

fr{s) 0 
0 0 n — r rows 

with 

and 

m — r columns 

• ei{s) and il^i{s) are monic, z = 1, 2, • • • r 

• ei{s) and tpi{s) are coprime i = 1, 2, • • • r 

• £i{s) divides £i-\.i{s), i = 1,2^''-r 

• ^pi-\-l divides ipi, i = 1^2,- • -r 

Matrix M{s) is the Smith-McMillan form of F{s). 

Proof Let 7/̂ (5) be the least common multiple of all polynomials at the denominators 
of the elements of F{s). Therefore, matrix N{s) := ilj{s)F{s) is polynomial. If S{s) 
is the Smith form of A (̂5) (recall Theorem 2.1) it follows that 

F{s) 
tP{s 

^ N{s) = -j^L{s)S{s)R{s) 

Hence, 

M{s) = 
5(£) 

once all the possible simplifications between the elements of ^(s) and the polynomial 
1/̂ (5) have been performed. This matrix obviously has the properties claimed in the 
statement. D 
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R e m a r k 2.4 The result stated in Theorem 2.2 allows one to represent a generic rational 
p X m matrix G{s) with rank[G(s)] :— r < m.m[m,p\ in the two forms 

G{s) = N{s)D-\s) = D-\s)N{s) 

where the polynomial matrices N{s) and D{s) are right coprime, while the polynomial ma-
trices D{s) and N{s) are left coprime. Actually, observe that letting 

^{s) : -

E{s) 

Ms) 
0 

0 

£1(5) 

0 

0 

0 

0 
£2{s) 

it follows 

M{s) = 
<^-\s) 0 

0 / 

E{s) 0 
0 0 

0 
0 

£r{s) 

E{s) 0 
0 0 

0 / 

Now, defining 

N{s) := L{s) 

N{s) :--

E{s) 0 
0 0 

E{s) 
0 

R{s 

D{s) :^R'\s) 

D{s) :-. 

^{s) 0 
0 / 

^(5) 0 
0 / 

L-\s) 

one can easily check that G{s) = N{s)D~^{s) = D~^{s)N{s). In order to verify that N{s) 
and D{s) are right coprime, one can resort to Lemma 2.2. Actually, considering the two 
matrices X{s) and Y{s) defined by 

X(s) 

Y{s) :--

xi{s) 
0 

0 

yi{s) 
0 

0 

0 
X2{s) ' 

0 

0 
y2{s) ' 

0 

0 
0 

•• Xr{s) 
0 

0 
0 

• yr{s) 
0 

0 
0 

0 
0 

0 
0 

0 
/ 

L-'{s) 

R{s) 

it turns out that X{s)N{s)-{-Y{s)D{s) = / for a suitable choice of the polynomials Xi{s) and 
yi{s) (recall that the polynomials i^i{s) and £i{s) are coprime and take in mind Theorem 
A.l). From Lemma 2.2 it follows that the two matrices N{s) and D(s) are right coprime. 
Analogously, one can verify that N{s) and D{s) are left coprime. • 
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E x a m p l e 2 .10 Consider the rational matrix 

1 
F{s) 

3s^ + Ts^ + 3s - 1 4s^ + Ss^ + 2s - 2 
2s^ + 4s^ + s - 1 3s^ + 5 5 ^ - 2 

Now applying what has been indicated in the proof of Theorems 2.1, 2.2 it follows that 
F{s) = L{s)M{s)R{s), with 

L(s) = 

R{s) = 

M{s) = 

' (3s2 + 4 s - l ) / 3 (6s + 5)/12 " 
(2s2 + 2 s - l ) / 3 (2s + l ) /6 

" 3 -2s^ - 3s^ + 2s + 6 ' 
0 4 

• (5 + l ) / ( 5 3 _ ^ 2 ) Q 

0 (s + l ) ' ( s + 2)/s _ 

Moreover, by following the arguments in Remark 2.4, 

E{s)-- s + 1 0 
0 (s + l)2(s + 2) 

^ ( s ) 
s 2 ( s - l ) 0 

0 s 

it turns out that 

N{s) = L{s)E{s) 
12 

4(3s^ + 7s'^ + 3s - 1) 6s^ + 29s^ + SOŝ  + 37s + 10 
4(2s^ + 4s2 + s - 1) 2(2s^ + 9s^ + 14s^ + 9s + 2) 

D{s) ^ R-\sMs) = ^ 
4(s^ - s) s(2s^ + 3s2 - 2s - 6) 

0 

N{s) = E{s)R{s) 

D{s) = "^{8)1-^3) 

3(s + l) -2 s^ 5s^ 

3s 

•s' + l ^ + 6 
0 4(s^ + 4s^ + 5s + 2) 

2s2(2s^ -s-1) -s^(6s2 - s - 5) 
-4s(2s2 + 2s - 1) 4s(3s2 + 4s - 1) 

Many of the results provided till now can be straightforwardly extended to the subset 
of proper, rational and stable functions, namely the subset constituted by the matrices 
whose generic element fij{s) is a proper, rational function with poles in the open 
left half plane only. This extension calls for the introduction of a suitable scalar 
associated with a generic proper rational scalar function f{s). Precisely, rhpdeg[/(5)] 
will indicate the number of finite nonnegative real part zeros of f{s) plus reldeg[/(5)]. 
For example 

_ is-l){s + 2) 

3 since reldeg[/(5)] = 2 and f{s) has a zero in 5 = 1. 

m 
is such tha t rhpdeg[/(5) 
Moreover, the function 

s + l 
is such tha t rhpdeg[/(5)] = 1, since f{s) has a zero in 5 = 0 and reldeg[/(5)] = 0. It 
will conventionally be set rhpdeg[0] = — co. Preliminarily, observe tha t the definitions 
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of divisor and greatest common divisors of rational matrices (Definitions 2.4 and 2.5) 
can be trivially generalized to the subset of stable matrices by actually requiring the 
stability property. As for the generalization of the concept of unimodular matrix T{s)^ 
it suffices requiring, besides the stability of T{s)^ also that rhpdeg[det[T(5)]] = 0. In 
this way, the stable matrix T{s) has a stable inverse as well. 

The three elementary operations on the rows (columns) of a rational matrix are 
extended to stable rational matrices by simply requiring that in the second operation 
the multiplying function f{s) be stable with rhpdeg[/(5)] = 0 and simply that in the 
third operation f{s) be stable. 

Lemma 2.6 Let f{s) and g{s) be two stable rational scalar functions with g{s) ^ 0 
and rhpdeg[/(5)] > rhpdeg[5f(5)]. Then, there exists a stable rational function q{s) 
such that 

rhpdeg[/(s) - gis)q{8)] < rhpdeg[g(s)] (2.11) 

Proof If rhpdeg[^(s)]= 0, then g~^{s) is rational, proper and stable so that equa-
tion (2.11) is obviously satisfied with q{s) = g~^{s)f{s). Therefore, suppose that 
rhpdeg[^(s)]:= u ^ 0 and write 

^ ng{s) ^ ng+{s)ng-{s) 
^^'^ ' dg{s) ' dg{s) 

where the polynomials ng{s) and dg{s) are coprime whereas ng~^{s) has roots in the 
closed right half plane only and ng~ {s) in the open left half plane only. Moreover, let 

dg{s) 

so that both h{s) and h~^{s) are proper stable rational functions. Of course, it results 

_ h{s)ng"'{s) 
3^')- (5 + 1). 

Also, write 

where the two polynomials nf{s) and df{s) are coprime. Notice that, being f{s) 
stable, the zeros of df{s) are in the open left half plane. This entails that df{s) and 
ng~^{s) are coprime. By exploiting Lemma A.2, one can claim that there exist two 
polynomials (/̂ (s) and '^(s) with deg[(/:?(5)]<deg[d/(5)] such that 

ng+{sMs) + rf/(s)V(s) = {s + l )^-^n/(s) 

From this relation it follows 

ng^{s)(p{s) ip{s) _nf{s) 

df{s){s + iy-^ ( . + l ) - i df{s) 

Let now 
__ {s+l)cp{s) 

^^ ' " df{s)h{s) 
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and observe tha t such function is rational, proper and stable. This conclusion derives 
from properness and stability of h~^{s) and the fact tha t if{s)/df{s) is strictly proper 
and stable. Moreover, let 

r{s) :--
(s + l ) -^ - ! 

then, 

q{s)g{s) + r{s) = (^ + lMs)d9is)ng^s)ngy) ^ V(s) 
(s + lYdf{s)ng- {s)dg{s) {s + l)-i 

+ 
V'(s) {s + l)^{s)ng+{s) 

nfis) 

dm 
= m 

Thus, being / ( s ) , g{s) and q{s) proper, rational and stable, the function r{s) = 
f{s) — q{s)g{s) is rational, proper and stable as well. Finally, recalling the definition 
of r{s), one can conclude tha t 

rhpdeg[r(5)] < ly — 1 < u = Thpdeg[g{s)] 

D 

R e m a r k 2.5 Lemma 2.6 allows one to discuss further what has been shown in Remark 
2.3, in the context of stable matrices. As a matter of fact, let f{s) and g{s) be two rational 
stable scalar functions with 

rhpdeg[/(s)] > rhpdeg[5'(s)] 

In view of Lemma 2.6 there exists a stable rational matrix q(s) such that 

rhpdeg[/(s) - q{s)g{s)] < rhpdeg[^(5)] 

Then, the unimodular stable matrix 

is such that 

Ti(s) ' f{s) • 

Ti{s) = 

= ' f(s 

1 -lis) 
0 1 J 

9is) 
• • = 

By iterating this operation with stable unimodular matrices of the given form (or, alterna-
tively, of the form corresponding to its transpose), one get 

n^"-'(*) fis) 
9{s) 

with either rhpdeg[/^(s)]= 0 or rhpdeg[^"^(s)]= 0. Assuming, for instance, that the first 
situation has occurred, it follows that 

n ^"-(«) m 
9{s) 

ris) 
0 
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where 

l-n+l 
1 0 

Then, one can conclude that, given two stable rational scalar functions f{s) and g{s), there 
exists a unimodular stable matrix T(s) such that 

T(.) 

with r{s) stable and rhpdeg[r(s)] = 0. 

9{s) 
r{s) 

0 

The arguments used in Remark 2.5 are well suited to be extended in the context of 
proper stable rational matrices. The same occurs for Lemmas 2.3, 2.4 provided tha t 
Definition 2.6 on coprimeness is adapted to this new setting. Wi th these arguments 
in mind, it is possible to s tate the following lemma, which specializes Lemma 2.5 to 
the case of stable rational matrices. 

L e m m a 2.7 Let F{s) and G{s) be two stable rational matrices with the same number 
of columns. Then F{s) and G{s) are right coprime (in the setting of proper stable 
matrices) if and only if there exist two stable rational matrices X{s) and Y{s) such 
that 

X{s)F{s)-^Y{s)G{s) = I 

E x a m p l e 2.11 Consider the two stable rational functions 

s + 2 

/w = 5 + 1 
9is) 

They are (right) coprime. Actually, taking 

5 + 1 
x{s) := y(s) := {s+ir 

2(5 + 2) 

it follows 
x{s)f{s) + y{s)g{s) = l 

On the other side, consider the stable unimodular matrix 

2(5 + 2)2 

T(5) :. 
1 0 

-{f{s))-'g{s) 1 

Then 

T(5) f{s) 
9{s) 

f{s) 
0 

with /(5) stable and unimodular. 

2.5 Poles and zeros 

This section is devoted to a schematic presentation of the main properties of the poles 
and zeros of a linear and time-invariant dynamic system E, 

X = Ax + Bu 

y — Cx + Du 
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with n states, m inputs and p outputs . It will be of main importance in the sequel to 
distinguish between two cases. In the first one, reference is only made to an input-
output description of the system, i.e to its transfer function 

whereas in the second case a state-space description of the system is considered. In or-
der to rule out trivialities and make simpler the exposition, it is assumed, throughout 
all the section, tha t G{s) has full rank, i.e. rank[G(5)]=min[p, m]:=r . 

Def in i t ion 2.7 (Zeros and poles of a rational matrix) Consider the rational ma-
trix G{s) and its associated Smith-McMillan form 

M{s) 

his) 
0 

0 

/2(^) 

0 
0 

fr{s) 0 
0 0 

with 

Ms) :- Ms) 
1,2,-

Ms)' 
and define the polynomials 7Tp{s) and 7Tzt{s) as 

7Tp{s) := ^i{s)lp2{s) • • • "Ipris) 

7Tzt{s) :^ ei{s)£2{s) • •'er{s) 

The poles of G{s) are defined as the roots of 7rp{s) and the zeros of G{s) as those of 

TTztis). • 

The definition of zeros and poles of G{s) coincides with tha t of transmission zeros 
and transmission poles of a system having G{s) as transfer function. As customary, 
the transmission poles will be simply referred to as poles of the system. 

Def in i t ion 2.8 Consider a linear time invariant system E with transfer function 
G{s). The transmission zeros (resp. poles) ofYl are the zeros (resp. poles) of G{s).U 

E x a m p l e 2 .12 Consider the linear system ^(A, B, C, D) defined by matrices 

0 
-10 

0 
1 

1 0 0 
7 0 0 
0 5 0 

-1 1 0 

B = 

C - 1 3 5 0 0 
0 0 1 0 

D 

The transfer function and its Smith-McMillan form are given by 

G{s) = 

Therefore there is only one transmission zero in 5 = 3 

( s - 3 ) ( s + l ) / ( 5 - 5 ) ( s - 2 ) 
( 5 - 3 ) / ( s - 5 ) 

5 + 1 1 
s-2 1 

( , _ 3 ) / ( , _ 5 ) ( , _ 2 ) 
0 
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Remark 2.6 In general, two polynomials ej{s) and ipi(s), i ^ j , can have common roots. 
This entails that a multivariable system may admit coincident poles and zeros even in case 
of minimallity of its state-space description. D 

The Smith-McMillan form of G{s) allows one for an alternative characterization of 
the transmission zeros in terms of vectors belonging to the kernel of G{s) or G'{s)^ as 
proved in the following lemma. 

Lemma 2.8 (Rank property of transmission zeros) Consider a transfer function 
G{s) of rank r := min[p, m]. The complex number X is a transmission zero of G{s) if 
and only if there exists a non zero vector z such that 

lim G{s)z = 0 if p>m 

lim G'{s)z = 0 if p <m 

Proof Consider first the case p > m and let M{s) be the Smith-McMillan form of 
G{s), so that G{s) — L{s)M{s)R{s), where L{s) and R{s) are suitable polynomial 
and unimodular matrices of dimensions p and m, respectively. It is possible to write 
(recall Remark 2.4) 

E{s)^-\s) 
0 

M{s) 

where E{s) := diag{si(s), • • • ,£^(5)}, ^(5) := diag{'0i(5), • • • ,7/;^(s)}. Further, de-
note by ek{h) the k-th. column of the /i-dimensional identity matrix and let A be 
a zero of G(s), root of the polynomial £k{s) of E{s). Since ipk{X) ^ 0 and R{X) 
is nonsingular, it then follows that z = R~^{X)ek{m) satisfies the condition of the 
theorem. 

Conversely, if there exists z / 0 such that G{s)z ^ 0 diS z ^ X, then, necessarily, 

E{X)lim^-\s)R{X)z = 0 

SO that A is a root of at least one of the polynomials £2(5), i — 1, • • • r. The proof of 
the lemma in the converse case {p < m) formally proceeds along the same route by 
replacing G{s) with G'{s). • 

A quite different definition of transmission zeros and poles makes reference to the 
minors of G{s). A /c-degree minor of a matrix A is the determinant of any square 
/c-dimensional submatrix of A. It is possible to prove that the polynomial T^p{s) of the 
poles of G{s) is given by the least common denominator of all the non zero minors 
of any order of G{s). Analogously, the polynomial iTztis) of the transmission zeros 
of G{s) is the greatest common divisor of all numerators of the minors of order r of 
G{s) provided that they have been adjusted so as to present the polynomial 7Tp{s) as 
their denominator. 

Remark 2.7 (Transmission zeros of a square system) In the particular case where 
G{s) is square, it follows (recall Theorem 2.2) 

det[G{s)] = ^ 
7rp(s) 

Notice, however, that the presence of possible cancellations avoids in general to catch all 
transmission zeros and poles of G{s) from its determinant. • 
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The transmission poles and zeros of a system E(^ , B, C, D) enjoy an important input 
output characterization. As for the transmission zeros, reference is made to the 
so caUed blocking property^ which deals with the possibility of getting identically 
zero forced output when the input is suitably chosen in the class of exponential and 
impulsive signals. Before formally stating the relevant result, it is advisable to stress 
that the transmission zeros of G{s) and G^s) actually coincides (recall the appropriate 
definition and Lemma 2.8). The same occurs for (transmission) poles. Let now 
indicate with S{t) := S^^\t) the impulsive "function" and with 6^^\t) its k-th order 
derivative (recall that (5)^—5^). Moreover define 

> m Af \ _ j ^{^) iip>m 

Theorem 2.3 (Time domain characterization of transmission zeros and poles) 
Let G{s) be the transfer function of a system H. Then 

i) The complex number X is a pole of E if and only if there exists an impulsive 
input 

. _ r s iip>m A . . . _ rGo 
• ~ \ E' [ip<m ' ^ ^ ^ ^ - \ G'( 

(2.12) 

u(t) = Y,<^^S^'\t) 
z=0 

ofTi, with ai suitable constants, ly >0, such that the forced output yf{-) offl is 

yf{t) = yoe^\ Vt > 0 

a) The complex number X is a transmission zero of E if and only if there exists an 
exponential/impulsive input 

u{t)=uoe^'^ya,6^'\t) 
i=0 

ofT,, with ai suitable constants, i^ > 0, UQ j^ 0, such that the forced output yf{-) 
ofTi is 

yf(t) = 0 , Vt > 0 

Proof Consider the Smith-McMillan form M{s) of G(s), introduced in Theorem 2.2, 
so that G{s) = L{s)M{s)R{s), where M{s) is the max[m,p] x r matrix M{s) = 
[disig{€i{s)/ipi{s)} Oy. The polynomial matrices L(s) and R{s) are unimodular. 
Denote by li{s) and r^(5) the i-th column and z-th row of L{s) and R{s), respectively. 
It turns out that 

yMs)^y,{s)u, VfLO 
i=l M^) 

Point i) Assume that A is a pole of G(s), i.e. a root of the polynomial ^pki^)-
Hence 7(5) := {s — X)~^ijjk{s) is a polynomial. Then the input UL defined as 

UL := R{s)-' 

0 

0 
7(5) 

0 
k-th. row (2.13) 
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is a polynomial vector since R~^{s) is a polynomial matrix. Therefore r[{s)uL = 
0,i ^ k and r^j^{s)uL = 7(5). It then turns out that yfLo = {s — X)~^lk{s)ek{s). Since 
A is not a root of ek{s)^ 

VfLo = yo(5-A)"^H-/3(5) 

where yo is a suitable constant vector and f3{s) a suitable polynomial vector. Trans-
forming back this expression in the time domain for t > 0, the conclusion follows. 

Conversely, assume that there exists an input, with polynomial Laplace transform 
UL, such that the Laplace transform of the forced output is y/Lo = yo{s — A)~^ +/3(s), 
being l3{s) a polynomial vector. Then 

VfLo = J2h{s)^/,{s)uL = yo{s - X)-' + P{s) 

This means that at least one polynomial ipi{s) must possess A as a root. 
Point ii) Assume now that A is a zero of G{s)^ root of the polynomial ek{s). 

Choose UL as in eq. (2.13) with 7(5) := {s — X)~^ipk{s)' Since A is not a root of il^k{s) 
such an input matches the form given in the statement. Moreover r[{s)uL = O^i ̂  k 
and r^j^{s)uL = {s — X)~^^lJk{s), so that yjLo — {^ — ^)~^h{s)sk{s) is a polynomial 
vector whose inverse Laplace transform is zero for strictly positive time instants. 

Conversely assume that there exists an input of the form UL = UO{S — A)~^ + / 3 ( S ) , 

with UQ ^ 0 constant and f3{s) polynomial such that 

VfLO = J2h{s)j^yAs){uo{s - A)-i + /?(.)) 

is polynomial. A little thought shows that, besides other things, 2//L0 inay well be 
polynomial only if A is a root of at least one polynomial ei{s). • 

The terminology adopted for the transmission zeros derives from the fact that 
they basically make reference to the transfer function (transmittance) of the system 
at hand. In the simple case of single input single output systems, the transfer function 
can be given the form 

^ ^ det[sl - A] 

where adj [5/—A] is the matrix whose generic element (i, j ) is given by the determinant, 
multiplied by (—1)*+-̂ , of the matrix obtained by {si — A) ruling out its j - t h row and 
i-th. column. The transmission zeros coincide with the roots of the numerator once all 
the possible cancellations between the polynomial Csidi[sI—A]B and the characteristic 
polynomial have been actually performed. As shown in the sequel, all the roots of 
Cadj[s/ — A]B -i- Ddet[5/ — A] are stiU properly called zeros of the system. These 
roots actually constitutes the so called invariant zeros. In the general multivariable 
framework, the definition of such zeros calls for the introduction of the polynomial 
matrix 

^[s) • ^ c D 

which is referred to as system matrix. 
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Def in i t ion 2.9 (Invariant zeros) Consider system E and let P{s) be the associated 
system matrix with v :=rank[P(5)] . Moreover, let S{s) be the Smith form of P{s), 
i.e. 

S{s) 

ai{s) 0 
0 a2{s) 

ay{s) 0 
0 0 

A complex number A is said to be an invariant zero ofT, if it is a root of the polynomial 

TTziis) := ai{s)a2{s) • • • ay{s) 

D 

R e m a r k 2.8 Notice that v 
computations show that 

P{s) := 

=rank[P(5)]= n+rank[G(s)]. As a matter of fact, simple 

si -A 
C 

si -A 
C 

-B ' 
D 

0 ' 
/ 

r 
{sI-A)-^ 0 

0 G{s) 
si -A -B 

0 / 

Therefore, the claim on the rank of P{s) is proved by noticing that in the right hand side 
of the above equation the first and last matrices above are nonsingular, while the remaining 
one has rank equal to n + rank[G(s)]. • 

Like the transmission zeros, also the invariant zeros admit a rank characterization, 
which in this case concerns the kernel of either P{s) or P'{s). 

L e m m a 2.9 (Rank property of invariant zeros) Let P{s) be the system matrix of 
a system H with transfer function G{s) = C{sl — A)~^B -\- D with rank[G(s)] = 
min[^, m] . The complex number A is an invariant zero of the system if and only if 
P{s) looses rank in s = X, i.e. if and only if there exists a nonzero vector z such that 

P{X)z -
P'{\)z 

0 
= 0 

if p>m 
ifp<m 

P r o o f Consider first the case p > m and let S{s) be the Smith form of P{s)^ so tha t 
P{s) — L{s)S{s)R{s), where L{s) and R{s) are suitable polynomial and unimodular 
matrices of dimensions p-\-n and n-\-m, respectively, whereas S{s) is as in Definition 
2.9. Let ek{h) be the k-th. column of the /i-dimensional identity matrix. Recall also 
tha t matr ix R~^{s) is polynomial and unimodular as well. Hence, if A is an invariant 
zero of the system, root of the polynomial ak{s) in S{s), then it is P{X)z = 0 with 
z = R~^{X)ek{n + m) . Conversely, if there exists z ^ 0 such tha t P{X)z — 0, then, 
necessarily, S{X)R{X)z = 0, which in tu rn implies tha t A is a root of at least one 
polynomial ai{s), since R{X)z 7̂  0. 

The proof in the case p < m develops along the same lines, once P{s) has been 
replaced by P\s). D 
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s 
10 
0 

- 1 
13 
0 

- 1 
5 - 7 

0 
1 
5 
0 

0 
0 

s - 5 
- 1 
0 
1 

0 
0 
0 

5 - 6 
0 
0 

0 
- 1 
- 2 

0 
1 
1 

E x a m p l e 2 .13 Consider again the system defined in Example 2.12. It results 

P{s) 

As for the effective computation of the invariant zeros, one can actually utilize the result 
stated in Lemma 2.9, by looking for the vectors z = [zi Z2 • • • z^]' in the kernel of P(A), 
i.e. those vectors z such that P{X)z = 0. A nonzero solution of the relevant equations can 
be found only if A = 3 or A = 6, which are therefore invariant zeros. Recall (Example 2.12) 
that only A = 3 is a transmission zero. D 

As apparent from their definition, the invariant zeros are not affected by a change 
of basis in the state space, as stated in the following lemma. 

L e m m a 2.10 (Invariant zeros vs. changes of basis) The set of the invariant zeros 
of a system SI is invariant with respect to a change of basis. 

P r o o f If the triple ( A , 5 , C ) , with A - TAT'^, B = TB, C - CT'^, describes, 
together with matr ix D, system E in a new basis, it follows 

si-A 
C 

-B ' 
D 

" T O " 
0 I 

'sI-A 
C 

-B ' 
D 

- J.-1 

0 
0 
/ 

P{s) 

so tha t P{s) and P{s) have the same Smith form. Hence both systems D(A, 5 , C, D) 
and ^ ( A , B^C^D) have the same invariant zeros. • 

Also the invariant zeros enjoy a blocking property, which stems on the existence of 
an exponential input yielding identically zero forced output . 

T h e o r e m 2.4 ( Time domain characterization of invariant zeros ) The complex 
number A is an invariant zero of E if and only if at least one of the two following 
conditions holds 

i) A is an eigenvalue of the unobservable part ofT^; 

a) there exist two vectors XQ and IXQ 7̂  0 such that the forced output of E corre-
sponding to the input u 
zero for t > 0. 

uoe^^^t > 0 and initial state x(0) = XQ is identically 

P r o o f It is sufHcient to prove the theorem in the case p > m, since the proof in the 
converse case easily follows by replacing E with E ' . Hence assume E = E. 

Let now A be an invariant zero of E and let P{s) be the system matrix. Thanks 
to Lemma 2.9 there exists a non zero vector z = [v' w'Y such tha t P(A)2; = 0, i.e. 

(A/ - A)v 

Cv + Dw 

Bw 

0 

(2.14) 

(2.15) 

Letting x(0) := v and UQ := w, it is now verified tha t the input u{t) = we^^ produces, 
together with the initial s tate x{0) = v, an identically zero output for t > 0. The 
Laplace transform of the input is UL = {s — X)~^w and tha t of the s tate is XL = 
{sI-A)-^[v^Bw{s-X)-'^]. Eq. (2.14) entails {s-X)-'^Bw = {s-X)-\XI-A)v, so 
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that XL = {s-X)~^v and, from eq. (2.15), [CXL-\-DW{S-X)-'^]{S-X) = yL{s-X) = 0. 
Since y{0) = 0 (eq. (2.15)), the conclusion is drawn that y{t) = 0, t > 0. In particular, 
if It; ^ 0 then condition ii) is verified, whereas, if î  = 0, then eqs. (2.14),(2.15) entail, 
in view of the PBH test, that condition i) holds. 

Conversely, assume without any loss of generality (recall Lemma 2.10), that the 
system at hand is from the very beginning in the standard Kalman canonical form 
for observability, i.e. 

Ai 0 
A2 A3 

B 
B2 

C=[Ci 0 

where the pair (yli, Ci) is observable. If condition i) holds (namely A is an eigenvalue 
of A3) choose 2: = [0 ^' 0]', where ^ ^ 0 is such that {XI - A^)^ = 0. Then, obviously, 
P{X)z = 0 so that A is an invariant zero of E. If condition ii) holds, let, according to 
the structure of A, XQ := [XQI Xo2]̂  Being y^ = 0, it follows 

Ci{sl-Ai)-' ^01 + 
BIUQ 

{s-X) + 
DUQ 

(s-X) 
0 

By noticing that 

{sI-Ai) ^xoi = 
I - {si - A,)-\XI - A,) 

{s-X) 

y{0) = Cixoi + Duo 

- ^ 0 1 

it then follows 
Ci{sl - A,)-'[{XI - Ai)xoi - Biuo] = 0 

The first term of such an equation is the Laplace transform of the (free) output of 
the system E(Ai,0,Ci,0) when the initial state is {XI — Ai)xoi — BIUQ. Since this 
system is observable it follows that {XI — Ai)xoi — BIUQ = 0. Choose 

z :- [ ^01 e 
where ^ := {XI —A3) ^(A2^oi + ^2'^o)- Obviously, P{X)z = 0 so that A is an invariant 
zero of E. D 

The theorem above points out the circumstances under which the output of E is 
zero for all t > 0. Actually, a part from the trivial case of zero initial state and input, 
the output of E can be such if and only if E possesses invariant zeros. As already 
said, for SISO systems the invariant zeros are the roots of Cadj[(5/ — A)~^]B + 
Ddet[{sl — A)] whereas (in general) only a part of these roots are transmission zeros. 
This relationship holds for MIMO systems as well. 

Theorem 2.5 (Invariant vs. transmission zeros) A transmission zero of a system 
E is also an invariant zero of E. 

Proof Consider first the case p > m and let A be a transmission zero of E. Thanks 
to Theorem 2.3 there exists an exponential/impulsive input 

u{t) 
i=0 

aiS^'\t) 
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with ai and UQ ^ Q suitable constants, such that the forced output of E is, Vt > 0, 

Vf 
-̂ 0 i=o 

Letting 

xo := [ B AB A'^B 
Oil 

it follows that 

Ce^^x^ = C [ e^^'-^^By2ai6^'\T)dT 

so that 

Vf (t) = Ce'^^xo + / e'^^^-^^Buoe^^dr + Duoe^^ = 0 , Vt > 0 
Jo 

This last expression coincides with the output response of system E when the initial 
state is x(0) = XQ and the input is u{t) — UQC^^. Such response is obviously continuous 
from the right, so that the output is zero at t = 0 as well. Theorem 2.4 ensures that 
A is an invariant zero of E. 

The proof of the Theorem in the case p < m can be derived in complete analogy 
by considering system E' instead of E. D 

The following result clarifies and completes the relationships between transmission 
and invariant zeros. 

Theorem 2.6 ( Transmission vs. invariant zeros of a system in minimal form ) 
The transmission and invariant zeros of a reachable and observable system do coin-
cide. 

Proof As already seen in Theorem 2.5, a transmission zero is also an invariant zero. 
It is then left to show the converse statement when (A, B) is reachable and (A, C) 
is observable. Consider the case p > m since the other case is easily proved by 
transposition. Let A be an invariant zero. Thanks to Lemma 2.9 there exists a nonzero 
vector z = [v' w'Y such that P{X)z = 0. Notice that ii w = 0 and v ^ 0^ then this 
condition implies that Av = Xv and Cv = 0, contrary to the observability assumption 
of {A^C) (recall Lemma D.l). Hence w ^ 0. Moreover, thanks to Theorem 2.4, the 
system response when the initial state is x(0) = v and the input is u{t) — we^^ is 
identically zero, i.e. 

C .At^ .At + Dwe^'^ = 0 , Vt > 0 (2.16) ty^ f e^^'-^^Bwe^'-dr 
Jo 

Recalling Theorem 2.3, A is a transmission zero if there exists an input of the form 

V 

i =0 
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which yields an identicahy zero forced output (for t > 0), i.e. if 

Hence the theorem is proved if one shows that there exist real coefficients ai such 
that 

u 

= Ce^' Yl ^ '^^^ , Vt > 0 (2.17) 

Any vector a := [a^ a[ • • • a'^^Y such that 

[ B AB • • • AB^ ] a = i; 

satisfies eq. (2.17). Notice that a vector a exists corresponding to ly = n — 1 since 
(A, 5 ) is reachable so that the Grammian matrix [B AB • • • AB^~^] has full row 
rank. D 

The invariant and transmission zeros do not exhaust the totality of zeros which 
can be defined for a system. Actually, consider an unobservable system with p < m. It 
may well happen that an eigenvalue of the unobservable part, say A, is such that P{X) 
does not loose rank. Associated with such an eigenvalue there exists an eigenvector 
(initial state) x(0) such that the free motion of the output ?/(•) is identically zero. 
Therefore the complex number A can be still considered as a zero of the system, whose 
nature is different from that of the zeros previously introduced . In complete analogy, 
an unreachable system D, with p > m, can admit an eigenvalue of the unreachable 
part, say A, which is such that the associated system matrix P{X) does not loose rank. 
Hence A is not an invariant zero. However, it is well known that there exists an initial 
state for E' (eigenvector associated with A) capable of zeroing the free output of E'. 
Again, A can be fairly considered as a zero of system E. Such zeros will be referred 
to as decoupling zeros. 

Definition 2.10 (Output decoupling zeros) Consider E(A, ^ , (7 , D) a n-dimensi-
onal system and the polynomial matrix 

Pc{s) := 

Let 

Sc{s) = 

sI~A 
C 

diag{af(s)} 
0 

be the Smith form of Pc{s)- A complex number A is said to be an output decoupling 
zero if it is a root of the polynomial 

a^{s):=a?{s)a^{s)---a^{s) 

a 
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Definition 2.11 (Input decoupling zeros) Consider'S{A, B,C,D) a n-dimension-
al system and the polynomial matrix 

PB{S) -.^[SI-A -B] 

Let 
SB{S) - [ diag{af (s)} 0 ] 

he the Smith form of PB{S). A complex number A is said to be an input decoupling 
zero if it is a root of the polynomial 

a^{s)-af{s)a^{s)--^a^{s) 

D 

Definition 2.12 (Input-output decoupling zeros) Consider T,{A,B^C^D) a sys-
tem, its associated polynomial matrices Pc{s), PB{S) with their Smith forms Sc{s) 
and SB{S), and the polynomials a^{s) and a^{s), respectively. A complex number A 
25 said to be an input-output decoupling zero if it is a root of both polynomials a^{s) 
anda^{s). D 

The decoupling zeros are not aflFected by a change of basis in the state-space of 
the system as it can be checked by resorting to the same arguments exploited in the 
proof of Lemma 2.10. Further, they can be characterized in terms of the kernels of 
Pc'(A) and ^^(A). The relevant results are presented in the following lemmas given 
without proofs since completely similar to that of Lemma 2.9. 

Lemma 2.11 (Rank property of the output decoupling zeros) A complex num-
ber A is an output decoupling zero if and only if there exists z ^ 0 such that 

PcWz = 0 

Lemma 2.12 (Rank property of the input decoupling zeros) A complex number 
A is an input decoupling zero if and only if there exists w ^ 0 such that 

P'B{X)W = 0 

Lemma 2.13 (Rank property of the input-output decoupling zeros) A complex 
number A is an input-output decoupling zero if and only if there exist z 7̂  0 and w ^^ 
such that 

PcWz = 0 

P'B{X)W = 0 

In Tables 2.1 and 2.2 the definitions and basic properties of the zeros introduced so 
far are schematically illustrated. 

Remark 2.9 Based on Lemmas 2.11-2.13, and on the PBH tests relative to observability 
and reachability (Lemmas D.l- D.2), it is straightforward to realize that a system in minimal 
form does not possess decoupling zeros. • 

It is worth pointing out that the given definitions put in relief possible relations 
between invariant and decoupling zeros. In fact, if the number of inputs does not 
exceed the number of outputs, it is immediately seen that the output decoupling 
zeros are invariant zeros as well. Analogously, in the converse case, i.e. when the 
number of outputs is not greater than the number of inputs, the input decoupling 
zeros are particular invariant zeros. However, as shown in the example below, there 
may well happen that a system has decoupling zeros which are not invariant. 
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1 Type ' 

Transmission 

Invariant 

Output 
decoupling 
Input 
decoupling 

Input — output 
decoupling 

Definition 

^.t(A) = 0 

7Tz^{X)=0 

a^(A) = 0 

a^(A) = 0 

Rank property 

lim G{s)z = 0 if p> m 

lim ^ '(5)^ = 0 ifp<m 

P{\)z = 0 iip>m 
P'[\)z = {) i f p < m 

Pc{X)z = 0 

P^(A)z = 0 

Pc{X)z = 0 

Table 2.1: Rank properties of the zeros 

Type 

Transmission 

Invariant 

Output 
decoupling 
Input 
decoupling 

Input — output 
decoupling 

Definition 

7r.t(A) = 0 

7^.^(A)=0 

a^(A) = 0 

a^(A) = 0 

a ^ ( A ) = 0 

Output property 

x(0) = 0 , 3«(-) ^ 
y/(t) = 0 , Vf > 0 

x(0) == 0 , M-) ,„ f. 
yit) = 0 , Vi > 0 °' ' ^ 
ax(o) ^ 0 , «(•) = 0 
y(t) = 0 , Vi > 0 °^^ 
3x(0) ^ 0 , «(•) = 0 , 
y(i) = 0 , vt > 0 °' ' ^ 
3x(0) 7̂  0 , u{-) = 0 E 
y(i) = 0 , Vf > 0 ° ' ' E' 

Table 2.2: Output properties of the zeros 

E x a m p l e 2 .14 Consider again the system defined in Example 2.13. It is obvious that 
the invariant zero A = 6 is also an output decoupling zero. However, there exists an input 
decoupling zero, A = 5, which is not invariant. Actually, matrix P(5) has full rank (equal to 
five), even though the first four rows are linearly dependent, so that PB{S) = [si — A — B] 
looses rank for s = 5. • 

It should be now evident the relation existing between invariant and decoupling zeros 
when the system at hand is square. 

L e m m a 2 .14 (Decoupling vs. invariant zeros for square systems) Consider a sys-
tem with the same number of inputs and outputs (square system). Then the set of 
decoupling zeros is a subset of the set of invariant zeros. 

P r o o f If A is a decoupling zero, one or bo th of the two matrices Pc{s) and PB{S) 
must loose rank for s = A. Hence matr ix P{s) looses rank in s = A as well. • 

In case of nonminimal systems, the set of invariant zeros does not coincide with 
tha t of transmission zeros. Moreover, there may be decoupling zeros which are not 
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invariant. These fact motivates the definition below. 

Definition 2.13 (System zeros) The set Zg of system zeros is defined as 

ZJQ = l^i U Z/i—Q U z^Q—i U Z^IQ 

where Zi is the set of transmission zeros, Zi^o is the set of input decoupling zeros 
which are not also output decoupling, Zo-i is the set of output decoupling zeros which 
are not also input decoupling, and Zio is the set of input-output decoupling zeros. • 

Lemma 2.15 The set of invariant zeros of a system H(^, ^ , C, D) is a subset of the 
set of the system zeros. 

Proof The lemma will be proved in the case p > m, as the converse case being easily 
handled by transposition. One has to show that if A is an invariant zero, it is also 
either a transmission or a decoupling zero. Without any loss of generality, assume 
that the system is decomposed accordingly to the Kalman canonical decomposition. 

A 

Ai 
0 
0 
0 

A2 
A, 
0 
0 

^ 3 

0 
Ai 
0 

AA 

As 
Ag 

, B = 

Bi 

B2 
0 
0 

C = [ 0 Ci 0 C2 ] 

where Ti{A^^B2,Ci,D) constitutes a subsystem which is completely observable and 
reachable. Of course, if A belongs to the unreachable and/or unobservable part of the 
system, then it is a decoupling zero, so that the proof would be over. 

Let A be an invariant zero and assume that it is not an eigenvalue of any of 
the matrices Ai, A^^ AQ. Then, there exists z 7̂  0 such that P{X)z = 0, with 
z := [z[ z'2 z'^ z'^ u!^. Since A is not an eigenvalue of A9, it turns out that 2:4 = 0 so 
that 

{XI-A^Y^Z2-B2U^ = ^ , CiZ2 + i^^o = 0 

Hence A is a transmission zero of the reachable and observable part ^(As, ^2 , Ci^D) 
of the system, and hence of the system itself, provided that [2̂2 UQY ^ 0. If it were 
not so, it would happen that {XI — Ai)zi — A^zs = 0 and {XI — A'^)zs = 0. Since A is 
not an eigenvalue neither of A^ nor of Ai, it would follow zi = 0 and 2̂3 = 0 so that 
2; = 0, a contradiction. • 

Remark 2.10 In view of Lemma 2.15 and Theorem 2.4 it is easy to conclude that the 
set of systems zeros coincides with that of invariant zeros, relative to square systems. If in 
addition the system is in minimal form, the three sets (of transmission, invariant and system 
zeros) do actually coincide. • 

At the light of what has previously been said, the set of system zeros constitutes 
the totality of the zeros defined till now. It can be expressively partitioned in its 
subsets, as shown in fig. 2.5 with reference to the case 7n> p^ m— p^ and m < p. In 
the figure, the symbols ,̂ i, d ,̂ do, dio denote, respectively, the transmission, invariant, 
input decoupling, output decoupling and input-output decoupling zeros. The presence 
of one of this symbols in a part of the figure indicates that this part is contained in 
the set of the zeros under consideration. 

This section ends with a brief discussion on the concept of inverse system in the 
simple case where p — m and det[D] 7̂  0. For the more general case, the reader is 
referred to specialized texts. 
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m > p t , i 
i , di 

t , Clio 

i , do do 

m = p t , i 
i , di 

0 , Clio 

i , do 

m <p t , z 
i , di 

I , fl^o 

i , G ô 

Ĉz 

Figure 2.1: The zeros of a system 

Definition 2.14 (Inverse system) Consider a square system T>{A, B^C, D) such 
that det[i^] y^ 0. Then, the inverse system is 

^inv • — 

where F := A - BD'^C, G := BD-^, H := -D-^C, E := D' 

' F 

H 

G ' 

E 

D 

The reason why system T^inv is called the inverse system can be simply explained 
as follows. Let H and T^inv be described by 

X — Ax + Bu 

y = Cx -\- Du 

and 

i = {A- BD-^C)^ + BD-^v 

respectively. Now, build up the series connection of the systems, according to the 
following two cases: 

i) u — y^ so that Tiinv follows D (system E^^^E) 

ii) u = 9j 80 that E^^^ precedes E (system EE^^v) 

In the first case, letting z :— ^ — x it follows 

z = {A-BD-^C)z 

0 = -D-^Cz^u 

whereas in the second 

z = Az 

y = -Cz + u 
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In both cases, the transfer function of the resulting system is the identity. Hence, if 
G{s) is the transfer function of E, the transfer function of E^^^ is exactly G~^{s). 

Theorem 2.7 Consider a square system T^{A^B,C,D) where D is nonsingular and 
let 

^inv b^ ^̂ ^ associated inverse system. Then: 
i) The set of transmission zeros of E coincides with the set of poles of T^inv (it^d, 

conversely, the set of poles of E coincides with the set of transmission zeros of 
y. 

a) The set of eigenvalues of E coincides with the set of invariant zeros of T^inv (J^f^d, 
conversely, the set of invariant zeros of E coincides with the set of eigenvalues 

Proof Point i) It suffices to verify that, if M(5) is the Smith-McMillan form of the 
transfer function of E, then TM~^{s)T is the Smith-McMillan form of the transfer 
function of E^^^, where 

T — 

' 0 0 -
0 0 • 

0 1 • 
1 0 -

• 0 1 " 
• 1 0 

• 0 0 
• 0 0 _ 

The conclusion then follows from the definition of poles and transmission zeros (Def-
initions 2.7 and 2.8). 

Point a) Assume that A is an invariant zero of E^^^, i.e. (A/ —{A — BD~^C))wi — 
BD~^W2 = 0 and —D'^Cwi + D~^W2 = 0, with w := [w[ W2Y 7̂  0. These equations 
imply that wi ^ 0 and Awi = Xwi^ so that A is an eigenvalue of E. Also these 
considerations can be easily reversed. Finally, assume that A is an invariant zero 
of E, i.e. (A/ - A)wi - Bw2 = 0 and Cwi + Dw2 = 0 with w := [w[ i<;̂ ]' ^ 0. 
Hence W2 — —D~^Cwi, wi ^ 0^ so that (A — BD~^C)wi = Xwi implies that A is 
an eigenvalue of E^^^- Reversing the procedure proves the validity of the converse 
statement as well. • 

2.6 Singular values 

In this section, some of the most significant properties of the singular values of a 
matrix are reported along with the so-called singular value decomposition. Reference 
is made to constant vectors and matrices with complex elements. Recall that the 
symbol """' denotes the operation of conjugate transposition. The norm adopted for 
vectors is the one induced by the usual inner product in C^. 

Definition 2.15 (Singular values of a matrix) Let A he a n x m complex matrix. 
The square roots ai{A)^i — l , - - -m of the eigenvalues of A^A are called singular 
values of A. • 

Notice that the singular values of A are real and nonnegative, since A'^A is a hermitian 
and positive semidefinite matrix. Of course, m—rank [A] singular values of A are in 
fact zero. The singular values of A can be put into evidence by the so-called singular 
value decomposition of A^ whose existence is established in the theorem below. Its 
proof, which is reported in Appendix B, is based on a few preliminarily steps that 
provide a way, although not optimal for the computational burden, to determine such 
a decomposition. 
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T h e o r e m 2.8 (Singular value decomposition) Let A be a n x m matrix such that 
rank [A] = k. Then, there exist two unitary matrices U and V such that 

U^AV = S 

where the only nonzero elements of S are those in positions {i,i)^i 
elements are positive and nonincreasing. 

l,'--k. Such 

The elements of S in positions i = 1, • • •, min[n,m], are the singular values of A. 
Further, 

A-'A = VS^U^USV^ = VS^SV^ = VDV^ 

where D — diag{cr^(^), i = 1, • •' ? '^}- Of course, if m > n, matr ix A possesses at 
least m — n singular values at the origin. The greatest and least singular values of 
A are indicated with o[A) and gi{A)., respectively. The unitary matrices U and V 
specify the singular value decomposition of A. 

R e m a r k 2.11 Based on Theorem 2.8, matrix S has the same dimensions as A and exhibits 
the following structure 

r [ A 0 ] if n<m 

A 
0 

if n : 

if n > m 

The " meaningful" part of S is therefore constituted by the diagonal matrix A with dimension 
min[n,7n]. For such a reason, the singular value decomposition is sometimes presented in a 
different way, distinguishing two different situations: 

1) Case n > m : There exist two matrices Ui and V of dimensions n x m and m x m, 
respectively, such that A = [/iAl/~, with V^V = VV^ = I and U^Ui = L The 
diagonal matrix A is ?7i-dimensional and contains the singular values of A. 

2) Case n < m : There exist two matrices U and Vi of dimensions n x n and m x n, 
respectively such that A = f /AVr, with U^U = UU"^ = I and ViVC = L The 
diagonal matrix A is n-dimensional and contains the singular values of A. 

With reference to what said in Theorem 2.8, it is immediate to check that U = [Ui U2], 
S=[A 0]\ if n > m whereas V = [Vi V2], S = [A 0], if n < m. D 

R e m a r k 2.12 The pseudoinverse of A can be found in a very simple way once the singular 
value decomposition of A is known. Actually, let 

U^AV = S = 
E 0 
0 0 

with S square and nonsingular. Letting 

B:=V 
0 0 

[/^ yrt/^ 

it follows that 

BAB = VTU^USV^VTU^ = VTSTU^ = VTU^ = B 

ABA = USV^VTU^USV^ = USTSV^ = USV^ = A 

These relations show that B is the pseudoinverse of A. 
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The most significant properties of the singular values of a matrix are reported in the 
following lemmas. The symbol ||x|| indicates the usual norm induced by the inner 
product in C"̂ , i.e. ||x|p = x""x and recall that Xi{A) is the i-th eigenvalue of A and 
rs{A) is the spectral radius of A. The proof of the following lemmas are reported in 
Appendix B. 

Lemma 2.16 Given a matrix A, the following relations hold: 

V 
a(^) = m a x M 

^#0 ||x|| 

2) 

g:{A) = mm \ - ^ 
x#o \\x\\ 

Lemma 2.17 Let A be a matrix. Then a {A) = ^{A"") 

Lemma 2.18 Let A be a square matrix. Then 

1) 
a{A) < \K{A)\ < a{A) 

2) 

rM) < HA) 

Moreover, if A is nonsingular, then 

3) 
a{A) = ^ 

a{A) 

a{A-^) 

1 
4) 

Finally, if A is hermitian, then 

5) 

rs{A)=a{A) 

Lemma 2.19 Let a e C be an arbitrary scalar and A a matrix. Then, 

ai{aA) = \a\ai{A) 

Lemma 2.20 Let A and B be two matrices with the same dimensions. Then, 

a{A + B) < a{A) + a{B) 

Lemma 2.21 Let A and B be two matrices such that AB makes sense. Then, 

a{AB) < a{A)a{B) 

Lemma 2.22 Let A and B be two matrices with the same dimensions. Then, 

g:{A) - a{B) < a{A + B) < a{A) + a{B) 
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Lemma 2.23 Let A and B he two matrices with the same number of rows. Then, 

max[a(A),a(5)] <^{[ A B ]) < V2max[a(A), a(5)] 

Lemima 2.24 Let A he a square matrix. Then, 

Y^G'1{A) = trace [A^ A] 

The quantity \\A\\F := ^JiY^ce{A^A) is the so called Frobenius norm of A. 

Lemma 2.25 Let m he the numher of columns of a matrix A and denote hy Aij its 
element in position {i^j). Then, 

max|yl^j| < ^{A) < 77imax|^^j| 

2.7 Basic facts on linear operators 

In this section some facts on the theory of linear operators are recalled. Since no 
confusion can arise in the present context, the term linear will be often disregarded. 

Definition 2.16 (Operator) A (linear) operator T is a linear map acting hetween 
two linear spaces. • 

For an operator T \ X ^Y acting between two normed linear spaces X and F , it is 
possible to introduce the notion of houndedness^ norm and continuity. 

Definition 2.17 (Boundedness of an operator) Let X andY he two normed linear 
spaces and T : X ^ Y an operator. This operator is said to he hounded if there exists 
a constant M such that 

\\Tx\\ <M| |x | | , V X G X (2.18) 

D 

Definition 2.18 Let X and Y he two normed linear spaces and T : X —> Y a hounded 
operator. The smallest constant M satisfying eq. (2.18) is called norm of T and 
denoted hy \\T\\. U 

Remark 2.13 Thanks to linearity and Definitions 2.17, 2.18, the norm of an operator can 
be significantly characterized as follows 

| | r | | = s u p ^ = sup llTô ll 

In the particular case where T is actually a complex matrix, it follows, in view of Lemma 
2.16, that ||T|| = a ( r ) . D 

Definition 2.19 (Continuous operator) Let X and Y he two normed linear spaces 
and T : X -^Y an operator. If, chosen a vector ^ ^ X, for any 5 > 0 there exists a 
^ > 0 such that 

\\x-i\\<8=^\\Tx-n\\<e 

then T is said to he continuous. • 
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The concept of rank^ which is well understood for operators defined in finite dimen-
sional spaces, can be extended to the general case as follows. 

Def in i t ion 2.20 (Rank of an operator) Let X and Y be two normed linear spaces 
and T : X ^ Y an operator. The rank of T is the dimension of the closure of the 
range ofT. D 

Also the concept of eigenvalue and eigenvector, which are familiar in the context 
of linear operators in finite dimensional spaces (matrices), can be extended in an 
analogous way. 

Def in i t ion 2 .21 (Eigenvalue and eigenvector of an operator) Let T : X ^^ X be 

an operator and A a complex number. If 

Tx = Xx, x ^ O 

then A and x are called eigenvalue and eigenvector of T, respectively. • 

R e m a r k 2 .14 It is well known that, in the case of finite dimensional spaces over the field 
of complex numbers, an operator admits at least one eigenvalue. This is not true, in general, 
if X is not finite dimensional. For example, the operator J (integral) acting on the space of 
polynomials p{s) with real coefficients defined as 

^ ^ i+i 
J : J ^ a i s ' ^ ^ O i ^ 

i=0 i=0 

does not admit eigenvalues. Actually Jp{s) = \p{s) holds only for p{s) = 0. On the contrary, 
the (derivative) operator D acting again in the space of polynomial with real coefficients, 
defined as 

n n 
D : y aiS^ \-^ y iaiS^~ 

z=0 i=0 

admits A = 0 as an eigenvalue, since Dp{s) = 0 for p{s) = ao / 0. Furthermore, if the 
rank of the operator is finite, then it admits at least one eigenvalue even if X is not finite 
dimensional. • 

If T : X —> y is a bounded operator and X and Y are Hilbert spaces (so tha t suitable 
inner products are there defined along with the induced norms), it is possible to 
define the adjoint operator of T, hereafter indicated with T*. To this aim, consider 
an operator T \ X ^ Y and the map S \=Y ^^ X defined by the equation 

< Tx , y > = < X, Sy > , Vx G X, My eY 

The map S is easily shown to be a linear and bounded operator. Hence the following 
definition is in order. 

Def in i t ion 2 .22 (Adjoint operator) Let X and Y be two normed linear Hilbert 
spaces with the norm induced by the (relevant) inner products. Let T : X ^ Y 
be a bounded operator. The adjoint operator T* is defined by 

< Tx,y>=< x,T*y > , Vx G X, VT/ G F 

D 

The linear operators enjoy a number of useful properties, some of them gathered in 
the following theorem, whose proof can be easily found in any specialized text . 
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Theorem 2.9 Let X and Y be two linear Hilhert spaces and let T : X ^ Y and 
S '.Y ^ X two hounded operators. Then, 

1) T* is hounded and \\T\\ = ||T*||. 

2) ||T*T|| = | | r r* | | = \\Tf. 

3) [T + sy = r* + s'*. 

4) IfaeC, {aTy = a-T\ 

5) ( r5 )* = 5'*T*. 

6) IfT-^ exists and is hounded, then (T"^)* = (T*) -^ 

7) (T*)* = T . 

A particular case occurs when an operator T : X ^ X coincides with its adjoint. In 
this case T is said to be self-adjoint. For example, the operator T'^T is self-adjoint: 
its eigenvalues, if any, are real and nonnegative. 

2.8 Functional spaces of rational matrices 

The present book often refers to some functional spaces whose elements are proper 
rational matrices endowed with peculiar properties. To say the true, these elements 
could be viewed as belonging to suitable subspaces of more general linear spaces whose 
elements are not necessarily rational functions. However, undertaking this broader 
perspective is not strictly necessary in the present context, so that the exposition is 
restricted to the smaller world of rational functions. 

Being the elements of the spaces under consideration rational matrices, it should 
be necessary, for a more rigorous notation, to indicate time by time the dimensions 
of the relevant matrices. However, this choice is completely useless, since the context 
widely clarifies the dimensions of the matrices under consideration. Therefore, it will 
be said that the n x m matrix A belongs to X instead of X"^^^, and so on and so 
forth. Consistently, the identity (resp. null) matrix will be simply indicated by / 
(resp. 0). 

Definition 2.23 (The space RLoo) The set of the rational matrices F{s) such that 

sup \\F{juj)\\ = supa[F{ju;)] < oo 

constitutes the space RL^. D 

Definition 2.24 (Norm in RL^o) Let F{s) he an element of RL^. The norm of 
F{s) is the scalar 

\\F{s)U:=snpa[FiJLo)] 

D 

Remark 2.15 Based on the given definitions it should be obvious that a matrix belongs 
to RLoo if any element is a proper rational function without poles on the imaginary axis. In 
the scalar case, the norm coincides with the peak value of the frequency gain. • 
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An important subspace of RLoo is tha t of the rational matrices which are bounded 
in the right half plane. 

Def in i t ion 2.25 (The space RHoo) The set of rational functions F{s) such that 

< oc sup \\F{s) 
Re{s)>0 

constitutes the space RH^ D 

R e m a r k 2.16 In view of the given definitions, it results that the elements of RHoo are 
rational, proper and stable matrices. Moreover, being RHoo a subspace of RLoo, the norm 
adopted for the former can be the same as that utilized for the elements of the latter. Further, 
thanks to a well known property of analytic functions, if F(s) G RHoo, then 

\F{s) sup \\F(s) 
Re(s)>0 

E x a m p l e 2.15 Let consider the functions 

Fi{8) 

F4is) 

Fj{s) 

s + 1 
(s + 2 ) (s -3 ) 

(s + 2)(s + 3) 

1 

F^is) = 

F,{s) = 

1 

s 

s + 1 

Fsis) = 
1 

Feis) = 

4) (s + l ) / ( s ^ + 4 ) 
is-l)/{s + 2) 

s - 1 

1 

s + 1 

Fsis) -. 
s/{s + 3) 
l / ( s - l ) 

F 9 ( s ) = [ l ( 5 - l ) / ( s + l) l / ( s + 2 ) ] 

Among these functions, Fi(s), ^3(5), ^4(5), ^5(5), Eeis), Fgis) and ^9(5) belong to RL, 
whereas ^4(5), ^5(5), Feis) and ^9(5) belong also to RHoo-

'00 5 

D 

In the space RH^Q there are functions which are particularly meaningful. Among 
them, the so called inner and outer functions are the object of the two definitions 
below. 

Def in i t ion 2.26 (Inner function) A function F{s) G RH^ is said to he inner if 

F-{s)F{s) = I, \/s 

D 

Def in i t ion 2 .27 (Outer function) A function F{s) G RH^o is said to be outer if 
there exists a function X{s), analytic in Re{s) > 0, such that 

F{s)X{s) = / , V5 

D 

R e m a r k 2 .17 The definition of outer function can be equivalently formulated by requiring 
that F{s) has full row rank for any s with Re{s) > 0. Obviously, if F{s) is a square matrix 
belonging to RHoo together with its inverse, then it is outer. Moreover, if F{s) and G{s) 
belong to RHoo and are left coprime in the setting of proper stable matrices, then matrix 
[F{s) G{s)] is outer. 

In the restricted case of scalar functions, it is readily seen that a function F{s) G RHoo is 
inner if lims_,oo F{s) = 1 and the zeros and poles are symmetrically positioned, with respect 
to the origin, in the complex plane. On the other hand, a function F{s) G RHoo is outer 
(minimum phase) if it has no zeros with positive real part. • 
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It is possible to prove tha t any matr ix F{s) e RHoo can be decomposed in the product 
of an inner matr ix and an outer matr ix (inner outer factorization). Precisely, given 
F{s) it is always possible to find two matrices Fi{s) and Fo{s) such tha t F{s) = 
Fi{s)Fo{s). In the scalar case, such a decomposition is simply performed in the way 
indicated in the proof of the following theorem. 

T h e o r e m 2.10 (Inner outer factorization of scalar functions) Let F{s) G RH^Q 
be a scalar function. Then, there exist a scalar inner function Fi{s) and a scalar 
outer function Fo{s) such that 

F{s) = F,{s)Fo{s) 

Moreover, if F{juj) ^ 0, 0 < cc; < oo, then F~'^[s) e RHoo-

P r o o f Let z^, z = 1, 2, • • •, i/ be the zeros of F{s) with positive real parts (taken with 
their multiplicity). Moreover, let 

F^{s) := n S - Zi 

s-\- 2;; 

Fo{s) :--
F{s) 

Observe tha t the zeros of Fo{s) are the zeros of F{s) with nonpositive real part and 
the opposite of the zeros of F{s) positive real part . Hence, if F{s) does not have zeros 
on the extended imaginary axis, then rhpdeg[Fo(5)] = 0, so tha t F~^{s) G RH^. • 

E x a m p l e 2.16 Let consider the functions 

s + 1 ' ' s + 1 

Fi{s) and ^3(5) are inner, whereas ^1(5), ^2(5) and ^5(5) are outer. The function ^4(5) 
is neither inner nor outer. For this function, take ^4^(5) = (s — l) / (5 + 1) and F40 = 
(s + l ) / ( s + 2), so that ^4(5) == F4i(s)F4o(s). Since F[s) has no zeros on the extended 
imaginary axis, the function FAO{S) admits as inverse an element of RHoo- D 

Another meaningful subspace of RLoo is now defined. 

Def in i t ion 2 .28 (The space RL2) The set of rational functions F{s) such that 

1 f^ 
-— / tTSice[F^{ju;)F{ju;)]duj < 00 
27r7_oo 

constitutes the space RL2. • 

It is easy to figure out tha t , taken two rational functions F{s) and G{s)^ both belong-
ing to RL2^ the scalar 

1 Z * ^ 
— / iYd.ce[G^{juj)F[juj)]du) < 00 
^^ J - 0 0 

27r 

satisfies all axioms which characterize the inner product, so tha t the following defini-
tion is in order. 
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D e f i n i t i o n 2 .29 ( Inner p r o d u c t in RL2) The inner product of two functions of RL2 
is defined as 

1 f^ 
< G{s), F{s) >= — / ivace[G-{juj)F{ju;)]du; 

D 

The space RL2 is therefore a pre-Hilbert space. To say the t rue, it is possible to show 
tha t RL2 is complete, and this implies tha t it is actually a Hilbert space. Accordingly 
to what said before, the norm in RL2 can be induced by its inner product. 

D e f i n i t i o n 2.30 ( N o r m in RL2) Let F{s) be an element of RL2. The norm of F{s) 
is the scalar 

r 1 r^-^ 1 /̂̂  
\\Fm2 '=\^J tv^ce[F-{JLu)F{juj)]du;\ 

D 

The space RL2 can be decomposed into the direct sum of two subspaces, RH2 and 
RH^, i.e 

RL2 = RH2 e RHi^ 

where the subspaces RH2 and RH2^ are defined as follows. 

D e f i n i t i o n 2 .31 (The subspaces RH2 and RH^) The subspace RH2 is constituted 
by the functions of RL2 which are analytic in the right half plane. Conversely, the 
subspace RH2 is constituted by the functions RL2 which are analytic in the left half 
plane. • 

R e m a r k 2.18 The given definitions imply that a matrix belongs to RL2 if its elements 
are strictly proper rational functions without poles on the imaginary axis. It belongs to RH2 
(resp. RH2) if its elements are strictly proper rational functions without poles in the closed 
right (resp. left) half plane. Obviously, it turns out that RH2 C RHoo • n 

R e m a r k 2.19 The elements in the spaces RL2, RH2 and RH^ (which are rational func-
tions of complex variable) can be related to the elements of the spaces RL2{—oo 00), 
RL2[0 00), and RL2{—oo 0], which are functions of the real variable t. Such functions are 
characterized by having rational Fourier transform and being square integrable in the inter-
vals (—00 00), [0 00), and (—cx) 0], respectively. Moreover, the elements of RL2{—oo 0] 
and RL2[0 00) are zero for t > 0 and t < 0, respectively, so that both of them be-
long to RL2{—oo oc). Notice that any element of RL2{—oo 00) can be uniquely written 
as the sum of an element of JRL2[0 CXD) and one of RL2{—oo 0]. Hence RL2{—oo 00) = 
RL2[0 oo)®RL2{-oo 0]. 

For example, the matrix of functions for which there exists the integral 

/»oo 

/ e-^"f{t)dt:=FiJco) 
Jo 

and such that 

/ tY8ice[f\t)f{t)]dt < 00 
Jo 

is an element of RL2[0 00), which can be put into correspondence with the element F(s) G 
RH2, provided that this matrix is rational. D 
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E x a m p l e 2 .17 With reference to the functions Fi{s) defined in Example 2.15, it follows 
that i^i(s), Fs{s), ^4(5) and Feis) are elements of RL2. Moreover, ^4(5) and FQ{S) are also 
elements of RH2 and Fs(s) is an element of RH^. Finally, notice that 

Fi{s) s + 1 
(5 + 2 ) ( s - 3 ) 5(s + 2) 5 ( s - 3 ) 

Fis(s) + Fia{s) 

where Fis{s) G RH2 and Fia{s) G RH^. Hence, an element of RL2 has been shown to equal 
the sum of a stable function and an antistable one. • 

R e m a r k 2.20 In linear system theory, the norm of a function in RH2 lends itself to 
particularly significant characterizations. To put them into light, consider the time-invariant 
system 

X = Ax-\- Bw, x(0) = 0 

z = Cx 

and assume that it is completely reachable and observable. If the matrix A is stable, its 
transfer function F{s) is an element of RH2. Now, consider the ?72-dimensional input vector 
w^'^\t) = 6{t)ei{m), where i = l , - - -m, ei{m) is the i-th column of the m-dimensional 
identity matrix and 6{t) is the "impulsive" function. Let z^^^ be the corresponding forced 
response of the output z and Z^'^\juj) its Fourier transform. One wants to evaluate the 
quantity 

Ji 
z = l ^ 0 

Z^'^dt 

By exploiting the well known Parceval theorem and the properties of the trace operator, it 
follows 

\\F{s) 
1 f°° 

= ^ / trace [F'{-jio)F{jw)] dw 
J —00 

/»oo '"^ 

— / y ^ ei{my F' {-juj)F{ju)ei{m)duj 
'^ J - 0 0 .^1 

/»oo '"^ 

L / ^ z W ' ( - j c . ) Z « ( i c ^ ) d a ; 

"̂ ^ /»oo 

= ^ / z^^'z^^dt^ 

27r 

27r 

= Ji 

As for the computation of the scalar J i , observe that 

trace 
/•OO I*' 

e^(m)'B'e^''C'Ce'^'Be^{m) dt 

so that 

Ji trace 

trace 

e^{rn)'B'e^''C'Ce'^'Bei(m) 

e'^''C'Ce^'Ber{m)ei(myB' 

dt 

dt 

-f 
Jo 

trace e^^'C'Ce"^' Y^ Bei{m)ei{m)'B' dt 
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-f 
Jo 

trace e'^'^C'Ce'^'BE' dt 

= trace 

= trace 

/»oo 

3' / e^'*C' 
Jo 

• / 

Ce^'dtB 

C I e^'BB'e^''dtC' 

(2.19) 

(2.20) 

As well known, the value of the last two integrals which appear in eqs. (2.19),(2.20) can be 
computed by resorting to two suitable Lyapunov equations. More precisely, it follows 

trace 

trace 

/»oo 

B' / e^''C' 
Jo 

Ce^'dtB 

•f 
Jo 

C I e^'BB'e^''dtC' 

• trace [B'POB] 

= trace [CPrC] (2.21) 

where Po and Pr are the unique solutions of the Lyapunov equations (in the unknown P) 

0 = A'P + PA-^ C'C 

0 = A P + PA' + BB' 

respectively. As a matter of fact, stability of A implies that these equations admit a unique 
solution, which is also positive semidefinite (recall Lemma C.l). 

Consider again the system defined at the beginning of this remark and let now the input 
It; be a white noise with identity intensity. Associated with such a system, consider the 
quantity 

J2 := lim E [z {t)z{t)\ 

It follows that 

J2 = lim E [trace [ /( t)z(t) l l 

= lim E [trace [;^(t);2'(t)]] 

= lim trace 
t—VOO 

= lim trace 
t—>-oo 

lim trace 
t—»-oo 

E / ^{t,T)w{r)dT w\a)^\t,a)da\ 
iJo Jo J 

/ <^(t,T) / E[w{T)w\(7)]^\t,a)dadT 
Jo Jo 

[/• 
Uo 

$( t , r ) ^ ' ( t ,T )d r 

where ^(C, t?) := Ce^^^~'^''B. Letting rj = t — r one obtains 

J2 = lim trace \C / e"^""BB'e^'^'dr^C' 
L - 'o 

trace 
Jo 

C I e^''BB'e^'''dr]C' 

where the last equality follows from what previously shown. Finally, consider again the 
system fed by a white noise w with identity intensity, and let 

J3 — lim i -E / z zdt\ 
LJO J 
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Prom the analysis performed for the scalar J2, one can easily check that 

E[z{t)z{t)] = trace C / e^'^^^'e'^^dryCM = trace [CP(t)C7'] 

with 

P(t) := / e^''BB'e^'''dr] (2.22) 

Therefore, 

P(0) = 0 

P{t) = e'^'BB'e^'' 

so that, taking into account eq. (2.22), it follows 

P{t) = AP{t) + P{t)A' + BB' 

By integrating both sides of this equation from 0 to T and recalling that P(0) = 0, one gets 

P{T) = / P{t)dt = A P{t)dt + / P{t)dtA' + BB'T 
Jo Jo Jo 

Letting 

X{T) := j P{t)dt 

it then follows that 
^ 0 

'^=A^^^A^BB' (2.23) 

Observe that, thanks to eq. (2.22), it is 

lim P(T) = lim / e^'^BB's^'^'dr} = Pr j T ^ - o o T-^-oo 

SO that, taking the limit as T —> co of both members of eq. (2.23), it turns out that 

0 = A y + YA' + BB' (2.24) 

where 

y •= lim ^ 

Since the solution of eq. (2.24) is unique, one can conclude that Y — Pr and consequently 

Remark 2.20 also indicates how the computation of the norm of a function in the 
space RH2 can be actually performed. As a mat te r of fact, it is sufficient to solve 
a Lyapunov equation. Of course, the problem of computing the norm of a function 
F{s) in RH2, is easily solved by observing tha t G{s) :— F^{s) e RH2 and tha t 

1 /"^ 
I|i^(^)ll2 = ^ y tmce[F-{JLj)F{ju;)]du; 

1 f^ 
^ 2n tmce[F{ju;)F^{juj)]duj 

1 f ^ 
= —- / traice[G^{ju;)G{JLo)]duj 

27r J_oo 
l|G(.)ll^ 
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Hence, the norm of F{s) G RH2 can be computed by solving a Lyapunov equation 
associated with G{s) = F'"{s) G RH2. 

Finally, the problem of computing the norm of a function F{s) in the space RL2 
is easily solvable by writing a decomposition of such a function into the sum of an 
element of RH2 and another one in i?iJ2' . The following result is then provided, 
whose proof is obvious and then omitted. 

T h e o r e m 2.11 Let F{s) = Fa{s) + Fs{s) with Fa{s) e RH^ and Fs{s) e RH2. 
Then, 

i) <Fa{s),Fs{s)>=0 

E x a m p l e 2 .18 Consider the function 

Letting 

^^'^ = is^l)(s-l) ^ ^ ^ ^ 

Fa{s) := ,rr-^-, , Fs{s):^ 
2 ( s - l ) ' ^ ^ • 2(s + l) 

it follows that F{s) = Fs{s) + Fa{s) and Ga{s) := F^is) = -1 /2 (5 + 1). With the func-
tions Fs{s) and Ga{s) let associate the two (minimal) realizations T,{As, Bs,Cs,Ds) and 
T>(Aa,Ba,Ca,Da), respectively, with Aa ^ As = - 1 , Ba = Bs = 0.5, Cs = 1, Ca = - 1 and 
Ds = Da = 0. It turns out that 

\\F.{s)\\l = \\G4s)\\l = I 

SO that 

\\Fm2 = I 

R e m a r k 2.21 It is worth noticing that the norm of a generic function F{s) G RLoo co-
incides with that of a suitable function F{s) G RHoo, which is easily derived from F{s). 
Actually, notice that the least common multiple of all denominators of the elements of F{s), 
denoted by ip{s), can be always factorized as ip{s) := ipa{s)ips{s), where, since F(s) G RLoo, 
the polynomial ipa{s) has all its roots in the open right half plane and ips{s) has all its roots 
in the open left half plane. Hence, if 

F ( . ) : = ^ ' " 
ll^a{s)lps{s) 

being P{s) a polynomial matrix, then 

F{s) :--
i>a{-s)lpsis) 

is such that, F{s) € RH^c, and F^{s)F{s) = F~{s)F{s). Consequently, ||F(s)||oo = 
\\Hs)\\oo. • 

The norm of a function F{s) G i?Loo, thought of as the transfer function of a linear 
system, can be meaningfully related to the norm of the input and output signals, 
bo th assumed to be square integrable. Precisely, the following result, besides further 
characterizing the concept of norm in RLoo for dynamical systems, also provides an 
alternative definition of such a norm. 
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Theorem 2.12 Let F{s) G RLoo- Then 

II Z7/ Ml l l ^ ( ^ ) ^ l | 2 
| | F ( 5 ) | | o o = s u p —r—r 

u^o \\U\\2 
ueRL2 

Proof Observe first that, thanks to Remark 2.21, one can assume, without any loss 
of generahty, that F{s) G RHoo- As a consequence, it resuhs that F{s)u G RL2 if 
u G RL2. Now, notice that 

'̂ "P iL 112 ^ sup 11 ^ 112 (2.25) 
«go ||u||2 Rc(A)>o ll^r^lb 

where // is a generic constant vector with suitable dimension. Recall that the time 
response of a system with transfer function F{s) fed by the input u = fie^^ is, if A 
does not coincide with any poles of F{s)^ y = F(A)/xe^^ provided that a suitable 
initial state is chosen. Then, 

where / G RH2 is the Laplace transform of the output free response, whereas the left 
hand side of the equation corresponds to the output forced response. Since F{X)^^ G 
RH^, it follows that (recah Theorem 2.11) 

l | i ^ ( ^ ) ^ l l i = I I ^ W ^ I I ' + Il/(^)ll2 > I I ^ W ^ I I ' (2.26) 

From eqs. (2.25), (2.26) it follows that 

\\F{s)ug^ \\F{s)^Jl 
s u p T—rr^ > sup iTlTTo 

UERL2 f^j^O 

> sup M ™ ^ 
Re(X)>0 | | /X| | 

> sup | |F(A)f 
Re{X)>0 

> ll^(s)||oo (2.27) 

In getting the above expression, the following two facts have been exploited: 

1) If ii: is a constant, then | | - ^ | | 2 = is:~i<'||-l,^||2 = | |x| |2| | i 112 
/ ' II5 —Al l^ l i s — A l l ^ II II l i s —Al l^ 

2 ) - p , ^ o ^ S ^ = l i n A ) f 

On the other hand, letting ê  denote the i-th column of the identity matrix (the 
context will clarify the relevant dimension), and defining 

u := [ uei • • • uciy ] 

it follows that 

11 (̂̂ )̂ 112 I-oc ̂ ^^ce [u-{ju;)F-{ju;)F{ju;)u{juj)] dcj 

n̂ o ||'U||2 u^o _ tTSice[u [ju;)u[jLU)\auj 
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iZo EzLi e'^u-{juj)F-{juj)F{juj)u{juj)eidu; 

S ^ P v^zy poo II / . N 119 7 

„̂ g«̂  Ei=iJ-ooll"0^)eir^ 

^ s u p ^ .oo 11 . . X 119, 

< s u p ^ oo II / • \ 119 7 

< l|i^(5)ll'oo (2.28) 

Prom equations (2.27),(2.28), the result follows. • 

The computation of the norm of F(s) € RL^c can be easily performed by exploiting 
the result provided in the following theorem, which refers to functions in RHoo, only. 
As explained in Remark 2.21, this does not entail any loss of generality. 

Theorem 2.13 Let F{s) = C{sl - A)-^B + D, with A stable and a{D) < 7. More-
over, let i ( 7 ) •-A + Bi-y"^! - D'D)-'^D'C and 

i ( 7 ) 5 ( 7 2 / - D'D)-^B' 
-C'{I-y-^DD')-^C - i ' ( 7 ) Zil) := 

Then, the following conditions are equivalent: 

a) | |F(s) | |oo<7 

b) All the eigenvalues of ^(7) do not lie on the imaginary axis 

c) The subspace generated by the (generalized) eigenvectors of Z{^), associated 
with the eigenvalues with negative real parts, is complementary to lm[[0 I]'] 

d) There exists a symmetric, positive semidefinite and stabilizing solution 5(7) of 
the algebraic Riccati equation (in the unknown S) associated with Z{j) 

0 = 5 i ( 7 ) + A\-f)S + C\I - -f-^DUy^C + SB{j^I - D'D)-^B'S 

namely, such that matrix ^(7) + B{j'^I — D'D)~^B'S{'y) is stable. 

Proof Preliminarily observe that the assumption on the norm of D ensures, thanks to 
Lemma B.l l that both matrices (/ — ^~'^DD') and (7^/ — D'D) are positive definite 
so that the statement of the theorem is well defined. 

a) =^ b) Assume, by contradiction, that ^(7) has an eigenvalue in juo and let 
^ := [x' y'Y ^ 0 be an associated eigenvector. From ^(7)^ = JLJ£^ it follows 

{jou - i (7 ) )x = B{^^I - D'D)-^B'y 

-{ju + A\^))y = C\I - j-'DDT'Cx 

By recalling the definition of A{j) and the identity (/ - j-'^DD')'^ = / + D{j'^I -
D'D)~^D' (Lemma B.9), these expressions can be rewritten as follows 

{juj - A)x = 5 (72 / - D'D)-^{B'y + D'Cx) (2.29) 

- {ju + A')y = C'Cx + C'D{-i'^I - D'D)-^{D'Cx + B'y) (2.30) 
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Let now 

v:={'j^I-D'D)-\B'y + D'Cx) (2.31) 

z:=Cx + Dv (2.32) 

In view of eqs. (2.29),(2.30) and thanks to the stabihty of A, these last expressions 
become 

x = {juI-A)-^Bv (2.33) 

y=-{ju>I + A')-'^C'z (2.34) 

which, substituted into eqs. (2.31),(2.32) yield 

z = F{jui)v, 'j'^v = F'{—ju>)z 

that is 
F'{-juj)F{ju;)v = j^v 

Being v j^ 0 (otherwise, both x and z would be zero and thus also y), it results 

2 _ v~F^{ju))F{juj)v 

2 ^ \\F{juj)v 

< s u p M M ^ 
v^a F i r 

< \\nM\? 
<sup | |F ( iu - ) f = ||F(s^ii2 

oo 

which is a contradiction. 
h) =^ a) Conversely, suppose that ||F(5)||oo ^ 7- Since, by assumption, \\D\\ = 

Um^^oo 11 (̂̂ )11 < 7, by a continuity argument there exists a real number uj such 
that ||F(jc<j)|| = 7. Therefore, 7^ is an eigenvalue (actually the maximum one) of 
F^{jiu)F{juj) so that there exists a nonzero vector v such that F^{j(jj)F{ju)v = j'^v. 
Being t' 7̂  0, it also follows that z := F{juj)v ^ 0. Now define two vectors x and y 
as in eqs. (2.33),(2.34). With such definitions, simple computations show that also 
eqs. (2.29)-(2.32) hold. From eq. (2.31) one can conclude that ^ := [x' y']' ^ 0 since, 
on the contrary, v would be zero. Finally, eqs. (2.29),(2.30) imply that Z{^)^ — jco^^ 
which is a contradiction. 

d) =^ b) The existence of a stabilizing solution of the Riccati equation introduced 
in the statement implies, by a well known result, that the eigenvalues of ^(7) do not 
lie on the imaginary axis. 

b) = ^ d) Notice first that, as obvious, stability of A guarantees stabilizability of 
the pair {A, B) and, recalling the definition of ^(7) , also that of the pair (^ (7) ,^ ) . 
This condition implies also the stabilizability of the pair (^(7), B{j^I — D'D)~^B'). 
To see this, suppose by contradiction that, for a certain x 7̂  0 and A, Re{X) > 0, it 
is A'{j)x = Xx and 5 ( 7 ^ / - D'Dy^B'x = 0 (recall the PBH test). It follows that 
x'^Bi-i^I-D'Dy^B'x = 0 so that B'x = 0 thanks to the fact that {-f'^I-D'D)-^ > 0. 
The conditions x 7̂  0, Re(X) > 0, A\'y)x = Xx and B'x = 0, finally violate the 
stabilizability of {A{j)^B). Lemma C.3 can now be applied to the Riccati equation. 
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ensuring the existence of its symmetric and stabilizing solution S{'y). It is only left to 
show that such a solution is actually positive semidefinite. To this aim, rewrite the 
Riccati equation as follows 

0 = S{^)A + A'S{j) + C'C + [S{-f)B + CD] (7^/ - D'D)-' [S{j)B + C'D]' 

:=S{^)A^A'S{-f)^W{^) 

where W{j) > 0. Thanks to Lemma C.l, it can be concluded that 5(7) > 0. 
c) => b) Condition c) implies that the subspace generated by the (generalized) 

eigenvectors of ^(7) associated with the eigenvalues with negative real part has the 
same dimension n as the system. Hence ^(7) has n eigenvalues with negative real 
part and, obviously, has no eigenvalues on the imaginary axis. 

b) => c) Since condition b) has already been proved to be equivalent to condition 
d)^ it follows that the stabilizing solution 5(7) is such that Im[[/ 5'(7)]'], which is 
obviously complementary to lm[[0 /] '], is actually the subspace generated by n (gen-
eralized) linear independent eigenvectors of ^(7) associated with the n eigenvalues 
with negative real part. • 

Theorem 2.14 Let F{s) := C{sl — A)~^B + D and 7 a positive scalar. Then, the 
following two conditions are equivalent: 

a) The matrix A is stable and ||F(5)||oo < 7 

b) a{D) < 7 and there exists the positive semidefinite stabilizing solution 5(7) of 
the algebraic Riccati equation (in the unknown S) 

0 = SA{j) -f A\-f)S + C\I - -i-^DD')-^C + 5 ^ ( 7 ^ / - D'D)-^B'S 

i.e. such that 

i ( 7 ) + 5 ( 7 ^ / - D'D)~^B'S(-i) = A + 5 (72 / - D'D)~\B'S{-i) + D'C) 

is stable. 

Proof a) =^> b) If ||F(s)||oo < 7, then, obviously ^{D) < 7 since D = limc^^oo F{juj). 
Therefore, Theorem 2.13 guarantees the existence of 5(7). 

b) =^ a) Preliminarily observe that d-{D) < 7 implies, thanks to Lemma B.l l , 
that matrices (/ — ^~^DD') and (7^/ — D'D) are positive definite so that the Riccati 
equation is well defined. Such an equation can be equivalently rewritten as (recall the 
definition for A(7) and Lemma B.9) 

0 = 5 ^ + A'5 + {SB + C'D)(ri^I - D'D)-^{B'S + D'C) + C'C 

The stabilizing solution 5(7) is also a solution of the Lyapunov equation 

0 = 5A + A'5 + A'(7)A(7) 

where 

A'(7)A(7) := [S{^)B + C'D]{^^I - D'D)'^ [B'S{^) + D'C] + C'C 

The proof is concluded by showing that the pair (A, A(7)) is detectable. Actually, in 
this case. Lemma C.l implies that A is stable, so that the proof follows directly from 
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Theorem 2.13. Therefore, assume by contradiction tha t this pair is not detectable. 
Based on the PBH test (recall Lemma D.2) it follows tha t 

Ax = \x, Re{\) > 0, x^O 

A(7)x = 0 

Recalling the definition of A'(7)A(7), the second equation implies tha t 

x^A' (7)A(7)x = x^[S{^)B + C'D](ci'^I - D'D)-^[B'S{-f) + D'C]x + x^C'Cx = 0 

so that , in particular, 
[B'S{^) -h D'C]x = 0 

thanks to the fact tha t C'C > 0 and ( 7 ^ / - D'D) > 0. Hence, 

{A + B{j^I - D'D)-\B'S{-i) + D'C]]x = Ax = \x 

This is obviously a contradiction, since x 7̂  0, Re{\) > 0 and 5(7) is stabilizing. • 

E x a m p l e 2 .19 Consider the rational function 

F(s 
s2 + 2s + 10 

0 
- 1 0 

10 

1 
- 2 

0 

0 
1 

0 

It turns out that \F{JLj)f = 100/(cc;^ - 16a;̂  + 100) so that ||F(s)||oo = 5/3 ~ 1.66. Taken 
7 = 1.67, the eigenvalues of ^(7) are ±0.067d= 2.83j whereas for 7 = 1.66 the eigenvalues of 
Z(7) are ±2.92j and ±2.73j. D 

R e m a r k 2.22 Theorems 2.13 and 2.14 call for a Riccati equation which resembles the one 
utilized in the context of optimal LQ control. In view of Lemma 2.16 and Remark 2.13, it 
yesnll'S 1"nr)1̂  

||F(ic^)|| = a[F{jco)] = <T[F'(-jc.)l = ||F'(ic^)|| 

SO that 

\\F[s)U = \\F'{s)U 
Hence, the two relevant theorems can be equivalently reformulated with reference to F' {s) = 
B'{sl — A')~^C' + D' instead of F{s). As a consequence, the relevant Riccati equation 
becomes the following 

0 = SA'{-i) + A{-f)S + B{I - -f-^D'Dy^B' + SC'{j^I - DD'y^CS 

which resembles the equation involved in the optimal filtering problem. D 

The previous results on the characterization of an upper bound of ||F(5)||oo for 
F[s) being a function in RH^o are all expressed in terms of the existence of a sym-
metric, positive semidefinite and stabilizing solution of an algebraic Riccati equation 
(recall Theorems 2.13 and 2.14) which are of particular importance to get the results 
of Chapter 5. However, in Chapter 6 reference is made to the following similar results 
which are alternatively expressed in terms of Riccati inequalities with no additional 
requirement concerning the stability of their solutions. 

T h e o r e m 2.15 Let F{s) := C{sl — A)~^B and 7 a positive scalar. Then, the fol-
lowing conditions are equivalent: 

a) Matrix A is stable and ||F(5)||oo < 7 
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b) There exists a symmetric and positive definite matrix S satisfying the Riccati 
inequality 

SA + A'S 4- -f-^SBB'S + C'C < 0 (2.35) 

c) There exists a symmetric and positive definite matrix P satisfying the Riccati 
inequality 

PA' + AP + -f-^PC'CP + BB' <{) (2.36) 

Proof That points h) and c) are equivalent is straightforward. Indeed, the positive 
definite solutions (if any) of both inequalities are related one to the other by P = 

h) =^ a) Since there exists S > 0 satisfying (2.35), it also satisfies the Riccati 
equation 

0 = SA^A'S^ -f-'^SBB'S + C'C (2.37) 

where C = [C E'] for some matrix E such that E'E > 0. From the Extended 
Lyapunov lemma the stability of matrix A follows. With 5 > 0 being a solution of 
(2.37), define the auxiliary Riccati equation 

0 = X{A + -f-'^BB'Sy + (A + j-'^BB'SyX - j-^XBB'X + E'E (2.38) 

Using the fact that A is stable and E'E > 0, from Lemma C.3 it is readily verified 
that it admits a symmetric and positive semidefinite solution X > 0 such that matrix 

Ax :=A + j-^BB'S - j'^BB'X 

= A + j-^BB'{S-X) (2.39) 

is stable. Defining W := S — X and using (2.37) together with (2.38) we get 

0 = WA-^ A'W -h ̂ -'^WBB'W + C'C 

Moreover, since A is stable, this means that VF > 0 and from (2.39) matrix A -j-
^~^BB'W is stable. From Theorem 2.14 the conclusion is that part a) holds indeed. 

a) =^ b) Let us define the transfer function 

Fis) := isI-A)-'B 
C 

where e > 0 is a scalar to be determined. It is a simple matter to verify that for all 
LO eR 

F\-juj)F{ju) = F\-juj)F{juj) + eG\-3uj)G{3Uj) 

where G{s) := {si - A^^B. Hence 

l l ^ ( ^ ) f o o < l l ^ ( ^ ) l l L + ^ l |G( . ) foo 

and choosing the scalar e such that 

n , , ,l'-\\F{s)\\l 

\\G{s)\\l 

which is always possible since by assumption, matrix A is stable and ||P(s)||oo < 7 
then we get ||P(5)||oo < 7- Using again Theorem 2.14 the conclusion is that there 
exists a symmetric and positive semidefinite solution 5 > 0 to the Riccati equation 

O^SA^A'S + -i-'^SBB'S + C'C + el 

which obviously satisfies the Riccati inequality (2.35) and in view of Lemma C.l is 
actually positive definite. The proof of the theorem proposed is complete. D 



2.8. FUNCTIONAL SPACES OF RATIONAL MATRICES 59 

Theorem 2.16 Let F{s) := C{sl - A)-^B and 7 a positive scalar. Under the as-
sumption that the pair (A, B) is reachable, the following conditions are equivalent: 

a) Matrix A is stable and ||F(5)||oo ^ 7 

b) There exists a symmetric and positive definite matrix S satisfying the Riccati 
inequality 

SA + A'S + j-^SBB'S + C'C < 0 (2.40) 

c) There exists a symmetric and positive definite matrix P satisfying the Riccati 
inequality 

PA' + AP + -f-'^PC'CP 4- BB' < 0 (2.41) 

Proof The equivalence of points b) and c) is immediate. The positive definite matrices 
satisfying inequahties (2.40) and (2.41), if any, are related one to the other by S = 
j^p-\ 

b) => a) Assuming (2.40) admits a positive definite feasible solution then P = 
7^5"^ is feasible for inequality (2.41) which together with the reachability of the pair 
{A, B) implies that A is stable. On the other hand, for all to ^ R^ inequality (2.40) 
can be rewritten as 

{-juj - A')S + Sijuj -A)- ^-^SBB'S - C'C > 0 

from which and G{s) := 7 / — ^~^B'S{sl — A)~^B we have 

F\-juj)F{juj) < 7 ' / - G\-ju;)G{juj) 

< 7^/ , y LoeR 

consequently ||F(s)||oo < 7 which is the desired result. 
a) =^ b) From Theorem 2.15 we only need to prove that if ||F(s)||oo = 7 then the 

Riccati inequality (2.40) is still feasible for some positive definite matrix. To this end, 
consider the sequence of matrices On '— -sf^C with e^ being an arbitrary element of 
an increasing sequence of scalars such that 0 < e^ < 1 and e^ goes to 1 as n goes to 
infinite. By virtue of 

| | C „ ( s / - ^)-iB| |oo = ^/i;; | |F(s) |U 

= \ / ^ 7 < 7 (2.42) 

we already know that the Riccati equation (in the unknown S) 

0 = S'A + A'S* + -i-'^SBB'S + C'^Cr, (2.43) 

admits an unique symmetric, positive semidefinite solution 5„ such that matrix 
An := A + •y ^BB'Sn is stable. Additionally, the sequence Sn > 0, n = 1,2,---
is nondecreasing because as it can be verified 

0 = ( 5 „ + i - Sn)An + A'n{Sn+l - Sn) + 

+J-HSn+l - Sn)BB'{Sn+l - 5 „ ) + ( e „ + i - €n)C'C 

Once again, due to (2.42), the Riccati equation (in the unknown P) 

0 = PA' + AP + -f-^PC'nCnP + BB' (2.44) 
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also admits an unique symmetric, positive semidefinite and stabilizing solution Pn 
which in fact is positive definite since A stable and (A, B) reachable yield 

^n> [ 
Jo 

^^^BB'e^'^dt > 0 

Using the same reasoning adopted before we can show tha t the sequence P^ > 0, 
n = 1,2, • • • is nondecreasing as well. Hence the sequence of positive matrices Sn := 
J^P^^ is nonincreasing and satisfy the Riccati equation (2.43). Moreover, defining 
matr ix A^ -.^ A-\- ^~'^BB'Sn we have from (2.44) with P = Pn 

Pn^Pn' = Pn{A + BB'P-^)'p-' 

^-{A^r^PnC'^Cn) 

implying tha t —An is stable. Finally taking into account tha t Sn and Sn solve the 
Riccati equation (2.43) we get 

0 - ( 5 „ - 5 „ ) ^ „ + < ( 5 „ - Sn) + l - \ S n - Sn)BB'{Sn " 5 „ ) 

which shows from the stability of matr ix An tha t Sn < Sn- This last inequality 
together with the fact tha t the sequence 5n > 0, n = 1, 2, • • • is nondecreasing and 
the sequence Sn > 0, n — 1,2, •• • is nonincreasing allow the conclusion tha t both 
sequences converge to some matrices such tha t 

0 < 5 o lim Sn < lim Sn '-— S^y 

At this point, it remains to prove tha t ^oo is positive definite even though some 
eigenvalues of matr ix ^oo lie on the imaginary axis. Indeed, assume by contradiction 
tha t Soo > 0. Since it solves the Riccati equation 

0 = S^A + A'S^ + j-^SooBB^Soo + C'C 

from Lemma C.l and the PBH test there exits x ^ 0 such tha t Ax = Xx^ B^SooX = 0 
and Cx = 0, tha t is A^QX = Ax. However, being A stable, this is impossible since, as 
proved before, all eigenvalues of matr ix A^o are located on the right par t (including 
the imaginary axis) of the complex plane. • 

E x a m p l e 2.20 Consider the rational function F{s) defined in Example 2.19. We notice 
that for this transfer function the pair {A, B) is reachable and the pair (A, C) is observable. 
Taking 7 = 5/3, matrices Soo and »Soo (recall the proof of Theorem 2.16) are found to be 

O o o — *-5oo — 
55.56 5.56 
5.56 5.56 

It is interesting to see that, in this case, the eigenvalues of matrices Aoo = A-\-^~^BB'Soo = 
^00 are zb2.83j. That is, the corresponding Riccati equation solution ,Soo is no more stabiliz-
ing but still, for 7 = 5/3 = ||F(s)||oo, there exists a symmetric and positive definite matrix 
satisfying the Riccati inequality (2.40). One of such matrices is exactly 5oo- ^ 

E x a m p l e 2.21 Consider the rational function F{s) 

1 s + 1 
F{s)^ 

s + 2 s2 _̂  3s + 2 

0 
- 2 

1 

1 
- 3 

1 

0 
1 

0 
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so that ||F(s)||oo = 1/2. It is apparent that the pair (A, J5) is reachable but the pair {A, C) 
is not observable. With 7 = 0.5 the following matrices appearing in the proof of Theorem 
2.16 have been calculated 

0.50 0.50 
0.50 0.50 

0.50 0.50 
0.50 1.00 

In this case, matrix ^oo is positive semidefinite and the eigenvalues of ^oo are 0 and —1. On 
the other hand, matrix 5oo is positive definite and the eigenvalues of AOG are 0 and 1. By 
construction, matrix 5oo satisfies the Riccati inequality (2.40). • 

An important role in the development of the discussion in Chapter 5 will be played 
by a few linear operators acting on the spaces previously defined. 

Def in i t ion 2.32 (The Laurent operator with symbol F) Let F{s) G RLoo- The 
map Kp : RL2 -^ RL2 defined as 

KF : G{s) ^ AFG{S) := F{s)G{s) 

is called the Laurent operator with symbol F{s). • 

Notice tha t the operator Ap is obviously linear and, thanks to Theorem 2.12, ||Ai?|| = 
||-^('5)||oo so tha t AF is bounded. 

Def in i t ion 2 .33 (Orthogonal stable and antistable projections) Let G{s) be a ge-
neric element of RL2 such that G{s) := Gs{s) -\- Ga{s) with Gs{s) G RH2 and 
Ga{s) G RH2' . The map Us : RL2 -^ RH2, defined by 

Iis'-G{s)^IlsG{s)-Gs{s) 

is called the stable (orthogonal) projection , whereas the map LLQ • RL2 —̂  R112 y 
defined by 

lia : G{s) ^ UaG{s) := Ga{s) 

is called the antistable (orthogonal) projection. • 

It is immediate to check tha t n^ and Ua are actually linear operators. 

Def in i t ion 2 .34 (The Hankel operator with symbol F) Let F{s) G RL^. The 
map TF : RHi^ -^ RH2 defined by 

TF : G{s) ^ TFG{S) := USAFG{S) 

is called the Hankel operator with symbol F. D 

R e m a r k 2 .23 It should be evident from the above definition that the Hankel operator 
is the result of the composition of the Laurent operator with the stable projection, i.e. 
TF = USAF' Hence, TF is indeed an operator. D 

R e m a r k 2 .24 Sometimes the Hankel operator is defined as mapping RH2 to RHi^ m 
such a way that TF — HaAp. This should not be surprising. Actually, given the existing 
isomorphism between R}i2 and RB.^ j the deep understanding of the basic facts of the under-
lying theory is certainly not blurred by the presence of these different (although equivalent) 
definitions. D 
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R e m a r k 2.25 Thanks to Definition 2.34, it turns out that only the strictly proper and 
stable part of F{s) contributes to rFG{s). As a matter of fact, letting F{s) = Foo + Fs{s) + 
Fa{s), where Foo = lim.^oo F{s), Fs{s) G RH2, Fa{s) G RH^, it follows 

rpGis) = USAFG{S) 

= UsF{s)G{s) 

^Us[Foo+Fs{s) + Fa{s)]Gis) 

= rFMs) 

Hence, TF = TF^ . • 

E x a m p l e 2 .22 A way to compute the components Foo, Fa{s) and Fs{s) of F{s) G RLoo, 
calls for a (minimal) realization E(A, 5 , C , D) of it. Let Us (resp. Ua) be the number of 
eigenvalues of A with negative (resp. positive) real parts and define A's (resp. Xa) as the 
Us dimensional {ua dimensional) subspace generated by Us (resp. Ua) linear independent 
generalized eigenvectors of A associated with the eigenvalues with negative (resp. positive) 
real part. Such subspaces are obviously complementary and can be identified by the image 
of suitable full rank matrices Xs and Xa, namely Xs = Im[Xs] and Xa = Im[Xa]. Then, 
matrix [Xs Xa] is invertible and, letting T := [Xs Xa]~^, it results 

A := TAT~^ As 
0 

0 
Aa 

where As is stable and Aa antistable. Now, let 

B := TB := Bs 
Ba 

, C := CT-^ := \ Cs Ca 

so that 

F{s) = C{sI-A)~^B-^D 

sl - As 
0 

0 
si -Aa 

Bs 
Ba 

Cs{sl - As)~^Bs + Ca{sl - Aay^Ba + D 

Fs{s) + Fa{s) + F^ 

Specifically, consider the function 

-hD 

F{s)^E{A,B,C,D)- ŝ  + s + 1 
eRLo 

with 

It follows 

0 1 
1 0 

Xs = 
-1 

C= [ 2 1 ] , D - 1 

Xa = 

and As = - 1 , Aa = 1, Bs = - 1 / 2 , Ba = 1/2, C, = 1, Ca = 3 so that Foo = 1, Fs{s) 
-1 /2 (5 + 1) and Fa{s) = 3/2(5 - 1). Let now 

G{s) := 
k 

, Re{pi) > 0 
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It turns out that F{s)G{s) = G{s) - G{s)/2{s + 1) + 3G(s)/2(s - 1) so that 

r ^G(s ) = n.[F(s)G(s)] = - ^ ^ 

On the other hand 

k 

where Pi are suitable scalars. Hence 

2(s + l) 

The adjoint Laurent and Hankel operators are now defined in the two lemmas below 
according to Definition 2.22. 

L e m m a 2.26 (The adjoint Laurent operator with symbol F) The adjoint Laurent 
operator with symbol F is the Laurent operator with symbol F^, i.e. 

P r o o f Let Gi{s) and ^2(5) be two generic elements of RL2 and F{s) G RL^Q. Then, 
by recalling Definition 2.22, 

< Gi(5) ,A^G2(5) > = < KFGI{8),G2{S) > 

1 r^ 
^ 27T tmce[Gi {juj)F^{j(jj)G2{juj)diu 

= <Gi{s),F-{s)G2{s)> 

= <GI{S),AF-G2{S)> 

Being Gi{s) arbitrary, from this expression it follows 

A'FG2{S) = AF-G2{S) 

so tha t A J. = AiT^-, since G2{s) is arbitrary too. D 

L e m m a 2 .27 (The adjoint Hankel operator with symbol F) The adjoint Hankel 
operator with symbol F is the operator F^^ := HaAJ. = n^Ai^-

P r o o f Let Gi{s) G i?ii^2^, H{s) G RH2 and F{s) G RLoo- Preliminarily observe tha t 

< G ( 5 ) , r > i J ( 5 ) > = < TFG{S),H{S) > 

= <USAFG{S),H{S)> 

= < UsF{s)G{s),H{s) > = < F{s)G{s),H{s) > 

since F{s)G{s) = UsF{s)G{s) + UaF{s)G{s) and being H{s) G RH2, it turns out 
tha t < UaF{s)G{s),H{s) > - 0 (recall Theorem 2.11). Analogously, F^{s)H{s) = 
UaF-{s)H{s)^UsF^{s)H{s), so tha t Theorem 2.11 implies < G(s) , UsF^{s)H{s) > 
— 0, since G{s) G RH^. Taking in mind this fact, it follows 

< F{s)G{s),H{s) >=< G{s),F-{s)H{s) >=< G{s),UaF-{s)H{s) > 
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so that 

< G(s) , r^ iJ(s) > = < G{s),UaF-{s)H{s) >=< G{s),UaAF-H{s) > 

Since G{s) is arbitrary it follows that r'^pH{s) = HaA^?-if (5). Finally, being H{s) 
arbitrary, it results F^ = IlaAF- = n^AI^. D 

Interestingly, one can associate with a generic Hankel operator, defined in the 
frequency domain, a suitable function of time. Precisely, consider the operator Tp 
and assume, without any loss of generality, (recall Remark 2.25), that 

Fis) :-
' A 

C 
B " 
0 

with A stable and S(A, 5 , C, 0) in minimal form with order n. Then, the function 

m := { n^M 0 t<0 
Ce^^B t>0 

is the inverse Laplace transform of F{s). The map 

Tf : RL2{-oo 0] -^ RL2[0 oc) 

defined by 

r , : u{t) ^ TMt) := yit) := | ^^^ , ^ o ^ e~^^Bu{T)dr \ > 0 

is easily shown to be an operator, which is legitimated to be considered as the time 
domain counterpart of the operator TF- Actually, the Laplace transform of y equals 
the stable projection of the product of F{s) with the Laplace transform of li, i.e. 

VL = {Tfu)L = TFUL (2.45) 

It is also useful to characterize further the operator Tf as follows. Consider the system 
E(A, 5 , C , 0) and assume that its initial state at t = —oo is zero, i.e. x(—cxo) = 0. 
Now apply to the system an input u{') which is different from zero only for nonpositive 
time instants. Hence, 

x(0) = / e-^^'Budr 
J —oo 

Moreover, consider the free output y, defined for nonnegative time instants, due to 
the above defined initial state at ^ = 0. It turns out that the operator F / maps the 
input u {t <{)) to the output y (t > 0), through x(0). As such, F j can be viewed as 
the composition of two operators ^r • RL2{—oo 0] -^ R^ and ^o : i?^ -^ i?I/2[0 oc), 
defined by 

J — oo 
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Actually, it results Tf = '^o'^r- The observability operator ^o is obviously injective 
(the unique element of R^ which is mapped in zero is the zero element), thanks to 
the assumed observability condition. Slightly less obvious is to recognize that the 
operator ^^ is surjective. In fact, thanks to the reachability condition, any element 
of R^ is the result of the transformation of a suitable element of RL2{oo 0]. To see 
this, let X G i^^ be a fixed element . The input 

u{t) := 
0 i > 0 

B't -A't f° e-^^BB'e-^'^du 
J—OO 

-1 
X, t < 0 

is such that ^^ix = x. Actually, recalling the discussion in Remark 2.24, it follows 

/O /

O /»oo 

-oo 7o 

where P^ is the unique solution of the Lyapunov equation (in the unknown P) PA' -\-
AP-\-BB' = 0. Moreover, such solution is positive definite (for this consider points i) 
and ii) of the "dual" version of Lemma C.l, i.e. when the pair {A, C) is replaced by the 
pair {A'^B')). Hence u is well defined. Moreover, since A is stable, u G RL2{—oo 0]. 
Finally, 

/

O r rO 

-oo L«^—oo 

- 1 

X = X 

By resorting to Definition 2.22 it is easy to determine the adjoint operators of ^r and 
^o- It results that ;̂̂  : i?^ ^ i^Ls(-oo 0] and ^* : RL2[^ oo) -^ R"" are defined by 

^,x := .(t) := I ^ t>-
/»oo 

^ : : y(t) ^ ^ly{t) :=x:= e^'^Cyda 
Jo 

respectively. By exploiting the fact that Tf = ^o'^r and taking into account the above 
expressions, it follows, in view of Theorem 2.9, that F^ : RL2[0 oo) —> RL2{—oo 0] is 
defined by 

F} : y{t) ^ r}y{t) := u{t) :^ | ^ ' " ^ ' ^o" e^'W'ydr t < 0 
> 0 

This operator is legitimated to be the time domain counterpart of the operator F^. 
Actually, the Laplace transform of u equals the antistable projection of the product 
of F"'{s) with the Laplace transform of ?/, i.e. 

UL = {r}y)L = r*pyL (2.46) 

The operators "^r and ^^ have rank equal to n, i.e. equal to the dimension of the 
minimal realization S ( ^ , B, (7,0). Moreover, since ^r is surjective and ^o is injective, 
it turns out that F / = ^ o ^ r and, obviously, F^ have rank equal to n. Therefore 
the self adjoint operator T^^TF has rank n and, thanks to Remark 2.14 it admits 
eigenvalues. 
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R e m a r k 2.26 The operator F J ^ F F has a zero eigenvalue. Actually, write F{s) G RH2 
as F{s) = N{s)/ip{s), where N{s) is a polynomial matrix and ip{s) is the legist common 
multiple of all denominators of the elements of F{s). Moreover, let H{s) G RH^ be such 
that 

G{s) := ^IJ{S)H{S) G RHi^ 

Then, 

TFG{S) = UsF{s)G{s) 

= UsN{s)H{s) - 0 

since N{s)H{s) G RH^. Consequently, FJ^FFG^C^) = 0 = OG{s) so that A = 0 is an 
eigenvalue. • 

E x a m p l e 2 .23 Let F{s) = l / ( s + 1). Taken G{s) = l/{s - 1), it turns out that 

r . G ( s ) = n .F (a )G( . ) = ^ = - ^ 

On the other hand. 

F ^ F F G C S ) - F^ 
1 

2(s + l) 
UaF-{s) 

2(5 + 1) î (̂ ) 

so that A = 1/4 is an eigenvalue and G{s) an eigenvector of F ^ F F -

The operator F^^Fi? enjoys the interesting properties s tated in the following result, 
for the proof of which the reader is referred to specialized texts. 

T h e o r e m 2.17 Let F{s) G RLoo- The eigenvalues ofVyTp are real and nonnega-
tive. The greatest of them is | | F F | P . 

E x a m p l e 2 .24 Consider the function F{s) — l/{s + 1) already introduced in Example 
2.23. It is easy to check that the equation V*FTFG{S) = \G{s), with G{s) G RH2 and 
G{s) ^ 0, is satisfied only for A = 0 or A = 0.25. Hence, F F F F has two distinct eigenvalues, 
which are real and nonnegative. The norm of F F F F is equal to 0.25 and | | F F | | — 0.5 (recall 
Theorem 2.9, point 2)). • 

The operators ^ r ^ * and ^ * * o map the space R^ into itself and, as such, can be 
represented by suitable (real) n-dimensional matrices. Actually, as for the former, it 
follows 

e-^^BB'e-^'^drx^ 
- 0 0 

e^'^BB'e^'^dTXo = P^XQ 
/o 

/ 
J —( 

f 
Jo 

where Pr again represents the unique solution of the Lyapunov equation in the un-
known P (recall Lemma C.l) 

0-^AP + PA' + BB' (2.47) 
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Such a solution is also positive definite. Since the equation ^ ^ ^ * x o = Pr^o holds for 
any XQ, it results 

^rK = Pr (2.48) 

As for the operator ^ * ^ o it follows that , for any XQ, 

Xf := ^1<^OXQ = / e^ '^C'Ce-^^drxo = Po 
Jo 

XQ 

where, thanks to what has been shown in Remark 2.20, matr ix Po is the unique 
solution of the Lyapunov equation in the unknown P 

0 = PA + A'P + CO (2.49) 

Such a solution is positive definite (recall points i) and in) of Lemma C. l ) . Hence, 
since XQ is arbitrary, 

K'^o = Po (2.50) 

The link previously expressed between Tp and Tf allows one to precisely s tate the 
following important result, which also provides a procedure for the computation of 
the eigenvalues of F^^Fi^ and hence the norm of Tp-

T h e o r e m 2.18 The operator T^pFp ccnd the matrix PrPo share the same nonzero 
eigenvalues. 

P r o o f Let A ^ 0 be an eigenvalue of rj^Fi?. In view of eqs. (2.45),(2.46) it is easy 
to check that , if 0 ^ UL ^ RH2 is an associate eigenvector, then its inverse Laplace 
transform, î  ^ 0, is an eigenvector of F^-Fj, associated with the same eigenvalue. 
Moreover, in view of Theorem 2.9, it is F^- = ^ * ^ * so tha t 

^l^^o^rU = \U (2.51) 

Premultiplying both sides of this equation by ̂ ^ and defining XQ := ̂ ^w, one obtains 
(recall eqs. (2.48),(2.50)) 

PrPoXo = Xxo (2.52) 

Notice tha t XQ ̂  0. Actually, if not, then ^ ^ u = 0 and, from eq. (2.51), Xu = 0. 
Hence A 7̂  0 would imply u = 0, a contradiction. 

Conversely, if A ̂  0 is an eigenvalue of PrPo^ then there exists XQ 7̂  0 such tha t 
eq. (2.52) holds. Premultiplying this expression by ^*Po , defining u{t) := ^*Po^05 
and recalling eqs. (2.48),(2.50), eq. (2.51) is derived. It is left to show tha t u ^ 0. If 
it were not so, eqs. (2.52),(2.48) would imply XXQ = 0, a contradiction. Hence u is 
an eigenvector of F ^ F / associated with A and its Laplace transform is an eigenvector 
of F|;.Fir, associated with the same eigenvalue. • 

R e m a r k 2 .27 (Computation of the norm of the Hankel operator) As already said, 
Theorem 2.18 provides a procedure for the computation of HFFII. It can be summarized in 
the following steps, with reference to the case in which F{s) G RH2. Such situation can be 
always be matched by using the arguments discussed in Remark 2.20. 

1) Determine a minimal realization S(A, 5 , C, 0) of F{s). 

2) Solve the two Lyapunov equations (2.47),(2.49). 

3) Compute the greatest eigenvalue A^ of PrPo 

4) llFi^ll-AM 



68 CHAPTER 2. PRELIMINARIES 

Example 2.25 Take again the function F{s) = 1/(5 + 1) considered in Examples 2.23, 
2.24. Being F(s) = E ( - l , 1,1,0), eqs. (2.47),(2.49) have solutions Pr = Po = 0.5, so that 
PrPo = 0.25 and WTFW = 0.5. D 

At the end of the present section, it is presented an important result, the so called 
Nehari theorem^ which sets at the basis of an operatorial technique for the solution 
of the control problem in the RH^Q context, treated in Chapter 5. The proof of this 
result is not simple and therefore is not reported here. 

Theorem 2.19 (Nehari theorem) Let F{s) G RLoo- There exists X''{s) G RHoo 
such that 

inf \\Fis)-Xis)\U = \\Fis)-X%s)\U = ||r^~|| 
A (sjG-TCiioo 

The Nehari theorem concerns the problem of finding a stable function X{s) which 
approximate an assigned function of RL^o by minimizing the distance between X{s) 
and F{s). Such a distance is defined as the RL^o norm of the difference F{s) — 
X{s). The theorem comes out with two important conclusions: first, the existence 
of a function X^{s) G RHQO which represents the best approximation of F{s) and, 
second, that the minimal distance is given by the norm of the Hankel operator with 
symbol F"". It should be apparent, consistently with such an interpretation, that 
if F{s) is stable, the minimal distance is zero, since one can choose X^{s) = F{s). 
In general, the optimal approximation is not unique. A way to compute an optimal 
approximation will be presented in Chapter 5, in the case where F{s) is a scalar. 

Example 2.26 Consider the function F{s) = 7/(5 - f3) with ^ > 0 and 7 > 0. Then, 
F^{s) = -7/(5 + f3). Based on Remark 2.27 one finds that WTF- \\ = |7/2/3|. • 

2.9 Notes and references 

More about the material of this chapter can be found in many places. Restricting the 
attention to system and control theory point of view (which is the one mostly pursued 
in the present book), it is worth quoting the following sources with reference to the 
various sections. Sections 2.3 and 2.4: the books of Kailath [29], Maciejowski [43] and 
Vidyasagar [60]. Section 2.5: besides the books [29], [60], the papers by MacFarlane 
and Karcanias [42] and Kouvaritakis and MacFarlane [33], [34]. Section 2.6: the book 
of Lawson and Hanson [38]. Section 2.7: any text of functional analysis, for instance 
that of Rudin [55]. Section 2.8: the book of Francis [19], the paper by Boyd et al. 
[9] on the computation of the f/"oo norm and the book of Power [52] for the Nehari 
theorem. 



Chapter 3 

Feedback Systems Stability 

3A Introduction 

One of the most significant problems of linear control theory is no doubt that of 
characterizing the set of all controllers which stabilize a given system. The present 
chapter is devoted to this problem, which is also conceptually linked with the results 
presented in the forthcoming Chapters 4 and 5. 

In order to avoid any possible misunderstanding, it is well advisable to place in the 
right context the problem covered in the present treatment. Therefore, consider the 
system shown in fig. 3.1 where Hi is a given time invariant and finite dimensional lin-
ear system and E2 is a controller which receives informations from the system through 
the output variable y only and can drive the system through the control variable u. Its 
duty is rendering the feedback connected system in fig. 3.1 (asymptotically) stable. 
An obvious necessary condition for a stabilizing regulator to exist is stabilizahility and 
detectability of system Hi. This condition is also suflScient if H2 can be chosen in the 
class CL of linear time invariant finite dimensional systems. This is precisely the class 
to which the present discussion will be limited. 

The actual determination of an element of CLS'(HI), the subset of CL constituted 
by the stabilizing controllers for Hi, can be worked out by resorting to a number of 
classical techniques. Among them, it is worth recalling the optimal linear quadratic 
Gaussian control or the pole assignment technique. Greatly more difficult is rather 
the problem of individuating the whole set CLS{^I), in the sense of establishing a 
significant correspondence between an element of the set and a suitable free parameter. 

In Section 3.4 it will be shown how the set CLS{^I) can be parametrized as a 

S i 

Figure 3.1: The feedback connection of two systems 
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Rf 

Q{s) 

Figure 3.2: The set CLS{^I) 

vi ui 

2/2 

Gi{s) 

G2{s) 

yi 

U2 V2 

Figure 3.3: The system E - feedback connection of Gi{s) and G2{s) 

function of a free parameter Q{s). Specifically, it will be proved that: i) each element 
of CLSi^i) can be represented accordingly to the block scheme in fig. 3.2, where Rf 
is a system which is determined from the given system Ei once for ever, whereas 
Q{s) is a linear system belonging to a suitable subset of RH^Q; ii) chosen an element, 
one obtains an element of CLSi^i)- In order to present the relevant results, some 
preliminary facts are now introduced. In particular. Section 3.2 is devoted to discuss 
the basic relationships between internal and BIBO (external) stability of a feedback 
system, whereas in Section 3.3 the important concept of double coprime factorization 
is introduced. 

3.2 Internal and external stability 
Consider system E depicted in fig. 3.3 where each one of the two blocks with transfer 
functions Gi{s) and G2{s) is a detectable and stabilizable system (otherwise E should 
never be stable). The aim of this section is presenting some simple results which 
establish precise connections between the (internal) stability of E and the (external) 
stability of some transfer functions defined in the block-scheme of fig. 3.3. Notice 
that the (stable) dynamic matrix of the unreachable and/or unobservable parts of 
the two subsystems which constitute E do not affect anyone of the transfer functions 
which can be defined in the scheme of fig. 3.3. For this reason reference will be made, 
without loss of generality, to minimal realizations of both Gi{s) and G2{s)^ i.e. 

G^{s):=Ci{sI-Ai)-'Bi^D. = 1,2 

with 

yi = CiXi + DiUi , i = 1, 2 

ui=Vi-\- y2 
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U2 = V2 + yi 

where, for i = 1,2, the pair (Ai.Bi) is reachable and the pair (Ai^Ci) is observable. 
Obviously, the above equations make sense only provided that the matrix A21 := 
(/ — D2D1) (or, equivalently, matrix A12 '.— {I — D1D2)) is nonsingular. Letting 
X := [x'l X2]' G R^^ u := [u'l 1/2]', v := [v'l v'2\'^ a realization of S is given by 

X = Ax + Bv 

u = Cx -h Dv 

with 

B2A]^2 ^ 1 

^ 1 ^ 2 1 C2 

A2^B2A-^DiG 
A 

B:--

C :--

D:--

having exploited Lemma B.9. Letting T{u,v;s) :— C{sl — A) ^B -\- D denote the 
transfer function from the input v to the output ix, the following result can be proved. 

Theorem 3.1 The system S in fig. 3.3 is internally stable if and only ifT{u, v; s) G 
RH^. 

Proof If matrix A is stable, then, obviously, T{u, v; s) G RHoo- In order to prove the 
converse statement it will be shown that all the eigenvalues of A coincide with the 
poles of T(w, v; 5), or, in other words that the four matrices (A, B^ C, D) constitute a 
minimal realization of T{u, v; s). The proof is worked out by exploiting the PBH test 
(see Lemmas D.l and D.3). 

Recall that the pair (A, C) is observable if and only if 

B1A2/ 

_ B2^i^D^ 

' A^,'D2C, 

A^iC 

B1A21 'D^-

B2A^i 

^2lC2 1 

AiiD,C2 \ 

A^l A2"l'^2 " 

. Ars'Di ^li . 

rank[Pc'(A)] :== rank 

Moreover, the matrix 

\I-A 
C 

VA 

T '-

I 0 
0 / 
0 0 

0 

0 0 -ATj^DiA; ^21 

0 
B2 

is nonsingular since the Schur formula for the computation of the determinant of a 
block matrix (see Lemma B.13) gives 

det - A 2 / D 2 A 1 2 

^r2^lA: 21 
det[/ - A^2^I?iA2iA^i^Z)2Ai2] = detfAia] 
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Thus, 

rank[Pc(A)] = rank[ToFc(A)] 

= rank 

- ^ 
0 
0 

Ci 

0 
XI-A2 

C2 
0 

n , VA 

since, for i = 1,2, the pair (Ai^d) is observable. In a similar way the pair (A^B) is 
proved to be reachable. To this aim, let 

Tr:= 

/ 0 0 0 
0 / 0 0 
0 - C 2 -A2ii:^2A^2^ / 

-C i 0 / -AuDiA^^ 

Simple computations show tha t (recall also Lemma B.9) 

PsWTr^ [XI-A -B ]Tr 

XI-Ai 0 
0 XI-A2 

0 
-B2 

-Bi 
0 

In view of the PBH test the pair {A,B) is reachable if and only if rank[PB(A)] = 
rank[T^^PB (A)] = n,VA. This condition holds thanks to the reachability of the pair 
{Ai,Bi),i = 1,2. D 

E x a m p l e 3.1 Let Gi{s) = Gi{s) := -l/{s-l) d^nd G2{s) = {s-l)/{s-\-l). The dynamic 
matrix of a particular realization of system E is 

A: 
0 - 2 

- 1 - 1 

the eigenvalues of which are Ai = —2 and A2 = 1, so that E is not internally stable. 
Consistently, the matrix 

T{u,v;s) : 
(5 + l ) / (5 + 2) ( 5 - l ) / ( 5 + 2) 

-{s + l)/{s - l)(s + 2) (5 + l ) / (5 + 2) 

does not belong to RHOG- On the contrary, if Gi{s) — Gi{s) := l / ( s + 2), the dynamic 
matrix of a particular realization of E is 

A = 
- 1 

1 

whose eigenvalues are Ai,2 = —1 ib jV^, so that the system is internally stable. Consistently, 
the matrix 

T{u,v]s) 
1 

52 + 2s + 3 
(s + l)(s + 2) ( s - l ) ( s + 2) 

(s + 1) (s + l)(s + 2) 

is an element of RHo, 

This result can be specialized to the case where one of the two transfer functions 
Gi{s) or (^2(5) is stable, leading to the following theorem where Tij{u,v; 5), z = 1,2, 
jf = 1,2 denotes the transfer function from Vj to Ui. 
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T h e o r e m 3.2 Let 62(5) be stable. Then the system D in fig. 3.3 is internally stable 
if and only if T21 {u, v; s) G RHoo. 

P r o o f In view of Theorem 3.1, the present theorem is proved once it is shown tha t 
stabihty of T2i{u,v;s) imphes stabihty of Tii{u^v;s), Ti2{u,v;s), T22{u^v;s). By 
exploiting Lemma B.9 one has 

/ + G2{s)T2,{u,v; s)=I + G2(s)Gi(s)[7 - G2(s)G,{s)]-' 

= [I-G2{s)G,(s)]-^=Tn{u,v;s) 

so tha t , iiT2i{u,v;s) G RH^o, also Tii{u,v;s) e -R-ffoo- Similarly, by exploiting once 
more Lemma B.9, 

/ + T2i{u, V- s)G2{s) = / + [ / - Gi{s)G2{s)]-^G^{s)G2{s) 

= [I-Gi{s)G2{s)]-^=T22{u,v-s) 

so that , again, if T2i(w,f ;s) G RHoo^ T22{u^v]s) G RHoo, as weU. Finahy, be-
ing Ti2{u.,v]s) = Tii{u^v\s)G2{s) then stabihty of Tii{u^v]s) entails stability of 
Ti2{u,v]s). D 

E x a m p l e 3.2 Again consider the functions Gi{s) and 6^2(5) defined in Example 3.1. Being 
6^2(s) stable, the internal stability of E can be tested by checking the stability of T2i(it, v] s) 
only. When Gi[s) = (5i(s), T2i{u,v; s) is not stable, whereas T2i{u,v;s) G RH^o when 
Gi{s) — (^i(s), consistently with E being stable only in the second case. • 

A further specialization of the above results can be found when both transfer functions 
Gi{s) and G2{s) are stable. 

T h e o r e m 3.3 Assume that Gi[s) G RHoo, i = 1,2. Then the system E depicted in 
fig. 3.3 is internally stable if and only if 

d e t [ / - G i ( 5 ) ^ 2 ( 5 ) ] 7^0 , Re[s)>{) 

P r o o f Preliminarily notice tha t the transfer function of the system 

Ai B1C2 
0 A2 

-Gi -D,G: l<-^2 

B1D2 
B2 

^12 

is / — Gi{s)G2{s). By exploiting Lemma B.9 and recalling Definition 2.14 it is easy 
to check tha t the dynamic matr ix of E~^ is precisely A. Moreover, any common root 
of the polynomial nzt{s) of the transmission zeros and 'Kp{s) of the poles of system 
/ — Gi{s)G2{s) must necessarily lie in the open left half plane, since such a system is 
stable. 

Now suppose tha t de t [ / — Gi{s)G2{s)\ 7̂  0, Re{s) > 0, so tha t , in view of Remark 
2.7, 

^ 4 ^ = d e t [ / - G i ( s ) G 2 ( 5 ) ] 7 ^ 0 , Re{s)>{) 
7rp(s) 

which implies tha t all transmission zeros of E^ have negative real part . The stability 
of Ea (notice tha t Ai is stable, i = 1,2, since Gi{s) G RH^oi i = 1,2, and the 
associated realizations are minimal) entails tha t any invariant zero of it which is not 
a transmission zero must lie in the open left half plane. Hence, thanks to Theorem 
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2.7, all the eigenvalues of E~^ have negative real part, matrix A is stable and in turn 
system E is internally stable. 

Conversely, if system E is internally stable, then matrix A is stable and system 
E~^ is internally stable, so that, in view of Theorem 2.7, all invariant zeros of system 
Ea are in the open left half plane. Since the set of transmission zeros is contained in 
the set of invariant zeros (Theorem 2.4), all the transmission zeros of system E^ have 
negative real part. Then, from Remark 2.7, it follows 

d e t [ / - G i ( 5 ) G 2 ( 5 ) ] ^ 0 , Re{s)>0 

D 

Example 3.3 Consider the functions Gi{s) = Gi{s) and G2{s) defined in Example 3.1. 
Both of them are stable and system E is internally stable if and only if det[/ — Gi{s)G2{s)] 
is not zero in the closed right half plane. Actually, it is 

det[I - Gi{s)G2{s) ŝ  + 2g + 3 
(5 + l)(5 + 2) 

the zeros of which have negative real part, consistently with the (already established) internal 
stability of system E. • 

3.3 Double coprime factorizations 

The definitions of right and left coprimeness for rational matrices which, together 
with some related properties, have been presented in Section 2.4, are now exploited 
in order to introduce an intermediate result on the way of presenting the so called 
parametrization of all stabilizing controllers in the next section. 

Theorem 3.4 Let G{s) be any proper rational matrix. Then there exist eight matri-
ces M{s), N{s), M{s), N{s), X{s), Y{s), X{s), Y{s), all belonging to RHoo, such 
that 

a) 

b) 

G{s) = N{s)M-\s) = M-\s)Nis) 

X{s) 
-Nis) 

-Y{s) 
M{s) 

M{s) Y{s) 
N{s) X{s) 

The matrices M{s), N{s), M{s), N{s) constitute a double coprime factorization of 
G{s). 

Proof First notice that, if the statement of the theorem is correct, the matrices M{s) 
and N{s) are right coprime in view of Lemma 2.5, while M{s) and N{s) are left 
coprime thanks to the "left version" of the same lemma. 

Now let G{s) = T,{A, B, C, D) and assume that the triple [A^ B, C) is stabilizable 
and detectable. Further, let F and H be any two matrices such that {A + BF) and 
{A + HC) are stable and set C ~C + DF, B := B + HD. Define 

M{s) :--
A + BF B 

N{s) := 
A + BF 

C 
B 

D 
(3.1) 
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X{s) := 

M[s) :— 

X{s) := 

' A + BF 
-C 

' A + HC 
C 

' A + HC 
-F 

H ' 
I 

H ' 
I 

B ' 
I 

, Y{s) := 

, Nis) := 

, Y{s) := 

' A + BF \ 
-F 

\ A + HC 

[ C 
' A + HC 

-F 

H 1 

0 J 
B ' 

\ ^ 

H ' 

0 

(3.2) 

(3.3) 

(3.4) 

Point a) It is obvious that the four matrices M(s), N{s), M{s), N{s) belong to 
RHoo. Moreover, M{s) and M{s) have inverses since 

Urn M{s) = / , hm M{s) = / 

Now consider system Si (with input v and outputs y and u) defined by 

x = {A^ BF)x + Bv 

y = Cx + Dv 

u = Fx + V 

Thus, El is nothing but system G{s) after the control law u — Fx + v has been 
implemented. It follows 

ULo = M{S)VL 

VLO = N{S)VL 

so that yLo = G{S)ULO = A/'(S)M~^(5)WLO- Hence 

G{s) = N{s)M-\s) (3.5) 

Consider system E2 (with inputs u and ?/ and output 77) defined by 

^ = Ai9^Bu-{-Hr] 

r] = C^^Du-y 

Thus, E2 is nothing but a state observer for the system with transfer function G{s), 
so that T] is the output observation error, namely 

77 = C(^ - x) 

which is well known not to depend on w, since 'd — x — {A-\- HC){;d — x). Therefore, 

r/Lo = [C{sl - (A + HC))-'B + D]uL -

-[C{sI-{A + HC))-'H + I]yLo 

= N{s)uL - M{s)yLo 

= [N{s) - M{s)G{s)]uL = 0 

which implies 
G{s) = M-\s)N{s) 

Point a) is then proved in view of eqs. (3.5),(3.6). 

(3.6) 
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Point b) Consider system E3 (with inputs u and y and output 7) defined by 

/i = (A + HC)/j. ^Bu-Hy 

J = u — Fji 

so that 7LO = X{S)UL — Y{s)yL. Then in the series connection H3II1 it is 

7L0 = X{s)uLo - Y{s)yLQ - [X{s)M{s) - Y{S)N{S)\VL 

However, (i — x = [A-\- HC){fi — x) and j = v — F{fi — x) which imphes that the 
transfer function from t* to 7 is / , that is 

X{s)M{s)-Y{s)N{s) = I 

Now consider system E4 (with input w and outputs y and u) defined by 

z = {A + BF)z + Hw 

y = Cz — w 

(3.7) 

SO that yLo 
is 

u-^Fz 

-X{S)WL and ULO = ~Y{S)WL. Then in the series connection E2D4 it 

VLO = N{s)uLo - M{s)yLo = [-Nis)Y{s) + M{S)X{S)]WL 

However, z — 'd = (^ + HC){z — d) and rj = w — C{z — d) which imphes that the 
transfer function from it; to ry is / , that is 

- N{s)Y{s) + M{s)X{s) - / (3.8) 

Finally, in the series connection II3E4 it is 

7Z.0 = X{s)uLo - y[s)yLo = [-X{s)Y{s) + Y{S)X{S)]WL 

However it is i — /i = {A-\- HC){z — /i) and 7 = F{z — ji) which implies that the 
transfer function from it; to 7 is 0, 

X{s)Y{s) ̂ -Y{s)X{s) = {) (3.9) 

From eqs. (3.5),(3.6) it follows that M{s)N{s) - N{s)M{s) = 0 which, together with 
eqs. (3.7)-(3.9), proves point b). • 

Remark 3.1 The proof of Theorem 3.4 outlines the fact that, corresponding to a given 
function G{s), there exists an infinite number of distinct double coprime factorizations in 
RHoo (recall that matrices F and H can be chosen in an almost arbitrary way). • 

Example 3.4 Consider the rational matrix 

G{s)--

which admits the quadruple 

A = 

C ^ 

{s^ + s-l)l{s^-s) sl{s^-l) 
{2s'~ I)lis'-s) s'l{s'-l) 

\ ^ ^ 
1 0 

L 0 0 

' 1 0 
0 1 

0 " 
0 
0 _ 

1 ' 
1 

, 5 = 

, D^ 

" 0 1 " 
1 0 

_ 1 0 . 

' 0 0 " 
0 1 
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as a minimal realization. Chosen 

F := H 
• - 4 

- 4 
1 

0 " 
0 
0 _ 

it is easy to check the stability of matrices A + BF and A + HC and then computing the 
eight matrices referred to in Theorem 3.4. It results 

M{s 

N{s 

X{s 

Y{s 

M{s 

N{s 

X{s 

Y(s 

5/(5 + 1) 0 
-5(25 + l ) / ( s + l){s^ + s + 1) {s^ - l)/{s^ + 5 + 1) 

(5 ' + l ) / (5 + 1){S^ + 5 + 1) 5/(52 + S + 1) 
1/(5^+5 + 1) 5 7 ( 5 ^ + 5 + 1 ) 

(5^ + 55^ + 5 - 5)/(5 + 1){S^ + 5 + 1) 0 
- (95 + 5)/(52 + 5 + l) 

1 / (^+1) 
-(125^ + 265 + 13)/(5 + 1)(S^ + 5 + 1 ) 

5 ( 5 - l ) / ( 5 + l ) 2 0 
- (35 + l ) / (5 + l)2 1 

(52 + 5 - l ) / ( 5 + l)^ 5V(5 + 1) ' 
(25^ + 35)/(5 + 1)^ (5^ + 35^ + S)/{S + If 

(5^+452 + 75 + 5)/(5 + l)^ 
( 2 5 2 - 5 5 - 1 3 ) / ( 5 + l ) ^ 

( 5 - l ) / ( 5 + l ) 2 0 

5 / (5+1)^ 
( 5 ^ + 4 5 2 - 4 5 - l ) / ( 5 + l)^ 

-125/(5 + 1)2 

These matrices verify Theorem 3.4. 

0 

Theorem 3.4 allows one stating an equivalence condition between internal and 
external stability for a feedback system as the one depicted in fig. 3.3 which is 
different from the condition presented in Theorem 3.1. As done in the preceding 
section, it is assumed tha t a minimal realization of the two systems Gi{s) and G2{s) 
is considered and their feedback connection is well defined (the matr ix ( / — D1D2) 
is nonsingular, Di := \\m.g-^00 Gi{s),i — 1,2). For i = 1,2, let Ni{s) and Mi[s) 
be elements of RHoo such tha t Gi{s) — Ni{s)M~^{s) with Ni{s) and Mi{s) right 
coprime. Then the system in fig. 3.3 can be represented as in fig. 3.4 as well. Wi th 
reference to this figure let z := [z[ z'<^^ u := \U!Y 1^2]' and v := [v[ '^2]'- Then the 
following result holds. 

T h e o r e m 3.5 The system in fig. 3.4 is internally stable if and only if the transfer 
function T{z, v; s) from the input v to the output z is stable. 

P r o o f In view of Theorem 3.1, the proof consists in showing tha t the matr ix T{z^ v; s) 
is stable if and only if the transfer function T(ix, v; s) from the input v to the output 
u is stable. 

Sufficiency Wi th reference to fig. 3.4 it is 

ULO = T[Z,V]S)VL 
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G i ( s ) 

—O M^\s) 
Z\ 

N2{S) 
Z2 

Ni{s) 

M^\s) 
U2 V2 

G2(S) 

Figure 3.4: Feedback connection of two systems 

0 N2is) ' 
Niis) 0 

0 N2{s) 
Ni{s) 0 

ZLO + VL 

T{z,v;s) + I VL 

Therefore, if T{z,v;s) € RHoo also T{u,v;s) G RHoo, since, for i = 1,2, Ni{s) G 
RHoo-

Necessity Being Ni{s) and Mi{s), i = 1,2, right coprime, there exist matrices 
Xi{s) and Yi{s), i = 1,2, which are elements of RH^ and such that 

Xi{s) 0 
0 X2{s) 

" Yi{s) 0 
0 l2(s) + 

Mi(s) 0 
0 M2(s) 

" Ni{s) 0 
0 N2{s) 

+ 

so that 

+ 

Xiis) 0 
0 X2{s) 

" Yi{s) 0 
0 Y2is) 

Mi(s) 0 
0 M2(s) 

" Ni{s) 0 
0 N2{s) 

ZLO 

from which it follows 

0 
0 X2(5) 

Xi{s) Y,{s) 
Y2{s) X2{s) 

= T{Z,V;S)VL 

ULO^ 
0 Y,{s) 

Y2{s) 0 

ZLO — ZLO 

{ULO -VL) = 

T{u,v;s)-
0 Yi{s) 

Y2{s) 0 VL 

Being Xi{s), Yi{s), i = 1,2, and T{u^v;s) all elements of RH^^ also ii^(5) must be 
such. • 

Thanks to Theorem 3.5 it is possible to prove a result useful for the discussion in 
the next section. It clarifies the circumstances under which a system with transfer 
function Gi{s) is internally stabilized by a system with transfer function (^2(5) when 
they are feedback connected as shown in fig. 3.4, where, for i = 1,2, matrices Ni{s) 
and Mi{s) possess the above mentioned properties. 
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T h e o r e m 3.6 With reference to fig. 3.4, system G2{s) internally stabilizes system 
Gi{s), that is, the resulting system is internally stable, if and only ifG~^{s) G RHoo, 
where 

' Mi ( s ) N2is) " 
Ni{s) M2{s) 

G{s) := 

P r o o f Preliminarily observe tha t matr ix G{s) is nonsingular, so tha t the statement 
makes sense. Indeed, one can write 

Mi ( s ) N2{s) 
Niis) M2{s) 

I G2{s) 
Gi(s ) / 

Mi ( s ) 0 
0 M2(s) 

For the first matr ix on the right hand side of this equation it is 

lim det 
5—*00 

/ G2(s) 
G i ( s ) / 

lim d e t [ I - G i ( s ) G 2 ( s ) ] 

d e t [ / - L > i D 2 ] 

having exploited the Schur formula for the determinant of a block matr ix (see Lemma 
B.13). Thus, matr ix G{s) is nonsingular since it is the product of two nonsingular 
matrices (recall tha t , for i = 1,2, M~^{s) exists). 

By taking into account fig. 3.4 one has 

Mi{s) -N2{s) 
-Ni{s) M2{s) ZLO 

Mi{s)ziL0-N2{s)z2L0 

-Ni{s)ziL0 + M2{s)z2L0 

V2L - U2L0 + U2LQ 
VL 

SO tha t , thanks to Theorem 3.5, G2{s) internally stabilizes Gi{s) if and only if 

T{z,v;s):--
Mi{s) -N2{s) 

-N,{s) M2{s) 
eRH^ 

Finally, T{z, v; s) G RH^ if and only if G~^(s) G RHoo- In fact, 

T{z,v;s) G-\s) 

n 

E x a m p l e 3.5 Consider the functions Gi{s) and G2{s) defined in Example 3.1. Being 
(^2(5) stable one can set (see the proof of Theorem 3.4) 

N2{s) = 
s-1 

M2(s) = 1 

whereas for ^1(5) = Gi{s), the choice F = —3 entails (see the proof of Theorem 3.4) 

Ni{s) = Ni{s) 
1 

Mi{s) = Mi{s) 
s + 2 

Finally, being Gi{s) stable, for Gi{s) — (7i(s), one can set 

1 

5 + 2 

Ni{s) = Ni{s) 
5 + 2 

, Mi (5 ) = Mi (5 ) = l 
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G{s) 

Kis) 

Figure 3.5: Feedback connection of two systems 

Thus, 

G-\s) 
( s - l ) / ( 5 + 2) {s-l)/{s + l) 

- 1 / ( 5 + 2) 1 

(s + l ) / ( 5 - l ) - 1 
( 5 + l ) / ( s 2 + 5 - 2 ) ( s + l ) / ( 5 + 2) 

which does not belong to RHoo, consistently with Gi{s) not being stabilized by ^2(5), 
whereas 

G-\s) 
1 {s-l)/{s + l) 

1/(5 + 2) 1 

(5^ + 3s + 2)/(s^ + 2s + 3) - ( s ^ + s - 2)/{s^ + 2s + 3) 
- ( s + l ) / (s^ + 2s + 3) (s^ + 3s + 2)/(s2 + 2s + 3) 

belongs to RHoc consistently with Gi{s) being stabilized by G2(s). 

3.4 The set of stabilizing controllers 

The so called parametrization of all stabilizing controllers is presented in this section. 
This result is particularly significant as it allows to completely characterize the set 
of all linear, finite dimensional and time invariant controllers K{s) which stabilize a 
given system with transfer function G(s) , if connected to it according to the block-
scheme of fig. 3.5. It will be shown tha t the system in fig. 3.5 is internally stable if and 
only if the controller transfer function can be given a very simple form in terms of a 
free parameter which, besides ensuring the well-posedness of the feedback connection, 
has to comply with a single constraint only, namely being an element of the space 
RHQQ, 

Obviously, there exist stabilizing controllers for system G{s) := C{sI — A)~^B-\-D 
only provided tha t the pair (A, B) is stabilizable and the pair (A, C) is detectable. 
Therefore, such an unavoidable assumptions will be done throughout the subsequent 
discussion. 

Consistently with Theorem 3.4, let the eight matrices N{s)^ M{s)^ ^{^)^ ^{^)^ 
X{s)^ Y{s)^ X{s)^ Y{s) specify a double coprime factorization in RHoo of the transfer 
function G{s). These matrices are derived according to eqs. (3.1)-(3.4) and are such 
tha t 

G{s) = N{s)M-\s) = M-\s)N{s) 
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and 
r X{s) -Y{s) 1 r M{s) Y{s) 
[ -N{s) M{s) \ [ N(s) X{s) 

It is now possible to state the following result. 

(3.10) 

Theorem 3.7 (Youla parametrization) The set of all rational and proper transfer 
functions K{s) which internally stabilize G{s) is defined by controllers of the form 

K{s) = [Y(s) - M{s)Q{s)][X{s) - N{s)Q{s)]-' 

= [X{.s) - Q{s)Nis)]-'[Y{s) - Q{s)Mis)] 

where the matrix Q{s) is any element of RHoo such that 

det[7 - D lim Q{s)] ^ 0 

(3.11) 

(3.12) 

Proof Preliminarily notice that the existence of the inverse matrices in eq. (3.11) is 
ensured by eqs. (3.1)-(3.4) and (3.12) (also recall Lemma B.8). 

For any matrix Q{s), eq. (3.10) implies that 

I Q{s) 
0 / 

-Qis) 
I 

Q{s) 
I 

X{s) -Y{s) 
-N{s) M{s) 

I -Q{s] 
0 / 

M{s) Y{s) 
N{s) X(s) 

X{s)-Q{s)N{s) -[Y{s)-Q{s)M{s)] 
-N{s) M{s) 

' M{s) -M{s)Q{s)+Y{s) 
N{s) -N{s)Q{s) + X{s) 

The (1,2) block of the product of the two last matrices in eq. (3.13) is zero, i.e. 

(3.13) 

[X{s) - Q{s)N{s)][-M{s)Q{s) + Y{s)] -

-[Y{s) - Q{s)M{s)][-N{s)Q{s) + X{s)] = 0 

SO that the second equality sign in eq. (3.11) is proved. 
Now the system with transfer function 

(3.14) 

K{s) := [Yis) - M{s)Q{s)][Xis) - Nis)Qis)]-' 

where Q{s) G RHoo satisfies condition (3.12), is proved to internally stabilize G{s). 
To this aim, let U{s) := r ( s ) - M{s)Q{s), Vis) := X{s) - N{s)Q{s), U{s) := 
Y{s) - Q{s)M{s), V{s) := X{s) - Q{s)N{s), so that K{s) = U{s)V-\s). From eq. 
(3.10) it follows 

V{s) 
-N{s) 

-Uis) 
M{s) J 

that is 
M{s) U{s) 
N{s) V{s) 

M{s) U{s) 
Nis) V{s) 

Vis) -Uis) 
-Nis) Mis) J 
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The matrix on the right hand side of this last equation belongs to RHoo (each block 
in it is an element of RHoo)^ so it does the inverse on the left hand side. Hence, 
thanks to Theorem 3.6, the system in fig. 3.5 is internally stable. 

Conversely, assume that K{s) stabilizes G{s). In order that the feedback system 
in fig. 3.5 is well defined, matrix K{s) must satisfy the condition 

det [/ - DK] ^ 0 (3.15) 

where K := liiiis^oo K{s). Let U{s) and V{s) be two right coprime elements of RHo 
such that K{s) = U{s)V~^{s) and consider the identity 

X{s) -Y{s) 1 r M{s) U{s) 
-N{s) M{s) J [ N{s) V{s) 

I X{s)U{s)-Y{s)V{s) 
0 -N{s)U{s) + M{s)V{s) 

(3.16) 

which follows from eq. (3.10). The two matrices on the left hand side of eq. (3.16) 
have inverses in RHoo, the first one thanks to eq. (3.10), the second one thanks to 
Theorem 3.6. Hence also the matrix on the right hand side has inverse in RHQQ , so 
that P-'^is) :^l-N{s)U{s) + M{s)V{s)]-'^ G RHoo- Therefore the matrix Q{s) := 
— [X{s)U{s) — Y{s)V{s)]P~^{s) belongs to RHoo, too. Now notice that from eqs. 
(3.1)-(3.4) it follows 

I-D lim Q{s) =^I^D lim \[X{s)U{s) - Y{s)V{s)] • 

• [-N{s)U{s) + M{s)V{s)]-^'\ 

= I + D lim \[X{s)U{s)V-\s)-Y{s)]V{s)V-'^{s) • 

• [-N{s)Uis)V-\s) + M{s)]-'^] 

= I + DK{I - DK)-^ 

= (7 - DK)-^ 

where the last equality sign is due to Lemma B.9. Hence Q{s) satisfies condition 
(3.12) in view of eq. (3.15). 

Prom eq. (3.16) one obtains 

M{s) Y{s) 
N{s) X{s) 

Xis) -Y{s) 
-N{s) M{s) 

M{s) U{s) 
N{s) V{s) 

M{s) Y{s) 
N{s) X{s) 

I -Q{s)P(s) 
0 P{s) 

which, in view of eq. (3.10), becomes 

M{s) U{s) 
N{s) V{s) 

M{s) Y{s) 
Nis) Xis) 

-Q{s)Pis) 
Pis) 

This last equation implies 

Uis) 

Vis) 

[Yis) - Mis)Qis)]Pis) 

[Xis)-Nis)Qis)]Pis) 
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so that 

K{s) = U{s)V-\s) 

= [Yis) - M{s)Q{s)][X{s) - N{s)Q{s)]-' 

according to eq. (3.11). • 

The controller KQ{S) corresponding to the somehow most natural choice of Q{s), 
namely Q{s) = 0, is usually referred to as the central controller. In view of eq. (3.11) 
such a controller is given by 

Ko{s) = Y{s)X-'{s) = X-\s)Y{s) 

and therefore only depends on the particular double coprime factorization of G{s) 
which has been selected. Further, in spite of corresponding to the simplest matr ix 
Q{s) G RHoo which satisfies condition (3.12), the central controller is not^ in general, 
the lowest order stabilizing controller. 

E x a m p l e 3.6 Let G{s) = 1/s and choose F = H = -1, thus obtaining N{s) = N{s) = 
l / ( s + l ) , M{s) = M{s) = 5 / ( s+ l ) , X{s) = X{s) = (5+2) / ( s+ l ) , Y{s) = Y{s) = - 1 / (5+1) . 
From eq. (3.11) it follows 

_ _ l + sQ{s) 
^^'> s + 2-Q{s) 

SO that, corresponding to the choice Q{s) = 0 it is Ko{s) = —l/(s + 2), while, if Q(s) = 1, it 
is K{s) = —1 (note that the first controller, the central one, is a dynamic system of order 1, 
while the second one is purely algebraic). Vice-versa, by making use of the expressions for 
Q{s) given in the proof of Theorem 3.7, one gets 

Qis)= ns) + is + 2)Uis) 
sV{s) - U{s) 

where ?7(s) and y(s ) are such tha t / r ( s ) = U(s)V ^(s). As an example, if X(s) = —l/ (s+l ) , 
then Q(s) = l / (s^ + s + 1). D 

The set of all stabilizing controllers can be further analyzed in order to enlighten 
interesting connections with other results of linear control theory. A preliminary 
result is presented in the forthcoming lemma, where reference is made to a double 
coprime factorization of G{s) satisfying eq. (3.10). 

L e m m a 3.1 The set of proper rational transfer functions which internally stabilize 
G{s) is given by 

Kis) = Ko{s) - X-\s)Q{s)[I - X-\s)N{s)Q{s)]-^X-\s) 

where Ko{s) = Y{s)X'^{s) = X~^{s)Y{s) and Q{s) 6 RHc^ is such that 

det[I - D lim Q{s)] ^ 0 

P r o o f By exploiting the results in Lemma B.9 and the expression of a generic stabi-
lizing controller (Theorem 3.7), one obtains 

K{s) = [Y{s) - M{s)Q{s)][Xis) - N{s)Q{s)]-' 

= [Y{s) - M{s)Qis)]{[I - N{s)Q{s)X-\s)]X{s)}-' 
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u 

Y 
- X - i ( s ) 

Rfis) 

2/1 

Ko{s) 

N{s) 

Qis) 

J 
w X-\s) 

Ui 

y 

Figure 3.6: The structure of the stabihzing controllers 

= [Y{s) - M{s)Q{s)]X-\s)[I - N{s)Qis)X-\s)]-' 

= [K^{s) - M{s)Q{s)X-\s)]{I + N{s)Q{s) • 

•{I-X-\s)N{s)Q{s)]-'X-\s)} 

= Kois) + Ko{s)N{s)Q{s)[I - X-\s)N{s)Q{s)]-' • 

•X'\s)-M{s)Q{s)X-\s)-

•{I + N{s)Qis)[I - X-\s)Nis)Q{s)]-'X-\s)} 

- Ko{s) + Ko{s)N{s)Q{s)[I - X-\s)N{s)Q{s)]-' • 

•X-\s) - M{s)Q{s)X-\s)[I - N{s)Q{s)X-\s)]-^ 

= Kois) + Ko{s)N{s)Q{s)[I - X-\s)N{s)Q{s)]-' • 

•X-\s) - M{s)Q{s)[I - X-\s)N{s)Qis)]-^X-\s) 

= Kois) + [Kois)Nis) - Mis)]Qis) • 

•[I - X-\s)Nis)Qis)]-'X-Hs) 

Thanks to eq. (3.10) it is 

Kois)Nis) - Mis) = X-\s)Yis)Nis) - Mis) 

= X'\s)[Yis)Nis) - Xis)Mis)] 

-X-\s) 

SO that K{s) is given by 

Kis) = Kois) - X-\s)Qis)[I - X-\s)Nis)Qis)]-'X-\s) 

and the lemma is proved. D 

The form of K{s) as given by Lemma 3.1 shows that the generic stabilizing con-
troller is constituted by two subsystems in feedback connection. The first subsystem, 
denoted with Rf{s) in fig. 3.6, only depends on the particular double coprime factor-
ization which has been selected for G{s), while the second one is simply constituted 
by the system with transfer function Q{s). In fact, it is straightforward to check that 
the transfer function from y to u of the controller depicted in fig. 3.6 is precisely 
K{s). In view of this fact it is particularly meaningful to look for a realization of the 
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subsystem Rf{s), since the generic stabilizing controller must result from the feed-
back connection of it with a stable system Q{s) which is only constrained to actually 
produce a well defined overall system (condition (3.12)). 

With reference to fig. 3.6, the transfer function of system Rf{s) from the two 
inputs y and yi to the two outputs u and ui is 

Rf{s) = Ko{s) -X-Hs) 
X-\s) X-\s)N{s) 

Preliminarily a realization is presented for each one of the transfer functions appearing 
in Rf{s). The proof of Theorem 3.4 (as for the form of N{s), X{s), Y{s), X{s)) and 
Section 2.5 (as for the form of the inverse system) are expedient to such an operation. 
Letting C := C + DF, B := B ^ HD amd A := A ^ BF ^ HC, one obtains 

X-Hs)N{s) 
A + BF 

HC 
0 
A 

C C 

B 
HD 

D 

It is easy to ascertain that a lower order realization can be found by performing a 
change of variables which put into evidence an unobservable part and is defined by 
the matrix 

namely, 

Ti~ 

X-\s)N{s) 

I I 
0 / J 

' A 

C 

B ' 

D 

• A 0 
HC A + BF 

H -
H 

In a similar way one gets 

Ko{s) = Y{s)X~\s) = 

simplified to 

through the change of variables defined by the matrix 

-F 

A 
-F 

H ' 

0 

T^:= 
-I 

0 

which put into evidence an unreachable part. Finally, one has 

" A 

C 

H ' 

I 
X-\s) = 

Thus a realization for system Rf{s) is 

RM 

, x-\s) 
' A 

F 

B ' 

I 

A 
-F 

C 

H 

0 
/ 

B ' 

-I 
D 

A 
F 

-C 

-H 

0 
/ 

-B ' 
-I 
D 
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L^^ 
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-H 

\ 
? 
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~y—• 

B 

lis 
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C 

C 

• — 

F 

yi 

- ^ 
U 

Figure 3.7: A realization of Rf{s) 

This particular realization corresponds to the block-scheme depicted in fig. 3.7. This 
scheme clearly shows that when yi = 0, that is when (5(5) = 0 or, in other words, 
when the central controller has been adopted, the stabilizing controller generates the 
control variable u through the law u — F^, ^ being the state of an observer with 
dynamic matrix A -\- HC. Thus the central controller coincides with the controller 
designed via the well known pole placement technique and any stabilizing controller 
for G{s) can be said to be "built around" a state observer. 

Finally, the eigenvalues of the resulting control system, that is of the system in fig. 
3.5 with K{s) given by the block-scheme of fig. 3.6 where Rf{s) is specified by the 
block-diagram of fig. 3.7, are those of matrices A + BF and A + HC together with 
those of the dynamic matrix oi Q{s) := I]{Aq^Bq,Cq^Dq). In fact, denoting by x and 
Xq the state variables of G{s) and Q(s), respectively, the choice Xt := [x' — ^' x'q x']' 
as state variables of resulting system, yields the (closed loop) dynamic matrix 

At = 
A + HC 

BqC 
0 

A. 
-B{F + DqC) -BCq A-^BF 

3.5 Notes and references 

The line of reasoning pursued in this chapter and the derivation of some results 
presented herein are inspired by the books of Francis [19] and Maciejowski [43]. The 
result on the parametrization of stabilizing controllers can be found in the pioneering 
paper by Youla et al. [63]. 



Chapter 4 

RH2 Control 

4.1 Introduction 
This chapter presents the most significant results concerning the control problem 
in the RH2 context: it simply consists in minimizing the RH2 norm of a transfer 
function. As it will be apparent in the sequel, a number of connections can be estab-
lished between this problem (more precisely, between the subproblems which actually 
constitute its frame) and the most celebrated set of results in optimal filtering and 
control problems, the well known Linear Quadratic Gaussian theory. Approaching 
these problems within the RH2 setting gives a somehow more complete picture of the 
structure of the results (see the forthcoming Remarks 4.3, 4.10, 4.19). 

Throughout this chapter reference will be made to a controlled system described 
by the following equations 

X — Ax + Biw + B2U 

z = Cix + Diiw + D12U 

y = C2X + D21W -h D22U 

(4.1) 

(4.2) 

(4.3) 

The measured output variable y is the input to the controller, which is constrained to 
be a finite dimensional, linear, time invariant system, while the control variable u is 
its output. Therefore, the controller takes on the form 

u^Hi + Ey 
(4.4) 

(4.5) 

w 

u 
P{s) 

K{s) 

Z 

'?/ 

Figure 4.1: The standard control system 
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The situation is summarized in the block-scheme of fig. 4.1, where P{s) and K{s) 
denote the transfer functions of the controlled system and the controller, respectively. 
More precisely. 

P{s) := 
A 
Ci 

B\ B2 

D21 D22 

~ F 

H 
G " 

E 
K{s) := 

It is apparent that the feedback connection of system (4.1)-(4.3) with system (4.4),(4.5) 
is well defined only if the controller is such that 

det[/ - ED22] j^ 0 (4.6) 

that is only if the algebraic loop deriving from its implementation can be solved. 
The structure of system (4.1)-(4.3) is typical of the control problems stated within 

the RH2 and RH^o context. Indeed, it is sufficiently general so as to encompass 
the most meaningful situations. A fairly comprehensive discussion on this aspect is 
presented at the beginning of Chapter 5 to adequately motivate the significance of 
the results there presented for the RH^o control problems. 

The input variable w collects all exogenous signals which can be viewed as dis-
turbances acting on the control system, while the output performance variable z is 
expedient to specify an index of the performances to be attained by the control sys-
tem. 

With reference to the control system depicted in fig. 4.1, the main objective is 
minimizing (with respect to K{s)) the RH2 norm of the transfer function T{z^w; s) 
from the input w to the output z. 

If T{z, w; s) has to belong to RH2^ then it must necessarily be strictly proper and 
stable. The first requirement is equivalent to the condition 

Dii -h Duil - ED22)~^ED2i = 0 (4.7) 

As for the second requirement, it is no doubt satisfied if the internal stability of the 
control system is ensured, that is if the controller (4.4),(4.5) internally stabilizes the 
controlled system (4.1)-(4.3), which simply amounts to asking for the stability of the 
dynamic matrix of the resulting system, namely 

Re{Xi{AF)) < 0 , Vz (4.1 

where 

AF:= 
A + B2{I-ED22)-^EC2 B2{I-ED22)-^H 

G[I + D22{I - ED22)-^E]C2 F + GD22{I - ED22)-^H 
(4.9) 

In view of the discussion above the notion of admissible controller is introduced in 
the following definition. 

Definition 4.1 (Admissible controller in RH2) A controller K{s) is said to be ad-
missible in RH2 for P{s) if conditions (4-6)-(4'9) are verified. • 
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Three problems will be discussed in the forthcoming Sections 4.2 - 4.4: (z) the full 
information problem; (iz) the output estimation problem; (Hi) the partial information 
problem. Each of these problems refers to a particular structure of the controlled 
system P{s) and exhibits deep and significant mutual connections. Indeed, the last 
one presents an interesting separation property and will be dealt with by exploiting 
the solutions relevant to the first two, which, in turn, are characterized by strong 
duality properties. 

The main result concerning each one of the above problems provides the answer to 
three important questions: (i) the existence of the optimal controller; (ii) the actual 
form of such a controller; (Hi) the parametrization of suboptimal controllers. The 
material will be presented according to the scheme formally stated in Problem 4.1 
which refers to the feedback connected system shown in fig. 4.1 and to the set ^27 
of controllers which are admissible in RH2 for P{s) and such that ||T(2:,it;; 5)||2 is 
bounded by a given positive scalar 7. 

Problem 4.1 (Standard problem in RH2) Find 

a) The minimum value (if any) of \\T{z,W] s)\\2 attainable by a controller K{s) 
which is admissible in RH2 for P{s). 

b) An admissible controller which minimizes \\T{z^w]s)\\2-

c) A set of controllers T2-^r ^ -̂ 27 whose elements generate the whole set of func-
tions T{z^w;s) which are generated by the elements 0/^27-

Remark 4.1 An obvious necessary condition for the existence of a stabilizing con-
troller (and therefore for the existence of an admissible controller in RH2 for P{s)) 
is the stabilizability of the pair (̂ 4, B2) and the detectability of the pair (̂ 4, (72). The 
statement of Problem 4.1 makes sense only if both properties actually hold true. • 

In the forthcoming sections the parametrization of the controllers in the family 7̂-27 
will be presented in specific remarks which follow the main theorems concerning the 
solution of Problem 4.1. Hence, the issues relative to the family ^2^ and those relative 
to Problem 4.1 will be treated separately. 

Problem 4.1 will be tackled in the subsequent sections by assuming Du = 0 in eq. 
(4.2). Actually, this assumption does not cause any loss of generality. In fact, assume 
that the set of matrices E which satisfy eqs. (4.6),(4.7) is not empty (otherwise the 
problem would not admit any solution in RH2) and let E be one of such matrices. It 
is straightforward to check that the situation D u = 0 is recovered after the output 
feedback 

u = Ey + V 

has been implemented. 

4.2 The full information problem 

In this section Problem 4.1 is considered by assuming that the output signal y of 
system (4.1)-(4.3) is constituted by the state vector x and the disturbance vector w. 
Moreover, no direct influence of the input signals w and u exists on the outputs z and 
y, respectively. As a consequence, the controlled plant, whose transfer function from 
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i 

u 

u 
PFI{S) 

KFI{S) 

z 

y^ 
X 

w 

Figure 4.2: The full information problem 

[w' u'Y to [z' y'Y will be denoted by PFI{S), is described by 

X = Ax + Biw + B2U 

z = Cix + D12U 

y = [y[y2r 
yi=x 

y2 = w 

Furthermore, the following assumptions will be made. 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

Assumption 4.1 The pair (A, ^2) ^̂  stabilizable and no eigenvalue of the unobserv-
able part of the pair [{A — 52^i2C'i), (/ — ^i2-Oi2)C'i] lies on the imaginary axis. 

Assumption 4.2 D'12^12 = ^• 

In the theorem below reference is made to the block-scheme of fig. 4.2 where KFI{S) 

is a generic controller admissible in RH2 for Pp/(s). In this diagram T{z^w\ s) is the 
transfer function from w io z. 

Theorem 4.1 (Full information) Consider Problem 4-^ relative to system (4-^0)-
(4'H)' Then, under Assumptions 4-^, 4-2, it has the solution 

a) 

min \\T{z,w;s)\\2 = ||Pc(s)Bi||2 = yJtvm:e[B[P2Bi] 

• 0 

0 
0 0 " 

F2 0 
Khis) = 

c) The set J^2'yr of the controllers KFir{s) is defined by the diagram of fig. 4-^^ 
where Q{s) := J:{Aq,Bq,Cq,0) with Aq stable and \\Q{s)\\l < 7^ - ||Pc(s)^i||2-

In the three points above, j is a positive scalar such that 7 > ||Pc(5)^i||2 ^^^ 

F2 := -B'2P2 - D[2Ci (4.15) 

Pc{s) 
Ac — B2B2P2 

Clc — D12B2P2 0 

Ac-A- B2D[2Ci, Clc ••= {I - DnD[2)Ci 

(4.16) 

(4.17) 
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u 
/ 
w 

F2 

Q{s) 

Kpir is) 

X 

w 

Figure 4.3: The set ^27r of the controllers Kpir{s) 

where P2 is the symmetric, positive semidefinite and stabilizing solution of the Riccati 
equation (in the unknown P) 

0 - PAe + A'^P - PB2B'^P + C[,Cic 

i.e. such that matrix Ace defined by 

Ace := Ac - B2B'^P2 = ^ + B2F2 

is stable. 

(4.18) 

(4.19) 

Proof First observe that the necessary condition for the problem at hand to make 
sense (recall Remark 4.1) is satisfied. Indeed, being measurable the state of the 
system, detectability of the pair (A, C2) trivially holds, while, on the other hand, 
stabilizability of the pair (A, B2) is guaranteed by Assumption 4.1. 

Points a) and b) Notice that the pair (A, B2) is stabilizable if and only if the 
pair [Ac,B2) is such (recall that state feedback does not modify the stabilizability 
property). Therefore, Assumptions 4.1 and 4.2 together with Lemma C.4 guarantee 
the existence of the symmetric, positive semidefinite and stabilizing solution P2 of eq. 
(4.18), so that the matrix Ace defined by eqs. (4.19),(4.15) is stable. 

Furthermore, let 
v:=u- F2X (4.20) 

Equation (4.20) apparently defines the control law 

u:= V -\- F2X 

From eqs. (4.10),(4.11),(4.21) it follows 

ZLO = Pe{s)BiWL + U{S)VL 

where 
U{s) := S(^e - BaB^Pa, -B2, Cie - A a ^ ^ P ^ , Du) 

The variable v defined by eq. (4.20) is one of the output of the system 

X = Ax + Biw + B2U 
Pv{s) := { v = -F2X + u 

V = [2/1 y'2]' ) yi = x , y2 = u) 

(4.21) 

(4.22) 

(4.23) 
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u 

u 

u 
Pvis) 

KFI{S) 

Z 

y = 
X 

w 

Figure 4.4: The equivalent full information problem 

In order to evaluate the transfer function T{z^w;s) (relevant to the scheme in fig. 
4.2) by means of eq. (4.22), it is convenient to make reference to the block-diagram in 
fig. 4.4 and to the related transfer function T{v^ w; s) from the input w to the output 
V. From eqs. (4.10)-(4.14) and the definition of Pv{s) it follows that the systems in 
fig. 4.2 and 4.4 are well defined for all KFI{S), since condition (4.6) is satisfied in 
both cases. Therefore, it is possible to write 

T{z, w; s) = Pc{s)Bi + U{s)T{v, w; s) (4.24) 

From eqs. (4.10)-(4.14) and the definition of Pv{s) it also follows that the system 
in fig. 4.4 is stable if and only if the system in fig. 4.2 is such. Moreover, letting 
KFI{00) := [El E2], it is T{z, w; 00) = D12E2 and T{v, w; 00) = E2. Thus, D12E2 = 0 
if and only if ^2 = 0 since, thanks to Assumption 4.2, the matrix D12 has rank equal 
to the number of its columns. Therefore, the function T{z, w; s) is strictly proper if 
and only if the function T(f, w;s) is such. In conclusion, it can be claimed that the 
controller KFI{S) is admissible in RH2 for PFI{S) if and only if it is such also for 
Pv{s)-

From Assumption 4.2 it follows that (/ — Di2D[2)Di2 = 0, so that C[^Di2 = 0. 
This fact, together with Lemma C.5 implies that the function U{s) defined by eq. 
(4.23) is inner and U^{s)Pc{s) G RH^-. 

In view of eq. (4.24), it follows that 

\\T{z, w; s)\\l = \\Pc{s)B,\\l + \\Uis)Tiv, w; s)\\l 

+2 < U{s)T{v,w;s),Pcis)Bi > (4.25) 

for any controller KFI{S) admissible in RH2 for PFI{S). Being U{s) an inner function, 
one gets 

\\U{s)T{v,w;s)\\l = < U{s)T{v,w;s),U{s)T{v,w;s) > 

= <T{v,w;s),Tiv,w;s)>=\\T{v,w;s)\\l 

while, being (7'^(s)Pc(s) G RHi-, it is 

< U{s)T{v,w;s),Pc{s)Bi >=< T{v,w;s),U^{s)Pc{s)Bi > = 0 

since T{v,w;s) G RH2 (recall Theorem 2.11). Then, eq. (4.25) becomes 

\\T{z,w;s)\\l = \\P,{s)B,\\l+\\T{v,w;s)\\l (4.26) 

SO that 
mm \\T{z,w;s)\\l 

KFI{S) 
\Pc{s)B,\\l min ||r(v,w;;s) 

KFI(S) 
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The minimum is by sure at tained if ||r('z;,i^; 5)||2 = 0, tha t is if t' = 0. This is the 
case if 

u = F2X (4.27) 

Now observe tha t P2, being a solution of eq. (4.18), is also a positive semidefinite 
solution of the Lyapunov equation (in the unknown P) 

0 = PA,, + A'^^P + P2B2B'2P2 + C[,Ci, 

where A,, is defined by eq. (4.19). Matrix A,, is the dynamic matrix of the system 
(4.10)-(4.14),(4.27), namely 

x = AccX-^Biw (4.28) 

z = ( C i , - Di2B'2P2)x (4.29) 

The norm of the (optimal) transfer function of system (4.28), (4.29) may be computed 
by exploiting what has been presented in Remark 2.20. To this aim, notice tha t from 
Assumption 4.2 and C'i^Di2 = 0 it follows 

{Cic - Di2B'2P2y{Clc - DuB'2P2) = P2B2B'2P2 + C[,Ci, 

and recall tha t P2 solves the above Lyapunov equation. Therefore, ||T(2:,i6'; s)||2 = 
t race[5 jP2Pi ] - Points a) and h) are thus proved. 

Point c) Let a generic controller KFI{S) G ^27 be described by the equations 

^ = L^ + Mix + M2W 

u = N(,-\- Oix + O2W 

If V is given by eq. (4.20), then the same arguments exploited for proving points a) 
and b) lead to eq. (4.26), so tha t 

\\T{v,w;s)\\l<j'-\\Pe{s)Br\\l 

Recall tha t if KFI{S) is admissible in RH2 for PFI{S)^ then it is also admissible in 
RH2 for Pv{s). Therefore, T{v,w; s) can be writ ten as 

T{v, w, s) := Q{s) := S ( A „ P „ C „ 0) 

with Aq stable. A realization of Q{s) can be easily derived by recalling the definition 
of Pv{s) and the above given expression for KFI{S). It results 

^ = L'd-\- Mia-\- M2W 

a = B2N19 + ( ^ + B20i)a + {Bi + 5 2 ^ 2 ) ^ 

v = Ni^^{Oi- F2)(7 + O2W 

The controller KFIJ.[S) defined by these equations and u = F2X + f is now shown to 
belong to the set ^27r- Obviously, it possesses the structure of the system in fig. 4.3. 
Moreover, thanks to eqs. (4.10),(4.11), the equations of the system resulting from the 
feedback connection of PFI{S) with KFir{s) are, letting s := a — x^ 

X = Ax + Biw + B2U 

i9 = L I? + Mix + M2W + Mie 

s = {A^B2F2)e 

u = Ni^ + Oix + {Oi - F2)s + O2W 

z = Cix + D12U 
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The comparison of these equations with those relevant to the feedback connection 
of system PFI{S) with the controller KFI{S) allows one to derive the following two 
conclusions: first, the transfer functions from wtoz are equal in the two cases; second, 
the system having Kpiri^) as a controller is stable because the system having KFI{S) 
as a controller is such and matr ix A + B2F2 is stable. 

Vice versa, if Kpiris) belongs to the set described in fig. 4.3, then it is li = F2X-\-v 
where v is the output of the system T{v^ w\ s) = T,{Aq, Bq, Cq^ 0), with Aq stable and 
\\T{v,w] 5)112 < 7^ — | |Pc(5)^i | |2- The same arguments exploited in proving points a) 
and b) imply tha t Kpiris) is admissible in RH2 for PFI{S) and, thanks to eq. (4.26), 
\\T{z,w;sm<j\ D 

E x a m p l e 4 .1 Consider system (4.10)-(4.14) with 

A = 
0 1 
0 0 

Bi = B2 = 

Ci=[a 1 ] , D12 = 1 

where a ^ 0 and let u = u^ + Ux- The classic way of designing a controller which reduces 
the effect of the disturbance w on the output z is trying to zeroing the transfer function 
from w to z hy means of a suitable controller KDC{S) with input w and output Uu, which 
performs a direct compensation. In the problem at hand such a transfer function vanishes 
(namely, z does not depend on w) if 

KDC{S 
2(s + a) 

s'^ -\- s + a 

However, it is apparent that the resulting control system can not be stabilized (by means of 
a control law u = Uw-\-Ux which makes Ux to depend on x in a suitable manner) if KDC{S) is 
not stable by itself. Hence, if a > 0, a perfect direct compensation of the disturbance can be 
achieved. On the contrary, if a < 0, this is no more possible. By resorting to Theorem 4.1 
one obtains, correspondingly to Q{s) = 0, u = —axi — X2 and T{z, w\ s) — 0, when a > 0, 
while, when a < 0, one gets u — ax\ — y/l — 4ax2 and 

T{z,w',s) = 2 
2a + (1 - y i - 4a)s 
s^ + v T ^ - ^ ^ s — a 

R e m a r k 4.2 The structure of the controllers Kpiris) which are admissible in RH2 for 
PFI{S) and defined by the block-scheme in fig. 4.3 allows one to easily conclude that the 
eigenvalues of the resulting control system are those of matrix A-\-B2F2 and those of matrix 

R e m a r k 4 .3 (Parametrization of the set .F27) Observe that the set ^27r is a proper 
subset of the set .7̂ 27. In fact, consider a generic controller KFI{S) admissible in RH2 for 
PFI{S) which is purely algebraic and makes the control variables to depend on the state 
variables only. Namely, let 

u = Ax (4.30) 

with A ^ F2. Such a controller certainly exists because of a continuity argument, since the 
controller Kpj{s) actually has the form given in eq. (4.30). 

Within the set .7̂ 27r the only element with the form given in eq. (4.30) is Kpj{s), so 
that it is necessary to resort to a dynamic controller in the set F2^r in order to generate the 
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same transfer function T{z, w; s). As an example, for the system PFI{S) given by 

X — w -\-u 

z — 

V = 

' 1 1 
0 J 

X 

w 

x + ' 0 
1 

the controUer (admissible in RH2 for such a PFI{S)) described by 

u = —3x (4.31) 

has a "corresponding element" in the set ^27r given by (recall what has been shown in the 
proof of Theorem 4.1, point c)) 

(7 • 

u •• 

-3cr + w 

-x-2a 

(4.32) 

(4.33) 

Indeed, by exploiting eq. (4.31), it follows 

T{z,w\s) --
5 + 3 

which coincides with the expression deriving from eqs. (4.32),(4.33). 
A parametrization of the set ^27 is now presented. Consider the system PF{S) which 

is obtained from system (4.10)-(4.14) after the control law (4.21) has been implemented, 
namely the system 

PF{S) : 
PFII{S) PFI2{S) 

PF2I{S) PF22{S) 

~ -^cc 

CiF 
' I ' 

0 

Bi B2 

0 D12 

' 0 0 " 
/ 0 

~ 

where eqs. (4.19) and (4.15) have been taken into account and 

CiF := Cic — D12B2P2 

The set of controllers KF{S) which stabilize PF{S) apparently coincides with the set of 
controllers which stabilize P F 2 2 ( S ) , the latter being the system 

^cc 

I 

0 

B2 ~ 

0 

0 

PF22{S) = 

consistently to what has been previously defined. In view of Theorem 3.7, such a set can be 
expressed as 

KF{S) = [Y{s) - M(s)e{s)][X{s) - N(s)e{s)r' 

with 0(5) G RHoo- Notice that condition (3.12) is no doubt satisfied in the present context, 
since PF22{S) is strictly proper. From the proof of Theorem 3.4 it follows that, being the 
matrix Ace stable, the choice 

y(s ) = 0 , M{s) = I , X{s) = I , N{S)^PF22{S) 
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is admissible, so that 
KF{S) = -e{s)[I - PF22{s)e{s)]-^ (4.34) 

In the closed loop situation it is 

VLO = PF2I{S)WL - PF22{s)e{s)[I - P F 2 2 ( s ) e ( s ) ] ~'yLO 

By exploiting Lemma B.9, this equation can be written as 

VLO = [1 - PF22{S)B{S)]PF2I{S)WL 

which, in turn, can be utilized to obtain 

ZLQ = PFII{S)WL - PF12{s)e{s)[I - PF22{s)e[s)]-^yLQ 

= [PF1I{S) - PF12{s)e{s)PF2l{s)]WL 

so that, when the controller described by 

ULQ = F2XLO + KF{s)yLO 

is adopted, the closed loop transfer function from w to z is 

Te{z,w;s) ^ PFII{S) - PFi2{s)e{s)PF2i{s) 

On the other hand, if a controller KFir{s) of the set T2^r is adopted, namely, a controller 
described by 

ULQ = F2XLO + Q{S)WL 

with (recall point (c) in the statement of Theorem 4.1) Q{s) G RH2, and ||Q(s)||2 < 7^ — 
\\Pc{s)Bi\\l = 7 ' - \\PFII{S)\\1 one gets 

ZLo = [PFII{S) + PFI2{S)Q{S)]WL 

Therefore, the set of the KFir{s) generates the set of transfer functions from w to z 

TQ{Z,W', S) = PFII{S) + PFI2(S)Q{S) 

By equating the transfer functions TQ{Z,W]S) and T@{z,w;s) it is possible to characterize 
the set of functions G(s) associated with controllers KF{S) admissible in RH2 for PF{S) and 
such that ||Te(2;,t(;; s)||2 < 7. In so doing one obtains 

PF12{s)[e{s)PF2l{s) + Q{S)] = 0 

Letting $(s) := {si — Acc)~^, from Assumption 4.2 it follows that the rank of PFI2{S) = 
CiF^{s)B2 + D12 equals the number of its columns, so that the above written equation is 
equivalent to 

e{s)PF2i{s) =-Q{s) (4.35) 

A particular solution of this equation is 

e{s) = Qis)[0 -I] 

since 

PF2I{S) 

Thus, the general solution of eq. (4.35) is 

eQ(s) = e(s) + e(s) 

where 0(s ) denotes any solution in RHoo of the homogeneous equation 

e(s)PF2l(s) = 0 

$(s)Bi 
I 
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Q{s) 

-Oiis) 

e i ( s )$ ( s )B i 

F2 

V i. U 

Qi{s)^{s)B2W 

Figure 4.5: The generic admissible controller for PFI{S) 

Letting B(s) := [Bi(5) 02(5)], from the last equation it follows that 62(5) = —Bi(s)$(s)5i , 
so that 

e(5) = e i (5 ) [ / -<i>(5)Bi] 

belongs to RHoo if and only if Bi(s) G RHoo, since $(s) G RHoo, being Ace a stable matrix. 
Therefore, the set of functions OQ{S) which generate controllers KF{S) admissible in 

RH2 for PF{S) and such that \\Te{z,w; s)\\2 < 7 is defined by 

Qqis) = [61(5) - lQ{s) + e i (s)$(s)Bi]] 

e i ( s ) 6 RH^, Q{s) e RH2, \\Q{s)\\l < 7 ' - II^Fii(s)||i 

By exploiting Lemma B.9, from eq. (4.34) it follows 

KF{S) = -[/-eQ(s)PF22(s)]-^eg(s) 
= [ / - e i ( s ) $ ( s ) B 2 ] - ' -

• [ - e i ( s ) [Q(s) + ei(s)$(s)Bi]] (4.36) 

since 0 ( 9 ( S ) P F 2 2 ( S ) = ©i(s)$(s)B2- In conclusion, by recalling eq. (4.21), the generic 
controller KFJ{S) in the set jF2-y is described by 

KFi{s) = [I-ei{s)^s)B2r'' 

.[-81(5) [Q{s) + ei{s)^s)Bi]] + [F2 0] 

e i ( s ) G i?i/oo, Q(5) G i^i /2, \\Q{S)\\1 < 7 ' - II^Fll(5) | |^ 

Such a set is depicted in fig. 4.5. In the controller shown in this figure it is 

VLO = 6 i ( s ) $ ( s ) [ - $ " ^ ( s ) x L + B2VLO + BIWL] + Q{S)WL 

= - e i ( 5 ) $ ( 5 ) x ( 0 ) + g(5) '^L 

having taken into account eqs. (4.10) and (4.21). Therefore, the effect of the parameter 
Bi(s) (which is responsible of the difference between the controllers in J^2-f and those in 
^27r) amounts to a term which only depends on the initial state of system (4.10)-(4.14). 

With reference to the example previously considered it is easy to verify that the algebraic 
controller characterized hy u = —3x corresponds to the choice 

Q(s) ' s + 3 ' 
Oiis) 

's + 3 
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R e m a r k 4 .4 (Optimal control problems) The control problem to which Theorem 4.1 
can be applied is strictly related to the linear quadratic deterministic (LQ) or stochastic 
(LQS) control problem with measurable state. This connection can be made explicit by 
exploiting what has been presented in Remark 2.20. 

LQ Problem Consider the n-th order system 

X = Ax + Bu 

x{0) = xo 

and the cost functional 

(4.37) 

(4.38) 

/»oo 

Ji := / [x{t)Qx{t) + 2x(t)Su{t) + u {t)Ru{t)\ dt (4.39) 
Jo 

where 
Q 

s' 
s 
R 

L' > 0 , i? > 0 (4.40) 

Observe that L > 0 and i? > 0 imply that 

Q:=Q- SR-^S' > 0 

since Q = Z'LZ with Z' := [/ - SR~^]. Let On G R^'''' be a factorization of Q, so that 

C[,Cii = Q (4.41) 

and define 

Ci:= 
C i i 

R-^/^S' 

u := R^^^u z :— Cix + D12U 

(4.42) 

(4.43) 

It is easy to verify that it is 

J i = 
/ ' 
Jo 

{t)z{t)dt 

On the other hand, the state free motion can always be interpreted as the forced motion 
caused by an impulsive input acting on the system through a suitable input matrix. There-
fore, if eqs. (4.41)-(4.43) are taken into account, system (4.37),(4.38) can be described by 

X — Ax -\- Biw -f B2U 

z = Cix + D12U 

(4.44) 

(4.45) 

with w := (5(t), Bi := XQ, B2 := BR'^^^ and x{0) = 0. 
The optimal control problem at hand {LQ problem) consists in finding a controller of 

the form 

u = H(, + Nx 

(4.46) 

(4.47) 

such that the system (4.44)-(4.47) is stable and the performance index J i is minimized. 
Notice that the feedback connection of any controller of the form (4.46),(4.47) to the sys-
tem (4.44),(4.45) is well defined and the relevant transfer function T{z,w;s) from K; to 2; is 
strictly proper. Therefore, if system (4.44)-(4.47) is stable, then the controller (4.46),(4.47) 
is admissible in RH2 for system (4.44),(4.45). Further, in view of Remark 2.20, any con-
troller (4.46),(4.47) which is admissible in RH2 for system (4.44),(4.45) is such that Ji = 
\\T{z,w;s)\\l 
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If the pair (̂ 4, B) is stabilizable and no eigenvalue of the unobservable part of the pair 
(A — BR~^S\ Cii) Hes on the imaginary axis, Assumptions 4.1 and 4.2 are satisfied. In fact, 
from one hand. Assumption 4.2 is readily ascertained to hold in view of eqs. (4.41)-(4.43). 
On the other hand, by performing the required substitutions, it is still straightforward to 
check that the unobservable part of the pair [{A — B2D[2Ci),{I — Di2D[2)Ci] coincides 
with the unobservable part of the pair [{A — B2R~'^^'^S'), Cn]. Finally, observe that the pair 
(A, B2) is stabilizable if and only if the pair {A, B) is such (recall the definition of ^2) . 

If stated in terms of the system (4.44),(4.45) with the additional output equation y — 
[x' w'W the control problem addressed to by Theorem 4.1 is solved by a controller of the 
form (4.46),(4.47). Therefore, the controller defined at point (h) of Theorem 4.1 constitutes 
the solution of the LQ control problem, too. 

However, observe that within the context of the classical optimal control theory the linear 
quadratic problem is stated without requiring the stability of the resulting control system. 
Thus the assumptions which are necessary to guarantee the existence of the solution in that 
context (stability of the observable and unreachable part of system T,{A—BR~^S'^ B, C n , 0)) 
are weaker than those required within the RH2 context. As an example, consider system 
(4.37) and the performance index (4.39) with 

A--
a 

0 

1 ' 

0 
, B = 

' 0 " 

1 
, Q = 

' 0 

0 

0 " 

1 
i ^ = l , S = 0 

where a = l o r a = —1. Within the framework of the classical optimal control the-
ory the solution of this problem is given by the control law UCL{^) = ~"[0 1]^ ^^ which 
there corresponds the value JICL{^{^)) = 3:2(0). The resulting control system is stable 
when a = — 1 and unstable when a = 1. In the RH2 context the optimal control law is 
u^^u^{x) = —[4 3]x when a = 1. Correspondingly, the value of the performance index is 
J?RH2i^i^)) = 8^1(0) + 8xi(0)x2(0) + 3x1(0). When a = - 1 the same control law as in the 
classical setting is found. In the RH2 framework the resulting control system is stable in 
both cases. Finally, notice that J I C L ( ^ ( 0 ) ) < JiRH2i^i^))y^i^)' 

LQS Problem Assume that the controlled system is 

X = Ax + Biw -h Bu 

where tt; is a zero mean white noise with identity intensity. Let the pair (A, B) be stabilizable 
and consider either the cost functional 

J2 := lim E [x{t)Qx{t) + 2x{t)Su{t) + u{t)Ru{t)] 

or the cost functional 

Js := lim E rl>' {t)Qx{t) + 2x{t)Su{t) + u{t)Ru(t)]dt 

where matrices Q,R,S satisfy eq. (4.40). From eqs. (4.41)-(4.43) it follows 

J2 = lim E[z(t)z{t)] 

Js = lim E 

and the controlled system is described by 

[1 r, {t)z{t)dt 

X = Ax + Biw + B2U 

z = Cix + D12U 

(4.48) 

(4.49) 
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w 

u 
PDF{S) 

KDF{S) 

z 

V 

Figure 4.6: The disturbance feedforward problem 

VJ 

u 

PFI{S) 

KFI{S) 

X 

z 

w 

Figure 4.7: The auxihary full information problem 

The optimal control problem at hand {LQS problem) consists in finding a controller of the 
form given in eqs. (4.46),(4.47) such that stability of the resulting system is ensured and 
J2 or J3 is minimized when it is connected to system (4.48),(4.49). The same arguments 
exploited for the LQ problem lead to J2 = J3 = \\T{z, w; 5)||i. If system (4.48),(4.49) verifies 
the same assumptions as system (4.44),(4.45), then the solution of the LQ^ problem is again 
the one specified under point (b) of Theorem 4.1. • 

R e m a r k 4.5 (Disturbance feedforward) Here reference is made to the block-scheme 
of fig. 4.6, where PDF{S) is described by the equations 

X = Ax + Biw + B2U 

z = Cix + D12U 

y = C2X + w 

(4.50) 

(4.51) 

(4.52) 

while KDF{S) is a generic controller admissible in RH2 for PDF{S). 
It is assumed that the pair (A, B2) is stabilizable and no eigenvalue of the unobservable 

part of the pair [{A — B2D[2Ci),{I — Di2D[2)Ci] lies on the imaginary axis. Moreover 
the matrix A — B1C2 is supposed to be stable and D[2Di2 = P Observe that stability of 
A — B1C2 implies detectability of the pair (A, C2) which, together with the stabilizability of 
the pair (A, ^2) , guarantees the fulfillment of the necessary condition reported in Remark 
4.1. 

Now, notice that system PDF{S) is equal to system P{s) defined in Lemma E.2. Moreover, 
let 

PFI{S) 

Observe that: (i) System PFI{S) is equal to system P{s) defined in Lemma E.2; (ii) System 
pFiis) is equal to system PFI{S) relative to which the full control problem has been stated. 

Lemma E.2 (which can be exploited, thanks to stability of matrix A — B1C2) ensures 
that the controller KFI{S) connected to system PFI{S) as shown in fig. 4.7, stabilizes system 

" A 

Ci 

I 

0 

Bi 

0 

0 

/ 

B2 ' 

D12 

0 

0 
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K^s) 

«^v 

Kpiis) 

hv 

K(s) 

Figure 4.8: The structure of the controUer K{s) in terms of KFJ{S) 

' A-BIC2 

0 

I 

-C2 

Bi 

0 

0 

/ 

B2 ' 

I 

0 

0 

PFI{S) if and only if the controller K(s), defined in the block-scheme of fig. 4.8, where 

K^s) :--

stabilizes P(s) to which it is connected according to the scheme shown in fig. 4.9, this latter 
scheme being identical to the one depicted in fig. 4.6. Moreover, the transfer function from 
iD to z in fig. 4.7 and the transfer function from w to z in fig. 4.9 are equal. Therefore, the 
solution of Problem 4.1 relative to system PDF(S) (fig. 4.6) can be found by solving the same 
problem relative to system PFI{S) (fig. 4.7) via Theorem 4.1. Notice that such a theorem 
can be exploited because the assumptions made for system PDF{S) imply the fulfillment of 
Assumptions 4.1 and 4.2. Thus 

a) min ||T(2, ^ ; s)||2 = \\Pc{s)Bi\\2 = ^tvace[B[P2Bi]; 

b) The optimal controller is given by 

K'DF{S) 
A-B1C2 + B2F2 

F2 

Bi 

0 

c) The set ^27r of the controllers KoFr^s) is defined by the block-scheme of fig. 
where 

N2{S) 

4.10 

A- - B1C2 + B2F2 

F2 

-C2 

Bi 

0 

/ 

B2 

I 

0 

\Ui' \Pc{s)Bi\\2 and Aq is a stable matrix. Q{s) :=^{Aq,Bq,Cq,0), \\Q{s) 

In the three points above 7 is a positive scalar such that 7 > ||Pc(s)^i||2 and reference has 
been made to eqs. (4.15)-(4.20). The problem at hand is referred to as the disturbance 
feedforward problem in view of the following discussion. 

Preliminarily, observe that, if in eq. (4.52) C2 = 0, then y = w so that the disturbance 
w can be measured {direct compensation). However, in such a case the controller KDF[S) is 
connected to the controlled system PDF{S) in an open rather than closed loop configuration 
(see also fig. 4.6), so that the stability assumption of the matrix A — B1C2 simply reduces 
to the stability assumption of the controlled system, which is obviously necessary to ensure 
the stability of the resulting control system. 

If, on the contrary, C2 ŷ  0, it is still possible to get the disturbance w in terms of the 
variables u and y. In fact, from eqs. (4.50),(4.52) it follows 

VLO = P2I{S)WL + P22{S)UL (4.53) 
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PDF{S) 

KDF{S) 

Figure 4.9: The equivalent disturbance feedforward problem 

N2{s) 

Q{s) 

KDF{S) 

Figure 4.10: The set ^27r of the controllers K^Fris) 

where 

P2i(a) := 
r A 

. C2 

Bi 1 

/ 

r A 

. C2 

B2 1 

0 

" A - B1C2 

-C2 

Bi 1 

I 

System P2i{s) is invertible (recall what has been presented in Section 2.5) so that from eq. 
(4.53) one gets 

WL = P2l'{s)[yL0 - P22{S)UL] 

with 

P2l\^) = 

Now define a precompensator KFIDF{S) by means of the equations 

i = {A- BiC2)i + B2U + Biy (4.54) 

w = -C2i + y (4.55) 

Comparing eqs. (4.50),(4.52) with eq. (4.54) leads to the conclusion that, letting e := ^ — x, 

i = (A-BiC2)e (4.56) 

Thus, XLO = ^Lo and, from eqs. (4.52),(4.55), also WL — WLO, SO that, also when C2 7̂  0, 
it is still possible to think to w as being measurable by resorting to a suitable dynamical 
system (4.54),(4.55) (indirect compensation). 

Therefore, one can consider Problem 4.1 relative to system (4.50)-(4.52), rather than to 
system (4.50),(4.51) with the additional equation 

X 
w 

(4.57) 

The new problem has the very structure of a full information problem. Thus, the controller 
KFI{S) which solves Problem 4.1 relative to system (4.50),(4.51),(4.57) must be connected 
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Figure 4.11: K]JF{S) in terms of the precompensator KFIDF{S) 

to system (4.54),(4.55) in order to obtain the controller KDF{S) (see also fig. 4.11). The 
resulting system includes an unreachable part (recall eq. (4.56)) which is nevertheless stable, 
thanks to the stated assumptions. Moreover, it is easy to check that whenever the controller 
solving Problem 4.1 relative to system (4.50),(4.51),(4.57) belongs to the set of controllers 
Kpiris), then the controller which is obtained by substituting KFI{S) with Kpiris) in fig. 
4.11 belongs to the set of controllers KDFr{s). In other words, the procedure just now 
presented for solving Problem 4.1 leads to the results previously found. 

Finally, notice that T2^r = Ti^. In fact, by recalling what has been said at the end of 
Remark 4.3, resorting to the controller KFI{S) rather than to the (simpler) controller KFir{s) 
implies adding the term Bi(s)<&(s)^(0) to the control variable ULO- Such a term depends on 
the initial state of the precompensator KFIDF{S) only, so that the transfer function from y 
to u is independent of the parameter Bi(s) . Alternatively, from eqs. (4.21),(4.54),(4.55) one 
gets 

CLO = ^{s){B2VLo + BiWLo) 

where $(s) := ( s / - A - ^ 2 ^ 2 ) " ^ Hence, by recalling eq. (4.36), 

VLO = [I- ei{s)^s)B2r\-ei{s)^s){B2VLo + BIWLO) + 

+ [Q{s) + ei{s)^{s)Bi]wLo} 

= [I- ei{s)^s)B2]-'[Q{s)wL0 - ei{s)^s)B2VL0] 

Therefore, it follows 

so that, in view of eq. (4.21), 

VLO = Q{S)WLO 

ULO = F2^Lo + Q{S)WLO 

which, thanks to eqs. (4.54),(4.55), implies that the transfer function of the generic controller 
KDF{S) is independent of 81(5). D 

E x a m p l e 4.2 Consider system (4.50)-(4.52) with 

A 
0 1 
0 0 

Bi B2 

Ci = [ 1 a] , C2=[l 1 ] , D12 = 1 

where a ^ 0. The classical synthesis procedure for a controller which reduces the influence of 
the disturbance w on the output z consist in trying to make zero the transfer function from w 
to z by introducing a controller Kic{s) with input y and output u {indirect compensation). 
In the problem at hand such a transfer function is zero (hence z does not depend on w) if 

Kic{s) = 
2(as + 1) 

"s2 + (a + 2)5 + 3 
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However, it is easy to verify that the resulting system is stable when a > 0, while it is not 
stable when a < 0. Thus, in this second case it is no more possible to perform a (perfect) 
indirect compensation of the disturbance w. On the contrary, by resorting to Remark 4.5, 
one gets Kf)p{s) = Kic{s) when a > 0 and 

52 + ( 2 - Q ; ) 5 + 3 

when a < 0. • 

R e m a r k 4.6 Assumption 4.2 is restrictive though standard in control problems. It implies 
that matrix D12 has rank equal to the number of its columns. Whenever such an assumption 
is not verified one has to tackle the so called singular problem the solution of which (if it 
exists) calls for a theoretical development far beyond the scope of this book. 

On the contrary, notice that the condition D12D12 — I can be replaced by D'i2Di2 = R^ 
with R> Q. Indeed, the here presented case can be easily recovered by a suitable redefinition 
of the control variable, according to eq. (4.43). 

Finally, it is often set D'i2Ci — 0. This simplifying orthogonality assumption, be-
sides greatly reducing the notational burden, corresponds to the absence of the cross term 
x'{t)Su{t) in the performance index of the optimal control problems dealt with in Remark 
4.4. D 

R e m a r k 4 .7 The Riccati equation (4.18) coincides with the one encountered within the 
(classical) Optimal Regulator problem defined in terms of the system 

X = AcX + B2U 

and the performance index 

/»oo 

:= / [x'C'u 
Jo 

CicX + uu\dt 

R e m a r k 4.8 Under Assumption 4.2, the fact that the no eigenvalue of the unobservable 
part of the pair [{A — B2D[2Ci), (/ — Di2D[2)Ci] lies on the imaginary axis (Assumption 
4.1) is equivalent to the subsystem of PFI{S) corresponding to the transfer function PFII2{S) 
from the input u and the output z (namely system S(v4, ^ 2 , ^ 1 , ^^12)) not to have invariant 
zeros with Re{s) = 0. In fact, in view of the material in Section 2.5 and recalling that the 
dimension of u is not greater than the dimension of z, if it exists A with Re{X) = 0 such that 

(A7 - A)x - B2U = 0 

Cix + D12U = 0 

with [x' u'Y 7̂  0, then from the identity D[2Di2 = / it follows 

u = —D[2CIX 

and hence also 
{A - B2D[2Ci)x = Xx 

(I - Di2D[2)Cix = 0 

Being x / 0, since, otherwise, also u = 0, this violates the assumption that no eigenvalue 
of the unobservable part of the pair [{A — B2D[2Ci), {I — -Di2^i2)C'i] lies on the imaginary 
axis (recall Lemma D.l, part (a)). By going the other way on, if the last two equations hold 
corresponding to x ^ 0, the proof of the above mentioned equivalence can be carried out by 
letting u := —D[2Cix. • 
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w 

u 
POE{S) 

KOE{S) 

Figure 4.12: The output estimation problem 

4.3 The output estimation problem 

The problem of optimally observing a linear combination of the s tate variables is faced 
in this section by following an approach which relies on RH2 techniques. 

Consider the system 

X = Ax + Biw + 

z = Cix -f u 

y = C2X -\- D21W 

B2U (4.58) 

(4.59) 

(4.60) 

and let POE{S) denote its transfer function. Wi th reference to the block-scheme in fig. 
4.12, suppose tha t KOE{S) is a RH2 admissible controller for POE{S) which makes 
"small" ||T(2;,it;; 5)112 (the norm of the transfer function from w to z). Then, the 
variable u provides a "good" estimate of the linear combination —Cix of the state 
variables. Indeed, should T{z, w] s) = 0 (namely, ZLO = 0) then it would follows 
ULO = —CIXLQ. In such a case the signal u apparently constitutes the best possible 
estimate of —Cix (when x(0)=0) . The following assumptions are now introduced. 

A s s u m p t i o n 4.3 The pair {A, C2) is detectable and no eigenvalue of the unreachable 

part of the pair [{A — B1D21C2): Bi{I — ^21-^21)] H^s on the imaginary axis. 

A s s u m p t i o n 4.4 D21D21 = I. 

A s s u m p t i o n 4.5 A — B2C1 is stable. 

Under these assumptions it is possible to state the following theorem. 

T h e o r e m 4.2 (Output estimation) Consider Problem 4-^ relative to system (4-58)-
(4-60). Then, under Assumptions 4-3 - 4-^^ ^̂  has the solution 

a) 

b) 

min| |T(2,«; ;s) | |2 = | |CiP/(s) | |2 = -^ trace [Ci Hz CJ] 

Af — B2C1 — II2C2C2 
K°OE{S) 

Ci 

L2 

0 

c) The set J-2jr of controllers KoEr{s) is defined by the block-scheme in fig. 4-13, 
where 

M2(S) 

Af — B2C1 — II2C2C2 

C2 

I 

0 
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Figure 4.13: The set T2^r of the controllers KoEr{s) 

with Q{s) := E{Aq,Bq,Cq,0), \\Q{s)\\l < 7^ - \\CiPf{s)\\l and Aq stable. 

In the three preceding points ^ is a positive scalar such that 7 > ||CiP/(s)||2; while 

L2 := -HsC^ - ^iL>2i (4.61) 

Pf{s) := 
Af - n2C^C2 Bif — II2C2D21 

0 
(4.62) 

Af:=A- BiD'^^C2 , ^ 1 / := B^{I - ^^1^21) (4.63) 

where 112 is the symmetric, positive definite and stabilizing solution of the Riccati 
equation (in the unknown H) 

0 = HA'J H- Afli - nC^C2n + BifB[f (4.64) 

that is such that matrix Afc defined by 

Af^ := Af - n2C^C2 = A + L2C2 (4.65) 

is stable. 

Proof Preliminarily, notice that Assumption 4.5 implies that the pair (A, ^2) is 
stabilizable. This fact, together with the assumed detectability of the pair (A, C2), 
makes the necessary condition in Remark 4.1 satisfied. 

Now consider system POE{S) obtained from system POE{S) by transposition. From 
eqs. (4.58)-(4.60) it follows that it is described by 

i^F^ + Gi(: + G2V 
ui = Hi^ + ET] 

where 

and, for i 

F:=A', E:= D'^ 21 (4.66) 

1,2, 
Gi:=Cl, Hi-Bl (4.67) 

Therefore, system POE{S) possesses the very same structure of system PDF{S) con-
sidered in Remark 4.5. Thus, Problem 4.1 relative to system POE{S) is solved as it is 
mentioned in such a remark (relatively to POE{S))- Indeed, the assumption required 
for system POE{S) are precisely Assumptions 4.3 - 4.5. Thanks to Lemma E.l, the 
results concerning system POE{S) can be derived by transposition of those relevant 
to system POE{S), provided that eqs. (4.66),(4.67) are taken into account. • 
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E x a m p l e 4 .3 Consider system (4.58)-(4.60) with 

0 1 
0 0 

1 0 
1 0 ^ 2 = 

Ci - [ 1 1 ] , C2 = [ 1 0 ] , D21 = [ 0 1 ] 

One obtains L2 = [ -^3 - 1]' and | |CiP/(s) | | l = 4.46. Taken 7^ = 9 and 

- 1 
0 

1 

0 
- 2 

1 

1 
1 

0 

it is \\T{z,w;s] 

Q{s) = 

: 5.88 < 7 ^ consistently with 1.42 = ||Q(s)||i < 7^ - 4.46. 

R e m a r k 4.9 The structure of a generic controller KOE{S) admissible in RH2 for POE{S) 
as defined by the block-scheme of fig. 4.13 allows one to easily verify that the eigenvalues of 
the resulting control system are those of matrices A-\-L2C2^ A — B2C1 and Aq. In fact, letting 
Xm and Xq be the state variables of systems M2{s) and Q{s), respectively, and choosing the 
state vector of the resulting control system ] , its dynamic matrix is 

At = 
A + L2C2 

BqC2 
B2C1 

0 
A, 

B2Cq 

0 
0 

A - B2C1 

the eigenvalues of which are precisely those above mentioned. 
Observe that the order of the resulting system is 2n + n^, where n is the order of system 

(4.58)-(4.60) and Uq is the order of system Q{s). Moreover, when Q{s) = 0 it results 
T{z^ w; s) = Ci{sl — Afc)~^{Bi -I-I/2-D21), so that the transfer function from w to z does not 
depend on B2 (recall that, in view of eqs. (4.61),(4.63),(4.64), L2 is independent of ^2)- ^ 

R e m a r k 4 .10 (Parametrization of the set ^^27) Notice that ^27 = ^27r. In fact, 
as shown in the proof of Theorem 4.2, the RH2 admissible controllers for POE{S) can be 
obtained by transposing those which are admissible for POE{S), this last system possessing 
the structure of system PDF{S) considered in Remark 4.5. Having proved that ^2^ = ^2'yr 
relative to PDF{S), the same conclusion must hold for POE{S). • 

R e m a r k 4 .11 (Optimal filtering) The control problem relative to system POE{S) can 
be interpreted as an optimal filtering problem relative to the n-th order system 

X = Ax + Ci + B2U 

y = Cx + C2 

where C •= [Ci C2]' is a zero mean, Gaussian white noise with intensity 

W -
Wii W12 
Wi2 W22 

W22 > 0 

(4.68) 

(4.69) 

(4.70) 

If an asymptotic estimate of a generic linear combination Sx of the system state has to be 
found, then one of the two functionals 

J. \ := lim E \[Sx{t) - u{t)y[Sx{t) - u{t)]] 

and 

J5 lim E r̂ [Sx{t) - u{t)y[Sx{t) - u{t)]dt 
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may conveniently be associated with the system. Notice that W := Wn —1^121^22^^12 ^ 0? 
since Vl̂  > 0 and W22 > 0. Indeed, it is l ^ = Z'WZ, with 

Z := 
I 

Let the n x n matrix ^ n be a factorization of W, so that 

BuB[, = W 

and define 

D21 

y 
z 

= [0 /] , Bi := [Bii Wi2W-^'^^] 

C2 := W-'^^C = W, 
-1/2 

y, 
Cix -{- u , Ci 

Then system (4.68)-(4.70) can be rewritten as 

X — Ax + Biw + B2U 

z = Cix -\- u 

y = C2X + D21W 

(4.71) 

(4.72) 

(4.73) 

(4.74) 

(4.75) 

(4.76) 

(4.77) 

where w is the zero mean Gaussian white noise with identity intensity which satisfies the 
equation 

^ Ci 
0 wi C2 

Bii Wi2W^^ 
^1/2 

1/2 

Observe that 
•̂ 22 

-1/2 BiB[ = Wii , EiD^i = V î2W 2̂2 / . D2iD'2i = / 

It is easy to verify that 

(4.78) 

(4.79) 

J4 = hm E[z{t)z{t)\ 

and 

J5 = hm E 
T^oo '^i:-' {t)z(t)dt 

The problem at hand consists in finding a controller of the form 

u = H^ + Ny 

(4.80) 

(4.81) 

such that the control system (4.75)-(4.81) is stable and either the criterion J4 or J5 is 
minimized. Observe that the feedback connection of any controller of the above form with 
system (4.75)-(4.79) is always well defined, while the transfer function T{z,w;s) from w to 
z relevant to such a connection is strictly proper if and only if ND21 = 0, that is, in view 
of eq. (4.72), if and only if iV = 0. Therefore, if system (4.75)-(4.81) is stable and N = 0, 
then the controller (4.80),(4.81) is RH2 admissible for system (4.75)-(4.79). Further, from 
Remark 2.20, any RH2 admissible controller for system (4.75)-(4.79) is such that 

J4 = J5 = \\T{z,w;s)\\l 

If the pair (A, C) is detectable and no eigenvalue of the unreachable part of the pair [{A — 
Wi2W2'^Ci)^Bi\] lies on the imaginary axis, then Assumptions 4.3 and 4.4 are verified. In 
fact, eqs. (4.71)-(4.74),(4.79) are readily seen to imply the fulfillment of Assumption 4.4, 
while, by performing the required substitutions, it is easy to ascertain that the unreachable 
part of the pair [{A — Wi2W^2^Ci),Bii] coincides with the unreachable part of the pair 
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[(A — BiD2iC2),Bi{I — D21D21)]. As for detectability of the pair (A, C2), it is equivalent 
to the detectabihty of the pair (A, C), thanks to eq. (4.73). 

Finally, if matrix A-\-B2S is stable, so that also Assumption 4.5 is satisfied, then Theorem 
4.2 (point (b)) ensures that the controller which solves the underlying problem relative to 
system (4.75)-(4.79) has the form (4.80),(4.81) with TV = 0. Precisely, the controller is 

^ = {A-B2Ci + L2C2)^ + L2y (4.82) 

(4.83) 

and provides a solution of the considered filtering problem. Here L2 is given by eqs. 
(4.61),(4.63) and (4.64). However, the filtering problem for system (4.68)-(4.70) could have 
been more classically tackled via Kalman theory, yielding the filter 

iK = {A + LKC)^K - LKV (4.84) 

UK = S^K (4.85) 

where UK is the optimal estimate of Sx. In eq. (4.84) it is 

LK = -{UKC' + WI2)W22' 

and IIK is the symmetric, positive definite and minimal solution of the Riccati equation (in 
the unknown H) 

0 = U(A- WX2W22C)' + (A - Wx2W22C)II - IIC'W22CVL + W 

where, again, W = W\\ — Wi2W^2^Wi2- Notice that this equation coincides with eq. (4.64) 
once the substitutions (4.71)-(4.73) have been performed. 

The assumption which guarantees the existence of H ^ (namely, the stability of the 
unobservable but reachable part of system E(A — Wi2W^2^C,W^^'^,C,0)), is weaker than 
those assuring the existence of the stabilizing (i.e. m.axim.al) solution of eq. (4.64). Hence, 
in general, UK might exist and II2 not exist; moreover it can also happen that UK 7̂  n2 so 
that the RH2 and Kalman filtering problems may substantially differ one from the other. 

However, if the Kalman filter is required to be stable, then n2 = UK and L2 = 
LKW22- Despite of being the stable Kalman filter a device different from the RH2 con-
troller, the transfer function from the input noise (" to the estimation error S{^K —X) (system 
(4.68),(4.69),(4.84) and (4.85)) coincides with the transfer function from the input noise w to 
the estimation error z = Ci(x + ^) (system (4.75)-(4.77),(4.82) and (4.83)). On the contrary, 
the two devices do coincide in the particular case where B2 — 0, W12 — 0 and A stable. • 

E x a m p l e 4 .4 Consider system (4.68)-(4.70) with 

Wr 

0 1 
- 1 0 

1 0 
0 1 

C = [ l 0 ] 

Wv 

0 
W2, 

The Kalman filter relative to the linear combination rj := Sx with 5 = [1 1] is described by 
the equations 

iK = {A^ LKC)^K + B2U - LKV 

UK = 'S'̂  

where LK = —[1.35 0.41] and {A-\-LKC) is stable since the relevant Riccati equation admits 
a unique symmetric and positive definite solution which is also stabilizing. 
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Ui 

U2 

PFC{S) 

KFC{S) 

Figure 4.14: The full control problem 

If, on the contrary, Theorem 4.2 has to be exploited according to Remark 4.11, 
controller (corresponding to the choice Q{s) = 0) is obtained 

i = {A-B2Ci + L2C2)C-^L2y 

the 

where Ci -S, C2 = C, y = y, L2 = LK' Thus the optimal estimate of 77 is —Ci^. 

R e m a r k 4 .12 (Full control) Here reference is made to the block-scheme of fig. 4.14 
where the control vector u is partitioned into two components ui and U2. Assume that the 
first one of them acts in a direct way on the state derivative only, while the second one 
directly affects the performance output only. More precisely, the considered system PFC{S) 
is described by the equations 

X = Ax + Biw + [/ 0]u 

z = Cix-\- [0 I]u 

y = C2X + D21W 

u = [u'l U2]' 

(4.86) 

(4.87) 

(4.88) 

(4.89) 

Further, let the pair (74,(^2) be detectable, D21D21 = / and assume that no eigenvalue of 
the unreachable part of the pair [(A — B1D21C2), Bi{I — D21D21)] lies on the imaginary axis. 

First, observe that it makes sense dealing with Problem 4.1 relative to the system above 
since the necessary condition in Remark 4.1 is verified. Indeed, stabilizability of the pair 
(̂ 4, B2) is guaranteed by the form of matrix B2, while detectability of the pair {A, C2) holds 
by assumption. Now consider system PFC{S) := Ppc{s)- From eqs. (4.86)-(4.89) it follows 
that PFC{S) is described by 

^ = F ^ + GiC + <̂ 2r? 

u = Hi(, + Erj 

ip = 
I 
0 e + " 0 1 / J 

where 

and, for z = 1,2, 

F-A' , E:= D'2, 

Gi :— Ci 

Hi B[ 

Therefore, system PFC{S) possesses the same structure as system PFI{S) which has been 
considered in Section 4.2. The assumptions on system PFC{S) make system PFC{S) to satisfy 
Assumptions 4.1, 4.2, so that the results concerning the solution of Problem 4.1 relative to 
system PFC{S) can be derived, thanks to Lemma E.l, by transposing those concerning system 
PFC{S) which, in turn, coincide with those supplied by Theorem 4.1 for the full information 
problem. Thus one obtains 

a) 

min \\T{z,w;s)\\2 = \\CxPf{s)h = VtracelCiHaCi] 
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Ui I 

U2 \ 

L2 

Q{s) 

KpCris) 

y 

Figure 4.15: The set J-'2yr of the controllers Kpcris) 

Ml 

-ei(s) L2 

Ui 

Q{s) \ 

Hci*(s)ei(s) 

-o 
(72*(s)ei(s) 

Figure 4.16: The generic admissible controller for Ppc{s) 

b) 

K°Fc{s) L2 

0 

of the controllers Kpcris) is defined in the block-scheme of fig. 4.15, 

111-
E(Aq,Bg,Cq,0), with the matrix Aq stable and ||Q(s)||2 < 7 

c) The set T2-fr 
where Q{s) 
\\CiP}{s) ' 

In the three points above 7 > ||CiP/(s)||2 and reference has been made to eqs. (4.61)-(4.65). 
Finally, the set ^27 of the RH2 admissible controllers for system PFC{S) can easily 

be found by exploiting (through transposition) the content of Remark 4.3 (which refers to 
system PFI(S)). Therefore, this set is described by the block-scheme of fig. 4.16 (which has 
been obtained by "transposing" fig. 4.5), where 9 i ( s ) G RHoo and ^(s) := {si — Afc)~^. • 

R e m a r k 4 .13 Assumption 4.4 is somehow restrictive though customary in estimation the-
ory. It implies that matrix D21 has rank equal to the number of its rows. Should this as-
sumption not be verified one would have to face a singular problem the solution of which, if 
any, requires a discussion far beyond the scope of this book. 

On the contrary, observe that the condition D21D21 = I can be substituted, without 
troubles, by D21D21 = R with R > 0. Indeed, the present derivation can be exploited by 
redefining the output variable as shown in eq. (4.73). 

Finally, the orthogonality assumption D2iB[ = 0 is often made. Besides making simpler 
the notation, such an assumption implies that the noises ^1 and ("2, introduced in Remark 
4.11 when dealing with filtering problems, are uncorrelated {W12 = 0). • 
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R e m a r k 4 .14 The Riccati equation (4.64) is the one encountered in deriving the Kalman 
filter for the system x = Ax + ici, y = C2X-\-W2^ where the zero mean Gaussian white noise 
w := [w'l W2]' has intensity 

BiBi B1D21 
D2iB[ I 

W := 

R e m a r k 4 .15 Under Assumption 4.4, the eigenvalues of the unreachable part of the pair 
[{A — B1D21C2), Bi{I — D21D21)] do not lie on the imaginary axis (Assumption 4.3) if and 
only if the invariant zeros of the subsystem of POE{S) corresponding to the transfer function 
PoE2i{s) from the input w to the output y, namely the system E(74, J5i, C2,1^21), all have 
real part different from zero. In fact, from Section 2.5 and by recalling that the number 
of components of the disturbance w is not smaller than the number of components of the 
output ^, if a scalar A with Re{X) = 0 exists such that 

{XI - A')x -C'2y = 0 

B[x + D'2iy = 0 

with [x' y'Y ^ 0, then, from the identity D21D21 = I it follows 

y = -D2IB[X 

so that 

{A' - C!2D2iB[)x = Xx 

{I-D'2iD2i)B[x = 0 

Being x 7̂  0, since, otherwise, also y = 0, these two equations would violate the assumption 
that no eigenvalue of the unreachable part of the pair [{A — B1D21C2), BI{ID2VD2I)] lies on 
the imaginary axis (recall Lemma D.3, point (a)). On the contrary, if the two last relations 
hold true for a certain x / 0, then letting y := —D2iB[x and proceeding in the reverse way 
the conclusion straightforwardly follows. • 

R e m a r k 4 .16 The above results can be generalized to the fairly frequent case in which 
the output variable y explicitly depends on the control variable u, that is when eq. (4.60) is 
substituted by 

y = C2X + D12W + D22U (4.90) 

Indeed, letting 
y := y — D22U = C2X + D12W (4.91) 

Problem 4.1 relative to system POE{S) (described by eqs. (4.58),(4.59), (4.91)) admits the 
solution presented in Theorem 4.2. If KOE{S) is a RH2 admissible controller for POE{S), then 
the controller KOE{S) defined in the block-scheme of fig. 4.17 is apparently a RH2 admissible 
controller for system POE{S) (described by eqs. (4.58),(4.59),(4.90)), only provided that it 
is well defined. This is certainly the case since the set of controllers KOE{S) is constituted 
by strictly proper systems (see Theorem 4.2). • 

4.4 The partial information problem 

In the control problem considered in the present section only a partial information 
on the system state is available to the controller. Therefore, the controlled system is 
described by 

x = Ax-\- Biw -h B2U (4.92) 

z = C i x + D12U (4.93) 

y = C2X + D21W (4.94) 
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Figure 4.17: The controller KOE{S) when y directly depends on u 

w 

u 
P{s) 

K{s) 

Z 

y 

Figure 4.18: The partial information problem 

and its transfer function is denoted by P{s). Further, the following assumptions are 
done. 

Assumption 4.6 The pair {A, B2) is stabilizable and the pair {A, C2) is detectable. 

Assumption 4.7 D[2Di2 = I-

Assumption 4.8 The eigenvalues of the unobservable and unreachable part of the 
pairs [{A - B2D[2Ci) (/ - Di2D[2)Ci] and [{A - 5iL>^iC2), 5 i ( / - L>2i^2i)] respec-
tively, do not lie on the imaginary axis. 

Assumption 4.9 D21D21 — I. 

In the forthcoming theorem reference is made to the block-scheme of fig. 4.18 where 
K{s) denotes a generic RH2 admissible controller for P{s) and T(z, w; s) is the transfer 
function from w to z. 

Theorem 4.3 (Partial information) Consider system (4.92)-(4-94)' Then, under 
Assumptions 4-^ - 4-9, Problem ^.i has the following solution. 

a) 

min \\T{z,w;s)\\l = ||Pe(s)Bi||2 + 11^^2 /̂(5)11^ 

= \\Pcis)L2\\l + \\C,Pf{s)\\l 

b) 

K"{s) :-
A + 52^2 + L2C2 
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Figure 4.19: The set T2jr of the controllers KFir{s) 

c) The set T^-^r oj the controller Kr{s) is defined by the block-scheme of fig. 4-^^ 
where 

S2{S) 

A + B2F2 + L2C2 

F2 

-C2 

—Lo Bo 

o\2 Q{s) := Y,{Aq^Bq,Cq^O), the matrix Aq is stable and ||Q(s)||2 < 7^ — (7^) 

In the three points above reference has been made to eqs. (4-15)-(4A8) and (4-61)-
(4.64), while ^ is a positive scalar such that 7 > 7^. 

Proof First observe that Assumption 4.6 coincides with the necessary condition for 
the problem at hand to make sense (see Remark 4.1). Then notice that the above 
assumptions guarantee, thanks to Lemma C.3, the existence of the solutions P2 and 
112 of the Riccati equations (4.18) and (4.64) endowed with the relevant properties. 
Repeat now the first part of the proof of Theorem 4.1 (eqs. (4.20)-(4.26)) by making 
reference to fig. 4.18 and 4.19 rather than to fig. 4.2 and 4.3, respectively, and defining 
the system Pv{s) in fig. 4.4 as 

Pv{s) := 

A 

-F2 

C2 

Bi 

0 

D21 

B2 ' 

I 
0 

Then, one gets 
\\T{z,w]s) \Pc{s)Bi\\l + \\T{v,w',s) 

On the other hand, system Pv{s) has the same structure as system POE{S) (the system 
considered in Section 4.3) and equals it if one let —F2 = C\. It is easy to ascertain 
that under Assumptions 4.6 - 4.9, Assumptions 4.3 - 4.5 are verified for system Pv{s). 
This is straightforward as for the first two of them, while Assumption 4.5, namely 
stability of the matrix A — B2C1 = A-{- B2F2, follows from P2 being the stabilizing 
solution of the Riccati equation (recall eq. (4.19)). Since the set of RH2 admissible 
controllers for P{s) coincides with the set of RH2 admissible controllers for Pv{s)^ 
it is possible to minimize ||T(f,if;; 5)||2 by resorting to Theorem 4.2. Thus the first 
equality sign in point a) and points b) and c) follow. 

As for the second equality sign in point a), notice that system P{s) :— P'{s) has 
the same structure as P{s). Therefore, the solution of Problem 4.1 relative to system 
P{s) is fully described by the statement of Theorem 4.3 apart, for the moment being. 
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from the second part of point a). The relevant results can be utilized also for system 
P ( s ) , thanks to Lemma E . l . In particular, if a cap sign marks the items concerning 
system P{s) which correspond to those introduced for system P{s), in view of point 
(a) of Theorem 4.3, first equality sign, one obtains 

min \\t{z,w;s)\\l = \\Pcis)B4l + \\F2pf{s)\\l 

= \\Pcis)L2\\l + \\CrPf{s)\\l 

since Pc{s) — Pf{s), B[ = Ci , Pf{s) = Pc{s) and F2 = L2, as it can be verified. • 

E x a m p l e 4.5 Consider system (4.92)-(4.94) with 

0 1 
0 0 

Bi 

1 0 
0 0 

1 0 
1 0 

Bo Di 

, C2 = [ 1 0 ] , D21 = [ 0 1 

One obtains F2 = -[1 V^], L2 = -[VS 1]' and 

Taken 7 = 16 and 

( 7 T := ||Pc(5)Bi||^ + ||F2F/(s)||^ = 10.85 

Q{s) 
- 1 

0 

1 

0 
- 3 

1 

1 
1 

0 

it is \\T{z,w;s)\\l = 12.02 < 7^, consistently with 1.17 = \\Q{s)\\l < 7^ - (7^)^ 

E x a m p l e 4.6 Consider system (4.92)-(4.94) with 

A = 
0 1 
0 0 

Bi = B2 D12 = D2i = l 

Ci=[l /3 ] , C2 - [ 1 a] 

where a 7̂  0 and /3 7̂  0. It is easy to verify that the controller which makes the control 
variable u to depend on the output variable y through the transfer function 

Kic{s) :--
ps + 1 

s2 + (a + /3)s + 2 

performs the indirect perfect compensation of the disturbance w, since the transfer function 
from K; to 2; is zero. However, the resulting system is stable only for a > 0 and /3 > 0. 
Therefore, this kind of solution is no more feasible for all other values of the pair (a, /3). 

On the contrary, by applying Theorem 4.3 one obtains (corresponding to the choice 
Q{s) = 0) K''{s) = Kic{s) when a > 0 and ^̂  > 0, otherwise 

K\s) = 

K^{s) = 

{2a + p)s-l 
s2 - (a + /3)s + 2a2 + 2a/3 + 2 

f3s-l 

a < 0 , f3 <0 

s2 + ( a - / 3 ) s + 2 

(2a -I3)s-1 
s2 + (/? - a)s + 2a2 - 2a/3 + 2 

a > 0 , ^ < 0 

a < 0 , / 3 > 0 
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R e m a r k 4 .17 The structure of a generic RH2 admissible controller for P{s) (as defined 
by the block-scheme of fig. 4.19) allows checking that the eigenvalues of the resulting control 
system are those of the matrices A -{- B2F2, A -\- L2C2 and Aq. In fact, letting Xs and Xq 
denote the state variables of systems ^ ( s ) and Q(s), respectively, the dynamic matrix of 
the resulting system (with state Xt := [x' — x'g x'q x'\) is 

At^ 
A + L2C2 

BqC2 
B2F2 

0 
Aa 

B2Cq A + B2F2 

R e m a r k 4 .18 The optimal controller given in point b) of Theorem 4.3 may be interpreted 
as the result of a synthesis procedure made up of two independent steps. The first one consists 
in solving the full information problem (dealt with in Section 4.2) yielding matrix F2. The 
second step tackles the output estimation problem (dealt with in Section 4.3) relative to the 
linear state combination F2X, that is relative to system (4.58)-(4.60) with Ci = —F2. • 

R e m a r k 4 .19 (Parametrization of the set ^27) Notice that ^27 = ^27r- In fact, as 
it was done in the proof of Theorem 4.3, recall that the set of RH2 admissible controllers 
for P{s) coincides with the set of RH2 admissible controllers for Pv{s). However, the latter 
system has the same structure as system POE{S) (considered in Section 4.3), so that, in view 
of Remark 4.10, the above claim is correct. • 

R e m a r k 4 .20 The control problem addressed to in Theorem 4.3 can be viewed as an 
optimal linear quadratic stochastic problem with unmeasurahle state. In fact, consider the 
n-th order system 

X = Ax^- Bu-VC^i 

^ = Cx + C2 

where C •= [Ci C2]' is a zero mean white Gaussian noise with intensity 

V r : = 
1^11 W12 

W[2 W22 
W22 > 0 

(4.95) 

(4.96) 

(4.97) 

Also consider the cost functionals 

Je := lim E[x\t)Qx{t)+2x\t)Su[t) + u {t)Ru{t)] 

and 

where 

Letting 

: lim E 
1 r 
- I [x{t)Qx{t) + 2x{t)Su{t) + u{t)Ru{t)]dt 

Jo 

Q s 
R 

L = L' > 0 , R>0 

Q:=Q-SR-^S' , W:=Wii-Wi2W22^W[2 

which are positive semidefinite (recall Remarks 4.4 and 4.11) and 

C i i C i i 

B2 

D21 

Ci 

y 

•-Q , Cii€R , ±>ll±> 
f 

11 •— w, 
:= Bfl-1/2 ^ 5^ _ [5^^ Wx2W-^'^^ 

:= [0 7] , C2 := W^^'^'C 

:= 

• . = \ ̂ 22 y : ^ 

, D12 '• = 

:= Cix + D 

' 0 ' 
/ 

12U 

5 R 1/2. 
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system (4.95)-(4.97) can be rewritten as 

x = Ax + Biw + B2U (4.98) 

z = Cix-\- D12 (4.99) 

y = C2X + D2i (4.100) 

where w is Si zero mean white Gaussian noise with identity intensity and dimension n -\- p 
which satisfies the equation 

Bii Wr2W-^l^ 

0 1^22 
1/2 

It is also easy to verify that 

and 

c = 

Je := hm E\z'(t)z(t)\ 

Jj := hm E {t)z{t)dt\ 

The problem under consideration is finding a controller of the form 
[̂ f"' 

i = Fi + Gy (4.101) 

u = H^-\-Ny (4.102) 

such that system (4.98)-(4.102) is stable and JQ or J7 is minimized. Notice that the feedback 
connection of any controller described by eqs. (4.101),(4.102) with system (4.98)-(4.100) is 
well defined and the relevant transfer function from tt; to ^ is strictly proper if and only if 
ND21 — 0, that is if and only if Â  = 0 (recall the definition of D21). Therefore, if system 
(4.98)-(4.102) is stable and Â  = 0, then the controller (4.101),(4.102) is RH2 admissible for 
system (4.98)-(4.100). In view of Remark 2.20 any RH2 admissible controller for system 
(4.98)-(4.100) is such that 

JQ = J7 = \\T{Z,W',S)\\1 

Assume that neither the eigenvalues of the unobservable part of the pair [{A — BR~^S')^ Cn] 
nor those of the unreachable part of the pair [{A — W\2W2'^C)^Bii] lie on the imaginary 
axis. Moreover, assume that the pair (A, C) is detectable and the pair (A, B) is stabilizable. 
With the same kind of reasoning developed in Remark 4.11 it is easy to see that these 
assumptions are equivalent to Assumptions 4.6 and 4.8, while Assumptions 4.7 and 4.9 are 
satisfied because of the definition of D12 and D21. 

Therefore, Theorem 4.3 can be applied to system (4.98)-(4.100) and supplies the optimal 
controller which is described (with reference to system (4.95)-(4.97)) by 

i ^ A^ + Bu + L(C^ - y) (4.103) 

u = Hi (4.104) 

if the relevant substitutions have been done. In eqs. (4.103),(4.104) it is L := —(II2C' -\-
^12)^22^, H '•= —R~^{B'P2 + S')^ P2 and 112 being the symmetric, positive semidefinite 
and stabilizing solutions of the Riccati equations (in the unknown P and 11, respectively) 

0 = PAc + A'cP - PBR-^B'P + Q- SR-^S' 

0 = MA'f + Afll - I{C'W22Cn + Wii - Wi2W22W[2 

with Ac :=A-BR-^S\ Af := A-Wi2W^2^C. Notice that in the controller (4.103),(4.104) 
it is TV = 0. 

Equation (4.103) is the equation of the stable (see Remark 4.11) Kalman filter for system 
(4.95)-(4.97). Thus, the controller (4.103),(4.104) can be considered as a Kalman filter on 
the state of which the control law has been implemented (eq. (4.104)) which is optimal and 
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stabilizing for the Linear Quadratic problem with infinite horizon defined on system (4.95) 
with Ci = 0 sind performance index 

/*oo 

Jj := / [x'{t)Qx{t) + 2x{t)Su{t) + u (t)Ru{t)]dt 
Jo 

The criterion J7 is the "deterministic version" of the functional J7. This structural separation 
of the solution (optimal filtering and regulator problem) is outlined also by the spectrum of 
the dynamic matrix of the resulting system. In fact, letting e := ^ — x, from eqs. (4.95)-
(4.97),(4.103),(4.104) it follows 

e = (A + L C ) e - C i - L C 2 

X = (A + BH)x + BHe + Ci 

The problem of minimizing either the functional Je or the functional J7 under the unique con-
straint expressed by eqs. (4.95)-(4.97) is known as the linear quadratic Gaussian (LQG) prob-
lem. The solution of such a problem (whenever it exists) is specified by eqs. (4.103),(4.104), 
where, however, the two matrices 112 and P2 which determine L and H, respectively, may 
not be the stabilizing solutions of the relevant Riccati equations. Consequently, system 
(4.95)-(4.97), (4.103),(4.104) may be unstable. This outcome is consistent with the absence 
of any stability requirement put forth by the classical LQG theory. As a matter of fact, 
the assumptions required by such a theory (stability of the unreachable but observable part 
of system T,{A — BR~^S\B,Cii,0) and of the unobservable but reachable part of system 
T>(A — Wi2W^2^C, Bii, C, 0)) are weaker than those required within the RH2 context. • 

R e m a r k 4 .21 The solution of the output estimation problem (see Section 4.2) can be 
derived as an application of Theorem 4.3 to a particular case. In fact, it suffices to set 
D12 = / in Assumptions 4.6 - 4.9 in order to conclude that Assumptions 4.3 - 4.5 are satisfied. 
In particular, it results Cic = 0 so that the (unique) symmetric, positive semidefinite and 
stabilizing solution of the Riccati equation (4.18) is F2 = 0. In such a context, the conclusions 
of Theorem 4.3 are immediately redrawn to those of Theorem 4.2. In a similar way, the 
solution of the disturbance feedforward problem dealt with in Remark 4.5 can be obtained 
by solving the partial information problem in the particular case D21 — L Indeed, letting 
D21 = I in Assumptions 4.6 - 4.9, it is easy to verify that the assumptions made in Remark 
4.5 are satisfied. In particular, it results Bif — 0 and hence 112 = 0 , so that the conclusions 
of Theorem 4.3 coincide with those illustrated in Remark 4.5. • 

R e m a r k 4 .22 The contents of Remark 4.6 (as for matrix D12) and of Remark 4.13 (as for 
matrix D21) apply with no changes to the problem dealt with in the present section. D 

R e m a r k 4 .23 In view of Remarks 4.8 and 4.15 it can be said that, under Assumptions 
4.7 and 4.9, Assumption 4.8 amounts to requiring that the two subsystems of P{s) having 
transfer functions ^12(5) (that is, system E(A, B2, Ci, D12) with input u and output z) and 
i^2i(s) (that is, system E(A, Bi , C2,-D21) with input w and output ?/), respectively, do not 
have zeros on the imaginary axis. • 

R e m a r k 4 .24 The discussion in Remark 4.16 can be applied with no changes to the present 
context. Therefore, the results presented in Theorem 4.3 can be extended with no difficulty 
to encompass the case in which eq. (4.94) is replaced by 

y = C2X + D21W + D22U 
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4.5 Notes and references 

The material of this section mostly relies on the paper by Doyle et al. [17]. However, 
the assumptions under which Theorems 4.1, 4.2, 4.3 have been stated are more general 
than those adopted in such a paper. Moreover the results concerning the parametriza-
tion of the admissible controllers have been modified so as to encompass the remark 
put forward by Mita et al. [44]. Further insight on the connections existing between 
the LQG and RH2 problems was given by Kucera [35]. 
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Chapter 5 

RHno Con t ro l 

5.1 Introduction 
The control problem for linear time-invariant systems has been classically tackled 
in the frequency domain. A typical, though not completely general, context is the 
one shown in fig. 5.1, where G{s) and K(s) are the transfer functions of the process 
to be controlled (possibly including actuators and sensors) and of the controller to 
be synthesized. The disturbances dc, du, dr act on the controlled variable c, on the 
process input variable Up and on the feedback path, respectively. Finally, c^ is the 
opposite of the set point 

As well known, the aim in designing K{s) is, loosely speaking, guaranteeing the 
stability of the control system and achieving satisfactory performances. Usually, such 
performances are evaluated in terms of the behavior of suitable variables of interest 
to be specified according to the problem at hand and must be attained in spite of the 
disturbances acting on the system and inaccurate knowledge of the process model. 

In general, the philosophy underlying the adopted synthesis procedure strongly 
affects the result: for instance, having either ignored or taken into account the inac-
curate knowledge of the process model makes the controller quite different. Moreover, 
the design procedure significantly depends on the adopted description of the uncer-
tainty: thus, subdividing the relevant discussion (and consequently this section) into 
three parts, appears to be a fairly natural strategy. First, the design problem is faced 
in nominal conditions^ that is the process is supposed perfectly known. Second, some 

c - y 
K{s) u \u. 

dr 

G{s) 

Figure 5.1: A typical control system 
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typical situations in which the process model is not precisely known are shown to 
be conveniently described by inserting a suitable perturbation A(s) into the block 
scheme of fig. 5.1. The topology of this scheme does therefore reflects the particular 
nature of the considered uncertainty. Third, the design problem is tackled in a robust 
way, namely it is stated within various uncertainty scenarios, modeled in accordance 
with the previous discussion. 

5.1.1 Nominal design 

The process under control is assumed to be perfectly described by its nominal transfer 
function Gn{s) so that in the block scheme of fig. 5.1 G{s) = Gn{s). The transfer 
functions which are suited to evaluate the effects of the disturbances and hence can 
be exploited to express meaningful performance requirements are the following: 

Sn{s) = [I-Gn{s)K{s)]-' (5.1) 

Tn{s) = Gn{s)K{s)[I - Gn{s)K{s)]-' (5.2) 

Vn{s) = K{s)[I - Gn{s)K{s)]-' (5.3) 

The function Sn{s), usually referred to as sensitivity function, describes the effect of 
the disturbance dc on the controlled variable c and the effect of the signal c° on the 
controller input variable y. The function Tn(s), which is readily recognized to equal 
Sn{s) — / , is, for such a reason, referred to as complementary sensitivity function and 
accounts for the effect of c^ or dr on the controlled variable. Finally, the function 
Vn{s) is responsible of the effect of c^, dr or dc on the process input: thus, it will be 
referred to as input sensitivity function. 

A good solution to the design problem spontaneously calls for making small, in 
some suitable sense to be specified, the effects of the disturbances on the variables 
of interest. Thus, the desire of making small the above introduced transfer functions 
naturally arises. 

In the scalar case (that is the case where all the relevant variables are scalar), the 
desire of making small a transfer function ip{s) is consistent with the request that 
the absolute value of ^{joj) be, for each frequency cj, smaller than a given (possibly 
frequency dependent) quantity, namely | (p{j(jo) \< '^(a;),Va;. For this to make sense, 
it is necessary that no poles of (p{s) lie on the imaginary axis: in the here considered 
framework this requirement is naturally fulfilled since, in view of the unavoidable 
stability constraint, all the transfer functions of interest must belong to RHoo- The 
natural extension of this philosophy to the multivariable case leads to asking that 
an inequality of the above type be verified by the maximum singular value of (p{juj), 
namely 

a[^{juj)]<^{u;), yu (5.4) 

Let W{s) e RHoo be any matrix such that W~'^{s) G RHoo and a[W~^{ju;)] ^ 
i?(a;). Then, the inequality (5.4) is no doubt satisfied if 

a[W{juj)(p{juj)] < 1 , Vu; 

that is if 
\\WisMs)\\^ < 1 (5.5) 

since, in view of Lemma 2.21, 

aiifijio)] = a[W-\ju)W{jcoMju)] 

< a[W{juj)<fi{ju:)]a[W-\juj)] 
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The function W{s) is usually referred to as shaping function. 
For the control system of fig. 5.1 the more classical request is the sensitivity 

performance one, which, consistently with eq. (5.5), can be expressed as 

II Wi{s)Sn{s) ||oo< 1 (5.6) 

Not at all less meaningful are the requests related to the complementary sensitivity 
performance and input sensitivity performance which can be expressed as 

II W2{s)Tn{s) ||oo< 1 (5.7) 

and 
II Ws{s)Vn{s) ||oo< 1 (5.8) 

respectively. 
Equally of interest are the requests calling for the simultaneous satisfaction of more 

than one of the inequalities (5.6)-(5.8). As an example, a common request involves 
both the sensitivity and the complementary sensitivity performance by asking for the 
fulfillment of 

•" Wi{s)Sn{s) 
W2{s)T^{s) 

< 1 (5.9) 

since (recall Definition 2.24 and Lemmas 2.17 and 2.23) if (5.9) holds, then both (5.6) 
and (5.7) hold. It should be apparent that a multiple goal as the one expressed by eq. 
(5.9) must not ignore the intrinsic constraints existing among the involved functions. 
A wise selection of the shaping functions Wi{s) to be associated with the performance 
functions Sn{s)^ Tn{s)^ Vnis) is therefore mandatory. 

With reference to the particular case of eq. (5.9), the selection of the shaping 
functions must reflect the identity Sn{s) —Tn{s) = / . In general, a[Sn{j(^)] is asked to 
be small at low frequencies in order to endove the control system with good capabilities 
of tracking the set point, whose bandwidth is usually limited from above. This can 
be achieved by selecting a shaping function Wi{s) such that o-[VFj~ (̂j(x;)] is small 
at low frequencies and equal to 1 at higher frequencies. On the contrary, a[Tn{ju;)] 
is requested to be small at high frequencies in order to effectively counteract, for 
instance, the disturbances in the feedback path, as their spectra are usually located 
at high frequency. Consistently, the shaping function W2{s) can be selected so as 
to have a[W2~^(ja;)] equal to 1 at low frequencies and as small as possible at higher 
frequencies. 

5.1.2 Uncertainty description 

It is often more realistic to assume that the process model belongs to some specified 
set 0 rather than being perfectly known. Moreover, the so called nominal model 
Gn{s) is usually taken as an element of the set Q and therefore viewed as a first order 
approximation of the true model G{s). Consistently, a description of the set Q can be 
performed by parametrizing it by means of a transfer function A{s) belonging to a 
suitable set P^ : the perturbations which Gn{s) may undergo are then defined by the 
adopted parametrization and the structure of the set V^. 

Here reference will be made to unstructured perturbations only, that is to per-
turbations which are qualified only in terms of their amplitude as specified by the 
set 

V^ := {A{s) I A{s) G RH^ , \\A{s)\U < a} (5.10) 
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Figure 5.2: Different uncertainty models 

Some particularly meaningful examples of parametrization of Q are presented in the 
following equations, where the parameter A{s) is any element of the set Va defined 
by eq. (5.10): 

Q 

Q 

Q 

Q 

Q 

= {G{s) 

= {G{s) 

= {G{s) 

= {G{s) 

= {G{s) 

G(s) = G„(s) + A(5)} 

G(s) = G„(s)[/ + A(s)]} 

G(s) = [/ + A(s)]Gn(s)} 

G(s) = [ / -A (s ) ] - iG„ (s ) } 

G(s) = [ / -G„(s)A(s) ] - iG„(s) } 

(5.11) 

(5.12) 

(5.13) 
(5.14) 

(5.15) 

It is easy to verify that each one of the sets (5.11)-(5.15) is suited to describe meaning-
ful types of uncertainties in a fairly natural way (see also fig. 5.2 where a block-scheme 
version of eqs. (5.11)-(5.15) is presented). The set (5.11) may model an uncertain lo-
cation of right half plane zeros of G{s) (as an example: Gn{s) — (s —2)/(s + l)(5-h2), 
A(5) = el{s -\- l){s + 2)). The sets (5.12) and (5.13) may suitably account for 
neglected high frequency poles as well as right half plane zeros (as an example: 
A(s) = - £ s / ( l + es) or A(5) = - 2 / ( 1 + s), so that 1 + A(s) = 1/(1 -h es) and 
1 + A(5) = (s — 1)/(1 + s), respectively). These sets can obviously be exploited in de-
scribing the model uncertainties of both actuators and sensors as well. The set (5.14) 
can easily model neglected right half plane poles (as an example: A(s) = 10/(1 + s), 
so that [1 — A(5)]~^ = (1 + s)l{s — 9)). Finally, the set (5.15) can easily account 
for the uncertain location of a right half plane pole (as an example: A(5) = e, 
Gn{s) = 1/(5 - 1), SO that G{s) = l / (s - 1 - e)). 
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5.1.3 Robust design 

The design problem in an uncertain environment consists in selecting a controller 
K{s) which ensures stability as well as satisfactory performances not only in nominal 
conditions (e.g., G{s) = Gn{s))^ but also when the plant undergoes finite perturba-
tions. As for the basic stability requirement, a controller K{s) is said to guarantee 
robust stability if, given a set P^ , the control system is stable for each G{s) e Q. In a 
similar way, a controller K{s) is said to guarantee robust performances if, given a set 
PQ,, the control system satisfies some specified performance requirements (like those 
defined through eqs. (5.6)-(5.9)) for each G{s) G Q. 

Within this framework a natural question arises, namely whether a control system 
which has been designed in nominal conditions can, for a given set Q and some finite 
a, guarantee robust performances and/or stability relative to the set V^. Whenever 
possible, the answer to such a question is supplied by the so called procedures for the 
robustness analysis of a control system. 

The same approach adopted for the nominal design problem can be exploited for 
the robust design problem, provided that reference is made to sensitivity functions 
defined in terms of G{s) rather than of Gn{s), namely 

S{s) = [I-G{s)K{s)]-^ (5.16) 

T{s) = G{s)K{s)[I - G{s)K{s)]-^ (5.17) 

V{s) = K{s)[I - G{s)K{s)]-^ (5.18) 

Accordingly, the robust sensitivity performance^ the robust complementary sensitivity 
performance and the robust control sensitivity performance are guaranteed if, given 
the sets Q and DQ,, the control system is stable for all G{s) E G and 

(5.19) 

(5.20) 

(5.21) 

respectively. 
Not differently from the nominal design framework, it is possible to call for the 

simultaneous matching of two or even all the inequalities (5.19)-(5.21). Thus, for 
instance, a design problem could be stated requiring that 

||W^l(s)5(s)||oo < 1 , 

||W2(s)T(s)||oo < 1 , 

\\W3{s)V{s)\\^ < 1 , 

^G{s) e g 
VG(s) e g 
VG(s) e g 

Wi{s)S{s) 
W2{s)T{s) 

< 1 , VG(5) G g (5.22) 

Finally, under some circumstances, the controller might be required to guarantee 
robust stability together with satisfactory performances (as specified by the inequali-
ties presented in this section) in nominal conditions only {nominal design with robust 
stability). 

The next section is devoted to showing how the design problems introduced in this 
section can all be reduced to a unique standard problem in the RHoo context which 
is completely defined in terms of Gn{s) and G only. 

5.2 The standard problem 

Consider the block-structure depicted in fig. 5.3 where P{s) is the so called augmented 
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w 

u 
Pis) 

K{s) 

z 

V 

Figure 5.3: The standard 2-block configuration 

system and K{s) is the controller to be designed. It is now shown that the controller 
K(s) in fig. 5.1 which solves one of the design problems defined in Section 5.1 is the 
same controller that in fig. 5.3 guarantees stability and the boundedness of the RHoo 
norm of the transfer function T{z] w^ s) from w to z. The interest in reformulating 
the original design problem in terms of the block structure of fig. 5.3 lies on the 
fact that the augmented plant P{s) depends only on the nominal plant Gn{s)^ on the 
particular set Q of the given perturbations and on the performances requested to the 
control system. 

The procedure at the basis of such a reformulation, i.e. the definition of the 
system P{s) and signals w and z, comes up to be very simple when dealing with a 
design problem in nominal conditions, henceforth referred to as nominal design. Such 
procedure is now presented at the light of simple, but illustrative, examples, which 
also serve as preliminaries in the cases not specifically considered herein. 

Nominal design: sensitivity performance With reference to fig. 5.1 and fig. 5.3, 
define z := Wi{s)y and w := c^, or z := Wi{s)y and w := d̂ -, or z := Wi{s)c and 
w := dc. Then, in the three cases. 

P{s) 
Wiis) Wi{s)G„{s) 

I Gnis) 

Nominal design: complementary sensitivity performance With reference to fig. 
5.1 and fig. 5.3, define z := W2{s)c and w := dr or w := c°. Then, in both cases, 

P{s) = 0 W2{s)Gn{s) 
1 Gnis) 

Nominal design: input sensitivity performance With reference to fig. 5.1 and fig. 
5.3, define z := W3(s)up and w := dr or w := c°, or w := dc- Then, in all the three 
cases, 

" 0 Wsis) 
I Gnis) 

Pis) 

Nominal design: joint sensitivity and complementary sensitivity performance 
With reference to fig. 5.1 and fig. 5.3, define z :— [yWi{sy c'W2{syy and w := c^ 
or w := dr. Then, in both cases, 

Pis) 
Wiis) Wiis)Gnis) 

0 W2is)Gnis) 
1 Gnis) 
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Gi(5) 

G2{s) 

Figure 5.4: Feedback connection of two systems 

Restating in terms of the block-structure of fig. 5.3 the synthesis problems in uncertain 
conditions requires a preliminary result (usually called small gain theorem) which 
refers to the feedback connection of fig. 5.4. 

Theorem 5.1 Let Gi{s) G RHoo be an assigned pxm transfer function and G2{s) G 
RHoo an arbitrary m x p transfer function with IIG2II00 < <̂  7̂  0- Then 

i) The feedback connected system of fig. 5.4 is stable for any (^2(5) i/ ||Gi(5)||oo < 
a-' 

a) //||Gi(5)||oo > Oi~^, there exists a transfer function G2{s) which destabilizes the 
feedback connected system of fig. 5.4-

Proof If ||Gi(s)||oo < Oi~^ then, recalling Lemma 2.21, Remark 2.13 and Remark 
2.16, it follows that ^[^1(5) G2{s)] < 1, Vi^e(s) > 0. Hence, Lemma 2.18 entails 
that all eigenvalues of Gi{s)G2{s) have modulus less than one in the closed right half 
plane, so that det[/ - d (5)62(5)] ^ 0, WRe{s) > 0. In view of Theorem 3.3 the 
conclusion is drawn that system in fig. 5.4 is (internally) stable. 

On the contrary, suppose that ||Gi(s)||oo = o^~^(l + e) := p~^^e > 0 and con-
sider the case m < p. Write a singular value decomposition of Gi{juo) as Gi{jij) = 
U{juj)Y>{juj)V^{juj) with T,{juj) = [S{jujy 0]', where S{juj) is a square and m-
dimensional matrix. Letting G2{joj) := pV{juj)TU^{JLj), where T = [I 0] is a m x p 
dimensional matrix, it follows that 

det[/ - Gi{juj)G2{juj)] = det 

det 

I-pUiJLo) 

pSiJuj) 
0 

0 

0 
/ 

u^U^) 

^det[I-pSiJuj)] 

Since ||Gi(5)||oo = P~^^ there exists a frequency Cu such that lim^^^ a[Gi{ju;)] = p~^. 
Then, recalling that S{ju) = diag{cr^[Gi(jcc;)]}, it follows that one of the nonzero 
entries of pS{juj) tends to one so that lim^_,^ det[/ — Gi{juj)G2{ju;)l = 0. In view of 
Theorem 3.3 the system in fig. 5.4 is unstable. The case m> p can be dealt with in 
a similar way. • 

Remark 5.1 (Stability of an uncertain matrix) Theorem 5.1 allows one to give a 
simple answer to a peculiar problem which concerns the stability of an uncertain linear 
system. Consider a system described by 

{A + AA)X 
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G(s) 

n 

Figure 5.5: An uncertain system in feedback configuration 

where A is stable and A A represents the uncertainty which is assumed to belong to a set of 
perturbations specified by 

AA = BnC, | | 0 | | < 7 " ' 

where B and C are two assigned matrices and 7 is an assigned positive scalar. Notice that 
it is possible, through a suitable choice of matrices B and C, to effectively describe various 
situations, for instance the case in which only a parameter of the system dynamic matrix is 
really uncertain. Looking at fig. 5.5 it is apparent that the uncertain system can be viewed 
as a closed loop system obtained by performing the control law u = Qy on the system with 
transfer function G{s) = C{sl — A)~^B. Then, it can be concluded that, if ||G(s)||oo < 7, 
the stability is guaranteed for any Q such that ||f̂ || < 7"^. 

Thanks to Theorem 2.14, the condition ||G(s)||oo < 7 is equivalent to the existence 
of a symmetric positive semidefinite stabilizing solution Ss of the Riccati equation (in the 
unknown S) 

0 = SA + A'S + j-^SBB'S + Co 

R e m a r k 5.2 (Covariance bound) Consider the stochastic system described by 

X = {A-\- AA)X-\- Biw 

where A is stable, if is a zero-mean white noise with identity intensity. Similarly to Remark 
5.1, the perturbation A A is assumed here to be described by 

A A = 52^2C 11̂211 < 7" ' 

where B2 and C are specified matrices and 7 a positive scalar. It is also assumed that the 
system is stable for any perturbation A A of the given form. Hence, it makes sense to tackle 
the problem of finding a meaningful (i.e. "small") upper bound of the asymptotic covariance 
matrix Xa{^2) of the system state. 

Let /3 > 0 he fixed and assume for the moment that there exists a symmetric positive 
semidefinite and stabilizing solution Pg {/S) to the algebraic Riccati equation (in the unknown 

P) 
0 = PA' + AP + -i-'^PC'CP + B2B2 + p-'^BiB'i 

It is now proved that f3^Ps{0) is a solution of the problem stated above. Recall that the 
asymptotic state covariance Xa(Sl2) is the (unique) solution of the Lyapunov equation (in 
the unknown X) 

0 = (A + B2n2C)X + X{A + B2^2C)' H- BiB[ 

This fact can be readily verified by exploiting arguments similar to those used in Remark 
2.20 for the computation of J2. 
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Figure 5.6: The covariance bound problem 

Now, let S{^2,f^) '•— l3'^Ps{/3) — Xa{^2), and subtract the Lyapunov equation from the 
Riccati one. Then, 8(^2, P) satisfies the following equation (in the unknown Ŝ*) 

0 = (A + 32^20)8 + S{A + B2^2C)' + 

+ (/37" 'P.C' - lPB2^2){h~^PsC' - ^^32^2)' + 

+ / 3 ' B 2 ( / - 7 ^ 2 ^ 2 ) 5 2 

Being {A + B2^2C) stable. Lemma C.l leads to the conclusion that S{^2,P) > 0, i.e. 

/3^Ps{/3) > Xa(n2) , Va2 , ||^2||oo < 7 " ' 

This inequality raises the interest in determining the value of f3 to which the "minimum" 
value of the bound of Xa{^2) corresponds. Let B be the set of /3's for which the solution 
Ps{/3) of the Riccati equation actually exists. Observe that the existence of a solution Ps{P) 
entails that the system shown in fig. 5.6 is stable for any ^ := [Tt[ ^2]^ ll^ll < 7~^- This 
is simply verified in view of Theorems 5.1, 2.13 and Remark 2.22 since ||F(s,/3)||oo < 7, 
with F{s,f3) := C(sl ~ A)-^B{p), and 5(/3) := [p-^Bi B2]. Hence, V/3 G i3 it results 
||F(5,/?)||oo < 7. In order to show that JB ̂  0, it is sufficient to observe that ||F(s,/3)||oo is 
a monotonic nonincreasing function of /3 and 

l im | |F ( . , 0 0 , lim \\F{s,P)\\oo = \\C{sI-A)-^B2\\oo<7 

where the last inequality follows from the assumed stability of A-\- B2^2C, | |^2| | < 7~^-
In conclusion, there exists /Si such that ||F(s,/3i)||oo = 7 and B = (/3i,(X)). The prob-

lem of finding a meaningfully optimal value of /3 (namely, a l3^ to which a "small" bound 
P^ Ps{P°) of Xa(r^2) corresponds) can easily be faced since it can be proven that for /3 G /3 

This entails that, for instance, trace[/3^Pg(/3)] is a convex function of (5 so that the problem 

-[/3V3(/3)]>0 

inf trace[/3^P,(/3)] 

actually admits a solution. 
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c ^y Kis) 

A{s) 
f 

Gn{s) 

Figure 5.7: A control system with additive perturbations 

w 

u 

A{s) 

Pis) 

K{s) 

z 

y 

Figure 5.8: The standard 3-block configuration 

Uncertain design: robust stability Assume that one of the parametrizations of G 
in eq. (5.11)-(5.15) has been adopted to account for the uncertain knowledge of the 
plant. It is then obvious how important would be the choice of a controller K{s) 
which guarantees closed loop stability for an assigned set of perturbations, i.e. for an 
assigned value of the scalar variable a (recall the definition of VQ,^ eq. (5.10)). Along 
these lines the control problem that spontaneously arises is a robust stability design 
problem. Such a problem is easily reformulated in that of determining (if any) a 
controller K{s) that, with reference to the scheme of fig. 5.3, guarantees stability and 
is such that the RHoo norm of the transfer function T{z, w; s) is less than a suitable 
scalar /?. The augmented plant P{s) depends on the choice of the particular set Q^ as 
now shown for the sets in eqs. (5.11) and (5.13). Dealing with the remaining cases 
is simple at the light of these examples. Considering the set Q given by eq. (5.11) 
{additive perturbations) is equivalent to considering the control system of fig. 5.7. 
Then, define z :— i^ and w := (p and observe that the control system of fig. 5.8 is 
completely equivalent to that of fig. 5.7 if 

P{s) = 
I 

Gn{s) 

In view of Theorem 5.1, K{s) guarantees stability for any A{s) G V^ if and only if 
\\T{z^ w; s)\\oo < /? := o^~^ in the system of fig. 5.3. 

Analogously, consider the set G given by eq. (5.13) {multiplicative perturbations) 
and observe that this corresponds to considering the scheme in fig. 5.9, which, in 
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c ^y 
K{s) AGnis) 

A{s) 
f 

Figure 5.9: A control system with multiplicative perturbat ions 

W^is) A* is) W,{s) 

A{s) 

Figure 5.10: A less primitive description of uncertainty 

turn, is completely equivalent to tha t of fig. 5.8 if z := iS^ w := (p and 

P{s) 0 Gnis) 
1 Gnis) 

Hence, stability for any A(s) e Va is guaranteed if and only if, in the system of fig. 
5.3, \\T{z,w;s)\\oc.<p:=a-\ 

R e m a r k 5.3 At the light of what has been now shown, a less primitive class of uncertainty 
than the one defined in eq. (5.10) can readily be introduced by substituting the set V^ with 

P : := {A{s) I A(s) = W^{s)A%s)W4{s) , A*(s) e RH^ , ||A*(5)||oo < a} (5.23) 

where W4(s) and W^is) are assigned elements of RHoo- Without any loss of generality, one 
can assume ||W5(5)||oo = 1. 

The two shaping functions W4.{s) and W5{s) allows one to more finely qualify the pertur-
bations which affect the control loop, in terms of both their harmonic components (nature 
of the functions) and their very structure (configuration of the matrices). With reference to 
the set D* given in eq. (5.23), it is possible to substitute A*(s) for A(s) in fig. 5.8, provided 
that z := W4{s)^ and w :== W~^{s)ip (recafi fig. 5.7, 5.9, 5.10). 

In conclusion, the controller K{s) is stabilizing for any A(s) G V'^ if and only if 
| |T(2;,K;; s)|loo < f^ := a~^ in the system of fig. 5.3, where (recall fig. 5.7, 5.9) the aug-
mented plant P{s) is given, in the two considered cases, by 

Pis) 
0 

W,is) 
Wiis) 
Gnis) 

and 

Pis) 
0 H^4(s)G„(s) 

Wsis) Gnis) 
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V 

W^{s) 

K{s) 
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u GM 

A*(s) 

W4(S) W^{s) 

w 
<} 

Figure 5.11: The control system with multiphcative perturbations 

respectively. • 

R e m a r k 5.4 Assume that one of the (single performance) nominal design problem previ-
ously introduced has been performed and let K{s) be the resulting controller. In view of 
Theorem 5.1 such a controller also guarantees the robust stability relatively to suitable sets Q 
(of the type of those defined in eqs. (5.11)-(5.15)) and V^ (of the type of that defined in eq. 
(5.23)). Actually, the controller that satisfies the constraint ||T(z, w] s)||oo < /5 in fig. 5.3 also 
guarantees the stability of the control system for any perturbation A*(5), || A*(5)||oo < /3~^ 
acting between the signals z and w. Hence stability is ensured for any A(s) G V'^.a < /3~^ 
with W^is) = / and W4(s) depending on the shaping function which is possibly introduced 
in the formulation of the performance objective (recall eqs. (5.6)-(5.8)). 

As an example, consider a controller that solves the nominal design problem in terms 
of the input sensitivity performance. It also guarantees the robust stability with respect 
to the perturbations in the set (5.11) with ^4(5) = ^3(5) . On the contrary, a controller 
that solves the nominal design problem for the sensitivity (complementary sensitivity) per-
formance guarantees the robust stability with respect to the perturbations in the set (5.14) 
(resp. (5.13)) with W4{s) = Wi{s) (resp. W^s) = W2{s)). • 

R e m a r k 5.5 If the shaping function ^4(5) is suitably scaled, one can assume a = 1 in eq. 
(5.23) so that for given ^4(5) and VF5(s), ||VF5(5)||oo = 1 , the reference set is 

V*:={A{s)\A{s) = W5{s)A*{s)W4is), A*{s)eRHoc, ||A*(5)||oo < 1} (5.24) 

D 

Uncertain design: robust stability and nominal performances Consider the control 
system depicted in fig. 5.1 and assume tha t a description of the uncertainty, based on 
two sets Q and D*, has been selected (recall eqs. (5.11)-(5.15) and (5.24)). The design 
problem is tha t of determining a controller K{s) which guarantees the robust stability 
and the fulfillment, in nominal conditions, of preassigned performance requirements 
(of the type of those specified in eqs. (5.6)-(5.9)). 

For example, if one is interested in the sensitivity performance (eq. (5.6)), being 
the set G specified by eq. (5.13), the problem is stated by requiring the determination 
of K{s) such tha t (see fig. 5.11) \\Wi{s)Sn{s)\\oc < 1 and \\W4{s)Tn{s)W^{s)\\oo < 1. 
Recalling now what has been said about eq. (5.9), Lemma 2.21 and the fact tha t 
||^5('5)||oo = I5 it is apparent tha t the design specifications are met with if 

Wi{s)Sn{s) 
Wi{s)Tn{s) < 1 
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W,{s) 

K{s) 

Zl 

A*(.) 

Wi{s) 

]Gn{s) 
w 

-o 

Figure 5.12: The control system with additive perturbations 

i.e. if \\T{z, w; s)\\oo < 1 in the block-scheme of fig. 5.3, with 

, P(s):--z :-
Zl 

Z2 

Wiis) W,{s)Gn{s) 
0 Wi{s)G„{s) 
1 Gnis) 

On the contrary, if the set Q is the one defined in eq. (5.11), the sensitivity performance 
requirement is met with if (see fig. 5.12) 

Wi{s)Sn{s) 
Wi{s)Vn{s) <1 

i.e. if ||r(2:, w; s)||oo < 1 in the block-scheme of fig. 5.3, with 

, P{s):= z :-
z\ 
Z2 

Wi{s) W^{s)Gn{s) 
0 Wi{s) 
1 Gn{s) 

The statement of the design problems aimed at contemporarily achieving robust 
stability and robust sensitivity performances requires the result presented in the fol-
lowing lemma. 

Lemma 5.1 Let X{s) and Y{s) he assigned elements of RL^o and ^(s) a generic 
element of RL^o such that ||^(s)||oo < 1- If 

then 

sup{| |X(ja;) | | + | | y ( j a ; ) | | } < l 

sup \\X{ju)\\ < 1 

sup | |F( ja;)[ / -*( jc . )X(ju;)]- i | | < 1 

(5.25) 

(5.26) 

(5.27) 

Proof Eq. (5.26) derives directly from eq. (5.25). If X{s) = 0, eq. (5.27) follows 
trivially from eq. (5.25). Hence, let X{s) ^ 0. Remark 2.13 and Lemmas 2.21 and 
2.18 (point 3), entail that, for each w, 

| |y(ja;)[/ - *(ja;)X(ja;)]-i| | < ||y(ja;)|| -W- ^{JLo)X{j^)]-^\\ 

\\y{j^)\\ (5.28) 
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But, for each cc;, 

a[I - ^{joj)X{jw)] > a{I) - a[-^{ju;)X{ju:)] 

>l-a[*(ia;)MXO-w)] 
> 1 - a[X{ju:)\ 

>l-\\X{ju^)\\ (5.29) 

The above relations have been written by exploiting Lemma 2.22 (first inequality), 
Lemma 2.21 (second inequality) and the assumption on the norm of *(ja;) (last 
inequality). Prom eqs. (5.28) and (5.29) it follows that, for each w. 

\\Y{ju)[I-^{juj)X{juj)]-'\\< i|y(j^)ii 
l-\\X{3^)\\ 

Thanks to eq. (5.25), the right hand side of this inequahty is less than one, so that 
eq. (5.27) is proven. D 

Uncertain design: robust sensitivity performances First consider the case where 
the uncertainty is described by means of the sets Q and X>* defined in eqs. (5.13) and 
(5.24), respectively (notice also fig. 5.11). Then, 

S{s) = [I-G{s)K{s)]-' 

= [ / - ( / + Wr,{s)^*{s)Wi{s))Gn{s)K{s)]-' 

= [I- Gn{s)K{s) - W^{s)/\*{s)Wi(s)Gn{s)K{s)]-^ 

= {[/ - W^{s)A*{s)Wi{s)Gn[s)K{s){I - Gn[s)K{s))-^\ • 

•[I-Gr.{s)K{s)]}-' 

= Sn{s)[I - Ty5(s)A*(s)W^4(s)T„(s)]-i 

Thus the robust sensitivity performance can be expressed as 

||W^i(s)5„(s)[7-W^5(s)A*(s)W^4(s)T„(s)]-i||oo < 1 

VA*(s) e RH^ , ||A*(s)||oo < 1 

whereas the robust stability requirement is stated as 

\\Wi{s)Tn{s)Wr,{s)\\oo < 1 

It is easy to verify that eqs. (5.30) and (5.31) are satisfied if 

Wi{s)Sn{s) 
Wi{s)Tn{s) < 

V2 

(5.30) 

(5.31) 

(5.32) 

Actually, letting X{s) := Wi{s)Tn{s)Wr,{s) and Y{s) := Wi(s)5„(s), eq. (5.32) 
implies that (recall that ||W5(s)||oo = 1) 

Y{s) 
X{s) 

1 
< 2 
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11̂11 +mi = 1 

Xr + \\Yf = 1/2 

Figure 5.13: Sensitivity and complementary sensitivity constraints 

and this is equivalent to 

sup{\\X{JLo)f + \\Y{JLo)f}<l 

This last relation implies (see fig. 5.13) 

sup{| |X(iu;) | | + r ( j u ; ) | | } < l 

so that, thanks to Lemma 5.1, one can conclude about the correctness of what is 
claimed above. Notice that the simultaneous request of both robust stability and 
robust performance has lowered, not really surprisingly, the bound on the value of 
the norm. 

Let now consider the case where the uncertainty is described by means of the sets 
Q and P* defined in eqs. (5.11) and (5.24), respectively (consider also fig. 5.12). 
Then, in strict analogy to what has been done in the previous case, 

S{s) = 5„(s)[/ - W^{sW{s)W^{s)V^{s)\-^ 

Thus, the robust sensitivity performance can be expressed in the following way 

||W^l(s)S„(s)[7-W^5(s)A*(s)T^4(s)K^(s)]-ioo < 1, 

VA*(s) e iJ^oo , ||A*(s)||oo < 1 

whereas the robust stability requirement is formulated as 

The previously presented arguments can be exploited again to conclude that the goal 
of the design problem is achieved if the controller K{s) is such that 

Wi{s)Snis) 
W4is)Vnis) < 

V2 

The foregoing discussion has shown that a number of meaningful control problems 
can be treated in a unified fashion. As a matter of fact, it has been shown that they 
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are all amenable to the problem of synthesizing a controller K{s) which stabilizes the 
control system in fig. 5.3 and is such that the RH^Q norm of the transfer function 
T(z, w] s) from the input w to the output z is less than one. However, if such objective 
is not achievable, it makes sense to look for a controller that, besides stabilizing the 
control system, is such that ||T(2:,i/;; 5)||oo is minimized. 

The so resulting design problem is apparently well posed only if the augmented 
plant P{s) is stabilizable: given this, its precise statement is presented in the re-
maining part of this section, whose development closely follows the one presented in 
Section 4.1 within the RH2 framework. 

First of all, it is convenient to introduce the following time domain description of 
the process under control (augmented plant), which will be frequently quoted in the 
development of the present chapter. 

X — Ax + Biw + B2U 

z — Cix + Diiw + D12U 

y = C2X + D21W + D22U 

(5.33) 

(5.34) 

(5.35) 

The controller is constrained to be a finite dimensional, time invariant, linear system, 
described by: 

Hence, 

P{s) 

i = F^ + Gy 
u = H^ + Ey 

• A 

C2 

Bi B2 

D21 D22 

, K{s) = 
Z? 1 '^ 
r 
H 

i jr 

E 

(5.36) 
(5.37) 

Of course, the feedback connection of system (5.33)-(5.35) with system (5.36),(5.37) 
must be well defined. For such a condition to be verified it is necessary that 

det[I-ED22]^^ (5.38) 

so that the algebraic loop which is created by the insertion of the controller is au-
tomatically solvable. With reference to the block structure of fig. 5.3, the primary 
scope is that of determining K{s) in such a way that the RHoo norm of the transfer 
function T{z^ w; s) is less than a specified positive value 7. 

Notice that T(z, w; s) G RH^o entails that such a function is stable: this objective 
is obviously satisfied if the internal stability of the closed loop system is ensured, i.e. 
if K{s) in (5.36),(5.37) internally stabilizes system (5.33)-(5.35). This is equivalent 
to requiring the stability of the dynamic matrix of the closed-loop system, i.e. 

ReiXiiAp)) < 0 , Vi 

A + B2{I - ED22)-^EC2 B2{I - ED22)-^H 
G[I + D22{I - ED22)-^E]C2 F + GD22{I - ED22)-^H 

(5.39) 

(5.40) 

In view of the above considerations, it is useful to precisely formalize the concept of 
admissible controller. 

Definition 5.1 (Admissible controller in RHoo) A controller K(s) is said to be ad-
missible in RHoo for P{s) if conditions (5.38)-(5.40,) are verified. • 
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KFI{S) 

Z 

y = 
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w 

Figure 5.14: The full information problem 

In Sections 5.3, 5.5 the attention will be focused on three main problems, each 
of them associated with a particular structure of the system P{s): they are referred 
to as the full information problem, the output estimation problem and the partial 
information problem. More in detail, the last problem will be tackled by exploiting 
the solutions of the former ones, which, in turn, are strictly related each to the other 
by structural relations: the complete picture put into sharp relief important duality 
and separation properties. 

The main result relevant to these problems will concern the solution of two precise 
points, following the scheme formally presented in Problem 5.1 below: the existence of 
a controller such that ||T(^, w; s)\\oo < 7 and the parametrization of such controllers. 
Problem 5.1 refers to the feedback configuration of fig. 5.3 and to the set ^007 
which represents the family of all admissible controllers in RH00 for P{s) such that 
\\T{z,w;s)\\^<^. 

Problem 5.1 (Standard problem in RHoo) Let a positive scalar 7 be fixed. 

a) Find a necessary and sufficient condition for the existence of a controller K{s) 
which is admissible in RHoo for P{s) and such that \\T{z^w; s)\\oo < 7. 

b) Find a family of controllers J^oo^r ^ -̂ 007 whose elements generate the whole 
set of functions T{z^w;s) which are generated by the elements of Too-y-

Remark 5.6 An obvious necessary condition for the existence of a stabilizing controller 
(and therefore for the existence of an admissible controller in RHoo for P{s)) is the sta-
bilizability of the pair (A, B2) and the detectability of the pair (A, C2). The statement of 
Problem 5.1 makes sense only if both properties actually hold true. • 

In the forthcoming sections the parametrization of the controllers in the family ^007 
for all the considered cases will be presented. Such parametrization will be the sub-
ject of specified remarks which follow the main theorems concerning the solution of 
Problem 5.1. In other words, the issues relative to the family ^007 and those relative 
to Problem 5.1 are treated separately. Actually, a unified treatment would further 
weight down the solution of Problem 5.1. 

5.3 The full information problem 

As in Section 4.2, the output signal y is constituted by the state variable x and the 
disturbance vector w relevant to the controlled plant. Therefore the plant is described 
by the equations 
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Figure 5.15: The set Too^r of the controllers KFir{s) 

X = Ax + Biw + B2U 

z = Cix + D12U 

y = [y[y2r 
yi=x 

y2=w 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

while the transfer function from [w^ u'Y to [z^ y']' will be denoted with Ppi{s). A 
complete answer to Problem 5.1 can be given under the following assumptions. 

Assumption 5.1 The pair [{A — B2D[2Ci), {I — I>i2^i2)C'i] is detectable and the 
pair (A, B2) is stabilizable. 

Assumption 5.2 D^2^i2 — I-

The main result of this section makes reference to the block-diagram of fig. 5.14, 
where KFI{S) is any controller RHQO admissible for PFI{S) (recall Definition 5.1). In 
this diagram the transfer function from w to z is, as usual, denoted by T{z,w; s). 

Theorem 5.2 (Full information) Consider Problem 5.1 relative to system (5.4-1)-
(5.45). Then, under Assumptions 5.1, 5.2, it has the solution 

a) The existence of a symmetric, positive semidefinite and stabilizing solution PQO 
of the Riccati equation (in the unknown P) 

0 = PAe + A'^P - P(52^2 - l~^BiB[)P + C[fiic (5.46) 

i.e., such that the matrix Ace given by 

Ace := Ae - B2B'2Poo + ^-^BiB[P^ (5.47) 

is stable. In eqs. (5.46),(5.47) 

A,:=A- B2D[^Ci , C,, := {I - D^2D[^)Ci (5.48) 

b) The set Too-ir of the controllers Kpiris) is defined by the diagram of fig. 5.15, 
where 

Foo := -B'2Poo - D[2Ci (5.49) 

and Q{s) := T^{Aq,Bq^Cq,Dq) with Aq stable and ||Q(<5)||oo < 7-
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PFI{S) 

DUCi 

PFIC{S) 

KFIC{S) 

KFI{S) 

Figure 5.16: The modified full information problem 

P r o o f First observe tha t the necessary condition for the problem at hand to make 
sense (recall Remark 5.6) is satisfied. Indeed, being measurable the state of the 
system, detectability of the pair (A,C2) trivially holds, while, on the other hand, 
stabilizability of the pair ( ^ , ^ 2 ) is guaranteed by Assumption 5.1. 

Let now 

Uc'.= u-\- D'loCix (5.50) 

which simply amounts to defining a control law as shown in fig. 5.16. The resulting 
system PFIC{S) is therefore described by 

X = AcX + Biw + B2UC 

Z = CicX + Di2Uc 

yi=x 

1/2 =w 

(5.51) 

(5.52) 

(5.53) 

(5.54) 

(5.55) 

Being measurable the state, solving Problem 5.1 relative to system PFIC{^) is equiv-
alent to solving the same problem relative to system P p / ( s ) . As for point (6) in 
particular, the solution relative to system PFI{S) follows from tha t relative to system 
PFIC{S) by recalling eq. (5.50). 

The proof is organized into three main parts . In part (i) it will be shown tha t 
the observability of the pair {A^ Cic) can be assumed without any loss of generality. 
Then, in part (ii), the necessity of point a) will be proved. Finally, part {in) is 
devoted to proving sufficiency of point a) and point b). 

Part (i) Wi th reference to fig. 5.16, denote by T{z^w;s) the transfer function 
from w to z and suppose tha t a controller KFIC{S) admissible in RH^ exists such 
tha t \\T{z,w-s)\\^ < 7 . 

Now it will be shown tha t there is no loss of generality in assuming the pair 
(Ac, Cic) observable rather than simply detectable. To this aim, let this pair already 
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PFICI{S) 

PFIC2{S) 

PFIC{S) 

KFI{S) 

KFICI{S) 

^1 

X2 
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Figure 5.17: The canonical decomposition of the modified problem 

be in Kalman's canonical observability form, namely 

Aci 0 

Ac2 Acs 
, Cic = [ Cici 0 j 

with the pair {Ad^Cid) observable, and, accordingly, decompose the matrices Bi 
and B2 as 

Bi 
Bu 
B12 

Bo 
B21 
B22 

Finally, consider the state equations for KFIC{S) 

i = Fi + Gixi + G2X2 + Gsw 

Uc = H^ + Eixi + E2X2 + Esw 

(5.56) 

(5.57) 

where xi and X2 are the components of the state vector X — 1*̂ 1 '^2 
y of system PFIC{S) 

in Kalman's canonical form. The overall system can then be viewed (see also fig. 5.17) 
as resulting from the feedback connection of the subsystem PFICI{S) 

xi = AciXi + Biiw + B21UC 

Z = CiclXi + Di2Uc 

(5.58) 

(5.59) 

with the controller KFICI{S) which, in turn, is constituted by KFIC{S) (see eqs. 
(5.56),(5.57)) and the subsystem PFIC2{S) 

X2 = Ac2Xi + Ac'iX2 + B12W + B22UC 

Indeed, by substituting eq. (5.57) for Uc, the controller KFICI{S) for the system 
PFICI{S) (which is defined by eqs. (5.58),(5.59)) turns out to be described by 

i = F^-{- G2X2 + Gixi + G3W 

X2 = B22Hi + ( ^ 3 + B22E2)X2 + (^^2 + 5 2 2 ^ l ) x i 

+ (^12 + B22Es)w 

Uc = H^ + E2X2 + ^1X1 + Esw 
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Obviously, the controller KFICI{S) is admissible in RHoo for system PFICI{S) since 
KFIC{S) is such for PFIC{S). 

Finally, observe that (the simple check is left to the reader) if Pioo is the symmetric, 
positive semidefinite and stabilizing solution of the Riccati equation (in the unknown 

0 = PiA,i + A'^^Pr - Pi(B2iB2i - 7 " ' B i i B n ) A + CLiCici (5-60) 

i.e., such that Acci := A^ - (-621-821 -7~^-Bu-Bii)Pi 00 is stable, then 

-Ploo 0 
0 0 (5.61) 

is a symmetric and positive semidefinite solution of eq. (5.46). Moreover, such a solu-
tion is stabilizing since the eigenvalues of the matrix Acc^ defined by eqs. (5.47),(5.48), 
are those of the matrix Acs (which is stable by assumption, because the pair (Ac, Cic) 
is detectable) together with those of the matrix Acd • 

Having proved that the existence of a controller KFIC{S) admissible in RH^Q for 
system PFIC{S) and such that \\T{z,w; s)\\^ < 7 implies the existence of a controller 
KFICI{S) admissible in RHoo for system PFICI{S) and such that ||T(z,i(;; s)||oo < 7, 
the necessity of the existence of the solution of the Riccati equation (5.46) is proved, 
thanks to eq. (5.61), once the necessity of the existence of the solution of eq. (5.60) 
has been ascertained. It is therefore possible to assume the pair (Ac, Cic) to be 
observable from the very beginning. 

Part (a) With reference to system PFIC{S) (recall eqs. (5.51),(5.55)), consider the 
control law 

Uc:=v- B2P2X (5.62) 

where P2 is the symmetric, positive semidefinite and stabilizing solution of the Riccati 
equation (in the unknown P) 

0 = PAc + A'^P - PB2B'^P + C[^Cic (5.63) 

Indeed, such a solution exists (recall Lemma C.4) because the pair (Ac, Cic) is ob-
servable and the pair (Ac,P2) is stabilizable. This latter claim derives from the 
stabilizability assumption on the pair (A, P2) which is equivalent to that of the pair 
(Ac,-62)5 in view of the form of Ac. Moreover, P2 > 0 due to the observability 
property. 

From eqs. (5.51),(5.52) and (5.62) it follows 

L̂O = Pc{s)BiWL + U{S)VL (5.64) 

where 

Pc{s) := S(Ac - 52^2^2, / ,Cic - Di2B'^P2,0) 

U{s) := S(Ac - 52^2^2, P2, Cic - Di2B'^P2, D12) 

It is now shown that the quadruple {Ac^ P2, Cic, ^12) verifies the assumptions which 
are required by Lemma C.5. 

Indeed, from one side it is D^2^i2 = ^ because of Assumption 5.2, while, on the 
other side, from the same assumption and eq. (5.48) it is C[^Di2 = 0. Moreover, P2 
is the symmetric, positive definite and stabilizing solution of eq. (5.63). Thus, from 
Lemma C.5 it follows that system 

F{s) := [ U{s) U^{s) ] (5.65) 
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is square and inner and it results 

B[P-{s)Fis) 
Ac-B2B^P2 

B[P2 

B2 ~PrC[,Di2 
(5.66) 

where 
U^{S) := S(Ae - BsB^Pa, -P2^C[,Di2, C^ - £>12S2^2, Di2) 

and Dy2 is such that the matrix [D12 D12] î  orthogonal, i.e., such that Dy^Dy^ — I 
and D12D12 = 0. Consider now the vector space 

Q -{^ (12 
,qi eRH^,q2 eRL2 

(which is a subspace of RL2) and the operator E : Q ^ RH2 defined by (recall 
Definition 2.33) 

qi 

Q2 
UsB[P-{s)F{s) Qi 

Q2 := w (5.67) 

Now it will be shown that the operator S* : RH2 -^ Q defined by (again recall 
Definition 2.33) 

Pc{s)BiW := q (5.68) 

is, consistently with the adopted symbol, the adjoint of the operator S. 
In fact, from < w^Eq >—< E*w^Q >^'^q ^ Q^w G RH2^ it follows that 

<w,Eq> = < w,UsB[P;'{s)U{s)qi > + < w,UsB[P^{s)U^{s)q2 > 

= < w,B[P;'{s)U{s)qi > + < w,B[P^{s)U^{s)q2 > 

= < U^{s)Pc{s)Biw,qi > + < U^-{s)Pc{s)Biw,q2 > 

= < UaU'^{s)Pc{s)Biw,qi > + < U^^{s)Pc{s)Biw,q2 > 

< Pc{s)Biw, 
Q2 

> 

In the above equations the two identities < Uaa.qi > = < a,qi > and < w,P > = < 
w^Ilsl3 >, which hold whenever qi G RH2^ and w G i?i^2, have been exploited now 
and then. Since F{s) is square and inner, then F^{s)F{s) = F{s)F'"{s) — I and 
therefore, recalling Definition 2.30, 

\z\\2 = \\F^{S)ZL\\2 (5.69) 

Now suppose that a controller exists which is admissible in RH^ for PFIC{S) and 
such that ||r(2:, i(;;s)||oo < 7- Therefore, with reference to the block-scheme of fig. 
5.16, it is 

sup 
weRH2 
I l^" l l2 = l 

<Y 

from which it follows 
sup inf IÎ 112 < 7^ 

w 
\w\\2 = l 
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As a matter of fact, this inequality is fulfilled when Uc^ rather than being suitably 
chosen in RH2^ is the output of the controller KFIC{S) (observe that such an output 
belongs to RH2j because the controller is admissible and w G RH2)' 

By recalling eq. (5.62) and x E RH2^ it then follows 

sup inf ||2;||^ < 7^ 
veRH2 v£RH2 

I l ^ l l 2 = l 

Eqs. (5.70),(5.69),(5.65) and (5.64) imply 

7^ > sup inf ||2;||2 
weRH2 VERH2 

(5.70) 

> sup inf 
w^RHo VERH2 

U-'{s)Pc{s)Biw + U-'{s)U{s)v 

> sup inf 
weRH2 VERH2 
11̂ 1̂12 = 1 

U^{s)Pc{s)Biw^v 
U^-{s)Pc{s)Biw 

(5.71) 

The identities U^{s)U{s) = I and U^^{s)U{s) = 0 which are consequences of F[s) 
being inner, have been taken into account in writing down eq. (5.71). Moreover, by 
defining 

^'.= v + UsU^{s)P^{s)Biw 

and noticing that ^ G RH2 and 

UsU'^{s)Pc{s)Biw + UaU-{s)Pc{s)Biw = U-{s)Pc{s)Biw 

from eqs. (5.71) and (5.68) it results 

7 > sup inf ||z||2 
weRH2 ?GK/i2 
\\w\\2=^l 

> sup inf 
weRH2 ^^RH2 

UaU-{s)Pc{s)BiW^^ 

U^-{s)Pc{s)Biw 

> sup inf 
weRH2 ^^RH2 
I l«^ll2 = l 

E*w-\- (5.72) 

But 

^ w -\- ^*w\r2 + \m + 2 < e, naU-(s)Pc{s)Biw > 

+ m (5.73) 

since $, € RH2, while UaU'"{s)Pc{s)Biw e i ? F ^ . Therefore, from eqs. (5.72) and 
(5.73) it follows 

7^ > sup inf \\z\\l 
weRH2 t,^RH2 
I l ^ ^ l l 2 = l 

> sup inf {\\E*w\\l + m\l] 
weRH2 K^RH2 
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> sup ||S*ii;||i 
weRH2 
IKI l2 = l 

| ' - '*| |2 

l ^ l |2 

The last equality sign follows from Theorem 2.9. Then, by recalling Remark 2.13, it 
is 

sup 
qeQ 

I |g | l2=i 

l^Qh < 7 (5.74) 

By exploiting Lemma G.2, applied to the operator S defined in eq. (5.67) and to 
the system specified in eq. (5.66), from eq. (5.74) the conclusion can be drawn that 
a symmetric, positive semidefinite and stabilizing solution W exists for the Riccati 
equation in the unknown P (recall that -C^^^Dĵ ' = I — Di2D[2) 

0 = P{A, - 525^P2) + {Ac - B2B'2P2)'P + 

^-^-^PP^^C[,CicP2^P + P2BiB[P2 (5.75) 

Lemma G.2 also implies that rs{WLc) < 7 •̂ , where Lc solves the Lyapunov equation 
(in the unknown L) 

0 = L{A^ - 52-62^2)' + {Ac - B2B'^P2)L + 

+P^^C[,CuP2^ + B2B2 (5.76) 

By recalling that P2 solves eq. (5.63), it is easy to verify that ^2"^ satisfies the 
Lyapunov equation (5.76) so that it actually coincides with Lc, as such an equation 
admits a unique solution, thanks to Lemma C.l (all the eigenvalues of the matrix 
Ac — B2B2P2 have negative real parts). Therefore, Lc = P^^ and rs{WP^^) < 7^, 
that is (recall Lemma B.ll) 

72P2 - W > 0 (5.77) 

The Hamiltonian matrix Zw associated with the Riccati equation (5.75) is 

Zw 
Ac - B2B'2P2 l-^P2^C[fiicP2^ 

[ -P2BiB[P2 -{Ac-B2B'2P2)' 

By letting 

T'= -I'l P2' 
- 7 ' P 2 0 

and recalling that P2 solves eq. (5.63), it is easy to verify that 

TZwT-'^ = 
Ac 

-C'lfilc 
^-^BiB[ - B2B'2 

-A: (5.78) 

The matrix Z^o is the Hamiltonian matrix associated with the Riccati equation (5.46). 
Now, remember that, being W a stabilizing solution of eq. (5.75), it is 

JW 
I 

W 
I 

W 
V 

where F is a stable matrix. By taking into account eq. (5.78) it then follows 

Zr^i 
I 

w 
— TZw 

I 
W 

= T 
I 

W V 
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Figure 5.18: The set J-oojcr of the controllers Kpicris) 

so tha t Im[T[/ W]'] is the Zoo-invariant subspace associated with the stable eigenval-
ues of such a matrix. Finally, being 

/ 
W 

-j^I + P^^W 

-1^P2 

from Lemma C.3 it can be concluded tha t 

7 2 P 2 ( 7 ' / - P2'Wr^ = 7 ' P 2 ( 7 ' P 2 - W)-^P2 

is the (unique) symmetric and stabilizing solution Poo of the Riccati equation (5.46). 
In view of eq. (5.77) such a solution is positive definite: hence Poo possesses all the 
properties listed in the statement of the theorem and the necessity of point a) is 
proved. 

Part (Hi) Here reference is made to fig. 5.16 and the symmetric, positive semidef-
inite and stabilizing solution Poo of eq. (5.46) is supposed to exist. Denote with 
^oo-icr the set (described in fig. 5.18) of controllers Kpicris) for the system PFIC{S). 
By comparing fig. 5.14, 5.15 with fig. 5.16, 5.18 and recalling eqs. (5.49),(5.50) it 
is apparent tha t proving tha t the controllers KFir{s) of the set J-oo-fr are admissi-
ble in RHoo for PFI{S) and | | r(z, i( ; ; 5)||oo < 7 is completely equivalent to proving 
tha t the controllers Kpicris) of the set Too-^cr are admissible in RHoo for PFIC{S) 
and | | r (z, i( ; ; 5)||oo < 7- Moreover, the set Too-icr solves point (6) of Problem 5.1 for 
system PFIC{S) if and only if the set J-'oo^r solves point b) of the same problem for 
system PFI{S)' A S far as the suflSciency of point (a) and point b) are concerned, it is 
therefore correct considering Problem 5.1 relative to the system PFIC{S) and the set 
Toojcr- Consequently, it will first be shown tha t if a controller KFicr{s) belongs to 
^oo-ycr, then it is admissible in PP'oo for PFIC{S) and \\T{z,w; s)\\oo < 7 (part (iii.l)). 
Second, it will be proved tha t if a controller admissible in RHoo for PFIC{S) exists and 
| |T(z, w; s)||oo < 7, then there exists in the set Too-fcr a controller which generates the 
same transfer function T{z^w]s) (part (iii.2)). 

Part (iii.l) Consider the block-scheme of fig. 5.18. If the system Q{s) with 
realization Q{s) \— Il{Aq^Bq^Cq^Dq) is stable and such tha t ||Q(s)||oo < 7, r := 
w — ^~'^B[PooX, q := Uc -{- B2P00X, then (recall eqs. (5.51)-(5.55)) the resulting 
system (that is the system of fig. 5.16 with KFIC{S) given by the block-scheme in fig. 
5.18) with transfer function T{z, w; s) is described by r ( z , w; s) = ^ (A^ , Bz^Cz^Dz), 



146 CHAPTER 5. RHc^ CONTROL 

where 

A. 

B . -

Ac - B2B0P00 
— 7 B2DqB[P^ B2Cq 

, - 2 U W r> j \ 
-j-^B,B[Po. 

Bi + B2Dg 
Ba 

D, = DuDg 

(5.79) 

(5.80) 

(5.81) 

(5.82) 

The system (5.79)-(5.82) coincides with the one referred to in Lemma E.3 and illus-
trated in fig. E.5. The conditions under which such a lemma can be applied are 
verified, so that it can be deduced that matrix A^ is stable and \\T{z, w; s)||oo < 7-

Part (in. 2) Suppose that there exists a controller KFIC{S) which is admissible in 
RH^ for Ppic{s) and such that ||T(2, u;;s)||oo < 7- Let this controller be described 
by the equations 

^ = i ^ + Miw + M2X 

Uc^ N^ + Oiw + 02a; 

(5.83) 

(5.84) 

Now define the variable q := ^£ + -^2^00^ and let w := r-\-'y~'^B[PooX. By putting 
together eqs. (5.83),(5.84) with eqs. (5.51)-(5.55) it is straightforward to verify that 
a possible realization of the transfer function Q{s) from r to g is given by 

^ - L^ + (M2 + j-^MiB[Poo)o- + Mir 

a = B2N1} + {Ac + B2O2 + -f~^BiB[P^ + 

^-f-^B20iB[P^)c7 + {Bi + B20i)r 

q = m^{02 + B'^P^ + ^-^OiB[P^)a + Oiv 

The controller Kpicris) described by these equations and by 

Uc := -B2P00X + q 

r := w -f-^B[P^x 

(5.85) 

(5.86) 

(5.87) 

(5.88) 

(5.89) 

is now shown to be an element of the set J-00jcr • The structure of such a controller 
apparently coincides with the one in fig. 5.18. Moreover, from eqs. (5.51)-(5.55), 
(5.85)-(5.89), it follows that, letting e := a — x^ the system resulting from the feedback 
connection of PFIC{S) with K^jcris) is described by the equations 

X — AcX + Biw -\- B2UC 

^ = LT? + (M2 + ^-'^MiB[Poo)e + M2X + Miw 

e^{Ac- ^2^2^00 + i-^BiB[P^)e 

u^ = N^^ O2X + Oiw + (O2 + B^Poo + 7~^0iB[Poo)s 

Z = CicX + Di2Uc 

so that a comparison of these last equations with those relevant to the feedback 
connection of PFIC{S) with KFIC{S) (eqs. (5.51)-(5.55) and (5.83),(5.84)) leads to 
the following conclusions: First, the transfer functions from w to z are the same 
in both cases; second, the stability of the system which adopts Kpicri^) is entailed 
by the stability of the system which utilizes KFIC{S)^ since matrix Ac — B2B2P00 + 
j-'^BiB[Poo is stable. 
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Figure 5.19: The RHoo performances of the controllers LQ and H 

It is only left to be proved tha t any controller possessing the structure shown in 
fig. 5.18, admissible in RH^o for PFIC{S) and such tha t | |T(z, 

^5 '^)||oo ^ T belongs to 
or, in other words, tha t Q{s) := (^4^, 5 ^ , Cg, Dq) is stable {Aq is stable) and \\Q{s)\l 

E.3. 
< 7. These conclusions are immediately drawn by exploiting Lemma 

n 
E x a m p l e 5.1 Consider system (5.41)-(5.45) with 

Cx 

0 
- 1 

1 

- 1 J 
\ C i i 

C\2 

, ^ 1 = 
0 
1 

" 0 1 1 
0 D Di2 = 

A stabilizing controller is sought which makes small the effects of the disturbance w over the 
first component zi of the output z. This goal can be attained by looking for the controller 
which is admissible in RHoo for the given system and minimizes ||T(z, w\ 5)||oo. Notice that, 
in so doing, some kind of uncertainty in the knowledge of the system dynamics can be taken 
into account as well. It is in fact apparent (recall fig. 5.8), that perturbations of the matrix 
A amounting to A A = BiQ^Cn are effectively counteracted (under the stability point of 
view) by such a controller. 

Eq. (5.46) admits a symmetric, positive semidefinite and stabilizing solution for 7 > 
0.71 := 7 M , while this does not happen when 7 < 0.705 := 7m, so that the minimal value 
attainable by ||T(2;,it;; s)||oo belongs to the interval (7m,7M]. 

For 7 = 7 M it results Foo = — [0 0.89]. The performances of the resulting controller, 
labeled with iif, are compared with those, labeled with LQ, relative to a controller designed 
within the RH2 framework with Q = 0 (F2 = - [0 0.41]). The quantities \\T{zi and 
||T(2;i,i<;; 5)||2 are plotted against the damping factor ^ := (1 — Q)/2 in fig. 5.19 and 5.20 
respectively. It is fairly apparent the more satisfactory behavior of the H controller. • 

R e m a r k 5.7 The proof of Theorem 5.2 presents a result which deserves some interest per 
se. More precisely, the existence of a symmetric, positive semidefinite and stabilizing solution 
of eq. (5.46), that is such that the matrix 

Ac Ac - B2B2P00 + j~^BiB[Poc 
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Figure 5.20: The RH2 performances of the controhers LQ and H 

is stable, also entails the stability of the matrix 

Acoo := Ac - B2B2P00 =A + B2F0C 

which is the dynamic matrix of the control system resulting from the choice Q{s) = 0 in 
the controller scheme of fig. 5.15. The correctness of this result is implicitly guaranteed by 
the proof of Theorem 5.2 but can be verified with a different argument too. The matrix 
Poo = P^yo ^ O5 being the stabilizing solution of eq. (5.46), is also the solution of the 
Lyapunov equation (in the unknown P) 

O^PAcoo+A',^P + W 

where 
W := Poo{B2B'2+-i-^BiB[)Poo+C[cCic 

If the pair {Acoo^W) is detectable, then stability of matrix Acoo follows from point {ii) of 
Lemma C.l. Detectability is readily proved by contradiction. Indeed, if Acoo^ = Ax, Re(X) > 
0, Wx = 0, X ^ 0, then B[PooX — 0 and, consequently, A ccX — -^coo 

X = Ax, SO that A would 
be an eigenvalue, with nonnegative real part, of Ace-, which is stable by assumption. • 

The assumption tha t the pair [{A - B2D[2Ci), ( / - Di2D[2)Ci] is detectable is not 
exploited in the proof of part {h) and of suflSciency of part (a) of Theorem 5.2. More-
over, the existence of the stabilizing solution of eq. (5.46) implies, thanks to Remark 
5.7, the stabiUzability of the pair {A, B2). It is therefore possible to state the follow-
ing corollary which can be viewed as a useful side-product of the result presented in 
Theorem 5.2. 

Corol lary 5.1 Suppose that Assumption 5.2 holds. If, for a given positive scalar 7^ 
there exists the symmetric, positive semidefinite and stabilizing solution of the Riccati 
equation (5.46), then there exists a controller KFI{S) which is admissible in RH^o for 
PFI{S) and such that \\T{z.,w]s)\\oo < 7 . Moreover, the set of controllers defined by 
point {b) in the statement of Theorem 5.2 constitutes the set Too-^r-

R e m a r k 5.8 It is worth noticing that when 7 ^ oc the RH^o controller of fig. 5.15 (with 
Q(5) = 0) tends to the Rn2 controller of fig. 4.3 (with Q{s) = 0). • 
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R e m a r k 5.9 (Parametrization of the set ^007) A parametrization of the set ^007 
will be presented now. To this aim, consider the system PF{S) which results from system 
(5.41)-(5.45) after the control law 

u = FooX + V (5.90) 

has been implemented, where Foo is defined by eq. (5.49), namely the system 

PF{S) 
PFII{S) PFI2{S) 

PF2I{S) PF22{S) 

~ -^coo 

(-^loo 

I 
0 

Bi B2 ~ 

0 D12 

0 
/ 

0 
0 

where 
A + B2F0C Ci, Cic — Di2B2Poi 

having taken into account eq. (5.48). The set of controllers KF{S) which stabilize PF{S) 
obviously coincides with the set of controllers which stabilize PF22[S). By mimicking the 
discussion in Remark 4.3 (recall that, thanks to Remark 5.7, matrix Acoo is stable) and 
adopting the same kind of notation, it follows 

[I + -i-^Q{s)B[P^^{s)B2r^Q{s)[I--i-^B[P^^{s)B^] = -^{S)PF2I{S) 

where $(s) \= {si - Acoo)~\B(5) G RHoo,Q{s) G RHoo. Letting 

A{s) :=I + j-^Q{s)B[Poo^s)B2 

the last equation can be rewritten as 

A-\s)Q{s)[-^-^B[Poo I]PF2I{S) = -e{s)PF2i{s) 

PF2I{S) 
^{s)Bi 

I 

Assuming, for the moment being, that A ^(s) G RHoo, it is easy to verify that a particular 
solution in RHoo of such an equation is 

e{s) = A~\s)Q{s)[j-^B[Poo - I] 

The general solution in RHoo is therefore 

eQ{s) = e{s) + e{s) 

where B(s) is any solution in RHoo of the homogeneous equation 

e{s)PF2l{s)=0 

Letting B(s) := [A^"*^(5)61(5) 82(5)], this last equation implies that 82(5) is given by 
82(5) = -A'\s)ei{s)^s)Bi and thus 

8(5) = A-^(5)8i(5)[ / -^s)Bi] 

Notice that 8(s) is an element of RHoo if and only if 81(5) is such, since A~^(s) has been 
assumed to belong to RHoo and $(s) G RHoo being Acoo stable. Therefore, the set of 
functions 8 Q ( S ) giving rise to controllers KF{S) which are admissible in RHoo for PF{S) and 
such that \\T{z^w; s)||oo < 7 is defined by 
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h-'B[p^ 

Q{s) 

-Oris] 

H e i ( s ) $ ( s ) B i ei(s)$(s)B2H 

<> 

Figure 5.21: The generic admissible controller for PFI{S) 

where 
A(s) := [ 61(5) + j-^Q{s)B[Poo -[Q{s) + ei{s)^{s)Bi] ] 

ei(s) e RHoc, Q{s) e RH^, \\Q{s)\\oo < 7 

Thus, the transfer function (from [x' w']' to v) of a generic controller which is admissible in 
RHoo for PF{S) is (again, recall what has been presented in Remark 4.3) 

KF{S) = -[i-eQ{s)PF22{s)]-'eQ{s) 
= -[I - A-'is)A{s)PF22is)]-'A-\s)A{s) 

= - [ A ( S ) - A ( S ) P F 2 2 ( S ) ] ~ ' A ( S ) 

= [ / - e i ( s ) $ ( s ) B 2 ] - ' -

• [ - 7 " 'Q( s )S lPoc - e i ( s ) Q{s) + e i ( s )$ ( s )B i ] 

By exploiting this equation, the generic controller which is admissible in RHoo for PFI{S) 
can be represented by the block-scheme depicted in fig. 5.21. Such a scheme shows that 

VLO = ei{s)^{s)[-^-^{s)xL + B2VLO + BIWL] + 

+Q{S){WL-7~''B[POOXL) 

= -e i ( s )$ (5 )x (0 ) + Q{s){wL - 7~^B[POOXL) 

having taken into consideration eqs. (5.41) and (5.90). Therefore, the effect of the parameter 
Bi(s) (which is responsible for the difference between the elements of the set ^007 and those 
of the set J^ooyr) on the control variable UL amounts to a term which depends on the initial 
conditions of system (5.41)-(5.45), only. 

It remains to verify that A~^(5) G RHoo- First, recall that Poo, being the stabilizing 
solution of eq. (5.46), is the stabilizing solution of the Riccati equation (in the unknown P) 

0 = PAcoo + A'^ooP + PB2B'2P + CLCie + ^-^PBIB[P 

as well. In writing down this equation reference has been made to eqs. (5.48) and (5.49). 
This implies, thanks to Theorem 2.13, that system 

T{s) :--
Ac 

C\c 

-'B'Po. 

B2 

is such that ||T(s)|| 
Remark 2.16) that 

< 1, which, in turn, entails (recall Lemma 2.23, Definition 2.23 and 

||7-iBiPoo$(s)B2||oo < 1 
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j-'B[Poo^{s)B2 

-7-'Q{s) 

Figure 5.22: Proving stability of A ^{s) 

Being ||(5(s)||oo < 7, the system shown in fig. 5.22 is internally stable thanks to Theorem 
5.1. The transfer function from u to e of such a system is precisely A~^(s). • 

R e m a r k 5.10 (Linear quadratic!differential game) The control problem whose so-
lution has been presented in the preceding theorem may be viewed as a linear quadratic 
deterministic differential game (LQDG) with measurable state. 

LQDG Problem Consider the n-th order system with initial state x(0) = XQ 

X = Ax -f Biw + B2U 

together with the cost functional 

Ji -r{[^' (t) u'{t) 1 L 
x{t) 
u{t) 

•-f'^w{t)Riw{t) }dt 

(5.91) 

(5.92) 

where 
Q S 
S' R2 

> 0 , i?2 > 0 , Ri>0 

Notice that the sign assumptions on L and R2 imply that 

Q — Q-SR^^S' > 0 (5.93) 

since Q = Z'LZ with Z' ^\I - SR':^\ Let C n G R'''^'' be a factorization of Q, so that 

CiiCii = Q 

and define 

Ci:= 
C i i 

Di 

u := R2 u , z \— C\x + D\2U , w := R^ w 
_ i - _ i 

B2 := B2R2 1 Bi := B\R^ 

In view of eqs. (5.93), (5.97), eqs. (5.91)-(5.92) become 

X = Ax + Biw + B2U 

Ji 
Jo 

{t)z{t) -j^w'{t)w{t)]dt 

(5.94) 

(5.95) 

(5.96) 

(5.97) 

(5.98) 

(5.99) 

The solution of the differential game consists in finding the controller which stabilizes 
the resulting system and generates the control u G RH2 so as to minimize the functional Ji 
corresponding to the worst input (disturbance) w G RH2, that is corresponding to the input 
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w which maximizes the same functional. Thus, the differential game is defined by eq. (5.98) 
and 

inf sup J i (5.100) 
ueRH2weRH2 

Notice that limt^oo x{t) = 0 since the resulting system is stable and w G RH2. 
Assume that there exists the stabilizing solution Poo = P'oo > 0 of the Riccati equation 

(5.46). Then, in view of eqs. (5.46),(5.48) and (5.98), it follows 

^^[x'(t)P^x{t)] = -\\CMm' -l~'\\B[Poox(t)f + 

+ \\{D[2Ci + Bi,P^)x{t)f + 

-]-2<w{t),B[Pocx{t) > + 

+2 < u{t), B2Pocx(t) > (5.101) 

for generic inputs u and w. In view of the preceding definitions, eq. (5.101) may also be 
written as 

| [x '( t)Poox(t)] = - | | z ( t ) | | ^ + 7 ' l K t ) | r + 

-^^\\w{t)-^-'B[P^x{t)f + 

+ \Ht) - Foox{t)f 

By integrating both sides of this equation from 0 to 00 and recalling that a:(oo) = 0, it 
follows 

J l = - 7 ^ | k - l~''B[PocX\\l + 11^ - FooXWl + XQPOCXO 

so that, consistently with eq. (5.100), the optimal control is given by 

u — FooX 

while the worst disturbance is 
W = ^~ B'IPOOX 

R e m a r k 5.11 (Robust stabilizability) Consider a system characterized by a dynamic 
matrix which is not exactly known. More precisely, let 

x = {A + A A ) X + B2U 

where the uncertainty introduced with the matrix A A is defined by the equation 

A A := BinCi 

Matrices Bi and Ci are thought as known, while an upper bound of the value of the norm 
is the only information available for matrix H, that is 

l|S^II<7-' 

with 7 a given positive scalar. Matrices Bi,Ci,Q. are constant. An algebraic control law 
u = Kx is sought such that the resulting control system is stable for each f̂ , ||Q|| < 7"^. 
Apparently, the conditions under which this problem admits a solution constitute sufficient 
conditions for the robust stabilizability of the given system as well. 

Suppose that there exists the symmetric, positive semidefinite and stabilizing solution 
Poo of the Riccati equation (in the unknown P) 

0 = PA + A'P + P ( 7 - ^ P i P ; - B2B2)P + C[Ci 
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w 

u 

B i 

B2 

9. 

I/s 

A 

Ct 

P.{s) 

K 

Zl 

Z2 

X 

Figure 5.23: The block-scheme for robust stabihzabihty 

Then, K = —B2P00 solves the above stabilization problem. This claim is easily proved. 
First, consider the system Px{s) defined by 

Ax -\- Biw + B2U 

0 
Zl 

Z2 
X + 

and depicted in fig. 5.23. Apparently, system Px(s) is obtained from the original one, 
with Q = 0, by adding the performance output z and the disturbance input w. Therefore, 
Corollary 5.1 can be applied to this system when 17 = 0, leading to the conclusion that the 
control law u = —B2P00X, corresponding to the choice Q{s) = 0, is stabilizing and such that 
\\T{z^w; s)||oo < 7- From this last inequality it follows 

7 ' > \\T{z,w;s) Ml = sup 
weRH2 
I l ^ " l l 2 = l 

= sup {||2:i||̂  + ||z2||2} 
w£RH2 
11̂ 1̂12=1 

> s u p IIZ1II2 
'weRH2 
I l ^ l l 2 = l 

> | | T ( ^ i , ^ ; s ) | | ^ 

In view of Theorem 5.1, the system in fig. 5.23 is stable, V Q , 

E x a m p l e 5.2 Consider the system 

X = (A + AA)X + Biwi + B2U 

z\ — C\x + u 

m\<ry 

where 

Bi = 

f2[ 0 1 ] 

B2 

0 

1 ^ 
' 0 ' 

1 

Vt 

n 

5 Ci = [ 0 - 2 ] 
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Figure 5.24: The performances of the controllers R and H 

PDF{S) 

KDF{S) 

Figure 5.25: The disturbance feedforward problem 

For r̂  = 0 the Riccati equation (5.46) relevant to this system admits the positive semidefinite 
and stabilizing solution whenever 7 > 1.62, while such a solution does not exist if 7 < 1.61. 

Taken 7 = 1.62, it results Foe = -[367.68 227.58]. The corresponding controller will be 
denoted with the label H. 

By proceeding along the same lines as in Remark 5.11, an output Z2 is defined as 

Z2 [0 1] 
and an input W2 is introduced, acting on the system through the matrix [1 1]' . 

Corresponding to f̂  = 0, the eq. (5.46) relevant to the new system characterized by 
the disturbance w := [wi 102]' and the performance output z :— [zi 2:2]', admits a positive 
semidefinite and stabilizing solution for 7 > 2.46, while such a solution does not exist if 
7 < 2.45. Taken 7 := 2.46 it results Foor = -[333.04 286.98]. The controller adopting such 
a Foor will be denoted with the label R. The graphs of ||T(2;i,t(;i; s)||oo corresponding to 
the adoption of the two controllers R and H are shown, as functions of Q, in fig. 5.24. The 
controller R apparently behaves better for high values of Q. • 

R e m a r k 5.12 (Disturbance feedforward) A problem similar to the one discussed in 
Remark 4.4 can be dealt with in the RH00 context as well. Consider the system depicted in 
fig. 5.25 where PDF{S) is described by 

X = Ax + Biw -\- B2U 

z = Cix + D12U 

y = C2X + w 
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Figure 5.26: The set J^oojr of the controllers K]jFr{s) 

while KDF{S) is any controller which is admissible in RHoo for PDF{S). 
Assume that the pair (A, B2) is stabilizable, the pair [{A — B2D[2Ci), (/ — Di2D[2)Ci] 

is detectable, the matrix A — B1C2 is stable and D12D12 = I-
By proceeding as done in the RH2 setting (in particular, observe that Lemma E.2 can 

be applied in the present RHoo context as well) it is possible to directly give the solution of 
Problem 5.1 relative to system PDF{S) 

a) Existence of the symmetric, positive semidefinite and stabilizing solution Poo of the 
Riccati equation (5.46); 

b) The set J^oo-yr of the controllers KoFris) is defined by the block-scheme of fig. 5.26 
where 

Q{s) 

Noo{s) := 

C2-j-^B[Po. 

E(Aq,Bq,Cq,Dq), with Aq stablc, IIQ(s) 

A ~ B1C2 + B2F0, Bi B2 

0 / 

/ 0 

< 7 and Foo given by eq. (5.49). 

Finally, notice that Toe ^007. In fact, what has been said concerning the problem 
in the RH2 setting can be applied with no modifications in the present framework, coming 
up to the same conclusions. • 

E x a m p l e 5.3 Consider the system 

where 

A: 
0 
1 

X = = {A + A A ) X + Biw + B2U 

z = Cix + D12U 

y = C2X + w 

1 ' 
-1 , A A = LQM, Bi = B2 = L = 

" 0 " 
1 

Ci = C2 = [ 1 0 ] , M = [ 0 1 ] , D12 = 1 

The only uncertain system parameter is O: its nominal value is 0 and corresponds to a 
damping factor ^ : = ( 1 — Q)/2 = 0.5. A stabilizing controller is sought which makes the 
RHoQ norm of the transfer function from w to z small. If the perturbation Q is ignored 
(Q = 0), it is possible to design a controller, denoted by the label IC and with input y 
and output ix, which achieves a perfect indirect compensation of the disturbance, that is a 
controller such that T{z^ w; s) = 0. More in detail, the transfer function of this controller is 

KIC{S) : 
1 

' s2 + s + 3 
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Figure 5.27: The performances of the controllers IC and R 

On the contrary, by exploiting what has been presented in Remark 5.11, a controller (denoted 
with the label R) can be designed which can account for Q not being 0 in a more effective 
way. Notice that being L = Bi it is useless introducing a further disturbance input, while 
being M ^ Ci it is mandatory adding a new performance variable Za = Mx to the formerly 
existing one z. Thus, the resulting problem has the same structure as those considered in 
Remark 5.12. 

The Riccati equation relevant to the so restated problem does not admit the positive 
semidefinite and stabilizing solution when 7 < 0.7, while such a solution exists if 7 > 0.71. 
Associated with this last value of 7 it results Foo = — [1 0.89]. 

In fig. 5.27 the plots of \\T{z , W. S) 00 corresponding to the above controllers are shown. 
The controller R apparently behaves better for small values of the actual damping factor; 
moreover, its performance is somehow less sensitive (in terms of the RHoo norm) to the 
variations of such a parameter. On the contrary, the controller IC is to be preferred, as it 
should be expected, whenever the parameter Q is rather precisely known. • 

R e m a r k 5 .13 The content of Remark 4.6 concerning the rank of D12 and the condition 
D12D12 — I applies to the RHoo setting with no changes. It is also apparent that the above 
given expressions get much simpler under the orthogonality assumption D[2Ci = 0 • 

R e m a r k 5.14 Under Assumption 5.2, the detectability of the pair [{A — B2D'i2Ci), (/ — 
D\2D'i2)Ci] (Assumption 5.1) is equivalent to asking the subsystem of PFI{S) corresponding 
to the transfer function PFII2{S) between the input u and the output z (that is, system 
E(v4, B2, Ci, D12) not to have zeros in Re{s) > 0. This claim can easily be checked by means 
of the same arguments exploited in Remark 4.8. • 

5.4 The output estimation problem 

In this section the problem of observing linear combinations of the state variables is 
dealt with in the RH^Q context. The system considered here is described by the s tate 
equations 

Ax + Biw + B2U (5.102) 
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w 

u 
POE{S) 

KOE{S) 

Z 

y 

Figure 5.28: The output estimation problem 

z = Cix + u 

y = C2X + D21W 

(5.103) 

(5.104) 

As it has been done in Section 4.3, POE{S) denotes the transfer function of this system, 
while T{z^ w; s) is the transfer function from it; to 2; in the block-scheme of fig. 5.28. 
The structure of system POE{^) clearly indicates that solving Problem 5.1 for such a 
system can be really viewed as finding a " good" estimate (in the RHoo sense) of the 
linear combination —Cix of the state variables. Indeed, should the controller KOE{S) 

be capable of zeroing T{z^ w; s) so that ZLQ = 0, then, apparently, ULQ = —CIXLQ 

would represent the best possible estimate of that linear combination. 
The statement of the result below requires the following assumptions. 

Assumption 5.3 The pair [{A — BiD2iC2)-> Bi{I — D21D21)] is stabilizable and the 
pair (A, C2) is detectable. 

Assumpt ion 5.4 D21D21 — L 

Assumption 5.5 A — B2C1 is stable. 

It is now possible to prove the next theorem which makes reference to fig. 5.28. 

Theorem 5.3 (Output estimation) Consider Problem 5.1 relative to system (5.102)-
(5.104)- Then, under Assumptions 5.3 - 5.5, it has the solution 

a) The existence of the symmetric, positive semidefinite and stabilizing solution 
noo of the Riccati equation (in the unknown U) 

0 = uA'f + AfU - n(c^C2 - 7-^c;ci)n + BifB[f (5.105) 

i.e., such that the matrix Afc given by 

Afc := Af - noo(C^C2 - 7~^C[C,) (5.106) 

is stable. In eqs. (5.105), (5.106) 

Af:=A- BiD'.,^C2, B,f := Bi(7 - D^i£>2i) (5.107) 

b) The set J-oo-yr of the controllers KoEr{s) is defined by the diagram of fig. 5.29, 
where 

Moo(s) := 

Af - nooC2C2 — B2C1 

Ci 

C2 

ioo -B2 - I-^HQQCJ 
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Figure 5.29: The set J-'oo^r of the controllers KoEr{s) 

Q{s) := Ti{Aq^Bq^Cq^Dq) With Aq Stable and \\Q{s) 

-1100^2 B,D'^ 21 

< 7^ having defined 

(5.108) 

P r o o f First observe tha t Assumption 5.5 implies tha t the pair {A, B2) is stabilizable. 
This fact, together with the assumed detectability of the pair (A, C2), makes the 
necessary condition of Remark 5.6 satisfied. 

Now consider the system POE{S) := POE^^)- Then, from eqs. (5.102)-(5.104) it 
follows tha t such a system is given by 

with 

and, for i = 1,2, 

u = 

F: 

Gi 

--F^ + GiC + G2V 
-- Hi^ + En 

= A', E:= 

'•= G'i , Hi • 

--D'2, 

= B[ 

(5.109) 

(5.110) 

System POE{S) possesses the structure of system PDF{S) which has been introduced 
in Remark 5.12. Therefore, Problem 5.1 relative to system POE{S) is solved in the 
very same way, since the requirements there are satisfied by Assumptions 5.3 - 5.5. 
Thanks to Lemma E. l the results concerning system PQE follow by transposition of 
those concerning system POE{S)^ provided tha t eqs. (5.109) and (5.110) are taken 
into account. • 

E x a m p l e 5.4 This example is aimed at pointing out an important difference existing be-
tween the solution of the estimation problem carried out in the RH2 context and that 
obtained in the RHoo one. Thus, consider system (5.102)-(5.104) with 

A = 
0 1 
0 0 

Bi=I, B2 = C2=[l 0 ] 

D2i=[0 1 ] , Ci = [ 1 a ] , a > 0 

Assumptions 5.3 - 5.5 (and therefore also Assumptions 4.3 - 4.5) are satisfied for each value 
of a. The RH2 problem calls for the determination of the matrix 112 which is the stabihzing 
solution of the Riccati equation (4.64). Such a matrix is independent of Ci, so that also the 
matrix L2 is such (recall Theorem 4.2). As a consequence of this fact and the structure of 
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system M2(s), the transfer function from the input w to the state estimation error e := x-\-Xm 
does not depend on Ci (recall that Xm, the state of system M2(s), is the opposite of the 
estimate of the state of system POE{S), since the relevant linear combination of the state 
variables is —Cix). Indeed, for any Q(s), it results 

T((X + Xm),W; S) = [si -{A + L2C2)]"'(L2L>21 + Bi) 

This property in no more verified in the RHcx, context. In fact, matrix Hoo, which is the sta-
bilizing solution of the Riccati equation (5.105), and, consequently, matrix Loo too, depends 
on Ci (see Theorem 5.3). This fact, together with the structure of system Moo{s), implies 
that the transfer function from the input w to the state estimation error e := x-\-Xm, where 
Xm is the state variable of system Moo(s), is given by 

T ( ( X + Xm), W- S) = [si - ( A + L o o C 2 ) ] " ' ( L o o L > 2 1 + ^ l ) 

when Q{s) = 0. This function, though formally identical to that resulting in the RH2-
context, depends on Ci, that is from the actual linear combination of the state of POE{S) 
which one is willing to estimate. 

With reference to the considered system, for instance, if a is set equal to 10 or equal to 
100, one obtains, corresponding to 7 = 130, Loo = -[1.00 1.00]' and Loo = -[6.81 8.17]', 
respectively. • 

R e m a r k 5.15 (Parametrization of the set ^007) Observe that .F007 = J^oo-yr- In fact, 
as in the proof of Theorem 5.3, the RHoo admissible controllers for POE{S) can be obtained 
by transposition of those which are RHoo admissible for POE{S), this last system possessing 
the structure of system PDF{S) (see Remark 5.12). Therefore, being ^007 = ^oo7r for system 
PDF{S), the same conclusion must hold for system POE{S). • 

R e m a r k 5.16 (Optimal state filtering) The control problem associated with system 
POE{S) can be viewed as an (optimal) state filtering problem in RHoo for the stable system 
described by 

X = Ax + BiWi 

y = C2X + W2 

The signals wi and W2 belong to the set 

W := {woc I Woe e RL2[0,oo) , \\wc,\\2 < a} 

A filter is sought for a given linear combination Sx of the state variables such that, denoting 
with u the filter output, it results 

J = min sup \\u — Sx\\2 
uG-RI/2[0,oo) wiEW 

W2eyv 

Define w := [w[ W2y, Bi := [Bi 0], D21 := [0 / ] , Ci := -S, z := Cix + n. Then the problem 
can conveniently be stated by considering the system described by the equations 

X = Ax -\- Biw 

z — C\x + u 

y = C2X + D21W 

and seeking for the controller-filter such that the RHoo norm of the transfer function from 
It; to 2; is less than a given positive scalar 7. Indeed, observing that ||i^||2 < ay/2 := /?, it 
results 

s u p 11̂ 112 < s u p | | 2 | | 2 = / ? s u p M l 
wiGW weRH2 weRH2 \\W\\2 
W2eyV \\'w\\2<f3 Wy^O 
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Figure 5.30: The RH2 norm of the four filters 

so that J < /3\\T{z, W] s)||oo- Thus, the smaller the value of 7, the tighter would be the upper 
bound of the maximum attainable value of J . What has previously been shown in Theorem 
5.3 can now be applied to the so recast problem, since the underlying system possesses the 
very same structure of system POE{S) and Assumptions 5.3 - 5.5 are verified (recall the 
definition of D21, the stability of matrix A and notice that B1D21 — 0 and ^2 = 0). • 

E x a m p l e 5.5 Consider the system 

Ax + BiWi 

C2X + W2 

where wi and W2 are noises the features of which are to be specified later on, while 

0 1 
-1 - 1 + n Bi = C 2 = [ 1 0 

The parameter Q accounts for the uncertain knowledge of the system damping factor ^. 
Indeed, the characteristic polynomial oi A is ip{s) = s^ + s( l — Q) + 1 = s^ + 2$^uJnS + cj^, 
with damping factor ^ = (1 — Q)/2 and natural frequency cjn = 1-

The performances of four different filters for the whole state vector are now compared. 
Three of them, denoted with Ki , K2 and K3, respectively, are standard Kalman's filters 
which have been designed under the assumption that wi and W2 are uncorrelated, zero-
mean, Gaussian white noises. In the considered cases, their intensity are Wi = W2 = 1 for 
the Ki filter, Wi = 0.5, W2 = 1 for the K2 filter, Wi = 1, 1̂ 2 = 0.5 for the K3 filter. 

On the contrary, the fourth filter, denoted with the label H, is designed accordingly 
to what has been presented in Remark 5.16. The adopted value for the scalar 7 is 1.001 
(notice that for 7 < 1 the positive semidefinite and stabilizing solution of the relevant Riccati 
equation does not exist). 

The design of the four filters is carried out in nominal conditions (Q = 0 <^ ^ = .5), 
while their performances are evaluated by connecting them to the system perturbed in cor-
respondence with various values of ^. 

Two performance criteria have been adopted. Both of them make reference to the transfer 
function T{z, w] s), where w := [wi W2]' and z is the state estimation error. The criteria are 
the RH2 and RHoo norms of T{z,w] s), respectively: their plots against ^ are shown in fig. 
5.30 and 5.31. 
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Figure 5.31: The i^ifoo norm of the four filters 

The two graphs show that the fiher designed within the RHoo framework is somehow 
less sensitive with respect to ^ and entails lower values of the norm for small values of the 
damping factor, namely close to instability. • 

R e m a r k 5.17 Analogously to what has been done in Remark 5.7 with reference to the 
Riccati equation (5.46), the existence of the symmetric, positive semidefinite and stabilizing 
solution of eq. (5.105), i. e. , such that 

Afe := Af - U^{C^C2 - l-^C[Ci) 

is stable, also implies the stability of 

Af oo '•= Af — II00C2C2 = A-\- L00C2 

which is the dynamic matrix of the RHOG state observer discussed in Remark 5.16 when 
Q{s) = 0. The proof of this claim is identical to the one presented in Remark 5.7. • 

It is easy to verify tha t the proof of point (b) and of the sufficiency part of point (a) 
of Theorem 5.3 does not exploit the assumption tha t the pair [(A —51D21C2), Bi{I— 
^21^21)] is stabilizable. Moreover, the existence of the stabilizing solution of eq. 
(5.105) implies, thanks to Remark 5.17, the detectability of the pair (A, C2). There-
fore, it is possible to state the following corollary which has to be viewed as a useful 
side-product of Theorem 5.3. 

Corol lary 5.2 Suppose that Assumptions 5.4 and 5.5 hold. If, for a given positive 
scalar 7^ there exists the symmetric, positive semidefinite and stabilizing solution of 
the Riccati equation (5.105), then there exists a controller KOE{S) which is admissible 
in RH^ for POE{S) and such that \\T{z^w; s)\\oo < 7 . Moreover, the set of controllers 
defined by point (6) in the statement of Theorem 5.3 constitutes the set Too^r-

R e m a r k 5.18 It is worth noticing that, also in the output estimation case, when 7 —̂  CXD 
the RHoo controller of fig. 5.29 (with Q{s) — 0) tends to the RH2 controller of fig. 4.13 
(with (5(5) = 0 ) . D 
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R e m a r k 5 .19 (Robust parametric filtering) An interesting role is played by the Ric-
cati equation (5.105) also when the problem at hand is filtering the state of a system affected 
by parametric micertainty and contemporarily looking for a meaningful (namely, small) upper 
bound to the filtering error. More precisely, consider the n-th order stochastic system 

X = (A -h AA)X -h Biw 

y = Cx + V 

with the matrix A stable and the pair (A, Bi) reachable. Moreover, the inputs w and v are 
zero mean, uncorrelated white noises with identity intensity. The perturbation A A is defined 
by 

where the matrices B2, Ci and the positive scalar 7 are given. The problem of robust 
parametric filtering with cost Q consists in finding a stable state filter of the form 

^ = Af^ + Kfv 

and a positive semidefinite matrix Q which provides an upper bound for Xea{^)^ the asymp-
totic covariance matrix of the estimation error 

e \= i — X 

correspondingly to any perturbation A A of the above specified form. In other words, it is 
required that 

Xea{^) := lim E[s{t)e\t)] < Q , V ||^|| < 7 " ' 

Let €2(0) := PC, B{f3) := [/3~^Bi B2]. Then it will be proved that, for each f3 > 0 
belonging to the set of the ^'s for which the Riccati equation (in the unknown 11) 

0 = ^ n + n ^ ' + u{^-^c[Ci - C2(/?)C2(/?))n + B{I3)B'{P) 

admits the stabilizing solution Iioo{f^) = nj5o(/?) > 0, the matrices 

Afp :=A + Uoo{l3){^-^C[Ci - P^C'C) 

Kfp := /3^Uoo{f3)C' , Qp := f3^Uoo{P) 

(5.111) 

(5.112) 

(5.113) 

define a solution of the above stated problem. 
Remark 5.2 is exploited to prove this claim. In fact, let rf := [e' ̂ 'Y and (p := [w' v']', 

then the connection of the system with the filter is described by the equation 

77 = {F-\-AF)r] + Gif 

where 
A - KfC Af + KfC - A 

-KfC Af + KfC 
G:= 

-Bi 
0 

BnC := 
B2 
0 n [ Ci - C i 

Of course, matrix F is stable since matrices A and Af are both stable. Corresponding to 
the given matrices Kf and Af^ assume that there exists the stabilizing solution Goo(/?) = 
0 ^ (P) > 0 of the Riccati equation (in the unknown B) 

0 = O F ' + F B + 7~^BC'CB + BB' + p-'^GG' 

Then, in view of Remark 5.2 it follows 

Xr,a{n) := lim E[rj{tW{t)] < /3'BOO(/3) , V ||fi|| < 7 " ' 

(5.114) 
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so that, by partitioning matrix B consistently with the structure of F , that is letting 

B : = 
Bii Bi2 
B21 B22 

it results 
X e a ( ^ ) < / 3 ' B o o l l ( / 3 ) , V | | a | | < 7 " ' 

Further, if the matrices Af and Kf are given by eqs. (5.112) and (5.113), then it is straight-
forward to verify that 

B(/3) := noo(/3) 0 
0 Soo{P)-Uoo{0) 

satisfies eq. (5.114), provided that the stabilizing solution *S'oo(/3) = S'^dP) > 0 exists of the 
Riccati equation (in the unknown S) 

0 = AS + SA' + 'y-^SC'iCiS + B{p)B\P) 

Notice that B(/3) is a solution of the Lyapunov equation (in the unknown B) 

0 - B F ' + F B + 7"^B(^)C'C'B(/3) + BB' + p-'^GG' 

Hence, from Lemma C.l, the stability of matrix F entails that B(/3) > 0. Moreover, 

(5.115) 

F + 7"^B(/?)C'C: 
A 0 

A + 7-2^00 (/3)ClCi 

where the symbol "V denotes a matrix of no interest. Hence, B(/3) is also stabilizing, so 
that S{l3) = Boo(/3). Observe that, in view of Remark 5.2, it is 

X .a (^ ) := lim E[x{t)x\t)] < f3^SooW) , V ||Q|| < 7 " ' 

As for the existence of the solutions lloo{0) and Soo{0)^ first notice that the arguments 
exploited in Remark 5.2 can be applied here, thus allowing one to make reference to a 
nonempty set B of /3's corresponding to which a solution Soo{P) of eq. (5.115) exists. 

Second, observe that for /3 G B, SooiP) is nonsingular because the pair {A,Bi) is 
reachable. In fact, consider eq. (5.115) (which is solved by Soo{0)) and suppose that 
Soo{P)x = 0, X 7̂  0. If both sides of eq. (5.115) are premultiplied by x' and postmulti-
plied by x, then, in view of the definition of B{f3), one can conclude that B[x — 0 and 
Soo{P)A'x = 0. If both sides of eq. (5.115) are now premultiplied by x A and postmulti-
plied by A'x^ one can conclude that B'^A'x = 0 and Soo{P){A'Yx = 0. By iterating these 
operations it follows 

V [ Bi ABi A^Bi A'^-^Bi 0 

which contradicts the reachability of the pair {A, Bi). 
Since Soo{0) is nonsingular, its inverse satisfies the Riccati equation (in the unknown 

S~^) which results from premultiplying and postmultiplying by S~^ eq. (5.115), namely 

0 = S-^A + A'S-^ + j~^C[Ci + S-^B{f3)B'{(3)S-^ (5.116) 

Third, recall that for f3 e B, A-\--f-'^Soo{0)C[Ci is stable, so that if both sides of eq. (5.115) 
with S = Soo (/̂ ) are premultiplied by S^ (/?) one gets 

5-^(/3)[A + 7~'Soo(/3)CiCi]5^(/3) = -[A +B{P)B'{l3)S;,\p)]' 

from which it follows that matrix 

As:=-[A + B{p)B'{f3)S;,\l3)] 
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is stable. Then the Riccati equation (in the unknown V) 

0 = V[A + B(/?)B'(/3)5-H/?)] + [A + S(/?)B'(/3)5-'(/3)]V + 

+VB{(3)B'ip)V - C^(/?)C2(/3) (5.117) 

which can equivalently be written as 

0 = VAs + KV - VB{I5)B'{I3)V + C2(/3)C2(/3) 

admits the stabihzing solution Voo {P) = VL (0) ^ 0 since matrix As is stable (recall Lemma 
C.4). Therefore, Aoo(/^) '= S^{p) + Voo{l3) is positive definite because S^ is positive 
definite. By summing up eq. (5.117) to eq. (5.116) one can conclude that Aoo(/^) solves the 
Riccati equation (in the unknown A) 

0 = AA + A'A + AB{p)B'{f3)A + j-^C[Ci - C2{f3)C2{f3) (5.118) 

Thus, its inverse (which actually exists because Aoo(/?) > 0) solves the equation which derives 
from eq. (5.118) after both sides have been premultiplied and postmultiplied by A~^. Such 
an equation coincides with eq. (5.111) which therefore admits a symmetric, positive definite 
solution given by 

noc(/3) := A-'(/3) = [S-^(/3) + Voo{/3)r' 
It is only left to be proved that such a solution is the stabilizing one. By exploiting the 

fact that Iloo{l3) solves eq. (5.111), it results 

As - B{f3)B\P)Vo.{f3) ^ - A - B{f3)B\f3)U^\P) 

= -[AU^{p) + B{p)B'mU^\l3) 

= noo(/3)K + (7~^c[Ci - cmc2{f3)) • 
•noo(/3)]n-̂ (/5) 

so that A'-\-{'y-'^C[Ci-C2{P)C2{f3))Uoo{P) is stable because As-B{f3)B'{0)Voo{P) is stable 
(recall that Voo(/5) is the stabilizing solution). 

In order to tighten as much as possible the so obtained bound for Xea(^), the best value 
for the parameter /3 should be found: this task may be performed by means of a suitable 
(iterative) searching method. • 

E x a m p l e 5.6 Consider the system described in Example 5.5. A filter, labeled with the 
symbol R, is to be designed according to what has been presented in Remark 5.19. More 
precisely, letting wi and W2 be zero mean white noises with identity intensity, a filter is 
sought which supplies an as small as possible upper bound to the trace of the asymptotic 
estimation error covariance matrix. This goal corresponds to minimizing trace[/?^noo(/?)] 
with respect to the parameter /?, where noo(/3) is the stabilizing solution of eq. (5.111). A 
suitable computer routine gives /3^ — 1.13. The performance of the corresponding filter are 
compared with those of the Kalman's filter K\ and observer H which have been designed in 
Example 5.5. The same performance criteria (namely, R}i2 and RBoo norms of the transfer 
function from w := [K;I W2\) are adopted. The more satisfactory behavior of the robust (with 
respect to parameter variations) filter for small values of the system damping factor is put 
into evidence in fig. 5.32 and 5.33. • 

R e m a r k 5.20 (Full control) The problem considered in Remark 4.12 can be dealt with 
also within the RBoo context. The problem refers to the system PFC{S) depicted in fig. 5.34 
and described by the equations 

X = Ax + Biw + [I 0]u 

^ = Cix + [0 I]u 

y = C2X + D21W 

u — [u'l U2]' 
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^ 1.1 

Figure 5.32: The RH2 norm of the three filters 

In fig. 5.34 KFC{S) is a generic controller admissible in RHoo for PFC{S). Assume that 
the pair (A, C2) is detectable, the pair [{A — B1D21C2), Bi{I — D21D21)] is stabilizable and 
^2i-C>2i = / . By exploiting also in the present framework what has been utilized in the RH2 
context (in particular, note that Lemma E.l can be applied both in the RH2 and RHoo 
settings), it is possible to directly claim that Problem 5.1 relative to system PFC{S) has the 
solution 

a) Existence of the symmetric, positive semidefinite and stabilizing solution IIoo of the 
Riccati equation (5.105); 

b) The set J^oo^r of the controllers Kpcris) is defined by the block-scheme of fig. 5.35 
where Q{s) := T,(Aq,Bq,Cq,Dq), with A stable and ||(5(s)||oo < 7-

Finally, the set JF007 of the controllers which are RHoo admissible for PFC{S) can be easily 
obtained by exploiting (via transposition) what has been shown in Remark 5.9 with reference 
to system PFI{S). The block-scheme which defines such a set is shown in fig. 5.36 (note that 
it is the "transpose" of fig. 5.21) where Bi(s) e RHoo, ^ (s ) := {si - A - LooC2)~^. • 

R e m a r k 5.21 The comments on the matrix D21 presented in Remark 4.13 for the RH2 
setting can be done with no changes in the present context too with reference to Assumption 
5.4. Further, many of the above given formulas greatly simplify if the additional orthogo-
nality assumption D21B1 = 0 is done. D 

R e m a r k 5.22 Under Assumption 5.4, the stabilizability of the pair [{A-B1D21C2), Bi{I-
1^21^21)] (Assumption 5.3) is equivalent to requiring that the subsystem of POE{S) corre-
sponding to the transfer function P0E21 between the input w and the output y, that is 
system S(A, 5 i , C2,i^2i), does not have zeros in the closed right half plane. The proof of 
this claim exploits the same arguments adopted in proving an analogous result in Remark 
4.15. D 

R e m a r k 5.23 The discussion in Remark 4.16 concerning a possible direct dependence of 
the output variable y on the control variable u applies to the RHoo setting as well. In fact, 
suppose that eq. (5.104) is substituted by 

y = C2X + D21W + D22U (5.119) 
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Figure 5.33: The RHoo norm of the three filters 

Ui 

U2 

-, 

-1 

w 
PFC{S) 

KFC(S) 

z 

1 y 

Figure 5.34: The full control problem 

Letting 

y:=y- D22U = C2X + D21W (5.120) 

the solution to Problem 5.1 relative to the system POE{S), namely to the system described 
by eqs. (5.102), (5.103), (5.120), is supplied by Theorem 5.3. If KOE{S) is a RHoo admissible 
controller for POE{S), then the controller KOE{S) defined in the block scheme of fig. 5.37 is 
apparently RHoo admissible for POE{S)^ provided that it is well defined, that is, provided 
that matrix / + DqD22 is nonsingular. • 

5.5 The partial information problem 

The partial information problem in RH^Q is discussed now. As in Section 4.4, only 
the output variable y can be measured: consistently, the system under control is 
described by 

X — Ax + B\w + B2U 

Z = C\X + i^i2ti 

y = C2X + D21W 

(5.121) 

(5.122) 

(5.123) 

while its transfer function is denoted by P{s). Notice tha t system (5.121)-(5.123) 
is less general than system (5.33)-(5.35) however, the latter can be redrawn to the 
former by exploiting Remark 5.24. The solution of Problem 5.1 relative to system 
(5.121)-(5.123) will be presented under the following assumptions. 
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Figure 5.35: The set J^oojr of the controllers KFCr{s) 

Figure 5.36: The generic admissible controller for PFC{S) 

Assumption 5.6 The pair [{A — B2D'i2Ci)^ (/ — Di2D'i2)Ci] is detectable and the 
pair [{A — BiD2iC2)-> Bi{I — i^2i-^2i)] is stabilizable. 

Assumption 5.7 The pair (A, B2) is stabilizable and the pair {A^ C2) is detectable. 

Assumption 5.8 D^2^i2 = ^• 

Assumption 5.9 D21D21 = / . 

The result in Theorem 5.4 below makes reference to the block-scheme of fig. 5.38 
relative to which the transfer function from w; to z is denoted by T{z^w]s)^ while 
K{s) is a generic RHoo admissible controller for P{s). 

Theorem 5.4 (Partial information problem) Consider Problem 5.1 relative to sys-
tem (5.121)-(5.123). Then, under Assumptions 5.6-5.9, it has the solution 

al) Existence of the symmetric, positive semidefinite and stabilizing solution Poo of 
the Riccati equation (in the unknown P) 

0 = PAe + A',P - P{B2B'2 - -i~^BiB[)P + C[,Cic 

that is, such that 

(5.124) 

(5.125) 
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Figure 5.37: The controller structure when D22 7̂  0 

w 

u 
P{s) 

K{s) 

z 

V 

Figure 5.38: The partial information problem 

is stable. In the above equations 

A,:=A- B2D[^Ci, Cic := ( i - DuD[2)Ci (5.126) 

a2) Existence of the symmetric, positive semidefinite and stabilizing solution Iloo of 
the Riccati equation (in the unknown H) 

aS) 

0 = n^^ + .4/n - n(c^C2 - j-^c[Ci)n + BifB[f 

that is, such that 

Aff := Af - UooC;,C2 + 7" 'nooCiCi 

is stable. In the above equations 

Af:=A- BiD'2,C2, Bif := B,{I - D'2,D2i) 

r,(Poonoo) < 7 ' 

(5.127) 

(5.128) 

(5.129) 

(5.130) 

b) The set !Foo-yr of the controllers Kr{s) is defined by the diagram of fig. 5.39, 
where 

5oo(s) 

+ {C2-h^-^D2iB[Po,) 

C2-7-^D2iB[P^ 

— ZooLoo +'̂ oo-D2oo 

0 I 

0 
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Soc{s) 

Q{s) 

KFIr{s) 

Figure 5.39: The set Too-yr of the controllers Kpiris) 

Pt{s) 

K{s) 

Figure 5.40: The equivalent output estimation problem 

where 

B' 2oo 

— —B2P00 — D12C1 

= —1100^2 ~ B1D21 

= (/-7-'nooPoo)-' 
12 

and Q{s) := I]{Aq,Bq^Cq^Dq) with Aq stable and \\Q{s) <!' 

(5.131) 

(5.132) 

(5.133) 

Proof First observe that Assumption 5.7 coincides with the necessary condition of 
Remark 5.6. 

Sufficiency of parts al) - a3) and part b) Assume that points (al)-(a3) hold true 
and define the variables v and q as 

w:=r + -f-^B[P^x 

q :=u- FooX 

(5.134) 

(5.135) 

By utilizing these equations into eqs. (5.121) and (5.123) one obtains the system (see 
fig. 5.40) 

At 

— F 

C2t 

Bi 

0 

D21 

B2 ' 

I 
0 

where 

PM :-

At:=A + j-^BiB[P^ 

C2t:=C2+j-^D2iB[P„ 

(5.136) 

(5.137) 

(5.138) 
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It is easy to ascertain that Lemma E.4 can be applied to the couple of systems shown 
in fig. 5.38 and 5.40, so that this part of the proof can be carried over by making 
reference to the system in fig. 5.40 only. 

Observe that system Pt{s) has the same structure as system POE{S) dealt with 
in Section 5.4, where the output estimation problem was discussed. When dealing 
with system Pt{s) Assumptions 5.3-5.5 become: (al) the pair {At — ̂ 1^21^2*5^1/) 
is stabilizable; (a2) the pair {At^C2t) is detectable; (aS) D21D21 = / ; (ce4) the 
matrix At + B2F00 is stable. The stability of this last matrix trivially follows from 
eq. (5.125),(5.126),(5.131),(5.137). Condition (ce3) is Assumption 5.9. 

Condition (al) is immediately derived by acknowledging that At — BiD2iC2t = 
Af -\-'y~'^BifB[Poo, so that such a condition is equivalent to the stabilizability of the 
pair (^4/ -\- ^~'^BifB'^P^^ Bif)^ which, in turn, is implied by Assumption 5.6, thanks 
to the invariance of the stabilizability property with respect to state feedback. The 
discussion on condition (a2) is postponed. 

Therefore, the sufficiency part of the theorem and point (6) are proved once the 
existence is ascertained of a symmetric and positive semidefinite solution Iltoo of the 
Riccati equation (in the unknown 11̂ ) which is relevant to the output estimation 
problem for system Pt{s)^ namely, the equation 

O^AttUt + UtA'tt^Iitir F^F^ - C2tC2t)^t BifB[j (5.139) 

where 
Mt '= ^t — BiD2iC2t (5.140) 

Moreover, the solution Iltoo must be stabilizing, i. e. such that the matrix Att + 
^too{l~'^F^Foo — C2tC2t) is stable. To this aim, consider the Hamiltonian matrix 
associated with the Riccati equation (5.139) 

Ju 
J±4- C2tC2t 

-B,fB[f -Att 

and the one associated with the Riccati equation (5.127) 

-BifB[f 
j-^C[Ci - C'2C2 

By exploiting the fact that Poo solves eq. (5.124), it is not difficult to verify that the 
two Hamiltonian matrices Jtoo and J^o are similar. Indeed, it results 

Ju TJ^T-

with 

T:= I -l-'Po. 
0 / 

Being IIoo a solution of eq. (5.127), one has 

Joolm 
n. 

C I m 
n. 

so that 
JtocTIm 

Ho 
TJooIm 

n. 
CTIm 

n„ 
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Therefore, the subspace 

S := Tim 
n. 

Im 

is Jtoo-invariant. It is also complementary to lm[[0 I]'] because condition (a3) guar-
antees that the matrix / — 7~^Poonoo is nonsingular (see the proof of Lemma B.l l ) . 
Finally, the subspace S is generated by the (generalized) eigenvectors of Jtoo relative 
to the eigenvalues with negative real parts. Indeed, being U^ a stabilizing solution. 

Joolm = Im 
_ Hoc 

A 

with A stable, so that Jtoo^ = SA. Therefore, in view of Lemma C.2, it can be 
concluded that there exists a stabilizing solution Iltoo of eq. (5.139) which is given by 

ntoo = noo(/-7~'^oonoo)" (5.141) 

Moreover, such a solution turns out to be positive semidefinite thanks to Lemma B.l l . 
It is left to prove condition (a2), namely, the detectability of the pair {At^C2t)-

Remark 5.17 applied to eq. (5.139) leads to the conclusion that matrix Att — ^tC2iC2t 
is stable, which, in turn, implies that the pair [Au^ C^t) is detectable. By recalling the 
definition of the matrix Au (see eq. (5.140)), the detectability of the pair (74t,(72t), 
i. e. condition (a2), follows too, since the stabilizability property of the pair {A[.,C2t) 
is invariant with respect to the state feedback. 

Finally, the form of the set ^oo7r given in the statement follows by applying 
Theorem 5.3 to system Pt{s). 

Necessity of part a) With reference to fig. 5.38, assume that there exists a con-
troller K{s) admissible in RH^Q for system P{s) such that ||T(2;,i(;; s)||oo < 7- Then, 
the controller 

KFI{S)~K{S)[C2 D2i\ 

is admissible in RH^o for the system Ppiis) which is the system defined by eqs. (5.121) 
and (5.122) with the output vector constituted by [x' w'Y. Moreover, \\T{z^ w;s)\\oo < 
7 also for system PFI{S). This system coincides with the system PFI{S) considered in 
Section 5.3. The Assumptions 5.1 and 5.2 which are required for the result relevant 
to the full information problem (Theorem 5.2), are verified since they constitute a 
subset of Assumptions 5.6-5.9. Therefore, Theorem 5.2 guarantees the existence of 
the solution of eq. (5.124) endowed with all the properties specified in the statement 
of the present theorem. The request of the existence of the solution of eq. (5.127) can 
be proved in a similar manner by making reference to the system in fig. 5.41, where 
P{s) := P^{s) and K{s) := K'{s). Thus, system P{s) is described by 

i^A^^-^C[z + C!2y 

u = B'2^ + D[2Z 

(5.142) 

(5.143) 

(5.144) 

From Lemma E.l, K{s) is admissible in RHoc for P{s) and ||T(ii), i ; s)||oo < 7 because 
K{s) is admissible in RH^o for P{s) and ||r(2;,i(;; s)||oo < 7- The above exploited 
argument can be applied in the very same way leading to the conclusion that the 
controller 

KFI{S)-K{S)[B'2 D[ 12J 
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z 

V 
P{s) 

k[s) 

w 

u 

Figure 5.41: The transposed partial information problem 

is admissible in RHoo for system PFI{S) (described by eqs. (5.142) and (5.143) and 
having the vector [^' z']' as measurable output) and is such that ||T(ii),z; 5)||oo < 7-
System PFI{S) has the same structure as system PFI{S) which has been defined for 
the full information problem (see Section 5.3). Since the assumptions required by 
Theorem 5.2 to be applied to system PFI{S) are a subset of Assumptions 5.6-5.9, it 
is possible to claim that there exists a solution of eq. (5.127) which possesses the 
properties requested by the statement of the present theorem. 

Further, it is easy to check that also the conditions for Lemma E.4 to be applied 
are verified, so that, with reference to the block-scheme of fig. 5.40, it is possible 
to conclude that the controller K{s) is admissible in RH^o for system Pt{s) and 
||T(g,r;5)||oo < 7 (recall the definition of Pt{s) given in eqs. (5.136)-(5.138)). As 
already said, system Pt{s) has the same structure as system POE{S) which was intro-
duced in Section 5.4 when dealing with the output estimation problem. Assumptions 
5.3 - 5.5 which are relevant to Theorem 5.3, are now shown to be verified. These 
assumptions, if expressed in terms of system Pt{s), are precisely those which have 
been denoted as (a l ) , (a2), {a3) and (a4) in the sufficiency part of the proof. 

First observe that condition {a2) (detectability of the pair {At^C2t)) is obviously 
satisfied. In fact, it is apparently necessary in view of the already established stability 
of the system in fig. 5.40 (again, recall the structure of system Pt{s) given in eq. 
(5.136)). Second, in the sufficiency part of the proof it has already been shown that 
condition (al) is equivalent to Assumption 5.6. Condition (a3) is straightforward. 
Finally, condition (a4) precisely amounts to requiring the stability of matrix Ace (see 
eq. (5.125)). 

Thus, the conditions for Theorem 5.3 to be applied to system Pt{s) are satisfied. 
Therefore, this theorem guarantees the existence of a positive semidefinite and stabi-
lizing solution Iltoo of the Riccati equation (5.139). By applying in reverse order what 
has been shown in passing from IIoo (a solution of eq. (5.127)) to Iltoo (a solution of 
eq. (5.139)), it follows 

Ho ntoo(/ + 7^^oontoo) (5.145) 

Note that the existence of the inverse in eq. (5.145) is guaranteed by the fact that 
matrix PocHtoo has nonnegative eigenvalues, thanks to Lemma B.IO. From eq. (5.145) 
it follows 

( / - 7-2nooPoo)ntoo (5.146) n. 

so that 

n, (/-7-'nooPoo)-'n, 
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since the existence of the inverse in this last equation can easily be proved. In fact, 
let, by contradiction, 

x ' ( / - 7 ~ ' n o o P o o ) = 0 , Xy^O (5.147) 

so tha t , from eq. (5.146), also x'lloo = 0. But this would imply, in view of eq. 
(5.147), X = 0. By recalling tha t Iltoo > 0, one can conclude tha t condition (a3) in 
the statement is verified, thanks to eq. (5.141) and Lemma B . l l . • 

The following result, which constitutes an interesting side-product of Theorem 
5.4, can be stated in view of what has been presented in connection with the full 
information problem (Corollary 5.1) and the output estimation problem (Corollary 
5.2). 

Corol lary 5.3 Assume that Assumptions 5.8 and 5.9 hold. If, for a given positive ^, 
there exist the symmetric, positive semidefinite and stabilizing solutions of the Riccati 
equations (5.124) and (5.127) and such solutions satisfy eq. (5.130), then there exists 
a RHoQ admissible controller K{s) for P{s), corresponding to which | |T(z,i(;; s)||oo < 
7. Moreover, the set of controllers described in point {b) of Theorem 5.4 constitutes 

E x a m p l e 5.7 Consider system (5.121) - (5.123) with 

A = 
0 1 
2 1 

, Bi 

Ci = [ 0 0 ] , C2 = [ - 1 1 ] , L>i2 = D21 = 1 
Because of the particular form of matrices Bi and Ci, the Riccati equations (5.124) and 
(5.127) do not depend on 7. The stabilizing solutions of these equations are 

Poo = Ho 
8 16 

respectively. Moreover, rs(Poonoo) = 144 so that, according to Corollary 5.3, an admissible 
controller in RHoo exists for the system if 7 > 12 (recall eq. (5.130)). 

Now consider the nominal plant Gn{s) := {s — l ) / (s^ — s — 2) subject to perturbations 
of the form (5.10),(5.11). Then, what is the maximum value of a corresponding to which a 
stabilizing controller exists? This question can be answered by applying Theorem 5.1 to an 
enlarged plant which coincides with the controlled system considered in the present example. 
Thus, a stabilizing controller exists only provided that a < 1/12. • 

R e m a r k 5.24 (Loop shifting) Theorem 5.4 can be applied to systems exhibiting a more 
general structure than that of system (5.121) - (5.123). Indeed, consider system P^^\s) 
given by 

P^'\s):--

^ ( 1 ) 

CI (1) 

c: (1) 

51 (1) ?(i) 

-^11 
(1) 

a (1) 

(1) 
12 

(1) 

and depicted in fig. 5.42. Assume that the variables w^'^\ (1) ^(1) , y^^^ of such a system 
have dimension q, m, r, p, respectively, and suppose that rank[Dj2 ] = '^^ rank[D2i ] = p. 

Then, if one performs the 6 operations described below (the effects of which can be 
easily understood by making reference to fig. 5.42), it is generically possible to successively 
transform system P^^\s) into systems 

P^'\s) 

^(0 

1̂ 
c: 

ii) 

(i) 

B\ (0 ^W 

i ( 0 DiV D (i) 

a 
{i) 

12 

^22 J 
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„(7) 

v^ 
«,(6) = t(,(5) 

«,(*) = M;(3) r iGFa 

K, 

w(2) = „(i) 

*-5n 

MW=«(^)i 

.(3) 

,(6) 

^U 

,m 

pW(5 

1 - a 
(1) 

-£>: (6) 

K(^\s) 

^(5) = ^(6) 

z(^) = ^(*) 

< ) 

.,(1) 

1,(2) 

V. 

v̂ . 

j/(^) = y (4) _ y(5) 

<) 

O-j, 

P^'Hs 

ri(7) 

.(7) 

i^(^)(6 

Figure 5.42: The loop shifting 

which are characterized by the inputs w^^^ and u^^^ and the outputs z^^'' and ?/ , in such a 
way that 

- Am 
P^'\s) 

withDZ^'Dg'=I,Dg'Dil'' = I. 

CI 
(7) 

a 
(7) 

Bf) Bf' 
(7) 0 D 

Operation 1 : Let 

so that 

3 ^ ( 2 ) : = y ( i ) _ i 5 ( i ) „ ( i ) 

Cf =Cf), i = l,2 
n(2) _ n ( i ) n (2 ) _ r,( i) r,(2) _ ^,(1) 
^ 1 1 — ^ 1 1 ' ^ 1 2 — -'^12 > -^21 — ^ 2 1 



5.5. THE PARTIAL INFORMATION PROBLEM 175 

and 
D: (2 ) 0 

Operation 2 : Find four matrices V, V^, W, VF^ with orthonormal columns and such 
that 

lm[V] = lm[Dg^] : Im[Df ̂ 1 lm[V J - .X.XLX.12 . 

lm[W] = Im[L>^f ] , lm[W^] = Im[Dg^']^ 

Such matrices do exist thanks to the assumptions rank[Dj[2 ] = ^n, rank[D2i ] = p and ( i ) i i ( i ) l 

l ( 2 ) ^(1) ^(2) l ( l ) (2) • the fact that DI2 = D12 ^^^ ^21 — ̂ 21 • Obviously, if D^2 is a square matrix (hence 
nonsingular), V'^ = 0 and V = I. A similar comment is in order if D21 is a square matrix 
(hence nonsingular). 

Then it follows 

yzJ-^12 V 
r,(2) 0 

Df^ [W^ W] = [Q Sy] 

Observe that matrices Vw and Vz are orthogonal and matrices Su and Sy are nonsingular. 
Then let 

(3 ) . (3 ) SuU ( 2 ) 

v'''---s-\^^^ 
so that 

(3) _ 4(2) Â "̂  = A' . (3) ( 2 ) T 

c\ 
( 3 ) 

D: ( 3 ) 

VzC\ 

0 

( 2 ) 
, ^ 2 — ^^/ ^2 

5(3) 
JD2 ^ u 

r)(3) _ y r)(2)T/ 

and 

^ \ 2 vMl^s- Di^^ = s;^Dil^v^= [ 0 / 

Note that, thanks to the orthogonality of matrices Vz and Vw, the transfer functions from 
w^^"^ to 2;̂ ^̂  and from K;̂ -̂* to 2;̂ -̂* have the same RHoo norm. 
Operation 3 : Consider the following partition of the r x q matrix D[-^^ 

^ ( 3 ) . _ 
^ 1 1 • — 

I ^ l l l l 

^ 1 1 2 1 

- D 1 I I 2 

-C>1122 

where the submatrix D1122 is m x p (recall that the assumptions on the rank of matrices DI2 
and D21 imply r > m and q > p). Let Aoo be the matrix (whose existence is guaranteed by 
Theorem F.l which supplies its expression, too) which minimizes ||A(A)||, where 

A(A) := ^ 1 1 1 1 

i ^ l l 2 1 

-D1112 

^1122 + A 

If 

then, thanks to the above quoted theorem, ||A(Ao 

r Dim 1 
1 -^1121 J ' 

[ ^iiii 1 
[ 1̂112 J 1 

J4) .. 

^ ( 3 ) 

. (3 ) 

«W:=«(^' 

= a. By defining 

Aoo^^^^ 
. (4 ) ._ . (3 ) 
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one obtains 

^ ( 4 ) ^ ^ ( 3 ) ^ ^ ( 3 ) ^ ^ ^ ( 3 ) 

?(4) (3) 
B'C^ - 5i"^ + B. 

? ( 3 ) . (3) 
2 ^ 0 0 ^ 2 1 

?(4) B: (3) 

CI 
(4) 

D (4) 

O]^ -f- u^2 -^^00^2 ? ^ 2 ~ ^:; 

A(Aoo) 

(3) 
2 

L>: (4) D (3) r,(4) D, (3) 
[0 

D (4) 

Now consider the feedback connection of system P^^^ (s) with the controller defined hy u)^ — 

A{s)y]^\ with lima;^oo A(jct;) Then, the scalar a constitutes a lower bound to the 
RHoo norm of the transfer function from w^^"^ to z^^\ Indeed, as co 
of such a function is precisely 

cxD, the limiting value 

n ( 3 ) , n(3)A r)(3) 
11 ^ 12 -'*^oo-t-̂ 21 A(Aoc) 

Operation 4 : Define the variables z^^' and w'^' by means of the equation 

,(5) 

„(4) Tiers 
^(5) 

.(4) 

where 

while 

r i : = 
/ 0 
0 7-^/ 

6:= 

, r 2 : = 

G i l ©12 

B21 ©22 

7/ 0 
0 / 

is any matrix such that: (i) B 'B = BB ' = / ; (ii) B12 and B21 are square matrices of 
dimension r and q, respectively; (iii) 0 < 7"^ < a~^. In particular, from these features 
it follows that IIB22II < ||B|| = 1 (recall Lemma 2.16), so that the matrices ^1 := (7 / — 
i:>n^B22)"^ and ^2 := (7 / - B22l>nV^ are well defined because \\D[^^\\ = a (recall also 
Lemma 2.18, point (2) and Lemma 2.21). Further let 

(5) (4) (5) (4) 

In so doing, one obtains 

^ ( 5 ) ^ ^ ( 4 ) ^ ^ ( 4 ) ^ ^ ^ ^ ^ ^ ( 4 ) 

B\ 
(5) 7 5 l ' ^ ^ 2 B 2 1 , 5 f ?(4) ?(4) . 5 r + ^ r ^ 2 B 2 2 i ^ : (4) 

->(5) Cr^ = 7ei2^lCf^ , Cf ^ = C '̂̂  + î t̂̂ ^2B22C{^^ 

D[1^ = 7(Bii + Bi2Dlt^^2B2i) , Di'^ = D^t^^2B22i^l2^ 
1(5) _ 

D\y=^e,2^,D\y, D: 
(4) ^(5) 7i^2t^^2B21 

Notice that if the feedback connection of system P^^^ (5) with the controller described by 
(4) . ( 4 ) = A{s)yj^ ^ results in a stable system and the RHoo norm of the transfer function 

T{z^ \w^^]s) from the input w^^ to the output z^^ is less than 7, then also the feedback 
connection of system P^^\s) with the controller described by hy u)^ — A{s)yj^ results in 
a stable system and the RHoo norm of the transfer function T{z^^\w^^'^]s) from the input 

-,(5) to the output z^^^ is less than 7. In fact, notice that 

r i B r 2 
7B11 

B21 

B12 

7"'B22 
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and ||7~^B22|| < 7~^, so that it is possible to apply Theorem 5.1 and conclude about 
stability. As for the transfer functions norms, observe that, from the definition of the new 
variables z^^^ and w^^\ it follows 

.(5) 

^W (4) e 
(5) 

SO that, thanks to the properties of B, 

that is 

\z''Hl -7 l̂M '̂ll̂  \W''\\l- -l'\\^'''\\l 
The left (resp. right) hand side of this equation is negative if and only if ||T(2;'®', w'^'; s)\\oo < 
7 (resp. \\T{z (4) .,,(4). < 7) (see Theorem 2.12), so that the RHoo norm of the first 
transfer function is less than 7 if and only if the norm of the second one is such. Now let 

O n 

621 

-r'D'^^, 612 

ii-r'D\rD[r) 

ii 
(4 ) ' n (4 ) ^ l / 2 1 n(4) ' 6 2 r'D\i 

By applying Lemma F.l it is easy to verify that the matrix G satisfies the equation B'B = 
BB' = / . 

Finally, one obtain 
D[l^ = 0 

(5) Opera t i on 5 : While performing Operation 4 it might be happened that D22 7^ 0. Should 
this be the case, one has to apply the procedure outlined in Operation 1 above by letting 

(6) (5) (5),,(5) 

(5) .(6) .(5) 

SO that 

^ ( 6 ) ^ ^ ( 5 ) ^_ 

d'̂  = a (5) 

(6) B, (5) 

i = 1,2 

1,2 

jn(6) _ Q jj (6) D (5) Df,) = D, (5) 

and 
Df^=Q 

O p e r a t i o n 6 : While performing Operation 4 it might be also happened that the matrices 
^12 ^12 and/or ^21 ^21 5 though positive definite, are different from the identity matrices. 
Should this be the case, one has to apply the procedure outlined in Operation 2 above by 
letting 

v^'^ := y > ( ^ ) , u^'^ := Suu (6) 

.(7) V,z (6) .(7) C - 1 ,(6) 
^y y 

where the matrices Vw^ Su, Vz and Sy are computed in such a way as to comply with the 
same requirements expressed in Operation 2, so that 

1(6) B[ 
(7) Bf^K., ^(7) 0(6) Q-

JD2 Ou 
(6) 

c: 
(7) i r^(6) Sy C2 

jji7) 
^ 1 1 

D (7) 
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and 
^(7) Di^^V.D^S-'^ 

( 6 ) A - 1 
12 ^ u D: (7) [0 / ] 

Finally, given a controller X^^^(s) which is admissible in RHoo for system P^'^\s) and such 
that ||T(2;^^'^,ii;^^^;5)||oo < 7, it is fairly apparent how to design a controller K^^\s) which 
is admissible in RHoo for system P^^\s) and such that \\T{z^^\w^^^; s)\\oo < 7 (see also fig. 
5.42). D 

E x a m p l e 5.8 Consider system P^^\s) with 

i ( i ) 

C['^ = 

r , ( i ) 

' 0 
0 

' 1 
1 

1 ' 
0 

0 " 
1 

1 1 
1 0 

(1) B\ 

C'^' 

1 0 
0 1 

[ 1 0 

D (1) 

B'^' 

'-'11 

r,(i) 
i^i\ [ 1 1 ] 

By performing the operations described in Remark 5.24 one obtains 

° ^ " x / 2 ' 

1 

7V^ 

1 

7\/2 L 

1 

75 
1 1 

- 1 1 

7 

Bl2 

621 

022 

0 

^ 2 ^ 
0 

0 1 
2 0 

D "̂̂ ' = 0 , y^ = K; = / ^(6) 
^22 

7^2 

5„ = 1 

> y 2 , Oil 
1 

"7\/2 

0 

V27' - 1 
0 

\/272 - 4 

VV \ / 7 

V2 

R e m a r k 5.25 It is worth noticing that the well known separation property of the control 
system eigenvalues (which has been discussed in Remark 4.17 within the framework of the 
RH2 partial information problem) does not hold anymore in the RHoo setting. However, 
it is possible to read Theorem 5.4 in the light of a weak separation principle. In fact, the 
controller resulting from the choice (5(s) = 0 in fig. 5.39, may be written as 

{C2i + D21W 
u 

y) 

where 
l-^B[Poo^ 

In view of eqs. (5.131) - (5.133), (5.138), (5.141), it is easy to verify that ZooLoo = 
—IltooC2t — -Si^215 SO that it coincides with the gain of the filter for the linear combi-
nation FooX (recall the solution of the output estimation problem for system Pt{s) defined 
by eqs. (5.136)-(5.138)). Further, w^: can be seen as the worst input for the control problem 
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with full information (recall Remark 5.10 concerning differential games and see fig. 5.15, 
too). Therefore, it can be concluded that the controller for the partial information problem 
is the filter for the control law of the full information problem when the worst disturbance 
Wp := ^~^B'lPooX acts on the system. This claim is correct in the RH2 setting too (recall 
Remark 4.19), if w^ is set equal to zero (hence ' 0 as well). 

R e m a r k 5.26 (Parametrization of the set JF007) Observe that ^007 = Too-iv In fact, 
the set of controllers which are admissible in RRoo for P(s) has been shown to coincide 
with the set of controllers which are admissible in RHoo for Pt(s) (see the proof of Theorem 
5.4). Therefore, the claim is true thanks to Remark 5.15 which can be exploited because the 
structure of Pt(s) is identical to that of POE{S). • 

R e m a r k 5.27 Theorem 5.3 of Section 5.4 (which is relative to the output estimation 
problem in the RH^o setting) can be derived as a particular case of Theorem 5.4. In fact, 
it suffices to set D\2 = / in Assumptions 5.6 - 5.9 in order to conclude that Assumptions 
5.3 - 5.5 are satisfied. In particular, it results C\c = 0 so that the (unique) symmetric, 
positive semidefinite and stabilizing solution of the Riccati equation (5.124) is Poo = 0, 
which implies Zoo = / . In such a context, the conclusions of Theorem 5.4 are immediately 
redrawn to those of Theorem 5.3. In a similar way, the solution of the disturbance feedforward 
problem dealt with in Remark 5.12 can be viewed as the solution of a particular case of the 
partial information problem, namely the case in which D21 = / . Indeed, letting D21 = I 
in Assumptions 5.6 - 5.9, it is easy to verify that the assumptions made in Remark 5.12 
are satisfied. In particular, it results B\f = 0 and hence Hoc = 0, Zoo = I, so that the 
conclusions of Theorem 5.4 coincide with those illustrated in Remark 5.12. • 

R e m a r k 5.28 (Partial information and parametric perturbations) Consider Prob-
lem 5.1 relative to the system PQ{S) described by 

X = (A + AA)X + Biwi H- B2U 

z\ = C\x + I)\iu 

y = C2X -\- D21W1 

The structure of the perturbation AA is taken to be 

(5.148) 

(5.149) 

(5.150) 

(5.151) 

The robust (with respect to the parametric perturbations) control problem in RHoo consists 
in designing a controller which, for all Q, \\Q\\ < /3~^, is such that: (z) it is admissible in 
RHoo relative to PQ(S) ; (ii) the RHoo norm of the transfer function from the input wi to 
the output zi (from now on denoted by Tn{zi,wi]s)) is less than a certain positive scalar 
a. This problem can be tackled by considering the system P{s) 

^ = A^-\- Biw + B2U 

z = Cii + Di2U 

y = C2(, + D21W 

where 

Wi 

W2 
, Z 1 = 

Zl 

Z2 

D12 := 

[B. 

D-,2 
0 

, £'21 [D21 0 ] 

M 

Observe that P{s) = Pn{s) if W2 = ^Z2- If Assumptions 5.6 - 5.9 are verified for system 
Fo(s), tiiat is for system Pn{s) in nominal conditions (fi = 0), then they are verified also for 
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B 1-5 

Figure 5.43: The performances of the controllers R and H 

system P{s). Therefore Theorem 5.4 can be applied to such a system with 7 := min[a,/3]. 
The solution of the relevant problem is then a solution also for the original problem. In fact, 
the controller which solves Problem 5.1 for system P{s) is such that ||T(z, w; s)\\oo < 7 which 
implies J := ||z||2 — 7^||it;||l < 0,\/w G RH2. This controller, when applied to system Pn{s), 
is such that ||TQ(2;i,it;i; s)||oo < Oi, which implies Ji := p i 111 — Q^^ll'̂ illl < 0,Vi(;i G RH2-
Indeed, by recalling that W2 — ̂ 2:2, it follows 

Ji = 

< 
| ^ l | | 2 - a ' l K I | 2 

| ^ l | | 2 - 7 ^ l k l | | 2 

<|kl|2- 11̂2111 -7 ' lk l |2+7' lK| | l 
< J - 11̂ 2111 + 7 ' l k 2 | | l 

< J -

< J -

< J -

< J <0 

^2||1+7'||^^2||1 

Z 2 | | l ( l - 7 ' l l ^ f ) 

^2||1(1- •7 P ) 

It is left to be proved that the controller which solves Problem 5.1 for P{s) stabilizes 
^n(s) , VQ, ||n|| < P~^ as well. This result is a direct consequence of Theorem 5.1. • 

E x a m p l e 5.9 Consider the system (5.148)-(5.151) with 

Bi = ^ B2 = 0 L = 

M 

D12 

[ 0 1 ] , Ci = [ (/p-̂  (^-^ ] , C2 = [ (̂  0 

D21 = 1 , /3 = 1 , (/? := V2 

A controller is sought which, for each f̂ , | |0 | | < /3~^, is admissible in RHoo for system 
Pn{s) and is such that ||T(2;i,i(;i; s)||oo < OL- Letting a = /3, a controller, labeled with R, is 
designed according to what has been shown in Remark 5.28. On the contrary, the label H 
denotes the controller resulting from Theorem 5.4 when applied to system Po(s) and for the 
choice Q{s) = 0. The performances of the two controllers are compared in fig. 5.43 where 
||T(2;i, i(;i; s)||oo is plotted against the system damping factor ^ := (1 — r^)/2. The controller 
R is weakly sensitive and apparently behaves in a much better way for low values of ^. • 
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Figure 5.44: The performances of the controhers R and H ( M = MS) 

E x a m p l e 5.10 Consider the system defined by the matrices 

0 1 
-1 - 1 

+ LftM , Bi B2^ 
0 1 
1 0 

Ci=[l 2] , C2 = Di2=[l 0 D21 1 

while M = MS := [2 0] or M = MU := [0 2]. The parameter Q has nominal value equal to 
0 and describes the uncertainty which is supposed to affect the system under consideration. 
A stabilizing controller is sought which makes small the eff"ect of the disturbance w on the 
output z = Cix -\- D12U. By utilizing the first component only of the control variable u it is 
possible to design a controller, labeled with / C , which makes zero the transfer function from 
w to z in nominal conditions. The transfer function of such a controller (which achieves the 
perfect indirect compensation of the disturbance) is 

l + 2s 
Kjc{s) = 

s2 + 3s + 3 

If, on the contrary, the uncertain knowledge of the parameter Q has to be somehow taken 
into account, a controller, labeled with R^ can be designed according to the discussion in 
Remark 5.28. Consistently, a new variable Za '•= Mx + U2 is added to the system. When 
M = MS one finds, independently of the value of ^, Poo = IIoo = 0 because the matrices 
Ac and Af are stable and Cic = 0, Bif = 0. Correspondingly, 

0 
- 1 

This is no more the case when M — MU, so that, for 7 = 0.275 (notice that for 7 
solution of eq. (5.25) with the required properties does not exist) one obtains 

: 0.270 a 

Foo = 
7.67 

-30.87 
-4.43 
6.67 

The performances of the two controllers are compared in fig. 5.44 and 5.45 for the considered 
cases. The choice of the set of values of the parameter Q reflects the need of stability for the 
control system resulting from the insertion of the controller IC. In both cases, the better 
behavior of the controller R is apparent, especially for small values of Q. • 
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Figure 5.45: The performances of the controllers R and H ( M = MU) 

R e m a r k 5.29 It is worth noticing that, also in the partial information case, when 7 -^ oo 
the RHoo controller of fig. 5.39 (with Q(s) — 0) tends to the RB.^ controller of fig. 4.19 
(with Q(5) = 0). • 

R e m a r k 5.30 The contents of Remark 5.13 (as for matrix D12) and of Remark 5.21 (as 
for matrix D21) apply with no changes to the problem dealt with in the present section. D 

R e m a r k 5.31 In view of Remarks 5.14 and 5.22 it can be said that, under Assumptions 
5.8 and 5.9, Assumption 5.6 amounts to requiring that the two subsystems of P(^s) having 
transfer functions ^12(5) (that is, system E(A, B2,Ci,Di2) with input u and output z) and 
Ri\{s) (that is, system E(A, Bi , C2,i^2i) with input w and output y), respectively, do not 
have zeros in the closed right half plane. • 

5.6 The operatorial approach 
This section is aimed at tackling the partial information problem in the RHoo setting 
from a point of view which is rather different from the one adopted in Section 5.5. 
In fact, reference will be made to the theory of linear operators applied to dynamical 
systems. The minimum norm problem will be presented by constraining the at tention 
to the scalar case only, as the general multivariable situation is substantially more 
complex to be handled. 

Recall tha t the problem at hand consists in designing a controller K{s) which, 
with reference to fig. 5.46, is admissible in RH^o for P{s) and such tha t the RH^o 
norm of the transfer function T{z^w;s) from K; to 2; is less than a given positive 
scalar 7. Indeed, it will be shown tha t , having restrained the attention to the case 
in which the variables w,u^z,y are scalar, it is fairly easy to design tha t controller 
K'^{s) which minimizes \\T{z^w;s)\\oo. Preliminarily, parti t ion the matr ix P{s) into 
the four (scalar) transfer functions Pij{s)^ so tha t 

ZL 

VL 

\ Puis) Puis) ] 
P2l{s) P22[S) 

WL 

UL 
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L 

7/ 

U 

P{s) 

K{s) 

Figure 5.46: The partial information problem 

and assume that system P{s) can be made internally stable by implementing a feed-
back loop from y to u. It is obvious that a RHoo admissible controller for P{s) exists 
if and only if such an assumption is verified. This is equivalent to the internal sta-
bilizability (from y) of the subsystem P22{s)- Further, if K{s) is a RHoo admissible 
controller for ^22(5), then it is RH^Q admissible also for P{s) and the set of controllers 
endowed with this property coincides with the set of controllers which stabilize P22{s). 

Second, observe that, if K{s) is any controller corresponding to which the control 
system in fig. 5.46 is well defined, that is if 

lim det[I-D22K{s)]y^0 

s—yoo 

where D22 '-= hnis^oo ^22(5), then 

r ( z , w; s) = Pii{s) + Pi2{s)[I - K{s)P22{s)]-'K{s)P2i{s) (5.152) 
Hence, the problem of designing a RHoo admissible controller for P{s) such that 
||T(z,iL'; s)||oo < 7 is equivalent to selecting a controller which verifies this last in-
equality among those which internally stabilize ^22(5)-

Theorem 3.7 supplies the parametrization of the set of all controllers which sta-
bilize P22{s) on the basis of a double coprime factorization in RHoo of P22is) (also 
recall Theorem 3.4). More precisely, if 

P22{s) = N{s)M-\s) = M-\s)N{s) 

X{s) -Y{s) 
-N{s) M{s) 

M{s) 
N{s) 

Y{s) 
X{s) = 1 

(5.153) 

(5.154) 

where all the functions N{s), M{s), M{s), N{s), X(s), Y{s), X{s), Y{s) belong to 
RHoo: then any controller K{s) which stabilizes P22{s) can be given the form 

K{s) = [X{s) - Q{s)N{s)]-'[Y{s) - Q(s)M(s)] (5.155) 

where Q{s) := T,{Aq, Bq, Cq, Dq) is any element of RH^o such that (iet[I—D22Dq] 7̂  0. 
Thanks to the exphcit expression of the stabilizing controllers given by eq. (5.155), 

it is easy to prove that the transfer function T{z, w; s) is a linear function of the 
parameter Q{s), as stated in the following theorem where reference is made to the 
functions 

Ti(s) := Puis) + Pi2(s)M(s)y(s)P2i(s) 

T2{s) := Pi2{s)M{s) 

nis) := M{s)P2i{s) 

(5.156) 

(5.157) 

(5.158) 
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T h e o r e m 5.5 The functions Ti(s), i = 1,2,3 defined in eqs. (5.156)-(5.158) belong 
to RHoo- Moreover, if K{s) is given by eq. (5.155), then 

T{z, w; s) = Ti(s) - T2(s)Q(s)T3(s) 

P r o o f Consider a realization of P{s) 

P{s) := 

C2 

Bi B2 

Dn Di2 

D21 D22 

with the pair {A, B2) stabiUzable and the pair [A, C2) detectable. Further, let F and 
H be two matrices such tha t A + B2F and A + HC2 are stable. Consistently with 
the discussion in the proof of Theorem 3.4, choose 

M{s) 

M{s) 

= i:{A + B2F,B2,F,I) 

= ^{A + HC2,H,C2,I) 

= ^{A + HC2,H,-F,0) 

Denote with ipi [resp. rji), i = 1, • • •, 5 the s ta te (resp. output) variables of the five 
systems P2i{s), Y{s), M{s), Puis), Pn{s), taken in their order of appearance. If i?i 
and vi denote the output and input variables of system Ti (s ) , respectively, then such 
a system is described by (recall eq. (5.156)) 

(fi = A(pi -\-BiUi 

{A^HC2)ip2 + Hrii 

F(p2 

M{s) = 

Pl2{s) = 

Puis)-

(̂ 3 = (A + B2F)(f3 + B2II2 

Vs = F^s + V2 

(P4 = A(p4 -h B2rjs 
rj4 = Ciip4-\-Di2rjs 

V95 = Aip^+BiUi 
V5 = Ciif^-\-Duui 

Letting £i := (pi — (/̂ 5 and €2 '.= ^4 — V ŝ, it is easy to verify tha t 

si = Ae\ 

82 = Ae2 

and tha t a reahzation of the transfer function Ti(s) can be built up by exploiting the 
s tate variables (̂ 2̂, (/?3, ^^ only. Further, by defining £3 := (̂ 5 + (̂ 2 and £4 := ^5 + (/?3, 
one obtains 

£3 = (A + HC2)e3 + {Bi + HD2i)vi 

£4 = -B2Fe2. + (A + B2F)e4 + BiVi 

^1 = -DuFes + (Ci + Di2F)e4. + Dniyi 

(5.159) 

(5.160) 

(5.161) 



5.6. THE OPERATORIAL APPROACH 185 

These equations define a simpler realization of Ti{s) which allows one to claim that 
Ti(s) G RHQQ^ since the eigenvalues of the dynamic matrix of the system described 
by eqs. (5.159)-(5.161) are those of matrix A + B2F together with those of matrix 
A + HC2, both matrices being stable by construction. 

Now, let (fi (resp. r/^), i = 6,7 be the state (resp. output) variables of the two 
systems M{s) and ^12(5), taken in their order of appearance. If 1^2 and U2 denote 
the output and input variables of system T2{s)^ respectively, then such a system is 
described by (recall eq. (5.157)) 

1 m 
M(s)^i V96- (A + 5 2 ^ ) ^ 6 + ^2Z^2 

^2 =V7 

Letting e^ :— LPQ — (f^/it is easy to verify that 

^5 = Acs 

and that a realization of the transfer function T2{s) can be built up by exploiting the 
state variables (fQ only. The dynamic matrix of such a realization is A-\-B2F^ so that 
T2{s) e RHoo too. 

Finally, let ipi (resp. r/^), z = 8,9 be the state (resp. output) variables of the two 
systems P2i{s) and M{s), taken in their order of appearance. If 7?3 and z/3 denote 
the output and input variables of system ^3(5), respectively, then such a system is 
described by (recall eq. (5.158)) 

{ V9 = C2^9 + ^8 

^3 = ^ 9 

Letting ^6 := ^s + V̂ g, it is easy to verify that 

£6 = (A + HC2)eG + (^1 + HD2i)iy3 

1̂3 = C2ee -\-0211^3 

so that a realization of the transfer function T3{s) is characterized the dynamic matrix 
A + HC2. Hence, T3{s) G RH^. 

As for the expression of T{z^w;s), first observe that, in view of eqs. (5.153)-
(5.155), it is 

[/ - K{s)P22{s)]-' = [/ - [X{s) - Q{s)N{s)]-'-

'[Y{s) - Q{s)M{s)]N{s)M-\s)] ~ ' 

= {[X{s) - Q{s)N{s)]-' [X{s) - Q{s)N{s)-
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-Y{s)N{s)M-\s) + Q{s)M{s)N{s)M-\s)\} 

= {[X{s) - Q{s)N{s)]-' [x{s)Mis) - Y{s)N{s)-

-Q{s)[N{s)M{s) - M{s)N{s) 

= M{s)[X{s) - Q{s)N{s)] 

M-r 
and 

[/ - K{s)P22{s)]-' = \I~ [X{s) - Q{s)N{s)]-'[Yis) 

- Q{s)M{s)]N{s)M-\s 

^{[X{s)-Q{s)N{s)]-'[x{s)-

-Q{s)N{s) - Y{s)N{s)M-^{s) + 

+ Q(s)M(s) iV(s)M-i(s) l}" ' 

= {[X(s) -Q(s)iV(s)]-i [x{s)M{s)-

-Y{s)N{s) - Q{s)[N{s)M{s) -

- M{S)N{S)]\M~'^\ 

= M{s)[X{s)-Q{s)N{s)] 

SO that 
[/ - K{s)P22{s)]-^K{s) = M{s)[Y{s) - Q{s)M{s)] 

Then, by recalhng also eqs. (5.152),(5.156)-(5.158), it follows 

T{z, w; s) = Puis) + Pi2{s)[I - K{s)P22{s)]-^K{s)P2i{s) 

= Puis) + Pi2{s)M{s)[Y{s) - Q{s)M{s)]P2i{s) 

= Pn{s) + Pi2{s)M{s)Y{s)P2i{s) -

-Pi2{s)M{s)Q{s)M{s)P2i{s) 

= T,{s)-T2{s)Q{s)n{s) 

D 

In view of this theorem the problem of designing a RHcx, admissible controller 
K{s) for system P{s) such that \\T{z^ w; s)\\^ < 7 is apparently equivalent to that of 
finding a function Q{s) G RH^ such that ||Ti(5) — T2{s)Q{s)Ts{s)\\oo < 7- Indeed, 
it will be shown that, under a suitable assumption, a function Q^{s) € RH^ can be 
found which minimizes such a norm: the so called model matching problem is solved 
in this way and the original control problem has got an optimal answer (in the sense 
of making as small as possible \\T{z^w\ 5)||oo) at the same time. 

The following simple examples show that solving the model matching problem is 
not trivial in general, as there are cases where the solution exists and other ones where 
it does not. 
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E x a m p l e 5 .11 Let 

T3(s) = l , T2{s) 
s-1 
s + l 

while Ti(s) is any element of RHoo- Then it follows, for any Q{s) G RHoo (recall Definition 
2.24), 

mis) - T2{s)Q{s)\\oo > |Ti(l) - T2(1)Q(1)| = |Ti( l) | 

so that 
inf ||Ti(s) - n{s)Q{s)\\ :=a> \T^{1) 

Q{s)eRHao 

Chosen 

Q°is) :--
T^js)-nil) 

T2{s) 

it is easy to verify that Q^{s) G RHoo (observe that the zero of T2(s) is canceled out because 
the numerator of Q^{s) vanishes for s = 1). On the other side, 

T,{s)-T2{s)Q%s) = Ti{l) 

and therefore a < ||Ti(s) - r2(5)Q^(s)||oo = |Ti(l) | < a, so that 

| | r i ( . ) - T 2 ( . ) Q ^ ( . ) | | o o - a 

E x a m p l e 5.12 Let r3(s) - 1 and 

Define 

so that 

Ti{s) = 

Qe{s) 

5 + 1 

S+1 

, T2{S 

£S + 1 

Ti{s)-T2{s)Qe(s)--

(5 + 1)2 

, 0 < £ < 1 

£S 

(s + l)(£:5 + l) 

The diagram of \Ti{juj) — T2{JLO)Q£{JLU)\ lies always below e. Therefore, it is ||Ti(s) — 
T2(5)Qe(s)||oo <£, SO that 

inf | |Ti (5)-T2(5)Q,(5) | |oo=0 
e 

This value of the norm is attained in correspondence of a Qe{s) which is such that Ti(s) — 
T2{s)Q^e{s) = 0, namely Q?(s) = 5 + 1 0 RHoo- • 

The result to be presented in the next theorem makes reference to two functions 
f{s) and g{s) which are derived from a generic scalar function F{s) G RL^c in the 
following way. Let Fa{s),Fs{s),FQQ be such tha t 

where 

Further, let 

F{s) = Fa{s)-^Fs{s)^Foo 

Fa{s)eRH^, Fs{s)eRH2, F^, := limF{s) 

Fa{s) := 
' A 

C 

B ' 

0 

(5.162) 

(5.163) 

(5.164) 
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and suppose that the triple (A, B, C) constitutes a minimal realization of Fa{s). Then, 
denote by P^ > 0 and PQ > 0 the unique solutions (recall Lemma C.l) of the two 
Lyapunov equations (in the unknown P) 

0 = -PA' -AP + BB' 

0 = -PA - A'P + C'C 

(5.165) 

(5.166) 

respectively. Moreover, let A|^ be the maximum eigenvalue of the matrix PoPr (recall 
Lemma B.IO and the fact that all the eigenvalues of this matrix are different from 0, 
since it is nonsingular) and /? a corresponding eigenvector, so that 

PoPrP^Xl^P^ P^O 

and define 

Now the following functions 

X:= A7/P,/? 

9{s) := 

- A' 1 
B' 

' A 

C 
X 
0 

p] 
0 

G 

€RH2 

(5.167) 

(5.168) 

(5.169) 

(5.170) 

can be associated with the scalar function F{s) G RLoo- The two functions defined 
by eqs. (5.169),(5.170) are endowed with the property stated in the following lemma, 
where TF~ and T*p^ are the Hankel operator with symbol F ~ and its adjoint, respec-
tively (recall Definition 2.34 and Lemma 2.27). 

Lemma 5.2 Let F{s) e RLoo be a scalar function and f{s) e RH2 and g{s) € RH2 
he two functions derived from F{s) according to eqs. (5.162)-(5.170). Then 

TF~g{s) = A M / ( S ) 

T*p^f{s) = \Mgis) 

Proof Prom eq. (5.165) it follows 

C{sl - Ay^{PrA' + PrS - sPr + APr){sI + A')"^/3 = 

= C{sl - A)-^BB'{sI + A')-'^l3 

Therefore, by taking into account eqs. (5.164)-(5.169), one obtains 

C( s / - A)-^[PrisI + A') - {si - A)Pr]{sI + A')-'^^ = 
= Fais)f{s) 

from which it follows 

C{sl - A)-'Prf3 - CPr{sI + A y 13 = Fa{s)f{s) 

On the other hand, eq. (5.168) is equivalent to 

PrP = AMX 

(5.171) 
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so that, by recalling eqs. (5.170),(5.171), it results 

XM9{S) - CPrisI + A')-^f3 = Fa{s)f{s) 

If the antistable orthogonal projection operator Jla is apphed to both sides of this 
equation (recall Definitions 2.32 - 2.34, Remark 2.25 and Lemmas 2.26, 2.27) one 
obtains 

In a similar way, from eq. (5.166) it follows 

B'{sl + ATHA'Po + sPo - Pos + PoA){sI - Ay^x = 
= B'{sl + A')-'^C'C(sI - A)-'^x 

so that, by taking into account eqs. (5.164), (5.167), (5.168), (5.170), one has 

B'Po{sI - A)-^x - B'{sl + A ' ) - V A M = -F:{S)9{S) 

In view of eq. (5.169), if the stable orthogonal projection operator Ilg is applied 
to both sides of this equation (recall Definitions 2.32 - 2.34 and Remark 2.25), one 
obtains 

D 

Theorem 5.6 Let F[s) G RL^Q he a given scalar function. Then, the function 

X°{s) := F{s) - ' ^ ^ 7 ^ ^ ^ (5.172) 

is such that 
\\F{s)-X%s)\U= \ni \\F{s)-X{s) 

In eq. (5.172) the two functions f{s) and g{s) are specified by eqs. (5.162)-(5.170). 

Proof First observe that, thanks to Nehari's theorem (Theorem 2.19), there exists a 
function X\s) G RH^ such that | | rF - | | = \\F[s) - X^(5)||oo. Then, define h{s) := 
[F{s) - X''{s)\f{s) and notice that h{s) e RL2, because F{s) - X''{s) e RLoo and 
f{s) e RH2. It follows 

\\h{s) - n.f{s)\\i = < h{s) - n^fis), h{s) - r^.fis) > 
= < h{s),h{s) > + < r>./(5),r^./(s) > -

-2<h{s),r^^f{s)> 

By taking into account that T}.^f{s) G RH^, X''{s)f{s) G RH2 and Lemma 2.27, 
one obtains 

< h{s),r*p^f{s) > = < Uah{s),T*p^f{s) > 

= < Ua[F{s) - X''{s)]f{s),T*p^f{s) > 

= <UaFis)fis),rF-m> 
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Therefore, 

\\h{s) - n^mwl = < h{s),his) > - < r^./(s),r^./(5) > 
= \\[F{s)-X''is)]f{s)\\l-

-</(s),rf~r^./(s)> 
= \\[F{s) - X-^isMsm - A i , | | / ( s ) | | i (5.173) 

since, by Lemma 5.2, r i 7 ~ r | p ^ / ( s ) = A |^ / ( s ) . In view of Theorem 2.12 it follows 

WlFis) - X%s)]f{s)\\l < \\F{s) - X''is)\\U\m\\l 

and therefore from eq. (5.173) one has 

IIM )̂ - r^^/(^)ll^ < [\\F{s) - x%s)\\l - xl] \\f{s)g = 0 

because A M = | | r F - | | = \\F{s) - X^(s)||oo (recall Remark 2.27). Thus, h{s) = 
r | ^ ~ / ( s ) and, thanks to Lemma 5.2, [F{s) - X^{s)]f{s) = h{s) = XM9{S), which 
implies, in turn, 

X'^is) = Fis) - ^ = Fis) - fcMf) 

D 

E x a m p l e 5 .13 Let 

F{s) = — ^ , a > 0 , c ^ 0 
s — a 

Then 
r a 11 1 

Fa{s)=\ , Fs{s) = 0, Foo=0 
L c I 0 J 

and the solutions of eqs. (5.165), (5.166) are Pr = (2a)~^ and Po = c^(2a)~^, respectively. 
Therefore, AM = |c | (2a)~\ /? = 1, x = | c | ~ \ Prom eqs. (5.169) and (5.170) one obtains 

SO that 

T h e o r e m 5.7 LetTi{s) G RHoo^i = 1,2, be two given scalar functions. IfT2{s) does 
not have zeros on the extended imaginary axis, then there exists a function Q^{s) G 
RHoo such that 

| |Ti(s) - T2is)Q''{s)\\oo = ^^ inf \\T,{s) - T2is)Q{s)\\^ 

P r o o f Let T2i{s) G RHoo and T2o{s) G RHoo be two functions, inner and outer, 
respectively, such tha t T2{s) = T2i{s)T2o{s) (recall Theorem 2.10) and notice tha t , 
being T2{juj) 7̂  0, 0 < a; < oo, it is T^J~{s) G RH^Q. Then, taking into account the 
identity T2^[s)T2i{s) = / , one obtains 

\\Ti{s) - r 2 ( s ) Q ( s ) | U = \\T2i{s)[T^\s)Ti{s) - T2o{s)Q{s)]\\^ 

= \\T^\sm{s)-T2o{s)Q{s)\\^ 
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Define F(5) := T~^{s)Ti{s) SiiidX{s) := T2o{s)Q{s). Then the problem of minimizing 
\\F{s) — X(s)| |oo with respect to X{s) G RHoo is equivalent to tha t of minimizing 
\\T^^^{s)Ti{s) — T2o{s)Q{s)Woo with respect to Q{s) G RHoo, since, once the optimal 
X^{s) G RHoo has been found, it is 

Q%s)=T^^\s)X%s)eRHoo 

Therefore, the theorem follows from Theorem 5.6. • 

R e m a r k 5.32 The request that the function T2{s) has no zeros on the extended imaginary 
axis is a sufficient condition only. Indeed, consider the case in which 

T2{s)= ^ 
5 + 1 

while Ti(s) is an element of RHoo- By defining Ti := lims^oo Ti{s), one has 

| |T i ( s ) -T2(s )g(s ) | | oo> lim \\n{s) - T2{s)Q{s)\\ 
s—>-oo 

> |Ti| , yQ{s)eRH^ 

so that 
inf \\Ti{s) - T2{s)Q{s)\\oo := a > | f i | 

Q{s)eRHoo 

Chosen 

Q(s) - ^^(^) -^^ 

it is easy to verify that such a function belongs to RH^o and 

a < \\Ti{s) - T2{s)Q{s)\\o. = | f i | < a 

which implies Q{s) = Q^{s). • 

R e m a r k 5 .33 In view of the above results a procedure for the computation of Q^{s) can 
be established as follows. 

1) Find a double coprime factorization in RHoo of ^22(5), thus getting M(s), M(s), Y{s). 

2) Compute Ti{s), i = 1,2,3 from eqs.(5.156)-(5.158). If no zero of T^is) := T2{s)T3{s) 
lies on the complete imaginary axis, go to point 3) below, otherwise stop. 

3) Find an inner-outer factorization of T^is), so that T4(s) = T4i(s)T4o(5). 

4) Find the antistable and strictly proper part Fa{s) of F{s) := T-\s)Ti{s). 

5) Find a minimal realization (A, B, C) of Fa{s). 

6) Solve the Lyapunov equations (5.165) and (5.166). 

7) Find the maximum eigenvalue A^ of PoPr and / ( s ) and g{s) from eqs. (5.167)-(5.170). 

8) Compute X%s) (eq. (5.172)). 

9) Set Q^(s) = T-^\s)X%s). 

D 

Examip le 5 .14 Consider the control system shown in fig. 5.47, where 

5 - 1 
Gn{s) : 

( 5 - 2 ) ( 5 + l ) 

A controller K{s) is sought which stabilizes the system corresponding to the widest possible 
class of perturbations A(s) of the form 

A(s) e {A(s) I A(s) e RH^ , ||A(s)||oo < «} 
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K{s) 

A{s) 

Gnis) 

Figure 5.47: A control system with additive perturbat ions 

that is, corresponding to the maximum possible value of the scalar a. Letting 

P{s) :-- 0 / 
/ Gn{s) 

the problem can be solved, thanks to the here presented results, by following the procedure 
outlined in Remark 5.33. If the adopted (minimal) realization of Gn{s) is 

Gn{s) = 

0 
2 

- 1 

1 
1 

1 

0 
1 

0 

:=E(Ae,5c ,Ce,0) 

and the chosen matrices F and H are 

F = [-3 - 3] , H=[-3 - 6]' 

(observe that Ac + BcF and Ac + HCc are stable), one obtains 

q — 9 ^ 97 
M{s) = M{s) = ^-^ , Y{s) 5 + 1 5 + 1 

Further, from eqs. (5.156)-(5.158) it results 

Tiis) = - 2 7 ^ ^ - ^ , nis) = n{s)=' ^ 

so that 

{s + iy 

Us) 

s+l 

{s-2f 
(S+1)2 

The function Ti{s) has no zeros on the complete imaginary eixis. Therefore, starting from 
its inner-outer factorization given by 

^4n^) = 7—rr;^ ^ ^4o(sJ — 

it follows 

(s + 2)2 ' ^^"'"' (S + 1)2 

F(s) = - 2 7 - ( ^ - + 2 ) ' -
(s + l ) 2 ( s - 2 ) 

A realization of the antistable part Fa{s) of F{s) is 

Fa{s) : 
2 

- 6 

8 " 

0 _ 
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so that, from eqs. (5.165)-(5.170), one obtains 

Pr = 16 , Po = 9 , AM = 12 , f3 = l , x=^ 

5 + 2 ' ' 5 - 2 

Then, from eq. (5.172) it follows 

^o . ._ - , . (5_+2) (5_^f7 /4) 

^ ^ ^ ^ " ^ ^ (5+1)2 

which implies 

Finally, from eq. (5.155) and by taking into account what has been shown in the proof of 
Theorem 3.4, one obtains 

Ko^s) = - 1 2 ^ 

Therefore, the widest class of perturbations corresponding to which stability is guaranteed 
is characterized by the value a — X^ = 1/12. Compare this conclusion with the one given 
in Example 5.7. • 

5.7 Notes and references 

Since the pioneering work of Zames [64], a great deal of at tention has been devoted 
to robust control and related topics. The material collected in Sections 5.1 and 5.2 
partly concerns classical issues of control theory suitably revisited so as to account 
for the basic instances of robustness. In particular, reference has been made to the 
books of Francis [19], Doyle et al. [16] and Maciejowski [43]. Further reading on 
related topics are Ackermann [1], Doyle [13] and Stein and Doyle [57]. No mention 
has been done to the somehow more realistic case of structured plant perturbations. 
The interested readers are referred to the papers by Doyle et al. [18], Doyle [14] and 
[15]. Sections 5.3, 5.4 are mainly based on the paper by Doyle et al. [17]. Again, the 
results concerning the parametrization of the admissible controllers follow the lines 
traced in the paper by Mita et al. [44]. More on the connections between differential 
games and iJoo theory can be found in the book by Basar and Bernhard [2]. The 
robust stabilization problem of Remark 5.11 has been previously faced by Barmish 
[3], Khargonekar et al. [31] and Haddad and Bernstein [27]. The design of RH2 filters 
in the presence of uncertainties (as in Remark 5.19) has been studied by Petersen and 
McFarlane [51] and Bolzern et al. [8], whereas the same problem in the RH^ context 
was tackled by De Souza et al. [12] and Fu et al. [20]. The paper by Safonov and 
Limebeer [56] has been exploited in writing down Remark 5.24 in Section 5.5. The 
rest of the section still relies on the paper by Doyle et al. [17]. A recent book on the 
Hoo control problem is tha t by Stoorvogel [59] who has also explored the so called 
singular problem [58]. Finally, Section 5.6 deeply exploits the content of the book by 
Francis [19]. The here neglected approaches which rely on the gap metric and the 
polynomial framework are exploited in the paper by Georgiou and Smith [21] and by 
Kwakernaak [36]. 
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Chapter 6 

Nonclassical Problems in RH2 
and RHoo 

6.1 Introduction 

This chapter introduces nonclassical problems in RH2 and RHoo spaces which, roughly 
speaking, can not be solved in general by the machinery provided in the previous chap-
ters. For a given stable transfer function the RH2 norm is a measure of the level of 
a fixed input disturbance present in the output. The minimization of the RH2 norm 
preserves the system against external disturbances. On the other hand, the RH^o 
norm of the same transfer function kept bounded above by a certain prescribed value 
7 > 0, imposes to the system a stable behavior against unmodeled dynamics with 
RHoo norm less than I /7 . The key observation is that RH2 and RHoo norms com-
pete one with other. Indeed, when 7 -^ 00 the central RHoo controller approaches 
the optimal RH2 controller, meaning that a level 7 < 00 can be imposed only at 
the expense of some performance level. Being so, it is in many cases important to 
determine a controller which, in some sense, expresses a desired tradeoff between both 
norms. This characterizes the so called mixed RH2/RH00 optimal control problem. 
Its solution can not be addressed by means of classical methods based on Riccati 
equation solvers. Accordingly, our attention has to be moved to other numerical tools 
as for instance convex programming methods discussed in Appendix I. 

6.2 Parameter Space Optimization 

In this section, basic control synthesis problems involving stability, RH2 and RHoo 
optimization are analyzed in the parameter space generated by the free elements of 
the feedback law. The main idea is to convert such nonconvex problems into convex 
ones in order to determine their global solutions by means of very powerful numeric 
procedures. First of all we need to introduce some concepts and definitions which are 
also discussed in Appendix H. 

Definition 6.1 (Convex sets) A set fi in R^^'^ is convex ifM Xi,X2 G 0 the point 
X = aXi -h (1 - a)X2 e n for every a G [0, 1]. • 
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Definition 6.2 (Convex functions) A function /(•) G R defined in a convex set Q, 
is convex ifM Xi,X2 G Q. and X = aXi + (1 — OL)X2 there holds f{X) < af{Xi) -\-
(1 - a)f{X2) for every ce G [0, 1]. • 

There is another characterization of convexity which is in many instances simpler to 
apply. A real valued function /(•) defined in a convex set Q C R^^'^ is convex if and 
only if for each XQ G VL there exists a matrix AQ of appropriate dimension such that 

f{X) > / (Xo)+ < Ao, X - Xo > (6.1) 

for all X E Q. In the above inequality (6.1) the inner product of matrices is defined 
by < A, X >:= trace[A'X] which induces the Probenius norm. The set df{Xo) of all 
matrices AQ satisfying (6.1) is called the suhdifferential of /(•) at X — XQ. If /(•) is 
diflFerentiable at X = XQ then AQ = V/(Xo) G df{Xo) is unique. 

Convexity is a key concept because any relative minimum of a convex programming 
problem formulated as to minimize f{X) over a closed convex subset of ^ is a global 
minimum. Additionally, given a convex set ft and a point XQ 0 ft^ it is always 
possible to determine an hyperplane which separates XQ from ft. The same result can 
be generalized to cope with XQ in the boundary of ft. 

When dealing with linear system stability and optimization, one of the most im-
portant sets to be handled is V, composed by all square, real, symmetric and positive 
semidefinite matrices with fixed and know dimension. Naturally, P is a subset of 5 , 
the set of all real symmetric matrices with the same dimension and P is a convex set. 
To show this, let us recall that X e V ii and only if for any vector x of appropriate 
dimension x'Xx > 0. Hence, for every Xi,X2 G V, the convex combination of them 
satisfies 

x^Xx = ax 'Xix + (1 — a)x'X2X 

for all ce G [0, 1] implying that X E V. The convexity of V follows from Definition 
6.1. This result is a particular case of a more general one given in the next lemma. 

Lemma 6.1 Suppose the matrix function A{X) is affine and its range is contained 
in S. The set of all matrices X such that A{X) is positive semidefinite is convex. 

Proof Since A{X) is affine, for all a G [0, 1] it follows that the convex combination 
X of arbitrary matrices Xi, X2 satisfies 

A{X) = aA{Xi) + (1 - a)A{X2) (6.2) 

Using the fact that the range of ^(•) is a subset of 5 , then A{X) > 0 is equivalent to 
x'A{X)x > 0 for all vectors x of compatible dimension. The above equality yields 

x'A{X)x = ax'A{Xi)x + (1 - a)x'A{X2)x (6.3) 

and so, A{X) > 0 whenever A{Xi) > 0 and A{X2) > 0, proving thus the lemma 
proposed. • 

Remark 6.1 Lemma 6.1 says that the set of all matrices X such that A{X) G P is convex. 
In particular, the choice A{X) = X shows once again that V is convex. Under the same 
assumptions of Lemma 6.1, the set of all matrices X such that A{X) < 0 is also convex. 
The real valued function f{X) defined as 

/(X) = maxA4^(X)] 
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with A{X) affine and with range in S is convex as well. To show this, considering X as a 
convex combination of arbitrary Xi , X2, the conclusion is that 

x'A{X)x 
fiX) = max —— 

xi^o x'x 

x'AiXi)x ,^ , x A{X2)x 
< a max ^ h (1 — a) max —— 

x^O x'x x / 0 x'x 

<af(Xi) + (l-a)f{X2) 

holds for all a e [0, 1]. • 

R e m a r k 6.2 It is important to keep clear that the range of A{X) being a subset of S is 
essential to get the above result. In fact, consider A{X) an affine matrix function but with 
its range not included in S. This means that A{X) is not necessarily symmetric and the set 
of all n X n matrices X such that Re[Ai(.4(X))] < 0 , i = 1, • • •, n is not convex in general. 
This can be verified by means of a simple counterexample. For A{X) = X let us take 

Xi 

and 

-1 4 
0 - 1 

Xo 
-1 0 
4 - 1 

X = 0.5X1 + 0.5X2 
-1 2 
2 - 1 

It is clear that matrices Xi and X2 belong to the previously defined set. However, matrix X 
which is a convex combination of Xi and X2 does not belong to it. The conclusion is that 
the set of all 2 x 2 matrices under consideration is not convex. • 

R e m a r k 6.3 Notice that the convex function f{X) introduced in Remark 6.1 is not afhne. 
It is not difficult to making use of inequality (6.1) for the determination of matrix AQ. As 
an example, consider the simplest case where A{X) = X G <S. Given Xo G S let xo be 
an unitary norm eigenvector associated to its largest eigenvalue. Obviously the equality 
XQXO = f{Xo)xo holds and for all X G <S we have 

fix) = max x'Xx 

> XQXXO 

> / ( X o ) + < x o x [ ) , X - X o > 

Comparing this inequality with (6.1) it is apparent that AQ = xoXg. Function /(•) is not 
differentiable unless the multiplicity of the maximum eigenvalue of Xo is one. In this case 
Ao = XOXQ G df{Xo) is the only matrix satisfying (6.1) at X = XQ. 

Another important function is / ( X ) = trsice[B'X~^B], defined for all nonsingular X G P . 
This function is differentiable and convex. Let us show this by means of inequality (6.1). 
Considering arbitrary nonsingular matrices X, XQ G 7̂  we have 

/ ( X ) = tmcelB'X-^B] 

= / ( X o ) - < X^'BB'X^\X - Xo > + 

+trace[5'Xo"^(X - Xo)X"^(X - XO)XQ^B] 

> / (Xo)+ < -XQ^BB'XQ\X-XO > 

and again Ao = —XQ^BB'XQ^ G df{Xo) is unique. These examples show that inequality 
(6.1) is an easy and useful way to characterize convexity of matrix functions. 

Given matrices A and Q = Q\ the sets of all matrices X ^ S such that 

^ ( X ) = A'X + XA + Q < 0 
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A{X) = AX-\- XA' + Q < 0 

are both convex. This is an immediate consequence of Lemma 6.1. Furthermore, given 
matrices A, B and Q = Q\ the sets of all matrices X = X' > 0 and Y such that 

B{X, Y) = {A + BY)'X + X{A + BY) + Q < 0 

or 
B{X, Y)^{A + BY)X + X{A + BY)' + Q < 0 

are both nonconvex. The second one however can be converted into an equivalent convex 
set. Indeed, since X is symmetric and positive definite the change of variables Y := ZX~^ 
provides 

A{X, Z) = AX-\-BZ + XA' + Z'B' + Q < 0 

which is convex because A{X, Z) is jointly affine in the variables X, Z. Finally, the set of 
all (X, y, Z) matrices such that X = X ' > 0 and Y'X~^Y - Z < 0 is convex as well. This 
follows immediately from the Schur complement formula (recall Lemma B.14) which states 
that this set is equivalent to the set of all (X, Y, Z) matrices such that 

X > 0 X Y 
Y' Z 

> 0 

This is one of the most important result to be exhaustively used in the sequel. 

6.2.1 Stabilizing controllers 

A convex parametrization of all stabilizing matrix gains of a linear system is provided. 
Consider the following linear and time-invariant dynamic system 

X = Ax + B2U (6.4) 

with n states, m inputs and where the state variable is available for feedback. When 
dealing with optimal control problems in RH2 and RHoo spaces, we have to restrict 
our attention to those m x n matrix gains F such that with u = Fx the closed loop 
system is stable, that is 

FelCc:={Fe i^^'^^ : A + B2F stable} (6.5) 

The sentence "A + B2F stable" means that the closed loop system is internally 
stable, that is Re[Xi{A + ^2^^)] < 0 , i = 1, • • •, n. Since A{F) = A + B2F is affine 
with respect to F but its range is not in S the conclusion, as discussed before (recall 
Remark 6.2) is that the set /Cc is not convex in general. Any optimal control problem 
formulated in the parameter space generated by the (free) elements of F and having 
/Cc as the feasible set is not convex. At most only local optimal solutions can be 
numerically determined by the machinery available in the literature to date. The fact 
that the set ICc is not convex, introduces one of the major difficulties to be faced in 
this section. 

To circumvent this difficulty let us proceed as follows. Define the extended p x p 
and p X m matrices {p := n-\-m) 

Mr-.= 
A B2 
0 0 iV. := {^•^) 

where the null space of Â^ is spanned by all v E R^ such that N'^v = 0 or equivalently 
by all vectors in R^ having the form v = [x' 0]' with x E R^ arbitrary. Then, it is 
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apparent that the set J\fc of vectors v in the null space of Â^ with ||u|| = 1 equals the 
set of all V = [x' 0]' with x e i?" and ||x|| = 1. Define also the p x p symmetric 
matrices W and Qc partitioned as 

W :--
Wi W2 
W!, Ws Qc 

Q\c 
0 

(6.7) 

where in both matrices, the (1,1) block has dimension n x n. 

Theorem 6.1 Assume Qic ^s a positive definite matrix and consider the set 

Cc-={W : W > 0 , v'Qc{W)v < 0 , Vi; G A/;} (6.8) 

where Qc{W) := McW + WM^ + Qc- The following hold 

a) Cc is a convex set. 

b) Each W eCc is such that VFi > 0. 

c) ICc={W^Wr' : WeCc}. 

Proof Each part of the theorem is proved separately. Notice that W is symmetric 
and the matrix valued function Oc(-) is affine. 

Point a) Since the empty set is convex, let us proceed by considering Xi and X2 
two arbitrary matrices belonging to Cc- Taking X = aXi + (1 — Q;)X2 with a G [0, 1] 
we first notice that X > 0 since the set of all positive semidefinite matrices is convex. 
Furthermore, taking into account that the matrix valued function Oc(X) is affine we 
get 

v'Qc{X)v = av'ec{Xi)v -h (1 - ayGc{X2)v < 0 

for all V e J^c Consequently X e Cc-
Point b) Let us prove this point by contradiction. Assume for some W e Cc there 

exists X y^ 0 e R^ such that Wix = 0. Since VF > 0, using the partitioning (6.7) we 
must have W2X — 0. On the other hand W e Cc and v — [x^ 0]' G A/'c imply that 

0 > v'ec{W)v 

> x' {AWi + WiA' + B2W!, + 1^252 + Qic) X 

> x'QicX 

which is an impossibility because Qic > 0. 
Point c) The proof of this part is done by construction. First assume JCc y^ ^^ 

take F G /Cc and recall that Qic is positive definite. From the Extended Lyapunov 
lemma (see Appendix C), there exists a symmetric positive definite solution to the 
linear equation 

{A + B2F)P + P{A + B2Fy + Qic = 0 

Consequently, choosing 
P PF' 

FP FPF' 

it is readily seen that such a matrix W is feasible, that is VF G Cc and W^^i"^ — 
FPP~^ — F. Conversely, assume Cd^^ and take W G Cc- From point b) we already 
know that VFi > 0 and Mv G Mc yields 

0 > v'Qc{W)v 

> X' {AWi + WiA' + B2W!, + ^ 2 ^ 2 + Qlc) X 

> x' [{A + B2W!2W{^)Wi + Wi{A + B2W!2W{^)' + Qic] x (6.9) 

W 
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Figure 6.1: Relationship between sets /Cc and Cc 

The vector x in the third inequahty of (6.9) being arbitrary imphes that F — Wl^W^^ G 
/Cc- In fsLct, assume by contradiction that there exist an eigenvalue A and an eigen-
vector X of matrix A-\-B2W2W{^ such that Re(A) > 0 and ||x|| == 1. From inequality 
(6.9) it follows that 2Re{\)x^Wix + x'^QicX < 0 which contradicts the assumption 
that Qic is positive definite. The proof is concluded because, from the above, if one 
of the sets /Cc or Cc is empty then both are empty. • 

Figure 6.1 gives an interpretation of this result. Point c) of Theorem 6.1 provides 
a nonlinear mapping namely W^W^"^ which generates the set /Cc from all matrices W 
in the convex domain Cc- In some sense, the nonconvexity involved has been isolated 
in the nonlinearity 1̂ 2VF̂ " . Furthermore, notice that for V t̂  G Afc the quantity 
v'Qc{W)v depends only upon the blocks Wi and W2 of matrix W. Consequently for 
given Wi and W2 such that v'Qc{W)v < 0 , \f v e Nc, it is always possible to select 
W3 > W^TFf ^W2 (recall Appendix B) in order to have W > 0 and VF G Cc- This 
degree of freedom will be important for solving optimal control problems in RH2 and 
RHoQ spaces. 

Remark 6.4 From Theorem 6.1 it is clear that the pair (A, B2) is stabilizable if and only 
if Cc ^ 0. This follows from the fact that when W varies in Cc then all stabilizing state 
feedback gains are generated from F = TF^^i"^- If such a matrix does not exist, it is clear 
that Cc = 0. • 

Let us now move our attention to the output feedback case. The linear system to 
be dealt with is 

X 

y 

Ax + B2U 

C2X 

(6.10) 

(6.11) 

with n states, m inputs and r outputs. The controller structure is given by 

i^{A + B2F)^ + L{C2i-y) (6.12) 

u = F£, (6.13) 

where both gains F and L have to be determined in order to assure the closed loop 
connection of the system and controller is internally stable. Simple algebraic ma-
nipulations (recall Section 4.1 and the separation property) bring to light that the 
dynamic matrix Ap of the resulting system satisfies 

det[5/ - AF] = det[s/ - (A + B2F)]dei[sI - (^ + LC2)] (6.14) 
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Hence, as far as stability is concerned, the determination of both gains which defines 
completely the dynamic controller (6.12) - (6.13) have to be such that F G /Cc and 

LelCf:= {Le i^^^^ : A + LC2 stable} (6.15) 

However, keeping in mind that the eigenvalues of any matrix and its transpose are 
the same, all elements of /C/ can be generated by the dual version of Theorem 6.1. 
Indeed, following (6.6) let us define the qxq and qxr extended matrices {q := n + r) 
namely. 

Mf:= 
A 
C2 

Nf:= (6.16) 

It is clear that the null space of Ni spanned by all vectors v € R^ such that Niv = 0, 
exhibits again the structure pointed out before, that is v = [x' 0]' with x € R^. The 
set A// is composed by all vectors v G R'' in the null space of N'r with unitary norm. 
Partitioned accordingly to the dimensions of the plant state and output vectors, the 
symmetric matrices 

y := Vi V2 
Qr-- Qif 0 

0 0 
(6.17) 

are on the basis for the next result, dual of the one provided in Theorem 6.1. 

Theorem 6.2 Assume Qif is a positive definite matrix and consider the set 

Cf:={V : y > 0 , v'ef{V)v < 0 , \/v e Aff} (6.18) 

where Of{V) := M'^V + VMf + Qf. The following hold 

a) Cf is a convex set. 

b) Each V eCf is such that Vi > 0. 

c) JCf = {V,-W2 : VeCf}. 

R e m a r k 6.5 Form Theorem 6.2 it is clear that the pair (A, C2) is detectable if and only 
if C/ 7̂  0. This is the dual of the property discussed in Remark 6.4. D 

Matrices F and L which define a stabilizing controller are thus determined from 
completely decoupled convex sets. This is possible because the dimension of the dy-
namic controller (6.12) - (6.13) equals the system dimension. The controller structure 
is based on the internal model of the plant and as expected, the error dynamics 
£ := ^ — X is completely defined by the poles of matrix A + LC2 and so independent 
upon the choice of F G /Cc- For this reason, the controller (6.12) - (6.13) is called 
observer-based controller and, as will be seen in the next sections, it plays a central 
role in nonclassical control design. 

6.2.2 RH2 control design 

Control design problems in RH2 space have been studied in Chapter 4. The standard 
problem, divided in three related topics has been solved. The main purpose of this 
section is to analyze once again the same problems but in the context of convex anal-
ysis. Under the same assumptions introduced in Chapter 4 it is possible to show that 
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w 
PE{S) 

y = x 

Figure 6.2: The state feedback control system 

the standard problem in RH2 can be converted to an equivalent convex programming 
problem. 

Before giving an alternate solution to the Full information, Output estimation and 
Partial information problems, let us consider the following linear system 

X = Ax + Biw + B2U 

z = Cix + D12U 

y = x 

(6.19) 

(6.20) 

(6.21) 

where, as indicated, the whole state vector is available for feedback. The structure of 
controller is simply a static state feedback gain so that 

u — Fx (6.22) 

Calling PE{S) the transfer function of (6.19) - (6.21), the feedback system is depicted 
in fig. 6.2. Any state feedback gain matrix F G /Cc is called feasible. For any feasible 
gain, the transfer function T{z^ w; s) belongs to RH2 and its norm can be evaluated 
as being 

\\T{z,w;s)f2 = \\{Ci+D,2F)[sI-{A^B2F)]-'B,f2 
= trace[^;Po^i] 
= trace[(Ci + Di2F)Pr{Ci + D12F)'] 

where PQ and Pr are the unique solutions of the Lyapunov equations 

0 = A'^,Po + PoAcc + C',,Ccc (6.23) 

0 = AccPr + PrKc + BiB[ (6.24) 

with Ace := A-\- B2F and Ccc 
the problem to be solved. 

Ci + D12F. We are now in position to introduce 

P rob l em 6.1 (State feedback problem in RH2) Find a feasible state feedback gain 
F which minimizes \\T{z^w;s)\\2. In other terms, find the global optimal solution of 
the problem 

min {\\T{z,w;s)\\l ' F e ICc} 

Before solving this problem we observe that it is a particular case of the Full 
information problem treated in Chapter 4 and Assumptions 4.1 - 4.2 of the Full in-
formation problem are again made. That is, i) The pair (A, J52) is stabilizable and 
no eigenvalue of the unobservable part of the pair [{A — B2D'i2^i)^ (^ ~ ^i2^i2)C'i] 
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lies on the imaginary axis of the complex plane and ii) D^2^i2 = ^- Under these as-
sumptions, /Cc 7̂  0 and the Full information problem and the State feedback problem 
shares the same optimal solution because as we already know (recall Theorem 4.1) at 
the optimal solution of the former, the gain corresponding to w is zero. The solution 
of Problem 6.1 is thus 

F " = F2 = -B'^P2 - D[^Ci (6.25) 

where P2 is the symmetric, positive semidefinite and stabilizing solution of the Riccati 
equation (in the unknown P) 

0 = PAe + A'^P - PB2B'^P + C[^Cic (6.26) 

with Ac := A - B2D[2Ci and Cic := ( / - Di2D[2)Ci. Wi th u = F2X the closed loop 
minimum performance is given by 

min \\T{z,w;s)\\l = tmce[B[P2Bi] (6.27) 

R e m a r k 6.6 The solution of the State feedback problem (as well as the Full information 
problem) does not depend upon matrix Bi. Indeed, for any matrix Bi the optimal feedback 
gain F2 is completely characterized by means of (6.25) and (6.26) which do not depend of the 
aforementioned matrix. This aspect will be important in the sequel. In order to determine 
a convex problem equivalent to the State feedback problem it will be necessary to introduce 
an additional assumption, namely BiB[ > 0. To see that this can be done with no loss of 
generality, consider BiB[ > 0 and define Bi := [Bi \/eI] where e is a positive constant. 
Obviously matrix Bi exhibits the desired property BiB[ > 0 for any e > 0 chosen. On the 
other hand, solving the State feedback problem we get 

min ||T(^,i^;s)||2 = min ||T(z,i(;; 5)||2 + etrace[P2] 

That is, the minimum value of the modified transfer function diff"ers from the previous one 
by an amount of order e which can be made arbitrarily small by a proper choice of this 
parameter. D 

R e m a r k 6.7 It is important to keep in mind that the set of admissible controllers for the 
State feedback and Full information problems in RH2 are quite different. In the Full infor-
mation problem we have considered as admissible, any dynamic controller K(s) satisfying 
Definition 4.1 and we have proven (recall Theorem 4.1) that the optimal controller is given 
by 

[ 0 1 0 0 

L 0 I P2 0 

In the State feedback problem stated before, we have considered as admissible only the 
static and stabilizing state feedback gains, namely u = Fx such that F ^ JCc- Since this 
structure is a pgirticular case of the former and Kpj{s) given above implies that u = F2X 
then F = F2 ^ JCc is the optimal solution of the State feedback problem. The proof of 
this fact could be done in a different way which as expected is simpler than the proof of 
Theorem 4.1. Actually, making use of (6.23) we can restate the State feedback problem as 
to determine F G /Cc and P = P' > 0 such that 

min{trace[PiPPi] : 0 = A'^^P + PAcc + C'ccCcc} 

The Lagrangian function associated to this problem (A = A' being the matrix of Lagrange 
multipliers associated to the equality constraint) is 

£(P, P, A) == trace[PiPPi] -h trace[A(AeeP + PAcc + C'^cCcc)] 
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So, the necessary conditions for optimality are readily obtained by simple differentiation of 
£(•) with respect to the unknown matrices F, P and A, providing 

0 = AccA + AA'^c-^BiB[ 

0 = (F + DI2C1 + B'2P)A 

A possible solution to this set of nonlinear equations is obtained by first setting F = 
—B2P — D'i2Ci. This equality together with the first equation imply that P must solve the 
Riccati equation 

0 = PAe + A',P - PB2B'2P + CLClc 

Under the previous assumptions, this equation admits a stabilizing solution P = P2 yielding 
F = F2. Noticing that F2 G /Cc, the second equation has a solution with respect to A namely, 

f 
Jo 

^(A+B,F,)t^^^,^^(A+B,F,yt^^ 

consequently the conclusion is that the triple (F2,P2,A2) satisfies the necessary conditions 
for optimality. It remains to prove that this is in fact the global solution of the proposed 
problem. To this end, consider F G /Cc an arbitrary stabilizing state feedback gain. Simple 
algebraic manipulations show that 

{A + B2Fy{P - P2) + (P - P2){A + B2F) + (P - P2)'(P - P2) = 0 

and (recall Appendix C) so 

/»oo 

P = P2+ e(^+^^^>''(F - F2)'(F - F2)e(^+^^^"dt > P2 
Jo 

For u = Fx the closed loop transfer function satisfies 

\\T{z,w;s)\\l = t race[PiPPi] 

> trace [Pi P2B1] , VP G /Cc 

proving thus that the static matrix gain P2 generated by the stabilizing solution P2 of the 
Riccati equation (6.26) is the global optimum of the State feedback problem indeed. Once 
again, it is noticed that its solution does not depend upon matrix P i . 

However, for P i given it is in principle possible to determine F ^ F2 which equals the 
global minimum. In fact, P is equal to P2 only if P = P2 but trace [Pi P P i ] may be equal 
to trace [Pi P2 Pi] even though P 7̂  P2. Let P G /Cc satisfying the necessary conditions for 
optimality with A > 0 be such that (P — P2)A = 0. Taking into account that 

/»oo 

Jo 

together with the relationship between P and P2 we get the desired result 

0 = trace[(P - P2)'(P - P2)A] 

= trace 
/•oo 

/ Pie(^+^^^^'*(P - P2)'(P - F2)e^^^^'^^'B,dt 
Jo 

= t r a c e [ P i ( P - P 2 ) P i ] 

From this it is apparent that the way to prevent this pathological situation is to impose 
A > 0,VP G /Cc. Thanks to the Extended Lyapunov lemma (recall Appendix C), this is 
always verified whenever P i P i > 0, a condition just discussed in the previous remark. • 
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It is simple to verify that Problem 6.1 is not convex (recall Appendix H). This 
conclusion follows immediately from the fact that the set of admissible gains /Cc is 
not convex. Furthermore, its objective function is not convex as well. Defining the 
symmetric matrices 

Re 
C[ 
D 12 

[ Ci Dn ] , Qc 0 
(6.28) 

the next theorem provides a convex problem equivalent to Problem 6.1. 

Theorem 6.3 (State feedback) Assume BiB[ is a positive definite matrix and con-
sider the following convex programming problem 

W':=argmin{trace[i?eW^] : WeCc} (6.29) 

Then, F ^ W^W^^ solves Problem 6.1. 

Proof It is done in two main steps. First, consider matrix W given by 

W :--
A2 

F2^2 F2h.2F2 
AsF^ (6.30) 

where (recall Remark 6.7) Wi = A2 > 0 due to the assumption BiB'^ > 0. On the 
other hand, it is simple to verify that 1^2^i"^ = F2, W > 0 and for all v G f/c 

v'eciW)v = x'iiA + B2F2)A2 + M^ + B2F2)' + B^B[]x = 0 

implying that W G Cc- The same matrix, together with (6.28) also provides 

C[ 
trace [i?cM ]̂ = trace Ci D 12 W 

D' 12 

= trace [(Ci + Di2F2)A2{Ci + A2F2)'] 

= tYace[B[P2Bi] 

= mm\\T{z,w;s)\\l 

which means that matrix W is feasible and generates the optimal solution of Problem 
6.1. It remains to prove that matrix W is actually the optimal solution of the convex 
programming problem (6.29). To this end, let us keep in mind (recall Theorem 6.1) 
that all W eCc are such that F = Vl̂ ^VFf ̂  G )Cc and 

| |r(z, w; s)\\l = trace [(Ci + Di2W^W^')Pr{Ci + D,2W^W^'y] 

where P^ > 0 solves the linear matrix equation 

0 = (A + B2W^W^^)Pr + Pr{A + ^ 2 ^ 2 ^ ! " ^ ) ' + BiB[ 

However, any W G Cc is such that Wi > 0 and satisfies the inequality 

{A + B2W^W^^)Wi + Wi{A + ^2W^2^r^)' + BiB[ < 0 

which enables us to conclude that Wi > Pr- Furthermore, W > 0 and Wi > 0 is 
equivalent to W3 > 1̂ 2 ̂ i " ^ ^ 2 and we finally get 

trace[PcW^] = min \\T{z,w]s)\\l 

<mz,w-s)\\l 
< trace [(Ci + Di2W^W^^)Wi{Ci + Di2W^W^^y] 

< tYdiCe[RcW] - trace[Di2(iy3 - W^W^^W2)D[2] 

< tvdice[RcW] 
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tTSice[RcW] = /i 

Figure 6.3: The state feedback control problem 

which being t rue for all feasible W E Cc completes the proof. D 

R e m a r k 6.8 Theorem 6.3 opens a very attractive way to solve optimal control problems in 
RH2 spaces by means of many powerful methods available to date. The convexity property 
is the key issue to be sure the global solution is always attained. However, in order to 
guarantee a selected numerical convex programming method can effectively solve Problem 
6.1 it is necessary to prove that the feasible convex set Cc is bounded. Unfortunately, this is 
not true. In fact, the set Cc is a convex and unbounded cone. To show this take any W E Cc 
and A > 1. Then AVî  > 0 and V^ G Afc 

vec{xw)v = Xvec{w)v + (i - XWQCV 

< Xvec{w)v < 0 

implying that AW G Cc. 
However, a weaker condition exists to guarantee Problem 6.1 is numerically solvable even 

though the feasible set is not bounded. The situation is illustrated in fig. 6.3 where the set Cc 
is an unbounded cone but the objective function trace[/?cH^] has a global and finite optimum 
at W = W. This occurs because the convex set 

Cc^ := Cc n {W : tiaice[RcW] < fi} 

is bounded for all fi such that trace[i?c^] < /i < oc. To show that Problem 6.1 has this 
property we proceed as follows. By contradiction assume that for some finite /j, as specified 
before, the set Cc/^ is unbounded. In this case, thanks to its convexity, there exist W G Cc^ 
and W ^ 0 such that W + XW G Cc^x for A > 0 arbitrarily large. Then, W must satisfy 

tTa.ce[RcW] = 0 

I^ > 0 

v{McW-}-WM'^)v<0 , ^veMc 

Using the structure of the symmetric positive semidefinite matrix Rc^ the first two equa-
tions are equivalent to [Ci Di2]W^^'^ == 0 and all its solutions are also solutions of 

[Ci Di2]W=[Ci D12 ] 
Wi W2 
W'2 Wz 

= 0 

Making reference to Appendix B, this equation is solvable provided C\cW\ — 0 yielding 

W = 
I 

-D[2Ci 
Wi [ I -C[Di2 ] 
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which replaced in the previous conditions allows us to express them in terms of Wi only, 
that is we have to get Wi 7̂  0 such that 

CicWi = 0 

Wi>0 

AcWi + WiA'^ < 0 

Once again making use of a result included in Appendix C, there is no matrix Wi / 0 
satisfying these conditions provided the pair (—Ac,Cic) is detectable. Therefore, to be sure 
the set Ccix is bounded we need to change the assumption i) of the State feedback problem 
to i) the pair {A^B2) is stabilizable and no eigenvalue of the unobservable part of the pair 
(Ac,Cic) = [{A — B2D'i2Ci), {I — D\2D'i2)C\] lies on left part (including the imaginary axis) 
of the complex plane. If the detectability assumption is violated then W\ ^ 0 satisfying the 
above conditions may exist. In the example 

Ac = , Cic = [ 1 0 Wi = 
0 0 
0 1 

this occurs because the pair {—Ac^Cic) fails to be detectable. 

E x a m p l e 6.1 To illustrate the geometry of the convex problem introduced in Theorem 
6.3, let us consider the system PE{S) given by 

X = X -\- V2w + u 

1 
0 

y = X 

x + 

The optimal solution of the State feedback problem is characterized by 

P2 = l + \ / 2 , F2 = - ( l + V 2 ) , A2 = - ^ 
v 2 

and \\T(z, w; s)\\l = 2(1 + \/2) = 4.82. For this simple example, Problem 6.29 is written as 

mm{Wi+W3 : Wi + W2-\-l<0 
Wi W2 
W2 Ws 

> 0 

or in other terms, after using Schur complements 

min < Wi + 
Wi 

: Ŵ i + Ŵ2 + 1 < 0 , Wi> »} 
The optimal solution is given by (recall the proof of Theorem 6.3) 

W 
A2 A2F^ 

JP2A2 F2A2F2 

0.70 -1.70 
-1.70 4.12 

Figure 6.4 illustrates the feasible set which lies below the line indicated and the set 
of points such that the objective function is equal to /i = 1,2,3 and 4.82. For the last 
value of /i = 4.82 the curve is tangent to the feasible region yielding the global minimum 
W = W. This example illustrates also that it is possible to eliminate matrix W3 from the 
set of variables by setting W3 = W2W^^W2. Of course this can only be done at the expense 
of changing a linear objective function to a nonlinear (although convex) objective function 
to be minimized. D 
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Figure 6.4: Feasible region and objective function 

R e m a r k 6.9 (Linear matrix inequalities - LMI) The State feedback problem can also 
be stated only in terms of Linear matrix inequalities, that is the feasible set is defined by 
affine constraints only. The importance of this approach is mainly the standard formulation 
of many optimal control problems. 

As we already know, the solution of the State feedback problem depends upon the deter-
mination of matrix P2, the positive semidefinite stabilizing solution of the Riccati equation 
(6.26). To this purpose, we assume that the pair (Ac^Cic) is observable to guarantee that 
P2 > 0 and notice that all P = P' solving 

Q>PAc + KP - PB2B!,P + CLCic 

are such that 0 < P2 < P. To show this notice that for any P satisfying this inequality, 
there exists Cic such that C[cCic > C[cCic for which the equality holds. Consequently 
F = -B2P entails Ac + B2F stable and for all XQ e BJ" we get (recall that C[cDi2 = 0) 

Xo{P - P2)xo ^ XQPXO - min \\{Cic-^ Di2F)[sI - {Ac-^ B2F)]-^ xo\\l 

I (Cic - 1^12^2^) [Sl - {Ac - B2B'2P)\ " ' Xo 

e^^^-^'^'-''^'\C[cCic - C[cCiM^^-^'^'-''^'dt 

> XQPXO 

> 0 
f 
Jo 

Xo 

and P = P2 is the minimum of traiCe[B[PBi] over all feasible P . Defining X = p - \ the 
previous inequality can be rewritten as 

AcX + XAc - B2B2 + XC[cCicX < 0 

which after use of the Schur complements is equivalent to 

A{X) AcX + XA'c - P2P2 XC[c 
CicX -I 

< 0 

Finally, from these calculations we have shown that matrix P2 is the optimal global solution 
of the problem 

min{trace[P;X"^Pi] : X > 0 , A{X) < O} 
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w 

u 
Po{s) 

K{s) 

Figure 6.5: The output feedback control system 

Clearly, the feasible set as well as the objective function are convex (recall Remark 6.3). 
Moreover, the feasible set is completely defined by affine functions only. • 

R e m a r k 6.10 (Full information) As discussed before, the solution of the Full informa-
tion problem is the same as the solution of the State feedback problem. For the sake of 
completeness the solution of the former is now restated. Consider the Problem 4.1 relative 
to system (4.10)-(4.14). Under Assumptions 4.1 and 4.2, it has the optimal solution : 

b) 

min | |T(z,^;s) | |2 = \/tTaiCe[RcW] 

Kh{s) = 
W2W- 0 

where matrix W partitioned as indicated in (6.7) solves the convex programming problem 
(6.29). • 

Now, our at tention is moved to the following situation. Consider the linear system 
described by 

X — Ax + B\w + B^u 

z — C\x -h ^12'^ 

y = C2X + D21W 

(6.31) 

(6.32) 

(6.33) 

where only the partial information of the system state provided by the measured 
output y is available for feedback. Accordingly to the results of Chapter 4, the 
controller s tructure is fixed as being 

K{s) := 
A + B2F + LC2 -L 

0 
(6.34) 

which as indicated is completely parametrized by matrices F and L. The rationale 
behind the choice of this structure is tha t the optimal solution of the Part ial infor-
mation problem can be obtained by a proper choice of the unknown matrices. Wi th 
Po{s) being the transfer function of (6.31)-(6.33), the situation is illustrated by the 
block-scheme of fig. 6.5. The feedback connection has a s tate space realization of the 
form 

" A 

C 

B ' 

0 
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where the indicated matrices are 

A = A + B2F B2F 
0 A + LC2 

and 
5 i B = 

-Bi - LD21 
C=[Ci + DuF DuF ] 

being thus clear that to preserve internal stability we have to consider only matrices 
{F,L) such that F £ K-c and L € ICf. All pairs of matrices with this property are 
called feasible and for any feasible pair the transfer function T{z, w; s) belongs to RH2 
and its norm is easily determined by 

\\T{z,w;s)\\l = \\C[sI-A]-'B\\l 

= trace[^'Po^] 

= trace[CP^C"] 

where PQ and Pr are the unique solutions of the Lyapunov equations associated with 
the closed-loop system, that is 

0 = A'Po + PoA + C'C (6.35) 

O^APr + PrA' + B& (6.36) 

For all feasible pairs (F, L) the above equations are always solvable thanks to the 
stability of matrix A. As far as stability is concerned, the constraints on matrices 
F and L are completely decoupled. So, the control problem to be dealt with can be 
formulated as follows : 

Problem 6.2 (Output feedback problem in RH2) Find a pair of feasible matrices 
{F^L) which minimizes \\T{z^w] s)\\2. In other terms, find the global optimal solution 
of problem 

min {\\T{z,w',s)\\l : F G ICc , LeKf] 

The difficulty to solve this problem stems from the fact that the objective function 
depends in a very unusual way on the unknown matrices. Fortunately, taking into ac-
count that the constraints are decoupled the optimality conditions can be expressed 
in terms of two separable subproblems, yielding each one, the optimal matrices F 
and L. It should be clear that the Output feedback problem is a particular case 
of the Partial information problem introduced in Chapter 4 since the structure of 
the controller (6.34) has been fixed and completely described by means of only two 
unknown matrices. As a consequence, the Assumptions 4.6 - 4.9 are again consid-
ered, that is i) The pair (̂ 4, B2) is stabilizable and the pair (A, C2) is detectable, ii) 
-̂ ^12^12 == 5̂ iii) The eigenvalues of the unobservable and unreachable part of the pairs 
[{A - B^D'^^Ci) {I - Di2D[2)Ci] and [{A - BiD^^Cs), Bi{I - D'^^D2i)] respectively, 
do not he on the imaginary axis and iv) D21-D21 — ^- Under these assumptions, 
/Cc 7̂  0, /C/ 7̂  0 and the optimal solution of the proposed problem is provided by 
Theorem 4.3, that is 

F^ = F2 , L^ = L2 (6.37) 

which defines the optimal controller K^{s). With the optimal controller, the minimum 
cost is given by 

min \\T{z,w,s)\\l=\\P,{s)L2\\l + \\CiPf{s)f2 
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where the transfer functions Pc{s) and Pf{s) are provided by Theorems 4.1 and 4.2 
respectively. At this point, the key observation is tha t these two transfer functions 
defines completely the optimal solution of the problem under consideration and can 
be calculated by means of two decoupled problems. Indeed, simple calculations show 
tha t 

Pc{s)L2 = 
Ac — B2B2P2 

Cic — D12B2P2 

A -h B2F2 

Ci -h D12F2 

and 

CiPfis) = 
Af - UiC'^C^ 

Ci 

B^f - HaC^Dzi 

0 

" A + L2C2 

L ^ 1 

Bi + L2D21 

0 

which together with the solution of the State feedback problem, allows us to say tha t 
matr ix L^ = L2 solves the auxiliary state feedback problem 

IICiP/W min | |C i [ s / {A + LC2)]-HBI + LD2I) (6.38) 

while having obtained matr ix L2, it is apparent tha t the remaining unknown matr ix 
F2 is the optimal solution of another auxiliary s tate feedback problem 

| P c ( s ) i 2 | | i = min | | ( C i + D i 2 F ) [ s / -
FGK-C 

{A^B2F)]-^L2\\ (6.39) 

The above solution to the Output feedback problem admits a very important 
interpretation. First it can be decomposed in two decoupled problems. The first one 
depends only on the system da ta and can be readily solved. Its solution provides the 
gain matr ix L2 which is used to define the objective function of the other optimization 
problem yielding the matr ix gain F2. This decomposition of the Output feedback 
problem is on the basis of what is called the Separation Principle which is valid for 
many optimal control problems with the controller s tructure given by (6.34). 

R e m a r k 6 .11 Following the same lines of Remark 6.7, it is worth noticing that the solution 
of the Output feedback problem can also be obtained by means of mathematical programming 
arguments. The key observation is that all feasible controllers are constrained to have the 
structure (6.34) and the goal is to determine matrices F ^ )Cc, L ^ JCf and P > 0, such that 

min { t race[^ 'P^] : 0 = i ' P + PA + (5'C} 

Using A = A' as the matrix of Lagrange multipliers associated to the equality constraint, 
the partial derivatives of 

£(F , L, P , A) := t race[^ 'P5] + t race[A(i 'P + PA + &C)] 

give the necessary conditions for optimality 

0 = i ' P + P i + C'C 

0 = iA + Ai' + B& 

OF 
dc 
dL 

0 

0 



212 CHAPTER 6. NONCLASSICAL PROBLEMS IN RH2 AND RH^ 

which are simple to be solved from the observation that for F = F2 and L = L2 the solution 
of the two first conditions are 

P = 
P2 0 
0 Y2 

U2 + X2 -U2 
-U2 U2 

where matrices X2 and Y2 are solutions to the Lyapunov equations (in the unknown X and 
Y respectively) 

0 = (A + B2F2)X + X{A + B2F2)' + L2L2 

0 = (A + L2C2yY + Y{A + L2C2) + F2F^ 

At the same point under consideration, the last two partial derivatives of the Lagrangian 
with respect to F and L are given by 

^ = (F-F,)X2, ^=Y,{L-L,) 

showing that the pair (F2,L2) satisfies the necessary conditions for optimality indeed. The 
importance of the calculations introduced here is to make explicit the structure of the matrix 
variables P and A at the optimal solution of the Output feedback control problem. This 
result will be of great importance in the sequel. • 

We already know tha t the Output feedback problem can be converted in two 
decoupled State feedback problems, hence it is not convex. Defining the extended 
matrices 

Ri 
Bi 

D21 
[ B[ D^2i ] , Q / := 

C[Ci 0 
0 0 

(6.40) 

both problems (6.38) and (6.39) can be converted in two convex programming prob-
lems as is indicated in the next theorem. 

T h e o r e m 6.4 (Output feedback) The global optimal solution of the Output feed-
back problem can be calculated by means of the following procedure involving convex 
programming problems only. 

a) Solve the convex programming problem 

V := argmin {trace[iJ/F] : V eCf}, 

b) Redefine the extended matrix 

Qc' 0 

and solve the convex programming problem 

l y := argmin {trace[i?cW] : W e Cc} 

Then, matrices F — W^^ i "^ ^^^ ^ = ^^-^^^2 solve Problem 6.2. 

(6.41) 

(6.42) 

(6.43) 

P r o o f It follows from the decomposition of Problem 6.2 in terms of (6.38) and (6.39). 
The result of Theorem 6.3 is used to convert them to equivalent convex programming 
problems. • 
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R e m a r k 6.12 Remark 6.6 applies to both optimization problems defined in Theorem 6.4. 
If matrices C[Ci and LL' are not strictly positive definite then C{ and L = V-^^^V2 have to 
be replaced, with no loss of generality, by [C[ \/e/] and [L y/el] respectively where e is an 
arbitrarily small positive parameter. • 

R e m a r k 6.13 It is important to discuss under which condition problem (6.41) can be 
effectively solved by a chosen convex programming procedure. As discussed in Remark 6.8, 
we have to impose conditions assuring that the set 

Cf^ := Cf n {V : trace[i^/y] < /i} 

is bounded for all fi such that trace [i^/V] < // < oo. Following the same reasoning, this 
occurs provided the pair {—Af,Bif) is stabilizable. Therefore to have both sets Cc/̂  and 
Cfi_i bounded, the assumption iii) of the Output feedback problem has to be changed to iii) 
The eigenvalues of the unobservable and unreachable part of the pairs [{A — B2D'i2C\) (/ — 
Di2D'i2)Ci] and [{A - BiD2iC2),Bi(I - D21D21)] respectively, do not lie on the left part 
(including the imaginary axis) of the complex plane. • 

R e m a r k 6.14 It is simple to be verified that in the State feedback problem, the set of 
all F G /Cc such that ||T(2;,i(;; s)||2 is bounded above by a given positive scalar 7 can be 
generated by (recall the definition of the convex set Cc/j, in Remark 6.8) 

F = W2W^\ WeCcH {W : trace[i^el^] < 7^} 

Our purpose now is to generalize this result to the Output feedback problem in the case 
that the matrix gain L is fixed and equals the optimal value L = L2. For any F G /Cc the 
transfer function T(z, w; s) belongs to RH2 and 

\\T{z,w;s)f2=tTSice[CPrC'] 

where Pr is the solution of the linear equation (6.36). Simple algebraic manipulations show 
that 

~ _ \ U2+X -U2 
^ " [ -U2 U2 

where matrix X is the solution of 

0 = (^ + B2F)X + X{A + B2Fy + L2L2 

It is very interesting to compare this result to the ones given in Remark 6.11. Matrix Pr has 
the same structure as matrix A and the only difference, due to have considered now F G /Cc 
arbitrary, is restricted to the definition of matrix X above which equals matrix X2 provided 
F = F2. Using this we also have 

\\T{z,w;s)\\l = tTace[CiU2C[] -^ tY8ice[{Ci + Di2F)X{Ci + Di2Fy] 

= trace[Cin2C;] + \\{Ci -^ Di2F)[sI - {A + B2F)]-'L2D2I\\1 

Finally, taking into account Theorem 6.4 it is clear that 

F = W2W^^ , W eCc n {W : trace[i^eH^] < 7^ - trace[CiHaC(]} 

generates all matrices F such that, in the Output feedback problem, the internal stability is 
assured while \\T{z^ w; s)\\2 is bounded above by a given positive scalar 7. • 

R e m a r k 6.15 (Output estimation) The Output estimation problem as defined in the 
Chapter 4 can also be solved by means of convex programming tools. The main observation 
is that Assumptions 4.3 - 4.5 of the Output estimation problem imply the assumptions of 
the Output feedback problem are all verified with D12 — I. Furthermore, the assumption 
Ac — A — B2C1 stable yields P2 = 0 and the associated stabilizing matrix F2 = —Ci. Then, 
Problem 4.1 relative to system (4.58)-(4.60) has the optimal solution : 
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a) 

b) 

min ||T(2;,w;;s)||2 = \Arace[S/K] 

K°OE{S) = 
A - B2C1 + V{^ViC2 

- C i 

- V i 'V2 " 

0 

where matrix V partitioned as indicated in (6.17) solves the convex programming problem 
(6.41). D 

R e m a r k 6.16 (Partial information) For completeness we give here the solution of the 
Partial information problem. The additional result is the value of the objective function 
written in terms of matrices provided in Theorem 6.4. Consider the system (4.92)-(4.94) 
and Assumptions 4.6 - 4.9 then Problem 4.1 has the following solution : 

a) 

b) 

min ||T(^,'w;;s)||2 = trace[J^/y] + trace[i?cl^] 

K%s) = 
W'^W^ 

-Vi^V2 

0 

where matrices W and V solve the convex optimization problems intr6duced in Theorem 6.4. 
Finally, it is important to notice again that these matrices can be determined separately. • 

6.2.3 RH^ control design 

This section presents the convex analysis counterpart of Chapter 5. The State feed-
back and Output feedback control design problems are again addressed but in a slight 
different setting. Indeed, not only the set of all controllers which impose to the plant a 
certain JR^OO norm level 7 is obtained but we also address the problem of determining 
the controller such tha t 7 is minimized. Particular at tention must be payed to the 
fact tha t in many instances, on the contrary of what has been done in Chapter 5, the 
constraints involving RHoo norms are not taken strictly. 

Let the system under consideration be defined as 

X = Ax H- Biw -h B2U 

z = Cix + D12U 

y = x 

(6.44) 

(6.45) 

(6.46) 

and illustrated in fig. 6.2 for which the controller is simply given hy u = Fx where 
matr ix F G /Cc is such tha t T{z^w;s) belongs to RHQQ. For all F G /Cc, those 
tha t additionally satisfies the constraint ||r(2:,K;;5)||oo < 7 with 7 being a positive 
scalar are characterized from the result of Theorem 2.14 which states tha t there exists 
a symmetric and positive semidefinite stabilizing solution of the algebraic Riccati 
equation (in the unknown S) 

0 = SA,^ + A'^^S + j-^SBiB[S + C^^Ce, (6.47) 

with Acoo '•— A-\- B2F and Ccoo '— Ci -{- D12F. An equivalent condition is obtained 
from Theorem 2.15 which requires the existence of a symmetric and positive definite 
feasible solution to the Riccati inequality 

5^eoo + K^S + ^-^SB,B[S + C',^Ccoo < 0 (6.48) 
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in this case no further stabihzing condition is needed. However, it is a simple matter 
to see (recall Remark 2.22) that ||T'(2:, w;; 5)||oo = 11 (̂̂ 5'̂ 5 "5) ||oo meaning that the 
same set of controllers can also be characterized by the existence of a symmetric 
and positive semidefinite stabilizing solution of the algebraic Riccati equation (in the 
unknown P) 

0 = A e o o P + P ^ c o o + l~^PC',^Cco.P + B,B[ (6 .49) 

or equivalently from Theorem 2.15 the existence of a symmetric and positive definite 
feasible solution to the Riccati inequality 

A,^P + PA'^^ + j-^PC'.^CcooP + BiB[ < 0 (6.50) 

As well as, the set of all F e JCc such that additionally ||T(2;,tL'; 5)||oo < 7 is com-
pletely characterized from the results of Theorem 2.16 which requires the existence 
of symmetric and positive definite feasible solutions to the nonstrict versions of the 
Riccati inequalities (6.48) and (6.50). Moreover, in the above Riccati inequalities each 
feasible solution are related one to the other by P = j'^S~^. Although equivalent, to 
our purpose, inequality (6.50) or its nonstrict version are more convenient to handle. 

With 7 being an arbitrary and positive scalar (not fixed a priori)^ the pair (F, 7) 
is called feasible whenever (F, 7) G /C ĉ where 

/C ê : = { ( F , 7 ) : F G / C C , 7 > 0 , \\T{Z,W;S)\\OO < 7} (6.51) 

which makes clear that the set /C ĉ is a subset of /Cc- Based on our previous discussion, 
it is now a fact that the above defined set is not convex. Fortunately it can be 
converted to an equivalent convex set as indicated in the next theorem. 

Theorem 6.5 Assume BiB[ is a positive definite matrix and consider the set 

C^^ := {{W, /i) : T^ > 0 , /x > 0 , v'Q^dW, fi)v < 0 , \/v e Afc} (6.52) 

where O^dW, fi) := QdW) + fi'^WRcW. The following hold 

a) C^c 5̂ a convex set. 

b) Each (VF, /i) G C^c is such that Wi > 0. 

c) JC^c = {{W^W,-\y^) : {W,^)eC^c}-

Proof Notice that function Q^dW^ M) is not affine but it can be converted to an affine 
one by using Schur complements. 

Point a) It is clear that we only need to prove that the set of all (VF, /x) such that 
v'Q^c{W, ii)v < 0 , Vi; G A/'c is convex. Since i?c > 0 and ah v e Afc can be obtained 
from V = UcX where Uc = [I 0]' and ||x|| = 1, then this set is equivalently described 
as 

0 > U',ec{W)Uc + fi-^U'.WRl^^R^^WUc 

which for /x > 0, after using of the Schur complement formula becomes 

u',edw)Uc U'.WRI^^ " 
^(M^, / i )= I ^^T^v:__^^^ ^-"^:^ i < o 

Since A{W^ 11) is affine, the convexity of C^c follows directly from Lemma 6.1. 
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Point h) Since for each (VF, /i) G C^c the matrix W is positive semidefinite, if there 
exists a nonzero vector x E R^ such that Wix = 0 then for the same vector W2X = 0, 
yielding Wv = 0 and obviously 

0>v'e^c{W,fi)v= \\B[xf 

which is an impossibility due to the fact that, by assumption, BiB[ > 0. 
Point c) Suppose K^c 7̂  0 and the pair (F, 7) is feasible for the set /C^c- In this 

case, there exists a symmetric and positive definite matrix P satisfying the Riccati 
inequality (recall Theorem 2.16) 

A e o o P + P ^ e o o + l'^PC'.^CcooP + B^B[ < 0 

Choosing /x = 7^ and 
P PF' 

FP FPF' W 

it is a simple matter to verify that (VF, /x) G C^c and W2W^ ^ = F. Conversely, assume 
C^c 7̂  0 and consider any (Wi /i) G Cjc^ for all 7; G A/'c we get 

0>v'e^c{W,iJ.)v 

> X' [(A + 5 2 ^ 2 ^ 1 " ^ ) ^ ! + VFl(A + 5 2 ^ 2 ^ r ^ ) ' + 

+/x-^l^i(Ci + Di2Vr2^r ' ) ' (Ci + D i2 l^2^ f ' )Wi + BxB'^ X (6.53) 

where the factorization is possible since from point b) it has been already proven that 
W\ > 0. Choosing P — Wi, F = Wl^^^ and 7 = y//x, this inequality assures that 
F e ICc and the existence of a symmetric and positive definite matrix P = Wi > 0 
satisfying the Riccati inequality 

AcooP + PK^ + 7-^PC',^CaooP + BiB[ < 0 

Hence, using Theorem 2.16 it is verified that ||T(2:, i(;; 5)||cx) < 7 which, from (6.51) 
implies that the pair (F, 7) = (^^2^1"^5 \//^) ^ ^ic- From the above, if one set /C ĉ 
or C^c is empty both are empty. The proof is then complete. • 

The joint convexity of the set C^c with respect to both variables (VF, fi) is of 
great importance. To get some insight on this fact let us consider the problem of 
determining the feasible pair (F, 7) which solves 

min {7 : (F,7)G/C^e} (6.54) 

This nonconvex problem has not been directly addressed in Chapter 5 although it 
is possible, in principle, to get its solution iteratively with the results provided in 
Theorem 5.2 (recall the forthcoming Remark 6.20). It is equivalent to the convex 
programming problem 

min {/x : (W,/i) eC^c] (6.55) 

Indeed, at the optimal solution the value of /x is the minimum which preserves feasi-
bility implying that for 7 = ^/Jl there exists a matrix F such that (F, 7) G K^c 

Let us now introduce the problem to be dealt with in the sequel. It resembles 
the Full information problem treated in Chapter 5. To this end it is first needed to 
put in evidence only the feasible pairs (F, 7) such that ||T(2:,i(;; 5)||oo < 7, that is all 
(F, 7) G int IC^o where 

int /C ĉ := {(i^,7) : F G /Cc , 7 > 0 , \\T{z,w',s)\\^ < 7} 
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Problem 6.3 (State feedback problem in RHoo) Given a scalar ^ > 0, determine 
the conditions for the existence of a state feedback matrix F such that the pair (F, 7) 
is strictly feasible, that is (i^, 7) G int ICjc 

The Full information problem as stated and solved in Theorem 5.2 is much more 
general than its State feedback version. However, the last captures the essential fea-
tures of the former in the sense that the existence of a solution to the Full information 
problem, under Assumptions 5.1 - 5.2, is assured provided there exists a symmetric, 
positive semidefinite and stabilizing solution Poo of the Riccati equation (in the un-
known P) 

0 = P ^ -f A'^P - P{B2B'^ - ^-^BiB[)P + C[,Cic (6.56) 

As in the proof of Theorem 5.2 let us proceed by assuming that i) The pair [{A — 
B2D12C1)., {I — Di2Di2)Ci] is observable and the pair (^, P2) is stabilizable and ii) 
^ ' 1 2 ^ 2 = I-

Theorem 6.6 (State feedback) Assume matrix BiB[ is positive definite and let 7 
a positive scalar be given. There exists a strictly feasible pair (F, 7) G int /C ĉ tf ci'^d 
only if there exists W such that (W,7^) G int C^c, where 

int C^c := {{W, fi) : W>0 , /i > 0 , v'G^dW, fi)v < 0 , "iv e ATJ 

Proof Under the assumptions made, the State feedback problem is solvable if and 
only if there exists P — Poo > 0 solution of the Riccati equation (6.56). However, the 
existence of a stabilizing state feedback control such that the transfer function norm 
||T(2:, w\ 5)||oo is strictly less than 7 implies that there exists 0 < 7 < 7 for which the 
State feedback problem is also solvable. Consequently (recall Theorem 5.2) we can 
say that there exists a strictly feasible pair (P, 7) if and only if there exists a positive 
definite and stabilizing solution Poo of the Riccati equation (in the unknown P) 

0 = P^e + KP - ^ ( ^2^2 - 1~^B^B{)P + C(,Ci, 

Hence, the necessity is proved if we are able to calculate a matrix W such that 
(VF, 7^) G int C ĉ- Such a matrix is 

Ŵ oo : = Y 
p-i p-^F' 

_ • ' 0 0 _ c>o -̂  0 0 

vp p—1 Z? P ~ l TP' 
-t^OO-l 0 0 -*̂ ĈXD-1 0 0 ^ 0 0 

> 0 

where Poo = —B2P00 — T)'^2^\- Actually, it suffices to observe that, from the previous 
Riccati equation, the inequality 

= [1 - (7/7) '] \\B[xr < 0 

holds for ah v e Xc- The converse follows readily from Theorem 2.15. • 

It is interesting to analyze the optimal solution of problem (6.55) on the light 
of this result. Suppose the global optimum of (6.55) has been calculated yielding 
// = /i^. Then, P = W^W^^ and 7^ = v 7 ^ are such that (P,7^) G IC^c- On the 
other hand, Theorem 6.6 assures that the Riccati equation (6.56) is solvable for any 
7 > 7^ providing thus Poo = —B2P00 — D[2Ci which is also strictly feasible, that is 
(^00,7) ^ int /C^c-
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R e m a r k 6.17 The discussion made in Remark Q.Q concerning the assumption on matrix 
B\^ namely, BiB'i > 0 is still valid in the present case. Indeed, assume BiB[ > 0 and 
define Bi := [Bi y/el] with e > 0 arbitrarily small. Clearly we now have BiB[ > 0 and for 
all F G /Cc, it is true that the transfer function T{z,w]s) := Ccoo{sI — Acoo)~^Bi can be 
factorized as 

fiz, w; -juj)f'{z, w- ju) = T{z, w; -juj)T\z, wju) + eG{-ju)G\ju;) , \/u; e R 

where G{s) := Ccoo{sI — Acoo)~^- The consequence is that 

\\Tiz,w;s)\\o.<mz,w;s)\\^ 

and also 

\\f{z,w;s)\\l = snp\\f'iz,w;juj)f 

<8up\\T'iz,w;joj)f + sup\\GiJuj)f 

< \\T{z,w; s)WL + e\\CcooisI - ^coo)- ' | lL 

which means that \\T{z, < 7 implies \\T{z, w;s)\\oo < 7 and both norms differs one 
from the other by an amount of order e. D 

R e m a r k 6.18 Based on the result of the previous theorem, it is readily seen that if we 
want to involve the set int C^c in an optimization problem them it is possible to work with 
the approximation 

int Cjc = {{W,fi) : W>0 , M > 0 , veyc{W,fi)v < - e , V?; G K} 

where the scalar e > 0 must be taken sufficiently small. Notice that this is exactly equivalent 
to replace matrix Bi by matrix [Bi \ / e / ] . The obvious advantage is that in doing this the 
above approximation is always a closed convex set. • 

R e m a r k 6.19 Theorem 5.2 makes possible the existence of a state feedback controller 
u = FcyoX called central controller which solves the Pull information problem under the 
assumptions i) The pair [(̂ 4 — B2D'i2Ci)^ (/ — Di2Di2)Ci] is detectable and the pair {A^ B2) 
is stabilizable and i\) D'i2Di2 = I - Using mathematical programming arguments only, it can 
be obtained as follows. Given 7 > 0, determine F ^ JCc and P = P^ > 0 such that 

min{trace[B;PBi] : 0 = A ^ ^ P + PAcoo + 7 ~ ^ ^ ^ i ^ i ^ + C'cooCcoo} 

Writing the associated Lagrangian (recall Remark 6.7) with A = A' being the matrix 
of Lagrange multipliers associated to the equality constraint, the necessary conditions for 
optimality are 

0 = XooP + PAcoo + 7~^PBiB[P + C'^^Ccoc 

0 = (Acoo + j-^BiB[P)A + A{Acoo + -t~^BiB[P)' + BiB[ 

0 = {F + D[2Ci + B'2P)A 

Restricting ourselves to the solutions such that matrix Acoo -\-^~^BiB[P is stable then with 
BiB'i > 0 we necessarily have A > 0. Solving the last equation for F , the first one yields 
F = Poo = —B2P00 — D'i2Ci where, under the previous assumptions, Poo is the symmetric, 
positive semidefinite and stabilizing solution of the Riccati equation (in the unknown P) 

0 = A ; P + PAc - P(-B2B2 - ^'-'BxB[)P + CicCu 
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Moreover, since Ace = A -\- B2F -\- j~^BiB[P calculated for F = Foo and P — Poo is stable 
then B\B'x > 0 assures that 

-l 
and consequently (Foo, Poo, Aoo) is the unique solution of the necessary conditions for opti-
mality. It remains to verify that it is actually the global solution of the proposed problem . 
To show this, let F G YZ^c be arbitrary which is the same to say that only the first necessary 
condition is satisfied for some positive semidefinite and stabilizing matrix P. Some simple 
algebraic manipulations gives 

0 = J^cc{P - Poo) + ( P - Poo)Aec -

- 7 - ' ( P - Poo)BiB[{P - Poo) + ( P - P o o ) ' ( P - Poo) 

The stability of matrix Ace together with the result of Lemma C.4 imply that there exists 
P — Poo > 0 solution to this Riccati equation so that the objective function attains the global 
minimum at P = Po©. The problem introduced here deserves an additional interpretation 
to be used in the analysis of mixed RH2/RH00 optimal control problems. For any F G JCjc 
it is simple to verify that 

trace [Pi P P i ] = trace 

> trace 

poo 

/ B[e<^' 
Jo 
r /"̂ ^ 

{j-^PBiB[P + C^^Ccoo)e^^^'Pidt 

Ac 
coo'^cooC 

'^Bidt 

2 
>\\T{z,w;s)U 

which enables us to say that the central controller actually minimizes an upper bound (and 
so provides a sub-optimal solution) to the problem 

•mi{\\Tiz,w;s)\\l : F €/Ce , \\Tiz,w;s)\\^ < ^} 

which is a mixed RH2/RH00 optimal control design problem to be deeply studied in the 
forthcoming section. For the moment notice that when 7 ^ 00 the mixed problem tends to 
the State feedback problem in RH2. The necessary optimality conditions reduce to those of 
Remark 6.7. • 

R e m a r k 6.20 The central controller can also be used to determine an approximate solu-
tion to the problem 

7opt = inf {7 : (P,7) ^ int JC^e} 

The basic algorithm can be stated as follows. For a given 7^ > 0 suppose that Poo > 0 is 
stabilizing. To make clear the dependence on 7^ of the transfer function T{z^ w; s) when the 
central controller is used, it is denoted as Tk{z,w; s). 

1) Choose 70 > jopt (possibly 70 = 00). 

2) Iterate until convergence 7^+1 = ||Tfe(2;,it;; s)||oo. 

It is immediate to see that this procedure approaches to jopt as k goes to infinite since 
7fc+i = ||TA;(2;,I(;; s)||oo < 7fc, however the speed of convergence may be very slow when 7^ 
becomes close to ^opt- This feature is numerically illustrated with the system of Example 
5.2 for r2 = 0. The system is 

X = Ax -h Biwi + B2U 

z = Cix + u 

y = X 
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where 

A = Bi = B2 Ci = [ 0 - 2 ] 

It has been calculated that 1.61 < ^opt < 1.62 while the first six iterations of the previous 
algorithm furnish 

{7fc}Lo = {00,2.30, 2.00,1.88,1.82,1.78,1.76} 

The importance of problem (6.55) is now apparent. It is jointly convex on the variables 
(W, fi) and so can be solved more efficiently. • 

R e m a r k 6.21 It is numerically attractive to get a priori bounds such that ^min < 7opt < 
Imax- Indeed, a possible value to ^max is simply determined from any (F, 7max) G /C^c, as 
for instance F — F2 yields 

Imax '= ||T(2;,t(;;s)||oo 

The determination of 7mm is much more involved. It follows from the factorization 

McW + WM'^ + ^i-^WRceW + Qc^Qc- iiM^RZeM', + 

+^l-\llMcR-e + W)Rce{llMcRce + W)' 

>Qc-yiMcR~eM'^ 

where Rce '•= Re + el and e > 0. The left hand side of this inequality goes to S^c(W, ji) as 
e goes to zero then if we set 

7 ^ := lim min {/i : v\Qc - fiMcRce^M'c)v < 0 , \/v e AfA 

for any /i < 7m there exists a vector v G N'c such that v'{Qc — iiMcR^J^Mc)v > 0 and so 
v'G^c{W,li)v > 0 enabling the final conclusion that (W,/i) 0 C^c which from Theorem 6.5 
is the same to say that there is no F matrix such that the pair (F, 7) G JC^c for all 7 < 7m-
Unfortunately, the calculation involved to get 7m is prohibitive. However, assuming Bi of 
full column rank, restricting v = [x' 0]' G A/'c to a: = Bi{B[Bi)~^$^ and defining the matrix 
V : - {B[Bi)-^B[[A B2] we get 

7 ^ > lim min {/i : ^'{I - fiVR-^'V')^ < 0 , V U\\ = l } 

> lim min {/x : ti'' < i'VR:,W^ , V U\\ = l } 

> lim A-i ,„(Fi? j /y ' ) := Irntn 

This limit can be easily calculated numerically and is a valid lower bound to 7opt since as 
we have shown fi = 7^^^ < 7m is always infeasible. • 

R e m a r k 6.22 The numerical solution of problem (6.55) by means of convex programming 
algorithms depends on the boundedness of the feasible set C^c- Following the same lines of 
Remark 6.8, we have to analyze the conditions under which, for some /x > 0, there exists 
{W, ji) G C^c and H^ / 0 such that VF-hAt^ G C^c with A > 0 arbitrarily large. Unfortunately, 
the only constraint involving the sub-block W3 imposed by VF G C^c is VF3 > W2W^^W2 
and so the above conditions are always satisfied for the matrix (other possibilities exist) 

W •• 
0 0 
0 / 

consequently, the set C^c is not bounded even though fi < 00. In order to circumvent this 
difficulty we first notice that 
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where with no loss of generaUty (recall Remark 6.21) the unbounded set /i > 0 can be 
replaced by the bounded one j^in ^ M ^ 7max- Second, we already know that the set Cc is 
not bounded but the set 

-^cf3 -Cc n {W : trace[i?cVl^] < P} 

is bounded for all finite f3 (recall Remark 6.8) provided the pair {—Ac,Cic) is detectable. 
Under this assumption, the conclusion is that we can always solve an approximate version 
of problem (6.55), namely 

min {/i : (VK,/i) G C^c , trace[i?cVF] < P} 

which has a bounded feasible domain and the optimal solution is arbitrarily close to the 
optimal solution of problem (6.55) provided the parameter /S is chosen appropriately large. 
This problem has another interesting and important interpretation for robust control design 
to be discussed in the next section. • 

R e m a r k 6.23 (Linear matrix inequalities - LMI) As in the RH2 design (recall Re-
mark 6.9), the State feedback problem in RHoo can also be stated only in terms of Linear 
matrix inequalities. Assuming the pair (Ac^Cic) is observable, then any P > 0 satisfying 
the Riccati inequality 

0>A',P + PAc - P{B2B'2 - j-^BiB[)P + C[cCic 

assures that with F = —B2P — D12C1, the closed-loop transfer function is such that 
||T(2;,t(;; s)||oo < 7- Defining X — P~^ and applying the Schur complement formula, the 
above inequality turns out to be equivalent to the linear matrix inequality 

A{X) 
AcX -h XA'^ - B2B'2 + -f~^BiB[ XCi^ 

CicX -I < 0 

On the other hand, from Remark 6.19 it is clear that X = P^^ is the global solution of 

mm{tYace[B[X~^Bi] : X > 0 , A{X) < O} 

which is a convex programming problem. Furthermore, it reduces to that of Remark 6.9 as 
7 goes to infinity. • 

We consider now the Part ial information problem. Let the linear system be defined 
by the s tandard state space representation 

x = Ax-\- Biw + B2U (6.57) 

z = C i x -h D12U (6.58) 

y = C2X^ D21W (6.59) 

where the output variable y is available for feedback. The situation is illustrated in 
fig. 6.5 where K{s) is the controller transfer function. We call the controller K{s) 
strictly feasible if it assures tha t T{z^w;s) belongs to RHoo and ||T(z,t(;; s)||oo < 7-
The so called central controller is then obtained from part b) of Theorem 5.4 with 
Q{s) = 0. Notice tha t the central controller does not exhibits the classical observer-
based structure. Indeed, it is given by 

K{s) :--
A + B2-F00 + 7"^^i-Bi-Poo + ZQOL^C^OO 'ZooLr. 

(6.60) 
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where C200 '-= C2 -h J~^D2IB[PQO' However, the existence of a solution to the Par-
tial information problem depends only upon the existence of a symmetric, positive 
semidefinite and stabilizing matrix PQO together with the existence of a symmetric, 
positive semidefinite and stabilizing matrix IIoo of the Riccati equation (in the un-
known n) 

0 = UA'f + AfU - n(C^C2 - 7-^C;Ci)n + BifB[f (6.61) 

satisfying the additional constraint 
problem is stated and solved. 

^(Poonoo) < 7^- Based on this, the following 

Problem 6.4 (Output feedback problem in RHoo) Given a scalar 7 > 0, deter-
mine the conditions for the existence of a strictly feasible output feedback controller 
K{s). 

Recall Theorem 5.4 where the complete solution of the Partial information prob-
lem is provided. Here, we consider the following assumptions i) The pair [A — 
B2D[^Ci), {I-Di2D[2)Ci] is observable and the pair [{A-BiD'2^C2),Bi{I-D'2iD2i)\ 
is reachable, ii) The pair (A, B2) is stabilizable and the pair (A, C2) is detectable and 
iii) D'i2Di2 = I and D21D21 — L The first assumption assures that matrices Poo 
and Hoo are both symmetric, positive definite and stabilizing. Furthermore, it is also 
assumed that BiB[ and C[Ci are positive definite matrices. 

Before proceed we need to define the dual version of the convex set C^c^ it is 

C^f:={{V,/i) : y > 0 , M > 0 , v'e^f{V,ii)v<0 ,\/veAff} (6.62) 

where 0^/ (F, JJ,) := 0 / ( ^ ) -h /i ^VRfV. Clearly this set is convex as well (recall the 
proof of Theorem 6.5). 

Theorem 6.7 (Output feedback) Consider the previous assumptions and let 7 a 
positive scalar be given. There exists a strictly feasible controller with transfer function 
K{s) if and only if there exist W such that (W,7^) G int C^c, V such that (V,7^) G 
int C^f satisfying the convex coupling constraint (W^V^j) G int Zcf, where 

•-{ Z,f:=\iW,V,j) Wi 7 / 
7I Vi >o (6.63) 

Proof Under the assumptions made, the Output feedback problem is solvable if and 
only if Poo > 0 solves the Riccati equation (6.56), Hoo > 0 solves the Riccati equation 
(6.61), both with 7 replaced by a suitable 0 < 7 < 7 and r5(Poonoo) < 7'̂ - We have 
already shown (recall Theorem 6.6) that (W^ooiT )̂ ^ C ĉ- On the other hand, it can 
be verified that matrix 

Voo := Y 
^ o o l l o o 

nop ioo > 0 

with Loo = —1100(̂ 2 ~ B1D21 is such that 

-noo(ĉ C2 - 7-'ciCi)noo + BifB'y] iin-^x) 
= [l-(7/7)']l|C?ixf <0 

holds for all t' G A//, proving that (Ko,7^) ^ int C^/. Finally, using the Schur 
complement formula it is also verified that the coupling constraint is satisfied for 
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Wi = ^'^P^ and Vi = 7^n^^ since r5(Poonoo) < 7^ < 7^- The converse is immediate 
from the previous result of Theorem 6.6. • 

We have interest to reduce 7 to the minimum value keeping feasibility of all con-
straints introduced in Theorem 6.7. The main goal is to generate a convex problem, 
similar to (6.55), valid in the output feedback case. Unfortunately, the change of 
variable defined previously, namely /x = 7^ destroys the convexity of the set Zcf. The 
other possibility comes to light from the simple observation that (7~^VF, 7^) E C^c de-
fines a convex set with respect to the new pair of variables {W^ 7) where W := ^~^W. 
The same occurs for the set C^/, that is (7~^V^,7^) G C^/ defines a convex set with 
respect to the new pair of variables (V^,7) where V := 7"-^^. Furthermore, the set 
Zcf., rewritten as 

' Wi I 
Zcf.^HW^V) 

Vi >o 

makes clear that convexity is once again preserved. Based on these facts we are able 
to conclude that Theorem 6.7 can equivalently be stated in terms of the existence 
of a triple (1^ ,^ ,7) G int Ocf with Ocf being a convex set. Naturally, the output 
feedback counterpart of (6.55) is the convex programming problem 

mm {7 : ( ^ , 1 > , 7 ) G O C / } (6.64) 

which provides the minimum value 7^ keeping the Output feedback problem solvable 
for any 7 > 7^. In other words, for 7 > 7^ the associated Riccati equations admit sta-
bilizing solutions Poo and Hoc respectively. These solutions may be used to calculate 
from (6.60), the (central) feasible controller. 

Remark 6.24 Remark 6.17 applies to the set C /̂ also. If matrix C[Ci is not strictly 
positive definite then C[ must be replaced by [€[ \fel] where e > 0 is arbitrarily small. This 
is done with no loss of generality and is important to have Vi > 0 for all V G C^f. • 

Remark 6.25 The set C^/ is not bounded but fortunately, the same reasoning of Remarks 
6.21 and 6.22 applies to it. First the set /x > 0 can be replaced by the bounded one 
7mm ^ M ^ 7maa; ^̂ d̂ secoud, the convex set 

C^f n {V : trace[i?/y] < (3) 

has a bounded domain for all finite 13 provided the pair (—A/, Bi/) is stabilizable. D 

The results of this section put in evidence the potentialities of the convex program-
ming approach to deal with optimal control problems formulated in RH2 and RHoo 
spaces. The same manipulations will be used in the next sections to handle more 
involved problems. To ease the presentation, the technical assumptions involving the 
positive definiteness of, for instance, matrices BiB'^ and C{Ci are assumed through-
out. Actually, as discussed before they can be enforced with no loss of generality. 

6.3 Mixed RH2 I RHoo control 

The main goal of the so called mixed RH2/RH00 control problem is to take into 
account the two major features of any control system design. First it is desirable to 
optimize performance. Second it is important to be aware that the model at hand 
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Figure 6.6: The mixed control design structure 

always represents a nominal system while the true system is subject to uncertainties. 
In order to improve practical needs, these two aspects have to be accommodated 
in the same design problem. It consists on the optimization of the RH2 norm of a 
transfer function while the RHoo norm of another transfer function is constrained to 
be less than a certain prescribed level. 

The situation is represented in fig. 6.6 where S is a linear time-invariant system 
and He is the controller. The mixed RH2/RH0Q optimal control problem is to find 
(if one exists) a controller Ec such that, for 7 > 0 given 

inf{| |r(zo,^;5) | |^ : \\T{zi,w;s)\\^<j} (6.65) 

A controller solving this problem imposes to the closed loop system an optimal per-
formance against exogenous perturbation in the channel w to ZQ while robust stability 
is guaranteed to all model uncertainty expressed as zi — ^w such that ||A||oo < 1/7-
The solution of this problem can not be obtained from matrix Riccati manipulations. 
We show here the difiiculties we have to face and the manipulations and approxi-
mations we have to introduce in order to solve it by means of convex programming 
methods. Before all, based on the results of the previous section, it is to be noticed 
that if instead of Problem (6.65) we solve 

.{ru,^ mzw< <i] (6.66) 

then its optimal solution (if any) provides a suboptimal solution to Problem (6.65) 
with 7 replaced by 7 > 7 and the degree of suboptimality becomes arbitrarily small 
provided 7 is chosen arbitrarily close to 7. 

6.3.1 State feedback design 

Consider 7 > 0 be a fixed scalar and let the systems S be defined as follows 

x = Ax^ Biw + B2U (6.67) 

zo = CQX + DQU (6.68) 

zi = Cix + ^121^ (6.69) 

y = x (6.70) 

where the whole state vector is available for feedback. It is assumed that i) the pair 
(A, B2) is stabilizable and ii) D'i2Di2 — I- Furthermore, the controller Ec is assumed 
to be given by 

u = Fx (6.71) 

where the gain matrix F is to be determined. To guarantee that the constraint 
||T(2:i,i(;;5)||oo < 7 is satisfied, we have to consider F G IC^c which is the same to 
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say that F e JCc and there exists P > 0 satisfying the Riccati inequahty (recah that 
Theorem 2.16 apphes since BiB[ > 0). 

0 > A,^P + PA^,^ + j-^PC',^CcooP + BiB[ (6.72) 

with Acoo := A -\- B2F and Ccoo •= Ci + D12F. On the other hand, for the same 
control gain F G /Cc, the transfer function from the input w to the output ZQ belongs 
to RH2 and 

||r(zo, w; s) \\l = trace [(Co -f DoF)Pr{Co + DOFY] (6.73) 

where Pr > 0 solves the Lyapunov equation 

0 = Ac^Pr + PrA',^ + BiB[ (6.74) 

Simple comparison of inequality (6.72) with equality (6.74) puts in evidence that 
P > Pr- Consequently, any feasible P for inequality (6.72) provides an upper bound 
for the norm of the transfer function under consideration, that is 

||r(zo, w; s)\\l < trace [(Co + D^F)P{Co + D^F)'] (6.75) 

In the optimal control problem (6.66), the quantity ||T(2;o, w] s)\\2 is then replaced 
by the quantity in right hand side of (6.75). It must be clear that this simplifies the 
problem to be dealt with at the expense of optimality. In fact, the minimum of the 
proposed upper bound may not coincide with the optimum of the true design problem 
(6.66). The next Theorem shows that this problem is convex which opens again the 
possibility of solving it by means of efficient numerical methods. 

Theorem 6.8 Let 7 > 0 6e given and define the symmetric and positive semidefinite 
extended matrix 

RQ :— Co Do ] 

Let W be the optimal solution of the convex programming problem 

Jsub := min {tTs.ce[RoW] : {W, 7^) G C^c} (6.76) 

Then, F = W^^i"^ ^ ^jc minimizes an upper bound of the objective function of 
problem (6.66) in the sense that \\T{ZQ.,W]S)\\2 < trace[i^o^]; for all (VF,7^) G C^yc 

Proof From Theorem 6.5 it follows that (1^,7^) G C^c implies F = W^W^^ G /C^c-
On the other hand, for any {W^j'^) G C^c we have Wi > Pr, consequently 

tmce[RoW] = trace[(Co + DoW^W^^)Wi{Co + DoW^W^^)'] + 

+trace[Do(T^3 - W^W^^W2)D'Q] 

> trace[(Co + DoW^W^^)Pr{Co + DQW^W^^Y] 

> ||T(zo, w:s 
l|2 

and the proof is complete. • 

The joint convexity of the set C^c is crucial for the introduction of another mixed 
problem, called the inverse mixed RH2/RH^ design problem, it is 

min{/i : trace[i?oW^] < /? , {W,/i) e C^c} (6.77) 
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where 9̂ is a fixed positive scalar. For a given /3 > 0, the constraint ||T(zo,tt^; 5)||2 < 
\ / ^ is satisfied while the upper bound on the admissible per turbat ion ||A||oo < 1 / \ / M 
is maximized. Needless to say tha t as (3 goes to infinity, its optimal solution goes to 
the solution of problem (6.55) already treated in the last section. Another problem 
of practical interest is 

min {/x H- 6>trace[i?ol^] , (W, /i) ^ C^c] (6.78) 

where ^ is a fixed positive scalar. In this case, the scalar ^ > 0 can be interpreted as the 
dual variable associated to the inequality constraint of problem (6.77), tha t is 6 is the 
tradeoff, to be fixed by the designer, between the norms of the two transfer functions 
of system (6.67)-(6.70). Finally, it is important to stress tha t (recall Remark 6.18) 
if matr ix Bi is replaced by [JBI \fel] with e > 0 arbitrarily small them the optimal 
solutions of all previous mixed problems are strictly feasible, tha t is they belong to 
int C^c-

E x a m p l e 6.2 To get some feelings on the previous results, let us consider the following 
numerical example. The system is defined £is 

where 

A = 

X — Ax + Biw + B 2U 

Zo = CQX -h U 

z\ — C\x + u 

y = X 

, Bi = 
' 1 " 

0 , B2 = 
' 0 " 

1 Ci = [ 0 - 2 ] 

Two different situations have been considerated : 

1) With Co = [1 0] the mixed optimization problem (6.76) has been solved for 1.65 < 7 < 
3.00. The optimal solution provided the controller M. For comparison purpose we have 
also determined the central controller C associated to the constraint ||T(2:i < 
7. Fig. 6.7 shows the optimal upper bound Jsub as well as the quantity ||T(zo, W] s)\\2 
for each controller. It is useful to observe that, in this case, the controller M obtained 
by the mixed problem is always better than the central controller. This behavior 
is expected for large values of 7 since in this situation, the gap between Jsub and 
||T(zo, w;;s)||2 becomes arbitrarily small. On the contrary, for small values of 7 the 
aforementioned gap is important and it is possible to build examples for which the 
central controller performs better than the one provided by the optimal solution of 
the mixed problem. 

2) With Co = Ci the mixed optimization problem (6.76) has been solved again for the 
7 in the same interval. As predicted in Remark 6.19, the optimal mixed controller 
M coincides with the central controller. For comparison, the performances of these 
controllers together with the upper bound Jsub are depicted in fig. 6.8. 

Based on this, we can say that in many instances, the mixed problem (6.76) provides a 
controller that performs well when compared to the central controller. This suggestion 
becomes a fact for moderate and large values of 7. The main point to be retained however is 
that the controller M is only suboptimal for the true mixed RH2/RH00 problem. Numerically 
speaking, one of the main attractive features of problem (6.76) is that it is convex and so 
easy to solve. • 

R e m a r k 6.26 (Post-optimization procedure) The optimal solution of the mixed op-
timization problem (6.76) is, generally, a suboptimal solution to the true mixed problem 
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Figure 6.7: The performances of the controllers M and C 

(6.66) since for F = Fsub provided by (6.76) the constraint | |T(^I , IL ' ; s)||oo < 7 is not 
satisfied with equality. Hence we are now concerned to determine a new state feedback 
gain, still suboptimal, but with a smaller value of the objective function \\T(zo,w] s)\\2. To 
ease the algebraic manipulations involved we assume the pair {A, B2) is stabilizable, the 
pair (A - B2DQCQ,{I - DODQ)CO) is detectable and DQDQ = / . For F = Fsub we get 

\\T{zo,w; 5)III = tiSice[B[PsubBi] where Psub > 0 solves the Lyapunov equation 

0 = (A -h B2Fsub)'Psub + Psub{A + B2Fsub) + (Co + DoFsub)'(CQ + D^Fsub) (6.79) 

Defining the state feedback gain 

Fa := (1 - a)Fsub - a (BiFa + D'^CQ) (6.80) 

where o; is a scalar to be determined such that A-^B2Fa is stable and P^ solves the Lyapunov 
equation 

0 = (A + B2F^)'Po. + Po.{A + B2Fa.) + (Co + DoFc^YiCo 4- DoFa (6.81) 

the following conclusions can be drawn. First, it is clear that for F = F^ the associated cost 
function is written as ||T(2;o,i^; «5)||1 = trace[B^PotBi] and, the equality 

0={A + B2Fsub)'{Psub - Pa) + {Psub - Pa){A + B2Fsub) + a{2 - a)F'subFsub 

valid for Fsub '•= Fsub + B2P(x -\-DQCQ guarantees an improvement in the RH2 norm provided 
a G [0,2] since under this condition Psub > Pa- Second, from (6.80) and (6.81) simple 
algebraic manipulations put in evidence that matrix Pa satisfies the Riccati equation (in the 
unknown P) 

0 = A'aP + PAa - PB2aB'2aP + CoaCoa (6.82) 

where 

^a 

B2a 

Co a 

A + ^2 [(1 - afFsub + OL{a - 2)i:>^Co] 

B2^2a~a^ 

Co + Do [(1 - a)Fsub - OLD'QCO] 
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CO 

o 

Figure 6.8: Performances of controllers M and C 

The pairs {Aa,B2a) and (AcCoa) are stabilizable and detectable, respectively. In fact, 
stabilizability easily follows from stabilizability of {A,B2), whereas detectability is implied 
by detectability of the pair {A — B2D0C0, {I — DQDQ)CQ) and by noticing that 

Ao^^A- B2D0C0 + ^2(1 - a)[(l - a){Fsuh + D'^Co)] 

Coa = (I- DoD'o)Co + J^o[(l - a){Fsub + D'oCo)] 

0 ^ D'o{I - DoD'o)Co 

Such an equation (see Lemma C.4 of Appendix C) admits a stabilizing solution whenever 
a G [0,2]. Actually, under the stated assumptions, this solution is also the unique positive 
semidefinite one. In order to check the stability of A + B2Fa, with F^ given by (6.80), 
consider equation (6.81) and notice that 

A + B2FC, =A~ B2D'oCo + B2[{1 - a){Fsub + D'oCo) - aB^^P^] 

Co + DoFa = {I- DoD'o)Co + Do[{l - a){Fsub + D'oCo) - aB'^Pc.] 

0 = D'o{I - DoD'o)Co 

Thus, the detectability of the pair {A — B2DQC0, {I — DQD'Q)CQ) together with the above 
equations imply that the pair {A + B2Fa,Co + DQFQ) is detectable as well. This fact and 
the existence of a solution Pa > 0, entails, (see Lemma C.l of Appendix C) that A + B2Fa 
is a stable matrix. 

The above results can be exploited in the following way. With the state feedback gain 
Fsuh such that A-\-B2Fsuh is stable and \\T{z\^w] s)||oo < 7 an one dimensional search in the 
interval [0,2] for a with equation (6.82) taken into account allows to determine the value of 
a° corresponding to which the control law u — F^x minimizes the RH2 norm while keeping 
the RH00 norm not greater than 7. Incidentally, notice that the choice a = 1 corresponds 
to the optimal unconstrained RH2 control law. 

The solution P^ of equation (6.82) is a function of the parameter a which enjoys a 
symmetry property, namely P^ = P2-oc- Denoting with Fa the matrix which is the derivative 
of Pa with respect to a it is possible to verify that it satisfies the following Lyapunov equation 

0 = X F a + TaAa - 2(1 - a)FsubFsub (6.83) 

where A^ '•= A^ — B2aB2otPoc is a stable matrix since Pa is a stabilizing solution of (6.82). 
Hence it follows from (6.83) that F^ < 0 for a G [0,1] and F^ > 0 for a G [1,2]. Therefore 
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a^ is given by 

a^ := min{l — a i , 0̂ 2 — 1} 

a i := max {a : \\T(zi,w]s)\\oo<'y} 
ae[o,i] 

a2 := min {a : | |T(zi, i/;; s)||oo < 7} 
aG[l,2] 

Finally, it is important to stress that the above developments remain valid for any state 
feedback gain Fsub such that A -\- B2Fsub is stable and \\T{zi,w; s)||oo < 7 and not just for 
the one provided by the solution of the mixed optimization problem (6.76). For instance, 
in view of the previous discussion (recall Example 6.2), we also have interest to adopt Fsub 
as the matrix gain defined by the central RH00 controller. Obviously, a° and the relevant 
value for the RH2 norm depend on the chosen gain Fsub-

To put in evidence the improvement obtained by this post-optimization procedure, let 
us consider the system defined in Example 6.2 with Co = [1 0] and 7 = 2. First take Fsub as 
the feedback gain which is the solution of the convex programming problem (6.76), that is 
Fsub = [—1.1879 — 0.5965] and the associated cost \\T{zo,w; s)\\2 = 0.1556. Corresponding 
to the best choice a° , we obtain 

Fa = [ -1.1829 -0.5829 ] , \\T{zo,w',s)\\l = 0.1504 , ||T(zi,i(;; s)||oc = 2 

If, on the contrary, we adopt Fsub as the state feedback gain corresponding to the central 
controller, that is Fsub = [—1.6 — 1.2], the best choice of a yields 

F« = [ -1.2786 -0.6076 ] , | |T(^o,^; s)||^ = 0.1439 , | |T(^i ,^ ;5) = 2 

In this case, it is apparent that the post-optimization procedure supplies a better result when 
starting from a worse gain. D 

R e m a r k 6.27 (Nash game approach) The mixed state feedback problem can also be 
approached by the following Nash game when the system (6.67) - (6.70) satisfies the addi-
tional assumptions Co = Ci, DQ = D12 and D[2Ci = 0. Defining the criteria 

Ji{u,w) 

Jo{u,w) 

/ [j^w\t)w{t) - z[(t)zi{t)]dt 
Jo 

/ Zo{t)zo{t)dt 
Jo 

the aim is to find the equilibrium strategies {u'^^w'^) which satisfy the Nash equilibria con-
ditions 

Ji{u'^w^) < Ji{u^,w) , V If G RH2 

Jo{u*,w'^) < Jo{u,w*) , y u e RH2 

It can be proven that the optimal strategies are given by 

ix^(t) = F2x{t) , F2 : 

^^(t) = Fix{t) , Fi : 

^ 2 ^ 2 

-7 

provided there exist matrices Pi < 0 and P2 > 0 solutions to the coupled Riccati equations 

0 = A'Pi + PiA - C[Ci -[ Pi P2] 

0 = A'P2 + P2A + C[Ci- [Pi P2] 

-f-^BiBi B2B'2 
B2B2 B2B2 P2 

0 f'^BiBi 
BiBi B2B2 

Pi 
P2 
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Based on these optimality conditions, the following interpretation can be drawn. The first 
Riccati equation rewritten as 

0 = (A + B2F2)'Pi + Pi(A + B2F2) - -f-^PiBiB[Pi - (Ci + Di2F2)'{Ci + D12F2) 

implies that ||T(2;i,it;; 5)||oo < 7 since Pi < 0 and stabilizing. On the other hand, the second 
Riccati equation, factorized as 

0 = (A + BiFiyP2 + P2{A + BiFi) - P2B2B'2P2 + C[Ci 

shows that the criterion Jo for w = w^ attains its minimum value dX u = u* as required by 
the Nash game. It is then clear that for w ^ w^ the control u = F2X is merely a suboptimal 
policy for the mixed design problem. Unfortunately this is frequently the case because for 
||T(2;i,i(;; s)||oo < 7 the worst input w = w* is not the one which produces the output zi 
such that ||^i||2 = ||T(2;i,ic; s)||oo||'?^||2- For comparison purpose let us consider the following 
numerical example 

X = 2x -\-

Zl = 
" 3 " 

0 

w -\-3u 

x + 
' 0 " 

1 

Zo = Zi 

y = a c 

and 7 = 0.4. The pair (Pi, P2) = (—6.84,10.05) is a solution of the coupled Riccati equations 
which provides the optimal Nash gain F2 = —30.16. The closed-loop system exhibits the 
performances 

\\T{zo,w;s)\\i = 5.19 , \\T{zuw;s) • 0.34 < 7 

Then, problem (6.76) has also been solved. It provides the feedback gain F — —8.05 which 
imposes to the closed-loop system 

||T(2;o,^/;;5)||^ = 1.66, \\T{zx,w;s) • 0.38 < 7 

Prom these results it is clear that, in this case, the mixed design introduced in Theorem 6.8 
is much better than the Nash game approach. • 

R e m a r k 6.28 (Structured robust stability and performance) Consider a linear sys-
tem depending on uncertain parameters, more precisely 

X = (A + AA)X + Bow -f (P2 + AB2)U 

Zo = Cox -h Dou 

y = X 

with 

A A := -Bi iQiCi i , AB2 '•= ^12^2^12 

where the only information available for matrices Qi and O2 is that 

11̂x11 < 1 , ||02||<1 

Defining the matrices 

P i - [ P i i P12 ] , Ci = 
Cn 

0 
, Di2 = 

0 
C'12 
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the above system can be rewritten as 

X = Ax + BQW + Biwi + B2U 

Z\ = C\X + D\2U 

w\ = Q.z\ 

Zo = CQX + DQU 

y = X 

where matrix Q := diag[r^i, Q2] satisfies \\Q\\ < 1. Our first goal is to determine (if one exists) 
a matrix F such that with u = Fx the closed-loop system stability is assured for all feasible 
parametric perturbations. A way we already know to solve this problem is to introduce the 
constraint | |T(2;I ,K;I ; s)||oo < 1- Indeed, a controller which satisfies this constraint solve the 
stated problem. However, this approach produces frequently very conservative results since 
the block-diagonal structure of the uncertainty (represented by matrix Vt) is not taken into 
account. In a slightly more general setting, we consider matrix Q, composed by N square 
blocks, that is 

Q: -d iag[Qi , - . . ,Qiv] , ll^ll < 1 

which together with the matrix 

A := diag[AiI, • • •, AAT/] 

where each sub-block has the same dimension as the corresponding sub-block of matrix Q 
and Ai > 0, • • •, AAT > 0, enable us to say that QAQ' < A , V ||r^|| < 1. 

The closed loop system stability depends on the stability of matrix 

AQ := Acoo + BiQCcoo 

where as before, Acoo = A -]- B2F and Ccoo = Ci + D12F. This property follows from the 
following inequality which holds for any symmetric matrix P 

BiCtCcooP + PC',^n'B[ = BinAn'B[ + PC'.^A-^CCOOP -
- (Bi^A^/^ - PCeooA~'^^)(^i^A'^^ - PCcooA"'^^)' 

<BiAB[+PC',^A-'Cco.P 

Indeed, if there exist a symmetric and positive definite matrix P , a positive definite matrix 
A with the above structure and a matrix F such that the inequality 

AcooP + P X O O + PC'.^A-^CcooP + BiAB[ < 0 

holds then (recall Theorem 2.15) the transfer function 

TA{ZUWI;S) := A-^^^T{zi,Wi;s)A^^^ 

belongs to RHoo and | |TA(2;I,K;I; s)||oo < 1. Since the scaling matrix A can also be used 
to redefine the parametric perturbation as QA '•= A~ /̂̂ ^QA^^^ such that ||0A||OO < 1, from 
Theorem 5.1 the stability of An follows. In addition, the above property is not lost if the 
previous Riccati inequality is replaced by (assuming again that BQBQ > 0) 

AcocP + PK^ + P C ^ o o A ~ ' C ' e o o P + BiAB[ + P o ^ O < 0 

However, doing this we now have 

AnP + PA'n + BoB'o<0, V ||Q|| < 1 

yielding an upper bound to the RH2 norm of the transfer function from the input w to the 
output 2̂ 0, that is 

\\T{zo,w; s)f2 < trace[(Co + DoF)P{Co + P>oF)1 
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which is vaUd for all ||Q|| < 1. The minimization of this upper bound keeping stability is a 
mixed RH2/RH00 problem with an additional matrix variable, namely the scaling matrix A. 
It is somewhat surprising that this problem can be converted into a convex one. Actually, 
let us define the set 

CAC:= {{W,A) : H^ > 0 , A > 0 , vQAc{W,A)v<OyveAfc} 

where 

C[ 
D[2 

eAc{W, A) := McW + WM'^ + W 

A[ B[ 0 ] + 5 i 
0 

A " ' [ Ci D12 ]W + 

[B'o 0] Bo 
0 

Following the proof of Theorem 6.6, we see that it remains true in the present case. The 
set CAC is convex and any feasible pair (VF, A) G CAC provides F — W2W^'^, P = Wi and A 
which satisfy the previous Riccati inequality. Finally, in the present context, the associated 
mixed RH2/RH00 control design problem is (recall Theorem 6.8) 

'J sub := min {trace[i^oVK] : {W,A)ECAC} 

which is jointly convex on both variables (W,A). Its optimal solution provides a robust 
control gain F — W2W^^ imposing in addition ||T(2;o,'w ;̂ s)||2 < VJsub for all structured 
parametric perturbations | |0| | < 1. • 

R e m a r k 6.29 Following the same lines of Remark 6.22, any convex programming method 
is effective to solve problem (6.76) provided the convex set 

Cjc n {W : tYSice[RoW] < /3} 

is bounded for any finite /3 > 0. Based on our previous discussion, this occurs whenever the 
pair [-(A - B2D0C0), {I - DODO)CQ] is detectable. D 

6.3.2 Output feedback design 

In this case, with 7 > 0 being a fixed scalar the system S is defined as follows 

X — Ax + Biw + B2U 

ZQ = CQX + DQU 

zi = Cix + D12U 

y = C2X + D21W 

(6.84) 

(6.85) 

(6.86) 

(6.87) 

and the controller Ec has to be determined from the solution of problem (6.65). As 
in the State feedback case, the complete solution to this problem is not known up 
to now. So, we search for a suboptimal and easy to calculate solution. The main 
idea to be pursued is to propose a structure to the controller Ec depending on only 
one unknown matr ix in such way the Output feedback design problem reduces to the 
State feedback design problem already solved. 

To this end, we make the following assumptions i) the pair {A,B2) is stabilizable 
and the pair (A, C2) is detectable and ii) ^^2^12 = I and D21D21 = / . We also 
assume tha t there exists IIoo a positive semidefinite and stabilizing solution of the 
Riccati equation (in the unknown II) 

0 = UA'f + AfU - n(C^C2 - j-^C[Ci)U + BifB[f (6.88) 
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which, once it has been calculated, enables us to define matrices 

B2oo-B2^j-^U^C[D 12 

and Lo -1100^2 — B1D21. The controller Ec with transfer function K{s) given by 

^ 0 0 + B200F -\- LQQC[ 0 0 ^ 2 
K{s) 

has the important properties provided in the following lemma. 

(6.89) 

Lemma 6.2 For all F such that there exists a symmetric, positive semidefinite and 
stabilizing solution to the Riccati equation 

0 = (Aoo + B2ooF)X + X{Aoo + B200F)' + 

+ 7 - ' X ( C i + Di2Fy{Ci + Di2F)X + L^L'^ (6.90) 

the controller He with transfer function K{s) given in (6.89) imposes to the closed 
loop system the following properties : 

a) R is stable and \\T{ZI^W]S)\\QQ < 7 

b) \\T{zo,w;s)\\l<tTs.ce[CoU^C'^]^tmce[{Co^DoF)X{Co^DoF)^ 

Proof The feedback connection indicated in fig. 6.6 has the state space representation 

Ep:= 

A 

Co 

B ' 

0 
0 

where the indicated matrices are 

A-

B 

A + B2F BoF 

and 

7-2nooC((Ci + D12F) A + L00C2 + j-^IlooC[{Ci + D12F) 

Bi 
— Bi — ioo-D21 

Co = [ Co + DoF DoF] , (7i = [ Ci + D12F D^2F ] 

Point a) Assuming there exists XQO satisfying (6.90), simple although tedious 
algebraic calculations show that the Riccati equation 

Q = AP + PA' + j-^PC[CiP + BB' 

has a positive semidefinite stabilizing solution given by 

P = n, 00 1̂  ^*-oo - H o 

(6.91) 

(6.92) 

which yields the conclusion from Theorem 2.14 that the closed loop system is stable 
and ||T(zi,u;;s)||oo < 7-
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Point b) From the above, it is know tha t matr ix A is stable then, we proceed by 
making the calculation of the indicated norm, tha t is 

||T(zo5'w^; 5)112 = trace 

< trace 

Co / e^'B&e^''dtC'o 
Jo 

CQPCQ 

< t race [COUOOC'Q] + trace [(Co + DoF)X{Co + DOFY] 

concluding thus the proof of the lemma proposed. D 

No major difficulty has to be faced to s tate and prove similar results using Riccati 
inequalities. Furthermore, it is to be noticed tha t the assumption on the existence 
of a solution for the Riccati equation (6.90) is always verified whenever the unknown 
matr ix gain F is such tha t A^o -h B200F is stable and 

| |(Ci + Di2F)[sI - (Aoo + B2ooF)]-^L^D2i\\oo < 7 

Therefore, from the first part of Lemma 6.2 these values of F preserve admissibility 
of the controller Ec, tha t is | |T(zi,it;; 5)||oo < 7 and in the context of the mixed 
design we have to calculate one among them which minimizes the upper bound on 
||T(2;o,tt';s)||2 provided in the second part of the same lemma. This is accomplished 
if the State feedback design is applied to the auxiliary plant 

X = A^x -h L00D21W + ^200'^ 

Zo = CQX + DQU 

Zx = C\X + F>\2U 

y = x 

(6.93) 

(6.94) 

(6.95) 

(6.96) 

tha t is, problem (6.76) should be solved with the feasible set C^c being defined for 
matrices A, B2 and Bi replaced by matrices ^00? -^200 and LQQD2I respectively. 

R e m a r k 6.30 The particular structure of matrix P in (6.92) does not means that some 
conservativeness has been introduced in our calculations. To show this assume the Partial 
information problem is solvable and Poo > 0. It is possible to verify that for 

F = Fc :— FooZoo 

the Riccati equation (6.90) is solvable in X providing 

Xoo = j'^Z^^P^'^ = I'^P^^ - rioo 

which is positive definite since TS(Poo^oo) < 7^- Moreover, for F = Fc, the transfer function 
of the controller K{s) turns out to be 

Kc{s) 
Aoo + B2ooFc + L00C2 

Fc 

~ ^ o o 

0 

-^00(^00 + B200F00Z00 + LooC2)ZoQ — ZooLo 

Ace ~\~ Zoo Loo 

0 

ZooLcy 

0 

showing that the transfer function Kc{s) meets exactly the transfer function of the central 
RH00 controller. D 
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Figure 6.9: The performances of the controllers M and C 

E x a m p l e 6.3 We solve again the Example 5.7 but making use of the results of this section. 
Consider the system (6.84) - (6.87) with 

A = Bi = B2 = 

Ci=[0 0 ] , C2 = [ - 1 1 ] , Di2 = D21 = 1 

Co = [ - 1 0 ] , Do = 1 

The Partial information problem is solvable for 7 > 12.0 hence we consider the interval 
12.5 < 7 < 100.0. In this particular case the auxiliary plant does not depend on 7, however 
the Riccati equation (6.90) admits a positive solution only if 7 > 12.0. The State feedback 
design has been applied to the auxiliary plant and the mixed problem provided the controller 
M which minimizes the upper bound introduced in part b) of Lemma 6.2. Fig. 6.9 shows 
the actual value of ||T(2;o, w; s)\\2 as well as the minimum upper bound Jsub as 7 varies in the 
given interval. The same figure shows also the performance in terms of \\T{zo,w^ s)\\2 when 
the RHoo central controller is used (it is indicated by C). It is interesting to observe that for 
moderate values of 7 (approximately in the interval 12.5 < 7 < 35.0) the central controller 
is even better than the mixed controller as far as the RH2 norm of the transfer function 
T{zo,w;s) is concerned. As expected, this behavior is reversed for large values of 7 when so 
the central controller performs worse than the mixed controller. This example is important 
because it shows practically the existence of systems for which the mixed design does not 
furnish a good solution to the problem under consideration. However, it is important to 
stress that the mixed problem as introduced here, is convex and due to this fact it can be 
solved very efficiently. • 

6.4 RH2 control with regional pole placement 

The performance of a system can be expressed in terms of RH2 and RHoo of certain 
closed loop transfer functions. However, as it is simple to notice from the results of 
the last sections, the pole locations of the resulting controlled system are naturally 
defined by the optimality conditions of the associated optimal control problem. For 
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Im{s) 

Re{s) 

Figure 6.10: The pole placement region 

instance, once a mixed RH2/RH00 design problem is solved, the optimal controller 
imposes the closed-loop poles to be in certain places of the open left complex plane 
which may not be changed by the designer. The present section aims to combine the 
RH2 design with regional pole placement. 

In practice, a very popular design specification is expressed as 

and 

^>^n 

^LOn > a 

(6.97) 

(6.98) 

where the constraint (6.97) imposes a minimum damping ratio and the constraint 
(6.98) imposes a minimum decay of the time response of the closed-loop system. This 
is illustrated in Fig. 6.10 where it is also represented the circular region 

n:= {s : \s-\-{a-\-r)\ < r} (6.99) 

with a > 0 and radius r > 0. The radius r can be calculated such that this region is 
inside the sector defined by constraints (6.97) and (6.98) and so meets the closed loop 
poles location requirements. The circular region as indicated in Fig. 6.10, tangent to 
the sector boundary defined by a > 0 and 0 = sin~^ {^rnin)^ is given in (6.99) with 

acos{9) 

1 - cos{e) 

The rationale behind the choice of the circular region TZ instead of the sector will 
be clear in the sequel. The main point is that the circular region imposes convex 
constraints on the optimal RH2 control design problem. The next lemma characterizes 
by means of a modified Lyapunov inequality the matrices with all eigenvalues inside 
a given circular region IZ. 

Lemma 6.3 Let the circular TZ be given. Matrix A with dimension n x n has all its 
eigenvalues inside TZ if and only if for any matrix Q = Q' > 0, there exists a matrix 
P = P ' > 0 such that 

0 > A , P + PA'^ + r-^AaPA'^ + Q (6.100) 

where An A-\-aL 
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Proof Let us first prove the necessity. Assume all eigenvalues of matrix A are in the 
circular region IZ. It is a simple matter to verify that all eigenvalues A of the matrix 
A := r~^[A + (a + r)I] are such that |A| < 1 which implies that matrix 

A:={A-I)-\A-^I) 

is stable. From the Extended Lyapunov lemma we can say that for any Q = Q^ > 0 
chosen, there exits P — P' > ^ satisfying the linear inequality 

0 > AP + PA' + 2r-^{A - I)-^Q{A' - I)-^ 

or equivalently 

0 > i P i ' - P + r-̂ Q 
Using the definition of matrix Ao, we then conclude that inequality (6.100) holds. 
For the sufficiency, take x an eigenvector of matrix A' associated to an arbitrary 
eigenvalue A. Multiplying inequality (6.100) to left by x^ and to the right by x it 
follows that 

0 > [2Pe(A + a) + r~^|A + a\^] x^Px + x^Qx 

which together with the positive definiteness of both involved matrices provides 

[2Pe(A + a ) + r - ^ | A + ap] < 0 

Finally, using this fact we get 

r"^|A + a + r p = r''^ [|A + a p + 2Pe(A -h a)r + r^] 

= r-^ [2Re{X + a) + r'^lX + a|^] + 1 

< 1 

which proves that X e IZ. The sufficiency is proved because A and A' have the same 
eigenvalues. • 

For a given circular region IZ and a given matrix A^ the inequality (6.100) defines 
a convex constraint with respect to P . This is clearly true because its right hand side 
is an affine function of P . More surprisingly is that convexity still holds when A is 
not constant but depends upon a state feedback gain matrix. 

6.4.1 State feedback design 

Let a circular region IZ be given. The dynamic system under consideration has the 
following state space representation 

x = Ax-\- Biw + B2U (6.101) 

z = Cix-^Di2U (6.102) 

y = x (6.103) 

where the only assumption we a priori need is i) D^2^i2 = I- The goal is to determine 
a state feedback control law of the form 

u = Fx (6.104) 
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such that the gain matrix F solves the optimal control problem 

mm{\\T{z,w',s)\\l : F e KR] 

where KR denotes the set of matrices F such that all eigenvalues of matrix Ace — 
A-{- B2F are in the circular region IZ. It is clear that since 7?. is a circular region 
on the left part of the complex plane then F G KLR always provides T{z,w;s) in 
RH2- Of course, we need the set ICR be nonempty which is the case if and only if the 
unreachable part of (̂ 4, B2) has all eigenvalues belonging to IZ. This problem is not 
exactly solved. Instead we propose here an overbounding objective function which 
has the main advantage to preserve convexity. Throughout this section we redefine 
the matrix 

A-^al B2 
0 0 

Mr 

which has the same structure of matrix Mc defined in (6.6). All other matrices remain 
unchanged. 

Theorem 6.9 Consider BiB[ > 0, let the circular region IZ be given and define the 
set 

CR:={W : W>0 , v'eR{W)v <0 .WveK} (6.105) 

where eR{W) := Qc{W) + r'^^McWM;^. The following hold 

a) CR is a convex set. 

b) Each W ECR is such that Wi > 0. 

c ') 1CR = {W!,W{^ : WeCR). 

d) The optimal solution W of the convex programming problem 

Jsub := min {tTdiCe[RcW] : W e CR} (6.106) 

provides F — W^^i"^ ^ ^R ^^^^ ^^^^ ^^^ upper bound of the RH2 norm 
\\T{z^w;s)\\2 < trace[i^cW]; valid for all W G CR, is minimized. 

Proof The proof of Points a) and b) follow immediately from the fact that CR C CC 
and the matrix function BR(W) is affine together with Theorem 6.1. 

Point c) Assume ICR ^ 0, for an arbitrary F G KR^ Lemma 6.3 applies for 
Q — BiB[ providing thus a symmetric and positive definite matrix P satisfying 
the inequality 

0 > {Ace + aI)P + P{Acc + aiy + 

+r-\Acc + aI)P{Aec + aiy + BiB[ 

Choosing 

W--

it is seen that W >0 and all v ^ Mc yields 

P PF' 
FP FPF' 

v'eR{W)v' = x' [{Ace + OiI)P + P{Acc + aiy+ 

^r~^{Acc + aI)P{Acc + ociy + BiB[] x 

< 0 
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implying tha t W G CR. Since, in addition Ty^VFj"^ = FPP~^ = F, the necessity is 
proved. Conversely, with CR 7̂  0, for any W £ CR and any v e Afc ^^ get 

0 > v'eR{W)v 

> x' [{A„ + B2W!,W{^)Wi + Wi{A„ + B2W!,W{^)'+ 

+ r - i ( ^ „ + B2W!2W^^)WM» + B2W!2W{^)' + BiB[+ 

+r-^B2{W2. - W^VFf ^W2)B^] X 

> x' [{A„ + B2W^W^')Wi + Wi{Aa + B2W^W^^y+ 

+r-\Aa + B2W^W^^)Wi{Aa + B2W^W^^y + BiB[] x 

which shows, from Lemma 6.3 tha t F = ^ 2 ^ 1 " ^ ^ ^R- The result follows from the 
fact tha t ICR = 0 implies CR = ^ and vice versa. 

Point d) This point follows from the fact t ha t W £ CR generates F = W^^ i "^ ^ 
ICR. Furthermore, any W £ CR satisfies 

0 > A,,Wi + WiA'^, + ByB[ 

which imposes t ha t Wi > Pr, where 

0 = AecPr + PrKe + BlB[ 

Simple calculation of the RH2 norm then shows tha t 

trace[i?cW^] = trace [(Ci + £)i2W2W^r^)l^i(Ci + Di2W2W{^)'] + 

+ t r ace [Di2(T^3 - W^^l^r'W^2)£''i2] 

> trace [(Ci + Di2W2W^^)Pr{Ci + Di2W2W{^)'] 

>\\T{z,w,s)\\l 

holds for all W ^Cn and the proof is complete. • 

If the convex programming problem (6.106) admits a solution then the optimal 
feedback gain places the closed-loop poles in a desired circular region and minimizes 
an upper bound of ||T(z,i(;; s)!!!- Clearly, we can not say tha t this norm has been 
minimized. 

R e m a r k 6.31 Since CR C CC, the same conclusion related to the boundedness of the 
feasible set of problem (6.106) applies. Its numeric solution by means of convex programming 
methods depends on the assumption that the pair (—Ac, Cic) is detectable. D 

R e m a r k 6.32 As perhaps already occurred to the reader, there are many other regions in 
the complex plane that can be recasted in the same framework of the circular region. 

For a > 0 fixed and r arbitrarily large, the circular region degenerates to 

7^ = {s : Re{s) < ~a} 

and Lemma 6.3 and Theorem 6.9 still hold. 
Any region in the complex plane that can be written as a convex set of matrices W such 

that Wi > Pr, is also handled with no additional theoretical difficulty. One of such regions 
is the vertical strip defined as 

Us := {s : ~f3 < Re{s) < -a} 

with ^ > a > 0. Notice however, that we have to work with the intersection of two regions 
generating thus a feasible set which is the intersection of two convex constraints in the same 
variable W. Consequently, only the sufficient part of Theorem 6.9 still holds. D 
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Figure 6.11: Closed-loop poles 

E x a m p l e 6.4 (Root locus) Let us consider the system (6.101) - (6.103) with 

A: 
0 1 

- 1 1 

Ci = 
P 0 " 
0 0 ? 

" 1 " 
0 

D12 

' B2 

' 0 ' 
1 

" 0 " 
1 

where 0 < p < 20. 
First, the State feedback problem in RH2 has been solved for all values of p in the 

given interval. The optimal feedback gain F2 as a function of this parameter has been 
determinated. The root locus of the closed-loop system is then plotted in fig. 6.11. By 
inspection, it is possible to verify that the root locus never enters in the circular region 
defined by the parameters a = 1 and r = l / ( \ /2 — 1). For p = 0 the optimal gain is 
F2 = [0 — 2] which imposes to the system a performance such that \\T{z,w', s)\\l = 2. 

Again, for p = 0 and imposing the above circular region for pole placement, the convex 
programming problem (6.106) has been solved, providing Fsub = [—3.0678 — 4.9841] and 
the associated upper bound on the minimum cost Jsub — 51.9434. The closed-loop poles are 
also shown in fig. 6.11. This example illustrates a very important fact. Indeed, there is no 
possibility to choose a penalty term in the (1,1) entry of matrix Ci such that the poles of 
the closed-loop system are all inside the circular region which corresponds to a minimum 
damping factor ^rnin = l / \ /2 or in other terms 0 = 7r/4 radians. Of course the design 
procedure introduced in Theorem 6.9 circumvents this drawback of the pure State feedback 
design in RH2. D 

6.4.2 Outpu t feedback design 

The system to be dealt with is of the form 

X = Ax -\- Biw + B2U 

z — Cix + D12U 

y = C2X + D21W 

(6.107) 

(6.108) 

(6.109) 
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and the controller with transfer function K{s) has to be determined in order to place 
the closed-loop poles in a desired circular region while the quantity ||T(2;, IL'; s)||2 is 
minimized. Let us elaborate more on this point. First all feasible controllers are 
parametrized as 

K{s) 
' A + B2F + LC2 

F 
-L ' 

0 
(6.110) 

for all pairs of matrices {F,L). The rationale behind this choice has been put on 
evidence before. The closed-loop system has the state space representation (recall fig. 
6.5) 

" A 

C 

B ' 

0 

where the indicated matrices are 

A = 
A + B2F 

0 
B2F 

A + LC2 

and 

B^ 
Bi 

-Bi - LD21 
C=[Ci + D12F D12F ] 

From the very particular structure of matrix A it is apparent that the closed loop 
poles are those of matrix A-\- B2F and A + LC2- As far as pole placement is under 
consideration, in principle it is possible to determine (F, L) such that all poles of 
the closed loop system lie in some region of the complex plane. However, since the 
state reconstruction from the output depends only on matrix L, in our present design 
procedure it is imposed as the optimal solution of the Output estimation problem, 
that is L = L2. Thus, for a given circular region 7 ,̂ the Output feedback design 
problem is formulated as 

mm{\\Tiz,w;s)\\l : F G ICR} 

where it is only necessary to make explicit the dependence of ||T(2;,i(;; s)||2 with 
F. The optimal solution of this problem is not possible to be determined exactly. 
So, we proceed by overbounding its objective function. The assumptions i) The 
pair (A, (72) is detectable and no eigenvalue of the unreachable part of the pair 
[{A — BiD2iC2),Bi{I — D21D21)] lies on the imaginary axis and ii) ^^2^12 = ^ 
and D21D21 = / are made. Under these assumptions, there exists 112 a positive 
semidefinite and stabilizing solution of the Riccati equation (in the unknown 11) 

0 = n ^ } + AfU - nC^CsH + BifB[ f (6.111) 

which provides L2 = —II2C2 — B1D21. The controller defined in this way has the 
following important design property which are obtained as a hmit case of Lemma 6.2. 

Lemma 6.4 For all F ^ Kc, the symmetric and positive semidefinite solution to the 
Lyapunov equation 

0 = (A + B2F)X + X{A + B2Fy + L2L'2 (6.112) 

is such that the controller with transfer function K{s) given in (6.110) imposes to the 
closed-loop system the performance 

\\T{z,w;s) trace[Cin2C(] + trace[(Ci + Di2F)X{Ci + D12F)'] (6.113) 
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Proof The state space representation of the closed-loop system being given by Si?, 
enables us to get immediately (recall Remark 6.14) 

\\T{z,w',s)\\l = tmce[CPrC'] 

where P^, solution of the linear equation (6.36) is given by 

Pr = 
U2 + X -U2 

-U2 I12 

Simple substitution shows that equality (6.113) holds, proving thus the lemma pro-
posed. • 

This result opens the possibility to reduce the Output feedback design problem 
to the previous State feedback design problem. In fact, once the equality L — L2 
holds, the transfer function K[s) of the output feedback controller is completely 
parametrized by matrix F only. The impact of this decision in the global cost is the 
first term in (6.113) which does not need to be considered further since it remains 
constant for all possible choices of F. Hence, if the state feedback design problem is 
applied to the auxiliary plant 

X = Ax -h L2D21W + B2U 

Z — C\X -h 1^12^ 

(6.114) 

(6.115) 

(6.116) 

that is, if problem (6.106) is solved with B\ replaced by L2D21 then the optimal gain 
F — W^W^"^ is such that the controller 

K{s) := 
A + B2W^W^^+L2C2 

w^w,-' 
-Lo 

0 
(6.117) 

imposes all the eigenvalues of matrix A -h B2VF2VF1 ^ in the circular region IZ while 
the upper bound 

\\T{z,w-s)\\2 < ^tmce[CiU2C[] + Jsub 

is globally minimized. Unfortunately, as illustrated before, the global minimization 
of this upper bound does not necessarily means that the global optimum of the true 
design problem is attained. 

6.5 Time-domain specifications 

One of the most important time-domain specifications of control systems design is the 
limitation, to some prespecified level, of the time-response overshoot. This section is 
completely devoted to generalize the previous results to this particular situation. Once 
again, the important feature is that convexity is preserved and similar manipulations 
for both the state and output feedback cases are allowed. Some few preliminary 
calculations are needed before we define and solve the associated optimal control 
problem. 
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Consider the system, specified by the following state space minimal realization 

x = Ax-^Bw, x(0) = 0 (6.118) 

z = Cx (6.119) 

where matrix A is assumed to be stable, the pair {A, B) is reachable and w G 
i?I/2[0 oo). The quantity we want to compute depends on the transfer function 
T{z,w;s) of the above system and is defined as 

g{T{z,w;s)):= sup \\z\\^ (6.120) 
\\W\\2<1 

where, for the norm of the output variable ||2;||oo, two different cases are considered, 
namely 

\\z\\^:=8npy^z^{t)z{t) (6.121) 
t>o 

and 
||z||oo :=supmax|z^(t) | (6.122) 

t>o * 

where Zi{t) denotes the i-th scalar component of z{t). We are now in position to 
interpret the function Q{') defined above. Suppose, for a certain positive scalar a, 

g{T{z,w;s))<a 

then for each time t > 0 the worst case overshoot of z{t) is limited by a. Hence, 
the possibility to take into account this time constraint in control system design is of 
great practical interest. 

Lemma 6.5 Let P be the symmetric and positive definite solution of the Lyapunov 
equation 

0 = AP + PA' + BE' (6.123) 

The following are true 

a) For the norm (6.121) then Q{T{zjW; s)) = \rnax{CPC') where \max{') denotes 
the maximum eigenvalue of {-). 

b) For the norm (6.122) then g{T{z,w;s)) = dUL{CPC') where d max{') denotes 
the maximum diagonal element of {•). 

Proof Define v{x) := x'P~^x and consider the system (6.118) - (6.119) with an 
arbitrary input w satisfying \\w\\2 < 1. The time derivative oi v{') along a trajectory 
of that system yields 

v{x) = x\A'p-^ + p-^A)x + 2w'B'p-^x 

= -x'p-^BB'p-^x + 2w'B'p-^x 

= w'w -{w- B'p-^x)'{w - B'p-^x) 

< Ikf 
which, after integration of both sides from 0 to t > 0 provides 

v{xit)) = x'{t)p-'^x{t) < \\w\\l < 1 



244 CHAPTER 6. NONCLASSICAL PROBLEMS IN RH2 AND RH^o 

This inequality means that, in the state space, the trajectories x{t) , for alH > 0 are 
confined in the set < 1 whenever w remains bounded by \\w\\2 < 1. 

Point a) With z = Cx and x := P~^/^x, we have 

g{T{z,w;s))^= sup | |z | |^ 
l l ^ i | 2 < l 

< maxjx 'C 'Cx ; x'P'^x < 1} 

< max{x 'pV2c 'c 'p i /25 ; x'x < l } 

^ Xmax\CPC ) 

and it remains to show that there exists a feasible trajectory w{t) such that ||2;||^ is 
arbitrarily close to \max{CPC'). To this end, consider T > 0 fixed but arbitrary 

0 < S{T) := [ e'^^BB'e^'^dt < P 
Jo 

and the input signal such that w{t) = 0 for all t > T and 

w{t)^B'e^'^^-'^S{T)-^^^^ , 0<t<T 

where V̂  is a vector to be determined. Simple calculations show that 

\w = / w\t)w{t)dt= / w\t)w{t)dt-
Jo Jo 

:'0V 

and 

r{T) =C [ e^^^-^^Bw{r)dT = CSiT^^^^ 
Jo 

Consequently, choosing ip as being the unitary norm eigenvector associated to the 
maximum eie: envalue of matrix S{Ty/'^C'CS{Ty/'^, the feasibility of the input signal 
w is guaranteed and 

\\z\\i,=supz'{t)zit) 

t>0 

> ij'S{Ty/^C'CS{T)^/^'tP 

> Xmax{CS{T)C') 
the proof is then concluded because S{T) becomes arbitrarily close to P as T increases. 

Point b) With Zi — CiX with Ci being the i-th row of matrix C and x := P~^/^x, 
we have 

g{T{z,w;s)f = sup ||2:||^ 
II^I |2<1 

< md^xix^Cldx ; x'p-'^x < l] 
x,i 

< maxniax( i 'P^/2(0/^ ,pi /2- . - /- < ;^j 

<maxA„, , (p i /2CiCiPi /2) 
i 

<mSixCiPCl 
i 

^ dmax\CPC ) 
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As before, it remains to determine a feasible input such tha t the equahty holds. This 
is accomplished by the same function w{t) already defined and a convenient choice 
of vector i/j. Indeed, take ipi as being the unitary norm eigenvector associated to 
the maximum eis: envalue of matr ix S{Ty^^ClCiS{Ty^'^, and choose V̂  = ^/ where 
CiS{T)C[ < CiS{T)C[ for all index z = 1, 2, • • •, then w is feasible and 

| | z | | ^ = supmax2:-(t)2:i(t) 

> m a x V ^ ' 5 ( r ) ^ / 2 c ; C i 5 ( r ) i / V 
i 

> CiS{T)C[ 

> dmaACS{T)C') 

the proof is then concluded since as said before, S{T) becomes arbitrarily close to P 
as T increases. n 

R e m a r k 6.33 In the proof of Lemma 6.5, it is assumed that the solution of the linear ma-
trix equation (6.123) is positive definite. This occurs whenever the pair {A^B) is reachable. 
If this assumption is not verified, the result still holds true. In this case, using Kalman's 
canonical controllability form, it is immediate to see that the output z(t) in (6.119) depends 
only on the reachable part of the system. D 

R e m a r k 6.34 The relationship between both Q{') for the norms (6.121) and (6.122) are 

dmax{CPC') < \max{CPC') < tlSiCe{CPC') 

which also implies, in both cases, that Q(T(z,w; s)) < \\T(z,w;s)\\2. • 

R e m a r k 6.35 (Convexity) The real valued function g{X) : V —> R defined as g{X) := 
is convex (recall Remark 6.3). The same is true for the function g{X) \— dmax{X). 

To prove this, take XQ ^ V and eo the column of the identity matrix such that e^XoeQ — 
g{Xo). For all X eV we get 

g{X) = dma.{X) 

> e^Xeo 

> ^ ( X o ) + < e o e o , X - X o > 

and inequality (6.1) is verified for Ao = eoCo, then convexity follows. Notice further that 
both functions are not diff"erentiable in V and are non decreasing functions in the sense that 
for any Ai , A2 6 P such that Ai < A2 then ^(Ai) < g{X2). • 

E x a m p l e 6.5 Consider the system (6.118) - (6.119) with 

^ _ r 0 1 0 
^ - [ 0 0 1 

Our purpose is to illustrate the result of Lemma 6.5. The definite positive solution P of the 
Lyapunov equation (6.123), provides 

0 
0 
0 

1 
0 

- 9 

0 " 
1 

- 4 . 
, B = 

" 2 
- 2 

4 

Q{T{z,w-s)) = ^ 1/2 
\IIL{CPC') = 2.16 

(CPC) = 1.68 

On the other hand, taking T = 5 it can be verified that S{T) ^ P and so, corresponding to 
the input 

^ ^ ^ 0 , t>T 
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Figure 6.12: Norms of the output z{t) 

the system produces the output z{t) which enables us to calculate the time varying function 

^^'- \ max{|zi(t)|, Mm 
for each norm used to define Gi')- These functions are shown in fig 6.12 where the labels 
Amax and dmax identify the norms introduced in (6.121) and (6.122) respectively. In fig. 
6.13 the corresponding inputs w{t) are also shown. It is interesting to verify that in both 
cases 

maxf{t)^g{T{z,w-s)) 

and IIK;II2 ~ 1 as required in the proof of Lemma 6.5. • 

Throughout the remaining of this section, we define the convex function 

g{CPC'):=g{T{z,w;s))^ (6.124) 

to indicate both cases treated before. Since this function is convex in the domain 
V, the constraint g(CPC') < a, for a > 0 fixed, can be handled with no additional 
diflSculty because convexity is preserved. The same obviously occurs if g{CPC') is 
used as a objective function to be minimized. This case, generalizes the control design 
problem in RH2 in the sense that it is obtained from the above formulation for the 
choice g{CPC') = trace(CPCO. 

6.5.1 State feedback design 

The dynamic system is described by the equations 

X = Ax + Biw + B2U 

z ~ C\x + D\2'^ 

y = x 

(6.125) 

(6.126) 

(6.127) 
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7 8 9 10 

Figure 6.13: The inputs w{t) 

where our purpose is to determine the optimal matrix F such that with u = Fx the 
following control problem is solved 

min {g{T{z,w;s)) : F e JCc} (6.128) 

To this end we only consider the assumption i) D12D12 — I- For each F E JCc then 
T{z^ w; s) is in RH2 which means that if /Cc 7̂  0 then (6.128) is well-posed. The main 
feature of the result to be presented is that the optimal global solution of (6.128) is 
actually attained. 

Theorem 6.10 Consider BiB[ > 0 and define the matrix 

Re := [ Ci D12 ] (6.129) 

The convex programming problem 

Jopt:=mm{g{RcWR',) : W e Q (6.130) 

is equivalent to problem (6.128) in the sense that both present the same global solution. 

Proof Recall Theorem 6.1 where it is proved that all elements of the set /Cc are 
generated from those of Cc- Hence, as far as feasibility is concerned, both problems 
are equivalent. We proceed by assuming that problem (6.128) has an optimal solution. 
In this case, from Lemma 6.5 there exist matrices P > 0 and F G /Cc such that 

9[{Ci + Di2F)P{Ci + Di2Fy] = min g{T{z, w; s)) 

0 = (^ + B2F)P + P{A + B2Fy + BiB[ 

and 

Defining the matrix 

W:= 
P PF' 

FP FPF' 
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simple algebraic manipulations yield the conclusion that W e Cc provides the mini-
mum cost. It remains to prove that W is the global optimum of problem (6.130). To 
this end, taking any feasible W we have F = Vr2M î"̂  ^ K^c and 

g{T{z, w; s)) = g[{Ci + Di2W^Wr')Pr{Ci + ^21^2^1- ' ) ] 

where Wi > Pr. Using again the fact that Ŵ  > 0 together with the Schur complement 
formula we get 

g{RcWR'J = min g{T{z, w; s)) 

<g{T{z,w;s)) 

< g[{Ci + D,2W^W,-')Wi{Ci + Di2W^W^')] 

< g[RcWR', - Du{Ws - W^W^'W2)D[2] 

< g[RcWR',] 

which being true for all W £ Cc completes the proof. • 

The proof of this theorem is almost the same of that of Theorem 6.3 where the 
special case g{-) = trace(-) has been considered. Notice further that the above proof 
depends basically on the convexity and on the non decreasing property of the function 
g{') introduced in Remark 6.35. Consequently, the same result also applies to any 
other function with these properties. 

6.5.2 Outpu t feedback design 

Once again consider the system 

x = Ax-h Biw + B2U (6.131) 

z = Cix-\-Di2U (6.132) 

y = C2X^D2iw (6.133) 

where the transfer function K{s) of the output controller is to be determined. It is 
adopted the same reasoning as before, that is all feasible controllers are completely 
parametrized by only one matrix F which is used to meet the design requirements. 
Its transfer function is given by 

K{s) := 
A + B2F + L2C2 

0 
(6.134) 

being thus apparent that the choice L = L2 is the best we can do as far as the 
reconstruction of the state from the output is concerned. Let us keep in mind that 
L2 = —II2C2 — B1D21, where 112 is the positive semidefinite and stabilizing solution 
of the Riccati equation (in the unknown E) 

0 = n^'^ + AfU - UC!^C2U + BifB[f (6.135) 

The feedback connection drawn in fig. 6.5 puts in evidence that the internal stability 
of the closed-loop system is assured if F G /Cc and so our goal is to solve the associated 
optimal control problem 

mm{g{T{z,w;s)) : F e ICc} 

The next lemma provides the generalization of the result introduced in Lemma 6.4 to 
deal with its objective function. 
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L e m m a 6.6 For all F E JCc the symmetric and positive semidefinite solution to the 
Lyapunov equation 

0 = {A + B2F)X + X{A -h B2Fy + 121'^ (6.136) 

is such that the controller with transfer function K{s) given in (6.134) imposes to the 
closed-loop system the performance 

Q{T{z, w- s)) = g[CiIi2C[ + (Ci + Di2F)X{Ci + i^i2F)'] (6.137) 

P r o o f From Lemma 6.5 together with the state space reahzation of the closed-loop 
system, yields 

g{T{z,w-s))^g[CPrC'] 

where P^, solution of the linear equation (6.36) is given by 

Pr = 
n2 + X -n2 

-n2 n2 

Furthermore, simple calculations enables us to write 

CPrC' = Cill2C[ + (Ci + Di2F)X{Ci + D12F)' (6.138) 

which proves the lemma proposed. • 

The equality (6.138) is of particular importance. Wi th it, the specific properties of 
the function g{-) is not used in the proof of the above lemma. Consequently, the same 
result also holds for any other function g{'). For those functions under consideration 
in this section, the Output feedback problem is reduced to the State feedback problem 
applied to the auxiliary plant 

X = Ax + L2D21W + B2U (6.139) 

z = Cix-^Di2U (6.140) 

y = x (6.141) 

Doing this, it is important to keep in mind tha t both, matr ix Bi should be replaced 
by L2D21 and the objective function to be minimized over Cc should be replaced 
accordingly, leading to 

Jopt=^iri{g[CiU2C[ + RcWR',] : W e C^} (6.142) 

which again is a convex programming problem. 

R e m a r k 6.36 Due to the fact that 

g[CiU2C[ + RcWR',] < g[CiU2C[] + g[RcWR',] 

it is possible to simplify the objective function of Problem (6.142) by retaining in the op-
timization problem, only the second term in the above expression (since the first one is 
constant). Unfortunately, this may produces an important degree of sub-optimality because 
the overbound is, in general, very conservative. D 
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E x a m p l e 6.6 Consider the system (6.139) - (6.141) with the matrices as indicated below 

A = 
0 1 
0 0 

Bi = B2 = Di2 = 

1 0 
0 0 

, C2=[l 0 ] , D21 = [ 0 1 ] 

Solving the Riccati equation (6.135) we get L2 = —[1.7321 1]' and 

CiU2C[ 1.7321 0 
0 0 

Then we solved problem (6.142) considering g{') — trace(-), g{-) = Xmax{-) and g{-) = 
dmaxi-)' The optimal controllers and the minimum cost associated, for each case are respec-
tively 

-3.145 - 0.99 
Kopt{s) = 

Kopt{s) = 

Kopt{s) = 

s2 + 3 . 1 4 s + 4.44 
-4.59s - 1.32 

s2 + 4.03s + 6.31 
-4.26s - 1.47 

s2 + 3.44s + 5.44 

Jopt — 10.85 

J opt — 8.59 

fJopt — O . / O 

Each controller and the associated cost are quite different which indicates that the optimum 
of each problem solved are distinct, even though they obey the inequality given in Remark 
6.34. The optimal solution of the upper bound of all §{-) namely trace(-) may furnish a poor 
suboptimal solution to the other cases under consideration. 

Following the discussion in Remark 6.36, we also calculated the following suboptimal 
cost 

Jsuh = 9{CiIi2C[) + m:m{g[RcWR',] : W eCc] 

for each function g{-) as before. The result is 

^ , . - 3 . 1 4 s - 0 . 9 9 ^ .^_^ 
Ksub[s) = o . ^ . .—. . . . , Jsub = 10.85 

Ksub{s) 

Ksub{s) 

s2-h 3.14s+ 4.44 
- 4 . 1 6 s - 1 . 1 6 

• + 5.88 
-1.19 

s2 + 3.88 
-3.60s 

J S' 9.27 

Jsub — b.db 
s2 + 3.27s + 4.86 

Comparing these controllers with the optimal ones, it can be verified an important loss on 
the performance index. This occurs in all cases but the first one on which the trace function 
is used. D 

6.6 Controllers with structural constraints 
In practice one is frequently faced to control design problems where the controller must 
exhibit some desired structure. For instance, if the system to be controlled is com-
posed by many coupled subsystems, robustness considerations requires the controller 
should use only local informations for feedback, tha t is, in the state feedback case, 
the matr ix gain F must present a block-diagonal structure. This particular structure 
defines the important class of Decentralized control design problems. As well as, if 
only the system output is available for feedback we already know how to design a 
dynamic controller to meet certain performance criteria. However, it is also of great 
interest to determine (if any) a static feedback gain with the same paradigm. This is 
on the origin of the so called Static output control design problems. This section is 
entirely devoted to analyze these problems in the framework of convex analysis. 
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Interconnections 

h - 2̂(̂ ) H PN{S) 

'N 

Figure 6.14: The interconnected System 

6.6.1 Decentralized control design 

The system to be dealt with is represented in Fig. 6.14. It is composed by a number Â^ 
of subsystems each of them with transfer function Pi{s)^ coupled together by means of 
an interconnection structure. The dynamic model of the i-th subsystem with transfer 
function Pi{s) is given by 

N 

A'^Xi + Biw + B'^Ui + ^ A'-

i /^ 
Zi = ClXi + Dl2Ui 

Hi ^^ ^i 

(6.143) 

(6.144) 

(6.145) 

In order to impose to the overall system a desirable performance, it is asked to design 
N local controllers, each of then using only the information available in the local state 
variable x^ , i = 1, 2, • • •, A .̂ That is. 

-t^i'^i 5 1,2,-.•,7V (6.146) 

Clearly, if the overall system is rewritten in the standard form 

X = Ax + Biw + B2U 

z = Cix + D12U 

y = x 

then the control is given by 

u = Fx , F = blockdiag[Fi, F2, • • •, FAT] 

(6.147) 

(6.148) 

(6.149) 

(6.150) 

where each block of F is the local matrix gain with appropriate dimension. To ease 
the presentation, let us introduce the following notation. The subscript "D" in a 
matrix, for instance FD means that this matrix is constraint to have a block-diagonal 
structure. In other words, F]j is obtained from any F by simply zeroing all off block-
diagonal elements. The problem to be faced in this section is how to incorporate the 
above structural constraint in several design procedures of interest. It is important to 
keep in mind that the results of this section are related to the general linear system 
(6.147)-(6.149) and do not depend upon any particular system structure hke that of 
system (6.143)-(6.145). 
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The first important feature to be analyzed is the internal stability of the closed-
loop system. Clearly, internal stability is guaranteed whenever there exist F such 
that 

F^FnelCc 

Furthermore, all decentralized matrices FD with this property constitute the set of 
all stabilizing decentralized gains for the system under consideration. This set is not 
convex and in many cases may be constituted by disjoint subsets. So, we work here 
with a particular subset of it defined as follows 

Definition 6.3 (Structural D - Stabilizability) The pair (A, B2) is said to be struc-
turally D - stabilizable if there exist matrices PD symmetric and positive definite and 
FD such that 

0 > (A + B2FD)PD + PD{A + B2FDy + Q (6.151) 

for some matrix Q — Q' > 0. The set of all such matrices F^ is denoted JCD- ^ 

We want to stress that FD G ICD implies that FD G /CC but the converse is not 
necessarily true. Moreover, it is possible to have ICD — 0 while there exists FD G /CC-
The additional constraint in Definition 6.3 is that the Lyapunov inequality (6.151) 
must present a block-diagonal solution P = P^ . At a first glance, it may appears 
that the existence of a pair (FD^PD) depends on a particular choice of matrix Q. 
Fortunately this is not true as can be simply demonstrated as follows. For a given 
matrix F ^ , suppose PD satisfies the Lyapunov inequality (6.151) with Q = Q > 0. 
For any other matrix Q > 0, choosing the scalar /3 > 0 such that /3Q > Q, it is 
simple to verify that (6.151) is also satisfied for Pjj — PP^ > 0. Hence, matrix 
Q > 0 in Definition 6.3 can be chosen arbitrarily. Before presenting the next result 
we introduce the notation used for the partitioned matrix W. The subscript "D" is 
used as follows 

WiD W2D 
W!2D W^ 

which indicates that only the sub-blocks Wi and W2 have to present the decentralized 
structure, namely 

WiD = blockdiag[Wn, W12, • • •, WIN] 

W2D = blockdiag[W2i, VF22, • • •, W2N] 

with Wii and W2i being rii x Ui and ni x rrii matrices where ni is the local state 
vector dimension and rrii is the local control vector dimension respectively for all 
i - l , 2 , - . - , i V . 

Theorem 6.11 Consider BiB[ > 0 and define the set 

CD:^{W : W = WD} H CC (6.152) 

The following are true 

a) CD is a convex set. 

b) Each W eCo is such that Wi> 0. 

c) ICD = {W^W^^ : W eCo}. 

WD:= 
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Proof Since the constraint W = WD is linear and the set Cc is convex then point 
a) is proved. Moreover, the proof of point b) is a consequence of BiB'i > 0 together 
with CD C CC 

Point c) For the necessity, assume F^ G KLD T̂  0- Setting Q = BiB'^ in (6.151), it 
is simple to verify that 

W = WD 
FDPD FDPDF'D 

ea 

which is the same to say that W e Co- Furthermore, W2W1 ^ = FDPDPD^ = PD-

Conversely, for any W ^ CD y^ 9 and any v e Afc we get 

0 > v'ec{W)v 

> x' [{A + B2W^W^^)Wi + Wi{A^ B2W^Wr^y + BiB[] x 

which shows that inequality (6.151) holds for P^, = Wi = WID and FD = VF^^i"^ = 
H^2D^LD' that is both matrices exhibit the desired block-diagonal structure. From 
the above, the equality in point c) also holds when ICD = 0 or C^) = 0. • 

The linear constraint W = WD is essential to get this result. It provides all 
stabilizing decentralized matrices F = FD and the quadratic function 

N 

v{x) = x'W-^x = J2^'^u'^i 
i=l 

is a Lyapunov function associated to the closed-loop system with w = 0 since, its 
time-derivative along an arbitrary trajectory of the system is 

v{x) = -\\B[W-^x\\^ <0 , V x ^ O 

The interpretation of Theorem 6.11 is now clear. It generates all stabilizing matrices 
FD such that the closed-loop system stability is tested by an additively separable 
Lyapunov function. 

In this framework, it is possible to solve an approximate version of the decentral-
ized state feedback design problem in RH2, written in the form 

min{| | r (z ,^;5) | |^ : F e JCD} (6.153) 

which makes once again explicit that the feasible set is restricted to those gains 
satisfying Definition 6.3. 

Theorem 6.12 Assume BiB[ > 0 and let W be the optimal solution of the convex 
programming problem 

Jsub := min {trace[i?cW^] : W e CD} (6.154) 

Then, F = FD = W^W^^ G ICD minimizes an upper bound of the objective function 
of Problem (6.153) in the sense that \\T{z,w]s)\W < trace[i?cW^]; for all W G CD-

Proof The infeasibility of one problem implies the same is true to the other and 
vice versa. Hence, assuming they are feasible, that the optimal solution of Problem 
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(6.154) provides W^W^^ e KD is a consequence of Theorem 6.11. Additionally, for 
any W^ S C/j we have WXD > Pr where 

0 - ( ^ + B2W^DW^^)Pr + Pr{A + B^W'^^W-^)' + B^B\ 

yielding 

trace[i?eW^] = trace [(Ci + D^2W'2^W-^)WXD{CX + Dy2W'2D^-^)'\ + 

+ t r ace \D^-,{W^ - W'2J,W^^W2D)D\^ 

> trace [{C, + DuW^oW-^)Pr{Ci + DnW^^W^-^)'] 

>\\T{z,w;s)\\l 

completing the proof. D 

At this point it is important to keep in mind why Problem (6.154) corresponds 
to minimize only an upper bound to the objective function of Problem (6.153). The 
reason is tha t even though W e Co generates all feasible gains F = F p , the matr ix 
Pr used to determine the corresponding value of | | r (z, i( ; ; 5)||2 does not necessarily 
satisfies the decentralized constraint Pr — {Pr)D- Generally the inequality WID > Pr 
is only strictly satisfied for all W E CD-

R e m a r k 6.37 The exact Decentralized state feedback design in RH2 is the optimal control 
problem 

min{ | |T(^ ,^;s) | |^ : F = FD e JCc} 

Using Theorem 6.1, this is equivalent to 

min {traceli^cW"] : W e CCD} 

where 

Unfortunately, the nonlinear equality constraint present in the set CCD makes it nonconvex. 
The way to circumvent this difficulty is to impose the decentralized structure on matrix W2 
and Wi simultaneously, as required by Definition 6.3. • 

R e m a r k 6.38 The convex constraint W = WD can be added to any other design problem 
in order to search a decentralized stabilizing control. For instance, any W belonging to the 
convex set, 

C^j^ :={W : W = WD} H C^C 

provides F = FD ^ JC^c- D 

Examip le 6 .7 Consider the interconnected system (6.143) - (6.145) composed hy N = 2 
local subsystems with matrices (i = 1,2) 

0 1 
1 0 

Bl Bl 

Ci = [ 0.5 0 ] , D L 

coupled together by the interconnection matrices 

412 _ 421 _ [ - 1 0 
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P{s) 

G 

Figure 6.15: The static output feedback control system 

Solving the optimal control problem in RH2, the optimal feedback gain and the associated 
minimum cost are 

-2.84 
-0.34 

-2.15 
-0.15 

-0.34 
-2.84 

-0.15 
-2.15 

Jopt = \\T{z,w-s)\\l = 21.79 

while the optimal solution of Problem (6.154) provides 

FD 
-3.62 -2.50 

0 0 
0 0 

3.62 -2.50 
Jsub = 30.27 

However, for F = FD the exact value of the objective function can be calculated as being 
||T(2;,i(;; s)||2 = 23.04 which confirms numerically the fact that only an upper bound of the 
true cost has been minimized. • 

6.6.2 Static output control design 
The system to be analyzed is given in fig. 6.15. The transfer function P{s) has the 
s tate space realization 

X = Ax -\- Biw -h B2U 

z = Cix -h D12U 

y = C2X 

(6.155) 

(6.156) 

(6.157) 

where in opposition to the Output feedback control problems solved before, the mea-
sured output variable y(-) G R^ is not corrupted by the external disturbance w{t). 
Moreover it is assumed tha t C2 is full row rank. The goal is to design a static output 
feedback law of the form 

u = Gy (6.158) 

where the internal stability as well as some previously defined performance behavior 
are assured. 

The control law (6.158) can be rewritten as ix = FQX^ where the subscript " O " in 
matr ix F means tha t there exists G such tha t FQ = GC2. In this case the internal 
stability of the closed-loop system is preserved by means of the static output control 
law (6.158) provided F = FQ G Kc- Before proceed, let us made the assumption tha t 
matr ix C2 presents the following structure 

Co I 0 ] 

If this is not the case, it is always possible to put the system in this form by a suitable 
choice of a similarity transformation. Under this assumption, matr ix FQ must present 
the particular structure 

Fo=[F^ 0 ] 
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which imphes that G = Fi as required before. For a symmetric matrix P the subscript 
" O" has a shghtly different meaning, that is 

P = Po 
Pii 0 
0 P22 

where Pu and P22 are r x r and n — r x n — r symmetric sub-matrices respectively. 
Unfortunately, the set of all stabilizing output feedback gains, being 

F = FoGlCc 

is nonconvex and in many instances may be constituted of disjoint subsets. To cir-
cumvent this difficulty, we work here with a subset of it which as will be proven can 
be converted to a convex set. This subset is characterized by the following definition 

Definition 6.4 (Structural O - Stabilizability) The triple (A, ^2,(72) is said to he 
structurally 0 - stabilizable if there exist matrices PQ symmetric and positive definite 
and Fo such that 

0 > (^ + B2Fo)Po + Po{A + B2F0)' + Q (6.159) 

for some matrix Q — Q' > 0. The set of all such matrices FQ is denoted /Co- ^ 

For any matrix such that F = FQ^ it can be factorized as F = GC2 for some G, 
consequently structural O - stability implies that the eigenvalues of the closed-loop 
matrix A-{- B2F = A-\- B2GC2 are all in the open left hand side part of the complex 
plane. However, as in the case of decentralized control. Definition 6.4 requires the 
Lyapunov inequality solution, used to test stability presents a particular structure. 
The consequence is that FQ € /Co implies FQ G /CC but the inverse is not true in 
general. The price to be paid to handle convex sets only is to retain a subset of 
the entire set of static output feedback stabilizing gains. With no loss of generality, 
matrix Q > 0 in definition 6.4 can be a priori fixed. This fact is proved with no 
major difficulty since for any P — PQ > ^ and any scalar /? > 0 then P — (JPo 
satisfies P = PQ. Considering a matrix W partitioned in four blocks, the subscript 
"O" stands for 

Wio W20 Wo W' 20 W. 

which indicates that only the sub-blocks Wi and W2 have to present the output 
structure, namely 

Wio = 
Wii 0 

0 W22 
W20-

W21 
0 

with Wii, W22 and W21 being r xr^n — r xn — r and r xm matrices where n is the 
state vector dimension, m is the control vector dimension and r is the output vector 
dimension respectively. 

Theorem 6.13 Consider BiB[ > 0 and define the set 

Co:={W : W = WQ} H C^ 

The following are true 

a) Co is a convex set. 

(6.160) 
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b) Each W eCo is such that Wi > 0. 

c)JCo = {W^W^^ : We Co}. 

Proof As in the proof of Theorem 6.11, the constraint W = WQ is hnear and hence 
convex. This fact together with BiB[ > 0 and Co C Cc prove both points a) and b). 

Point c) For the necessity, assume Fo G /Co 7̂  0- Setting Q = BiB[ in (6.159), it 
is simple to verify that 

W = Wo = 
Po PoF'o 

FoPo FoPoF'o 
^Co 

and VF2^f ^ = FoPoPo^ = Fo- Conversely, for any VF G Co 7̂  0 and any v e Afc 
we get 

0 > v'ec{W)v 

> x' [(A + B2W'^W^^)Wx + H^i(A + B2W!2W^^)' + B^B'^ x 

which shows that inequality (6.159) holds for Po = ^ i = Wio and Fo = ^^2^1"^ = 
W2QW^Q^ that is both matrices exhibit the desired output feedback structure. In 
case one of the sets /Co or Co is empty then the equality stated in point c) follows 
trivially. • 

From this theorem, we can see that any feasible matrix W e Co generates an 
output feedback stabilizing gain which is very simple to be determined. Actually, the 
imposed structure constraint 

Wio 
Wii 

0 
0 

W22 
W2o = 

W21 
0 

provides Fo G /Co which can be factorized as Fo = GC2 where 

(6.161) 

in addition, the complete parametrization of the set Ko by means of point c) opens 
the possibility, with no major difficulty, to involve it in an optimization procedure. 
For instance consider the Static output feedback control design problem 

mm m{\\T{z,w',s)\\l : F G/Co} (6.162) 

which makes once again explicit that the feasible set is restrict to those gains satisfying 
Definition 6.4. 

Theorem 6.14 Assume BiB[ > 0 and let W be the optimal solution of the convex 
programming problem 

J sub '= min {trace[Pc^] • W e Co} (6.163) 

Then, F = Fo = W^W^^ G /Co minimizes an upper bound of the objective function 
of Problem (6.162) in the sense that \\T{z,w;s)\W ^ trace[i?c^]; for all W G Co-

Proof From Theorem 6.13, it suSices to consider that both problems are feasible. In 
this case, the optimal solution of problem (6.163) provides W^^i"^ ^ ^ o - Addition-
ally, for any VT G Co we have Wio > Pr where 

0 = (A + B2W!2oW-^)Pr + Pr{A + ^ 2 ^ 2 0 ^ 1 0 ) ' + ^1^1 
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yielding immediately t race[ i?c^] ^ 11^(^5'^; ^)||2- "^^^ proof is complete. • 

In general, the optimal solution of problem (6.162) is not generated by means of 
the global optimal solution of the convex problem (6.163). Even though all gains 
in /Co are generated by the proposed convex parametrization, matr ix Pr needed to 
calculate | | T ( Z , K ; ; 5 ) | | 2 may not satisfy the constraint Pr = {Pr)o^ in this case there 
is no matr ix W ^CQ for which the equality Wio = Pr holds. 

R e m a r k 6.39 Following the lines of Theorem 6.13 we notice that the set of all F = Fo ^ 
JCc can be generated by F = W2W^^ where 

WeCcO'-={W : W^W^^ = {W^W^^)o}nCc 

Unfortunately this set is not convex. The same theorem provides a subset of CcO, namely 
Co which has the important property to be convex. • 

R e m a r k 6.40 Consider the system (6.155) - (6.157) and the matrix 

5:= 
C2 
E2 

where E2 is any matrix of appropriate dimension such that S~^ exists. Defining the new 
state variable x := Sx, the new state space realization turns out to be such that y = C2X 
where 

C2 = C2S-'' = [ / 0 ] 

The concept of Structural O - stabilizability depends on the similarity matrix S by means 
of the arbitrary submatrix E2. The next lemma puts in evidence this important point. 

Lemma 6.7 The following statements are equivalent: 

a) The triple {A, B2, C2) is stabilizable by output feedback, that is there exists G such that 
the matrix A -f B2GC2 is stable. 

b) There exists a matrix E2 such that the triple (A, -62,(72) in the new state space repre-
sentation is structurally O - stabilizable. 

Proof To prove that a) implies b), let us suppose that there exists an output feedback 
gain G such that A + B2GC2 is stable. From the Extended Lyapunov lemma, there exists 
P — P' > 0 solution to the linear equation 

0 = (A + B2GC2)P + P{A + E2GC2)' + Q 

iox Q — Q' > {) given. Chosen E2 — U2P~^ where U2 defines an orthogonal basis to the null 
space of C2, that is C2U2 = 0 and L 2̂̂ 2 = I and multiplying the above equation to the right 
by S' and to the left by S we get 

0 = ( i + B2GC2)P + P{A + B2GC2)' + Q 

where P := SPS' and Q := SQS'. Simple calculations show that 

F:=GC2=[G 0 ] = Fo 

and 
r n^pnL n 1 ~ 

Po 
P = SPS' --

meaning that point b) holds. The converse is immediate 

C2PC'2 0 
0 U^P~^U2 
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R e m a r k 6.41 The numerical solution of problem (6.162) by means of convex programming 
methods is very efficient. However the main drawback of this approach is that only a subset 
of the true feasible set of stabilizing output feedback gains is considered. Let us verify the 
difficulties we have to face for the numerical solution of the true Output feedback design 
problem in RH2 

min{| |T(^ ,^ ;s) | |^ : GC2 G/Co} 

which reduces to the determination of matrices G and P = P' >0 such that 

mm{tmce[B[PBi] : 0 = A'^gP ^ PAcg + C'^gCcg} 

where Acg := A + B2GC2 and Ccg := Ci + D12GC2. Defining A = A' the matrix of 
Lagrange multiplier associated to the equality constraint, the necessary optimality conditions 
are (recall Remark 6.7) 

0 = A'.gP + PAcg + C'.gCcg 

0 = AcgA^AA'^g-hBiB[ 

0 = (GC2 + D[2Ci + B'2P)AC'2 

Assuming as before that BiB'i > 0 then for any GC2 G Kc matrix A is positive definite, in 
which case the last equation yields 

G = -{B'2P + D'^2Ci)AC2{C2AC2)'^ 

This formula for the optimal gain couples the first two equations in a very nonlinear manner. 
The optimal gain can not be expressed in terms of a Riccati equation unless matrix C2 is 
square and nonsingular. The following algorithm is useful for numerical purposes 

1) Choose GQ such that FQ := G0C2 G /Cc and iterate until convergence with /c = 0,1, • • •. 

2) Set Fk := GkC2 and let P^ > 0 be the solution of the Lyapunov equation (in the 
unknown P) 

0 = {A^ B2Fk)'P + P{A + B2FO + (Ci + Di2Fu)'{Ci + Di2Fk)' 

Determine Fk := -BsP/e - ^^'12^1. 

3) Let Afc-f 1 > 0 and G^+i be the solution of the nonlinear equations (in the unknown A 
andG) 

0 = (A + B2GC2)A + A{A + B2GC2)' + BiB[ 

G = FkAC'2{C2AC'2)-^ 

Lemma 6.8 With BiB'i > 0, the above algorithm has the following properties 

a) For all k = OA^''' the gain Fk+i = Gk+iC2 G /Cc-

h) For all k = OAi" • the criterion Jk+i := tYaiCe[B[Pk-\-iBi] < ti3,ce[B[PkBi] := Jk 

Proof Point a) is a consequence of step 3). Actually, it implies that A/e+i > 0 satisfies 

0 = (A + B2Fk+i)Ak+i + Ak+i{A + B2Fk+iy + BiB[ 

thus, Ffc+i = Gk-\-iC2 is a stabilizing gain. 
Point h) Simple but tedious algebraic manipulations show that for two subsequent iter-

ations 

0 = (A + B2Fk+i)\Pk - Pfc+i) + {Pk - Pk-^i){A + B2Fk+i) + 

+(Ffe - Fk)\Fk - Fk) - {Fk+i - FkYiFk+i - Fk) 
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which allows us to determine the current value of the criterion as being 

Jk — Jk+i — trace 

-trace 

/»oo 

Jo 
"" /»oo 

Jo 
= trace [{Fk - Fk)Ak+i{Fk - Fu)' - {Fk+i - Fk)Ak+i{Fk+i - Fk)'] 

= trace [{GkC2 - Fk)Ak+i{GkC2 - FkY] -

- t race [{Gk+iC2 - Fk)Kk+i{Gk+iC2 - Fk)'] 

using now the value of Gk-\-i provided in step 3) 

Gk+i — FkAk+iC2{C2Ak+iC2) 

we get 

Jk - Jk+i = trace [{GkC2 - Fk)Ak+i{GkC2 - Fk)'] -

- t race [Pk (Afc+i - Afc+iC2(C2A/c+iC2)"'C2Afc+i) Fj,] 

= trace [GkC2Ak+iC'2Gk - Gk+iC2Ak+iC2G'k-

—GkC2Ak-\-iC2Gk-\-i + Gk+iC2Ak+iC2Gk-\-i] 

= trace [{Gk - Gk+i)C2Ak+iC'2{Gk - Gk+i)'] 

This equality finally enables us to conclude that 

Jk+i = Jk- trace [{Gk - Gk+i)C2Ak+iC2{Gk - Gk-\-i)'] 

<Jk 

which proves point b) of the lemma proposed. 

It is important to recognize that the second part of Lemma 6.8 is also a consequence 
of the joint determination of matrices A^+i and Gk+i in step 3) from the solution of two 
simultaneous equations, one of then nonlinear. It would be very attractive to change the 
previous algorithm in order to solve only linear equations. However, doing this it is no more 
possible to be sure that 

Fk = GkC2 G /Cc = ^ Fk-\-i = Gk+iC2 G /Cc 

in which occurrence the properties introduced in Lemma 6.8 are both lost. Hence, we can say 
that the price to be paid to keep these convergence features is to solve in step 3) a nonlinear 
matrix equation. • 

E x a m p l e 6.8 Consider the system (6.155) - (6.157) with the following data 

Ci 

0 1 
- 1 0 J 

1 0 
0 0 

, 51 

Di2 = 

1 0 
0 1 

0 
1 

B2 

, C2 = [ 0 1 ] 

Solving the State feedback control problem in RH2 we get 

F2 = [ -0 .41 -0.91 ] , Jopt = trace[P2] = 2.19 
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Since matrix C2 is not in the standard form, from the discussion in Remark 6.39 we have 
first defined a similarity transformation with 

0 1 

1 1 

together with the optimal solution of problem (6.163) provides 

^sub = —2.0 , Jsub =^ 3 .50 

In this case, the optimal solution of the exact design problem (recall Remark 6.41) is known 
to be Gopt = —0.81 with the associated cost Jopt = 2.46. This example shows that the 
quality of the solution provided by the solution of the convex problem (6.163) may be poor. 
Of course the quality, measured in terms of the deviation from the optimal solution depends 
on the similarity transformation matrix S which unfortunately is not easy to choose. Again, 
the main attractive feature of problem (6.163) is its convexity. • 

6.7 Notes and references 

The various aspects of Convex Analysis, from the basic facts to most important and 
deep results are included in the seminal book by Rockafellar [53]. The book [10] 
exhaustively t reats the most important topics related to systems and control theory 
in the framework of Linear Matrix Inequalities so tha t the problems to be handled 
are convex. As well as, this book is also an important source of references to those 
interested in going deeper into optimal control design using convex programming 
techniques. Section 6.2 is mainly based on papers [6], [22], [47], [48] and on the results 
introduced in the previous chapters of this book. Section 6.3 follows the same lines of 
[32] and connections to the results of [5] are put in evidence. The approach proposed 
in [40] is summarized in Remark 6.28 where also a numeric example is included for 
comparison purpose. In Section 6.4 the pole placement problem in a circular region 
is analyzed in a convex programming view point. Other regions for pole placement 
as well as a different approach to solve the same problem are considered in [28]. The 
time-domain specifications t reated in Section 6.5 is based on the result of Lemma 
6.5 due to Wilson [62]. The proof of this result is different and new. The related 
optimal control design problems appeared first in [54]. Finally, the Decentralized 
control design in Section 6.6 parallels the results of [23]. In the same section the 
Static output control design problem considered, first appeared in [39]. From this 
reference comes both the Example 6.8 solved and the algorithm discussed in Remark 
6.41. The proof of convergence is new. 
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Chapter 7 

Uncertain Systems Control 
Design 

7.1 Introduction 

This chapter is devoted to uncertain systems control design. The main goal is to 
provide a simple and easy to follow introduction to this important subject of control 
theory. The necessity to analyze dynamic systems subject to uncertainties stems 
from the fact that the model to be used for design purpose is generally only an 
approximation of reality. In other words, for control design purpose we need to 
handle simple models. However, the controller obtained must work when connected 
to the real system. The way to take this feature into account is to consider a simplified 
nominal model which is corrupted by uncertainties belonging to a prespecified domain. 
To make clear this point it is interesting to remember the mixed RH2/RH00 control 
design problem. The controller calculated from its solution imposes optimality to 
the nominal closed loop system while stability is preserved against the considered 
uncertainties. In this chapter, we go beyond this point. Indeed, not only robust 
stability is considered but also robust performance is taken into account. That is, 
the main purpose is to design controllers which preserve stability and minimize the 
performance loss due to existence of uncertainties. In this way, two important concepts 
are introduced, namely quadratic stabilizability and guaranteed cost which are both on 
the basis of the results that follow. Once again, the optimal control problems to be 
solved are all convex and so the same machinery provided in Chapter 6 is intensively 
used. It is important to make explicit that only linear control design is considered. 

7.2 Robust stability and performance 

In this section we generalize the concepts of stability and optimality to deal with 
uncertainties belonging to a precise although general domain. Control problems design 
involving norms of transfer functions in RH2 and RHoo spaces are considered in the 
special case that the whole state is available for feedback. 

The basic system structure is depicted in fig. 7.1 making explicit the linear state 
feedback control law to be used. The transfer function Pv{s) depends on the subscript 
V which will be made clear in the sequel. The linear system under consideration thus 
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w 
Pv{s) 

y = x 

Figure 7.1: The control system structure 

have the following state space representation 

X = Ax -\- Biw -\- B2U 

z — Cix -\- D12U 

y = x 

(7.1) 

(7.2) 

(7.3) 

and the controller is completely defined by means of the matrix F which has to be 
determined (if any) such that with 

u = Fx (7.4) 

some desired performance is assured. Equations (7.1) - (7.3) represent an uncertain 
linear system. That is, matrices A and B2 are not exactly known. On the contrary we 
only know that they belong to some prespecified matrix set D. In this sense, equations 
(7.1) - (7.3) represent in fact a family of linear systems any member of which has to 
be controlled by means of the same control law. Of course it is important, if possible, 
to determine F such that all members of the family are internally stable and, at the 
same time, some desired performance level is guaranteed. 

To put this discussion in more precise terms, let us recall that for any pair {A, B2) G 
V the internal stability of the corresponding system is assured whenever F G /Cc-
Consequently, the matrix gain F stabilizes all members of the family if and only if 

FeKv n ĉ 
{A,B2)eV 

(7.5) 

This fact has a very clear interpretation. The set /Cx> is composed by all matrices 
F which stabilize each feasible pair (A, ^2) G V. The set /Cp does not present any 
important property as for instance convexity. A crucial point is that although each 
element of the intersection above can be converted to a convex set (as has successfully 
been done in Chapter 6), the same is not true for the intersection itself, that is for the 
set /Cp. A way to circumvent this difficulty is to work with a subset of it, characterized 
by means of the following definition. 

Definition 7.1 (Quadratic stabilizability) The pair (A, ^2) ^̂  said to he quadratic 
stabilizable if there exist matrices P, symmetric and positive definite, and F such that 

0 > (A + B2F)P + P{A + B2Fy + Q , W {A,B2)eV (7.6) 

for some matrix Q — Q' > 0. The set of all such matrices F is denoted ICQ. D 
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Once again it is important to observe that in this definition, the choice of matrix 
Q > 0 is immaterial as far as the existence of a matrix P > 0 satisfying (7.6) is 
concerned. If this inequality is satisfied for P = P when Q = Q then for any other 
Q > 0 the same inequality also holds true for P = PP provided f3 > 0 is such that 
/3Q > Q. Definition 7.1 has a very interesting interpretation. Pick from V a pair 
{A^B2)^ consider the system (7.1) with w{t) = 0 and define the Lyapunov function 

v{x) = x'P~^ X 

If inequality (7.6) holds then the time derivative of f (•) along any trajectory of the 
closed loop system satisfies 

v{x) - x' [{A + B2F)'P-^ + P-\A -f B2F)\ x 

= x'p-^ [{A + B2F)P + P{A + B2F)'] P-^X 

< -x'p-^QP-^x 

< 0 , VxT^O 

showing that the closed-loop system is internally stable indeed. The point is that the 
above calculation holds for any pair (^,^2) ^ ^ and so quadratic stability means 
that only one Lyapunov function can be used to test stability of all systems generated 
by all pairs (^4,^2) in V. Thus, it is clear that KQ is only a subset of /Cp defined 
in (7.5) since for the latter many different Lyapunov functions can be used to test 
stability. 

Remark 7.1 An uncertain linear system is said to be robustly stabilizable if 1CT> 7̂  0-
This means that there exists a feedback gain matrix F such that for all (A, B2) G I>, the 
eigenvalues oi A -\- B2F lie in the open left complex plane. • 

At this point we have to move our attention to the uncertainty domain V since 
Definition 7.1 depends essentially on its mathematical description. There are several 
possibilities for that. Let us consider one of such description whose generality will be 
discussed in the sequel. Notice first that we are assuming only matrices A and B2 
of t^:e open-loop system (7.1) - (7.3) to be uncertain. This is the same to say that 
matiix (recall Chapter 6) 

M, 
A B2 
0 0 

(7.7) 

is not exactly known but belongs to an uncertainty domain T>c such that 

{A, B2) e V <==̂  Mc e Vc 

Then, we proceed by defining the uncertainty domain Vc- It is characterized as a 
polyhedral convex bounded domain given by 

Vc:=co{Mci , i = l ,2, . . . ,7V} (7.8) 

where co{-} denotes convex hull (recall Appendix H) generated by matrices Md^i = 
1, 2, • • •, A .̂ From this, any matrix Mc G Vc can be determined by a convex combina-
tion of the extreme matrices Md^ i = l ,2 , ' - - ,A ' . More precisely, 

N N 

Mc = Y.^^Mc^, 6 > 0 , ^ 6 = 1 (7.9) 
i=l 2 = 1 
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M. c2 

Figure 7.2: The uncertainty domain 

This uncertainty description is very general. Any polyhedral and convex bounded 
domain can be exactly represented by a proper choice of the extreme matrices Md. On 
the other hand, a convex domain (not necessarily polyhedral) can be represented only 
approximately but the degree of approximation involved can be made arbitrarily small 
if the number of extreme matrices becomes sufficiently large. This fact is illustrated 
in fig. 7.2. 

R e m a r k 7.2 Another important uncertainty description is the so called norm bounded 
domain defined as 

Vn : - { M e = Men + Bn^Cn : | | ^ | | < 1 } 

where matrix Men defines the open-loop nominal system and matrices Bn and On of appro-
priate dimension define the uncertainty structure. First of all, notice that this set is convex. 
Indeed, the generic element Mc is affine with respect to Q which varies in a convex set de-
fined by the norm constraint ||r^|| < 1. Furthermore, this set is not polyhedral in general 
and so, as it has been commented before, only an approximation of it can be generated by 
means of the convex hull (7.8). However, in some particular although important cases, it 
degenerates to a polyhedral convex set. For instance, this occurs when the uncertain matrix 
Q is constrained to be diagonal. • 

E x a m p l e 7.1 Consider the following linear uncertain system 

X = Ax + B2U 

where matrices A and B2 are given by 

0 a - 1 
p 0 B2 a 

1- /3 

and the parameters a and ^, representing the uncertainties are such that 

| a - 0 . 5 | < 0 . 3 , | / 3 - 0 . 5 | < 0 . 3 

Letting the nominal values for these parameters heao = po = 0.5, the norm bounded domain 
Vn is completely defined by matrices 

Me, 
0 

0.5 
0 

-0 .5 0.5 • 
0 0.5 
0 0 

, Bn — 
- 0.3 

0 
0 

0 • 

0.3 
0 

5 Cn — 

" 0 
1 
1 

1 
0 

- 1 
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since the uncertain parameters may be retained in matrix fi, which for any ||n|| < 1 exhibits 
the diagonal structure 

f a - 0 . 5 /?-0.5-1 

The same system can be modeled by means of a convex bounded domain Vc- This is done 
from the observation that N = 4 and the corresponding extreme matrices are generated from 
the four vertex of the rectangle [0.2, 0.8] x [0.2, 0.8], giving thus 

Mci = 
0 

0.2 
0 

0 
0.2 

0 

-0 .8 
0 
0 

-0 .2 
0 
0 

0.2 " 
0.8 

0 . 

0.8 • 
0.8 

0 _ 

, Me2 = 

, Mc4 = 

" 0 
0.8 

0 

" 0 
0.8 

0 

-0 .8 
0 
0 

-0 .2 
0 
0 

0.2 
0.2 

0 

0.8 
0.2 

0 
Mc3 = 

From this example we conclude that any uncertain system represented by matrix Mc belongs 
to a polyhedral uncertain domain whenever each entry of Mc is an affine function of the un-
certainty. The number of independent uncertain parameters is immaterial since the domain 
T>c depends only on the extreme matrices Md^i = 1, 2, • • •, A/̂  which are a priori determined 
from the data. • 

We move now our at tention to the characterization of uncertain systems optimal-
ity. Consider the closed-loop system of fig. 7.1 with the s tate space representation 
(7.1) - (7.3) and assume tha t the performance index can be expressed in terms of the 
transfer function from the input w to the output z, tha t is 

J{M,,F):=g{T{z,w;s)) 

where it is made explicit the dependence of the performance index with respect to 
both the control gain F and the open-loop uncertain matr ix Mc. The former has to 
be determined such tha t J{') is optimized in a sense to be precisely defined. Thus, 
restricting our at tention to the quadratic stabilizing gains F G /CQ, the following 
definition is of particular importance. 

Def in i t ion 7.2 (Guaranteed cost) The scalar p is said to be a guaranteed cost as-
sociated with the feedback gain matrix F G ICQ if 

J{Mc,F)<p, V M e G P e (7.10) 

The minimum value of p satisfying (7.10), denoted pq, is called the minimum guar-
anteed cost. D 

From this definition, two points have to be kept in mind. The first one is tha t the 
guaranteed cost is a function of F G KQ. Indeed, any p > p{F) is also a guaranteed 
cost provided 

p{F):= max J{Mc,F) 
MceVc 

and second, the best choice for the control gain matr ix F G ICQ is the one such tha t 
the minimum of p{F) is achieved, tha t is 

Clearly, the scalar pg is the minimum guaranteed cost associated to the uncertain 
system under consideration, it does not depend on a particular value of F G ICQ and 
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it is the optimal solution of a min/max optimization problem. Actually, to show this, 
notice that 

r EK-Q 

= min max J{Mc,F) 
FeKq M.eVc 

= min {p : J{M^,F)<p, ^M^eV,} (7.11) 
P^FelCq 

which allows a very interesting interpretation of the minimum guaranteed cost, in 
terms of a game between Man and Nature. The Nature plays by fixing an open-
loop model Mc G Vc and the Man defines the best feedback gain matrix by choosing 
F G ICQ such that J{Mc^F) is minimized. Once this information is available, the 
Nature plays again but trying to destroy the Man's action by choosing a new open-
loop model Mc G Vc such that J{Mc^F) is maximized. The guaranteed cost pQ is 
the equilibrium of this game. The equilibrium value pQ is generally very difficult to 
be calculated and so it must be thought as a paradigm for uncertain systems control 
design. A much more simple strategy, which is used in the sequel stems from the 
determination of a function p{F) such that 

J{Mc,F)<p{F) , \J M^eVc 

which allows the determination of a guaranteed cost pQ and the associated feedback 
gain by solving 

"̂« =̂ F^J?/"(^) 
clearly implying that 

> min max J(Mc,F) 

> PQ 

In the next sections, our goal will be to solve this problem for the class of linear 
uncertain systems with polyhedral convex bounded domains. Once again, it will be 
possible to convert the optimization problem to be dealt with into a convex program-
ming problem. 

7.2.1 Quadratic stabilizing controllers 

The main purpose here is to analyze the geometry of the set of all quadratic stabilizing 
feedback gains ICQ defined before (recall Definition 7.1). Consider the uncertain linear 
system 

x = Ax-\-B2U (7.12) 

with n states, m inputs and where matrices A and B2 of appropriate and known 
dimension are such that (A, ^2) G P or equivalently Mc G Vc. The set Vc is a 
polyhedral convex bounded domain. Assuming the whole state variable is available 
for feedback, we want to characterize all state feedback gain matrices F such that 
with u = Fx, the uncertain closed-loop system is quadratic stable, that is 

FelCQ (7.13) 
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To this end, we need to consider again the pxp matrices W and Qc with p := n-\-m, 
partitioned as (recall Section 6.2.1) 

W 
Wi W2 

Qc 
Qic 

0 
(7.14) 

where in both matrices, the (1,1) block has dimension n x n. We also consider, for 
i — 1,2,- • • ,N the convex sets 

Cci:={W : W>0 , v'ec^iW)v <0 ,'iveK} (7.15) 

where Qci{W) :— MdW -\- WM'^^ + Qc. In other terms, the convex set defined in 
(7.15) is exactly the same as Cc but with matrix Mc replaced by the extreme matrix 
Mci. Of course, Theorem 6.1 remains valid for each extreme vertex of the polyhedral 
convex bounded domain Vc. More interestingly, these convex sets can generate all 
quadratic stabilizing gains as is proved in the next theorem. 

Theorem 7.1 Assume Qic is a positive definite matrix and consider the set 

N 

CQ := l l Cci (7.16) 

The following hold 

a) CQ is a convex set. 

b) Each W ECQ is such that Wi > 0. 

c) 1CQ = {W!,W{^ : WeCQ). 

Proof The first two points follow immediately from Theorem 6.1 where it is proven 
that for each i = 1,2, • • •, A/" the set Cd is convex and each W G Cd is such that 
Wi > 0. Consequently, point a) and point b) are both true from the definition of CQ 
which is the intersection of the former convex sets. The proof of the last part of the 
theorem is much more involved. 

Point c) It is done by construction. First take F G /CQ ^ 0 and remember that 
Qic is positive definite. From Definition 7.1, there exists a symmetric positive definite 
matrix P satisfying the matrix inequality 

[A + B2F)P + P{A + B2Fy + Qie < 0 

for all pairs (A, B2) such that Mc G Vc- Consequently, the same inequality holds true 
for the N pairs (A^, B2i) corresponding to the extreme matrices Md^, i — 1,2,---,A^. 
Using this fact, it is readily seen that the matrix 

W 
P PF' 

FP FPF' 
eCc^ 

for alH = 1,2, • . . , AT that is, W ^CQ and Wl^W^^ = EPP'^ = F. Conversely, pick 
ly G CQ ^ 0 and notice that from (7.16) M̂  G Ccz for alH = 1,2, •••, N. On the other 
hand, we know that a generic matrix Mc G Vc can be written as 

N N 

Mc Y.^^Mc^^ e^>0, Y.^^ = l 
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which yields 

N 

2 = 1 

AT 

- ^^i@ci{W) (7.17) 
i=l 

The consequence is tha t for all v e J\fc and V {A, B2) GV 

N 

> X' [{A + 5 2 ^ 2 ^ 1 " ' ) ^ ! + Wi{A + ^ 2 ^ 2 ^ ! " ' ) ' + Qlc] X (7.18) 

This inequality, together with the fact tha t both matrices Wi and Qic are positive 
definite implies, by Definition 7.1, tha t F — ^ 2 ^ 1 " ^ ^ ^Q proving thus the theorem 
proposed since the case in which one of the sets is empty follows immediately. • 

This theorem is the uncertain systems stability counterpart of Theorem 6.1 proved 
in Chapter 6. The main point to be retained in mind is tha t it provides a convex 
description of the set of all quadratic stabilizing gains KLQ in terms of the same 
nonlinear mapping namely WJ^W^^ but with W varying now in the convex set CQ. 
As discussed before, this theorem shows how to generate the set /CQ which is only a 
subset of KLv' Thus, it is clear tha t using it we can not capture all robust stabilizing 
gains as defined in Remark 7.1 but only those inside /CQ which are easily obtained by 
a simple convex feasibility problem. 
R e m a r k 7.3 Prom part c) of Theorem 7.1 it is evident that the pair (A, S2) G I> is 
quadratic stabilizable if and only if the convex set CQ is not empty. Indeed, if there are no 
matrices P > 0 and F satisfying Definition 7.1 then CQ = 0. • 

R e m a r k 7.4 The matrix function Gc(VF) defined in (7.17) is of great importance. For W 
fixed, it can be viewed as an affine function of Mc G T>c- Since the uncertain domain T)c is a 
polyhedral convex and bounded set, each matrix Mc can be written as a convex combination 
(although unknown) of the extreme matrices Md^ i = 1,2, • • •, A/". Consequently, it follows 
that 

^c{w) = ^^ieci{w) 

which means that QdW) < 0 if and only if Qci{W) < 0, i = 1,2, • • •, A .̂ In other words, we 
can say that the uncertain system defined by the pair (A, B2) is quadratic stabilizable if and 
only if the collection of N systems represented by the pairs {Ai^ B2i) is quadratic stabilizable. 
The quadratic stabilizability of any other pair [A^B2) G Pc is a mere consequence of the 
quadratic stabilizability of the extreme matrices which define the domain T)c- Even though 
the set Vc is composed by an infinity number of matrices Mc, only Â  of them have to be 
used to check quadratic stabilizability. 

To put in evidence the importance of Definition 7.1, let us proceed in the above dis-
cussion under the assumption that the collection of extreme matrices, namely (̂ 4 ,̂ B2i),i = 
1,2, •••,A/' is robustly stabilizable (recall Remark 7.1). That is, there exists a matrix F 
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such that the eigenvalues of Ai + B2iF are all in the open left complex plane. From the 
Extended Lyapunov lemma, this is equivalent to the existence of matrices Pi = P/ > 0 and 
Qi = Qi > 0 such that 

0 > (Ai + B2rF)Pi + Pi{Ai + B2iFy + Qi 

for alH = 1, 2, • • •, A/". Since the right hand side of the inequality 

0 > (A + B2F)P + P{A + B2Fy + Q 

is not a convex function of the unknown matrices A,B2,P and Q then the robust stabi-
lizability of the collection of the extreme matrices does not provide enough information to 
guarantee the same for all matrices in the convex domain Vc. • 

R e m a r k 7.5 (Comparison between T>n and Vc) In many instances (recall Example 
7.1) the uncertainty of a linear dynamic system can be modeled as Mc G T>n only at expense 
to impose to matrix Q a prespecified structure. In Example 7.1 this occurred since Q was 
taken to be a diagonal matrix. Let us analyze, in this particular case, the degree of conser-
vativeness introduced. From the definition of Vn in Remark 7.1, we notice that the nominal 
matrices must be partitioned as 

Men = 
AQ B20 
0 0 Bn 

Bi 
0 

Cn=[Cl D12 ] 

The consequence is that there exists a stabilizing gain F such that with u = Fx the closed 
loop system is stable for all Mc G Vn if AQ + B20F is stable and 

||(Ci + Di2F)[sI - {Ao + B2oF)]-'Bi\\oo < 1 

Of course, if this is true then the closed-loop system is stable for all O such that ||r^|| < 1. In 
other words, this condition does not take into account the known fact that Q is a diagonal 
matrix. 

On the contrary, for this particular case (in which Q is diagonal), the same uncertain 
domain can also be exactly described by Vc and consequently, applying Theorem 7.1 the 
whole set JCQ is generated which contributes to decrease the degree of conservativeness 
involved. This feature is numerically addressed in the example that follows. • 

E x a m p l e 7.2 Consider again the linear uncertain system (recall Example 7.1) 

X = Ax + B2U 

where matrices A and B2 are given by 

A = 
0 a - l 
(5 0 B2 = a 

1- /3 

and the parameters a and / ,̂ representing the uncertainties are such that 

| a - 0 . 5 | < 7 , | / 3 - 0 . 5 | < 7 

Letting the nominal value for these parameters be ao = /̂ o = 0.5, the norm bounded domain 
Vn is completely defined by matrices (recall Remark 7.5) 

5 i = V2 
7 0 
0 7 

0 -0 .5 " 
5 0 

y/2 

, B2O 

' 0 1 ' 
1 0 

= 

5 

" 0.5 ' 
0.5 

D12--
1 1 " 

- 1 
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Figure 7.3: Uncertain system closed-loop poles 

where matrix D12 is such that D[2Di2 
the diagonal structure 

1. In addition, matrix Q such that \\Q\\ < 1 exhibits 

.=...{£ ,̂̂ } 
The central controller which satisfies the RHOG constraint just discussed in the previous 
remark is provided by the solution (if any) of the Full information problem, that is F = 
Foo = —B20P00 — D'i2Ci where Poo is the positive semidefinite and stabilizing solution of 
the Riccati equation (in the unknown P) 

0 = PAcQ + KoP - P{B2oB'2o - BiB[)P + CLCic 

with AcQ := Ao — B2QD'I2CI and Cic := {I — Di2D'i2)Ci. Numerically, it is possible to verify 
that the above Riccati equation admits a positive semidefinite and stabilizing solution for 
7 G [0,0.27]. Thus, setting 7 = 0.27, we can conclude that the associated state feedback 
gain F = Foo = [3.80 - 21.49] is stabilizing for all Mc G Vn. 

On the other hand, the same system can also be modeled by means of a convex bounded 
domain Vc. This is done with N = 4 and the corresponding extreme matrices, whose entries, 
depending on the parameter 7, are easily determined. From Theorem 7.1, we observe that 
the convex set CQ depends on 7. Numerically it is verified that with Qic = / , the set CQ 
is not empty for all 7 G [0,0.36]. The associated quadratic stabihzing gains, valid for all 
Mc G Vc have been computed in two situations, namely 

7 = 0.27 =^ F=[ -0.13 -1.91 ] 

7 = 0.36 =^ F=[ -0.26 -4.94 ] 

As we have said before, in this case. Theorem 7.1 provides a better result when compared 
to the former one. Figure 7.3 shows the root locus of the uncertain closed-loop system 
with the quadratic stabilizing gain above, corresponding to 7 = 0.36 which is obtained with 
the parameters (a,/3) varying in the rectangle [0.14, 0.86] x [0.14, 0.86]. It is numerically 
confirmed that the closed-loop system is in the limit of stability since there exists a closed-
loop pole with real part equal to —0.0058. Hence a small increase in 7 will move some 
closed-loop poles to the right part of the complex plane, causing instability. • 
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7.2.2 RH2 g u a r a n t e e d cost con t ro l 

Let the uncertain linear system under consideration be 

X = Ax-\- Biw + B2U (7.19) 

z = Cix^ D12U (7.20) 

y = x (7.21) 

and represented in fig. 7.1. It is assumed tha t i) the pair (A, ^2 ) is quadratic sta-
bihzable and ii) D'12^12 = I- For this system, our interest is to determine a RH2 
guaranteed cost control which is defined as follows. Choosing 

g{T{z,w;s)):=\\T{z,w;s)\\l (7.22) 

we have to determine an upper bound, depending only on F G JCQ such tha t 

\\T{z,w;s)\\l = J{M,,F)<p{F) , WM.eV, (7.23) 

and solve the optimal s tate feedback control problem 

PQ ••= min p{F) (7.24) 

Before we proceed, it is important to keep in mind tha t our main objective is to 
convert the design problem (7.24) into an equivalent convex programming problem. 
This fact of course has to be kept in mind during the determination of the upper 
bound satisfying inequality (7.23). To this end we need to introduce the symmetric 
matrices 

Re '— 
D'12 

[ Ci D12 ] , 
BiB[ 0 

0 0 
(7.25) 

which together with the next lemma define the function p{-) which exhibits the prop-
erties just discussed. 

Lemma 7.1 Assume BiB[ is a positive definite matrix, consider F G /CQ arbitrary 
and define the convex set 

CQ{F):=CQf]{W : W^ = FW^} 

then 
p{F) := min {tTd.ce[RcW] : W e CQ{F)} (7.26) 

is a valid upper bound to \\T{z,w; s)\\2 for all feasible Mc G Vc. 

Proof First notice that for any F G JCQ given, the set CQ{F) is convex and nonempty. 
The convexity follows from the fact that it is the intersection of a convex set (recall 
Theorem 7.1) with another one defined by a linear and hence convex constraint. Again 
from Theorem 7.1, W G CQ generates all quadratic stabihzing state feedback gains 
and so for any F G JCQ fixed the linear constraint W2 = FWi must be satisfied for 
some W e CQ. Let us now consider an arbitrary Mc G T>c which can be written as a 
convex combination of the extreme matrices, that is 

N N 

M, = ^ ^ , M , , , e, > 0 , ^ ^ , 
z = l 



274 CHAPTER 7. UNCERTAIN SYSTEMS CONTROL DESIGN 

and pick W £CQ{F). For all i> e A/'c we have 

N 

o>J2^iv'e,i{w)v 

> x' [{A + B2F)Wi + Wi{A + B2F)' + BiB[] x 

which enables us to conclude tha t Wi > Pr where Pr > 0 solves the linear matr ix 
equation 

(A + B2F)Pr + Pr{A + B2F) + BiB[ = 0 

On the other hand, applying the Schur complement formula to VF > 0 it is simple 
to see tha t W3 > FWiF'. Then, for the same matrix Mc and using the fact tha t 
W2 — FWi, we also get 

trace[i?cW^] = trace [ Ci £»i2 ] W 
D[2 

= trace [{Ci + DuF)Wi{Ci + DuF)'] + 

+trace[Z)i2(W^3 - FWiF')D[2] 

> t race [(Ci + Di2F)Pr{Ci + DuF)'] 

> mz, w:s 

Since this inequality holds for an arbitrary Mc G Vc and for all feasible W G CQ{F)^ 
the final conclusion is tha t p{F) defined in (7.26) satisfies 

\\T{z,w',s)\\l<p{F), V M e G P e 

which proves the lemma proposed. • 

R e m a r k 7.6 There are two reasons to define p{F) as indicated in (7.26). First, any feasible 
W produces an upper bound to the RH2 norm of the transfer function under consideration 
but the optimal solution of the convex problem indicated in the previous lemma provides the 
smaller upper bound as far as the choice of matrix W is concerned. Second, when N — 1, 
that is when T>c is composed by only on matrix Mc (there is no uncertainty at all) then from 
the proof above it is easily verified that the optimal solution of problem (7.26) is 

W = 

providing thus 

FPr FPrF' 
^CQ{F) 

-p{F) = \\T{z,w-s)\\l 

In this special case, the function p{F) reduces to the RH2 norm of the closed-loop transfer 
function. Thus, in the general case of uncertain systems with polyhedral convex bounded 
domain I>c, this function can be interpreted as a generalized RH2 norm which is finite for 
all quadratic stabilizing state feedback gains. • 

We are now in position to solve the basic design problem (7.24) by means of 
an equivalent convex programming problem. This result is summarized in the next 
theorem. 

T h e o r e m 7.2 Assume BiB[ is a positive definite matrix. Then, 

mm p{F) = mm{tTdice[RcW] : W e CQ} (7.27) 

Furthermore, being F and W the optimal solution of each problem they are related 

one to each other by F = W^^ i"^ -
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P r o o f The proof is a mere consequence of Theorem 7.1 together with Lemma 7.1. 
Actually, the minimum of p{F) over F G JCQ is obtained by the joint minimization 
of (7.26) with respect to both F and W. Due to the part c) of Theorem 7.1, this 
joint minimization can be calculated in two independent steps. In the first one, the 
optimal solution W of the convex programming problem in the right hand side of 
(7.27) is determined. This solution allows the determination of the optimal gain 
namely, F = W^^ i "^ ^ ^Q i^ ^^le second and last step. • 

R e m a r k 7.7 Assuming BiB[ > 0, the function p{F) introduced in Lemma 7.1 can also 
be calculated as follows 

p(F) = min |trace[Ccc^Cec] : 0 > AdP + PA'^ -{-BiB[} 
p>o ^ ' ' J 

where Ad := Ai ~\- B2iF for i = 1, 2, • • •, A/" and Ccc := Ci -{- D12F. Since (recall Definition 
7.1) the constraint set in the above problem is feasible if and only if F G JCQ then it is simple 
to see that 

PQ = min {tY8ice[CccPCcc] : 0 > Ac^P + PA^ + BiB[] 

Defining Ai = Â  > 0 as being the Kuhn-Tucker multipliers associated to the i — th inequality 
constraint, the Lagrangian function turns out to be 

N 

C = trace[CccPCec] + ^ t r a c e [Ar{AciP + PA'd + BiB[)] 
i=l 

from which the Kuhn-Tucker necessary conditions for optimality can be written in terms of 
the unknown matrices F , P > 0, Qi > 0 and Â  > 0 satisfying 

0 > Ac^P + PA',, + BiB[ := -Q^ 

N 

i = l 

0 = iF + D[2Cl+Y,B'2^^^\p 
0 = trace [A^Qi] 

These conditions put in evidence several nonlinear relationship among the unknown matrices 
implying that they can be solved only in some special cases. Indeed, the third equation can 
be used to determine the optimal gain matrix F explicitly, however the second condition 
alone is not of great help in finding matrices Ai,z = 1,2,---,A/' since it represents only one 
equation with N unknown. The consequence is that putting aside the third equation, the 
remaining ones have to be solved simultaneously. This is accomplished by solving the right 
hand side of (7.27) directly It is important to stress that this discussion is no longer true 
in the particular case N = 1. The domain Vc degenerates to a single matrix and the above 
conditions reduce to those of Remark 6.7 with matrices P and A replaced one by the other 
since the problem now under consideration is exactly the dual of the one treated there. • 

R e m a r k 7.8 The use of any convex programming method to get the global solution of the 
optimal RH2 guaranteed cost control problem 

PQ = min{trace[i?cV^] : W e CQ} 

depends on the boundedness of the following convex set (recall Remark 6.8) 

CQ^ := CQ f^ {W : trace[RcW] < p} 
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Since the set CQ is itself an intersection of N convex sets, then the requirement that there 
exists an index 1 < i < N for which the pair {—Ad, Cic) is detectable is a sufficient condition 
for the boundedness of CQ^ for all /x such that pq < ii < oo. D 

R e m a r k 7.9 In this section we have defined the generalized norm p{F) satisfying 

\\T{z,w;s)\\l<p{F) , \/MceVc 

Let us now verify the difficulties we have to face if we desire to work, instead of p{F), with 
the true generalized RH2 norm 

p ( F ) = max \\T{z,w;s)\\l 
McG-Dc 

Since F G /CQ assures that all closed-loop transfer functions T(z, w] s) are stable then with 
Ace := A-\- B2F and Ccc := Ci + D12F we have 

p(F) = max trace 
McGPc 

/ Ccce^'''''BiB[e'^'--'C'ccdt 
Jo 

On the other hand, from Theorem 7.1 we already know that all F G /CQ are generated by 
F = W'^W^^ with W e CQ. Then we get 

PQ = min p{F) 
^ eK,Q 

= min p(W2W^^) 
WECQ 

In the above problem the constraint VK G CQ is convex. However, the difficulty is that it is 
not easy to prove if the objective function is convex or not. In the affirmative case, no major 
difficulty exists to approach the problem by means of convex programming methods. The 
convexity of p(-) remains until now an open question. D 

R e m a r k 7.10 Let us now consider the RH2 guaranteed cost control problem but with 
norm bounded uncertainty, that is Mc G Vn- The uncertain system (7.19) - (7.21) is now 
written with a slightly different notation 

X = Ax + BQW + B2U 

Zo = CQX + DQU 

y = X 

where BQBQ > 0 and D'QDQ = / . Following Remarks 7.2 and 7.5, using u — Fx the closed-
loop system matrix can be expressed as 

A + B2F = Acc + BinCcc , \M<1 

where Ace '•— AQ + B20F and Ccc •= Ci + D12F. Notice that in this setting, the external 
perturbation, and the parametric uncertainty enter in the system through two different 
matrices, namely BQ and Bi respectively. First of all, it is claimed that for the above 
uncertain system, the upper bound p{F) is given by 

p{F) = mmtraice[BoP(P)Bo] 

> ||T(;^o,^;5)||^ , yMceVn 

where 15 is the set of all /3 > 0 such that there exists a symmetric, stabilizing and positive 
semidefinite solution P{l3) to the Riccati equation (in the unknown P) 

0 = PAcc + A'ccP + PPBiB[P + p-'C'ccCcc + C'ocCoc 
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where Coc := Co + DQF. TO show this, notice first that any f3 > 0 yields 

C'^^Vt'B[P + PBiQCcc = /?~^Cec^'OCcc + pPB[BiP -

-(ncccp"^^^ - B[pp^^''y{nCccp-^^^ - B[pp^^^) 
<r'C',,Cec^f3PB[BiP 

where to get the last inequality we have used the fact that Q'Q < / . Using this inequal-
ity together with the previously defined Riccati equation, for all ^ E B we can draw two 
important conclusions. The first one is that (recall Remark 7.5) 

\\Ccc[sI - {Ao + B2oF)r'Bi Hoc < 1 

meaning that the closed-loop system matrix A -\- B2F is stable for all Mc G Vn- Second, 
from the above inequality we also have 

{A + B2F)'P{f3) + P{P){A + B2F) + C'ocCoc < 0 

for all Mc G Vn implying that 

r r°^ 
\\T{zo^w]s)\\2 = trace 

< tiSice[BoP{p)Bo] 

<P{F) 

Based on this result, let us now determine the best guaranteed cost denoted piv, that is 

PN = min tYSice\BoP(/3)Bo] 
F,(3eB 

The necessary conditions for optimality with respect to F is readily obtained (recall Remark 
6.19) from the associated Lagrangian function. After tedious algebraic manipulations, a 
solution to these conditions can be written as 

F(p):=F-il + fir'B'2oW{(3) 

where 
F := -{l^f3y\D[2Ci+f3D'oCo) 

and W{f3) := pP{P) solves the Riccati equation (in the unknown W) 

0 = WA + A'W + WNW -h M 

with 

M 

= Ao + B20F 

= BiB[-{l + /3)-'B2oB'2o 

= (Ci + Di2F)\Ci + D12F) + /3(Co + DoF)\Co + DoF) 

Finally, using this result we get 

pN = mml3~hiSice[BoW{t3)Bo] 

which is numerically easy to solve since it involves the search of only one positive parameter. 
The main conclusion to be kept in mind is that the guaranteed cost associated to the un-
certain domain Vn is numerically tractable by means of a unidimensional search procedure. 
It must be clear that in the present case, it may occur that B = 0, meaning that pN is 
unbounded and so no guaranteed cost control is obtained. This aspect is illustrated in the 
next example. • 
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Figure 7.4: Actual value of the i?if 2 norm 

E x a m p l e 7.3 Let the uncertain system be again the one of Example 7.2. The state space 
representation is 

X = Ax + BQW + B2U 

Zo = CQX + DQU 

y = X 

where the uncertainty is modeled as Mc G Vc as well as Mc G Vn- The main goal is to 
determine the associated guaranteed RH2 cost control. The data are those of Example 7.2 
but with only one uncertain parameter obtained by imposing a = P such that 

| a - 0 . 5 | < 7 

where 7 = 0.20. The controlled output is defined by matrices 

Bo = Bi = V2 7 0 
0 7 

C o -
1 1 
0 0 

Do = 

Three different situations have been considered : 

1) First, assuming no uncertainty acts on the open-loop system, the Full information 
problem in RH2 has been solved using the nominal data. The optimal solution found 
is 

min||T(zo,^;s)| |2 = 0.32 ^ F2 - [ -1.00 -1.00 ] 

Using this state feedback gain, it is simple to verify that the closed-loop system remains 
stable for all a varying in the interval defined as above with 7 = (V^ — 2)/2 = 0.1180. 
This fact is illustrated in fig. 7.4 where it is clear that the corresponding value of 
||T(2;o,'i^; s)| |l, denoted by the symbol "F2", becomes arbitrarily large as a goes to 
0.3820. For all other values of a, the closed-loop system is unstable. 

2) We considered Mc ^T>c. In this case we have two extreme matrices only. The optimal 
solution of the convex programming problem in Theorem 7.2 provides 

PQ 1.18 FQ = F=[ -0.02 -2.39 ] 

As indicated in fig.7.4, the closed-loop system is now stable in the whole interval 
0.3 < a < 0.7 implying that the associated cost is always finite. This is an important 
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improvement of the guaranteed cost control design proposed when compared with the 
previous situation. It is interesting to notice that the closed-loop system transfer 
function satisfies 

max ||T(2;o,w;;s)||2 = 0.77 < pQ 
0.3<a<0.7 

which illustrates the fact discussed before (recall Lemma 7.1) that function p{F) is 
only an upper bound to the true value of the minimized cost. 

3) In this situation we modeled the uncertainty as Mc G Vn- Following the results of 
Remark 7.10, it has been verified that B = (0, 0.7] in order to preserve W(/3) > 0. 
Using this, an unidimensional search has been implemented to get the optimal P = 0.32 
which provides 

p^ = 2.45 =^ FN = F{P = 0.32) = [ -0.13 -2.52 ] 

Figure 7.4 shows that the closed-loop system is also stable for all values of a in the 
real interval 0.3 < a < 0.7. There is no big difference between the cost variation in 
the last two situations. However, comparing them, it is apparent that pq < pN which 
indicates that in this example the design based on T>c is preferable. 

Figure 7.4 illustrates also the advantages of the guaranteed cost control design when 
compared with the nominal Full information control design. For the nominal system it is 
obvious that the latter is better. However, the performance imposed by the optimal Full 
information controller may become worse when a small change in the system parameters 
occurs. Even the closed-loop stability can be lost. On the contrary, the guaranteed cost 
controller assures closed-loop stability for the parameters varying in the prespecified range 
and impose a reduced level of performance deterioration. • 

7.2.3 RHQQ guaranteed cost control 

We now move our at tention to the RHoo counterpart of the results provided in the 
last section. The uncertain dynamic system under consideration is again the same 
depicted in fig. 7.1 where as indicated the full s tate vector is available for feedback. 
To ease the presentation the s tate space equations are given once again, 

x = Ax^ Biw + B2U (7.28) 

z = Cix^ D12U (7.29) 

y = x (7.30) 

where A and B2 are uncertain matrices such tha t is Mc G Vc and as before we assume 
tha t i) the pair (^1,^2) is quadratic stabilizable and ii) D i 2 ^ i 2 = F The above 
equations define a family of linear dynamic systems for which our goal is to determine 
an associated RH^o guaranteed cost control. Following the results of Chapter 6, let 
7 denotes an arbitrary positive scalar and choose 

g{T{z,w;s)):=\\T{z,w;s)\\1 (7.31) 

Then the minimum guaranteed RH^ cost can be calculated from (7.11), yielding 

P Q = min {p : J{Mc,F)<p, V M^ e P c } (7.32) 

Parallel to the case of RH2 guaranteed cost control problem, the solution of (7.32) is 
extremely diflficult to get, then the strategy to be used is to define a suboptimal easy 
to determine solution provided by 

-pQ := min {7^ : (F, 7) G /C^Q } > PQ (7.33) 
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where JC^Q is a subset of the set of all pairs (F, 7) such that F G KQ and 

\\T{z, î;; s) 11^ = J (Me, F) < 7 ' , V Me € De (7.34) 

It is clear that the choice of the set /C^Q is crucial to get good suboptimal solutions in 
terms of inequality (7.33). Besides it must be possible to convert it into an equivalent 
convex set. To this end, considering matrix W partitioned as indicated in (7.14) 
and matrices Re and Qc given in (7.25) let us define the following convex set (recall 
Theorem 6.5) associated with each extreme matrix of the polyhedral convex bounded 
uncertain domain Vc, 

C^. := {{W, p) : VF > 0 , p > 0 , v'Q^i{W, p)v<0 .^ve K} (7.35) 

where @ji{W^ p) :— QciiW)-\-p~^WRcW for each i = 1,2, • • •, A .̂ Thus, it is apparent 
that the above set has been obtained from C^c by simply replacing matrix Mc by the 
extreme matrix Md • The next theorem provides the solution of the problem indicated 
in (7.33). 

Theorem 7.3 Assume BiB[ is a positive definite matrix and consider the set 

N 

C^Q'=f]C^i (7.36) 

The following hold 

a) CjQ is a convex set. 

b) Each {W, p) G C^Q is such that Wi > 0. 

c) The subset K^Q defined above can be chosen as 

^',Q = {{W!,W{\^p) : {W,p)eC^Q] (7.37) 

Proof The first two points are straightforward consequences of Theorem 6.5. Since, 
both are true for each set C^̂ , i = 1,2, • • •, A/' then the same is also true for their 
intersection. 

Point c) We have to prove that any iW^p) G C^Q provides F = VJ/̂ W f̂̂  G KQ 
and 7 = ^ such that (7.34) holds. This is proved by selecting an arbitrary pair 
(W ,̂ p) G C^Q and noticing that 9cz(VF) < ©^^(1^, p) for all z = 1,2, • • •, A/" implies 

(W,P)€C^Q=^W&CQ 

which from part c) of Theorem 7.1 allows us to conclude that F — W!^^^ G KQ. 
Let us now pick an arbitrary matrix Mc G I^c- Recalling Theorem 6.5, for this matrix 
the set C^c is well defined. So, expressing Mc as a convex combination of the extreme 
matrices 

AT AT 

yields (recall Theorem 6.5) for all -y G Mc 

v'Q^c^, p)v := v' [@c{W) + p-^WRcW] v 
r AT 

= ^'Ul^i {Qci{W) + p-^WRcW) 

AT 

= Yl^iv'Q^i{W,p)v<^ (7.38) 
i=l 



7.2. ROBUST STABILITY AND PERFORMANCE 281 

which means tha t {W, p) G Cjc Since the inequahty (7.38) is always t rue for ah 
Mc G Vc we get from part c) of Theorem 6.5 tha t 

which means tha t (7.34) actually holds. • 

The importance of this theorem is twofold. First, Problem (7.33) which defines 
the guaranteed RH^ cost reduces to 

PQ = mm{p : {W, p) e C^Q} (7.39) 

and this is a convex programming problem which can be solved efficiently. Second, the 
convex set C^Q allows the determination of a set of feedback matr ix gains such tha t 
for a given 7 > 0, the closed loop system is quadratically stable and \\T{z^w; s)\\oo is 
bounded above by 7 for all Mc G Vc. 

R e m a r k 7.11 The boundedness of the set C^Q can be analyzed following the same lines of 
Remark 6.22. The key property to assure the adequate use of convex programming methods 
in solving the approximate version of Problem (7.39), namely 

PQ « min{p : {W, p) G C^Q , tTace[RcW] < (3} 

where the scalar /3 > 0 is finite and appropriately large, is to impose that there exists an 
index 1 < i < N for which the corresponding pair {—Ad, Cic) is detectable. • 

R e m a r k 7.12 The convex set C^Q presents two additional properties. First, in the case 
of certain dynamic systems, the domain Vc is defined by only one matrix, then C^Q equals 
the set C^c introduced in Theorem 6.5. As a consequence the optimal value of pQ reduces 
to the minimum possible RH00 norm level. Second, in the case of uncertain systems, with 
7 arbitrarily large (VF, 7) G C^Q implies W E CQ. Once again, the set of all quadratic 
stabilizing feedback gains is obtained. D 

7.2.4 Miscellaneous design problems 

This section is devoted to treat in the framework of uncertain systems control design 
the other problems already solved in Chapter 6, namely Mixed RH2/RH00 control, 
RH2 control with regional pole placement, t ime domain specifications and controllers 
with structural constraints. The basic idea is to generalize the previous results on 
guaranteed cost control to cope with the new performance constraints. All design 
problems are solved for the special case of static linear s tate feedback controllers. 

Let us first consider the Mixed RH2/RH00 control problem associated to the 
linear dynamic system of fig. 7.1 and with the following state space representation 

x = Ax-\- Biw + B2U (7.40) 

zo = CQX + DQU (7.41) 

zi = Cix + D12U (7.42) 

y = x (7.43) 

where it is assumed tha t the uncertainty is described by Mc G Vc- Furthermore, it 
is also assumed tha t i) the pair {A, B2) is quadratic stabilizable and ii) D^2^i2 = I-
The controller is given hy u = Fx where matr ix F is to be determined. In the present 
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context, the guaranteed mixed RH2/RH00 cost control problem can be formulated 
as being to determine (if one exists) a s tate feedback gain matr ix F such tha t for a 
given scalar 7 > 0, the closed-loop system is quadratically stable and 

PQ:=mm{p: \\T{zo,w;s)\\l < p , \\T{zi,w',s)\\oo < 7 , ^ M, eV,} (7.44) 

Based on the previous results, a suboptimal solution of this problem is given in the 
next theorem. 

T h e o r e m 7.4 Let 7 > 0 &e given and let W be the optimal solution of the convex 
programming problem 

PQ = min {trace[i?oW] : (1^,7^) e C^Q} (7.45) 

Then, F = W^W^^ G /CQ and PQ>PQ. 

P r o o f It follows immediately from the result of Theorem 7.2 together with the ones 
of Theorem 7.3. Indeed, from the last theorem (W^,7^) G C^Q implies tha t F = 
W!^W{^ e KQ and 

| | T ( z i , ^ ; 5 ) | l o o < 7 , "^ MCEVC 

Furthermore, using the fact tha t 

from Theorem 7.2 we conclude tha t 

\\T{zo,w; s)\\l < tvSice[RoW] =pQ , y M^eV^ 

which proves the theorem proposed since (F^pq) is feasible for Problem (7.44). • 

E x a m p l e 7.4 Let us consider the following uncertain linear system (recall Example 6.2) 

X = Ax + Biw + B2U 

zo = CQX + u 

z\ — C\x + u 

y = X 

where 

A = 

B2 = 
1 

0 
1 + a 

0 
- a / 2 

1 
- l + 2a 

, CQ = 

, -Bi = 

C i = [ 0 

' 1 1 
0 J 

- 2 ] 

The only available information concerning the uncertain parameter a is that 0 < a < 1. We 
have first verified numerically that the set C^Q is not empty for 7 > 4.10. Then we choose 
7 = 5.00 for the calculations that follow. On the other hand, we observe that the dynamic 
system handled in Example 6.2 corresponds to the above one calculated for a = 0. This 
system is called nominal. For the nominal system we solved the Mixed RH2/RH00 control 
problem introduced in Theorem 6.8. The optimal solution provided the state feedback gain 
Enominal which has been used to calculate the closed-loop transfer function RH2 norm 
indicated in fig. 7.5. Simple calculation shows that the closed-loop system is internally 
stable only for 0 < a < 0.5 which implies that F^g^ijial i ^Q-

Moreover, solving the convex programming problem (7.45) we got 

pQ — 4.83 =^ Fguaranteed — [ - 1 - 9 0 -7.20 
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Figure 7.5: RH2 norm and pq 

Now, the closed-loop is internally stable for all a in the prespecified interval. Figure 7.5 also 
shows the closed-loop system RH2 norm compared with the minimum upper bound available. 
It is interesting to observe that the behavior of the cost as a function of the uncertain 
parameter is almost constant in the interval considered. Furthermore, fig. 7.6 shows the 
magnitude of the transfer function T(zi,w;juj) against frequency for several values of a in 
the given interval. From this figure we notice that the constraint ||T(2;i,t(;; s)||oo < 7 = 5 is 
binding and is always verified. D 

We now move our at tention to the problem of uncertain system root clustering in 
a given circular region IZ. It is s tated as follows, given the uncertain linear system 

X = Ax -h Biw + B2U 

z = Cix + D12U 

y = x 

(7.46) 

(7.47) 

(7.48) 

satisfying the assumption i) D[2Di2 = / , find (if one exists) an associated RH2 
guaranteed cost control such tha t in addition the closed-loop system poles with u = 
Fx are all inside the circular region IZ. More specifically, in the same framework 
considered before, we seek for the solution of the following optimization problem 

PQ =^mm{p : {F, p) e ICRQ} 

where ICRQ is a subset of the set of all pairs (F, p) such tha t F G /CQ, 

\\T{z,w;s)\\l<p, V M , G P e 

(7.49) 

(7.50) 

and the closed-loop system poles are all inside the circular region TZ. As commented 
before, the key step towards the solution of problem (7.49) is the definition of the 
feasible set ICRQ (notice tha t now p is a variable to be determined). To this end let 
us redefine the matr ix 

~ A + al B2 
0 0 

Mr 
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Figure 7.6: Bode diagram - magnitude 

and accordingly the convex sets (recall Theorem 6.9) associated with each extreme 
matrix of the convex domain Vc-

Cm:={W : 1^ > 0 , v'eRi{W)v < 0 , V.; G A^} (7.51) 

where QmiW) := QdiW) + r-^MdWM^. for each i = 1,2, • • •, iV. In other words, 
each set above is the same as CR with matrix Mc replaced by the extreme matrix Md. 

Theorem 7.5 Assume BiB[ is a positive definite matrix, let the circular region IZ 
be given and consider the set 

N 

CRQ := I I CRi (7.52) 
i = i 

The following hold 

(i) CRQ is a convex set. 

b) Each W e CRQ is such that Wi> 0. 

c) The subset ICRQ defined above can be chosen as 

JCRQ ^ {{W^W^\tiax:e[RcW]) : W eCRg} (7.53) 

Proof The first two points are immediate consequences of Theorem 6.9. Both points 
are valid for the intersection defining CRQ. 

Point c) It is apparent that CRQ C CQ which from part c) of Theorem 7.1 means 
that F = T^2^r^ ^ ^Q- Moreover, assume CRC T̂  0 and take an arbitrary but fixed 
matrix W G CRQ. For any Mc G Vc, from Theorem 6.9 the set CR is well defined. 
Let us first prove that if VF G CQR then W ^ CR. Indeed, taking into account that 
VF > 0, then W G CQR is equivalent to (by using Schur complement) 

MW) = 
W^/'^M'.Uc -rl 

< 0 
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for alH = 1, 2, • • •, Â  where Uc = [I 0]^ Since Ai{W) is affine with respect to Md, 
writing Mc G Pc as a convex combination of the extreme matrices we get 

N 

2 = 1 

which imphes that W e CR indeed. From Theorem 6.9 the state feedback gain matrix 
F = W^2^r^ places the closed-loop system poles inside the given circular region IZ. 
Furthermore, from part d) of the same theorem we conclude that the linear function 
trace [i?cM ]̂ is a valid upper bound to the RH2 norm of the closed-loop transfer 
function T{z^w;s). Since Mc is an arbitrary matrix in Pc, the result follows. From 
this, the case on which one of the sets is empty trivially holds and so the theorem is 
proved. • 

From this theorem, we can now solve the guaranteed cost optimal control problem 
stated before, namely (7.49) 

PQ=mm{p : {F,p) e ICRQ} 

= min{trace[i?c^] : W e CRQ} (7.54) 

which is once again a convex programming problem. It is interesting to observe that, 
in general lines, the proof of this result follows the same pattern of the previous ones. 
The main difference is that the matrix function QR{-) depends nonlinearly on matrix 
Mc but thanks to the Schur complement formula it can be converted to an affine and 
hence convex function from which the desired result is proved. 

With this in mind it is possible to handle many other guaranteed cost optimal 
control problems with no big additional difficulty. An interesting and practically 
important case is to solve the guaranteed cost version of the Time-domain specification 
problem. Recalling Theorem 6.10, the optimal solution of the convex programming 
problem 

PQ =mm {giRcWR'J : W e CQ} (7.55) 

provides F = VF̂ W "̂̂  G /CQ and the upper bound p satisfying 

g{T{z,w;s))<p, y MceVc 

is minimized. Of course this result follows from the fact that the function g{-) de-
fined in Chapter 6 is convex. The same reasoning can be adopted if the designer 
wants to include convex structural constraints in the state feedback gain matrix like 
decentralization or static output feedback. For that, it suffices to impose the linear 
constraint 

W^WD or W = Wo 

in the problem to be solved. Since these constraints involve only the matrix variable, 
they do not change any property of the closed-loop system stability and the proposed 
upper bounds of the transfer function norms meaning that all results obtained before 
remain valid. 

7.3 Actuators failure 

The practical implementation of a given control is done by means of certain adequate 
devices or actuators. Of course, in the real world these devices are possible to fail 
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Figure 7.7: Practical control implementation 

during the system operation. In this section we want to analyze the impact of ac-
tuators failure in control systems stability and performance. The basic tools to be 
used are the ones related to robust stability and performance already introduced in 
the previous section. It will be shown that the polyhedral convex bounded domain 
Vc plays a central role in this design problem. 

Let us consider the linear dynamic system described by the state space equations 

X = Ax -\- Biw H- B2U 

z = Cix + D12U 

y = x 

(7.56) 

(7.57) 

(7.58) 

for which we seek a state feedback control of the form u = Fx where F solves the 
Pull information control problem in RH2 

min{||r(^,t(;;s)| | i : F e IC^} (7.59) 

Under the assumptions put in evidence in Chapter 4 this problem is feasible and 
admits an optimal solution given by 

F = F2 (7.60) 

With the optimal gain F2 at hand, its practical implementation needs the use of 
m actuators (recall that m is the dimension of the control vector) as is indicated in 
fig. 7.7. Each actuator is ideally modeled as a a simple gain TT̂ , i = 1, 2, • • •, ?n such 
that 

TTi := {0,1} (7.61) 

meaning that it has only two states, namely in operation corresponding to TT̂  = 1 
and out of operation corresponding to TT̂  = 0. From this, the control action in the 
closed-loop system instead oi u = F2X is 

u{t) = 7rF2x(t) , TT := diag [TTI, 7r2, • ' ' , TT^] (7.62) 

Since the optimal gain F2 has been calculated using only informations of the 
nominal open-loop system, during normal operation characterized by TT = / , the 
closed-loop system evolves following an optimal trajectory. However, if a fail occurs 
in some control channel, say z, the actuator state changes to zero. In this situation 
the closed-loop system evolves with the control u = F2X where F2 is the same as F2 
but with the i — th row equal to zero. Of course not only the optimality is lost but 
even instability may be observed. A way to cope with this problem is to apply the 
guaranteed control design procedure introduced before. To this end, consider instead 
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of F2 in (7.62) a matr ix F to be determined. The closed-loop system matr ix can be 
writ ten as 

Acc = A + B27rF = A + B2{7T)F 

where B2{'TT) := 527r. This makes clear tha t the input matr ix B2 can be interpreted 
as an uncertain matr ix depending upon the occurrence of actuators failure. Hence, 
in this framework the dynamic system (7.56) - (7.58) is an uncertain system where 

B2 e {B2{n) : TT G n } (7.63) 

with n being a set of diagonal matrices which defines all combinations of actuators 
failure. We assume tha t / G 11 and 0 0 11. The first condition is clearly necessary 
because it imposes feasibility to the nominal system. The lat ter one is also necessary 
because if it is violated then J52 = 0 is feasible and the system is stabilizable only if 
it is stable. Suppose the set 11 is composed by Â  matrices TT̂ , i = 1, 2, • • •, A/" defined 
before representing all actuators failure we want to take into account. Wi th matrices 

Mc^ := 
A 
0 

B2{ni) 
0 

the convex domain 
Vc : - c o { M c , 

i = l , 2 , -

1,2,..•,iV} 

.N 

is the uncertain domain we have to consider since by construction it contains all 
input matrices B2{7r) with TT G 11. Clearly, it contains many others, namely the 
ones generated by convex combination of the pairs [A, B2{7Ti)]. Fortunately, recalling 
Remark 7.4, the uncertain system defined by Mc G Vc is quadratic stabilizable if 
and only if the collection of systems defined by all extreme matrices Md is quadratic 
stabilizable. Hence, as far as quadratic stability is concerned, modeling actuators 
failure as Mc G Vc instead of by means of (7.63) does not introduce any kind of 
conservativeness in the results. 

From the above discussion, let us proceed by replacing problem (7.59) by the 
associated guaranteed cost control problem. It is given by (recall Theorem 7.2) 

PA := min {trace[i^cVF] : W e CQ} (7.64) 

and the optimal solution (if one exists) provides FA = W2W^^ such tha t with the state 
feedback u = FAX the closed-loop system is quadratically stable and ||T(2:,if;; s)||2 < 
PA for all Mc ^Vc- In other words, we can say tha t the closed-loop system with the 
control u — TTFAX is such tha t all eigenvalues of Ace = A-\- B2TTFA lie in the left open 
part of the complex plane and 

\\T{z,w-s)\\l<pA , V T T G H . 

tha t is all control requirements are met. The next example illustrates this design 
policy for a simple example. 

E x a m p l e 7.5 Let the dynamic system (7.56)-(7.58) be given by 

Bi 

2 2 0 
1 0 1 

0 
1 
1 

1 1 • 
1 2 
1 1 _ 

Ci = 

L 

1 0 0 " 
0 1 0 
0 0 1 _ 

, Di2^ 

, B2 = 

" 1 0 " 
0 1 

" 1 0 " 
0 0 

. 0 1 . 
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Failure 

TTi 
7r2 
7r3 

Eigenvalues 

- 1 . 9 1 , -1.46 + J0.69, - l . 4 6 - j 0 . 6 9 
0.43 , -0.72 , -2.37 
1.94 , -1.99, -0.13 

1 \\nz,w;sW2 1 
6.50 
oo 
oo 

Table 7.1: Closed-loop system poles and performance 

Failure 

TTi 
7r2 
TTS 

Eigenvalues 

- 1 0 .5 6 , -0.39 + J0.12, - 0 . 3 9 - j 0 . 1 2 
- 3 . 1 1 , -0 .63 + i0 .18 , - 0 . 6 3 - j 0 . 1 8 

-2.88 , -1.62, -0.47 

1 \\T{z,w;s)Wi 1 
32.00 
61.49 
66.14 

Table 7.2: Closed-loop system poles and performance 

The optimal solution of Problem (7.59) provides 

F2 = 
-2.17 -2.67 -0.79 
-1.79 -3.12 -4.66 

mm\\T{z,w]s)\\l ^6.50 

For the practical implementation of this state feedback gain we need two actuators. It is 
supposed that they can fail during operation. Since the open-loop system is unstable, it is 
assumed that the actuators can not fail simultaneously. Hence the set 11 is composed by 
matrices 

" 1 
0 

0 1 
1 , ^ 2 = 

r 0 
0 

0 1 
1 , TTs = 

" 1 
0 

0 1 
0 

TTi 

corresponding to normal operation (TTI), first control channel actuator failure {^2) and second 
control channel actuator failure (TTS) respectively. 

Table 7.1 gives the eigenvalues of matrix Ace = A-{-B2{7r)F2 for the three fault matrices. 
Obviously, for TT = TTI = 7 the closed-loop system is internally stable. However, if one of 
the two faults occurs then the closed-loop system becomes unstable. The optimal solution 
of the Full information problem is not robust for this kind of severe perturbation. On the 
contrary, the optimal solution of the guaranteed RH2 cost control problem (7.64) gives 

FA 
-6.97 
-3.70 

-10.17 
-5.00 

-13.56 
-6.37 

PA ~ 73.18 

which as indicated in Table 7.2 preserves internal stability in front of any prespecified failure 
occurrence. In this example, when compared with the nominal case, the price to be paid to 
keep internal stability under actuators failure is high. A possible interpretation of this fact 
is that the parametric perturbation caused by actuators failure is actually severe. D 

R e m a r k 7.13 It is possible also to characterize actuators failure by means of norm bounded 
uncertainty. Actually, noticing that 

B2{7r) = B27r = 82 + B2{TT - I) ^ B2 + 82^ 

with Q := TT — I and that TT is always a diagonal matrix, it is immediate to get 

\\n\\ < m a x | | 7 r - / | | = 1 
TrEn 
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Hence, with matrices 

[A RO 1 
Bn Me, 

A B2 
0 0 

52 
0 

Cn = [ 0 / 

any actuators failure such that TT G 11 may be alternatively described by (recall Remark 7.2) 

MceVn = { M e = Men + Bn^Cn '• \M < 1 } 

This characterization of the problem under consideration frequently leads, if any, to very 
conservative results and so worse than the use of the polyhedral convex bounded domain Dc 
as we have done before. Indeed, the particular choice Q = —I which obviously is a diagonal 
matrix such that ||Q|| = 1 produces 

A 0 
0 0 

eVn 

which is stabilizable if and only if the open-loop system is stable. In other words, the use of 
the uncertain domain Vn includes by construction the spurious matrix Q = —I being thus 
equivalent to have TT = 0 G 11. This situation is avoided in the description of the set Vc as 
we have just shown in the solution of the previous example. • 

7.4 Nonlinear perturbat ions 

In this section nonlinear robust stability and performance are considered. This topic 
is a generalization of the ones introduced before in the sense that advantages are taken 
into account from the a priori knowledgement of the class of nonlinear perturbations 
acting in the open-loop model. Two main classes are of importance, namely multi-
plicative and additive nonlinear perturbations, leading to what we call Persidiskii and 
Lur'e robust design procedures. In both cases, the control structure is assumed to be 
linear and the whole state vector is available for feedback. 

7.4.1 Persidiskii design 

Let us first consider the robust control design of a class of nonlinear systems subject 
to state dependent nonlinear perturbations called multiplicative perturbations. Once 
again the proposed design procedure will be expressed in terms of convex programming 
problems only. The block-scheme of the dynamic system to be dealt with is shown 
in fig. 7.8. The perturbed system Up is subject to the nonlinear perturbation f{x) 
to be precisely defined in the sequel. For the moment, it is important to keep clear 
that the open-loop system is subject to a class of perturbations such that, when they 
occur, the whole state vector x changes to f{x). Then, the perturbation occurrence 
changes also the measured output y accordingly. 

Assuming the state vector has dimension n and the nonlinear function f{x) is 
not exactly known, the only available information is that it belongs to the uncertain 
domain Vf composed by all vector valued functions with the following properties : 

1) Each component of f{x) namely /j(x), j = 1, 2, • • •, n is a real valued function 
such that 

fj{x) = fj{x,) (7.65) 

where Xj G R denotes the j — th component of the vector x e R^. 
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Figure 7.8: The bock-scheme of the perturbed system 

2) Each component fj{xj), j = 1,2, • • •, n is such that 

Jo 

/i(0) = 0 (7.66) 

(7.67) 

(7.68) 

The first condition defines the perturbation structure. Roughly speaking, the 
second condition says that the graph of /(•) must be contained in the first and third 
quadrants of the (/, ^) plane. Since f{x) = x € P / the corresponding linear system 
is called nominal system (S„) and it has the following state space representation 

X = Ax + B2U , x(0) = xo 

Z = C\X + D\2U 

y = x 

(7.69) 

(7.70) 

(7.71) 

Adapting the previous design goals to cope with nonhnear systems stabiHty and per-
formance, we proceed trying to determine (if one exists) a hnear state feedback control 
law u = Fx for E^ such that the origin x = 0 of Ep which has the state space repre-
sentation 

x = {A + B2F)f{x), x{0) 

z={C,+Di2F)f{x) 
Xo (7.72) 

(7.73) 

is globally stable for all f e Vf, Furthermore, among all state feedback gains with 
this property, find the one, namely F j , which solves the associated guaranteed cost 
control problem 

p/ (xo) :=minp(F,xo) (7.74) 

where 

z{tyz{t)dt<p{F,xo), yf€Vf I 
Jo Similarly the minimum value of p(F, XQ) with respect to all F preserving stability is 

called the minimum guaranteed cost associated to the optimal feedback gain F = 
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Ff. To accomplish the first goal concerning the robust stability of E^ we need to 
introduce the following important result. To ease notation, for any square matrix P , 
the subscript "d" indicates that P = Pd is constrained to be a diagonal matrix. 

Theorem 7.6 (Persidiskii theorem) For any given state feedback matrix F suppose 
there exists a positive definite matrix Pd such that 

0 > (A + B2FyPd + Pd{A + B2F) 4- Q (7.75) 

for some matrix Q — Q' > ^. Then, the origin x = 0 of the perturbed system Ep is 
globally asymptotically stable for all f eVf. 

Proof Using the given properties of / G P / , let us take 

i= i -̂ 0 

as a Lyapunov function candidate associated to an arbitrary trajectory of Up such 
that x{0) = XQ. Its time derivative can be written as 

n 

^(^) = 2^F^-^/^(x^)i:^-

= 2f{x)'PdX 

= f{x)' [{A + B2F)'Pd + Pd{A + ^2^)] f{x) 

< -f{x)'Qf{x) 

< 0 , V x ^ O 

proving thus the theorem proposed. D 

In the above calculations, it is clear that matrix Q must be positive definite but 
does not need to present any particular structure. Besides, the particular value of 
this matrix is immaterial to get P = Pd satisfying inequality (7.75). In fact, if there 
exists P = Pd satisfying (7.75) for a given Q = Q > 0 then the same is true for any 
other choice Q > 0. This new degree of freedom is used in the next lemma to get the 
upper bound defined in (7.74). 

Lemma 7.2 Assume for all f G T>f there exist n positive and finite parameters such 
that 

.Xj{0) 

Jo 
r fj{Od^<i , j = l , 2 , - . . , n (7.76) 

For any state feedback control gain F such that there exists P = Pd satisfying the 
matrix inequality (7.75), it is possible to choose Q = Q' > 0 such that the upper 
bound p{F^ XQ) is given by 

n 

p{F,xo):=J2Pjjrj (7.77) 

Proof Assume for F given, there exists P = Pd such that the matrix inequality (7.75) 
holds. In this case, we can choose matrix Q > 0 as being 

Q = (Ci + DuFYiCi + D12F) + el 
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where e > 0 is an arbitrarily small parameter. From the previous theorem we already 
know that the origin of the perturbed system Sp is globally stable. Hence, using 
(7.72) and (7.73) we immediately have 

v{<t)) < -f{x{t)y [(Ci + Di2F)'(Ci + D12F) + el] f{x{t)) 

< -z{tyz{t), V t > 0 

Integrating both sides of this inequality from t = 0 to t = cx) we get 

z{t)'z{t)dt < v{x{{))) 
/ 
Jo 

Using this inequality together with the definition of the Lyapunov equation introduced 
in Theorem 7.6 and the upper bound on each element of function f{x) yield 

Xj{0) poo "' rXj{v) 
/ z{tyz{t)dt<2j2Pn m)d^ 

Jo j ^ ^ Jo 

<T.Pnrj 

which being true for all f ^Vf proves that the upper bound (7.77) is valid. • 

Up to now we have always worked with the dual version of inequality (7.75) where 
the system matrix transpose post-multiply the matrix variable. This fact was im-
portant to convert the associated optimal control problems to convex programming 
problems. Here, due to the nonlinearity of the perturbation f{x) this is no longer pos-
sible. Even though, the guaranteed cost control problem (7.74) can be converted into 
a convex one by means of Schur complements. To this end, consider the affine matrix 
function which is defined by all pairs of matrices (X, Y) of appropriate dimension 
with the first one being symmetric 

AfiX,Y) AX + B2Y + XA' + Y'B'2 XC[ + Y'D'12 
CiX + D12Y -I 

(7.78) 

The following preliminary result is of particular importance towards the complete 
solution of the guaranteed cost control problem stated before. 

Theorem 7.7 Define the convex set 

Cf:={{X,Y) : X = X^ > 0 , Af{X,Y)<0} (7.79) 

The set of all state feedback matrices F such that (7.75) holds for some Q > 0, denoted 
as /C/ is alternatively given by 

ICf:={YX-' : iX,Y)eCf} (7.80) 

Proof It must be clear that the above defined set Cf is convex. Actually, it is defined 
by LMI's and the linear constraint X = Xd which corresponds to impose that all off 
diagonal elements of matrix X are zero. For the necessity, let us take an arbitrary 
F e ICf y^ 9 and observe that in this case, there exists P = Pd positive definite such 
that 

0 > (^ + B2FyPd + Pd{A + B2F) + (Ci + Di2Fy{Ci + D12F) 
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Multiplying this inequality to the left and to the right by P^^ and using the Schur 
complement formula, it is simple to verify tha t 

{x,Y) = {p-\FP-')eCf 

and YX-^ = FP~^Pd = F. Conversely, take any {X,Y) e Cf j ^ 9. Using again the 
Schur complement to the LMI Af{X,Y) < 0 and taking into account tha t X = Xd 
is positive definite and diagonal, we conclude tha t with Pd = X^^ and F = YX~^ 
there exists e > 0 sufficiently small such tha t inequality (7.75) holds for 

Q = (Ci + DuFYiCi + DuF) + el 

and so the proof of the theorem proposed is complete by noticing tha t if one of the 
sets in (7.80) is empty both are empty. • 

From this result, we are able to generate by means of a feasibility convex problem 
all gains belonging to the nonconvex set JCf. The elements of this set assure robust 
stability of the nominal closed-loop system against all nonlinear perturbations / G P / . 
Besides, using Lemma 7.2 and defining the matr ix 

D := diag [ y/n, y ^ , • • •, y/r\i, ] 

the elements of the set Cf allow the determination of the upper bound p(F, XQ) for all 
F G /C/ as being 

n 

= trace [D^X'^D] (7.81) 

valid for all {X,Y) G Cf and F — YX~^. From this fact the minimum guaranteed 
cost is readily calculated from 

p/(xo) = min p(F,xo) 

= inf {trace [D'X'^D] : (X, Y)eCf] (7.82) 

which is a convex programming problem (recall Remark 6.3). Once the global solution 
of the right hand side of (7.82) is calculated, the corresponding state feedback gain, 
optimal solution of the left hand side of the same equation is provided simply by 

> Ff = YX-^ 

R e m a r k 7.14 It follows that JCf C JCc and JCf ^ ^ if and only if C/ ^ 0. The stabilizability 
of the pair (A, B2) is not sufficient to guarantee that Cf ^^ since besides internal stability, 
the linear constraint X = Xd requires the inequality (7.75) to have a diagonal and positive 
definite feasible solution. D 

R e m a r k 7.15 The effectiveness to solve problem (7.82) by means of convex programming 
methods, under the assumption that ^^2^12 = I, is now addressed. The main point to be 
considered is the boundedness of the set Cf. Notice that if there exists an unbounded feasible 
matrix X > 0 then it is one of the possible global solutions of Problem (7.82) because 

0 < tYdiCe[D'X~^D] 
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y = x 

Figure 7.9: The bock-scheme of the perturbed system 

and the right hand side approaches to zero as X increases. Using the same reasoning adopted 
in Remark 6.8 it is now determined under which conditions this occurrence is avoided. Let 
us assume that there exists (X, Y) G C/ and {X, Y) ^^ 0 such that (X, Y) + A(X, Y) G Cf 
for A > 0 arbitrarily large. Then 

X>0 

AX + B2Y + XA' + Y'B'2 
CiX + D12Y 

XC[ + Y'D[2 
0 

< 0 

Prom Appendix C, these conditions are verified only if there exists a matrix X such that 

CicX = 0 

X > 0 

AcX + XA'^ < 0 

where Ac — A — B2D12C1 and Cic — {I — Di2Di2)Ci. As in Remark 6.8, this situation is 
completely avoided if the open-loop system is such that the pair {—Ac^Cic) is detectable. 
Under this mild assumption the optimal value of the objective function of Problem (7.82) is 
strictly positive and finite. D 

7.4.2 Lur 'e design 

Let us consider now another important robust control design for the class of output 
dependent nonlinear additive perturbations. The basic block-scheme is given in fig. 
7.9. It resembles the one used in the state feedback Mixed RH2/RH00 control design. 
The nominal system is denoted by E^. The perturbed dynamic system, namely Ep 
is subject to the nonlinear perturbat ion /i(-) which is a vector valued function not a 
priori known. The available information is tha t it belongs to the uncertain domain 
T>h composed by all functions presenting the following properties : 

1) The vector valued function h{-) is defined for all ^ £ R^ and h{-) E R^ where r 
is a positive integer less or equal the dimension of the state vector x £ R^. 

2) It is such tha t 

h{0) = 0 (7.83) 

(7.84) 
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The first condition imposes tliat, in fig. 7.9, the vectors w and zi have the same 
dimension. The second one implies that the nonhnear function —h{-) belongs to the 
sector [0, oo). In fact, in the one-dimensional case the graph of —h{^) in the plane 
(/i, ^) is in the first and third quadrants. The state space equations of the nominal 
open-loop system E^, corresponding to /i(-) = 0 € V^ is the standard one 

X = Ax-\- Biw + B2U , x(0) = xo (7.85) 

zo = CQX + DQU (7.86) 

z^ = Cix + D12U (7.87) 

y^x (7.88) 

As before, the goal is to design a state feedback control law, namely u = Fx such 
that the closed-loop perturbed system Ep obtained from E^ together with w = h{zi) 
presents the following properties associated with its state space representation 

X = {A ^ B2F)x ^ Bih{zi) , x{0) = xo (7.89) 

zo = (Co + DoF)x (7.90) 

zi - (Ci -f Di2F)x (7.91) 

First, the origin x = 0 must be globally stable for all h eVh- From all state feedback 
gains with this property select (if possible) one, namely Fh which solves the following 
guaranteed cost control problem 

Ph{xo) :=mmp{F,xo) (7.92) 

where 
/•OC 

zo{tyzoit)dt < p{F, Xo) , ^heVh I 
Jo 
/o 

The guaranteed cost control problem (7.92) is similar to the Mixed RH2/RH00 control 
problem. The existence of the nonlinear function h G T>h does not allow us to express 
it in the frequency domain. Instead the guaranteed cost is given in terms of an upper 
bound to the above integral of the controlled output. Accordingly, the exogenous 
signal is replaced by an arbitrary initial condition x(0) y^ 0. 

Theorem 7.8 (Passivity theorem) For any given state feedback matrix F suppose 
there exists a symmetric and positive definite matrix P such that 

0 > (A + B2FyP + P{A + B2F) + Q (7.93) 

B[P^{Ci+Di2F) (7.94) 

for some matrix Q = Q^ > 0. Then, the origin x = 0 of the perturbed system Ep is 
globally asymptotically stable for all h eVh-

Proof Consider the Lyapunov function candidate 

v{x) := x'Px 

Its time derivate along any trajectory of Ep is written as 

v{x) = 2x'Px 

= x' [{A + B2FyP + P{A + ^2^)] X + 2x'PBih{zi) 
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Making use of condition (7.94), for an arbitrary vector x we have 

B[Px = {Ci ^ Di2F)x = zi 

which together with the first condition (7.93) yields 

v{x) < —x'Qx + z[h{zi) 

< 0 , V x ^ O 

where the last inequality holds due to (7.84). Hence, for any h eVh the origin x = 0 
of the per turbed system Ep is asymptotically stable. • 

R e m a r k 7.16 Theorem 7.8 also holds in a more general setting. Indeed the function 
h{') can be considered time varying provided h{^,t) G Vh for all t > 0. Furthermore, the 
assumption that Q = Q' > 0, yields 

'̂ (̂3:̂ ) ^ —Q l̂kll , a := minAi((5) > 0 
i 

That is, the origin is in fact globally exponentially stable. D 

R e m a r k 7.17 Conditions (7.93) and (7.94) can be rewritten as follows 

0 > KcP + PAcc + Q 

B[P = Ccc 

where Ace := A-\- B2F and Ccc '-= Ci + D12F. Assume that for some Q = Q' > 0, there 
exist F and P = P' > 0 satisfying them. In this case, summing and subtracting jooP^ with 
uj G [0, 00), in the right hand side of the first condition, after simple algebraic manipulation 
we have 

0 < {-juji - J^ccT^P + P{3^1 - AccT^ - {-jool - A'y'QiJuI - A)-' 

Finally, multiplying this inequality to the left by B[ and to the right by Bi, making use of 
the second condition above and defining the closed-loop system transfer function 

G{s):=Ccc{sI-Accy^Bi 

we get 

Q-iJcu) + G(ju) > B[{-ju - A'y'QiJu; - Ay'Bi 

> 0 , V u; G [0, 00) 

A transfer function with this property is called strictly positive real (SPR) and plays a 
central role in the stability analysis of nonlinear systems. In this remark we have shown 
that conditions (7.93) and (7.94) implies G{s) is strictly positive real. Under certain mild 
additional assumptions the converse is also true and constitutes the well known Kalman-
Yacubovitch lemma. Notice that the above frequency domain characterization of a SPR 
transfer functions does not include the limit point a; = 00 for which it is not satisfied 
because ^(joo) = 0. • 

R e m a r k 7.18 A transfer function GE{S) is called extended strictly positive real {ESPR) 
if it is SPR and 

GE{JOO)-^GE{JOO) > 0 

From this definition, it is obvious that the transfer function G{s) defined in the previous 
remark is SPR but not ESPR due to the fact that G{j00) = 0. It is interesting to known 
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that there is a very simple relationship between ESPR and RHoo norm. Indeed, a transfer 
function GE{S) is ESPR if and only if 

\\[aI-GE{s)][aI + GE{s)]-'\ < 1 

where a is an arbitrary positive scalar. A proof of this property is not included here. We 
only mention that it is based on the fact that the above inequality holds if and only if 

[a/ + GS(jc^)] -^[a / -G2( j (^) ] [a / -G£;( ja ; ) ] [a / + G^(jc^)]-^ < 1 , V a; 

or, equivalently 

[al - GE iju;)] [al - GE (ju;)] < [al + GE (ju;)] [al + GE (jou)] , V u; 

After obvious simplifications, it provides 

2a[GE{juj) + GE{juj)]>0 , V a; 

implying that GE{S) is ESPR. Indeed, for transfer functions which are only SPR, as for 
instance G{s), it is violated at cj = oo. In this case, the consequence is 

||[a7 - G{s)][al + G(s ) l - ioo = supa [[al - G{ju;)][al + G{juj)]-'] 

> a [[al - G(joo)][al + G{j(^)]-'] 

> 1 

which means that the previous constraint expressed in terms of a RHoo norm is also violated. 
It is interesting to observe what happen if we do not take care of the above results and 

try to convert our control design problem to a state feedback problem in RHoo associated 
to the auxiliary transfer function 

H{s) := [al - G{s)][al + G{s)]-^ 

where G{s) is the transfer function defined in the previous remark. With no loss of generality 
we adopt a = 1. Routine calculations (recall in Chapter 2 the definition of inverse system) 
show that the following is true 

[I + G{s)]-' = 
-'^CC -L ' lWcc 

~ ^cc 

G{s)[I + G{s)]-' = 

Bi -

I 

y^cc -OiOcc 

^cc 

Bi -

0 
from which it follows that 

His) = 
-^cc -DiOcc 

~ ^(^cc 

^ 1 
/ 

Then, using the state space representation of the transfer function H(s), the determination 
of a state feedback gain such that ||i7(s)||oo < 1 is reduced to the solution of the state 
feedback problem in RHoo for the auxiliary plant 

X = Ax + Biw + B2U 

z = Cix + Diiw + D12U 

u = Fx 

where A= A- BiCi, Bi := Bi , B2 := B2 - B1D12, (5i := - 2 C i , £>ii := / and D12 := 
—2D\2. However, this is impossible because with a[L)ii] = 1, any state feedback gain such 
that A^ B2F is stable implies \\T{z,w\s)\\oo > 1- • 
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In opposition to Theorem 7.6, the constraints (7.93) and (7.94) to be simulta-
neously satisfied, depend strongly on the particular choice of matrix Q > 0. Even 
though, to be able to express the upper bound p(F, XQ) conveniently we need to impose 

g = (Co -f DoFYiCo + DoF) + el (7.95) 

with e > 0 being an arbitrarily small parameter. Indeed, with this particular choice, 
following the proof of Theorem 7.8 we have 

v{x{t)) < -x{t)'Qx{t) 

<-zo{tyzo{t) , V t > 0 

which after integration from t = 0 to t = oo provides 

Zo{tyzo{t)dt < v{x{0)) = XQPXO I 
Jo 
/o 

Based on this, it is natural to define 

p ( F , x o ) : = 4 P x o (7.96) 

as a valid upper bound for all h ^Vh- Furthermore, let us denote as ICh the set of all 
state feedback gains F such that with Q > 0 given in (7.95) both constraints (7.93) 
and (7.94) are simultaneously satisfied for some P > 0 and introduce the affine matrix 
functions defined for all pairs of matrices (X, Y) of appropriate dimension with the 
first one being symmetric 

Ah{X,Y):= 

and 

AX + B2Y + XA' + Y'B'^ XC'Q -h Y'D'Q 

CoX + DoY -I 

Bh{X,Y):=CiX + D,2Y-B[ 

The following theorem gives a complete parametrization of the set ICh in terms of a 
convex set. It is the basis for the solution of the associated optimal guaranteed cost 
control problem (7.92). 

Theorem 7.9 Define the convex set 

Ch := {(X,y) : X > 0 , Ah{X,Y) < 0 , BH{X,Y) = 0} (7.97) 

The set Kh is alternatively given by 

ICh:^{YX-' : {X,Y)eCh} (7.98) 

Proof Since the set Ch is defined by means of aflane functions only, it is convex. To 
prove the necessity, assuming that F G /C^ ^ 0 then there exists P > 0 such that 

0 > (A + B2FyP + P{A + B2F) + (Co + DoFYiCi + DQF) 

Multiplying both sides of this inequality by P~^ and using the Schur complement it 
is readily verified that 

Ah{P-\FP-')<0 
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On the other hand, multiplying (7.94) to the right by P~^, it can be rewritten as 

hence, (X, Y) = ( P ~ \ F P ~ ^ ) G Ch and YX~^ = F from which the necessity follows. 
The sufficiency for C/j, 7̂  0 is immediate. From this, it is also immediate to see tha t 
(7.98) holds in case one of the indicated sets is empty. • 

We have now all elements to face the optimal guaranteed cost control problem 
(7.92). From Theorem 7.9 and (7.96) it reduces to the problem 

ph{xo) = min p{F,xo) 

- i n f { 4 X - ^ x o : {X,Y)eCh} (7.99) 

which is a convex programming problem (recall Remark 6.3). Its global optimal solu-
tion provides both the minimum guaranteed cost ph{xo) and the associated optimal 
s tate feedback gain F^ = YX~^. 

R e m a r k 7.19 The inclusion JCh C JCc is obvious. It is also clear that the stabilizability 
of the pair (^, B2) is necessary but not sufficient to Ch ^ 0- The necessary and sufficient 
condition is the existence of a state feedback gain F ^ JCc such that the closed-loop system 
transfer function G(s) is SPR (recall Remark 7.17). • 

R e m a r k 7.20 Following the same reasoning of Remark 7.15, the boundedness of the set 
Ch is assured whenever the pair [—{A — B2DQC0), {I — DoDo)Co] is detectable. • 

R e m a r k 7.21 Consider the convex programming problem 

in f{xoX- 'xo : X > 0 , Ah{X,Y)<0} 

which is the same as problem (7.99) but without the linear constraint Bh{-) — 0. Let us 
search a solution of the above problem such that 

Y = -B'2- D'oCoX 

Using this formula, taking into account the standard assumption DQDQ = / the Schur 
complement implies that Ah{X^ y ) < 0 if and only if 

A{X) :. AcX -h XA'c - B2B'2 Xa^c 
CocX —I < 0 

where Ac '.= A — B2DQC0 and Coc •= {I — DQD'Q)CQ. Hence, the problem under consideration 
can be solved in two steps. The convex programming problem 

inf [x'oX-^xo : X > 0 , A{X) < O} 

provides the optimal matrix X > 0 and the previous formula gives matrix Y. The corre-
sponding state feedback gain turns out to be F = YX~^. Comparing the last problem with 
respect to the determination of matrix X and Remark 6.9, it is seen that its optimal solution 
is exactly the associated Riccati equation and so, in this particular case, the guaranteed cost 
reduces exactly to the minimum RH2 optimal cost. This gives a measure of the quality of 
the upper bound p(F, xo) proposed. In the general case, this solution is no longer feasible 
and the minimization must be done taking into account the linear constraint Bh{') = 0. • 
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7.5 Notes and references 

Uncertain systems design is nowadays a very wide topic in control theory. Concern-
ing stability by means of linear state feedback control, the paper of Barmish [4] is 
important since, for the first time the author propose an effective and simple way 
to handle uncertainties acting on both A and B2 system matrices. The notion of 
guaranteed cost has been introduced by Chang and Peng in [11] related to a simple 
LQ problem. Differently of what we have done in this chapter, the main idea was to 
get an (nonlinear) upper bound to the associated Riccati equation. In section 7.2 the 
problems already solved in Chapter 6 have been revisited. They have been solved in 
a manner to cope with parameter uncertainty. Two of the most important classes of 
uncertainty have been considered and compared, namely polyhedral convex bounded 
and norm bounded uncertainty. For the first type, results from [65] have been used 
in Remark 7.15 while the numerical example fully described in Example 7.65 and 
analyzed throughout the section is also given in [50]. With this last paper the reader 
can go deeper on the comparison of these two types of parameter uncertainty models 
just mentioned. The main part of Section 7.2 related to RH2 and RH^ guaranteed 
cost control problems is based on [24] and [49] while the other results are the nat-
ural generalizations, to cope with parameter uncertainties, of problems introduced 
in Chapter 6. The stability and guaranteed cost control of dynamic linear systems 
subject to actuators failure has been analyzed in [23]. In Section 7.3 this problem is 
again solved but special attention is paid to the comparison and modeling this special 
kind of uncertainty by means of the domain D^. Once again, the convexity plays a 
central role and it is possible to verify that the uncertainty description by means of 
the convex domain Vc leads in many instances to better results. Section 7.4 is entirely 
devoted to control design problems involving nonlinear perturbations. The first one 
called Persidiskii design is based on papers [30], [25] and [26]. The former paper also 
provides many others and more general results and is an excellent reference on this 
topic. Finally the second control design procedure called Lur'e design is based on the 
classical results reported in the important book [61] where the notions of passivity 
and strictly positive real transfer functions are addressed in a general and complete 
setting. 



Appendix A 

Some Facts on Polynomials 

The three results presented in this appendix can be found in many text of Algebra. 

Lemma A . l Let ro(s) and ri{s) be two polynomials with deg[ro(5)] > deg[ri(s)]. 
Let r{s) be a greatest common divisor of ro{s) and ri{s). Then, there exist two 
polynomials (fo{s) and (pi{s) such that 

(po{s)ro{s) + (pi{s)ri{s) = r{s) 

Proof The sequence of polynomials 

ro{s) = ri{s)qi{s) + r2{s) , deg[r2(5)] < deg[ri(5)] 

ri{s) = r2{s)q2{s) + rs^s) , deg[r3(s)] < deg[r2(5)] 

r2{s) = ^3(5)^3(5) + r4{s) , deg[r4(5)] < deg[r3(5)] 

rp-i{s) = rp{s)qp{s) + rp^i{s) , deg[rp+i(5)] < deg[rp{s)] 

is well defined for a certain p < deg[ri(5)] — 1. 
From such a sequence, it is easily checked that the polynomial rp^i{s) divides 

rp{s) and then also rp-i{s) and so on and so forth till ri{s) and ro{s). 
The single elements of the sequence can be written as 

^2(5) =ro{s) -ri{s)qi{s) 

rsis) = ri{s) -r2{s)q2{s) 

r4{s) = r2{s) - rs{s)q3{s) 

Hence, ri{s) = ri{s)(pp^2-i{s)-\-(fp-^i-i{s)ro{s), i > 1, where (pp^i-i{s) and (pp-i^2{s) 
are suitable polynomials, so that rp^i{s) — r{){s)ipQ{s) + ri{s)Lpi{s). Hence, any 
common factor of the two polynomials ro(s) and ri{s) is also a factor of rp-^i[s) so 
that this last polynomial is a greatest common divisor of ro(5) and ri{s). Through 
a suitable choice of '̂̂ +1(5) such a polynomial can be made coincident with r{s) 
(recall that two greatest common divisors of two assigned polynomials differ for a 
multiplicative factor). D 
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Theorem A . l Two polynomials ro{s) and ri{s) are coprime if and only if there exist 
two polynomials (po{s) and (pi{s) such that 

ro{s)ipo{^) + ri{s)ipi{s) = 1 (A.l) 

Proof If the two polynomials are coprime, i.e. 1 is a greatest common divisor, then 
eq. (A.l) follows from Lemma A.l. Conversely, if eq. (A.l) holds, then ro{s) and 
ri(s) are obviously coprime, because any common factor should appear at the right 
hand side of this equation. • 

Lemma A.2 Letp{s), q{s) andr{s) he three polynomials withp{s) andq{s) coprime. 
Then there exist two polynomials (p{s) and XIJ{S) with deg[(p{s)] < deg[^(5)] such that 

ip{s)p{s) ^ ip{s)q{s) = r{s) 

Proof Being p{s) and q{s) coprime, there exist, in view of Theorem A.l, two poly-
nomials (p{s) and ip{s) such that (p{s)p{s) -h il;{s)q{s) — 1, so that, letting (p{s) :— 
(p{s)r{s), IIJ{S) := 'ip{s)r{s), it follows 

(f{s)p{s) + xp{s)q{s) = r{s) 

If deg[(^(5)] <deg[g(s)], the two polynomials (p{s) and V (̂s) satisfy the conclusion of 
the theorem, otherwise for each polynomial 'd{s) it results 

p{s) [^{s) - mq{s)] + q{s) [t/.(s) + i?(s)p(s)] = r{s) (A.2) 

If one performs the division of (p{s) by q{s) it follows 

^{s) = q{s)P{s)^a{s) 

with deg[Q;(5)] <deg[^(5)]. It* is immediate to ascertain that the polynomials ip{s) := 
(p{s) - p{s)q{s) and 7/̂ (5)) :== ̂ {s) -\- P{s)p{s) (set 1̂ (5) = p{s) in eq. (A.2)) verify the 
claim. • 



Appendix B 

Singular Values of Matrices 

In this section the proofs of the results presented in Section 2.6 are reported, along 
with a few useful matrix properties (Lemmas B.8-B.15) and hints on matrix manipu-
lations. The book by Lawson and Hanson [38] is the main reference for the singular 
value decomposition. For the proof of Theorem 2.8 some preliminary results are 
needed (Lemmas B.1-B.7). 

Lemma B . l Let t' := [i;i i;2 • • • VnY 7̂  0. Then there exists a unitary matrix Q 
(Householder matrix transformation) such that 

Qv = —cr||f ||ei 

where ei := [1 0 • • • 0]' G i?^ , a := e '̂̂ rg(̂ i) 

Proof Take u := v -\- cr||t'||ei and notice that u := [î i 1x2 • • * UnY ^ 0 since ui = 
cr{\vi\ + \\v\\) and v ^ 0. Moreover, let 

Then, 
^ ^ ^ / ^ ^UU . , ^ ^UU . ^ UU UU UU 
Q-^Q = / - 2 / - 2 =1- 4 + 4 = / 

u^u u^u u^u u^uu^u 
since uu^uu^ = u^uuu^ (actually u^u is scalar). Hence, it has been shown that Q 
is an unitary matrix. On the other hand, 

u^u = {v^ -f cr""||i;||e'i)(i; + cr||t'||ei) 

= 2\\vf ^2\vi\\\v\\ 

since |cr| = 1 and a^vi = avi — \vi\. Therefore, 

Qv = Q{u - cr||i;||ei) 

II II ^ 2 i x ^ 11 II 

= u — (j\\v\\ei —2u-\ u^ (j\\v\\ 
II II ^ ^ ^ i II II 

= -^-^11^"^^+ 2(|MP + hllHI) 
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The last equality follows from v"^ -\- (T^\\V\\ = cr'"(|fi| + \\v\\) and a ^ a — 1. D 

Lemma B.2 Let v := [vi ^2]' y^ 0 be an element of C'^ and let di := arg(f^). Then 
there exists a unitary matrix G (Givens transformation matrix) such that 

Proof Take 

G:= 

Gv 

Fil 

0 

\V2\e'^ 1 - ^ 2 ) 

pi (^2-^1) 

It is readily seen that G^G = I and Gv has the form claimed in the statement. D 

Lemma B.3 Let B be a n x m matrix. Then there exists a unitary matrix Q such 
that R := QB is upper triangular. 

Proof In view of Lemma B.l there exists a unitary matrix Qi such that 

QiB 

X X 

0 

0 
Bi 

where the x's are generic scalar numbers. Again in view of Lemma B.l there exists 
a unitary matrix P2 such that P2B1 has the same structure as QiB. Then, defining 
the unitary matrix 

" / 0 
^ 0 P2 

it follows 

Q2 

Q2Q1B = 

X 

0 
0 

X 

x 
0 

X ' 

X • 

• • X 

• • X 

Bo 
0 0 

Iterating this procedure at most n — 1 times, one can conclude that matrix Q, given 
by Q '•= Qn-iQn-2 ''' Q2Q11 is such that QB is upper triangular. • 

Lemmia B.4 Let B be a n x m matrix with rank[5] = k. Then, there exist two 
unitary matrices Q and P such that 

QBP 
R T 
0 0 

} fc] 

Proof Let P be the permutation matrix (which is obviously unitary) such that the 
first k columns of BP are linearly independent. In view of Lemma B.3 there exists 
a unitary matrix Q such that S := QBP is upper triangular. Obviously, the first k 
columns of S are linearly independent. The i-th row of S is zero for i > /c, since, 
otherwise, the triangularity of S would imply that rank[S']=rank[5] > A:, which is a 
contradiction. • 
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Lemma B.5 Let [R T] be a k x m matrix with rank[i?] = k. Then there exists 
a unitary matrix W such that [R T]W — [R 0]̂  with R nonsingular and lower 
triangular. 

Proof Lemma B.4 implies that there exist two unitary matrices Q and P such that 

Q 
R-
T^ 

P = 
0 

with R^ upper triangular. Thanks to the assumption on the rank of R, the permuta-
tion matrix P is actually the identity matrix and R^ is nonsingular. The thesis now 
immediately follows by letting W = Q^. • 

Lemma B.6 Let B be anxm matrix with rank[5] 
matrices H and K such that H^BK — R with 

k. Then there exist two unitary 

R 
Rii 0 

0 0 

where Ru is triangular and nonsingular. 

Proof The proof is straightforward in view of Lemmas B.4 and B.5. D 

Lemma B.7 Let A be a square nonsingular matrix. Then there exist two unitary 
matrices U and V such that U^AV — S, where S is diagonal with real positive 
entries. 

Proof Let V be a unitary matrix such that A^A = VDV with D real diago-
nal and define S in such a way that its generic (i, j ) element is the square root 
of the (ij) element of D, so that S^S ^ S'^ = D. Let now U := AVS'^ (re-
call that, being A^A > 0, matrices D and S are nonsingular). It follows that 
U'-U = S-^V'-A'-AVS-^ = S-^V^VDV^VS-^ = S-^DS'^ - / , so that U is 
unitary. Finally, USV^ = AVS-^SV^ = AVV^ = A. Notice that, by suitably 
choosing matrix V, it is possible to arrange the elements on the diagonal of D so that 
they are nonincreasing. D 

Proof of Theorem 2.8 Thanks to Lemma B.6, there exist two unitary matrices H 
and K such that A = HRK"^ with 

R = 
Ru 

0 

where Ru is /c-dimensional and nonsingular. In view of Lemma B.7 there exist two 
unitary matrices U and V such that i?ii = USV^ where matrix S is diagonal with 
positive nonincreasing elements. Letting 

U :--

5:= 

U 0 
0 / 

'so' 
0 0 

m — k col 

\ J n — k rows 

} n — k rows 

umns 

V:= V 
0 

0 
/ 
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it follows 

USV"^ Rii 0 
0 0 

R 

so that A = HRK- = HUSV^K^ = USV^, with U := HU and V := KV. • 

Proof of Lemma 2.16 Point 1) Let T be a unitary matrix such that 

TA^AT"^ = D = diagjA,^} 

Hence 

L4x P x^A^Ax 
max I, ,,̂  = max — ^ ^ 

x^T^TA^AT^Tx 
— niax ^ ^ 

x#o x-'T-'Tx 
z^Dz 

max 

= max 

< max ^^^^^ ' ' = a^(A) 

On the other hand, if A^A£, = ^^(^)^ , ^ 7̂  0, it results 

G^iA) =: ^ ^ < max 
^ ^ (^^^ ~ x^o x^x 

Point 2) Analogous considerations as in Point 1) lead to the conclusion. D 

Proof of Lemma 2.17 The conclusion is straightforward if rank[^] = 0. Then, let 
rank[74] ^ 0 so that ^{A) > 0 and there exists x 7̂  0 such that A'^Ax = a'^{A)x. 
From this relation it follows that AA^y — a'^{A)y with y := Ax. Vector y is nonzero 
otherwise a'^{A)x — 0. Hence, <J (̂A) is an eigenvalue of AA"" and then a'^{A"') > 
a^(A). The same line of reasoning applied to A^ instead of A leads to the conclusion 
that d-{A) > a{A^). Hence, the thesis follows. • 

Proof of Lemma 2.18 Points 1) and 2) Let x* be an eigenvector associated with 
\i{A). Then, recalling Lemma 2.16 

a^(A) = mm < •. -.— < max = a'^iA) 
x^o x~x x'^^x^ x#o x^x 

Finally 
x^-A-Ax^ _ x^-\r{A)h{A)x^ ^ l^^^^^|2 < ^2(^) 

leads to the conclusion. 
Point 3) Recall that the eigenvalues of an inverse matrix are the inverses of the 

eigenvalues of the matrix. Then, 

a^{A)^imn\i{A^A) 
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1 
= mm 

1 1 

max Ai((A~A)-i) ^2(^-1) 
i 

where the last equahty follows from Lemma 2.17. 
Point 4) The correctness of the claim directly follows by interchanging A and A~^ 

in Point 3). 
Point 5) By exploiting the assumption that A is hermitian and recalling that 

Xi{A^) = Af (A), it follows 

a'^{A) = msixXi{A^A) = maxAi(^^) = maxA^(A) = r^(A) 
i i i 

U 

Proof of Lemma 2.19 It turns out that 

(T^^aA) = \i{a'^A^Aa) = \a\^Xi{A-A) = \a\^a^{A) 

so that the thesis directly follows. • 

Proof of Lemma 2.20 By recalling Lemma 2.16 and well known properties on the 
norm of a vector, it results 

a{A + B) = m a x "̂  ^ " 
x/O ||x|| 

<ma.M^^M 
^/o \\x\\ 

\\Ax\\ \\Bx\\ _, ,, _ ,_ , 
< max ^ - p + max - ^ i r = ^(^) + ^ ( ^ ) 

x / O X x^O \\x\\ 

D 

Proof of Leraima 2.21 PreUminarily, by recalling Lemma 2.16 and the fact that in 
general Im[5] may not coincide with C"^, it follows 

a(A) = max \—f- > max '' ,." > '' „", Vz 

Hence 

a(AB) = max " „ „ " < max ^ ,;' ,—^ = a(A)a(B) 
^ z^o \\z\\ ~ z^o \\z\\ V ^ V / 

D 

Proof of Lemma 2.22 Preliminarily, observe that, \/x 

\\M\ + ll̂ l̂l . \\Ax\\ \\Bx\\ \\Ax\\ 
\\x\\ \\x\\ x/o ||x|| ||a:|| 

and that 
ll^^ll - \\Bx\\ \\Ax\\ \\Bx\\ _ \\Ax\\ 
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Prom these expressions it follows that 

\\Ax\\ + ll^xll 
x^o \\x\\ ^ ^ ^ ^ 

min ^ ^ ^ ^ > a{A) - a{B) 

As for the second inequality, it turns out 

a{A + 5 = min "̂  J .. ^ " 
x^o \\x\\ 

. \\Ax-^Bx\\ 
= mm r—r 

x/O \\x\\ 

< min ^ V r r < ^ (^ ) + ^ ( ^ ) 
~ x^o \\x\\ ' ^ ^ ^ 

Analogously, as for the first inequality it turns out 

/ . x̂ 11(̂  + )̂̂ 11 
a(A •i-B) = min "̂  , , / " 

. \\Ax^Bx\\ 
= mm-̂ ^ :—-j 

~ Xy^O \\X\\ 

D 

Proof of Lemma 2.23 As for the first inequality, Lemma 2.16 implies that 

-n A on \\Ax^By\\ ^ \\Ax\\ _, ., 
a{[A B]) = max ^^ ^ > max ^^^ = a{A) 

/ o 
^/o \x 

H[AB])= m a . ^ i ^ ± ^ > m a . « = a(B) 

/ o 
VT^o \\y\\ 

As for the second inequality, from Lemma 2.16 it follows that 

\\Ax^By\\ 
a{[A B]) = max 

# 0 
X 

y 

< max 
\\Ax 

7^0 

+ \\By\\ 

< max 
a ( ^ ) | 

5 ^ 0 

+ ^(5)| |y| | 

< max[(j(A), (7(^)] max 

/ o 
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The thesis then follows since, V [x' y']' it results 

^ + < \f2 

Actually, 

0 < (11x11 \\y\\f = \\xf + \\yf-2\\x 

= 2{\\xf + \\yr)-\\xf-\\yr-2\\x 

= 2 Ikll + N! 

D 

Proof of Lemma 2.24 It turns out that 

^ C T 2 ( A ) = ^Xi{A-A) = trace[^~^] 
i i 

Proof of Lemma 2.25 As for the first inequality, from Lemma 2.16 it follows 

where ê  is the i-th column of the identity matrix. But, 

D 

\\Ae, \Y,\{A},A''>^^\{Mi,i 

As for the second inequality, recalling Lemma 2.24 it results 

h 

< trace [A"̂  A] 

< Y.^A-A)^, 
i 

< m max{74""^}^^^ 
i 

< m max 2 ^ |{^}z,jP 

<m max m max|{74}ij| = m max|{A}^j| 

D 

Lemma B.8 Let A and B he two matrices with dimensions n x m and m x n, re-
spectively. If X ^ 0 is an eigenvalue of AB, then it is also an eigenvalue of BA. 

Proof Let x ^ 0 such that ABx = Ax 7̂  0. Hence y := Bx ^ 0, otherwise Xx = 0. 
Finally, BAy — BABx = XBx = Xy, that is A is an eigenvalue of BA . • 
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Lemma B.9 Let A and B he two matrices with dimensions n x m and m x n, re-
spectively. Suppose also that 1 is not an eigenvalue of AB. Then 

i) I^ AB{I - AB)-'^ = (/ - AB)-^ 

ii) AB{I - AB)-^ = (/ - AB)-^AB = A{I - BA)-^B 

Proof Preliminarily observe that (/ — AB) and (/ — BA) are nonsingular thanks to 
the assumption on the eigenvalue of AB and Lemma B.8. Hence, the formulas are 
well defined. 

Point i) It is 

/ + AB{I - AB)-^ = {I- AB){I - AB)-^ + AB{I - AB)'^ 

= {I-AB + AB){I - AB)-^ = (/ - AB)-^ 

Point ii) As for the first equality, it is 

AB{I - AB)-^ = -I + {I- AB)-^ 

= - ( / - AB)-\I - AB) + (/ - AB)-^ 
= (/ - AB)-\-I ^AB+ !) = {!- AB)-^AB 

As for the second equality, it is 5 - BAB = (/ - BA)B = B{I - AB), so that 
B{I - AB)-^ = (/ - BA)-^B, which implies AB{I - AB)-^ = A{I - BA)-^B. D 

Lemma B.IO Let A = A' > {) and B = B' > 0 be two matrices with the same 
dimensions. Then the eigenvalues of C := AB are real and nonnegative. 

Proof Let A be an eigenvalue of C and ^ 7̂  0 an associated eigenvector, i.e. C^ = 
AB^ = A^ , ^ ^ 0. From these expressions it follows that BAB^ = XB£^ so 
that ^""BAB^ = A^'"^^. Being A and B positive semidefinite, the quantities a := 
^^BAB^ and (3 := £,^B£, are both real and nonnegative. If ^̂  7̂  0 then A = f is real 
and nonnegative. If /3 = 0, then B^ = 0 and A = 0. • 

Lemma B . l l Let A = A' > 0 and B = B' > 0 be two matrices with the same 
dimensions and'j a positive scalar. If rs{'y~^AB) < 1, then 

i) C — {I-j-^AB)-^A>0 

ii) IfA>0, then C > 0 and A'^ > 7 " ^ ^ 

Conversely, if C >0, then 

Hi) rs(7~^AJ5) < 1 

Proof Preliminarily observe that / — j~'^AB is singular if and only if ^~'^AB has 
(at least) one eigenvalue equal to one. This is not possible thanks to the assumption. 
Hence, matrix C is well defined. It is also symmetric in view of what has been shown 
in the proof of Lemma B.9. 

Point i) By exploiting Lemma B.9 and the definition of (7, it is easy to check that 

( - J + 7-2 A5)C + C{-I + -f-'^BA) + 2 ^ = 0 

Thanks to the assumption on the spectral radius of 7"^ A 5 , it turns out that matrix 
—/ + ^~^AB has all its eigenvalue in the open left half plane, i.e. it is stable. The 



APPENDIX B. SINGULAR VALUES OF MATRICES 311 

equation above is therefore a Lyapunov equation in the unknown C, with stable 
coefficient matrix and positive semidefinite known term 2A. In view of Lemma C.l 
one can conclude that C is positive semidefinite. 

Point a) If A > 0 then, recalling again Lemma C.l, it turns out that C > 0. 
Moreover, 

C = {I- j-^AB)-^A = [A{A-^ - -f-^B)]-^A = {A'^ - -f'^B)-^ 

so that {A~^ — 7~^5) > 0, which is the thesis. 
Point Hi) Assume by contradiction that A > 1 is an eigenvalue of ^~'^AB (recall 

that, thanks to Lemma B.IO the eigenvalues of AB are real and nonnegative). Since 
C — {I — ^~'^AB)~^A exists, such an eigenvalue can not be equal to 1. In view of 
Lemma B.8, A is also an eigenvalue of ^~^BA so that there exists a vector ^ 7̂  0 such 
that -f-^BA£, = A ,̂ i.e. {I--f-^BA)^ = (1-A)<^ or, alternatively, {I-^-'^BA)'^^ = 
( l - A ) - ^ ^ . Hence ^'(1 

( l - A ) 

- -f-^AB)-\ It follow that 

C{I--f-^AB)-^A^ 

The left hand side of this equation is a nonpositive number (actually, the numerator 
is nonnegative and the denominator is negative). The right hand side is nonnegative 
in view of the assumption on C. Hence, it must be A^ — 0 and hence, from (/ — 
7"^5A)^ = (1 - A)^ = ^ and A 7̂  0 it follows that ^ = 0, a contradiction. • 

Lemma B.12 Let A — A! > ^ and B = B' > 0 be two matrices with the same 
dimensions and a a positive scalar. Then rs{BA) > a if and only if there exists 
X ̂ 0 such that x'{B - aA~^)x > 0. 

Proof If rs{BA) > a, it must exist (recall Lemma B.IO) a vector ^ 7̂  0 such that 
BA^ = A ,̂A > a. Letting x := A(^^ it follows that Bx — XA'^^x and also x'Bx — 
\x'A~^x > ax'A~^x, which yields x'{B - aA~^)x > 0. 

Conversely, if rs{BA) < a, then, from Lemma B.l l it follows A~^ > a~^B 
so that x'{B — aA~^)x < 0,Vx 7̂  0 and hence it does not exist x 7̂  0 such that 
x\B -aA-^)x>0. D 

Lemma B.13 Consider the block matrix 

$ ^ 1 
$3 

$2 

^4 

where the submatrices $1 and $4 are square. Then 

i) If ^i is nonsingular, det[$] = det[$i]det[$4 - $3$j"^$2] 

a) If ^4 is nonsingular, det[$] = det[$4]det[$i - $2^r^^3] 

Proof Point i) The identity 

^ 1 
$3 

$2 

$4 

I $ 1 
0 

$2 

$4 - $ 3 $ f ^ $ 2 

is straightforward. By considering the determinant of the matrices on the left and 
right hand sides, point i) follows. 
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Point ii) The identity 

^ 1 $ 2 
$ 3 $ 4 

• / ^ 2 $ r ' " 
0 / 

• $ , . - # 2 ^ 4 ^^3 0 
$ 3 $ 4 

is straightforward. By considering the determinant of the matrices on the left and 
right hand sides, point ii) follows. • 

Lemma B.14 (Schur complements) Consider the block symmetric matrix 

$ 1 $ 2 

^ 2 ^ 3 

where the submatrices $ i and $3 are square. Then 

i) / / $ i is positive definite, $ > 0 <=> $3 > $2^f^$2 

ii) If^s is positive definite, $ > 0 4=> ^1 > $2^3'^^2 

Proof Point i) Considering the nonsingular matrix 

T = 
I 0 

/ ^ - 1 J *2*I 

it is straightforward to verify the identity 

$ = T $1 0 
0 $3 - $2*r^*2 r 

from which point i) follows. 
Point ii) Considering the nonsingular matrix 

/ $ 2 ^ 3 

0 / 

it is straightforward to verify the identity 

$i -$2^3'^^2 0 $ - T 0 $ 3 r 
n from which point ii) follows. 

Lemmia B.15 Consider A and D real matrices such that D'D — I. Then 

mu,\\A-DZ\\ = \\{I~DD')A\\ 

and the optimal solution is Z^ — D'A. 

Proof Define A := Z - Z^ = Z - D'A. From the fact that matrices D and (/ - DD') 
are orthogonal we have 

\\A - DZf = 11(7 - DD')A - DAf 
me.x{\\{I-DD')Axf + \\Axf} 
\\x\\ = l 
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However, due to 

mm\\A-DZf=nnnrna^^{\\{I-DD')Axf+\\Axf} 

> max min{||(/ - DD')Axf + \\Axf} 
||x|| = l A 

> max \\(I-DD')Axf 
lkll=i 

>\\{I-DD')Af 

the lemma is proved by simple verification that the equality holds for Z = Z^. • 

R e m a r k B . l From Lemma B.15 it follows that the linear equation A — DZ = 0, 
with D'D = / , admits a solution namely Z = D'A if and only if (/ - DD')A = 0. • 



This Page Intentionally Left Blank



Appendix C 

Riccati Equation 

The Lyapunov and Riccati equations play an important role in the analysis and 
control of linear time-invariant systems. Here, for a given n-th dimensional system 
E(^ , B, C^D),di few basic results on these equations are reported. Standard references 
are the book by Bittanti et al. [7] and the paper by Doyle et al. [17]. 

Lemma C.l (Extended Lyapunov lemma) Consider the Lyapunov equation 

o = PA^A'p^ ac 

Then 

i) If A is stable, there exists a unique solution. Such a solution is symmetric and 
positive semidefinite. 

ii) If the pair [A^ C) is detectable and there exists a symmetric and positive semidef-
inite solution, A is stable. 

Hi) If the pair (̂ 4, C) is observable, the solution at point i) is actually positive defi-
nite. 

Proof Points i) and Hi) If A is stable, then 

/•OO 

P := / e^'^C'Ce^'dt 
Jo 

is well defined, symmetric and positive semidefinite. If (A, C) is observable, then P 
is positive definite. In fact, if, by contradiction, PXQ = 0 , XQ 7̂  0, then 

/•OO /»00 

X'QPXO := / x'^e'^'^C'Ce^^xodt = / y'ydt = 0 
Jo Jo 

where y is the free output of E with initial state x{0) = XQ. Hence, y{t) = 0,Vt > 0 
contradicts the observability assumption. 

Based on the definition of P , it follows 

poo 1 

A'P + PA= ^{e'^''C'Ce^')dt = -C'C 
Jo ™ 
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Matrix P is the unique solution of the Lyapunov equation. In fact, if P is any other 
solution, it results 

0 = {P-P)A^A\P-P) 

Thanks to the stability of A and a well known result of linear algebra, this equation 
admits the unique solution P — P = 0. 

Point ii) Assume that P = P ' > 0 is a solution of the Lyapunov equation and, 
by contradiction, that A is not stable, i.e. Ax = Xx^x ^ 0 , Re{X) > 0. Prom the 
equation it then follows 

0 = x^PAx + x'^A'Px + x'^C'Cx = 2Re{\)x^Px + x'^C'Cx 

Since the last term of this equation is the sum of two nonnegative elements, it turns 
out that Cx = 0. But Ax = Ax, Cx = 0, x 7̂  0, Pe(A) > 0 contradicts the assumed 
detectability of (A, C) (recall Lemma D.2). • 

Lemma C.2 (Stabilizing solution of the Riccati equation - 1) Consider the Ric-
cati equation 

0 = PA-\-A'P + PRP + Q 

ith R and Q real and assume that 

a) The matrix 

Z:= 
A 

-Q 
R 

-A' 

does not have eigenvalues lying on the imaginary axis, 

h) Matrices R and Q are symmetric and n-dimensional. 

If the subspace 

X := Im[L] , L := X 
Y 

(C.l) 

generated by the (generalized) eigenvectors associated with the negative real part eigen-
values of Z is complementary to the n-dimensional subspace 

T := Im[/] , I := (C.2) 

then 

i) The matrix Ps \— YX ^ is a real, symmetric and stabilizing solution, namely 
is such that {A + RPg) is stable. 

ii) Ps is the unique stabilizing solution. 

Proof Z is an Hamiltonian matrix, i.e. it satisfies 

JZ + Z ' J - 0 

where 

(C.3) 

0 / 
-/ 0 

is the so called sympletic matrix. Matrix Z has eigenvalues symmetric with respect 
to the imaginary axis, since Z — —J~^Z' J. Assumption a) assures the existence of n 
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eigenvalues of Z in the open left half plane. It is well known that the subspace Af is 
Z-invariant so that there exists a real matrix T with eigenvalues in the open left half 
plane (stable) such that 

ZL = LT (C.4) 

where L satisfies eq. (C.l). The proof is divided into four main steps. 
Step 1 It is here proved that X ^ F = Y^X. Actually, letting W := X^Y - Y^X, 

it is immediate to check that W = L^'JL so that, exploiting eqs. (C.3), (C.4), it 
follows WT = L-'JZL = -L^Z'JL = -T'W, i.e. 

WT + rw = 0 

Since T is stable, this Lyapunov equation admits the unique solution M̂  = 0, which 
is the claim. 

Step 2 Matrix X is invertible since the subspace X is complementary to the n-
dimensional subspace X (see eq. (C.2)), so that Pg = YX~^ is well defined. 

Step 3 It is here proved that Pg is a real, symmetric and stabilizing solution of the 
Riccati equation. 

As for reality, observe that the columns of L = [X"" y ]"" can be chosen complex 
conjugate in pair, so that, if Xc and Yc are the complex conjugate of X and F , 
respectively, then 

[X- Y- YV=[X~ Y- Y 
where F is a permutation matrix. Hence Pg = YX~^ = YcrT~^X~^ = YcX^^ so 
that Pg coincides with its conjugate, i.e. Pg is real. 

As for symmetry, observe that, thanks to the identity (proved in Step 1) X^'Y = 

Y^x it follows that pj = p,̂  = (x-i)~r~ = (x-i)~x^yx-i = YX-^ = Pg. 
As for the stabihzing property, from eq. (C.4) it follows that AX + RY = AX + 

RYX-^X = (A + RPg)X = XT so that A-^RPg = XTX-\ Therefore, A + RPg 
and T are similar. Since T is stable, matrix A + RPg is stable as well. 

It is now shown that Pg is a solution of the equation. In fact, eq. (C.4) is equivalent 
to 

AX + RY = XT 

-QX - A'Y = YT 

Premultiplying the first equation by Y^ yields Y^AX -\- Y^RY = Y^XT. More-
over, premultiplying the second equation by X"" gives —X^QX — X^A'Y — X^YT. 
Recalling that X^Y = F ^ X it then follows that 

0 = X^QX + X^A!Y + Y^AX + Y^^RY 

Postmultiplying this equation by X~^ and premultiplying it by (X~^)~ it follows 

0 = g + A!{YX-^) + {Yx-^YA + (yx-^YR{jx-^) 

= Q + A'Pg + P-A + P^RPg 

Since it has been already shown that Pg is hermitian [Pg = P^)i the conclusion is 
straightforwardly derived. 

Step 4 As for the uniqueness of the stabilizing solution, assume, by contradiction, 
that there exist two stabilizing solutions, namely Pi and P2. Then 

0 = PiA + A'Pi^PiRPi+Q 

0 = P2A + A'P2 + P2RP2 + Q 
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Subtracting term by term, it is easy to see that 

0 = (Pi - P2)iA + RP,) + {A + RP2)'{Pi - P2) 

This equation can be considered as a hnear equation in the unknown Pi — P2 • Being 
both A -h RPi and A + RP2 stable, a well known result of linear algebra implies that 
there exists only one solution, precisely Pi — P2 = 0- ^ 

Lemma C.3 (Stabilizing solution of the Riccati equation - 2) Consider the Ric-
cati equation 

0 = PA + A'P-\- PRP + Q 

and suppose that matrix R is square, n-dimensional and either equal to BB' or —BB'. 
Moreover, assume that 

a) The pair (A, B) is stabilizable 

b) The matrix 

Z := 
A R 

-Q - A ' 

does not have eigenvalues lying on the imaginary axis 

c) The matrix Q is real and symmetric 

Then, 

i) The subspace 

X := Im[L] , L := X 
Y 

generated by the (generalized) eigenvectors of Z associated with the negative real 
part is complementary to the n-dimensional subspace 

lm[I] , I := 

a) Ps := YX ^ is a solution of the Riccati equation. It is real, symmetric and 
stabilizing, i.e. such that {A-\-RPs) is stable. 

Hi) Ps is the unique stabilizing solution of the Riccati equation. 

Proof In view of Lemma C.2, the proof of points ii) and Hi) is straightforward once 
point i) has been proved, which, in turn, derives once the invertibility of X is proved. 
To this aim, consider eq. (C.4) and assume, by contradiction, that there exists ^ ^ 0 
such that X^ = 0, i.e. ^ G Ker[X]. It follows in particular that 

AX + RY = XT (C.5) 

Premultiplying this equation by V and recalling that Y^X = X^Y, it follows 
Y'-AX + Y^RY = X'^YT so that ^ ~ ( F ~ y l X + y ~ i ? y - X ~ y T ) ^ = ^^Y^RY^ = 0, 
namely (recall that R = ±BB') 

RY^ = 0 , V ̂  e Ker[X] (C.6) 
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This equation together with eq. (C.5) yields 

XT^ = 0 , V ̂  G Ker[X] (C.7) 

On the other hand, eq. (C.4) entails that -QX - A'Y = YT so that 

- A'Y^ = YT^ , V ̂  G Ker[X] (C.8) 

For each ^ G Ker[X] eqs. (C.6)-(C.8) hold. In particular, eq. (C.7) implies T^ G 
Ker[X] so that T*^ G Ker[X],V2 > 0. Now it is proved, by induction, that, from eqs. 
(C.7),(C.8), it follows 

R{A')^Y^ = 0 , V A : > 0 , V C G Ker[X] (C.9) 

Actually, eq. (C.9) is true for /c = 0 (eq. (C.6)) and, moreover, it results (see eq. 
(C.8)) 

R{A')''+^Y^ = R{A')''A'Y^ ^ -R{A'fYTi = 0 

since T^ e Ker[X]. Recalling that T*C € Ker[X],Vi > 0, from eq. (C.8) it follows 
yyfc^ = yy^fc- i^ = -A'YT^-'^i. By repeatedly using this last equation, one obtains 

YT^(, = {-A'fYi , V fc > 0 , V ̂  e Ker[X] (CIO) 

For each polynomial j^(s) it then follows V ̂  e Ker[X] 

iy{-A')Y^ = Yu{T)^ (C.ll) 

Riy{-A')Y^ = 0 (C.12) 

u{T)^ G Ker[X] (C.13) 

Let now Umis) be the monic polynomial of minimum degree such that UmiT)^ = 0. 
Notice that such a polynomial actually exists and its degree is not greater than the 
degree of the minimal polynomial ip{s) of T (in fact (p{T) — 0). If A is a root of Ujn{s) 
it follows that (A — s)/i{s) = Vmis)^ with deg[//(s)] < deg[^'rn(5)]- Then, 

Um{T)( = {XI - T)fi{T)^ = 0 (C.14) 

Observe that p := / i ( r)^ ^ 0 due to the minimallity of z^m(5), so that (3 is an 
eigenvector of T and A, being an associated eigenvalue, must have negative real part 
(recall that T is stable). By exploiting eq. (C.14) and letting iy{s) = Tyrn{s) in eq. 
(C.ll) , it turns out that, for ^ G Ker[X] 

iym{-A')Y^ = {XI + A')f,{-A')Y^ = Yvm{T)i - 0 

so that 
A'n{-A)Y£, = -\^,(-A')Y(, 

with Re{—X) > 0, whereas eq. (C.12), letting iy{s) — fi{s), becomes 

Rli{-A')Y^ = ±BB'fi{-A')Y^ = 0 

which, in turn, implies B'fi{—A^)Y£^ = 0. Letting ry := iJ.{—A')Y^, it then follows 

A'T] = -Xrj 

B'r] = 0 
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The assumption of stabilizability of the pair {A^ B) and Re{—X) > 0, imphes, in view 
of the PBH test (Lemma D.4), that r/ = 0. Prom eq. (C.ll) with ^{s) = JJ.{S) it then 
follows that Yfi{T)^ = 0 so that iJ.{T)^ e Ker[r]. On the other hand, fi{T)^ G Ker[X], 
so that L(3 = 0 contradicts the fact that Im[L] is a n dimensional subspace. Hence X 
is invertible and point i) is proved. D 

The preceding lemma allows proving the following result which settles in the con-
text of the theory of optimal control with quadratic cost functionals. 

Lemma C.4 Consider the Riccati equation 

0 = PA^A'P^ PRP + C'C, R := -BE' 

If P is a solution, then 

Ker[P] C ^no := Ker[C] H Kev[CA] • • • n Ker[CA^-^] 

Moreover, there exists a solution Pg which is real, symmetric, stabilizing and positive 
semidefinite if and only if 

a) There do not exist eigenvalues of the unobservable part of the pair (A, C) lying 
on the imaginary axis. 

b) The pair (A, B) is stabilizable 

Proof It is first proved that the kernel of P is contained in the unobservable subspace 
^no of (A, C) . Let ^ G Ker[P], so that P£, = 0. Prom the Riccati equation it follows 
that 0 - ^~(PA + A'P -h PRP + C'C)^ = ^C'C^ so that C^ = 0. Taking this into 
account, again from the Riccati equation one obtains 0 = {PA-\-A^P-\-PRP-{-C^C)^ = 
PA^ so that A^ e Ker[P]. Hence it has been proved that ^ G Ker[P] ^ ^ G Ker[C] 
and A^ G Ker[P]. By repeating again this argument for A^ one obtains A^^ G Ker[P] 
and ^ G Ker[CA] so that, in conclusion 

Ker[P] C : - Ker[C] H Ker[CA] • • • H Ker[C7A^-i] = P^no 

It is now proved that assumptions a),b) imply condition b) of Lemma C.3. Assume, by 
contradiction, that the Hamiltonian matrix Z associated with the Riccati equation has 
an eigenvalue A = JLO (on the imaginary axis), i.e. Zz = ja;z, with z := [x"' y^]^ ^ 0. 
Hence, 

Ax-\-Ry = JLUx (C.15) 

-Qx-A'y^juy (C.16) 

where Q = C'C. Now add to the first equation, premultiplied by y"" ̂  the second, 
premultiplied by x"". It follows 

juj{x^y + y'^x) — y^ Ax + x^ A'y — y^Ry — x^Qx (C17) 

The left hand side is a purely imaginary number, whereas the right hand side is real. 
Hence, both sides must be equal to zero. In particular, being Q > 0 and P < 0, it 
follows that Qx = 0 and Ry = 0, which in turn imply that Cx = 0 and B'y = 0. 
These last equations, together with eqs. (C.15)-(C.17) entail 

Ax^jux (C.18) 

Cx^O (C.19) 

A^y = -juy (C.20) 

B'y = 0 (C.21) 
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In conclusion, since either x or y is different from zero, the above eqs. (C.18)-(C.19) 
violate either assumption a) (recall Lemma D.l) if x 7̂  0 or the stabilizability as-
sumption b) (recall Lemma D.4) if y ^ 0. Assumptions a)-c) of Lemma C.3 are so 
verified. Such lemma assures the existence of a real and symmetric solution Pg such 
that A + RPg is stable. Obviously, Pg is a solution of the Lyapunov equation (in the 
unknown P) 

0 = PA + A'P + Q + PsRPs 

which can be also rewritten as 

0 = P(A + RPs) + (^ + RPsyP - PsRPs + Q 

This is a Lyapunov equation whose coefficient matrix A+RPg is stable and the known 
term Q — PgRPs is positive semidefinite. Thanks to Lemma C.l this equation admits 
a unique solution, Pg, which is positive semidefinite. 

Conversely, assume that there exists a real, symmetric and stabilizing solution Pg 
of the Riccati equation. Necessity of condition b) is then obvious. Now suppose by 
contradiction that condition a) does not hold, i.e. Ax = juJx^Cx = 0 and x 7̂  0. 
Hence Zz = JLJZ where z := [x' 0] ̂  0 and 

Z := 
A 

-C'C 
-BB' 

-A' 

Hence, the Hamiltonian matrix Z has an eigenvalue on the imaginary axis, so contra-
dicting the existence of a stabilizing solution of the Riccati equation. • 

Lemma C.5 Let A, B, C and D be four matrices with dimensions n x n, n x m, 
p X n and p x m, respectively. Assume also that CD = 0; D'D — I and there exists 
the symmetric and stabilizing solution Pg of the Riccati equation 

Let Ar 

0 = PA + A'P - PBB'P + C'C 

A — BB'Pg and Cic := C — DB'Pg and define the three systems 

G{s) 

U{s) 

= I](^ec,/,Cie,0) 

where P j is the Moore Penrose pseudo-inverse of Pg, i.e. the matrix such that 
PgP^Ps = Ps and P^PsP} = Pg, and D^ is a matrix such that 

D' 
[ D D^ ] = I 

Then the system with transfer function 

F{s) := [ U{s) UHs) ] 

is square, inner and 

H{s) := G-{s)F{s) = ^{A,„ [ B -PlC'D^ ] ,P . , [ 0 0 ]) 
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Proof Preliminarily, observe that matrix D^ with the requested properties actually 
exists since D^D = / . Systems U{s) and U^{s) have the same dynamical matrix and 
output transformation. Hence, a realization of F{s) is simply 

F{s) 
Clc 

B -PtC'D^ 

D D^ 

The system with transfer function F{s) is square since | D D^ | is square. Now let 
7] be the state of the system with transfer function F{s) and ^ the state of the adjoint 
system, namely of the system with transfer function 

F-{s) ^ 

-A' 

B' 
-c[. 
D' 

Consider the series connection F^{s)F{s). By exploiting the fact that C'l^Cic — 
CC -h PsBB'Ps = -A'^cPs - Ps^cc and the properties of matrices C, D and D^, it 
follows 

{i - PsV) = -A; , (e - PsT]) -{I- PsPJ)C'D^ij2 

h=B'{i-P,r,)+i,^ 

l^ = -D^'C{Pl^-ri)+^2 

(C.22) 

(C.23) 

(C.24) 

where V'l and tp2 are the inputs of F{s) whereas /i and I2 are the outputs of F'"{s). 
Lemma C.4 entails that Ker[Ps] C Ker[q so that C{I - PIPS)/3 = 0, if /? e Kev[Ps]. 
On the other hand, (/ - PIPS)/3 = 0, if /? € Ker[Ps]-L. In conclusion C{I - PJP^)/? = 
0 , V/3. Hence, eqs. (C.22)-(C.24) can be rewritten as 

{^-P,r,) = -A',,{^-P,rj) 

h=B'i^-P,rj)+^Pi 

l2 = -D^'CP^,{^-Psv)+^2 

These equations show that the transfer function from [tp[ V2]' to [l[ Z2]', i-e. F""{s)F{s), 
is the identity. Hence, F{s) is inner. 

Let now 1? be the state of a realization of G^{s). A realization of G^{s)F{s) is 
given by 

fi = A,,n + BVi - PlC'D^^2 

V = CicT] + Dtpi + D^ij2 

(7 = 1? 

where z/ and a are the input and output of G^{s), respectively. It is easy to check 
that this realization is equivalent to 

{^ - p,ri) =-A',,{^ - Psv) 

7^ = A,cri + Bi,i-PlC'D^i,2 

a = {'d- Psv) + PsV 
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so tha t a possible realization of G^{s)F{s) is 

G-{s)F{s) 
B -PtC'D^ 

0 0 

as claimed in the statement. D 

L e m m a C.6 Let A and C he matrices with dimensions n x n and p x n respectively 
and assume the pair (—A, C) is detectable. Then the unique symmetric solution of 

CP = 0 

P>0 

AP ^PA' <0 

is the trivial solution P = 0. 

P r o o f By contradiction, suppose P = P ' 7̂  0 is a solution. Wi th no loss of generality, 
one can assume tha t 

A 0 
0 0 

Ai A2 
A3 Ai 

C=[Ci C2] 

with Pi > 0. Actually, matr ix P can be put in above form by means of a suitable 
orthogonal transformation. Then, CP = 0 implies Ci = 0 and AP -\- PA' < 0 yields 

^ i P i + P i ^ i PiA^ 
A3P1 0 

< 0 

so tha t ^ 3 = 0 and AiPi -\- PiA[ < 0. Finally, the detect ability of the pair 

i-AC) 
-Ai -A2 
0 -Ai 

, [ 0 C2 

entails tha t matr ix —Ai is stable. In this case, all possible solutions of the inequality 

A i P i + P i ^ ; < 0 

are such tha t — Pi > 0 proving thus tha t P i > 0 is an impossibility. The final 
conclusion is tha t the trivial solution P = 0 is unique. • 
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Appendix D 

Structural Properties 

This section is devoted to the properties of reachabiUty, observabihty, stabihzabiHty 
and detectabiUty of a hnear time invariant continuous time n-dimensional system 
E(A, B,C, i^). All the material presented here can be found in any text of system 
theory, see, e.g., the book by Kailath [29]. 

Controllability and reconstruct ability will not be treated in the present context 
since they enjoy the same properties as reachability and observability, respectively. 

In the forthcoming lemmas, whose proofs are easily available in specialized texts, 
the basic characterizations of the above properties will be provided. 

Preliminarily, define the matrices Pc{s)^ PB{S)^ KQ and K^ as 

Pc{s) 
si-A 

C 
PB{S):^ [SI-A B] 

Ko:= [ C A'C ••• {A'f-^C ] 

Kr:=[ B AB • •. A^'-^B ] 

Lemma D . l (Observability) System S or, equivalently, the pair (A^C), is observ-
able if and only if the following equivalent conditions hold : 

a) PBH test : 
rank[Pc'(s)] = n , Ms 

The set of eigenvalues of the unobservable part of (A, C) coincides with the set 
of values of s in correspondence of which matrix Pc{s) looses rank. 

b) Kalman test : 
rank[Ko] = n 

c) Wonham test : Given an arbitrary symmetric set K of n complex number, there 
exists a matrix L such that the spectrum of A-\- LC coincides with A 

Lemma D.2 (Detectability) System E or, equivalently, the pair (̂ 4, C) is detectable 
if and only if the following equivalent conditions hold : 

a) PBH test : 
rixnk[Pc{s)] = n , Re{s) > 0 
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b) Kalman test : The unobservable part of the system is stable. 

c) Wonham test : There exists a matrix L such that A + LC is stable. 

Lemma D.3 (Reachability) System E or, equivalently, the pair {A, B) is reachable 
if and only if the following equivalent conditions hold : 

a) PBH test : 
rank[PB(s)] = n , Vs 

The set of eigenvalues of the unreachable part of {A^ B) coincides with the set 
of values of s in correspondence of which matrix PB{S) looses rank. 

b) Kalman test : 
rank[i^^] = n 

c) Wonham test : Given an arbitrary symmetric set K of n complex number, there 
exists a matrix K such that the spectrum of A-\- BK coincides with A 

Lemma D.4 (Stabilizability) System E or, equivalently, the pair [A^ B) is stabiliz-
able if and only if the following equivalent conditions hold : 

a) PBH test : 
rank[PB(5)] = n , Re(5) > 0 

b) Kalman test : The unreachable part of the system is stable. 

c) Wonham test : There exists a matrix K such that A -\- BK is stable. 

At the hght of what said in Section 2.5 for the zeros of E, one can now stress that E 
is reachable (resp. observable) if and only if it does not possess input (resp. output) 
decoupling zeros, and, analogously, system E is stabilizable (resp. detectable) if and 
only if it does not possess input (resp. output) decoupling zeros in the closed right 
half plane. 



Appendix E 

The Standard 2-Block 
Scheme 

The material presented in this appendix is largely taken from the paper by Doyle et 
al. [17]. However, the proof of Lemma E.3 is partially original. 

Lemma E. l Consider the systems P{s) and P{s) := P\s), where 

P{s) :- Ci 

C2 

Bi B2 

D21 

D12 

D22 

These two systems are connected in a feedback configuration to K{s) and K{s), re-
spectively, according to the block schemes of fig. E.l. Correspondingly, let T{a^b;s) 
denote the transfer function from the generic input b to the generic output a. Then, 
given K{s) and letting K{s) := K'{s) it follows T{z,w;s) = T\z^w;s). Conversely, 
given K{s) and letting K{s) := K'{s), it follows T{z^w;s) = T\z,w;s). Moreover, 
the eigenvalues of the two systems in fig. E.l coincide. 

Proof Let Pij{s), i = j = 1,2, be the four transfer functions of P{s). It re-
suits Tiz,w;s) = Pi,{s) + P^,{s)k{s)[I - P^2is)K{s)]-^Pi^{s). If ^ ( s ) = K'{s) 
it follows that T{z,w;s) = T\z^w;s). Conversely, it results T{z,w;s) = ^11(5) + 
Pi2{s)K{s)[I - P22{s)K{s)]-^P2i{s). If K{s) = K\s) it follows that T{z,w;s) = 
T'{z,w; s). 

w 
Pis) 

K{s) 

w 

y u 
P{s) 

k{s) 

(a) (b) 

Figure E.l: A feedback system and its transpose 
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w 

_ 
u 

Pis) 

Kis) 

X w 

Figure E.2: A feedback system with full information 

Now, let 

K{s) 
' F 

H 

G ' 

E 

be a controller such that the system of fig. E.l(a) is well defined, i.e. det[J — ED22] 
is nonzero. It is easy to check that the dynamical matrix of the system of fig. E.l(a) 
is 

A + B2{I-ED22)-^EC2 B2{I-ED22)-^H 
G[I + D22{I - ED22)-^E]C2 F + GD22{I - ED22)-^H Aa = 

whereas that of system of fig. E.l(b) where K{s) = K'{s) is 

Ab--
A! + C^(/ - E'D'22)-^E'B'2 C^il - E 'D^s)"^^ ' 

H'[I + D'22{I - E'D'22r^E']B'2 F' + H'D'22{I - E'D'22)-'G' 

Recalling Lemma B.9, it is easy to verify that A'^ = Aa so that the two systems have 
the same eigenvalues. • 

Lemma E.2 Consider the system 

P{s) 

connected in feedback configuration with K{s) according to the block-scheme of fig. 
E.2. Moreover, consider system 

r A 

Ci 

I 

L 0 

Bi 

0 

0 

/ 

B2 -

D12 

0 

0 

A 

Ci 

. C2 

Bi 

0 

/ 

B2 ' 

D12 

0 

P{s) := 

connected in feedback configuration with K{s) as shown in fig. E.3. Finally suppose 
that matrix A — B1C2 is stable. Then, 

i) Given K{s) and letting K{s) := K{s)[C2 I] it follows 

il) K{s) stabilizes P{s) if and only if K{s) stabilizes P{s) 

i2) T{z,w;s) = T{z,w;s) 



APPENDIX E. THE STANDARD 2-BLOCK SCHEME 329 

Pis) 

k{s) 

Figure E.3: A feedback system with partial information 

ii) Given K{s) and defining K{s) through the block-scheme of fig. E.4 where 

K,{s) :--

" A - B1C2 

0 
/ 

. -C2 

Bi 

0 
0 
/ 

B2 " 

/ 

0 
0 

it follows 

HI) K{s) stabilizes P{s) if and only if K[s) stabilizes P{s) 

ii2) T{z,w;s) =T{z,w]s) 

Proof Point i) Let 

k{s) := 
' A 

c 
B ' 
D 

Then, by keeping in mind fig. E.3 and the definition of P{s) it follows 

T{z,w;s) 
A + B2DC2 B2C 

BC2 A 

C1 + D12DC2 D12C 

Bi + B2D 
B 

D12D 

while K{s) = k{s)[C2 I] implies 

K{s) 
C 

BC2 B 

DC2 D 

It is easy to see (for instance by inspecting the state equations of the relevant sys-
tems with fig. E.2 and E.3 in mind) that the state representations of T{z, w; s) and 
T{z, w; s) are equal, so that point i) is proved. 

Point ii) A state space representation of T(z,i();s) in fig. E.3 is sought, when 
K(s) is built according to fig. E.4. Hence, let x, Jl and Xy be the state variables of 
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y 

^ u 

K,{s) 

K{s) 

U 

Xy rjv 

Figure E.4: A controller structure for the partial information case 

w 

q 
Pgis) 

Q{s) 

Z 

r 

Figure E.5: A feedback system 

P{s)^ K{s) and Ky{s)^ respectively. A state description of T(z, w] s) is then given by 

P{s) := 

K,{s) := 

K{s) 

Ax + Biw + B2U 
Cix + D12U 
C2X + w 

{A - BiC2)xy + Biy ^ B2U 
-C2Xy + y 

Afji -h BiXy + B2r]y 
C/1 + DiXy -\- D2r]y 

Letting e :— Xy — x it results s = {A — BiC2)£, which is by assumption a stable 
system. Then, in order to evaluate the stability of system of fig. E.3 and to compute 
the transfer function T(z, w; s) one can, without loss of generality, put 5 = 0, i.e. 
Xy = X in the relevant equations. It follows 

T{z,w;s) = 

A^B2Di B2C 
A 

L C1+D12D1 D12C 

Bi + B2D2 
B2 

D12D2 

On the other hand, it is simple to verify that the feedback system of fig. E.2 is 
described by the very same equations. Hence Point ii) immediately follows. • 

Lemma E.3 Let j be a positive scalar and assume that there exists the symmetric, 
positive semidefinite solution Poo of the Riccati equation (in the unknown P) 

0 = PAe + A'^P + P{-f-^BiB[ - B2B'2)P + C[^Cic 

that is such that 
Ace : - Ac + {l-^BiB[ - B2B'2)Po. 

(E.l) 

(E.2) 
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is stable. Further, consider the block-scheme of fig. E.5 where 

P,is) ••--

Ac — ^2-^2-^o< 

Clc — D12B2 

Q{s) :--

J5i B2 

0 D12 

1 0 

\ \ 
_c. 

B, 1 
D, 

with 

D[2Cic = 0 (E.3) 

(E.4) 

and T{z^ w; s) := Ti{Az^ Bz^Cz-> Dz) is the transfer function from w to z. Then, Az is 
stable and \\T{z,w;s)\\oo < 7 if and only if Aq is stable and ||Q(5)||oo < 7-

P r o o f Sufficiency Let Aq be stable and ||Q(s)||oo < 7- The system in fig. E.5 with 
transfer function T{z^ w; s) is described by 

T(z , w; s) 
' A, 

. ^' 

Bz ' 

D, _ 

where 

A, 

B,:--

A,~B2{B'2+T^DgB[)P„ 

-1-^B,B[Poo 

Bi + B2Dg 
B„ 

B2Cq 
A„ 

C, := [ Cie - Di2{B'2 + j-^DgB[)P^ D12C, 

D, := Di2Dg 

(E.5) 

(E.6) 

(E.7) 

(E.8) 

Since ||Q(5)||oo < 7, it results a{Dq) < 7. Then, by recalling tha t Aq is stable, Theo-
rem 2.13, applied to system S ( ^ q , Bq^Cq, Dq) entails tha t there exists the symmetric, 
positive semidefinite solution 5oo of the Riccati equation (in the unknown S) 

where 

and 

0 = ^ i , + A'^S + SBqAiqB'qS + C^ A s . C , 

A,q := (7^7 - D^Dq)-' , A2, := ( / - J-'DqDX' ^q^ql 

Aq := Aq + BgAlgD'gCg 

Therefore, matr ix 
Ag := Ag + BgAlg{D'gCg + B'g S^) 

is stable. From the definition of D^ (eq. (E.8)) and eq. (E.4) it follows tha t 

a{D,) < 7 

(E.9) 

(E.IO) 

( E . l l ) 

(E.12) 

(E.13) 
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which is a necessary condition for \\T{z, 
^5 ^)||oo ^ T- -̂^ ̂ ^ now shown that 
Poo 0 

V^:-- • OO 

0 S^ 

is a symmetric and positive semidefinite solution of the Riccati equation (in the un-
known V) 

where 

and 

A i , := (7^/ - D'^D^r' , A2. := (/ - T^D^D',)-^ 

A, + B,Ai,D'C, 

(E.14) 

(E.15) 

(E.16) 

In fact, prehminarily observe that the right hand side of the Riccati equation (E.14) 
can be rewritten (if eqs.(E.15),(E.16) and Lemma B.9 are taken into account) as 

VA, + Ay + {VB, + C',D,)\u{VB, + C',D,)' + C',C, := 

" fn{V) /12(F) " 
f2l{V) /22(F) : - f{V) : 

In view of eqs. (E.5)-(E.8) it follows 

VooA,= PooAc — P00B2S2P00 - 7 PooB2DqB[Poo Poc,B2Cq 
-7-25ooBqPiPo< ' - 'cxD^g 

and, by recalling eqs. (E.3),(E.4), 

FOOP. + C ; D , = 

c'^c. 

7-2p^BiAr,^ 
SooBq + CqDq 

Czl Cz2 

Cz2 C^zS 

(E.17) 

where 

Czl •= Ci^Cic + P00B2B2P00 + 7 PooBlDqDqB^Poo + 

^j-^P^B2DqB[P^ + ^-^P^BiD'^B'^Poo 

Cz2 •= —PooB2Cq — 7~ PooBiDqCq 

CzS •= C'gC'g 

Thanks to eqs. (E.4),(E.8),(E.10) and (E.15) it is 

Ai^ = Aig 

so that 

/ l l (Foo) = Poo^c + A^Poo - Poo(B2P2 - 7 " ' P l P i ) P o o + 

+C[,C,c = 0 

(E.18) 
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since matrix Poo is a solution of eq. (E.l). By direct substitution one finds /i2(^oo) = 
0. Finally, 

/22(Ko) = SooA, + A'^Soc + {SooB, + C; i ) , )Ai , • 

•{SooBq + CqDq) + C^Cq 

By recalling Lemma B.9 and eqs. (E.10),(E.ll) it is easy to check that /22(^cx)) 
coincides with the right hand side of eq. (E.9) and is therefore zero. 

Now, let 

A, := A, + B,Au{D'^C, + B'^V^) 

Ac - B2B!^Poo + ^-^BiB[P^ 
0 Aq + BqAu{B'^S^+D^^Cq) j 

where $ denotes a matrix of no interest in this context. In view of eqs. (E.2),(E.l2) 
and (E.18), the conclusion is drawn that the eigenvalues of A^ are those of Ace and 
Aq. The solution ^oo of eq. (E.14) is therefore the stabilizing one since matrices 
Ace and Aq are stable. Thus, by recalling eq. (E.13), it can be said that, thanks to 
Theorem 2.14, ||T(z,i(;; 5)||oo < 7 and A^ is stable. 

Necessity Assume that ||T(2:,it;; s)||oo < 7 and Az is stable. It has to be proved 
that Aq is stable and ||Q(s)||oo < 7- To this aim, consider the Hamiltonian matrix 

A, 

and the relevant Riccati equation (in the unknown V) 

0 = vAz + A'V + VBzAizB'V + C 'A2 .a (E.19) 

In view of eqs. (E.15) and (E.16) matrix Zz is associated with system T{z^w]s) — 
Ti{Az, Bz^Cz^ Dz) defined by eqs. (E.5)-(E.8). By taking into account the equations 
(E.3),(E.4),(E.1),(E.10) and (E.ll) , it will be now verified that, chosen 

it is ^ Z ^ ^ - ^ = 

^ := 

= Zz, where 

Zz = 

' ^ 1 

0 
0 
0 

-n 
0 • 

/ 

$ 2 

0 
C^A 2q 

n 

c. 

'= 

$ 3 

^ 5 

^ 6 

$ 7 

' Poo 0' 
0 0 

^ 4 " 

BqAiqBq 
0 

- ^ ; 

(E.20) 

The explicit expressions of the matrices $^, i = 1, • • •, 7 appearing in Zz are not given 
since of no interest in the subsequent discussion. In order to verify eq. (E.20) observe 
that by recalling eqs. (E.15),(E.16) and Lemma B.9, it is 

^z,^-^ - Cll Cl2 
C21 -Cii 

where 

Cll := Az + BzAuiD'zCz + B'^Q) , C12 := BzA^B^z 

C21 := -nAz - A'z^ - {QBz + C',Dz)A,zinBz + C^zD^Y - C'^Cz 
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Further, by taking into account eqs. (E.3)-(E.8) and (E.IO), one has 

QB, + C',D, = 

so that, thanks to eq. (E.18), 

Cii = 

- 2 p ^ B i A r ' 
C'Da 

Hq 

^ 1 $ 2 
0 A, + Bqi^iqD'Cq 

In view of eqs. (E.ll) and (E.20) it follows that Cii coincides with the submatrix of 
Zz made up of the elements belonging to the first two blocks of rows and columns. 
In a similar way, thanks to eqs. (E.18) and (E.6), 

c 12 
$3 $4 

[ $5 5 , A i , 5 ; J 

which coincides with the submatrix of Zz made up of the elements belonging to the 
first two blocks of rows and the last two blocks of columns. Finally, one obtains, 

Q. 21 
51 0 
0 92 

with 

51 := -[Poo^c + KPoo - PooiBiB'^ - ^-^BiB[)P^ + C{,C,c] 

92 := -C'gC, - C'^D,A,,D'^C, 

By recalling eq. (E.l) it results ^i = 0, whereas from Lemma B.9 it follows ^2 = 
—CqA2qCq. Therefore, (̂ 21 coincides with the submatrix of Zz made up of the elements 
belonging to the last two blocks of rows and the first two blocks of columns. 

In conclusion eq. (E.20) has been proved. Now notice that the eigenvalues of Zz 
are those of the matrices $1, ^e and 

— C^AonCa 

BqAiqB'q 

-A' 

Condition (E.13) is satisfied since | |T(Z,K;; s)||oo < 7 and matrix Az is stable so that 
from Theorem 2.13 it follows that the eigenvalues of Zz do not lie on the imaginary 
axis. Thus also the eigenvalues of Zz do not have zero real part and the same can be 
said of the eigenvalues of Z^, thanks to the above discussion. 

Since the resulting system is stable {Az is stable), the pair {Aq^ Bq) is stabilizable 
and such is the pair [Aq^ [BqAiqB'^Y^'^) too. In fact, first recall that in view of eq. 
(E.ll) the stabilizability of the pair (A^, Bq) implies that also the pair (A^, Bq) is such 
(state feedback does not affect this property). Second, notice that if {BqAiqB'q)^^'^x — 
0, then also BqAiqB^x = 0 and B'^x = 0 (Ai^ is positive definite), so that, in view of 
the PBH test (Lemma D.4), should the pair {Aq,{BqAiqBq)^/'^) not be stabilizable 

then also the pair {Aq, Bq) would not be such. 
Therefore Lemma C.3 can be applied to system Ti{Aq,Bq,Cq,Dq) yielding the 

existence of the symmetric, positive semidefinite and stabilizing solution ^oo of the 
Riccati equation (in the unknown S) 

0 = SAq + A'^S + SBqAlqB'^S + C'^A2qCq (E.21) 
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Pis) 

K{s) 

Figure E.6: A feedback system 

The same lemma can be applied to eq. (E.19) since: (i) the pair (A^, B^) is stabilizable 
(indeed, matrix Az is stable); (ii) the eigenvalues of matrix Zz do not have zero real 
part; {Hi) matrix Cz^2zCz is symmetric; (iv) matrix BzAizB'^ is positive semidefinite 
{Aiz > 0 thanks to Lemma B.l l and a{Dz) < 7 (||T(2:, w;; 5)||oo < 7)- Therefore, the 
stabilizing solution of eq. (E.19), which is unique in view of Lemma C.3, is given (see 
the sufficiency part of the proof of the lemma) by 

V^ 
0 

0 

Matrix l/oo is positive semidefinite (see Theorem 2.13), hence also Soo is such. 
Finally, Theorem 2.14 applied to system Q{s) (notice that eqs. (E.4) and (E.8) 

imply ^{Dq) = G{DZ)) and eq. (E.21) lead to the desired conclusion, namely Aq 
stable and ||Q(5)||oo < 7- ^ 

Lemma E.4 Consider the system 

P{s) :-

with D12D12 = I and, for a given 7 > 0̂  assume that there exists the symmetric, pos-
itive semidefinite and stabilizing solution Poo of the Riccati equation (in the unknown 

p) 
0 = PA, + A'^P + P{j-^BiB[ - B2B'^)P + C[^Cic (E.22) 

that is such that 
A,, := A, + {j-^B,B[ - B2B^)Poo (E.23) 

is stable, where 

A 

C i 

. C2 

Bi 

0 

£•21 

B2 • 

Du 
0 

A,:=A- B2D[2Cu C^ := (7 - Di2£''i2)Ci 

Further, consider the block-scheme in fig. E. 6 and E. 7, where 

(E.24) 

Pt{s) := 

A + ^-^BiB[Po, 

B2P00 + ^ 1 2 ^ ' ! 

C2+l-^D2iB[Po, 

Bi B2 

0 

D21 

and let T{z^ w] s) and T{q^ r; s) be the transfer functions from w to z and from r to 
q, respectively. Then, a controller K{s) is admissible in RHQ^ for P{s) and such that 
\\T{z,w]s)\\oo < "f if ciTid only if it is admissible in RH^o for Pt{s) and such that 
\\T{q,r',s)\\oo<l. 
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1 

u 
Ptis) 

K{s) 

(1 

V 

Figure E.7: An auxiliary feedback system 

Wq 

1 

y 

Pgis) 

Ptis) 

K{s) 

u 

Q{s] 

Zq 

r 

Figure E.8: A second auxiliary feedback system 

Proof Consider the block-scheme in fig. E.8 where 

P,{s) ••-

Ac — B2B2P0, 

Clc — D12B2PCX 

- 7 - 2 ^ 1 Poo 

Bi B2 

D12 

0 

and let Xq and Xt be the state variables of Pq{s) and Pt{s)^ respectively. It is easy to 
check that, by letting e := Xq — Xt^ it results 

S = Acc£ 

Xq = AXq + BiWq + B2U - J52(52^oo + i^ l sCl )^ 

Zq = ClXq + D12U - Di2{B'2Poo + D[2Cl)e 

y = C2Xq + 1^21^9 - {C2 + l~^D2iB[P^)e 

Being matrix Ace stable, the system in fig. E.8 is internally stable if and only if the 
system in fig. E.6 is such, since the equations for system P{s) coincide with the last 
ones with 5 = 0. For the same reason T(z, w] s) = T{zq^ Wq;s), where T{zq^ Wq\ s) is 
the transfer function from Wq to Zq of the system in fig. E.8. 

Thus the lemma is proved in view of Lemma E.3. Indeed, the system in fig. E.8 
is equal to the one depicted in fig. E.5 if in the former figure the system with input r 
and output q is denoted by Q{s). Further, the assumptions required by Lemma E.3 
are satisfied. • 



Appendix F 

Loop Shifting 

This appendix presents some results which are (mainly) exploited in Remark 5.24. 
In particular, Lemmas F.l and F.2 are almost standard in matrix algebra, while the 
remaining material has been taken from the paper by Parrott [46]. 

Lemma F. l Let A be a m x n dimensional matrix with \\A\\ < 1. Then 

A-{I - AA^y^^ = {I- A^AY^^A-

Proof Preliminarily observe that both the matrices / — A A"" and / — A^A have 
real square roots since they are positive semidefinite thanks to the assumption on 
IÎ 11 which implies the nonnegativity of their eigenvalues. In fact, if, for instance, 
(/ — AA^)x = Ax with A < 0 and x 7̂  0, then x^'AA^'x = x^x{l — A) > x^x which 
implies ||A|| > 1. 

The proof of the lemma is carried out by assuming m > n^ the reverse case being 
dealt with by modifying the subsequent discussion in an obvious way. By recalling 
Remark 2.11 it is possible to write A = UiAV^ with Ui-^ U[I Oy,U^U = UU^ = / , 
U^Ui = / , VV = VV^ = / and A diagonal and real. Therefore, 

/ - A^A = 1- VAU^UiAV^ = 1- VA'^V^ = V{I - A'^)V^ = VD'^V^ 

where D'^ := / — A^ is diagonal. Then 

(/ - A^Ay^'^A^ = VDV^VAU^ = VDAU^ = VADU^ 

having exploited the fact that VD^V^ = VDV^VDV^ (first equality sign) and the 
fact that the product of two diagonal matrices commutes (last equality sign). Being 
[/f = [/ 0]U^ it follows 

{I-A^AY^'^A^ = VA[ D 0]U^ (F.l) 

On the other hand, by again exploiting the relation between U and f/i, it is 

/ - AA^ =1- UiAV^VAU^ 

= I-UiA^U^ 

I 
= I-U 0 

A2 [ / 0]U^ 
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I-U 

= U 

= U 

I -

A2 0 • 
0 0 

A2 0 
0 0 
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V 

Z)2 0 

0 I u^ 

D 0 
0 I 

so that 

A^{I - AA-^f^ ^ FAC/rf/ 

= F A [ / 0 ] U^U 

= FA[ / 0 ] 

= F A [ £> 0 ] CJ 

Prom eqs. (F.1),(F.2) the lemma follows. 

U^ 

D 0 
0 I 

U" 

D 0 
0 / 

U^ 

(F.2) 

D 

Lemma F.2 Let A be a m x n dimensional matrix with rank[^] = r. Further, let 
An := (^~A)^/^ and AL '•= {AA"')^/'^. Then there exists amxn dimensional matrix 
T such that 

a) A = TAR = ALT. 

h) ART-T = AR. 

c) T'^T < I. 

Proof Consider the singular value decomposition (see Section 2.6) of A, namely 
A = C/5y~ with 

U:=[U, U2] , 5 : = [ ^ I 

where Ui is m x r dimensional and D is r x r dimensional. Define 

SR:^ 
D 0 
0 0 'L := 

D 0 
0 0 

where SR and SL are square and nxn and mxm dimensional, respectively, so that 
S% = S'S and 5£ = SS'. Then it is now proved that 

AR = VSRV- , AL = USLU- , T = [ UI 0 ] F ^ 

verify the theorem. First observe that 

ARAR=VSRV-VSRV-

= vs%v^ 
= VS'SV^ 

= VS'U^USV^ = A^A 

(F.3) 
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Thus AR is a square root of A^A. Second, notice that 

A^AL = USLU-USLU-

= USlU"^ 

- uss'u^ 
= USV^VS'U^ = AA^ 

Thus, AL is a square root of AA^. 
Point a) From eq. (F.3) it follows that 

TAn^[Ui 0 ] V-VSRV-

- [ C/i 0 ] SRV-

= [Ui U2] SV~ = A 

and 

ALT = USLU~ [Ui 0 ] y 

Point b) It is 

ART-^T = VSRV^V 

USr 
I 0 
0 0 

V^ = A 

0 
[Ui 0]^-

= vs. R 
I 0 
0 0 v^ 

VSRV- =AR 

Point c) It is 

T T = V 

= V 

< V 

0 
/ 0 
0 0 
/ 0 
0 / V^ = 1 

Lemma F.3 Consider the real matrix 

M{Z) := P Q 
R Z 

where the submatrices P, Q and R satisfy the equations 

P'P + R'R = a^I 

PP' + QQ' = a^/ 

with a a nonnegative scalar. Then 

^) 
mm\\MiZ)\\ = a 

D 
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ii) Letting Z^ := —TRP'TQ, where TR and TQ are matrices such that the equalities 
R = TR^R'Rfl'^ and Q = {QQ^^/^TQ hold, it is ||M(Z^)|| = a. 

Proof Preliminarily observe that matrices TR and TQ exist thanks to Lemma F.2. 
If a = 0, then, necessarily, P = 0, Q = 0, i? = 0, hence Z"" ^ 0 and ||M(Z^)|| = 0. 
If a > 0, set A := P/a, B := Q/a, C := R/a, so that 

A'A ^-C'C = I 

AA' ^-BB' ^I 

(F.4) 

(F.5) 

Moreover, for any real D set 

N{D) := 
A B 
C D 

By recalling the definition of the norm of a matrix and the relevant properties (see 
Section 2.7), it follows, for each D, 

x' y' ] 
\\N{D)f= max 

X 

y 

A'A + C'C A'B + CD 
B'A^D'C B'B + D'D 

> max 
x#0 

^0 

x\A'A^C'C)x A 
C 

Analogously, 

\\N{D)r = \\N'{D)f > 

Hence the conclusion is drawn that 

\\N{D)\\ > m a x 

It is now shown that, chosen 
D° := -TCA'TB 

A' 
B' 

1 [ '̂ 1 
J L ̂ ' J ' 

r ^ 1 " 
[ c J _ = 1 , VD (F.6) 

(F.7) 

where Tc and Tg are matrices (whose existence is guaranteed by Lemma F.2) such 
that 

C = TciC'Cf'^ 

B = [BB'f^TB 

(F.8) 

(F.9) 

it is ||Ar(£)<')|| < 1, so that, in view of eq. (F.6), ||A''(£''')|| = 1 and D" is optimal. 
First notice that from eqs. (F.4),(F.5), (F.7)-(F.9), Lemmas F.l, F.2 (points a) 

and h)), it follows 

CD" = -{C'Cf^T'cTcA'TB 

= -{C'Cy^A'TB 

= -{I-A!AYI^A'TB 

= -A! {I - AA'^I^TB 

= -A'{BB'f'^TB = -A'B 
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Therefore, C'D^ + A'B — 0 and, by recalling eq. (F.4), one obtains 

N\D'')N[D'') I 0 
0 B'B + (L> )̂'L>^ 

However, by exploiting Lemma F.2 (points a) and c)), eqs. (F.5), (F.7) it is 

B'B + (D^)'D^ = T'B{BB'YI'^{BB')^I'^TB + T'^AT'CTQA^TB 

<T'BBB'TB^T'BAA!TB 

<T'B{BB' + AA')TB 

< T'BTB < I 

This implies that the maximum eigenvalue of B'B -\- {D^)'D^ is not greater than 
1: consequently the maximum eigenvalue of N'{D^)N{D^) is equal to 1. Therefore, 
\\N{D^)\\ = 1. 

Now observe that for ah D, letting Z := aD, it is aN{D) = M{aD) = M{Z), so 
that 

mm||M(Z)| | =min| |M(aZ3)| | =amin| | iV(£)) | | 

and 
Z^ = aD"" (F.IO) 

On the other side, R = aC ^ aTc{C'Cy^'^ = TC{R'RY^'^ and, analogously, Q = 
aB = a{BB'y^'^TB = {QQ'Y^'^TB which imply Tc = TR and TB = TQ. From eqs. 
(F.IO) and (F.7) and the definition of A the expression of Z^ follows. • 

Theorem F. l (Parrott's theorem) Let B, C, D, P, X he real matrices such that 
\ p c 1 n i f p i i i i i f p ' i i n 

N{X) := and a := max , ^ , . Then 

i) There exists X" such that a = ||A/'(X°)|| = minjf ||Af(X)||. 

a) If \\P\\ <a , X" — -D- B{a'^I - P'Py^P'C. 

Proof Preliminarily, notice that, in view of the definition of a, the matrices 

R:--

Q:--

B 
{a^I-P'P-B'B^/^ 

C [a^I-PP' -CC'Y'^ ] 

are real. 
Point i) Letting 

with 

define the matrix 

Z := 
Zi 

Z2 
ZA 

Zi:=D + X 

(F.l l) 

(F.12) 

P Q 
R Z M{Z) := 

Matrix M{Z) satisfies the assumptions of Lemma F.3 since 

P'P + R'R = a^I 

PP' + QQ' = a^I 

(F.13) 

(F.14) 
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so that there exists a matrix 

Z" := 
Zl Zl 

3 ^ 4 

such that ||M(Z^)|| = a. 
Note that for any matrix Z of the form (F.11),(F.12) it is \N{Z^-D)\ < | |M(Z)||. 

Hence, by recalhng that ||A/'(X)|| > a, one obtains 

a<\\N{Z1-D)\\<\\M{Z'')\\=a 

which proves point i). 
Point ii) Prehminarily observe that, thanks to the assumption on the norm of P , 

matrix a^I — P'P is nonsingular, so that X^ is well defined. 
By exploiting Lemma F.3 one has 

Zl=[l 0 ] Z^ 

= - [ / 0 ] TRP'TQ 

= [ / 0 ] TRP\QQT'^^Q (F.15) 

In writing down the last part of eq. (F.15) the nonsingularity of matrix {QQ'Y^^ = 
[a^I - PP'y/"^ (||P|| < a) and the equahty Q = {QQ^^'^TQ have been taken into 
account. In view of eqs. (F.13),(F.14) and Lemma F.l, from eq. (F.15) it follows 

Z° = -[ I 0 ] TnP'ia^I - PP')-^I'^C 

= - [ l 0 ] TR{a^I - P'P)-^/^P'C 

= -[! 0 ] TR{R'R)-^I^P'C 

= - [ i 0 ]R{B:R)-^P'C 

= -B{a^I - P'P)-^P'C 

By recalling that ||Ar(Zf)|| = a, point ii) follows. D 



Appendix G 

Worst Case Analysis 

This appendix makes basically reference to the paper by Doyle et al. [17]. 

Lemma G.l Consider the system 

X — Ax + Bq 

z = Cx 

with A stable, x(0) = XQ and ||G(s)||oo < 7̂  where G{s) := C{sl — A)~^B. Then 

sup [\\z\\l-'y'^\\q\\l]=XQQooXo 
qeRH2 

where Qoo is the symmetric, positive semidefinite and stabilizing solution of the Riccati 
equation (in the unknown Q) 

0 = QA + A'Q + -f-^QBB'Q + C'C 

that is such that the matrix A + ^~^BB'QOQ is stable. 

Proof The existence of the solution of the Riccati equation is guaranteed by the 
assumption ||G^(5)||oo < 7 (Theorem 2.13). Further, it is 

— X'QOQX = x'A'QooX + q'B'QooX + x'Q^oAx + x'Q^oBq 

= x\QooA + A'Qoo)x -h q'B'QooX + x'Q^oBq 

= -x\C'C + -i-^QooBB'Q^)x + q'B'Q^x + x'Q^Bq 

= -x'C'Cx - (7^ - -i-^B'Q^xy{-iq - ^i'^B'Q^x) + ^^q'q 

'^I'hf-l'h-l-'B'Q^xr 
Observe that x G RH2 and z G RH2 whenever q G i?i^2, since A is stable. Therefore, 
by integrating over the interval [0, oc) the first and last terms of the this series of 
equalities one obtains, for each q G RH2', 

The choice q = ^~^B'QQQX is consistent with the above derivation since x — (A + 
^~'^BB'Qoo)x is a stable system by assumption. With this choice it is ||^||2~7^lkll2 — 
XQQOOXQ, the maximum possible value. D 
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In the following lemma reference is made to the stable (lis) and antistable (Ha) 
orthogonal projections which have been introduced in Definition 2.33. 

Lemma G.2 Consider the system 

x = Ax^ BiQi H- B2q2 (G.l) 

z = Cx (G.2) 

with A stable. Further, consider the subspace of RL2 

Q'={Wi Q2y'=Q. qieRH^, q2eRL2} 

and the operator E : Q —^ RH2 defined by 

E:q\-^Eq:= Ils[Gi{s)qi -f (^2(5)92] 

where, for i = 1,2, Gi{s) := C{sl — A)~^Bi. Then, denoting with 7 a positive scalar, 

sup | |Hg| |2<7 (G.3) 
qeQ 

I |g | l2=i 

if and only if the following two conditions hold: 

i) There exists the symmetric, positive semidefinite and stabilizing solution Q^Q of 
the Riccati equation (in the unknown Q) 

Q = QA^A'Q^ J-^QB2B!^Q + C'C 

that is such that the matrix A + 7"^^2^2^00 ^̂  stable. 

a) rsiQooLr) < 7^; where Lr is the solution of the Lyapunov equation (in the 
unknown L) 

0 = LA' H- AL -f BiB[ + ^2^2 

Proof Observe that 

sup \\Eq\\2 > sup \\Eq\\2 
qGQ q e Q 

Il9ll2 = l Ikll2 = l > 91=0 

> s u p \\JlsG2{s)q2\\2 
q2£RL2 
Ik2ll2 = l 

> s u p | |G2(S)52| |2 = | |G2(s) | |oo 
q2eRH2 
Ik2ll2 = l 

where the last equality sign follows from Theorem 2.12. If condition (G.3) holds, then 
Theorem 2.13 proves the necessity of condition (z). Therefore, the proof is carried 
out by showing that, under condition (i), condition (ii) is necessary and sufficient for 
condition (G.3) to hold. 

Notice that, for any g' G Q, it is 

q = Usq + Ila^? = 
0 

nsg2 
+ nag 

Having decomposed q into two orthogonal terms implies 

llS^lli - f Iklll = mqWl - l'\\^sq2\\l - I'maqWl (G.4) 
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qi 

^aq2 

^sq2 

Bi 

Bo 

Bo 

{VoH ^/ 

A M 

C n. 
^q 

Figure G.l: The block-scheme representation of E 

Thanks to the hnearity of 2 , condition (G.3) is equivalent to (also recall Remark 2.13) 

S^P II 112 < ^ 

which implies that, for each q e Q, q j^ 0, ||Sg||2 — T^H^Hl < 0- Therefore, condition 
(G.3) is violated if and only if 

sup [mq\\l-j'\\q\\l]>0 
o^qeQ 

By taking into account eq. (G.4), condition (G.3) is violated if and only if 

sup [\\Eqg-j^Usq\\l-j'\\Uaq\\l]>0 (G.5) 

With reference to fig. G.l (which supplies a representation of the operator S where 
the input q2 has been decomposed into its stable and antistable component), recall 
that, in the time domain, a signal belonging to RH2 is zero for t > 0, whereas 
a signal belonging to RH2 is zero for t < 0. Therefore, the value of the state of 
system (G.1),(G.2) at time ^ = 0 only depends on the inputs which belong to RH2 
so that, given x(0) := XQ, the maximization of the first two terms in eq. (G.5) can 
be performed by ignoring the antistable part of the inputs to system (G.1),(G.2), so 
that 

sup \m\l-i'\ nwll 
a:(0)=a:o 

sup W\z\\l-^'h2\\l] 
0^q2eRH2 

x(0)=cco 

Therefore, 

sup [\\Eq\\l 
o^qeQ 

sup 
0^q2eRH2 

I'msqwi Wl-r 

-r'lMl] 

'"^aqWl] 

x(0)=a;o 

a;(0)=a:o 

- inf 7^ 
qeRH^ 

(G.6) 
a;(0)=xo 

Observe that sup[M —Â ] = sup[M] — inf[A ]̂ whenever the choice of M is independent 
of the choice of N. This fact has been exploited in writing down eq. (G.6). 

Assume, for the moment being, that the pair (A, [^1 ^2]) is reachable. Thanks 
to Lemma G.l, the first term on the right hand side of eq. (G.6) equals XQQOQXQ^ 

while the second term equals, as it will be shown later on, —J'^XQL~^XQ (observe that 
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Lr > 0 since the pair (A, [Bi B2]) is reachable, see Lemma C.l). Thus, eq. (G.6) 
becomes 

sup [IIH^II^-7^1103511^-7'l|na9lli] = x'o{Qoo-rL;')xo (G.7) 
a;(0)=a:o 

Therefore, condition (G.5) is verified if and only if there exists XQ such that the right 
hand side of eq. (G.7) is nonnegative. Hence, condition (G.3) is violated if and only 
if there exists XQ such that 

XO{QOO-1^L;^)XO>0 

that is if and only if rs((5oo^r) ^ 7^ (recall Lemma B.12). 
The equality 

inf Ikll^ 
qeRH^ 

= XQL^ XQ 

a:;(0)=xo 

can be proved by making reference to the (classical) optimal control problem relative 
to the system 

X = Ax-\- Bq 

X{T) = 0 , x(0) = xo , r < 0 

and the performance index 

'^'L"' qdt 

where r is a given parameter. The Hamilton-Jacobi theory leads to recognizing 

qrit) = B'e f^-A't I 
0 1 - 1 

e-^^BB'e-^'^'dv xo , t < 0 

as an optimal control, so that, as r ^ — (X) (recall eq. (2.21) and what has been said 
just after) it is 

q'>{t)= lim q°{t) 

B i„-A't f 
J —c 

e-^''BB'e-'^'''dv XQ 

B'e-'^'^L-^XQ , t < 0 

Notice that the so obtained control belongs to RH2 since A is stable. Finally, 

inf 11̂112 
qeRH^ x(0)=a;o 

/ q%t)'q%t)dt 

7: 
XQL^ XQ 

e-^'BB'e-'^^'dt L^^XQ 

The reachability assumption of the pair (A, [Bi B2]) is now relaxed. Assume to 
have already decomposed the system into the reachable and unreachable parts, so 
that X := [x^ xj^]' and 

A:--
0 Au 

, B~ Bir B2r 
0 0 

C :— [ Cr Cu \ 
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where the pair {Ar, [Bir ^2r]) is reachable. Obviously, the states XQ to be considered 
in eq. (G.6) are only those belonging to the set SQ := {x \ x == [x^o ^Y }^ ^^ ^^^^ 
condition (G.5) is satisfied (hence condition (G.3) is violated) if and only if there 
exists XQ G SO corresponding to which it is 

sup [\\z\\l-j'\\q2\\l] 
0^q2eRH2 a;(0)=rro 

inf^T'lklll 
qeRH^ 

> 0 (G.8) 
x(0)=xo 

Observe that the stabilizing solution Qoo of the Riccati equation is given the form 

where Qr is the symmetric, positive definite and stabilizing solution of the Riccati 
equation (in the unknown V) 

0 = VAr^ A y + 7 - V ^ S r ^ S r ^ + C'^^r 

As already found, the first term on the left hand side of eq. (G.8) equals x'^^Qr^rOi 
while, by again exploiting the previous discussion about the optimal control problem 
(relative to the reachable part only), it is easy to find that the second term on the 
left hand side of eq. (G.8) is given by — 7~^x^o^7r^^r'0? where Lrr is the solution of 
the Lyapunov equation (in the unknown W) 

0 = WA'^ + ArW + BirB[, + B2rB'^r 

Therefore, condition (G.3) is violated if and only if rs{QrLrr) ^ 7 ^ - It is straightfor-
ward to check that, thanks to the peculiar structure of matrices A and [Bi ^2], the 
unique solution of the Lyapunov equation referred to in the statement of the theorem 
is 

-L/'P'P U 

0 0 
IJ'P 

SO t n a t TgiLJ'pljj^j^) ^ 7^ is equivalent to the condition VsiQooLr) > 7^ D 
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Appendix H 

Convex Functions and Sets 

The material included in this appendix is standard in convex optimization. It is 
mainly based on books [37], [41] and [53]. However, to our present needs, it is impor-
tant to keep in mind that here all variables and functions are defined in some subset 
of R^^^, In other terms, instead of vectors we work with nxm dimensional matrices. 
All sets to be handled are assumed closed. 

First, let us introduce the algebraic structure to be dealt with. The inner product 
of two matrices X and Y belonging to R^^^ is defined as 

< X , y >:=trace[X'F] 

which induces the so called Frobenius norm, that is 

||X||i. := y/<X,X> = v/trace[X'X] 

The geometric interpretation is clear. Matrix X G R^^^ may be thought as a point 
in R^'^'^ whose distance to the origin is ||X||i? just defined. 

Definition H. l (Convex sets) A set Vt in R^^^ is convex z/V Xi, X2 G ̂  the point 
X = aXi + (1 - a)X2 e n for every a G [0, 1]. D 

In other words the line segment between any two points in a convex set is entirely 
contained in the set. The empty set is, by definition, a convex set. Furthermore, 
the above definition can be alternatively stated in terms of a number, say Â  > 2, of 
feasible points. Actually, for X^ G r̂ , i = 1, 2, • • •, A" the convexity of Q assures that 

N 

X = J2^^^^^^ (H.l) 

for all scalars ^ ,̂ i = 1,2,---,A' such that 

N 

This fact puts in evidence a very interesting property of convex sets. Given a 
bounded convex set ^ it is always possible to choose A" (possibly infinite) points 
X^ G r ,̂ z = 1, 2, • • •, Â  such that all X e ^ can be written as (H.l). The points Xi 
with this property are called extreme points of r .̂ A precise definition of this concept 
is as follows. 
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Definition H.2 (Extreme point) Let X be a point belonging to a convex set Q. It 
is an extreme point of ft if there are no points Xi i^ X in ft, i = 1, 2, • • •, A/" such 
that, (H.l) holds for some ^i, ̂ 2, • * * ? CAT satisfying (H.2). • 

Two convex sets of particular interest are the convex polyhedron and the convex 
cone. The first is defined as a convex set with a finite number of extreme points. The 
latter is a convex set such that \i X £ ft then AX G fî  for all A > 0. With a slight 
abuse of notation, we also call a convex cone any set for which the above property 
holds for all A > AQ with AQ > 0. 

Definition H.3 (Convex hull) Let V be a subset of R^^^. The convex hull of T 
denoted co(r) is the smallest convex set containing T. D 

It is clear, from the above definition that ft = co(r^) whenever Q is a convex set. 
Furthermore, if (7 is a convex polyhedron then 

^ = co {Xi , i = l ,2,-- . ,Ar} 

where Xi, X2, • • • ,Xiv are all extreme points of ft. The set of all symmetric positive 
definite matrices 

fl={Xe i?^^^ : X > 0} 

is a convex cone. Obviously, the same is true for the set of all symmetric negative 
definite matrices. 

Let A be a nonzero matrix in R^^^ and let XQ be an arbitrary matrix (point) 
in i^^^^. An hyperplane is the set of all points X G R^^^ such that X — XQ is 
orthogonal to A, or in more precise terms 

0 = < A, X - Xo > = trace [A'(X - XQ)] 

Defining the scalar c := trace [A'XQ] an hyperplane can be characterized by all matrices 
X G /?^^"" such that 

trace[A'X] = c 

which puts in evidence that an hyperplane in R^^^ is nothing more than a linear 
variety of dimension nm — 1. This concept is useful to get the following results valid 
for closed convex sets, that is, for convex sets which contain all boundary points. 

Lemma H. l (Separating hyperplane) Let ft be a closed convex set and consider 
XQ 0 ft. There exists a matrix AQ and a scalar CQ such that the hyperplane defined 
by < Ao,X > = Co separates XQ from ft. That is, the following two conditions hold 
simultaneously : 

i) < Ao,Xo > < Co 

a) < Ao, X > > Co , \/ X Gft. 

Proof The proof comes from the definition of the new matrix 

r o : = a r g m i n { | | X - X o | | F : X G 0} 

which enables us to get 

Ao := l o - ^0 , Co :=< IQ - ^ 0 , ^0 > 
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such that both conditions are simultaneously verified. 
Point i) Using the above matrix we have 

< Ao, Xo > -co = <Yo- Xo, Xo> - <YQ- XQ, YQ > 

= -\\Yo-Xo\\l<0 

where the last inequality follows from the fact that YQ ̂  XQ. 
Point a) From the definition of matrix YQ we have 

\\x-Xo\\l>\\Yo-Xo\\%^ yxen 

However, for any X e ft given, the point AX + (1 — X)Yo G 17 for all A G [0, 1] by a 
consequence of the convexity of H. In this case, the above inequality reveals that 

<Yo-Xo,X- Yo >> - Q " ) ||X - FOII'F 

holds. Using this inequality for A ^ 0 we finally obtain 

<ro-^o ,^- io >>o, yxen 

This inequality, together with 

< Ao, X > -Co = < lo - ^ 0 , ^ > - < >o - ^ 0 , ^0 > 
= < IQ — XQ, X — YQ > 

conclude the proof of the theorem proposed. • 

Lemma H.2 (Supporting hyperplane) Let ft be a closed convex set and consider 
XQ in the boundary of Q. There exists a matrix AQ and a scalar CQ such that the 
hyperplane < Ao,X > = CQ supports Q at XQ. That is, the following two conditions 
hold simultaneously : 

i) < Ao,Xo > = Co 

a) < Ao,X >> Co , wX eQ. 

Lemma H.l says that given a convex set and an exterior point then it is always 
possible to determine an hyperplane which contains the point in one of its half spaces 
while the convex set lays entirely in the other half space. Lemma H.2 generalizes this 
result to cope with a point in the boundary of a closed convex set. 

Let us now turns our attention to real valued functions defined in R^^^, A 
function / ( X ) : R^^'^ —> R is continuous if for each Xo G R^^'^ 

lim f{X) = /(Xo) 

All functions handled here are continuous. The gradient of a continuous function /(•) 
at X = Xo is a n X m matrix, denoted V/(Xo) and defined as 

V/(Xo) := I ^ ( ^ o ) , 2 = 1, 2, • . . , n ; j = 1, 2 , . . . m l 



352 APPENDIX H. CONVEX FUNCTIONS AND SETS 

For functions of matrices, a simple way to calculate gradients is from the concept of 
directional derivative. The directional derivative of a differentiable function / ( • ) at 
X G i?^^ '^ in the direction F G i^^^"" is 

i . / ( X , y ) : = l u n f f i ± i n - m 

= <v/(x),y> 
= t r a c e [ V / ( X ) ' y ] 

In other words, given a function / ( • ) , if for any matrix Y e i ? " ^ " , it is possible to 
write 

f{X + eY) = f{X) + etrace[G{XyY] + 0{e^) (H.3) 

such tha t hnie^o C'(e^)/e = 0 then / ( • ) is differentiable and an adequate choice of 
directions leads to 

V / ( X ) = GiX) (H.4) 

E x a m p l e H . l Using the above result, it is simple to calculate the gradient of the function 
f{X) := det[X] where X G R^^^ and nonsingular. Indeed, elementary matrices properties 
yield, for e G i^ arbitrarily small 

det[X + eY] = det[X] det [/ + eX^^y] 
n 

=det[x] n[^+^^^(^"'^)] 

= det[X] ( l + etrace [X'^Y] ) + 0{e^) 

showing that V / ( X ) = det[X]{X')-^. The same steps can be adopted to evaluate the 
gradient of the function f{X) := log det[X] defined for all X G R'''''' such that det[X] > 0. 
Indeed, from the above we get 

n 

f{X + eV) = f{X) + ^ l o g [l + eK ( X ' ^ y ) ] 
i = l 

= f{X) + etrace [X'^Y] + O(e^) 

implying that V / ( X ) = {X')-^. • 

R e m a r k H . l Equation (H.4) must be applied with care. In some important cases, it 
does not apply directly. To clarify its correct use, consider a function f{'):S-^R, where S 
denotes the set of all n x n symmetric matrices. It is clear that this is a function of n(n +1) /2 
independent variables. Assuming that (H.3) holds for y = y ' we observe that 

n n n 

trace[G'(X) Y ] = ^ G{X)^iYii + 2 ̂  ^ G{X)ijYij 
i=l i—1 j>i 

which provides 
V / ( X ) = G{X) + G(X) ' - diag[G(X)] 

For instance, the gradient matrix of the linear function f{X) := tTa.ce[R'X] defined for all 
square matrix X G R^^^ is V / ( X ) = R. On the other hand, the gradient of the same 
function defined in S is V / ( X ) = R-\-R' - diag[i^]. • 

Def in i t ion H . 4 (Convex functions) A function / ( • ) G R defined in a convex set ft 
is convex ify X i , X 2 G Q and X = aXi + (1 — a)X2 there holds f{X) < af{Xi) + 
(1 - a)f{X2) for every a G [0, 1]. • 
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There are several different but equivalent ways to test a function for convexity. Of 
course each one depends on the previous informations we have for the function we are 
work with. The next lemma provides some equivalent tests for twice differentiable 
functions. 

Lemma H.3 (Convexity) Let /(•) be a twice differentiable function, defined in a 
convex set ft C R^^'^. Assume that Q contains an interior point. The following are 
equivalent : 

i) /(•) is convex over fl. 

li) f{Y) > f{X)+ < V / ( X ) , Y - X > , ^X,Yen. 

Hi) The second order variation 

y/(x,y):=--4(x + 6y) 

is such that Vf{X, F) > 0 for all X e Q and all Y e i?'"^^. 

Dealing with optimal control problems, it is frequently necessary to handle non-
different iable functions. The next lemma characterizes convexity in this important 
case. 

Lemma H.4 (Convexity) Let /(•) be a function, defined in a convex set ft C R^^^. 
Assume that fi contains an interior point. The following are equivalent : 

i) /(•) is convex over il. 

ii) For each X ^ Q, there exits a matrix A{X) with finite norm such that 

f{Y)>f{X)^<A{X),Y-X>, V F G ^ . 

Hi) The epigraph of function f, namely 

epi f := {{X,j) : X&n, / ( X ) < 7} 

is a convex set. 

Proof The equivalence between points i) and Hi) follows immediately from the ob-
servation that / is convex over Q if and only if function g{X^ 7) := f{X) —7 is convex 
over ft X R. 

ii) = ^ i) Consider Xi and X2 two arbitrary matrices in ft. Define X = aXi + 
(1 - a)X2 for a e [0, 1]. Setting Y = Xi and F = X2 we have 

f{X,)>f{X)^<A{X),Xi-X> 
f{X2)>f{X)+<A{X),X2-X> 

Multiplying the first inequality by a, the second by 1 — a and adding terms we get 

a / ( X i ) + (1 - a)/(X2) > fix) 

which is the desired result. 
i) =^ ii) Under the assumption that / is convex, from part Hi) the set epi / is 

convex as well. Using Lemma H.2, there exists a supporting hyperplane to epi / in 
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the boundary point (Xo,7o) where 70 = f{Xo) and XQ E O. That is, there exist a 
matrix AQ and a scalar AQ such that all (X, 7) G epi / satisfy 

< Ao, X - Xo > +Ao(7 - 70) > 0 

We notice that the above inequality imposes AQ > 0. In fact, it is simple to check 
that (Xo, 7) ^ epi / provided 7 < 70 leading to Ao(7 — 70) < 0. As a consequence we 
have 

7 > / ( ^ o ) + < - A o - % , X - X o > 

which turns out to be true for all (X, 7) G epi / . Then, it is verified for the particular 
point (X, 7) with 7 = / ( X ) of epi / . Defining A(Xo) := —AQ/AQ, the proof is 
concluded. • 

The level set of a function /(•) defined in ft is the set of all X G 0 such that / (X) 
is not greater than a fixed value. More precisely, let a be a fixed scalar, the level set 
of / is 

L , / := {X : X G ^ , / (X) < a} 

It must be clear that the level set of a function is a subset of ft for each value of a 
given. On the contrary, the epi / is a subset of f] x i?. Then, it is not surprising that 
while, convexity of / is equivalent to the convexity of epi / , the same is not true for 
Laf- Indeed, if / is convex in ^ the level set Laf is convex for all a G i^ but the 
latter statement is not generally sufficient to assure convexity of / . 

Definition H.5 (Subgradient) Let /(•) be a convex function defined in a convex set 
Q C K^^^. Matrix A ^ R^^'^ is said to be a subgradient of f at a point X if 

f{Y)>f{X)^<A,Y-X> 

holds for all Y e ft. The set of all subgradients of f at X is denoted df{X). • 

Lemma H.5 The set df{X) is convex. 

Proof Consider Ai, A2 G df{X). From Definition H.5 we have, for all y G ^̂  

/ ( r ) > / ( x ) + < A i , y - x > 

f{Y)>f{X)+<A2,Y-X> 

Multiplying the first inequality by a, the second one by 1 — a and adding terms, yields 

f{Y) > / ( X ) + < aAi + (1 - a)A2, y - X > 

implying that A := aAi + (1 — a;)A2 G 9 / (X) , which is the stated property. • 

It is important to mention that the set of subgradients is in addition a closed set. 
An important concept to deal with nondifferentiable convex functions is the one sided 
directional derivative. The right directional derivative of function / at X G J R ^ ^ ^ in 

o,/(x,r):=,!imffi±ini:ffil 
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as well as, the left directional derivative in the same direction is 

Simple calculations show tha t each one sided directional derivative is one related to 
the other by the equation 

D.f{X,Y) = -D+f{X,-Y) (H.5) 

indicating tha t , generally, they are different. Indeed, if they coincide then the function 
under consideration is differentiable at X. This important feature is now discussed 
from the result of the next lemma. 

L e m m a H.6 Let / ( • ) be a convex function defined in the convex set Q. At any 
interior point ofQ., it follows that 

D + / ( X , y ) = max{trace[A'y] : Kedf{X)] 

P r o o f For any A G df{X)^ the definition of subgradient yields 

> trace[A'y] 

the proof is then concluded from the fact tha t at any interior point of Q, the set df{X) 
is closed and bounded and both sides of the above inequality must be equal for some 
A G dfiX). D 

The above result used together (H.5) enables us to get 

D _ / ( X , y ) = min{trace[A'y] : Aedf{X)} 

which implies tha t both, the right and the left directional derivatives are equal in 
any direction Y G R^^^ whenever the set of subgradients contains only one element. 
In this case the function is differentiable, df{X) = { V / ( X ) } and the directional 
derivative is a linear function of the direction Y G R^^^. 

E x a m p l e H . 2 Let us calculate the set of subgradients dg{X) of the function 

5 ( X ) : = m a x { / i ( X ) : i = l,2,---,N} 

where all functions fi{-),i = 1,2,- • - ^N are supposed to be convex and differentiable in all 
points of î "^^" .̂ It is a simple matter to verify that function g is convex as well. Defining 
the set 

JiX):={j •• MX) = giX)} 

and taking F G i?" ' ' ' " we get 

g{Y) = max{fi{Y) : i = l,2,---,N} 

> MY) 
>fj{X)+<Vfj{X),Y-X> 

>g{X)+<Vf,{X),Y-X> 

and so \/fj{X) G dg{X) for all j G J{X). Even more, Vfj[X) is an extreme point of dg{X). 
Taking into account the result of Lemma H.5 we then conclude that 

dg{X)=co {VfiiX) : j G J (X)} 

Accordingly, if there is only one index, say k G J{X) then g is diiferentiable and Vg{X) = 
Vfk{X). a 
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Figure H.l: Level sets of function g{X) 

When dealing with nondifferentiable convex functions, it is important to keep in 
mind that many properties valid under differentiability may fail. For instance, if 
/ is differentiable at X e R'''''^ then -Y = V / (X) ^̂  0 is a direction such that 
the directional derivative is negative, as a consequence, there exists a step length 
e > 0 such that f{X + cY) < f{X). On the other hand, if / is not differentiable 
at X G BJ^^^ this property may be lost. In other words, it does not hold if we just 
consider an arbitrary direction —Y G df{X). This common situation is illustrated 
in fig. H.l. The function g{X) is the one treated in Example H.2 where N — 3 and 
fi{X)^i = 1,2,3 are linear. At point X the function is not differentiable because 
fi{X) and /2(X') coincide. Both indicated directions are in the set dg{X). Even 
though, the right directional derivative in the direction Y = —12 is clearly negative 
but the right directional derivative in the direction Y — —Yi is positive. Hence, for 
—Y = Fi G dg{X) the previously mentioned descent property does not hold. In the 
direction Y = —Yi the function increases. 

For nondifferentiable functions, there is a way to determine the steepest descent 
direction. It is given by (notice the constraint on the maximum length of the direction) 

n , :=a rgmin{D+/ (X,y ) : | | r | | ^ < l } 

which, from Lemma H.6 can be determined by solving 

min max trace[A'Fl 
\\Y\\l<lAedf{X) 

Recalling that all constraints are convex, closed and bounded, this problem is equiv-
alent to 

max min trace [A'y] 
Aedfix) \\Y\\%<i 

The minimization is readily solved by keeping in mind that the objective function is 
an inner product of two matrices whose minimum provides 

Y - ^^' 

where Ast is given by 

A,t:=argmin{| |A| |f : AGdf{X)} 
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The steepest descent direction is obtained from the selection among all subgradients, 
the one of minimum Frobenius norm. This task is, in general, very difficult to be ac-
complished numerically since the set df{X) may not be explicitly known. In Example 
H.2 (recall fig. H.l) Ygt = —Y2 is the steepest direction at point X. Finally, it is also 
interesting to observe that under differentiability we get Yst = —V/(X)/| |V/(X)| |i? 
as expected. Furthermore, in the steepest descent direction the right directional 
derivative provides, for any other direction Y the lower bound 

D + / ( X , F ) > D^f{X,Yst) = -\\Ast\\F (H.6) 

It is obvious that if 0 G 9 / (X) , the calculation needed to determine the steepest 
descent direction Yst can not be performed because Agt = 0. The possible occurrence 
of this fact is however of particular importance as indicated in the next lemma. 

Lemma H.7 Let /(•) be a convex function defined in R^^'^. Matrix X* minimizes 
f if and only if {) e df [X""). 

Proof Suppose 0 G 9/(X^), from the convexity of / we have, for ah X G R^^^ 

f{X) > / (X*)+ < 0, X - X* > > /(X*) 

implying that X* minimizes / indeed. Conversely, if X* minimizes / then in any 
direction Y G R^^'^^ the right directional derivative must be nonnegative. In view of 
(H.6) this occurs provided Â ^ = 0 implying that 0 G df{X'^). • 

We are now in position to solve the following optimization problem 

min{/(X) '. XeX} (H.7) 

which is called a convex programming problem provided i) the objective function 
/(•) : 1] ^ i^ is convex in Q. which by its turn is a convex subset oi R^^^ and ii) the 
constraint set A* is a closed convex subset oiVt. To avoid pathological cases, it is also 
assumed that X is bounded and contains an interior point. 

Lemma H.8 Consider the convex problem (H.l). The following hold : 

i) If X'^ is a minimum then it is a global minimum. 

ii) Matrix X^ minimizes f over X if and only if there exists A'^ G df{X'^) such 
that 

< A ^ X - X * > > 0 , V X G A' 

Proof Only point ii) will be proved since the first point restates an important but 
very known property of convex problems. 

Point ii) Suppose there exists A"̂  G 9/(X*) with the above property. From the 
convexity of / we have, for all X G Af, 

f{X) > f{X*)+ <A*,X- X* >> f{X*) 

implying that X"̂  minimizes / indeed. Conversely, if X"̂  minimizes / over X then, 
we first notice that due to the convexity of Af, for any X 7̂  X^ G A', the direction 
Y = X — X"^ is always a feasible direction in the sense that 

X^' + eY eX 
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for all e G [0, 1]. So, due to the fact that X'^ is optimal we must have 

D+f{X\Y)>0 

Then, from Lemma H.6, it is true that for all X G A' 

max < A , X - X * > > 0 
Aedfix-) 

that is 
min max < A, X - X* > > 0 
xeA^ Aedfix*) 

Using the fact that all constraints in the above problem are convex, bounded and 
closed, it can be written in the equivalent form 

max min < A.X - X^ » 0 

Aedf{x*)Xex 

which allows us to conclude that there exists A"*" G df{X'^) such that 

min < A * , X - X ' ^ » 0 
which is the same to say that < A*,X — X"̂  > > 0 for all X G A' and the proof is 
concluded. D 

Once again, it is to be noticed that under differentiability. Lemma H.7 reduces to 
the classical property V/(X*) = 0 to characterize a minimum of a convex function. 
As well as, under the same assumption, the second part of Lemma H.8 imposes that 
< V/(X*), X - X* > > 0 , V X G A' for global optimality. 

Problem (H.7) is frequently called Primal With the purpose to solve it more 
efficiently, convexity allows us to determine another equivalent but in many instances 
easier problem to be solved called Dual For convex problems the Primal and the 
Dual versions are equivalent in the sense that both provide the same optimal solution. 
Duality gap does not exist. The determination of the dual problem is based on the 
following result. 

Lemma H.9 (Minimax) Consider X and y two closed and hounded convex sets. 
Let the continuous function I/(X, Y) he convex with respect to X and concave with 
respect to Y. The following equality holds 

max min L(X, Y) = min maxL(X, Y) (H.8) 
Yeyxex xexYey 

Lemma H.9 states that under the given conditions, function L(-) admits a saddle 
point which is in fact the optimal solution of the min/max problem. Adding to (H.7) 
a new convex constraint, that is 

m m { / ( X ) : 9{X) <Q) 

and defining the associated Lagrangian function 

L{X,Y):=f{X)+<Y,g{X)> 

in the domain 

3 ^ : = < ^ y > 0 : minL(X,y ) > - o c 
[ ~ xex 

the above lemma can be applied. Equality (H.8) provides a pair of equivalent prob-
lems. One of then is the primal while the other is the dual. 



Appendix I 

Convex Programming 
Numerical Tools 

In this appendix some convex programming numerical tools are discussed. The ma-
terial is mainly based on the natural generalization, to the nondifferentiable case, of 
two classical convex programming algorithms described in the classical books [37] and 
[41]. The method of centers is based on the book [10]. More efficient methods (but 
also much more involved from a theoretical point of view) can be found in reference 
[45]. 

The general form of a convex programming problem is 

min{/(X) : Xe^} 

where /(•) is a convex function and A' is a convex set. The concept of epigraph allows 
us to rewrite it in the equivalent form 

min {7 : (X, 7) G epi / } 

which implies that, with no loss of generality, the objective function of a general convex 
programming problem can be considered to be a linear function. In addition, all 
problems we have manipulated in the previous chapters, are such that the convex set 
epi / can be alternatively written (possibly by adding new variables and constraints) 
as a LMI (Linear Matrix Inequality). Consequently, the general problem we have to 
solve numerically is 

min{c'x : A{x) > 0} (I.l) 

where c and x are n dimensional real vectors and 

n 

A{x) :=Ao + Yj^i^i 
i=l 

with Ao, Ai, • • •, An being mxm dimensional symmetric matrices and Xi ^ R denotes 
the z-th entry of the n dimensional vector x. It is assumed that the feasible set defined 
by all vectors x G BJ^ such that A{x) > 0 is bounded. This assumption is verified 
in all problems of our interest already discussed in the previous chapters. Notice 
however that this set is convex but not polyhedral then, in general, it has an infinite 
number of extreme points. 
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X2 0 

Figure LI : The set A{x) > 0 

There is no difficulty to consider more general problems with the structure (LI) 
and with an additional equality constraint Bx = 6, where B e K^^^ is SL matr ix of full 
row rank. If necessary, a preliminary change of variables, allows the partit ioning B == 
[^1 B2] where Bi G R^^^ is nonsingular. Doing the same with vector x' 
the linear constraint provides 

Xi X 1 -^2]' 

xi=B:[^b-B^^B2X2 

and adopting again the above partitioning to c' 
to the same equality constraint yields 

[c[ C2], the feasibility with respect 

c'x = c[Bi ^b-\- C2X2 

where C2 := C2 — c^B^ ^^2 and 

A{x) = A 

•=A2{X2) 

B-H-B];^B2X2 

X2 

The consequence is tha t the equality constraint can easily be handled by eliminating 
itself and formulating a new problem as (LI) which depends exclusively on the variable 
X2 G R^~^. From the numerical point of view the remaining problem to be solved is 
simpler since it presents a smaller number of free variables. 

E x a m p l e I . l The geometry of the feasible set of problem (LI) is now illustrated by means 
of a simple example. Consider the LMI A{x) > 0 be given by n = 2 and matrices 

Ao 

1 0 0 0 
0 1 0 0 
0 0 1/2 0 
0 0 0 1 

0 1 0 0 
1 0 0 0 
0 0 1 0 
0 0 0 0 

, A2 

1 0 0 0 
0 0 0 0 
0 0 0 1 
0 0 1 0 

Figure I.l shows the convex set defined by this LMI. It is obtained by the intersection of the 
convex regions X2 > xf — 1 and xi>x^ — 1/2. D 

A l g o r i t h m I . l (Separating hyperplane algorithm) This is one of the simplest al-
gorithms tha t can be applied to solve the stated convex problem (LI) . In the following 
it is discussed its convergence as well as its limitations to handle large scale problems. 



APPENDIX I. CONVEX PROGRAMMING NUMERICAL TOOLS 361 

1. Determine a convex polyhedral set VQ containing the overall feasible set of 
Problem LI, that is 

{x : A{x) > 0} C Po 

and set the iteration index k = 0. 

2. Solve the linear programming problem 

minjc'x : x ^Vk} 

If it does not admit a feasible solution, the same is true for Problem 1.1 - stop. 
Otherwise, let Xk be its optimal solution. 

3. If A{xk) > 0 then Xk solves Problem I.l - stop. 

4. Determine a separating hyperplane a'j^x = Ck which separates Xk from the fea-
sible convex set {x : A{x) > 0}. Define 

'Pfc+i := Vkf^ix : a'^x > Ck} 

set the iteration index k ^- k -j-1 and go back to step 2. 

When the algorithm stops the global optimal solution (if any) of Problem I.l is pro-
vided or it is answered that it is infeasible. • 

Several points have to be analyzed in details. The first one concerns the determi-
nation of the polyhedral set VQ. It always exists from the boundedness assumption 
on the feasible set of Problem I.l introduced before. For instance, it can be taken as 

Vo:={x : \xi\<p, 1 = 1,2, ••-,71} 

where p > 0 is a scalar sufliciently large. 
In step 2, it is more efficient to solve the stated linear programming problem by 

means of a dual method. Doing this, it is possible to take advantage from the fact 
that the sets Vk-\-i and Vk differ one to the other by only one new linear constraint 
added in step 4. Indeed, in iteration /c + 1 a feasible dual solution is readily given by 
^k+i '~ i^k 0]̂  where Xk is the optimal dual solution already obtained in the previous 
iteration. 

In practice, the stopping condition in step 3 has to be changed to A{xk) > —e 
where e > 0 is an arbitrarily small parameter. This is necessary because, 

{x : A{x) > 0} C • • • C Vk+i C Pfc , V A: = 0,1, • •. (1.2) 

implies that the algorithm evolves from the outside of the feasible set. Of course, the 
number of iterations to reach a certain precision increases as e decreases. 

Finally, it must be clear how to calculate the separating hyperplane needed in step 
4. We claim that the vector ak and the scalar Ck can be taken as 

ak := [ z'j^AiZk • • • 4-^n^/e ] 

Ck := -4^0^/c 

where Zk G K^ is any unitary norm eigenvector associated to the minimum eigenvalue 
of A{xk). Actually, this important property follows immediately from the equality 

4 x -Ck = z'^A{x)zk 
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valid for all x e R^. Indeed, for all feasible vectors that is for those vectors such that 
A{x) > 0 obviously a^x — c^ > 0. On the other hand, for x — Xk we get 

^k^k -Ck = Xmin[A{Xk)] < 0 

since by construction the point Xk is not feasible as it has been previously tested in 
step 3. It is interesting to observe that if the feasible set of Problem I.l is not empty, 
then \\ak\\ ^ 0. This is true because the function g{x) := A^^n[-4(x)] is concave and 
so the inequality 

g{x) < z'^A{x)zk 

< a'^x — Ck 

< g{xk) + 4 ( x - Xk) , y X e R"" 

implies that ak G dg{xk) and a/̂  = 0 is possible if and only if Xk maximizes g{'). Since 
g{xk) < 0 then it is impossible to have any other x e R'^ such that g{x) > 0. So, 
\\ak\\ = 0 may occur if and only if the feasible set of Problem LI is empty. 

It remains to prove the global convergence of the Separating hyperplane algorithm 
which is done in the next lemma. 

Lemma I. l Suppose the feasible set of Problem (LI) is not empty and the Separating 
hyperplane algorithm generates the sequence of points {xk}- Any limit point of this 
sequence is a global optimal solution to Problem (LI). 

Proof In the A:-th iteration of the Separating hyperplane algorithm, the linear con-
straint (cut) a'j^x > Ck has been added to the linear programming problem to be solved 
in step 2. Consequently in any subsequent iteration, say / > A:, it must be verified for 
X = xi, that is a^x/ > Ck which yields 

0 < 4 x / - Ck 

< {a'^Xk - Cfc) + 4 ( x / - Xk) 

< ^min[A{xk)] + a'^{xi - Xk) 

or equivalently 

^min[A{xk)] > a'ki^k - xi) > -\\ak\\ \\xk - xi\ 

Now, since \\ak\\ < oo in all iterations, the conclusion is that as k and I go to infinity, 
the algorithm provides a vector x such that A{x) > 0, that is x is a feasible solution 
to Problem (I.l). On the other hand, due to (1.2), in any iteration we have 

c'xk < min {c'x : A{x) > 0} 

which shows, by continuity, that the limit point x is optimal indeed. • 

The Separating hyperplane algorithm has some important features. First, unlike 
many nonlinear programming methods, it does not require any line search. The prac-
tical implementation is simple and depends basically on the development of a powerful 
dual-simplex routine to solve the linear programming problem on step 2. The use of a 
dual method also provides useful informations to drop non binding constraints, which 
of course, keeps reduced the number of constraints to be handled and so increases nu-
merical efficiency. Unfortunately, the Separating hyperplane algorithm as presented 
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before, may have a poor rate of convergence. Indeed, it can be estimated that it 
converges arithmetically or at most geometrically with a ratio that goes to unity as 
the dimension of the problem increases. More specifically 

\\Xk-Xopt\\ <OlP^ 

for some constants a > 0 and 0 < /3 < 1 where (3 = /5(n) goes to one as n increases. 
Based on this, it is predicted (and practically verified) that it does not perform well 
for solving large scale problems. 

It is also possible to recognize that the determination of the separating hyperplane 
plays a central role in the numerical efficiency of the method. The deepness of the 
cut added in each iteration, appears to be of great importance. This leads to the 
introduction of the so called Supporting hyperplane algorithm which works with the 
deepest cut that can be calculated in each iteration. For that we assume the feasible 
set of Problem (I.l) is not empty and we have previously calculated an interior point 
y ^ R^ such that A{y) > 0. At any infeasible point Xk, it is possible to calculate a 
step size 0 < ak < I which defines a point in the line dk :~ y — Xk and, in the same 
time, is on the boundary of the constraint A{x) > 0. To this end, we have to find the 
scalar ak solution to the nonlinear equation (in the unknown a) 

0 = >^7nin[A{y - adk)] 

= Xmin[A{y) - a{A{dk) - A{0))] 

which after simple algebraic manipulations provides 

1 
c^k := — 

where 
f^k '•— ^n A{y)-'/^{A{dk)-AmA{yy 1/2 

All operations indicated above are well defined since A{y) > 0 implies that A{y) is 
nonsingular. Furthermore, from the above, fik ^ 0 implies that 

0 > A{dk) - ^(0) 

> A{y) - A{xk) 

that is A{xk) > A{y) > 0 which puts in evidence that for any infeasible vector Xk we 
necessarily have fik > ^- The point 

Xk'=y - akdk 

is, by construction, on the boundary of the feasible set of Problem (LI) and for its 
determination only an additional eigenvalue calculation is needed. The Supporting 
hyperplane algorithm is stated in the sequel. The main idea is to use the above 
information to define iteratively a supporting hyperplane at the boundary point Xk-

Algorithm 1.2 (Supporting hyperplane algorithm) It is completely based on the 
previous algorithm where the separating hyperplane is replaced by a supporting hyper-
plane. Although more efficient, the limitation to handle large scale problems remains. 

1. Determine an interior feasible point ^ G i?^, a convex polyhedral set Vo con-
taining the overall feasible set of Problem LI, that is 

{x : A{x) > 0} C 7̂ 0 

and set the iteration index /c = 0. 
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2. Solve the linear programming problem 

min{c'x : x eVk} 

and let Xk be its optimal solution. 

3. If A{xk) > 0 then Xk solves Problem LI - stop. Otherwise, calculate the point 
Xk on the boundary of the feasible set and go to the next step. 

4. Determine a supporting hyperplane a^x = Ck at the boundary point Xk- Define 

Vk-^i := P/c n {x : a'j^x > Ck} 

set the iteration index k ^^ k-\-1 and go back to step 2. 

Once again, when the algorithm stops the global optimal solution of Problem LI is 
provided. • 

Let us now discuss an important class of convex programming methods, called 
Interior point methods. These methods apply to the solution of an approximate 
version of Problem (LI) given in the form 

inf {c'x : A{x) > 0} (L3) 

Clearly, this problem is equivalent to Problem (LI) provided the LMI A{x) > 0 
admits an interior point, that is a vector x E R^ such that A{x) > 0. In this case, 
the equivalence between problems (LI) and (1.3) holds in the sense that their optimal 
solutions are arbitrarily close one to the other. In the developments that follow, we 
work with Problem (L3). 

The main idea comes from the definition of the analytic center of a LMI. The 
analytic center of the LMI 

n 

A{x) = Ao-\-Y^ XiAi > 0 
2 = 1 

is the vector Xac ̂  R^ such that 

Xac '= argmin{-log det[^(x)] : A{x) > 0} (1.4) 

The objective function of the above problem can be interpreted as a barrier function 
for the LMI under consideration. Indeed, as x goes to the boundary of the feasible 
set, at least one eigenvalue of A{x) goes to zero and enforces the objective function 
to be arbitrarily large. Moreover, the following properties are of great importance in 
the calculations that follow. 

Lemma 1.2 The function p{x) := —log det[.4(x)]; defined in the open convex set 
A{x) > 0 is such that : 

i) Function p{x) is convex. 

a) At any x \ A{x) > 0, the gradient of p{x) is 

Vp{x)i := —trace [^(x)~'^74^] , i = 1,2, • • •, n 
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Hi) At any x \ A{x) > 0, the Hessian matrix of p{x) is 

H{x)ij := trdiCe[A{x)~^AiA{x)~^Aj] , i, j = 1, 2, • • • , n 

P r o o f The proof is based on the concavity of the scalar function log(z) in the interval 
z > 0 which implies tha t log(2;) < z — 1 for all 2: > 0. Using this and any two vectors 
such tha t A{x) > 0 and A{y) > 0, we get 

p{y)-p{x) = -log det [A{x)-^A{y)] 
m 

= -J2^og Xi[A{x)-'A{y)] 
1=1 
m 

> -J2{Xi[A{x)-U{y)]-l} 

and consequently 

p{y) > p{x) - trace [A{x)~^A{y) - l] 

> p{x) - trace [A{x)~^A{y) - A{x)~^A{x)] 
n 

> p{x) - y ^ trace [^(x)"^^!^] {yi - Xi) 
i=l 

> p{x) + Vp{x)'{y - x) 

which proves the first two points of the lemma proposed. The last one is proved by 
simple partial differentiation of Vp{x)i with respect to the variable Xj. The proof is 
concluded. • 

E x a m p l e 1.2 For the same LMI of example I.l, figure 1.2 shows the level set of det[^(x)] = 
a > 0 which for A{x) > 0 and P = —log(a) coincides with that of p{x) = p. It is clearly 
seen that in the interior of the LMI the level set for each value of a > 0 defines a convex 
set. Moreover, the closed region approaches to the boundary of the LMI as a goes to zero. 
Outside this region, there exist points for which the determinant of the affine function A{x) 
attains the same level but with an even number of negative eigenvalues. Finally, using part 
ii) of Lemma 1.2 we solve \/p{x) = 0 to get the analytic center Xca = [0.5902 0.4236]. • 

Further inspection reveals tha t function p{x) is in fact strictly convex which means 
tha t the Hessian matr ix H{x) is positive definite whenever the vector x G R^ is such 
tha t A{x) > 0. Hence, the analytic center of the LMI can very efficiently be calculated 
by the following well known Modified Newton's method. 

A l g o r i t h m 1.3 (Modified Newton's method) Assume an initial point XQ such tha t 
A{xo) > 0 is given. Then, perform the following iterations until convergence. 

1. Determine the gradient vector Vp{xk) and the Hessian matr ix H[xk)-

2. Determine the descent direction dk '.= H{xk)~^Vp{xk)- If within some prespec-
ified precision \\dk\\ = 0 - s top . Otherwise, go to the next step. 

3. Determine the optimal step length ak given by 

ak := argmin p{xk - adk) 
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X2 0 

Figure 1.2: The level set of det[^(x) 

3. Update Xk-^i = Xk — otkdk^ set the iteration index A: <— /c -h 1 and go back to 
step 1. 

When the algorithm stops the analytic center is approximately given by Xac — ^k- ^ 

For the complete implementation of this algorithm, it remains to calculate the 
optimal step length ak defined in step 3. This is accomplished with no great difficulty. 
Indeed, simple calculations put in evidence that 

p{xk - adk) ^ p{xk) - ^ log[l - aeki] (1.5) 

where 
eki •= A/ A{xk)-'^'{A{dk)-AmA{xk)-'^' 

is the /-th component of the m dimensional real vector ek '•= [ e/d ek2 
Hence, the derivative of p{xk — otdk) with respect to a provides 

^kvi 

dp 

1 = 1 
m 

= E 

eki 

OiCkl 

" 1 r p2 

1=1 
f3-eki 

•eki 

where /? := 1/a. Setting the right hand side of the above equation to zero and taking 
into account that 

1=1 

-^i^k-adk) > 0 
a=0 

since, dk is a nonzero descent direction, the optimal step size a = 1//3 solves the 
nonlinear equation 

/ = 1 

-kl 

f3-eki sl-o 
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The solution of this nonhnear equation is not simple to be determined unless we 
realize it can be rewritten in terms of the following determinantal equation 

det[6l-e'^{pi-Ek)-^ek] = 0 

where matrix Ek G R^^'^ is defined as E^ := diag[efci, e/c2, • • •, ekm]- Finally, the last 
equation together with some elementary determinant manipulations provides 

det[pi-{Ek+6^\ke'k)]=0 

which makes clear that the optimal step size a^ is given by 

ak = A - 1 
max 

ek 

Ok 

ek (1.6) 

This shows that to determine the optimal steep size, we have to calculate all eigen-
values of a symmetric matrix in order to define the vector e^ and finally to calculate 
the maximum eigenvalue of the symmetric matrix indicated in (1.6). To reduce this 
amount of calculations, in some cases, we have a great advantage to get a suboptimal 
step size as indicated in the sequel. It comes to light from the observation that any 
positive step size less than the optimal one may also be used to assure that function 
p{x) is reduced in the direction —dk- To get such a suboptimal step size, we proceed 
by establishing the following equality 

1=1 ^^ la=0 

= d'^H{xk)dk 

= Vp[xk)'dk 

da 

= 6i 
a.=Q 

which together with (1.6) implies that 

e^k ^max Eh 

< A max\^k [Ek •^f E' 

ek_ 

'ki 

< 1 + Xmax[Ek] 

consequently, a suboptimal step size, denoted as a^ is given by 

1 
v+ . -

where 

Mfc •= Â ; 

1 + Mfc 

A{xkr'^HA{dk)-AmA{xky 1/2 

It is to be noticed that /ifc > 0 since otherwise all Cki < 0 which implies from (1.5) 
that the feasible set is unbounded, a situation avoided by our previous assumption. 
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It is also interesting to see that the above formula for the suboptimal step size is very 
similar to the one introduced before for the calculation of a point on the boundary of 
the feasible set of the LMI under consideration. 

Let us now use the concept of analytic center to calculate the optimal solution of 
Problem (1.3). Obviously it can be equivalently stated in the form 

inf {7 : A{x) > 0 , 7 - c'x > 0} 

or, in terms of only one augmented LMI 

inf {7 : S(x,7) > 0} (L7) 

where 

B{x,j):--
A{x) 0 

0 7 — c'x 

This LMI depends on both variables namely the vector x e R^ and the scalar 7. 
However, for 7 fixed, let us define as before the analytic center 

Xacil) •= argmin{-log det[B{x,j)] : B{x,j) > 0} 

where it is indicated the dependence of the analytic center with respect to the scalar 
7 and that the minimization must be done with respect to x e R'^ only. The curve 
^ac(7) obtained for all possible values of 7 is called the Path of centers and plays 
a central role to the numerical solution of Problem (1.3) as indicated in the next 
algorithm. 

Algorithm 1.4 (Method of centers) Assume an initial pair (xo,7o) is given, such 
that simultaneously A{xo) > 0 and 70 > C'XQ. Choose 0 < ^ < 1 and e > 0 sufficiently 
small and perform the following iterations until convergence. 

L 7/c+i = {l-0)c'xk + O-fk 

2. Xk^i = Xac(7/c+l) 

3. If 7fc+i — c'xk-\-i < e/m - stop. Otherwise set the iteration index k ^^ k-\-l and 
go back to step L 

When the algorithm stops the optimal solution to Problem (1.7) is found within e. • 

It is important to recognize that the rule in step 1, never produces infeasibility 
on the analytic center determination in step 2. Actually, assume that in a generic 
iteration A: > 0 we have B^Xk^^k) > 0. With the formula stated in step 1, we get 

7/c+i - c^Xk = 0{jk - c'xk) > 0 

which implies that B{xk,'yk-\-i) > 0 and consequently the vector Xk can be used to 
initialize the Modified Newton's method for the determination of the analytic center 
Xacilk+i)- In practice, it is verified that this simple initialization procedure is very 
effective as far as numerical efficiency is concerned. 

Lemma 1.3 The Method of centers converges geometrically to the optimal solution 
of Problem (1.3). 
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P r o o f Denote (xoptnopt) the optimal solution of Problem (1.3). For 7 = ^k-\-i fixed, 
Lemma 1.2 enables us to write the optimality conditions to characterize the analytic 
center Xac{7k-\-i)- So, due to step 2 we must have 

t race [^(XA:+I)~ ' ' "A^] , z = l , 2 , • • • , n 
7fc+i - c'Xfc+i 

which gives (recall t ha t ^opt = c'xopt) 

c'Xk+l - J opt 

Now, define the scalar 0 as being 

trace [A{xk+i) ^ {A{xk+i) - A{xopt))] 

(j) \— sup trace \A{x) ^ {A{x) — A{xopt))\ 

and observe tha t 0 < 0 < m. Actually, the lower bound is obtained from the simple 
observation tha t x = Xopt is feasible and the upper bound is a consequence of the fact 
tha t A{xopt) > 0. Then, the inequality 

07/e+l + 7opt > (1 + (/>)c'x/e+i 

holds in all iterations. Using the update of step 1, namely 

/ 7A;+2 - 6>7fc+l 
C Xk+i = j - — ^ 

simple algebraic manipulations put in evidence tha t 

7/C+2 - 7opt < T T T wfc+i - lopt) 

which proves tha t the Method of centers converges geometrically. This concludes the 
proof of the Lemma proposed. D 

This proof is of great practical importance for two main reasons. First, if the 
stopping criterion in step 3 is verified then 

c'xfc+i - 7opt < 0(7/c+i - c'xfc+i) 

< m (e /m) = e 

and the optimal solution is found within the prespecified precision level e > 0 imposed 
by the designer. Second, the ratio of geometric convergence, such tha t 

0 < cxk - c'xopt < a(3{(l)f 

for some a > 0, is estimated as being 

/3(0) :-
' + 1 

which is an increasing function of (j). The worst estimation is then obtained for 0 = m 
providing thus /3(m). It is important to realize tha t , doing this, the conclusion is tha t 
the Method of centers converges geometrically but with a ratio tha t goes to unity 
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Figure 1.3: Convergence behavior 

as the dimension of the problem to be solved increases. In other words, it performs, 
under this worst case analysis, as the Separating hyperplane algorithm. However, it 
is possible to introduce in the Method of centers a simple modification in order to 
get much better convergence behavior. Indeed, if in the determination of the analytic 
center Xadl) the objective function is changed to 

-log det[^(x)] — m log(7 — c^x) 

which is nothing more than to redefine the augmented LMI by replacing the scalar 
7 — c'x by the mxm diagonal matrix (7 — c'x)/, then the same reasoning used in the 
proof of Lemma 1.3 yields the new estimate for the ratio of geometric convergence 

/?(0) := 
b-{-m 

<'-^<i (1.8) 

The worst case for the ratio of convergence is now independent of the problem dimen-
sion. It depends only on the parameter 0 < ^ < 1 to be fixed by the designer. 

Example 1.3 Consider the LMI of example LI and c — [0 1]. The optimal solution of 
problem (LI) is found to be Xopt = [0.3132 - 0.9018]' and jopt = c'xopt = -0.9018. Figure 
1.3 shows the objective function per iteration calculated by Algorithm 1.2 (dashed line) and 
by Algorithm 1.4 (solid line). As expected, the first evolves through infeasible points and 
the objective function is increasing. On the contrary, the second is always feasible and the 
objective function is decreasing. • 

Finally it is also to be noticed that the determination of a feasible starting point 
required for many algorithms can be done with no great difficulty. Given the LMI 
A{x) > 0, the problem is to find (if one exists) a vector x such that A{x) > 0. This 
is accomplished by solving the auxiliary convex problem 

min {A : A{x) + A/ > 0} 

which presents two interesting properties. First, the pair (x. A) := (0,1 — A^in[^o]) 
satisfies the LMI constraint strictly and second at the optimal solution A{xo) > 0 if 
and only if Ao < 0. Of course, the optimal solution of the above problem does not 
need to be exactly calculated. If in some iteration the current value of the auxiliary 
variable A becomes negative, the current value of the vector x is strictly feasible and 
the search process may be stopped. 
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