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Preface

This volume is number 68 in the series Advances in Computers that began back in
1960. This is the longest continuously published series of books that chronicles the
evolution of the computer industry. Each year three volumes are produced presenting
approximately 20 chapters that describe the latest technology in the use of computers
today. Volume 68, subtitled “Computational Biology and Bioinformatics,” presents
six chapters that examine exciting problems in the new field of computational biol-
ogy.

The past decade has been an exciting period for the biological sciences. It seems
every other week researchers discover a new gene responsible for some important
physical trait, or establish some new evolutionary relationship between organisms.
What is less clear to the public is that computer scientists have also contributed to
many of these discoveries by developing bioinformatic algorithms implemented in
software tools used by biologists.

The field of bioinformatics and computational biology arose due to the need to
apply techniques from computer science, statistics, informatics, and applied math-
ematics to solve biological problems. Since James Watson and Francis Crick dis-
covered the DNA double helix in 1953, scientists have been trying to study biology
at a molecular level using techniques derived from biochemistry, biophysics, and
genetics. Progress has greatly accelerated with the discovery of fast and inexpensive
automated DNA sequencing techniques, enabling the completion of massive endeav-
ors such as the Human Genome Project, which sequenced all the DNA (genome)
found in human beings. Today, advances in molecular biology experimental tech-
niques are producing huge amounts of biological data, making computational tools
indispensable for biologists.

The field of computational biology includes many research areas, including se-
quence alignment, genome assembly, gene finding, gene expression, gene regulation,
comparative genomics, evolutionary biology, protein structure prediction, protein
structure alignment, determining gene and protein interaction networks, and exper-
imental proteomics. This book focuses on the areas of phylogenetics, comparative
genomics, and proteomics.

As the genomes of more and more organisms are sequenced and assembled, sci-
entists are discovering many useful facts by tracing the evolution of organisms by

xv
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measuring changes in their DNA, rather than through physical characteristics alone.
This has led to rapid growth in the related fields of phylogenetics, the study of evolu-
tionary relatedness among various groups of organisms, and comparative genomics,
the study of the correspondence between genes and other genomic features in dif-
ferent organisms. Comparing the genomes of organisms has allowed researchers to
better understand the features and functions of DNA in individual organisms, as well
as provide insights into how organisms evolve over time. Useful concrete applica-
tions of phylogenetics and comparative genomics include identifying the basis for
genetic diseases and tracking the development and spread of different forms of Avian
flu.

The first four chapters of this book focus on different aspects of the fields of
phylogenetics and comparative genomics. Chapter 1, “Exposing Phylogenetic Rela-
tionships by Genome Rearrangement” by Ying Chih Lin and Chuan Yi Tang provide
a basic review of concepts and terms used in molecular biology, then explore tech-
niques for comparing the closeness of evolutionary relationships between related
organisms by modeling the manner in which genomes have been rearranged over
long periods of time. The authors demonstrate how their techniques may be used
when comparing the genomes of multiple species of bacteria.

In Chapter 2, “Models and Methods in Comparative Genomics” by Guillaume
Bourque and LouXin Zhang, the authors discuss several topics biologists face when
comparing the genomes of different organisms, focusing on mathematical models
and algorithmic aspects of each topic. This chapter provides a glimpse of the different
types of information that can be discovered when comparing DNA from different
organisms, as well as the variety of difficulties and challenges that must be overcome.

Chapter 3, “Translocation Distance: Algorithms and Complexity” by Lusheng
Wang, focuses on issues and techniques for using translocation distance as the princi-
pal metric for comparing the evolutionary distance between organisms. This chapter
demonstrates how complicated algorithms and analyses may be needed even when
considering just a single approach to solving phylogenetic problems.

Chapter 4, “Computational Grand Challenges in Assembling the Tree of Life:
Problems & Solutions” by David A. Bader, Usman Roshan, and Alexandros Sta-
matakis addresses the issues encountered when attempting to extend phylogenetic
techniques to handle a large number of organisms at once. Their goal is to be able to
successfully analyze the genomes of all organisms together to assemble a full Tree of
Life. This chapter exposes the difficulties of overcoming computational challenges
in bioinformatics, even when exploiting the availability of fast computers and the
power of parallel computing.

The last two chapters of this book focus on topics in the field of proteomics, the
study of all proteins in an organism. While DNA may be thought of as the biological
method used to store information required by an organism, proteins are the actual



PREFACE xvii

molecular machinery constructed using information stored in the DNA. Proteins are
essential to the structure and function of all organisms, and are needed to perform
a wide variety of useful and necessary biological processes. In many situations the
presence and identity of proteins can be indirectly inferred from information avail-
able in DNA. However, more precise information and understanding may be obtained
by studying proteins directly, giving rise to the field of proteomics.

Chapter 5, “Local Structure Comparison of Proteins” by Jun Huan, Jan Prins, and
Wei Wang discuss methods for comparing the 3-dimensional structure of proteins.
Protein structure is important because it can directly affect its biological function.
Structure comparison techniques can thus help predict protein function by finding
similarities to proteins with known functionality. The authors introduce the problem
of protein structure comparison and discuss recently developed techniques that show
promise.

Chapter 6, “Peptide Identification via Tandem Mass Spectroscopy” by Xue Wu,
Nathan Edwards, and Chau-Wen Tseng discusses how tandem mass spectrometry,
a technique from analytical chemistry, can be used to directly identify proteins in
a high throughput setting. This chapter presents a review of how protein fragments
(peptides) are produced and identified. Results from an experimental comparison of
existing tools are used to point out limitations and potential improvements in current
algorithms used for protein identification.

The past decade has seen many advances in the field of molecular biology. Tech-
niques and tools developed by researchers in computational biology and bioinformat-
ics have contributed immensely to these successes. I hope the chapters in this book
can help you understand how computer scientists have enabled advances in molec-
ular biology. Newer and even more efficient DNA sequencing technologies such as
sequencing by hybridization, pyrosequencing, and nanopore sequencing are being
developed that threaten to unleash even larger mountains of biological data on sci-
entists. It appears researchers in computational biology and bioinformatics will have
many future opportunities to continue contributing to advances in the biological sci-
ences.

Chau-Wen Tseng
College Park, Maryland
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Department of Computer Science
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Abstract
Evolutionary studies based on large-scale rearrangement operations, as opposed
to the traditional approaches on point mutations, have been considered as a
promising alternative for inferring the evolutionary history of species. Genome
rearrangement problems lead to combinatorial puzzles of finding parsimonious
scenarios towards measuring what difference species have and explaining how
a species evolves from another. Throughout this chapter, we will focus on the
introduction of computing the genomic distance, arising from the effects of a set
of rearrangement events, between a pair of genomes. In the end, two experiments
on Campanulaceae and Proteobacteria are used to simply show how to exploit
the genome rearrangement approach for exposing phylogenetic relationships.
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1. Introduction

Today molecular biology has become an information science in many respects
with close ties to computer science. Large databases and sophisticated algorithms
are developed as essential tools for seeking to understand complex biological sys-
tems, determine the functions of nucleotide and protein sequences, or reconstruct the
evolution of species. Before understanding biological tools, the models of biological
problems and biologically related algorithms, one should primarily learn about the
background in both biology and algorithm theory. In this section, we first introduce
some basics in biology, then in algorithm and complexity, and finally in a relatively
young field, computational biology, which also contains the topics studied in this
chapter.

1.1 Molecular Biology Primer

A complete way to describe each living organism is represented by its genome.
From the view of computer science, this can be regarded as a “program” in some
particular language, which describes a set of instructions to be followed by an or-
ganism for growth and living. In other words, the genome is a temple or a blueprint
on which constructing a building relies. Therefore in order to understand and inter-
pret the hidden information of genome, we first define the “life language” by the
representation of DNA codes.

A genome is composed of the deoxyribonucleic acid (DNA) discovered in 1869
while studying the chemistry of white blood cells. The DNA appears in the cell of
organisms and comprises two sequences, called strands, of tightly coiled threads
of nucleotides. Each nucleotide is a molecule composed of a phosphoric group, a
pentose sugar and a nitrogen-containing chemical, called a base. Four different bases
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FIG. 1. The DNA is a double-stranded molecule twisted into a helix (like a spiral staircase). Each
spiral strand, comprised of a sugar-phosphate backbone and attached bases, is connected to a comple-
mentary strand by non-covalent hydrogen bonding between paired bases. Two ends of a backbone are
conventionally called the 5′ end and the 3′ end [2].

are adenine (A), thymine (T), cytosine (C) and guanine (G), as illustrated in Fig. 1.
A particular order of the bases is called the DNA sequence which varies greatly from
organism to organism. It is the content of this sequence specifying the precise genetic
instructions to produce unique features of an organism.

Among the four bases, base A is always paired with base T, and C is always paired
with G. Thus bases A and T (C and G) are said to be the complement of each other,
or a pair of complementary bases. Two DNA sequences are complementary if one
is the other read backwards with the complementary bases interchanged, e.g., ATC-
CGA and TCGGAT are complementary because ATCCGA with A ↔ T and C ↔ G
becomes TAGGCT, which is TCGGAT read backwards. There are strong interac-
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FIG. 2. Schematic DNA replication [2].

tions formed by hydrogen bonds between two complementary bases, called base
pairing. Hence, two complementary DNA sequences are intertwisted in a double
helix structure described by Watson and Crick in 1953 [173]. Despite the complex
3-dimensional structure of this molecule, the genetic material only depends on the
sequence of nucleotides and can thus be described without loss information as a
string over the alphabet {A,T,G,C}.

Because of this complementarity, the DNA has the capability to replicate itself.
The full genome of a cell is duplicated when it divides into two new cells. At this
moment, the DNA molecule unwinds and breaks the bonds between the base pairs
one by one (Fig. 2). Each strand acts as a template for the synthesis of a new DNA
molecule by the sequential addition of complementary base pairs, thereby generating
a new DNA strand that is the complementary sequence to the parental DNA. By this
way, each new molecule should be identical with the old one. However, although the
replication process is very reliable, it is not completely error-free and it is possible
that some bases are lost, duplicated or simply changed. The situation of variations
to the original DNA sequence is known as mutations, and can make the diversity of
organisms or their offspring. In most cases, mutations are harmful, but sometimes
they can be innocent or advantageous for the evolution of species to adapt to new
environments.

In spite of the huge variety among the existing forms of life, the basic mechanism
for the representation of being is the same for all organisms. As a matter of fact,
all the information describing an organism is encoded in the DNA sequence of its
genome by means of a universal code, known as the genetic code. This code is used
to describe how to construct the proteins, which are responsible for performing most
of the work of cells, e.g., the aid of constructing structures and essentially biochem-
ical reactions. It is interesting that not all of the DNA sequences contain the coding
information. In fact it appears on small regions only, e.g., in human, the total size
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FIG. 3. A schema of chromosomes in eukaryotic [2].

of such regions covers about 10% of the whole DNA sequence. The coding DNA
regions are the so-called genes, where each gene is mapped to a different protein.
Gene sequence contains exons and introns (Fig. 3) of which the former are translated
into proteins and the latter are the intervening sequences whose functions are obscure
(in general, they are regarded as irrelevancies to the functions of organisms).
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Genes are linearly located on chromosomes and are also the primary material of
chromosome, as shown in Fig. 3. In the eukaryotic cell of higher organisms, there
are several chromosomes in their nucleus, which are all linear sequences in general,
e.g., human has 46 chromosomes (23 pairs). Their chromosome usually consists of
one or two chromatids, telomeres and a centromere. In most case, the centromere
roughly locates in the middle of a chromosome, but sometimes, it approaches the
end. When a chromosome composes of two chromatids, we sometimes term it a dou-
bled chromosome. Besides, in the prokaryotic cell of lower organisms, they usually
contain chromosomes of circular molecules, e.g., bacteria have one circular chromo-
some while vibrio species have two. More background on molecular biology can be
referenced in the textbooks of Clark and Russell [45], and Weaver [175].

1.2 Algorithm and Complexity

In a general sense, an algorithm is a well-defined and finite sequence of steps used
to solve a well-formulated problem which is unambiguous and can be specified by
inputs and outputs. An algorithm solves a problem which means that the algorithm
gives the solution satisfying the requirement according to the instance of problem.
A famous example in computer science is the Traveling Salesman Problem, or TSP
for short. In this problem, a salesman has a map specifying a collection of cities
and the cost of travel between each pair of them. He wants to visit all cities and
eventually return to the city form which he started. The inputs of a TSP are the map
and a starting city, while the output is the cheapest route for visiting all cities.

Most problems in computer science can be abstracted and then redescribed as
graphs of vertices and edges connecting two vertices. For instance in TSP, the cities
correspond to vertices and the cost of a pair of cities corresponds to the edge asso-
ciated with a weight. The output is finding the shortest length of starting from one
vertex, visiting all vertices and finally reaching the starting vertex, where the length
is computed by sum of the edge weights in this tour. See Fig. 4 for a simple example
of TSP.

In spite of the success in the example of Fig. 4, the TSP is indeed harder than most
combinatorial optimization problems considered. The conjecture by Edmonds [65]
in 1965 of why no efficient algorithm for TSP means that there is no algorithm which
solves the problem on all instances in a reasonable time. However, he did not point
out the precise meaning to what is the “reasonable time,” but a common definition
since then is that a reasonable running time is one where the number of steps is poly-
nomial in the size of the input, i.e., if n is the input size, then f (n) is the number
of steps where f () is a polynomial function. Furthermore, the class of optimiza-
tion problems having such algorithms is denoted as P introduced by Cobham [46]
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FIG. 4. An example has four vertices and the cost of each pair of vertices is labeled on the edge.
A shortest tour starting from vertex A is A → B → D → C → A with cost 4.

and independently, Edmonds [65], where the problems are also referred to tractable
problems.

In the early 1970s, we made a better progress on the problems for which no effi-
cient algorithms were known. These harder problems are classified as decision and
optimization problems according to what they ask. A decision problem is a prob-
lem where the answer is “yes” or “no,” e.g., “Is there a TSP tour of distance at
most 5?” while the optimization problem is as “What is the shortest tour of vis-
iting all cities?,” Cook [51] proposed a milestone paper presenting the class NP
(Non-deterministic Polynomial time) and first showed that the circuit-satisfiability
problem is NP-complete. NP contains the decision problems which can be solved in
polynomial time by a non-deterministic machine. This machine has the capability
to “guess” a solution non-deterministically and then verifies it in polynomial time.
In some sense, the non-deterministic guessing is equivalent to try all possible solu-
tions in parallel. For the TSP, we can design a non-deterministic machine as follows:
Given a starting vertex S, it enumerates all paths with length i from S, and verifies
that a path passes through all vertices and ends in S. This verification can be done in
polynomial time, thus implying TSP ∈ NP.

A special class of optimization problems is NP-hard in which a polynomial-time
solution to any problem in this class implies that all problems in NP have polynomial
solutions. A problem is in the class NP-completeness if it is both NP and NP-hard.
Thus NP-complete problems can be regarded as the hardest problems in NP. Clearly,
P ⊂ NP and whether P is equal to NP or not is one of the most notable open prob-
lems in both theoretical computer science and mathematics (one of the seven Prize
Problems [3]). It is widely believed that P �= NP on which many results are based.
Therefore, a polynomial-time algorithm for solving a problem in NP-completeness
seems to be highly unlikely since that would imply polynomial solutions to all prob-
lems in NP and hence P = NP. For this reason, NP-complete problems are also said
to be intractable. For more properties and classes of computational complexity, we
refer the reader to the books of Garey and Johnson [79], Hopcroft, Motwani and
Ullman [99], Papadimitriou [142] and Sipser [156].
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Many problems of practical significance are NP-complete implying that obtain-
ing an optimal solution is intractable, but they are too important to be discarded
directly. If the input size is small, an exhaustive algorithm for searching in expo-
nential running time may be adequate. Nevertheless, for an input of large size, it is
time-consuming, perhaps several years, to wait for the solution output by a computer.
One way to attack such problems is to use heuristics, which is typically implemented
with sophisticated searches in partial solution space. Solutions of heuristic methods
often have no guarantees with respect to optimal solutions, i.e., there are no bounds
on the degree of how near/far-optimal solutions are.

Although we are most unlikely to find a polynomial-time algorithm for solving
an NP-complete problem exactly, it may still be possible to find near-optimal so-
lutions in polynomial time. An algorithm that returns a near-optimal solution with
theoretical proof is called an approximation algorithm. Graham [81] made the first
attempt to introduce the concept of approximation algorithm, which is used to solve
the parallel-machine-scheduling problem. Subsequently, Garey, Graham and Ull-
man [78] and Johnson [103] formalized the concept of a polynomial-time approx-
imation algorithm.

We say that an algorithm for an optimization problem has an approximation ra-
tio β (β-approximation algorithm) if, for any input of size n, the cost C of solution
produced by the algorithm is under a factor of β with respect to the cost C∗ of an
optimal solution, i.e., max(C/C∗, C∗/C) � β [52]. The definition of approxima-
tion ratio applies to both minimization (ratio C/C∗) and maximization (ratio C∗/C)
problems. Taking the TSP for an example, if there are n cities, a brute-force search of
at most (n−1)! possibilities can find out the shortest tour. However, for the TSP with
triangle inequality, even if it is still NP-complete, we have a simple 2-approximation
algorithm [52, p. 1028], which outputs a tour of A → B → C → D → A with
cost 6 in the example of Fig. 4. Therefore, the approximation ratio of this solution is
6/4 = 1.5 (cost 4 is optimal), which is under 2. There is a handy website for record-
ing the history and progress of TSP [4]. In addition, for more classic approximation
algorithms, the books of Ausiello et al. [8], Hochbaum [97] and Vazirani [164] ex-
tensively include the topics.

1.3 Computational Biology

Computational (Molecular) Biology started in the late 1970s as an area that tends
to solve the problems arising in the biological lab. In this period, computers became
cheaper and simpler to use so that some biologists adapted them for storing and man-
aging genomic data. By powerful ability in computation of computers, their projects
and researches can be soon completed while they would cost much time before. An
early striking example of a biological discovery by using a computer was in 1983
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when Doolittle et al. [61] used the nascent genetic sequence database to show that
a cancer-causing gene was a close relative of a normal gene. From this, it became
clear that the cancer might arise from a normal growth factor being acted at the
wrong time.

At that time, molecular biology labs throughout the world began installing com-
puters to do database search via networks or develop their own database. Recently,
due to convenience and robustness of the Internet, biologists can share their data and
make them available worldwide through several genomic data banks, such as Gen-
Bank [18], PDB [25], EMBL [47], etc. Moreover, there is a well-developed website
NCBI [176] established in 1988 as an interface for accessing these databases. These
databases and other resources are valuable services not only to the biological com-
munity, but also to the computer scientists in searching the domain information.

Up to now, it is generally obscure on what “Computational Biology” means. Some
researches use the two names, Bioinformatics and Computational Biology, inter-
changeably, but there actually exists a little difference. We adopt the definitions
provided by Lancia [112] in which the Bioinformatics problems are concerned with
storage, organization and distribution of large amounts of genomic data, while the
Computational Biology deals with the mathematical and computational problems of
interpretation and theoretical analysis of genomic data.

In general, the work of constructing algorithms that address problems with bio-
logical relevance, i.e., the work of constructing algorithms in computational biology,
consists of two interacting steps. The first step is to present a biologically interest-
ing question, and to construct a model according to the biological phenomenon that
makes it unambiguous to formulate the posed question as a computational prob-
lem. We need to be careful in this step because almost every area of theoretical
computer science starts as an attempt to solve applied problems, and later becomes
more theoretically-oriented. These theoretical aspects may even become more im-
portant and scientifically precious than the original applications that motivate the
entire area. Then, the second step is to design an algorithm for solving the com-
putational problem of careful formulation. The first step requires the knowledge of
molecular biology, while the second one needs the background of algorithm the-
ory.

To measure the quality of a constructed algorithm, we traditionally use a standard
algorithmic methodology on the cost of the resources, most prominently running
time and used space, it requires to solve the problem. However, since the problem
solved by the algorithm originates from a question with biological relevance, the al-
gorithmic quality could also be judged by the biological relevance of the answer it
produces. For example in Fig. 5(a), the distance matrix lists all distances between
each pair of the four species, VC, VP, VV and VF, indicating the evolutionary rela-
tionship of them, where a bigger distance represents a far relationship of two species.
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FIG. 5. A distance matrix (a) of four species, VC, VP, VV and VF, and a phylogenetic tree (b) rep-
resents the evolutionary relationship of them, where filled circles represent terminal nodes while open
circles correspond to internal nodes, A1, A2 and A3. In particular, A1 is called root.

Now, we want to describe the distance matrix by using the phylogenetic tree made
by arranging nodes and branches (Fig. 5(b)), where every node represents a dis-
tinct taxonomical unit. Nodes at the rights of branches (terminal nodes or leaves)
correspond to genes or organisms for which data have actually been collected for
analysis, while internal nodes usually represent an inferred common ancestor that
give rise to two independent lineages at some point in the past. Furthermore, each
branch of tree is labeled by a value to reflect the phylogenetic relationship at the
distance matrix.

The problems of inferring evolutionary trees have been extensively studied for
many years, and unfortunately, many of them are NP-hard or NP-complete. Here, we
want to construct a tree such that the length of each path of two leaves on the tree is
equal to the corresponding value at the distance matrix. Figure 5(b) is an example of
a phylogenetic tree constructed by neighbor-joining method [147] whose input is the
distance matrix in Fig. 5(a). In this tree, the path from VC to VF has length 32, while
the distance of VC and VF is also 32 in Fig. 5(a). This tree construction method has
polynomial running time from algorithmic view and thus we can expect to obtain the
output in a reasonable time. However, it is obviously not an optimal solution due to
unequal distances between VC and VV in the matrix (21) and the constructed tree
(21.25). Besides, from biological point of view, evaluating the quality of this tree
is made by the real relationships among four species. For example, VV is closer to
VP than VC to VP in the tree, and if it is also true in real situation, we will believe
that the tree is good, thereby implying the neighbor-joining method is superior. For
more formulated problems and their corresponding algorithms, we refer reader to
the textbooks of Gusfield [83], Jones and Pevzner [104], Pevzner [145], Setubal and
Meidanis [154], and Waterman [171].
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The details of a specific model and algorithm of course depend on the questions
being asked. Most questions in computational biology are related to molecular or
evolutionary biology, and focus on analyzing and comparing the composition of the
key biomolecules, DNA, RNA and proteins, that together form the basic components
of an organism. The success of ongoing efforts to develop and use techniques for
getting data about the composition of these biomolecules, like the DNA sequencing
technique for extracting the genetic material from species, e.g., the Human Genome
Project [101,165], has resulted in a flood of available biological data to be compared
and analyzed.

2. Genome Rearrangement Overview

The genome of an organism consists of a small number of segments called chro-
mosomes, and genes are spread to the DNA sequence with a particular order in the
chromosome that are responsible for encoding proteins. Each gene has an orienta-
tion, either forward or backward, depending on which direction it is assumed to be
read. Therefore, a genome can be abstracted as a set of chromosomes and a chro-
mosome is composed of an order set of oriented genes. The chromosomes of higher
organisms like mammalian are generally linear (the DNA sequence has a beginning
and an end), but of lower organisms like bacteria, are circular (their DNA sequences
have no beginning or end).

Traditional comparison between two genomes pays attention to local operations
(mutations), such as substitution, insertion, deletion and duplication (Fig. 6) which

FIG. 6. The bar represents a chromosome and each black block indicates the position of its gene. The
four types of local operations, substitution (a), insertion (b), deletion (c) and duplication (d) [2], which
usually affect a very small number of genes in a chromosome.
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affect only a small stretch on DNA sequence. These local operations have been
widely observed by biologists due to their frequent occurrences in studying the dif-
ference between two genomes. Further, from theoretical point of view, the minimum
difference caused by local operations between two genomes is regarded as the edit
distance of them, and such value, in most cases, can be easily calculated by using dy-
namic programming method [52]. Most phylogenetic researches have been published
based on these types of operations.

On the other hand, the study of genome rearrangement focuses on inferring the
parsimonious explanation by using a set of non-local operations for the disruption in
gene orders among two or more genomes. In general, such non-local operations are
called rearrangement events. A rearrangement event occurs when a chromosome is
broken at two or more positions which results in two or more segments reassembling
with a different order. The rearranged DNA sequence is essentially identical to the
original sequence, except exchanges in the order of reassembled segments. These
non-local operations causing reassembly include reversal (or inversion), transposi-
tion, block-interchange and translocation.

A reversal event flips a segment in a chromosome and changes the directions
of each element in the segment. Each transposition event exchanges two adjacent
segments in a chromosome while the block-interchange swaps two non-intersecting
segments. Due to the involving of segments in two chromosomes, the translocation
event is more complicated and its effect will be introduced in Section 5. Moreover,
most of non-local operations are derived from biological observations on the differ-
ence of DNA sequences among species. For example, in the late 1930s, Dobzhansky
and Sturtevant [60] published a milestone paper presenting a rearrangement scenario
with inversions for Drosophila fruit fly and it was taken as the pioneer of genome
rearrangement in molecular biology. Moreover, in the late 1980s, Palmer and Her-
bon [140] compared the mitochondrial genome of Brassica oleracea (cabbage) and
Brassica campestris (turnip) in which many genes are 99% identical but dramatically
differ in gene order (Fig. 7). Palmer and his coworkers also found the similar phe-
nomenon within the chloroplast genome of legume [141] and anemone [98]. These
discoveries are convincing to prove that genome rearrangement plays a role in mole-
cular evolution.

In contract to the edit distance, the rearrangement distance (or genetic distance)
resulting from rearrangement events is commonly set to the minimum number of op-
erations for the transformation between two genomes. For instance in Fig. 7, if only
reversal is considered, the rearrangement distance between cabbage and turnip is 3
where the minimum can be verified by “pen-and-pencil” method. In case of genomes
consisting of a small number of homologous genes (or conserved blocks), we can find
the most parsimonious rearrangement scenarios by exhaustive search or observation.
However, it is time-consuming for genomes consisting of more genes notwithstand-
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FIG. 7. The pentagons represent the positions, orientations and order of common genes shared by
cabbage and turnip, and each pair of two dotted lines represents an inverted segment. As shown in this
figure, three reversals can transform cabbage into turnip [145].

ing performing exhaustive search over all potential solutions by a computer. As a
result, developing efficient algorithms is an urgent requirement to deal with genome
rearrangement problems arising from the large-scale mapping of species.

The computational approach based on the comparison of gene orders was pio-
neered by Sankoff et al. [148,150,151]. According to which operations we consider,
the genome rearrangement problems lead to different combinatorial puzzle. This
model simply treats chromosomes as permutations and genes as the elements in the
permutations associated with + or − sign indicating the direction of its transcrip-
tion. Taking Fig. 7 as an example, cabbage (	π) is modeled as +1 −5 +4 −3 +2 and
turnip (	σ) as +1 +2 +3 +4 +5, and thus, the problem becomes to find the minimum
number of reversals for transforming 	π into 	σ .

Let Σ = {1, 2, . . . , n}, and 	π = 	π1 	π2 . . . 	πn be a signed permutation on Σ ,
where each 	πi is labeled by a sign of + or − . For 1 � i � j < k � l � n, we
express three types of operations as the mathematical form:

• A reversal r(i, j) affects 	π , denoted as r(i, j) · 	π , by inverting the block
	πi 	πi+1 . . . 	πj to −	πj −	πj−1 . . . −	πi , i.e., r(i, j) · 	π = 	π1 . . . 	πi−1 −	πj

−	πj−1 . . . −	πi 	πj+1 . . . 	πn.

• A transposition tr(i, j, k) affects 	π , denoted as tr(i, j, k) · 	π , by swapping two
consecutive segments 	πi 	πi+1 . . . 	πj and 	πj+1 	πj+2 . . . 	πk , i.e., tr(i, j, k) · 	π =
	π1 . . . 	πi−1 	πj+1 . . . 	πk 	πi . . . 	πj 	πk+1 . . . 	πn.

• A block-interchange bi(i, j, k, l) affects 	π , denoted as bi(i, j, k, l) · 	π , by swap-
ping two non-intersecting segments 	πi 	πi+1 . . . 	πj and 	πk 	πk+1 . . . 	πl , that is,
bi(i, j, k, l) · 	π = 	π1 . . . 	πi−1 	πk . . . 	πl 	πj+1 . . . 	πk−1 	πi . . . 	πj 	πl+1 . . . 	πn.
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Given two permutations 	π and 	σ , sorting by reversals is the problem of finding a
series of reversals ρ1, ρ2, . . . , ρt such that ρt · ρt−1 · · · , ρ1 · 	π = 	σ , where t is the
minimum and considered as the reversal distance dr(	π) between 	π and 	σ . Usually,
the target permutation 	σ is replaced by the identity permutation 	I = +1 +2 . . . +n

and this is why we call the transformation of 	π into 	I a sorting problem. Therefore,
the reversal distance is the distance dr(	π) of 	π and 	I . In 1995, Hannenhalli and
Pevzner [89] surprisingly provided a polynomial-time algorithm for exactly solving
the sorting by reversals problem, which lead to great interest of later researchers.
Other problems such as sorting by transpositions, sorting by block-interchanges and
sorting by translocations can be similarly defined, except the difference in opera-
tions. For convenience, we use the term, genomic distance, to represent the distance
of two permutations no matter what operations are used to sort.

2.1 Pancake Flipping Problem

Before introducing genome rearrangement problems defined later, we first present
an interesting problem called pancake flipping problem originally inspired by
Dweighter [64]. This problem comes out of a real-life situation that a waiter wants
to rearrange a stack of pancakes with all different sizes by grabbing several from the
top and flipping them over such that the smallest pancake winds up on top, and so
on, down to the largest at the bottom. If there are n pancakes, what is the minimum
number of flips used to rearrange them? Moreover, the pancake flipping problem
corresponds to the sorting by prefix reversal problem described as follows: Given an
arbitrary permutation π = π1π2 . . . πn (a stack of n pancakes), each πi corresponds
to a pancake according to its value, i.e., a bigger πi corresponds to a pancake with
larger size. Sorting by prefix reversal problem is to find the minimum number of
prefix reversals, denoted as dpref(π), of the form r(1, i) to sort π . Since there is no
difference between two sides of a pancake, the permutation π is unsigned, i.e., each
πi is always positive. A reversal thereby acts on π by inverting the order of elements
without changing the signs of them in a segment (Fig. 8). Specially, Bogomolny
developed a website for simulating this problem [31].

The first result attempting to solve this problem was published by Gates and
Papadimitriou [80]. They proved that the prefix reversal diameter, Dpref(n) =
maxπ∈Sn dpref(π) where Sn is the symmetric group containing all permutations of
size n, has bounds of Dpref(n) � (5n + 5)/3 and that for infinitely many n,
17n/16 � Dpref(n). Subsequently, Heydari and Sudborough [94] improved the lower
bound to 15n/14. To our surprise, this seemingly effortless problem had no complex-
ity result until Fischer and Ginzinger [75] recently gave a 2-approximation algorithm
to find dpref(π).
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FIG. 8. Four prefix reversals can transform π = 1 5 4 3 2 into I = 1 2 3 4 5. The left-bracket segments
show where reversals take place.

FIG. 9. 	πi represents a pancake and moreover, a sign “−” is associated with 	πi if its burnt side is up;
otherwise, it has good side up, where the burnt side is indicated by the rectangle in a pancake. Eight prefix
reversals can transform 	π = 1 −5 4 −3 2 into 	I = 1 2 3 4 5.

Gates and Papadimitriou [80] also considered a variation of pancake flipping
problem in which a pancake has two sides and one side is burnt. These pancakes
must be sorted to the size-ordered arrangement and every pancake has its burnt
side down. Such a variation can also be transformed to an analogous sorting by
prefix problem mentioned above. Moreover, due to the dissimilarity of two sides
in a pancake, the permutation 	π becomes signed and each prefix reversal changes
all signs of elements in an inverted segment (Fig. 9). Gates and Papadimitriou
found that 3n/2 − 1 � dpref(	π) � 2n + 3 and this was further improved to
3n/2 � dpref(	π) � 2n − 2 by Cohen and Blum [50], where the upper bound holds
for 10 � n. However, there is little progress in either type, unsigned and signed,
of pancake problem. Although Heydari [95] has proved the NP-completeness of a
modified version of pancake problem (unsigned), it remains unknown whether or not
the original problems are in P.
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FIG. 10. The breakpoint graph G(π) of π = 1 5 4 3 2, where black edges are represented as solid
lines and gray edges as dotted lines.

2.2 The Breakpoint Graph

In the field of genome rearrangement, the most famous tool for analyzing is the
breakpoint graph on which many results are based. Watterson et al. [174], and
Nadeau and Taylor [135] introduced the notation of a breakpoint. They also noticed
that there are some correlations between the number of breakpoints and the reversal
distance. Below we define the breakpoint and show how to construct the breakpoint
graph of an unsigned/signed permutation.

For an unsigned permutation π = π1π2 . . . πn, we extend it by adding π0 = 0
and πn+1 = n + 1. A pair of elements (πi, πi+1), 0 � i � n, is a breakpoint if
|πi − πi+1| > 1. For instance, if π = 1 5 4 3 2, then there are two breakpoints (1, 5)

and (2, 6). Since the identity permutation has no breakpoints, sorting π corresponds
to eliminating breakpoints. If we use only reversals, an observation that a reversal can
eliminate at most two breakpoints immediately implies b(π)/2 � dr(π), where b(π)

is the number of breakpoints in π . Similar inferences can be applied to transposition
and block-interchange so that we obtain the lower bounds of b(π)/3 � dtr(π) and
b(π)/4 � dbi(π) for transposition and block-interchange distance, respectively.

There were several definitions for the breakpoint graph in previous researches and
we choose one of the most common models introduced by Bafna and Pevzner [11]
which we will use in the following sections. The breakpoint graph of an unsigned
permutation π is defined to be an edge-colored graph G(π) with n + 2 vertices
{π0, π1, . . . , πn+1} as the following. For 0 � i � n, πi and πi+1 are connected by
a black edge, and πi is joined to πj by a gray edge if |πi − πj | = 1, as shown in
Fig. 10. Sections below will introduce in detail how to use the breakpoint graph to
assist in sorting a permutation.

3. Sorting by Reversals

The reversal event is our first discussed event: not only is it the first event observed
in Drosophila species by Dobzhansky and Sturtevant [60], but also it commonly ex-
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ists in virus [102], bacteria [66,100], Chloroplast of plants [54,111,141], animals and
mammalian [74] thereby accepted by most biologists. Modeling the reversal distance
for higher organisms is reasonable as biological lectures report that reversals are the
primary mechanism of genome rearrangement for many genomes in eukaryote [125].
Furthermore, there are also practical results, both tools and theoretical analyses, in
considering reversals only. Watterson et al. [174] made the first attempt to deal with
reversal events, and gave definitions of the sorting by reversals problem associated
with a heuristic for computing the reversal distance. Schöniger and Waterman [152]
also presented a heuristic method when only non-overlapping inversions, whose in-
verted segments are non-overlapping, are allowed.

Biologists acquire gene orders either by sequencing entire genome or by con-
structing comparative physical mappings. Error-free sequencing can provide correct
information about the directions of genes and thus allows one to representing a
genome as a signed permutation. However, sequencing the whole genome is still
expensive and may have some errors so that most available data on gene orders are
based on comparative physical maps. Physical maps usually do not provide full infor-
mation about the directions of genes, and hence, lead to representing a chromosome
as an unsigned permutation. In general, unsigned permutations is a special case of
signed ones with all positive elements implicitly implying that sorting an unsigned
permutation is simpler than sorting a signed one, but on the contrary, the former is
often harder than the latter in genome rearrangement. Even the sorting unsigned per-
mutation by reversals problem is more “difficult” than the NP-complete problems.
The coming part first focuses on sorting unsigned linear chromosomes, then consid-
ers the signed version and the last of this section demonstrates that the equivalence
in sorting of linear chromosomes and circular ones.

3.1 Unsigned Permutations

When information about the directions of gene segments is not available, a chro-
mosome can be modeled as an unsigned permutation π = π1π2 . . . πn. Thus given
two unsigned linear permutations π and I , the sorting by reversals problem is to find
ρt , ρt−1, . . . , ρ1 such that ρ1 · ρ2 · · · ρt · π = I , where each ρi is a reversal, and t

is the minimum. Caprara [33] first showed this problem to be NP-hard, and Berman
and Karpinski [28] later proved it to be MAX-SNP hard implying that it is almost
impossible to be approximated under 1 + ε, for some ε > 0.

From two observations that a reversal eliminates at most 2 breakpoints and n − 1
reversals can create any permutation, we instantly obtain the bounds of b(π)/2 �
dr(π) � n−1, where b(π) is the number of breakpoints in π . Taking π = 6 4 1 5 2 3
as an instance for explaining the upper bound, the reversal r(1, 3) can move π3 = 1
to the right position when it acts on π , that is, a series of reversals, where the first
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FIG. 11. (a) Three reversals optimally sort π = 6 4 1 5 2 3 and therefore, the reversal distance between
π and I is 3; (b) The approximation algorithm developed by Kececioglu and Sankoff [109] can sort π by
using 4 reversals, where each reversal removes at least 1 breakpoint. Underlined segments indicate where
reversals happen.

moves 1 to its right position, the second copes with 2, and so on, can sort π . One of
the worst cases with this method is π = n 1 2 . . . n − 1, which can be sorted by n−1
reversals. In addition to the straightforward bounds, Kececioglu and Sankoff [109]
also derived efficient bounds of dr(π) by simulation, allowing a computer to output
dr(π) in a few minutes for n � 30.

On the other hand, Kececioglu and Sankoff obtained a 2-approximation algorithm
for dr(π) based on the structure of strip, which is a maximal subsequence in π with-
out breakpoints. For example, if π is the last mentioned permutation, 〈2, 3〉 is a strip
and moreover, the strip 〈2, 3〉 is increasing whereas the strip 〈6〉 is decreasing. By
greedily choosing the reversals, deriving from the decreasing or increasing strip, to
remove the most number of breakpoints, they proved that each one of such rever-
sals removes at least 1 breakpoint, thereby obtaining a 2-approximation algorithm,
as illustrated in Fig. 11.

They further conjectured that for every permutation, there exists an optimal sorting
series composed of reversals with cutting no strips of size more than 2, and there also
exists an optimal reversal series which never increases the number of breakpoints.
Both conjectures are verified by Hannenhalli and Pevzner [88] by means of their
duality theorem for signed permutation [89]. Nevertheless, they found an example
for which this procedure fails with strips with size 2, and described an algorithm
to fix this problem. In particular, the sorting by reversals problem for permutations
without strips of size one, called singletons, can be solved in polynomial time by
Hannenhalli and Pevzner, which thus implies that the singletons present the major
obstacle on the way towards an efficient algorithm.

The approximation ratio of 2 derived from Kececloglu and Sankoff [109] was
further improved to a factor of 1.75 by Bafna and Pevzner [11], then to a factor of
1.5 by Christie [43], and finally to 1.375 by Berman, Hannenhalli and Karpinski [27].
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FIG. 12. The breakpoint graph G(π) of π = 6 4 1 5 2 3 (a) and its maximum cycle decomposition is
c(π) = 4 (b).

In Section 2, we have introduced the breakpoint graph G(π) for a permutation π ,
where this graph can be recognized in linear time by Caprara [36]. Such a graph has
tight relations to the sorting by reversals problem and can be used to explain why this
problem is difficult. Gray and black edges in G(π) constitute an alternating cycle if
the colors of every two consecutive edges of this cycle are distinct. For instance in

Fig. 12(a), the cycle of 1
b→ 5

g→ 6
b→ 0

g→ 1 is alternating where g and b indicate
gray and black edge, respectively. From the structure of G(π), there are two gray
edges and two black edges connected to every vertex, except π0 and πn having a
gray and a black edge. Since the number of gray edges incident to a vertex v equals
that of black edges incident to v, every vertex has even degree and thus, there exists
a cycle decomposition of G(π) into alternating cycles such that every edge in the
graph belongs to exactly one cycle in the decomposition [13]. We are interested in
the maximum number c(π) of alternating cycles in G(π). For example in Fig. 12,
c(π) = 4.

A reversal can reduce the number of cycles in a maximum cycle decomposition by
at most one, while the number of breakpoints by at most two. Bafna and Pevzner [11]
presented a lower bound of n + 1 − c(π) on the distance dr(π), which is much
tighter than the bound of b(π)/2 derived from the concept of breakpoint. Besides,
Caprara [36] described a transformation from the sorting by reversals problem to
the maximum cycle decomposition problem. The latter was shown to be NP-hard
thereby implying the same complexity as the former.

Extensively simulated studies [37,38,109] showed that dr(π) = n + 1 − c(π)

in numerous cases, and Caprara [35] demonstrated that dr(π) = n + 1 − c(π)

with probability 1 − 	(1/n5) for a random permutation π of size n. These results
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prompted us to derive algorithms of directly minimizing the parameter c(π) to solve
the sorting by reversals problem. The first approximation algorithm of computing
c(π) was obtained by Bafan and Pevzner [11] with the ratio of 1.75, and further
improved to 1.5 by Christie [43]. Subsequently, Caprara and Rizzi [40] improved
the ratio to a factor of 33/23 + ε ≈ 1.4348 + ε, for any positive ε, by reducing
the problem to the maximum independent set problem and the set packing prob-
lem [79]. Lin and Jiang [114] recently extended the techniques of Caprara and Rizzi,
and incorporated a balancing argument to further improve the approximation ratio to
(5073 − 15

√
1201 )/3208 + ε ≈ 1.4193 + ε, for any positive ε.

Due to the practicality of sorting by reversals problem, numerous researchers try
to solve it optimally by implementing programs even if it may run in exponential
time. Heath and Vergara [92] implemented an O(n3n!) time algorithm by using the
dynamic programming method for testing their conjectures. One of these interesting
conjectures is that there exists a sequence of reversals that optimally sort a per-
mutation π such that each reversal positions either the minimum or the maximum
unpositioned element. For example, the permutation π = 3 4 2 5 1 can be optimally
sorted as the following sequence: 3 4 2 5 1 �⇒ 3 4 2 1 5 �⇒ 1 2 4 3 5 �⇒ 1 2 3 4 5.
The three reversals sort π on the positions 5, 1 and 3 (or 4) respectively, where the
corresponding elements are either minimum or maximum unpositioned elements.
This conjecture agrees with the intuition but however, their program found a coun-
terexample when π = 2 5 3 1 4 sorted by the following process: 2 5 3 1 4 �⇒
2 1 3 5 4 �⇒ 2 1 3 4 5 �⇒ 1 2 3 4 5. Note that the sorted element by first reversal
is neither 1 nor 5 and attempting to do so requires more than 3 reversals to sort π . In
particular, Tran [163] provided a special set of permutations, which can be optimally
sorted by reversals in polynomial time by giving a graph-theoretical characteriza-
tion of these permutations. Such permutations are when the number of breakpoints
is twice as big as the reversal distance, and the last mentioned permutation is an
example satisfying the requirement.

Caprara, Lancia and Ng [37–39] also attempted to find exact algorithms for the
sorting by reversals problem. They first designed a branch-and-bound algorithm
for this problem [37], and the lower bound is based on the result of Bafna and
Pevzner [11] (a closely related work by Kececioglu and Sankoff [109]) where the
reversal distance is related to c(π). For estimating the parameter, they solved a Lin-
ear Programming problem containing a possible exponential number of variables by
using column generation scheme, which has been shown to be efficient for many
combinatorial optimization problems [15]. This algorithm optimally solved random
instances of n = 100 within 2–3 minutes and was further improved to be more effi-
cient by a new Linear Programming technique [38,39].
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The following is the introduction of sorting by reversals problem on signed per-
mutations which has been extensively studied in computer science and also receives
many practical results.

3.2 Signed Permutations

From the above discussion on unsigned permutations, we know that in the general
problem of finding genomic distance caused by disrupted gene order between two
genomes it is very difficult to find algorithms coming up with better performance.
However, it is the situation when we are short of the information about gene direc-
tions. In practice, every gene in a chromosome has a direction (it is the result of a fact
that DNA is double stranded and single gene resides on one of the strand). Here we
consider the sorting by reversals problem on the permutation where each element has
either + or − sign indicting its direction. For example in Fig. 7, the gene content of
cabbage is modeled as the signed permutation 	π = +1 −5 +4 −3 +2. Furthermore,
every reversal acting on a segment of signed case changes both the order and signs of
elements in this segment. We are still interested in the minimum number of reversals
dr(	π) needed for transforming a signed permutation 	π into the identity permutation
	I = +1 +2 . . . +n.

Given a signed permutation 	π of {1, 2, . . . , n}, Hannenhalli and Pevzner [89] first
transfered it into an unsigned mapping π = π0 ≡ 0 π1 . . . π2nπ2n+1 ≡ 2n + 1 of
{0, 1, . . . , 2n + 1}, by replacing each positive element x of 	π by 2x − 1 and 2x,
and each negative element −x by 2x and 2x − 1. For example, if 	π = +1 −5
+4 −3 +2, then we have π = 0 1 2 10 9 7 8 6 5 3 4 11. Clearly, 	I corresponds
to I and each reversal in 	π corresponds to a reversal in π . A reversal of the form
r(2i +1, 2j) is said to be legal for π because it mimics the reversal r(i +1, j) on 	π .
Then the problem of sorting π by legal reversals is equivalent to the sorting 	π by
reversals problem.

The analysis of Hannenhalli and Pevzner is based on the breakpoint graph. In Sec-
tion 2, we present how to construct it, but it is for unsigned permutations. For the
breakpoint graph of a signed permutation 	π , we use the breakpoint graph of its un-
signed mapping π instead, which is also defined to be an edge-colored graph with
2n + 2 vertices π0, π1, . . . , π2n+1 as follows: For 0 � i � n, π2i and π2i+1 are con-
nected by a black edge, and 2i is joined to 2i +1 by a gray edge, as shown in Fig. 13.

In above section, finding the maximum cycle decomposition is a difficult problem
and closely related to the sorting unsigned permutation by reversals problem. Fortu-
nately, in the case of signed permutations, this problem is easy because each vertex
in G(π) has even degree. It is not hard to verify that the G(π) in Fig. 13 is able
to be uniquely decomposed into c(π) = 3 alternating cycles. Since the number of
maximum cycle decomposition in I is the maximum of all permutations with size
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FIG. 13. The breakpoint graph G(π) of π = 0 1 2 10 9 7 8 6 5 3 4 11, which is an unsigned mapping
of 	π = +1 −5 +4 −3 +2.

FIG. 14. The optimally sorting series for transforming 	π = +3 +2 +1 into 	I contains at least a
non-proper reversal.

n, finding the reversal distance dr(	π) can be regarded as increasing the number of
cycles in a most rapid manner. By demonstrating that 
cr = c(r · π) − c(π) � 1,
Hannenhalli and Pevzner immediately obtained the lower bound of n + 1 − c(π) on
dr(	π). Therefore, if the used reversals are all of 
cr = 1, called proper, then we can
optimally sort a permutation in n+1−c(π) steps. As shown in the Fig. 13, the lower
bound is 5 + 1 − 3 = 3 suggesting that three proper reversals in Fig. 7 perform an
optimal sorting.

Nevertheless, for the permutation 	π = +3 + 2 + 1, there is no proper reversal
in the first step and thus, it cannot be sorted in n + 1 − c(π) = 2 steps (an opti-
mally sorting process is shown in Fig. 14), indicating that apart from the number of
cycles, there exist hidden parameters for sorting a signed permutation. Hannenhalli
and Pevzner defined the hurdle structure to describe such a hidden obstacle. An ex-
ample of permutation shown in Fig. 14 needs one more reversal than the lower bound
2, as a result of a hurdle in it. For the detailed knowledge of hurdles, we refer reader
to the paper by Hannenhalli and Pevzner [89].

Let the number of hurdles in a permutation π , an unsigned mapping of 	π , be h(π).
Then they showed that n + 1 − c(π) + h(π) � dr(π) � n + 2 − c(π) + h(π) and
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however, there is still a little gap to obtain the optimal solution. With that, they found
when h(π) is odd in some cases, there is a singular structure called fortress which
leads to the hardness of sorting. After identifying the fortress, they finally presented
a duality theorem for optimally sorting a signed permutation by reversals as follows:

dr(	π) =
{

n + 1 − c(π) + h(π) + 1, if π is a fortress,

n + 1 − c(π) + h(π), otherwise.

Furthermore, they also provided two algorithms for this problem, where the compli-
cated one runs in O(n4) time and the running time of simpler one is O(n5).

Since the time-complexity of algorithm developed by Hannenhalli and Pevzner
is a little high, Berman and Hannenhalli [26] first improved it to O(nα(n)) time,
where α() is the inverse Ackerman’s function [5], by exploiting more combinator-
ial properties of breakpoint graph. Due to avoiding special data structures, Kaplan,
Shamir and Tarjan [105] further improved the running time to O(ndr(	π) + nα(n))

based on a union-find structure for efficiently finding reversals. Since α(n) is a con-
stant no longer than four for almost all practical purposes, their algorithm is efficient
for implementation. Subsequently, Tannier and Sagot [160] proposed an algorithm
running exactly in O(n3/2√log n ) time, which has been the fastest practical algo-
rithm to date, and also answers an open question of Ozery-Flato and Shamir [138]
whether a subquadratic complexity could ever be achieved for solving the sorting by
reversals problem. If only the reversal distance is needed, Bader, Moret and Yan [9]
presented a simple and practical algorithm with linear running time for computing
the connected components, which results in a linear-time algorithm for calculating
the reversal distance.

Moreover, the following works try to reduce the computational complexity by
using the concept of randomization. A randomized algorithm is an algorithm that
makes arbitrary choices during its execution, which allows a savings in execution
time of a program as it does not require time in finding optimal choices, and instead
works with arbitrary ones. Although the major disadvantage of this method may be
incorrect output, i.e., output of a non-optimal solution, a well-designed randomized
algorithm will have a very high probability of returning a correct answer. For more
detail about it, we refer reader to a textbook written by Motwani and Raghavan [133].

Bansal [14] classified all possible reversals and considered a probability of choos-
ing reversals from the classes. Nevertheless, the reversals she chose have no guar-
antee of being helpful to the transformation of 	π into 	I . Recently, Kaplan and
Verbin [106,107] described a randomized algorithm to sort signed permutations by
repeatedly drawing a random oriented reversal, which is a reversal making consec-
utive elements in the permutation adjacent with the same sign, e.g., either i, i + 1
or −(i + 1),−i is adjacent. Their method relies on the observation that typically a
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very large percentage of oriented reversals is indeed part of a most parsimonious sce-
nario [21]. Furthermore, Kaplan and Verbin designed some efficient data structures
for supporting them to maintain a permutation after applying a reversal and drawing
random oriented reversals from it, where each operation costs sub-linear time. Their
randomized algorithm has running time of O(n3/2√log n ) but fails with a very high
probability on little permutations.

The first polynomial-time algorithm proposed by Hannenhalli and Pevzner [89]
relied on several intermediate constructions that have been simplified since [9,26,
105,160], but grasping the whole details remains a challenge. Consequently, Berg-
eron focused on finding a simpler explanation relying directly on the overlap graph
for Hannenhalli–Pevzner theory and also gave a bit-vector implementation for the
reversal problem that runs in O(n2) bit-vector operations, or in O(n3/w) operations,
where w is the word-size of the processor [20,24]. Besides, instead of the annoying
hurdles and fortress in the duality theorem derived from Hannenhalli and Pevzner,
Bergeron, Mixtacki and Stoye [22] used the PQ-tree to deal with them, and yielded
an efficient and simple algorithm to compute reversal distances. On the other hand,
there may exist many sorting series for the optimal transformation of 	π and 	I , but
we have no idea about how to choose. Due to the absence of auxiliary information to
determine a plausible scenario, Ajana et al. [7], and Siepel [155] found all minimum-
length series of reversals to sort a signed permutation for the purpose of further tests.

Apart from the theoretical analyses, there are several practical tools. Mantin and
Shamir [124] implemented their algorithm [105] with a Java applet. Furthermore,
Tesler [162] developed an integrated website GRIMM for implementing the algo-
rithms [9,88,89] to tackle the problems of sorting by signed/unsigned permutations
with linear/circular type by reversals. Figure 15 is an example provided by GRIMM
to show the possible rearrangement scenarios among Herpes simplex virus (HSV),
Epstein–Barr virus (EBV) and Cytomegalovirus (CMV) [86], and their phylogenetic
tree.

3.3 Circular Permutations

Watterson et al. [174] made the first attempt at the problem of computing reversal
distance between the circular permutations πc and circular identity permutation I c

of unsigned case. The circular unsigned permutation is the circular rearrangement
of elements of a linear permutation in clockwise direction. Watterson et al. gave the
rudimentary bounds that b(πc)/2 � dr(π

c) � n − 1, where dr(π
c) is the reversal

distance of πc and I c, and also presented a stochastic algorithm for this problem.
Subsequently, Solomon, Sutcliffe and Lister [158] assumed that there is no difference
in rotations and reflections of an unsigned circular permutation, see Fig. 16 as an
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FIG. 15. (a) Three signed permutations of HSV, EBV and CMV; (b) Their reversal distance matrix
and the corresponding phylogenetic tree; (c) A possible rearrangement scenario consists of five reversals
for transforming HSV into CMV outputted by GRIMM [162].

example, which are straightforward from three-dimensional view. Reversals applying
to πc have similar results as that to linear permutation π , i.e., just reverse the order
of elements in a segment (Fig. 16(c)). Therefore, the circular version of sorting by
reversals problem is well defined. To our surprise, Solomon et al. showed that based
on these assumptions, sorting circular permutations by reversals can be reduced to
the same problem on linear case, thereby indicating that it is also NP-hard.

On the other hand, sorting signed circular permutations also has an analogous re-
sult. A signed circular permutation 	πc = (	πc

1 	πc
2 . . . 	πc

n) can be regarded as a circular
arrangement of elements in a signed permutation 	π , where the sign “+” indicates
the clockwise direction and “−” represents the counterclockwise one. As shown in
Fig. 17, rotations and reflections of 	πc are similar to those of πc, but a few differences
exist in reflection. A reflection of 	πc changes both the order and signs of elements
in 	πc. Under these assumptions, Meidanis, Walter and Dias [128] demonstrated the
equivalence of sorting by reversals on linear permutations and circular ones.
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FIG. 16. (a) Rotations of a permutation, πc = (1 5 4 3 2) = (2 1 5 4 3) = · · · = (5 4 3 2 1);
(b) Reflection of a permutation, πc = (1 5 4 3 2) = (1 2 3 4 5); (c) The reversal acts on the segment
containing 1 and 5 indicated by dotted line by inverting the order of them.

FIG. 17. (a) Rotations of 	πc = (+1 −5 +4 −3 +2) = (+2 +1 −5 +4 −3) = · · · =
(−5 +4 −3 +2 +1); (b) Reflections of 	πc = (+1 −5 +4 −3 +2) = (−1 −2 +3 −4 +5); (c) The
reversal acts on the segment containing +1 and −5, which is indicated by dotted line, by changing both
the order and signs of them.

In fact, there is a simple view of work in considering the relationship between lin-
ear and circular permutations. Figure 18 is an example with two equivalent reversals
of a signed circular permutation 	πc = (+1 −5 +4 −3 +2). Therefore, the reversal
acting on 	πc can always leave 	πc

1 unchanged, that is, if an inverted segment contains
	πc

1 , then we use the equivalent reversal without involving 	πc
1 instead. With this re-
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FIG. 18. (a) The reversal acts on the segment containing +1 and −5; (b) The reversal acts on the
segment containing +2, −3 and +4, and its effect is the same as (a) since reflection and rotations are not
included into account.

placement, the reversal series of sorting 	πc is a feasible series to sort 	π implying that
the problem of sorting signed linear permutation by reversals can reduce to that of
sorting signed circular one. The other side from linear to circular can also be simi-
larly proved. The sorting linear and circular permutations by reversals problems are
consequently equivalent.

4. Sorting by Transpositions/Block-Interchanges

A transposition is an exchange of two adjacent segments on a chromosome, while
a block-interchange swaps two non-intersecting segments without necessary adja-
cency, suggesting that the latter is a generalization of the former. Analogously, the
effect of a transposition can be taken as the result caused by two steps of cut-
ting a segment and placing it in another location on the chromosome. In this re-
gard, some people call it cut-and-paste operation. In biology, transpositions are rare
events in contrast with reversals, and usually accompany other events like rever-
sals or translocations (introduced in next section). Liu and Sanderson [119] identi-
fied inversions and transpositions in the bacterium Salmonella typhi, while Seoighe
et al. [153] estimated that gene adjacencies of yeast have been broken frequently by
rearrangements as inversions, transpositions and translocations. Moreover, Coghlan
and Wolfe [49] inferred that there are 517 chromosomal rearrangements includ-
ing inversions, transpositions and translocations for the transformation between the
nematodes, Caenorhabditis elegans and Caenorhabditis briggsae. Zhang and Peter-
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son [180], in particular, demonstrated a new intramolecular transposition mechanism
by which transpositions can greatly impact genome evolution.

Since block-interchange is a generalization of transpositions, it has come up much
less than reversal, transposition and translocation. A justification may be that the
large-scale exchanges of segments are much less observed by biologists. Fliess,
Motro and Unger [76] presented that there are swaps of short fragments in pro-
tein evolution, and Slamovits et al. [157] also observed the similar phenomenon of
swapping segments by the comparison of Antonospora locustae (formerly Nosema
locustae) and human parasite Encephalitozoon cuniculi.

From the theoretical point of view, sorting by transpositions (resp. sorting by
block-interchanges) is the problem of finding the minimum number of transpositions
(resp. block-interchanges), denoted as dtr(π) (resp. dbi(π)), for sorting an unsigned
permutation π . In 1996, Christie [42] solved the sorting by block-interchanges prob-
lem in polynomial time, while it has been of unknown complexity for the problem
of sorting by transpositions so far. However, it is interesting that the two problems
both have equivalence between sorting linear permutations and circular ones, which
can be shown by a simple observation. Below we will first introduce the history of
several approximation algorithms for the transposition problem and some efficient
implementations. Then, there are two approaches for optimally solving the block-
interchange problem and simultaneously, two websites of ROBIN [121] and SPRING
[117] can automatically find the rearrangement scenario among two or more homol-
ogous sequences as their input.

4.1 Sorting by Transpositions

In the late 1980s, Aigner and West [6] considered two rearrangement problems
whose operations can be regarded as variations of the transposition. One is the re-
striction of operations by removing the leading element and reinserting it somewhere
in the permutation. The other is an analogous restriction of above operation, except
the leading element is always reinserted into the position equal to its value, e.g.,
3 4 1 2 ⇒ 4 1 3 2. As regards the sorting by transpositions problem, it was first
studied by Bafna and Pevzner [12], who primarily derived a 1.75-approximation al-
gorithm and further improved to a factor of 1.5 with running time O(n2).

Since no transposition can change the signs of elements when it acts on a per-
mutation, all permutations discussed here are unsigned. Nevertheless, the breakpoint
graph G(π) of π is established by imitation of a signed permutation 	π , in place of
the construction introduced in Section 2. In other words, we replace each element x

in π by 2x − 1 and 2x, and add π0 = 0 and π2n+1 = 2n + 1 to π . The remainder of
the procedure on the connections of black and gray edges is the same as the break-
point graph of 	π . Besides, let the size of a cycle in G(π) be the number of gray edges
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it contains. A cycle is odd if its size is odd and denote the number of odd cycles in a
permutation π as codd(π). Then, sorting π by transpositions is equivalent to increas-
ing the number of odd cycles to the maximum because all cycles in G(I) are odd.

Bafna and Pevzner demonstrated that dtr(π) � (n + 1 − codd(π))/2, where the
lower bound was enhanced to (n + 1 − codd(π))/2 + �h(π)/2� [44], and developed
an algorithm to sort π in at most 3

4 (n + 1 − codd(π)) transpositions, thereby ensur-
ing an approximation guarantee with ratio 1.5. Subsequent works mainly focused
on simplifying the approximation algorithm mentioned above. Christie [44] gave a
somewhat simpler algorithm with the same approximation ratio, but a bad running
time of O(n4). Next, Hartman and Shamir [90] first undertook the transposition prob-
lem on circular permutations, and obtained a simple approximation algorithm despite
the same running time and ratio as the result of Bafna and Pevzner. In order to tackle
circular unsigned permutations, they also constructed the breakpoint graph of them,
which is analogous to G(π), as shown in Fig. 19. Specially, they also proposed the
same result of ratio 1.5 and O(n2) time for the sorting by transpositions and transre-
versals problem, where a transreversal inverts one of two transposed segments [91].

FIG. 19. An example of permutation πc = (1 6 5 4 7 3 2) can be sorted with 4 transpositions pro-
duced by the algorithm of Hartman and Shamir [90]. Each exchanged segment of a transposition is an
intermediate region delimited by two short lines placed on two black edges in G(πc), and indicated by
the underline in πc as well.
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Furthermore, Walter et al. [167,169] developed implementations and slightly im-
proved the results obtained by three algorithms mentioned late for transposition
problem. Recently, an outstanding work presented by Elias and Hartman [67] is a
1.375-approximation algorithm using the aid of a computer to systematically gen-
erate the proofs. It improves a ten-year-old ratio 1.5 of finding dtr(π) obtained in
1995. On the other hand, Guyer, Heath and Vergara [84] provided several heuristic
approaches and experiments of this problem.

The transposition diameter Dtr(n) of the symmetric group Sn, which is the maxi-
mum number of dtr(π) among all permutations π of size n, is still unknown. Bafna
and Pevzner [12] presented that 3

4n is an upper bound for Dtr(n), which was reduced
to �(2n − 2)/3� for n � 9 by Eriksson et al. [71]. Christie [44], Eriksson et al. [71],
and Meidanis, Walter and Dias [127] independently gave a lower bound of �n/2�+1
by showing that the transposition distance between a permutation and its reverse is
�n/2� + 1. Furthermore, Elias and Hartman [67] provided the exact diameters for
some kinds of permutations and an upper bound of 11�n/24� + �3n/3 mod 8

2 � + 1
on the diameter of 3-permutation, which is a special collection of permutations such
that all cycles in G(π) of a permutation π have length 3. Also, this upper bound is
the basis of obtaining ratio 1.375 for sorting by transpositions problem.

In addition, by restricting the operation to prefix transposition of the form
tr(1, i, j) for 1 < i < j � n, Dias and Meidanis [59] obtained a 2-approximation
algorithm for the problem of determining the minimum number of prefix transposi-
tions to sort π . They conjectured that the diameter of prefix transposition distance
is n − �n/4� and also presented several tests to support it. Subsequently, Fortuna
and Meidanis [77] gave a complete proof to show dpref(π) = n − �n/4� when
π = n n − 1 . . . 1, i.e., a reverse permutation of I .

4.2 Sorting by Block-Interchanges
As to block-interchange, Monammed and Subi [132] first mentioned it in 1987

to the best of our knowledge. Their problem is how can we effectively swap two
non-overlapping blocks of continuous elements by using a minimum number of
constrained block-interchanges of exchanging two elements at a time. For example,
given the permutation π = 1 8 9 5 6 7 2 3 4 10, how to sort it by using the minimum
number of constrained block-interchanges, such as swapping the elements 8 and 2.
They exactly solved the problem and Fig. 20 is an example of their algorithm.

The sorting by block-interchanges problem was first studied by Christie [42], who
gave an O(n2)-time algorithm for optimally solving this problem based on the break-
point graph. He also determined the diameter of block-interchange distance, which
is �n/2�. Figure 21(b) is an example of his algorithm for sorting π = 4 2 1 3 6 5 8 7.
Moreover, Lin et al. [116] studied the same problem on circular chromosomes based
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FIG. 20. The two swapping blocks are represented by the boldface integers. Let the number of ele-
ments in two swapping blocks be S1 and S2, respectively and the middle block between S1 and S2 be M ,
which may be zero. Then Monammed and Subi [132] showed that the minimum number of constrained
block-interchanges, required to swap two blocks in this example, is S1+S2+M−gcd(S1+M,S2+M) =
2 + 3 + 3 − gcd(5, 6) = 7.

FIG. 21. (a) A circular chromosome is taken as a permutation with group form in algebra, and the
effect of a block-interchange is modeled as the result of composition of two 2-cycles indicated by the
underline; (b) The permutation π is optimally sorted by the algorithm of Christie [42] with (n + 1 −
c(π))/2 = 4 block-interchanges, where c(π) is the number of cycles in G(π); (c) The permutation πc

can be optimally sorted by (n − f (I (πc)−1))/2 = (8 − 2)/2 = 3 block-interchanges deriving form
the algorithm of Lin et al. [116], where f (I (πc)−1) denotes the number of disjoint cycles in the cycle
decomposition of I (πc)−1.
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on the permutation group in algebra. Here we somewhat abuse the notation of per-
mutation, since it appears in both permutation group in algebra and traditional model
of genome rearrangement problems.

In their model, chromosomes correspond to permutations in group theory and
block-interchange corresponds to two particular 2-cycles. Besides, the effect of ap-
plying a block-interchange to a chromosome is modeled as permutation composition
(function composition) of two 2-cycles to πc, as illustrated in Fig. 21(a). Their strat-
egy is to decompose I (πc)−1, where (πc)−1 is the inverse permutation of πc, and
I (πc)−1 is also a permutation in group. Even if starting from circular chromosomes,
they also presented the equivalence between sorting linear permutations and circular
ones. Figure 21(c) is an example of their algorithm for sorting πc = (4 2 1 3 6 5 8 7).
From their experimental results, Lin et al. concluded that the block-interchange
events seem to play a significant role in the evolution of three vibrio species, V. vul-
nificus, V. parahaemolyticus and V. cholerae.

A website, called ROBIN, was developed by Lu et al. [121] for the sorting by
block-interchanges problem. Instead of gene order, they use the order of landmarks
to represent sequences and compute the block-interchange distance for each pair of
them. ROBIN can automatically identify the Locally Collinear Blocks (LCBs) for
representing the landmarks among input sequences by integrating the program of
Darling et al. [58]. At the same time, Lu et al. repeated the experiment of Lin et al.
and also obtained the coincident result.

5. Sorting by Translocations

We have introduced three kinds of events, reversal, transposition and block-
interchange in previous sections, which all act on a single chromosome. In this
section, we are interested in the translocation event acting on two segments of a
multichromosomal genome, where the two segments belong to two different chro-
mosomes. Before formulating this operation, some background must be introduced
first to describe what the corresponding situation in biology is.

For a start, depending on the position of centromere along the length of a chromo-
some, chromosomes are classified into two types. One is the acrocentric chromosome
in which the centromere occurs at one end of the chromosome, while the other is the
metacentric chromosome whose centromere approaches the middle of chromosome
(Fig. 22). Within a genome, every chromosome is either acrocentric or metacentric
and furthermore, in acrocentric chromosome, there is a reading direction according
to the location of centromere.

In the early 1930s, Creighton and McClintock [56] presented an elegantly simple
experiment on Zea mays to show the interactions of two allelomorphic factors in the
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FIG. 22. (a) The structure of a chromosome [2]; (b) Representation of the 23 paired chromosomes (the
chromosomes X and Y are paired) of the human male, where the chromosome 6 is a metacentric chro-
mosome that constitutes about 6% [134] and the chromosome 13 is the largest acrocentric chromosome
constituting about 4% of the human genome [62].

same linkage group accompanied by cytological and genetical crossing-over. Even
if there was no clear mention about translocation events, from the description of
their discovered phenomenon, it should be the first work related to translocations.
Recently, Coe and Kass [48] reviewed the data surrounding the paper of Creighton
and McClintock and provided a perspective on the significance of their findings.
Translocation events occur as frequently as reversals and are commonly observed
in virus [96], bacterium [100], yeast [63] and mammalian [172,110]. In particular,
Courtay-Cahen, Morris and Edwards [55] demonstrated that the translocation event
appears in breast cancer, and from clinical diagnosis on a patient, Heller et al. [93]
reported that there is a complex translocation event between the two homologue
chromosomes 5 in Philadelphia negative chronic myelogenous leukemia (CML).

On the theoretical progress, given two multichromosomal genomes Π and Γ ,
which share the same set of genes, the sorting by translocations problem is find-
ing the minimum number of translocations, denoted as dtl(Π), for transforming Π

into Γ . Here, Π = {π(1), . . . , π(N)} and Γ = {γ (1), . . . , γ (M)} are genomes con-
sisting of N and M chromosomes respectively, and π(i) = π(i)1 π(i)2 . . . π(i)ni

composes of ni genes in the ith chromosome (γ (i) is similar). Particularly, direc-
tions of each chromosome are irrelevant, i.e., π(i) = −π(i).
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Kececioglu and Ravi [108] first noticed this problem and provided two approxima-
tion algorithms with respect to two types of translocations in directed and undirected
model. Given two chromosomes X = X1X2 and Y = Y1Y2, a prefix-prefix translo-
cation exchanges X1 and Y1, and a prefix-suffix translocation exchanges X1 and Y2,
as illustrated in Fig. 23(a). Note that one of the two swapped segments may be empty.
For immediately grasping the definition, Fig. 23(b) is an example of a parsimonious
scenario obtaining from the tool developed by Feng, Wang and Zhu [73] to transform
Π into Γ by translocations.

The directed model concerns acrocentric chromosomes and allows only prefix-
prefix translocations. In other words, there are no orientations in either genes or
chromosomes. The other is undirected model, which deals with metacentric chromo-
somes and allows both prefix-prefix and prefix-suffix translocations. Signed data are
considered only in the case of chromosomes with no absolute reading directions, i.e.,
the undirected model. In both the directed and undirected models, Kececioglu and
Ravi had 2-approximation algorithms for sorting by translocations problem which
runs in O(k2N2) time, where N is the number of chromosomes and k is the maximum
number of genes among all chromosomes. Cui, Wang and Zhu [57] recently im-
proved the approximation ratio to a factor of 1.75. Furthermore, if the two swapped

FIG. 23. (a) There are two types of translocations on signed chromosomes. Notice that directions of
each chromosome are omitted for considering the unsigned chromosomes; (b) An example presents a
parsimonious series of translocations for transforming Π into Γ acquired from the website CTRD [73].
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segments of a translocation are restricted to be equal-length, Kececioglu and Ravi
proposed an exact algorithm with O(kN) time for both two models.

Later, Hannenhalli [85] studied the most common type of translocation, reciprocal
translocation, in the direction model, where the four segments, X1, X2, Y1 and Y2,
are assumed to be all non-empty. His analysis was also based on the breakpoint graph
and omitted the existence of centromere for simplicity. Hannenhalli exactly solved
this problem by providing an algorithm with O(n3) running time and a formula for
dtl(Π), which can be further computed in linear time from a recent study proposed
by Li et al. [113]. Afterward Wang et al. [170] gave an algorithm running in O(n2)

time to show the optimal series composed of transformations, which improved the
analogous result of algorithm with O(n2 log n) time presented by Zhu and Ma [181].
However, the translocation distance calculated by Hannenhalli’s algorithm may have
an unexpected error leading to failure in finding the parsimonious scenarios of some
cases. Recently, Bergeron, Mixtacki and Stoye [23] corrected the error and gave a
new algorithm for sorting by translocations problem.

6. Sorting by Multiple Operations

In nature, considering different events during the evolution of species is more gen-
eral in reflecting the real situation. For some group of species, rearrangement events
appear to be strongly biased toward one type of event, but most of the time, all
types of events can occur. Reversals are the most common events in the single chro-
mosome, while translocations are the most general events in the multichromosomal
genome. Even so, they usually accompany fissions, fusions, transpositions, block-
interchanges, etc. Below we will introduce several combinations of operations in
sorting the permutations and moreover, by assigning the weights to each operation,
the evolutionary process can favor or disfavor some events, thereby exhibiting more
diverse phylogenetic paths.

6.1 Reversal + Transposition/Block-Interchange
Sorting by reversals and transpositions is the problem of finding the cheapest se-

ries for transforming the permutation 	π (resp. π) into 	I (resp. I ) by using reversals
and transpositions. The minimum number of reversals and transpositions is conven-
tionally taken as the distance between two permutations and denoted by dr+tr(	π).
A computational approach to analyze this problem was pioneered by Sankoff [148].
He designed a program DERANGE based on the techniques of alignment reduc-
tion and a branch-and-bound search. Figure 24 is an example of how the alignment
reduction can help the sorting process.
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FIG. 24. (a) An example of alignment reduction. Dotted lines represent elements with same direction
in both permutations, while solid lines indicate elements with opposite direction; (b) A sorting example
of three reversals simply shows how to use the alignment reduction.

Furthermore, DERANGE can allow user-specified weights wr to reversals and
wtr to transpositions, and look for the parsimonious series having the minimum
sum of weights. Sankoff experimented on mitochondrial data of fungi with sev-
eral possibilities of weights and concluded that assigning equal weights to reversals
and transpositions is appropriate. Next, Blanchette, Kunisawa and Sankoff [30] im-
proved the performance and provided a newer version DERANGE II [1]. They
tested 37 homologous genes in human and Drosophila, and further concluded that
2wr < wtr < 2.5wr , obtaining by comparing Drosophila–human permutation with
random permutation, is an appropriate weighting in their experiment.

On the other hand, Walter, Dias and Meidanis [168] gave 3-approximation algo-
rithm for computing dr+tr(π) (unsigned case) and 2-approximation algorithm for
calculating dr+tr(	π) (signed case). Apart from the reversal and transposition event,
Gu, Peng and Sudborough [82] added inverted transposition event as the transre-
versal (Fig. 25) into the consideration, and proposed a 2-approximation algorithm
for this problem on signed permutations. Subsequently, Lin and Xue [115] also pre-
sented a 2-approximation algorithms for the two problems, sorting by reversals and
transpositions problem and sorting by reversals, transpositions and inverted trans-
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FIG. 25. Examples present the effects of transposition, inverted transposition and both inverted trans-
position where the two swapped segments are −5,+4 and −3 indicated by underlines.

positions problem. Furthermore, they allowed a special event called both inverted
transposition, which inverts two adjacent segments at a time (Fig. 25), and presented
a better 1.75-approximation algorithm for the problem of sorting by reversals and
three types of transpositions shown in Fig. 25.

When 	π = −1 −2 . . . −n, Meidanis, Walter and Dias [129] found that dr+tr(	π) =
�n/2� + 2, for n � 3 and conjectured that this value is the diameter on the ge-
nomic distance. On the other hand, the combination of operations, reversal and
(inverted) transpositions, was favored by several researchers when considering dif-
ferent weights to operations. Eriksen [70] designed a simulation to show that the
suitable weight to reversal is 1 and to (inverted) transposition is 2, and also pro-
posed a (1 + ε)-approximation algorithm for the sorting by reversals and (inverted)
transpositions problem under such a weight assignment [69]. In particular, the ap-
proach proposed by Miklós [130] can estimate the weighted sum of reversals and
(inverted) transpositions without specific weights to them beforehand by introduc-
ing the Markov Chain Monte Carlo (MCMC) method, based on a stochastic model
of the three operations. Recently, Miklós, Ittzés and Hein [131] implemented a web
server ParIS for a Bayesian analysis on the same three operations. Moreover, Erdem
and Tillier [68] considered genome rearrangement as a planning problem, and al-
lowed restrictions on the number/cost of events, the length of involved segments and
additional constraints to guide the search. With this planning approach, they con-
structed the phylogenetic tree of chloroplast genomes of Campanulaceae (flowering
plants) according to their reversal and transposition distance matrix. The groupings
of chloroplast genomes on their tree coincided with the ones in the consensus tree
proposed by Cosner et al. [53, Fig. 4].

Since there was less progress on the problem of sorting by reversals and transpo-
sitions, and transposition is a special case of block-interchange, a feasible approach
is to consider the problem of sorting by reversals and block-interchanges. When the
weight to reversals is 1 and to block-interchanges is 2, Lin, Lu and Tang [118] solved
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it by proposing a simple algorithm with O(n2) running time. Their algorithm first dis-
tinguished between oriented and unoriented components, and independently sorted
them by reversals and block-interchanges, respectively. Furthermore, the number of
block-interchanges in their sorting series is shown to be minimum under all optimal
sorting sequences. Such a sorting series implicitly suggests that the scenario derived
from it meets the biological observation that transpositions are rare in contrast to
reversals [16].

6.2 Reversal + Translocation (Including Fusion and Fission)

Given two multichromosomal genomes Π and Γ as defined above, the problem
considered in this section is to find a minimum number of operations composed of
reversals and translocations for transforming Π into Γ . In Section 5, using the recip-
rocal translocation with two non-empty swapped segments in two chromosomes can
lead to a polynomial-time algorithm, hence being adopted here. Moreover, two spe-
cial operations are additionally considered and described as follows: One is fusion,
which concatenates two chromosomes 	π(i) and 	π(j) resulting in a new chromosome
of 	π(i)1 	π(i)2 . . . 	π(i)ni

	π(j)1 	π(j)2 . . . 	π(j)nj
and an empty chromosome, and the

other is fission in which one chromosome 	π(i) is broken into two chromosomes
	π(i)1 	π(i)2 . . . 	π(i)j−1 and 	π(i)j 	π(i)j+1 . . . 	π(i)n. Clearly, the fusion event reduces
the number of chromosomes, whereas the fission event increases the number of (non-
empty) chromosomes. The fusion and fission events bring about the difference in the
number of chromosomes between two genomes, which is rather common in mam-
malian evolution. For example, the human genome has 46 chromosomes, while the
mouse’s contains 40 chromosomes.

Kececioglu and Ravi [108] first analyzed rearrangements of multichromosomal
genomes, and proposed a 1.5-approximation algorithm based on the result of Bafna
and Pevzner [11] for sorting by reversals alone. Nevertheless, they assumed that all
chromosomes in a genome have the same number of genes, which conflicts with
many organisms, e.g., human and mouse. Therefore, the subsequent model, includ-
ing fissions and fusions, was first proposed by Hannenhalli and Pevzner [87], who
gave the duality theorem for computing the genomic distance in terms of terrible 7
parameters associated with a polynomial-time algorithm. Their idea is to concate-
nate N (resp. M) chromosomes of Π (resp. Γ ) into a new permutation 	π (resp. 	γ )
first, and then to mimic genomic sorting of Π into Γ through transforming 	π into
	γ by reversals (Fig. 26). However, the difficulty of this approach introduced N !2N

different concatenates for Π and Γ , and only some of them, called optimal concate-
nates, could mimic an optimal sorting of Π into Γ . Hannenhalli and Pevzner used
the techniques called flipping and capping to find an optimal concatenate from the
numerous types of concatenates.
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FIG. 26. Two types of translocations can be individually mimicked by a reversal in a concatenated
permutation. Notice that X = −X for a chromosome X.

Although the sorting by reversals and translocations problem was solved by Han-
nenhalli and Pevzner, there are some problems in constructing the rearrangement
scenarios. First, they claimed that the rearrangement scenario can be exhibited from
the sorting series of reversals obtained by solving the problem of sorting by rever-
sals, but there is a gap in the construction. Next, the genomic distance dr+tl(Π, Γ )

between Π and Γ is symmetric, i.e., dr+tl(Π, Γ ) = dr+tl(Γ,Π), but their algo-
rithm requires that Π has fewer number of chromosomes than Γ when computing
dr+tl(Π, Γ ). Finally, their strategy is based on the algorithm for sorting only by re-
versals, and we are interested in whether a better algorithm for sorting by reversals
problem leads to a better algorithm for this problem. With regard to the three prob-
lems, Tesler [161] closed the gap in construction, modified the unusual computation
of dr+tl(Π, Γ ), and improved the running time to compute genomic distance to O(n)

and rearrangement scenario to O(n2) by combining the algorithm of Bader et al. [9].
In addition, Ozery-Flato and Shamir [138] found that there is a case in which the two
polynomial algorithms mentioned above will fail, and presented a revised duality
theorem associated with an algorithm to deal with the problem.

6.3 Other Considerations
In this section, we will introduce two rearrangement problems with unequal

weights to their sorting operations. One of the interesting considerations is the
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FIG. 27. (a) A genome with two chromosomes is modeled as a permutation with two cycles (1 5 4 3)
and (2 7 6); (b) Fission, fusion and transposition can be mimicked by 2-cycles and a 3-cycle, respectively.

weighted composing of fusion, fission and transposition on circular unsigned mul-
tichromosomes, which was proposed by Meidanis and Dias [126]. They obtained
a polynomial time algorithm for the minimum weighted series of three operations
with transpositions weighted twice as much as fusions and fissions to transform one
genome into another, which is based on the classical results of permutation group
in algebra. In their model, a permutation may have several cycles to represent a
multichromosomal genome (Fig. 27(a)) in which particularly all chromosomes are
circular. The fusion or fission action on π is mimicked by the composition of a spe-
cial 2-cycle to π , while the effect of a transposition corresponds to the composition of
a 3-cycle to π (Fig. 27(b)). Therefore, sorting by fissions, fusions and transpositions
problem is reduced to a special decomposition of π to a series of 2- and 3-cycles,
which has been well studied in algebra. Later, they made an attempt to assign an ar-
bitrary weight wtr to transposition and concluded that this problem is at least as hard
as the sorting by transpositions problem. Finally, they obtained an approximation
algorithm with guaranteed ratio 2/wtr.

Recently, Yancopoulos, Attie and Friedberg [178] proposed an algorithm for solv-
ing the problem of sorting by reversals, translocations (including fusions and fis-
sions) and block-interchanges on multi-linear chromosomal genomes. They used
an universal double-cut-and-join operation that accounts for reversal, fission, fu-
sion and translocation, but fails in describing the block-interchanges. In order to
avoid complicated analysis, they assigned weight 1 to all operations except 2 to
block-interchanges, which also is consistent with the biological observation that
block-interchanges are relatively rare.

7. Experimental Results

A complete experimental procedure on genome rearrangement is starting with the
sequence data as its input, next looking for genes, conserved segments or something
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for representing landmarks among the input sequences, and finally computing the
distance matrix according to the considered operations. Sometimes, when the se-
quences are well annotated in the database, a set of homologous genes among them
can be easily obtained from the biologists by identifying the gene functions, names
or even similarity of gene segments. However, because of many reasons such as an-
notation errors, lack of annotations or insufficient knowledge in biology, it is hard
to determine whether genes of two species are homologous or not. This problem
has greatly perplexed not only biologists, but also anyone who wants to study re-
lated researches. Therefore, the approach of comparative mapping, which allows the
observation of chromosomal segments conserved in both genomes since divergence
from a common ancestor, arises by using the techniques in biology, statistics, com-
puter sciences, etc. [32,41,179].

We consider the problem of sorting by weighted reversals and block-interchanges,
where the weighted assignment is 1 to reversals and 2 to block-interchanges. In
order to obtain the genomic distances automatically, the optimal algorithm of Lin
et al. [118] is implemented by integrating the algorithm of Kaplan et al. [105]. More-
over, it seems that block-interchanges frequently appear in lower organisms from
previous researches, and hence, we will have two experiments on 18 species of Cam-
panulaceae and 29 γ -proteobacterial genomes for studying their evolutions in the
rest of this section.

7.1 Chloroplast in Campanulaceae

In general, the Chloroplast DNA (cpDNA) of land plants is highly conserved in
nucleotide sequence, gene content and order, and genome size. Chloroplast genomes
of photosynthetic angiosperms average about 160 kilobase pairs (kb) in size and
contain approximate 120 genes. The major disruption in gene order, such as caused
by inversions, inverted repeat and gene losses, is usually rare. Its relatively slow rate
of evolution makes it an excellent molecule for evolutionary studies [137].

We used gene maps released by Cosner et al. [54] to encode each of the 18 genera
and the outgroup Tobacco as a circular ordering of signed gene segments. Her analy-
sis suggested an unbelievable diversity of mutations, including inversions, insertions,
deletions, duplications (inverted repeats) and putative transpositions. Transpositions
in particular are only rare in the hypothesis of chloroplast evolution and therefore
the inference for the Campanulaceae is surprising. The variety of rearrangements far
exceeds the reports in any group of land plants, so that it is a challenge to determine
the exact number and the evolutionary sequence of rearrangement events.

However, in order to apply our algorithm, we have to remove an incompletely
mapped genus Roella from the dataset due to the lack of gene segment in some
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FIG. 28. Phylogenetic relationships among 18 genomes of Campanulaceae inferred from a breakpoint
distance (a), and a reversal and block-interchange distance matrix (b). Values at clades reflect the distance
among species. Too small distances are removed for readability of the whole tree. Asterisks in (b) represent
the major differences with comparing the phylogenetic tree of Cosner et al. [54, Fig. 3]. The up bar
indicates 2 breakpoints (a) or weight 2 of two reversals or a block-interchange (b) in the edge length of
tree.

experimental segments. Moreover, the genes suffering repeated regions, gene dupli-
cations and losses are all eliminated, thereby reducing the original 105 genes to 91
genes ultimately. The quantity of gene numbers is enough for the analysis of reversal
and block-interchange events, instead of reversals and putative transpositions in pri-
mary study. It deserves to be mentioned that previous researches have found that the
differences in Campanulaceae are mainly in the mutations of duplications, insertions
and the inverted repeats. Here, we bypass the effects of these mutations despite the
consequence of making certain pair of genera indistinguishable.
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We analyze the dataset of 18 circular genomes for their breakpoint distances,
and reversal and block-interchange distances. By calculating the matrices for two
distance measures, we further reconstruct the phylogenetic trees by means of the
distance-base method neighbor-joining [147] contained in PHYLIP package [72].
Although this method has no guarantee on the constructed tree, it has been widely
used up to now because it outputs a “better” tree topology than many tree con-
struction methods. Moreover, a tree drawing program NJplot [144] is used to draw
the phylogenetic tree according to the solution deriving from the neighbor-joining
method.

Our breakpoint tree (Fig. 28(a)) is very similar to the endpoint tree of Cosner
et al. [54, Fig. 2], even if we use different methods in constructing trees. How-
ever, in our reversal and block-interchange tree (Fig. 28(b)), there are four species
indicated by asterisks, which does not agree with that in the tree constructed by Cos-
ner et al. [54, Fig. 3]. The inconsistency may be caused by the disregard of other
mutations or methods for tree construction. Except the four divergent species, the
remaining genera of Campanulaceae are consistent with the result of Cosner et al.

7.2 γ -Proteobacteria
Within the Bacteria domain, the phylum Proteobacteria constitutes at present

the largest and most diverse phylogenetic lineage. The Proteobacteria contain a lot
of species, scattered over 5 major phylogenetic lines of descent known as the classes
“α-proteobacteria”, “β-proteobacteria”, “γ -proteobacteria”, “δ-proteobacteria” and
“ε-proteobacteria” with length about 1–8 megabase pairs (mb), where γ -proteo-
bacteria is the largest among these classes (at least 180 genera and 750 species).
Genome rearrangements have been studied in several bacterial groups, and of course
γ -proteobacteria is one of them, with inversions as one of the most frequent re-
arrangement types in interspecies comparisons.

Apart from the inversions and transpositions, there are other types of changes,
e.g., deletion, duplication or horizontal (or lateral) gene transfer, may disrupt the
gene order of γ -proteobacteria. The deletion and duplication events result in gaps
and redundant genomic segments, respectively when the genomes of two species
are compared. The horizontal gene transfer, sometimes named as recombination,
predominates the evolution of prokaryotic genomes and may produce insertions
throughout the genome. However, it is hard to include these changes beyond the abil-
ity of our algorithm. As usual, we ignore these effects for simplifying the experiment.

Recently, Belda, Moya and Silva [16] studied the breakpoint and inversion dis-
tance in 30 γ -proteobacterial complete genomes by comparing the order of 244
genes on the chromosome. They also presented the high correlation of two dis-
tance measurements by computing the correlation factor r = 0.996. Furthermore,
the genes they used for analyzing the proteobacteria are recorded in the supplemen-
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FIG. 29. Phylogenetic relationships among 29 γ -proteobacteria are inferred from a breakpoint dis-
tance (a), and a reversal and block-interchange distance matrix (b).

tary material of their paper, and thus can be conveniently available via the network.
In this experiment, we extract the gene orders of 29 γ -proteobacteria released by
Belda et al. as the input of our algorithm, and exclude S. flexneri 301 (sfl) from our
experiment as a result of its diversity in contrast with S. flexneri 2457T (sfx).

Figure 29 is our experimental results of two phylogenetic trees according to two
distance measures. Due to the same consideration in both breakpoint distance and
tree construction method (neighbor-joining) with that of Belda et al. [16, Fig. 5a],
Fig. 29(a) is almost identical to their result. As to considering reversals and block-
interchanges simultaneously, our tree in Fig. 29(b) seems to be superior than Belda
et al. [16, Fig. 5b] in spite of the high similarity of two tree topologies. The Shi.
flexneri (sfx) moves closer to E. coli (ecc, eco, etc.) in comparing two trees of Fig. 29,
where the result of Belda et al. has the same variation, and however, the She. oneiden-
sis (son) slightly changed its position in Belda et al. result, but not in ours. In other
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FIG. 30. Comparison of distance calculations on the dataset of 29 γ -proteobacteria with a correlation
coefficient of γ = 0.997.

words, two tree topologies in Fig. 29 are more coincident in contrast to the compari-
son between breakpoint and reversal trees of Belda et al. This is why our correlation
coefficient (γ = 0.997, see Fig. 30) is slightly higher than theirs (γ = 0.996 [16,
Fig. 1]).

8. Conclusions

In this chapter we have taken a few primary introductions toward understand-
ing the genome rearrangement problems. Almost all rearrangement events in this
area came up in discussing the history and recent progress, which are further sum-
marized in Table I. Not only theoretical analyses, but also biological evidences for
rearrangement events are mentioned to connect the theory and application. However,
there are still a lot of interesting topics related to the genome rearrangement but
not included in our discussion. For example, we may have constraints on the length
of inverted or transposed segments [17,122,123,136,159,166]. Furthermore, recent
researches focus on inferring a special scenario called perfect sorting, which con-
serves all common intervals during the transforming process [19,146]. As to multiple
genome rearrangement [149,177], the most mentioned problem is its special case, the
so-called median problem, which is to find a median for a set of permutations under
a specific genomic distance. Unfortunately, it has been shown to be NP-hard for both
the breakpoint [143] and the reversal [34] distance. Very recently, Bernt et al. [29]
proposed a heuristic algorithm for solving the median problem by considering only
reversals without breaking the common gene intervals.
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TABLE I
THE TABLE SUMMARIZES THE PROGRESS OF SOME GENOME REARRANGEMENT PROBLEMS COMING UP IN THIS CHAPTER

(Unsigned) Cycle de-
composition

Prefix
reversal

Reversal Prefix trans-
position

Trans-
position

Trans-
reversal

Block
interchange

Trans-
location

Fusion &
fission

1.4193 + ε-app. [114] �
2-app. [75] � 15

14 n � Dpref(π) � 5n+5
3 [80,94]

1.375-app. [27] � MAX-SNP hard [28], Dr(π) = n − 1 [11]
2-app. [59] �
1.375-app. [67] �n/2� � Dtr(π) [44,127] � Dtr(π) � 11�n/24� + �3 n/3 mod 8

2 � + 1 [67]

O(n2), O(n) [42,116] �
1.75-app. [57] MAX-SNP hard [182] �
3-app. [168] 1 1

O(n2), O(n) [120] 1 1

O(n2), O(n) [126] 2 1

(Signed) � 3
2 n � dpref(	π) � 2n − 2 [50]

1.5-app. [91] 1 1 1

1.5-app. [10] 1 1 < wt < 2 1 < wt < 2

O(n3/2√
log n ) [139], O(n) [113] �

� O(n3/2√
log n ) [160], O(n) [9], Dr(	π) = n + 1 [89]

2-app. [82,115,168] 1 1 � 1
2 n� � Dr+tr(	π) [129]

2-app. [82,115] 1 1 1
(1 + ε)-app. [69] 1 2

O(n2), O(n) [118] 1 Dr+bi(	π) = n − 1 [118] 2

1 O(n2), O(n) [138,161] 1 1

O(n2), O(n) [178] 1 2 1 1

If a column indicating an operation ρ has the sign “�,” then the corresponding row is the result of sorting by ρ problem. Otherwise, if a field contains
an integer, 1 or 2, then it corresponds to the sorting by multiple operations problem and moreover, the integer represents its weight. Besides, we list
two time complexities in a row if the corresponding problem is polynomial solvable, where the bigger one represents the running time of finding the
sorting series and the smaller expresses that of computing the genomic distance.
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Abstract
Comparative genomics is the analysis and comparison of genomes from differ-
ent species. In recent years, in conjunction with the growing number of available
sequenced genomes, this field has undergone a rapid expansion. In the current
survey, we review models and methods associated with four important research
topics in this area that have interesting computational and statistical components:
genome rearrangements, gene duplication, phylogenetic networks and positional
gene clustering. The survey aims at balancing between presenting classical re-
sults and promising new developments.
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1. Introduction

Advances in sequencing and comparative mapping have enable a new period in
biology referred to as the Genomics Era. The tremendous efforts invested into this
domain have provided the community with the complete sequence of whole genomes
for a wide range of organisms ranging from atypical bacteria living in harsh condi-
tions to large eukaryotic genomes such as Human [94] and Mouse [159].

Although the availability of these genomic sequences has facilitated great leaps
in our understanding of many biological processes, they have also highlighted the
complexity of fully deciphering genomes. Even questions as simple as determining
the exact number of genes in the human genome have turned out to be quite diffi-
cult [146]. In this context, it is of no surprise that more elaborate problems, such as
fully understanding how genes are being regulated (e.g. which genes are expressed,
when are they expressed, etc.), have remain very challenging. This last question in
particular is important because a lot of the animal diversity is thought to be harbored
in gene regulation [99]. Other similarly exciting questions will hopefully incite the
development of computational and statistical tools that will help further our compre-
hension of the forces that shape modern genomes.

Decoding the sequenced genomes is analogous to decoding a hard disk with no in-
formation about the file structure or even the type of information that is encoded. The
difference is that we expect the challenge of decoding the genome to be greater given
the complexity of the final product. In this setting, comparative genomics comes in



MODELS AND METHODS IN COMPARATIVE GENOMICS 61

as a powerful tool to contrast and recognize some of the features that play a crucial
role in the different genomes. By the identification of similarities and differences, the
hope is that we will gain a first handle on some of these important problems [124];
this is the field of Comparative Genomics.

The chapter focuses on mathematical and algorithmic aspects of four general
research topics in comparative genomics. In Section 2, we first introduce models
and methods used in the analysis of genome rearrangements. In this section we
present some of the similarity measures use to study gene order conservation across
genomes. This section also includes some of the details of the Hannenhalli–Pevzner
algorithm for computing the inversion distance between two genomes, probably
one of the strongest algorithmic result in computational molecular biology. We also
present two recently introduced alternative model for genome evolution: the block-
interchange and the double-cut-and-join operation. Finally, we summarize the recent
progress in genome rearrangement with gene family and with partial order genomes.
In Section 3, we summarize the mathematical models for dating both large scale ge-
nomic duplications and tandem duplications. In Section 4, we presents three different
network models for studying horizontal gene transfer, recombination and other retic-
ulations. We also summarize different methods for reconstructing these networks
from gene trees and sequences. In Section 5, we point out two basic statistical mod-
els for analytically testing positional gene clusters.

2. Genome Rearrangements

The study of genome rearrangements is the analysis of mutations affecting the
global architecture of genomes as oppose to local mutations affecting individual re-
gions. This type of analysis dates back to the early 1920s with pioneering studies
on the evolution of the Drosophila genome (e.g. [114]). To study genome rearrange-
ments, it is in general sufficient to view genomes as permutations on a set of markers
common to the group of genomes. Different types of marker can be used for this
purpose but the key is that these markers must be unambiguously identifiable across
genomes. In most of the current section (except Section 2.4), we restrict the com-
parison to a common set of markers such that each marker is found exactly once in
each genome. See also Section 3 for other results where this restriction is alleviated
to allow unequal marker content.

An obvious set of markers than can be use for this purpose is the set of genes
observed in the group of genomes. Based on sequence similarity, a set of homologous
genes can be identified across genomes and by labeling these genes from 1 to n, one
can obtain permutations that encapsulate the relative order of these markers in the
genomes. If available, the relative orientation can also be associated to the set of
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FIG. 1. Coding genes on the Human and on the Earthworm mitochondria circular genomes (mtDNA).
The genes are the same but their order differs. We encapsulate these differences with permutations by
labeling the genes from 1 to n = 13 using Human as a reference, starting with COX1 and going clockwise
until ND2. This leads to the two permutations displayed inside the circular genomes (I for Human and
π for Earthworm). The only gene transcribed on the reverse strand in these two genomes is ND6 in
Human but because this genome is used as the reference permutation, the “-” is associated to ND6 only in
Earthworm.

markers (e.g. for genes-based markers, the direction of transcription can be used)
and leads to signed permutations. Otherwise unsigned permutations will be used.
For an example with two small mitochondria DNA (mtDNA) genomes and their
signed permutations see Fig. 1. By convention, since the labeling is arbitrary, we
set one of the permutation to be the identity I . For instance, with two genomes,
we get:

I = 1 2 3 . . . n, π = π1 π2 π3 . . . πn.

Although genes represent a natural choice of markers, we note that in many cases
it is also interesting to use other types of markers (e.g. strictly based on sequence
similarity), especially in large eukaryotic genomes where genes cover only a small
fraction of the genomes (see [25,116]). In the remainder of this chapter we will use
the terms gene and marker interchangeably.

We will first review different measures that can be used to characterize the extent
of differences between two genomes. Next, we will show that alternative models of
genome rearrangements lead to different challenges when computing edit distances.
Finally, we will present some of the extensions of these pairwise approaches to mul-
tiple genomes.
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2.1 Similarity Measures Between Two Genomes

2.1.1 Breakpoint Distance

The simplest unit for the comparison of gene orders is the adjacency, i.e. a pair
of adjacent markers common to both genomes. To obtain a distance measure, we
actually use breakpoints which are pairs of markers adjacent in one genome but not
the other. This easily calculated measure was first explicitly presented in the context
of genome rearrangements by Watterson et al. 1982 [162]. Formally, we get:

Definition 1. The breakpoint distance, b(π), is the number of pairs (πi, πi+1),
0 � i � n such that (πi+1 − πi) �= 1 where π0 = 0 and πn+1 = n + 1.

In the example shown in Fig. 1, there are 9 such pairs:

(3, 5), (5,−10), (−10, 11), (11, 4), (4, 9), (9, 7), (8, 12), (12, 6), (6, 13),

and so b(π) = 9. See also Fig. 2.

2.1.2 Common and Conserved Intervals

Recently, two new criteria were introduced as an extension of the breakpoint dis-
tance to measure the similarity between sets of genomes: common intervals [156,
77] and conserved intervals [10]. We introduce these definitions in the context of
two general permutations of size n, π and γ . When one of these permutation is the
identity we have γ = I as above.

Definition 2. A common interval is a set of two or more integers that is an interval
in both π and γ .

FIG. 2. Breakpoints, common and conserved intervals for π , the permutation associated with Earth-
worm (see Fig. 1). The 9 breakpoints are indicated using crosses above the permutation. The 14 common
intervals are shown below the permutation. The 5 conserved intervals correspond to a subset of the com-
mon intervals and are shown in black.
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Uno and Yagiura [156] presented three algorithms for finding all common intervals
between two permutations π and γ : two simple O(n2) time algorithms and one more
complex O(n+K) time algorithm where K �

(
n
2

)
is the number of common intervals

between π and γ . Heber and Stoye [77] extended on this result by developing an
algorithm to find the common intervals in a family of m permutations in optimal
O(nm+K) time where K is the number of common intervals in the m permutations
defined similarly to Definition 2.

To continue with the example of the two mtDNA shown in Fig. 1, we see that these
two permutations harbor 14 common intervals displayed only in π in Fig. 2. For two
permutations of size n, the maximum number of common intervals is

(
n
2

)
and so, in

this case, the maximum would have been
(13

2

) = 78 common intervals.
We now define a conserved interval between two arbitrary permutations as intro-

duced by Bergeron and Stoye [10].

Definition 3. A conserved interval [a, b] is an interval such that a precedes b, or
−b precedes −a in both π and γ , and the set of elements, without signs, between a

and b is the same in both π and γ .

Conserved intervals are common intervals with additional constraints on their end-
points. In Fig. 2 we see that 5 of the 14 common intervals of the two mtDNA also
qualify as conserved intervals.

Although the definition of conserved intervals may seem unnatural at first, it is
intimately connected to the concept of subpermutations [73] in the Hannenhalli–
Pevzner theory (see Section 2.2). Moreover, it was shown that it can be used to
efficiently sort permutations by reversals [11].

2.2 Edit Distance Between Two Genomes
In the early 90s, a series of paper revived the interest in the problem of computing

the edit distance between a pair of genomes under different edit operations [137,
89,14]. This problem had been posed by Watterson et al. [162] and even earlier in
the genetics literature (e.g. [150]). Examples of edit operations that are frequently
considered are displayed in Table I. These operations can be considered separately
or in different combinations and lead to different models of evolution of gene order.
We now review some of the key results in this area and also present recent advances.

2.2.1 Reversal Distance
The reversal-only, or inversion-only, edit distance is probably the most studied

edit distance in the context of gene order. Initially, we will focus on the problem of
computing the reversal distance between two signed permutations.
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TABLE I
EXAMPLES OF CHROMOSOMAL MUTATIONS, OR EDIT OPERATIONS, AFFECTING GENE ORDER

Mutation type Before After

Reversal 1 2 3 4 5 6 7 8 9 10 ⇒ 1 2 3 4 −7 −6 −5 4 8 9 10
Translocation 1 2 3 4 5 6 ⇒ 7 8 5 6

7 8 9 10 1 2 3 4 9 10
Fusion 1 2 3 4 5 6 ⇒ 1 2 3 4 5 6 7 8 9 10

7 8 9 10
Fission 1 2 3 4 5 6 7 8 9 10 ⇒ 1 2 3 4 5 6

7 8 9 10
Transposition 1 2 3 4 5 6 7 8 9 10 ⇒ 1 4 5 2 3 6 7 8 9 10
Block interchange 1 2 3 4 5 6 7 8 9 10 ⇒ 1 6 7 8 4 5 2 3 9 10

Definition 4. Given a permutation π , a reversal ρi,j , 1 � i, j � n, applied to π

produces:

ρi,j (π) = π1 . . . πi−1 −πj . . . −πi πj+1 . . . πn

In this context, the reversal distance, drev(π), is defined as the minimum number of
reversals required to convert π into the identity permutation I . Since every reversal
can reduce by at most two the number of breakpoints, a trivial first result is the
following:

Lemma 1. [87]

drev(π) � b(π)

2
.

To obtain an exact formula to compute the reversal distance, we now present
a summary of the terminology frequently referred to as the Hannenhalli–Pevzner
theory [14,74]. First, we convert π , a signed permutation, into π ′, an unsigned per-
mutation, by mimicking every directed element i by two undirected elements it and
ih representing the tail and the head of i. Since π is a permutation of size n, π ′ will
be a permutation of size 2n. The permutation π ′ is then extended by adding π ′

0 = 0
and π ′

2n+1 = n + 1. Next, we construct the breakpoint graph associated with π .

Definition 5. The breakpoint graph of π , G(π), is an edge-colored graph with 2n+2
vertices. Black edges are added between vertices π ′

2i and π ′
2i+1 for 0 � i � n. Grey

edges are added between ih and (i + 1)t for 0 < i < n, between 0 and 1t , and
between nh and n + 1.
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In the breakpoint graph, black edges correspond to the actual state of the permu-
tation while grey edges correspond to the sorted permutation we seek. See Fig. 3 for
an example.

Bafna and Pevzner [14], and later Hannenhalli and Pevzner [74], showed that
G(π) contains all the necessary information for efficiently sorting the permutation π .
The first step is to look at the maximal cycle decomposition of the breakpoint graph.
Finding the maximal cycle decomposition of a graph in general can be a very difficult
problem but, fortunately, because of the way the breakpoint graph was constructed
for a signed permutation, each vertex has degree two and so the problem is trivial.
Suppose c(π) is the maximum number of edge-disjoint alternating cycles in G(π).
The cycles are alternating because, in the breakpoint graph of a signed permutation,
each pair of consecutive edges always has different colors. We then get:

Lemma 2. [14,89]

drev(π) � n + 1 − c(π).

An edge in G(π) is said to be oriented if it spans an odd number of vertices (when
the vertices of G(π) are arranged in the canonical order π ′

0, . . . , π
′
2n+1). A cycle is

said to be oriented if it contains at least one oriented gray edge. Cycles which are
not oriented are said to be unoriented unless they are of size 2 in which case they
are said to be trivial. The term oriented comes from the fact that if we traverse an
oriented cycle we will traverse at least one black edge from left to right and one black
edge from right to left. In the breakpoint graph shown in Fig. 3(I), there are only two
non-trivial cycles: one where the gray edges are displayed using solid lines and one
where the gray edges are displayed using dashed lines. The cycle with solid lines is
unoriented since it does not contain an oriented edge but the cycle with dashed lines
is oriented because it contains an oriented edge (e.g. (10h, 11t )).

For each grey edge in G(π) we will now create a vertex ve in the overlap graph,
O(G(π)). Whenever two grey edges e and e′ overlap or cross in the canonical repre-
sentation of G(π), we will connect the corresponding vertices ve and ve′ . A compo-
nent will mean a connected component in O(G(π)). A component will be oriented
if it contains a vertex ve for which the corresponding grey edge e is oriented. As for
cycles, a component which consists of a single vertex (grey edge) will be said to be
trivial. In Fig. 3(I), there are 5 trivial components and one larger oriented component
since at least one of its grey edge is oriented. The challenge in sorting permutations
comes from unoriented components.

Unoriented components can be classified into two categories: hurdles and pro-
tected nonhurdle. A protected nonhurdle is an unoriented component that separates
other unoriented components in G(π) when vertices in G(π) are placed in canoni-
cal order. A hurdle is any unoriented component which is not a protected nonhurdle.
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FIG. 3. (I) Breakpoint graph associated with the two permutations from Fig. 1. Black edges are shown
using think lines. All other lines (both solid and dashed) correspond to grey edges. (I–VII) A sequence of
sorting reversals. The fragment of the permutation to be inverted is shown using a box. Dashed lines are
used to highlight the cycle that will be affected by the reversal. Black edges represent the “current” state
of the permutation to be sorted while grey edges represent the “desired” state corresponding to a sorted
permutation. Note that in the final stage (not shown) the black and grey edges are perfectly matched.
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A hurdle is a superhurdle if deleting it would transform a protected nonhurdle into
a hurdle, otherwise it is said to be a simple hurdle. Finally, π is said to be a fortress
if there exists an odd number of hurdles and all are superhurdles in O(G(π)) [143].
We then get the main result of the HP theory:

Theorem 1. [72]

drev(π) = n + 1 − c(π) + h(π) + f (π),

where h(π) is the number of hurdles in π and f (π) is 1 if π is a fortress and 0
otherwise.

For instance, using Fig. 3(I), we see that the reversal distance between Human
mtDNA and Earthworm mtDNA is drev(π) = 13 + 1 − 7 + 0 + 0 = 7. In [72],
Hannenhalli and Pevzner also showed how to recover an optimal sequence of sorting
reversals using the breakpoint graph in O(n4) (see Fig. 3(II–VII) for an example).

Since these initial results, there has been a number of improvement on the perfor-
mance of these algorithms. Berman and Hannenhalli [17] improved the bound for
the sorting problem to O(n2α(n)) (where α is the inverse of Ackermann’s function)
and Kaplan et al. [85] reduced it further to O(n2). Later, Bader et al. [4] showed that
without recovering an actual optimal sequence of steps, the reversal distance can be
computed in linear time (O(n)). Finally, Bergeron and Stoye [10] have described an
alternative sorting algorithm that takes O(n2) but bypass much of the complexity of
the earlier algorithms.

So far, the discussion was centered around the problem of sorting two signed
permutations. In this context, it is interesting to highlight the following result by
Caprara [31].

Theorem 2. [31] The problem of sorting an unsigned permutation by the minimum
number of reversals is NP-hard.

2.2.2 Transposition Distance

A transposition is an edit operation, in which a segment is cut out of the permuta-
tion, and pasted in a different location (for an example, see Table I).

Definition 6. Given a permutation π , a transposition is an operation θi,j,k , 1 � i,

j � n, k < i or k > j , that once applied to π produces:

θi,j,k(π) = π1 . . . πi−1 πj+1 . . . πk−1 πi . . . πj πk+1 πn
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The problem of sorting by transposition was first studied by Bafna and Pevzner [13]
who presented a 1.5 approximation algorithm which runs in O(n2) time. Using an
alternative data structure, Walter et al. [158] developed a 2.25 approximation algo-
rithm for the same problem. More recently, Elias and Hartman [50] improved on
these bounds by presenting a 1.375 approximation algorithm that required an elab-
orate computer assisted proof. The complexity of sorting by transpositions remains
an open problem.

2.2.3 Block Interchange Distance

The notion of a block interchange operation in the context of genome rearrange-
ments was introduced by Christie [38]. In a block-interchange, two non-intersecting
substrings of any length are swapped in the permutation. This type of event can be
viewed as a generalized transposition.

Definition 7. Given a permutation π , a block-interchange is an operation βi,j,k,l ,
where 1 � i < j � k < l � n, that once applied to π produces:

βi,j,k,l(π) = π1 . . . πi−1 πk . . . πl πj+1 . . . πk−1 πi . . . πj πl+1 πn

Note that the special case of j = k leads to an alternative and equivalent definition
of a transposition.

Christie [38] showed that by considering the block interchange operation, one can
efficiently sort unsigned permutations in O(n2). This algorithm can also serve as a
2-approximation algorithm for the problem of sorting by transpositions.

Theorem 3. [38] The block-interchange distance for an unsigned permutation,
dBI(π), is

dBI(π) = 1

2

[
(n + 1) − c(π)

]
,

where c(π) is the number of alternating cycles in the cycle graph of π (note here that
the cycle graph is defined slightly differently since the permutations are unsigned,
see [38]).

Recently, the analysis of block-interchanges was revisited by Lin et al. [101]. By
focusing on circular chromosomes (such as the mtDNA in Fig. 1), that are also
unsigned, and making use of permutations groups in algebra, they designed an al-
gorithm for sorting by block-interchanges with time-complexity O(δn), where δ is
the minimum number of block-interchanges required for the transformation and can
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TABLE II
SORTING USING BLOC-INTERCHANGES THE TWO PERMUTATIONS, VIEWED AS UNSIGNED, ASSO-

CIATED WITH THE MTDNA DISPLAYED IN FIG. 1

Earthworm 1 2 3 5 10 11 4 9 7 8 12 6 13
β4,6,8,10 1 2 3 5 10 11 4 9 7 8 12 6 13

β4,4,7,12 1 2 3 9 7 8 4 5 10 11 12 6 13

β6,8,9,12 1 2 3 4 5 10 11 12 6 7 8 9 13

Human 1 2 3 4 5 6 7 8 9 10 11 12 13

The scenario requires only 3 steps.

be calculated in O(n) time in advance. The approach was also implemented in a tool
called ROBIN [102].

Taking the permutations displayed in Fig. 1 and treating them as unsigned, we can
compute an optimal scenario with 3 block-interchange operations, see Table II.

2.2.4 Reversal, Translocation, Fusion and Fission Distance

The results presented thus far have been centered around unichromosomal
genomes, i.e. genomes that have a single chromosome. Table I shows examples of
events that specifically affect genomes with multiple chromosomes, mainly: translo-
cations, fusions and fissions.

Kececioglu and Ravi [88] began the investigation of translocation distances by
giving a 2-approximation algorithm for multichromosomal genomes when the ori-
entation of the genes are unknown (“unsigned permutation”). We also use the ter-
minology permutation when dealing with multichromosomal genomes because, by
using special markers to delimitate chromosome boundaries, it is still possible to rep-
resent such genomes using permutations. For signed permutation, Hannenhalli and
Pevzner [73] derived an equation related to Theorem 1 to compute the rearrangement
distance between two multichromosomal genomes when permissible operations are:
reversals, translocations, fusions and fissions. We refer the reader to Pevzner [133]
and Tesler [154] for the details of the calculation but we will briefly present how the
formula can be obtained.

The main idea to compute the rearrangement distance between two multichro-
mosomal genomes Π and Γ is to concatenate their chromosomes into two per-
mutations π and γ . The purpose of these concatenated genomes is that every re-
arrangement in a multichromosomal genome Π can be mimicked by a reversal in a
permutation π . In an optimal concatenate, sorting π with respect to γ actually cor-
responds to sorting Π with respect to Γ . Tesler [154] also showed that when such
an optimal concatenate does not exist, a near-optimal concatenate exists such that
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sorting this concatenate mimics sorting the multichromosomal genomes and uses a
single extra reversal which corresponds to a reordering of the chromosomes. The
algorithm was implemented into a program called GRIMM [155]. Ozery-Flato and
Shamir [127] identified a case where the algorithm does not apply but also suggested
a correction.

2.2.5 Double-Cut-and-Join Distance

Recently, in an attempt to reconcile the various edit distances, Yancopoulos et
al. [165] presented a universal edit operation, the double-cut-and-join (DCJ), that
could seamlessly model inversions, transpositions, translocations, fusions and fis-
sions. The last two had already been identified as special cases of translocations [73].
This elementary operation is a local operation on four markers initially forming two
adjacent pairs. It consists of cutting two adjacencies in the first genome and rejoining
the resulting four unconnected markers to form two new pairs [165].

Under this model, any rejoining is proper as long as b(π) − c(π) is reduced by 1.
The major difference with the HP-theory presented above is that some of the proper
ways of reconnecting these two pairs cannot be associated with a reversal (or a re-
versal mimicking a translocation). Actually, some of these operations lead to the
creation of a circular intermediate (CI). Reabsorbing the CI actually correspond to
doing a block-interchange (see [165]) but since it required two steps, it will be asso-
ciated with a weight of two in the final edit scenario.

Theorem 4. [165] The double-cut-and-join distance for a permutation π , dDCJ(π),
is

dDCJ(π) = b(π) − c(π).

2.3 Genome Rearrangements with Multiple Genomes

Extending the two way measures and edit distance algorithms to multiple genomes
has proven to be challenging. Formally, the problem is the following:

Definition 8. Given a set of m genomes, the Multiple Genome Rearrangement prob-
lem is to find an unrooted tree T , where the m genomes are leaf nodes, and assign
internal ancestral nodes such that D(T ) is minimized where:

D(T ) =
∑

(π,γ )∈T

d(π, γ ),

and d(π, γ ) can be any distance measure discussed in Sections 2.1, 2.2.
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FIG. 4. Unrooted binary tree showing phylogenetic relationships between 7 mammalian genomes
recovered by MGR. The number on each edge indicates the minimum number of rearrangements (reversals,
translocations, fusions, fissions) required to convert between the two genomes connected by the edge.
Extracted from Murphy et al. [116].

The problem is also known as the problem of reconstructing the most parsimo-
nious phylogenetic tree under the metric d [138] (see Fig. 4 for an example).

The simplest extension, the case with m = 3 signed permutations, also called
the Median problem, was shown to be NP-hard [32] for both the breakpoint dis-
tance (d = b) and the reversal distance (d = drev). Nonetheless, we now present
a few heuristic that have been developed for this problem under various distance
metrics.

2.3.1 Breakpoint Phylogenies

Sankoff and Blanchette [139] studied the median problem for the breakpoint dis-
tance; they showed how the problem could be reduced to an instance of the Travel-
ing Salesman Problem (TSP), a problem for which reasonably efficient algorithms
are available. Using this result, Blanchette et al. [19] developed BPAnalysis,
a method to recover the most parsimonious scenario for m genomes under the break-
point distance. The approach was to look for an optimal assignment of internal nodes
for a given topology by solving a series of median problem (this is also known as
the small parsimony problem). The next step in the approach was to scan the space
of all possible tree topologies to the find the best tree (large parsimony problem).
One of the downside of this approach is that the tree space quickly becomes pro-
hibitive. This limitation was partially addressed by Moret et al. [112] who developed
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GRAPPA which, by computing tight bounds, was able to efficiently prune the tree
space.

2.3.2 Conservation Phylogenies

The first method that use the concept of conserved intervals as the criterion for
the phylogenetic reconstruction problem was presented by Bergeron et al. [12]. Even
though the problem was restricted to finding an optimal assignment of internal nodes
on a fixed phylogeny (small parsimony problem), this is an auspicious area of re-
search.

2.3.3 Rearrangement Phylogenies

Siepel and Moret [113] also studied the median problem but under a different
metric: the reversal distance. They presented a branch-and-bound algorithm to prune
the search space using simple geometric properties of the problem. Concurrently,
Bourque and Pevzner [24] implemented a method called MGR for both the median
and the full phylogeny by making use of properties of additive or nearly additive
trees. This approach, combined with GRIMM [155] was shown to be applicable to
both unichromosomal genomes for the reversal distance [24] and for multichromo-
somal genomes for a rearrangement distance that combines reversals, translocations,
fusions and fissions [24,25]. In a recent analysis [116], this algorithm was applied to
7 mammalian genomes (Human, Mouse, Rat, Cat, Dog, Pig, Cow) and for which the
recovered unrooted tree is shown in Fig. 4 (see [116] for full rearrangement scenario
including recovered ancestral genomes).

2.4 Genome Rearrangement with Gene Families
As we have seen in the last several sections, each genome is viewed as a permu-

tation in which each gene has exactly one copy in the traditional study of genome
rearrangement. While this may be appropriate for small viruses and mitochondria
genomes, it may not realistic when applied to eukaryotic genomes where paralogous
genes often exist. Hence, a more generalized version of the genome rearrangement
problem was proposed by Sankoff [140] where multiple copies of the same gene can
now be found in the same genome. His idea is to delete all but one member of a
gene family in each genome, so as to minimize the total breakpoint (or other) dis-
tance between the reduced genomes. In this approach, the retained copies are called
exemplars. One of the applications of the exemplar problem is in orthologous gene
assignment [33,151].

Even though it is almost trivial to calculate the breakpoint distance between two
genomes with single-gene families, the exemplar problem for breakpoint distance
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is not only NP-hard [29], but also unlikely to have polynomial-time constant-ratio
approximation algorithm unless NP = P [122,34]. Nevertheless, by observing
the monotonicity of the exemplar problem, Sankoff proposed a branch-and-bound
method to tackle this problem [140]. His idea is to work on each gene family sepa-
rately, choosing the pair of exemplars that least increases the distance when inserted
into the partial exemplar genomes already constructed.

Recently, Nguyen, Tay and Zhang [123] proposed a divide-and-conquer approach
to calculating the exemplar breakpoint distance. Their idea is to partition the gene
families into disjoint subsets such that two gene families in different subsets are ‘in-
dependent’, then to find the pair of exemplars of gene families in each independent
subset at a time, and finally to merge all the exemplars together to obtain good exem-
plars of the given genomes. Tests with both simulated and real datasets show that the
combination of the divide-and-conquer and branch-and-bound approaches is much
more efficient than the branch-and-bound approach.

Finally, an alternative way to look at the exemplar problem is to identify the gene
copies that maximize the conserved or common intervals (see Section 2.1). Using this
approach, Bourque et al. [26] showed that, under certain conditions, it is possible to
improve on a method that would only utilize breakpoints.

2.5 Genome Rearrangement with Partially Ordered Genomes

Another restriction in the traditional study of genome rearrangement is the total
order of genes in a genome inherent in the representation of the genome as a permu-
tation. In practice, the total order of genes can only be determined after the sequenced
genomes are completely annotated. Many genomes are currently only sequenced at
a level that prevents a whole and accurate assembly and this problem will probably
not be fixed in the near future because of the prohibitive sequencing costs. When
the complete sequence of a genome is not available, one can rely on gene mapping
data as input for rearrangement studies but even for these datasets, due to the rel-
atively low resolution, several genes are often mapped to the same chromosomal
position.

To deal with these ambiguities but also to work in general context of partial gene
orders, it is possible to represent a chromosome, or genome, as directed acyclic
graph (DAG) [168,169]. The genome rearrangement problem with partially ordered
genomes can be restated as the problem of inferring a sequence of mutational oper-
ations which transform a linearization of the DAG for one genome to a linearization
of the DAG for the other genome that minimizes the number of operations required
[168,169,141]. Obviously, such a general rearrangement problem is computationally
challenging. Therefore, the development of efficient heuristic algorithms that could
tackle some of the real datasets in the near future are highly desired.
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3. Gene Duplication and Multigene Families

In the human and other higher organisms, there are numerous gene families. The
number of genes in each gene family ranges from several to hundreds. Some fam-
ilies contain genes with similar functions; others contain genes with very diverse
functions. The large copy number of members in some gene families such as histone
families is due to need for large amounts of gene product.

Gene duplication has been proposed as a major mechanism for generating multi-
gene families, because duplicated genes provide raw genetic materials for the
emergence of new functions through point mutation, natural selection and random
drift [125]. Such gene duplication processes include polyploidization, tandem du-
plication, and retrotransposition. During polyploidization, whole genomes are dupli-
cated. Tandem duplication is responsible for positional clustered gene families. It is
probably caused by unequal crossing over during meiosis and mitosis in a germ cell
lineage [144]. Although repetitive sequences derived from reverse transcription are
numerous in the human genome, there are not many retrogenes.

Since 1970s, phylogenetic analysis has been used for understanding relationships
of gene family members, identifying gene duplication events and for orthologous
gene assignment.

3.1 Gene Trees and Species Trees

Bifurcating trees (called phylogenies or phylogenetic trees) have been used as
models to represent the evolution of species, in which evolutionary lineages splits
and evolve independently for each other, since Charles Darwin first pointed out that
the simplest pattern that might lie in the heart of evolutionary history can be rep-
resented by a tree [41]. Indeed, Darwin called the evolution of species the Tree of
Life.

For a set I of N taxa, their evolutionary history is represented by a rooted full
binary tree T where there are N leaves each uniquely labeled by a taxon in I and
N − 1 unlabeled internal nodes. Here the term “full” means that each internal node
has exactly two children. Such a tree is called a species tree. In a species tree, we
also consider an internal node as a subset (called a cluster) which includes as its
members its subordinate species represented by the leaves below it. Thus, the evolu-
tionary relation “m is a descendant of n” is expressed using set-theoretic notation as
“m ⊂ n.”

The model for gene evolution is a rooted full binary tree with leaves labeled by
gene copies. Usually, a gene tree is constructed from a collection of genes each hav-
ing several copies appearing in the studied species. For example, the gene family of
hemoglobin genes in vertebrates contains α-hemoglobin and β-hemoglobin. A gene
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FIG. 5. A gene tree based on α-hemoglobin and β-hemoglobin.

tree based on these two genes in human, chimpanzee and horse is shown in Fig. 5.
We use the species to label the genes appearing in it. Thus, the labels in a gene tree
may not be unique since there are usually multiple genes under consideration in each
species. Therefore, each internal node g in a gene tree corresponds to a multiset
{xi1

1 , x
i2
2 , . . . , x

im
m }, where ij is the number of its subordinate leaves labeled with xj .

The cluster of g is simply the set

Sg = {x1, x2, . . . , xm}.
Finally, we use L(T ) to denote the set of leaf labels in a species or gene tree T .

3.2 Gene Duplications and Losses

Detecting gene duplication and loss events is based on a node mapping from a gene
tree to a species tree. Such a mapping was first considered by Goodman et al. [59]
and later was popularized by Page in a series of papers [128–132]. Given a gene tree
G and a species tree S such that L(G) ⊆ L(S). For any node g ∈ G, we define M(g)

to be the least common ancestor (lca) of g in S, i.e. the smallest node s ∈ S such
that Sg ⊆ s. Here we used term “smallest” to mean “farthest from the root.” We call
M the LCA mapping from G to S. Obviously, if g′ ⊂ g, then M(g′) ⊆ M(g), and
any leaf is mapped onto a leaf with the same label. For an internal node g, we use
c(g) (sometimes a(g) and b(g)) to denote a child of g and G(g) the subtree rooted
at g.

If M(c(g)) = M(g) for some child c(g) of g, then we say a duplication happens
at g. The total number tdup(G, S) of duplications happening in G under the LCA
mapping M is proposed as a measure for the similarity between G and S [59,128].
We call such a measure the duplication cost.
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Let a(g) and b(g) denote the children of g. For c(g) = a(g), b(g), if M(c(g)) �=
M(g), we let P be the path from M(g) to M(c(g)). We say that the gene gets lost
on each lineage between a species X on the path P to its child c(X) that is not on
P [63]. Therefore, the number of gene losses lg associated to g is

lg =
{ 0 if M(g) = M(a(g)) = M(b(g));

d(a(g), g) + 1 if M(a(g)) ⊂ M(g) & M(g) = M(b(g));
d(a(g), g) + d(b(g), g) if M(a(g)) ⊂ M(g) & M(b(g)) ⊂ M(g).

The mutation cost is defined as the sum of tdup and the total number of losses
tloss(G, S) = ∑

g∈G lg . This measure turns out to have a nice biological interpreta-
tion [109,166,51].

Since the LCA mapping from a gene tree to a species tree can be computed in
linear time [166,35,170], the gene duplication and loss events can be identified ef-
fectively.

3.3 Reconciled Tree

The reconciled tree concept gives another way to visualize and compare the rela-
tionship between gene and species trees [59]. Such a tree is constructed from a gene
tree and a species tree and has two important properties. The first property is that the
observed gene tree is a ‘subtree’ of the reconciled tree. The second property is that
the clusters of the reconciled tree are all clusters of the species tree. Formally, the
reconciled tree is defined as follows.

Let T ′ and T ′′ be two rooted trees, we use T ′ � T ′′ to denote the rooted tree T

obtained by adding a node r as the root and connecting r to r(T ′) and r(T ′′) so that
T ′ and T ′′ are two subtrees rooted at the children of r . Further, let t be an internal
node in T ′, then, T ′|t→T ′′ denotes the tree formed by replacing the subtree rooted at
t with T ′′. Similarly, T ′|t→T1, t ′→T2 can be defined for disjoint nodes t and t ′.

For a gene tree G rooted at g and a species tree S rooted at s such that L(G) ⊆
L(S), let M be the LCA mapping from G to S and let s′ = M(a(g)) and s′′ =
M(b(g)). The reconciled tree R = R(G, S) of G with respect to S is defined as:

(1)R =

⎧⎪⎨
⎪⎩

R(G(a(g)), S)�R(G(b(g)), S) if s′ = s′′ = s,

S|s′→R(G(a(g)), S(s′)) �R(G(b(g)), S) if s′ ⊆ a(s), s′′ = s,

S|s′→R(G(a(g)), S(s′)), s′′→R(G(b(g)), S(s′′)) if s′ ⊆ a(s), s′′ ⊆ b(s),

S|a(s)→R(G,S(a(s))) if M(g) ⊆ a(s).

Such a concept is illustrated in Fig. 6. An efficient algorithm was presented
in [128] for computing a reconciled tree given a gene and species tree. It is easy
to see that the reconciled tree R(G, S) satisfies the following three properties, of
which the first two are mentioned above:
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FIG. 6. (a) A gene tree G; (b) a species tree S; (c) the reconciled tree Tr (G, S) of G with respect to S.

(1) It contains G as a subtree, i.e. there is a subset L of leaves such that R(G, S)|L
is isomorphic to G;

(2) All clusters are in S, where a cluster is defined as a subset of species below an
internal node in S (see Section 3.1);

(3) For any two children a(g) and b(g) of a node g ∈ R(G, S), a(g) ∩ b(g) = ∅
or a(g) = b(g) = g.

Actually, Page also defined the reconciled tree R(G, S) as the smallest tree satisfying
the above properties. However, these two definitions are not obviously equivalent.
A rigorous proof of this equivalence is given in [21].

Obviously, duplication events are one-to-one correspondent to the internal nodes
with two identical children in the reconciled tree. Moreover, in [61], Gorecki and
Tiuryn proved an earlier conjecture that the number of gene losses is also equal to
the number of the maximal subtrees that do not contains any nodes in the image of
the gene tree in the reconciled tree.

3.4 From Gene Trees to Species Trees
Over the years, biomolecular sequence information has been applied effectively

toward to reconstructing the species tree—the evolution history of species. Under
the gene duplication model, the problem is formulated:

Definition 9 (Species Tree Problem). Give a set of gene trees Gi (1 � i � n),
find a species tree T that has the minimum duplication cost

∑
1�i�n tdup(Gi, T ) or

mutation cost
∑

1�i�n(tdup(Gi, T ) + tloss(Gi, T )).

For either cost, this problem was proved to be NP-hard by Ma, Li and Zhang
in [103] and the parametric complexity of this problem was studied by Fellows
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et al. in [149,52]. Moreover, various heuristic algorithms have been proposed By
Page [130], Arvestad et al. [3] and Durand, Halldorsson and Vernot [46].

3.5 Tandem Gene Duplication

3.5.1 Tandem Duplication Tree Model

In the study of tandem duplication history of human hemoglobin, Fitch first ob-
served that tandem duplication histories are much more constraint than speciation
histories and proposed to model them assuming that unequal crossover is the biolog-
ical mechanism from which they originate [54], and the corresponding trees are now
called tandem duplication trees.

Assume n sequences {1, 2, . . . , n} were formed from a locus through a series of
tandem duplications, where each duplication replaced a stretch of DNA sequences
containing several repeats with two identical and adjacent copies of itself. If the
stretch contains k repeats, the duplication is called a k-duplication.

A rooted duplication tree M for tandemly repeated segments {1, 2, . . . , n} is a
rooted binary tree that contains blocks as shown in Fig. 7. A node in M represents
a repeat. Obviously, the root represents the original copy at the locus and leaves the
given segments.

A block in M represents a duplication event. Each non-leaf node appears in a
unique block; no node is an ancestor of another in a block. If the block corresponds
to a k-duplication, it contains k nodes, say, u1, u2, . . . , uk from left to right. Assume
lc(ui) and rc(ui) are the left and right children of ui , 1 � i � k. Then, in the
model M,

lc(u1), lc(u2), . . . , lc(uk), rc(u1), rc(u2), . . . , rc(uk)

FIG. 7. A rooted duplication tree M. Multi-duplication blocks are [d, f ], [h, i], [j, k] and [l, m].
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are placed from left to right. Hence, for any i and j , 1 � i < j � k, the directed
edges (ui, rc(ui)) and (uj , lc(uj )) cross each other. But no other edges cross in the
model. For simplicity, we will only draw blocks corresponding to multi-duplication
events that contain more than one internal nodes.

The leaves representing given segments are placed from left to right in the same
order as the segments appear on the chromosome. Here we assume such an order is
the increasing order.

3.5.2 Combinatorics of Tandem Duplication Models

Duplication trees containing only 1-duplications are called ordered phylogenies.
They form a proper subclass of the duplication models. Since an ordered phylogeny
with n leaves corresponds uniquely to a triangulation of a regular (n + 1)-polygon,
the number of ordered phylogenies with n leaves is just

(2(n−1)
n−1

)
/n, the nth Catalan

number [167,48].
Like phylogenies, both rooted and unrooted duplication trees are studied. An un-

rooted phylogeny is a duplication tree if it can be rooted (on some edge) into a
duplication tree.

Theorem 5. [58] The number of rooted duplication trees for n segments is twice the
number of unrooted duplication trees for n segments.

A simple non-counting proof of this theorem is given by Yang and Zhang in [163].
Moreover, using a recurrence relation in [58], they also obtained the following recur-
rence relation for computing the number of rooted duplication trees.

Theorem 6. [163] Let rn denote the number of rooted duplication trees for n seg-
ments. For any n � 2,

rn =
{

1 if n = 2,∑�(n+1)/3�
k=1 (−1)k+1

(
n+1−2k

k

)
rn−k if n � 3.

3.5.3 Reconstruction Algorithms

Tandem repeats are everywhere in the genome of higher organisms. A good
method for reconstructing the parsimonious duplication tree is extremely useful for
identifying orthologous genes in genome annotation. However, there has not been a
good solution for it up to now.

Since the duplication model space is huge, the problem of constructing a parsimo-
nious duplication tree given a set of duplicated sequences is believed to be NP-hard.
Indeed, Jaitly et al. proved that finding the parsimonious ordered tree is NP-hard
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[84]. Therefore, one approach to the problem is to search the phylogenetic trees that
are duplication trees after the parsimony score is computed. Indeed, whether a phy-
logeny is a duplication tree or not can be determined efficiently. Tang, Waterman and
Yooseph first gave a quadratic time algorithm for the problem [152]. Later, Zhang
et al. and Elemento, Gascuel and Lefranc presented two different linear-time algo-
rithms for the problem [167,49]. Other heuristic reconstructing methods can be found
in [152,47].

Finally, different algorithms for reconstructing parsimonious ordered trees were
developed in [9,84,152].

4. Phylogenetic Networks

4.1 Tree of Life or Net of Life?

As we mentioned in the last section, phylogenetic trees have a long history as mod-
els to represent the evolution of species. However, in the last decade, the large-scale
availability of genomic sequences indicates that horizontal gene transfer (HGT), gene
conversion, and recombination events have often occurred in genome evolution.

Horizontal gene transfer events occur when genetical material transfers across
from a species to another distantly related species. They are common in the prokary-
otes, especially bacterial genomes [95,44,119]. Additional evidence suggests that it
might also occur in eukaryotes [79]. In many cases, horizontal gene transfers are
very interesting in their own. Indeed, many reflect the most innovative adaptations
in all of biology such as bacterial photosynthesis and nitrogen fixation. Horizontal
transfers are not restricted to single genes. Genes, operons and a large segment of
genomes are commonly exchanged among prokaryotes.

Recombination is another important mutational process that is common to most
forms of life. A species is defined as a potentially interbreeding group of organisms
that are capable of producing fertile offspring. Within a species, gene phylogenies
are often inconsistent due to high rate gene flow and meiotic recombination. Mei-
otic recombination takes two equal length sequences and produces a third one of the
same length by concatenating a prefix of one sequence and a suffix of another one.
Other forms of recombination such as transformation, conjugation and transduction
allow the sharing of genetic material between species as indicated by the recent com-
pletion of the sequences of different bacterial genomes. Efforts to identify patterns
of recombination and the location of recombination are central to modern genet-
ics.

In a nutshell, genomes have evolved not only vertically, but also horizontally. As
a result, directed networks (i.e. trees with reticulation branches) are probably more
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appropriate mathematical model for the study of genome evolution. Here, we shall
present the recent study of the algorithmic aspects of reconstructing phylogenetic
networks. Readers are refereed to [115,134] for more information on phylogenetic
networks.

4.2 Horizontal Gene Transfer Detection and Models

4.2.1 G+C Content-Based Detection

The G+C content of a genome is determined by mutation and selection pressures.
Hence, the sequences from a genome share a common feature of compositional
bases, codons and oligonucleotides [62,86]. This makes it possible to identify hor-
izontally transfered genes as those whose G+C content is atypical for a particular
genome [95,79,171]. For example, M. thermoautotrophicum contains several regions
that have about 10% lower G+C content than that of the whole genome on average
[145]. ORFs in these regions exhibit a codon usage pattern atypical of M. thermoau-
totrophicum, suggesting that they code some genes acquired by HGT. HGT genes
are usually G+C poor. However, this method should be used with caution since se-
quences can quickly adjust to the new genome pattern and a gene with different G+C
content does not necessarily originates in distant organisms [42].

4.2.2 Phylogeny-Based Detection Model

Comparison of a gene tree and a species tree provides a reliable method for identi-
fying horizontally transfered genes [1,70,71,60,104,110]. It is based on the following
simple idea: If A and B are siblings in the gene tree, then, either the parent gene AB
must present in the last common ancestor of A and B in the species tree or a hori-
zontal gene transfer has occurred from the lineage A to the lineage B or vice versa.
Horizontal gene transfers are modeled as a species graph formed from a species tree
by adding additional horizontal edges [70,60,93]. The horizontal edges represent the
hypothetic horizontal gene transfers.

Let S = (V ,E) be a rooted tree in which each internal node has at most two
children. A time stamp for S is a function t from V to non-negative integers with the
following property: for any v ∈ V , t (p(v)) < t(v), where p(v) is the parent of v

in S.
A relation H ⊂ V × V is horizontal for S with respect to a time stamp t if the

following conditions are true:

(H1) (v, v) /∈ H ;
(H2) for each (v,w) ∈ H , both v and w have only one child;
(H3) for any different (v,w), (v′, w′) ∈ H , {v,w} ∩ {v′, w′} = ∅;
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(H4) for any (v,w) ∈ H , t (v) = t (w);
(H5) for any different (v,w), (v′, w′) ∈ H , t (v) �= t (v′).

Each element of H is a horizontal transfer. Intuitively, (H3) prevents more than one
horizontal transfer events from occurring on the same lineage and (H4) indicates that
the ends of a horizontal transfer should exist at the same time.

A species graph G = (S, tS,H) consists of a rooted tree S, a time stamp tS and
an horizontal relation H on S with respect to tS . We use S(H) to denote the directed
graph obtained by adding elements in H as arcs on S. Then, the following condition
is true:

For each directed path v1, v2, . . . , vk in S(H), tS(v1), tS(v2), . . . , tS(vk) is a
non-decreasing integer sequences.

Obviously, the above property implies that S(H) is a directed acyclic graph.
Let G be a gene tree and T a species tree. A rooted binary tree S is an extension

of T if T can be obtained from S by contracting all the degree-2 nodes. Each species
graph (S, tS,H) is a model of horizontal transfers of the gene occurring in the gene
tree G on the species tree T if S is an extension of T and G can be embedded into
S(H) as illustrated in Fig. 8. Notice that the time stamp and condition (H5) are used
to prevent inconsistent transfer events as indicated in Fig. 9.

The problem of inferring horizontal gene transfers is formulated as follows:

FIG. 8. A species graph. On the top, the left tree is a gene tree, the right one is a species tree. The
species graph is shown at the bottom, in which the gene tree is embedded.



84 G. BOURQUE AND L. ZHANG

FIG. 9. Inconsistent transfer events that could not occur in genome evolution.

Definition 10 (HGT Inference Problem). Given a species tree T and a gene tree G,
find a horizontal gene transfer model (S, tS,H) with the smallest gene transfer set
H over all the models.

Combining the horizontal gene transfer model and the concept of reconciliation
tree described in the last section, one obtains a mathematical model for simultane-
ously detecting gene duplication, loss and horizontal transfer events [60,71]. Like
duplication inference problems, the HGT inferring problem and its generalization
to simultaneously detecting gene duplication, loss and horizontal transfers are obvi-
ously NP-hard [40]. Hence, an important and practical problem is to develop efficient
algorithm for these two problems.

4.3 The Recombination Model

A recombination network N over a set S of 0–1 sequences of length L has four
basic components:

(i) The topology structure of N is a directed acyclic graph D. It contains a
unique node (called the root) with no incoming edges, a set of internal nodes
that have both incoming and outgoing edges, and a set of nodes (called the
leaves) with no outgoing edges. Each internal node has one or two incoming
edges. A node with one incoming edge is called tree node; a node with two
incoming edges is called recombination node. An edge is called a tree edge
if it enters a tree node, and called recombination edge if it enters a recombi-
nation node.

(ii) There is a mapping w from the integer set [1, L] to the set of tree edges
of D. It assigns a site i in the sequences to a unique tree edge e. We write
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i = w−1(e). It is possible that there are more than L tree edges in D and
hence some tree edges might not receive a site assignment.

(iii) There are exactly two recombination edges entering each recombination
node. These two edges are labeled with p and s respectively. In addition,
a site is associated with a recombination node.

(iv) There is also a mapping that labels each node of D with a 0–1 sequence. The
labels satisfy the following conditions:
(a) For a tree-node v, let e be the edge entering into v. Then, the label of v is

only different from its parent’s label in site w(e). This models a mutation
in site i occurring on edge e.

(b) For a recombination node v, let e and e′ be the edges coming into v from
v′ and v′′, labeling with p and s respectively, and let the integer assigned
to v in (iii) is i. The label of v is identical to v′s label in the first i − 1
sites and to v′′s label in the last L− i+1 sites. This models a single-cross
recombination occurring at site i.

(c) All the leaves are uniquely labeled with the given sequences in S.

One phylogenetic network is shown in Fig. 10. In this network, the ancestral se-
quence is 0000000, the leaves are labeled with sequences a, b, c, d, e, and there are
three recombination nodes. The model presented here can be generalized in different
ways. This simple version is the one that has been extensively studied currently. It is
also the topology part of the stochastic process model called an ancestral recombi-
nation graph (ARG) in the population genetics study (see [120] for example).

In recombination model, the central problem is to infer a rooted or unrooted phy-
logenetic network with minimum number of recombination nodes on a set of given
sequences. Although such a problem is NP-hard [161]. it is polynomial-time solvable
for two classes of phylogenetic networks: perfect phylogeny and galled phylogenetic
networks [64–66,68,161].

4.3.1 Perfect Phylogeny

A perfect phylogeny is a recombination network without recombination nodes.
This is a simple combinatorial characterization for the 0–1 sequences that can be
derived from a perfect phylogeny. Given a set S of 0–1 sequences, two sites in the
sequences are said to be incompatible in S if and only if S contains four rows where
sites i and j contains all four possible ordered pairs: 00, 01, 10, 11. A site is com-
patible if it does not form any incompatible pair together with any other site. For
a sequence s, two sites i and j in S are said to conflict relative to s if i and j are
incompatible in S ∪ {s}. A classical theorem when studying perfect phylogeny is the
following theorem (see [64] for example).
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FIG. 10. A phylogenetic network for sequences {010111, 010101, 110101, 001000, 000100} in the
recombination model.

Theorem 7. Let S be a set of 0–1 sequences and s be a 0–1 sequence.

(i) There is an unrooted perfect phylogeny that derives the sequences in S if and
only if all the sites are compatible in S;

(ii) there is a rooted prefect phylogeny, with ancestral sequence s, that derives
sequences in S if and only if there is no pair of conflicting sites (relative to S).

4.3.2 Galled Phylogenetic Networks

In a phylogenetic network with recombination nodes, for each recombination
node x, there are two directed paths that come out of some tree node y and meet
at x. These two paths together define a recombination cycle. A recombination cycle
is called a gall if it shares no nodes with other recombination cycles. For example, the
left recombination cycle in the model shown in Fig. 10 is a gall. A phylogenetic net-
work is called galled network if every recombination is gall. In [161], Wang, Zhang
and Zhang first proposed to study the problem of determining if a set 0–1 sequences
can be derived from a galled network or not.
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Given a set S of 0–1 sequences, we defined the incompatibility graph G(S) for S

as a graph in which there is one node for each site in S and there is an edge connecting
two nodes if the corresponding sites are incompatible. Similarly, given a sequence s,
we can define the “conflict graph” Gs(S) for S (relative to s).

A connected component of a graph is a maximal subgraph in which for any two
nodes in it there is at least one path between them in the graph. If all the sites are
compatible, then G(S) has only trivial components that have only one node and no
edges.

In a series of papers [68,67,66], Gusfield and his collaborators studied the struc-
tural properties of a connected component that corresponds to a gall in a phylogenetic
network. By giving an efficient algorithm to determine how the sites in a connected
component with the desired structural properties are arranged on a gall, they obtained
the following theorem.

Theorem 8. There is a polynomial-time algorithm that determines whether a set
of 0–1 sequences can be derived from a galled phylogenetic network or not and
constructs such a galled network.

4.3.3 Full-Decomposition Optimality Conjecture

In a non-galled phylogenetic network, recombination cycles are not necessarily
edge-disjoint. A maximal set of cycles C1, C2, . . . , Ck form a blob if they can be
arranged in such a way Ci1, Ci2 , . . . , Ci3 that the successive cycles share edges.
In [65], Gusfield and Bansal proved the following theorem.

Theorem 9. Let S be a set of 0–1 sequences of equal length. Then

(i) there is an unrooted recombination network N deriving S in which each
blob contains exactly all sites in a single non-trivial connected component
in G(M), and every compatible site is assigned to a tree edge;

(ii) there is a recombination network N that derives S, with ancestral sequence
s, in which each blob contains exactly all sites in a non-trivial connected
component of Gs(S) and any non-conflicting site is assigned to a tree edge.

Obviously, there are other recombination networks that derive S, where a blob may
contain sites from difference connected components in G(S). Therefore, the follow-
ing conjecture arises. It is considered as one of the most important open problems in
the study of phylogenetic networks.

Conjecture 1 (Full-Decomposition Optimality Conjecture). [65] For any 0–1 se-
quence set S, there is always a recombination network that satisfies the condition
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in the above theorem and has the minimum number of recombinations over all pos-
sible phylogenetic networks for S.

In [66], Gusfield showed that for the sequence set that can be derived from a
galled network, there is an efficient algorithm for producing a galled network with
the minimum number of recombinations, over all possible phylogenetic networks for
the sequences. Recent progress toward this conjecture can be found in [69].

4.4 The Hybrid Model
In the hybrid model, a phylogenetic network for a set of taxa (species, DNA,

protein sequences, or other objects) has all the properties of a recombination net-
work except for edge site-labels. It is a directed acyclic graph in which there is a
unique node (the root) without coming edges, a set of nodes (leaves) without outgo-
ing leaves, and some other nodes with one outgoing edges and one or two incoming
edges. The leaves are one-to-one labeled with given taxa. The nodes with one incom-
ing edge are tree nodes; the nodes with two incoming edges are reticulation nodes.
The edges entering tree nodes are tree edges; the edges entering reticulation nodes are
network edges. As in the recombination model, we can define the reticulation cycle
similarly. A reticulation network without overlapping reticulation cycles is galled.

Different variants of the hybrid model have been proposed. For example, a phylo-
genetic network is not necessarily binary. A phylogenetic network may have ‘time-
weighted’ edges that satisfy time constraints so that two parents of a reticulation
nodes should coexist in the same time [111].

4.4.1 Network Reconstruction from Gene Trees
In genomic evolution, one usually obtains a set of gene trees that have evolved

from a common ancestor in a series of reticulate events, and would like to reconstruct
the underlying phylogenetic network from these gene trees. By removing exactly
one of the two edges entering every reticulation node in a network, we obtain a
phylogenetic tree. Such a tree is said to be induced by the network. Formally, the
computing problem arise from above procedure is

Definition 11 (Parsimonious Reticulate Network from Gene Trees Problem). Given a
set S of gene trees over a taxon set X, construct a phylogenetic network that induces
all the trees in S and has the minimal number of reticulation nodes, over all the
phylogenetic networks.

In 1997, Maddison first proposed this problem and studied how to construct a
phylogenetic network with one reticulation node for two gene trees [105]. Since
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this problem is NP-hard in general [161], different algorithms have been proposed
recently [37,82,83,111,118,147]. In particular, the problem is also polynomial-time
solvable for galled phylogenetic networks. More specifically, Nakhleh et al. proved
the following theorem

Theorem 10. [118] Given two binary trees T1 and T2, it is polynomial-time com-
putable a galled phylogenetic network, if existence, that induces T1 and T2 and has
the minimum number of reticulation nodes, over all the galled phylogenetic networks.

The above theorem is recently generalized to multiple (not necessarily binary)
trees by Huynh et al. Let T and t be two arbitrary trees. We say T refines t if t can
be obtained by a series of edge contractions. A phylogenetic network N refines t if
N induces a binary tree that refines t .

Theorem 11. [83] Given a set of trees, it is polynomial-time computable a galled
phylogenetic network, if existence, that refines the given trees and has the minimum
number of reticulation nodes, over all the galled phylogenetic networks.

When a set of phylogenetic trees cannot be combined into a galled phylogenetic
network, one may be interested in knowing to what extend, these trees admit a solu-
tion. Hence, the following problem is interesting:

Definition 12 (Phylogenetic Network Compatibility Problem). Given a class of phy-
logenetic network, and a set of trees over a taxon set X, find a largest subset X′ of X

such that the set of trees restricted on X′ have a refined network in the given class.

This problem is believed to be NP-hard. For the class of galled phylogenetic net-
works, the following result was obtained.

Theorem 12. [83] Given a set of k trees each with maximum degree d over a taxon
set X, it is O(23kdn2k)-time computable a largest subset X′ of X such that the re-
striction of the given trees on X′ admit a refining galled phylogenetic network.

4.4.2 Network Reconstruction from Sequences

All phylogeny reconstruction methods can and will probably generalize to phylo-
genetic network reconstruction in future. Here, we shall examine how the parsimony
method is generalized in detail.

Let S be a set of equal-length DNA or protein sequences. For two sequences
x, y ∈ S, we use the Hamming distance H(x, y) between them to measure their
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dissimilarity. It is defined as the number of mismatch positions between x and y. Let
T be a rooted phylogeny over S. Then, each internal node is implicitly labeled with
a sequence sv of the same length as those in S; each leave is labeled uniquely with a
sequence in S. The parsimony score s(T , S) of T is defined as

∑
(u,v)∈E(T ) d(u, v),

where E(T ) denotes the set of tree edges in T . The parsimony phylogeny for se-
quence set S is a rooted phylogeny that has the minimum parsimony score overall
the phylogenies.

The parsimony problem is, given a set S of equal-length sequence set, to compute
a parsimony phylogeny for S. It is known that this problem is NP-hard (see [57] for
example). Therefore, one practical approach is through exhaustive search over the
phylogeny space after the parsimony score of a phylogeny is computed, which is
linear-time solvable (see [53] for example). In literature, computing the parsimony
score of a phylogeny for a set of equal-length sequences is called the small parsimony
problem.

Three parsimony problems arise from reconstructing a phylogenetic network from
biomolecular sequences. Since each phylogenetic network N induces a set of phylo-
genies P(N ), we have the following problem:

Definition 13 (Small Parsimony Phylogenetic Network Problem). Given a phyloge-
netic network N for a set S of equal-length sequences, find a labeling of the internal
nodes of N that has the minimum parsimony score s(N , S) = minT ∈P(N ) s(T , S).

To take non-point-mutation events such as recombination into account, we assume
the given sequences are partitioned into different blocks bi (1 � i � n) such that
only point-mutation events occurred in each block and non-point-mutation events
combined sequences from different blocks, where each block is specified by start
and end positions. If we use S|bi

to denotes the resulting sequence set in the block
bi , then, the parsimony problem for phylogenetic networks is formulated as

Definition 14 (Parsimony Phylogenetic Network Problem). Given a set S of equal-
length sequences that are partitioned into block bi (1 � i � n), find a phylogenetic
network N with the minimum score s(N , S, {bi}) = ∑n

i=1 s(N , S|bi
).

In the study of genomic evolution, we are only given a set of genomic sequence
from different species. Without knowing the true evolutionary history of these se-
quences, we do not have the true partition blocks on the sequences. Hence, the
following problem is also interesting and practical:

Definition 15 (Large Parsimony Phylogenetic Network Problem). Given a set S of
equal-length sequences and an integer k, find a phylogenetic network N and a block
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partition {bi | 1 � i � k} of S such that the parsimony score s(N , S, {bi}) is
minimum.

The parsimony phylogenetic network problem was proposed by J. Hein in early
1990s [75,76]. With more and more genomic sequences available, researchers re-
draw attention to the problem recently. Nakhleh et al. presented a heuristic algorithm
for the parsimony phylogenetic network problem in [117]. It is easy to see the
small parsimony phylogenetic network problem is polynomial-time solvable for the
given network has a constant number of reticulation nodes. But, it is NP-hard in
general [121]. In addition, it is not clear whether the first and third problems are
polynomial time solvable for galled phylogenetic networks or not.

Other heuristic parsimony methods include statistical parsimony [153], median
networks [6,7] and the netting method [55].

4.4.3 Distance-Based Reconstruction Methods

Different distance-based methods have also been proposed for reconstructing phy-
logenetic networks [5,28,43]. Split decomposition was proposed to decompose the
distance matrix into weighted splits (a bipartition of the given taxon set) [5]. When
these splits are compatible, they induce a phylogenetic tree, in which each split cor-
responds an edge. Otherwise, a network (called split graph) is used to realize them.
Split decomposition is implemented in the package SplitsTree [81]. Strictly speak-
ing, split graphs are not phylogenetic networks. They are just used to visualize the
possible recombination events.

Neighbor-Net is a kind of combination of the NJ method and the split decompo-
sition method [28]. It first constructs a collection of weighted splits using a general-
ization of the NJ method, then realizes these splits using a splits graph.

The Pyramid Clustering works agglomeratively like the UPGMA method for phy-
logeny reconstruction [43]. The UPGMA method generates a binary tree, whose
internal nodes correspond the nested, non-overlapping clusters of taxa. In contrast
to this, the Pyramid Clustering constructs overlapping clusters, forming a network.

4.4.4 Combinatorial Aspect of Phylogenetic Networks

Phylogenetic network reconstruction also raises some interesting combinatorial
problems. One of such problems is, given a set of trees, to estimate the number
of reticulation nodes in any phylogenetic network that contains the given trees as
induced trees. Another problem is to study the combinatorial properties of special
classes of phylogenetic networks such as unicyclic and galled networks. The readers
are referred to [15,16,82,142] for recent results.
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5. Gene Clusters

5.1 Positional Gene Clusters in Eukaryotic Genomes

Study of gene order within a genome is one of the key areas of genetics and
genomics [126,80]. It is important in terms of understanding how genomes have
evolved and how they function. For example, recent analysis indicates that ge-
nomic regions with the most actively expressed genes are those of highest gene
density [157]. It also has important medical implications. An intact gene in a novel
location could lead to a pathological phenotype [90].

It has long been known that genes are organized into operons in prokaryotic
genomes such as bacteria genomes. However, gene order seems not random neither
in eukaryotic genomes [80]. Recent analyses suggest that tissue (or function)-specific
genes often cluster together in eukaryotic genomes (Table III). As a result, informa-
tion about co-localised genes can be used for functional inferences of unknown genes
through the ‘guilt by association’ principle [2].

5.2 Statistical Tests

In most of all the literatures, testing for non-random clustering of specific genes is
done by simulation. The simulation process starts with formulating a test function.
Then, generate a random genome and calculate the test function for many times. The

TABLE III
GENOME-WIDE ANALYSES ON GENE CLUSTERS

Species Clusters observed

P. falciparum Clusters of co-expressed proteins [56]

S. cerevisiae Clusters of cell-cycle-dependent genes [36]
Pairs of co-expressed neighboring genes, independent of orientation [39,92]

A. thaliana Clusters of co-expressed genes [18,160]

D. melanogaster Clusters of adjacent co-expressed or function-specific genes [148]
Clusters of tissue-specific genes [23]

C. elegans Operons that contain about 15% genes [20]
Clusters of muscle-specific genes [136]
Clusters of co-expressed neighboring genes [96]

M. musculus Clusters of tissue-specific genes [91,135,100]

H. sapiens Clusters of tissue-specific genes [107,22,164]
Housekeeping genes [97,98]
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whole process generates the null distribution of the test function. The real value of
the test function is then compared with the null distribution.

However, the results of different simulation studies are often difficult to compare.
This motivates researchers to seek alternative analytic test methods.

5.2.1 Neighborhood Model

In study of testes-specific gene clustering in the mouse genome, Li, Lee and Zhang
used the neighborhood model [100]. Under this model, two testis-specific genes are
in a cluster if and only if there is a series of the testis-specific genes locating between
them such that the distance between any two successive testis-specific genes in the
series is less than a specified threshold (D). To incorporate the variance of gene den-
sity in different regions on a chromosome, each chromosome is divided into disjoint
regions of a fixed length (L). Consider a length L-region containing N genes in to-
tal. By Poisson approximation theory, the p-value of a cluster with n tissue-specific
genes in that region is about (1 − eND/L)n, the probability that a cluster has more
than n genes in that region.

The neighborhood model was also studied in earlier works [45,78]. A cluster in
the neighborhood model is called a max-gap cluster in [78]. Hoberman, Durand and
Sankoff showed that the exact probability that all the m interesting genes form a
max-gap cluster with distance threshold D in a genome with N genes is

P(N,m,D) = max(0, N − w + 1) · (D + 1)m−1 + d0(m,D, min(n,w − 1))(
n
m

)
where w = m + D(m − 1) and

d0
(
m,D, min(n,w − 1)

)

=
min(n,w−1)∑

r=m

� r−m
D+1 �∑
i=0

(−1)i
(

m − 1

i

)(
r − i(D + 1) − 1

m − 1

)
.

They also presented a dynamic programming algorithm for computing the probabil-
ity of observing a cluster of h (out of m) interesting genes in a chromosome that
contains N genes.

5.2.2 Adjacent Gene Clustering

Order statistics can be a very powerful tool for removing the effect of non-uniform
distribution of genes on statistical test although its power in clustering test has not
been fully investigated. For instance, Li, Lee and Zhang considered the positional
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rank of a gene rather than its specific position by ordering all the genes according
to their positions on a chromosome [100]. By treating the set of testis-specific genes
and the set of other genes as two types of identical objects, a gene distribution on a
chromosome is modeled as a binary string with 0 represents a tissue-specific gene.
An adjacent gene cluster corresponds to a 0-subsequence in the resulting string.

Assume there are M genes in a chromosome and T of them are the testis-specific
genes. Then, the probability that a random chromosome has a r-adjacent testis-
specific gene cluster is

Pr =
(

M − T + 1

r

)(
T − 1

r − 1

)/(
M

T

)
.

Hence, the mean number of adjacent testis-specific clusters in a random chromosome
is

μ =
T∑

r=1

rPr = (M − T + 1)T /M

and the standard deviation is

σ =
√

(M − T + 1)(M − T )T (T − 1)/
(
M2(M − 1)

)
.

Using these values, one can estimate the significance of a real testis-specific gene
distribution on a chromosome.

6. Conclusion

We have briefly introduced the current research status in genome rearrangements,
gene duplication, phylogenetic network and positional gene clustering. Classical
results were presented in these four areas but many open problems were also high-
lighted. For instance, promising new developments for the analysis of genome re-
arrangements include: new measures of similarity that generalize simple gene order
adjacencies, alternative evolutionary edit operations that facilitate the modeling of
transpositions, efficient approaches for genome rearrangement with gene families
and rearrangement of partially ordered genomes. Similarly, interesting future direc-
tions for the analysis of gene duplications include how to identify true orthologous
genes across species using the duplication models presented in Section 3 and how to
identify large-scale duplications occurring along a lineage in the evolutionary history.
In the study of phylogenetic networks, one important problem is to infer horizontal
gene transfers among the bacterial genomes. Another major challenge is to develop
a solid method for inferring phylogenetic network over a set of genomes given their
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genomic sequences. Finally, given that gene cluster analysis is a relatively new re-
search topic, it is expected that more gene cluster testing methods based on order or
other statistics will be developed. In its application end, the gene clustering analysis
will probably become a routine task for every newly sequenced genome in the future.

This survey is far from being comprehensive as computational comparative ge-
nomics is a fast growing research topic. One topic which was not covered, for in-
stance, involves studying the biological aspects around genomic structure. Other ex-
amples of important research areas missing from the current survey include: genomic
sequence alignment problems and discovery of functional elements in genomic se-
quences. For genomic sequence alignment methods, we recommend a recent survey
[8] of Batzoglou. For discovery of functional elements, we recommend the survey
papers [30,106,27]. For further information on comparative genomics, the reader is
also referred to another recent survey [108].
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Abstract
With the development of fast sequencing techniques, large-scale DNA molecules
are investigated with respect to the relative order of genes in them. Contrary to
the traditional alignment approach, genome rearrangements are based on com-
parison of gene orders and the evolution of gene families. Genome rearrangement
has become an important area in computational biology and bioinformatics.
There are three basic operations, reversal, translocation, and transposition. Here
we study the translocation operations. Multi-chromosomal genomes frequently
evolve by translocation events that exchange genetic material between two chro-
mosomes. We will discuss both signed and unsigned cases.
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1. Introduction

Genome rearrangement was first studied by Dobzhansky and Sturtevant [8], sixty
years ago, who published a milestone paper with an evolutionary tree presenting
a rearrangement scenario with 17 reversals for the species Drosophila pseudoob-
scura and Miranda. Many subsequent studies show that genome rearrangement is a
common mode of molecular evolution in plants, mammals, viral, and bacteria [1,11,
13–16,18,24–26].

In the late 1980s, Palmer et al. compared the mitochondrial genomes of Brassica
oleracea (cabbage) and Brassica campestris (turnip) and found that they are very
closely related (many genes are 99–99.9% identical) [23]. Another example [22]
shows that the only major difference between the two bacteria Escherichia coli and
Salmonella typhimurium is the order of genes in their chromosomes.

Genome rearrangement is based on comparison of gene orders and the evolution
of gene families. Genome rearrangement has become an important area in com-
putational biology and bioinformatics. Although the rearrangement process is very
complicated, there are three basic operations, reversal, translocation and transposi-
tion. Fusions and fissions are also common in mammalian evolution.

In this chapter, we study the translocation operations. Multi-chromosomal
genomes frequently evolve by translocation events that exchange genetic material
between two chromosomes.

A chromosome X = x1, x2, . . . , xp is a sequence of genes, where each gene xi

is represented by an integer. A gene xi has a direction. When the direction of every
gene is known, we use a signed integer to indicate the direction. When the directions
of genes are unknown, we use unsigned integers to represent the genes. Throughout
this chapter, each xi in a signed chromosome is a signed integer, and each xi in an
unsigned chromosome is an unsigned integer. A signed genome is a set of signed
chromosomes and an unsigned genome is a set of unsigned chromosomes.

1.1 The Signed Translocation

For two signed chromosomes X = x1, x2, . . . , xm and Y = y1, y2, . . . , yn

in a genome, a prefix–prefix translocation ρpp(X, Y, i, j) generates two new
chromosomes: x1, . . . , xi−1, yj , . . . , yn and y1, . . . , yj−1, xi, . . . , xm. A prefix–
suffix translocation ρps(X, Y, i, j) generates two new chromosomes: x1, . . . , xi−1,

−yj−1, . . . ,−y1 and −xm, . . . ,−xi, yj , . . . , yn.
Note that the choices of prefix–prefix and prefix–suffix translocations imply that

one can change the direction of a chromosome without increasing the transloca-
tion distance. A chromosome X is identical to chromosome Y if either X = Y or
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X = −Y . Genome A is identical to genome B if and only if the sets of chromosomes
for A and B are the same.

The translocation distance between two signed genomes A and B, denoted as
ds(A,B), is the minimum number of translocations required to transform A into B.
Given two genomes, the signed translocation problem is to find the minimum number
of translocations as well as the sequence of translocation operations to transform one
signed genome into the other.

Let A and B are two genomes. The genes at the ends of a chromosome are called
head/tail genes. A can be transformed into B by translocations if and only if:

(1) The two genomes contain the same set of genes;
(2) The two genomes contain the same number (must be at least 2) of chromo-

somes;
(3) The two genomes have the same set of head/tail genes;
(4) For any gene g that is a head/tail gene in A, (a) if g’s sign in A is different

from that in B, then g must be a head in one genome and a tail in the other;
(b) if g has the same sign in both A and B, then g must be either a head in
both genomes or a tail in both genomes.

(See [9].)

1.2 The Unsigned Translocation

For two unsigned chromosomes X = x1, x2, . . . , xm and Y = y1, y2, . . . , yn in
a genome, a translocation swaps the segments in the chromosomes and generates
two new chromosomes. A prefix–prefix translocation ρpp(X, Y, i, j) generates two
new chromosomes: x1, . . . , xi−1, yj , . . . , yn and y1, . . . , yj−1, xi, . . . , xm. A prefix–
suffix translocation ρps(X, Y, i, j) generates two new chromosomes: x1, . . . , xi−1,
yj−1, . . . , y1 and xm, . . . , xi , yj , . . . , yn.

The translocation distance between two unsigned genomes A and B, denoted as
d(A,B), is the minimum number of translocations required to transform A into B.
Given two genomes, the unsigned translocation problem is to find the minimum
number of translocations as well as the sequence of translocation operations to trans-
form one signed genome into the other.

For an unsigned chromosome, the genes at the ends of a chromosome are called
end genes. Given two unsigned genomes, A and B, A can be transformed into B by
translocations if and only if the sets of end genes for A and B are identical.

In this chapter, we will review the history on the development of the algorithms
for signed and unsigned translocation distance problems and present the best known
exact and approximation algorithms for signed case and unsigned case, respectively.
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2. The Signed Translocation Distance Problem

The signed translocation problem was first studied in [18]. Hannenhalli gave the
first polynomial time algorithm to solve the problem [12]. The running time is O(n3),
where n is the total number of genes in the genome. An O(n2 log n) algorithm was
given in [29]. A linear-time algorithm that computes the minimum number of translo-
cation operations was given in [20]. However, that algorithm cannot give the optimal
sequence of translocation operations. Here we present an O(n2) algorithm originally
in [27] that can compute the optimum sequence of translocation operations.

It seems that it is common to have linear-time algorithms to compute the distance
values for various kinds of rearrangement operations. However, it takes more time
to give an optimal sequence of operations. For example, for the signed reversal dis-
tance, a linear-time algorithm that computes the reversal distance value was given
in [2]. However, the best known algorithms to give an optimal sequence of reversal
operations still take O(n2) time [3,11,17]. Reference [10] dealt with minimum num-
ber of reversals, translocations, fissions and fusions. The value can be computed in
linear-time. However, it takes O(n2) time to give the sequence of the four operations
in [10]. The translocation distance is different from the distance studied in [10]. The
algorithm makes use of some new and non-trivial properties and structures.

2.1 The Breakpoint Graph and the Distance Formula
For a genome A, we will construct a graph GA. For each chromosome X =

x1, x2, . . . , xp in genome A, we have 2p vertices in GA, two vertices xh
i , xt

i for
each gene xi in X. The 2p vertices are arranged in a linear order from left to right as

(1)l(x1)r(x1)l(x2)r(x2) . . . l(xp)r(xp),

where if xi is a positive integer, then l(xi) = xt
i and r(xi) = xh

i ; and if xi is a
negative integer, then l(xi) = xh

i and r(xi) = xt
i . For each i ∈ {1, 2, . . . , p − 1},

there is a black edge (r(xi), l(xi+1)) in GA. Vertices u and v are neighbors in GA if
there is a black edge connecting u and v in GA.

Given two genomes A and B, we can construct the breakpoint graph GAB from
GA by adding a grey edge to every pair of vertices u and v, where u and v are
neighbors in GB . The graph GAB contains two kinds of edges, black edge and grey
edge. Each vertex in GAB (except the first and the last in a chromosome) is incident
to two edges, one black and one grey. Thus, each vertex is in a unique cycle in GAB .
From the construction, each black edge in the cycle is followed by a grey edge and
vice visa. A cycle is long if it contains at least two black edges. Otherwise, the cycle
is short. If A = B, then all cycles in GAB are short. d(A,B) is closely related to the
number of cycles in GAB .
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FIG. 1. The breakpoint graph for signed genome.

Example 1. Let the two genomes be A = {(1, 2, 3), (4,−6,−5, 7)} and B =
{(1, 2, 3), (4, 5, 6, 7)}. Both A and B contain two chromosomes. The breakpoint
graph is shown in Fig. 1.

Let X = x1, x2, . . . , xp be a chromosome in A. A sub-permutation is an inter-
val xi, xi+1, . . . , xi+l in X containing at least three genes such that there is another
interval of the same length yk, yk+1, . . . , yk+l in a chromosome Y of B satisfying
{|xi |, |xi+1|, . . . , |xi+l |} = {|yk|, |yk+1|, . . . , |yk+l |}, yk = xi , yk+l = xi+l , and
xi+1, . . . , xi+l−1 �= yk+1, . . . , yk+l−1. xi and xi+l are called the ending genes of the
sub-permutation.

Let I = xi, xi+1, . . . , xj be an interval for chromosome X in A. V (I) =
{xt

i , x
h
i , xt

i+1, x
h
i+1, . . . , x

t
j , x

h
j } be the set of vertices in GAB . The leftmost ver-

tex and the rightmost vertex in V (I) are referred to as LEFT(I ) = l(xi) and
RIGHT(I ) = r(xj ). Define IN(I ) = V (I)−{LEFT(I ), RIGHT(I )}. An edge (u, v)

is inside the interval I if both u and v are in IN(I ). A sub-permutation I can be
viewed as a sub-graph GAB(I) of GAB containing the vertex set IN(I ) such that

(a) there is no edge (u, v) such that u ∈ IN(I ) and v /∈ IN(I );
(b) the sub-graph corresponding to I has at least one long cycle.

A minimal sub-permutation (minSP for short) is a sub-permutation such that any
other interval in the minimal sub-permutation is not a sub-permutation.

Let u and v be two vertices in (1). u is on the left of v in X. A segment [u, v] on
chromosome X contains all the vertices in (1) starting at u and ending at v. A segment
[u, v] is inside a segment [x, y] if both u and v are in [x, y].

sAB denotes the number of minimal sub-permutations in GAB and cAB denotes
the number of cycles in GAB . The translocation distance is closely related to sAB

and cAB . It was shown that

d(A,B) � n − m − cAB,

where n is the number of genes in the genomes and m is the number of chromosomes
in the genomes [12]. Given two minSPs in two different chromosomes in A, one can
use one translocation to destroy the two minSPs and the resulting breakpoint graph
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has one more cycle. Thus, roughly speaking, sAB extra translocations are required to
destroy all minSPs and keep the same number of cycles. However, if there are odd
number of minSPs, we need one more extra translocation. oAB is defined as

(2)oAB =
{

1: if the number of minSPs is odd,

0: otherwise.

Another case that need extra translocations is that in GAB if (1) there are even
number of minSPs in GAB , and (2) all the minSPs are contained in a single sub-
permutation (and thus all the minSPs are on a single chromosome of A). Such a
single sub-permutation is called an even isolation. Note that, there is at most one
even isolation. Define

(3)iAB =
{

1: if there is an even isolation,

0: otherwise.

The following theorem gives the value of the translocation distance and is the key
to design polynomial time algorithm solving the problem [12].

Theorem 1. [12] Let n be the number of genes in the genomes and m the num-
ber of chromosomes in the genomes. The translocation distance between two signed
genomes A and B is

(4)d(A,B) = n − m − cAB + sAB + oAB + 2 · iAB.

2.2 The General Framework of Polynomial Time Algorithms

Consider two black edges (u, v) and (f, g) in a long cycle in GAB , where (u, v) is
in chromosome X in A and (f, g) is in chromosome Y in A. Consider a translocation
ρ acting on X and Y cutting the two black edge (u, v) and (f, g). ρ is a proper
translocation if the cycle containing (u, v) and (f, g) in GAB becomes two cycles
in the new breakpoint graph. Otherwise, ρ is improper. Sometimes, the two black
edges that a translocation cuts might be in different cycles in GAB . In that case, a
translocation merges the two cycles into one. A bad translocation merges two cycles
into one. (See Fig. 2.)

The formula (4) gives the value of the translocation distance between two
genomes. We want to find translocations such that after applying such a translo-
cation, the translocation distance is reduced by one.

A proper translocation is valid if it does not create any new minSP. It is proved
in [12] that if there is a proper translocation for GAB , there must be a valid proper
translocation. As pointed out by Bergeron et al. in [6], a valid proper translocation
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FIG. 2. Proper and bad translocations.

while the two genomes are not identical do choose a correct translocation
as follows:

Case 1. There is an even isolation: destroy a minSP.
Case 2. If OAB = 0, L = 1 and there is no even isolation: choose
a valid proper translocation such that L = 2.
Case 3. OAB = 1: Choose a valid proper translocation if possible.
Otherwise, choose a correct bad translocation.
Case 4. OAB = 0 and L � 2: Choose a correct bad translocation.

ALGORITHM 1. The general framework of a polynomial time algorithm.

may create an even isolation. Thus, when applying a valid proper translocation, one
has to make sure no even isolation is introduced. A correct translocation reduces
the distance by one. The general strategy for a polynomial time algorithm is (1) to
choose a correct proper translocation to reduce the number of cycles by one; and (2)
to choose a correct bad translocation to destroy two minSPs and at the same time to
create one more cycle. (On average, each minSP needs one translocation in this case.)
There are some special cases to consider. (i) If there are odd number of minSPs, we
have to use one more bad translocation to destroy it. (ii) An even isolation costs two
extra translocations.

Let L be the number of chromosomes in the genome that contain minSPs. The al-
gorithm to find an optimal sequence of correct translocations is given in Algorithm 1.

In Case 2, there must be more than one SP in the chromosome. Thus, there ex-
ists a grey edge with one end in the middle of the two SPs and the other end on
another chromosome. Such a grey edge corresponds to a proper translocation (see
Section 2.3). Using the method in [27] (see Section 2.3), we can find a valid proper
translocation that re-distributes the minSPs in the chromosome to the two newly cre-
ated chromosomes. Thus, L becomes 2.
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In Case 3, we do not have to worry about creating an even isolation when using
a valid proper translocation. Thus, we always choose a valid proper translocation if
possible.

In Case 4, there always exists a translocation that destroys two minSPs such that
L � 2 or L = 0. We can cut the minSP I in a chromosome such that there are
minSPs on both left and right of I . If there is no such a chromosome, then either
both chromosomes we cut have one minSP or both chromosomes we cut have two
minSPs. In the first case, we have L is even and L is reduced by 2 and in the second
case, we can have L � 2.

Suppose there are n genes in the genomes. d(A,B) is at most O(n). The method
in [12] can find a bad valid translocation in O(n) time when no proper valid translo-
cation is available. It takes O(n) time to update the value of L. All the minSPs can
be found in O(n2) time. Thus, the running time depends on the time to find a valid
proper translocation.

2.2.1 Ideas for the Old Algorithms
The algorithm in [12] simply checks each grey edge in the newly created minSP

to see if the grey edge leads to a proper valid translocation. For each grey edge, the
checking process takes O(n) time. Thus, in the worst case, it takes O(n2) time to find
a proper valid translocation. Since d(A,B) is at most O(n), the total time required is
O(n3).

For the best known algorithm in [29], it takes O(n log n) time to find a valid proper
translocation from the newly created minSP. The idea is as follows:

(1) Carefully choose a grey edge in the newly created minSP and test if such a
grey edge leads to a proper valid translocation.

(2) If such a grey edge does not lead to a proper valid translocation, then the
size of the segment containing the proper valid grey edge (originally being a
minSP) is reduced by half.

(3) Go to Step 1 to work on the new segment whose size is reduced by half.

Step 1 takes O(n). In the worst case, it takes O(log n) iterations to find a proper
valid translocation. Thus, the total time to find a proper valid translocation is
O(n log n). Since d(A,B) is at most O(n), the total time required is O(n2 log n).

2.3 The O(n2) Algorithm
In this section, we present the algorithm in [27] that makes use of some new and

non-trivial properties and structures. It search the proper valid grey edge from the
ends of the newly created minSP. It takes O(n) time in total to find a proper valid
grey edge.
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Since d(A,B) is at most O(n), the total time required is O(n2).
Now we focus on how to find a valid proper translocation in O(n) time.
A grey edge is proper if its two ends are in different chromosomes. For a proper

grey edge (u, v), there are two translocations (prefix–prefix and suffix–prefix) to cut
the two black edges adjacent to the grey edge. One of the two translocations breaks a
long cycle into two and thus is a proper translocation and the other is improper. From
now on, we use a proper grey edge (u, v) to refer to its proper translocation, denoted
as ρ(u, v). We use the two terms interchangeably.

Note that some proper translocation may not cut two black edges adjacent to a
proper grey edge. However, whenever there is a proper translocation ρ, there must
be a proper grey edge in the long cycle that ρ breaks. In our algorithm, we always
focus on the proper translocations indicated by proper grey edges.

If a proper grey edge (translocation) does not produce a new minSP, then it is
valid. Otherwise, it is not valid. The following lemma shows that in this case, we can
find a valid proper grey edge inside the new minSP.

Lemma 1. [29] If a proper translocation for GAB produces a new minSP, say, P ,
then there must be a proper grey edge inside P that is valid for GAB .

2.3.1 Finding the New minSP

Let min = {P1, P2, . . . , Pk} be the set of all minSPs for GAB . min can be com-
puted in O(n2) time [27]. Let X1Y1 be a new chromosome produced by a proper
grey edge in GAB , where X1 is from chromosome X in genome A and Y1 is from
chromosome Y in A. The black edge (RIGHT(X1), LEFT(Y1)) connecting the two
parts X1 and Y1 is called the connecting edge in X1Y1. Obviously, a new minSP must
contain the connecting edge.

We can find whether a new minSP is produced in X1Y1 in O(n) time. The idea of
our algorithm is to search the new chromosome X1Y1 starting from the two ends of
the connecting edge to left and right, respectively. Let l and r be the vertices in X1

and Y1 that we are going to check. L denotes the leftmost vertex in X1 that a new
minSP could reach and R denotes the rightmost vertex in Y1 that a new minSP could
reach. left(u)/right(u) denotes the vertex that is on the left/right of vertex u in the
breakpoint graph GAB . (See Algorithm 2.)

In Step 5, we have to test if an old minSP is in [L,R]. This can be done in O(n)

time by looking at all the old minSPs in min produced by Algorithm 2.
A new sub-permutation I in X1Y1 containing the connecting edge is a nested sub-

permutation if I does not contain any sub-permutation P ′ ⊂ I such that P ′ ⊆ X1 or
P ′ ⊆ Y1.
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1. Initialize L = l to indicate the rightmost vertex on X1 in a long cycle. Initialize R = r

to indicate the leftmost vertex in Y1 in a long cycle. (if there is no long cycle crossing the
connecting edge, then return “no new minSP is found”.)

2. Let (l, u) and (r, v) be the grey edges incident to l and r , respectively.
(a) if v ∈ V (X1) and v is on the left of L then set L = v.
(b) if v ∈ V (Y1) and v is on the right of R then set R = v

(c) if u ∈ V (X1) and u is on the left of L then set L = u.
(d) if u ∈ V (Y1) and u is on the right of R then set R = u

(e) if u or v is not in V (X1Y1) then return “no new minSP is found”.
3. If l �= L then l = left(l). If r �= R then r = right(r).
4. If l �= L or r �= R goto Step 2.
5. If [L,R] does not contain any minSP in min then return [L, R]

else return “no new minSP is found”.

ALGORITHM 2. Testing whether a new minSP exists in O(n) time.

Theorem 2. Algorithm 2 correctly tests whether X1Y1 contains a new minSP and if
yes, outputs the new minSP. Algorithm 2 runs in O(n) time.

2.3.2 Partition of the New minSP

Let X and Y be two chromosomes of A. Let e be a proper grey edge and b and c

the two black edges adjacent to e in GAB . Suppose the proper translocation cutting
b and c produces two new chromosomes XLXMYMYR and YLXR such that P =
XMYM is a new minSP, where XM is from X and YM is from Y . See Fig. 3. We
use l(b) and r(b) to represent the left and the right ends of edge b. Thus, we have
RIGHT(XM) = l(b) and LEFT(YM) = r(c).

From Lemma 1, to find a valid grey edge, we only have to consider the grey edges
inside XMYM . This grey edge cannot be (RIGHT(XM), LEFT(YM)), since if such
a grey edge (RIGHT(XM), LEFT(YM)) exists, then (RIGHT(XM), LEFT(YM)) =
(l(b), r(c)). (See Fig. 3.) Is the original grey edge used to do the translocation oper-
ation, and this translocation operation leads to the new minSP and is not valid.

Lemma 2. Let ρ be a proper translocation acting on chromosomes X and Y that
produces the two new chromosomes XLXMYMYR and YLXR such that P = XMYM

is a new minSP. Let (u, v) be a grey edge inside XMYM . ρ(u, v) acting on X and Y

produces two new chromosomes X′ = X1XV YV Y1 and Y ′ = X2XUYUY2 such that
V (XV YV ) �= ∅, V (XUYU) �= ∅, XV and XU form XM , and YV and YU form YM . If
X′ or Y ′ contains a new minSP, say, P ′, then P ′ must be inside XV YV or XUYU .
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FIG. 3. A proper grey edge (translocation) acting on X and Y generates a new minSP in the resulting
chromosomes. The bold parts represent segments in the new minSP.

findEdge(XMYM)

We can start from the right end l(b) of XM , go to the left in XM and find the first vertex vR

in V (XM) satisfying
(1) vR is connected to vertex uR ∈ V (YM) via a grey edge (uR, vR) in GAB .
(2) (vR, uR) �= (l(b), r(c)), where RIGHT(XM) = l(b) and LEFT(YM) = r(c).

ALGORITHM 3. Finding a grey edge in XMYM such that at least one of the new chromosomes does
not contain any minSP.

Lemma 1 does not tell us how to find such a valid grey edge. We can use
findEdge(XMYM) (Algorithm 3) to find a proper grey edge that can produce at most
one new minSP though it may not be valid. (A grey edge may produce two new
minSPs in some cases. This moves towards our goal by one step.)

Lemma 3. Let XMYM be the new minSP. The grey edge (uR, vR) is found in
findEdge(XMYM). (uR, u) and (vR, v) denote the two black edges adjacent to
the grey edge (uR, vR) in GAB . XN = v1, v2, . . . , vk , where vk = l(b) if XN

is not empty, is the segment of vertices (not including vR) in XM checked in
findEdge(XMYM) before vertex vR is found in XM . At most one of the two new chro-
mosomes produced by translocation ρ(uR, vR) contains a new minSP. In particular,
if XN is not empty, then the new chromosome X′ containing the segment XN does
not contain any new minSP.
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Corollary 1. Lemma 3 still holds if the input XMYM of findEdge() is a nested sub-
permutation, but not a minSP.

Let X′ = X1XV YV Y1 be the new chromosome produced by translocation
ρ(uR, vR) that does not contain any new minSP, where X1 ∩XM = ∅, Y1 ∩YM = ∅,
XV ⊆ XM and YV ⊆ YM . Let Y ′ be the other new chromosome produced by
ρ(uR, vR). According to Lemma 3, Y ′ may contain a new minSP, say, P . Lemma 1
says that a valid proper translocation can be found in P . In the next subsection, we
design a method to repeatedly reduce the size of the new minSP and eventually find
the valid proper grey edge.

2.3.3 Finding the Valid Proper Grey Edge in the New minSP
Let (uR, vR) be selected in findEdge(XMYM). One of the two new chromosomes

X′ = X1XV YV Y1 does not contain any new minSP. The other chromosome Y ′ =
X2XUYUY2 (call it crucial chromosome) that may contain a new minSP. Note that
the two segments XU and XV form XM and YU and YV form YM (the order may
not be fixed). From Lemmas 2 and 3, the new minSP P in Y ′ must be inside the
segment XUYU . Next, we try to reduce the range in XUYU that the new minSP could
be. Since XU ⊆ XM , YU ⊆ YM and XMYM is a minSP at the very beginning,
for any grey edge with one end in XUYU , the other end must be in V (XMYM) =
V (XU) ∪ V (XV ) ∪ V (YU) ∪ V (YV ). Thus, it is enough to consider the vertices in
V (XU) ∪ V (XV ) ∪ V (YU ) ∪ V (YV ).

A vertex is ignorable if it is in V (XUYU), but not in the new minSP in Y ′. We
need the following lemma to prune segment XUYU .

Lemma 4. If there is a grey edge (u1, v1) such that u1 ∈ V (XV YV ) and v1 ∈
V (XUYU), then v1 is ignorable.

By the definition of minSP, the following lemma holds.

Lemma 5. If u ∈ V (XU) is ignorable, then any vertex v on the left of u in XU is
ignorable. If u ∈ V (YU) is ignorable, then any v on the right of u in YU is ignorable.

Lemma 6. Let (u, v) be a grey edge inside XUYU . If u is ignorable then v is ignor-
able.

We can reduce the range of XUYU based on Lemmas 4–6. Let l and r be the
rightmost vertex in XU and the leftmost vertex in YU such that there are grey edges
(v1, l) and (v2, r) with v1 ∈ V (XV YV ) and v2 ∈ V (XV YV ). Let L and R be the
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FIG. 4. Illustration of the four pointers in Algorithm 4.

prune(XU , YU , XV , YV )
1. Set l = right(LEFT(XU )) and r = left(RIGHT(YU )).
2. Search every vertex v ∈ V (XV YV ) and find the rightmost vertex l in XU and the leftmost

vertex r in YU such that there are grey edges (v1, l) and (v2, r) with v1 ∈ V (XV YV ) and
v2 ∈ V (XV YV ).

3. Let L = right(LEFT(XU )) and R = left(RIGHT(YU )).
4. Consider the grey edges (L, u) and (R, v). if u ∈ V (XU) (v ∈ V (YU )) and u (v) is on

the right of l (left of r), then l = u (r = v). if u ∈ V (YU ) (v ∈ V (YU )) and u (v) is on
the left of r , then r = u (l = v).

5. if (l �= L) then L = right(L). if (r �= R) then R = left(R). if (l �= L or r �= R) then
goto Step 4.

6. l = right(l) and r = left(r).
7. Move r to the left until no short cycle is on the left of r in YU . Move l to the right until

no short cycle is on the right of l in XU .
8. output: [l, r].

ALGORITHM 4. Reducing the range of the minSP in the crucial chromosome.

vertices in XU and YU that we are going to check (based on Lemma 6). Initially, we
set L = right(LEFT(XU)) and R = left(RIGHT(YU )). Figure 4 illustrates the four
pointers used in the algorithm.

We can use Algorithm 4 to prune the segment XUYU in Y ′. We claim that there
always exists a grey edge (u, v) with u ∈ V (XUYU) and v ∈ V (XV YV ).

Theorem 3. If algorithm prune(XU, YU ,XV , YV ) returns l and r as the two ends
of the connecting edge in X2XUYUY2, then ρ(uR, vR) is valid. If l or r is not the
end of the connecting edge, ρ(uR, vR) is not valid. In this case, ρ(uR, vR) produces
a new minSP contained in the interval [l, r]. Moreover, [l, r] itself is a nested sub-
permutation in this case.

Now, we can use findEdge() and prune() alternately to find a valid grey edge. (See
Algorithm 5.)
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findValid(GAB )
Output (uR, vR).
1. Arbitrarily select a proper grey edge (u, v) in GAB and apply the translocation.
2. Use Algorithm 3 to test if any of the two new chromosomes contains a new minSP. if no

new minSP is found then return (u, v) and stop.
3. Let XMYM be the new minSP found in Step 2.
4. Call findEdge(XMYM) to get (uR, vR), and determine XU, YU , XV , YV .
5. Call prune(XU , YU , XV , YV ) to get [l, r]. if l = RIGHT(XU ) and r = LEFT(YU ) then

return (uR, vR) and stop.
6. Update XM = [l, x] and YM = [y, r], where x and y are the two ends of the connecting

edge and goto Step 4.

ALGORITHM 5. Finding a valid proper grey edge (translocation) in O(n) time.

Theorem 4. Algorithm 5 finds a valid proper grey edge (translocation) in O(n) time.

Theorem 5. There exists an O(n2) algorithm for the signed translocation problem.

3. The Unsigned Translocation Distance Problem

In this section, we discuss the complexity for unsigned case and present a ratio-
1.75 approximation algorithm. The translocation distance computation for unsigned
genomes was first studied by Kececioglu et al. [19]. The problem was prove to be
NP-hard by Zhu and Wang in [28].

3.1 Breakpoint Graph for Unsigned Genomes
Given two unsigned genomes A and B, the breakpoint graph BAB is constructed

as follows: (1) the vertex set is the set of genes in A in the linear order as in the
chromosomes; (2) set a black edge between any two vertices that are neighbors in A

and set a grey edge between any two vertices that are neighbors in B. A nodal vertex
is the vertex for an end gene in a chromosome. Every nodal vertex in BAB is incident
to one black edge and one grey edge. Any non-nodal vertex is incident to two black
and two grey edges.

Unlike the signed breakpoint graphs, the unsigned breakpoint graphs do not admit
unique cycle decomposition. For each non-nodal vertex, there are two ways to pair
the two black and two grey edges incident to the vertex. Once the choice for the
paring of the two black and two grey edges is fixed, we have a decomposition of BAB

into alternate-color cycles. Any alternate-color cycle decomposition gives a direction
of every gene in genomes A and B.
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FIG. 5. The signed and unsigned breakpoint graphs for genomes A and B.

For example, let A = {1, 5, 3; 4, 2, 6} and B = {1, 2, 3; 4, 5, 6}, both contain-
ing two chromosomes separated by a semicolon. The unsigned breakpoint graph
BAB is presented in Fig. 5(a). Assign every gene in B a positive direction to
get 	B={+1,+2,+3; +4,+5,+6}. If 	A1 = {+1,+5,+3; +4,+2,+6}, the corre-
sponding signed breakpoint graph G 	A1 	B is as Fig. 5(b) and d( 	A1, 	B)=2. If 	A2 =
{+1,−5,+3; +4,+2,+6}, the corresponding graph G 	A2 	B is as Fig. 5(c). In this

case, d( 	A2, 	B) = 3.
Let ρ be a translocation that transforms genome A into A1. There exists a translo-

cation ρ1 transforming A1 into A. Translocation ρ1 is called the counter translo-
cation of ρ and ρ1 is denoted as ρ. Let spin(A) be the set of all signed genomes
obtained from A by assigning a direction to each gene in A. The following theorem
gives the relationship between the unsigned and the signed translocation distances.

Theorem 6. Let A and B be two unsigned genomes. 	B is the signed genome ob-
tained from B by setting the direction of every gene as positive. Then, d(A,B) =
min 	A∈spin(A)

d( 	A, 	B).

3.2 The NP-Hardness

The reduction is from the maximum alternate-color cycle decomposition problem,
which was proved to be NP-hard by Caprara in [7].

The maximum alternate-color cycle decomposition problem
Instance: Unsigned chromosomes X and Y , BXY as the breakpoint graph with
respect to X and Y .
Question: Find an alternate-color cycle decomposition of BXY such that the
number of cycles is maximized.

Given two unsigned genomes A and B. Consider the cycle decomposition of BAB .
If vertex x is split into xt and xh by a cycle decomposition of BAB , each of xt and
xh must be uniquely in one alternate-color cycle. Vertex x is used by cycle C if xt
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or xh is in C. Every cycle uses a vertex at most twice in a cycle decomposition of
BAB . A grey edge is referred to as inside X if its two ends are both in X. A grey edge
spans X and Y if one of its end is in X and the other is in Y .

The reduction is from the Max-Acd problem. Let X and Y be the two unsigned
chromosomes. Without loss of generality, let X = g1, g2, . . . , gn−1, gn and Y =
1, 2, . . . , n, where {g1, g2, . . . , gn} = {1, 2, . . . , n}, g1 = 1, gn = n. We construct
two genomes A={X1, X2} and B={Y1, Y2} from X and Y .

There are 4n − 3 + (n − 2)d genes in both genomes A and B, where genes in
{1, 2, . . . , n} have been used in X and Y . The positive integer d is used to control the
shape of the long cycles in the decomposition of BAB . Chromosome X1 of genome
A is constructed by inserting n − 1 new genes into the midst of adjacent pairs of
genes in chromosome X.

(5)X1 = 1, t1,1, g2, t1,2, . . . , gn−1, t1,n−1, n,

where t1,k = 3n − 2 + k, 1 � k � n − 1.
X2 contains two types of new genes, denoted as t2,l and si respectively.

(6)

X2 = t2,1, t2,2, s1, s2, . . . , sd ,

t2,3, t2,4, sd+1, . . . , s2d ,

. . . ,

t2,2(n−2)−1, t2,2(n−2), s(n−3)d+1, . . . , s(n−2)d ,

t2,2(n−1)−1, t2,2(n−1),

where t2,l = n + l, 1 � l � 2(n − 1), si = 4n − 3 + i, and 1 � i � (n − 2)d .
Now construct genome B = {Y1, Y2}. Let t1,k , t2,l , and si be the same integers

as used in A. Chromosome Y1 is identical to Y , Y1 = 1, 2, . . . , n − 1, n. Y2 is con-
structed from X2 by inserting t1,k into the midst of t2,2k−1 and t2,2k in X2.

(7)

Y2 = t2,1, t1,1, t2,2, s1, s2, . . . , sd ,

t2,3, t1,2, t2,4, sd+1, . . . , s2d ,

. . . ,

t2,2(n−2)−1, t1,n−2, t2,2(n−2), s(n−3)d+1, . . . , s(n−2)d ,

t2,2(n−1)−1, t1,n−1, t2,2(n−1).

Example. Suppose X = 1, 4, 3, 5, 2, 6 and Y = 1, 2, 3, 4, 5, 6. Then the break-
point graph GXY is shown in Fig. 6(a). For simplicity, set d = 1. The two
genomes are constructed as A = {X1 = 1, 17, 4, 18, 3, 19, 5, 20, 2, 21, 6; X2 =
7, 8, 22, 9, 10, 23, 11, 12, 24, 13, 14, 25, 15, 16}, and B = {Y1 = 1, 2, 3, 4, 5, 6;
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FIG. 6. The breakpoint graphs with respect to chromosomes X and Y and genomes A and B.

Y2 = 7, 17, 8, 22, 9, 18, 10, 23, 11, 19, 12, 24, 13, 20, 14, 25, 15, 21, 16}. The cor-
responding breakpoint graph BAB is shown in Fig. 6(b).

We can show that there is a decomposition of GXY into J alternate-color cycles if
and only if there exist at most 3n − 3 − J translocations to transform A into B.

Theorem 7. The unsigned translocation distance problem is NP-hard.

3.3 Inapproximability
Now, we study the hardness of approximating the unsigned translocation distance.

Consider the breakpoint graph decomposition (BGD) problem [4]. The instance of
BGD is the same as Max-Acd, but the objective of BGD is to minimize cost(C) =
b − |C|, where b is the number of black edges of the breakpoint graph and C is the
set of alternate-color cycles. In [4], Berman and Karpinski proved

Lemma 7. For any ε > 0, it is NP-hard to decide if an instance of BGD with
2240p breakpoints has the minimum cost of alternate-color cycle decomposition be-
low (1236 + ε)p or above (1237 − ε)p.

Now we use the reduction of Theorem 7 to show that approximating the unsigned
translocation distance within a factor 1.00017 is difficult.
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Theorem 8. For any ε > 0, it is NP-hard to decide if an instance of the unsigned
translocation distance problem can be approximated within factor 5717

5716 − ε, i.e.,
1.00017 − ε.

3.4 The 1.75 Approximation Algorithm

In this subsection, we present the 1.75 approximation algorithm originated in [5].
The main idea is based on the observation that if we can give a good approximation of
the cycle decomposition of the unsigned case, we can get a good approximation so-
lution for the unsigned translocation distance. For the 1.75 approximation algorithm,
they give a cycle decomposition that contains the maximum number of 1-cycles and
a sufficient number of 2-cycles.

3.4.1 Why the Ratio Could Be Better Than 2?

Now, we give an intuitive explanation that if we keep the maximum number of
1-cycles and maximum number of 2-cycles in assigning signs to genes, then the best
performance ratio we can expect is 1.5.

Suppose that we ignore the effect of sAB and iAB in formula (4). That is, we
assume that sAB = 0 and iAB = 0 in the optimal cycle decomposition. Then
d(A,B) = n − N − c. Let c∗

i be the number of i-cycles in the optimal cycle de-
composition. Then

(8)d(A,B) = n − N − c = n − N − c∗
1 − c∗

2 −
∑
i�3

c∗
i .

n − N is the number of black edges in the breakpoint graph. We further assume that
c∗

1 = 0, c∗
2 = 0 and all black edges are in 3-cycles in the optimal cycle decomposi-

tion. In this case, d(A,B) = n − N − n−N
3 = 2

3 (n − N). If in the approximation
solution, we do not care about i-cycles for i � 3, the distance for the approximation
solution could be n − N . Thus, the ratio becomes 3

2 . In our approximation algo-
rithm, we cannot get the maximum number of 2-cycles, but we get a large number of
2-cycles. Besides, we have to design sophisticated ways to deal with the other two
parameters s and f in the analysis.

3.4.2 The Cycle Decomposition Algorithm

We use BAB to denote the breakpoint graph for the unsigned genomes A and B.
A cycle decomposition of BAB can be computed in the following three steps.

Step 1: Decomposition of 1-cycles. If two vertices are joined by a black edge and
a grey edge in BAB , then assign proper signs to the two vertices to obtain the 1-cycle
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containing the black edge and the grey edge. Thus, if two genes are neighbors in both
genomes, the corresponding 1-cycle is kept in the cycle decomposition.

Step 2: Decomposition of 2-cycles. From BAB , we define a new graph, called
match graph, FAB as follows: (1) For every black edge in BAB with at least one end
not assigned a sign in Step 1, we create a vertex of FAB . (2) For every two vertices
of FAB (representing two black edges in BAB ), we create an edge connecting them
in FAB if the two black edges in BAB can form a 2-cycle. FAB can be constructed in
O(n2) time where n is the number of genes.

Let M denote a maximum match of FAB . |M| is the size of the match. A maximum
match of any graph can be found in O(|V ||E|1/2) time, where |V | is the number of
vertices and |E| is the number of edges [21]. Since FAB contains at most n vertices
and O(n) edges, M can be found in O(n3/2) time. Every edge in M represents a
2-cycle of BAB . By the construction, two 2-cycles in M cannot share any black edge
of BAB . However, they may share a grey edge in BAB . In that case, the two 2-cycles
cannot be kept in the cycle decomposition simultaneously. A 2-cycle in M is isolated
if it does not share any grey edge with any other 2-cycles in M . Otherwise, the
2-cycle is related. Since a 2-cycle has two grey edges, it is related to at most two
2-cycles.

A related component U consists of related cycles C1, C2, . . . , Ck , where Ci is
related to Ci−1 (2 � i � k), and every 2-cycle in U is not related to any 2-cycle not
in U . A related component involves at most two chromosomes, and can be one of the
four types shown in Fig. 7.

In our cycle decomposition, we keep all the isolated 2-cycles and alternatively
select 2-cycles from every related component. Assume that a maximum match M of
FAB contains z isolated 2-cycles. In our cycle decomposition approach, we can keep
at least � |M|−z

2 � + z, i.e., � |M|+z
2 � 2-cycles in Step 2.

FIG. 7. The four cases of related components including three 2-cycles.



124 L. WANG

Step 3: Decomposition of other long cycles. After the decomposition of 2-cycles,
the other long cycles can be arbitrarily selected from the remaining graph.

The long cycles created in Step 2 are called selected cycles and the cycles created
in Step 3 are called arbitrary cycles.

Our approximation algorithm for unsigned translocation problem is as follows:

Approximation algorithm
Input: BAB

1. Compute the cycle decomposition of BAB as described before.
2. Solve the signed case using the standard algorithm.

Let n be the number of genes in the given genomes. BAB and FAB can be con-
structed in O(n2) time. A maximum match of FAB can be found in O(n3/2) time. The
algorithm in [27] requires O(n2) time to compute an optimal sequence of transloca-
tions for signed case. Thus, the total time required for our approximation algorithm
is O(n2).

Theorem 9. The performance of the approximation algorithm is 1.75 and its running
time is O(n2).
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Abstract
The computation of ever larger as well as more accurate phylogenetic (evolu-
tionary) trees with the ultimate goal to compute the tree of life represents one
of the grand challenges in High Performance Computing (HPC) Bioinformat-
ics. Unfortunately, the size of trees which can be computed in reasonable time
based on elaborate evolutionary models is limited by the severe computational
cost inherent to these methods. There exist two orthogonal research directions
to overcome this challenging computational burden: First, the development of
novel, faster, and more accurate heuristic algorithms and second, the applica-
tion of high performance computing techniques. The goal of this chapter is to
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provide a comprehensive introduction to the field of computational evolutionary
biology to an audience with computing background, interested in participating
in research and/or commercial applications of this field. Moreover, we will cover
leading-edge technical and algorithmic developments in the field and discuss
open problems and potential solutions.
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1. Phylogenetic Tree Reconstruction

In this section, we provide an example of Branch and Bound (B&B) applied to
reconstructing an evolutionary history (phylogenetic tree). Specifically, we focus on
the shared-memory parallelization of the maximum parsimony (MP) problem using
B&B based on work by Bader and Yan [1–4].

1.1 Biological Significance and Background

All biological disciplines agree that species share a common history. The ge-
nealogical history of life is called phylogeny or an evolutionary tree. Reconstructing
phylogenies is a fundamental problem in biological, medical, and pharmaceutical
research and one of the key tools in understanding evolution. Problems related to
phylogeny reconstruction are widely studied. Most have been proven or are believed
to be NP-hard problems that can take years to solve on realistic datasets [5,6]. Many
biologists throughout the world compute phylogenies involving weeks or years of
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computation without necessarily finding global optima. Certainly more such com-
putational analyses will be needed for larger datasets. The enormous computational
demands in terms of time and storage for solving phylogenetic problems can only be
met through high-performance computing (in this example, large-scale B&B tech-
niques).

A phylogeny (phylogenetic tree) is usually a rooted or unrooted bifurcating tree
with leaves labeled with species, or more precisely with taxonomic units (called taxa)
that distinguish species [7]. Locating the root of the evolutionary tree is scientifically
difficult so a reconstruction method only recovers the topology of the unrooted tree.
Reconstruction of a phylogenetic tree is a statistical inference of a true phylogenetic
tree, which is unknown. There are many methods to reconstruct phylogenetic trees
from molecular data [8]. Common methods are classified into two major groups:
criteria-based and direct methods. Criteria-based approaches assign a score to each
phylogenetic tree according to some criteria (e.g., parsimony, likelihood). Sometimes
computing the score requires auxiliary computation (e.g. computing hypothetical an-
cestors for a leaf-labeled tree topology). These methods then search the space of trees
(by enumeration or adaptation) using the evaluation method to select the best one. Di-
rect methods build the search for the tree into the algorithm, thus returning a unique
final topology automatically.

We represent species with binary sequences corresponding to morphological (e.g.
observable) data. Each bit corresponds to a feature, call a character. If a species
has a given feature, the corresponding bit is one; otherwise, it is zero. Species can
also be described by molecular sequence (nucleotide, DNA, amino acid, protein).
Regardless of the type of sequence data, one can use the same parsimony phylogeny
reconstruction methods. The evolution of sequences is studied under a simplifying
assumption that each site evolves independently.

The Maximum Parsimony (MP) objective selects the tree with the smallest total
evolutionary change. The edit distance between two species as the minimum number
of evolutionary events through which one species evolves into the other. Given a tree
in which each node is labeled by a species, the cost of this tree (tree length) is the
sum of the costs of its edges. The cost of an edge is the edit distance between the
species at the edge endpoints. The length of a tree T with all leaves labeled by taxa
is the minimum cost over all possible labelings of the internal nodes.

Distance-based direct methods [9–11] require a distance matrix D where ele-
ment dij is an estimated evolutionary distance between species i and species j .
The distance-based Neighbor-Joining (NJ) method quickly computes an approxi-
mation to the shortest tree. This can generate a good early incumbent for B&B. The
neighbor-joining (NJ) algorithm by Saitou and Nei [12], adjusted by Studier and
Keppler [13], runs in O(n3) time, where n is the number of species (leaves). Experi-
mental work shows that the trees it constructs are reasonably close to “true” evolution
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of synthetic examples, as long as the rate of evolution is neither too low nor too high.
The NJ algorithm begins with each species in its own subtree. Using the distance
matrix, NJ repeatedly picks two subtrees and merge them. Implicitly the two trees
become children of a new node that contains an artificial taxon that mimics the dis-
tances to the subtrees. The algorithm uses this new taxon as a representative for the
new tree. Thus in each iteration, the number of subtrees decrements by one till there
are only two left. This creates a binary topology. A distance matrix is additive if there
exists a tree for which the inter-species tree distances match the matrix distances ex-
actly. NJ can recover the tree for additive matrices, but in practice distance matrices
are rarely additive. Experimental results show that on reasonable-length sequences
parsimony-based methods are almost always more accurate (on synthetic data with
known evolution) than neighbor-joining and some other competitors, even under ad-
verse conditions [14]. In practice MP works well, and its results are often hard to
beat.

In this section we focus on reconstructing phylogeny using maximum parsimony
(minimum evolution). A brute-force approach for maximum parsimony examines
all possible tree topologies to return one that shows the smallest amount of total
evolutionary change. The number of unrooted binary trees on n leaves (representing
the species or taxa) is (2n − 5)!! = (2n − 5) · (2n − 7) · · · 3. For instance, this
means that there are about 13 billion different trees for an input of n = 13 species.
Hence it is very time-consuming to examine all trees to obtain the optimal tree. Most
researchers focus on heuristic algorithms that examine a much smaller set of most
promising topologies and choose the best one examined. One advantage of B&B is
that it provides instance-specific lower bounds, showing how close a solution is to
optimal [15].

The phylogeny reconstruction problem with maximum parsimony (MP) is defined
as follows. The input is a set of c characters and a set of taxa represented as length-
c sequences of values (one for each character). For example, the input could come
from an aligned set of DNA sequences (corresponding elements matched in order,
with gaps). The output is an unrooted binary tree with the given taxa at leaves and
assignments to the length-c internal sequences such the resulting tree has minimum
total cost (evolutionary change). The characters need not be binary, but each usually
has a bounded number of states. Parsimony criteria (restrictions on the changes be-
tween adjacent nodes) are often classified into Fitch, Wagner, Dollo, and Generalized
(Sankoff) Parsimony [7]. In this example, we use the simplest criteria, Fitch parsi-
mony [16], which imposes no constraints on permissible character state changes. The
optimization techniques we discuss are similar across all of these types of parsimony.

Given a topology with leaf labels, we can compute the optimal internal labels
for that topology in linear time per character. Consider a single character. In a leaf-
to-root sweep, we compute for each internal node v a set of labels optimal for the
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subtree rooted at v (called the Farris Interval). Specifically, this is the intersection
of its children’s sets (connect children though v) or, if this intersection is empty,
the union of its children’s sets (agree with one child). At the root, we choose an
optimal label and pass it down. Children agree with their parent if possible. Because
we assume each site evolves independently, we can set all characters simultaneously.
Thus for m character and n sequences, this takes O(nm) time. Since most computers
can perform efficient bitwise logical operations, we use the binary encoding of a
state in order to implement intersection and union efficiently using bitwise AND and
bitwise OR. Even so, this operation dominates the parsimony B&B computation.

The following sections outline the parallel B&B strategy for MP that is used in the
GRAPPA (Genome Rearrangement Analysis through Parsimony and other Phyloge-
netic Algorithms) toolkit [2]. Note that the maximum parsimony problem is actually
a minimization problem.

1.2 Strategy

We now define the branch, bound, and candidate functions for phylogeny recon-
struction B&B. Each node in the B&B tree is associated with either a partial tree or
a complete tree. A tree containing all n taxa is a complete tree. A tree on the first
k (k < n) taxa is a partial tree. A complete tree is a candidate solution. Tree T is
consistent with tree T ′ iff T can be reduced into T ′; i.e., T ′ can be obtained from
T by removing all the taxa in T that are not in T ′. The subproblem for a node with
partial tree T is to find the most parsimonious complete tree consistent with T .

We partition the frontier into levels, such that level k, for 3 � k � n, represents
the candidates (i.e., partial trees when k < n) containing the first k taxa from the
input. The root node that contains the first three taxa (hence, indexed by level 3)
since there is only one possible tree topology with three leaves. The branch function
finds the immediate successors of a node associated with a partial tree Tk at level k

by inserting the (k + 1)st taxon at any of the 2k − 3 possible places. A new node
(with this taxon attached) can join in the middle of any of the 2k − 4 edges not
adjacent to the root or anywhere on the path through the root. For example, in Fig. 1,
the root on three taxa is labeled (A), its three children at level four are labeled (B),
(C), and (D), and a few trees at level five (labeled (1) through (5)) are shown. The
search space explored by this approach depends on the addition order of taxa, which
also influences the efficiency of the B&B algorithm. This issue is important, but not
further addressed in this chapter.

We use depth-first search (DFS) as our primary B&B search strategy, and a heuris-
tic best-first search (BeFS) to break ties between nodes at the same depth.

Next we discuss the bound function for maximum parsimony. A node v associated
with tree Tk represents the subproblem to find the most parsimonious tree in the
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FIG. 1. Maximum Parsimony B&B search space.

search space that is consistent with Tk . Assume Tk is a tree with leaves labeled by
S1, . . . , Sk . Our goal is to find a tight lower bound of the subproblem. However, one
must balance the quality of the lower bound against the time required to compute it
in order to gain the best performance of the overall B&B algorithm.

Hendy and Penny [15] describe two practical B&B algorithms for phylogeny re-
construction from sequence data that use the cost of the associated partial tree as the
lower bound of this subproblem. This traditional approach is straightforward, and ob-
viously, it satisfies the necessary properties of the bound function. However, it is not
tight and does not prune the search space efficiently. Purdom et al. [17] use single-
character discrepancies of the partial tree as the bound function. For each character
one computes a difference set, the set of character states that do not occur among the
taxa in the partial tree and hence only occur among the remaining taxa. The single-
character discrepancy is the sum over all characters of the number of the elements
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in these difference sets. The lower bound is therefore the sum of the single-character
discrepancy plus the cost of the partial tree. This method usually produces much bet-
ter bounds than Hendy and Penny’s method, and experiments show that it usually
fathoms more of the search space [17]. Another advantage of Purdom’s approach is
that given an addition order of taxa, there is only one single-character discrepancy
calculation per level. The time needed to compute the bound function is negligible.

Next we discuss the candidate function and incumbent xI . In phylogeny recon-
struction, it is expensive to compute a meaningful feasible solution for each partial
tree, so instead we compute the upper bound of the input using a direct method such
as neighbor-joining [12,13] before starting the B&B search. We call this value the
global upper bound, f (xI ), the incumbent’s objective function. In our implementa-
tion, the first incumbent is the best returned by any of several heuristic methods.

The greedy algorithm [18], an alternative incumbent heuristic, proceeds as fol-
lows. Begin with a three-taxa core tree and iteratively add one taxon at a time. For
an iteration with an k-leaf tree, try each of the n − k remaining taxon in each of the
2k − 2 possible places. Select the lowest-cost (k + 1)-leaf tree so formed.

Any program, regardless of the algorithms, requires implementation on a suitable
data structure. As mentioned previously, we use DFS as the primary search strategy
and BeFS as the secondary search strategy. For phylogeny reconstruction with n taxa,
the depth of the subproblems ranges from 3 to n. So we use an array to keep the open
subproblems sorted by DFS depth. The array element at location i contains a priority
queue (PQ) of the subproblems with depth i, and each item of the PQ contains an
external pointer to stored subproblem information.

The priority queues (PQs) support best-first-search tie breaking and allow efficient
deletion of all dominated subproblems whenever we find a new incumbent. There are
many ways to organize a PQ (see [19] for an overview). In the phylogeny reconstruc-
tion problem, most of the time is spent evaluating the tree length of a partial tree. The
choice of PQ data structures does not make a significant difference. So for simplicity,
we use a D-heap for our priority queues. A heap is a tree where each node has higher
priority than any of its children. In a D-heap, the tree is embedded in an array. The
first location holds the root of the tree, and locations 2i and 2i + 1 are the children
of location i.

1.3 Parallel Framework

Our parallel maximum parsimony B&B algorithm uses shared-memory. The
processors can concurrently evaluate open nodes, frequently with linear speedup.

Second, a shared-memory platform makes available a large, shared memory that
can hold shared data structures, such as the arrays of priority queues representing
the frontier. For example, one of the largest SMP systems to date, the IBM pSeries
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690, uses 32 Power4+ 1.9 GHz microprocessors and one terabyte of global memory
in its largest configuration. Thus, the data structures representing the search space
and incumbent can be shared (concurrently accessed by the processors) with little
overhead, and the sheer amount of main memory allows for a tremendous num-
ber of active frontier nodes to be saved for later exploration, rather than sequential
approaches that often store only a small number of frontier nodes due to space limi-
tations and throw away other nodes that do not seem promising at the time (but may
contain the optimal tree). As described in Section 1.2, for each level of the search
tree (illustrated in Fig. 1), we use a priority queue represented by binary heaps to
maintain the active nodes in a heuristic order. The processors concurrently access
these heaps. To ensure each subproblem is processed by exactly one processor and
to ensure that the heaps are always in a consistent state, at most one processor can ac-
cess any part of a heap at once. Each heap Hi (at level i) is protected by a lock Locki .
Each processor locks the entire heap Hi whenever it makes an operation on Hi .

In the sequential B&B algorithm, we use DFS strictly so Hi is used only if the
heaps at higher level (higher on the tree, lower level number) are all empty. In the
parallel version, to allow multiple processors shared access to the search space,
a processor uses Hi if all the heaps at higher levels are empty or locked by other
processors.

The shared-memory B&B framework has a simple termination detection. A proces-
sor can terminate its execution when it detects that all the heaps are unlocked and
empty: there are no more active nodes except for those being decomposed by other
processors. This is correct, but it could be inefficient, since still-active processors
could produce more parallel work for the prematurely-halted processors. If the ma-
chine supports it, instead of terminating, a processor can declare itself idle (e.g. by
setting a unique bit) and go to sleep. An active processor can then wake it up if there’s
sufficient new work in the system. The last active processor terminate all sleeping
processors and then terminates itself.

1.4 Impact of Parallelization

There are a variety of software packages to reconstruct sequence-based phylogeny.
The most popular phylogeny software suites that contain parsimony methods are
PAUP* by Swofford [20], PHYLIP by Felsenstein [21], and TNT and NONA by
Goloboff [22,23]. We have developed a freely-available shared-memory code for
computing MP, that is part of our software suite, GRAPPA (Genome Rearrangement
Analysis through Parsimony and other Phylogenetic Algorithms) [2]. GRAPPA was
designed to re-implement, extend, and especially speed up the breakpoint analysis
(BPAnalysis) method of Sankoff and Blanchette [24]. Breakpoint analysis is another
form of parsimony-based phylogeny where species are represented by ordered sets of



COMPUTATIONAL GRAND CHALLENGES 135

genes and distances is measured relative to differences in orderings. It is also solved
by branch and bound. One feature of our MP software is that it does not constrain
the character states of the input and can use real molecular data and also characters
reduced from gene-order data such as Maximum Parsimony on Binary Encodings
(MPBE) [25].

The University of New Mexico operates Los Lobos, the NSF/Alliance 512-
processor Linux supercluster. This platform is a cluster of 256 IBM Netfinity 4500R
nodes, each with dual 733 MHz Intel Xeon Pentium processors and 1 GB RAM,
interconnected by Myrinet switches. We ran GRAPPA on Los Lobos and obtained a
512-fold speed-up (linear speedup with respect to the number of processors): a com-
plete breakpoint analysis (with the more demanding inversion distance used in lieu
of breakpoint distance) for the 13 genomes in the Campanulaceae data set ran in less
than 1.5 hours in an October 2000 run, for a million-fold speedup over the origi-
nal implementation [26,1]. Our latest version features significantly improved bounds
and new distance correction methods and, on the same dataset, exhibits a speedup
factor of over one billion. In each of these cases a factor of 512 speed up came from
parallelization. The remaining speed up came from algorithmic improvements and
improved implementation.

2. Boosting Phylogenetic Reconstruction Methods Using
Recursive-Iterative-DCM3

Reconstructing the Tree of Life, i.e., the evolutionary tree of all species on Earth,
poses a highly challenging computational problem. Various software packages such
as TNT [27–29], PAUP* [30], and RAxML [31] contain sophisticated search pro-
cedures for solving MP (Maximum Parsimony) and ML (Maximum Likelihood)
on very large datasets. (Section 3 of this chapter describes aspects of the RAxML
method in more detail.) The family of Disk Covering Methods (DCMs) [32–35] was
introduced to boost the performance of a given base method without making changes
to the method itself, i.e. use the same search procedures in the base method, except
deploy them in a divide and conquer context. DCMs decompose the input set of
species (i.e. alignment) into smaller subproblems, compute subtrees on each sub-
problem using a given base method, merge the subtrees to yield a tree on the full
dataset, and refine the resulting supertree to make it binary if necessary. Figure 2
shows the four steps of the DCM2 method which was developed for boosting MP
and ML heuristics. Figure 3 illustrates the operation of the Strict Consensus Merger
supertree method (SCM) which is used for merging the subtrees computed by the
base method. SCM is a fast consensus based method that has shown to be more ac-
curate and faster than the Matrix Representation using Parsimony (MRP) method
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FIG. 2. The DCM2 method was designed for boosting MP and ML heuristics. Steps 2, 3, and 4 are
common to most DCMs developed to date.

FIG. 3. The Strict Consensus Merger is a consensus-based supertree method that is fast and accurate
enough on DCM decompositions. As the figure shows, two subtrees are merged by first computing the
set of common taxa and restricting both the input trees to this set. The strict consensus tree, i.e. set of
common bipartitions, is computed on the restricted subtrees, and the remaining bipartitions on the two
input trees are then attached to the consensus.
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for supertree reconstruction on DCM subproblems [36]. DCMs have previously
been shown to significantly improve upon NJ, the most widely used distance-based
method for phylogeny reconstruction. See [37–40] for various studies showing DCM
improvements over NJ.

Rec-I-DCM3 is the latest in the family of Disk Covering Methods (DCMs) and
was designed to improve the performance of MP and ML heuristics. Rec-I-DCM3
is an iterative technique which uses the DCM3 decomposition [34] for escaping lo-
cal minima. Previously it was shown that Rec-I-DCM3 improves upon heuristics
for solving MP [34,35]. In this study we show that Rec-I-DCM3 combined with
RAxML-III finds highly optimal ML trees, particularly on large datasets. Within the
current Section we will refer to RAxML-III as RAxML (as opposed to Section 3
where RAxML refers to RAxML-VI).

We first discuss an essential component of Rec-I-DCM3 which is the DCM3 de-
composition. We then describe Rec-I-DCM3 in detail and examine its performance
in conjunction with RAxML as the base method.

2.1 DCM3 Decomposition

DCM3 is the latest decomposition technique in the family of DCMs. DCM3 was
designed as improvement over the previous DCM2 decomposition. As shown pre-
viously DCM2 is too slow on large datasets and more importantly, does not always
produces subsets that are small enough to give a substantial speedup [35]. The DCM3
decomposition is similar in many ways to the DCM2 technique; the main difference
between the two techniques is that DCM2’s decomposition is based upon a distance
matrix computed on the dataset, while DCM3’s decomposition is obtained on the
basis of a “guide tree” for the dataset.

We assume we have a tree T on our set S of taxa, and an edge weighting w of T

(i.e., w : E(T ) → �+). Based upon this edge-weighted tree, we obtain a decompo-
sition of the leaf set using the following steps. Before describing the decomposition
we define the short subtree of an edge.

Short subtrees of edges. Let A,B,C, and D be the four subtrees around e and let
a, b, c, and d be the set of leaves closest to e in each of the four subtrees A,B,C,
and D respectively (where the distance between nodes u and v is measured as∑

e∈Puv
w(e)). The set of nodes in a ∪ b ∪ c ∪ d is the “short subtree” around the

edge e. We will say that i and j are in a short subtree of T if there is some edge
so that i and j are in the short subtree around e. The graph formed by taking the
union of all the cliques on short subtrees is the short subtree graph and is shown to
be triangulated [35].
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DCM3 decomposition
• Input

– Set S = {s1, . . . , sn} of n aligned biomolecular sequences.
– An edge-weighted phylogenetic guide tree T leaf-labeled by S.

• Output Ai, . . . , Ak with
⋃

i Ai = S, and set X ⊂ S such that Ai ∩Aj = X for
all i, j .

• Algorithm
– Compute the short subtree graph G = (V ,E) where V = S and E =

{(i, j): i, j ∈ short subtree of T }.
– Find a clique separator X in G which minimizes maxi |Ai ∪ X| where

A1, . . . , Ak are the connected components of G after removing X.

FIG. 4. Algorithmic description of the DCM3 decomposition.

We begin the decomposition by first constructing the short subtree graph, which
is the union of cliques formed on “short subtrees” around each edge. Since the short
subtree graph G is triangulated, we can find maximal clique separators in polynomial
time (these are just cliques in the graph, as proven in [41]), and hence we can find
(also in polynomial time) a clique separator X that minimizes maxi |X ∪ Ci |, where
G − X is the union of k components C1, C2, . . . , Ck . This is the same decomposi-
tion technique used in the DCM2 decomposition, but there the graph is constructed
differently, and so the decomposition is different. Figure 4 describes the full DCM3
decomposition algorithm and Fig. 5 shows a toy example of the DCM3 decomposi-
tion on a eight taxon phylogeny. We now analyze the running time to compute the
DCM3 decomposition.

Theorem 1. Computing a DCM3 decomposition takes O(n3) time in the worst case,
where n is the number of sequences in the input.

Proof. In the worst case, the input tree can be ultrametric which causes each short
subtree to be of size O(n). Thus, for each internal edge (O(n) time) we create a clique
for each short subtree (O(n2) worst case time); the total time taken is O(n3). The
optimal separator and the associated connected components are found by computing
a depth-first search (O(n2) worst case time) for each of the O(n) clique separators;
total time taken is O(n3). Thus, the worst case time is O(n3). �

Although finding the optimal separator takes O(n3) time, in practice it takes much
longer than computing the short subtree. Rather than explicitly seeking a clique sep-
arator X in G which minimizes the size of the largest subproblem, we apply a simple
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FIG. 5. DCM3 decomposition shown on an eight taxon phylogeny.

heuristic to get a decomposition, which in practice turns out to be a good decompo-
sition. We explain this heuristic below.

Approximate centroid-edge decomposition. It has been observed on several real
datasets that the optimal separator is usually the one associated with the short sub-
tree of the centroid edge [35], i.e., the edge such that when removed produces
subtrees of equal size (in number of leaves). This observation allows us to bypass
the computation time associated with dealing with short subtrees. We can compute
an approximated centroid edge decomposition by finding the centroid edge e and
setting the separator to be the closest leaves in each of the subtrees around e. The re-
maining leaves in each of the subtrees around e (unioned with the separator) would
then form the DCM3 subproblems (see Fig. 6). This takes linear time if we use a
depth-first search. In the rest of this chapter we will use the approximate centroid
edge decomposition when we refer to a DCM3 decomposition.

2.2 Recursive-Iterative-DCM3 (Rec-I-DCM3)
Recursive-Iterative-DCM3 is the state of the art in DCMs for solving NP-hard op-

timization problems for phylogeny reconstruction. It is an iterative procedures which
applies an existing base method to both DCM3 subsets and the complete dataset.
Rec-I-DCM3 can also be viewed as an iterated local search technique [42] which
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FIG. 6. The faster approximate DCM3 centroid decomposition can be done in O(n) time. Both, finding
the centroid edge and computing the subsets, can be done in O(n) using a depth first search (n is the
number of leaves).

Recursive-Iterative-DCM3
• Input

– Input alignment S, #iterations n, base heuristic b, global search method g,
starting tree T , maximum subproblem size m.

• Output Phylogenetic tree leaf-labeled by S.
• Algorithm For each iteration do

– Set T ′ = Recursive-DCM3(S,m, b, T ).
– Apply the global search method g starting from T ′ until we reach a local

optimum. This step can be skipped; however, it usually leads to more optimal
trees even with a superficial search.

– Let T ′′ be the resulting local optimum from the previous step. Set T = T ′′.

FIG. 7. Algorithm for Recursive-Iterative-DCM3.

uses a DCM3 decomposition to escape local minima. Figure 7 provides a full de-
scription of the Rec-I-DCM3 algorithm.

The Recursive-DCM3 routine performs the work of dividing the dataset into
smaller subsets, solving the subproblems (using the base method), and then merg-
ing the subtrees into the full tree. Recursive-DCM3 is a simple modification of the
original DCM3. It is obtained by recursively applying the DCM3 decomposition to
DCM3 subsets in order to yield smaller subproblems. The sizes of individual sub-
problems vary significantly and the inference time per subproblem is not known a
priori and difficult to estimate. This can affect performance if the subproblems are
solved in parallel [43]. The global search method further improves the accuracy of
the Recursive-DCM3 tree and can also find optimal global configurations that were
not found by Recursive-DCM3, which only operates on smaller—local—subsets.
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However, previous studies [34,35] and results presented in this one show that even a
superficial search can yield good results.

2.3 Performance of Rec-I-DCM3 for Solving ML

Rec-I-DCM3 has previously shown to boost TNT (currently the fastest software
package for solving MP) with the default settings of TNT. In this chapter we set out
to determine if Rec-I-DCM3 can improve upon the standard hill-climbing algorithms
of RAxML (as implemented in RAxML-III). We study the performance of RAxML
and Rec-I-DCM3(RAxML) on several real datasets described below.

2.3.1 Real Datasets

We collected 20 real datasets of different sizes, sequence lengths, and evolutionary
rates from various researchers. All the alignments were prepared by the authors of
the datasets. It is important to use a reliable alignment when computing phylogenies.
Therefore, we minimize the use of machine alignments, i.e., those created solely
by a computer program with no human intervention. Below we list the size of each
alignment along with its sequence length and source.

1. 101 RNA, 1,858 bp [44], obtained from Alexandros Stamatakis.
2. 150 RNA, 1,269 bp [44], obtained from Alexandros Stamatakis.
3. 150 ssu rRNA, 3,188 bp [45], obtained from Alexandros Stamatakis.
4. 193 ssu rRNA [46], obtained from Alexandros Stamatakis.
5. 200 ssu rRNA, 3,270 bp [45], obtained from Alexandros Stamatakis.
6. 218 ssu rRNA, 4,182 bp [47], obtained from Alexandros Stamatakis.
7. 250 ssu rRNA [45], obtained from Alexandros Stamatakis.
8. 439 Eukaryotic rDNA, 2,461 bp [48], obtained from Pablo Goloboff.
9. 476 Metazoan DNA, 1,008 bp, created by Doug Ernisse but unpublished, ob-

tained from Pablo Goloboff with omitted taxon names.
10. 500 rbcL DNA, 1,398 bp [49].
11. 567 three-gene (rbcL, atpB, and 18s) DNA, 2,153 bp [50].
12. 854 rbcL DNA, 937 bp, created by H. Ochoterena but unpublished, obtained

from Pablo Goloboff with omitted taxon names.
13. 921 Avian Cytochrome b DNA, 713 bp [51].
14. 1,000 ssu rRNA, 5,547 bp [45], obtained from Alexandros Stamatakis.
15. 1,663 ssu rRNA, 1,577 bp [45], obtained from Alexandros Stamatakis.
16. 2,025 ssu rRNA, 1,517 bp [45], obtained from Alexandros Stamatakis.
17. 2,415 mammalian DNA, created by Olaf Bininda-Emonds but unpublished,

obtained from Alexandros Stamatakis.
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18. 6,722 three-domain (Eukarayote, Archea, and Fungi) rRNA, 1,122 bp, created
and obtained by Robin Gutell.

19. 7,769 three-domain (Eukaryote, Archea, and Fungi) + two organelle (mi-
tochondria and chloroplast) rRNA, 851 bp, created and obtained by Robin
Gutell.

20. 8,780 ssu rRNA, 1,217 bp [45], obtained from Alexandros Stamatakis.

2.3.2 Parameters for RAxML and Rec-I-DCM3
2.3.2.1 RAxML. We use default settings of RAxML on each dataset. By de-
fault RAxML performs a standard hill-climbing search for ML trees but begins with
an estimate of the MP tree (constructed using heuristics implemented in Phylip [52]).
We use the HKY85 model [53] throughout the study whenever we run RAxML (even
as the base and global methods for Rec-I-DCM3). For more details on RAxML we
refer the reader to Section 3 of this chapter where RAxML is thoroughly described.

2.3.2.2 Rec-I-DCM3. We use RAxML with its default settings for the base
method. However, when applying RAxML on a DCM3 subproblem, we use the
guide-tree restricted to the subproblem taxa as the starting tree for the search (as op-
posed to the default randomized greedy MP tree). This way the RAxML search on
the subset can take advantage of the structure stored in the guide-tree through pre-
vious Rec-I-DCM3 iterations. We use the fast RAxML search for the global search
phase of Rec-I-DCM3. This terminates much quicker than the standard (and more
through) hill-climbing search (which is also the default one). We can expect better
performance in terms of ML scores if the standard RAxML search was used as the
Rec-I-DCM3 global search; however, that would increase the overall running time.
The initial guide-tree for Rec-I-DCM3 is the same starting tree used by RAxML and
the Rec-I-DCM3 search was performed for the same amount of time as the unboosted
RAxML. The maximum subproblem size of Rec-I-DCM3 was selected as follows:

– 50% for datasets below 1,000 sequences;

– 25% for datasets between 1,000 and 5,000 sequences (including 1,000);

– 12.5% for datasets above 5,000 sequences (including 5,000).

These subproblem sizes may not yield optimal results for Rec-I-DCM3(RAxML).
We selected these based upon performance of Rec-I-DCM3(TNT) [34,35] for boost-
ing MP heuristics.

2.3.3 Experimental Design
On each dataset we ran 5 trials of RAxML since each run starts from a randomized

greedy MP tree (see [35] and Section 3 for a description of this heuristic). We ran
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5 trials of Rec-I-DCM3(RAxML) and report the average best score found by each-
method on each dataset. We also report the difference in likelihood scores both in
absolute numbers and percentages.

2.3.4 Results

Table I summarizes the results on all the real datasets. The − log likelihood im-
provement is the average RAxML score subtracted from the Rec-I-DCM3(RAxML)
score. This is also shown as a percentage by dividing the improvement by the
RAxML average score.

Rec-I-DCM3(RAxML) improves RAxML on 15 of the 20 datasets studied here.
On datasets below and including 500 taxa Rec-I-DCM3(RAxML) improves upon

TABLE I
THE DIFFERENCE BETWEEN THE REC-I-DCM3(RAXML) AND RAXML − log LIKELIHOOD SCORE

AND ALSO PRESENTATION OF IT AS A PERCENTAGE OF THE RAXML − log LIKELIHOOD SCORE

Dataset size Improvement as % − LH Improvement Max p-distance

101 −0.004 −2.7 0.45
150 (SC) 0.007 3.2 0.43
150 (ARB) 0 0.3 0.54
193 0.06 38.6 0.78
200 −0.006 −6.5 0.54
218 0.014 21 0.42
250 0.014 19 0.55
439 0 0.1 0.65
476 −0.004 −4 0.89
500 0.011 11 0.18
567 0.006 13.9 0.33
854 0.03 42 0.32
921 0.06 109.6 0.39

1,000 0.031 123 0.55
1,663 −0.004 −11.7 0.48
2,025 −0.002 −6 0.56
2,415 0.004 23 0.48
6,722 1.251 6,877 1
7,769 2.338 13,290 1
8,780 0.03 270 0.55

The negative percentages show where RAxML performed better than Rec-I-DCM(RAxML). These per-
centages are small (at least −0.006%) and show that Rec-I-DCM3(RAxML) performs almost as well as
the unboosted RAxML when it fails to provide a better score. We also list the maximum p-distance of each
dataset to indicate its divergence. On most of the divergent datasets Rec-I-DCM3(RAxML) improves over
RAxML by a larger percentage as opposed to the more conserved ones.
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RAxML in 7 out of 10 datasets. The maximum improvement is 0.06% which is
on the most divergent dataset of 193 taxa. On datasets above 500 taxa Rec-I-
DCM3(RAxML) improves RAxML in 8 out of 10 datasets with the improvement
generally more pronounced. On 6 datasets the improvement is above 0.02% and
above 1% on the 6,722 and 7,769 taxon datasets—these two datasets are also highly
divergent (as indicated by their maximum pairwise p-distances) and can be con-
sidered as very challenging to solve. Interestingly, Rec-I-DCM3(RAxML) does not
improve RAxML on the 1,663 and 2,025 taxon datasets despite their large sizes and
moderate maximum p-distances. As indicated by the small percentage values (see
Table I) Rec-I-DCM3(RAxML) is almost as good as RAxML on these datasets. It is
possible there are certain characteristics of these datasets that make them unsuitable
for boosting or for divide-and-conquer methods. We intend to explore this in more
detail in subsequent studies.

Figures 8 through 11 show the performance of Rec-I-DCM3(RAxML) and
RAxML as a function of time on all the datasets. Each data point in the curve is
the average of five runs. Variances are omitted from the figures for the purpose of
visual clarity and are in general small. The first time point shown on each graph is
the time when the Rec-I-DCM3(RAxML) outputs its first tree, i.e., the tree at the
end of the first iteration. This tree is always much better in score than the initial
guide-tree. Of the 15 datasets where Rec-I-DCM3(RAxML) has a better score than
RAxML at the end of the searches, Rec-I-DCM3(RAxML) improves RAxML at
every time point on 11 of them. On the remaining 4 RAxML is doing better initially;
however, at the end of the search Rec-I-DCM3(RAxML) comes out with a better
score.

2.3.5 Conclusions
Our results indicate that Rec-I-DCM3 can improve RAxML on a wide sample

of DNA and RNA datasets. The improvement is larger and more frequent on large
datasets as opposed to smaller ones. This is consistent with Rec-I-DCM3 results for
boosting MP heuristics [35].

The results presented here are using the algorithms of RAxML-III. It remains to
be see how the performance of Rec-I-DCM3(RAxML) will be affected if different
(and better) ML hill-climbing algorithms are used (such as those implemented in
RAxML-VI). We recommend the user to experiment with different subset sizes (such
as one-half, one-quarter, and one-eighth the full dataset size) and both, a standard
(and thorough) hill-climbing as well as a superficial one for the global search phase
of Rec-I-DCM3. Preliminary results (not shown here) show similar improvements
of RAxML-VI using Rec-I-DCM3(RAxML-VI) on some of the datasets used in this
study.
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FIG. 8. Rec-I-DCM3(RAxML) improves RAxML on the 150 (dataset 2), 193, and 218 taxon datasets
shown here.
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FIG. 9. As the dataset sizes get larger Rec-I-DCM3(RAxML) improves RAxML on more datasets.
Here we see improvements on the 250, 500, 567, and 854 taxon datasets.
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FIG. 10. Rec-I-DCM3(RAxML) improves RAxML on all the datasets shown here except for the 1,663
and 2,025 taxon ones. There we see that Rec-I-DCM3(RAxML) improves RAxML in the earlier part of
the search but not towards the very end. It is possible these datasets possess certain properties which make
it hard for booster methods like Rec-I-DCM3. On the 6,722 taxon dataset we see a very large improvement
of with Rec-I-DCM3(RAxML) (of over 1%—see Table I).
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FIG. 11. Rec-I-DCM3(RAxML) improves RAxML on the two largest datasets. On the 7,769 taxon
dataset the improvement in score is 2.34% which is the largest over all the datasets examined here.

3. New Technical Challenges for ML-Based Phylogeny
Reconstruction

The current Section intends to cover the relatively new phenomenon of technical
problems which arise for the inference of large phylogenies—containing more than
1,000 organisms—with the popular Maximum Likelihood (ML) method [54].

The tremendous accumulation of sequence data over recent years coupled with the
significant progress in search (optimization) algorithms for ML and the increasing
use of parallel computers allow for inference of huge phylogenies within less than
24 hours. Therefore, large-scale phylogenetic analyses with ML are becoming more
common recently [55].

The computation of the ML tree has recently been demonstrated to be NP-
complete [56]. The problem of finding the optimal ML tree is particularly difficult
due to the immense amount of alternative tree topologies which have to be evaluated
and the high computational cost—in terms of floating point operations—of each
tree evaluation per se. To date, the main focus of researchers has been on improv-
ing the search algorithms (RAxML [57], PHYML [58], GAML [59], IQPNNI [46],
MetaPIGA [60], Treefinder [61]) and on accelerating the likelihood function via al-
gorithmic means by detecting and re-using previously computed values [62,63].

Due to the algorithmic progress which has been achieved there exists a noticeable
number of programs which are now able to infer a sufficiently accurate 1,000-taxon
tree within less than 24 hours on a single PC processor.
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However, due to the increasing size of the data and the complexity of the more
elaborate models of nucleotide substitution, a new category of technical problems
arises. Those problems mainly concern cache efficiency, memory shortage, memory
organization, efficient implementation of the likelihood function (including manual
loop unrolling and re-ordering of instructions), as well as the use of efficient data-
structures.

The main focus of this section is to describe those problems and to present some
recent technical solutions. Initially, Section 3.1 briefly summarizes the fundamen-
tal mathematics of ML in order to provide a basic understanding of the compute-
intensive likelihood function. The following Section 3.2 covers some of the most
recent and most efficient state-of-the-art ML phylogeny programs and shows that
performance of most programs is currently limited by memory efficiency and con-
sumption. In Section 3.3 the data-structures, memory organization, and implementa-
tion details of RAxML are described. RAxML has inherited an excellent technical
implementation from fastDNAml which has unfortunately never been properly docu-
mented. Finally, Section 3.4 covers applications of HPC techniques and architectures
to ML-based phylogenetic inference.

3.1 Introduction to Maximum Likelihood

This section does not provide a detailed introduction to ML for phylogenetic trees.
The goal is to offer a notion of the complexity and amount of arithmetic operations
required to compute the ML score for one single tree topology. The seminal paper
by Felsenstein [54] which introduces the application of ML to phylogenetic trees
and the comprehensive and readable chapter by Swofford et al. [64] provide detailed
descriptions of the mathematical as well as computational background.

To calculate the likelihood of a given tree topology with fixed branch lengths a
probabilistic model of nucleotide substitution Pij (t) is required which allows for
computing the probability P that a nucleotide i mutates to another nucleotide j

within time t (branch length). The model for DNA data must therefore provide sub-
stitution transitions:

A|C|G|T -> A|C|G|T

In order to significantly reduce the mathematical complexity of the overall method
the model of nucleotide substitution must be time-reversible [54], i.e. the evolu-
tionary process has to be identic if followed forward or backward in time. Es-
sentially, this means that the maximum number of possible transition types in the
General Time Reversible model of nucleotide substitution (GTR [65,66]) is re-
duced to 6 due to required symmetries. The less general time-reversible models
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of nucleotide substitution such as the Jukes–Cantor (JC69 [67]) or Hasegawa–
Kishino–Yano (HKY85 [68]) model can be derived from GTR by further restriction
of possible transition types. It is important to note, that there exists a trade-off
between speed and quality among substitution models. The simple JC69 model
which only has one single transition type requires significantly less floating point
operations to compute Pij (t) than GTR which is the most complex and accurate
one.

Thus, model selection has a significant impact on inference times, and therefore—
whenever possible—the simpler model should be used for large datasets, e.g. HKY85
instead of GTR. The applicability of a less complex model to a specific alignment
can be determined by application of likelihood ratio tests. Thus, if the likelihood
obtained for a fixed tree topology with HKY85 is not significantly worse than the
GTR-based likelihood value, HKY85 should be used. Programs such as Model-
test [69] can be applied to determine the appropriate model of evolution for a specific
dataset.

Another very important and rarely discussed modeling issue concerns the way
rate heterogeneity among sites (alignment columns) is accommodated in nucleotide
substitution models (see discussion on page 152). There exist two competing models
which differ significantly in terms of amount of floating point operations and memory
consumption.

Given the model of nucleotide substitution and a tree topology with branch lengths
where the data (the individual sequences of the multiple alignment) is located at the
tips, one can proceed with the computation of the likelihood score for that tree. In
order to compute the likelihood a virtual root (vr) has to be placed into an arbitrary
branch of the tree in order to calculate/update the individual entries of each likeli-
hood vector (also often called partial likelihood) with length m (alignment length)
in the tree bottom-up, i.e. starting at the tips and moving towards vr. If the model of
nucleotide substitution is time-reversible the likelihood of the tree is identic irrespec-
tively of where vr is placed. After having updated all likelihood vectors the vectors
to the right and left of vr can be used to compute the overall likelihood of the tree.

Note that, the number n (where n is the number of taxa) and length of likelihood
vectors m (where m is the number of distinct patterns/columns in the alignment)
dominate the memory consumption of typical ML implementations which is thus
O(n ∗ m). Section 3.3 describes how the likelihood vector structures can efficiently
be implemented to consume only 	(n ∗ m) memory.

The process of rooting the tree at vr and updating the likelihood vectors is outlined
in Fig. 12 for a 4-taxon tree.

To understand how the individual likelihood vectors are updated consider a sub-
tree rooted at node p with immediate descendants r and q and likelihood vectors
l_p, and l_q, l_r respectively. When the likelihood vectors l_q and l_r have
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FIG. 12. Computation of the likelihood vectors of 4-taxon tree.

FIG. 13. Updating the likelihood vector of node p at position i.

been computed the entries of l_p can be calculated—in an extremely simplified
manner—as outlined by the pseudo-code below and in Fig. 13:

for(i = 0; i < m; i++)
l_p[i] = f(g(l_q[i], b_pq), g(l_r[i], b_pr));

where f() is a simple function, i.e. requires just a few FLOPs, to combine the values
of g(l_q[i], b_pq) and g(l_r[i], b_pr). The g() function however is
more complex and computationally intensive since it calculates Pij (t). The parame-
ter t corresponds to the branch lengths b_pq and b_pr respectively. Note, that the
for-loop can easily be parallelized on a fine-grained level since entries l_p[i]
and l_p[i + 1] can be computed independently (see Section 3.4).

Up to this point it has been described how to compute the likelihood of a tree given
some arbitrary branch lengths. In order to obtain the maximum likelihood value for a
given tree topology the length of all branches in the tree has to be optimized. Since
the likelihood of the tree is not altered by distinct rootings of the tree the virtual root
can be subsequently placed into all branches of the tree. Each branch can then be
individually optimized to improve the likelihood value of the entire tree. In general—
depending on the implementation—this process is continued until no further branch
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length alteration yields an improved likelihood score. Branch length optimization
can be regarded as maximization of a one-parameter function lh(t) where lh is the
phylogenetic likelihood function and t the branch length.

Some of the most commonly used optimization methods are the Newton–Raphson
method in fastDNAml [70] or Brent’s rule in PHYML [58].

Typically, the two basic operations: computation of the likelihood value and op-
timization of the branch lengths, require ≈ 90% of the complete execution time of
every ML program. For example 92.72% of total execution time for a typical dataset
with 150 sequences in PHYML and 92.89% for the same dataset in RAxML-VI.
Thus, an acceleration of these functions at a technical level by optimization of the
source code and the memory access behavior, or at an algorithmic level by re-use of
previously computed values is very important.

A technically extremely efficient implementation of the likelihood function has
been coded in fastDNAml. The Subtree Equality Vector (SEV) method [63] repre-
sents an algorithmic optimization of the likelihood function which exploits alignment
pattern equalities to avoid a substantial amount of re-computations of the expensive
g() function. An analogous approach to accelerate the likelihood function has been
proposed in [62].

As already mentioned another important issue within the HPC context is the math-
ematical accommodation of rate variation (also called rate heterogeneity) among
sites in nucleotide substitution methods, since sites (alignment columns) usually do
not evolve at the same speed. It has been demonstrated, e.g. in [71], that ML infer-
ence under the assumption of rate homogeneity can lead to erroneous results if rates
vary among sites.

Rate heterogeneity among sites can easily be accommodated by incorporating an
additional per-site (per-alignment-column) rate vector r[] of length m into func-
tion g().

The pseudocode for updating the likelihood vectors with per-site rates is indicated
below:

for(i = 0; i < m; i++)
l_p[i] = f(g(l_q[i], b_pq, r[i]),

g(l_r[i], b_pr, r[i]));

Often, such an assignment of individual rates to sites corresponds to some func-
tional classification of sites and can be performed based on an a priori analysis of
the data. G. Olsen has developed a program called DNArates [72] which performs
an ML estimate of the individual per site substitution rates for a given input tree.
A similar technique is used in RAxML and the model is called e.g. GTR + CAT to
distinguish it from GTR +� (see below), when the GTR model of nucleotide substi-
tution is used. However, the use of individual per-site rates might lead to over-fitting
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the data. This effect can be alleviated by using rate categories instead of individual
per-site rates, e.g. for an alignment with a length of 1,000 base pairs only c = 25 or
c = 50 distinct rate categories are used. To this end an integer vector category[]
of length m is used which assigns an individual rate category cat to each alignment
column, where 1 � cat � c. The vector rate[] of length c contains the rates.
This model will henceforth be called CAT model of rate heterogeneity. The abstract
structure of a typical for-loop to compute the likelihood under CAT is outlined
below:

for(i = 0; i < m; i++)
{

cat = category[i];
r = rate[cat];
l_p[i] = f(g(l_q[i], b_pq, r), g(l_r[i],

b_pr, r));
}

However, little has been published on how to optimize per-site evolutionary rates
and how to reasonably categorize per-site evolutionary rates. A notable exception,
dealing with per-site rate optimization, is a relatively recent paper by Meyer et
al. [73]. The current version of RAxML is one of the few ML programs which im-
plements the CAT model.

A computationally more intensive and thus less desirable form of dealing with
heterogeneous rates, due to the fact that significantly more memory and floating
point operations are required (typically factor 4), consists in using either discrete or
continuous stochastic models for the rate distribution at each site. In this case every
site has a certain probability of evolving at any rate contained in a given probability
distribution. Thus, for a discretized distribution with a number ρ of discrete rates,
ρ distinct likelihood vector entries have to be computed per site i. In the continuous
case likelihoods must be integrated over the entire probability distribution.

The most commonly used distributions are the continuous [74] and discrete [71]
� distributions. Typically, a discrete � distribution with ρ = 4 points/rates
is used since this represents an acceptable trade-off between inference time,
memory consumption, and accuracy. Given the four individual rates from the
discrete � distribution r_0,...,r_3 now four individual likelihood entries
l_p[i].g_0,...,l_p[i].g_3 per site i have to be updated as indicated be-
low:

for(i = 0; i < m; i++)
{

l_p[i].g_0 = f(g(l_q[i], b_pq, r_0),
g(l_r[i], b_pr, r_0));
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l_p[i].g_1 = f(g(l_q[i], b_pq, r_1),
g(l_r[i], b_pr, r_1));

l_p[i].g_2 = f(g(l_q[i], b_pq, r_2),
g(l_r[i], b_pr, r_2));

l_p[i].g_3 = f(g(l_q[i], b_pq, r_3),
g(l_r[i], b_pr, r_3));

}

Usually, Biologists have to account for rate heterogeneity in their analyses due to
the properties of real world data and in order to obtain publishable results.

From an HPC point of view it is evident that the CAT model should be preferred
over the � model due to the significantly lower memory consumption and amount
of floating point operations which result in faster inference times. However, little is
known about the correlation between the CAT and the � model, despite the fact that
they are intended to model the same phenomenon. A recent experimental study [75]
with RAxML on 19 real-world DNA data alignments comprising 73 up to 1,663
taxa indicate that CAT is on average over 5 times faster than � and—surprisingly
enough—also yields trees with even slightly better final � likelihood values (factor
1.000014 for 50 rate categories, and factor 1.000037 for 25 rate categories). Similar
experimental results have been obtained by Derrick Zwickl on different datasets.
Citing from [76], p. 62: “In practice, performing inferences using the GTR + CAT
model in RAxML has proven to be an excellent method for obtaining topologies that
score well under the GTR + � model.”

The large speedup of CAT over � which exceeds factor 4 is due to increased cache
efficiency, since CAT only uses approximately one quarter of the memory and the
floating point operations required for �. In fact, the utilization of � lead to an av-
erage increase of L2 cache misses by factor 7.46 and factor 7.41 for the L3 cache
respectively. Thus, given the computational advantages of CAT over �, more effort
needs to be invested into the design of a more solid mathematical framework for
CAT. The current implementation and categorization algorithm in RAxML has been
derived from empirical observations [75]. In addition, final likelihood values ob-
tained under the CAT approximation are numerically instable at present such that the
likelihood of final trees needs to be re-computed under � in order to compare alter-
native trees based on their likelihood values. The recently released RAxML manual
(diwww.epfl.ch/~stamatak (software frame)) describes this in more detail.

In order to underline the efficiency of the GTR+CAT approximation over GTR+�

Fig. 14 depicts the GTR + � Log Likelihood development over time (seconds) on
the same starting tree. This alignment of 8,864 Bacteria is currently analyzed with
RAxML in cooperation with the Pace Lab at the University of Colorado at Boulder.
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FIG. 14. RAxML Gamma log likelihood development over time for inferences under GTR+CAT and
GTR + � on an alignment of 8,864 bacteria.

3.2 State-of-the-Art Programs

The current Section lists and discusses some of the most popular and widely used
sequential and parallel ML programs for phylogenetic inference.

3.2.1 Hill-Climbing Algorithms

In 2003 Guidon and Gascuel published an interesting paper about their very fast
program PHYML [58]. The respective performance analysis includes larger simu-
lated datasets of 100 sequences and two well-studied real data sets containing 218
and 500 sequences. Their experiments show that PHYML is extremely fast on real
and simulated data.

However, the current hill-climbing and simulated annealing algorithms of RAxML
clearly outperform PHYML on real world data, both in terms of execution time and
final tree quality [57]. The requirement to improve accuracy on real data [57] and to
replace NNI moves (Nearest Neighbor Interchange) by more exhaustive SPR moves
(Subtree Pruning Re-grafting, also called subtree rearrangements) has been recog-
nized by the authors of PHYML. In fact, a very promising refinement/extension of
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the lazy subtree rearrangement technique from RAxML [57] has very recently been
integrated into PHYML [77].

Irrespective of these differences between RAxML and PHYML, the results
in [58] show that well-established sequential programs like PAUP* [30], TREE-
PUZZLE [78], and fastDNAml [70] are prohibitively slow on datasets containing
more than 200 sequences, at least in sequential execution mode.

More recently, Vinh et al. [46] published a program called IQPNNI which yields
better trees than PHYML on real world data but is significantly slower. In comparison
to RAxML, IQPNNI is both slower and less accurate [79].

3.2.2 Simulated Annealing Approaches

The first application of simulated annealing techniques to ML tree searches was
proposed by Salter et al. [80] (the technique has previously been applied to MP phy-
logenetic tree searches by D. Barker [81]). However, the respective program SSA
has not become very popular due to the limited availability of nucleotide substitu-
tion models and the focus on the molecular clock model of evolution. Moreover, the
program is relatively hard to use and comparatively slow in respect to recent hill-
climbing implementations. Despite the fact that Salter et al. where the first to apply
simulated annealing to ML-based phylogenetic tree searches there do not exist any
published biological results using SSA. However, the recent implementation of a
simulated annealing search algorithm in RAxML [79] yielded promising results.

3.2.3 Parallel Phylogeny Programs

Despite the fact that parallel implementations of ML programs are technically
very solid in terms of performance and parallelization techniques, they significantly
lag behind algorithmic development. This means, that programs are parallelized that
mostly do not represent the state-of-the-art algorithms any more. Therefore, they are
likely to be out-competed by the most recent sequential algorithms in terms of final
tree quality and—more importantly—accumulated CPU time.

For example, the largest tree computed with parallel fastDNAml [82] which is
based on the fastDNAml algorithm from 1994 contained 150 taxa. Note, that there
also exists a distributed implementation of this code [83].

The same argument holds for a technically very interesting JAVA-based distrib-
uted ML program: DPRml [84]. Despite the recent implementation of state-of-the-art
search algorithms in DPRml, significant performance penalties are caused by us-
ing JAVA both in terms of memory efficiency and speed of numerical calculations.
Those language-dependent limitations will become more intense when trees com-
prising over 417 taxa (currently largest tree with DPRml, Thomas Keane, personal
communication) are computed with DPRml.
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The technically challenging parallel implementation of TrExML [85,86] (original
sequential algorithm published in the year 2000) has been used to compute a tree
containing 56 taxa. However, TrExML is probably not suited for computation of
very large trees since the main feature of the algorithm consists in a more exhaustive
exploitation of search space for medium-sized alignments. Due to this exhaustive
search strategy the execution time increases more steeply with the number of taxa
than in other programs.

The largest tree computed with the parallel version of TREE-PUZZLE [87] con-
tained 257 taxa due to limitations caused by the data structures used (Heiko Schmidt,
personal communication). However, TREE-PUZZLE provides mainly advantages
concerning quality-assessment for medium-sized trees. IQPNNI has also recently
been parallelized with MPI and shows good speedup values [88].

M.J. Brauer et al. [59] have implemented a parallel genetic tree-search algo-
rithm (parallel GAML) which has been used to compute trees of up to approx-
imately 3,000 taxa with the main limitation for the computation of larger trees
being memory consumption (Derrick Zwickl, personal communication). However,
the new tree search mechanism implemented in the successor of GAML, which is
now called GARLI [76] (Genetic Algorithm for Rapid Likelihood Inference, avail-
able at http://www.zo.utexas.edu/faculty/antisense/Garli.html) is equally powerful as
the RAxML algorithm (especially on datasets �1,000 taxa) but requires higher in-
ference times [76]. However, GARLI is one of the few state-of-the-art programs,
that incorporates an outstanding technical implementation and optimization of the
likelihood functions.

There also exists a parallel version of Rec-I-DCM3 [34] for ML which is based
on RAxML (see Section 2.2 of this chapter). The current implementation faces some
scalability limitations due to load imbalance caused by significant differences in the
subproblem sizes. In addition, the parallelization of RAxML for global tree optimiza-
tions also faces some intrinsic difficulties (see [89] and page 167 in Section 3.4.3).

Finally, there exist the previous parallel and distributed implementations of the
RAxML hill-climbing algorithm [90,91].

3.2.4 Conclusion

The above overview of recent algorithmic and technical developments, and the
maximum tree sizes calculated so far, underlines the initial statement that a part of
the computational problems in phylogenetics tends to become technical. This view
is shared in the recent paper by Hordijk and Gascuel on the new search technique
implemented in PHYML [77]. In order to enable large-scale inference of huge trees
a greater part of research efforts should focus on the technical implementation of the
likelihood functions, the allocation and use of likelihood vectors, cache efficiency,
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as well as exploitation of hardware such as Symmetrical Multi-Processing (SMPs),
Graphics Processing Units (GPUs), and Multi-Core Processors. Thus, the rest of the
current section will mainly focus on these rarely documented and discussed technical
issues and indicate some potential directions of future research.

3.3 Technical Details: Memory Organization and Data
Structures

As already mentioned, the implementation of the likelihood functions in fastD-
NAml represents perhaps the most efficient implementation currently available, both
in terms of memory organization and loop optimization. The current version of
RAxML has been derived from the fastDNAml source code and extended this ef-
ficient implementation.

The current Section reviews some of the—so far undocumented—technical im-
plementation details which will be useful for future ML implementations.

3.3.1 Memory Organization and Efficiency

As outlined in Section 3.1 the amount of memory space required is dominated by
the length and number of likelihood vectors. Thus, the memory requirements are of
order O(n ∗ m) where n is the number of sequences and m the alignment length. An
unrooted phylogenetic tree for an alignment of dimensions n ∗ m has n tips or leaves
and n−2 inner nodes, such that 2n−2 vectors of length m would be required to com-
pute the likelihood bottom-up at a given virtual root vr . Note that, the computation of
the vectors at the tips of the tree (leaf-vectors) is significantly less expensive than the
computation of inner vectors. In addition, the values of the leaf-vectors are topology-
independent, i.e. it suffices to compute them once during the initialization of the
program. Unlike most other ML implementations however, in fastDNAml a distinct
approach has been chosen: The program trades memory for additional computations,
i.e. only 3 (!) likelihood vectors are used to store tip-values. This means that tip
likelihood vectors will have to be continuously re-computed on-demand during the
entire inference process. On the other hand the memory consumption is reduced
to (n + 1) ∗ m in contrast to (2n − 2) ∗ m. This represents a memory footprint
reduction by almost factor 2. This leads to improved cache-efficiency and the capa-
bility to handle larger alignments. Experiments with RAxML using the alternative
implementation with n precomputed leaf-vectors on a 1,000-taxon alignment have
demonstrated that the re-computation of leaf-vector values is in fact more efficient,
even with respect to execution times. Due to the growing chasm between CPU and
RAM performance and the constantly growing alignment sizes, the above method
should be used. The importance and impact of cache efficiency is also underlined
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by the significant superlinear speedups achieved by the OpenMP implementation of
RAxML (see [92] and Fig. 19).

The idea of trading memory for computation with respect to tip vectors has
been further developed in the current release of RAxML-VI for High Perfor-
mance Computing (RAxML-VI-HPC v2.0). This new version does not use or
compute any leaf-vectors at all. Instead it uses one global leaf-likelihood vector
globalLeafVector[] of length 15 which contains the pre-computed likeli-
hood vectors for all 15 possible nucleotide sequence states. Note that, the number
of 15 states comes from some intermediate states which are allowed, e.g. apart from
A,C,G,T,- the letter R stands for A or G and Y for C or T etc. When a tip with
a nucleotide sequence sequence[i] where i=1,...,m and alignment length
m is encountered, the respective leaf-likelihood vector at position i of the align-
ment is obtained by referencing globalLeafVector[] via the sequence entry
sequence[i], i.e. likelivector = globalTip[sequence[i]]. Note
that sequence[] is a simple array of type char which contains the sequences of
the alignment. The introduction of this optimization yielded performance improve-
ments of approximately 5–10%. Finally, note that GARLI uses a similar, though
more sophisticated implementation of leaf-likelihood vector computations (Derrick
Zwickl, personal communication).

With respect to the internal likelihood vectors there also exist two different ap-
proaches. In programs such as PHYML or IQPNNI not one but three likelihood
vectors are allocated to each internal node, i.e. one vector for each direction of the
unrooted tree. Thus, PHYML also maintains an unrooted view of the tree with re-
spect to the likelihood vector organization.

If the likelihood needs to be calculated at an arbitrary branch of the tree the re-
quired likelihood vectors to the left and right of the virtual root will be immediately
available. On the other hand, a very large amount of those vectors will have to be
re-computed after a change of the tree topology or branch lengths (see Fig. 15 for an
example).

In RAxML and fastDNAml only one inner likelihood vector per internal node,
is allocated. This vector is relocated to the one of the three outgoing branches
noderec *next (see data structure below) of the inner node which points towards
the current virtual root. If the likelihood vector xarray *x is already located at
the correct branch it must not be recomputed. The infrastructure to move likelihood
vectors is implemented by a cyclic list of 3 data structures of type node (one per
outgoing branch struct noderec *back) to the likelihood vector data struc-
ture. At all times, two of those pointers point to NULL whereas one points to the
actual address of the likelihood vector (see Fig. 16).

typedef struct noderec {
double z; /* branch length value */
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FIG. 15. Likelihood vector update in PHYML.

struct noderec *next;
/* pointer to next structure in cyclic list*/
struct noderec *back;
/* pointer to neighboring node*/
xarray *x; /* pointer to likelihood vector*/

} node;

With respect to the position of the likelihood vectors in the cyclic list of
struct noderec a tree using this scheme is always rooted. In addition, at each
movement of the virtual root, in order to e.g. optimize a branch, a certain amount
of vectors must be recomputed. The same holds for changes in tree topology. How-
ever, as for the tip vectors, there is a trade-off between additional computations and
reduced memory consumption for inner likelihood vectors as well. Moreover, the
order by which topological changes are applied to improve the likelihood, can be
arranged intelligently, such that only few likelihood vectors need to be updated after
each topological change. Currently, there exists no comparative study between those
two approaches to memory organization and likelihood calculation. Nonetheless, it
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FIG. 16. Likelihood vector organization in RAxML.

would be very useful to compare memory consumption, cache efficiency, and amount
of floating point operations for these alternatives under the same search algorithm.

It appears however, that the latter approach is more adequate for inference of
extremely large trees with ML. Experiments with an alignment of approximately
25,000 protobacteria show that RAxML already requires 1.5 GB of main memory
using the GTR + CAT approximation. A very long multi-gene alignment of 2,182
mammalian sequences with a length of more than 50,000 base pairs already required
2.5 GB under GTR + CAT and 9 GB under GTR + �. To the best of the authors
knowledge this alignment represents the largest data matrix which has been ana-
lyzed under ML to date. Given that the alternative memory organization requires at
least 3 times more memory it is less adequate for inference of huge trees.

One might argue, that the application of a divide-and-conquer approach can solve
memory problems since it will only have to handle significantly smaller subtrees and
sub-alignments. Due to the algorithmic complexity of the problem however, every
divide-and-conquer approach to date also performs global optimizations on the com-
plete tree.

The extent of the memory consumption problem becomes even more evident when
one considers, that the length m of the 25,000 protobacteria alignment is only 1,463
base pairs, i.e. it is relatively short with respect to the large number of sequences.
Typically, for a publishable biological analysis of such large datasets a significantly
greater alignment length would be required [40]. In the final analysis it can be stated
that memory organization and consumption are issues of increasing importance in
the quest to reconstruct the tree of life which should contain at least 100,000 or
1,000,000 organisms based on the rather more conservative estimates.
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The increasing concern about memory consumption is also reflected by the re-
cent changes introduced in the new release of MrBayes [93] (version 3.1.1). Despite
the fact that MrBayes performs Bayesian inference of phylogenetic trees the under-
lying technical problems are the same since the likelihood value of alternative tree
topologies needs to be computed and thus likelihood computations consume a very
large part of execution time. Therefore, to reduce memory consumption of MrBayes,
double-precision arithmetics have been replaced by single-precision operations.

3.3.2 Loop Optimization and Model Implementation
Another aspect of increasing importance in HPC ML program design consists in

highly optimized implementations of the likelihood functions. They consume over
90% of total execution time in typical ML implementations, e.g. 92.72% in PHYML
and 92.89% in RAxML for a typical dataset of 150 sequences.

Despite the obvious advantages of a generic programming style as used e.g. in
PHYML or IQPNNI, each model of sequence evolution such as HKY85 or GTR
should be implemented in separate functions. Depending on the selected model
RAxML uses function pointers to highly optimized individual functions for each
model. This allows for better exploitation of symmetries and simplifications on a per-
model basis. As already mentioned the compute-intensive part of the computations
is performed by 4–5 for-loops (depending on the implementation) over the length
of the alignment m. For example the manual optimization and complete unrolling
of inner loops for the recently implemented protein substitution models in RAxML
yielded more than 50% of performance improvement. This increase in performance
could not be achieved by the use of highly sophisticated Intel or PGI compilers
alone. In addition, instructions within the for-loops have been re-ordered to better
suit pipeline architectures.

Another important technical issue concerns the optimization technique used for
branch lengths, which consumes 42.63% of total execution time in RAxML and
58.74% in PHYML. Despite the additional cost required to compute the first and
second derivative of the likelihood function, the Newton–Raphson method (RAxML,
fastDNAml) should be preferred over Brent’s method (PHYML) since Newton–
Raphson converges significantly faster. Due to this observation Brent has recently
been replaced by Newton–Raphson in the new version of IQPNNI [88] (version 3.0).
In addition, the latest version of IQPNNI also incorporates the BFGS method [94]
for multi-dimensional optimization of model parameters (Bui Quang Minh, personal
communication). BFGS is very efficient for parameter-rich models such as GTR+�

or complex protein models, in comparison to the more common approach of optimiz-
ing parameters one-by-one. By deploying BFGS the parameter optimization process
for the 6 rate parameters of the GTR model in IQPNNI could be accelerated by fac-
tor 3–4 in comparison to Brent (Bui Quang Minh, personal communication). Those
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FIG. 17. Number of likelihood scalings.

mathematical improvements lead to a total performance improvement of factor 1.2
up to 1.8 in IQPNNI over the previous version of the program.

A useful discussion of numerical problems and solutions for the inference of large
trees can be found in [95]. Another important numerical design decision which con-
cerns the memory-time trade-off is the choice between single (e.g. MrBayes), double
(e.g. RAxML, PHYML), and long double (IQPNNI) precision arithmetics for calcu-
lating the likelihood. This choice is important since it has an effect on the number
of times very small likelihood values have to be scaled (scaling events) in order to
avoid numerical underflow. Typically, the larger the tree, the more scaling events are
anticipated. This trend is outlined in Fig. 17 where the x-axis indicates the number of
sequences in the dataset and the y-axis the number of scaling events in RAxML for
the evaluation and parameter-optimization of one single tree topology. When single
precision is used those computationally relatively expensive operations have to be
performed more frequently. On the other hand double and long double require more
memory space. Thus, the choice of double precision appears to represent a reason-
able trade-off. A porting of RAxML from double to float for the purposes of the
GPGPU implementation [96] (see Section 3.4) did not yield better results in terms
of execution times.
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3.4 Parallelization Techniques

Typically, in ML programs there exist three distinct sources of parallelism which
are depicted in Fig. 18:

1. Fine-grained loop-level parallelism at the for-loops of the likelihood function
which can be efficiently exploited with OpenMP on 2-way or 4-way SMPs.

2. Coarse-grained parallelism at the level of tree alterations and evaluations
which can be exploited using MPI and a master–worker scheme.

3. Job-level parallelism where multiple phylogenetic analyses on the same dataset
with distinct starting trees or multiple bootstrap analyses are performed simul-
taneously on a cluster.

3.4.1 Job-Level Parallelism

Since implementing job-level parallelism does not represent a very challenging
task this issue is omitted. It should be stated however, that this is probably the best
way to exploit a parallel computer for real-world biological analyses (including mul-
tiple bootstrapping) of large datasets in most practical cases. In order to conduct a
biologically “publishable” study, multiple inferences with distinct starting trees and
a relatively large number of bootstrap runs should be executed. The typical RAxML

FIG. 18. The three nested sources of parallelism in ML programs.
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execution times under elaborate models of nucleotide substitution for trees of 1,000–
2,000 taxa range from 12 to 24 hours on an Opteron CPU. Note that, the dedicated
High Performance Computing Version of RAxML-VI (released March 2006) only
requires about 40–60 hours in sequential execution mode on 7,000–8,000 taxon
alignments under the reasonably accurate and fast GTR + CAT approximation. In
order to provide a useful tool for Biologists this version has also been parallelized
with MPI to enable parallel multiple inferences on the original alignment as well as
parallel multiple non-parametric bootstraps.

3.4.2 Shared-Memory Parallelism

The exploitation of fine-grained loop-level parallelism is straightforward, since
ML programs spend most of their time in the for-loops for calculating the likelihood
(see Section 3.1). In addition, those loops do not exhibit any dependencies between
iteration i → i + 1 such that they can easily be parallelized with OpenMP. As
indicated in the pseudo-code below, it suffices to insert a simple OpenMP directive:

#pragma omp parallel for private(...)
for(i = 0; i < m; i++)
l_p[i] = f(g(l_q[i], b_pq), g(l_r[i], b_pr));

There are several advantages to this approach: The implementation is easy, such
that little programming effort (approximately one week) is required to parallelize an
ML program with OpenMP. The memory space of the likelihood vectors is equally
distributed among processors, such that higher cache efficiency is achieved than in
the sequential case, due to the smaller memory footprint. This has partially lead
to significantly superlinear speedups with the OpenMP version of RAxML [92] on
large/long alignments. Figure 19 indicates the speedup values of the OpenMP version
of RAxML on a simulated alignment of 300 organisms with a length of m = 5,000
base pairs for the Xeon, Itanium, and Opteron architectures.

Moreover, modern supercomputer architectures can be exploited in a more ef-
ficient manner by a hybrid MPI/OpenMP approach. Finally, it is a very gen-
eral concept that can easily be applied to other ML phylogeny programs. An
unpublished OpenMP parallelization of PHYML by M. Ott and A. Stamatakis
yielded comparable—though not superlinear—results. GARLI (Derrick Zwickl, per-
sonal communication) and IQPNNI [97] are also currently being parallelized with
OpenMP. However, the scalability of this approach is usually limited to 2-way or
4-way SMPs and relatively long alignments due to the granularity of this source of
parallelism. However, this type of parallelism represents a good solution for analyses
of long multi-gene alignments which are becoming more popular recently. Figure 20
indicates the parallel performance improvement on 1 versus 8 CPUs on one node of
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FIG. 19. Speedup of the OpenMP version of RAxML on Xeon, Itanium, and Opteron architectures
for a relatively long alignment of 5,000 nucleotides.

the CIPRES project (www.phylo.org) cluster located at the San Diego Supercomput-
ing Center for the previously mentioned multi-gene alignment of mammals during
the first three iterations of the search algorithm (speedup: 6.74).

Apart from SMPs another interesting hardware platform to exploit loop-level par-
allelism are GPUs (Graphics Processing Units). Recently, General Purpose compu-
tations on GPUs (GPGPU) are becoming more popular due to the availability of
improved programming interfaces such a the BrookGPU [98] compiler and run-
time implementation. Since GPUs are essentially vector processors the intrinsic
fine-grained parallelism of ML programs can be exploited in a very similar way
as on SMPs. RAxML has recently been parallelized on a GPU [96] and achieves a
highly improved price/performance and power-consumption/performance ratio than
on CPUs. Note that, in [96] only one of the main for-loops of the program which
accounts for approximately 50% of overall execution time has been ported to the
GPU. Despite the incomplete porting and the fact that a mid-class GPU (NVIDIA
FX 5700LE, price: $75, power consumption: 24 W) and high-end CPU (Pentium 4
3.2 GHz, price: $200, power consumption: �130 W) have been used, an overall
speedup of 1.2 on the GPU has been measured. However, there still exists a relatively
large number of technical problems, such as unavailability of double precision arith-
metics (RAxML had to be ported to float) and insufficient memory capacity for
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FIG. 20. Run time improvement for the first three iterations of the search algorithm of the OpenMP
version of RAxML-VI-HPC on 1 and 8 CPUs on a 51,089 bp long multi-gene alignment of 2,182 mam-
mals.

very large trees (usually up to 512 MB). A natural extension of this work consists in
the usage of clusters of GPUs.

3.4.3 Coarse-Grained Parallelism

The coarse-grained parallelization of ML phylogeny programs is less straight-
forward: The parallel efficiency which can be attained depends strongly on the
structure of the individual search algorithms. In addition the rate at which improved
topologies are encountered has a major impact on parallel efficiency since the tree
structure must be continuously updated at all processes. This can result in significant
communication overheads.

For example RAxML frequently detects improved topologies during the initial
optimization phase of the tree. One iteration of the search algorithm consists in ap-
plying a sequence of 2n distinct LSR moves (Lazy Subtree Rearrangements, see [57]
for details) to the currently best topology tbest. If the likelihood of tbest is improved by
the ith LSR, i = 1, . . . , 2n, the changed topology is kept, i.e. tbest := ti . Thus, one
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FIG. 21. Typical asymptotic likelihood improvement over time for RAxML on a 150-taxon alignment.

iteration of the sequential algorithm (one iteration of LSRs) generates a sequence of
k � n distinct topologies with improved likelihood values ti1 → ti2 → · · · → tik .
The likelihood optimization process typically exhibits an asymptotic convergence
behavior over time with a steep increase of the likelihood values during the initial
optimization phase and a shallow improvement during the final optimization phase
(see Fig. 21).

Due to the small execution time of a single LSR even on huge trees, the algorithm
can only be parallelized by independently assigning one or more LSR jobs at a time
to each worker processes in a master-worker scheme. The main problem consists in
breaking up the sequential dependency ti1 → ti2 → · · · → tik of improvements.
Since this is very difficult a reasonable approach is to introduce a certain amount of
non-determinism. This means that workers will receive topology updates for their
local copy of tbest detected by other workers with some delay and in a different order.
If during the initial optimization phase of RAxML k is relatively large with respect
to n, e.g. k ≈ n this has a negative impact on the parallel efficiency since a large num-
ber of update messages has to be communicated and is delayed. For example, on an
alignment with 7,769 organisms every second LSR move yielded a topology with
an improved likelihood value during the first iteration of the search algorithm. Thus,
the mechanism of exchanging topological alterations between workers represents a
potential performance bottleneck. The standard string representation of trees (with
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parentheses, taxon-names and branch lengths) as used in parallel fastDNAml [82]
and an older parallel version of RAxML [91] is becoming inefficient. This is due
to the feasibility to compute significantly larger trees caused by recent algorithmic
advances. In addition, the starting trees for these large analyses which are usually
computed using Neighbor Joining or “quick & dirty” Maximum Parsimony heuris-
tics are worse (in terms of relative difference between the likelihood score of the
starting tree and the final tree topology) than on smaller trees. As a consequence im-
proved topologies are detected more frequently during the initial optimization phase
with a negative impact on speedup values. Thus, topological changes should be com-
municated by specifying the actual change only, e.g. remove subtree number i from
branch x and insert it into branch y. This can still lead to inconsistencies among the
local copies of tbest at individual workers but appears to be the only feasible solution
for parallelizing the initial optimization phase.

Nonetheless, the final optimization phase which is significantly longer with respect
to the total run time of the program is less problematic to parallelize since improved
topologies are encountered less frequently. It is important to note, that the above
problems mainly concern the parallelization of RAxML but will generally become
more prominent as tree sizes grow.

A recent parallelization of IQPNNI [88] with near-optimal relative speedup values
demonstrates that these problems are algorithm-dependent. However, as most other
programs IQPNNI is currently constrained to tree sizes of approximately 2,000 taxa
due to memory shortage. The comments about novel solutions which have to be
deployed for communicating and updating topologies still hold.

An issue which will surely become important for future HPC ML program devel-
opment is the distribution of memory among processes: Currently, most implemen-
tations hold the entire tree data structure in memory locally at each worker. Given
the constant increase of computable tree sizes, and the relatively low main memory
per node (1 GB) of current MPP architectures, such as the IBM BlueGene, it will
become difficult to hold the complete tree in memory for trees comprising more than
20,000–100,000 taxa.

3.5 Conclusion

Due to the significant progress, which has been achieved by the introduction of
novel search algorithms for ML-based phylogenetic inference, analyses of huge phy-
logenies comprising several hundreds or even thousands of taxa have now become
feasible. However, the performance of ML phylogeny programs is increasingly lim-
ited by rarely documented and published technical implementation issues. Thus, an
at least partial paradigm shift towards technical issues is required in order to advance
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the field and to enable inference of larger trees with the ultimate, though still distant,
goal to compute the tree-of-life.

As an example for the necessity of a paradigm shift one can consider the recent
improvements to RAxML: The significant (unpublished) speedups for sequential
RAxML-VI over sequential RAxML-V, of 1.66 on 1,000 taxa over 30 on 4,000 taxa
up to 67 on 25,000 taxa, have been attained by very simple technical optimizations of
the code.1 The potential for these optimizations has only been realized by the author
who has been working on the RAxML-code for almost 4 years after the respective
paradigm shift.

To this end, the current Section covered some of those rarely documented but
increasingly important technical issues and summarizes how MPP, SMP, hybrid su-
percomputer, and GPU architectures can be used to infer huge trees.
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Abstract
Protein local structure comparison aims to recognize structural similarities be-
tween parts of proteins. It is an active topic in bioinformatics research, integrating
computer science concepts in computational geometry and graph theory with
empirical observations and physical principles from biochemistry. It has impor-
tant biological applications, including protein function prediction. In this chapter,
we provide an introduction to the protein local structure comparison problem
including challenges and applications. Current approaches to the problem are
reviewed. Particular consideration is given to the discovery of local structure
common to a group of related proteins. We present a new algorithm for this
problem that uses a graph-based representation of protein structure and finds re-
curring subgraphs among a group of protein graphs.
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1. Introduction

A protein is a chain of amino-acid molecules. In conditions found within a living
organism, the chain of amino acids folds into a relatively stable three-dimensional
arrangement known as the native structure. The native structure of a protein is a key
determinant of its function [21,62,68,76]. Exactly how protein function is determined
by protein structure is the central question in structural biology, and computational
methods to compare the structures of proteins are a vital part of research in this area.

Starting from the 3D coordinates of the atoms in a protein (as obtained by a num-
ber of experimental techniques described later), global structure comparison can
determine the similarity of two complete protein structures. Global structure com-
parison is widely used to classify proteins into groups according to their global
similarity [35].

However, a protein’s global structure does not always determine its function. There
are well known examples of proteins with similar global structure but different func-
tions. Conversely, there are also examples of proteins with similar function but quite
different global structure. For this reason there has been increased interest in local
structure comparison to identify structural similarity between parts of proteins [23].

This chapter provides an introduction to the protein structure comparison prob-
lem, focusing on recent research on local structure comparison. Work in this area
combines computational geometry and graph theory from computer science with
empirical observations and physical principles from biochemistry. The protein struc-
ture comparison problem has important applications in classification and function
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prediction of proteins, and is also of use in protein folding research and rational drug
design [49].

The chapter is organized as follows. In the remainder of this section we describe
the factors driving the need for protein structure comparison and present the structure
comparison problem, and our area of focus. Section 2 outlines the necessary biolog-
ical background, including a high-level introduction to protein sequence, structure,
and function. Readers with limited knowledge of proteins and protein structure may
wish to read this section before proceeding further. In Section 3 we present a taxon-
omy of current algorithms for the problem of protein local structure comparison. In
Section 4, we give an introduction to graph representations of protein structure, and
describe how discovering common local structure may be viewed as a data mining
problem to identify frequent subgraphs among a collection of graphs. In Section 5,
we introduce an efficient subgraph mining algorithm. Results obtained using graph-
based local structure comparison on various key problems in protein structure are
presented in Section 6. Finally we conclude in Section 7 with some thoughts on
future directions for work in this area. This chapter also includes an extensive bibli-
ography on protein structure comparison.

1.1 Motivation

This section describes the factors that underscore the need for automated protein
structure comparison methods.

1.1.1 Rapidly Growing Catalogs of Protein Structure Data

Recognizing the importance of structural information, the Protein Structure Ini-
tiative (PSI, http://www.nigms.nih.gov/psi/) and other recent efforts have targeted
the accurate determination of all protein structures specified by genes found in se-
quenced genomes [13,94]. The result has been a rapid increase in the number of
known 3D protein structures. The Protein Data Bank (PDB) [6], a public on-line
protein structure repository, contained more than 30,000 entries at the end of year
2005. The number of structures is growing exponentially; more than 5000 struc-
tures were deposited to the PDB in 2005, about the same as the total number of
protein structures added in the first four decades of protein structure determina-
tion [52].

Along with individual protein structures, the structure of certain complexes of in-
teracting proteins are known as well. While the structures of relatively few complexes
have been completely determined, there is rapidly growing information about which
proteins interact. Among the proteins in yeast alone, over 14,000 binary interactions
have been discovered [83]. The IntAct database records 50,559 binary interactions
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involving 30,497 proteins [32] from many species. Experts believe that many more
interactions remain to be identified. For example, among the proteins in yeast it is
estimated that there are about 30,000 binary interactions [100].

Additional types of data whose relation to protein structure is of interest are being
accumulated as well, such as the cellular localization of proteins, the involvement of
proteins in signaling, regulatory, and metabolic pathways, and post-translation struc-
tural changes in proteins [1,73]. The rapidly growing body of data call for automatic
computational tools rather than manual processing.

1.1.2 Structure Comparison Aids Experiment Design
Protein structure comparison is part of a bioinformatics research paradigm that

performs comparative analysis of biological data [84]. The overarching goal is to aid
rational experiment design and thus to expedite biological discovery. Specifically,
through comparison, the paradigm endeavors to transfer experimentally obtained
biological knowledge from known proteins to unknown ones, or to discover com-
mon structure among a group of related proteins. Below we review some of the
applications of structure comparison including structure classification, functional site
identification, and structure-based functional annotation. A comprehensive review
can be found in [49].

1.1.2.1 Structure Classification. Classification of protein structures is
vital to providing easy access to the large body of protein structures, for studying
the evolution of protein structures, and for facilitating structure prediction. For ex-
ample, through global structure classification, domain experts have identified many
sequences that have low pairwise sequence identity yet have adopted very similar 3D
structures. Such information helps significantly in structure prediction [51].

Traditionally, protein structure classification is a time consuming manual task, for
example as used to construct the Structure Classification of Protein (SCOP) data-
base [62]. SCOP is maintained using visual examination of protein structures by
domain experts. With the development of automated global structure comparison
methods such as CATH [68] and DALI [35], structure classification has become
more automated.

In DALI and CATH, the units of classification are protein domains. Domains
are organized hierarchically based on their similarity at the sequence, structure, and
function level. Classification systems such as DALI and CATH utilize three common
steps to derive a hierarchical grouping of protein structures. The first step is to select
from all known structures a subset of “representative” structures among which (pair-
wise) sequence similarity is low. The second step is to compare the set of structures to
compute an all-by-all similarity matrix. Based on this matrix, the third step is to per-
form a hierarchical clustering to group similar structures together. How to compute
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the similarity between a pair of structures and how to perform hierarchical clustering
are the two key components in protein classification. For example, in DALI, proteins
are classified at 4 levels according to class, fold, functional families, and sequence
family and in CATH, proteins are classified into 5 levels according to class, archi-
tecture, topology, homology superfamilies, and sequence families. Though different
methods may lead to different classifications, careful comparison of classification
systems has revealed that existing systems (DALI, CATH, and SCOP) overlap sig-
nificantly [21].

1.1.2.2 Functional Site Identification. A functional site is a group of
amino acids in a protein that participate in the function of the protein (e.g. catalyzing
chemical reactions or binding to other proteins). Identifying functional sites is critical
in studying the mechanism of protein function, predicting protein-protein interaction,
and recognizing evolutionary connections between proteins when there is no clear
clue from sequence or global structure alignment [3,19,60,99]. See [95] for a recent
review of known functional sites in protein structures.

Traditionally, functional sites are derived through expensive experimental tech-
niques such as site-directed mutagenesis. This technique creates a modified protein
in which one or more amino acids are replaced in specific locations to study the
effect on protein function. However, site-directed mutagenesis studies are both la-
bor intensive and time consuming, as there are many potential functional sites. In
search of an alternative approach, more than a dozen methods based on the analysis
of protein structure have been developed [95]. All are based on the idea that func-
tional sites in proteins with similar function may be composed of a group of specific
amino acids in approximately the same geometric arrangement. The methods differ
from each other in algorithmic details as described in Section 3. The essence of the
approach is to identify local structure that recurs significantly among proteins with
similar function.

1.1.2.3 Structure-Based Functional Annotation. There is no ques-
tion that knowing the function of a protein is of paramount importance in biological
research. As expressed by George and his coauthors [26], correct function prediction
can significantly simplify and decrease the time needed for experimental valida-
tion. However incorrect assignments may mislead experimental design and waste
resources.

Protein function prediction has been investigated by recognizing the similarity of
a protein with unknown function to one that has a known function where similarity
can be determined at the sequence level [105], the expression level [18], and at the
level of the gene’s chromosome location [70].
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In structure based function annotation, investigators focus on assigning function
to protein structures by recognizing structural similarity. Compared to sequence-
based function assignment, structure-based methods may have better annotation
because of the additional information offered by the structure. Below, we discuss
a recent study performed by Torrance and his coauthors [95] as an example of using
local structure comparison for function annotation.

Torrance et al. first constructed a database of functional sites in enzymes [95].
Given an enzyme family, the functional sites for each protein in the family were
either manually extracted from the literature or from the PSI-Blast alignment [95].
With the database of functional sites, Torrance et al. then used the JESS method [5]
to search for occurrences of functional sites in the unknown structure. The most
likely function was determined from the types of functional sites identified in the un-
known structure. Torrance’s method achieves high annotation accuracy as evaluated
in several functional families.

In summary, the potential to decrease the time and cost of experimental techniques,
the rapidly growing body of protein structure and structure related data, and the large
number of applications necessitate the development of automated comparison tools
for protein structure analysis. Next, we discuss the challenges associated with struc-
ture comparison.

1.2 Challenges

We decompose the challenges associated with structure comparison into three cat-
egories: (1) the nature of protein structure data and structure representation methods,
(2) the tasks in structure comparison, and (3) the computational components of struc-
ture comparison methods.

1.2.1 The Nature of Protein Structure

In order to compare protein structures automatically, it is necessary to describe
protein structure in a rigorous mathematical framework. To that end, we adopt the
three-level view of protein structures used by Eidhammer and his coauthors in [21],
which is a popular view in designing structure comparison algorithms. Another com-
monly used biological description of protein structure is introduced in Section 2.

Following Eidhammer’s view, a protein is described as a set of elements. Common
choices for the elements are either atoms or amino acids (or more precisely amino
acid residues). Other choices are possible, see Section 4.2. Once the elements are
fixed, the protein geometry, protein topology, and element attributes are defined. We
illustrate definitions for these using amino acid residues as the protein elements.
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• Geometry is given by the 3D coordinates of the amino acid residues, for exam-
ple as represented by the coordinates of the Cα atom, or by the mean coordi-
nates of all atoms that comprise the amino acid residue.

• Attributes are the physico-chemical attributes or the environmental attributes of
the amino acid residues. For example, the hydrophobicity is a physico-chemical
attribute of the residue. The solvent accessible surface area of an amino acid
residue is an environmental attribute of the residue.

• Topology describes physico-chemical interactions between pairs of amino acid
residues. A typical example is to identify pairs of amino acid residues that may
interact through the van der Waals potential.

1.2.1.1 Structure Representations. The choice of mathematical frame-
work for representation of a protein structure varies considerably. We review three
common choices below.

• Point sets. A protein is represented as a set of points, each point represents the
3D location of an element in the protein structure. In addition, each point may
be labeled with the attributes of the represented element, such as the charge, the
amino acid identity, the solvent accessible area, etc.

• Point lists. A protein is represented by an ordering of elements in a point set
that follows their position in the primary sequence.

• Graphs. A protein is represented as a labeled graph. A node in the graph repre-
sents an element in the protein structure, usually labeled by the attributes of the
element. An edge connecting a pair of nodes represents the physico-chemical
interactions between the pair of elements and may be labeled with attributes of
the interaction.

All the methods are element-based methods since they describe a protein structure
using elements in the structure. Though not commonly used, there are methods that
describe a protein structure without breaking the structure into a set of elements.
See [21] for further details.

1.2.2 Tasks in Structure Comparison
To outline the challenges associated with structure comparison, it is convenient

to group current structure comparison methods into common tasks, according to the
final goal of the comparison. The categorization we use is not unique, further division
is possible, and we expect that new tasks will emerge to augment the list in the
future. However, our current categorization summarizes well all the methods that we
will describe in this chapter and is useful as a starting point for the introduction of
structure comparison algorithms.
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• Global structure comparison
– Computing the alignment of a group of two or more structures.

– Computing the overall similarity between two structures.

– Searching a set of proteins to find those that are similar to a given protein
structure.

• Local structure comparison
– Identifying common substructures among a group of proteins.

– Searching a set of proteins for occurrences of a particular substructure.

– Searching a database of substructures for the substructures that appear in a
particular protein structure.

The tasks within a specific type of structure comparison (global or local) are
closely related. For example, the computation of the pair-wise global structure sim-
ilarity is usually done after aligning the two structures. Tasks in different types of
structure comparison can also be related. For example, in computing the global
alignment of two structures, one way is to first compute the shared substructures
as “seeds” and then to select and connect such set of seeds to produce the global
alignment [35].

1.2.3 Components of Structure Comparison Tasks

The tasks listed in the previous section can be decomposed into a number of com-
ponents. These include a basic notion of similarity between structures, or between a
structure pattern and a structure. A scoring function measures the quality of the simi-
larity, and a search procedure uses the scoring function to search a space of potential
solutions. Finally the results of a task must be displayed in a meaningful fashion. In
this section, we elaborate each of these concepts.

1.2.3.1 Defining Pattern or Structure Similarity. A structure pat-
tern is a geometric arrangement of protein elements, for example four specific amino
acids placed at the vertices of a tetrahedron of specified dimensions. We list three
considerations in defining similarity between structures or between a pattern and a
structure.

• Level of Structure Representation
We may choose atoms, amino acid residues, or secondary structure elements
(SSE), as the elements for protein structure comparison. The choice of elements
are made according to the specific goal of the comparison and the preference
of the investigators. The general concern in choosing a detailed representation
where elements are atoms or amino acid residues is that the coordinates of such
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elements in protein structures are subject to experimental noise and hence any
comparison algorithms should have a certain level of robustness to perturba-
tion of the geometry of the structure. In addition, a detailed representation often
leads to a more extensive computation than a coarse representation such as SSE.
On the other hand, by choosing SSEs as structure elements, we may miss valu-
able information about a protein structure. Early structure comparison used SSE
as elements extensively, mainly for the purpose of efficient computation. Recent
research tends to use amino acid residues or atoms because of the detailed rep-
resentation.

• Sequence Order in Structure Comparison
In sequence-order dependent structure comparison, the primary sequence or-
der of the structure elements must be preserved in a pattern or an alignment.
Otherwise, we carry out a sequence-independent structure comparison.

• Pair-Wise or Multi-Way Structure Comparison
In pair-wise comparison, we find the similarity of a pair of structures, or find
a pattern in common to two structures. A generalization of pair-wise structure
comparison is a multi-way comparison that involves more than two structures.

As a few examples, most structure alignment algorithms, such as DALI [35], com-
pute the pairwise alignment of two structures that preserves the sequence order
of structure elements and hence are sequence dependent, pair-wise global struc-
ture comparison methods. In contrast to structure alignment, most of the structure
pattern discovery methods, such as those based on graphs [39], search for com-
mon local structure patterns without enforcing the sequence order and hence are
sequence independent, multi-way (or pair-wise) local structure comparison meth-
ods.

1.2.3.2 Scoring Functions. A scoring function quantifies the fitness of
a structure pattern or an alignment to the observed data. Choosing the right scor-
ing function involves a certain level of art. Ideally, the right scoring function should
correlate precisely with the desired consequence of the analysis, e.g. the evolution-
ary connection of a pair of structures in an global alignment. Practically, such ideal
scoring functions are very difficult to obtain due to the limited knowledge we have.
Therefore, investigators often resort to “generic” scoring functions. For example,
the root-mean-squared-deviation (RMSD) [21] is usually used to compute the close-
ness of two structures with a known 1–1 correspondence of structure elements in the
two protein structures. In computing RMSD, we superimpose one structure onto the
other such that the sum of the squared distances between corresponding elements is
minimized. A closed-form definition of this scoring function can be found in [50,
36].
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1.2.3.3 Search Procedures. In protein structure comparison with a
given scoring function, a search procedure is often utilized to identify the best so-
lution. One of the most widely used search procedures is the subgraph matching
algorithm that determines whether a pattern (specified by one graph) matches a struc-
ture (specified by another graph) (see Section 5 for further details). Computational
efficiency is the major concern for designing a search procedure.

1.2.3.4 Results Presentation. Usually the final step of structure com-
parison is to present the results to end-users. One commonly used presentation
method is visualization. An equally popular one is to form a hypothesis for a bio-
logical experiment. For example, recognizing the occurrence of a functional sites in
a protein offers information about the possible function of the protein. Usually, both
presentation methods are used after structure comparison.

1.3 Our Focus in Structure Comparison
We focus on protein local structure comparison and present an overview of the

frontier of the research, balancing algorithmic developments and biological appli-
cations. We single out local structure comparison because it has become popular in
recent structure comparison research. The transition from global structure compari-
son to local structure comparison is well supported by a wide range of experimental
evidence.

• Protein function is usually carried out by a small region of the protein. It is
well known that in a protein there are a few key residues, that if mutated, inter-
fere with the structural stability or the function of the protein. Those important
residues usually are in spatial contact in the 3D protein structure and hence form
a “cluster” in the protein structure. On the other hand, much of the remaining
protein structure, especially surface area, can tolerate mutations [15,81]. For
example, in a model protein T4 Lysozyme, it was reported that single amino
acid substitutions occurring in a large fraction of a protein structure (80% of
studied amino acids) tend not to interrupt the function and the folding of the
protein [58].

Biology has accumulated a long list of sites that have functional or structural
significance. Such sites can be divided into the following three categories:
– catalytic sites of enzymes;

– the binding sites of ligands;

– the folding nuclei of proteins.
Local structure similarity among proteins can implicate structurally conserved
amino acid residues that may carry functional or structural significance [14,103,
20,53].
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• Similar global structure may not correlate with similar function. For example, it
is well known that the TIM barrels are a large group of proteins with a remark-
ably similar fold, yet widely varying catalytic function [63]. A striking result
was reported in [65] showing that even combined with sequence conservation,
global structure conservation may still not be sufficient to produce functional
conservation. In this study, Neidhart et al. first demonstrated an example where
two enzymes (mandelate racemase and muconate lactonizing enzyme) catalyze
different reactions, yet the structure and sequence identities are sufficiently high
that they are very likely to have evolved from a common ancestor. Similar cases
have been reviewed in [28].

It has also been noticed that similar function does not require similar struc-
ture. For example, the most versatile enzymes, hydro-lyases and the O-glycosyl
glucosidases, are associated with 7 folds [31]. In a systematic study using
the structure database SCOP and the functional database Enzyme Commis-
sion (EC), George et al. estimated 69% of protein function (at EC sub-subclass
level) is indeed carried by proteins in multiple protein superfamilies [27].

• Local similarity detection can offer evidence for protein evolution. There are
two putative mechanisms to explain similarity between protein structures. One
is convergent evolution, a process whereby proteins adopt similar structure and
function through different evolutionary paths [77]. Convergent evolution has
been studied in the serine protease family, porphyrin binding proteins [77],
and the ATP/GTP binding proteins [99]. Another one is divergent evolution,
a process where proteins from the same origin become so diverse that their
structure and sequence homology falls below detectable level [57]. Though the
exact evolutionary mechanism is still debated, studying local structure similar-
ity can help in understanding how protein structure and function evolve.

Various other interesting topics such as structure database search and structure-
based functional inference are beyond the scope of this chapter and have been
omitted. Topics in local structure comparison that are not covered in this chapter
may be found in related books such as [21].

2. Background

Genome sequencing projects are working to determine the complete genome se-
quence for several organisms. The sequencing projects have produced significant im-
pact on bioinformatics research by stimulating the development of sequence analysis
tools such as methods to identify genes in a genome sequence, methods to predict
alternative splicing sites for genes, methods that compute the sequence homology



188 J. HUAN ET AL.

among genes, and methods that study the evolutionary relation of genes, to name a
few.

Proteins are the products of genes and the building blocks for biological function.
Below, we review some basic background on proteins, protein structure, and protein
function. See [10] for topics that are not covered here.

2.1 Protein Structure

2.1.1 Proteins are Chains of Amino Acids

Proteins are chains of α-amino acid molecules. An α-amino acid (or simply an
amino acid) is a molecule with three chemical groups and a hydrogen atom cova-
lently bonded to the same carbon atom, the Cα atom. These groups are: a carboxyl
group (–COOH), an amino group (–NH2), and a side chain with variable size (sym-
bolized as R) [10]. The first carbon atom in a side chain (one that is connected to the
Cα atom) is the Cβ atom and the second one is the Cγ atom and so forth. Figure 1
illustrates an example of amino acids.

Different amino acids have different side chains. There are a total of 20 amino
acids found in naturally occurring proteins. At physiological temperatures in a sol-
vent environment, proteins adopt stable three-dimensional (3D) organizations of
amino acid residues that are critical to their function.

2.1.2 Protein Structure is Described in Four Levels

The levels are as follows:

• Primary structure describes the amino acid sequence of a protein.

FIG. 1. Left: A schematic illustration of an amino acid. Right: The 3D structure of an amino acid
(Alanine) whose side chain contains a single carbon atom. The atom types are shown; unlabeled atoms
are hydrogens. The schematic diagram is adopted from [10] and the 3D structure is drawn with the VMD
software.
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• Secondary structure describes the pattern of hydrogen bonding between amino
acids along the primary sequence. There are three common types of secondary
structures: α-helix, β-sheet, and turn.

• Tertiary (3D) structure describes the protein in terms of the coordinates of all
of its atoms.

• Quaternary structure applies only to proteins that have at least two amino acid
chains. Each chain in a multi-chain protein is a subunit of the protein and the
spatial organization of the subunits of a protein is the quaternary structure of the
protein. A single-subunit protein does not have a quaternary structure.

2.1.2.1 Primary Structure. In a protein, two amino acids are connected
by a peptide bond, a covalent bond formed between the carboxyl group of one amino
acid and the amino group of the other with elimination of a water molecule. After
the condensation, an amino acid becomes an amino acid residue (or just a residue,
for short). The Cα atom and the hydrogen atom, the carbonyl group (CO), and the
NH group that are covalently linked to the Cα atom are the main chain atoms; the
rest of the atoms in an amino acid are side chain atoms.

In Fig. 2, we show the primary sequence of a protein with three amino acid
residues. At one end of the sequence (the left one), the residue contains the full
amino group (–NH3) and is the N terminal of the sequence. The residue at the op-
posite end contains the full carboxyl group (–COOH) and is the C terminal of the
sequence. By convention a protein sequence is drawn left to right from its N terminal
to its C terminal.

Various protein sequencing techniques can determine the primary sequence of a
protein experimentally.

FIG. 2. A schematic illustration of a polypeptide with three residues: Met, Gly and Ala. The peptide
can also be described as the sequence of the three residues: Met-Gly-Ala.
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FIG. 3. A schematic illustration of the α-helix and the β-sheet secondary structures. (a) The ribbon
representation of the α-helix secondary structure (on the left) and the ball-stick representation showing
all atoms and their chemical bonds in the structure (on the right). We also show the same representations
for the parallel β-sheet secondary structure (b) and the anti-parallel β-sheet secondary structure (c). The
α-helix is taken from protein myoglobin 1MBA at positions 131 to 141 as in [22]. The parallel β-sheet
secondary structure is taken from protein 2EBN at positions 126 to 130 and 167 to 172. The anti-parallel
β-sheet secondary structure is taken from protein 1HJ9 at positions 86 to 90 and 104 to 108.

2.1.2.2 Secondary Structure. A segment of protein sequence may fold
into a stable structure called secondary structure. Three types of secondary structure
are common in proteins:

• α-helix;

• β-sheet;

• turn.

An α-helix is a stable structure where each residue forms a hydrogen bond with
another one that is four residues apart in the primary sequence. We show an example
of the α-helix secondary structure in Fig. 3.

A β-sheet is another type of stable structure formed by at least two β-strands
that are connected together by hydrogen bonds between the two strands. A parallel
β-sheet is a sheet where the two β-strands have the same direction while an anti-
parallel β-sheet is one that does not. We show examples of β-sheets in Fig. 3.

A turn is a secondary structure that usually consists of 4–5 amino acids to connect
α-helices or β-sheets.

Unlike the protein primary sequence, protein secondary structure is usually ob-
tained after solving the 3D structure of the protein.

2.1.2.3 Tertiary Structure and Quaternary Structure. In condi-
tions found within a living organism, a protein folds into its native structure. The
tertiary structure refers to the positions of all atoms, generally in the native struc-
ture. The process of adopting a 3D structure is the folding of the protein. Protein 3D
structure is critical for a protein to carry out its function.
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FIG. 4. Left: The schematic representation (cartoon) of the 3D structure of protein myoglobin. Right:
The schematic representation (cartoon) of the 3D structure of protein HIV protease. HIV protease has two
chains.

In Fig. 4, we show a schematic representation of a 3D protein structure (myo-
globin). In the same figure, we also show the quaternary structure of a protein with
two chains (HIV protease).

Two types of experimental techniques are used to determine the 3D structure of
a protein. In X-ray crystallography, a protein is first crystallized and the structure of
the protein is determined by X-ray diffraction. Nuclear Magnetic Resonance spec-
troscopy (NMR) determines the structure of a protein by measuring the distances
among protons and specially labeled carbon and nitrogen atoms [72]. Once the inter-
atom distances are determined, a group of 3D structures (an ensemble) is computed
in order to best fit the distance constraints.

2.1.3 Protein Structures are Grouped Hierarchically

2.1.3.1 Domains. A unit of the tertiary structure of a protein is a domain,
which is the whole amino acid chain or a (consecutive) segment of the chain that can
fold into stable tertiary structure independent of the rest of the protein [10]. A domain
is often a unit of function i.e. a domain usually carries out a specific function of
a protein. Multi-domain proteins are believed to be the product of gene fusion i.e.
a process where several genes, each which once coded for a separate protein, become
a single gene during evolution [72].

2.1.3.2 Structure Classification. The protein structure space is the set
of all possible protein structures. Protein structure space is often described by a hi-
erarchical structure called protein structure classification, at the bottom of which are
individual structures (domains). Structures are grouped hierarchically based on their
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secondary structure components and their closeness at the sequence, functional, and
evolutionary level [72].

Here we describe a structure hierarchy, the SCOP database (Structure Classi-
fication of Proteins) [62]. SCOP is maintained manually by domain experts and
considered one of the gold standards for protein structure classification. For other
classification systems see [68].

In SCOP, the unit of the classification is the domain (e.g. multi-domain proteins are
broken into individual domains that are grouped separately). At the top level (most
abstract level), protein in SCOP are assigned to a “class” based on the secondary
structure components. The four major classes in SCOP are:

• α domain class: ones that are composed almost entirely of α-helices;

• β domain class: ones that are composed almost entirely of β-sheets;

• α/β domain class: ones that are composed of alpha helices and parallel beta
sheets;

• α + β domain class: ones that are composed of alpha helices and antiparallel
beta sheets.

These four classes cover around 85% of folds in SCOP. Another three infrequently
occurring classes in SCOP are: multi-domain class, membrane and cell surface do-
main class, and small protein domain class.

Proteins within each SCOP class are classified hierarchically at three additional
levels: fold, superfamily, and family. In Fig. 5, we show a visualization developed
by the Berkeley Structural Genomics Center, in which globally similar structures are
grouped together and globally dissimilar structures are located far away from each
other. This figure shows segregation between four elongated regions corresponding
to the four SCOP protein classes: α, β, α/β, and α+β. Further details about protein
structure classification can be found in [62].

2.2 Protein Function

Proteins are the molecular machinery that perform the function of living organ-
isms. Protein function can be described by the role(s) that the protein plays in an
organism. Usually, protein function description is made at the molecular level, e.g.
the role a protein plays in a chemical reaction. Protein function can also be described
at a physiological level concerning the whole organism, e.g. the impact of a protein
on the functioning of an organism. We describe protein function at 3 different levels
according to [69]:
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FIG. 5. The top level structural classification of proteins based on their secondary structure compo-
nents. Source: http://www.nigms.nih.gov/psi/image_gallery/structures.html. Used with permission.

• Molecular function: A protein’s molecular function is its catalytic activity, its
binding activity, its conformational changes, or its activity as a building block
in a cell [72].

• Cellular function: A protein’s cellular function is the role that the protein per-
forms as part of a biological pathway in a cell.

• Phenotypic function: A protein’s phenotypic function determines the physiolog-
ical and behavioral properties of an organism.

We need to keep in mind that protein function is context-sensitive with respect
to many factors other than its sequence and structure. These factors include (but
are not limited to) the cellular environment in which a protein is located, the post-
translation modification(s) of the protein, and the presence or absence of certain
ligand(s). Though often not mentioned explicitly, these factors are important for pro-
tein function.
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In this chapter, we concentrate on the molecular function of a protein. We do
so since (1) it is generally believed that native structure may most directly be re-
lated to the molecular function [26], (2) determining the molecular function is the
first step in the determination of the cellular and phenotypic function of a pro-
tein.

3. A Taxonomy of Local Structure Comparison
Algorithms

The goal of local structure comparison is to recognize structure patterns in proteins
where the patterns may be known a priori or not. When patterns are known, the
recognition problem is a pattern matching problem in which we determine whether
a pattern appears in a protein. When patterns are unknown, the recognition problem
is a pattern discovery problem in which we find structure patterns that appear in all
or many of the protein structures in a group.

As discussed in Section 1, a structure pattern is a geometric arrangement of el-
ements, usually at the amino acid residue level. Some other terminology also used
for structure patterns includes structure templates [95], and structure motifs [21].
A typical pattern matching algorithm contains the following components:

• a definition of structure patterns;

• a scoring function that determines the fitness of a pattern to a structure;

• a search procedure that recognizes patterns in a protein or a group of proteins,
based on pattern definition and the scoring function.

The scoring function is also called a matching condition [21]. An instance of a struc-
ture pattern S in a protein P is a group of amino acid residues in P that matches with
S under a certain matching condition.

Before we proceed to details of individual algorithms, Fig. 6 presents a taxonomy
of protein local structure comparison algorithms, together with sample algorithms
in each category. Our categorization is not unique but it serves two purposes: (1) it
offers an overview of the algorithms that are discussed in this chapter and (2) it
simplifies the presentation since we find that algorithms in the same category often
involve the same set of design issues.

At the top level of our taxonomy, we distinguish between pattern matching and
pattern discovery algorithms. Our discussion of pattern discovery is further divided
into two parts based on whether the primary sequence order of amino acid residues is
significant in the pattern or not. The first group is termed sequence-dependent pattern
discovery and the second is sequence-independent pattern discovery. For the more
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FIG. 6. A taxonomy of local structure comparison algorithms.

challenging sequence-independent pattern discovery, we subdivide the algorithms
into two groups: one that detects patterns that are shared by two protein structures
and one that detects patterns that occur frequently among an arbitrary group of pro-
tein structures. The following sections survey algorithms in each category of the
taxonomy.

3.1 Pattern Matching

There are three types of subproblems in pattern matching [21]:

• occurrence pattern matching determines whether a pattern occurs in a protein
structure,

• complete pattern matching finds all occurrences of a pattern in a protein struc-
ture,

• probabilistic pattern matching calculates the probability that a pattern appears
in a protein structure.

The solution of the complete pattern matching problem can be used to answer
the occurrence pattern matching problem, but sometimes the latter can be computed
directly more efficiently. In the following discussion, we present two algorithms
for the complete pattern matching problem: one based on subgraph isomorphism
and the other one based on geometric hashing. For probabilistic pattern matching,
see [2].
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3.1.1 ASSAM

The algorithm ASSAM is one of the most successful pattern matching algorithms
in local structure comparison of proteins [3]. ASSAM recognizes a predefined pat-
tern in a protein structure by transforming both the pattern and the structure to graphs
and using subgraph matching to determine a possible matching(s). Below, we discuss
the details of the ASSAM in graph construction and subgraph matching.

3.1.1.1 Pattern Definition. ASSAM uses a graph to represent a structure
pattern where

• A node in the ASSAM graph represents an amino acid residue and is labeled by
the identity of the residue.

• Two nodes are connected by an edge labeled by the distance vector (to be de-
fined) between the two residues.

In ASSAM, an amino acid residue is represented as a two-element tuple (p1, p2)

where p1 and p2 are two points in a 3D space. These two points are selected to
specify the spatial location and the side chain orientation of the residue and are called
the “pseudo atoms” in ASSAM.1 One of the two pseudo atoms in a residue R is
designated as the “start” atom, denoted by S(R), and the other is the “end” atom,
denoted by E(R).

The distance vector VR,R′ between two amino acid residues R and R′ is a sequence
of four distances

VR,R′ = d
(
S(R), S(R′)

)
, d

(
S(R),E(R′)

)
, d

(
E(R), S(R′)

)
, d

(
E(R),E(R′)

)
where d(x, y) is the Euclidian distance of two points x and y. The distance vector is
used as an edge label in the graph.

ASSAM represents structure patterns in the same way that it represents full protein
structures.

3.1.1.2 Graph Matching. Distance vector VR1,R2 matches distance vector
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1 They are pseudo atoms since they may be located at positions that do not correspond to a real atom.
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where dss , dse, des , dee are bounds on the allowed variation in distances. These in-
equalities help make the matching robust in the presence of experimental errors in
the determination of element coordinates.

A structure pattern U matches a protein structure V , if there exists a 1–1 mapping
between vertices in U and a subset of vertices in V that preserves node labels and
for which the edge labels in the pattern match the corresponding edge labels in V .

ASSAM adapts Ullman’s backtracking algorithm for subgraph isomorphism [97]
to solve the pattern matching problem. We discuss the details of Ullman’s algorithm
in Section 4.3.

3.1.2 TESS

In TESS both protein structures and structure patterns are represented as point
sets, and the elements of the set are individual atoms. TESS determines whether a
pattern matches a structure using geometric hashing [101]. Specifically, the matching
is done in two steps. In the preprocessing step, TESS builds hash tables to encode the
geometry of the protein structure and the structure pattern. In the pattern matching
step, TESS compares the contents of the hash tables and decides whether the pattern
structure matches the protein structure.

With minor modifications, TESS can be extended to compare a structure pattern
with a group of structures. See [71] for other pattern matching algorithms that also
use geometric hashing.

3.1.2.1 Pattern Definition. TESS represents a structure pattern as a set of
atoms P = {a1, . . . , an} where n is the size of P . Each atom is represented by a
two-element tuple ai = (pi, idi ) where pi is a point in a 3D space and idi is the
identity of the atom.

3.1.2.2 Preprocessing in TESS. To build a hash table encoding the
geometry of a protein structure, TESS selects three atoms with their coordinates
from each amino acid residue and builds a 3D Cartesian coordinate system for each
selection. A 3D Cartesian coordinate system is also called a reference frame in TESS.
For each reference frame, the associated amino acid residue is its base and the three
selected atoms are the reference atoms of the frame. Predefined reference atoms exist
for all 20 amino acid types [101].

Given three reference atoms p1, p2, p3 where each atom is treated as a point,
TESS builds a reference frame Oxyz in the following way:

• the origin of the Oxyz system is the midpoint of the vector −−−→p1p2,

• the vector −−−→p1p2 defines the positive direction of the x-axis,
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• point p3 lies in the xy plane and has positive y coordinate,

• the positive direction of z-axis follows the right-hand rule.

Given a reference frame for an amino acid, TESS recomputes the coordinates of
all atoms in the protein relative to this reference frame. The transformed coordinates
of an atom are discretized into an index that is mapped to a value using a hash table.
The associated value of an index is a two-element tuple (r, a) where r is the identifier
of the base of the reference frame and a is the identifier of the corresponding atom.

TESS builds a reference frame for each amino acid residue in a protein structure
and enters every atom in the protein structure into the hash table relative to this
reference frame. For a protein with a total of R residues and N atoms, there are a
total of R × N entries in the TESS hash table since each reference frame produces a
total of N entries and there are a total of R frames.

A structure pattern in TESS is treated like a protein structure; TESS performs the
same preprocessing step for a structure pattern as for a protein.

3.1.2.3 Pattern Matching. For a pair of reference frames, one from a pro-
tein structure and the other one from a structure pattern, TESS determines whether
there is a hit between the protein structure and the structure pattern. A hit occurs
when each atom in the structure pattern has at least one corresponding atom in the
protein structure. TESS outputs all pairs of reference frames where a hit occurs.

TESS has been successfully applied to recognize several structure patterns, in-
cluding the Ser-His-Asp triad, the active center of nitrogenase, and the active center
of ribonucleases, in order to predict the function of several proteins [101].

3.2 Sequence-Dependent Pattern Discovery

Discovering common structure patterns from a group of proteins is more chal-
lenging than matching a known pattern with a structure. Here we introduce two
algorithms: TRILOGY [9] and SPratt [48,47] that take advantage of sequence order
(and separation) information of amino acid residues in a protein structure to speed
up pattern discovery. Patterns identified by these methods are sequence-dependent
structure patterns.2

3.2.1 TRILOGY

TRILOGY identifies sequence-dependent structure patterns in a group of protein
structures [9]. There are two phases in TRILOGY: initial pattern discovery and pat-

2 Amino acid residues in sequence-dependent patterns are in sequence order but not necessarily consec-
utive in the sequence.
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tern growth. Before we discuss the two phases in details, we present the pattern
definition and matching condition used in TRILOGY.

3.2.1.1 Pattern Definition. In TRILOGY, a three-residue pattern (a triplet)
P is a sequence of amino acid residues and their primary sequence separations such
that

P = R1d1R2d2R3

where Ri (i ∈ [1, 3]) is a list of three amino acid residues sorted according to primary
sequence order in a protein and di (i ∈ [1, 2]) is the number of residues located
between Ri and Ri+1 along the primary sequence (the sequence separation).

Each residue R in TRILOGY is abstracted by a three-element tuple (p, v, id)

where p is a point representing the Cα atom in R, v is the vector of CαCβ atoms,
and id is the identity of the residue.

3.2.1.2 Pattern Matching. A triplet P = R1d1R2d2R3 matches a protein
structure if there exists a triplet P ′ = R′

1d
′
1R

′
2d

′
2R

′
3 in the structure such that

• (1) the corresponding amino acid residues (Ri and R′
i , i ∈ [1, 3]) have similar

amino acid types,

• (2) the maximal difference between the corresponding sequence separations
|di − d ′

i |, i ∈ [1, 2], is no more than a specified upper-bound (e.g. 5),

• (3) the geometry of two triplets matches. This suggests that:
– the difference between the related Cα–Cα distances is within 1.5 Å,

– the angle difference between two pairs of matching Cα–Cβ vectors is always
within 60◦.

If a protein satisfies condition (1) and (2) but not necessarily (3) it is a sequence
match of the triplet P . If a protein satisfies condition (3) but not necessarily (1) or (2)
it is a geometric match of the triplet P . By definition, a protein matches a triplet P if
there is a sequence match and a geometric match to P .

The pattern definition and matching condition for larger patterns with d amino
acids are defined similarly to the above, but use 2d − 1 element tuples instead of
triples.

3.2.1.3 Triplet Discovery. TRILOGY takes as inputs a group of protein
structures and produces a sequence alignment of the structures using information
provided in the HSSP database [78].

After sequence alignment, all possible triplets are discovered. For each triplet,
TRILOGY collects two pieces of information: the total number of sequence matches
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and the number of structure matches, and assigns a score to the triplet according to a
hypergeometric distribution. Only highly scored triplets are used to generate longer
patterns.

3.2.1.4 Pattern Growth. If a highly scored triplet shares two residues with
another triplet, the two patterns are “glued” together to generate a larger pattern with
four amino acid residues in the format of RidiR4 where {Ri}, i ∈ [1, 4], and di ,
i ∈ [1, 3], are defined similarly to ones in triplets. Longer patterns in TRILOGY are
generated similarly.

3.2.2 SPratt

Like TRILOGY, the SPratt algorithm also uses the primary sequence order infor-
mation to detect common structure patterns in a group of protein structures [48,47].
Unlike TRILOGY, SPratt discards the requirement that the sequence separation be-
tween two residues should be conserved. In the following discussion, we present the
details of the SPratt algorithm.

3.2.2.1 Pattern Definition. In SPratt, a pattern P is a list of amino acid
residues

P = p1, . . . , pn

where n is the length of P . Each residue in SPratt is abstracted as a two-element
tuple (p, id) where p is a point representing the Cα atom in R and id is the identity
of the residue. Additional information such as the secondary structure information
and the solvent accessible area may be included to describe a residue.

3.2.2.2 Pattern Matching. A pattern P of length n matches with a protein
structure Q if we can find a sequence of amino acid residues S = s1, . . . , sn sorted
according to the primary sequence order in Q such that

• the residue identity of si matches with the residue identify of pi , i ∈ [1, n].
• the root-mean-squared-deviation (RMSD) value of the corresponding locations

in P and S is below some threshold.

3.2.2.3 Pattern Discovery. Pattern discovery in SPratt is done in three
steps. First, SPratt picks an amino acid residue and selects all neighboring residues
within a cutoff distance. It converts the set of neighboring amino acid residues into
two strings, called neighbor strings: one that includes all residues that precede the
target residue in the sequence and the second that includes all residues that follow.
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Both strings are sorted according to the primary sequence order. For each amino
acid residue and each protein structure in a data set, SPratt computes the neighbor
strings and puts all the strings together. Encoding neighboring residues in this way,
the neighbor strings reflect the primary sequence order but not the separation between
any residues.

Second, the Pratt string matching algorithm [46] is used to identify all sequence
motifs that occur in a significant part of the data set.

Third, for each sequence motif, the geometric conservation of the motifs (mea-
sured by the pairwise RMSD distance between all the instances of the sequence
motif) is evaluated. SPratt selects only those with significant geometric conservation.

3.3 Sequence-Independent Pattern Discovery

3.3.1 Discovering Sequence-Independent Structure Patterns
in a Pair of Structures

In the previous section, we discussed algorithms that identify sequence-dependent
structure patterns. In this section, we discuss algorithms that identify structure pat-
terns without the constraint of sequence order, or sequence-independent structure
patterns.

We divide sequence-independent structure pattern discovery algorithms into two
groups according to whether they work on a pair of structures or on an arbitrary
collection of structures. In this section, we review pairwise sequence-independent
pattern discovery methods and in the next section we show how pairwise comparison
can be extended to multiway comparison of protein structures. Pairwise sequence-
independent pattern discovery methods include:

• Geometric hashing methods that represent protein structures as point sets and
use geometric matching to find structure patterns [67,23].

• Graph matching methods that model protein structures as labeled graphs and
perform subgraph matching to detect conserved patterns [30,61,92,89,104].

3.3.2 Geometric Hashing

This class of methods model a protein structure as point sets and use the geometric
hashing technique to obtain common point subset from two structures. There is no
fundamental difference in applying geometric hashing for pairwise structure pattern
identification and that of pattern matching as exemplified by the TESS algorithm in
Section 3.1.2. Below, we present the pattern definition used in geometric hashing.
Rather than repeating the discussion of preprocessing and geometric matching that
are common to almost all geometric hashing based methods, we present an analysis
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of computational complexity. We also show how different techniques may reduce the
asymptotic complexity of the computation.

3.3.2.1 Pattern Definition. A structure is represented as a set of amino
acid residues P = {a1, . . . , an} where n is the size of P . Each residue is represented
by a two-element tuple ai = (pi, idi ) where pi is a point in a 3D space that represents
the spatial location of the residue (e.g. its Cα atom) and idi is the identity of the
residue.

This definition was originally used by Nussinov and Wolfson [67]. The complexity
of preprocessing a single protein structure with n residues is bounded by O(n4). This
is because there are a total of

(
n
3

)
triplets in a protein. For each triplet we build one

reference frame. For each reference frame, we compute the new coordinates of all n

residues in the protein according to the frame. The complexity of this preprocessing
step is hence n · O

(
n
3

) = O(n4).
At the matching stage, two structures are preprocessed and the results are stored

in a single hash table. After preprocessing, we scan the hash table once to report the
shared structure patterns. Clearly, the post processing step is bounded by the total
number of entries in the hash table which is itself bounded by O(n4). Therefore the
overall computational complexity is O(n4).

Nussinov and Wolfson present an algorithm to speed up the computation from
O(n4) to O(n3). In the improved version, rather than using a triplet to build a ref-
erence framework, two points are used to build a reference framework. There are a
total of O(n2) point pairs in a data set with n points and hence the overall complexity
is reduced to O(n3).

A more efficient algorithm with complexity O(n2) has been proposed by Fischer
et al. [23]. For a protein structure with n residues, rather than building a total of
O(n3) (or O(n2), if using residue pairs) reference frames, Fischer’s method builds a
total of n reference frames. This is done by always picking up three residues that are
consecutive in the primary sequence and building one reference frame for each such
triplet. There are a total of O(n) such triplets so the overall complexity is O(n2).

Geometric hashing has been applied to recognize local structure similarity for
proteins even if they have globally different structures [23].

3.3.3 Graph-Based Methods

This group of methods utilizes graph theory to model protein structure and uses
subgraph isomorphism to detect recurring patterns among a pair of protein structures
[91,61,79]. In this group of algorithms, a protein structure is modeled by a graph
where each node models an amino acid residue, labeled by the residue identity and
an edge connects a pair of residues, labeled by a variety of information related to
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the geometry of the protein as well as the possible physico-chemical interactions
between the pair of residues. Below we review PINTS [77,93] in detail. For related
methods, see [24,61,79,107].

3.3.3.1 PINTS. PINTS takes as input two protein structures and identifies all
structure patterns common to the two structures [91].

Pattern Definition. PINTS uses a graph to represent a structure pattern where

• A node in the PINTS graph represents an amino acid residue and is labeled by
the identity of the residue.

• Two nodes are connected by an edge labeled by the distance vector (to be de-
fined) between the two residues.

In PINTS, an amino acid residue R is a three-element tuple (p1, p2, p3) that rep-
resents the Cα atom, the Cβ atom, and a functional atom in the residue R. One
functional atom is defined for each of the 20 amino acid residue types.

A distance vector between two residues R1, R2 in PINTS is a three-element tuple
(dR1,R2

α , d
R1,R2
β , d

R1,R2
f ) where d

R1,R2
α , d

R1,R2
β , d

R1,R2
f are the (Euclidian) distances

between the Cα, Cβ, and functional atoms in the side chain of the two residues.

Graph Matching. The distance vector VR1,R2 matches the distance vector VR′
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where dα, dβ, df are predefined tolerances. PINTS uses values 7.5, 6.6, and 6 Å,
respectively.

A structure pattern P matches a structure Q if there exists 1–1 mapping of residues
in P to a set of residues in Q such that corresponding nodes have identical node
labels and corresponding edges are labeled by matching distance vectors.

Pattern Discovery. PINTS uses a modified Ullman’s subgraph isomorphism test
to identify all shared subgraphs of two graphs. An overview of the Ullman’s subgraph
isomorphism algorithm can be found in Section 4.3.

The statistical significance of identified patterns is estimated using a sophisticated
model [93], which involves the RMSD between the two instances of the patterns,
the number of residues in the pattern, the abundance of those residues, and their
connectivity along the sequence.
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Many interesting patterns have been identified by the PINTS method including the
serine protease active center, the NAD binding motif in NAD binding proteins, and
binding pockets of chorismate mutases.

3.3.4 Discovering Sequence-Independent Structure Patterns
in Multiple Structures

In this section, we present a review of sequence-independent pattern discovery
methods that work on a group of two or more structures. These methods are:

• Delaunay tessellation;

• Geometric hashing;

• Frequent subgraph mining.

3.3.4.1 Delaunay Tessellation. This class of methods [54,12,96] identi-
fies local structural patterns based on the Delaunay Tessellation technique.

Delaunay tessellation partitions a structure into an aggregate of non-overlapping,
irregular tetrahedra that identify the nearest neighbor residue quadruplets for any
protein. The decomposition is unique and can be made robust in the presence of
uncertainty of the residue positions [4]. Recurring structural patterns can be iden-
tified from tetrahedra recurring in multiple structures. Studies have explored the
hypothesis that four-residue packing motifs can be defined as structure and sequence
specific residue signatures and can be utilized in annotation of structural and func-
tional classes of both protein structures (if available) and genomic sequences [96].
Earlier studies identified residue packing patterns based on the analysis of protein
structures in a family represented as a network of residue contacts obtained by De-
launay tessellation [12,42].

3.3.4.2 Geometric Hashing. Recently geometric hashing has been ap-
plied to perform multiple structure alignment [56] and to identify functional sites in
protein structures [87,85]. It has been also applied to atom-level representations of
protein structures [85].

The extension of geometric hashing methods to find common structural patterns
among multiple structures [87,85] and similarly for an extension based on PINTS
[104] suffer from limited scalability since they may have exponential running time
in the total number of structures.

3.3.4.3 Frequent Subgraph Mining. In frequent subgraph mining, a
protein structure is represented by a graph. Given a group of graphs and a matching
condition (usually specified as subgraph isomorphism), the goal of frequent subgraph



LOCAL STRUCTURE COMPARISON OF PROTEINS 205

mining is to discover all frequent subgraphs in the collections of graphs [108,40]. We
discuss frequent subgraph mining algorithms in detail in the next two sections. These
methods have excellent scaling behavior as the number of structures increases.

4. Pattern Discovery Using Graph Mining

Graphs have been utilized in many application domains as a rigorous representa-
tion of real data. Such data include the topology of communication networks, social
networks, citation networks, chemical 2D structures, protein 3D structures, RNA
structures, gene phylogeny data, protein-protein interaction data, and signaling, reg-
ulatory, and metabolic pathways. For example, the 2D structure of a chemical can
be modeled as an undirected labeled graph where each node corresponds to an atom
in the chemical, labeled by the atom type, and an edge corresponds to a chemical
bond, labeled by the bond type. With graph representations, automated classifiers
have been built to identify the toxic chemicals among a mix of toxic and non toxic
chemicals [8].

Graphs have also been widely utilized for representing protein structure in pro-
tein structure comparison [3]. In the following discussion, we first give a formal
definition of labeled graphs (graphs with node and edge labels) and then discuss two
methods that use graphs to represent protein structures. A more sophisticated method
developed in our recent research, which combines existing graph representations of
protein structures, is discussed in Section 6.

4.1 Labeled Graphs

4.1.1 Labeled Simple Graphs

We define first labeled simple graphs and then labeled multigraphs and pseudo-
graphs.

Definition 4.1. A labeled simple graph (graph) is a four-element tuple G =
(V ,E,Σ, λ) where V is a set of vertices or nodes and E ⊆ V × V is a set of edges
joining two distinct nodes. Σ is the set of nodes and edge labels and λ : V ∪ E → Σ

is a function that assigns labels to nodes and edges.

The size of a graph G, denoted by |G| is the cardinality of its node set. The degree
of a node v is the number of edges incident with v. We use V [G] and E[G] to denote
the set of nodes and edges for a graph G, respectively. We usually assume node
labels and edge labels are disjoint and a total ordering is defined for the label set Σ .
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A graph database is a list of labeled graphs where each graph is assigned an integer
identifier called graph id. A simple graph G is undirected, if the binary relation
E[G] ⊂ V × V is symmetric, otherwise, G is directed. Unless stated otherwise, all
graphs are undirected in our discussion.

4.1.2 Multigraphs and Pseudographs

A multigraph is a graph where there may exist at least two edges between the
same pair of nodes. A graph loop is a degenerate edge which joins a node to it-
self. A simple graph can have neither loops nor multiple edges, but a pseudograph
can have both. We define a labeled multigraph and pseudograph in the following
way.

Definition 4.2. A labeled multigraph is a four-element tuple G = (V ,E,Σ, λ)

where λ : V ∪ E → 2Σ is a function that assigns (multiple) labels to nodes and
edges. 2Σ is the powerset of a set Σ . The interpretations of V , E, and Σ are the
same as those of simple graphs. If a labeled multigraph contains graph loops, it is a
labeled pseudograph.

Example 1. In Fig. 7, we show a graph database with three graphs P , Q, and S

with graph id 10, 20, and 30, respectively. The edge (p2, p5) in graph P has multi-
ple labels {x, y} and hence P is a multigraph. Graphs Q and S are simple graphs.
Throughout our discussion, we use capital letters to represent graphs and lower case
letters with subscripts to denote nodes in graphs. The order of nodes in a graph is
arbitrary.

4.1.3 Paths, Cycles, and Trees

We also use the following graph-related terms:

FIG. 7. A database G of three labeled graphs. The labels of nodes and edges are specified within the
nodes and along the edges.
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• A simple path (path) is an n-node undirected graph L where V [L] = {li},
i ∈ [1, n] and E[L] = {(li , li+1)}, i ∈ [1, (n − 1)]. n > 0 is the length of
the path L.

• A graph G is connected if for each pair of distinct nodes (u, v), there exists a
path L ⊆ G such that l1 = u and ln = v where n is the length of L.

• A cycle O is an n-node path L with one additional edge connecting l1 and ln. n

is the length of O.

• A acyclic graph is a graph with no cycle.

• A tree is a connected acyclic graph.

4.2 Representing Protein Structures

Graphs have been widely used to represent protein structures. In general at the
amino acid residue level, a node in a graph represents an amino acid residue, and an
edge represent the binary relation between a pair of residues. Depending on the ap-
plications, the binary relation may be distances between pairs of amino acid residues
(distance matrix) or the physico-chemical contacts between residues (contact maps).
We discuss the details of distance matrices and contact maps in protein structure
representation below.

4.2.1 Protein Distance Matrix

A matrix (xi,j ) (1 � i, j � n) is the distance matrix for a protein P with n el-
ements, if the entry xi,j is the (Euclidian) distance of the ith and j th element in
protein P . For each protein structure, there is exactly one distance matrix but the
reserve is not true. Given a distance matrix X, there are at most two structures cor-
responding to the matrix. This is because inter-element distances are the same for a
mirror image of a structure. To be efficiently handled by computer algorithms, dis-
tances in a distance matrix are discretized.

Using a distance matrix at the residue level, a protein structure is represented by a
graph where a node represents an amino acid residue and an edge connecting a pair
of amino acid residue is labeled by the discretized distance between the two residues.

4.2.2 Protein Contact Maps

A protein contact map is the same as the protein distance matrix representation,
except each xi,j is not a distance but rather a Boolean indicating whether the pair
of amino acid residues are in “contact” or not. There are many ways to define the
“contact” relation. The most common way is a distance based method where a pair
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of residues are in contact if their distance is below a certain distance threshold and
not otherwise [37]. More sophisticated methods such as Delaunay Tessellation and
almost-Delaunay are also used to define the contact relation [42].

4.3 Subgraph Isomorphism
A fundamental part of recurring subgraph identification is to decide whether a pat-

tern G occurs in a graph G′. To make this more precise, we use the follow definition.

Definition 4.3. A graph G is subgraph isomorphic to another graph G′ if there exists
a 1–1 mapping f : V [G] → V [G′] such that:

• ∀u ∈ V [G], (λ(u) ⊆ λ′(f (u))),

• ∀u, v ∈ V, ((u, v) ∈ E[G] ⇒ (f (u), f (v)) ∈ E[G′]), and

• ∀(u, v) ∈ E[G], (λ(u, v) ⊆ λ′(f (u), f (v))).

G′ in the above definition is a supergraph of G. The bijection f is a subgraph
isomorphism from G to G′ and the node image f (V [G]) of V is an occurrence of
G in G′. With a slight abuse of notation, we use the term “subgraph” to refer to a
“subgraph isomorphic” relation. Two graphs G and G′ are isomorphic, denoted by
G = G′ if they are mutually subgraphs of each other. Non-isomorphic subgraph G of
G′ is a proper subgraph of G′, denoted by G ⊂ G′. A proper supergraph is defined
similarly.

An induced subgraph is one that preserves all edges in the larger graph. In other
words, a graph G is induced subgraph isomorphic to another graph G′ if G ⊆ G′
with a bijection f : V [G] → V ⊆ V [G′] such that E = (V × V ) ∩ E[G′]. We call
a graph G an induced subgraph of G′ if G is induced subgraph isomorphic to G′.

Example 2. In Fig. 8, we show three graphs that are duplicated from Fig. 7 for
the readers’ convenience. The function f : q1 → p2, q2 → p1, and q3 → p3 is

FIG. 8. A database G of three labeled graphs duplicated from Fig. 7. The label(s) of nodes/edges are
specified within the nodes/along the edges.
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a subgraph isomorphism from graph Q to P and hence Q occurs in P . The set
{p1, p2, p3} is an occurrence (and the only one) of graph Q in P . We notice that Q

is also an induced subgraph of P since Q preserves all edges of P in the node image
{p1, p2, p3}. Similarly, S occurs in P but S is not an induced subgraph of P .

4.3.1 Ullman’s Algorithm

Ullman’s algorithm is one of the most widely used algorithms to solve the sub-
graph isomorphism problem [97]. Though Ullman originally developed the algo-
rithm for unlabeled and undirected graphs, this algorithm is so flexible that it can
be used for virtually all types of graphs with little extra effort regardless of whether
these graphs are labeled or unlabeled, have multiple edges or not, have graph loops
or not, and are directed or undirected. In the following discussion, we present the ba-
sic form of Ullman’s subgraph isomorphism algorithm for unlabeled and undirected
graphs. See [38] if interested in subgraph isomorphism in other types of graphs.

In Ullman’s algorithm, the pattern graph and graph to be matched with (the parent
graph) are represented by standard adjacency matrices A(n, n) and B(m,m) where n

and m are the total numbers of nodes in graph A and B respectively and ai,j equals 1
if the ith node and the j th node of A are connected and 0 otherwise. Throughout
this section, we use ai,j to refer to the entry of a matrix A at the ith row and the j th
column.

Ullman used a specially designed n × m binary matrix M , referred to as the per-
mutation matrix, where each row has exactly one 1 and each column has at most a
single 1, to encode a 1–1 mapping from nodes of A to those of B. To see that M

stands for a 1–1 mapping, we interpret an entry mij = 1 in M as a match between
the ith node in A and the j th node in B. Since each row of M has exactly one 1,
each node in A maps to exactly one node in B; since each column of M has at most
a single 1, no two nodes in A can match to the same node in B. In other words, M

encodes a 1–1 mapping from nodes of A to those of B.
Using linear algebra, we obtain C = M(MB)T where XT is the transpose of ma-

trix T . One important theorem about graph matching is that M stands for a subgraph
isomorphism from A to B, if and only if:

(1)∀(i, j : 1 � i, j � n, aij = 1 ⇒ cij = 1).

To search for all successful matches, Ullman’s algorithm enumerates the space
of all possible permutation matrices M using a backtrack method. The proof the
theorem and the algorithmic details of the backtrack search can be found in [97].
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4.4 A Road Map of Frequent Subgraph Mining
Because graphs are ubiquitous data types in many application domains including

protein structure analysis [40,39], identifying recurring patterns of graphs has at-
tracted much recent research interest. Recurring subgraph patterns provide insights
of the underlying relationships of the objects that are modeled by graphs and are
the starting point for subsequent analysis such as clustering and classification. Suc-
cessful applications of recurring subgraph pattern identification include improving
storage efficiency of databases [17], efficient indexing [29,86], and web information
management [110,75]. With no surprise, algorithms for graph based modeling and
analysis are going through a rapid development [39].

Here, we introduce an efficient algorithm for mining graph databases: Fast Fre-
quent Subgraph Mining (FFSM) [40]. With minor modifications, this same algorithm
can be used to mine trees, cliques, quasi-cliques from a graph database or tree pat-
terns in a tree database [40]. Before we introduce the details of our algorithm, we
define the frequent subgraph mining problem, followed by an introduction to related
work.

4.4.1 The Frequent Subgraph Mining Problem
Given a set Σ , the graph space G∗ is all possible simple connected graphs with

labels from Σ . Given a group of graphs G ⊆ G∗, the support of a simple graph G,
denoted by s(G), is the fraction of G in which G occurs.

The frequent subgraph mining problem is defined as:

Definition 4.4. Given a graph database G and a parameter 0 < σ � 1, the frequent
subgraph mining problem is to identify all simple graphs G ∈ G∗ such that the
support of G is at least σ .

An algorithm that solves the frequent subgraph mining problem is referred to as a
frequent subgraph mining algorithm. We consider only connected graphs in a graph
space since unconnected graphs can be viewed as a group of connected graphs. Once
connected frequent subgraphs are identified, unconnected ones can be obtained using
frequent item set mining techniques, as observed in [55].

4.4.2 Overview of Existing Algorithms
Since frequent subgraph mining is computationally challenging, early research

focused on either approximation techniques such as SUBDUE [34] or methods that
are only applicable for small databases like Inductive Logic Programming [16].

Recent research in frequent subgraph mining focuses on the efficiency of the algo-
rithms because most of the algorithms solve exactly the same problem and produce
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the same answer. All scalable algorithms take advantage of the anti-monotonicity of
frequency, which asserts that any supergraph of an infrequent subgraph pattern re-
mains infrequent. The algorithms contain three components that are discussed in the
sequel:

• Searching for initial seeds: preprocessing the input graph database and identi-
fying a set of initial frequent subgraph patterns as “seeds.” Graph topology of
seeds is usually simple, e.g. frequent single node, single edge, or paths.

• Proposing candidate subgraphs: for each seed, a new set of patterns are pro-
posed that are supergraphs of the seed and are likely to be frequent.

• Validating candidate subgraphs: for each proposed candidate, the support value
is computed. Only frequent ones are left as seeds for the next iteration.

Components (2) and (3) may be utilized repeatedly in order to obtain all frequent
subgraphs.

Below, we divide existing frequent subgraph mining methods into three groups
based on how candidates are proposed:

• Edge based methods: generate new subgraphs by adding one edge to existing
frequent subgraphs.

• Path based methods: decompose a graph into a set of paths and enumerate
graphs by adding a path at a time.

• Tree based methods: first identify all frequent tree patterns and then discover
cyclic graph patterns.

There are other types of graph mining algorithms that focus on mining a smaller
subset of frequent subgraphs. For example, maximal frequent subgraph mining [41]
identifies only those frequent subgraphs for which none of their supergraphs are
frequent. Coherent subgraph mining uses mutual information to select subgraphs that
may be infrequent in an overall data set [42]. For a more recent review of different
subgraph mining algorithms, see [41].

4.4.3 Edge Based Frequent Subgraph Mining
4.4.3.1 Level-wise Search: The FSG Algorithm. FSG (Frequent
Subgraph Mining) [55] identifies all frequent patterns by a level-wise search pro-
cedure. At the first step, FSG preprocesses the input graph database and identifies
all frequent single edge patterns. At a subsequent step, e.g. at step k, FSG identifies
the set of frequent subgraphs with edge size (i.e. number of edges) k. This set is
denoted as Ck . The task at step k is subdivided into two phases: candidate subgraph
processing and candidate subgraph validation, with the details covered below (see
Algorithm 1).
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1: F1 ← {e | s(e) � σ } # all frequent edges
2: k ← 2
3: while Fk−1 �= ∅ do
4: Ck ← FSG-join(Fk−1, k)
5: Fk ← FSG-validation(Ck,G, σ )
6: k ← k + 1
7: end while
8: F ← ⋃

i∈[1,k] Fi

ALGORITHM 1. FSG(G, σ ): Frequent subgraph mining.

Candidate Subgraph Proposing. Given a set of frequent graphs with edge size
k − 1 (number of edges), denoted by Fk−1, FSG constructs candidate frequent sub-
graphs with edge size k by “joining” two frequent subgraphs with size k − 1. Two
graphs are “joinable” if they have the same edge size l > 0 and they share a common
subgraph of edge size l − 1. The “join” between two joinable graphs G1,G2 with
edge size k − 1 produces a set of graphs that are supergraphs of both graphs with
edge size k. In other words, in FSG, the join operation is defined as:

FSG_ join(G1,G2) =
⎧⎨
⎩

{G | G1 ⊆ G,G2 ⊆ G, |E[G]| = k}
if G1 and G2 are joinable,

∅ otherwise.

We use |E[G]| to denote the edge size of a graph G.
FSG applies the join operation for every pair of joinable graphs in Fk−1 to produce

a list of candidate k edge patterns Ck . The join operation is illustrated in Fig. 9 and
the pseudo code is presented in Algorithm 2.

Candidate Subgraph Validation. FSG determines the true frequent subgraphs
with edge size k from the set Ck by computing the support value of each member

FIG. 9. An example of the join operation in FSG.
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1: Ck ← ∅
2: for each G1,G2 ∈ Fk−1 do
3: if there exists e1 ∈ E[G1] and e2 ∈ E[G2] such that G1 − e1 = G2 − e2
4: Ck = {G | G1 ⊂ G, G2 ⊂ G, |E(G)| = k} # joinable
5: end if
6: end for
7: return Ck

ALGORITHM 2. FSG-join(Fk−1, k): Join pairs of subgraphs in Fk−1.

1: Fk ← ∅
2: for each G ∈ Ck do
3: s(G) ← 0
4: for each G′ ∈ G do
5: if G ⊆ G′ then s(G) ← s(G) + 1 end # computing support value
6: end for
7: if s(G) � σ then Fk ← Fk ∪ {G} end
8: end for
9: return Fk

ALGORITHM 3. FSG-validation(Ck,G, σ ): Validate frequent subgraphs.

in the set Ck . To compute the support value of a graph G, FSG scans the database of
graphs and for each graph G′ in the graph database, FSG uses subgraph isomorphism
test to determine whether G is a subgraph of G′ and updates the support value of G if
it is. As the results of the validation phase, the set of frequent subgraph with edge size
k is computed. The pseudo code of the FSG-validation is presented in Algorithm 3.

Putting It All Together. Algorithms 1–3 present the pseudo code for the FSG
algorithm, which identifies all subgraphs F in a graph database G with support
threshold 0 < σ � 1. We simplified the FSG algorithm to explain its basic structure;
see [55] for details of performance improvements in FSG.

4.4.3.2 Depth-First Search: The gSpan Algorithm. gSpan utilizes
a depth-first algorithm to search for frequent subgraphs [108]. gSpan, like FSG, also
preprocesses a graph database and identifies all frequent single edges at the beginning
of the algorithm. gSpan designed a novel extension operation to propose candidate
subgraphs. In order to understand the extension operation developed by gSpan, we
will introduce the depth-first code representation of a graph, developed in gSpan.
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Depth-First Code of Graphs. Given a connected graph G, a depth-first search S

of G produces a chain of nodes in G and we denote the nodes in V [G] as 1, 2, . . . , n

where n is the size of the graph G. Node n is the rightmost node and the path from
root to n is named the rightmost path.

Each edge in G is represented by a 5-element tuple e = (i, j, λ(i), λ(i, j), λ(j))

where i, j are nodes in G (i < j ) and λ is the labeling function of G that assigns
labels to nodes and edges.

We define a total order � of edges in G such that e1 � e2 if i1 < i2, or (i1 = i2
and j1 � j2).

Given a graph G and a depth-first search S, we may sort edges in a graph G

according to the total order � and concatenate such sorted edges together to produce
a single sequence of labels. Such a sequence of labels is a depth first code of the graph
G. There may be many depth first codes for a graph G and the smallest one (using
lexicographical order of sequences) is the canonical DFS form of G, denoted by
DFS(G). The depth first tree that produces the canonical form of G is its canonical
DFS tree.

Candidate Subgraph Proposing. In gSpan, a frequent subgraph G is extended
to a candidate frequent subgraph G′ by choosing a node v in the rightmost path
of a canonical DFS tree in G and adding an edge (v,w) to G where w is a node
in G or not. The restriction that we only introduce an edge into the rightmost path
looks strange at the first glance but an important observation of gSpan is that it is
guaranteed that we can still enumerate all frequent subgraphs with this extension.
See [108] for the detailed proof.

Candidate Subgraph Validation. gSpan uses the same procedure used by FSG
(a scan of a graph database and use subgraph isomorphism to determine the support
value) to select frequent subgraphs from a set of candidates.

Comparing to level-wise search algorithm FSG, gSpan has better memory utiliza-
tion due to the depth-first search, which leads to an order of magnitude speedup in
several benchmarks [109].

Putting It All Together. Algorithms 4–6 present the gSpan algorithm.

Other Edge-Based Depth-First Algorithms. Instead of enumerating all the sub-
graph isomorphisms, the method proposed by Borgelt and Berhold [8] also uses an
edge-based depth-first scheme to discover all frequent subgraphs. Different from
gSpan, the method keeps a list of all subgraph isomorphisms (“embedding”) of a
frequent subgraph G. The intuition is to avoid subgraph isomorphism testing, which
generally becomes the performance limiting factor of gSpan when dealing with large
and complex graphs (dense graphs with few distinct labels). Another edge-based
depth first search method FFSM [40] also keeps embedding and frequent subgraph.
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1: F1 ← {e | s(e) � σ } # all frequent edges
2: F ← F1
3: k ← 1
4: for each G ∈ F1 do
5: F ← F ∪ gSpan-search(G, k,G, σ )
6: end for

ALGORITHM 4. gSpan(G, σ ): Frequent subgraph mining.

k ← k + 1
Ck ← gSpan-extension(G, k)
Fk ← gSpan-validation(C,G, σ )
for each G′ ∈ Fk do

F ← F ∪ gSpan-search(G′, k,G, σ )
end for
return F

ALGORITHM 5. gSpan-search(G, k,G, σ ).

1: Ck ← {G′ | G ⊂ G′, |E[G′]| = k, DFS(G) � DFS(G′)}
2: return Ck

ALGORITHM 6. gSpan-extension(G, k).

FFSM has developed a hybrid candidate proposing algorithm with both a join and
an extension operation with improved efficiency. We cover details of FFSM in Sec-
tion 5.

4.4.3.3 Path-Based Frequent Subgraph Mining. Below we intro-
duce the algorithm proposed by Vanetik et al. that discovers all frequent subgraphs
using paths as a building block [98]. We name this algorithm PGM (Path-based
Graph Mining).

Path Cover and Path Number of Graphs. A path cover of a graph G is set of
edge-disjoint paths that cover edges in G exactly once. A minimal path cover of a
graph G is a path cover of G with the minimal number of paths. The cardinality of a
minimal path cover of a graph G, denoted by p(G), is the path number of G.
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FIG. 10. A graph G and two of its path covers.

The computation of a path number is straightforward. For a connected graph G =
(V ,E), the path number is p(G) = |{v | v ∈ E, d(v) is odd }|/2 where d(v) is the
degree of a node v [98].

In Fig. 10, we show a graph G and two of its path covers P = {P1, P2} and
Q = {Q1,Q2}. Since G has four nodes with odd degree, the path number of G is
p(G) = 4/2 = 2. Therefore both path cover P and Q are minimal path covers of G.

Representing Graphs by Paths. In PGM, each graph is represented in a novel
way as a set of paths and a relation among the set of paths. More specifically,
PGM represents a graph G as a three-element tuple G = (V , P, π) where

• V is the set of nodes in G,

• P is a path cover of G, and

• π :P → V is a 1–1 mapping of nodes in path cover P to V where P = ⋃
p∈P p

is the set of all nodes in the path cover P .

The function π is named the composition relation in PGM. We can prove that
with a node set V , a path cover P of a graph G, and a composition relation that maps
nodes in P to V , we can reconstruct the graph G exactly. The proof is given in [98].

Candidate Subgraph Proposing. In PGM, each graph is represented as a set of
paths P , a set of nodes V , and the composition relation of V to nodes in P . Two
n-path represented graphs G1 = P11 , P12 , . . . , P1n and G2 = P21 , P22 , . . . , P2n are
“joinable” if they differ from each other by at most one path. In other words, G1 and
G2 are joinable if |G1 ∩ G2| � n − 1.
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For two joinable graphs G1,G2, PGM produces a set of graphs that are super-
graphs to both G1 and G2 and selects those that are frequent in a graph database.
PGM follows the general approach of Algorithm 1, using this definition of joining.

4.4.3.4 Tree-Based Frequent Subgraph Mining: the GASTON
Algorithm. We describe the algorithm GASTON [66], which introduced a new
frequent subgraph enumeration method by first identifying all frequent trees and then
constructing cyclic graphs. The two steps are covered in the following discussions.

Frequent Tree Identification. GASTON discovers all frequent trees using a sim-
ilar strategy to that used by the edge-based depth-first algorithms. First all frequent
edges are discovered. Second, single edges are extended to trees with two edges, in-
frequent trees are pruned, and the same search goes on until no more frequent trees
are identified. GASTON uses a novel tree normalization scheme that can be com-
puted incrementally in constant time. Using this tree normalization scheme, GAS-
TON guarantees that each frequent tree is enumerated once and only once efficiently.

Frequent Cyclic Graph Identification. For a frequent tree T , GASTON con-
structs a set of frequent graphs that use T as their spanning tree. Let’s denote set
CE as the set of unconnected node pairs in a tree T , i.e. CE = {(i, j) | i < j ,
(i, j) /∈ T } (we require i < j to avoid redundant pairs in an undirected tree). GAS-
TON uses a “close” operation which introduces an edge to an pair of unconnected
nodes in a tree or a graph. By applying the close operation repeatedly, GASTON
enumerates all frequent cyclic graphs in which T is a spanning tree.

As a final comment for GASTON, as pointed out by Nijssen and Kok, the task of
constructing frequent cyclic graphs from a tree T is similar to the frequent item set
mining problem [11] if we treat each edge in CE as an “item.” In fact, any algorithms
that solves the frequent item set problem can potentially be adapted to solve the
problem of constructing frequent cyclic graphs from a tree in GASTON.

5. FFSM: Fast Frequent Subgraph Mining

Here, we introduce an efficient algorithm for mining frequent subgraphs in graph
databases: Fast Frequent Subgraph Mining (FFSM). With little effort, this same al-
gorithm can be used to mine trees, cliques, quasi-cliques from a graph database or
tree patterns in a tree database [40].

5.1 New Definitions
5.1.1 Graph Automorphism

One of the critical problems in graph mining is the graph automorphism problem:
given two graphs P and Q, determine whether P is isomorphic to Q. We solve the
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graph automorphism problem by graph normalization, i.e. assigning unique ids for
graphs. To that end, we introduce the following definitions.

Definition 5.1. A graph normalization function is a 1–1 mapping ψ from G∗ to an
arbitrary set Γ , i.e. ψ(G) = ψ(G′) ⇒ G = G′ where G∗ is a graph space (i.e. all
possible graphs with vertex and edge labels chosen from a fixed set).

We work on a subclass of normalization procedures that maps a graph to
a sequence of labels. The label sequence ψ(G) is the canonical form of the
graph G.

5.1.2 Canonical Adjacency Matrix of Graphs

In FFSM, we represent each graph by an adjacency matrix M such that every
diagonal entry of M is filled with the label of a node and every off-diagonal entry
is filled with the label of the corresponding edge, or zero if there is no edge. In the
sequel with no confusion of graphs, we use capital letters to denote matrices and use
the corresponding lower case letters with subscripts to denote an individual entry of
a matrix. For instance, we use mi,j to denote the entry on the ith row and j th column
of an n × n matrix M , where 0 < j � i � n.

5.1.2.1 Code. In general there are many valid adjacency matrix for a sin-
gle graph. For example, any permutation of the node set corresponds to a (possibly
different) adjacency matrix, if we layout the nodes along the diagonal line of the
adjacency matrix accordingly. Therefore, there may be up to n! different adjacency
matrices for a graph of n nodes. The right part of Fig. 11 shows three adjacency ma-
trices for the labeled graph P shown in the same figure. When we draw a matrix, we
assume that the rows are numbered 1 through n from top to bottom, and the columns
are numbered 1 through m from left to right for an n × m matrix M . For simplicity,
we only show the lower triangular part of an adjacency matrix since the upper half is
a mirror image of the lower one. In order to select a unique representation, we define
a total order of all adjacency matrices for a graph.

Definition 5.2. Given an n × n adjacency matrix M of a graph G with n nodes, we
define the code of M , denoted by code(M), as the sequence s formed by concatenat-
ing lower triangular entries of M (including entries on the diagonal) where s = mi,j

where 1 � j � i � n.

For an adjacency matrix M , each diagonal entry of M is referred to as a node entry
and each off-diagonal none-zero entry in the lower triangular part of M is referred
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to as an edge entry. We order edge entries according to their relative positions in the
code of the matrix M in such way that the first edge entry of M as the leftmost one
in code(M) and the last edge entry as the rightmost one in code(M).

Example 3. In Fig. 11, we show three adjacency matrices for a graph P in the same
figure. For adjacency matrix M1, the edge entry set is {m2,1,m3,1,m3,2,m4,2,m4,3}
where m2,1,m4,3, and m4,2 are the first, last, second-to-last edge entries of M , re-
spectively.

5.1.2.2 Canonical Form. We use standard lexicographic order on se-
quences to define a total order of two arbitrary codes p and q. Given a graph
G, its canonical form is the maximal code among all its possible codes. The ad-
jacency matrix M which produces the canonical form is the canonical adjacency
matrix (CAM) of graph G′, denoted by M(G). For example, after applying the to-
tal ordering, we have code(M1) = “axbxyb0yyb” � code(M2) = “axb0ybxyyb”
� code(M3) = “bybyyb0xxa.” Therefore the adjacency matrix M1 shown in Fig. 11
is the CAM of the graph P it represents, and code(M1) is the canonical form
of P .

Notice that we use maximal code rather than the minimal code used by [55,45]
in the above canonical form definition. This definition provides important properties
for subgraph mining, as explained below.

FIG. 11. Left: A labeled graph P . Upper right: Three adjacency matrices for the graph P . Lower right:
Examples of maximal proper submatrices. Matrix (a) is the proper maximal submatrix of matrix (b), which
itself is the proper maximal submatrix of (c) and so forth.
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5.2 Organizing a Graph Space by a Tree

A graph space is the set of all possible graphs that draw labels from a fixed label
set. In the following, we introduce a partial order on graphs and show that with the
partial order we can define a tree on any graph space.

5.2.1 A Partial Order of Graphs

In order to define a partial order, we first define the maximal proper submatrix of
a CAM.

Definition 5.3. Given a CAM M with at least two edge entries in the last row, a
matrix N is the maximal proper submatrix of M if N is obtained by replacing the
last edge entry (and the corresponding entry of upper triangular part) of M by the
value “0.” Similarly, if M has only one edge entry in the last row, N is the maximal
proper submatrix of M if N is obtained from M by removing the last row (column)
of M .

Since M represents a connected graph, it is not necessary to consider a case such
that there is no edge entry in the last row of M . Several examples of the maximal
proper submatrices are given at the bottom of Fig. 11. We notice that the empty
string is a prefix of any string, and hence an empty matrix is the maximal proper
submatrix of any matrix with size 1.

Definition 5.4. Given a graph space G∗, we define a binary relation � on graphs
in G∗ such that G � G′ if one of the following three conditions is true:

• G = G′;
• M(G) is a maximal proper submatrix of M(G′);
• there exists a G′′ such that G � G′′ � G′.

Example 4. In Fig. 12, we have that A � B � C � D � E � F because of the
maximal proper submatrix relation they have.

Theorem 1. � is a partial order.

Proof. To prove that � is a partial order, we need to prove the following three prop-
erties:

• reflective: G � G for all graphs G,
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FIG. 12. Examples of the partial order �. Upper: A group of graphs. Lower: The related CAM repre-
sentations.

• anti-symmetric: G � G′ and G′ � G implies that G = G′,
• transitive: G � G′ and G′ � G′′ imply that G � G′′.

All the three properties are the direct results of the definition of the binary relation �
and maximal proper submatrix. �

5.2.2 CAM Tree

Given a graph space G∗, we define a directed graph D according to the partial
order �.

• Each node in D is a distinct connected graph in G∗, represented by its CAM;

• An ordered edge (G′,G) connecting two graphs G and G′ if G is the minimal
one such that G′ � G.

We notice that each graph can have at most one maximal proper submatrix and
hence has only one incoming edge. In other words, the directed graph we defined
is acyclic. In the following, we show that D is a tree, which is denoted as the CAM
tree of the graph space. Before we do that, in Fig. 13 we show the CAM tree of all
subgraphs of the graph P from Fig. 11.

The following theorem guarantees that the directed acyclic (DAG) graph D we
constructed is a rooted tree.

Theorem 2. The graph D we constructed in Section 5.2 is a rooted tree with the
empty graph as its root.
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FIG. 13. The CAM Tree of all subgraphs of the graph P in Fig. 11. Every matrix obtained by a join
operation is specified by a label starting with c. and then the type of the join operation e.g. c.3a stands
for join case3a. A CAM obtained by an extension operation is labeled with e. The join and extension
operations are discussed in Sections 5.3 and 5.4, respectively. CAMs (size � 3) without label are explained
in Section 5.3 where suboptimal CAMs are discussed. CAMs with up to one edge are obtained by an initial
step (discussed in Section 5.4) which involves directly scanning nodes/edges labels in a graph database.

Proof. We already have shown that D is a DAG. To prove that a DAG is a tree, all
we need to do is to prove that for any graph G, there exists a sequence of graphs
G1,G2, . . . ,Gn such that G1 is an empty graph, Gn = G and Gi � Gi+1 for 1 �
i < n. This is proved by the following theorem. �
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Theorem 3. Given a CAM M of a connected graph G and M’s submatrix N , N rep-
resents a connected subgraph of G.

Proof. Since N must represent a subgraph of G, it is sufficient to show the subgraph
N represents is connected. To prove this, it is sufficient to show that in N there is
no row i (with the exception of the first row) that contains no edge entry. We prove
this claim by contradiction. We assume that in the matrix M , there exists at least one
such row i that it does not contain any edge entry. Then we claim that we can find
another row j (j > i) such that j contains an edge entry connecting the j th node
and one of the nodes in the first i − 1 rows (if not, the graph M corresponds to is not
connected). If we perform a swap of row i and j and we claim that the code of the
newly obtained adjacency matrix is lexicographically greater than that of M . This
fact contradicts to the definition of CAM, which asserts the CAM of a graph has the
largest code. �

5.3 Exploring the CAM Tree
The current methods for enumerating all the subgraphs might be classified into

two categories: one is the join operation adopted by FSG and AGM [45,55]. A join
operation takes two “joinable” frequent k-edge graphs G1 and G2 and produces a
(k + 1)-edge graph candidate G such that both G1 and G2 are subgraphs of G. Two
k-edge graphs are joinable if they share a common (k − 1)-edge subgraphs. The
join operation is expensive, as shown in [55], in that a single join operation might
generate many graph candidates and one candidate might be redundantly proposed
by many distinct join operations.

On the other hand, [8,108] use an extension operation to grow a frequent graph.
An extension operation produces a (k + 1)-edge graph candidate from a frequent
k-edge graph G by adding one additional edge to G (with or without introducing an
additional node). This operation is also costly since for a given graph, there are many
nodes in the graph that an additional edge might be attached to.

In order to derive a hybrid method with improved efficiency, we list some of the
key challenges to achieve:

• Can we interleave join and extension operation to achieve maximal efficiency?

• Can we design a join operation such that every distinct CAM is generated only
once?

• Can we improve a join operation such that only a few graphs can be generated
from a single operation (say at most two)?

• Can we design an extension operation such that all the edges might be attached
to only a single node rather than many nodes in a graph?
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In order to meet these challenges, we have introduced two new operations, FFSM-
Join and FFSM-Extension, we have augmented the CAM tree with a set of sub-
optimal canonical adjacency matrices, and designed an embedding based subgraph
enumeration method. Experimental evidence demonstrates our method can achieve
an order of magnitude speed up over the current state-of-the-art subgraph mining
algorithm gSpan [108]. Further details are discussed in the following sections.

5.3.1 FFSM-Join

The purpose of the join operation is “superimposing” two graphs to generate a
new candidate graph. Depending on the different characteristics of the graphs, the
join operation in our algorithm might produce one or two graph candidates.

Given an adjacency matrix A of a graph G, we define A as an “inner” matrix if
A has at least two edge entries in the last row. Otherwise, A is an “outer” matrix.
Given two adjacency matrices A (m × m) and B (n × n) sharing the same maximal
proper submatrix, let A’s last edge be am,f and B’s last edge be bn,k , and we define
join(A,B) by the following three cases:

join case 1: both A and B are inner matrices
1: if f �= k then
2: join(A,B) = {C} where C is a m × m matrix such that

ci,j =
{
ai,j , 0 < i, j � m, i �= n or j �= k,

bi,j , otherwise.

3: else
4: join(A,B) = ∅
5: end if

join case 2: A is an inner matrix and B is an outer matrix join(A,B) = {C}
where C is a n × n matrix and

ci,j =
{
ai,j , 0 < i, j � m,

bi,j , otherwise.

join case 3: both A and B are outer matrices
1: let matrix D be a (m + 1) × (m + 1) matrix where (case 3b)

di,j =

⎧⎪⎪⎨
⎪⎪⎩

ai,j , 0 < i, j � m,

bm,j , i = m + 1, 0 < j < m,

0, i = m + 1, j = m,

bm,m, i = m + 1, j = m + 1.
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2: if (f �= k, am,m = bm,m) then
3: C is m × m matrix where (case 3a)

ci,j =
{
ai,j , 0 < i, j � m, i �= n or j �= k,

bi,j , otherwise.

4: join(A,B) = {C,D}
5: else
6: join(A,B) = {D}
7: end if

In join case 3, when joining two outer matrices M1 and M2 (both with size m), we
might obtain a matrix with the same size. We refer this join operation as case3a. It is
also possible that we obtain a matrix having size (m + 1) and this case is referred as
case3b.

We notice that the join operation is symmetric with respect to A and B with the
only exception of join case 3b. In other words, join(A,B) = join(B,A) for join
case 1, 2 and 3a and join(A,B) �= join(B,A) in join case3b. In order to remove
the potential duplications resulting from this symmetry, we require that code(A) �
code(B) in all join cases except join case 3b. Equality is permitted since self-join
is a valid operation. If the inequality is not satisfied (code(A) < code(B)), a join
operation produces an empty set.

Figure 14 shows examples for the join operation for all four cases. At the bottom
of Fig. 14, we show a case where a graph might be redundantly proposed by FSG(6

2

)
= 15 times (joining of any pair of distinct five-edge subgraphs G1, G2 of the

graph G will restore G by the join operation proposed by FSG). As shown in the
graph, FFSM-Join completely removes the redundancy after “sorting” the subgraphs
by their canonical form.

However, the join operation is not “complete” in the sense that it may not enumer-
ate all the subgraphs in the CAM tree. Interested readers might find such examples
in the CAM tree we presented in Fig. 13. Clearly we need another operation, which
is discussed below.

5.3.2 FFSM-Extension

Another enumeration technique in the current subgraph mining algorithms is the
extension operation that proposes a (k + 1)-edge graph candidate G from a k-edge
graph G1 by introducing one additional edge. In these algorithms, the newly intro-
duced edge might connect two existing nodes or connect an existing node and a node
introduced together with the edge. A simple way to perform the extension operation
is to introduce every possible edge to every node in a graph G. This method clearly
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FIG. 14. Examples of the join/extension operation.

has complexity of O(ΣV × ΣE × |G|) where ΣV ,ΣE stand for the set of available
vertex and edge labels for a graph G, respectively for a single extension. It suffers
from the large size of graph candidates as well as the large amount of available
node/edge labels.

gSpan [108] developed an efficient way to reduce the total number of nodes that
need to be considered. In gSpan, the extension operation is only performed on nodes
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1: if (A is an outer adjacency matrix) then
2: for (nl, el) ∈ ΣV × ΣE do
3: S ← ∅
4: create an n × n matrix B = (bi,j ) such that
5:

bi,j =

⎧⎪⎪⎨
⎪⎪⎩

ai,j , 0 < i,j � n,

0, i = n + 1, 0 < j < n,

el, i = n + 1, j = n,

nl, i = n + 1, j = n + 1.

6: S ← S ∪ {B}
7: end for
8: else
9: S ← �

10: end if

ALGORITHM 7. FFSM-Extension(A).

on the “rightmost path” of a graph. Given a graph G and one of its depth first search
trees T , the rightmost path of G with respect to T is the rightmost path of the tree T .
gSpan chooses only one depth first search tree T that produces the canonical form
of G for extension. Here, we refer to [108] for further details about the extension
operation.

In FFSM, we further improve the efficiency of the extension operation by choosing
only a single node in a CAM and attaching an newly introduced edge to it together
with an additional node. As proved by Theorem 4, this extension operation, com-
bined with the join operation, unambiguously enumerates all the nodes in the CAM
tree.

The pseudo code presenting the extension operation is shown in Algorithm 7.

5.3.3 Suboptimal CAM Tree

Using the CAM tree of the graph P in Fig. 13, we can verify that the join and ex-
tension operations, even combined together, can not enumerate all subgraphs in P .
We investigated this and found this problem can be solved by introducing the subop-
timal canonical adjacency matrices, as defined below.

Definition 5.5. Given a graph G, a suboptimal Canonical Adjacency Matrix (simply,
suboptimal CAM) of G is an adjacency matrix M of G such that its maximal proper
submatrix N is the CAM of the graph N represents.



228 J. HUAN ET AL.

FIG. 15. The suboptimal CAM Tree for the graph P shown in Fig. 11. Matrices with solid boundary
are CAMs and those with dashed line boundary are proper suboptimal CAMs. The label on top of an
adjacency matrix M indicates the operation by which M might be proposed from its parent. The labeling
follows the same conventions used in Fig. 13.

By definition, every CAM is a suboptimal CAM. We denote a proper suboptimal
CAM as a suboptimal CAM that is not the CAM of the graph it represents. Sev-
eral suboptimal CAMs (the matrices with dotted boundaries) are shown in Fig. 15.
Clearly, all the suboptimal CAMs of a graph G could be organized in a tree in a
similar way to the construction of the CAM tree. One such example for the graph P

in Fig. 11 is shown in Fig. 15.
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With the notion of suboptimal CAM, the suboptimal CAM tree is “complete” in
the sense that all vertices in a suboptimal CAM tree can be enumerated using join
and extension operations. This is formally stated in the following theorem.

Theorem 4. For a graph G, let Ck−1(Ck) be set of the suboptimal CAMs of all
the (k − 1)-vertex (k-vertex) subgraphs of G (k � 3). Every member of set Ck

can be enumerated unambiguously either by joining two members of set Ck−1 or by
extending a member in Ck−1.

Proof. Let A be a m×m suboptimal CAM in set Ck . We consider the following five
cases according to the edge entries in A’s last row and second-to-last row:

• TypeA M has three or more edge entries in the last row;

• TypeB M has exactly two edge entries in the last row;

• TypeC M has exactly one edge entry in the last row and more than one edge
entries in the second-to-last row;

• TypeD M has exactly one edge entry em,n in the last row and one edge entry in
the second-to-last row and n �= m − 1;

• TypeE M has exactly one edge entry em,n in the last row and one edge entry in
the second-to-last row and n = m − 1.

As shown in the appendix in [40], a TypeA suboptimal CAM can be produced by
two suboptimal CAMs following join case1. Similarly, a TypeB suboptimal CAM
corresponds to the join case3a, a TypeC suboptimal CAM corresponds to join case2,
a TypeD suboptimal CAM corresponds to join case3b, and a TypeE suboptimal CAM
corresponds to the extension operation. �

5.4 Mining Frequent Subgraphs

In the above discussions, we introduced a novel data structure (CAM tree) for
organizing all connected subgraphs of a single connected undirected graph. This,
however, can be easily extended to a set of graphs (connected or not), denoted as
a graph database. A single CAM tree can be built for such a graph database. If we
have such a tree built in advance (regardless of the required space and computational
complexity), any traversal of the tree reveals the set of distinct subgraphs of the
graph database. For each such subgraph, its support can be determined by a linear
scan of the graph database, frequent ones can be reported subsequently. This method
clearly suffers from the huge number of available subgraphs in a graph database and
therefore is very unlikely scale to large graph databases.
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1: P ← {M(e) | e is an edge, s(e) � σ }
2: F ← FFSM-Explore(P, P )

3: return F

ALGORITHM 8. FFSM(G, σ ).

1: for each X ∈ P do
2: if (X.isCAM) then
3: F ← F ∪ {X}, C ← ∅
4: for each Y ∈ P do
5: C ← C ∪ FFSM-Join(X, Y )

6: end for
7: C ← C ∪ FFSM-Extension(X)

8: C ← {G | G ∈ C, G is frequent, G is suboptimal}
9: F ← F ∪ FFSM-Explore(C, F )

10: end if
11: end for
12: return F

ALGORITHM 9. FFSM-explore(P, F ).

In the following pseudo code, we present an algorithm which takes advantage of
the following simple fact: if a subgraph G is not frequent (support of G is less than a
user posted threshold), none of its supergraphs is frequent. This suggest that we can
stop building a branch of the tree as soon as we find that the current node does not
have sufficient support in a graph database.

In the pseudo code of Algorithms 8 and 9, symbol M(G) denotes the CAM of the
graph G. X.isCAM is a Boolean variable indicate whether the matrix X is the CAM
of the graph it represents. s(G) is the support value of a graph G (or its CAM M(G)).

5.5 Performance Comparison of FFSM

We have evaluated the performance of the FFSM algorithm with various types of
graphs. The experimental study was carried out using a single processor of a 2 GHz
Pentium PC with 2 GB memory, running RedHat Linux 7.3. The FFSM algorithm
was implemented using the C++ programming language and compiled using g++
with O3 optimization. We compared our algorithm to gSpan, which is the state-of-
the-art algorithm for graph mining. The gSpan executable, compiled in a similar
environment, was provided by X. Yan and J. Han [108].
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5.5.1 Chemical Compound Data Sets

5.5.1.1 Data Sets. We use three chemical compound data sets to evaluate
the performance of the FFSM algorithm. The first data set is the PTE data set [90] that
can be downloaded from http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/
PTE/. This data set contains 337 chemical compounds each of which is modeled by
an undirected graph. There are a total of 66 atom types and four bond types (single,
double, triple, aromatic bond) in the data set. The atoms and bonds information are
stored in two separate files and we follow exactly the same procedure described
in [108] to construct the graph representations of chemical structures.

The next two data sets are derived from the DTP AIDS Antiviral Screen
data set from National Cancer Institute. Chemicals in the data set are classi-
fied into three classes: confirmed active (CA), confirmed moderately active (CM)
and confirmed inactive (CI) according to experimentally determined activities
against HIV virus. There are a total of 423, 1083, and 42,115 chemicals in the
three classes, respectively. For our own purposes, we formed two data sets con-
sisting of all CA compounds and of all CM compounds and refer to them as
DTP CA and DTP CM respectively. The DTP datasets can be downloaded from
http://dtp.nci.nih.gov/docs/aids/aids_data.html.

5.5.1.2 Performance Comparison. We evaluate the performance of
FFSM using various support thresholds. The result is summarized in Figs. 16 and 17.
We find that FFSM has a maximal 7 fold speedup over gSpan on the DTP CM data

FIG. 16. Left: Performance comparison of FFSM and gSpan with different support values for the DTP
CM data set. Right: The total number of frequent patterns identified by the algorithms.
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FIG. 17. Performance comparison of FFSM and gSpan with different support values for the DTP CA
data set (left) and PTE (right).

set. For DTP CA and PTE data set, FFSM usually has a 2 to 3 fold speedup from
gSpan.

5.5.2 Synthetic Data Sets

5.5.2.1 Data Sets. We used a graph generator offered by M. Kuramochi
and G. Karypis [55] to generate synthetic graph databases with different characteris-
tics. There are six parameters to control the set of synthetic graphs:

• |D|, total graph transactions generated,

• |T |, average graph size for the generated graphs, in terms of number of edges,

• |L|, the total number of the potentially frequent subgraphs,

• |I |, the size of the potentially frequent subgraphs, in terms of number of edges,

• |V |, total number of available labels for vertices, and

• |E|, total number of available labels for edges.

We use a single string to describe the parameter settings, e.g.

“D10kT 20L200I9V 4E4”

represents a synthetic graph database which contains a total of |D| = 10k (10,000)
graph transactions. Each graph on average contains |T | = 20 edges with up to |V | =
4 vertex labels and |E| = 4 edge labels. There are total of |L| = 200 potential
frequent patterns in the database with average size |I | = 9.
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5.5.2.2 Performance Comparison. In Fig. 18, we show how the FFSM
algorithm scales with increasing support. The total number of identified frequent
subgraphs is also given.

At the left part of Fig. 19, we show performance comparison between FFSM and
gSpan with different average graph sizes (left) or different number of node/edge

FIG. 18. FFSM and gSpan performance comparison under different support values. Parameters used:
D10kT20I9L200E4V4.

FIG. 19. FFSM and gSpan performance comparison under different graph sizes (|T |) ranging from 20
to 100 (left) or different total labels (|V | + |E|) ranging from 3 to 18 (right). The ratio of the |V | to |E|
is fixed to 2 : 1 for any given total number of labels. For example, if there are total 15 labels, we have 10
vertex labels and 5 edge labels. Other parameters setting: D10kI7L200E4V4 (left) and D10kT20I7L200
(right). The support threshold is fixed at 1% in both cases.
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labels (right). For almost all circumstances, FFSM is faster than gSpan though the
value of the speedup varies from data set to data set.

5.5.3 Mining Protein Contact Graphs

5.5.3.1 Data Sets. We collect a group of serine proteases from the Struc-
ture Classification of Proteins database [62] with SCOP id 50514 (eukaryotic serine
proteases). For each protein, we map it to a graph, known as the “contact map” of
the protein, in the following way:

• A node represents an amino acid residue in a protein, labeled by the residue
identity.

• An edge connects two residues as long as the two residue are in “contact.” Edges
are not labeled.

In our representation, an amino acid residue is abstracted as two element tuple
(p, id) where p is a point representing the Cα atom of the residue and id is the
identity of the residue. Given a set of points in a 3D space (each point represents a
Cα atom in a protein), we compute all possible Delaunay tessellations of the point
set (in the format of point pairs), with the condition that each point may move away
from its location by up to ε > 0 Å. The result is known as the almost-Delaunay edges
for the point set [4]. We define that two residues are in contact if they are connected
by an almost-Delaunay edges with ε = 0.1 Å and with length up to 8.5 Å. The same
data set and the way we represent proteins as graphs are discussed in detail in [39]
and the data set is downloadable from http://www.cs.unc.edu/~huan/FFSM.shtml.

5.5.3.2 Performance Comparison. The current gSpan is specifically
developed for small graphs (with no more than 200 edges in any graphs in a data set).

TABLE I
PERFORMANCE COMPARISON BETWEEN FFSM AND FSG

σ FFSM(s) FSG(s)

100 0.0433 0.433
95 0.2 1.633
90 0.537 3.6
85 2.243 14.1
80 11.64 61.433
75 104.58 700.217
70 1515.15 17643.667

σ support threshold (percentage). Performance of FFSM and
FSG are measured in seconds.
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We compare FFSM with another graph mining algorithm FSG [55]. FFSM always
an order of magnitude faster than FSG. Table I summarizes the results.

So far, we show the performance comparison between different graph mining al-
gorithms. In the next section, we show how graph mining may be applied to protein
structures to derive common structure patterns.

6. Applications

In this section we describe the use of the FFSM algorithm presented in Section 5
to identify family-specific structural motifs for a number of protein families.

6.1 Identifying Structure Motifs

6.1.1 Representing Protein Structure As a Labeled Graph

We model protein structure as a labeled graph where a node represents an amino
acid residue, labeled by the amino acid identity, and an edge joins a pair of amino
acids, labeled by the Euclidian distance between two Cα atoms. To reduce complex-
ity, we eliminate edges with distances larger than 12.5 Å [23,107]. We partition the
one-dimensional distance space into bins in order to tolerate position uncertainty.
The width of such bins is referred to as the distance tolerance and popular choices
are 1 Å [61], 1.5 Å [9], and 2 Å [79]. We use 1.5 Å exclusively in our experimental
study.

Given the graph representation, a recurring pattern may be composed of points
with no possible physical and chemical interactions among them. This distributed
set of points, though geometrically conserved, is hard to assign any biological in-
terpretation to and is usually considered uninteresting by domain experts. To avoid
spending computational resources on such patterns, we designate a subset of edges
as contacts where a contact is an edge joining a pair of points (amino acids) that we
believe may interact with each other (as described below). We require that each pat-
tern is a connected component with respect to the contact edges. Similar strategies
are used to derive structural patterns with high quality by others [59].

6.1.1.1 Defining Contacts of Amino Acid Residues. There are
many ways to define whether two amino acids are in contact or not. In our study, two
points are in contact if they can be connected by a Delaunay edge [88] with point
coordinates perturbation up to ε � 0. Such Delaunay edges (with point coordinate
perturbations) are extensions of the commonly used Delaunay edges that are defined
on static points [4]. We further restrict the contact edges to have distances no greater
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than some upper limit ranging from 6.5 to 8.5 Å; this value represents an upper limit
on the distance over which there can be significant interaction between amino acid
residues.

The graph model presented here is similar to that used by other groups [77,104].
The major difference is that in our representation, geometric constraints such as dis-
tances between amino acids are part of the graph representation in order to obtain
geometrically conserved patterns rather than using a loosely constrained graph, to
reduce the number of spurious patterns.

6.1.2 Graph Database Mining

We apply the FFSM algorithm to find recurring patterns from protein structures.
To enforce maximal geometric constraints, we only report fully connected subgraph
(i.e. cliques) with all inter-residue distances specified. In graph matching, we require
that matching nodes have the same label and matching edges have the same label
and type (contact or not). Enforcing these, we guarantee that the structural patterns
reported by our system have well defined composition of amino acid identity and
three dimensional shape.

6.1.3 Statistical Significance of Motifs

We derived an empirical evaluation of the statistical significance of structural pat-
terns. We randomly sampled proteins from the protein structure space and applied
our pattern mining algorithm to search for patterns. The experiments were repeated
many times to estimate the probability that we observe at least one pattern using
randomly selected proteins. The lower this probability is, the higher confidence we
have about the significance of any structural patterns that are found among a group
of proteins.

6.1.3.1 Estimating Significance by Random Sampling. In our
experimental study, we randomly sampled 20 proteins (without replacement) from
an non-redundant PDB list [102] and applied our algorithm to search for patterns
with support � 15 and with pattern size of at least 4 amino acid residues. These
parameters were set up to mimic a typical size and search of a SCOP family. We
repeated the experiment 100,000 times, and did not find a single recurring geometric
pattern. Limited by the available computational resources, we did not test the system
further; however, we are convinced that the chance of observing a random spatial
motif in our system is rather small.

6.1.3.2 Estimating Significance using the Hyper-Geometric
Distribution. We estimate the statistical significance of a structural motif m by
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computing the P -value associated with its occurrences in an existing protein family.
To that end, we used the structures in the Culled PDB list [102], as a set of structures
M that sample the entire protein structure population (all possible protein structures,
crystallized or not).

Our null hypothesis H0 is that the pattern m randomly occurs in the protein struc-
ture population. Given an existing protein family F ⊂ M , a set of proteins S ⊆ M

where m occurs, the probability of observing a set of at least k proteins in F contain
m under the null hypothesis is given by the following hyper-geometric distribu-
tion [9]:

(2)P -value = 1 −
k−1∑
i=0

(|F |
i

)(|M|−|F |
|T |−i

)
(|M|
|T |

)
where |X| is the cardinality of a set X. For example, if a pattern m occurs in every
member of a family F and never outside F (i.e. F = S) for a large family F , we
estimate that this pattern is statistically specifically associated with the family; the
statistical significance of the case is measured by a P -value close to zero.

We adopt the Bonferroni correction for multiple independent hypotheses [82]:
0.001/|C|, where |C| is the set of categories. The correction is used as the threshold
for significance of the P -value of an individual test. Since the total number of SCOP
families is 2327, a significant P -value is � 10−7.

6.2 Case Studies
As a proof-of-concept, we applied the method to identify family-specific mo-

tifs, i.e. structural patterns that occur frequently in a family and rarely outside it.
In Table II, a group of four SCOP families are listed which have more than twenty
members. This group of families has been well studied in literature and hence com-
parison of our results with experimental data is feasible.

6.2.1 Eukaryotic Serine Proteases

The structural patterns identified from the ESP family were documented at the top
part of Table II. The data indicated that the patterns we found are highly specific to
the ESP family, measured by P -value � 10−82. We further investigated the spatial
distribution of the residues covered by those patterns, by plotting all residues covered
by at least one pattern in the structure of a trypsin: 1HJ9, shown in Fig. 20. Interest-
ingly, as illustrated by this figure, we found that all these residues are confined to the
vicinity of the catalytic triad of 1HJ9, namely: HIS57-ASP102-SER195, confirming
a known fact that the geometry of the catalytic triad and its spatially adjacent residues
are rigid, which is probably responsible for functional specificity of the enzyme.
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TABLE II
STRUCTURAL PATTERNS IDENTIFIED IN THE EUKARYOTIC SERINE PROTEASE, PAPAIN-LIKE

CYSTEINE PROTEASE, AND NUCLEAR BINDING DOMAINS

Pattern Composition κ δ − log(P ) Pattern Composition κ δ − log(P )

Eukaryotic Serine Protease (ID: 50514) N : 56 σ : 48/56, T : 31.5

1 DHAC 54 13 100 20 AGGG 50 58 85
2 ACGG 52 9 100 21 ACGAG 49 4 100
3 DHSC 52 10 100 22 SCGA 49 6 100
4 DHSA 52 10 100 23 DACS 49 7 100
5 DSAC 52 12 100 24 DGGS 49 8 100
6 DGGG 52 23 100 25 SACG 49 10 98
7 DHSAC 51 9 100 26 DSGC 49 15 98
8 SAGC 51 11 100 27 DASC 49 20 92
9 DACG 51 14 100 28 SAGG 49 31 90

10 HSAC 51 14 100 29 DGGL 49 53 83
11 DHAA 51 18 100 30 DSAGC 48 9 99
12 DAAC 51 32 99 31 DSSC 48 12 97
13 DHAAC 50 5 100 32 SCSG 48 19 93
14 DHAC 50 6 100 33 AGAG 48 19 93
15 HACA 50 8 100 34 SAGG 48 23 88
16 ACGA 50 11 100 35 DSGS 48 23 94
17 DSAG 50 16 100 36 DAAG 48 27 89
18 SGGC 50 17 100 37 DASG 48 32 87
19 AGAG 50 27 95 38 GGGG 48 71 76

Papain-like cysteine protease (ID: 54002) N : 24, σ : 18/24, T : 18.4

1 HCQS 18 2 34 4 WGNS 18 4 44
2 HCQG 18 3 34 5 WGSG 18 5 43
3 WWGS 18 3 44

Nuclear receptor ligand-binding domain (ID: 48509) N : 23, σ : 17/23, T : 15.3

1 FQLL 20 21 43 3 DLQF 17 8 39
2 DLQF 18 7 42 4 LQLL 17 40 31

FAD/NAD-linked reductase (ID: 51943) N : 20 σ : 15/20, T : 90.0

1 AGGG 17 34 34 2 AGGA 17 91 27

N : Total number of structures included in the data set. σ : The support threshold used to obtain recur-
ring structural patterns, T : processing time (in unit of seconds). Composition: the sequence of one-letter
residue codes for the residue composition of the pattern, κ: the actual support value of a pattern in the fam-
ily, δ, the background frequency of the pattern, and P : the functional enrichment defined by Eq. (2). The
packing patterns were sorted first by their support values in descending order, and then by their background
frequencies in ascending order. The two patterns from FAD/NAD-linked reductase show functional en-
richment in NAD(P)-binding Rossman fold protein with − log(P ) value 8 and 6, respectively. This is
further discussed in Section 6.2.
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FIG. 20. Left: Spatial distribution of residues found in 38 common structural patterns within protein
1HJ9. The residues of catalytic triad, HIS57-ASP102-SER195, are connected by white dotted lines. Right:
Instances of ESP structural patterns occurring in proteins outside the ESP data set. The top 7 proteins,
where more than ten structural patterns occur, were found to be eukaryotic serine proteases not annotated
in SCOP.

We found that there are five patterns that occur significantly (P -value < 10−7) in
another SCOP family: Prokaryotic Serine Protease (details not shown). This is not
surprising since prokaryotic and eukaryotic serine proteases are similar at both struc-
tural and functional levels and they share the same SCOP superfamily classification.
None of the patterns had significant presence outside these two families.

The SCOP classification (v1.65) used in this chapter was released in December
2003. The submissions to PDB since that time offer a good test of our method to see if
we would annotate any new submissions as ESPs. We searched all new submissions
for occurrences of the 32 structural patterns we had extracted from the ESP family
and found seven proteins: 1pq7a, 1os8a, 1op0a, 1p57b, 1s83a, 1ssxa, and 1md8a, that
contain quite a few patterns, as shown in Fig. 20. All of these proteins are confirmed
to be recently published eukaryotic serine proteases as indicated by the headers in
corresponding PDB entries.

Finally, we observed that if we randomly sample two proteins from the ESP family
and search for common structural patterns, we obtain an average of 2300 patterns per
experiment for one thousand runs. Such patterns are characterized by poor statistical
significance and are not specific to known functional sites in the ESP. If we require a
structural pattern to appear in at least 24 of a 31 randomly selected ESP proteins and
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repeat the same experiment, we obtain an average of 65 patterns per experiment with
much improved statistical significance. This experiment demonstrates that obtaining
structural patterns from a group of proteins helps improve the quality of the result,
as observed by [104].

6.2.2 Papain-Like Cysteine Protease and Nuclear Binding
Domain

We applied our approach to two additional SCOP families: Papain-Like Cysteine
Protease (PCP, ID: 54002) and Nuclear Receptor Ligand-Binding Domain (NB, ID:
48509). The results are documented in the middle part of Table II.

For the PCP family, we have identified five structural patterns which covered the
catalytic CYC-HIS dyad and nearby residues ASN and SER which are known to
interact with the dyad [14], as shown in Fig. 21. For the NB family, we identified four
patterns3 which map to the cofactor binding sites [103], shown in the same figure. In
addition, four members missed by SCOP: 1srv, 1khq, and 1o0e were identified for

FIG. 21. Left: Residues included in the patterns from PCP family in protein 1CQD. The residues
in catalytic dyad CYS27-HIS161 are connected by a white dotted line and two important surrounding
residues ASN181 and SER182 are labeled. Right: Residues included in patterns from the NB family in
protein 1OVL. The labeled residue GLN 435 has direct interaction with the cofactor of the protein.

3 Structural patterns 2 and 3 have the same residue composition but they have different residue contact
patterns and therefore are regarded as two patterns. They do not map to the same set of residues.



LOCAL STRUCTURE COMPARISON OF PROTEINS 241

the PCP family and six members 1sj0, 1rkg, 1osh, 1nq7, 1pq9, 1nrl were identified
for the NB family.

6.2.3 FAD/NAD Binding Proteins

In the SCOP database, there are two superfamilies of NADPH binding proteins,
the FAD/NAD(P)-binding domains and the NAD(P)-binding Rossmann-fold do-
mains, which share no sequence or fold similarity. This presents a challenging test
case for our system to check whether we are able to find patterns with biological
significance across the two groups.

We applied the FFSM to the largest family in the SCOP FAD/NAD(P)-binding do-
main: FAD/NAD-linked reductases (SCOPID: 51943). With support threshold 15/20,
we obtained two recurring structural patterns from the family, and both showed
strong statistical significance in the NAD(P)-binding Rossmann-fold superfamily as
shown in bottom part of Table II.

In Fig. 22, we show a pattern that is statistically enriched in both families; it has
conserved geometry and is interacting with the NADPH molecule in two proteins
belonging to the two families. Notice that we do not include any information from
NADPH molecule during our search, and we identified this pattern due to its strong
structural conservation among proteins in a SCOP superfamily. The two proteins
have only 16% sequence similarity and adopt different folds (DALI z-score 4.5).
The result suggest that significant common features can be inferred from proteins
with no apparent sequence and fold similarity.

FIG. 22. The pattern appears in two proteins 1LVL (belongs to the FAD/NAD-linked reductase family
without Rossman fold) and 1JAY (belongs to the 6-phosphogluconate dehydrogenase-like, N-terminal
domain family with Rossman fold) with conserved geometry.
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7. Conclusions and Future Directions

7.1 Conclusions

Structure comparison of proteins is a major bioinformatics research topic with var-
ious biological applications including structure classification, function annotation,
functional site identification, protein design, and protein engineering.

In studying structure comparison, new computational techniques have been iden-
tified and some of these techniques are applicable to domains outside bioinformatics.

In the future, we expect to witness the successes of structure comparison in both
algorithmic improvements and new applications. Our optimistic view is based on the
following two factors:

• Computers are becoming more powerful.

• The recently started proteomics research efforts will rapidly produce a large
volume of structure and structure-related data.

Below, we review plausible future directions that we think are important for struc-
ture comparison.

7.2 Future Directions

Here we review the possible future direction of structure comparison in two sub-
directions: (1) identifying applications in the biological/biomedical domain, (2) de-
veloping new computational techniques.

7.2.1 Future Applications of Structural Comparison

Three future applications of structure comparison are discussed.

7.2.1.1 Understanding Dynamic Protein Structures. There is no
question that understanding the dynamics of proteins structures offers great informa-
tion for biological research. For example, enormous insights can be gained if we can
directly observe the process of protein folding using experimental techniques [106].

Currently, the Nuclear Magnetic Resonance spectroscopy (NMR) is the major
experimental technique to measures a protein’s native structure in a solvent envi-
ronment. NMR determines the average protein structure by measuring the distances
among protons and specially labeled carbon and nitrogen atoms [72]. NMR has been
applied to obtain protein structure, protein–protein complexes, and protein-ligand
complexes which account for approximately 10% of the overall structures in PDB.
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There are also several specialized methods that have been developed to report the dy-
namic structure of proteins in specialized biological processes such as protein folding
and domain movement in multi-domain proteins [106,44].

Protein dynamics brings significant opportunities to the current structure com-
parison method because of the rich information stored in the trajectory of protein
structures. We envision two types of comparisons: intra-structure comparison, which
analyzes the protein structure motion and detects important features for a single pro-
tein, and inter-structure comparison, which compares dynamics data for multiple
protein structures and identifies common features.

Though techniques to collect structure dynamics data are in their infancy, we
believe that such techniques, as well as computational methods for molecular dy-
namics, will mature rapidly and be successful in helping domain experts gain useful
insights into various biological processes.

7.2.1.2 Predicting Protein–Protein Interaction. Protein–protein in-
teraction refers to the ability of proteins to form complexes. Protein–protein inter-
action data is usually formed as an undirected graph whose nodes are proteins and
edges connect two protein if the proteins can form a stable/transient complex [1].

Protein–protein interaction data bring new challenges for structure comparison. In
order to elucidate common structural motifs involved in protein–protein interaction
and finally to predict the interaction computationally, we need to compare multiple
protein complexes rather than single structures. We also need to be able to define the
boundary of the interaction, based on the structure of the complexes.

7.2.1.3 Predicting Protein Subcellular Localization. Knowledge
about where a protein may be located in a cell is of paramount importance for bi-
ological research and pharmaceutical companies. For example, an outer membrane
protein is one that is transported to the outer membrane after its synthesis. Know-
ing a protein is an outer membrane protein simplifies the drug design process since
outer membrane proteins can be accessed easily by drugs [25]. As another example,
knowing the localization of a protein offers important information for assembling
metabolic pathways [80].

Predicting the subcellular localization is one of the active research topics in bioin-
formatics research [25,64,80]. Protein subcellular localization has been investigated
in two ways. The first approach relies on sequence motifs as descriptors to assign
subcellular localization for protein sequences. This approach is based on the obser-
vation that continuous stretches of amino acid residues may encode the signal that
guides a protein to a specific location. The second approach utilizes the amino acid
composition of proteins to predict the possible localization. This technique is moti-
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vated by the observation that residue composition of a protein highly correlates with
the localization of the proteins [64].

Recently there is evidence showing that protein structure is also important for pre-
dicting the related subcellular localization. For example, the β-barrel is known as a
signature for outer membrane proteins. This observation has resulted in significant
improvement of the prediction accuracy, as reported in [25]. As another example, the
FKBP-type peptidyl prolyl cis-trans isomerase (PPIase) is a large group of proteins
with 4 possible subcellular localizations. As reported by Himukai et al., the subcel-
lular localization of these proteins is correlated with the conserved structure domain
around the active sites of the protein [33]. As shown in this preliminary study, incor-
porating structure comparison can improve the accuracy of the protein subcellular
prediction.

7.2.2 New Computational Techniques in Structure
Comparison

Facing the challenges of handling large and complex structure data, we believe
new computational techniques will be invented for structure comparison. The possi-
ble directions are

(1) developing approximate matching in pattern discovery,
(2) inventing efficient index structures to speed up pattern matching in a structure

database,
(3) devising new data visualization techniques for structure comparison,
(4) integrating data from different sources for structure comparison, and
(5) statistical structure comparison.

We conclude this chapter with a brief description of statistical structure compari-
son.

7.2.2.1 Comparison Based on Statistical Analysis. As shown
in sequence analysis methods, statistical models such as Hidden Markov Model
(HMM) are useful for recognizing sequence similarity that is not easily detectable by
straightforward alignment methods. Given the success of statistical tools in sequence
comparison, it is natural to consider extending those tools (and possibly to introduce
new ones) for structure comparison of proteins.

Here we review a recently developed algorithm 3dHMM [2] whose goal is to
build a rigorous description of protein 3D structure family using HMM. In outline,
3dHMM takes a group of aligned 3D structure and a query structure as inputs and
computes the best alignment of the query structure to the structure group in the fol-
lowing way:
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(1) estimating the 3D Gaussian for each position (the Cα atom in each amino acid
residue) of the aligned structures,

(2) estimating the deletion probability for each position using the aligned struc-
tures (assuming the alignment is not gap-free),

(3) using a modified Viterbi algorithm [74] to find the best alignment of the query
structure to the HMM model, and

(4) using the Forward algorithm [74] to calculate the probability that the query
structure was generated from the HMM model.

The 3dHMM method has been applied to several protein families and has achieved
better results in terms of identifying structure homology than the traditional RMSD
calculation.

There are many other types of statistical analysis tools, such as Markov Random
Field [7], Hidden Markov Random Field, and Bayesian Networks [43]. It will be
interesting to see their applicability in protein structure comparison.
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Abstract
Peptide identification is an important component of the rapidly growing field
of proteomics. Tandem mass spectrometry has the potential to provide a high-
throughput method for biologists to identify peptides in complex samples. In this
chapter, we provide an introduction to how tandem mass spectrometry works
and how it may be used for peptide identification. We discuss two techniques
for analyzing mass spectra, de novo sequencing and protein sequence database
search. Finally, we present an experimental comparison of OMSSA, X!Tandem
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and Mascot, three popular protein database search algorithms used in peptide
identification. We find these search algorithms are of comparable precision and
can generally correctly identify peptides for mass spectra of high quality. How-
ever, low quality mass spectra present problems for all three algorithms and can
lead to many incorrect peptide identifications. Improving algorithms for peptide
identification using tandem mass spectrometry should thus be a rewarding area
of research.
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1. Introduction

Most of the properties of living organisms arise from the class of molecules known
as proteins. Understanding how proteins function is thus a central goal of biology.
Since organisms produce proteins by first transcribing DNA to RNA, then translating
RNA to a protein, a great deal of information on proteins can be derived indirectly
by analyzing DNA. For instance, gene finding algorithms can analyze genomic DNA
to identify protein-coding portions of DNA (genes) to predict what proteins are
produced. Biologists can also experimentally detect the presence of transcribed (ex-
pressed) DNA (either by sequencing Expressed Sequence Tags (ESTs) or through
hybridization with short DNA probe sequences on microarrays) to deduce what pro-
teins are present in a cell.

However, there are several limitations to analyzing proteins indirectly. First, while
the presence of transcribed DNA is strong evidence for the presence of the corre-
sponding translated protein, the quantity of protein present is not necessarily corre-
lated with the quantity of transcribed DNA. More importantly, proteins are known to
be much more diverse than protein-coding genes in an organism. For instance, the
Human Genome Project has identified roughly 22,000 genes in the human genome,
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even though there are about 400,000 known human proteins. The much larger num-
ber of proteins is probably due to alternative splicing and post-translational modifi-
cations of proteins.

As a result, scientists have realized simply studying genomic and transcribed DNA
is not sufficient for fully understanding the presence and activity of proteins in an
organism. This has led to the rise of the field of proteomics, the study of all proteins
of an organism [1]. Proteomics strives to provide detailed information about protein
structure, interaction, and functions. There are many areas in proteomics, focusing on
areas such as protein separation, protein identification, protein quantification, protein
structure, protein interactions, and protein function.

Earlier research in the field of proteomics focused on studying proteins using tech-
niques from analytical chemistry. In the 1980s and early 1990s, researchers mainly
targeted improving the sensitivity of protein identification techniques based on sepa-
rating proteins through different types of gel electrophoresis. X-ray crystallography
and nuclear magnetic resonance techniques were used to identify the 3D structure
of a large number of proteins. Chemical-based techniques were used to identify pro-
tein amino acid sequence, but were much slower and less efficient than comparable
techniques for sequencing DNA.

More recently, mass spectrometry (MS) has developed into an active research area
that has the potential to provide reliable high-throughput methods for identifying and
analyzing proteins. Mass spectrometry is a well-established scientific instrumenta-
tion technique from analytical chemistry that can be applied to biological samples to
identify protein content. Researchers have found that the tandem mass spectrometry
technique (MS/MS), when used in conjunction with liquid chromatography (LC),
can quickly determine the protein content of biological samples in a wide variety of
contexts.

In a high-throughput setting, a complex mixture of unknown proteins can be cut
into short amino acid sequences (peptides) using a digestion enzyme such as trypsin;
fractionated using liquid chromatography into reduced complexity samples on the
basis of some physical or chemical property such as hydrophobicity; and then have
tandem mass spectra taken for selected observed peptides in each fraction. The end
result of such an experiment is a set of a few hundred to a few thousand tandem
mass spectra, each of which represents a peptide of about 6–20 amino acid residues.
In many cases amino-acid sequences of 8–10 residues carry sufficient information
content to determine the protein from which the peptide is derived. This experimental
protocol employing LC-MS/MS can thus potentially identify hundreds of proteins
from a complex mixture in several hours of instrument time. In addition, protein
mass spectrometry can also be used for analyzing functional protein complexes by
identifying not only the members of the complexes, but also the interactions among
the members.
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Combined with advances in analytical protein chemistry and ever expanding pro-
tein databases, mass spectrometry thus has the potential to become the mainstream
quantitative technology for systematical protein study. However, because of frequent
noise in mass spectra data and high data generation speed, the analysis and interpre-
tation of enormous amounts of protein mass spectra data can be very challenging.
Even though computer scientists and statisticians have developed many computer
software tools for interpreting the experimental data, high performance algorithms
with carefully designed score functions are needed to give precise results that are
portable and comparable.

In this chapter, we provide an overview of how mass spectrometry can be used
to identify proteins in a high-throughput setting. We describe algorithms used to
interpret mass spectra results, and experimentally compare the precision of some
popular protein sequence database search algorithms currently used by biologists.

2. Tandem Mass Spectrometry

Mass spectrometry is an analytical chemistry technique used to find the chemical
composition of a physical sample. This is done by using a mass spectrometer to split
the sample into a collection of charged gas particles (ions) with different masses,
then measuring their relative abundance by magnetically accelerating the ions and
sending them to a detector. Since the acceleration of a particle in a magnetic fields
is based on its mass-to-charge ratio (m/z), a mass spectrometer can determine the
masses of ions very precisely. Because the atomic masses of different chemicals
differ, information on the mass of all ions detected can thus be used to identify the
chemical composition of a physical sample. The output of a mass spectrometer is a
set of detected ion mass-to-charge ratios, typically represented as a mass spectrum,
as shown in Fig. 1. In the figure, the x-axis represents the mass-to-charge ratio of
each ion, and the y-axis represents the intensity of each ion (number of particles
detected). Intensity is normalized with respect to the peak with the highest intensity.

Proteins are macromolecules composed of sequences of twenty different amino
acids, as shown in Fig. 2. Short sequences of amino acids are usually referred to as
peptides to distinguish them from full protein sequences. Because each of the twenty
amino acids has a different residue with unique chemical structure, all amino acids
except two have different atomic masses (as shown in Table I), allowing them to be
identified using mass spectrometry. The two exceptions are leucine and isoleucine,
which are isomorphic (two molecules with the same chemical composition, but
whose atoms are arranged differently) and therefore have the same mass.

As it turns out, proteins are fairly well-suited to identification using mass spec-
trometry. Proteins and peptides may be ionized using techniques such as electrospray
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FIG. 1. A mass spectrum consists of a set of ion peaks detected at different mass/charge (m/z) ratios.

FIG. 2. Proteins/peptides are composed of sequences of amino acids (AA) that share a common back-
bone, but have different residues.

TABLE I
MASSES FOR ALL 20 AMINO ACID RESIDUES IN DALTONS

Amino-acid Residual MW Amino-acid Residual MW

A Alanine 71.03712 M Methionine 131.04049
C Cysteine 103.00919 N Asparagine 114.04293
D Aspartic acid 115.02695 P Proline 97.05277
E Glutamic acid 129.04260 Q Glutamine 128.05858
F Phenylalanine 147.06842 R Arginine 156.10112
G Glycine 57.02147 S Serine 87.03203
H Histidine 137.05891 T Threonine 101.04768
1 Isoleucine 113.08407 V Valine 99.06842
K Lysine 128.09497 W Tryptophan 186.07932
L Leucine 113.08407 Y Tyrosine 163.06333
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FIG. 3. Peptides become ionized (obtain a charge) when a proton (H+) becomes attached.

ionization or matrix-assisted laser desorption/ionization (MALDI) to attach extra
proton(s) to the sequence of amino acids, as shown in Fig. 3. Once ionized, its mass
may be measured using a mass spectrometer. Finding the mass of an entire protein is
not very useful since the protein mass is too large and many proteins may have the
same mass. However, proteins can be split into smaller peptides fragments that are
easier to identify.

A common approach for fragmenting proteins is utilizing enzymatic digestion.
For instance, the enzyme trypsin will break a protein amino acid sequence at the
carboxyl side (or “C-terminus”) of the amino acids lysine and arginine, unless the
two residues are followed by the amino acid proline (i.e., KR unless followed by P).
Because the pattern recognized by trypsin is fairly common, a protein digested by
trypsin is usually broken up into a large number of short peptide fragments. Figure 4
illustrates an example of protein digestion, where multiple instances of the original
long protein amino acid sequence are digested by an enzyme, producing different
unique peptides (each colored differently). Digestions are not necessarily perfect, so
there may be missed opportunities for digestion that yield larger peptides.

Once digestion is complete, a mass spectrometer can measure the mass/charge
ratios of all the resulting peptides, as shown in Fig. 5. In fact, proteins can be identi-
fied directly from the masses of their peptide fragments after digestion. A technique
known as peptide mass fingerprinting attempts to identify proteins from all the possi-
ble peptides produced from after digestion by a particular enzyme. Different enzymes
may be used to obtain sets of fingerprints to better distinguish between proteins.

In practice, biologists seem to prefer using a more precise technique called tandem
mass spectrometry (MS/MS) that can improve the precision of protein identification
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FIG. 4. Enzymes digest proteins by breaking long amino acid sequences into short peptides at specific
amino acid positions.

FIG. 5. A mass spectrometer can measure the mass/charge (m/z) ratios of ionized peptides from a
protein. The set of measured m/z ratios can potentially be used as a peptide mass fingerprint to identify
proteins.

by fragmenting digested peptides even further. First, the different peptides resulting
from enzymatic digestion are separated as much as possible using techniques such as
1D/2D gel electrophoresis or liquid chromatography (LC), where peptides are sepa-
rated (according to physical size and/or chemical properties) by forcing them through
a gel or capillary tube filled with a combination of water and organic solvents.

Once a single peptide has been separated, it can be fragmented further using tech-
niques such as collision-induced-dissociation (CID), which shoots peptides at high



260 X. WU ET AL.

FIG. 6. In tandem mass spectrometry (MS/MS), peptides are fragmented further in order to determine
their amino acid sequence.

speed through a cloud of inert gas particles. The resulting ions are now all fragments
of the original (precursor/parent) peptide fragment, and greatly simplify the task of
identifying its amino acid sequence. An example of tandem mass spectrometry is
shown in Fig. 6.

Because the CO–NH bonds connecting amino acids are weak, they tend to break
first when a peptide is fragmented. Assuming the original ion carried only a sin-
gle positive charge (H+ proton), the charge will be on either the peptide fragment
containing the N-terminus or the C-terminus of the peptide. If the charge is on the
fragment containing the N-terminus, the resulting fragment is labeled as a bi ion,
where i indicates the number of amino acids composing the ion. Otherwise, the
charge must be on the fragment containing the C-terminus, and the fragment is la-
beled a yi ion. Figure 7 shows an example of what b and y ions can be produced
depending on which CO–NH bond is broken for a sequence of amino acids. Other
types of ions may be created during fragmentation (a and x ions if the CH–CO bond
is broken, c and z ions if the NH–CH bond is broken), but with much lower proba-
bility since those bonds are stronger than the CO–NH bond.

To illustrate in greater detail how tandem mass spectrometry works, we use as
an example applying LC-MS/MS to the peptide SGFLEEDELK. We assume this
peptide is produced from a particular protein after it has been digested by some
enzyme. Liquid Chromatography is used to separate copies of this peptide from other
peptides. An early instance of this peptide is ionized and its mass-to-charge ratio is
measured by the mass spectrometer. Using some predetermined criteria, the tandem
mass spectrometer software selects this ion for further fragmentation. This peptide
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FIG. 7. Different possible b and y peptide fragment ions are produced depending on which CO–NH
bond is broken, and which peptide fragment retains the positive charge (H+).

FIG. 8. All possible b and y ions produced by peptide SGFLEEDELK and their masses (in Daltons).

ion now becomes a precursor ion. Additional ions of the same mass are fragmented
further, and their mass-to-charge ratios are measured and recorded.

Figure 8 displays all the possible b and y ions produced by fragmenting the peptide
SGFLEEDELK, as well as their molecular weights (in Daltons). Additional ions
are also possible for many reasons (e.g., precursor ion fragments multiple times,
precursor ion does not break at the CO–NH bond, chemical modifications to the
precursor ion or its fragments, etc.), but b and y ions are most frequently observed.

Figure 9 displays an example of a mass spectrum that could result if many possible
b and y ion from the precursor ion was produced and measured. The peaks represent-
ing b and y are ordered from left to right relative to the number of amino acids in
each ion, since the mass (and m/z ratio) of a peptide increases with the additional
of amino acids to a peptide. Ions containing about half the number of amino acids
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FIG. 9. Position of mass/charge (m/z) ratios for many b and y ion peaks produced by peptide
SGFLEEDELK.

in the precursor ion are more likely to be observed (i.e., have more intense peaks) in
practice.

Note that in Fig. 9 some b and y ions are not observed (with measurable intensity),
as those ions were not created with high enough frequency to be observed. In com-
parison, some fairly large (non-ion) peaks are found. These peaks may be present
for a number of reasons. They may have been produced by peptide fragmentation at
bonds other than CO–NH. These (non b or y ion) peaks can also represent ionized
particles generated from peptides or non-protein substances other than the precursor
ion, since liquid chromatography is not completely effective at separating different
peptides.

3. Algorithms for Peptide Identification

We have just seen how tandem mass spectrometry can each hour automatically
capture hundreds of mass spectra representing potential proteins in a biological sam-
ple. Trained chemists can examine mass spectra manually to identify proteins, but
cannot possibly keep up with rate data is produced by modern tandem mass spec-
trometers. As a result, biologists are forced to rely on software tools implementing
different algorithms for identifying proteins.

There are two main classes of software algorithms for mass spectra based pep-
tide identification. De novo sequencing algorithms attempt to deduce the amino acid



PEPTIDE IDENTIFICATION VIA TANDEM MASS SPECTROMETRY 263

sequence from scratch by examining the mass spectrum. In comparison, database
search algorithms compare the experimental mass spectrum against theoretical spec-
tra for peptides derived from a protein sequence database. This section provides an
overview of techniques used in both approaches.

3.1 De Novo Sequencing

We begin with the approach taken by de novo sequence. De novo peptide identifi-
cation algorithms attempts to determine the peptide sequence using only the peptide
fragment information of the tandem mass spectrum, without relying on any knowl-
edge about existing proteins. De novo techniques work by discovering pairs of ions
peaks in mass spectra that differ in their mass-to-charge (m/z) ratio exactly by the
mass of a single amino acid [2–6].

Figure 10 presents an example of a mass spectrum where the mass difference
between pairs of peaks matches the mass of an amino acid, specifically E and L.
Such peak pairs can provide evidence for a particular amino acid existing at a given
position in a peptide. For the mass spectrum in Fig. 10, the two pairs of adjacent
peaks marked seem to indicate the precursor peptide contains the peptide fragment
EL or LE, depending on whether the peaks are b or y ions.

De novo techniques work very well if the mass spectrum is of high quality, with a
large fraction of all b and y ions clearly represented by peaks in the spectrum. In fact,
if all b or all y ions are present, the amino acid sequence of the peptide can be derived
by simply reading off the sequence of amino acid masses in order by following the
sequence “ladder”.

FIG. 10. Discovering pairs of m/z ion peaks that differ exactly by the mass of a single amino acid.
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FIG. 11. De novo peptide identification relies on discovery of a sequence of amino acids identified by
pairs of ion peaks.

For instance, the mass spectrum shown in Fig. 11 is an example of a very high
quality spectrum with almost all b and y ions present. If the difference in mass be-
tween a pair of peaks matches the mass of an amino acid, the gap between the pair of
peaks is labeled with the appropriate amino acid. We see that the peptide sequence
LEEDEL can be discovered by following the sequence of b ions from left to right.
In addition, the mass of the first b ion peak is equal to the sum of the masses of
the amino acids S, G, and F, so we can deduce the first three amino acids in the
peptide sequence is some combination of S, G, and F. Following the sequence of y

ion from right to left, we discover the peptide sequence GFLEEDE. In addition, the
mass of the last y ion peak is equal to the sum of the masses of the amino acids K
and L. Combining the two sequences, we see the only possible peptide capable of
generating both sets of b and y ions is SGFLEEDELK.

De novo techniques have the advantage of working without being limited by the
list of protein sequences found in a protein database. De novo techniques can also
be used to discover novel peptides and unexpected post-translational modifications
(e.g., acylation, methylation, phosphorylation) in a computationally efficient way,
since post-translational modifications to proteins are easily represented as additional
peptide mass differences to be considered.

However, de novo techniques do not work nearly as well for lower quality mass
spectra, where many ion peaks may be missing and non-ion peaks are present. If on
a small portion of the ion ladder is present, de novo techniques can only identify
short portions of amino acid sequences. De novo interpretations will then produce
a long list of possible peptide sequences containing the peptide sequence fragment
identified. In practice, the proportion of spectra that can be identified conclusively
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using a de novo analysis is usually fairly small, because tandem mass spectra often
do not contain enough information to form an unambiguous conclusion.

More recently, researchers have found ways to improve de novo analysis algo-
rithms through the use of Hidden Markov Models (HMMs) [7–9]. HMMs were
initially introduced in late 1960s and early 1970s for human speech recognition.
It includes a class of statistical models used to capture statistical characteristics of
time series and linear sequences. HMM is basically a double embedded stochastic
process with first order Markov chain as underlying (hidden) stochastic process and
state dependent probabilistic function as the observable stochastic process. Because
of the nice mathematical properties of HMM, it was introduced into computational
biology in late 1980s and used to profile protein sequences [10,11]. Later, HMM
was also used to model gene structure and predict protein structure by fold recogni-
tion.

The researchers developing NovoHMM proposes a de novo peptide sequencing
approach using a generative HMM of mass spectra [12]. The model emulates the
whole mass spectra generation process in a probabilistic way that allows for bet-
ter amino acid prediction. Results show NovoHMM outperforms other de novo
sequencing algorithms that use mass spectrum graphs for generating candidate pep-
tides.

3.2 Sequence Database Search Algorithms

A different approach for identifying peptides using mass spectra is based on
searching protein databases containing protein amino acid sequences. Tools imple-
menting these database search algorithms are commonly known as mass spectra
(MS) search engines.

The first step of these algorithm is to computationally digest protein sequences
with specific enzymes. In other words, the algorithm predicts which peptides may
be produced if the protein is entirely or partially digested by an enzyme. It does so
by searching for all the amino acid pattern recognized by the enzyme, and cutting
the protein sequence at those points to yield a list of possible peptides. The database
search algorithm can then generate a hypothetical mass spectrum for each peptide
produced by enzyme digestion, simply by adding the masses of all amino acids for
each peptide.

Once the list of hypothetical mass spectra for peptide sequences is generated,
the database search algorithm can attempt to identify the peptide by comparing the
actual experimental spectrum with hypothetical spectra created for each possible
peptide. Using criteria such as a score function based on the number of matched
ion peaks, the algorithm can then rank the best matches found and predict pos-
sible peptide sequences. For instance, the MS search engine X!Tandem computes
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a hyperscore for each match by summing the intensities of all matched b and y

ions, then multiplying the result by the factorials of the number of matched b and y

ions [13].
Probably the major advantage of database search algorithms is that they do not

need to find evidence for all amino acids in a peptide, but just enough to uniquely
distinguish a peptide from all other peptides in the database. As a result these algo-
rithms can better identify proteins from low quality spectra (with many missing b

and y ions and non-ion peaks) than de novo techniques.
The database search approach also has several weaknesses. First, to be identi-

fied the amino acid sequence of a protein must be present in the sequence database.
Novel proteins or alternative splicing isoform proteins not in the database will not be
matched by the algorithm, even if the spectrum is very high quality and the peptide
can be easily identified using de novo techniques. It is possible to computation-
ally derive additional versions of hypothetical spectra corresponding to mutations,
alternative splicing, or post-translational modifications, but the total number of com-
binations that may need to be considered grows exponentially and quickly becomes
computationally infeasible. Second, as protein databases grow larger performance
degrades as the number of hypothetical spectra also grows. Finally, it becomes harder
for database search algorithms to clearly distinguish the correct peptide mapping as
the number of protein sequence candidates increase.

Since the first database search program SEQUEST [14], there have been many
algorithms [15–32] designed to identify peptides by searching protein sequence data-
base. The database search algorithms differ in many ways, including heuristics for
filtering noise, match score functions, and methods for searching the protein se-
quence database. We discuss some of the more commonly used MS search engines
and point out their main features.

SEQUEST [14] is one of the first algorithms to identify proteins by corre-
lating peptide tandem mass spectrum with amino acid sequence in protein data-
base. It matches the experimental mass spectrum with the theoretical spectrum of
a peptide sequence, scoring matches based on a cross-correlation function. Post-
processing tools such as PeptideProphet [24] apply statistical analysis of SEQUEST
scores to calculate e-values and improve the sensitivity of true peptide identifica-
tions.

Mascot [27], developed by Perkins et al., is probably the most widely used pro-
tein identification software. It uses an adapted scoring function to score matches
between experimental and theoretical spectra. First, experimental MS/MS spectrum
are condensed into a small set of masses representing a fingerprint of the spectrum.
A probabilistic model is used to compare this mass fingerprint (whose peak values
are ignored) against the generated theoretical masses from potential peptides in the
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protein sequence database. Mascot outputs a probability-based score for each match
so the significance of the results can be more easily judged.

OMSSA [22] is a probability-based protein identification method from NCBI. Af-
ter the filtering steps, it calculates a score based on the statistic significance of a
match. The basic assumption used by OMSSA is that the number of product ion
matches follows a Poisson distribution. It calculates an e-value based on the number
of random matches against N theoretical spectra.

SCOPE [33] uses a comprehensive probabilistic scoring models to more precisely
evaluate the probability of a spectrum matching theoretical spectrum from protein
sequence databases.

X!Tandem [13] is a multi-step algorithm for quick peptide identification from
mass spectra. It filters out sequence candidates in multiple searching steps, while
considering more stringent searching criteria in each step. The central assumption
used by X!Tandem to improve the performance of filtering is that for each identifi-
able protein, there is at least one detectable tryptic peptide. It can thus use a quick
match algorithm to look for fully digested tryptic peptides, and then look for a more
comprehensive list of peptides using heuristics limited to the proteins where at least
one match has been found. The score function used by X!Tandem is based on a hyper-
geometric distribution calculated as the dot product of the intensities of the matching
ions, multiplied by the factorials of the number of matched b and y ions. The e-value
calculated by X!Tandem is based on just how unlikely a greater hyperscore is to be
found, based on statistical analysis of current hyperscores.

InsPecT [34] is a recent MS/MS search algorithm that performs high-throughput
identification of peptide mass spectra. Its emphasis is on efficiently identifying post-
translational modifications and mutations with high confidence. InsPecT is able to
search a broad range of post-translational modifications efficiently by constructing a
very good filter for reducing the possible search space.

PepHMM [35] is an algorithm recently proposed that uses HMMs for peptide
identification. PepHMM builds a HMM to capture the correlation among matched
and unmatched ions to improve the precision of peptide identification. The proposed
HMM can be used as a general post-process model for any experimental spectrum
to theoretical spectrum matching scheme. Once trained the HMM can be used to
reassess spectra comparison results.

Some methods combining both de novo sequencing techniques and database
search based peptide identification strategy have been proposed. Mann [26] uses a
sequence tag of three or so amino-acids derived directly from the tandem mass spec-
trum to search a protein sequence database. This approach was not widely adopted
due to the lack of an automated technique for sequence tag derivation. ProteinProphet
[36] is a tool that combines information from multiple search algorithms in order to
better identify proteins.
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4. Comparing Mass Spectra Search Engines

4.1 Previous Comparisons

As more biologists begin using mass spectrometry as a high-throughput method
for identifying proteins and peptides, the accuracy of different mass spectrometry
search engines has become a topic of high interest. However, there has been only a
small number of researchers at work comparing different MS search algorithms.

Elias et al. [37] analyzed two different set of mass spectra data with Mascot and
SEQUEST, and suggested Mascot and SEQUEST results greatly overlapped for LTQ
spectrum. They also analyzed the difference caused by spectrum machine (LTQ or
QToF) and suggest that the two methods are complementary to each other at spec-
trum level, but basically same at peptide/protein level. Chamrad et al. [38] compared
Mascot, MS-Fit, ProFound and SEQUEST for their sensitivity and selectivity as a
function of search parameters. Kapp et al. [39] performed a comprehensive compar-
ison of SEQUEST and Mascot and found that Sequest had better performance in
terms of sensitivity, while Mascot did better in terms of specificity.

We found that comparisons performed by different groups of researchers differed
greatly in terms of goals and search parameters, making their conclusions hard to
compare and reconcile. As a result we decided to perform our own comparison of
three popular MS search engines. We present our results in this section.

4.2 Evaluation Environment

For our comparison we selected three widely used MS search engines: OMSSA
1.0.3, X!Tandem 05-06-01, and Mascot 2.1.0. We generated two sets of mass spectra
using two standard protein mix samples provided by Calibrant Biosystems and Chil-
dren’s National Medical Center. The first set of data includes 5494 spectra and are
generated from 8 proteins, 20 fmol each. The second set includes 18,675 spectra and
are generated from 6 proteins, 0.5 pmol each. The samples are processed by Ther-
mofinigan LTQ ion trap. All tandem mass spectra are searched against Swissprot
database release 48.6 with the same search criteria.

4.3 Evaluation Results

We first present results from the 8 protein mix data set. The peptide assignment re-
sults are selected based on e-values. Here we chose the most frequently used e-value
cutoff of 0.05. In other words, a peptide p is assigned to a mass spectrum only if the
peptide identification algorithm selects p as the most likely peptide, and estimates
its e-value as 0.05 or better (i.e., 1 in 20 chance a false peptide would score as well).
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FIG. 12. Summary of number of peptide assignments made by each MS search algorithm (by type).

Using this cutoff value, all three MS search algorithms were able to find peptide
assignments for around 5% of mass spectra examined.

Figure 12 compares peptide identification accuracy based on a classification of
peptide assignments as total true positives (peptide assigned belongs to actual protein
in sample), distinct true positives, false positives (peptide assigned does not belong
to actual protein in sample), total peptide hits and distinct peptide hits. Results show
three algorithms have similar number of peptide assignments for each category. Us-
ing a e-value cutoff of 0.05 yields about 14–26 false peptide assignments out of
232–274 total assignments, around 5–10%, a slightly lower accuracy rate than ex-
pected. Even though X!Tandem has more true positive peptide assignments, it also
has more false positive peptide assignments. Mascot has the smallest number of total
peptide hits, but its distinct true positive peptide number is similar to X!Tandem’s.
The number of OMSSA assignments is between the results for X!Tandem and Mas-
cot.

To determine which search algorithm is more precise, in Fig. 13 we constructed
a Venn Diagram based on distinct true positive peptides, which is important for
discovering what proteins the different MS search engine algorithms can actually
identify. The Venn Diagram shows the distinct true positive peptide assignments
overlap among three algorithms. The Venn diagram shows the assigned distinct true
positive peptides have great overlap among three algorithms. 83 out of 121 distinct
true positive peptides are detected by all three algorithms. The percentage of true
positive peptides detected only by individual algorithm are 4% (5) for OMSSA, 2%
(2) for both X!Tandem and Mascot. These peptides only count as 8% of the total
number of true positive peptides. These results imply that all three peptide identifi-
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FIG. 13. Venn diagram showing % agreement between different MS search algorithms for true posi-
tive (correct) peptide assignments.

FIG. 14. Protein coverage (percent of protein sequence matched to peptide) for different MS search
algorithms.

cation algorithms are roughly comparable in terms of accuracy, no single algorithm
is obviously more precise than the other two algorithms.

Protein coverage describes the percentage of a protein’s amino acid sequence that
is identified by peptides identified from mass spectra. It is another important crite-
ria to measure the performance of mass spectra search algorithms. The more true
positive proteins it can find and the greater the protein coverage ratio it can achieve,
the more precise the algorithm is. Figure 14 shows the protein coverage ratio for 8
standard protein mix by three search algorithms. Again, the protein coverage rates
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for three algorithms are very close, though OMSSA shows minor improvements over
Mascot and X!Tandem.

To further explore the difference between three algorithms, we performed pairwise
comparisons of peptide assignments for each spectrum based on the 8 standard pro-
tein mix spectra data set, as shown in Fig. 15. For each graph, peptide assignments
are plotted according to their scores for the MS search engine represented by each
axis, with higher scores indicating greater confidence in the peptide assignment.

High quality mass spectra will tend to be clustered near the top right corner of each
graph (high scores from both search algorithms), while low quality mass spectra will
tend to be clustered near the bottom left corner of each graph (low scores from both
algorithms). When two search engines tend to agree in their peptide predictions,
peptides predictions will line up along the diagonal. Predictions for mass spectra far
along either axis will be the most interesting, indicating one MS search algorithm
was able to identify a peptide with high confidence, while the other algorithm was
not able to make any peptide assignment with confidence.

In Fig. 15, the “square” dots stand for spectrum for which both algorithm assigned
true positive peptide, the “star” dots stand for spectrum for which both algorithm
assigned false positive peptide, the “triangle” dots stand for spectrum for which the
first algorithm assigned true positive peptide and the second algorithm assigned false
positive peptide, and the “cross” dots stand for spectra for which the first algorithm
assigned false positive peptide and the second algorithm assigned true positive pep-
tide.

In OMSSA–Tandem comparison graph, the four kinds of dots are basically distrib-
uted along the diagonal, which means both OMSSA and X!Tandem have similar pep-
tide assignments for the spectra. However, in Tandem–Mascot and Mascot–OMSSA
comparison graphs, there are peptide assignments off the diagonal. Results thus in-
dicate Mascot missed some true positive peptide assignments compared to OMSSA
and X!Tandem.

Since the three database search algorithms use very different heuristics for pre-
processing mass spectra, input parameters can have a great influence on peptide
identification results. We found Mascot was not examining some peptides, so we
changed the precursor ion mass tolerance for Mascot from 2 Daltons to 5 Daltons in
order to include the possible missed peptides. The new results are shown in Fig. 16.
We see that Mascot results are now more similar to both X!Tandem and OMSSA,
with fewer peptide assignments falling along the X!Tandem and OMSSA axes. Mas-
cot therefore appears to be more sensitive with respect to the mass tolerance selected
for precursor ions, causing it to lose some high-scoring peptide candidates with
smaller mass tolerances.

Examining the graphs in Fig. 16, we see in the Tandem–Mascot graph there are
still several triangle dots (true positive for X!Tandem and false positive for Mascot)
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FIG. 15. Spectra peptide assignment comparison (precursor ion mass tolerance = 2 Daltons).
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FIG. 16. Spectra peptide assignment comparison (Mascot precursor ion mass tolerance = 5 Daltons,
X!Tandem & OMSSA = 2 Daltons).
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off the diagonal near the Tandem axis. We manually examined ten of these mass
spectra and peptide assignments in an attempt to discover the reason for the discrep-
ancy. For these ten spectra, all X!Tandem scores (−10 log(e-value)) are greater than
15 and all Mascot scores (−10 log(e-value)) are less than 0. These spectra are the
dots in the most outer range of the dots banded along the diagonal.

Among the peptide assignments for these ten spectra, we found three Mascot
peptide assignments have only a 1–2 amino acid difference from X!Tandem pep-
tide assignments; two Mascot assignments are equally bad as X!Tandem assign-
ments; one Mascot assignment is better than the X!Tandem assignments, and four
Mascot assignments are worse than X!Tandem assignments. Despite much higher
X!Tandem confidence scores compared to Mascot for these ten mass spectra, we
found X!Tandem was only slightly more accurate than Mascot in making the cor-
rect peptide assignment. As a result, it appears the peptide assignments are generally
similar for X!Tandem and Mascot.

To further confirm our observations, we collected and analyzed the same set of re-
sults for mass spectra generated from a separate 6 standard protein mix. This second
set of mass spectra data included more noise, and we found false positive peptide
assignment rates to be higher for all three algorithms. However, the general results
of the comparison were similar.

4.4 Summary of Observations

Considering the result of our experimental comparison of three popular MS search
algorithms, we found them to be of mostly similar quality (though Mascot appears to
require larger tolerances for precursor ions to avoid missing some legitimate candi-
date peptides). Using an e-value cutoff of 0.05, each MS search algorithm was able
to correctly assign mass spectra to a peptide present in the protein mix sample be-
tween 90–95% of the time. What we find to be of interest is that even though all three
MS search algorithms are of similar accuracy, they only fully agreed on the correct
peptide assignments in around 69% of the cases examined. For 24% of mass spectra
only 2 of 3 MS search algorithms made the correct assignment. In 8% of the time,
only a single MS search algorithm assigned the mass spectra to the correct peptide.

These results indicate that even though all three MS search algorithms are identify-
ing peptides from mass spectra with similar precision, the algorithms are obviously
using different heuristics and scoring functions that can yield different results for
the same mass spectrum. Looking at pairwise comparisons of mapping scores, we
believe what we are observing is that all three MS search algorithms can generally
correctly identify peptides for mass spectra of high quality. For lower quality mass
spectra missing b or y ions and containing more noise (non-ion peaks), accurate pep-
tide identification is more difficult because no single peptide stands out as the best
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match. Slight differences between MS search algorithms can then lead to incorrect
peptides being selected. More research is needed to improve MS search algorithms
to avoid such errors and improve the precision of peptide identification via tandem
mass spectrometry.

5. Conclusions

High-throughput peptide identification through tandem mass spectrometry has the
potential to expand the field of protein identification in the same way fast automated
DNA sequencing has transformed molecular biology. In this chapter, we discussed
the equipment and algorithms used in protein identification, as well as experimen-
tally comparing the precision of three popular MS search engines. Our study results
demonstrate that despite the different searching scheme, probability model, and vary-
ing quality of mass spectra, the three algorithms give fairly similar results for peptide
identification. Nonetheless, improvements in mass search engines would improve
the precision of peptide identification, allowing biologists to fully take advantage of
high-throughput protein identification using tandem mass spectrometry.
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first, 219
last, 219

Edges
cost of, 129
inside interval, 109
short subtree of, 137
see also Black edges; Grey edges

Edit distance, 12, 64–71, 129
see also Block-interchange distance;

Double-cut-and-join distance;
Rearrangement distance; Reversal
distance; Transposition distance
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Electrospray ionization, 256–8
EMBL, 9
End genes, 107
Ending genes, 109
Endpoint tree, 43
Ensembles, 191
Enzymatic digestion, 258
Enzyme Commission (EC) database, 187
Enzymes, catalytic sites, 186
Escherichia coli, S. typhimurium vs, 106
ESP family, 234, 237–40
ESTs, 254
Eukaryotic cell, 6
Evolutionary trees see Phylogenetic trees
Exemplars, 73
Exons, 5
Expressed Sequence Tags (ESTs), 254
Extension operation, 223

gSpan, 226–7
see also FFSM-Extension

F

FAD/NAD binding proteins, 238, 241
Farris Interval, 131
Fast Frequent Subgraph Mining (FFSM), 210,

214–15, 217–42
application to structure motif identification,

235–41
case study results, 237–41
description, 235–7

CAM tree exploration, 223–9
definitions, 217–19
mining frequent subgraphs, 229–30
organizing graph space by tree, 220–3
performance comparison with FSG, 234–5
performance comparison with gSpan, 230–4

chemical compound data sets, 231–2
mining protein contact graphs, 234
synthetic datasets, 232–4

fastDNAml, 149, 156
inner likelihood vectors, 159
Newton–Raphson method, 152, 162
parallel, 156, 169
SEV method, 152

FFSM see Fast Frequent Subgraph Mining
FFSM-Extension, 225–7

FFSM-Join, 224–5
Fissions, 35, 38
Fitch parsimony, 130
Flipping, 38
Fortresses, 23, 68
Forward algorithm, 245
Frequent cyclic graph identification, 217
Frequent item set problem, 217
Frequent subgraph extension, 214
Frequent subgraph mining, 204–5, 210–17

algorithms, 210
components, 211
overview of existing, 210–11

edge based, 211–15
path-based, 215–17
problem, 210
tree-based, 217
see also Fast Frequent Subgraph Mining

Frequent tree identification, 217
FSG algorithm, 211–13, 223

performance comparison with FFSM, 234–5
Full-decomposition optimality conjecture,

87–8
Function composition, 32
Functional elements, discovery, 95
Functional sites, 181

identification, 181
Fusions, 35, 38

G

G+C content-based detection, 82
Galls, 86
GAML, 148, 157
� model, 153–4

CAT model vs, 154
GARLI, 157

leaf-likelihood vectors, 159
parallelization with OpenMP, 165

GASTON algorithm, 217
Gel electrophoresis, 255, 259
Gen-Bank, 9
Gene clusters, 91–4

future directions, 95
genome wide analysis, 92
positional, in eukaryotic genomes, 92
statistical tests, 92–4
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Gene duplications, 75–81
detection, 76
future directions, 94

Gene fusion, 191
Gene losses, number, 77
Gene regulation, 60
Gene transfer, horizontal see Horizontal gene

transfer
Gene trees, 75–6
General Time Reversible (GTR) model see

GTR model
Generalized parsimony, 130
Genes, 5, 254
Genetic Algorithm for Rapid Likelihood

Inference see GARLI
Genetic code, 4
Genetic distance see Rearrangement distance
Genome rearrangements, 11–46, 61–74, 106

computational approach, 13–14
conclusions, 45–6
experimental results, 40–5
future directions, 94
with gene families, 73–4
with multiple genomes, 71–3
overview, 11–16
with partially ordered genomes, 74
similarity measures, 63–4
see also Edit distance; Sorting

Genomes, 2
identical, 107
signed, 106
unsigned, 106

Genomic data banks, 9
Genomic distance, 14
Genomic sequence alignment methods, 95
Genomics Era, 60
Geometric hashing, 201–2, 204

pattern definition, 202
Geometric matches, 199
Global upper bound, 133
GPGPU, 166
GPUs, 158, 166–7
Graph automorphism, 217–18
Graph databases, 206, 229

mining, 236
synthetic, 232

Graph id, 206
Graph loops, 206

Graph matching
in pattern matching, 196–7
in sequence-independent pattern discovery,

202–3, 204–5
Graph normalization, 218
Graph normalization function, definition, 218
Graph space, 210

organizing by tree, 220–3
Graphics Processing Units (GPUs), 158,

166–7
Graphs, labeled see Labeled graphs
GRAPPA, 73, 131, 134–5
Gray edges see Grey edges
Greedy algorithm, 133
Grey edges, 16, 65–6, 108, 118

inside chromosome, 120
proper, 113

valid, 113
spanning chromosomes, 120

GRIMM program, 71, 73
GRIMM website, 24
gSpan algorithm, 213–14, 226–7

performance comparison with FFSM, 230–4
GTR + CAT, 152, 161, 165

GTR + � vs, 154–5
GTR + �, 161, 162

GTR + CAT vs, 154–5
GTR model, 149–50, 162
‘Guilt by association’ principle, 92

H

Hamming distance, 89–90
Hannenhalli–Pevzner theory, 65

main result, 68
Heaps, 133
HGT see Horizontal gene transfer
HGT Inference Problem, definition, 84
Hidden Markov Models (HMMs), 244–5, 265
Hidden Markov Random Field, 245
Hill-climbing algorithms, 155–6
Hits, 198
HIV protease, 191
HKY85 model, 142, 150, 162
HMMs, 244–5, 265
Horizontal gene transfer (HGT), 43, 81, 83

detection, 82–4
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HGT Inference Problem, 84
model of, 83

Horizontal relation, 82
Horizontal transfers see Horizontal gene

transfer
HSSP database, 199
Human Genome Project, 11, 254
Hurdles, 22, 66–8

simple, 66–8
superhurdles, 68

Hybrid model, 88–91
combinatorial aspect of phylogenetic

networks, 91
distance-based reconstruction methods, 91
network reconstruction from gene trees, 88–9
network reconstruction from sequences,

89–90
Hyper-geometric distribution, 237
Hyperscores, 265–6, 267

I

Identity permutation, 14
Incompatibility graph, 87
Inductive Logic Programming, 210
Inputs, in algorithms, 6
InsPecT, 267
IntAct database, 179–80
Intractable problems, 7–8
Introns, 5
Inverse Ackerman’s function, 23, 68
Inversion see Reversal
Ions, 256

precursor, 261–2
types, 260

IQPNNI, 148, 156
arithmetic precision, 163
BFGS method, 162
likelihood vectors, 159
Newton–Raphson method, 162
parallelization, 157, 165, 169

Isolation, even, 110
Isoleucine, 256

J

JC69 model, 150
JESS method, 182

Join operation, 212, 223
see also FFSM-Join

K

k-duplication, 79

L

Labeled graphs, 205–7
acyclic, 207
connected, 207
depth-first code of, 214
joinable, 212, 223
protein representation as, 183, 207–8, 235
representation by paths, 216
size, 205

Labeled multigraphs, definition, 206
Labeled pseudographs, definition, 206
Labeled simple graphs, 205–6

definition, 205
directed, 206
undirected, 206

Large parsimony problem, 72
definition, 90–1

Lateral gene transfer see Horizontal gene
transfer

Lazy Subtree Rearrangements (LSRs), 156,
167–8

LCA mapping, 76
Leaf-likelihood vectors, 159
Leaves, 10, 84, 88
Leucine, 256
Level-wise search, 211–13
Ligands, binding sites, 186
Likelihood vectors, 150

with per-site rates, 152
Linear Programming, 20
Liquid chromatography (LC), 255, 259, 260,

262
Local operations, 11–12
Locally Collinear Blocks (LCBs), 32
Los Lobos, 135
LSRs see Lazy Subtree Rearrangements
LTQ spectrum machine, 268
Lysine, 258
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M

Main chain atoms, 189
MALDI, 258
Mammalian genomes, phylogenetic

relationships between, 72, 73
Mandelate racemase, 187
Mann, 267
Markov Chain Monte Carlo (MCMC) method,

37
Markov Random Field, 245
Mascot, 266–7

compared with OMSSA and X!Tandem,
268–74

protein coverage, 270–1
sensitivity to mass tolerance, 271

Mass spectra (MS) search engines, 265–7
comparing, 268–75

evaluation environment, 268
evaluation results, 268–74
previous comparisons, 268
summary of observations, 274–5

problems with low quality mass spectra,
274–5

Mass spectrometry (MS), 255, 256–8
see also Tandem mass spectrometry

Mass spectrum, 256, 257
Mass-to-charge ratio, 256
Match graph, 123
Matching conditions, 194

see also Scoring functions
Matrix-assisted laser desorption/ionization

(MALDI), 258
Matrix Representation using Parsimony

(MRP) method, 135
Max-gap clusters, 93
Maximum alternate-color cycle decomposition

(Max-Acd) problem, 119–20
Maximum independent set problem, 20
Maximum Likelihood (ML)

branch length optimization, 152
introduction, 149–55
search procedures for solving, 135
see also Parallelism; Phylogeny

reconstruction, ML-based;
Rec-I-DCM3

Maximum parsimony (MP), 129, 130, 169
brute force approach, 130

search procedures for solving, 135
see also Branch and Bound (B&B)

algorithms; Rec-I-DCM3
Maximum Parsimony on Binary Encodings

(MPBE), 135
Median networks, 91
Median problem, 45, 72
Metabolic pathway assembly, 243
MetaPIGA, 148
MGR method, 73
minSPs, 109
ML see Maximum Likelihood
Model-test, 150
Molecular biology, primer, 2–6
Molecular dynamics, 243
MP see Maximum parsimony
MPBE, 135
MrBayes, 162

arithmetic precision, 163
MS-Fit, 268
mtDNA, signed permutations, 62
Muconate lactonizing enzyme, 187
Multi-Core Processors, 158
Multigene families, 75
Multiple Genome Rearrangement problem,

71–2
definition, 71

Mutation cost, 77
Mutations, 4
Myoglobin, 191

N

NAD binding motif, 204
NADPH binding proteins, 241
NCBI website, 9
Near-optimal solutions, 8
Nearest Neighbor Interchange (NNI), 155
Neighbor-joining (NJ) method, 10, 43, 91,

130–1, 169
Neighbor-Net, 91
Neighbor strings, 200–1
Neighborhood model, 93
Neighbors, 108
Netting method, 91
Network edges, 88
Newton–Raphson method, 152, 162
NH–CH bonds, 260
NJplot program, 43
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NMR spectroscopy, in protein structure
determination, 191, 242, 255

Node entries, 218
Nodes, 10

internal, 10
rightmost, 214
terminal see Leaves

NONA, 134
Non-deterministic machine, 7
Non-local operations, 12
NovoHMM, 265
NP class, 7
NP-complete problems, 7–8
NP-hard problems, 7
Nuclear receptor ligand-binding domain, 238,

240–1
Nucleotide substitution, 149

models, 149–50

O

Occurrence, of graph, 208
OMSSA, 267

compared with X!Tandem and Mascot,
268–74

protein coverage, 270–1
OpenMP, 165
Optimization problems, 7
Ordered phylogenies, 80
Orthologous gene assignment, 73
Outputs, in algorithms, 6
Overlap graph, 24, 66

P

P -values, 237
Pancake flipping problem, 14–15
Papain-like cysteine protease (PCP), 238,

240–1
Parallel-machine-scheduling problem, 8
Parallel phylogeny programs, 156–7
Parallelism, 164–9

coarse-grained, 167–9
job-level, 164–5
shared-memory (fine-grained), 165–7

ParIS web server, 37
Parsimonious Reticulate Network from Gene

Trees Problem, 88–9

Parsimony criteria, classification, 130
Parsimony problem, 90–1

definition, 90
see also Large parsimony problem; Small

parsimony problem
Parsimony score, 90
Path-based Graph Mining (PGM), 215–17
Path covers, 215

minimal, 215
Path number, 215–16
Paths

graph representation by, 216
rightmost, 214, 227
simple, 207

Pattern discovery, 194, 198–217
approximate matching, 244
sequence-dependent, 198–201
sequence-independent, 201–5

geometric hashing methods, 201–2, 204
graph-based methods, 202–3, 204–5
multiway, 204–5
pairwise, 201–4

using graph mining, 205–17
protein structure representation, 207–8
see also Fast Frequent Subgraph Mining;

Frequent subgraph mining; Labeled
graphs; Subgraph isomorphism

Pattern matching, 194, 195–8
complete, 195–8
efficient index structures to speed up, 244
occurrence, 195
probabilistic, 195

PAUP*, 134, 135, 156
PDB, 9, 239

Culled PDB list, 237
PepHMM, 267
Peptide bonds, 189
Peptide identification

algorithms, 262–7
de novo sequencing, 263–5, 267
sequence database search, 265–7
see also Mass spectra (MS) search

engines
mass spectra production, 258–62

Peptide mass fingerprinting, 258
PeptideProphet, 266
Peptides, 256

composition, 256, 257
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ionization, 256–8
production, 258
tryptic, 267

Perfect phylogenies, 85–6
Permutation composition, 32
Permutation group, 32
Permutation matrices, 209
Permutations

signed, 21–4, 62, 70
unsigned, 17–21, 62, 70

PGM, 215–17
PHYLIP, 43, 134, 142
Phylogenetic Network Compatibility Problem,

89
Phylogenetic networks, 81–91

combinatorial aspect, 91
future directions, 94–5
galled, 86–7
see also Horizontal gene transfer; Hybrid

model; Recombination model
Phylogenetic trees, 10, 75, 129

reconstruction see Phylogeny reconstruction
Phylogenies

ordered, 80
perfect, 85–6

Phylogeny-based detection model, 82–4
Phylogeny reconstruction

background, 128–31
biological significance, 128–30
boosting using Rec-I-DCM3 see

Rec-I-DCM3
criteria-based approaches, 129
direct methods, 129
ML-based, 148–70

introduction to ML, 149–55
loop optimization, 162–3
memory organization and efficiency,

158–62
model implementation, 162–3
parallelization techniques, 164–9
state-of-the-art programs, 155–8

parallel framework, 133–4
parallelization impact, 134–5
software packages, 134
strategy, 131–3

PHYML, 148
arithmetic precision, 163
Brent’s rule, 152, 162

likelihood vectors, 159–60
new search technique, 155–6, 157
parallelization with OpenMP, 165

PINTS, 203–4
extension to multiple structures, 204
graph matching, 203
pattern definition, 203
pattern discovery, 203

Point lists, 183
Point sets, 183, 197, 234
Polyploidization, 75
Porphyrin binding proteins, 187
Post-translational modifications, 264, 266, 267
PPIase, 244
PQ-tree, 24
Prefix reversal diameter, 14
Prefix transpositions, 30
Priority queue (PQ), 133
Prize Problems, 7
ProFound, 268
Prokaryotic cell, 6
Proline, 258
Protected nonhurdles, 66
Protein(s), 4, 178, 256

as chains of amino acids, 188
composition, 256, 257
enzymatic digestion of, 258
folding nuclei, 186
human, 255
ionization, 256–8
as sets of elements, 182

Protein contact maps, 207–8, 234
Protein coverage, 270–1
Protein Data Bank (PDB), 179
Protein distance matrices, 207
Protein dynamics, 242–3
Protein elements

attribute, 182–3
choice, 184

Protein evolution
convergent, 187
divergent, 187

Protein folding, research, 179
Protein function, 192–4

cellular, 193
molecular, 193–4
phenotypic, 193
prediction, 181–2
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Protein geometry, 182–3
Protein global structure comparison, 178

tasks, 184
see also Protein structure comparison

Protein local structure comparison, 178
algorithm taxonomy, 194–205

see also Pattern discovery; Pattern
matching

experimental evidence support for, 186–7
future applications, 242–4
new computational techniques, 244–5
tasks, 184
see also Fast Frequent Subgraph Mining;

Frequent subgraph mining; Protein
structure comparison

Protein–protein interaction prediction, 243
Protein structure, 188–92

hierarchical grouping, 180, 191–2
nature of, 182–3
primary, 189
quaternary, 191
representations, 183

atom-level, 182, 204
element-based methods, 183
as graphs, 183, 207–8, 235

secondary, 190
tertiary (3D), 190–1

experimental techniques to determine, 191
understanding dynamics of, 242–3
see also Domains; Structure motifs;

Structure patterns
Protein structure classification, 180–1,

191–2
Protein structure comparison

applications, 180–2
challenges, 182–6
focus in, 186–7
motivation, 179–82
multi-way, 185
pair-wise, 185
results presentation, 186
search procedures, 186, 194
sequence-independent, 185
sequence-order dependent, 185
similarity definition, 184–5
statistical, 244–5
tasks, 183–6

see also Protein global structure comparison;
Protein local structure comparison

Protein Structure Initiative (PSI), 179
Protein structure space, 191
Protein subcellular localization prediction,

243–4
Protein topology, 182–3
ProteinProphet, 267
Proteobacteria, 43
γ -Proteobacteria, 43–5
Proteomics, 255
Pseudo atoms, 196
PSI-Blast alignment, 182
PTE data set, 231
Pyramid Clustering, 91

Q

QToF spectrum machine, 268

R

Randomized algorithms, 23
Rate categories, 153
Rate heterogeneity, 152–4

CAT model of see CAT model
RAxML, 135, 137, 148

arithmetic precision, 163, 166
CAT model implementation, 153
distributed, 157
GPGPU implementation, 163
inner likelihood vectors, 159–61
leaf-likelihood vectors, 159
Newton–Raphson method, 162
parallelization, 157, 164–5, 166, 167–9
parameters, 142
RAxML-VI-HPC, 159, 165
Rec-I-DCM3 improvements see

Rec-I-DCM3
simulated annealing search algorithm, 156
speedups of RAxML-VI over RAxML-V,

170
Rearrangement distance, 12, 70
Rearrangement events, 12
Rearrangement phylogenies, 73
“Reasonable time”, 6
Rec-I-DCM3, 137, 139–41

parallel, 157
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performance for solving ML, 141–8
conclusions, 144
experimental design, 142–3
parameters, 142
real datasets, 141–2
results, 143–4, 145–8

performance for solving MP, 137, 141
Recombination, 43, 81

meiotic, 81
see also Horizontal gene transfer

Recombination cycles, 86
Recombination edges, 84
Recombination model, 84–8

full-decomposition optimality conjecture,
87–8

galled phylogenetic networks, 86–7
perfect phylogeny, 85–6

Recombination nodes, 84
Reconciled trees, 77–8

definition, 77
Recursive-Iterative-DCM3 see Rec-I-DCM3
Reference atoms, 197
Reference frame, 197
Residues see Amino acid residues
Reticulation cycles, 88
Reticulation nodes, 88
Retrotransposition, 75
Reversal distance, 14, 64–8

definition, 65
Reversals (inversions), 12, 13

definition, 65
legal, 21
oriented, 23
proper, 22
see also Sorting, by reversals

RMSD, 185, 200, 203, 245
RNA, 254
ROBIN tool, 28, 32, 70
Root-mean-squared-deviation (RMSD), 185,

200, 203, 245
Roots, 84, 88

virtual, 150

S

Salmonella typhimurium, E. coli vs, 106
Sankoff parsimony, 130

SCOP database, 180, 181, 187, 192
classes, 192
FAD/NAD-linked reductase, 238, 241
families, 236, 237
nuclear receptor ligand-binding domain, 238,

240–1
papain-like cysteine protease (PCP), 238,

240–1
serine proteases, 234, 237–40

SCOPE, 267
Scoring functions, 185, 194, 265, 266
Search procedures, in protein structure

comparison, 186, 194
Secondary structure elements see SSEs
Segments, 109

inside segment, 109
Sequence database search algorithms, 265–7

tools implementing see Mass spectra (MS)
search engines

Sequence matches, 199
Sequence separation, 199
SEQUEST, 266

compared with other search engines, 268
Ser-His-Asp triad, 198
Serine proteases, 187

active center, 204
eukaryotic (ESPs), 234, 237–40
prokaryotic, 239

Set packing problem, 20
SEV method, 152
sfl, 44
sfx, 44
SGFLEEDELK peptide, 260–2, 264
Shared-memory processors (SMPs), 133–4,

158, 165
Short subtree graph, 137–8
Short subtrees, of edges, 137
Side chain atoms, 189
Signed translocation problem, 107, 108–18

breakpoint graph, 108–9
distance formula, 110
O(n2) algorithm, 112–18

finding new minSP, 113
finding valid proper grey edge in new

minSP, 116–18
partition of new minSP, 114–16
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polynomial time algorithms framework,
110–12

ideas for old algorithms, 112
Simple paths, 207
Simulated annealing approaches (SSA), 156
Singletons, 18
Site-directed mutagenesis, 181
Sites

compatible, 85–6
conflicting, 85–6
incompatible, 85

Size, of graph, 205
Small parsimony problem, 72, 73, 90, 91

definition, 90
son, 44
Sorting

by block-interchanges, 27–8, 30–2
by multiple operations, 35–40

reversals and translocations, 38–9
reversals and transpositions/

block-interchanges, 35–8
with unequal weights, 39–40

by prefix reversal, 14
by reversals, 14, 16–27

circular permutations, 24–6
signed permutations, 21–4
unsigned permutations, 17–21

by translocations, 32–5
by transpositions, 27–30
perfect, 45

Sorting problems, 14
Species

definition, 81
representation, 129

Species graph, 83
Species Tree Problem, definition, 78
Species trees, 75–6
Split decomposition, 91
Split graph, 91
SplitsTree, 91
SPratt, 200–1

pattern definition, 200
pattern discovery, 200–1
pattern matching, 200

SPRING website, 28
SSA, 156
SSEs, as structure elements, 184–5
Statistical analysis, comparison based on,

244–5

Statistical parsimony, 91
Strands, 2
Strict Consensus Merger supertree method

(SCM), 135, 136
Strips, 18
Structure-based functional annotation, 181–2
Structure Classification of Proteins see SCOP

database
Structure motifs, 194

identification, 235–7
case studies, 237–41

statistical significance, 236–7
Structure patterns, 184, 196

instances of, 194
sequence-dependent, 198
see also Pattern discovery; Pattern matching

Structure templates, 194
SUBDUE, 210
Subgraph isomorphism, 208–9

definition, 208
induced, 208

Subgraph matching algorithms, 186
Subgraphs, 208

induced, 208
proper, 208

Sub-permutations, 64, 109
ending genes, 109
minimal (minSPs), 109
nested, 113

Subtree Equality Vector (SEV) method, 152
Subtree Pruning Re-grafting (SPR), 155
Supergraphs, 208

proper, 208
Superhurdles, 68
Support, of simple graph, 210
Swissprot database, 268
Symmetric group, 14

T

Tandem duplication, 75, 79–81
combinatorics, 80
reconstruction algorithms, 80–1

Tandem duplication trees, 79
Tandem mass spectrometry (MS/MS), 255,

258–60
with liquid chromatography (LC-MS/MS),

255, 260–2
peptide identification via, 258–62
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see also peptide identification
Taxa, 129
TESS, 197–8

pattern definition, 197
pattern matching, 198
preprocessing, 197–8

TIM barrels, 187
TNT, 134, 135, 141
Tractable problems, 7
Translocation distance, 70

relationship between unsigned and signed,
119

signed genomes, 107
see also Signed translocation problem

unsigned genomes, 107
see also Unsigned translocation problem

Translocations, 12, 106
bad, 110
correct, 111
counter, 119
improper, 110, 113
prefix–prefix, 34, 106
prefix–suffix, 34, 106
proper, 110, 113

valid, 110
reciprocal, 35
signed, 106–7
unsigned, 107
see also Sorting, by translocations

Transposition diameter, 30
Transposition distance, 68–9
Transpositions, 12, 13, 27

both inverted, 37
definition, 68
inverted, 36
prefix, 30
see also Sorting, by transpositions

Traveling Salesman Problem (TSP) see TSP
Tree edges, 84, 88
Tree length, 129
Tree of Life, 75

reconstruction, 135
Tree nodes, 84, 88
Treefinder, 148
TREE-PUZZLE, 156, 157
Trees, in graph mining, 207
TrExML, 157
TRILOGY, 198–200

pattern definition, 199
pattern growth, 200
pattern matching, 199
triplet discovery, 199–200

Trypsin, 255, 258
Tryptic peptides, 267
TSP, 6–7, 72

with triangle inequality, 8
Turnip, 12, 106
Turns, 190

U

Ullman’s algorithm, 197, 203, 209
Unsigned translocation problem, 107, 118–24

1.75 approximation algorithm, 122–4
breakpoint graph, 118–19
inapproximability, 121–2
NP-hardness, 119–21

UPGMA method, 91

V

Vertices
ignorable, 116
nodal, 118
used, 119–20

Virtual roots, 150
Viterbi algorithm, 245

W

Wagner parsimony, 130
Well-formulated problem, 6

X

x ions, 260
X-ray crystallography, 191, 255
X!Tandem, 267

compared with OMSSA and Mascot, 268–74
hyperscores, 265–6, 267
protein coverage, 270–1

Y

y ions, 260–2, 263–4, 266, 267, 274
Yeast, binary interactions, 179–80

Z

z ions, 260
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