


Code Design for
Dependable Systems

Theory and Practical Applications

Eiji Fujiwara
Tokyo Institute of Technology

A JOHN WILEY & SONS, INC., PUBLICATION



Code Design for Dependable Systems





Code Design for
Dependable Systems

Theory and Practical Applications

Eiji Fujiwara
Tokyo Institute of Technology

A JOHN WILEY & SONS, INC., PUBLICATION



Copyright # 2006 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by

any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under

Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission

of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright

Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470,

or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the

Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,

fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in

preparing this book, they make no representations or warranties with respect to the accuracy or completeness

of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness

for a particular purpose. No warranty may be created or extended by sales representatives or written sales

materials. The advice and strategies contained herein may not be suitable for your situation. You should

consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss

of profit or any other commercial damages, including but not limited to special, incidental, consequential,

or other damages.

For general information on our other products and services or for technical support, please contact our

Customer Care Department within the United States at (800) 762-2974, outside the United States

at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not

be available in electronic formats. For more information about Wiley products, visit our web site at

www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN-13 978-0-471-75618-7

ISBN-10 0-471-75618-0

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com


Contents

Preface ix

1 Introduction 3

1.1 Faults and Failures / 3

1.2 Error Models / 6

1.3 Error Recovery Techniques for Dependable Systems / 10

1.4 Code Design Process for Dependable Systems / 16

References / 19

2 Mathematical Background and Matrix Codes 23

2.1 Introduction to Algebra / 23

2.2 Linear Codes / 33

2.3 Basic Matrix Codes / 48

Exercises / 71

References / 75

3 Code Design Techniques for Matrix Codes 77

3.1 Minimum-Weight & Equal-Weight-Row Codes / 78

3.2 Odd-Weight-Column Codes / 82

3.3 Even-Weight-Row Codes / 84

3.4 Odd-Weight-Row Codes / 86

3.5 Rotational Codes / 87

Exercises / 92

References / 93

v



4 Codes for High-Speed Memories I: Bit Error Control Codes 97

4.1 Modified Hamming SEC-DED Codes / 98

4.2 Modified Double-Bit Error Correcting BCH Codes / 105

4.3 On-Chip ECCs / 110

Exercises / 123

References / 126

5 Codes for High-Speed Memories II: Byte Error Control Codes 133

5.1 Single-Byte Error Correcting (SbEC) Codes / 134

5.2 Single-Byte Error Correcting and Double-Byte Error Detecting

(SbEC-DbED) Codes / 154

5.3 Single-Byte Error Correcting and Single p-Byte within a Block

Error Detecting (SbEC-Sp�b=BED) Codes / 171

Exercises / 180

References / 183

6 Codes for High-Speed Memories III: Bit / Byte Error
Control Codes 187

6.1 Single-Byte / Burst Error Detecting SEC-DED Codes / 188

6.2 Single-Byte Error Correcting and Double-Bit Error Detecting

(SbEC-DED) Codes / 217

6.3 Single-Byte Error Correcting and Double-Bit Error Correcting

(SbEC-DEC) Codes / 230

6.4 Single-Byte Error Correcting and Single-Byte Plus Single-Bit

/ 244

Exercises / 254

References / 258

7 Codes for High-Speed Memories IV: Spotty Byte Error
Control Codes 263

7.1 Spotty Byte Errors / 264

7.2 Single Spotty Byte Error Correcting (St=bEC) Codes / 264

7.3 Single Spotty Byte Error Correcting and Single-Byte Error

Detecting (St=bEC-SbED) Codes / 274

7.4 Single Spotty Byte Error Correcting and Double Spotty Byte

Error Detecting (St=bEC-Dt=bED) Codes / 284

7.5 A General Class of Spotty Byte Error Control Codes / 290

Exercises / 326

References / 330

8 Parallel Decoding Burst / Byte Error Control Codes 335

8.1 Parallel Decoding Burst Error Control Codes / 336

vi CONTENTS

Error Detecting (SbEC-(Sbþ S)ED) Codes



8.2 Parallel Decoding Cyclic Burst Error Correcting Codes / 351

8.3 Transient Behavior of Parallel Encoder / Decoder Circuits

of Error Control Codes / 353

Exercises / 369

References / 370

9 Codes for Error Location: Error Locating Codes 373

9.1 Error Location of Faulty Packages and Faulty Chips / 373

9.2 Block Error Locating (Sb=p�bEL) Codes / 376

9.3 Single-Bit Error Correcting and Single-Block Error Locating

(SEC-Sb=p�bEL) Codes / 377

9.4 Single-Bit Error Correcting and Single-Byte Error Locating

(SEC-Se=bEL) Codes / 389

9.5 Burst Error Locating Codes / 396

9.6 Code Conditions for Error Locating Codes / 404

Exercises / 409

References / 410

10 Codes for Unequal Error Control / Protection ( UEC / UEP ) 413

10.1 Error Models for UEC Codes and UEP Codes / 413

10.2 Fixed-Byte Error Control UEC Codes / 417

10.3 Burst Error Control UEC / UEP Codes / 427

10.4 Application of the UEC / UEP Codes / 439

Exercises / 457

References / 461

11 Codes for Mass Memories 465

11.1 Tape Memory Codes / 465

11.2 Magnetic Disk Memory Codes / 487

11.3 Optical Disk Memory Codes / 500

Exercises / 509

References / 512

12 Coding for Logic and System Design 517

12.1 Self-checking Concept / 518

12.2 Self-testing Checkers / 536

12.3 Self-checking ALU / 552

12.4 Self-checking Design for Computer Systems / 570

Exercises / 585

References / 590

13 Codes for Data Entry Systems 599

13.1 M-Ary Asymmetric Errors in Data Entry Systems / 599

CONTENTS vii



13.2 M-Ary Asymmetric Symbol Error Correcting Codes / 600

13.3 Nonsystematic M-Ary Asymmetric Error Correcting Codes with

Deletion / Insertion / Adjacent-Symbol-Transposition Error

Correction Capabilities / 623

13.4 Codes for Two-Dimentional Matrix Symbols / 632

Exercises / 644

References / 646

14 Codes for Multiple / Distributed Storage Systems 649

14.1 MDS Array Codes Tolerating Multiple-Disk Failures / 650

14.2 Codes for Distributed Storage Systems / 661

Exercises / 675

References / 677

Index 679

viii CONTENTS



Preface

Error control coding theory has been studied for over half a century, and it is still going

stronger than ever. The most recent examples are the turbo codes and the low-density

parity check codes (LDPCs). Also, during these years, error control codes have been

extensively applied to various digital systems, such as computer and communication

systems, as an essential technique to improve system reliability. As an integral part of

modern day high-speed dependable systems and semiconductor memories, high-speed

parallel decoding is essential. Error control codes suitable for high-speed parallel

decoding are regularly expressed and studied in parity-check matrices. For highly reliable

communication systems and disk memory systems, on the other hand, serial decoding

based on linear feedback shift registers (LFSRs) is used. Error control codes for serial

decoding are typically expressed and studied using generator polynomials. In this book,

the former codes are called matrix codes and the latter polynomial codes. So far,

traditional coding theory has been studied mainly using code generator polynomials. We

emphasize that the linear codes expressed in polynomials can always be expressed using

parity-check matrices, but the converse is not always possible. This book focuses

specifically on the design theory for matrix codes and their practical applications, which

has been seriously lacking in the traditional scope of coding theory investigations.

In dependable computer systems, many types of error control codes have been applied

to memory subsystems and processors in order to achieve efficient and reliable data

processing and storage. Some systems could never have been realized without the

application of cost-effective error control codes, mainly very large capacity, high-speed

semiconductor memories, very high-density magnetic disk memories, and recent optical

disk memories such as compact disc (CD) and digital versatile disc (DVD). More recently

mobile digital systems have gained wide popularity, and these systems are sometimes

operated under unfavorable environments where electromagnetic noise, a-particles and

cosmic rays abound. Modern high-speed, high-density VLSI processors and semicon-

ductor memories are operated at low supply voltage levels and thus low logic signal

swing; they therefore are vulnerable to external disturbances that can induce transient

errors. Transient errors are a dominant concern in today’s digital systems. Error control

ix



coding is the most efficient and effective way to tolerate these errors, and is expected to

become ever more important in future VLSI systems.

The challenge is to choose among many different applications of error control

codes. Often a new application calls for a new type of code that can be developed most

efficiently to fit a new requirement. Matrix codes are far more flexible compared with

polynomial codes. Parity-check matrices can be manipulated easily. Some known

examples are column vector exchange in a matrix, the odd-weight-column matrix, the

low-density matrix, and the rotational matrix form. These manipulations of matrices

have yielded many useful codes for important applications. Polynomial codes, on the

other hand, are impossible to be manipulated in a similar way for code design fine-

tuning. The main reason is that the matrix code is capable of expressing various types

of code functions and thus allows for very high design flexibility. In practice, such

flexibility has led to excellent code designs, satisfying the various reliability requirements

of the dependable systems.

This book builds on the author’s previous book, Error Control Coding for Computer

Systems (Prentice-Hall, 1989), and it likewise aims at introducing the latest developments

and advances in the field. However, as was mentioned earlier, additionally the book is

unique in its concentration on the treatment of matrix codes. Unlike any existing coding

theory books, this book will not burden the reader with unnecessary background on

polynomial algebra. The book includes only the mathematical background essential for

the understanding of matrix code construction and design. Such an arrangement frees up

space for the description of some fine artistry of matrix code design strategies and

techniques. Matrix code designs are presented with respect to practical applications, such

as high-speed semiconductor memories, mass memories of disks and tapes, logic circuits

and systems, data entry systems, and distributed storage systems. Also new classes of

matrix codes, such as error locating codes, spotty byte error control codes, and unequal

error control codes, are presented in their practical settings. The new parallel decoding

algorithm of the burst error control codes is demonstrated and further extended to the

generalized parallel decoding of the codes.

Chapter 1 provides background and a preview of material covered in the subsequent

chapters. First, it defines faults, errors, and failures and explains the many types of faults

and errors. This is the core knowledge needed to understand what constitutes a good

code. To design an efficient and effective code for a given application, it is important first

to know what types of errors matter, how much the system’s reliability can be improved

by coding techniques, and what are the constraints on check-bit length, decoding speed,

and so forth. The matrix code designing procedure is laid out in this chapter from this

standpoint. The chapter concludes with a brief introduction to the competitors of the

coding technique in dependable systems, namely conventional error recovery techniques

and / or error masking techniques.

Chapter 2 provides the fundamental mathematical background and coding theory

necessary to understand the later chapters. The chapter covers the matrix representations

of well-known error control codes, such as simple parity-check codes, cyclic codes,

Hamming codes, BCH codes, Reed-Solomon codes, and Fire codes. These codes are

manipulated in the later chapters in examples of how matrix codes satisfy the system

requirements for given applications.

Chapter 3 discusses the matrix code design techniques related to high-speed decoding,

area efficient encoding / decoding hardware, modularized organization of encoding /

decoding circuits, and so forth.

x PREFACE



Chapters 4, 5, 6, and 7 cover topics on matrix code design for high-speed

semiconductor memories. Depending on the application, the matrix code can be designed

to handle bit or byte errors and in some cases a mixture of both bit and byte errors. The

latter are typical errors found in large capacity semiconductor memory systems using

high-density RAM chips. Chapter 4 discusses bit error control codes, such as the modified

Hamming single-bit error correcting and double-bit error detecting (SEC-DED) codes, the

modified double-bit error correcting BCH codes, and the memory on-chip codes. For the

memory systems using byte-organized RAM chips, single-byte error correcting (SbEC)

codes, and single-byte error correcting and double-byte error detecting (SbEC-DbED)

codes, are presented in Chapter 5. The codes for the mixed type of bit errors and byte

errors are presented in Chapter 6. Among them, a byte error detecting SEC-DED code,

developed by the author and his colleague in the 1980s, has found practical application in

recent workstations. Chapter 7 presents a relatively new class of byte error control codes:

spotty byte error control codes. This class of codes has been specifically designed to fit

the large capacity memory systems that use high-density RAM chips with wide input /

output data of 8, 16, and 32 bits. Also a general class of these codes with minimum

Hamming distance-d and with maximum distance separable (MDS) characteristics is

presented in this chapter. The well-known Reed-Solomon codes are included in these

generalized codes, which makes them practically and theoretically important. They will be

quite useful for future applications.

Chapter 8 presents the generalized parallel decoding algorithm for error control codes.

Initially developed for burst error control codes, this new decoding algorithm includes the

conventional parallel decoding algorithm of the existing bit / byte error correcting codes.

The generalized algorithm can also be used for multiple burst or byte error correcting

codes. The chapter takes this new algorithm and demonstrates how the parallel decoding

method can be implemented in combinational circuits. In addition the chapter addresses

the important problem of glitches in parallel decoding circuits. Parallel decoding circuits

depend heavily on large exclusive-OR tree circuits, which are well known to readily

produce glitches. The glitches are the unwanted logic signal transitions that can generate,

propagate, and accumulate in the logic circuits and then induce noise and instability on the

power supply lines. The chapter explains why the glitches are generated, how they are

propagated and accumulated in the circuits, and how to reduce these undesirable effects.

Chapter 9 presents a new class of codes, namely error locating codes. Error location is

an error control function lying midway between error correction and error detection. An

error locating code will indicate where the errors lie but not the precise erroneous digit

positions. This type of codes is useful for identifying the faulty block, faulty package, or

faulty chip, and thus enables fault isolation and reconfiguration. The chapter includes

practical codes for memory systems to use in locating faulty packages / cards. It also

provides a practical code for locating faulty chips. Both codes have the capability to

correct single-bit errors, even though the codes are mainly designed for identifying the

faulty areas. In addition, burst error locating codes are introduced here. The chapter

concludes with a precise analysis of error locating codes with an emphasis on the code

conditions and their relation between error locating codes and error correcting / detecting

codes.

Chapter 10 shows yet another new class of unequal error control (UEC) codes. In many

applications certain positions in a word have higher error rates or require more protection.

The UEC codes can indicate the area in a word having a higher error rate with stronger

error control code functions, and the area having a lower error rate with weaker error

PREFACE xi



control functions. In other words, this type of code has different code functions within a

code word, depending on the area and the associated error rate. The chapter provides

optimal codes with some UEC code functions. Similar codes exist in unequal error

protection (UEP) codes. This type of code protects the valuable information part of a word

against errors. For example, control information or address information in communication

messages or computer words, or similarly pointer information in the database words, must

be more protected from errors than their other parts. The chapter provides some UEP

codes that protect against burst errors and also against single-bit errors. The chapter

includes examples of UEC and UEP codes used in holographic memories and lossless

compressed data.

Chapters 11, 12, 13, and 14 present the codes for some specific systems, namely mass

memories such as magnetic tapes and disks, logic circuits and systems, data entry

systems, and distributed storage systems. Chapter 11 covers the codes designed

specifically for mass memories such as tape memories, magnetic disk memories, and

recent optical disk memories. The various modified types of Reed-Solomon codes and

adaptive parity codes are presented to the tape memories and to the disk memories.

Codes for recent CDs and DVDs are also introduced. Chapter 12 mentions error

checking for logic systems using efficient error detecting codes. An important concept

of self-checking is first introduced. The chapter then clarifies how the errors in the logic

circuits and systems are detected, how the error detecting checker circuits are

implemented, how the errors in the checker itself are detected, and how the self-testing

checkers are implemented. Especially self-checking ALU is presented by using parity-

based codes, and also self-checking design for processor systems is demonstrated.

Chapter 13 presents the codes for data entry systems. In these systems, in general,

nonbinary symbols are routinely used in character recognition systems, and recent two-

dimensional symbols. The chapter characterizes the errors that occur in these nonbinary

symbols as asymmetric errors and presents some asymmetric error control codes. These

codes are basically nonlinear, and are designed by using elements in newly defined

rings. Also nonsystematic nonbinary asymmetric error correcting codes are designed

based on a multilevel coding method and a set-partitioning algorithm, and QR codes

and two-dimensional unidirectional clustered error correcting codes are presented for

two-dimensional matrix symbols. Chapter 14 provides the codes for distributed storage

systems connected via networks. Codes for recent RAID systems that tolerate two

disk failures are introduced, and then an efficient error recovery scheme from multiple

disk failures in the distributed storge system is discussed and is implemented by using

block design in combinatorial theory.

The introductory portion of the book, Chapters 1 and 2, and the parts of Chapters 3, 4, 5,

6, 8, 9, and 10, can be used as the text for a course at an advanced undergraduate level or

for an introductory one-semester course at the graduate level. For graduate classes and

advanced students who have the background in mathematics, logic circuits, and

rudimentary knowledge of codes, the book can be used as a whole with selected topics

from each of the chapters. Practicing engineers / designers will find useful discussions in

Chapters 6 to 14, which demonstrate, in detail, the procedure of designing sophisticated

codes in practical form. For the practicing engineer, Chapter 2 presents mathematics and

coding theory, not in strict form but in introductory form, which is necessary in

understanding the later chapters. Many examples, figures, exercises, and references are

provided in each chapter of the book. Many attractive codes with practical code

parameters and their evaluation data on decoding hardware and error detection capabilities

xii PREFACE



are fully demonstrated. These can be used by practicing engineers as a practical guide and

handy reference.

My sincere appreciation goes to many people. Professors Jack K. Wolf of the

University of California San Diego, Hideki Imai of the University of Tokyo, T. R. N. Rao

of the University of Louisiana Lafayette, and Bella Bose of Oregon State University

encouraged me to continue my research on code design theory and to write this book.

Emeritus professor Yoshihiro Tohma of Tokyo Institute of Technology, Professors Takashi

Nanya of the University of Tokyo, Hideo Ito of Chiba University, and Jien-Chung Lo of

the University of Rhode Island gave important suggestions and valuable discussions on

research for dependable systems. Recently Professor Lo also provided valuable comments

on the final book and an important discussion on glitches, (i.e., logical noise) that are

generated, propagated, and accumulated in large exclusive-OR tree circuits in the parallel

decoder of the codes. The author’s NTT colleagues, Dr. Shigeo Kaneda, now professor

at Doshisha University, and Dr. Kazumitsu Matsuzawa, now professor at Kanagawa

University, collaborated to develop practical codes for computer memories. Dr. Masato

Kitakami, now associate professor at Chiba University, Dr. Mitsuru Hamada, now

associate professor at Tamagawa University, Dr. Shuxin Jiang, Dr. Saowapa Kiattichai, Dr.

Hongyuang Chen, Dr. Kazuteru Namba, Dr. Ganesan Umanesan, Dr. Haruhiko Kaneko,

Dr. Kazuyoshi Suzuki, Mr. Tsuyoshi Tanaka, Mr. Toshihiko Kashiyama, and Mr. Hiroyuki

Ohde devoted themselves to designing the excellent codes in their master’s and / or

doctorate course programs at the Tokyo Institute of Technology. Much of the motivation

for making the codes practical was due to discussions with many researchers and engineers

in Japanese industry.

Thanks also go to art designer, Mr. Ippei Inoh, a friend of mine, who proposed and

directed the marvelous idea of the front cover design. Ms. Tiki Ishizuka, a computer

graphic designer, arranged the wonderful fine art of this cover. You can see ‘‘Hoh-Oh,’’ a

legendary happy bird, in the center of the front cover whose original pattern was introduced

from China more than one thousand years ago to Japan, and since then appeared as an art

design in Japanese art and craft products. I sincerely hope the book will bring happiness and

pleasure to the reader.

At this point in a preface, I usually thank my wife, Sachiko, and my daughter’s family,

Sayaka, Makoto, and Asuka, for encouraging me in continuing this difficult project.

EIJI FUJIWARA

ðAutumn in 2005 on the foot of Mt. FujiÞ

PREFACE xiii







CONTENTS

1.1 Faults and Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Error Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Hard Errors and Soft Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Random Errors, Clustered Errors, and Their Mixed-Type Errors . . . . . . 7

1.2.3 Symmetric Errors, Asymmetric Errors, and Unidirectional Errors . . . . . 9

1.2.4 Unequal Error Probability Model and Unequal Error Protection Model . 10

1.3 Error Recovery Techniques for Dependable Systems . . . . . . . . . . . . . . . . . . 10

1.3.1 Error Detection / Error Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Error Recovery / Error Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Code Design Process for Dependable Systems . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Code Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.2 Code Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



1
Introduction

Before designing a dependable system, we need to have enough knowledge of the system’s

faults, errors, and failures of the dependable techniques including coding techniques, and of

the design process for practical codes. This chapter provides the background on code design

for dependable systems.

1.1 FAULTS AND FAILURES

First, we need to make clear the difference between three frequently encountered technical

terms in designing dependable systems—namely faults, errors, and failures. These terms

are fully defined in [LAPR92, AVIZ04]. Faults are primarily identified as the generic

sources of abnormalities that alter the operation of circuits, devices, modules, systems, and /

or software products. Failure can arise from any type of possible faults. Faults are often

called defects when they occur in hardware and bugs when in software.

1.1.1 Faults

As causes of failure, faults are sometimes predictable but difficult to identify. Faults can occur

during any stage in a system’s or product’s life cycle: during specification, design, production,

or operation. Faults are characterized by their origin and their nature [LAPR92, GEFF02].

Origin of Faults Timing is a factor because faults can provoke failure in the operation phase

at any one of a system’s previous life phases: specification, design, production, and operation.

During the specification phase, for example, an incomplete definition of services may

lead to different interpretations by the client, the designer, and the user. Eventually, in the

Code Design for Dependable Systems: Theory and Practical Applications, by Eiji Fujiwara
Copyright # 2006 John Wiley & Sons, Inc.

3



operation phase, the failure becomes evident when the services provided differ from the

user’s expectations.

During the design and the production phases, for example, a designer’s lack of

sufficient knowledge of architectural levels, structural levels, and the like, may result in a

type of physical defect that induces, for example, short or open circuits.

During the operation phase, for example, an elevation of ambient temperature can cause

electronic devices and products to malfunction.

Nature of Faults During the specification and the design phases, faults that occur are called

human-made faults. During the production and the operation phases, these may occur physical

faults, hardware faults, or solid faults. Each type is due to some physical abnormality in the

component arising from aging or defective materials. Faults are of two types in their duration:

1. Permanent. These faults arise, for example, from a power supply breakdown,

defective open or short circuits, bridging or open lines, electro-migration, and so

forth. The defects in the input / output of the logical circuits or lines are called

stuck-at ‘1’ faults or stuck-at ‘0’ faults.

2. Temporal. These faults can be transient or intermittent. Transient faults occur

randomly and externally because of external noise, namely environmental problems

of external electromagnetic waves but also external particles such as a-particles and
neutrons. Intermittent faults occur randomly but internally because of unstable or

marginally stable hardware, varying hardware or software state as a function of load

or activity, or signal coupling (i.e., crosstalk) between adjacent signal lines. Some

intermittent faults may be due to glitches [LO05], which are unpredictable spike

noise pulses occurring and propagated especially in large exclusive-OR (XOR) tree

networks (see Chapter 8). Parallel decoding circuits of error control codes with

large code lengths require large exclusive-OR tree networks, so glitches can become

serious problems. This topic will be covered in more detail in Section 8.3.

Transient faults and Intermittent faults are the major source of errors in modern-day

digital systems. Some reports show that more than 60% of all failures in computer systems

are caused by transient or intermittent faults. For example, in DRAM (Dynamic Random

Access Memory) chips, transient errors result mainly from a-particles emitted by the decay

of radioactive particles in the semiconductor materials [MAY79, NOOR80, SAIH82]. One

identified source of a-particles is the lead solder balls used to attach the chip to the substrate.
As they pass through the chip, a-particles create sufficient electron-hole pairs to add

charge to the DRAM capacitor cells. These particles have low energy level, and thus have

very low probability of causing more than one memory cell to flip when the memory cells

are not packed in extreme density. In today’s ultra–high-density RAMs, not only DRAMs

but also SRAMs (Static Random Access Memories), it has been recognized that multiple

cosmic-ray-induced transient errors are a serious problem [OSAD03, 04].

Temporal errors have also been observed in microprocessor chips. The trend toward

smaller geometries by ever-shrinking semiconductor designs results in lower operating signal

voltages and higher speed operation, and therefore brings additional transient or intermittent

errors into play [KARN04]. In today’s ubiquitous digital device or system environment, PDAs

and personal computers equipped with these high-speed microprocessor chips and high-

density RAM chips are further prone to be damaged by even worse circumstances when

operated in airplanes at high altitude or near the high-voltage electric power lines.

4 INTRODUCTION



The important point is that the faults due to temporary environmental problems do not

need repair because the hardware is physically undamaged.

Cosmic rays, however, can give rise to significant transient errors, called soft errors

[KARN04, MAKI00, HAZU00, ZIEG98, MASS96, CALV94]. Figure 1.1 shows the

cosmic ray and its influence at the earth surface level. In the cosmic environment heavy

particles with very high energy from solar winds can penetrate the semiconductor chips in

satellite digital systems and cause more than double-bit errors [MUEL99]. Sometimes

they can cause physical faults such as latchup in CMOS circuits.

A detailed report of field testing for soft errors due to cosmic rays was presented in 1996

[ZIEG96a, 96b, 96c, OGOR96, SRIN96]. In the report cosmic rays are defined as particles

in solar wind originating in the sun or as galactic particles that enter the solar system

striking atmospheric atoms and creating a shower of secondary particles. Most such

particles produced by the shower either decay spontaneously or lose energy gradually, and

eventually lose all energy in the cascade. Some of these particles may strike the earth.

Therefore the cosmic rays at sea level consist mostly of neutrons, protons, pions, muons,

electrons, and photons. About 95% of these particles are neutrons with no charge but with

the high energy (more than 10MeV) that causes significant soft errors or latchups in

electronic circuits. So cosmic rays can create multiple errors. Altitude causes the neutron

flux to increase exponentially, and hence the fail rate of electronic circuits at airplane

altitude is about one hundred times worse than at terrestrial level. Concrete shielding with

several feet of thickness can significantly attenuate the flux of these high-energy particles.

Figure 1:2 shows how neutrons and other particles, including a-particles, generated by

the collision of nuclei in the atmosphere, can strike silicon chips and produce sufficient

electron-hole pairs in the chips to impair their functioning.

Earth

Cosmic ray

Neutron

Pion

Neutron

Proton

-Meson-Particle

Proton
Neutron

Atmospheric
zone

Collision with nucleus
in atmosphere

Collision with nucleus Proton, Neutron, Pion
-Meson

Neutron (energy level > 10 MeV):

0.01 Particles/(cm     s) at sea level2 .
1.0 Particles/(cm     s) at 10,000 m high level2 .

Cosmic zone

Figure 1.1 Cosmic rays.

FAULTS AND FAILURES 5



1.1.2 Failures

A failure is defined as nonperformance that occurs when a delivered service no longer

complies with its specifications [LAPR92], and a failure is also defined as nonperformance

when the system or component is unable to perform its intended function for a specified

time under specified environmental conditions [LEVE95].

Some types of failure are defined with respect to specific conditions. For example, a

value failure means that the value of the delivered service does not comply with the

specification and a timing failure represents a response in incorrect timing, either faster or

slower than the specified time. A temporary failure means an erroneous behavior at a

certain moment lasting only a short time. A crash failure, or catastrophic failure, is the one

that stops the mission because the system is completely blocked.

1.2 ERROR MODELS

An error is a manifestation of an unexpected fault within a system that is liable to lead to

system failure. The transformation of a fault to an error is called fault activation. The

mechanism that creates errors in the system and finally provokes a failure is called error

propagation. Before provoking a failure, errors can be masked or corrected by some error

control mechanisms such as error correcting codes, retries, or triple modular redundancy

(TMR) and thus recovered without inducing a system failure.

A fault remains in passive mode until an error first appears at some structure of the

system. This occurrence is called an initial activation and the error is called a primitive

error. In this case latency is defined as the mean time between the fault’s occurrence and its

initial activation as an error. Figure 1:3 presents the causal relationship between fault,

error, and failure. Various types of errors can occur, and these different types are covered

below.

Charged particles

Si nucleus

Neutron

Si nucleus

Neutron

Charged
particle

Charged

(Moved by collision) Si chip

(No collision)

particle

(α-particle, Proton,
Electron)

Figure 1.2 Electronholes in a silicon chip caused by particles.

6 INTRODUCTION



1.2.1 Hard Errors and Soft Errors

Hard errors are caused by permanent faults; they therefore affect the system functions for

a long period of time. This type of error is typically provoked by faults that appear as open

or short anywhere on the chips, modules, cards, or boards. Hard errors are also called

permanent errors.

Soft errors, on the other hand, are caused by temporal faults, especially those resulting

from external causes. Soft errors have a limited duration, meaning they interrupt system

functions for a very short time period. The most likely sources of soft errors are radioactive

particles and external noise. Alpha particles and cosmic particles [ZIEG96a, ZIEG96b,

ZIEG96c, OGOR96, SRIN96] are the major contributors mentioned previously. Therefore

soft errors are also called transient errors. The intermittent errors are provoked by

intermittent faults.

1.2.2 Random Errors, Clustered Errors, and Their Mixed-Type Errors

Multiple errors that occur randomly in time and / or space are called random errors.

Error can occur in every bit position of a word with almost equal probability. The

random type of error is unpredictable and is typically caused by white noise or

external particles.

Errors may cluster non-uniformly in a word, and these multiple errors may gather in

particular and unpredictable positions in the word. Clustered errors include burst errors

and byte errors. Burst errors occur typically in disks or tape memory. Byte errors are

typically found in semiconductor memory. The difference is in the data-recording

medium. In disk memory, the data are recorded on a continuous surface. In semiconductor

memory, the data are stored in RAM chips, and a data fragment, called a byte, is read or

stored in each chip. In disk or tape memory, defects or dust particles on the recording

surface can cause burst errors to occur anywhere in the continuous recording medium.

Failure

interface
User

ErrorFault

(Activated)
(Masked/Recovered)

Fault

Error

(Activated) (Propagated)
Fault

...

System/Module/Product

(Non-activated)

Figure 1.3 Fault, error, and failure.

ERROR MODELS 7



Clustered errors may occur in the two-dimensional matrix symbols as well as in the tape or

disk memory of a continuous two-dimensional recording medium. In semiconductor

memory, on the other hand, byte errors may occur in a fragment of readout data, namely in

a single byte, corresponding to the faulty chip. This is because each chip is physically

separated and independent, and therefore the presence of a fault in a chip does not extend

to the adjacent chips. Figure 1.4 illustrates the different cases of random errors, byte errors,

and burst errors.

Another error model consists of mixed clustered and random errors in the operational

phase. The clustered errors mentioned above are sometimes caused by physical faults due

Random Errors

External noise, particles, and
permanent faults occurred randomly

Received data /
Readout data

Byte Errors

b b b b

..

.
..
.

..

.
..
.

bbb b

Faulty
chip

Memory chip with
b-bit output

Readout data

b

Burst Errors

Readout data

Defects
Continuous

recording
medium

b-Bit burst error

Memory card
(Package)

b-Bit byte error

Figure 1.4 Models of randomerrors, byte errors, and burst errors.

8 INTRODUCTION



to aging problems. However, systems and devices are more prone to damage from

transient faults than from physical faults. Transient faults are source of random errors.

Therefore, when a physical fault occurs during the operational phase, both types of

error—clustered and random—must be taken into account. For example, in semiconductor

memories with byte-organized RAM chips, the major types of errors are transient errors,

(i.e., random bit errors) caused by a-particles or external noises. After some time in

operation, byte errors will occur due to the aging of RAM chips. Therefore both bit errors

and byte errors, meaning both random errors and permanent errors, may occur separately

or simultaneously. A similar situation holds for transmission systems, where both random

bit errors and burst errors can occur. Chapter 6 deals with the codes which control the

mixed type of single-byte errors and random bit errors.

1.2.3 Symmetric Errors, Asymmetric Errors, and Unidirectional Errors

In binary systems the probability of errors that force 0 to 1, called 0-errors, is, in general, equal

to those going from 1 to 0, called 1-errors. This class of errors is known as symmetric errors.

When these errors occur with unequal probabilities, they are called asymmetric errors. In the

binary asymmetric error model, only one type of error, either 0-errors or 1-errors, can occur,

and the error type is known a priori. If both error types occur but are not mixed, then this class

of errors is said to be unidirectional errors [BLAU93]. In binary systems these errors are

caused by symmetric faults, asymmetric faults, or unidirectional faults.

In nonbinary systems using numerals, 0; 1; 2; 3; . . . ; 9, or alpha-numeric symbols,

asymmetric errors are the type that occur. That is, the probability of an error that forces one

nonbinary symbol A to another symbol B is sometimes different from that of symbol A

forced to yet another symbol C. For example, in handwritten character recognition

systems, the probability of a 7 being mistaken for a 9 is much higher than that of a 7 being

mistaken for a 4, or pð9j7Þ � pð4j7Þ, where pðBjAÞmeans probability of a symbol A being

mistaken for another symbol B. This is because the numbers 7 and 9 are close in shape

whereas 7 and 4 are not so similar. Likewise in keyboard input systems the symbols

located on adjacent keys can be more easily mistyped. Figure 1:5 shows examples of these

error models. In the asymmetric error model, the error graphs are not perfect and

sometimes not bi-directional. On the other hand, in the symmetric nonbinary error model,

they are perfect and bi-directional.

If symbols are removed or added in a word, as is sometimes caused by human mistakes

(i.e., human-made faults), this class of errors is called deletion errors or insertion errors,

respectively.

(a) Example of an asymmetric error graph for handwritten
     character (numerals) recognition systems

(b) Asymmetric error graph for keyboard systems

0

1

2

97

6

8 5

4

3 (Numeric key pad layout)

7 8 9

4 5 6

1 2 3

0

7 8 9

4 5 6

1 2 3

0

Figure 1.5 Asymmetric errors in nonbinary systems. Source: [KANE04]� 2004 IEEE.

ERROR MODELS 9



1.2.4 Unequal Error Probability Model and the Unequal Error
Protection Model

The probability of error appearing in any position of a word is usually considered to be

equal. However, there is an error model to consider where some positions of a word have

higher error probability than other positions. These are sometimes caused in the system by

using devices with low reliabilities in the corresponding positions of a word, or by having

error-sensitive areas in some positions of awordwhich aremore vulnerable to external noises

or have a low noise margin. In such cases the erroneous positions or areas with high error

probabilities are known a priori. The type of error model that is relevant here is known as the

unequal error probability model. The codes based on this error model are called unequal

error control (UEC) codes. Chapter 10 will discuss the UEC codes and present its application

to holographic memory, which has non-uniform error probability in the recording medium.

Some types of computer words or communication messages have a structure such that the

information included in one part of the word is more important or more valuable than that in

other parts. Control and address information in the computer or communication messages, and

pointer information in the database words are good examples. In general, errors in this part,

such as errors in control information or in pointer information, will cause much more serious

damage to the subsequent processes in the system. Another example is error in the decimal

numbers. During processing of digital data of conventional decimal numbers or measurement

data, errors in the higher order digits will yield more devastating effects on the subsequent

processes in digital systems than errors in the lower order digits. Therefore the higher order

digits should be more strongly protected against errors than the lower order digits. This type of

error model is known as an unequal error protection model. The codes based on this are called

unequal error protection (UEP) codes and will also be discussed in Chapter 10.

1.3 ERROR RECOVERY TECHNIQUES FOR DEPENDABLE SYSTEMS

Error detection is an essential part of a dependable system design. Ideally, error detection

will block the propagation of an error during online operations, before it reaches the

system interface and causes a system failure. The error is best be detected immediately as

it occurs so that its effect can be minimized.

Upon detecting an error by an error detection mechanism, some error recovery

technique must mask the fault or remove it, and thus block the error’s propagation. Among

such mechanisms, error correcting codes and triple modular redundancy (TMR) correct

errors or mask faults directly, that is, without an additional error detection procedure.

Some important error detection techniques and error recovery techniques, comparative

to the error control coding techniques, are briefly described below. For more information,

the reader is referred to the following excellent texts and papers on dependable systems or

design techniques for fault tolerance: [AVIZ78, SIEW82, RENN84, EZHI86, ABRA86,

PRAD86, JOHN89, LEE90, AVRE00].

1.3.1 Error Detection / Error Checking

Prediction & Comparison The basic error detecting or checking concept for online

operations exists in prediction & comparison. That is, the output of the circuit / module is

predicted from the input, and then the predicted output and the original circuit / module

10 INTRODUCTION



output are compared bit by bit. The errors are detected if the actual output is not perfectly

matched to the predicted output.

Duplication is an important and popularly used error detection technique in dependable

digital systems. This is a special case of prediction & comparison, because the output is

generated, or predicted, by a copy of the circuit / module and then compared with that of

the original. This concept exists also in software duplication where a copy of the same or

equivalent software is prepared and executed, and then the outputs are compared.

Parity-prediction is another important and popularly applied technique. The output

parity bit is predicted from the input, and then compared with the parity bit generated from

the original output.

Error Detecting Codes Error detecting codes typically deal with simple parity-check

codes, cyclic codes, checksum codes, and other basic linear codes, as will be explained in

Section 2.3. Some further important and newly developed codes will be presented in later

chapters.

The application of error detecting codes in online operations is also called checking or

an online testing. The error detection circuit is denoted as a checker. These applications

will be examined in-depth in Section 12.1 where the self-checking concept is presented.

Additional topics on how to detect errors caused by faults in the checker itself and how

to design such checkers are covered in Section 12.2 where self-testing checkers are dis-

cussed. In summary, Chapter 12 covers error-checking concepts, self-testing checker design

methodologies, and concrete checker design for logic circuits and for computer systems.

Watchdog Timer and Watchdog Processor A watchdog timer is very useful for

detecting faults in a system. The idea behind this scheme is that some part of the system should

act to indicate fault-free status so that absence of this action is indicative of a fault. Also the

timer must be repeatedly reset by the system. Failure of the system to perform the reset func-

tion results in the system being turned off to prevent a system failure from occurring.

Awatchdog timer can be used to detect faults in both the hardware and the software of a

system. In many applications software routines are expected to execute within pre-

specified time frame. In digital control systems, for example, the routines execute

repetitively at specified intervals. If a routine suddenly needs more than the expected time

to execute, the fault may be in the software’s, for example, infinite loop [JOHN89]. In this

regard the watchdog timer is an important control flow check tool.

A watchdog processor is an extension of the concept of a watchdog timer. This is a

special subprocessor that checks the online operations of the processor being checked. The

watchdog processor runs the watchdog programs that collect information from the

processor being checked and generate signatures, such as address and data information,

and processor state information, during online operations. The new information is then

compared to that already prepared in the watchdog program.

1.3.2 Error Recovery / Error Masking

Error recovery techniques are essential to improving system reliability. The important

recovery techniques, as was mentioned before, include coding techniques and somemodular

redundancy techniques, such as TMR, that correct or mask the faults directly. Other

effective error detection methods are also available to mask the faults after the detection of

errors, for example, self-checked duplication and sift-out redundancy, as discussed below.

ERROR RECOVERY TECHNIQUES FOR DEPENDABLE SYSTEMS 11



Error Correcting Codes Many different error control codes have been studied and

developed to correct and / or detect the types of errors mentioned in Section 1.2. Among

the most practical matrix codes are those presented in this book.

Error correcting codes head the list of the most effective and efficient techniques used

to mask faults, both temporal and permanent. The coding approach involves some

redundancy, for example, additional check bits, additional hardware in the form of

encoding / decoding logic circuits, and additional decoding time delay. Nevertheless, the

coding performance is superior to that competitive techniques, especially in quickly

masking of temporal faults. For this reason error control codes are still being extensively

applied to various digital systems to improve their reliability.

Retry Just as space redundancy requires additional hardware resources, the retry

method called time redundancy which requires additional time to perform multiple iden-

tical operations of commands or programs immediately after errors are detected. This very

simple technique requires almost no additional hardware but can very effectively recover

system operations from temporary faults, meaning transient and intermittent faults. There-

fore the retry method is popularly applied to digital systems, including processors, main

memories, disk memories, tape memories, and I/O devices.

Alternate data retry, abbreviated by ADR [SHED78], is a kind of retry operation that is

effective in masking permanent faults besides temporary faults. Figure 1:6 presents the

principle behind masking a single permanent fault by ADR. Note that this simple example

shows the even-parity encoded bus circuit with four lines, including a parity line. Figure

1:6(a) shows that if a stuck-at ‘0’ permanent fault occurs in the first bus line, then the even-

parity encoded data from circuit A, here 1001, is received at the input of the circuit B as

0001, which is an odd-parity encoded data. Therefore a single error can be detected by

examining the parity check of the data. Next, by the ADR method, in Figure 1:6(b), the
bit-by-bit complement of the original data, which is 0110, is transmitted from circuit A to

(a)  Error detection by parity check

A

1

0

0

1

0

0

0

1

stuck-at ‘0’ fault

(b)  Retried by complemented data

A

B

B

0

1

1

0

0

1

1

0

stuck-at ‘0’ fault

Inverted

1

0

0

1

Figure 1.6 Principle ofADR (illustrated by even-parity encodedbus line circuits as an example).

12 INTRODUCTION



the input of the circuit B. Even though the first line is still preserving a stuck-at ‘0’ fault,

the fault is masked because the data on this line are also a ‘0’. Finally the received data are

inverted, and then the original correct data, 1001, are recovered. In this example, a

permanent fault is masked at the second stage of ADR, and finally the correct data are

recovered at the third stage of ADR. Also, in this example, if the fault in Figure 1:6(a) is a
temporary fault, the error it caused can be completely masked and will have no effect

because the temporary fault will disappear by the time of the second stage of ADR.

In general, if the logic circuit that performs the function FðXÞ for the circuit input X

satisfies the relation

FðXÞ ¼ FðXÞ;

where X means the complement of X, then the ADR with bit-by-bit complementary retry

at the second stage can be performed successfully. The function F that satisfies the relation

above is called a self-complementary function, and the circuit that satisfies the relation is

called a self-complementary circuit. The former even-parity busline circuit is a self-

complementary circuit. The adder, the multiplier, and the divider are also good examples

of self-complementary circuits.

N-Modular Redundancy (NMR) and Reconfiguration Triple modular redundancy

(TMR) is the most typical form of N-modular redundancy. The TMR method triplicates the

original module and performs a majority vote to determine the output of the system. If one of

the modules becomes faulty, the other two fault-free modules mask the results of the faulty

onewhen the majority vote is performed. This is shown in Figure 1:7(a). This voting concept

(a)  Triple modular redundancy (TMR)

(B)  Triple modular redundancy with triplicated voters

Input 1
Output 1VoterModule 1

Input 2
Output 2VoterModule 2

Input 3
Output 3VoterModule 3

Input 1

Input 2

Input 3

Module 1

Module 2

Module 3

Voter Output

Figure 1.7 Triplemodular redundancy (TMR).

ERROR RECOVERY TECHNIQUES FOR DEPENDABLE SYSTEMS 13



is applied to TMR software to protect against software faults in any one of three identical or

equivalent software programs that perform the same function.

The difficulty in the TMR exists in its voter. That is, if the voter fails, the system

completely fails. One approach is to apply TMR to the voter itself such that three voters are

used and three independent voting results are provided as shown in Figure 1:7(b). The
three modules are functionally identical and receive identical inputs. The results generated

by three modules are voted on by the three voters to produce three results. Each result is

correct unless more than one module or input is faulty.

N-Modular redundancy (NMR) is a generalization of the TMR and is a typical space

redundancy technique. In most cases, N is selected as an odd number so that a majority

voting principle can be applied. For example, the 5MR system consists of five identical

modules and a voter. This system produces correct output in the presence of, or masks, as

many as two faulty modules.

The modular redundancy concept has been extended and modified by combining the

concept of reconfiguration. The following forms show some such combinations.

Self-checked duplication is an extended form of duplication in which each module has

its own self-checking mechanism in order to identify the faulty state of the module itself.

In this system, two self-checked modules are operated and checked in parallel at all times.

If one module is found to have errors by its own error detection mechanism, then the

system output is switched to the error-free module, meaning it is reconfigured. This concept

is a form of hot standby sparing in which the spare module operates synchronously with the

online module and is prepared to take over at any time. When the online module is failed,

the standby spare module takes over immediately. In contrast to the hot standby sparing,

there exists cold standby sparing where the spare is unpowered until needed to replace a

faulty module.

N-Modular redundancy with spares is also known as hybrid redundancy. It provides a

basic core of N modules arranged in a voting system, and in addition spares are provided to

replace faulty modules. For example, while the TMR with one spare masks one faulty

module, the spare will replace the faulty module immediately upon the detection of the

fault. After that spare is used, the system is still capable of masking another faulty module.

Therefore two faulty modules can be masked in this system. The aforementioned 5MR

requires five modules in order to mask two faulty modules, but the TMR with one spare

approach requires only four modules. The system remains in the basic NMR configuration

until the disagreement detector determines that a faulty module exists. One approach to

fault detection is to compare the output of the voter with the individual outputs of the

modules. A module that disagrees with the majority is regarded as faulty and removed

from the NMR core. A spare module is then switched in to replace the faulty module. The

reliability of the basic NMR system is maintained as long as the pool of spares is not

exhausted. This is shown in Figure 1:8.
Self-Purging Redundancy is similar to the NMR with the spare modules approach. The

main difference is that all modules operate actively in this redundancy system, unlike the

NMR with spares where some spare modules are not an active part of the system until a

fault occurs. This is shown in Figure 1:9. Each switch in the self-purging redundancy

separates the faulty module if the module output is not equal to the voter output. The

reconfiguration is essentially accomplished by the system logically removing the faulty

module via the switch and thus reducing the number of N in the reconfigured NMR system.

Sift-out redundancy also requires N identical modules in the system but with every pair

of two module outputs compared to identify faulty modules. If there exist N ¼ 5 modules,

14 INTRODUCTION



ten comparisons are performed. This redundancy requires an N-way multiplexer instead of

an N-input voter, as shown in Figure 1:10. The comparator in this redundancy circuit

receives all outputs of the modules and produces comparison outputs of every two

modules, that is, NðN � 1Þ=2 outputs, and then determines the faulty modules in the

detection circuit. Finally the output of the N-way multiplexer is selected based on the

faulty indication outputs of the detection circuit. This essentially masks the effects of any

faulty modules.

This redundancy can tolerate up to N � 2 faulty modules. Its tolerance is therefore

equal to the TMR system with N � 3 spares and also to the self-purging system having a

voter with threshold level of two.

Voter Output

Module
1

Module
2

Module
N

System
inputs

Disagreement 
detector

Switch

Disagreement
identification

Active unit
outputs

Spare
1

Spare
M

Figure 1.8 N-modular redundancywith spares (i.e., hybrid redundancy).

Module
1

Module
2

Module
N

System
inputs

Voter
System
output

Switch

Switch

Switch

Figure 1.9 Self-purging redundancy.

ERROR RECOVERY TECHNIQUES FOR DEPENDABLE SYSTEMS 15



System Recovery by Software Retry techniques require error detection by checkers,

and immediately after the error detection the same operations are performed. In contrast,

checkpoint techniques allow some latency time after error detection because the process

can be restored to an earlier point of execution. Checkpointing is mostly implemented in soft-

ware and requires some hardware to store the backup data. The techniques result from a com-

bination of checkpointing and rollback. In checkpointing, complete copy of the system state

should be saved at specific points, namely checkpoints, during process execution. The infor-

mation to be stored is the set of system state including data, programs, machine state, and so

forth, which is necessary to restart the continued successful execution from the checkpoint.

Rollback is a part of actual recovery process and occurs after the repair, such as by reconfi-

guration, that removes faulty modules or equipments from the system, or after the error due to

transient faults has died out. An important design criterion is how often checkpoints are to be

set, that is, in determining checkpoint intervals. If the checkpoints are too infrequent for the

actual error rate experienced, too much computation time will be lost due to rollback. On the

other hand, too frequent checkpoints result in an unnecessary increase in operation time and

memory due to the overhead of saving system states when establishing checkpoints.

1.4 CODE DESIGN PROCESS FOR DEPENDABLE SYSTEMS

What types of dependable techniques are the most effective in the design of dependable

systems? In some cases other than coding techniques, or a combination of coding

techniques and other dependable techniques, will better meet the reliability requirement or

the cost / performance requirement of a system.

Module
2

Module
N

System
inputs

Module
1

N

Detection circuit
N(N-1)/2

Comparator

N-Input
multiplexer

System
output

indicating faulty module

Figure 1.10 Shift-out redundancy.

16 INTRODUCTION



Before designing the error control codes, we therefore have to pay attention to a number of

preconditions or preparatory measures: Where to apply the code? How to apply the code

effectively?Howmuchreliabilityof thesystemto improveandsatisfy itsperformancebycoding

techniques?What are the requirements for decoding speed, and how much decoder hardware?

What about the detection capability of errors falling outside the capability of the code? This

section addresses all these important questions with respect to the code design process.

1.4.1 Code Functions

Error detection and error correction are the more known code functions. An important

code function that lies midway between these two functions is error location. The error

locating code indicates which blocks, or components of a word contain error but does not

indicate the precise erroneous digit position nor the error value. This is a code function that

is efficient for retransmission of a word segment, especially in communication systems

where whole words do not need retransmitting [WOLF63]. Also in computer systems the

error locating code provides the information on where to find the faulty module, faulty

package / card, or faulty device, which is very useful for system maintenance. If the system

is equipped with spares, then the system can be recovered by removing the faulty blocks

and switching to the spares.

Figure 1:11 shows the different functions of these three code types. Because erroneous

position, and error value can be determined by use of ‘‘error correction’’, all errors can be

Figure 1.11 Code functions.

CODE DESIGN PROCESS FOR DEPENDABLE SYSTEMS 17



corrected. Of course, use of ‘‘error detection’’ alone does not allow any erroneous

position nor error value to be determined; it only indicates the presence of error in a

word. For ‘‘error location’’, as was mentioned before, only the area where the word

includes an erroneous position is indicated by the code. For example, note in Figure 1:11
that the code’s information is that errors exist in the second block of the word and

no definite error positions in the block nor the error values are determined. Error

locating codes will be covered in Chapter 9. Many practical codes, in general, have

a mixture of these code functions, for example, single error correction and double

error detection.

1.4.2 Code Deisgn Process

Before attempting the design of codes, we need to give the following items our careful

consideration:

1. Circumstance where the systems or equipments with the coding techniques are to be

applied, for example, the particular needs of medical appliances, nuclear appli-

ances, or digital systems in aircraft or satellite,

2. Fabrication structure, that is, how the systems or the equipments are organized, for

example, chip / card (package) organization, bit / byte organization, or binary / nonbinary,

3. Devices, such as memories, logic circuits, or FPGAs that are used in the system to

which the coding techniques are to apply.

4. Combination of fault / error masking techniques with coding techniques.

The design process for the error control codes is presented next, and is shown in Figure

1:12. Steps 1 through 3 pertain to the phase of setting code parameters, and steps 4 and 5

are for the phase of code designing.

Step 1. Determine error rates and error types:

� Raw error rate of devices, modules, or systems, and what target error rate to attain

� Whether symmetric error, asymmetric error, or unidirectional error

� Whether equal error or unequal error

� Whether random bit error, byte error, spotty byte error,a or burst error

� Whether bit or byte error,* or rather, bit plus byte errorb

Step 2. Determine code parameters and code constraints:

� Information-bit length, and required check-bit length

� Maximum random bit error length—or byte error length, spotty error length,a or

burst error length

� Required decoding speed

� Required decoder hardware complexity

aSee Chapter 7.
bSee Chapter 6.

18 INTRODUCTION



Step 3. Determine code function:

� Error detection, error correction, error location, or mixed type of these code functions

Step 4. Design code, and calculate code bounds:

� Theoretical bound on code length or check-bit length

� Mathematical knowledge required for code design, for example, algebra, combina-

torial mathematics, number theory, graph theory, statistics, and probability theory

Step 5. Evaluate the code designed:

� Check-bit length, and comparison to its bound

� Decoding speed

� Decoder hardware complexity

� Error detection probability of multiple errors beyond the code capability

� If the code does not satisfy the requirements, then go back to step 4

REFERENCES

[ABRA86] J. A. Abraham and W. K. Fuchs, ‘‘Fault and Error Models for VLSI,’’ Proc. IEEE, 74

(May 1986): 639–654.

Figure 1.12 Code design process.

REFERENCES 19



[AVIZ78] A. Avizienis, ‘‘Fault Tolerance, the Survival Attribute of Digital Systems’’ Proc. IEEE, 66

(October 1978): 1109–1125.

[AVIZ04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, ‘‘Basic Concepts and Taxonomy

of Dependable and Secure Computing,’’ IEEE Trans. Depend. Secure Comput., 1 (January–March

2004): 11–33.

[AVRE00] D. R. Avresky (ed.), Dependable Network Computing, Kluwer Academic Publishers

(2000).

[BLAU93] M. Blaum, Codes for Detecting and Correcting Unidirectional Errors, IEEE Computer

Society Press (1993).

[CALV94]P. Calvel, P. Lamothe, and C. Barillot, ‘‘Space Radiation Evaluation of 16 Mbit DRAMs

for Mass Memory Applications,’’ IEEE Trans. Nucl. Sci., 41 (December 1994): 2267–2271.

[EZHI86] P. D. Ezhilchevan and S. K. Shrivastava, ‘‘A Characterization of Faults in Systems,’’ Proc.

5th Symp. on Reliability in Distributed Software and Database Systems (January 1986): 215–222.

[GEFF02] J.-C. Geffroy and G.Motet,Design of Dependable Computing Systems, Kluwer Academic

Publishers (2002), chs. 1–5.

[HAZU00] P. Hazucha, C. Svensson, and S. A. Wender, ‘‘Cosmic-Ray Soft Error Rate character-

ization of a Standard 0.6-mm CMOS Process,’’ IEEE J. Solid-State Circ., 35 (October 2000):

1422–1429.

[JOHN89] B. W. Johnson, Design and analysis of Fault Tolerant Digital Systems, Addison Wesley

(1989).

[KANE04] H. Kaneko and E. Fujiwara, ‘‘A Class of M-Ary Asymmetric Symbol Error Correcting

Codes for Data Entry Devices,’’ IEEE Trans. Comput., 53 (February 2004): 159–167.

[KARN04] T. Karnik, P. Hazucha, and J. Patel, ‘‘Characterization of Soft Errors Caused by Single

Event Upsets in CMOS Processes,’’ IEEE Trans. Depend. Secure Comput., 1 (April–June 2004):

128–143.

[LAPR92] J. C. Laprie (ed.),Dependability: Basic Concepts and Terminology, Springer-Verlag (1992).

[LEE90] P. A. Lee and T. Anderson, Fault Tolerance, Principles and Practice, Springer-Verlag

(1990).

[LEVE95] N. Leveson, Safeware, Addison-Wesley (1995).

[LO05] J. C. Lo and E. Fujiwara,‘‘Transient Behavior of the Encoding/Decoding Circuits of Error

Control Codes,’’ Proc. IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems (October

2005):

[MAKI00] A. Makihara, H. Shindou, N. Nemoto, S. Kuboyama, S. Matsuda, T. Oshima, T. Hirao, H.

Itoh, S. Buchner, and A. B. Campbell, ‘‘Analysis of Single-Ion Multiple-Bit Upset in High-

Density DRAMs,’’ IEEE Trans. Nucl. Sci., 47 (December 2000): 2400–2404.

[MASS96] L. W. Massengill, ‘‘Cosmic and Terrestrial Single-Event Radiation Effects in Dynamic

Random Access Memories,’’ IEEE Trans. Nucl. Sci., 43 (April 1996): 576–593.

[MAY79] T. C. May, ‘‘Soft Errors in VLSI: Present and Future,’’ IEEE Trans. Comp. Hybrids Manuf.

Technol., CHMT-2 (December 1979): 377–387.

[MUEL99] M. Mueller, L. C. Alves, W. Fischer, M. L. Fair, and I. Modi, ‘‘RAS Strategy for IBM

S/390 G5 and G6,’’ IBM J. Res. Dev., 43 (September–November 1999): 875–888.

[NOOR80] D. J. W. Noorlag, L. M. Terman, and A. G. Konheim, ‘‘The Effect of Alpha-Particle-

Induced Soft Errors onMemory Systems with Error Correction,’’ IEEE J. Solid-State Circ., SC-15

(June 1980): 319–325.

[OGOR96] T. J. O’Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler, H. P. Muhlfeld, C. J. Montrose,

H. W. Curtis, and J. L. Walsh, ‘‘Field Testing for Cosmic Ray Soft Errors in Semiconductor

Memories,’’ IBM J. Res. Dev., 40 (January 1996): 41–50.

20 INTRODUCTION



[OSAD03] K. Osada, Y. Saitoh, E. Ibe, and K. Ishibashi, ‘‘16.7-fA/Cell Tunnel-Leakage-Suppressed

16-Mb SRAM for Handling Cosmic-Ray-Induced Multierrors,’’ IEEE J. Solid-State Circ., 38

(November 2003): 1952–1957.

[OSAD04] K. Osada, K. Yamaguchi, Y. Saitoh, and T. Kawahara, ‘‘SRAM Immunity to Cosmic-Ray-

Induced Multierrors Based on Analysis of an Induced Parasitic Bipolar Effect,’’ IEEE J. Solid-

State Circ., 19 (May 2004): 827–833.

[PRAD86] D. K. Pradhan, Fault-Tolerant Computing, Vol. 1 and 2, Prentice-Hall (1986).

[RENN84] D. A. Rennels, ‘‘Fault-Tolerant Computing—Concepts and Examples,’’ IEEE Trans.

Comput., C-33 (December 1984): 1116–1129.

[SAIH82] G. A. Sai-Halasz, M. R.Wordeman, and R. H. Denard, ‘‘Alpha-Particle-Induced Soft Error

Rate in VLSI Circuits,’’ IEEE J. Solid-State Circ., SC-17 (April 1982): 355–361.

[SELL68] F. F. Sellers, Jr., M. Y. Hsiao, L. W. Bearnson, Error Detecting Logic for Digital

Computers, McGraw-Hill (1968).

[SHED78] J. J. Shedletsky, ‘‘Error Correction by Alternate-Data Retry,’’ IEEE Trans. Comput., C-27

(February 1978): 106–112.

[SIEW82] D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable System Design,

Digital Press (1982).

[SRIN96] G. R. Srinivasan, ‘‘Modeling the Cosmic-Ray-Induced Soft-Error Rate in Integrated

Circuits: An Overview,’’ IBM J. Res. Dev., 40 (January 1996): 77–89.

[WOLF63] J. K. Wolf and B. Elspas, ‘‘Error-Locating Codes—A New Concept in Error Control,’’

IEEE Trans. Info. Theory, IT-9 (April 1963): 113–117.

[ZIEG96a] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B. Chin, etc., ‘‘IBM

Experiments in Soft Fails in Computer Electronics (1978–1994),’’ IBM J. Res. Dev., 40 (January

1996): 3–18.

[ZIEG96b] J. F. Ziegler, ‘‘Terrestrial Cosmic Rays,’’ IBM J. Res. Dev., 40 (January 1996): 19–39.

[ZIEG96c] J. F. Ziegler, H. P.Muhlfeld, C. J. Montrose, H.W. Curtis, T. J. O’Gorman, and J. M. Ross,

‘‘Accelerated Testing for Cosmic Soft-Error Rate,’’ IBM J. Res. Dev., 40 (January 1996): 51–72.

[ZIEG98] J. F. Ziegler, M. E. Nelson, J. D. Shell, R. J. Peterson, C. J. Gelderloos, H. P. Mahlfeld, and

C. J. Montrose, ‘‘Cosmic Ray Soft Error Rates of 16-Mb DRAMMemory Chips,’’ IEEE J. Solid-

State Circ., 33 (February 1998): 246–252.

REFERENCES 21



CONTENTS

2.1 Introduction to Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Groups and Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3 Representation for Elements of Galois Fields . . . . . . . . . . . . . . . . . . . 28

2.1.4 Properties of Galois Field GFð2mÞ . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Vector Space and Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Linear Codes as Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.3 Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.4 Distance and Error Control Capability . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.5 Parity-Check Matrices for Linear Codes . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Basic Matrix Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.1 Simple Parity-Check Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.2 Hamming Single Error Correcting (SEC) Codes . . . . . . . . . . . . . . . . . 49

2.3.3 Hamming Single Error Correcting and Double Error Detecting

(SEC-DED) Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.4 Cyclic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.5 Binary BCH Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3.6 Reed-Solomon Codes as Nonbinary BCH Codes . . . . . . . . . . . . . . . . . 65

2.3.7 Burst Error Correcting Fire Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



2
Mathematical Background

and Matrix Codes

The research in error control codes has relied to a large extent on the powerful structures of

modern algebra. A number of important and practical codes based on the structure of rings

and Galois fields have been developed. This chapter provides the algebraic structures and

the fundamental codes, expressed mostly by matrices, necessary to understand the

subsequent chapters and to design codes that fit practical requirements. The level of the

discussion is introductory. For a more rigorous treatment, the reader is advised to consult

the following excellent texts on coding theory: [PETE72, MACW77, BRAH84, BERL84,

PLES98, LIN04].

2.1 INTRODUCTION TO ALGEBRA

The most important ideas in coding theory are based on the arithmetic systems of modern

algebra. These systems are not so familiar to most of us, so here we pause to develop a

background of this mathematics before we proceed to study coding theory and to design

practical codes.

2.1.1 Groups and Rings

A group is a mathematical abstraction of an algebraic structure. A ring is also an abstract

set that is an Abelian group and has an additional structure.

Code Design for Dependable Systems: Theory and Practical Applications, by Eiji Fujiwara
Copyright # 2006 John Wiley & Sons, Inc.

23



Groups
Definition 2.1 Let a; b, and c be the elements of a set G for which an operation � is

defined. If G satisfies the following four axioms, then G is called a group:

(G1) Closure. For every a; b in the set G,

c ¼ a � b 2 G:

(G2) Associativity. For every a; b; c in the set G,

a � ðb � cÞ ¼ ða � bÞ � c:

(G3) Identity. There exists an element e in G called the identity element that

satisfies

a � e ¼ e � a ¼ a:

(G4) Inverses: If a is in the set, then there exists some element b in the set called an

invererse of a such that

a � b ¼ b � a ¼ e:
&

If the set satisfies the axiom (G1), the set is called a semigroup. If the set satisfies the

axioms (G1) and (G2), the set is called amonoid. Some groups satisfy the additional axiom

that for all a; b in the group,

a � b ¼ b � a:

This is called a commutative axiom. Groups with this additional axiom are called

commutative groups, or Abelian groups. In every group the identity element is unique.

Also the inverse of each group element is unique, meaning ða�1Þ�1 ¼ a. The proofs of

these are left to the reader to complete.

Homomorphism and Isomorphism The number of elements in a group is said

to be the order of the group. A homomorphism is a mapping f that preserves the

structure of the sets between two groups fA; �g and fA0; �0g, meaning f : A�!A0,
which satisfies f ða � bÞ ¼ f ðaÞ �0 f ðbÞ for a; b 2 A. If there exists a homomorphism

from A onto A0, then A0 is said to be homomorphic for A. In particular, if there exists

one-to-one mapping between A and A0, that is, f 0 : A0 �!A is also a homomorphism,

or bijection (one-to-one and onto), then f is said to be an isomorphism, and A and

A0 are said to be isomorphic. The reader is advised to find an isomorphism between

the set of integers under addition Z4 ¼ f0; 1; 2; 3g and the multiplicative group

G ¼ f1; 2; 3; 4g.

Subgroups
Definition 2.2 LetG be a group and let F be a subset ofG. Then F is called a subgroup of

G if F satisfies all properties of a group with the same operation �. &

24 MATHEMATICAL BACKGROUND AND MATRIX CODES



To prove that a set F is a subgroup of G, it is only necessary to check that a � b is

in F whenever a and b are in F (i.e., closure), and that the inverse of each element in F
is also in F. The other axioms required of a group will then be inherited from the

group G.
As an example, we consider the group G ¼ f1; 2; 3; 4g under multiplication

modulo 5. F ¼ f1; 4g is a subgroup of G. This is because 1 � 1 ¼ 1; 1 � 4 ¼ 4,

4 � 1 ¼ 4; 4 � 4 ¼ 1.

Coset Decomposition This coset decomposition illustrates certain relationships

between the group G with finite elements, meaning a finite group, and the subgroup F
with m elements. Let the elements of F be denoted by a0, a1, a2; . . . ; am�1, and choose a0
to be the identity element. We can construct the array as follows: The first row consists

of the elements of F, with the identity at the left and every other element of F appearing

only once. We choose any element of G not appearing in the first row. We call it b1 and

use it as the first element of the second row. The rest of the elements of the second row

are obtained by performing operation � of each subgroup elements by this first element

on the left. Similarly we construct a third, fourth, and fifth rows, each time choosing a

previously unused group elements for the element in the first column. We stop whenever,

after a step, all the group elements, meaning mn elements, appear somewhere in the array.

This process stops when G has finite number of elements. The final array is shown as

a0 ¼ 1 a1 a2 � � � am�1
b1 � a0 ¼ b1 b1 � a1 b1 � a2 � � � b1 � am�1
b2 � a0 ¼ b2 b2 � a1 b2 � a2 � � � b2 � am�1

..

. ..
. ..

. . .
. ..

.

bn�1 � a0 ¼ bn�1 bn�1 � a1 bn�1 � a2 � � � bn�1 � am�1

The first element on the left of each row is called a coset leader. Each row in the array is

called a coset if the group is Abelian. We can prove that every element of G appears

exactly once in a coset decomposition ofG. We can also prove that the number of elements

in F divides the number of elements in G if F is a subgroup of G.

Rings The group is an algebra with one operation. We now consider algebra with two

operations, namely addition and multiplication.

Definition 2.3 A set is a ring R if it satisfies the following axioms:

(R1) R is an Abelian group under addition ðþÞ.
(R2) R is closed under multiplication ð�Þ.
(R3) R is associative under multiplication.

(R4) (Distributive law): Multiplication is distributive with respect to addition, that is,

for every a; b; c 2 R,

a � ðbþ cÞ ¼ a � bþ a � c;
ðbþ cÞ � a ¼ b � aþ c � a:

&

INTRODUCTION TO ALGEBRA 25



The addition operation in a ring has identity ‘‘zero’’, denoted by 0. But the

multiplication operation does not need an identity; if there is an identity, it is unique. This

identity is ‘‘one’’ and is denoted by 1. Then 1 � a ¼ a � 1 ¼ a for every a in R.
A typical example of a ring is a set of integers Z that is commutative.

Definition 2.4 A subset S of a ring R is an ideal if it satisfies

(I1) S is a subgroup of R under addition.

(I2) For every s 2 S and r 2 R, s � r 2 S.
&

In the ring of integer Z all multiples of an integer 3, for example, give an ideal, that is,

S ¼ 3 � Z ¼ f� � � ;�9;�6;�3; 0; 3; 6; 9; 12; � � �g.

2.1.2 Fields

A ring is a set in which we can add, subtract, and multiply. A more powerful algebraic

structure is a field in which we can add, subtract, multiply, and divide.

Definition 2.5 A field F is a set that has two operations of addition and multiplication

such that the following axioms are defined:

(F1) The set is an Abelian group under addition.

(F2) The field is closed under multiplication, and the set of nonzero elements is an

Abelian group under multiplication.

(F3) The distributive law holds for every a; b; c 2 F,

ðaþ bÞ � c ¼ a � cþ b � c
&

A field with finite elements (i.e., q elements) is called a finite field, or a Galois field, and is

denoted by GFðqÞ.

Example 2.1
As a simple example of the finite field with two elements, 0 and 1, meaning

GFð2Þ ¼ f0; 1g, we have the following addition and multiplication tables:

þ 0 1

0 0 1

1 1 0

� 0 1

0 0 0

1 0 1

As for GFð3Þ ¼ f0; 1; 2g, we have the tables

þ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

� 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

26 MATHEMATICAL BACKGROUND AND MATRIX CODES



Another example is GFð4Þ ¼ f0; 1; a; bg in which we have the tables

þ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1

b b a 1 0

� 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a b 1

b 0 b 1 a

The tables above say that all axioms of the field are satisfied. The readers are

recommended to check these. Also carefully to distinguish GFð4Þ from Z4, the set of

integers modulo 4. In Z4, 1þ 1 ¼ 2, whereas in GFð4Þ, 1þ 1 ¼ 0. Also there does not

exist inverse element of 2 in multiplication in Z4, and hence Z4 is not a GFð4Þ.

Definition 2.6 Let F be a field. A subset of F is called a subfield if it is a field under the

inherited addition and multiplication. &

Here the number of elements in the field is called an order. The set of elements in the

subfield excluding zero element is a subgroup of the original field excluding zero element

under multiplication. Therefore, if GFðpÞ is a subfield of GFðqÞ, then p� 1 is a divisor of

q� 1. Detailed discussion of the subfield is deferred until Subsection 6.2.1.

Definition 2.7 The finite field with prime number p of elements is called a prime field

GFðpÞ. Extension field of the prime field GFðpÞ is defined as a finite field of GFðpmÞ
with pm elements, meaning with mth degree extension of GFðpÞ. &

It can be shown that the set of integers with m elements Zm ¼ f0; 1; 2; . . . ;m� 1g is a
ring and that it is a field if and only if m is a prime. That is, Zp with prime p is a prime field,

GFðpÞ. This is a relation between the fields and the integer rings. Another similar relation

exists in polynomial rings.

A polynomial over a field GFðqÞ is expressed as

fðxÞ ¼ fn�1x
n�1 þ fn�2x

n�2 þ � � � þ f1xþ f0;

where the coefficients fn�1; fn�2; . . . ; f1; f0 are elements of GFðqÞ, and the indexes and

exponents are integers. A monic polynomial is a polynomial with leading coefficient fn�1
equal to 1. The degree of a nonzero polynomial fðxÞ, denoted deg fðxÞ, is the index of the

leading coefficient fn�1. The degree of a nonzero polynomial is always finite. The set of all

polynomials over GFðqÞ is a ring if addition and multiplication are defined as the usual

addition and multiplication of polynomials. We define such polynomial ring for each

Galois field GFðqÞ. The sum of two polynomials fðxÞ and gðxÞ in the polynomial ring is

another polynomial in this polynomial ring defined by

fðxÞ þ gðxÞ ¼
X1
i¼0
ðfi þ giÞxi:

The degree of the sum is not greater than the larger of these two degrees. For example,

over GFð2Þ, ðx4 þ x2 þ xþ 1Þ þ ðx3 þ xþ 1Þ ¼ x4 þ x3 þ x2 þ ð1þ 1Þxþ ð1þ 1Þ ¼

INTRODUCTION TO ALGEBRA 27



x4 þ x3 þ x2. The product of two polynomials in the polynomial ring is another

polynomial in this polynomial ring, defined by

fðxÞ � gðxÞ ¼
X
i

Xi
j¼0

fjgi�j

 !
xi:

For example, over GFð2Þ, ðx4 þ x2 þ xþ 1Þ � ðx3 þ xþ 1Þ ¼ x7 þ 1. The degree of a

product is equal to the sum of the degrees of the two factors.

We can say that the polynomial aðxÞ is divisible by the polynomial bðxÞ, or that bðxÞ is a
factor of aðxÞ, if there is a polynomial qðxÞ such that bðxÞ � qðxÞ ¼ aðxÞ. A polynomial

pðxÞ that is divisible only by pðxÞ or a, where a is an arbitrary field element in GFðqÞ, is
called an irreducible polynomial.

The greatest common divisor of two polynomials aðxÞ and bðxÞ, denoted by

GCDðaðxÞ; bðxÞÞ, is the monic polynomial of largest degree that divides both of them.

The least common multiple of two polynomials aðxÞ and bðxÞ, denoted by LCMðaðxÞ,
bðxÞÞ is the monic polynomial of smallest degree divisible by both of them. If the greatest

common divisor of two polynomials is 1, then they are said to be relatively prime.

Definition 2.8 For any monic polynomial pðxÞ with nonzero degree over the field F, the
ring of polynomials modulo pðxÞ is the set of all polynomials with degree smaller than

that of pðxÞ, together with polynomial addition and polynomial multiplication modulo

pðxÞ. &

We can prove that the ring of polynomials modulo pðxÞ over GFðqÞ is an extended field

GFðqmÞ if and only if pðxÞ is a monic irreducible polynomial with m-th degree. As an

example, for irreducible polynomial over GFð2Þ with second degree pðxÞ ¼ x2 þ xþ 1, we

have a set f0; 1; x; xþ 1g of GFð22Þ. The addition and multiplication tables are as follows:

þ 0 1 x xþ 1

0 0 1 x xþ 1

1 1 0 xþ 1 x

x x xþ 1 0 1

xþ 1 xþ 1 x 1 0

� 0 1 x xþ 1

0 0 0 0 0

1 0 1 x xþ 1

x 0 x xþ 1 1

xþ 1 0 xþ 1 1 x

2.1.3 Representation for Elements of Galois Fields

Polynomial Representation Definition 2.8 mentions that the set of all polynomials

with degree smaller than that of the irreducible polynomial pðxÞ denotes the ring of

polynomials modulo pðxÞ. That is, by adding zero element to the ring of polynomials

modulo pðxÞ with degree m over GFðpÞ, we have these elements constitute a finite field

of GFðpmÞ.

Vector Representation Let a be an element of GFðpmÞ generated by the irreducible

polynomial pðxÞ with degree m over GFðpÞ. If pðaÞ ¼ 0, then a is a root of pðxÞ. This
means that every element in GFðpmÞ can be expressed by using a. That is, every element

28 MATHEMATICAL BACKGROUND AND MATRIX CODES



can be expressed by polynomial of a with degree smaller than or equal to m� 1.

Let an element of GFðpmÞ be expressed by pm�1am�1 þ pm�2am�2 þ � � � þ p2a2þ
p1aþ p0. Then the coefficient vector of this polynomial can be expressed by

ðpm�1; pm�2; . . . ; p2; p1; p0Þ with length m over GFðpÞ. For example, f0; 1; a; aþ 1g is

a set of elements in GFð22Þ generated by the primitive polynomial pðxÞ ¼ x2 þ xþ 1

over GFð2Þ, each of which is expressed by a vector with length two over GFð2Þ, that
is, fð0; 0Þ, ð0; 1Þ, ð1; 0Þ, ð1; 1Þg.

Power Representation A primitive field element of GFðqÞ is an element a such that

every field element except for zero can be expressed as a power of a. For example, in

the field GFð7Þ we have 31 ¼ 3, 32 ¼ 2, 33 ¼ 6, 34 ¼ 4, 35 ¼ 5, 36 ¼ 1, and 3 is a primi-

tive element of GFð7Þ. Primitive elements are used for constructing fields, so we can

obtain the elements of fields by multiplying powers of the primitive element.

We can constructGFð8Þwith the polynomial pðxÞ ¼ x3 þ xþ 1. By using the primitive

element a ¼ x, we have

a ¼ x;

a2 ¼ x2;

a3 ¼ xþ 1;

a4 ¼ x2 þ x;

a5 ¼ x2 þ xþ 1;

a6 ¼ x2 þ 1;

a7 ¼ 1 ¼ a0:

In the same way we can construct GFð16Þ by the polynomial pðxÞ ¼ x4 þ xþ 1. By

choosing a special polynomial among irreducible polynomials, called a primitive

polynomial, we can construct the field. Here the minimum positive integer e that satisfies

ae ¼ 1 is called an order of a. We can easily prove that a; a2; . . . ; ae�1; ae ¼ 1 are all

distinct. The minimum positive integer e such that the polynomial pðxÞ divides xe � 1 is

called a period, or an exponent of pðxÞ. That is, the period of the irreducible polynomial

pðxÞ is equal to the order of the root of pðxÞ. Also it can be proved that there exists an

irreducible polynomial with degree m over GFðpÞ having period pm � 1, called a primitive

polynomial with degree m. In other words, an element a of GFðpmÞ with order pm � 1 is

called a primitive element in GFðpmÞ, and pm � 1 elements of 1; a; a2; . . . ; ap
m�2, are all

distinct. That is,

GFðpmÞ ¼ f0; 1; a; a2; . . . ; apm�2g:

For a given polynomial pðxÞ with degree m over GFð2Þ, the reciprocal polynomial of
pðxÞ, denoted by pðxÞ�, is defined as

pðxÞ� ¼ xmp
1

x

� �
:

In this case, pðxÞ� is primitive if and only if pðxÞ is primitive.

INTRODUCTION TO ALGEBRA 29



Table 2.1 shows some primitive polynomials with degree less than or equal to 32. (The

reader is referred to Appendix C in [PETE72] for a list of all binary irreducible

polynomials with degree less than or equal to 34.) The polynomials provided in Table 2.1

are polynomials with minimum number of nonzero coefficients.

Matrix Representation Each element in GFðpmÞ can also be expressed by m� m

matrix over GFðpÞ. The following companion matrix is first defined:

Definition 2.9 Given a primitive polynomial pðxÞ of degree m over GFðpÞ, the

companion matrix T corresponding to pðxÞ is defined as follows:

p ,x
m

∑
i 0

pix
i

T =

=
=

––

–

–

–

0 0 0 p0

Im 1

p1
...

. . .

pm 1
m m

p ,0 p , p , . . . ,1 2 pm GF (p),

Im 1 : m 1 ×

×

m 1 identity matrix.

(    )

(                ) (                )

{                                             }

&

The set of powered companion matrices and an m� m zero matrix has the same

structure as GFðpmÞ and is field isomorphic to GFðpmÞ. Therefore we have

f0;T;T2;T3; . . . ;Tpm�2;Tpm�1 ¼ Ig ¼ GFðpmÞ;

TABLE 2.1 Primitive Polynomials over GF (2)

Degree Primitive polynomial Degree Primitive polynomial

1 xþ1 17 x17þ x3þ1
2 x2þ xþ1 18 x18þ x7þ1
3 x3þ xþ1 19 x19þ x5þ x2þ xþ1
4 x4þ xþ1 20 x20þ x3þ1
5 x5þ x2þ1 21 x21þx2þ1
6 x6þ xþ1 22 x22þ xþ1
7 x7þ xþ1 23 x23þ x5þ1
8 x8þ x4þ x3þ x2þ1 24 x24þ x7þ x2þ xþ1
9 x9þ x4þ1 25 x25þ x3þ1
10 x10þ x3þ1 26 x26þ x6þ x2þ xþ1
11 x11þx2þ1 27 x27þ x5þ x2þ xþ1
12 x12þ x6þ x4þ xþ1 28 x28þ x3þ1
13 x13þ x4þ x3þ xþ1 29 x29þ x2þ1
14 x14þ x10þ x6þ xþ1 30 x30þ x23þ x2þ xþ1
15 x15þ xþ1 31 x31þx3þ1
16 x16þ x12þ x3þ xþ1 32 x32þ x22þ x2þ xþ1

Note: Primitive polynomialswithminimumnumberof nonzero coefficients

30 MATHEMATICAL BACKGROUNDAND MATRIX CODES



where I is an m� m identity matrix, and 0 is an m� m zero matrix. The properties of the

companion matrix will be mentioned in Subsection 5.1.1.

Example 2.2
Four types of representation for each element of GFð24Þ generated by pðxÞ ¼ x4þ
xþ 1 are presented. The polynomial pðxÞ is a primitive polynomial over GFð2Þ. Set
pðaÞ ¼ a4 þ aþ 1 ¼ 0. Then a4 ¼ aþ 1. From this result we can construct GFð24Þ.
Some elements of GFð24Þ are

a5 ¼ a � a4 ¼ aðaþ 1Þ ¼ a2 þ a;

a8 ¼ a4 � a4 ¼ ðaþ 1Þ � ðaþ 1Þ ¼ a2 þ 1;

a13 ¼ a � a4 � a8 ¼ aðaþ 1Þða2 þ 1Þ ¼ a4 þ a3 þ a2 þ a;

¼ ðaþ 1Þ þ a3 þ a2 þ a ¼ a3 þ a2 þ 1:

Table 2.2 shows the previous four representations of the elements of GF (24).

2.1.4 Properties of Galois Field GFð2mÞ

It is important to have a knowledge on some properties of basic Galois field of GFð2Þ and
its extension field of GFð2mÞ for designing the codes in binary systems.

A polynomial with coefficients from GFð2Þ may not have roots from GFð2Þ but has
roots from the an extension field of GFð2Þ. For example, x4 þ xþ 1 is an irreducible

polynomial over GFð2Þ, and therefore it does not have roots from GFð2Þ. However, it has
four roots from the field GFð24Þ. If we substitute the elements of GFð24Þ into x4 þ x3 þ 1,

we find a7, a11, a13, and a14 are the roots, where a is a root of x4 þ xþ 1. The reader

TABLE 2.2 Four Representations for Elements of GF(24) Generated by p(x) = x4+x+1

Power representation Polynomial representation Vector representation Matrix representation

0 0 (0 0 0 0) 0

1 1 (10 0 0) T0 ¼ I

a a (010 0) T

a2 a2 (0 010) T2

a3 a3 (0 0 01) T3

a4 1þ a (110 0) T4

a5 aþ a2 (0110) T5

a6 a2þ a3 (0 011) T6

a7 1þ aþ a3 (1101) T7

a8 1þ a2 (1010) T8

a9 aþ a3 (0101) T9

a10 1þ aþ a2 (1110) T10

a11 aþ a2þ a3 (0111) T11

a12 1þ aþ a2þ a3 (1111) T12

a13 1þ a2þ a3 (1011) T13

a14 1þ a3 (10 01) T14

Note: O ¼

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

I ¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

T ¼

0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

INTRODUCTION TO ALGEBRA 31



should check all these roots. Since these are all roots of x4 þ x3 þ 1, then ðxþ a7Þ
ðxþ a11Þðxþ a13Þðxþ a14Þ must be equal to x4 þ x3 þ 1. That is,

ðxþ a7Þðxþ a11Þðxþ a13Þðxþ a14Þ
¼ fx2 þ ða7 þ a11Þxþ a18gfx2 þ ða13 þ a14Þxþ a27g
¼ ðx2 þ a8xþ a3Þðx2 þ a2xþ a12Þ
¼ x4 þ ða8 þ a2Þx3 þ ða12 þ a10 þ a3Þx2 þ ða20 þ a5Þxþ a15

¼ x4 þ x3 þ 1:

Let fðxÞ be a polynomial with coefficients from GFð2Þ. If b, which is an element in

GFð2mÞ, is a root of fðxÞ, the polynomial fðxÞ may have other roots from GFð2mÞ. That is,
b2

z

is also a root of fðxÞ. This is because from ½fðxÞ�2
z

¼ fðx2zÞ, and by substituting b into

this equation, we have ½fðbÞ�2
z

¼ fðb2zÞ, and then from fðbÞ ¼ 0, we have fðb2zÞ ¼ 0.

Therefore b2
z

is also a root of fðxÞ. The element b2
z

is called a conjugate of b. For example,

the polynomial fðxÞ ¼ x6 þ x5 þ x4 þ x3 þ 1 has a4, an element in GFð24Þ, as a root. The
conjugates of a4 are

ða4Þ2 ¼ a8; ða4Þ2
2

¼ a16 ¼ a; ða4Þ2
3

¼ a32 ¼ a2:

That is, a4, a8, a, and a2 are the roots of fðxÞ ¼ x6 þ x5 þ x4 þ x3 þ 1. We can further

check that a5 and its conjugates a10 are roots of fðxÞ ¼ x6 þ x5 þ x4 þ x3 þ 1. Therefore

fðxÞ has six distinct roots in GFð24Þ.
Let b be a nonzero element in the GFð2mÞ. In this case b2

m�1 ¼ 1, as was mentioned

before. Adding 1 to both sides, we have

b2
m�1 þ 1 ¼ 0:

This says that b is a root of the polynomial x2
m�1 þ 1. Hence the 2m � 1 nonzero elements

of GFð2mÞ form all the roots of x2
m�1 þ 1. This can also be said that the elements of

GFð2mÞ form all the roots of x2
m þ x.

Minimal Polynomial Since any element b in GFð2mÞ is a root of the polynomial

x2
m þ x, b may be a root of a polynomial over GFð2Þ with a degree less than 2m. Let

mðxÞ be the polynomial of smallest degree over GFð2Þ such that mðbÞ ¼ 0. This polyno-

mial mðxÞ is called the minimal polynomial of b. Next it can be proved that the minimal

polynomial mðxÞ is irreducible. If mðxÞ is not irreducible, then mðxÞ ¼ m1ðxÞm2ðxÞ,
where both m1ðxÞ and m2ðxÞ have degree larger than 0 and less than the degree of

mðxÞ. Since mðbÞ ¼ m1ðbÞm2ðbÞ ¼ 0, either m1ðbÞ ¼ 0 or m2ðbÞ ¼ 0. This contradicts

the hypothesis thatmðxÞ is a polynomial of smallest degree such thatmðbÞ ¼ 0. Therefore

mðxÞ must be irreducible.

The following is also an important relation as to the minimal polynomial. Let fðxÞ be a
polynomial over GFð2Þ, and also letmðxÞ be the minimal polynomial of a field element b.
If b is a root of fðxÞ, then fðxÞ is divisible bymðxÞ. This is shown as follows: dividing fðxÞ
by mðxÞ, we obtain

fðxÞ ¼ aðxÞmðxÞ þ rðxÞ;

32 MATHEMATICAL BACKGROUND AND MATRIX CODES



where the degree of the remainder rðxÞ is less than the degree ofmðxÞ. Substituting b into

the equation above and using the fact that fðbÞ ¼ mðbÞ ¼ 0, we have rðbÞ ¼ 0. Hence

rðxÞ must be zero and mðxÞ divides fðxÞ.
Next we show how to find the minimal polynomial of a field element; Let mðxÞ be the

minimal polynomial of en element b inGFð2mÞ, and also let e be smallest integer such that

b2
e ¼ b. Then

mðxÞ ¼
Ye�1
i¼0
ðxþ b2

iÞ:

For example, let’s have the minimal polynomial of b ¼ a3 in GFð24Þ defined by the

primitive polynomial pðxÞ ¼ x4 þ xþ 1. The conjugates of b are b2 ¼ a6; b2
2 ¼ a12, and

b2
3 ¼ a24 ¼ a9. The minimal polynomial of b ¼ a3 is

mðxÞ ¼ ðxþ a3Þðxþ a6Þðxþ a12Þðxþ a9Þ:
¼ x4 þ x3 þ x2 þ xþ 1:

Table 2.3 shows the minimal polynomials of the elements in GFð24Þ generated by

pðxÞ ¼ x4 þ xþ 1. Multiplying the polynomials of Table 2.3, we have

x �m0ðxÞ �m1ðxÞ �m3ðxÞ �m5ðxÞ �m7ðxÞ
¼ xðxþ 1Þðx4 þ xþ 1Þðx4 þ x3 þ x2 þ xþ 1Þðx2 þ xþ 1Þðx4 þ x3 þ 1Þ
¼ x16 þ x:

Thus the roots of x16 þ x are all the elements of GFð24Þ. In general, for a, which is a

primitive element in GFðqÞ, we have

xq þ x ¼ x
Yq�2
j¼0
ðxþ ajÞ:

2.2 LINEAR CODES

In this section basic concepts of linear block codes are introduced. First, linear codes are

defined as a subspace of vector space and are described in terms of parity-check matrices

TABLE 2.3 Minimal Polynomials of Elements in GF(24) Generated by

p(x) = x4+x+1

Conjugate roots Minimalpolynomials

0 x
1 xþ1 m0 (x)
a a2 a4 a8 x4þ xþ1 m1 (x)
a3 a6 a12 a9 x4þ x3þ x2þ xþ1 m3 (x)
a5 a10 x2þ xþ1 m5 (x)
a7 a14 a13 a11 x4þ x3þ1 m7 (x)

LINEAR CODES 33



and generator matrices. The parity check equations for a systematic code are derived. The

concept of syndrome is introduced, and the principle of error detection and / or correction by

syndrome is discussed. Alsowe define the minimum distance of a block code, and show that the

error correction and / or detection capabilities of the code are determined by its minimum dis-

tance. Standard array and its decoding are presented as an introduction to the decoding concept.

2.2.1 Vector Space and Subspace

Definition 2.10 A vector space V is a set of vectors over a field F satisfying the

following axioms:

(V1) V is an Abelian group under addition.

(V2) cv 2 V for all v 2 V and for all scalar c 2 F.

(V3) cðuþ vÞ ¼ cuþ cv for all u, v 2 V and for all scalar c 2 F.

(V4) ðaþ bÞv ¼ avþ bv for all v 2 V and for all scalars a, b 2 F.

(V5) ðabÞv ¼ aðbvÞ, 1v ¼ v, and 0v ¼ 0 for all v 2 V and for all scalars a, b 2 F.

&
Axioms (V3) and (V4) are distributive laws, and (V5) is an associative law in the vector

space. The vector space plays an important role in coding theory.

Definition 2.11 A subset S of a vector space V over a field F is called a subspace if it

satisfies all the axioms of a vector space. In order to check whether a subset S of a

vector space V is a subspace, it is necessary only to check the following axioms:

(S1) uþ v 2 S for all u, v 2 S.

(S2) cv 2 S for all v 2 S and for all scalar c 2 F.

&
A linear combination of k vectors v1, v2; . . . ; vk, is a sum of the form

u ¼ c1v1 þ c2v2 þ . . .þ ckvk;

where ci’s are scalars, that is, field elements.

From the above, it can be proved that the set of all linear combinations of a set of k

vectors v1, v2; . . . ; vk, in V over F is a subspace of V.

Linear Dependence / Independence
Definition 2.12 A set of vectors v1, v2; . . . ; vk, is linearly dependent if and only if there

are scalars c1; c2; . . . ; ck, not all zeros over F, such that c1v1 þ c2v2 þ � � � þ ckvk ¼ 0.

&
If the set is linearly dependent, then one of these vectors can be obtained as a linear

combination of the others. For instance, if ck 6¼ 0, then we have

vk ¼ c�1k ðc1v1 þ c2v2 þ � � � þ ck�1vk�1Þ
¼ d1v1 þ d2v2 þ � � � þ dk�1vk�1

for di ¼ c�1k ci and i ¼ 1; 2; . . . ; k � 1.

34 MATHEMATICAL BACKGROUNDAND MATRIX CODES



Definition 2.13 A set of vectors is linearly independent if it is not linearly dependent.

That is, c1v1 þ c2v2 þ � � � þ ckvk 6¼ 0.

&

In such a set, any one of those cannot be obtained as a linear combination of the

others.

Definition 2.14 A set of vectors v1, v2; . . . ; vk, is said to span a vector space V if

and only if every vector in V equals a linear combination of the vectors in the set.

&

In this case, if a set of vectors v1, v2; . . . ; vk, span V, then any set that is linearly

independent in V can have at most k vectors. Readers are recommended to prove this. This

states that there can be at most k linearly independent vectors in a vector space that is

spanned by k vectors. Therefore, if k linearly independent vectors v1, v2; . . . ; vk span V,
then k is said to be the dimension of V and the set fv1; v2; . . . ; vkg is a basis of V. Also in a
k-dimensional space any basis must be exactly of k vectors, and the vectors are linearly

independent. If V is any k-dimensional vector space, then any set of k linearly independent

vectors is a basis of V.

Orthogonality and Null Spaces
Definition 2.15 An inner product or dot product of two k-tuple vectors u and v is a scalar

and is defined as follows:

u � v ¼ ðu1 u2 . . . ukÞ � ðv1 v2 . . . vkÞ ¼ u1v1 þ u2v2 þ � � � þ ukvk:

&
It is easily verified that u � v ¼ v � u and that w � ðuþ vÞ ¼ w � uþ w � v for any k-tuple

vectors u, v, and w.

Definition 2.16 If the inner product of two vectors u and v is zero, that is,

u � v ¼ v � u ¼ 0, then they are said to be orthogonal.

&

Let S1 be a k-dimensional subspace of Vn, where Vn is the vector space of all n-tuple

vectors, such that for any u 2 S2, u is orthogonal to every vector in S1. Then the set of

vectors S2 orthogonal to every vector in subspace S1 of the vector space Vn is also a

subspace. In this case S2 is called the null space of S1. If S2 is the null space of S1,
then it is easy to see that S1 is the null space of S2. The dimension of S2 is given by

the following: if S2 is the null space of a subspace S1 with dimension k in Vn, then

S2 has dimension n� k.

2.2.2 Linear Codes as Vector Spaces

Let the vector space Vn of all n-tuples over GFðqÞ be expressed as

Vn ¼ fða0 a1 a2 . . . an�1Þ j ai 2 GFðqÞg:

LINEAR CODES 35



We define linear codes as follows:

Definition 2.17 A subset C of Vn is a linear code over GFðqÞ if and only if it is a

subspace. &

That is, for all w0, w1 2 C, and for all c0; c1 2 GFðqÞ if

c0w0 þ c1w1

is also included in C, then C is called a linear code over GFðqÞ.
For q ¼ 2, a word 0 ¼ ð0; 0; . . . ; 0Þ is a codeword in C over GFð2Þ. Also, if w1 þ w2 is

a codeword for all w1, w2 2 C, then C is a linear code. As a simple example, set of

fð0 0 0Þ, ð0 1 1Þ, ð1 0 1Þ, ð1 1 0Þg is a linear code because 0 ¼ ð0 0 0Þ is included in the set,
and sum of any two codewords is also a codeword.

Using k codewords w0, w1; . . . ;wk�1 in C, a linear combination of these, that is,

w ¼ c0w0 þ c1w1 þ � � � þ ck�1wk�1; c0; c1; . . . ; ck�1 2 GFðqÞ; ð2:1Þ

is a codeword of C over GFðqÞ from the definition of the linear code. Here we assume that

w0, w1; . . . ;wk�1, are linearly independent over GFðqÞ. Then, if any codeword of C can be

expressed by Eq. (2.1), we call fw0,w1; . . . ;wk�1g a basis of the linear codeC. The number

of codewords k in the basis is called a dimension of the linear codeC, denoted dim Cð Þ. In the
simple example above, there are three kinds of basis, fð0 1 1Þ, ð1 0 1Þg, fð0 1 1Þ, ð1 1 0Þg,
fð1 0 1Þ, ð1 1 0Þg, and dimðCÞ ¼ 2. It can be proved that since w0, w1; . . . ;wk�1, are linearly
independent, the coefficients c0; c1; . . . ; ck�1, are uniquely determined for each codeword.

Therefore the q-ary linear code with dimension dimðCÞ ¼ k has qk distinct codewords.

2.2.3 Matrix Algebra

Basic knowledge of matrix algebra is important for designing matrix codes. This

subsection presents a brief introduction to matrix algebra, and includes the important

matrices that will be applied to block codes in later chapters.

An n� mmatrix is an ordered set of nm elements overGFðqÞ in a rectangular array of n
rows and m columns:

a1;1 a1;2 � � � a1;m
a2;1 a2;2 � � � a2;m

..

. ..
. . .

. ..
.

an;1 an;2 � � � � � � an;m

26664
37775 ¼ ½ai;j�;

where i ¼ 1; 2; . . . ; n, and j ¼ 1; 2; . . . ;m.
The n rows can be thought of as n m-tuples or vectors, and similarly, the m columns can

be thought of as m n-tuples or vectors. The set of elements ai; j for which the column

number and row number are equal is called the main diagonal.

The row space of an n� m matrix is the set of all linear combinations of row vectors of

the matrix. They form a subspace of the vector space of m-tuples. The dimension of the row

space is called the row rank. Similarly the set of all linear combinations of column vectors of

the matrix forms the column space, whose dimension is called the column rank. It can be

shown that if row rank equals column rank, then this is referred to as rank of the matrix.

36 MATHEMATICAL BACKGROUND AND MATRIX CODES



Elementary Row Operations There is a set of elementary row operations defined for

matrices:

(a) Interchange any two rows.

(b) Multiply any row by a nonzero element over GFðqÞ.
(c) Add any multiple of one row to another.

It can be proved that if one matrix is obtained from another by a succession of elementary

operations, both matrices have the same row space. Two matrices are said to be row

equivalent if their row spaces are the same. These row operations are useful for designing

the matrix codes.

Echelon Canonical Form Elementary row operations obtain a simplified form of

matrix that is a standard form. This form is called an echelon canonical form and has

the following characteristics:

1. Every leading element of a nonzero row is 1.

2. Every column containing such a leading element has all its other entries zero.

3. The leading element 1 of any row is to the right of the leading element in every

preceding row. All zero rows are below the nonzero rows.

Example 2.3
For the following matrix over GFð3Þ, we go through six elementary row operations:

2 0 1 2 1 0 1

1 2 1 1 0 1 0

0 1 1 2 1 1 2

24 35:
Step 1. Multiply the first row by 2:

1 0 2 1 2 0 2

1 2 1 1 0 1 0

0 1 1 2 1 1 2

24 35:
Step 2. Add two times the first row to the second:

1 0 2 1 2 0 2

0 2 2 0 1 1 1

0 1 1 2 1 1 2

24 35:
Step 3. Multiply the second row by 2:

1 0 2 1 2 0 2

0 1 1 0 2 2 2

0 1 1 2 1 1 2

24 35:

LINEAR CODES 37



Step 4. Add two times the second row to the third row:

1 0 2 1 2 0 2

0 1 1 0 2 2 2

0 0 0 2 2 2 0

24 35:
Step 5. Multiply the third row by 2:

1 0 2 1 2 0 2

0 1 1 0 2 2 2

0 0 0 1 1 1 0

24 35:
Step 6. Add two times the third row to the first:

1 0 2 0 1 2 2

0 1 1 0 2 2 2

0 0 0 1 1 1 0

24 35:
In step 6 we finally get the echelon canonical form of the matrix. The leading elements

of the above final matrix are in column positions 1, 2, and 4. Nonzero rows of a matrix

in echelon canonical form are linearly independent, and thus the number of nonzero

rows is the dimension of the row space. Note that in the final matrix there are no zero

rows, and hence the dimension of the row space is 3.

In the above example we can get a 3� 3 identity matrix at the left of the final matrix by

exchanging columns 3 and 4, that is,

1 0 0 2 1 2 2

0 1 0 1 2 2 2

0 0 1 0 1 1 0

24 35:
This form of matrix is called a reduced echelon canonical form, or systematic form. Note

that systematic form cannot always be obtained only by row operations. Sometimes

column operations are also required. This form of parity-check matrix is essential

for encoding the input information, which will be discussed in later chapters.

A systematic form of the parity-check matrix can have the identity matrix at the right

most position. Or the weight-1 columns of the identity matrix can be distributed among

other columns, as will be seen in the matrix codes in later chapters.

Nonsingular Matrix
Definition 2.18 The square matrix is said to be nonsingular if it has an inverse matrix, or

if the determinant of the matrix is nonzero. &

This can be said another way, from an algebraic standpoint, that if the rows or columns

of an n� n square matrix are linearly independent, the matrix is said to be nonsingular. It

is apparent that an n� n identity matrix is nonsingular. The companion matrix defined by

38 MATHEMATICAL BACKGROUNDAND MATRIX CODES



Definition 2.9 is also nonsingular. Any nonsingular matrix can be transformed into an

identity matrix by elementary row operations.

It can be proved that if M is an n� m matrix and S is a nonsingular n� n matrix, then

the product of S andM has the same row space asM has. The nonsingular matrices will be

extensively used for designing matrix codes in later chapters.

Transposed Matrix The transpose of an n� m matrix M is an m� n matrix, denoted

MT , whose rows are the columns of M and thus whose columns are the rows of M.

Vandermonde Matrix The following square matrix with elements ai’s from the finite

or infinite field is called a Vandermonde matrix, and its determinant is nonzero if the ele-

ments ai’s are distinct:

1 1 1 � � � 1

a1 a2 a3 � � � an
a1

2 a2
2 a3

2 � � � an
2

..

. ..
. ..

. ..
.

a1
n�1 a2

n�1 a3
n�1 � � � an

n�1

2666664

3777775
n� n

Since the determinant of this square matrix with distinct ai’s is nonzero, the matrix is

nonsingular. This matrix will be used again in later chapters, in particular, in Chapter 7.

2.2.4 Distance and Error Control Capability

We begin with the important concepts of Hamming weight and Hamming distance.

Definition 2.19 The Hamming weight of a vector u ¼ ðu0; u1; . . . ; un�1Þ, denoted by

wðuÞ, is the number of nonzero elements of u. &

Definition 2.20 The Hamming distance between two vectors u and v, denoted by

dðu; vÞ, is the Hamming weight of u� v. The Hamming distance also equals the

number of positions by which the two vectors differ. That is,

dðu; vÞ ¼ wðu� vÞ ¼ wðv� uÞ ð2:2Þ
¼ number of differing positions of u and v:

&
The Hamming distance is a metric in the sense that it is a real number satisfying the

following:

(1) dðu; vÞ> 0 for u 6¼ v ðpositive definitenessÞ
¼ 0 for u ¼ v

(2) dðu; vÞ ¼ dðv; uÞ ðsymmetryÞ
(3) dðu; vÞ þ dðv;wÞ 	 dðu;wÞ ðtriangle inequalityÞ.

The Hamming distance and the Hamming weight can often help us understand the error

control capability of a code. When the codeword v is transmitted, and hence we receive the

LINEAR CODES 39



erroneous word r, the Hamming distance between v and r, meaning dðv; rÞ, is equal to
the number of errors. The Hamming weight of the error vector e ¼ r� v, meaning wðeÞ,
provides the number of errors.

Definition 2.21 The minimum Hamming distance (or minimum distance) dmin of a code

C is the minimum of the distances between all pairs of codewords. &

Since vectors u and v are codewords in a linear code in Eq. (2.2), then u� v or v� u is

also another codeword. Therefore the minimum distance of a linear code is equal to the

minimum weight of its nonzero codewords.

The minimum distance of a code is an important parameter by which we decide the

error control capability of the code. As was mentioned before, every linear code contains a

zero codeword.

Now we consider V, the set of all n-tuples over GFð2Þ, and let a subset C 
 V be a code

with minimum distance d. The codeword is used as a transmitted word. At the receiver, the

received word is checked to see whether or not it is a codeword. If it is a codeword, then it is

accepted; otherwise, it is considered to be an erroneous word, and the errors are detected.

Let us consider the relation between the minimum distance and the code capability.

Error Detection If the code has the minimum distance at least d, then the code detects

any error pattern of weight d � 1 or less. No pattern of d � 1 or fewer errors can change

the transmitted codeword into another codeword. This is because dmin is d. Therefore such

errors can be detected. This means that the code with dmin ¼ d guarantees detection of

d � 1 or fewer errors.

Error Correction If the code has the minimum distance dmin larger than or equal to

2t þ 1, then the code can correct all patterns of t or fewer errors. Here we consider

the n-dimensional spheres of radius t for each codeword as its center. These spheres

are all disjoint, and for any t or fewer errors from a codeword, the erroneous words

are present within the bounds of the respective sphere. On the other hand, if the mini-

mum distance is less than 2t þ 1, the t-error patterns have cases to result in a received

word at least as close to an incorrect codeword as it is to the correct codeword. From

these, as far as any erroneous words are present within the bounds of the sphere, these

can be recovered to the correct words.

Error Correction and Detection If the minimum distance of the code dmin is larger

than or equal to t þ d þ 1, then the code can correct any combination of t errors and detect

up to d errors where d is larger than or equal to t. We consider again spheres of radius t

from each codeword as its center. For a codeword, t or fewer errors cause the received

word to fall within its own sphere. That is, these errors can be corrected. Any errors lar-

ger than t but less than dð	 tÞ apart from the center of the spheres can be detected

because the received words are outside all these spheres. The spheres are basically all

disjoint, because if there is an intersection containing a word, then this word is, at

most, distance t from two codewords, whereas the two codewords are apart by more

than 2t þ 1. This violates triangle inequality, and is therefore impossible. Similarly, if

the number of errors are larger than t but not larger than d, then the received word is

outside these spheres, so the errors can be detected but not corrected. The above relations

between the minimum distance and the code capability are illustrated in Figure 2.1.

40 MATHEMATICAL BACKGROUND AND MATRIX CODES



Erasure Correction Erasures usually correspond to detected signals that are considered

to be in a certain ‘‘no-confidence zone.’’ In the binary systems the erasure zone is inter-

mediate between the 1-zone and the 0-zone. In general, an erasure implies an unknown

bit or symbol at a known location. With a t-error correcting code, any pattern of 2t erasures

is correctable. This follows from the fact that with 2t erasures any two n-tuple words result-

ing from different substitutions can differ at most 2t positions. In this case a t-error correct-

ing code has a distance at least 2t þ 1, which means these n-tuple words cannot both be

codewords. In general, error control codes with minimum Hamming distance dmin ¼ d

can correct d � 1 erasures. For example, code C with dmin ¼ 3 and n ¼ 3, meaning

C ¼ f111; 000g, so at most two erasures can be corrected as shown in the following:

1 1 1 0 0 0

x 1 1 x 0 0

1 x 1 0 x 0

1 1 x 0 0 x

x x 1 x x 0

x 1 x x 0 x

1 x x 0 x x

That is, any received word in a column of the above array can be decoded by simply going

to the top word, which is the codeword of the column.

In real systems, erasures are often compounded with nonerasure errors. There is a trade-

off between the number of correctable errors and erasures. For example, a multiple error

correcting code is capable of correcting any combination of t errors and e erasures as long

as the minimum distance of the code dmin is at least 2t þ eþ 1.

2.2.5 Parity-Check Matrices for Linear Codes

In block coding, the binary information sequence is segmented into message block with

fixed length of k information bits. This means that there are 2k distinct messages. According

to certain rules, the encoder transforms each input message into a binary n-tuple word where

n > k. This binary n-tuple word is referred to as a codeword. Therefore there are 2k

d

t

Correctable area

Detectable area (gray area)

d    t + d + 1>min

(d t )>

Codeword (A, B)

Erroneous word

Erroneous word

d

t

dminA B

(Correctable)

(Uncorrectable, but detectable)

Figure 2.1 Decoding spheres.

LINEAR CODES 41



codewords corresponding to the 2k possible messages. This set of codewords is called a

block code. There is one-to-one correspondence between a message and its codeword.

Definition 2.22 A block code with length n and having 2k codewords is called a linear

ðn; kÞ code if and only if its 2k codewords form a k-dimensional subspace of the vector

space of all the n-tuples overGFð2Þ. &

A binary block code is linear if and only if the modulo-2 sum of two codewords is also a

codeword. Codeword of a linear block code has the systematic structure as shown in

Figure 2.2 where a codeword is divided into two parts, the information part and the check

part. The information part consists of k information bits and the check part consists of

r ¼ n� k parity-check bits. Each check bit is determined by linear sum of information

bits. A linear block code having this structure is called a linear systematic block code.

Parity-Check Matrix Here we define the r � k binary encoding matrix He that deter-

mines r check bits by linear sum of information bits. That is, the encoding matrix deter-

mines which information bits are added over GFð2Þ in order to generate check bits.

He ¼

h0;0 h0;1 � � � � � � h0;k�1

h1;0 h1;1 � � � � � � h1;k�1

..

. ..
. . .

. ..
.

hr�1;0 hr�1;1 � � � hr�1;k�1

266664
377775;

hi; j 2 GFð2Þ; 0 � i � r � 1; 0 � j � k � 1:

Let the vector with r check bits be denoted as c ¼ ðc0 c1 . . . cr�1Þ and the vector with k

information bits be as d ¼ ðd0 d1 d2 . . . dk�1Þ. Then r check bits are determined by the

following relation:

c ¼ d �He
T ;

where He
T means transpose of He. By appending these r check bits to the input k

information bits, the n-bit codeword v can be generated, meaning v ¼ ½d c�. That is,

c0 ¼ d0h0;0 þ d1h0;1 þ � � � þ dk�1h0;k�1

c1 ¼ d0h1;0 þ d1h1;1 þ � � � þ dk�1h1;k�1

� � �
cr�1 ¼ d0hr�1;0 þ d1hr�1;1 þ � � � þ dk�1hr�1;k�1;

and finally we have a codeword of v ¼ ðd0 d1 . . . dk�1 c0 c1 . . . cr�1Þ.

n bits

Information  part Check  part

k bits r bits

Figure 2.2 Systematic structure of codeword.

42 MATHEMATICAL BACKGROUND AND MATRIX CODES



Next we define the r � nmatrixH, where the r � r identity matrix Ir is appended to the

r � k matrixHe, meaningH ¼ ½He Ir�. This matrix is called a parity-check matrix or anH

matrix that expresses the systematic error control code. The codes expressed by the parity-

check matrix are called matrix codes in this book.

 ���������������� n�����������������!

H ¼ ½He Ir � ¼

h0

h1

..

.

hr�1

266664
377775 ¼

h0;0 h0;1 � � � h0;k�1 1 0 � � � 0

h1;0 h1;1 � � � h1;k�1 0 1 � � � 0

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

hr�1;0 hr�1;1 � � � hr�1;k�1 0 0 � � � 1

266664
377775
x???
r???y
;

 ����������� k ���������! ����� r����!

hi ¼ ðhi;0 hi;1 � � � hi;k�1 0 0 � � � 0 1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{i

0 � � � 0Þ;
 ���� k ����! �����r�����!

hi; j 2 GFð2Þ; 0 � i � r � 1; 0 � j � k � 1:

From the above, we have the following important relation:

v �HT ¼ 0; ð2:3Þ

where v is an n-bit codeword and 0 is an r-bit zero row vector. That is, we obtain

d0hj;0 þ d1hj;1 þ � � � þ dk�1hj;k�1 þ cj ¼ 0 for j ¼ 0; 1; � � � ; r � 1:

Therefore an ðn; kÞ linear code is completely specified by its parity-check matrix H. There

exists an r � n matrix H such that an n-tuple vector v is a codeword in C if and only if

v �HT ¼ 0.

The linear block codes do not necessarily have the previous systematic form of H. In

this case nonsystematic form ofH can be transformed into systematic form by performing

the elementary row operation shown in the previous Subsection 2.2.3.

There exist important relations between H matrix column vectors, linear dependence /

independence, and minimum Hamming distance dmin.

Theorem 2.1 For any codeword v having weight d in a linear code C, d columns of its

H matrix are linearly dependent.

It can easily be proved that d columns ofH are linearly dependent because only d elements

of v are nonzero in Eq. (2.3).

Note that the distance of the code is also its minimum weight and every column in H is

a nonzero vector. The minimum weight is d if and only if no d � 1 or fewer columns of H

are linearly dependent. From this, the following theorem holds:

Theorem 2.2 A linear code C has minimum distance dmin if and only if every dmin�1 or

fewer columns of its H matrix are linearly independent.

LINEAR CODES 43



Theorem 2.2 is important not only in determining the distance of a code but also in

constructing the matrix codes with distance d.

Example 2.4
The following H matrix over GFð3Þ is assumed to be given:

H ¼
1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 2 2 2 0 0 0 1 1 1 0

1 2 0 1 2 0 1 2 0 1 2 0 1

24 35:
First, we note that every column is nonzero vector. If the received vector r is of weight 1,
then r �HT is equal to the column vector pattern corresponding to the nonzero element in

r, and hence is nonzero. Therefore r is not a codeword. Consider r ¼ ð0001000200000Þ
with weight two, meaning wðrÞ ¼ 2. Then r �HT ¼ ð121Þ þ 2ð102Þ ¼ ð022Þ 6¼ ð000Þ.
Therefore r is not a codeword. If two columns are linearly dependent, then one column

vector is a multiple of another column vector; this is not the case in the H matrix.

Therefore there cannot be a codeword with weight two. If r ¼ ð0001000201000Þ, then
r �HT ¼ ð121Þ þ 2ð102Þ þ ð011Þ ¼ ð000Þ, so r is a codeword. That is, these three

columns of H are linearly dependent. Therefore we conclude that the minimum distance

of the example code is 3.

Generator Matrix Since an ðn; kÞ linear code C is a k-dimensional subspace of the

vector space Vn of all the binary n-tuples, it is possible to find k linearly independent code-

words, g0, g1; . . . ; gk�1, in C such that every codeword v in C is a linear combination of

these k codewords, that is,

v ¼ d0g0 þ d1g1 þ � � � þ dk�1gk�1;

where di 2 f0; 1g for i ¼ 0; 1; � � � ; k � 1. These k linearly independent codewords are

arranged as the rows of a k � n matrix as follows:

G ¼

g0
g1

..

.

gk�1

26664
37775 ¼

g0;0 g0;1 � � � g0;n�1
g1;0 g1;1 � � � g1;n�1

..

. ..
. . .

. ..
.

gk�1;0 gk�1;1 � � � gk�1;n�1

26664
37775;

where gi ¼ ðgi;0 gi;1 . . . gi;n�1Þ for 0 � i � k � 1. Therefore the codewords can be

generated by the following relation:

v ¼ d �G

¼ ðd0 d1 � � � dk�1Þ �

g0

g1

..

.

gk�1

266664
377775:

44 MATHEMATICAL BACKGROUND AND MATRIX CODES



The rows of G span the code space and hence generate the ðn; kÞ linear code C. Any k

linearly independent codewords of C can be used to form this matrix. From this relation,

the matrix G is called a generator matrix for C.
Let us turn to the relation between the matrices H and G. From Eq. (2.3) any vector in

the row space of G, meaning any codeword, is orthogonal to the rows of H. That is, any

vector that is orthogonal to the rows of H is in the row space of G. This implies that

G �HT ¼ 0:

In other words, the H matrix can be generated by the G matrix, and also any linear code

can be expressed by the H matrix.

Syndrome Let v ¼ ðd0 d1 . . . dk�1 c0 c1 . . . cr�1Þ be a codeword that is transmitted

under noisy circumstances, that is, transmitted through the medium of air, storage, line,

and so forth, that may cause some errors. Also let r ¼ ðd00 d01 . . . d
0
k�1 c00 c01 . . . c

0
r�1Þ be

the received word at the output of the medium that may contain errors. Because of the

errors, r may be different from v. If the errors are added to v, then we have the vector sum

r ¼ vþ e;

where e ¼ ðe0 e1 . . . en�1Þ is an n-tuple vector and is called an error vector or an error

pattern. In this case ei ¼ 1 means that the value of i-th element of r is not equal to that of

the corresponding i-th element of v, that is , error is existed in the i-th element of r. On the

other hand, ei ¼ 0 means that both i-th elements of r and v have an equal value, that is,

there exists no error in the i-th element of r.

Upon receiving r, the decoder determines whether r contains errors or not, and then

takes the action of detection, location, or correction if errors are existed. When r is

received, the decoder performs the following computation:

S ¼ r �HT

¼ ðS0 S1 . . . Sr�1Þ:

The output of S is called the syndrome of r. If S ¼ 0, then v is a codeword, and there exist no
errors in r; if S 6¼ 0, then r is not a codeword. The syndrome S computed from the received

vector r depends only on the error pattern e, and not on the transmitted codeword v. This is

because r is the vector sum of v and e. So it follows from the above computation that

S ¼ r �HT ¼ ðvþ eÞ �HT ¼ v �HT þ e �HT :

Since v �HT ¼ 0 from Eq. (2.3), the syndrome S depends only on e as

S ¼ e �HT : ð2:4Þ

Syndrome Decoding for Standard Array Once we have calculated the syndrome,

we need to identify the original codeword, which is the actual transmitted codeword, from

LINEAR CODES 45



the syndrome. Because it helps in understanding the decoding concept, we introduce the

standard array. The standard array is the same as the array in the coset decomposition

discussed in Subsection 2.1.1 whose elements are n-tuple words over GFð2Þ and the

operation � is an addition on GFð2Þ.
Let C be an ðn; kÞ linear code. Let v0, v1; . . . ; v2k�1 be the codewords of C. No matter

what codeword is transmitted under noisy circumstances, the received word r will be any

of the 2n n-tuple words over GFð2Þ. The decoding scheme at the receiver uses a rule to

partition the 2n possible received words into disjoint subsets D0, D1; . . . ;D2k�1 such that

the codeword vi is contained in the subset Di for 0 � i � 2k � 1. Thus each subset Di has

one-to-one correspondence to a codeword vi. If the received word r is found in the subset

Di, then r is decoded into vi. Correct decoding is performed if and only if the received

word r is in the subset Di that corresponds to the actual codeword transmitted.

The method to partition the 2n possible received words into 2k disjoint subsets depends

on the coset decomposition concept. Each subset contains one and only one codeword. The

partition is based on the linear structure of the code. The 2k codewords of C are placed in a

row including an all-zero codeword v0 ¼ ð0 0 0 . . . 0Þ in the first left-most position.

From the remaining 2n � 2k n-tuple words, an n-tuple e1 is chosen and is placed under v0.

Next a second row is formed by adding e1 to each codeword vi in the first row and placing

the sum e1 þ vi under vi. Having completed the second row, an unused n-tuple e2 is chosen
from the remaining n-tuple words and is placed under e1. A third row is formed by adding

e2 to each codeword vi in the first row and placing e2 þ vi under vi. We continue this

process until all the n-tuple words are used. Then we have an array of rows and columns as

shown in Figure 2.3. This array is called a standard array of the given linear code C.
The construction rule of a standard array says that the sum of any twowords in the same

row is a codeword in C. Also it can be proved that no two n-tuple words in the same row

are identical. Also every n-tuple word appears in one and only one row. There are then

v  = 00

e1

e2

e i

e2      -1n - k

v1

e2      -1n - k v1+

e i v1+

e2 v1+

e1 v1+

v2

e2      -1n - k v2+

e i v2+

e2 v2+

e1 v2+

vj

e2      -1n - k vj+

e i vj+

e2 vj+

e1 vj+

v2   -1k

e1+ v2   -1k

e2+ v2   -1k

e i + v2   -1k

e2      -1n - k +v2   -1k

Coset (i-th)

Coset leaders

Set of
codewords

Disjoint
subset Dj

Figure 2.3 Standard array for an ðn; kÞ linear code.

46 MATHEMATICAL BACKGROUND AND MATRIX CODES



2n=2k ¼ 2n�k ¼ 2r distinct rows in the standard array, and each row consists of 2k distinct

words. These 2r rows are called cosets of the code C and the first n-tuple ej of each coset is

called a coset leader, mentioned in Subsection 2.1.1.

Example 2.5
We consider the ð6; 3Þ linear code expressed by the following H matrix:

H ¼
1 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1

24 35:
The standard array of this code is shown in Figure 2.4.

A standard array of an ðn; kÞ linear code C consists of 2k disjoint columns, meaning 2k

disjoint subsets. Each column consists of 2n�k ¼ 2r n-tuple words, with the topmost one as

a codeword in C. Let Dj denote the j-th column of the standard array. Then

Dj ¼ fvj e1 þ vj e2 þ vj . . . e2n�k�1 þ vjg; ð2:5Þ

where vj is a codeword of C and e0ð¼ v0Þ; e1; e2; . . . ; e2n�k�1, are the coset leaders. The 2k
distinct columns D0, D1; . . . ;D2k�1, can be used for decoding the code C. Assume that

the codeword vj is transmitted. From Eq. (2.5) the received word r is in Dj if the error

pattern is a coset leader. In this case the received word r is decoded correctly into

the transmitted codeword vj. On the other hand, if the error pattern is not a coset leader, an

erroneous decoding will be performed. That is, the decoding is correct if and only if the

error pattern is a coset leader. For this reason the 2n�k ¼ 2r coset leaders including the zero

codeword are called the correctable error patterns. Every word included in the same coset

has the same syndrome, and in addition no two syndromes in different cosets are equal.

Therefore every ðn; kÞ linear block code is capable of correcting 2n�k error patterns.

The decoding the received word in the standard array is performed in the following steps:

Step 1. Compute the syndrome of r, that is, r �HT .

Step 2. Locate the coset leader ei whose syndrome is equal to r �HT . Then ei is assumed

to be the error pattern.

Step 3. Decode the received word r into the codeword v ¼ rþ ei.

Coset leaders Syndromes
v0 v1 v2 v3 v4 v5 v6 v7

000000 100110 010101 001011 110011 101101 011110 111000 000
e1 : 100000 000110 110101 101011 010011 001101 111110 011000 110
e2 : 010000 110110 000101 011011 100011 111101 001110 101000 101
e3 : 001000 101110 011101 000011 111011 100101 010110 110000 011
e4 : 000100 100010 010001 001111 110111 101001 011010 111100 100
e5 : 000010 100100 101111 001001 110001 101111 011100 111010 010
e6 : 000001 100111 010100 001010 110010 101100 011111 111001 001
e7 : 100001 000111 110100 101010 010010 001100 111111 011001 111

Figure 2.4 Standard array for (6, 3) code.

LINEAR CODES 47



2.3 BASIC MATRIX CODES

In this section the typical error control codes are introduced. These codes are basic to the

design of practical codes that should fit the requirements of future applications.

As was mentioned before, a linear code can be expressed by a parity-check matrix or

by a generator polynomial. Here we will use matrix form of expression for the basic

codes.

2.3.1 Simple Parity-Check Codes

In digital systems parity check is usually used to detect errors because this requires only

one check bit and is implemented by very simple encoder / decoder hardware. Parity check

has been extensively applied to logic systems and memory systems, including data-path

logic circuits, arithmetic logic circuits, high-speed memories, and so forth. Among the

variety of error control codes the simple parity-check code is the easiest to use, and it is

first presented precisely to help the reader understand the matrix code.

A parity-check bit is determined to make the total number of 1’s in a codeword even.

For example, assume that an eight-bit input word d ¼ ð0 1 1 1 0 1 0 1 Þ is given. Since d

includes five 1’s, a parity bit p is determined to be 1 in order to make the total number of 1’s

even. The parity bit p is appended to d, and this results in the codeword v ¼ ðd pÞ ¼
ð0 1 1 1 0 1 0 1 1Þ having even number of 1’s. For this reason a simple parity-check code is

sometimes called an even parity code. Alternatively, this encoding procedure can also be

performed for odd number of 1’s; then it is called an odd parity code.

The above encoding procedure can be expressed in mathematical form. That is, for a

given k-bit input word d ¼ ðd0 d1 . . . dk�1Þ, where di 2 GFð2Þ, 0 � i � k � 1, a parity

bit p is generated by

p ¼ d �HT
e ;

¼ d0 þ d1 þ � � � þ dk�1;

whereHe ¼ ð1 1 . . . 1Þwith the row vector consisting of k 1’s. The calculation by addition

is performed over GFð2Þ, so the ‘‘þ’’ denotes modulo-2 addition. The codeword of the

simple parity-check code C is v ¼ ðd pÞ ¼ ðd0 d1 . . . dk�1 pÞ.
The decoding procedure is as follows: for the received word r with k þ 1 bits, meaning

r ¼ ðd0 p0Þ ¼ ðd00 d01 . . . d0k�1 p0Þ, a parity check is performed as

S ¼ r �HT

¼ ðd00 d01 � � � d0k�1 p0Þ � ð1 1 � � � 1 1 ÞT

¼ d00 þ d01 þ � � � þ d0k�1 þ p0;

where H is a row vector with k þ 1 1’s, or

H ¼ ½1 1 � � � 1 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
kþ1

�: ð2:6Þ

Calculation is then performed over GFð2Þ, and S is the parity-checked output, called a

syndrome. If an error exists in the received word, the error e ¼ ðe0; e1; . . . ; ek�1; epÞ,

48 MATHEMATICAL BACKGROUND AND MATRIX CODES



where ei 2 GFð2Þ, ði ¼ 0; 1; . . . ; k � 1; pÞ, is added to the transmitted word v. Hence

r ¼ vþ e ¼ ðd0 þ e0 d1 þ e1 . . . dk�1 þ ek�1 pþ epÞ, where ri ¼ d0i ¼ di þ ei and

rp ¼ p0 ¼ pþ ep for 0 � i � k � 1. Then the syndrome S is expressed as

S ¼ r �HT

¼ ðvþ eÞ �HT ¼ v �HT þ e �HT

¼ e �HT ¼ e0 þ e1 þ � � � þ ek�1 þ ep ð, v �HT ¼ 0Þ: ð2:7Þ

In the above equations, S ¼ 1 indicates an error detection if there exists an odd number of

1’s in r, or in e. Therefore addition over GFð2Þ turns out to be 1.

Equation (2.7) indicates that there exists a one-to-one correspondence between an

element of r and a column of H. An element ‘‘1’’ in H means that the corresponding

element of r is added over GFð2Þ, that is, checked.
On this basis the simple parity-check code can be defined as a matrix code by the

following definition:

Definition 2.23 A ðk þ 1; kÞ simple parity-check code is defined and expressed by

1� ðk þ 1Þ parity-check matrix having k þ 1 1’s, that is, one row vector composed of

k þ 1 1’s. &

Let us explore the error control capability of a simple parity-check code C. It can be

easily understood that the minimum Hamming distance of C is two, meaning dmin ¼ 2.

From Subsection 2.2.4 we know that a simple parity-check code can detect single-bit

errors. The following theorem, however, clarifies the error detection capability of the

simple parity-check code.

Theorem 2.3 Simple parity-check codes detect any odd number of bit errors but never

detect even number of bit errors.

Theorem 2.3 can be easily proved by Eq. (2.7). Recall that an odd number of 1’s in e,

meaning wðeÞ ¼ odd number, always leads to S ¼ 1, whereas an even number of 1’s in e

always leads to S ¼ 0. Theorem 2.3 tells us that only one additional check bit to the

original input word will lead to an error detection of any odd number of bit errors. This is

why the simple parity-check codes are so efficient and hence so much in use in digital

systems.

The simple parity-check code is usually expressed over GFð2Þ. The corresponding

nonbinary check code is called a checksum code over integer set modulo q, meaninig Zq,

where q is an integer larger than 2. One check symbol is determined by sum modulo q of

the other information symbols of the input word. This code will be mentioned in more

detail in Subsection 12.3.2.

2.3.2 Hamming Single Error Correcting (SEC) Codes

From Subsection 2.2.4 we know that a code with minimum Hamming distance dmin ¼ 3,

called distance-3 code, can correct single errors or detect double errors in the received

word. Further from Theorem 2.2 of Subsection 2.2.5 we have that any two column vectors

in theHmatrix (i.e.,HSEC) of the distance-3 code are linearly independent. The distance-3

BASIC MATRIX CODES 49



codes can be used either as single error correcting (SEC) codes or as double error detecting

(DED) codes. Here we will study the single error correcting Hamming code [HAMM50].

Definition 2.24 An ðn; kÞ single error-correcting code is expressed by an ðn� kÞ � nH
matrix in which any two nonzero column vectors are linearly independent. &

Example 2.6
The binary ð7; 4Þ SEC code expressed by the following H matrix:

HSEC ¼
1 1 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

24 35:
The corresponding codeword v ¼ ðd0 d1 d2 d3 c0 c1 c2Þ has four data bits in the

former four positions in v and three check bits in the latter three positions. The check

bits are computed by the following equations over GFð2Þ:

c0 ¼ d0 þ d1 þ d2;

c1 ¼ d0 þ d2 þ d3;

c2 ¼ d0 þ d1 þ d3:

At the start of decoding the following syndrome calculation is performed for the

received word r ¼ ðd00 d01 d02 d03 c00 c01 c02Þ:

S0 ¼ d00 þ d01 þ d02 þ c00;

S1 ¼ d00 þ d02 þ d03 þ c01;

S2 ¼ d00 þ d01 þ d03 þ c02:

The syndrome obtained from the calculation above is denoted as S ¼ ðS0 S1 S2Þ, which
indicates the erroneous bit positions if single-bit errors occur. That is, if the binary

syndrome pattern is identical to a particular binary column vector in H, then the bit

corresponding to the column vector is determined to be in error. The indicated bit is

inverted and finally corrected. Suppose that in the example code above the second bit d1
is in error. We then obtain the syndrome S ¼ ð1 0 1Þ, which is identical to the second

column vector in H. Therefore the second bit in r is inverted and finally corrected.

Figure 2.5 shows the encoder and the decoder of this code, where bd0, bd1, bd2, and bd3 are
the decoded output data.

If double-bit errors occur, there is the risk of miscorrection. In the ð7; 4Þ code of this
example, if the d2 and d3 bits are in error, then S ¼ ð110Þ þ ð011Þ ¼ ð101Þ, which
indicates that the d1 bit is in error. So the d1 bit will be corrected, that is, miscorrected.

In this example code, if the second column is deleted from theHSEC, which then expresses

a ð6; 3Þ SEC code, the double-bit errors given above will lead to no miscorrection. In

general, if the nonzero syndrome pattern is not identical to any column vectors in HSEC,

then the errors can be detected.

From the example above we can easily design the binary SEC code. The H matrix of

the binary SEC code is constructed by choosing distinct nonzero binary column vectors.

50 MATHEMATICAL BACKGROUND AND MATRIX CODES



The maximum number of these columns is 2r � 1. In other words, the maximum code

length of a binary ðn; kÞ SEC code is n ¼ 2n�k � 1, where n� k ¼ r. The code whose

code length is less than the maximum length is called a shortened code. The shortened

code has a possibility to detect some additional errors beyond the guaranteed error control

capability of the code.

d0

d1

d2

d3

d0

d1

d2

d3

c2

c1

c0

: 3-Input parity checker
(3-Input modulo-2 adder)

(a) Encoder

d0

d1

d2

d3

d0

d1

d2

d3

c2

c1

c0

(b) Decoder

: 4-Input parity checker
(4-Input modulo-2 adder)

: Exclusive-OR gate

: 3-Input AND gate

: Inverter gate

Encoded
output

data

Decoded
output

data

Received data

Input data

S0

S1

S2

′

′

′

′

′

′

′

Figure 2.5 Encoder and decoder of the Hamming (7, 4) SEC code.

BASIC MATRIX CODES 51



The ðn; kÞ binary SEC codes, in general, have the following code parameters:

Check-bit length r ¼ n� k.

Maximum code length in bits n ¼ 2r � 1.

Maximum information-bit length (or data length in bits) k ¼ n� r ¼ 2r � 1� r.

2.3.3 Hamming Single Error Correcting and Double Error Detecting
(SEC-DED) Codes

The distance-4 code is a single error correcting and double error detecting code that is

called a Hamming SEC-DED code [HAMM50]. The code is designed by adding a simple

parity check of n bits to the SEC codes. That is, the H matrix of this code is designed by

adding a row vector with all 1’s, and also adding a weight-1 column vector with upper

r � 1 all 0’s to the ðr � 1Þ � ðn� 1Þ H matrix of the binary SEC code. The H matrix,

denoted as HSEC�DED, is written as

H ,SEC-DED

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...
HSEC

0
0
...

. . .

0

r – 1

– 1
1 1 1 1

n 1
1

= ð2:8Þ

where HSEC is an H matrix of a single-error correcting (SEC) code, and r ¼ n� k.

Definition 2.25 An ðn; kÞ single-bit error correcting and double-bit error detecting

(SEC-DED) code is defined and expressed by an r � n H matrix shown in

Eq.(2.8). &

Unlike the SEC code this code requires an extra overall parity check of its encoding and

decoding. In the encoding the following overall parity bit cr is generated and appended to

the remaining r � 1 generated check bits:

cr�1 ¼ d0 þ d1 þ � � � þ dk�1 þ c0 þ c1 þ � � � þ cr�2:

The syndrome calculation is performed in the same way by making a parity calculation:

Sr�1 ¼ d00 þ d01 þ � � � þ d0k�1 þ c00 þ c01 þ � � � þ c0r�1:

The decoding of the SEC-DED codes is performed by the calculated syndrome

S ¼ ðS0; S1; . . . ; Sr�1Þ as follows:

Step 1. If S ¼ 0, then the received word is error-free.

Step 2. If S 6¼ 0 and Sr�1 ¼ 1, then an odd number of errors, likely single-bit errors, have

occurred. If the syndrome pattern is identical to a column vector in H, the corresponding

bit is in error and then inverted, that is, corrected. If the syndrome pattern is not identical

52 MATHEMATICAL BACKGROUND AND MATRIX CODES



to any column vector inH, then three or the larger odd number of errors is detected. That

is, uncorrectable errors are detected.

Step 3. If S 6¼ 0 and Sr�1 ¼ 0, then the even number of errors, likely double-bit errors,

are detected. As a result uncorrectable errors are detected.

A modified Hamming SEC-DED code will be discussed in Chapter 4. It is constructed

by using all odd-weight-column vectors in the H matrix. That is, there is no overall parity

check. This code is called an odd-weight-column SEC-DED code, or a modified Hamming

SEC-DED code, which brings smaller decoder hardware and higher decoding speed than

the Hamming SEC-DED code [HSIA70].

It can be easily proved that the ðn; kÞ binary SEC-DED codes have the maximum code

length in bits n ¼ 2n�k�1.

2.3.4 Cyclic Codes

Cyclic codes are a class of typical linear polynomial codes. Encoding and decoding are

performed mainly by linear feedback shift register (LFSR) circuits and therefore operated

serially bit by bit. There are efficient cyclic codes for detecting and / or correcting random

errors, burst errors, and byte errors. They have inherent algebraic structure, and hence

there exist various serial decoding methods. Usually the codes are expressed by generator

polynomials.

Algebraic Structure of Cyclic Codes First, we consider the codeword of a linear

cyclic code C over GFðqÞ as v ¼ ðvn�1 vn�2 . . . v2 v1 v0Þ, called a code vector, where

vj 2 GFðqÞ; j ¼ 0; 1; . . . ; n� 1. In a cyclic code this n-tuple vector is expressed by poly-

nomial over GFðqÞ. That is,

vðxÞ ¼ vn�1x
n�1 þ � � � þ v1xþ v0:

This is called a code polynomial of v. There exists a one-to-one correspondence between the

code vector v and the code polynomial vðxÞ. Herewe have another vector vðiÞ that is cyclically
shifted i places to the left in the previous n-tuple vector v, called a cyclic i-shift of v:

vðiÞ ¼ ðvn�i�1 vn�i�2 . . . v2 v1 v0 vn�1 vn�2 . . . vn�iþ1 vn�iÞ:

The code polynomial that corresponds to the code vector vðiÞ is

vðiÞðxÞ ¼ vn�i�1x
n�1 þ vn�i�2x

n�2 þ � � � þ v2x
iþ2 þ v1x

iþ1 þ v0x
i

þ vn�1x
i�1 þ vn�2x

i�2 þ � � � þ vn�iþ1xþ vn�i: ð2:9Þ

Definition 2.26 An ðn; kÞ linear code C is called a cyclic code if every cyclic shift of a

code vector in C is also a code vector in C. &

The code polynomial corresponding to vðiÞ is expressed as

½xivðxÞ� mod xn � 1:

BASIC MATRIX CODES 53



That is,

½xivðxÞ� mod xn � 1 ¼ vðiÞðxÞ: ð2:10Þ

Since cyclic code is a linear code, the linear combination of the code polynomials is also a

code polynomial. That is, for an arbitrary positive integer r and wi 2 GFðqÞ,

Xr
i¼1

wi½xivðxÞ� mod xn � 1 ¼ ½wðxÞvðxÞ� mod xn � 1:

Here
Pr

i¼1 wix
i ¼ wðxÞ, which is an arbitrary polynomial with degree r over GFðqÞ.

Next we consider the code polynomial gðxÞ with minimum degree r. Let bðxÞ be a

residue of vðxÞ divided by gðxÞ. Then the following relation holds:

vðxÞ ¼ aðxÞgðxÞ þ bðxÞ;

where aðxÞ is a quotient polynomial and the degree of bðxÞ is less than that of gðxÞ. The
degree of aðxÞgðxÞ is equal to that of vðxÞ, less than or equal to n� 1. From the previous

discussion, since gðxÞ is a code polynomial, then aðxÞgðxÞ is also a code polynomial. The

polynomial bðxÞ can be expressed by

bðxÞ ¼ vðxÞ � aðxÞgðxÞ:

This says that bðxÞ is equal to the difference of two code polynomials, which is also a code

polynomial. That is, bðxÞ is a code polynomial. This contradicts that the degree of bðxÞ is
less than that of gðxÞ. Therefore bðxÞ ¼ 0. So the following theorem characterizes an

important property of a cyclic code.

Theorem 2.4 Let gðxÞ be the nonzero code polynomial with minimum degree in an

ðn; kÞ cyclic code C. A binary polynomial with degree n�1 or less is a code polynomial

if and only if it is a multiple of gðxÞ.

The polynomial gðxÞ is called a generator polynomial with degree r of the ðn; kÞ cyclic
code C. The polynomial gðxÞ has the following properties:

1. gðxÞ is a factor of xn � 1.

2. gðxÞ ¼ grx
r þ gr�1x

r�1 þ � � � þ g1xþ g0 for fgr; gr�1; . . . ; g1; g0g 2 GFðqÞ is a

monic polynomial with gr ¼ 1 uniquely determined, and g0 ¼ 1.

3. Since the number of polynomials with degree n� 1 or less is a multiple of gðxÞ is
qn�r and there are qk code polynomials (or codewords) in C, then we have r ¼ n� k.

Hence the nonzero code polynomial of minimum degree in an ðn; kÞ cyclic code has the

following form:

gðxÞ ¼ xn�k þ gn�k�1x
n�k�1 þ � � � þ g2x

2 þ g1xþ 1; ð2:11Þ

where fgn�k�1; . . . ; g2; g1g 2 GFðqÞ.

54 MATHEMATICAL BACKGROUND AND MATRIX CODES



Next the generator matrix and the parity-check matrix of the ðn; kÞ cyclic code generated
by gðxÞ can be easily formed. Dividing xn�kþi by gðxÞ for i ¼ 0; 1; . . . ; k � 1, we obtain

xn�kþi ¼ aiðxÞgðxÞ þ biðxÞ;

where biðxÞ is the remainder with the following form:

biðxÞ ¼ bi;n�k�1x
n�k�1 þ � � � þ bi;1xþ bi;0:

Since xn�kþi þ biðxÞ for i ¼ 0; 1; . . . ; k � 1, are multiple of gðxÞ, they are code

polynomials. Arranging these k code polynomials as rows of a k � n matrix, we obtain

the generator matrix of C in systematic form

G ¼

0 � � � 0 0 1 b0;n�k�1 � � � b0;1 b0;0

0 � � � 0 1 0 b1;n�k�1 � � � b1;1 b1;0

0 � � � 1 0 0 b2;n�k�1 � � � b2;1 b2;0

..

. . .. ..
. ..

. ..
. ..

. ..
. ..

.

1 � � � 0 0 0 bk�1;n�k�1 � � � bk�1;1 bk�1;0

266666664

377777775

x????
k????y
:

 ������ k �����! ���������� n� k ���������!

The corresponding ðn� kÞ � n parity-check matrix of C can be written as follows:

H ¼

bk�1;0 � � � b2;0 b1;0 b0;0 0 � � � 0 0 1

bk�1;1 � � � b2;1 b1;1 b0;1 0 � � � 0 1 0

bk�1;2 � � � b2;2 b1;2 b0;2 0 � � � 1 0 0

..

. ..
. ..

. ..
. ..

. . .. ..
. ..

. ..
.

bk�1;n�k�1 � � � b2;n�k�1 b1;n�k�1 b0;n�k�1 1 � � � 0 0 0

266666664

377777775

x????
n� k????y

:

 ����������������� k ����������������! ���� n� k ����!

Let hðxÞ be a parity-check polynomial satisfying the equation

hðxÞ ¼ xn � 1

gðxÞ :

Since arbitrary code polynomial is expressed by vðxÞ ¼ aðxÞgðxÞ, we have the following

relation:

hðxÞvðxÞ ¼ aðxÞðxn � 1Þ:

That is, ½hðxÞvðxÞ�mod ðxn � 1Þ ¼ 0. Therefore we have n� k parity equations and obtain

the preceding parity-check matrix H.

Error Detection by Cyclic Codes Encoding / decoding of the cyclic codes is easily and

efficiently implemented by a linear feedback shift register, abbreviated LFSR. This type of

BASIC MATRIX CODES 55



error detection is described in many coding theory books such as [PETE72, BRAH84,

BERL84, LIN04]. Error detection by the cyclic codes is performed whether or not the

received polynomial, in which the received word is expressed in polynomial, is divided

by the generator polynomial. If it is not divided, then the received word is not a codeword

because the received polynomial is not the code polynomial. This type of error detection is

called a cyclic check, and it is used in many digital systems. The following shows a widely

used cyclic code recommended by CCITT. The generator polynomial is written as

gðxÞ ¼ x16 þ x12 þ x5 þ 1: ð2:12Þ

Burst errors are detected by using the cyclic codes. The burst error with L-bit length that

starts at the i-th bit position of the word is expressed by the error polynomial eðxÞ ¼ xiBðxÞ
where

BðxÞ ¼ xL�1 þ bL�2x
L�2 þ � � � þ b1xþ 1; fbL�2; � � � ; b1g 2 GFð2Þ:

That is, the binary burst error pattern with a length of L bits is ð1; bL�2; . . . ; b1; 1Þ, as
expressed in polynomial form as BðxÞ above. In this case, if the degree of gðxÞ is larger than
L� 1, then BðxÞ is not divided by gðxÞ. Therefore these L-bit burst errors can be detected. In
other words, any burst errors of lengths smaller than or equal to the degree of the generator

polynomial can be detected. Note that the burst error length detected by the cyclic code

is determined only by the degree of its generator polynomial. If the degree of BðxÞ, which is
L� 1, is equal to the degree of gðxÞ, say m, and BðxÞ ¼ gðxÞ, then the error polynomial

is divided by the generator polynomial. So the error cannot be detected. If L� 1 > m and

BðxÞ is a multiple of gðxÞ, which is BðxÞ ¼ AðxÞgðxÞ, then this also cannot be detected.

Theorem 2.5 For cyclic codes defined by the generator polynomial gðxÞ of degree m,

the burst errors with length L bits are detected as follows:

1. If L� 1 < m, any burst errors can be detected.

2. If L� 1 ¼ m, the burst error detection capability is 1� 2�ðm�1Þ.

3. If L� 1 > m, the burst error detection capability is 1� 2�m.

Proof of this theorem is left to the reader. Note that the burst error detection of the

cyclic codes is very high even for burst errors with lengths greater than m. For the CCITT

code whose generator polynomial is expressed by Eq. (2.12), the error detection capability

of burst errors of lengths greater than 18 bits is 1� 2�16 ¼ 0:999985.

Cyclic Parity-Check Codes and Cyclic Hamming Codes Simple parity-check codes

can be expressed by the generator polynomial gðxÞ ¼ xþ 1. This is because any code

polynomials of a cyclic parity-check code can be obtained by multiplication of gðxÞ ¼
xþ 1. For example, a cyclic code with n ¼ 4 is expressed as the set of codewords

0000; 1100; 0110; 0011; 1001; 0101; 1010; 1111:

This set is expressed by the following code polynomials:

0; x3 þ x2; x2 þ x; xþ 1; x3 þ 1; x2 þ 1; x3 þ x; x3 þ x2 þ xþ 1:

56 MATHEMATICAL BACKGROUND AND MATRIX CODES



Note that all these polynomials are a factor of xþ 1. That is,

0 ¼ 0 � ðxþ 1Þ; x3 þ x2 ¼ x2ðxþ 1Þ; x2 þ x ¼ xðxþ 1Þ; xþ 1 ¼ 1 � ðxþ 1Þ;
x3 þ 1 ¼ ðx2 þ xþ 1Þðxþ 1Þ; x2 þ 1 ¼ ðxþ 1Þðxþ 1Þ; x3 þ x ¼ ðx2 þ xÞðxþ 1Þ;
x3 þ x2 þ xþ 1 ¼ ðx2 þ 1Þðxþ 1Þ:

The following matrix shows how the parity-check matrix H is, in general, constructed

by the generator polynomial gðxÞ. Let b be a root of gðxÞ. That is, gðbÞ ¼ 0. Then the H

matrix of the code defined by gðxÞ can be expressed as

H ¼
j j j j

bn�1 � � � b2 b1 b0

j j j j

264
375; ð2:13Þ

where

j
bi

j
is a coefficient vector of xi mod gðxÞ for i ¼ 0; 1; . . . ; n� 1, and n is the code

length determined by exponent or period of gðxÞ.
In the simple parity-check code, gðxÞ has the root b ¼ 1. Hence the parity-check matrix

organized by successive k þ 1 1’s is

H ¼ ½1 1 1 � � � 1 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kþ1

�;

as was shown in Eq. (2.6) in Subsection 2.3.1.

The cyclic Hamming SEC code is generated by an irreducible polynomial gðxÞ. The H
matrix can be expressed as shown in Eq. (2.13). That is, the successive powers of b are all

distinct from 0 through n� 1. Then the columns of H are pairwise linearly independent,

and therefore the code has a distance of at least three. If gðxÞ is a binary primitive

polynomial with degree r, then the code length n ¼ 2r � 1.

The distance-4 Hamming SEC-DED code is described by gðxÞ ¼ ðxþ 1Þ � pðxÞ,
where pðxÞ is a binary primitive polynomial with degree r and has a root of a, meaning

pðaÞ ¼ 0:

H ¼

1 � � � 1 1 1

j j j j
an�1 � � � a2 a1 a0

j j j j

2664
3775; ð2:14Þ

where

j
ai

j
is a coefficient vector of xi mod pðxÞ and n ¼ 2r � 1. In this H matrix one

row vector of successive n 1’s indicates a simple parity check generated by the

polynomial xþ 1 of gðxÞ. The total number of check bits of this code is r þ 1.

The matrix is related to the one shown in Eq. (2.8) where the all-1 row is located at the

bottom of the matrix and one weight-1 column vector is added to the H matrix as

shown in Eq. (2.14).

BASIC MATRIX CODES 57



Example 2.7
A ð7; 3Þ SEC-DED code is generated by gðxÞ ¼ ðxþ 1Þ � pðxÞ, where pðxÞ ¼ x3 þ xþ 1.

The H matrix of the code is written as

H ¼

1 1 1 1 1 1 1

� � � � � � �
1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 1 0 1 0 0 1

266664
377775:

After applying elementary row operations, as presented in Subsection 2.2.3, to this H

matrix, we have a systematic form of the parity-check matrix. However, the systematic

form of H can be obtained directly by expanding the generator polynomial as

gðxÞ ¼ ðxþ 1Þðx3 þ xþ 1Þ ¼ x4 þ x3 þ x2 þ 1. Let b be a root of gðxÞ; that is,

gðbÞ ¼ b4 þ b3 þ b2 þ 1 ¼ 0. Then we have

H ¼
j j j j j j j

b6 b5 b4 b3 b2 b1 b0

j j j j j j j

264
375 ¼ 1 0 1 1 0 0 0

1 1 1 0 1 0 0

1 1 0 0 0 1 0

0 1 1 0 0 0 1

2664
3775:

Note that all these columns are of odd weight.

2.3.5 Binary BCH Codes

BCH codes are a class of multiple random error correcting codes [BOSE60, HOCQ59]. In

this subsection we cover binary BCH codes that are used to correct small numbers of

random errors. For a detailed description of BCH codes, the reader is referred to the texts

on coding theory. Among the nonbinary BCH codes, the next subsection covers the most

important class of Reed-Solomon (RS) codes.

Definition 2.27 BCH codes are cyclic codes generated by gðxÞ involving multiple

factors. For a t-error correcting binary BCH code, the generator polynomial is given by

gðxÞ ¼ m1ðxÞm3ðxÞ � � �m2t�1ðxÞ;

wheremiðxÞ is the minimal polynomial of ai; i ¼ 1; 3; 5; . . . ; 2t � 1, and a is an element

of GFð2mÞ of order n. In this case, if m1ðxÞ is a primitive polynomial of degree m over

GFð2Þ, the code is called a primitive binary BCH code. Then a is a primitive element

and its order n ¼ 2m � 1. &

In the primitive binary BCH codes, the roots of the factors of gðxÞ are as follows:

m1ðxÞ : a; a2; a4; � � � ;
m3ðxÞ : a3; a6; � � � ;
m5ðxÞ : a5; a10; � � � ;

� � �
m2t�1ðxÞ : a2t�1; a4t�2; � � � :

� � � � � � � � � � � � � � � � � � � � �

58 MATHEMATICAL BACKGROUND AND MATRIX CODES



The 2t successive powers of a (i.e., a; a2; a3; � � � ; a2t�1; a2t) are roots of gðxÞ. A polynomial

vðxÞ is a code polynomial if and only if vðajÞ ¼ 0 for j ¼ 1; 2; � � � ; 2t. That is, this means

v �HT ¼ 0, where H is a parity-check matrix of the BCH code that corrects the random t

errors as follows:

H ¼

1 a a2 � � � an�1

1 a2 ða2Þ2 � � � ða2Þn�1
1 a3 ða3Þ2 � � � ða3Þn�1

..

. ..
. ..

. ..
.

1 a2t ða2tÞ2 � � � ða2tÞn�1

2666664

3777775: ð2:15Þ

In Eq. (2.15) the transmitted codeword is expressed as V ¼ ðv0; v1; v2; . . . ; vn�1Þ. In order

to prove that the code has a distance at least 2t þ 1, we need to show that every 2t column

vectors of H are linearly independent. By choosing any 2t columns from the matrix, we

have a 2t � 2t square matrix. After normalizing every column by the first row element, we

have the Vandermonde matrix (shown in Subsection 2.2.3) with a nonzero determinant.

This means that every 2t columns of H are linearly independent.

If a is a root of gðxÞ over GFð2Þ, then its conjugate a2i is also a root, which is shown in

Subsection 2.1.4. For this reason even rows can be omitted from matrix (2.15). As a result

the H matrix can be reduced to the following:

H ¼

1 a a2 � � � an�1

1 a3 ða3Þ2 � � � ða3Þn�1
1 a5 ða5Þ2 � � � ða5Þn�1

..

. ..
. ..

. ..
.

1 a2t�1 ða2t�1Þ2 � � � ða2t�1Þn�1

2666664

3777775: ð2:16Þ

Note here that elements of H are in GFð2mÞ, so each element can be represented by an

m-tuple over GFð2Þ. That is, the total number of check bits is tm.

The binary BCH code has the following code parameters:

Maximum code length in bits: n ¼ 2m � 1,

Check-bit length: n� k � tm,

Minimum distance: dmin 	 2t � 1.

For example, using Table 2.3, we can design the triple-bit error correcting BCH code by

choosing three minimal polynomials corresponding to a, a3, and a5 as their roots over

GFð24Þ. That is, the generator polynomial is expressed as

gðxÞ ¼ ðx4 þ xþ 1Þðx4 þ x3 þ x2 þ xþ 1Þðx2 þ xþ 1Þ:

The code has 10 check bits, and these are at maximum 15 bits in the code length.

The primitive binary BCH code is defined by the generator polynomial gðxÞ ¼ m1ðxÞ,
where m1ðxÞ is a binary primitive polynomial with degree m, and it expresses a single-

error correcting BCH code with code length n ¼ 2m � 1. This is same as the Hamming

SEC code described in the previous subsection on cyclic codes.

BASIC MATRIX CODES 59



Table 2.4 shows the parameters for binary BCH codes of length 2m � 1 withm � 9. The

generator polynomials of all primitive binary BCH codes of length 2m � 1 with m � 10

are given in Appendix C of [LIN04]. The more typical primitive polynomials with degrees

less than or equal to 32 are presented in Table 2.1. For a comprehensive table of primitive

and irreducible polynomials of degrees up to 34 over GFð2Þ, see appendix C of [PETE72].

The tables provided here are, however, very useful for constructing BCH codes and other

practical codes for any given code parameters.

TABLE 2.4 BCH Codes Generated by Primitive Elements of Order Less Than 29

n k t n k t n k t

7 4 1 255 199 7 511 358 18
15 11 1 255 191 8 511 349 19
15 7 2 255 187 9 511 340 20
15 5 3 255 179 10 511 331 21
31 26 1 255 171 11 511 322 22
31 21 2 255 163 12 511 313 23
31 16 3 255 155 13 511 304 25
31 11 5 255 147 14 511 295 26
31 6 7 255 139 15 511 286 27
63 57 1 255 131 18 511 277 28
63 51 2 255 123 19 511 268 29
63 45 3 255 115 21 511 259 30
63 39 4 255 107 22 511 250 31
63 36 5 255 99 23 511 241 36
63 30 6 255 91 25 511 238 37
63 24 7 255 87 26 511 229 38
63 18 10 255 79 27 511 220 39
63 16 11 255 71 29 511 211 41
63 10 13 255 63 30 511 202 42
63 7 15 255 55 31 511 193 43
127 120 1 255 47 42 511 184 45
127 113 2 255 45 43 511 175 46
127 106 3 255 37 45 511 166 47
127 99 4 255 29 47 511 157 51
127 92 5 255 21 55 511 148 53
127 85 6 255 13 59 511 139 54
127 78 7 255 9 63 511 130 55
127 71 9 511 502 1 511 121 58
127 64 10 511 493 2 511 112 59
127 57 11 511 484 3 511 103 61
127 50 13 511 475 4 511 94 62
127 43 14 511 466 5 511 85 63
127 36 15 511 457 6 511 76 85
127 29 21 511 448 7 511 67 87
127 22 23 511 439 8 511 58 91
127 15 27 511 430 9 511 49 93
127 8 31 511 421 10 511 40 95
255 247 1 511 412 11 511 31 109
255 239 2 511 403 12 511 28 111
255 231 3 511 394 13 511 19 119
255 223 4 511 385 14 511 10 121
255 215 5 511 376 15
255 207 6 511 367 16

Source : [LIN04].� 2004 pp 195^196, Adapted by permission of Pearson Education, Inc., Upper Saddle River, NJ.

60 MATHEMATICAL BACKGROUNDAND MATRIX CODES



Decoding BCH Codes The decoding algorithm of the BCH codes goes as follows:

Let a codeword be expressed by the polynomial vðxÞ ¼ vn�1x
n�1 þ � � � þ v2x

2 þ v1xþ
v0. Also let a received word be expressed by rðxÞ ¼ rn�1x

n�1 þ � � � þ r2x
2 þ r1xþ r0,

which may include an error eðxÞ where eðxÞ ¼ en�1x
n�1 þ � � � þ e2x

2 þ e1xþ e0. Then

rðxÞ ¼ vðxÞ þ eðxÞ: ð2:17Þ

Vectors v; r, and e are expressed as

v ¼ ðv0 v1 v2 . . . vn�1Þ;
r ¼ ðr0 r1 r2 . . . rn�1Þ;
e ¼ ðe0 e1 e2 . . . en�1Þ:

The decoding is performed next in three steps. For decoding nonbinary BCH codes such as

RS codes, an additional step (a fourth step) is needed for determining the nonbinary error

values.

Step 1. Syndrome Generation For binary t-error correcting primitive BCH code, the

syndrome is a 2t-tuple,

S ¼ ðS1 S2 . . . S2tÞ ¼ r �HT ;

where H is given by Eq. (2.15). So, the i-th component of the syndrome is

Si ¼ rðaiÞ
¼ rn�1aðn�1Þi þ � � � þ r2a2i þ r1ai þ r0

for 1 � i � 2t. Note that syndrome components are elements in the field GFð2mÞ. Divide
rðxÞ by the minimal polynomial miðxÞ of ai to get

rðxÞ ¼ aiðxÞmiðxÞ þ biðxÞ;

where biðxÞ is the remainder with degree less than that of miðxÞ. Since miðaiÞ ¼ 0, write

Si ¼ rðaiÞ ¼ biðaiÞ:

From this the syndrome components Si can be obtained by biðaiÞ.
Step 2. Determination of Error Location Polynomial The syndrome is also

determined by the error pattern eðxÞ from Eq. (2.17). Note that in Eq. (2.17) the relation

between the syndrome components and the error pattern is

Si ¼ eðaiÞ for i ¼ 1; 2; . . . ; 2t:

Assume that the error pattern eðxÞ has d errors at location x jd ; . . . ; x j2 ; x j1 , that is,

eðxÞ ¼ x jd þ � � � þ x j2 þ x j1 ;

BASIC MATRIX CODES 61



where n > jd > � � � > j2 > j1 	 0. Therefore write the following set of equations:

S1 ¼ a jd þ � � � þ a j2 þ a j1 ;

S2 ¼ ða jdÞ2 þ � � � þ ða j2Þ2 þ ða j1Þ2;
� � �
� � �

S2t ¼ ða jdÞ2t þ � � � þ ða j2Þ2t þ ða j1Þ2t;

where a jd ; . . . ; a j2 , a j1 , are unknown. Find these in the expression above and obtain the

error locations jd; . . . ; j2; j1 in eðxÞ.
Now we need an effective procedure to use in determining aji for i ¼ d; . . . ; 2; 1, from

the syndrome components Si’s. Let

bi ¼ aji for 1 � i � d: ð2:18Þ

These bi’s are called error location numbers. The equations above are rewritten in the

following form:

S1 ¼ bd þ � � � þ b2 þ b1;

S2 ¼ bd
2 þ � � � þ b2

2 þ b1
2;

� � �
� � �

S2t ¼ bd
2t þ � � � þ b2

2t þ b1
2t:

These 2t equations are symmetric functions in b1, b2; . . . ; bd. So we can define the

polynomial as

sðxÞ ¼ ðbdxþ 1Þðbd�1xþ 1Þ � � � ðb2xþ 1Þðb1xþ 1Þ
¼ sdxd þ sd�1xd�1 þ � � � þ s2x2 þ s1xþ s0:

ð2:19Þ

The roots of sðxÞ are bd
�1; . . . ; b2

�1; b1
�1, which are the inverse of the error location

numbers, so the function sðxÞ is called an error location polynomial. The coefficients of

sðxÞ and the error location numbers are related by the equations

s0 ¼ 1;

s1 ¼ b1 þ b2 þ � � � þ bd;

s2 ¼ b1b2 þ b2b3 þ � � � þ bd�1bd;

� � �
� � �

sd ¼ b1b2 � � � bd:

We need to express the coefficients si as functions of the syndrome components. This is

accomplished in 2t þ 1 steps by using the following Berlekamp-Massay algorithm

62 MATHEMATICAL BACKGROUND AND MATRIX CODES



[BERL65, MASS69]. The first two steps for the iteration index m ¼ �1; 0, are given as the
first two rows of Table 2.5. The rules behind the iterative steps follow as we proceed to fill

out the table:

sðmþ1ÞðxÞ ¼ sðmÞðxÞ for dm ¼ 0

¼ sðmÞðxÞ þ dmd
�1
r xm�rsðrÞðxÞ for dm 6¼ 0:

Here, dm is the m-th discrepancy and is given by

dm ¼ Smþ1 þ sðmÞ1 Sm þ sðmÞ2 Sm�1 þ � � � þ sðmÞdm
Smþ1�dm :

The step number prior to m is r such that dr 6¼ 0 and r� dr has the largest value. Also dr
is the degree of sðrÞðxÞ and sðmÞi is the coefficient of the xi term of sðmÞðxÞ. This procedure
terminates at step 2t with sðxÞ ¼ sð2tÞðxÞ. If the errors are d in eðxÞ, then sðxÞ has
degree d.

For binary BCH codes, it is not necessary to fill out all rows of Table 2.5 in finding sðxÞ.
It can be obtained by filling out t þ 2 rows, meaning rows with m ¼ �1; 0; 1; 2; . . . ; t.
The computation required is almost one-half of that required in this above general

algorithm.

Step 3. Finding the Error Location Numbers and Error Correction The last step in

decoding a BCH code is to find the error location numbers that are the reciprocals of the

roots of sðxÞ. The roots of sðxÞ can be found simply by substituting 1; a; a2; . . . ; an�1,
where n ¼ 2m � 1, into sðxÞ. Since an ¼ 1, then a�j ¼ an�j. Therefore, if aj is a root of

sðxÞ, an�j is an error location number and the received digit rn�j is an erroneous digit.

Therefore, if the error location numbers are an�j1 to an�jt where j1 > j2 � � � > jt, the error

polynomial is determined as

eðxÞ ¼ xn�jt þ � � � þ xn�j2 þ xn�j1 ;

which gives the assumed error pattern. The decoding is completed by adding eðxÞ to the

received vector rðxÞ.
Another procedure that can be used to carry out the substitution and error correction is

known as Chien’s search [CHIE64]. The received vector is decoded bit by bit. The high-

order bits are first decoded. In order to decode rn�1, the decoder tests whether or not an�1 is
an error location number. This is equivalent to testing whether or not an inverse alpha is a

root of sðxÞ. If a is a root, then an�1 is an error location number and rn�1 is an erroneous

TABLE 2.5 Evaluation of Error Locator Polynomial

m sðmÞ (x) dm dm m� dm r

� 1 1 1 0 � 1 �
0 1 S1 0 0 �
1
2
..
. ..

. ..
. ..

. ..
. ..

.

2t s(x)

BASIC MATRIX CODES 63



digit; otherwise, rn�1 is the correct digit. This process continues until the lowest digit r0 is
determined.

Example 2.8
A binary ð15; 5Þ triple-error correcting BCH code is given by the generator polynomial

gðxÞ ¼ m1ðxÞm3ðxÞm5ðxÞ ¼ ðx4 þ xþ 1Þðx4 þ x3 þ x2 þ xþ 1Þðx2 þ xþ 1Þ. In this

case the minimal polynomials for a; a2, and a4 are identical and are expressed as

m1ðxÞ ¼ x4 þ xþ 1. Likewise for a3 and a6 the minimal polynomial is m3ðxÞ ¼ x4þ
x3 þ x2 þ xþ 1, and the minimal polynomial for a5 is m5ðxÞ ¼ x2 þ xþ 1. Here a is a

primitive element of GFð24Þ such that a4 þ aþ 1 ¼ 0.

Assume that the code vector of all zeros

v ¼ ðv0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14Þ
¼ ð 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Þ

is transmitted and the vector

r ¼ ðr0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14Þ
¼ ð0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 Þ

is received. Then rðxÞ ¼ x11 þ x7 þ x. Dividing rðxÞ by m1ðxÞ;m3ðxÞ and m5ðxÞ,
respectively, we obtain the remainders

b1ðxÞ ¼ x2 þ xþ 1;

b3ðxÞ ¼ x2;

b5ðxÞ ¼ xþ 1:

Substituting a; a2, and a4 into b1ðxÞ, we obtain the syndrome components of

S1 ¼ a2 þ aþ 1 ¼ a10; S2 ¼ a4 þ a2 þ 1 ¼ a5, and S4 ¼ a8 þ a4 þ 1 ¼ a10, respec-

tively. Substituting a3 and a6 into b3ðxÞ, we have S3 ¼ a6, and S6 ¼ a12, respectively.
Also substituting a5 into b5ðxÞ, we have S5 ¼ a5 þ 1 ¼ a10.

By the iterative procedure described previously, we obtain the values shown in

Table 2.6. Thus the error location polynomial is

sðxÞ ¼ sð6ÞðxÞ ¼ a4x3 þ ax2 þ a10xþ 1:

TABLE 2.6 Evaluation of Error Locator Polynomial

m sðmÞ (x) dm dm m� dm r

� 1 1 1 0 � 1 �
0 1 a10 0 0 �
1 a10x þ 1 0 1 0 � 1
2 a10x þ 1 a13 1 1 �
3 a3x2 þ a10x þ 1 0 2 1 0
4 a3x2 þ a10x þ 1 a7 2 2 �
5 a4x3 þ ax2 þ a10x þ 1 0 3 2 2
6 a4x3 þ ax2 þ a10x þ 1 � � � �

64 MATHEMATICAL BACKGROUNDAND MATRIX CODES



We can easily check that a4; a8, and a14 are the roots of sðxÞ. Their inverses are a11, a7,
and a, respectively, which give the error location numbers. Therefore the error

polynomial is

eðxÞ ¼ x11 þ x7 þ x;

and it gives the error vector

e ¼ ðe0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14Þ
¼ ð0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 Þ:

After adding eðxÞ to the received polynomial rðxÞ, or adding the error vector to the received
vector, we obtain the code polynomial vðxÞ ¼ 0, which is the all-zero code vector.

2.3.6 Reed-Solomon Codes as Nonbinary BCH Codes

The Reed-Solomon codes [REED60], or RS codes, are a subclass of the nonbinary BCH

codes. Codes over GFð2mÞ are especially important for binary digital systems, and these

codes have found in many applications, including high-speed semiconductor memories,

magnetic / optical disk memories, tape memories, and communication systems, as will be

described in later chapters. A nonbinary element in GFð2mÞ, called a symbol or a byte, is

sometimes expressed in binary form as a cluster ofm bitsa (as we saw in Subsection 2.1.3).

Definition 2.28 Let a be a primitive element in GFð2mÞ. The parity-check matrix of the

RS codes with minimum Hamming distance d over GFð2mÞ is written as

H ¼

1 1 1 1 � � � 1

1 a a2 a3 � � � an�1

1 a2 a4 a6 � � � a2ðn�1Þ

..

. ..
. ..

. ..
. . .

. ..
.

1 ad�2 a2ðd�2Þ a3ðd�2Þ � � � aðd�2Þðn�1Þ

266664
377775; ð2:20Þ

where n ¼ 2m � 1. &

The matrix shown in Eq. (2.20) can be obtained from the one shown in Eq. (2.15) by

normalizing every column by its top element and 2t ¼ d � 1. The generator polynomial of

this code, with distance d and code length 2m � 1, is expressed as

gðxÞ ¼ ðxþ aÞðxþ a2Þ � � � ðxþ ad�1Þ
¼ xd�1 þ gd�2x

d�2 þ � � � þ g2x
2 þ g1xþ g0;

where a; a2; � � � ; ad�1, are all roots of gðxÞ and the coefficients gd�2; � � � ; g2; g1; g0, are
from GFð2mÞ.

aIn later chapters a parameter of symbol size or byte size m will be designated as b.

BASIC MATRIX CODES 65



Note that this code satisfies the maximum distance separable (MDS) characteristic

because the check length r depends only on d, meaning r ¼ d � 1. Further its maximum

code length is determined only by m.

Lengthened Codes
Definition 2.29 The code can be lengthened by adding two columns to the H defined in

Eq. (2.20) without reducing its minimum distance. The lengthened RS code, or

extended RS code, has code length nþ 2 ¼ 2m þ 1 and has the same check length as the

original one. That is, the H matrix of the lengthened code is expressed as

HL ¼

1 1 1 � � � 1 1 0

1 a a2 � � � an�1 0 0

1 a2 a4 � � � a2ðn�1Þ 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

1 ad�3 a2ðd�3Þ � � � aðd�3Þðn�1Þ 0 0

1 ad�2 a2ðd�2Þ � � � aðd�2Þðn�1Þ 0 1

26666664

37777775:

&
In particular, for d ¼ 4, three columns can be added. After the 3� 3 identity matrix is

added [WOLF69], the code length becomes nþ 3 ¼ 2m þ 2. This case will be discussed in

Chapter 5.

Decoding RS Codes
Decoding RS codes requires an additional step, a fourth step added to the previous

decoding BCH code in order to determine the nonbinary error values.

Determination of Error Values From the first step of syndrome determination

provided in Subsection 2.3.5, we have the following relation:

Sj ¼ rðajÞ ¼ eðajÞ for j ¼ 1; 2; � � � ; 2t:

We also obtain the syndrome polynomial as

SðxÞ ¼ S2tx
2t þ S2t�1x

2t�1 þ � � � þ S1xþ 1:

Another polynomial zðxÞ with degree d, called an evaluator polynomial, is defined as

zðxÞ ¼ ðSd þ s1Sd�1 þ s2Sd�2 þ � � � þ sdÞxd þ � � � þ ðS2 þ s1S1 þ s2Þx2 þ ðS1 þ s1Þxþ 1

ð2:21Þ

This polynomial consists of all components of degree � d of the product sðxÞSðxÞ. We

compute the error value at location bi ¼ aji as

eji ¼
zðbi�1ÞY

v 6¼i
ð1þ bvbi

�1Þ
for i ¼ 1; 2; . . . ; d: ð2:22Þ

66 MATHEMATICAL BACKGROUNDAND MATRIX CODES



Example 2.9
Consider a triple-error correcting RS code with symbols from GFð24Þ. The generator
polynomial of this code is

gðxÞ ¼ ðxþ aÞðxþ a2Þðxþ a3Þðxþ a4Þðxþ a5Þðxþ a6Þ
¼ x6 þ a10x5 þ a14x4 þ a4x3 þ a6x2 þ a9xþ a6;

where a is a primitive element in GFð24Þ. Let the all-zero vector be the transmitted

code vector, and let

r ¼ ðr0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14Þ
¼ ð0 0 a5 0 0 0 0 0 a13 0 0 a2 0 0 0 Þ

be the received vector. Thus, rðxÞ ¼ a2x11 þ a13x8 þ a5x2.

Step 1. The syndrome elements are computed as

S1 ¼ rðaÞ ¼ a13 þ a6 þ a7 ¼ a9;

S2 ¼ rða2Þ ¼ a9 þ a14 þ a9 ¼ a14;

S3 ¼ rða3Þ ¼ a5 þ a7 þ a11 ¼ a4;

S4 ¼ rða4Þ ¼ aþ 1þ a13 ¼ a11;

S5 ¼ rða5Þ ¼ a12 þ a8 þ 1 ¼ a7;

S6 ¼ rða6Þ ¼ a8 þ aþ a2 ¼ a4:

Step 2. To find the error location polynomial sðxÞ, fill out the evaluation table, as

shown in Table 2.7

Step 3. Substituting 1; a; a2; . . . ; a14 into sðxÞ ¼ a6x3 þ a14x2 þ a12xþ 1, find that a4; a7,
and a13 are roots of sðxÞ. The reciprocals of these roots are a11; a8, and a2, respectively,
which are the error location numbers of the error polynomial eðxÞ. These errors occur at
positions x11; x8, and x2.

Step 4. From Eq. (2.21), find zðxÞ ¼ SðxÞsðxÞ with degree � 3, SðxÞ ¼ a4x6 þ a7x5þ
a11x4 þ a4x3 þ a14x2 þ a9xþ 1 and sðxÞ ¼ a6x3 þ a14x2 þ a12xþ 1, such that

zðxÞ ¼ a2x3 þ a6x2 þ a8xþ 1:

TABLE 2.7 Evaluation of Error Location Polynomial

m sðmÞðxÞ dm dm m� dm r

�1 1 1 0 �1 �
0 1 a9 0 0 �
1 a9x þ 1 1 1 0 �1
2 a5x þ 1 0 1 1 0
3 a5x þ 1 a2 1 2 �
4 a11x3 þ a2x2 þ a5x þ 1 a 3 1 1
5 a11x3 þ a10x2 þ a12x þ 1 a13 3 2 3
6 a6x3 þ a14x2 þ a12x þ 1 � � � 3

BASIC MATRIX CODES 67



Using Eq. (2.22), obtain the error values at locations x11, x8, and x2:

e11 ¼
a2ða�11Þ3 þ a6ða�11Þ2 þ a8a�11 þ 1

ð1þ a8a�11Þð1þ a2a�11Þ ¼ a11

a11a13
¼ a2;

e8 ¼
a2ða�8Þ3 þ a6ða�8Þ2 þ a8a�8 þ 1

ð1þ a11a�8Þð1þ a2a�8Þ ¼ a4

a14a7
¼ a13;

e2 ¼
a2ða�2Þ3 þ a6ða�2Þ2 þ a8a�2 þ 1

ð1þ a11a�2Þð1þ a8a�2Þ ¼ a10

a7a13
¼ a5:

Thus the error polynomial is

eðxÞ ¼ a2x11 þ a13x8 þ a5x2;

which is exactly the difference between the received polynomial and the code

polynomial. The decoding is completed by taking rðxÞ � eðxÞ ¼ 0, that is, the all-zero

codeword.

2.3.7 Burst Error Correcting Fire Codes

The communication systems and disk or tape memory can sometimes cause clusters of

errors, namely burst errors. As we saw in Subsection 2.3.4, cyclic codes are effective for

burst error detection. Fire codes are a large class of burst error correcting cyclic codes that

have been popularly applied to disk memory (as will be discussed again in Subsection

11.2.1). Many other effective burst error correcting cyclic codes, besides the Fire codes,

have been constructed both analytically and with the aid of a computer search.

Burst Errors A burst of length l is defined as a vector whose nonzero components are

confined to l consecutive digit positions, the first and last of which are nonzero. For exam-

ple, e ¼ ð0 0 1 0 0 1 0 1 0 0Þ is a burst of length 6. A linear code capable of correcting all

error bursts of length l or less, but not all error bursts of length lþ 1, is called an l-burst

error correcting code.

In order to correct single l-burst errors, any 2l columns in the parity-check matrix of an

ðn; kÞ code should be linearly independent. Therefore the following theorem holds.

Theorem 2.6 The number of check digits of an l-burst error correcting code must have

at least 2l, that is,

n� k 	 2l:

In accordance with Theorem 2.6, the burst error length is expressed as

l � n� k

2

� �
; ð2:23Þ

where bxc refers to the largest integer smaller than or equal to x. The upper bound on the

l-burst error correcting capability of an ðn; kÞ code is called the Reiger bound [REIG60].

68 MATHEMATICAL BACKGROUNDAND MATRIX CODES



As for detecting single l-burst errors, the number of check digit of the ðn; kÞ code must

have at least l, that is, n� k 	 l.

Single-Burst Error Correcting Fire Codes Fire codes [FIRE59] are a class of bin-

ary cyclic codes that correct single l-burst errors.

Definition 2.30 Let pðxÞ be a binary irreducible polynomial of degreem, and also let e be

the smallest integer such that pðxÞ divides xe þ 1. The integer e is called the period of

pðxÞ. Also let l be a positive integer such that l � m and c ¼ 2l� 1 is not divisible by e.

A single l-burst error correcting Fire code is generated by the following polynomial:

gðxÞ ¼ ðxc þ 1ÞpðxÞ: ð2:24Þ

The code length n is the least common multiple of c and the period e of pðxÞ, that is,

n ¼ LCMðc; eÞ: ð2:25Þ

The number of check digits of this code is r ¼ cþ m ¼ 2l� 1þ m. Note that the

polynomials xc þ 1 and pðxÞ are relatively prime. &

The parity-check matrix of the Fire code can be expressed as follows:

H =

1
1

1

e e e

c c

1
1

1

1
1

1

c

α0 α1 α -1 α0

e e e

e

α0 α1 α -1 α0 α1 α -1

c = 2l - 1

m

1
1

1
1

LCM ( c, )

ð2:26Þ

This Hmatrix consists of two parts. The upper part consists of a series of c� c identity

matrices, and the lower part consists of a repeated series of coefficient column vectors of xi

mod pðxÞ, where 0 � i � e� 1. Each upper submatrix has the degree of c and each lower

submatrix has the period of e. Therefore the code length n is determined as the first

coincidence with these c and e, that is, the least common multiple of c and e. The upper

c� c matrix corresponds to xc þ 1 and the lower corresponds to pðxÞ of gðxÞ.
The decoding of the Fire code will be presented in Chapter 11 where the serial decoding

is implemented by LFSRs. It is also discussed in Chapter 8 as parallel decoding

implemented by combinational logic circuits.

Other Single-Burst Error Correcting Codes Besides the Fire codes, some effi-

cient cyclic codes and shortened cyclic codes for correcting single short bursts have

been explored either analytically or with the aid of computers [STON61, ELSP62,

KASA63, KASA64]. These efficient codes with their generator polynomials are given in

BASIC MATRIX CODES 69



Table 2.8 for n� k � 2l ¼ 0 and 1. The codes with n� k � 2l > 1 are given in Table 20.3 of

[LIN04]. These are the most efficient single-burst error correcting codes known.

A class of phased burst error correcting cyclic codes, called Burton codes [BURT71],

are defined as single l-bit burst error correcting codes as follows:

gðxÞ ¼ ðxl þ 1ÞpðxÞ;

where pðxÞ is an irreducible polynomial of degree l and period e. The code length is given

as LCMðl; eÞ and the check length as 2l. The H matrix of this code is similar to the matrix

shown in Eq. (2.26) where the upper submatrices are l� l identity matrices and the lower

submatrices are l� e matrices. This type of codes is belonged to a single-byte error

correcting code, as will be mentioned in Chapter 5.

TABLE 2.8 Efficient Burst Error Correcting Cyclic Codes

n� k� 2l Code ðn; kÞ Length of burst error correction l Generator polynomial gðxÞa

0 (7,3) 2 35
0 (15,9) 3 171
0 (15,7) 4 721
0 (15,5) 5 2467
0 (19,11) 4 1151
0 (21,9) 6 14515
0 (21,7) 7 47343
0 (21,5) 8 214537
0 (21,3) 9 1647235
0 (27,17) 5 2671
0 (34,22) 6 15173
0 (38,24) 7 114361
0 (50,34) 8 224531
0 (56,38) 9 1505773
0 (59,39) 10 4003351
1 (15,10) 2 65
1 (21,14) 3 171
1 (21,12) 4 11663
1 (21,10) 5 7707
1 (23,12) 5 5343
1 (27,20) 3 311
1 (31,20) 5 4673
1 (38,29) 4 1151
1 (48,37) 5 4501
1 (63,50) 6 22377
1 (63,48) 7 105437
1 (63,46) 8 730535
1 (63,44) 9 2002353
1 (67,54) 6 36365
1 (96,79) 7 114361
1 (103,88) 8 501001

Source: [LIN04]. � 2004 pp 1114, Adapted by permission of Pearson Education, Inc., Upper Saddle River, NJ.
a The generator polynomial is given as an octal representation. Each digit represents three binary digits according to the
following code:

0$ 0 0 0 2$ 0 1 0 4$ 1 0 0 6$ 1 1 0
1$ 0 0 1 3$ 0 1 1 5$ 1 0 1 7$ 1 1 1

The binary digits are the coefficients of the polynomial, with the high-order coefficients at the left. For example, the binary
representation of171is 0 011110 01, and the corresponding polynomial is gðxÞ ¼ x6 þ x5 þ x4 þ x3 þ 1.

70 MATHEMATICAL BACKGROUND AND MATRIX CODES



Interleaving Given an original ðn; kÞ code, it is possible to construct an ðln; lkÞ code by
interleaving. This can be realized by using the l original codes, that is, by arranging the l

codewords, w0 to wl�1, of the original code into l rows of a rectangular array, shown in

Figure 2.6. Digit data in every codeword is transmitted (for communication systems) or

recorded (for disk / tape memory systems) sequentially column by column from this array,

as shown in the lower part of Figure 2.6. The resulting code is referred to as an interleaved

code. The parameter l is called the interleaving degree.

In this code, no matter where the error starts, a burst error with length l affects no more

than one digit in each row. Therefore burst errors can be corrected in the array if and only if

the error in each row is a correctable error pattern of the original code. If the original code

corrects single errors, the interleaved code corrects single bursts with length l or less. If the

original code corrects any single burst with length p or less, the interleaved code corrects

any single burst with length lp or less. It should be clear from this description that the

interleaving method gives us a simple design of long burst error correcting codes. This is

why the interleaved code is popularly applied to digital systems, and so is discussed in

many places in this book. Note, however, that this effective coding technique requires a

large number of check bits.

EXERCISES

2.1 Construct the group under modulo-6 addition.

2.2 Let m be a positive integer. If m is not a prime, prove that the set f1; 2; . . . ;m� 1g
is not a group under modulo-m multiplication.

2.3 Find an isomorphism between the set of integers under addition Z4 ¼ f0; 1; 2; 3g
and the multiplicative group G ¼ f1; 2; 3; 4g.

Figure 2.6 Interleaving.

BASIC MATRIX CODES 71



2.4 Find all primitive elements in GFð7Þ and GFð11Þ.

2.5 Construct a table for GFð23Þ defined by the primitive polynomial

pðxÞ ¼ x3 þ xþ 1. Express each element in GFð23Þ by power, polynomial, vector,

and matrix representations.

2.6 Show that the polynomial x5 þ x2 þ 1 is irreducible and primitive over GFð2Þ.

2.7 Prove that reciprocal polynomial pðxÞ� is irreducible if and only if pðxÞ is irreducible
over GFð2Þ. Also prove that pðxÞ� is primitive if and only if pðxÞ is primitive.

2.8 Find all irreducible polynomials of degree 2 over GFð3Þ and determine which of

these are primitive.

2.9 Let the primitive polynomial with degree 5 be pðxÞ ¼ x5 þ x2 þ 1, and also a be a

root of pðxÞ, meaning a primitive element of GFð25Þ. Find the minimal poly-

nomials of a3, a5, and a7.

2.10 Let a be a root of primitive polynomial x2 þ xþ 2 over GFð3Þ. Find the minimal

polynomials of all elements in GFð32Þ.

2.11 Transform the matrices below to systematic forms.

H1 ¼
1 1 0 1 1

0 1 1 1 0

1 1 1 0 1

264
375 over GFð2Þ;

H2 ¼
a 1 b 0 1 b

b 0 1 a b a

1 b a 1 0 a

264
375 over GFð4Þ:

2.12 Prove that the companion matrix is nonsingular.

2.13 Show that rows or columns of nonsingular matrix are linearly independent. And

show that any nonsingular matrix can be transformed into identity matrix by

elementary row operations.

2.14 Construct the vector space of all 3-tuples over GFð3Þ. Form a two-dimensional

subspace and its null space.

2.15 Given the following H matrix of a linear code C, answer the questions below:

H ¼ 1 1 a b

0 1 b a

� �
over GFð4Þ:

(a) Transform the above matrix to a systematic form.

(b) Find all codewords of C.

(c) Encode a given message ða bÞ.
(d) Decode a received word ð1 b b 0Þ.

2.16 Prove that the code is capable of correcting any combinations of random t errors

and e erasures if the minimum distance of the code dmin is at least 2t þ eþ 1.

72 MATHEMATICAL BACKGROUNDAND MATRIX CODES



2.17 Let a linear code be expressed by the parity-check matrix H,

H ¼ 1 1 1 1 0

1 a a2 0 1

� �
over GFð4Þ;

where a is a root of the binary polynomial x2 þ xþ 1.

(a) Show that the set f0; 1; a; a2g is GFð4Þ.
(b) Show that the code is a single-error correcting code.

(c) For the given input information ð1 0 a2Þ, find the transmitted word.

(d) Decode the received word ð1 a 0 a2 1Þ.
(e) For the single-error correcting code over GFð4Þ expressed by a parity-check

matrix with r rows, express the maximum code length by using r. Also

mention how the answer is deduced.

2.18 Let C be a binary code with code length n and information length k whose parity-

check matrix H is organized by distinct odd-weight-column vectors, each with

length r ð¼ n� kÞ. Here ‘‘weight of a vector’’ means the number of 1’s in a vector.

(a) Construct the parity-check matrix H of code C for n ¼ 16 and k ¼ 11.

(b) Express the maximum code length of code C by using r.

(c) Prove that sum of arbitrary two column vectors in H is an even-weight column

vector.

(d) Prove that the code C with maximum code length has the minimum Hamming

distance 4.

(e) Prove that every codeword of C has even weight.

2.19 If an error pattern eðxÞ is detectable for a cyclic code, show that its cyclic shifted

pattern of eðxÞ is also detectable.

2.20 Let gðxÞ be a generator polynomial with degree n� k of the ðn; kÞ cyclic code C.
Prove that gðxÞ has the following properties:

1. gðxÞ is a monic polynomial with constant term equal to 1, and is uniquely

determined.

2. gðxÞ is a factor of xn þ 1, meaning xn þ 1 ¼ gðxÞhðxÞ, where hðxÞ, called a

parity-check polynomial, has degree k.

3. The reciprocal of hðxÞ, defined as xkhð1=xÞ, is also a factor of xn þ 1, and

generates a cyclic code, that is, a dual code of C.

2.21 For the ð7; 4Þ cyclic code C defined by the generator polynomial gðxÞ ¼ x3 þ xþ 1,

show that the dual code of C has minimum Hamming distance 4.

2.22 Given a ð7; 4Þ cyclic SEC code C with a generator polynomial gðxÞ ¼ x3 þ xþ 1,

obtain the dual code of C which has an SEC-DED capability.

2.23 Prove Theorem 2.5.

BASIC MATRIX CODES 73



2.24 Consider the cyclic Hamming code C with length 2m � 1 generated by

gðxÞ ¼ ðxþ 1ÞpðxÞ, where pðxÞ is a primitive polynomial with degree m. An error

pattern of the form

eðxÞ ¼ xi þ xiþ1

is called a double adjacent-error pattern, which is a burst error of length two. Prove

that the code C is capable of correcting all double adjacent-error patterns as well

as all single-error patterns by using the parity-check matrix of the code C.

2.25 Using the GFð25Þ generated by pðxÞ ¼ x5 þ x2 þ 1, find the generator polynomial

of the primitive BCH codes of length 31. For the double-error correcting BCH

code with code length 31 obtained by this generator polynomial, decode the

received polynomial rðxÞ ¼ x8 þ x7 þ 1. (Answer: eðxÞ ¼ x13 þ x2, and hence

vðxÞ ¼ x13 þ x8 þ x7 þ x2 þ 1:Þ

2.26 Given the triple-error correcting RS code with symbols from GFð24Þ, answer the
following questions:

(a) Find the generator polynomial.

(b) Let the all-zero vector be transmitted, and then let r ¼
ðr0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14Þ ¼ ð0 0 a4 0 0 0 0 0 a3 0 0 a7 0 0 0Þ be

the received vector, where a is a primitive element in GFð24Þ. Find the

syndrome with 6 elements S0; S1; S2; S3; S4, and S5.

(c) Fill out the evaluation table and find the error location polynomial rðxÞ.
(d) Find the roots of sðxÞ.
(e) Find the polynomial zðxÞ.
(f) Find the error values by using Eq. (2.22).

2.27 Find the generator polynomial of the double-error correcting RS code with code length

24 � 1 by using the symbols from GFð24Þ. Let a be a primitive element generated by

gðxÞ ¼ x4 þ xþ 1. Then decode the received polynomial rðxÞ ¼ a2x3 þ a5xþ a3.
Express the binary parity-check matrix of this code. (Answer: gðxÞ ¼ x4 þ a13x3þ
a6x2 þ a3xþ a10; eðxÞ ¼ a7x7 þ a5x2; vðxÞ ¼ a7x7þ a2x3 þ a5x2 þ a5xþ a3.)

2.28 Count the number of l-bit burst errors in a word of length L-bit. (Answer:

2l þ ðL� lÞ � 2l�1 � 1:Þ

2.29 Prove that the following matrix H is the parity-check matrix of the single b-bit

byte error detecting code with a code length of nb bits. Also, prove that this is the

parity-check matrix of the single b-bit burst error detecting code.

H ¼ ½I I I � � � I I
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{n

�; I : b� b identity matrix:

2.30 Find the generator polynomial of the Fire code capable of correcting a single error

burst of a length of 4 bits or less. Also find the code length and express this code by

using the parity-check matrix.

74 MATHEMATICAL BACKGROUND AND MATRIX CODES



2.31 Show that the code defined by the generator polynomial gðxÞ ¼
ðx9 þ 1Þðx5 þ x2 þ 1Þ over GFð2Þ can correct single burst errors with lengths of

5 bits. Find the maximum code length of this code.

REFERENCES

[BERL65] E. R. Berlekamp, ‘‘On Decoding Binary Bose-Chaudhuri-Hocquenghem Codes,’’ IEEE

Trans. Info. Theory, IT-11 (October 1965): 577–579.

[BERL84] E. R. Berlekamp, Algebraic Coding Theory, rev. 1984 ed., Aegean Park Press (1984).

[BOSE60] R. C. Bose and D. K. Ray-Chaudhuri, ‘‘On a Class of Error Correcting Binary Group

Codes,’’ Info. Contr., 3 (March 1960): 68–79.

[BRAH84] R. E. Blahut, Theory and Practice of Error Control Codes, Addison Wesley (1984).

[BURT71] H. O. Burton, ‘‘SomeAsymptotically Optimal Burst-Correcting Codes and Their Relation

to Single-Error-Correcting Reed-Solomon Codes,’’ IEEE Trans. Info. Theory, IT-17 (January

1971): 92–95.

[CHIE64] R. T. Cien, ‘‘Cyclic Decoding Procedure for the Bose-Chaudhuri-Hocquenghem Codes,’’

IEEE Trans. Info. Theory, IT-10 (October 1964): 357–363.

[ELSP62] B. E. Elspas and R. A. Short, ‘‘A Note on Optimum Burst-Error-Correction Codes,’’ IRE

Trans. Info. Theory, IT-8 (January 1962): 39–42.

[FIRE59] P. Fire, ‘‘A Class of Multiple-Error-Correcting Codes and Decoders for Non-independent

Binary Errors,’’ Sylvania Report RSL-E-2, Sylvania Electronic Defense Laboratory (March 1959).

[HAMM50] R. W. Hamming, ‘‘Error Detecting and Error Correcting Codes,’’ Bell Syst. Tech. J., 29

(April 1950): 147–160.

[HOCQ59] A. Hocquenghem, ‘‘Codes Correcteurs d’Erreurs,’’ Chifres, 2 (1959): 147–156.

[HSIA70] M. Y. Hsiao, ‘‘A Class of Optimal Minimum Odd-Weight-Column SEC-DED Codes,’’

IBM J. Res. Dev., 14 (July 1970): 395–401.

[KASA63] T. Kasami, ‘‘Optimum Shortened Cyclic Codes for Burst-Error-Correction,’’ IEEE Trans.

Info. Theory, IT-9 (April 1963): 105–109.

[KASA64] T. Kasami and S. Matoba, ‘‘Some Efficient Shortened Cyclic Codes for Burst-Error-

Correction,’’ IEEE Trans. Info. Theory, IT-10 (July 1964): 252–253.

[LIN04] S. Lin and D. J. Costello Jr., Error Control Coding, 2d ed., Pearson Prentice Hall (2004).

[MACW77] F. J. MacWilliams and N. J. Sloane, The Theory of Error-Correcting Codes, North-

Holland (1977).

[MASS69] J. L. Massey, ‘‘Shift-Register Synthesis and BCH Decoding,’’ IEEE Trans. Info. Theory,

IT-15 (January 1969): 122–127.

[PETE72] W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes, 2d ed., MIT Press (1972).

[PLES98] V. Pless, Introduction to the Theory of Error-Correcting Codes, 3d ed., Wiley Inter-

Science (1998).

[REED60] I. S. Reed and G. Solomon, ‘‘Polynomial Codes over Certain Finite Fields,’’ SIAM J. Appl.

Math., 8 (June 1960): 300–304.

[REIG60] S. H, Reiger, ‘‘Codes for the Correction of ‘Clustered Errors’,’’ IRE Trans. Info. Theory,

IT-6 (March 1960): 16–21.

[STON61] J. J. Stone, ‘‘Multiple Burst Error Correction,’’ Info. Cont., 4 (December 1961): 324–331.

[WOLF69] J. K. Wolf, ‘‘Adding Two Information Symbols to Certain Nonbinary BCH Codes and

Some Applications,’’ Bell Syst. Techn. J., 48 (September 1969): 2405–2424.

REFERENCES 75



CONTENTS

3.1 Minimum-Weight & Equal-Weight-Row Codes . . . . . . . . . . . . . . . . . . . . . . 78

3.1.1 Code Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1.2 Lowest Density MDS Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2 Odd-Weight-Column Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Even-Weight-Row Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4 Odd-Weight-Row Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5 Rotational Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5.1 Code Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5.2 Maximum Code Length of Rotational Codes . . . . . . . . . . . . . . . . . . . 89

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



3
Code Design Techniques for

Matrix Codes

The high-speed digital systems that depend on error control codes require encoding /

decoding to be performed in a parallel high-speed manner. In these systems the encoder /

decoder is usually implemented by combinational logic circuits, not by linear feedback

shift registers (LFSRs). In this case parity-check matrices are used to directly express the

code functions. Matrix codes offer us the freedom to modify the organization of the

matrices within the range of preserving the code functions. For example, we can select

low-density column vectors to organize the matrix, or we can move or exchange the

column vectors in the matrix. Such flexibilities do not exist in the polynomial codes.

The codes for high-speed systems are usually expressed by matrices, so many designs

are possible. Most codes for high-speed memories are shortened codes, whose lengths are

less than the theoretical bound under a given check-bit length. This is because the

information-bit length of high-speed memories can be less than 300, for example, and this

is short compared to the codes for mass memories and communication systems. There are

various ways of shortening a code. A code designer may construct a shortened code to

meet certain objectives or to satisfy some conditions suitable for a particular application,

as was mentioned in Chapter 1. The objectives or conditions involve the optimization of

other factors: encoder / decoder circuit amount, decoding circuit delay, probability of

detecting multiple errors, or modularlized organization of an encoding / decoding circuit

suitable for LSI implementation.

This chapter presents some practical matrix code designs suitable for the efficient

high-speed parallel encoder / decoder. The techniques of this chapter can be applied to any

matrix code design.

Code Design for Dependable Systems: Theory and Practical Applications, by Eiji Fujiwara
Copyright # 2006 John Wiley & Sons, Inc.

77



3.1 MINIMUM-WEIGHT & EQUAL-WEIGHT-ROW CODES

3.1.1 Code Concept

It should be easy to understand that fewer 1’s in the H matrix means fewer modulo-2

additions that bring faster encoding / decoding. Fewer gates also means lower cost and

more reliable hardware. Therefore it is preferable to design the H matrix for a given code

satisfying as closely as possible the following constraints [HSIA70]:

1. The total number of nonzero elements in H should be minimal, that is, take the form

of a minimum-weight code, or a lowest density code.

2. The number of 1’s in each row of H should be made equal, or as close as possible,

to the average number of 1’s (the total number of 1’s in H divided by the number of

rows), that is, take the form of an equal-weight-row code.

Definition 3.1 A minimum-weight & equal-weight-row code is defined as a code whose

H matrix has the minimum number of nonzero elements and each row of H expressed

in binary form has equal number of 1’s, or as close as possible, to the average number

of 1’s. &

3.1.2 Lowest Density MDS Codes

In the code expressed by the lowest density parity-check matrix, there exists the smallest

number of nonzero elements. The code with a low-density parity-check matrix leads to an

excellent high-speed decoder requiring a small amount of hardware and a high-speed error

recovery. Minimizing the density is good for high-speed semiconductor memory systems

as well as for disk array systems (e.g., for RAID systems as mentioned in Chapter 14).

Using this knowledge, Blaum and Roth [BLAU99] presented lower bounds on a

number of nonzero elements in the parity-check matrix of a linear maximum distance

separable (MDS) code over GFðqbÞ, besides the upper bounds on the MDS code length

that attains those lower bounds. In the following discussion we consider these bounds on

the weight of a parity-check matrix, and code length, without proof. For the proof details,

the reader should refer to the original paper [BLAU99].

However, codes designed by this method are not necessarily efficient in code length. This

is because of the design constraints placed on the lowest density parity-check matrices.

Definition 3.2 (MDS Codes) Let C be a code of length n over GFðqbÞ, and let C have the

minimum Hamming distance d, where the distance is measured with respect to symbols

of GFðqbÞ. By the Singleton bound for codes over GFðqbÞ the codes that attain the

following bound are called maximum distance separable (MDS) codes:

d � nþ 1� logqb jCj ¼ r þ 1;

where k ¼ logqb jCj is an information symbol length and r ¼ n� k is a check symbol

length. &

The Reed-Solomon code (RS code) is a typical MDS code. The following discussion

relates to the companion matrix and to the nonsingular matrix given in Subsection 2.2.3.

78 CODE DESIGN TECHNIQUES FOR MATRIX CODES



In order to construct low-density MDS codes over GFðqbÞ, we need to use the largest

possible set of b� b sparse matrices, that is, a set of low-density b� b matrices over

GFðqÞ that satisfies the following properties:

(P1) Each matrix in the set is nonsingular.

(P2) Every two distinct matrices in the set have a difference that is also nonsingular.

(P3) Each matrix contains b nonzero elements.

(P3 0) Each matrix contains at most bþ 1 nonzero elements.

Set of Matrices Satisfying (P1), (P2), and (P3) For a positive integer b and an

element a 2 GFðqÞ, we define the b� b matrix Ta over GFðqÞ by

Ta ¼

0 0 � � � 0 a
1 0 � � � 0 0

0 1 � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � 1 0

2666664

3777775
b�b

:

The matrix Ta is the companion matrix defined by the polynomial gðxÞ ¼ xb � a over

GFðqÞ. When a 2 GFðqÞ � f0g, the matrix Ta is nonsingular and contains exactly b

nonzero elements. The same holds for Ti
a, a power of Ta. Hence the set

Ua ¼ a � Ti
a j a 2 GFðqÞ � f0g; 0 � i < b

	 

satisfies (P1) and (P3), and the size of Ua is b � ðq� 1Þ.

Example 3.1 ð3� 3 Companion Matrices over GFð3ÞÞ

The 3� 3 companion matrix over GFð3Þ is defined by the polynomial gðxÞ ¼ x3 � 2,

and the set is given by U2 ¼ T0
2; T1

2; T2
2; T3

2 ¼ 2 � T0
2; T4

2 ¼ 2 � T1
2

	
, T5

2 ¼ 2 � T2
2



:

T0
2 ¼

1 0 0

0 1 0

0 0 1

264
375; T1

2 ¼
0 0 2

1 0 0

0 1 0

264
375; T2

2 ¼
0 2 0

0 0 2

1 0 0

264
375;

T3
2 ¼ 2 � T0

2 ¼
2 0 0

0 2 0

0 0 2

264
375; T4

2 ¼ 2 � T1
2 ¼

0 0 1

2 0 0

0 2 0

264
375;

T5
2 ¼ 2 � T2

2 ¼
0 1 0

0 0 1

2 0 0

264
375:

The following theorem provides a necessary and sufficient condition for Ua to satisfy

the property (P2).

MINIMUM-WEIGHT & EQUAL-WEIGHT-ROW CODES 79



Theorem 3.1 Let a be an element of GFðqÞ � f0g with exponent d. The difference

between every two distinct matrices in Ua is nonsingular if and only if every prime divisor

of b divides d but not ðq� 1Þ=d.

When q 6� 3 (mod 4), the conditions of b in the theorem are necessary and sufficient for

xb � a to be an irreducible polynomial over GFðqÞ. When q � 3 (mod 4), the conditions

for irreducibility require, in addition, that b is not divisible by 4. When xb � a is

irreducible, every nontrivial polynomial of degree less than b over GFðqÞ is relatively

prime to xb � a. Hence every nontrivial linear combination over GFðqÞ of the matrices I,

Ta, T
2
a, . . ., T

b�1
a , is nonsingular; in particular, irreducibility implies that the difference

between every two distinct elements in Ua is nonsingular.

To obtain the widest range of the value b that satisfies the conditions of Theorem 3.1, we

will choose a to be the primitive in GFðqÞ. In this case the conditions of the theorem

require that the prime divisor of b also divides q� 1. For example, we can take b ¼ 2m when

q ¼ odd, or b ¼ 3m when q ¼ 22h, where m and h are integers larger than or equal to 1.

Set of Matrices Satisfying (P1), (P2), and (P3 0):

Definition 3.3 Let p be an odd prime, and let a be an element of GFðqÞ. For 0 � i < p,

define the ðp� 1Þ � ðp� 1Þ matrix QðiÞa ¼ #l;m

� �p�1
l;m¼1 over GFðqÞ by

#l;m ¼

1 if l 6¼ p� i and hm� li ¼ i;
�1 if l ¼ p� i and m ¼ i;
�a if l ¼ p� i and m ¼ hi=2i;
0 otherwise;

8>><>>:
where ha=bi denotes the unique integer s, 0 � s < p, such that a � bs (mod p).

The matrix Qð0Þa is the identity matrix Ip�1, and Qð1Þa is the transposed companion

matrix of the polynomial xp�1 þ axðp�1Þ=2 þ 1 over GFðqÞ. &

Example 3.2 [BLAU99]

For p ¼ 5 and a 2 GFðqÞ, we have h1=2i ¼ 3; h2=2i ¼ 1; h3=2i ¼ 4. The matrices

QðiÞa are given by

Qð0Þa ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

266664
377775; Qð1Þa ¼

0 1 0 0

0 0 1 0

0 0 0 1

�1 0 �a 0

266664
377775; Qð2Þa ¼

0 0 1 0

0 0 0 1

�a �1 0 0

1 0 0 0

266664
377775;

Qð3Þa ¼

0 0 0 1

0 0 �1 �a
1 0 0 0

0 1 0 0

266664
377775; Qð4Þa ¼

0 �a 0 �1
1 0 0 0

0 1 0 0

0 0 1 0

266664
377775:

80 CODE DESIGN TECHNIQUES FOR MATRIX CODES



For example, the element in the crosspoint of the fourth row and the third column in

Qð1Þa (i.e., #4;3) is determined as #l;m ¼ �a for l ¼ 5� 1 ¼ 4 and m ¼ h1=2i ¼ 3.

The matrixQð0Þa contains p� 1 nonzero elements and each of the remaining matrices in

the set contains at most p nonzero elements. Hence the set

�a ¼ a �QðiÞa j a 2 GFðqÞ � f0g; 0 � i < p
n o

satisfies the property (P3 0). Note that the size of �a is

pðq� 1Þ ¼ ðbþ 1Þðq� 1Þ:

For q ¼ 3 in Example 3.2, the size of �a is 10, and additional five matrices of 2 �Qð0Þ2 ;

2 �Qð1Þ2 ; 2 �Qð2Þ2 ; 2 �Qð3Þ2 ; 2 �Qð4Þ2 are added to the existing five matrices of Q
ðiÞ
2 ;

0 � i � 4. The following theorem provides sufficient conditions on p and a, showing that
�a satisfies the property (P2).

Theorem 3.2 Let p be a prime such that p� 1 is divisible by 2ðq� 1Þ, and let a be an

element in GFðqÞ � f0g such that the polynomial x2 þ axþ 1 is irreducible over GFðqÞ.
Then the difference of any two distinct matrices in �a is nonsingular.

Lowest Density Bounds on MDS Codes Wepresent here lower bounds on the num-

ber of nonzero elements in the parity-check matrices of the linear MDS codes over GFðqbÞ,
as well as upper bounds on dimension and redundancy of the codes that attain those bounds.

Theorem 3.3 Let C be a linear ðn; k ¼ n� rÞ MDS code over GFðqbÞ, and suppose

that C has an rb� nb systematic parity-check matrix H having at least k þ 1 nonzero

elements in each row. If k > 1 and r > 1, then k � bðq� 1Þ and r � bðq� 1Þ.

For q ¼ 2, we can improve these bounds.

Theorem 3.4 Let C be a linear ðn; k ¼ n� rÞMDS code over GFð2bÞ, and assume that
k 	 r 	 2. The average number of 1’s in each row of the systematic parity-check matrix

of C is at least k þ 1þ ðk � 1Þ=2b, which is attained in the case k � bþ 1.

Theorem 3.5 Let C be a linear ðn; k ¼ n� rÞMDS code over GFð2bÞ, and assume that
k 	 r 	 3. The average number of 1’s in each row of the systematic parity-check matrix

of C is at least k þ 1þ ð2k � 3Þ=3b.

Example 3.3 [BLAU99]

Let k ¼ r ¼ 3 and b > 1, and let A be an rb� kb matrix over GFð2Þ:

A ¼
D Ib Ib
Ib D Ib
Ib Ib D

24 35;

MINIMUM-WEIGHT & EQUAL-WEIGHT-ROW CODES 81



where Ib is a b� b binary identity matrix and D ¼ ðdl;mÞ is a b� b matrix over GFð2Þ
of the form

dl;m ¼
1 if l < b and m ¼ lþ 1;
1 if l ¼ b and m 2 f1; tg for some 2 � t � b; 1 � l;m � b;
0 otherwise:

8<:
It is easy to check that both D and Dþ Ib are nonsingular. This implies that every square

submatrix of A that consists of full b� b submatrices D or Ib, is nonsingular. Hence the

followingH ¼ ½A ::
:: I3b � is a systematicparity-checkmatrixofa linear (6,3)MDScodeover

GFð2bÞ, and the average number of 1’s in each row is 4þ 1=b, thus attaining lower bounds.

H A I3b

D Ib Ib Ib O O
Ib D I b O Ib O
Ib Ib D O O I b

: 6,( 3) MDS code.= =[ [

For b ¼ 4, submatrix D can be expressed as

t ¼ 2

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

2664
3775

t ¼ 3

0 1 0 0

0 0 1 0

0 0 0 1

1 0 1 0

2664
3775

t ¼ 4

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 1

2664
3775:

The following shows the lowest density systematic parity-check matrix of the (6, 3)

MDS codes over GFð24Þ:

H = .

0100
0010
0001
1100

1000
0100
0010
0001

1000
0100
0010
0001

1000
0100
0010
0001

0000
0000
0000
0000

0000
0000
0000
0000

1000
0100
0010
0001

0100
0010
0001
1100

1000
0100
0010
0001

0000
0000
0000
0000

1000
0100
0010
0001

0000
0000
0000
0000

1000
0100
0010
0001

1000
0100
0010
0001

0100
0010
0001
1100

0000
0000
0000
0000

0000
0000
0000
0000

1000
0100
0010
0001

The average number of 1’s in each row equals 4þ 1=4, which is equal to

k þ 1þ ð2k � 3Þ=3b for k ¼ 3 and b ¼ 4.

3.2 ODD-WEIGHT-COLUMN CODES

Let H be a parity-check matrix of ðn; kÞ code over GFð2bÞ having r ¼ n� k rows and n

columns.

82 CODE DESIGN TECHNIQUES FOR MATRIX CODES



Definition 3.4 If every column in the H matrix of code C over GFð2bÞ satisfies the

following condition (3.1), then C is called an odd-weight-column code:

Xr�1
i¼0

hi;j ¼ I for columns j ¼ 0; 1; . . . ; n� 1; ð3:1Þ

where

hi; j : i-th element in the j-th column vector 2 GFð2bÞ,
I: identity element in GFð2bÞ,P

: summation in GFð2bÞ. &

To convert the ðn; kÞ code over GFð2bÞ to binary form, we replace each element of

GFð2bÞ in H to a corresponding b� b matrix over GFð2Þ. Then the H matrix is an R� N

binary matrix, where R ¼ b � r and N ¼ b � n.

Theorem 3.6 [FUJI78, FUJI81] If the H matrix of a code over GF(2b) satisfies Eq.

(3.1), then its corresponding binary converted form of matrix is an odd-weight-column

matrix over GF(2). In other words, if H is an r � n matrix over GFð2bÞ that satisfies
Eq. (3.1), then the binary conversion of H will yield an R� N binary odd-weight-column

matrix.

Proof Let hi; j be the i-th row and the j-th column element of the r � n matrix H over

GFð2bÞ, where 0 � i � r � 1; 0 � j � n� 1. Every element of GFð2bÞ can be expressed

by a b� b binary matrix, called its companion matrix, as further explained in Chapter 5.

In particular, the identity element I of GFð2bÞ is equivalent to the b� b identity matrix.

Now write hi; j as the following binary b� b matrix:

hi; j ¼

l
#

ða0;0Þi . . . ða0;lÞi . . . ða0;b�1Þi
ða1;lÞi

..

. ..
. ..

.

. . . ðal;lÞi . . .

..

. ..
. ..

.

ðab�1;0Þi . . . ðab�1;lÞi . . . ðab�1;b�1Þi

2666666666664

3777777777775
 l;

ðas;lÞi 2 GFð2Þ;
0 � s; l � b� 1; 0 � i � r � 1:

Equation (3.1) leads to the following relation for 0 � l � b� 1:

Xr�1
i¼0

ðal; lÞi ¼ 1;
X

 : mod-2 sum:

ODD-WEIGHT-COLUMN CODES 83



This shows that the modulo-2 sum of the corresponding diagonal elements in the binary

square matrices hi; j’s is equal to 1 of the corresponding element in the identity matrix I.

Thus the binary represented set ðal; lÞ0; ðal; lÞ1; . . . ; ðal; lÞr�1
	 


has an odd number of l’s,

meaning it is odd weight.

On the other hand, the following relation holds for 0 � m 6¼ l � b� 1:

Xr�1
i¼0

ðam;lÞi ¼ 0:

This shows that the modulo-2 sum of the corresponding nondiagonal elements in the binary

square matrices hi; j’s is equal to 0 of the corresponding element in the identity matrix I. Thus

the binary represented set ðam;lÞ0; ðam;lÞ1; . . . ; ðam;lÞr�1
	 


, where m 6¼ l, has an even

number of l’s, meaning it is even weight. The foregoing equations result in the relation

Xr�1
i¼0


Xb�1
m¼0

ðam;lÞi ¼ 1:

This shows that the l-th column vector of the binary H matrix is of odd weight. These

relations hold for any integer l and j. Hence every column vector of the binary H matrix

that satisfies Eq. (3.1) is of odd weight. Q.E.D.

The odd-weight-column code gives a good discrimination of even number and odd

number of errors. Therefore it has better multiple error detection capability than the

non–odd-weight-column code, as will be shown in later chapters.

3.3 EVEN-WEIGHT-ROW CODES

Definition 3.5 Let the binary H matrix of code C be expressed by r row vectors as

H ¼

P0

P1

..

.

Pr�1

26664
37775:

If every nonzero row vector Pi ¼ ðhi;0 . . . hi;n�1Þ of H satisfies Eq. (3.2), then C is

called an even-weight-row code:

Xn�1
j¼0

hi; j ¼ 0 for rows i ¼ 0; 1; . . . ; r � 1; ð3:2Þ

Where

hi; j: j-th element in the i-th row vector 2 GFð2bÞ,
0: zero element in GFð2bÞ,P

: summation in GFð2bÞ. &

84 CODE DESIGN TECHNIQUES FOR MATRIX CODES



It can be easily proved that the code satisfying Eq. (3.2) has all even-weight rows in the

binary form of H. This code has an important characteristic given below.

Definition 3.6 For every binary codeword W of code C, if its bitwise complement W is

also in C, then C is called a self-complementing code. &

Theorem 3.7 Even-weight-row code C is a self-complementing code.

Proof Let the codeword W of code C be expressed as

W ¼ D j P½ � ¼ d0 d1 . . . dk�1 p0 p1 . . . pr�1½ �;

where D ¼ ðd0 d1 . . . dk�1Þ is an information part and P ¼ ðp0 p1 . . . pr�1Þ is a check

part. In addition let the H matrix be expressed as H ¼ ½H0; I�, where H0 is an r � k binary

matrix for information part ofH, and I is an r � r binary identity matrix for the check part

of H. Clearly, H0 has r odd-weight-row vectors, h00; h
0
1; . . . ; h

0
r�1. Therefore each check bit

can be obtained by the following relation:

pi ¼ ðd0 d1 . . . dk�1Þ � ðh0iÞ
T ; 0 � i � r � 1:

Let the bitwise complement of W be W ¼ d0 d1 . . . dk�1 c0 . . . cr�1
 �

¼ D j P
 �

. For

D ¼ ðd0 d1 . . . dk�1Þ, the following relation always holds because every row vector h0i is
of odd weight:

ðd0 d1 . . . dk�1Þ � ðh0i
TÞ ¼ pi; 0 � i � r � 1:

This means that D � H0T ¼ P, and hence the code is self-complementing. Q.E.D.

From the characteristic of the code given above, an even-weight-row SEC-DED

code can be used for mask error correction of double errors in memory words

[SUND78, SUND79, WALK79, AICH84] (see Example 4.3). This code can also be

applied to memory testing because it allows a small number of memory cell accesses

to test the semiconductor memory modules. Another application is mask error

correction in logic circuits, especially in self-complementary logic circuits, which is

called alternate data retry (ADR) [YAMA70, SHED78], as we saw in Subsection

1.3.2.

Several well-known codes, such as m-out-of-2m codes, complemented duplication

codes, residue codes with checkbase 2a � 1 (called low-cost residue codes), and

self-complementing AN þ B codes (e.g., 3N þ 2 code [BROW60, RAO74]) also

satisfy the condition that the bitwise complement of the codeword is a codeword as

well.

Corollary 3.1 If the H matrix of a code C satisfies both odd-weight-column and even-

weight-row conditions, then the code length of C is even.

The reader is encouraged to prove this.

EVEN-WEIGHT-ROW CODES 85



Example 3.4

A simple example of the even-weight-row code is the code with its H matrix:

H ¼

1 0 1 1 1 0 0 0

1 1 0 1 0 1 0 0

1 1 1 0 0 0 1 0

0 1 1 1 0 0 0 1

2664
3775:

All row vectors have even-weight 4. The codewordW ¼ ½D j P� is shown below. There
exist 16 codewords.

W = D P

=

0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 0
0 1 0 0 0 1 1 1
1 1 0 0 1 0 0 1
0 0 1 0 1 0 1 1
1 0 1 0 0 1 0 1
0 1 1 0 1 1 0 0
1 1 1 0 0 0 1 0

0 0 0 1 1 1 0 1
1 0 0 1 0 0 1 1
0 1 0 1 1 0 1 0
1 1 0 1 0 1 0 0
0 0 1 1 0 1 1 0
1 0 1 1 1 0 0 0
0 1 1 1 0 0 0 1
1 1 1 1 1 1 1 1

. . .

These codewords are self-complementary, as is obvious.

3.4 ODD-WEIGHT-ROW CODES

Next we consider the codes whose H matrix rows are of odd weight. These codes satisfy

the following definition.

Definition 3.7 If every binary row vector ðhi;0 . . . hi;n�1Þ of the H matrix of code C

satisfies Eq. (3.3), then C is called an odd-weight-row code.Xn�1
j¼0

hi; j ¼ 1 for rows i ¼ 0; 1; . . . ; r � 1: ð3:3Þ
&

Theorem 3.8 For a binary codeword W ¼ ½D j P� of an odd-weight-row code C, where D
is the information part and P is the check part, W 0 ¼ ½�D j P� is also a codeword of C.

The proof is similar to the previous one and hence is omitted.

86 CODE DESIGN TECHNIQUES FOR MATRIX CODES



An odd-weight-column and odd-weight-row SEC-DED code, called aMaintenance code

(M code), can be shown to be useful for mask error correction in memory units [CART76].

Example 3.5

A simple example of the odd-weight-row code is the code with its H matrix:

H ¼

1 0 0 1 1 1 1 0 0 0 0

1 0 1 0 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0 1 0 0

0 1 1 0 1 1 0 0 0 1 0

0 1 1 1 0 1 0 0 0 0 1

266664
377775:

In these codewords, even if the information part is bitwise complemented, the

corresponding check part remains same:

Codewords

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 1 0 0

0 1 0 0 0 0 0 0 1 1 1

1 1 0 0 0 0 1 1 0 1 1

0 0 1 0 0 0 0 1 0 1 1

1 0 1 0 0 0 1 0 1 1 1

0 1 1 0 0 0 0 1 1 0 0

1 1 1 0 0 0 1 0 0 0 0

0 0 0 1 0 0 1 0 1 0 1

1 0 0 1 0 0 0 1 0 0 1

..

.

266666666666666666666664

377777777777777777777775
D P

()

Codewords

1 1 1 1 1 1 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0 0

1 0 1 1 1 1 0 0 1 1 1

0 0 1 1 1 1 1 1 0 1 1

1 1 0 1 1 1 0 1 0 1 1

0 1 0 1 1 1 1 0 1 1 1

1 0 0 1 1 1 0 1 1 0 0

0 0 0 1 1 1 1 0 0 0 0

1 1 1 0 1 1 1 0 1 0 1

0 1 1 0 1 1 0 1 0 0 1

..

.

266666666666666666666664

377777777777777777777775

:

D P

3.5 ROTATIONAL CODES

Rotational codes offer modularity of the encoding / decoding circuits with small additional

check bits, and hence they are practical for LSI / VLSI implementation of the encoder /

decoder [FUJI80].

3.5.1 Code Concept

Definition 3.8 A code whose H matrix has the following d submatrices, each having

r rows and n=d columns is called a rotational code. In this case, d is a divisor of r and of n.

H ¼ H0jH1j . . . jHjj . . . jHd�1
 �

r�n; ð3:4Þ
Hj ¼ Rj �H0; j ¼ 1; 2; . . . ; d � 1;

ROTATIONAL CODES 87



O

I
I

I

I
...

I
I

I
...

O

R =

r

r /d

r-r /d {O, I} GF(2  ).b

&

In this definition H0 and R are called the generating submatrix and the rotational

operating matrix, respectively. The H matrix design of the rotational codes presents d

cyclic shifts of the r=d rows in a vertical direction between adjacent submatrices.

The unique feature of the rotational code is that its encoding / decoding circuit can be

implemented with d identical subcircuits specified by the generating submatrix H0, each

by simply altering the input / output connections [CART73, BOSS74, FUJI77]. Therefore

the rotational code gives a modularized encoding / decoding circuit suitable for LSI

implementation [FUJI80].

In order to understand the concept of rotational code, a simple example is presented next.

Example 3.6

The code expressed by the following H matrix can be made rotational by permuting

its column vectors as shown below. In this case d ¼ r ¼ 4. Figure 3.1 shows the

modularized decoding circuit based on H0.

+
+

d
c d

^

+

+d
c

d
^

+
+

d
c d

^

+
+

d
c d

^

S

S

S

S

0

0

3

1

2

2

1
3

0

3

2

1
3

2

1

0

Figure 3.1 Modularized decoding circuit for the rotational codeH 0.

88 CODE DESIGN TECHNIQUES FOR MATRIX CODES



d0 d1 d2 d3 c0 c1 c2 c3

H =

1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1

d0 c0 d3 c1 d2 c2 d1 c3

H = =

1 1
1 0
1 0
0 0

0 0
1 1
1 0
1 0

1 0
0 0
1 1
1 0

1 0
1 0
0 0
1 1

H, ,0

1 1
1 0
1 0
0 0

H0 H1 H2 H3

H j R= =j H ,0 j 1, 2, 3,

=R .

.

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

0 1 ,GF 2

;

Figure 3.1 shows four identical subscircuits, each having seven inputs and four outputs

including signals communicating with other subcircuits. Also shown are the four-input

parity checker, an inverter, a four-input AND gate, and an exclusive-OR (XOR) gate to

give the whole decoding circuit specified by the rotational (8, 4) SEC-DED code.

Modularity is the main feature of this decoder. In Chapter 4 the original (8, 4) odd-

weight-column SEC-DED code will be described in Example 4.1. Its decoding circuit

shown in Figure 4.1 is transformed here to the rotational code H0 and its modularized

decoding circuit shown in Figure 3.1. The matrix H0 is identical to the original matrix H

because the column vectors in H0 are just a permutation of those in H.

3.5.2 Maximum Code Length of Rotational Codes

A simple example of the rotational code is a rotational single-bit error correcting (SEC)

code. Other rotational memory codes, such as the rotational single-byte error correcting

(SbEC) codes, rotational single-byte error correcting and double-byte error detecting

(SbEC-DbED) codes, will be demonstrated in later chapters.

Definition 3.9 Let the i-th cyclic shift of a vector H ¼ ðh0 h1 . . . hr�1Þ be denoted by

HðiÞ ¼ ðhi hiþ1 . . . hr�1 h0 . . . hi�1Þ:

ROTATIONAL CODES 89



A set of all distinct vectors obtained by cyclic shifts of a vector is called a cyclic

equivalence class. &

Example 3.7

The cyclic equivalence classes of binary 4-tuples sequences are as follows:

E1 ¼ f0000g;
E2 ¼ f1111g;
E3 ¼ f1010; 0101g;
E4 ¼ f0001; 0010; 0100; 1000g;
E5 ¼ f0011; 0110; 1100; 1001g;
E6 ¼ f0111; 1110; 1101; 1011g:

Each cyclic equivalence class (of r-tuples) will have m vectors, where m is a divisor of

r. If m 6¼ r for any class, then it is called a degenerate cyclic equivalence class. In the

example, E1, E2, and E3 are degenerate cyclic equivalence classes, whereas E4, E5, and

E6 are nondegenerate cyclic equivalence classes.

In general, for r and q-ary sequence the number of nondegenerate cyclic equivalence

classes, NqðrÞ, is given as follows [GOLO58]:

NqðrÞ ¼
1

r

X
mjr

mðmÞ � qr=m: ð3:5Þ

Here
P

mjr expresses summation over all m that divides r, and mðmÞ is Möbius function

[PETE72] defined as

mðmÞ ¼ 1 ¼ 1; m ¼ 1;

¼ 0; m has any square factor;

¼ ð�1Þl; m ¼ p1 p2 . . . pl;where pi’s are distinct primes:

Values of mðmÞ for m ¼ 1 to 15 are shown below:

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

mðmÞ 1 �1 �1 0 �1 1 �1 0 0 1 �1 0 �1 1 1

The following scheme shows N2ðrÞ, which is the number of nondegenerate cyclic

equivalence classes for binary r-tuples:

r 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N2ðrÞ 2 3 6 9 18 30 56 99 186 335 630 1; 161 2; 182 4; 096

90 CODE DESIGN TECHNIQUES FOR MATRIX CODES



In the case of Example 3.7, N2ð4Þ ¼ 3 by this table. The H matrix of a rotational SEC

code can be constructed by using the nondegenerate cyclic equivalence classes as

follows:

c0 d0 d1 c1 d2 d3 c2 d4 d5 c3 d6 d7

H = .

1 1 1
0 1 1
0 0 1
0 0 0

0 0 0
1 1 1
0 1 1
0 0 1

0 0 1
0 0 0
1 1 1
0 1 1

0 1 1
0 0 1
0 0 0
1 1 1

H0 H1 H2 H3

Here we consider the code length of a rotational SEC code. Let the number of cyclic

equivalence classes for a binary sequence having lengthm beN2ðmÞ, wherem is a divisor of r.

In Example 3.7, we have N2ð1Þ ¼ 2, N2ð2Þ ¼ 1, and N2ð4Þ ¼ 3. Therefore the

following relation is satisfied for the cyclic equivalence classes of binary 4-tuples:

1 � N2ð1Þ þ 2 � N2ð2Þ þ 4 � N2ð4Þ ¼ 24

In general, for binary r-tuples the following relation holds:

2r ¼
X
mjr

m � N2ðmÞ: ð3:6Þ

In order to obtain the code length of a rotational SEC code, we are required to find the

number of nondegenerate cyclic equivalence class, N2ðrÞ.
For functions f and g over integers m and r, we have the following inversion formula.

Definition 3.10 If for an arbitrary positive integer r the relation

f ðrÞ ¼
X
mjr

gðmÞ

holds, then gðrÞ can be expressed by f ðrÞ as

gðrÞ ¼
X
mjr

mðmÞ � f r

m

� �
:

This inversion formula is calledMöbius inversion formula. &

We can apply a Möbius inversion formula to Eq. (3.6) and then obtain the following

equation:

N2ðrÞ ¼
1

r

X
mjr

mðmÞ � 2r=m

ROTATIONAL CODES 91



This is equal to Eq. (3.5) for q ¼ 2. Therefore the code length n of a rotational SEC code

can be expressed as

n ¼ r � N2ðrÞ ¼
X
mjr

mðmÞ � 2r=m: ð3:7Þ

Table 3.1 shows the code length in bits of this rotational code as well as that of the

nonrotational Hamming SEC code. This table says that the code length of the rotational

SEC codes is decreased by small number of bits, compared to that of the nonrotational

codes.

EXERCISES

3.1 Use Theorem 3.1 for the following exercises. Let a be an element in GFðqÞ � f0g
with exponent d.

(a) Find the exponent d for every element a in GFð7Þ � f0g, that is,

a ¼ 1; 2; 3; 4; 5, and 6.

(b) Verify that prime divisor of b divides d but not ðq� 1Þ=d for q ¼ 7, b ¼ 4, and

a ¼ 3 and 5.

(c) Find the set Ua over GFð7Þ for b ¼ 4 and a ¼ 5.

(d) Verify that the difference between every two distinct matrices in Ua is

nonsingular.

3.2 Verify Theorem 3.2 for p ¼ 3 and q ¼ 2.

3.3 Design the lowest density MDS code over GFð24Þ with r ¼ 2 that satisfies the

conditions of Theorem 3.4.

3.4 Prove Corollary 3.1.

3.5 Design the H matrix of a rotational odd-weight-column (30, 24) SEC-DED code,

and design its modularized decoding circuit.

TABLE 3.1 Code Length of Rotational SEC Codes

r nrotational nnonrotational

3 6 7
4 12 15
5 30 31
6 54 63
7 126 127
8 240 255
9 504 511
10 990 1,023
11 2,046 2,047
12 4,020 4,095

Note: nrotational ¼
P

mjr mðmÞ � 2r=m; nnonrotational ¼ 2r � 1.

92 CODE DESIGN TECHNIQUES FOR MATRIX CODES



3.6 Design the generating submatrix H0 of a rotational odd-weight-column (63, 56)

SEC-DED code.

3.7 The length between 1’s in a binary vector is called a gap length [BOSS74]. A gap

length is defined as the number of 0’s between the adjacent two 1’s in the vector.

The gap length notation of a vector with length r and Hamming weight w is a w-

tuple (l1; l2; . . . ; lw) where li denotes the i-th gap length between the i-th 1 and the

ðiþ 1Þ-th 1 in the vector in a cyclic order. For example, vector ð010110010Þ with
r ¼ 9 and w ¼ 4 has the gap lengths l1 ¼ 1, l2 ¼ 0, l3 ¼ 2, and l4 ¼ 2. In particular,

the gap length between the fourth 1 and the first 1 rounded through the end of the

example vector gives l4 ¼ 2 because there are two 0’s between the forth 1 and the

first 1 in the vector. Hence the 4-tuple gap length vector of this example vector can

be expressed as (1022).

Under the foregoing preparation, do the following:

(a) Show that the relation between the parameters of li, r, and w is expressed as

Xw
i¼1

li ¼ r � w:

(b) The gap length notation of the vector completely characterizes the vector up to

its r cyclic shifts. Prove that the vector included in a nondegenerate cyclic

equivalence class (NCEC) has the gap length vector that is also included in

NCEC, and vice versa. Since the example vector (010110010) above has the

gap length vector (1022), which is included in NCEC, the original example

vector is included in NCEC.

(c) The vector with parameters of r ¼ 7 and w ¼ 2, denoted as ðr; wÞ ¼ ð7; 2Þ, has
the number of 0’s equal to r � w ¼ 7� 2 ¼ 5. Consequently the gap length

vector of (5, 0), which is included in NCEC, can be easily obtained. We can get

another two gap length vectors of (4, 1) and (3, 2) also included in NCEC.

Based on this process, find the 7 gap length vectors included in NCEC for

ðr; wÞ ¼ ð8; 3Þ, the 8 gap length vectors for ðr; wÞ ¼ ð8; 4Þ, and the 12 gap

length vectors for ðr; wÞ ¼ ð10; 3Þ.

(d) Prove that if the vector with ðr; wÞ is included in NCEC, then the comple-

mented vector with ðr; r � wÞ is also included in NCEC.

(e) Using the column vectors with ðr; wÞ ¼ ð8; 1Þ, ð8; 3Þ, ð8; 5Þ, and ð8; 7Þ,
design the rotational odd-weight-column (128, 120) code; that is, design the

8� 16 generating submatrix of the code.

REFERENCES

[AICH84] F. J. Aichelmann Jr., ‘‘Fault-Tolerant Design Techniques for Semiconductor Memory

Applications,’’ IBM J. Res. Dev., 28 (March 1984): 177–183.

[BLAU99] M. Blaum and R. M. Roth, ‘‘On Lowest Density MDS Codes,’’ IEEE Trans. Info. Theory,

45 (January 1999): 46–59.

REFERENCES 93



[BOSS74] D. C. Bossen, S. J. Hong, M. Y. Hsiao, and A. M. Patel, ‘‘Modular Distributed Error

Detection and Correction Apparatus and Method,’’ US Patent 3825893 (July 23, 1974).

[BROW60] D. T. Brown, ‘‘Error Detecting and Correcting Binary Codes for Arithmetic Operations,’’

IEEE Trans. Electron. Comput., EC-9 (September 1960): 333–337.

[CART73] W. C. Carter, K. A. Duke, and D. C. Jessep Jr., ‘‘Lookaside Techniques for Minimum

Circuit Memory Translators,’’ IEEE Trans. Comput., C-22 (March 1973): 283–289.

[CART76] W. C. Carter and C. E. McCarthy, ‘‘Implementation of an Experimental Fault-Tolerant

Memory System,’’ IEEE Trans. Computer, C-25 (June 1976): 557–568.

[FUJI77] E. Fujiwara, ‘‘A Modularized b-Adjacent Error Correction Memory Unit,’’ Trans. IECE

Japan, E60 (February 1977): 69–76.

[FUJI78] E. Fujiwara, ‘‘Odd-Weigh-Column b-Adjacent Error Correcting Codes,’’ Trans. IECE

Japan, E61 (October 1978): 781–787.

[FUJI80] E. Fujiwara and K. Haruta, ‘‘ Design of Main Storage Error Checking and Correcting

Circuit for LSI Implementation’’ (in Japanese), Trans. IECE Japan, 63-D (February 1980):

129–136.

[FUJI81] E. Fujiwara, ‘‘Error Correcting Code and Its Application to Digital Systems’’ (in Japanese),

PhD dissertation, Tokyo Institute of Technology (April 1981).

[GOLO58] S. W. Golomb, B. Gordon, and L. R. Welch, ‘‘Comma-Free Codes,’’ Canadian J. Math.,

10 (1958): 202–204.

[HSIA70] M. Y. Hsiao, ‘‘A Class of Optimal Minimum Odd-Weight-Column SEC-DED Codes,’’

IBM J. Res. Dev., 14 (July 1970): 395–401.

[PETE72] W. W. Peterson and E. J. Weldon Jr., Error Correcting Codes, 2d ed., MIT Press (1972).

[RAO74] R. N. Rao, Error Coding for Arithmetic Processors, Academic Press (1974).

[SHED78] J. J. Shedletsky, ‘‘Error Correction by Alternate-Data Retry,’’ IEEE Trans. Comput., C-27

(February 1978): 106–112.

[SUND78] C.-E. W. Sundberg, ‘‘Erasure and Error Decoding for Semiconductor Memories,’’ IEEE

Trans. Comput., C-27 (August 1978): 696–705.

[SUND79] C.-E. W. Sundberg, ‘‘Properties of Shortened Codes for Memories with Stuck-at Faults,’’

IEEE Trans. Comput., C-28 (September 1979): 686–690.

[WALK79] W. K. S. Walker, C.-E. W. Sundberg, and C. J. Black, ‘‘A Reliable Spaceborne Memory

with a Single Error and Erasure Correction Scheme,’’ IEEE Trans. Comput., C28 (July 1979):

493–500.

[YAMA70] H. Yamamoto, T. Watanabe, and Y. Urano, ‘‘Alternating Logic and Fault Detection,’’

Proc. 1970 IEEE Int. Comput. Group Conf. (June 1970): 220–228.

94 CODE DESIGN TECHNIQUES FOR MATRIX CODES





CONTENTS

4.1 Modified Hamming SEC-DED Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.1.1 Odd-Weight-Column Codes—Hsiao Codes— . . . . . . . . . . . . . . . . . . . 98

4.1.2 Davydov-Tombak Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.1.3 Double-Bit Error Correction Using SEC-DED Codes . . . . . . . . . . . . . 104

4.2 Modified Double-Bit Error Correcting BCH Codes . . . . . . . . . . . . . . . . . . . 105

4.2.1 BCH-Based Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2.2 Algebraic Parallel Decoding DEC-BCH Codes . . . . . . . . . . . . . . . . . . 109

4.3 On-Chip ECCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.1 Two-Dimensional Cross-Parity Codes for Soft Error Problems . . . . . . . 112

4.3.2 On-Chip Hamming SEC Codes for Yield Improvement . . . . . . . . . . . . 119

4.3.3 Further Discussion on Recent Memory On-Chip ECCs . . . . . . . . . . . . 121

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



4
Codes for High-Speed
Memories I: Bit Error

Control Codes

Error control codes (ECCs) have been successfully applied to computer systems, especially

to memory systems. One can say that every memory designer has adopted some types of

error detecting or error correcting codes in order to enhance system reliability [HSIA69,

TANG69, FUJI82, CHEN84, BOSE86B, FUJI90]. In Chapters 4 through 7 we discuss error

control codes for high-speed memories, namely for semiconductor memories such as cache

memories, main memories, control memories, and disk cache memories. These memories

all employ random access memory (RAM) semiconductor chips. Therefore we also call

these applications codes for semiconductor memories. Chapter 4 covers bit error correcting

code applications, and Chapters 5, 6, and 7 cover some types of byte error correction /

detection for recent memory systems with byte organized high-density RAM chips.

One of the notable features of the codes developed for high-speed memories is that

parallel encoding and decoding is required to maintain high rates of data throughput.

Therefore encoding and decoding circuits have to be implemented by combinational logic

[HSIA69, FUJI75].

In high-speed memories, single-bit error correcting and double-bit error detecting

codes (SEC-DED codes) were commonly used. This is because the original first-

generation semiconductor DRAM (dynamic RAM) chips are organized for one bit of data

input / output at a time, and therefore any failure in one chip manifested itself as one bit in

error. For the purpose of correcting soft errors induced by a-particles, external noises, and
sometimes by neutrons and cosmic rays, some new techniques and some advanced error

correcting codes are being required for large-capacity, high-speed memories [HSIA70b,

IMAI77b, BOSS80]. This chapter deals with these considerations for codes such as the

modified Hamming SEC-DED codes and double-bit error correcting codes (DEC codes).

This chapter also presents on-chip error control codes, called on-chip ECCs, that are used

to solve the problems of soft-errors and chip yield degradation.

Code Design for Dependable Systems: Theory and Practical Applications, by Eiji Fujiwara
Copyright # 2006 John Wiley & Sons, Inc.

97



4.1 MODIFIED HAMMING SEC-DED CODES

A distance-4 Hamming code [HAMM50] can correct single-bit errors and also detect

double-bit errors (SEC-DED). This code can be formed by extending a distance-3

Hamming code with an overall parity check, that is, a check on all the symbols shown in

Subsection 2.3.3.

This section shows that this Hamming SEC-DED code can be modified and optimized

from the practical point of view. The resulting code is called a modified Hamming SEC-

DED code. This code can also be used to solve multiple soft error problems.

4.1.1 Odd-Weight-Column Codes — Hsiao Codes —

The minimum distance of an SEC-DED code is 4. Since a nonzero n-tuple of weight 3

or less is not a codeword, any set of three columns of the H matrix should be linearly

independent. Note that the sum of two odd-weight r-tuples is an even-weight r-tuple

(i.e., odd þ odd ¼ even, even þ odd ¼ odd, even þ even ¼ even). Because of this

property, an SEC-DED code with r check bits can be constructed with its H matrix

consisting of distinct nonzero r-tuples of column vectors having odd weight [HSIA70a].

This code is different from the original Hamming SEC-DED code whoseHmatrix has an

all-1 row vector in addition to the SEC code H matrix. Therefore this code is called

a modified Hamming code or, more specifically, an odd-weight-column SEC-DED code,

because every H matrix column vector is odd weight. The following code design was first

proposed by M. Y. Hsiao in 1970, and therefore the code is also called Hsiao code.

This code has a possibility to have minimum number of 1’s in the H matrix, which

makes the hardware and the speed of the encoding / decoding circuit optimal. That is,

it satisfies the condition of the minimum-weight & equal-weight-row code shown in

Section 3.1, and hence this code is called optimal from the practical point of view.

With these considerations, the H matrix of this code is constructed as follows:

Step 1. Use all r
1

� �
weight-1 columns for the r check-bit positions.

Step 2. Next, if r
3

� �
	 k, where k is information-bit length, select k weight-3 columns out

of all possible r
3

� �
combinations. If r

3

� �
< k, all r

3

� �
columns should be selected.

Step 3. For the case of r
3

� �
< k, select the leftover columns first from among all r

5

� �
weight-5 columns. The process is continued until all k columns (corresponding to

information positions) have been specified.

If the code length n ¼ k þ r is exactly equal to

Xr
i¼ 1

i¼ odd

r

i

� �
¼ 2r�1; ð4:1Þ

then each row of the H matrix will have the following number of 1’s:

1

r

Xr
i¼ 1

i¼ odd

i � r

i

� �
: ð4:2Þ

98 CODES FOR HIGH-SPEED MEMORIES I: BIT ERROR CONTROL CODES



If n does not exactly satisfy Eq. ð4:1Þ, then a proper selection of the r
i

� �
cases should make

the number of 1’s in each row close to the average number, as shown in Table 4:1. In this

table, Is represents the number of gate levels required to generate syndrome S, when only

2-input modulo-2 adders (exclusive-OR gates, or XOR gates) are used. Here the gate level

is defined as the time required for the signal to pass through one gate.

An algorithm for correcting single errors and detecting multiple errors by using the

syndrome S ¼ ðs0; s1; . . . ; sr�1Þ is as follows:

Step 1. Test whether S is 0. If S is 0, the word can be assumed to be error free.

Step 2. If S 6¼ 0, try to find a perfect match between S and a column of the H matrix. The

match can be implemented in r-input AND gates.

Step 3. If S is the same as the i-th column of H from step 2, the i-th bit of the word is in

error and hence inverted.

Step 4. If S 6¼ 0 and overall parity (i.e., the exclusive-OR sum) of all syndrome bits is

equal to zero, a double error (or even number of errors) is detected. This condition is

expressed in logical form as

[r�1
i¼0

si

 !
�
Xr�1
i¼0
 si

 !
¼ 1; ð4:3Þ

S
: OR operation,

P : mod 2 sum; x : complement value of x.

TABLE 4.1 Sample Examples on the Code Parameter Relations

StructureofH

n k r
r
1

� � r
3

� � r
5

� � Totalnumber
of1’sinH

Averagenumberof
1’sineachrowinH

XORgate
levels Is

8 4 4 4
1

� �
þ 4

3

� �
16 4 dlog24eb ¼ 2

22 16 6 6
1

� �
þ 16=

6
3

� �a 54 9 dlog29e ¼ 4

30 24 6 6
1

� �
þ 6

3

� �
þ 4=

6
5

� �
86 14.3 dlog215e ¼ 4

39 32 7 7
1

� �
þ 32=

7
3

� �
103 14.7 dlog215e ¼ 4

55 48 7 7
1

� �
þ 7

3

� �
þ 13=

7
5

� �
177 25.3 dlog226e ¼ 5

72 64 8 8
1

� �
þ 8

3

� �
þ 8=

8
5

� �
216 27 dlog227e ¼ 5

137 128 9 9
1

� �
þ 9

3

� �
þ 44=

9
5

� �
481 53.4 dlog254e ¼ 6

Source: [HSIA70a]. Copyright 1970 by International BusinessMachines Corporation; republished by permission.
a The notation j= r

i

� �
means that j out of all possible r

i

� �
combinations is used.

b dxe is the smallest integer greater than or equal to x, called the ceiling of x. bxc is the largest integer less than or equal to x,
called the floorof x.

MODIFIED HAMMING SEC-DED CODES 99



Step 5. If a nonzero S is equal to none of the columns of H, and the overall parity of all

syndrome bits is equal to 1, then three or more odd number of errors are detected.

A simple example of the odd-weight-column SEC-DED code and its decoding circuit is

illustrated in Example 4.1.

Example 4.1

Memory readout word: D ¼ ½d0 d1 d2 d3 c0 c1 c2 c3�.

Information bits

d0 d1 d2 d3

Check bits

c0 c1 c2 c3

H ¼

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

377775:
266664

Syndrome: S ¼ D �HT ¼ ½s0 s1 s2 s3�.

s0 ¼ d0  d1  d2  c0

s1 ¼ d0  d1  d3  c1  : modulo� 2 addition:

s2 ¼ d0  d2  d3  c2

s3 ¼ d1  d2  d3  c3

Parallel decoding circuit is shown in Figure 4.1.

^+

+

+

+

+

+

+

+

+

Corrected
data

output

Double error
  detected
Error detected

 Memory
readout
  data

+ : Parity checker

+ : Exclusive-OR gate

: Inverter gate

: AND gate

: NAND gate

d 0

d 1

d 2

d 3

c 0

c 1

c 2

c 3

s 0

s 1

s 2

s 3

d 0

d̂ 1

d̂ 2

d̂ 3

Figure 4.1 Parallel decoding circuit.

100 CODES FOR HIGH-SPEED MEMORIES I: BIT ERROR CONTROL CODES



An example of the H matrix for the ð72; 64Þ code is shown in Figure 4.2. From the

practical perspective, it is important that the SEC-DED code minimizes the probability of

miscorrection when triple or more errors occur. A miscorrection in this context refers to an

erroneous decoding that results in an error-free word or in an incorrect word containing

miscorrected single bit. Now, again, we consider the (72, 64) codes. Since these codes are

shortened SEC-DED codes triple errors have a possibility to generate syndrome patterns

outside the column patterns of the H matrix. In this case the triple errors will be correctly

decoded, that is, detected. If the syndrome pattern coincides with a column of H, the

decoder will mistake it for a single error and performs a miscorrection. Table 4.2 shows the

probability of detected triple errors and quadruple errors of the (72, 64) SEC-DED codes.

From this table we see that the code shown in Figure 4.2 gives better protection.

In general, the undetectable error probabilities of triple errors and quadruple errors,

denoted as PUD3
and PUD4

, respectively, for odd-weight-column SEC-DED codes depend

on the number of codewords with minimum weight 4, A4, as follows [HSIA70a]:

PUD3
¼ 4 � A4

n

3

� � ; PUD4
¼ A4

n

4

� � ð4:4Þ

A code design method with a reduced number of weight-4 codewords has been studied by

[MATS87]. After the code condition ofminimumweight of theHmatrix is relaxed, a ð72; 64Þ
SEC-DED code with improved error detection capabilities has been obtained [AZUM75].

As the preceding analyses, odd-weight-column SEC-DED codes have some practical

advantages in decoding speed, amount of encoder / decoder hardware, and a lower probability

of erroneous decoding. These codes were therefore widely used in the semiconductor memory

systems of the 1970s and 1980s [CHEN84]. Parallel error detection and correction circuit ICs

based on the Hsiao codes were designed and sold by some semiconductor industries.

4.1.2 Davydov-Tombak Codes

Davydov and Tombak [DAVY91] have designed an excellent SEC-DED code that appears

to be more capable of detecting triple and quadruple errors than the conventional SEC-DED

codes. This code has neither odd-weight-column vectors nor a minimum weight in H.

The H matrix of this code has the following form:

H ¼ B0 B1 B2 � � � BD�1
G G G � � � G

� �
: ð4:5Þ

HereG consists of the following 4� 5 matrix, and Bi ¼ ½bi; bi; . . . ; bi�, i ¼ 0; 1; . . .,D� 1,

where D ¼ 2r�4, is an ðr � 4Þ � 5 matrix consisting of identical columns bi, where bi is

TABLE 4.2 Probability of Error Detection for (72,64) Codes

Codes
Probabilityof triple-error

detection (%);P3

Probabilityofquadruple-error
detection (%);P4

Odd-weight-columncode
shownin Figure 4.2

43.72 99.19

Hammingdistance-4 code
(non^odd-weight- columncode)

24.0 � 43.5 98.90 � 99.18

MODIFIED HAMMING SEC-DED CODES 101



0 
  1

   
2 

  3
   

4 
  5

   
6 

  7
   

8 
  9

   
10

 1
1 

12
 1

3 
14

 1
5 

16
 1

7 
18

 1
9 

20
 2

1 
22

 2
3 

24
 2

5 
26

 2
7 

28
 2

9 
30

 3
1 

32
 3

3 
34

 3
5 

36
 3

7 
38

 3
9 

40
 4

1 
42

 4
3 

44
 4

5 
46

 4
7 

48
 4

9 
50

 5
1 

52
 5

3 
54

 5
5 

56
 5

7 
58

 5
9

c0
 c

1 c
2 c

3 c
4 c

5 c
6 c

7

   
   

   
   

   
   

   
   

   
 1

   
   

   
   

 1
   

1 
   

   
   

   
1 

   
   

   
   

1 
   

   
   

   
1 

  1
   

   
   

   
 1

   
   

   
   

   
   

1 
   

   
   

   
   

   
   

   
   

   
   

   
 1

   
   

   
   

 1
   

1 
   

   
   

   
   

  1
   

1 
  1

   
   

   
   

 1
   

1 
  1

1 
  1

   
  1

   
1 

  1
   

1 
  1

   
 1

   
   

   
   

1 
   

   
   

   
1 

  1
   

   
   

   
 1

   
   

   
   

 1
   

   
   

   
 1

   
1 

   
   

   
   

1
   

   
   

   
   

   
   

   
   

   
   

 1
   

   
   

   
   

   
   

   
   

   
   

   
  1

   
   

   
   

 1
   

1
1 

  1
   

  1
   

   
   

   
   

   
   

   
   

 1
   

1 
  1

   
1 

  1
   

1 
  1

   
1 

   
   

   
   

1 
   

   
   

   
1 

  1
   

   
   

   
 1

1 
   

   
   

   
1 

  1
   

   
   

   
 1

   
   

   
   

   
   

   
   

   
   

   
   

  1
1 

  1
   

1 
   

   
   

   
1 

  1
   

1 
   

   
   

   
   

   
   

   
   

1 
  1

   
1 

  1
   

1 
  1

   
1 

  1
   

   
   

   
 1

   
   

   
   

 1
   

1
   

   
1 

   
   

   
   

1 
   

   
   

   
1 

  1
   

   
   

   
 1

1 
   

   
   

   
1 

   
1 

   
   

   
   

   
 1

   
1 

  1
   

   
   

   
 1

   
1 

  1
   

   
   

   
   

   
   

   
   

 1
   

1 
  1

   
1 

  1
   

1 
  1

   
1

   
   

   
  1

   
   

   
   

 1
   

1 
   

   
   

   
1 

   
   

   
   

1 
   

   
   

   
1

1 
   

   
   

   
   

   
   

   
   

   
   

   
 1

   
   

   
   

 1
   

1 
   

   
   

   
   

  1
   

1 
  1

   
   

   
   

 1
   

1 
  1

   
   

  1
   

1 
  1

   
1 

  1
   

1 
  1

   
1 

   
   

   
   

1 
   

   
   

   
1 

  1
1 

   
   

   
   

  1
   

   
   

   
   

   
   

   
   

   
   

   
  1

   
   

   
   

   
   

   
   

   
   

   
   

  1
   

   
   

   
 1

   
1

   
 1

   
1 

  1
   

   
   

   
 1

   
1 

  1
   

   
   

   
   

   
   

   
   

 1
   

1 
  1

   
1 

  1
   

1 
  1

   
1

1 
   

   
   

   
  1

   
   

   
   

   
   

1 
  1

   
   

  1
   

   
   

   
   

   
   

   
   

   
   

   
  1

   
   

   
   

   
   

   
   

   
   

   
   

  1
   

   
   

   
 1

   
1 

   
   

   
   

   
  1

   
1 

  1
   

   
   

   
 1

   
1 

  1

B
yt

e
bi

t
s0 s1 s2 s3 s4 s5 s6 s7

0 
   

   
   

   
   

   
   

   
   

   
   

   
  1

   
   

   
   

   
   

   
   

   
   

   
   

   
2 

   
   

   
   

   
   

   
   

   
   

   
   

  3
   

   
   

   
   

   
   

   
   

   
   

4 
   

   
   

   
   

   
   

   
   

   
   

   
   

  5
   

   
   

   
   

   
   

   
   

   
   

   
6

   
   

   
   

   
1 

  1
   

1
   

   
   

   
   

1 
   

   
   

   
1 

  1
 

   
   

   
   

   
1 

1 
   

   
   

   
1

   
  1

   
   

   
   

 1
   

   
   

   
 1

   
   

   
 1

   
   

   
   

 1
   

1
1 

  1
   

1 
  1

   
1 

  1
   

1 
  1

7 60
 6

1 
62

 6
3

   
 1

   
   

  1
   

   
   

   
1 

   
   

   
   

   
 1

   
   

   
   

   
   

 1
   

   
   

   
   

   
   

  1
   

   
   

   
   

   
   

   
   

1

 1

8:
 C

he
ck

 B
yt

e

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

F
ig
u
re

4
.2

(7
2,
64
)O

dd
-w

ei
gh

t-
co
lu
m
n
S
E
C
-D
ED

co
de
.
S
ou

rc
e:

[H
S
IA
70
a]
.�

C
op

yr
ig
ht
19
70

by
In
te
rn
at
io
na

lB
us
in
es

s
M
ac
hi
ne

s
C
or
po

ra
tio
n;
re
pu

bl
is
he

d
by

pe
rm

is
si
on
.

102



the binary representation of i:

G ¼

1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

2664
3775:

The maximum code length (in bits) of the code is n ¼ 5 � 2r�4 for r 	 5.

Example 4.2 (40, 33) SEC-DED code [DAVY91]

H ¼

00000 00000 00000 00000 11111 11111 11111 11111

00000 00000 11111 11111 00000 00000 11111 11111

00000 11111 00000 11111 00000 11111 00000 11111

10001 10001 10001 10001 10001 10001 10001 10001

01001 01001 01001 01001 01001 01001 01001 01001

00101 00101 00101 00101 00101 00101 00101 00101

00011 00011 00011 00011 00011 00011 00011 00011

26666666664

37777777775
:

The shortening algorithm of the code can obtain the excellent codewith any code parameters.

Shortening Algorithm The matrix Hr is shortened by j columns, j � 8, where the

columns of Hr are deleted in the following order:

bg

g15

� �
;
bg

g8

� �
;
bg

g4

� �
;
bg

g2

� �
;
bg

g1

� �
;

bd

g15

� �
;
bs

g8

� �
;
bH

g4

� �
;

where gv is a column of matrix G corresponding to the binary representation of v, and

columns bg, bd, bs, bH are distinct.

Let r ¼ 7, j ¼ 1, and g ¼ 7. Then the parity-check matrix H of the (39, 32) code is the

one with the last column omitted. Take r ¼ 8, j ¼ 8, g ¼ 15, d ¼ 14, s ¼ 13, andH ¼ 12.

The parity-check matrix of the (72, 64) code has the following form:

00000 00000 00000 00000 00000 00000 00000 00000 11111 11111 11111 11111 11 11 111 1 1111

00000 00000 00000 00000 11111 11111 11111 11111 00000 00000 00000 00000 11 11 111 1 1111

00000 00000 11111 11111 00000 00000 11111 11111 00000 00000 11111 11111 00 00 000 0 1111

00000 11111 00000 11111 00000 11111 00000 11111 00000 11111 00000 11111 00 00 111 1 0000

10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 10001 10 01 100 1 1000

01001 01001 01001 01001 01001 01001 01001 01001 01001 01001 01001 01001 01 01 010 1 0100

00101 00101 00101 00101 00101 00101 00101 00101 00101 00101 00101 00101 00 01 001 1 0010

00011 00011 00011 00011 00011 00011 00011 00011 00011 00011 00011 00011 00 11 000 1 0001

2666666666666664

3777777777777775
" " """"""|fflffl{zfflffl}

H ¼ 12

� ¼ 4

� �
s ¼ 13

� ¼ 8

� �
d ¼ 14

� ¼ 15

� � ����
g ¼ 15

� ¼ 15; 8;4;2; 1

� �
Note : the shortened place ði:e:; deleted columnsÞ from the original matrix is indicated by the upward-

pointing arrow ð"Þ:

ð4:6Þ

MODIFIED HAMMING SEC-DED CODES 103



Although the (72, 64) SEC-DED code is not the minimum-weight & equal-weight-row

code defined in Section 3.1, it is the best code so far obtained on error detection

capabilities of triple and quadruple errors, P3 ¼ 55:37% and P4 ¼ 99:35%, respectively.

4.1.3 Double-Bit Error Correction Using SEC-DED Codes

High-density memory chips create new reliability problems. Good examples are the soft

errors caused by a-particles, and neutrons induced by cosmic rays in high-density RAM

chips [NOOR80, SAIH82, OGOR96]. These soft errors may line up with existing hard

errors, giving rise to multiple errors that are not correctable with SEC-DED codes.

To solve these problems, extended reliability techniques have been proposed for large-

capacity memory systems with SEC-DED facilities [KANE84b, AICH84]. Some of them

are the read-retry technique in which the soft errors disappear during the repeated read

cycles, the sparing technique, which replaces a defective component with a spare without

requiring manual intervention, and the mask error correction technique, which requires

some additional operations for detection and correction of hard errors. The mask error

correction by retry method is illustrated in the following example. This idea is based on the

ADR (alternate data retry) mentioned in Subsection 1.3.2.

Example 4.3

The following sequence of operations allows for mask error correction of hard-plus-soft

errors with using the self-complementing SEC-DED code where self-complementing

code has been defined by Definition 3.6:

1 0 0 1 1 1 0 1 1 Correct data

h a
Faults ðh : hard error position;

a : soft error positionÞ
# #

1 0 1 1 0 1 0 1 1 Read from memory : Uncorrectable errorð Þ
0 1 0 0 1 0 1 0 0 Complement; written

0 1 1 0 1 0 1 0 0 Read from memory

1 0 0 1 ½0� 1 0 1 1 Recomplement : Correctable errorð½ �Þ
1 0 0 1 1 1 0 1 1 Correct data rewritten

1 0 ½1� 1 1 1 0 1 1 Read on refetch : Correctable errorð½ �Þ

From the foregoing Read-Invert-Write-Read-Invert procedure we can correct double

errors by using only the SEC-DED code. The soft errors will be masked and disappear

during the subsequent read operations. In recent one-transistor-type dynamic RAMs,

however, the stored data are destroyed in every read operation, and therefore a rewrite

operation is always performed. That is, the erroneous datum caused by hard-plus-soft

errors is readout from the DRAMs and then this erroneous datum is rewritten, which

means the errors are retained in memory even in the read operation. The read-retry

operation cannot then recover the erroneous data caused by soft errors in recent

DRAMs. Therefore the read-retry operation even in cooperation with the SEC-DED

code cannot tolerate the above hard-plus-soft errors.

Another effective method for correcting multiple errors is to apply an error loca-

tion technique to distance-4 codes (i.e., erasure correction technique). With the error

104 CODES FOR HIGH-SPEED MEMORIES I: BIT ERROR CONTROL CODES



location capability both soft errors and hard errors can be corrected [BOSS80,

DEZA82], and the system will concentrate on erasure correction. Error location

enables the distance-4 code (SEC-DED code) to correct up to three errors, in

accordance with the discussion in Subsection 2.2.4. The following algorithm shows

way to correct the case of one hard error and one soft error occurring simultaneously,

in effect, hard-plus-soft errors [BOSS80]. In the algorithm the hard error is statically

located during the recovery process, and an algorithmic modification of the original

syndrome allows the correction of the soft error. In this way, no extra auxiliary storage

will be required.

Let h be the hard-error bit position and a be the soft-error bit position. Then the

resultant syndrome Su is the exclusive-OR of the syndromes due to erroneous bits a and h,
meaning Su ¼ Sa  Sh. The decoding algorithm is as follows:

Step 1. Detect the uncorrectable error, represented by Su, a double-error syndrome. Save

the codeword with errors as well as the syndrome.

Step 2. Using the exerciser diagnostic patterns, locate position h of the solid (hard)

error. Knowing the index h, generate Sh.

Step 3. Determine Sa ¼ Su  Sh.

Step 4. Decode Sa to correct bit a in the data. Invert bit h (determined in step 2) to

correct the hard error.

This algorithm can be implemented as shown in Figure 4.3, where (72, 64) SEC-DED

code is applied. In step 2 of the algorithm three diagnostic test patterns are generally

required in order to locate the hard error position in this memory system. However, if an

even-weight-row SEC-DED code is applied to the system, only two test patterns are

satisfactory because a bit-wise complemented codeword of the even-weight-row code is

also a codeword (see Section 3.3). Hence only all-0 data and all-1 data, both of which are

codewords of this code, can test the memory system. In general, how we get the error

pointers is important in this technique. In the foregoing method, the pointers are obtained

by applying the test patterns to the memories. It is apparent that these error pointers are

available only for hard errors.

4.2 MODIFIED DOUBLE-BIT ERROR CORRECTING BCH CODES

System reliability usually decreases as the capacity of a memory system increases. To

maintain the same high level of reliability, or to improve reliability, more powerful error

control codes such as double-bit error correcting (DEC) code, double-bit error correcting

and triple-bit error detecting (DEC-TED) code (both based on the well-known BCH code),

or multiple-bit error correcting majority-logic decodable code [PETE72] may be applied

to large-scale high-reliability memory systems. However, these codes generally make the

decoding slower and increase code redundancy.

Because of these problems some new extended codes that are based on the BCH code

[PATE72a, IMAI77b, IMAI79] and the new majority-logic decodable codes [HSIA70b,

CHEN73, HORI75, MATS77, MATS78] have been studied. Some modifications to the

double-bit error correcting BCH codes have been proposed in [PATE72b, FUJI76,

IMAI77a, HOWE77, YAMA80, GOLA83, OKAN87].

MODIFIED DOUBLE-BIT ERROR CORRECTING BCH CODES 105



Table 4.3 shows the check-bit lengths of the existing codes with double-bit error

correction capability. These two types of codes have the following general features:

1. BCH-based codes have a minimum or smaller number of check bits, but have

complex decoding hardware and a longer decoding time.

2. Majority-logic decodable codes have a high decoding speed and simple decoding

hardware, but have a large number of check bits (i.e., nearly one-half of the

information-bit length).

Memory

1 72

RDR1 72

72

1 72

h

EPR

Exclusive-OR
tree

Detect single
error, UE

Su Sh

+

ECC
decoder

Sα 8

88

8

72

8Corrected
signal

64

1

Correct
data to
system

RDR:  Read data register
EPR:  Error pointer register
  UE:   Uncorrectable error

Figure 4.3 Schematic implementation for correction of an a-particle-induced uncorrectable error. (Note: 
indicates exclusive-OR, orXOR.) Source: [BOSS80].� Copyright 1980 by International Business Machines Corporation;

republished by permission.

106 CODES FOR HIGH-SPEED MEMORIES I: BIT ERROR CONTROL CODES



In the next subsection we will study the extended double-bit error correcting code based

on the BCH (DEC-BCH) code, and then study new parallel algebraic decoding method of

the DEC-BCH code.

4.2.1 BCH-Based Codes

The basic structure of the double-bit error correcting (DEC) BCH code is as follows: Let

a be a primitive element in GFð2mÞ and ai be a coefficient binary column vector

corresponding to xi mod gðxÞ, where gðxÞ is a primitive polynomial having degreem. From

these elements the following matrix can be obtained:

H1 ¼ ½a0 a1 . . . an�1�;
H3 ¼ ½a0 a3 . . . a3ðn�1Þ�:

In this case n ¼ 2m � 1. The DEC-BCH codes can be expressed as

H ¼ H1

H3

� �
2m�n

: ð4:7Þ

The binary BCH codes have been mentioned previously in Subsection 2.3.5.

Imai-Kamiyanagi Code Imai and Kamiyanagi [IMAI77b] give an extended structure

of the BCH codes such that some all-0 row vectors and all-1 row vectors are added to the

original structure of the BCH codes. The resultant code has the following characteristics:

1. The decoding hardware has nearly the same complexity as that of the majority-logic

decodable code, but is much simpler to design than the original DEC-BCH code.

2. The decoding can be made faster than by the DEC-BCH code.

3. The check-bit length is only slightly larger than that of the DEC-BCH code (see

Table 4.3).

The following notations are defined here:

1n: all-1 n-tuple row vector,

0n: all-0 n-tuple row vector,

TABLE 4.3 Check-Bit Lengths of DEC Codes

Information-bit length k (bits)

Codes 32 64 128

BCHcode 12 14 16
Imai-Kamiyanagicode [IMAI77b] 14 � 16 15 � 19 19 � 23
Horiguchi-Moritacodea [HORI75] 16 � 19 22 � 26 31 � 37
MAcodea [MATS77] 23 31 40
Orthogonal Latinsquare codea [HSIA70b] 24 32 48

aMajority-logic decodable code.

MODIFIED DOUBLE-BIT ERROR CORRECTING BCH CODES 107



In: n� n identity matrix,

0k�l: k � l zero matrix.

The following two matrices A and B have an important role in this code construction:

A: r0 � n0 matrix over GFð2Þ. The rightmost r0 column vectors are linearly

independent. The i-th (for i ¼ 1; 2; . . . ; n0) column vector is denoted as ai.

B: r1 � n0 matrix over GFð2Þ. This has r1 linearly independent column vectors. The

i-th column vector is denoted as bi.

From these matrices the following three matrices can be constructed:

H01 ¼ ½A�H1 0mr0�r1 �;
H02 ¼ ½B� 1n1 Ir1 �;
H03 ¼ ½1n0 �H3 0m�r1 �:

Here � shows the Kronecker product (see Example 4.4). Then

H ¼
H01
H02
H03

264
375

is the H matrix of this new code. The codeword in this code can be expressed as ðn0 þ 1Þ
blocks (i.e., n0 blocks each having length n1 and one block with length r1). The code

parameter of this code is as follows:

Code length: n ¼ n0n1 þ r1,

Information-bit length: k ¼ n0n1 � ðr0 þ 1Þm,
Check-bit length: n� k ¼ ðr0 þ 1Þmþ r1:

Example 4.4

Let

n0 ¼ 3; A ¼ 1 1 0

1 0 1

� �
and B ¼ 0 1 0

0 0 1

� �
:

In this case r0 ¼ 2, and r1 ¼ 2. Hence

H01 ¼
H1 H1 0m�n1 0m�2

H1 0m�n1 H1 0m�2

� �
;

H02 ¼
0n1 1n1 0n1 10

0n1 0n1 1n1 01

� �
;

108 CODES FOR HIGH-SPEED MEMORIES I: BIT ERROR CONTROL CODES



and H03 ¼ ½H3 H3 H3 0m�2 �. Then

H ¼

H1 H1 0m�n1 0m�2
H1 0m�n1 H1 0m�2
0n1 1n1 0n1 10

0n1 0n1 1n1 01

H3 H3 H3 0m�2

266664
377775:

If m ¼ 5, we can determine n1 ¼ 31, and therefore the (95, 78) linear DEC code can be

obtained.

The principle of correcting double-bit errors is such that a double-bit error in one block

can be corrected by the matrix
H1

H3

� �
(i.e., DEC-BCH code shown in Eq. (4.7)) included

in each block, and errors over two blocks can be corrected by the structures of both

matrices A and B. We leave it to the reader to verify precisely that the code corrects

random double-bit errors.

4.2.2 Algebraic Parallel Decoding DEC-BCH Codes

We turn now to an algebraic parallel decoding method for the DEC-BCH code [PATE72b,

HOWE77, TAKE77, GOLA83]. FromEq. (4.7) the DEC-BCH code can bewritten in the form

H ¼ H1

H3

� �
¼ h1;0 h1;1 . . . h1;n�1

h3;0 h3;1 . . . h3;n�1

� �
;

where h1;i, and h3;i, for i 2 f0; 1; . . . ; n� 1g are elements of GFð2mÞ and are expressed as
column vectors (m-tuples) over GFð2Þ. The syndromes S1 and S3 are defined by

S1 ¼ D �HT
1 ; S3 ¼ D �HT

3 :

Here D is a received word from the memory that is to be decoded. In the decoder the

locator x of the single-bit and the double-bit errors can be found as a solution of the

following equation (see Exercise 4.16):

x

S1

� �2

 x

S1
¼ 1 S3

S31
: ð4:8Þ

There exist two types of circuits to implement the parallel decoder: the first type employs

only combinational circuits such as square, invert, and multiply circuits [IMAI77a], and

the second type employs ROMs, which store the table that can obtain the solution x from

the input (1 S3=S1
3) in Eq. (4.8) [HOWE77, YAMA80, OKAN87].

Some other decoding methods and their circuits [TAKE77, GOLA83] are interesting as

well. One is based on finding all nonzero solutions of the key equation

f ðS1  XÞ ¼ S3  f ðXÞ; ð4:9Þ

MODIFIED DOUBLE-BIT ERROR CORRECTING BCH CODES 109



where X 2 fh1;0; h1;1; . . . ; h1;n�1g and the function f is defined by

f ðyÞ ¼ h3; i if y ¼ h1; i 2 H1; 0 � i � n� 1;
0 if y ¼ 0:

�
This guarantees that for a nonzero syndrome the column vector X 2 fh1;ig can be a

solution of the key equation (4.9) only if it is a locator of single-bit or double-bit errors.

For the DEC-BCH code, it is clear that the function f is determined as

f ðyÞ ¼ y3:

Although Eq. (4.9) is equivalent to Eq. (4.8) in the DEC-BCH code, the correction

mechanism gives a different decoder construction (i.e., bit-sliced decoder). The correction

algorithm is as follows:

Step 1. Find syndromes S1 and S3.

Step 2. If S1 ¼ S3 ¼ 0, meaning no correction, then end.

Step 3. Add S1 to all h1; i’s and S3 to all h3; i’s to decompose the syndromes S1 and S3:

S1;i ¼ S1  h1; i;

S3; i ¼ S3  h3;i;
0 � i � n� 1: ð4:10Þ

Step 4. Find the values of f ðS1;iÞ for i ¼ 0; 1; . . . ; n� 1, by Eq. (4.10).

Step 5. Find if there are any i’s for which the key equation in the form

f ðS1;iÞ ¼ S3;i ð4:11Þ

is satisfied; if it does for any i, then invert the i-th bit of the word.

Step 6. If there is no i satisfying Eq. (4.11), then an uncorrectable error is signaled.

End.

The decoder is bit-sliced as can be seen in Figure 4.4.

4.3 ON-CHIP ECCs

Several important problems have to be overcome in today’s high-packing-density and

large-capacity RAM or ROM chips. The soft errors induced by a-particles [MAY79,

SAIH82] and yield degradation caused by increased defects in enlarged chips [WOOD86]

concern system designers most. An on-chip error control code, called on-chip ECC,

appears to be a good way to prevent such problems [CLIF74, CLIF80, NOOR80,

MANO83, GHAF84, DAVI85, FUJA85, HAN87, YAMA88]. The on-chip ECC is

expected to bring about highly reliable and cost-effective memory chips with ultra large

capacity, but the problem is the large amount of circuitry due to the additional error

correcting and detecting circuit and additional memory cells for the check bits. The

circuitry increases call for larger chips that therefore yield more defects and a-particle

110 CODES FOR HIGH-SPEED MEMORIES I: BIT ERROR CONTROL CODES



bombardment. So, it is important to choose the most suitable type of code for the

on-chip ECC.

For soft error problems not only DRAMs but also SRAMs (static RAMs) can use

on-chip ECCs. High-speed cache memories implemented by SRAMs have been mounted

+

+

+

.
.
.

S1

S1,i

h 1,i

h 3,i

‘1’ for S = 0
(S1 = S3 = 0)

..
.

+

di

S3

dî

f(S1,i)

S3,i
Matcher

NOR

i -th bit

+

+

ROM

Figure 4.4 Bit-slicedDEC-BCHdecoder.

ON-CHIP ECCs 111



in recent microprocessor chips, and they can take such types of bit / byte error control

codes as the SEC-DED codes and the SEC-DED-SbED codes discussed in Subsection

6.1.3. Microprocessor on-chip ECCs will be discussed in Subsection 12.4.2.

4.3.1 Two-Dimensional Cross-Parity Codes for Soft Error Problems

The on-chip ECC has proved to be essential for the protection of data from soft errors in

ultra–large-capacity RAM chips. A block diagram of a RAM chip with an ECC circuit is

shown in Figure 4.5.

Note that each word line in the organization is connected to regular memory cells that

contain the information bits and also to extra memory cells for check bits. Bit lines

connected to the sense circuits transmit the information bits and the check bits to the error

decoding circuit. If a bit error is detected, the corresponding output data of the multiplexer

is corrected through an exclusive-OR circuit. The error detection and correction operation

is performed during read / write memory cycles. To prevent bit-error accumulation, this

operation should be carried out during the refresh memory cycles.

Soft errors can remain, even with on-chip ECCs, depending on the capability of the

code used in the RAM chip. Among the different types of codes we focus here on the

single-bit error correcting code because of its decoder simplicity and improved reliability.

The occurrence rate of soft errors, called the soft error rate, in a conventional DRAM

chip without ECC is determined by the probability of a single a-particle hitting a single

memory cell [SAIH82]. On the other hand, the error rate in a chip with single-bit error

.
 
.
 
.

.
 
.
 
.

.
 
.
 
.

.
 
.
 
.

Word line

Regular
memory cells

for information bits

Extra
memory cells
for check bits

S
e

n
se

 c
ir
cu

itr
y

M
u

lti
p

le
xe

r
E

rr
o

r
d

e
co

d
in

g
ci

rc
u

it

Corrected
data

Bit line

Figure 4.5 Blockdiagramof the on-chip ECCRAM. Source: [MANO83].� 1983 IEEE.

112 CODES FOR HIGH-SPEED MEMORIES I: BIT ERROR CONTROL CODES



correction capability depends on the probability of the data stored in two or more memory

cells being damaged by the a-particle within an error correction period t0.

Assume that the incidence of the a-particle’s strike obeys a Poisson distribution and that
the impact of single strike always generates a single-bit error. Then the soft error rate of a

RAM chip with ECC is calculated as follows [MANO83]:

RECC ¼ MN2S0 � ðN=t0Þflnð1þMNS0t0Þg;

where M is the a-flux density, N2 is the number of memory cells in a chip, and S0 is the

effective memory cell area. However, the error rate of a RAM chip without ECC is

R0 ¼ MN2S0:

The soft error rate of the 1 mega-bit (1Mb) RAM chip with ECC is shown in Figure 4.6

and compared with the error rate without ECC. As the figure shows, the smaller the a-flux
density, the greater is the improvement. The improvement factor is more than 106 at an a-
flux density of 1 cm�2 h�1. Clearly, high a-particle immunity is achieved by the on-chip

single-bit error correcting code.

To implement an on-chip ECC circuit, it is necessary to reduce the area of the logic

circuit and the decoding delay. As was mentioned before, the circuit for the on-chip ECC

requires extra memory cells and decoding circuit.

Among the codes with a single-bit error correction capability, we consider here a

two-dimensional distance-4 cross-parity code and a distance-3 Hamming code. In a two-

dimensional cross-parity code, the horizontal and vertical parity bits are appended to the

1010

10
8

106

10
4

10
2

10
0

10
–3

10
–2

10
–1

10
0

10
1

10
2

10
3

10
0

10 1

1 Mb DRAM
without ECC

t0 : Error correction period(s)

t0 (s)

Alpha-flux density (cm     h   )–2 –1

S
of

t e
rr

or
 ra

te
 (F

IT
*)

1 Mb DRAM
with ECC

.

*FIT = Number of faults occurring over 109 hours per DRAM chip

Figure 4.6 Soft error rate characteristic of the DRAM chip with an on-chip single-bit error correcting code.
(Effective storage area in a single transistor cell is assumed to be 10 mm2.) Source: [MANO83].� IEEE.

ON-CHIP ECCs 113



information bits organized in a two-dimensional array. This is shown in Figure 4.7. In this

case, if a single-bit error occurs in the information bits, the error can be simply corrected

by horizontal and vertical parity checks. In Figure 4.7 the two-dimensional information

bits and the horizontal and vertical parity bits correspond to the stored data in a set of

memory cells connected to a specified word line. The readout word from the memory is

entered to the decoding circuit, and then vertical and horizontal parity checks are

performed. Each information bit is checked by twice independently, by both a vertical

and a horizontal check, therefore called a cross-parity check. For example, the third

information bit in the second row belongs to the second parity check in the horizontal

group (H group) and also to the third parity check in the vertical group (V group). This

Information bits
(4 x 4)

Horizontal
parity bits

(4)

Vertical
parity bits

(4)

Vertical
parity bits

Horizontal
parity bits

Word line

0 1 0 1

1 0 1 1

1 0 0 1

0 1 1 0

1
0

1
0

1
0
1
1

1

1

0
0

1
1

0

0

0
1
0
0

0

Memory cells

0
0
1

1000

0

1

0

0

Figure 4.7 Organizationofa cross-parity codewordandits correspondingdatainmemorycells connected to
a specified word line. Source: [MANO83].� 1983 IEEE.

114 CODES FOR HIGH-SPEED MEMORIES I: BIT ERROR CONTROL CODES



information bit is therefore corrected only when both syndromes of the cross-parity check

are 1’s. The decoding circuit of this code is very simple, as shown in Figure 4.8. Figure 4.9

shows a logic diagram of a RAM with a two-dimensional cross-parity code.

In addition to the l� m regular memory cells, the lþ m parity cells are connected to a

word line. Each regular memory cell belongs to two groups, that is, the V group and the H

group. During the decoding two kinds of parity checks are carried out by m-bit data in the

V-group data, l-bit data in the H-group, and the two vertical and horizontal parity bits.

Also in this decoding the vertical group selector and the horizontal group selector (i.e.,

multiplexers) are required for selecting the parity-check groups. Hence the decoding

circuit shown in Figure 4.8 and in Figure 4.9 has a simple structure, and therefore provides

high-speed decoding and small area overhead.

On the other hand, if we use a Hamming SEC code, the number of extra memory

cells for check bits can be minimized, but the decoding circuit becomes more complex

than the two-dimensional cross-parity code. An example of this decoding circuit is shown

in Figure 4.10, where the code has the same information-bit length as the cross-parity

code.

From the discussion above it should be clear that the on-chip ECC technique using a

two-dimensional cross-parity code is a better way to reduce the soft error rate. Since

single-bit errors in each word line can be corrected by this ECC technique, the soft error

rate in a high-density RAM chip can be drastically reduced.

H =

Word line

Information-
bit cells

Horizontal
parity-bit

cells

Vertical
parity-bit

cells

5

5

5

5

5

5

5

5

5

5

Vertical
parity-check

circuit

Horizontal
parity-check

circuit

Multiplexer

Group

H
or

iz
on

ta
l

gr
ou

p
se

le
ct

or

V
er

tic
al

gr
ou

p
se

le
ct

or

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 4.8 On-chip error decoding circuit for a cross-parity code. Source: [YAMA84b]. � 1984 IEICE Japan.

ON-CHIP ECCs 115



Figure 4.11 gives an example of an efficient cell alignment for the cross-parity codes

[YAMA87b]. The adjacent cell failures on a word line can be detected in an efficient way.

The on-chip ECC technique using a two-dimensional cross-parity code was first

practically applied to a 256K-bit DRAM design in 1983 [MANO83]. In addition to the

256K information-bit cells, the DRAM requires 24K parity-bit cells for two-dimensional

parity codes. In this DRAM, 512 (¼ 16� 32) information-bit cells and 48 (¼ 16þ 32)

parity-bit cells are connected to each word line.

The indicated on-chip ECC technique is extended to correct 4-bit byte errors by

performing double-precision horizontal and vertical parity checks [YAMA84a], shown

in Figure 4.12. This technique has been practically applied to a 1 M-bit DRAM chip in

which the ECC circuit occupies about 12% of 52:5mm2 (¼ 6:4 mm� 8:2mm) entire chip
area, and the error correction time is 20 ns of 140 ns chip access time. A further improved

... ... ...

... ... ...

... ... ...

... ... ...

... ... ...

... ... ...

... ...
...

...
...

... ...

From
decoder

V-parity
check
circuit

H-parity
check
circuit

MultiplexerSelectorInformation-bit cell array

Word line

Parity-bit cell
array

Information-bit cell

H-parity-bit cell

V-parity-bit cell

Corrected
data

To I/O
buffer

m

( m)
Bit line

(   + m)
Bit line

m

...

Figure 4.9 Logic diagramof on-chip ECCRAMusing cross-parity code. Source: [MANO83].� 1983 IEEE.

116 CODES FOR HIGH-SPEED MEMORIES I: BIT ERROR CONTROL CODES



H =

Word line

Information-
bit cells

Multiplexer(1)

Check-bit
cells

10

9

7

8

9

. .
 .

16

P
ar

ity
-c

he
ck

ci
rc

ui
ts

Exclusive-OR tree
circuit

M
ul

tip
le

xe
r(

2)

1 1 1 1

1

1

1

1 1 1 1

1

1

1 1

1 1

1 1 1 1 1

1 1 1 1 1

1

1 1

1 1 1 1

1 1

1

1

1

1

1

1

Figure 4.10 On-chip error decoding circuit for theHamming SEC code. Source: [YAMA84b].� 1984 IEICE Japan.

0 4 8 12

13 1 5 9

10 14 2 6

7 11 15 3

V0 V1 V2 V3

H0

H1

H2

H3

0

1

2

3

4

13

14

15

Information-   Parity-bit
bit cells cells

Cell

Word
line

Figure 4.11 Example of anefficient logical cellalignment for cross-parity codes. Source: [MANO87].� 1987 IEEE.

ON-CHIP ECCs 117



V
1 

gr
ou

p
V

2 
 g

ro
up

H
1 

gr
ou

p

H
2 

gr
ou

p

W
or

d 
lin

e

V
-p

ar
ity

-b
it 

ce
lls

H
-p

ar
ity

-b
it 

ce
lls

In
fo

rm
at

io
n

-b
it 

ce
lls

H
V

-p
ar

ity
-b

it 
ce

ll

I/O
bu

ffe
r

C
or

re
ct

ed
da

ta

H
2

V1
V

2

H
1

V1
V

2

33
8

9

33
9

8

S
el

ec
to

r 
(I

)

S
el

ec
to

r 
(I

I)

Multiplexer

C
el

l

56
1

P
ar

ity
-c

he
ck

ci
rc

ui
t

B
it 

lin
e W

or
d 

lin
e

F
ig
u
re

4
.1
2

S
ch
em

at
ic
lo
gi
c
di
ag

ra
m
of
th
e
on

-c
hi
p
E
C
C
ci
rc
ui
t(
4
-b
it
by

te
er
ro
r
co
rr
ec

tio
n
ci
rc
ui
t).

S
ou

rc
e:

[Y
A
M
A
84

a]
.�

19
84

IE
EE

.

118



design method was employed to a 16 M-bit DRAM [MANO87, YAMA87b] and gave

a below 5 ns penalty in an access time of 80 ns and occupied about 10% of the

147:7mm2ð¼ 8:9mm� 16:6mmÞ entire chip area.

4.3.2 On-Chip Hamming SEC Codes for Yield Improvement

As the VLSI chip has advanced to very high density, the chip size has become larger.Wafer

scale integration (WSI) is said to be the final goal of VLSIs [KITA80, LEIG82, PELT83,

MANG84a, MANG84b, CARL86, YAMA87a]. Such integration would encompass all

possible processor functions. Nowadays system-on-chip (SoC) fabrication is being widely

employed in microprocessor chips. This type of chip contains processors, some types of

memories such as cache memories, register arrays, and address translation arrays (TLB), and

peripheral control circuits, all mounted together on one large chip. So it is not surprising that

the large LSI chip contains process-induced defects, such as pinholes in the oxide, or

missing or extra patterns in the diffusion, polysilicon, or metal [STAP80, STAP83]. Some

important defect-tolerant techniques, such as N-modular redundancy (NMR) [KITA80,

UEOK84], m-out-of-n modular redundancy [SMIT81, MANO82, MOOR86], address

reallocation techniques [BEAU73, EGAW80], and so forth, have been proposed and

studied. Use of error correcting codes also promises to improve yield [CLIF74, MATS88].

Yield can be expressed as a function of circuit area, a (i.e., yðaÞ), assuming that the

defects have occurred randomly, and hence the distribution obeys a Poisson distribution.*

yðaÞ ¼ y
a=a0
0 :

Here y0 is the yield for specific area a0.

Figure 4.13 shows the memory model with the redundancy. In this model, memory is

divided into l� n units, each having one-bit input / output data and equal memory

capacity, meaning equal area am. We can assume that the error control circuit of the SEC

code requires a circuit area at. Under the Poisson distribution of defects, the total yield of

this memory module [OHNI81] is expressed as

Y ¼ yðatÞfnðyðamÞÞn�1ð1� yðacÞÞ þ ðP0 þ Px þ Py þ PxyÞðyðacÞÞngl;

where

ac: area of the circuit, which is commonly used in a unit such as an address buffer and

the input-output data control circuit,

am: area of the unit,

at: area of the ECC circuit,

P0;Px;Py, and Pxy: probabilities of tolerable defects in every memory cell array for

the case where no defect exists in both X and Y decoders ðP0Þ,
the case where defects exist in X decoder ðPxÞ,
the case where defects exist in Y decoder ðPyÞ, and
the case where defects exist in both X and Y decoders ðPxyÞ.

*Negative binomial statistics are thought to be better suited for analyzing the defect distribution in large chips or

wafers [STAP83, 84, 85, 86].

ON-CHIP ECCs 119



In the redundant memory model careful attention must be given to the percentage of the

area increase due to the ECC circuit. If the ECC area of the circuit is proportionally large,

the yield improvement will be negatively affected. Defects in this area then cannot be

tolerated at all.

An example is the application of a Hamming SEC code to the 1Mb ROM chip

[SHIN83, DAVI85]. This memory chip has a 128K-word � 8-bit organization [SHIN83].

Figure 4.14 shows an ECC circuit of the on-chip (38, 32) Hamming SEC code. The total

38-bit word, consisting of 32 information bits and 6 check bits, is simultaneously readout

. . . . . .

. . . . . .

. . . . . .

. . .

. . .

. . .

. . .

. . .

ECC circuit

: Memory unit that
  stores information bit

n
k

: Memory unit that
  stores check bit

Figure 4.13 Memorymodelusing an ðn; kÞ code.

Array for 
check bits

Memory array for
information bits

32 bits

6 bits

ROM chip

ECC circuit

Corrector

Syndrome
generator

Syndrome
decoder

32 bits

8 bits

Nibble
decoder

Output
buffer

Figure 4.14 On-chip ECC for the ROMchip.

120 CODES FOR HIGH-SPEED MEMORIES I: BIT ERROR CONTROL CODES



from the ROM and entered to the ECC circuit. The corrected 32 information bits are

transferred to a nibble decoder and divided into four blocks. The output buffer drives 8

bits. According to [SHIN83], the ECC circuit consumes less than 20% of the total chip

area. Even though it increases the chip area, the theoretical yield can be enhanced by a

factor of 3 at about 2.5 particles/cm2 defect density. The access time increase by the ECC

circuit is less than 15%.

As another practical example, semi-distance codes, a class of asymmetric error

masking codes [BLAU93], have been applied to ROM bus line circuits [MATS88, 90]. The

faults caused by open- or short-circuit defects in the bus lines can be made asymmetric by

controlling the bus drivers and the bus terminal gates. These asymmetric faults are

tolerated by using new codes based on the concept of semi-distance [MATS90]. The

technique has the unique feature that no error correction circuits are required, and

therefore additional circuits are very small.

4.3.3 Further Discussion on Recent Memory On-Chip ECCs

Application of the Hamming ð136; 128Þ SEC codes to 16 M-bit DRAM chips may be an

option for tolerating soft error problems. It can relax the problems of circuit area overhead

and error correction operating time. The on-chip ECC circuit requires 12% to 20% chip

overhead and around 10% access time penalty [FURU89, ARIM90].

For the experimental 1M-bit cache DRAM [ASAK90], which consists of 1M-bit

DRAM operating as a main memory and 8K-bit SRAM as a cache, ð40; 32Þ modified

Hamming SEC-DED code has been applied to the DRAM part in the chip. On-chip ECC

circuit requires 12 ns access penalty, amounting to a 15% access time overhead and around

a 15% chip area overhead. The soft-error rate is improved by more than ten orders of

magnitude.

Augmented Product Code (APC) A new class of product codes, called an augmen-

ted product code (APC) with double-bit error correction capability, has been applied to the

DRAM chip whose memory cell capacitors have a trench structure [MAZU92]. It is

known that if the a-particles are incident to the intervening space between two-adjoining

vertically mounted trench capacitors, the resulting plasma discharge may delete the data

in both capacitors. This is a simulation result of the charge-sharing mechanism due to

a-particle-induced plasma shorts between adjoining capacitors [CHER86]. The trench

capacitors produce double-bit upsets very frequently in a DRAM chip.

For example, take a rectangular subarray of size m1 � m2, that is, a subarray of m2

memory cells in each of its m1 word-lines. To construct a product code, or a cross-parity

code, for each word line, we organize the m2 cells in the form of a logical rectangular array

of size ðpþ 1Þ � ðqþ 1Þ where m information bits describe the inner array p� q ¼ m,

and the ðpþ 1Þ-th (bottom-most) row and the ðqþ 1Þ-th (right-most) column consist of

parity bits. In this case, if m1m2 ¼ m2, the DRAM is called a nonredundant one, but a

fault-tolerant DRAM requires m1m2 > m2. The augmented product code (APC) is

constructed by adding a set of p-diagonal parity bits (if p 	 q) to the regular horizontal and

vertical parity bits (pþ qþ 1 bits) of the product code. That is, the code requires

2pþ qþ 1 check bits. This ðpq; pq� ð2pþ qþ 1ÞÞ APC is a distance-5 code, so it can

correct all double-bit errors in the readout word, including these parity bits.

The on-chip APC is evaluated for 1M-bit to 64M-bit DRAMs such that chip area

overhead is around 10% to 15% and timing overhead is 14% to 18%.

ON-CHIP ECCs 121



Combination of ECC and Spare Bit-Lines / Word-Lines A combination of

ECC and spare circuits has been shown to enhance both reliability and yield

[KALT90, FIFI91]. For the 16M-bit DRAM chip divided into four quadrants each

having 4M-bit capacity, the ð137; 128Þ odd-weight-column SEC-DED code, shown in

Subsection 4.1.1, and the spare circuits of 32 redundant bit-lines and 24 redundant

word-lines per quadrant were applied and proved to improve both reliability and yield

dramatically. Improvement in fault tolerance to manufacturing defects was obtained

with an increase of chip area by less than 11% and an addition of access time by 10%.

Figures 4.15, 4.16, and 4.17 show reliability improvements, yield improvements with

on-chip ECC and spare bit-lines, and yield improvements with on-chip ECC and spare

0.960

0.970

0.980

0.990

1.000

P
ro

ba
bi

lit
y 

of
 fa

ul
ts

co
rr

ec
te

d 
w

ith
 E

C
C

0 1,000 2,000 3,000 4,000 5,000
        Number of single-cell faults
corrected with ECC and spare bit-lines

Figure 4.15 Reliability improvements. Source: [KALT90].� 1990 IEEE.

ECC and spare word-lines,
   Redundant word-line
   Yield = 100%

ECC and spare word-lines,
   Word-line
   yield included

ECC only

Spare word-lines only

100

80

60

40

20

0
0 1,000 2,000 3,000 4,000 5,000 6,000

Average number of faulty cells per chip

Y
ie

ld
  (

%
)

Figure 4.16 Yield improvement with on-chip ECC and spareword-lines. Source: [KALT90].� 1990 IEEE.

122 CODES FOR HIGH-SPEED MEMORIES I: BIT ERROR CONTROL CODES



word-lines, respectively. Figure 4.15 shows the effectiveness of ECC circuits in correcting

faults as a function of the number of hard random single-cell faults originally in the chip.

The important result shown by the curves in Figure 4.16 is that without use of the ECC

circuits (i.e., use of only spare word-lines), an average of 186 randomly failing single-

cells per chip has an expected yield of 50% for this chip. Use of ECC circuits only and no

word-line redundancy results in a 50% yield for an average of 428 random single-cell

faults per chip. Combined use of the ECC and the spare word-lines produces a 50% yield

at an average of 4,661 randomly failing single cells per chip. This effect is synergistic

[FIFI91]. This is also true to combined use of the ECC and the spare bit-lines, as shown

in Figure 4.17.

EXERCISES

4.1 For the following H matrix of the (15, 10) odd-weight-column SEC-DED code,

answer the following questions:

(a) Encode the data ðd0 d1 . . . d9Þ ¼ (101101101).

ECC and spare bit-lines
ECC only
Spare bit-lines

Average number of faulty cells per chip

Y
ie

ld
 (

%
)

100

80

60

40

20

0
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

Figure 4.17 Yield improvement with on-chip ECC and spare bit-lines. Source: [KALT90].� IEEE.

H = .

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 c0 c1 c2 c3 c4

1 0 0 1 1 1 0 1 1 0 1 0 0 0 0

1 1 0 0 1 0 1 0 1 1 0 1 0 0 0

1 1 1 0 0 1 0 1 0 1 0 0 1 0 0

0 1 1 1 0 1 1 0 1 0 0 0 0 1 0

0 0 1 1 1 0 1 1 0 1 0 0 0 0 1

EXERCISES 123



(b) The received data ðd0 d1 . . . d9 c0 . . . c4Þ ¼ ð1 0 1 0 1 0 0 1 0 1 1 0 0 0 1Þ has
a single-bit error. Which bit is in error?

(c) In the received data, d1 and d9 are in error. Find the syndrome pattern.

(d) In the code we can detect some three or larger odd number of bit errors. Find

the syndrome pattern of this case.

(e) There are some cases where we cannot detect 4-bit errors. Find some

undetectable 4-bit errors.

(f) Assume that we have already had three error pointers on the d3, d7, and c2 bit

positions, and now we get a syndrome of S ¼ ð0 0 1 1 0Þ. Explain how to correct

the errors. In this case do not use the method of investigating all combination of

syndromes due to double-bit errors among the d3, d7, and c3 bits.

4.2 Design the odd-weight-column ð32; 26Þ SEC-DED code and its parallel decoding

circuit.

4.3 Prove that the codeword of an odd-weight-column code is of even weight. Next

prove that the codeword of a Hamming SEC-DED code is of even weight.

4.4 Discuss an error control method using coding techniques for both memory address

information and memory read / write data.

4.5 Discuss an operation sequence of a partial store in the high-speed memory using

error correcting codes. Partial store is a special write operation such that a

specified part of the codeword (i.e., not all the codeword) is written by a new

data, but the other part is unchanged. In this case discuss fast operation sequence

of the partial store, and indicate the ECC circuit block diagram.

4.6 Show that the code defined by the following H matrix ( Melas code [MELA60]) is

a DEC code:

H ¼ 1 a a2 . . . ai . . . an�1

1 a�1 a�2 . . . a�i . . . a�ðn�1Þ

� �
;

ai 2 GFð2mÞ; 0 � i � n� 1; n ¼ 2m � 1; r ¼ 2m where m is an odd number. Next

find the parallel decoding procedure of this code [HORI76].

4.7 Assume that a two-dimensional code that includes an ðn1; k1Þ row code with a

minimum Hamming distance d1 and an ðn2; k2Þ column code with minimum

distance d2 is expressed as an ðn1k1; n2k2Þ code with minimum Hamming distance

d, as shown below. This has the constraints on the decoding such that the estimate

of any symbol in the information array is a function of only the row and column to

which that symbol belongs, rather than the whole codeword. Then the code has the

error correcting capability of the sum of the minimum Hamming distances (i.e.,

d 	 d1 þ d2 � 1) of the constituent codes rather than their product [FUJA85].

Prove this conclusion.

Next, indicate the error correcting capability and the decoding procedure of

the SED / SED code (SED: Single-bit error detecting), the SEC / SEC code, and

the SED / (SEC-DED) code, where the A =B code shows the A code for the row

124 CODES FOR HIGH-SPEED MEMORIES I: BIT ERROR CONTROL CODES



code and the B code for the column code, and vice versa, in a two-dimensional

code.

k1

n1

k2

n2

(n2,k2)
column codeword

(n1,k1)
row codeword

4.8 Suppose that the encoding-decoding procedure for an ðn; kÞ SEC-DED code is as

follows: (1) input k-bits data are encoded, (2) d bits ð1 � d < nÞ in the n bits

encoded data are inverted, (3) these n-bits data are stored, (4) the corresponding d
bits in the readout data are inverted, and (5) the resulting n bits are decoded. Find

the conditions under which this encoding-decoding scheme can detect all-0 and

all-1 readout data errors (i.e., unidirectional errors).

4.9 Prove that undetectable error probabilities of triple-bit errors and quadruple-bit

errors, denoted as PUD3
and PUD4

, respectively, for odd-weight-column ðn; kÞ
SEC-DED codes can be expressed by Eq. (4.4).

4.10 Find the probabilities of PUD3
and PUD4

for non–odd-weight-column ðn; kÞ SEC-
DED codes.

4.11 Show that the code length n of a rotational odd-weight-column SEC-DED codes

can be expressed as follows:

n ¼
X
mjr

m:odd

mðmÞ2r=m�1;

where mðmÞ is a Möbius function defined in Subsection 3.5.2 and
P
mjr

m:odd

means

summation over all odd integer that divides r.

4.12 Find the error detection capabilities of three or larger odd number of bit errors and

of four or larger even number of bit errors for the ðn; kÞ odd-weight-column SEC-

DED codes. In this case syndrome patterns are assumed to have uniformly

occurred. (Hint: Consider the syndrome spaces separately of odd number of errors

and even number of errors.)

EXERCISES 125



4.13 Design the modularized decoding circuit composed of eight identical subcircuits

by using the rotational ð72; 64Þ SEC-DED code shown in Figure 4.2.

4.14 Suppose that the memory having codeword ðd0 d1 d2 d3 c0 c1 c2 c3Þ defined by

the following H matrix has a single soft error in position d2 in addition to the

already existing single hard error in position c2. Explain how to correct these

double errors using the mask error correction techniques

d0 d1 d2 d3 c0 c1 c2 c3

H ¼

1 0 1 1 1 0 0 0

1 1 0 1 0 1 0 0

1 1 1 0 0 0 1 0

0 1 1 1 0 0 0 1

2664
3775:

4.15 Prove that Imai-Kamiyanagi code is a DEC code.

4.16 Prove that DEC-BCH codes satisfy Eq. (4.8).

4.17 Show that the key component of Eq. (4.9) represents the relation between the

syndromes S1 and S3 in the DEC-BCH codes.

4.18 Prove that the augmented product code (APC) is a distance-5 code.

REFERENCES

[AICH84] F. J. Aichelmann Jr., ‘‘Fault-Tolerant Design Techniques for Semiconductor Memory

Applications,’’ IBM J. Res. Dev., 28 (March 1984): 177–183.

[ARIM90] K. Arimoto, Y. Matsuda, K. Furutani, M. Tsukude, T. Ooishi, K. Mashiko, and

K. Fujishima, ‘‘A Speed-Enhanced DRAM Array Architecture with Embedded ECC,’’ IEEE

J. Solid-State Circ., 25 (February 1990): 11–17.

[ASAK90] M. Asakura, Y. Matsuda, H. Hidaka, Y. Tanaka, and K. Fujishima, ‘‘An Experimental 1-

Mbit Cache DRAM with ECC,’’ IEEE J. Solid-State Circ., 25 (February 1990): 5–10.

[AZUM75] S. Azumi and T. Kasami, ‘‘On the Optimal Modified Hamming Codes’’ (in Japanese),

Trans. IECE Japan, 58-A (June 1975): 325–330.

[BEAU73] W. F. Beausolail, ‘‘Monolithic Memory Utilizing Defective Storage Cells,’’ US Patent

3781826 (December 25, 1973).

[BLAU93] M. Blaum, Codes for Detecting and Correcting Unidirectional Errors, IEEE Computer

Society Press (1993).

[BOSE86] B.Bose and J.Metzner, ‘‘Coding Theory for Fault-Tolerant Systems,’’ in Fault-Tolerant

Computing, Theory and Techniques, D. K. Pradhan (ed.), Prentice Hall (1986), Ch. 4.

[BOSS80] D. C. Bossen and M. Y. Hsiao, ‘‘A System Solution to the Memory Soft Error Problem,’’

IBM J. Res. Dev., 24 (May 1980): 390–397.

[CARL86] R. O. Carlson and C. A. Neugebauer, ‘‘Future Trends in Wafer Scale Integration,’’ Proc.

IEEE, 74 (December 1986): 1741–1752.

[CHEN73] C. L. Chen and W. T. Warren, ‘‘A Note on One-Step Majority-Logic Decodable Codes,’’

IEEE Trans. Info. Theory, IT-19 (January 1973): 135–137.

[CHEN84] C. L. Chen and M. Y. Hsiao, ‘‘Error-Correcting Codes for Semiconductor Memory

Applications: A State of Art Review,’’ IBM J. Res. Dev., 28 (March 1984): 124–134.

126 CODES FOR HIGH-SPEED MEMORIES I: BIT ERROR CONTROL CODES



[CHER86] J. S. Chern, P. Yang, P. Patnaik, and J. A. Seitchik, ‘‘Alpha-Particle-Induced Charge

Transfer between Closely Spaced Memory Cells,’’ IEEE Trans. Electr. Devices, ED-33 (June

1986): 822–834.

[CLIF74] R. A. Cliff and T. R. N. Rao, ‘‘Improving the Yield of LSI Memory Chips by the

Application of Coding,’’ Proc. 8th Ann. Princeton Conf. Info. Sci. Syst. (1974): 386–390.

[CLIF80] R. A. Cliff, ‘‘Acceptable Testing of VLSI Components Which Contain Error Correctors,’’

IEEE J. Solid-State Circ., SC-15 (February 1980): 61–70.

[DAVI85] L. Davis, ‘‘AWord-Wide 1Mb ROM with Error Correction,’’ Dig., 1985 IEEE Int. Solid-

State Circ. Conf., WAM3.2 (February 1985): 40–41.

[DAVY91] A. A. Davydov and L. M. Tombak, ‘‘An Alternative to the Hamming Code in the Class

of SEC-DED Codes in Semiconductor Memory,’’ IEEE Trans. Info. Theory, 37 (May 1991):

897–902.

[DEZA82] K. Dezaki and H. Imai, ‘‘Error Control for Main Memories Using Parity Checkers in

Memory Chips’’ (in Japanese), Trans. IECE Japan, J65-D (August 1982): 1034–1040.

[EGAW80] Y. Egawa, T. Wanda, Y. Ohmori, N. Tsuda, and K. Masuda, ‘‘A 1-Mbit Full-Wafer MOS

RAM,’’ IEEE J. Solid-State Circ., SC-15 (August 1980): 677–686.

[FIFI91] J. A. Fifield and C. H. Stapper, ‘‘High-Speed On-Chip ECC for Synergistic Fault-Tolerant

Memory Chips,’’ IEEE J. Solid-State Circ., 26 (October 1991): 1449–1452.

[FUJA85] T. Fuja. C. Heegard, and R. Goodman, ‘‘Some Linear Sum Codes for Random Access

Memories,’’ Proc. IEEE Int. Symp. Info. Theory (June 1985).

[FUJI75] E. Fujiwara and K. Aoki, ‘‘Reliability of Main Memories’’ (in Japanese), J. Info. Proc. Soc.

Japan, 16 (April 1975): 295–304.

[FUJI76] E. Fujiwara and T. Kawakami, ‘‘A Memory Having Double Error Correction Capability—

Sequential Correction for BCH Code,’’ (in Japanese). Paper of Technical Group, IECE Japan, EC

76–20 (June 1976).

[FUJI78] E. Fujiwara, ‘‘Odd-Weigh-Column b-Adjacent Error Correcting Codes,’’ Trans. IECE

Japan, E61 (October 1978): 781–787.

[FUJI80] E. Fujiwara and K. Haruta, ‘‘Design of Main Storage Error Checking and Correcting

Circuit for LSI Implementation’’ (in Japanese), Trans. IECE Japan, 63-D (February 1980):

129–136.

[FUJI81] E. Fujiwara, ‘‘Error Correcting Code and its Application to Digital Systems’’ (in Japanese),

PhD dissertation, Tokyo Institute of Technology (April 1981).

[FUJI82] E. Fujiwara and S. Kaneda, ‘‘Application of Error Correcting Codes for Increasing

Computer System Reliability’’ (in Japanese), J. Info. Process. Soc. (IPS) Japan, 23 (April

1982): 292–298.

[FUJI90] E. Fujiwara, in H. Imai (ed.), Essentials of Error-Correcting Coding Techniques, Academic

Press (1990), ch. 4.

[FURU89] K. Furutani, K. Arimoto, H. Miyamoto, T. Kobayashi, K. Yasuda, and K. Mashiko, ‘‘A

Built-in Hamming Code ECC Circuit for DRAM’s,’’ IEEE J. Solid-State Circ., 24 (February

1989): 50–56.

[GHAF84] K. A. Ghaffar and R. J. McEliece, ‘‘Soft Error Correction for Increased Densities in VLSI

Memories,’’ Proc. 11th IEEE Int. Symp. on Computer Architecture (1984): 248–250.

[GOLA83] P. Golan and J. Hlavika, ‘‘A Method for Parallel Decoding of Double-Error Correcting

Group Codes,’’ Dig., 13th IEEE Int. Symp. on Fault-Tolerant Computing (June 1983): 338–341.

[HAMM50] R. W. Hamming, ‘‘Error Detecting and Error Correcting Codes,’’ Bell Syst. Techn. J., 26

(April 1950): 147–160.

[HAN87] S. H. Han and M. Molek, ‘‘A New Technique for Error Detection and Correction in

Semiconductor Memories,’’ Proc. IEEE Int. Test Conf. (1987): 864–870.

REFERENCES 127



[HORI75] T. Horiguchi and K. Morita, ‘‘A Parallel Memory with Double Error Correction

Capability—A Class of One-Step Majority-Logic Decodable Error Correction Codes’’ (in

Japanese), Paper of Technical Group IECE Japan, EC 75–42 (November 1975).

[HORI76] T. Horiguchi, ‘‘A Double Error Correcting Code in Main Memory—On Parallel Decoding

of DEC-Melas Codes and BCH Codes’’ (in Japanese), Paper of Technical Group IECE Japan,

EC76-61 (November 1976).

[HOWE77] T. H. Howell, G. E. Cregg, and L. Rabins, ‘‘Table Lookup Direct Decoder for Double-

Error Correcting DEC BCH Codes Using a Pair of Syndromes,’’ US Patent 4030067 (June 14,

1977).

[HSIA69]M. Y. Hsiao and J. T. Tou, ‘‘Application of Error-Correcting Codes in Computer Reliability

Studies,’’ IEEE Trans. Reliability, R-18 (August 1969): 108–118.

[HSIA70a] M. Y. Hsiao, ‘‘A Class of Optimal Minimum Odd-Weight-Column SEC-DED Codes,’’

IBM J. Res. Dev., 14 (July 1970): 395–401.

[HSIA70b] M. Y. Hsiao, D. C. Bossen, and R. T. Chen, ‘‘Orthogonal Latin Square Codes,’’ IBM J.

Res. Dev., 14 (July 1970): 390–394.

[IMAI77a] H. Imai and Y. Kamiyanagi, ‘‘On Parallel Decoders for Double-Error-Correcting BCH

Codes’’ (in Japanese), Trans. IECE Japan, J60-D (September 1977): 761–762.

[IMAI77b] H. Imai and Y. Kamiyanagi, ‘‘AConstruction Method for Double-Error Correcting Codes

for Application to Main Memories’’ (in Japanese), Trans. IECE Japan, J60-D (October 1977):

861–868.

[IMAI79] H. Imai and H. Fujiya, ‘‘A Construction Method for Simple-Decodable Error-Correcting

Codes’’ (in Japanese), Trans. IECE Japan, J62-A (May 1979): 271–277.

[KALT90] H. L. Kalter, C. H. Stapper, J. E. Barth, J. D. Lorenzo, C. E. Drake, J. A. Fifield, G. A.

Kelley Jr., S. C. Lewis, W. B. Van den Hoeven, and J. A. Yankosky, ‘‘A 50-ns 16-Mb DRAMwith

a 10-ns Data Rate and On-Chip ECC,’’ IEEE J. Solid-State Circ., 25 (October 1990): 1118–1128.

[KANE84] S. Kaneda and H. Fukuda, ‘‘Reliability Design of Memory Systems Considering Soft-

Error’’ (in Japanese), Trans. IECE Japan, J67-D (September 1984): 1036–1043.

[KITA80] Y. Kitano, S. Kohda, H. Kikuchi, and S. Sakai, ‘‘A 4-Mbit Full-Wafer ROM,’’ IEEE J.

Solid-State Circ., SC-15 (August 1980): 686–693.

[LEIG82] F. T. Leighton and C. E. Leiserson, ‘‘Wafer Scale Integration of Systolic Arrays,’’ Proc.

23rd IEEE Symp. on Foundation of Computer Science (1982): 297–311.

[MANG84a] T. E. Mangir, ‘‘Sources of Failures and Yield Improvement for VLSI and Restructurable

Interconnects for RVLSI and WSI: Part I—Sources of Failures and Yield Improvement for

VLSI,’’ Proc. IEEE, 72 (June 1984): 690–708.

[MANG84b] T. E.Mangir, ‘‘Sources of Failures and Yield Improvement for VLSI and Restructurable

Interconnects for RVLSI and WSI: Part II—Restructurable Interconnects for RVLSI and WSI,’’

Proc. IEEE, 72 (December 1984): 1687–1694.

[MANO82] T. Mano, M. Wada, N. Ieda, and M. Tanimoto, ‘‘A Redundancy Circuit for a Fault-

Tolerant 256K MOS RAM,’’ IEEE J. Solid-State Circ., SC-17 (August 1982): 726–731.

[MANO83] T. Mano, J. Yamada, J. Inoue, and S. Nakajima, ‘‘Circuit Techniques for a VLSI

Memory,’’ IEEE J. Solid-State Circ., SC-18 (October 1983): 463–470.

[MANO87] T. Mano, T. Matsumura, J. Yamada, J. Inoue, S. Nakajima, K. Minegishi, K. Miura, T.

Matsuda, C. Hashimoto, and H. Namatsu, ‘‘Circuit Technologies for 16Mb DRAMs,’’ Dig., 1987

IEEE Int. Solid-State Circuit Conf. (February 1987): 22–23.

[MATS77] K. Matsuzawa and Y. Tohma, ‘‘AWay of Multiple Error Correction for Computer Main

Memory’’ (in Japanese), Trans. IECE Japan, J60-D (October 1977): 869–876.

[MATS78] K. Matsuzawa and Y. Tohma, ‘‘An Adjacent-Error-Correcting Code Based on the

Threshold Decoding,’’ Dig., 8th IEEE Int. Symp. Fault-Tolerant Computing (1978): 225.

128 CODES FOR HIGH-SPEED MEMORIES I: BIT ERROR CONTROL CODES



[MATS87] H. Matsuda and M. Kasahara, ‘‘A New Method of Constructing SEC-DED Codes with

Reduced Number of Codewords of Weight 4,’’ Trans. IECE Japan, J70-A (August 1987):

1036–1045.

[MATS88] K. Matsuzawa and E. Fujiwara, ‘‘Masking Asymmetric Line Faults Using Semi-Distance

Codes,’’ Dig., 18th IEEE Int. Symp. Fault-Tolerant Computing (June 1988): 354–359.

[MATS90] K. Matsuzawa and E. Fujiwara, ‘‘Masking Asymmetric Line Faults Using Semi-distance

Codes,’’ Trans. IEICE, E73 (August 1990): 1278–1286.

[MAY79] T. C. May, ‘‘Soft Errors in VLSI: Present and Future,’’ IEEE Trans. Comp. Hybrids Manuf.

Technol., CHMT-2 (December 1979): 377–387.

[MAZU92] P. Mazumder, ‘‘On-Chip ECC Circuit for Correcting Soft Errors in DRAM’s with Trench

Capacitors,’’ IEEE J. Solid-State Circ., 27 (November 1992): 1623–1633.

[MELA60] C. M. Melas, ‘‘A Cyclic Code for Double Error Correction,’’ IBM J. (July 1960): 142–143.

[MOOR86] W. R. Moore, ‘‘A Review of Fault-Tolerant Techniques for the Enhancement of

Integrated Circuit Yield,’’ Proc. IEEE, 74 (May 1986): 684–698.

[NOOR80] D. J. W. Noorlag, L. M. Terman, and A. G. Konhein, ‘‘The Effect of Alpha-Particle-

Induced Soft Error on Memory Systems with Error Correction,’’ IEEE J. Solid-State Circ., SC-15

(June 1980): 319–325.

[OHNI81] N. Ohnishi, T. Ishikawa, and N. Mutoh, ‘‘System Configuration on Full Wafer LSI,’’ Proc.

IEEE Int. Symp. Mini and Microcomputers (January 1981): 7–11.

[OKAN87] H. Okano and H. Imai, ‘‘A Construction Method of High-Speed Decoders Using ROMs

for Bose-Chaudhuri-Hocquenghem and Reed-Solomon Codes,’’ IEEE Trans. Comput., C-36

(October 1987): 1165–1171.

[OGOR96] T. J. O’Gorman, J. M. Rose and A. H. Taber, et al., ‘‘Field Testing for Cosmic Ray Soft

Errors in Semiconductor Memories,’’ IBM J. Res. Dev., 40 (January 1996): 41–50.

[PATE72a] A. M. Patel and M. Y. Hsiao, ‘‘An Adaptive Error Correction Scheme for Computer

Memory System,’’ Proc. IEEE Fall Joint Computer Conf. AFIPS (1972): 83–87.

[PATE72b] A. M. Patel and S. J. Hong, ‘‘Syndrome Trapping Technique for Fast Double-Error

Correction,’’ Proc. IEEE Int. Symp. on Info. Theory (1972). (See also US Patent 3714629, January

1973.)

[PELT83] D. L. Peltzer, ‘‘Wafer-Scale Integration: The Limits of VLSI?’’ VLSI Design (September

1983): 43–47.

[PETE72] W. W. Peterson and E. J. Weldon Jr., Error Correcting Codes, 2d ed., MIT Press (1972).

[RAO74] R. N. Rao, Error Coding for Arithmetic Processors, Academic Press (1974).

[SAIH82] G. A. Sai-Halasz, M. R.Wordman, and R. H. Dennard, ‘‘Alpha-Particle-Induced Soft Error

Rate in VLSI Circuits,’’ IEEE J. Solid-State Circ., SC-17 (April 1982): 355–361.

[SHIN83] T. Shinoda, Y. Ohnishi, H. Kawamoto, K. Takizawa, and K. Narita, ‘‘A 1 Mb ROM with

On-Chip ECC for Yield Enhancement,’’ Dig., 1983 IEEE Int. Solid-State Circ. Conf. (February

1983): 158–159.

[SMIT81] R. T. Smith, J. D. Chlipala, J. F. M. Bindels, R. G. Nelson, F. H. Fischer, and T. F. Mantz,

‘‘Laser Programmable Redundancy and Yield Improvement in a 64K DRAM,’’ IEEE J. Solid-

State Circ., SC-16 (October 1981): 506–514.

[STAP80] C. H. Stapper, A. N. Mclaren, and M. Dreckmann, ‘‘Yield Model for Productivity

Optimization of VLSIMemory Chips with Redundancy and Partially Good Product,’’ IBM J. Res.

Dev., 24 (May 1980): 398–409.

[STAP83] C. H. Stapper, ‘‘Modelling of Integrated Circuit Defect Sensitivities,’’ IBM J. Res. Dev., 27

(November 1983): 549–557.

[STAP84] C. H. Stapper, ‘‘Yield Model for Fault Clusters within Integrated Circuits,’’ IBM J. Res.

Dev., 28 (September 1984): 636–690.

REFERENCES 129



[STAP85] C. H. Stapper, ‘‘The Effects of Wafer to Wafer Perfect Density Variations on Integrated

Circuit Defect and Fault Distributions,’’ IBM J. Res. Dev., 29 (January 1985): 87–97.

[STAP86] C. H. Stapper, ‘‘On Yield, Fault Distributions and Clustering of Particles,’’ IBM J. Res.

Dev., 30 (May 1986): 326–338.

[TAKE77] T. Takezono and H. Ando, ‘‘Error Correcting Circuit Arrangement Using Cube Circuits,’’

US Patent 40064483 (December 1977).

[TANG69] D. T. Tang and R. T. Chien, ‘‘Coding for Error Control,’’ IBM Syst. J., 8 (1969): 48–86.

[TANN84] R. M. Tanner, ‘‘Fault-Tolerant 256K Memory Designs,’’ IEEE Trans. Comput., C-33

(April 1984): 314–322.

[WOOD86] W. K. S. Walker, C.-E. W. Sundberg, and C. J. Black, ‘‘A Reliable Spaceborne Memory

with a Single Error and Erasure Correction Scheme,’’ IEEE Trans. Comput., C-28 (July 1979):

493–500.

[UEOK84] Y. Ueoka, C. Minagawa, M. Oka, and A. Ishimoto, ‘‘A Detect-Tolerant Design for Full-

Wafer Memory LSI,’’ IEEE J. Solid-State Circ., SC-19 (June 1984): 319–324.

[YAMA80] A. Yamagishi and H. Imai, ‘‘A Construction Method for Decoders of BCH Codes Using

ROM’s’’ (in Japanese), Trans. IECE Japan, 63-D (December 1980): 1034–1041.

[YAMA84a] J. Yamada, T. Mano, J. Inoue, S. Nakajima, and T.Matsuda, ‘‘A Submicron VLSI

Memory with a 4 Bit-at-a-Time Built-in ECC Circuit,’’ Dig., 1984 IEEE Int. Solid-State Circ.

Conf. (February 1984): 104–105.

[YAMA84b] J. Yamada, T. Mano, and S. Date, ‘‘Built-in ECC Techniques for LSI Memories’’ (in

Japanese), Trans. IEICE Japan, J67-C (October 1984): 777–784. (Translated in Electronics and

Communications in Japan, Part 2, 68 (1985): 19–26.)

[YAMA87a] K. Yamashita, A. Kanasugi, S. Hijiya, G. Goto, N.Matsumura, and T.Shirato, ‘‘AWafer-

Scale 170,000-Gate FFT Processor with Built-in Test Circuits,’’ Proc. IEEE 1987 Custom

Integrated Circuits Conf. (May 1987): 207–210.

[YAMA87b] J. Yamada, ‘‘Selector-Line Merged Built-in ECC Technique for DRAMs,’’ IEEE J.

Solid-State Circ., SC-22 (October 1987): 868–873.

[YAMA88] T. Yamada, H. Kotani, J. Matsushima, and M. Inoue, ‘‘A 4-M Bit DRAM with 16-Bit

Concurrent ECC,’’ IEEE J. Solid-State Circ., SC-23 (February 1988): 20–26.

130 CODES FOR HIGH-SPEED MEMORIES I: BIT ERROR CONTROL CODES





CONTENTS

5.1 Single-Byte Error Correcting (SbEC) Codes . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1.1 Hamming-Type Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1.2 Burton Code and Its Generalized 2-Redundant Codes . . . . . . . . . . . . . 139

5.1.3 Odd-Weight-Column Codes—Fujiwara Codes— . . . . . . . . . . . . . . . . . 143

5.1.4 Maximal Codes—Hong-Patel Codes— . . . . . . . . . . . . . . . . . . . . . . . 149

5.2 Single-Byte Error Correcting and Double-Byte Error Detecting

(SbEC-DbED) Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.2.1 Reed-Solomon (RS) Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.2.2 Kaneda-Fujiwara Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.2.3 Chen Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.3 Single-Byte Error Correcting and Single p-Byte within a Block Error

Detecting (SbEC-Sp�b=BED) Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.3.1 Code Conditions and Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.3.2 Design for SbEC-Sp�b=BED Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 172

1 Design Method I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

2 Design Method II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



5
Codes for High-Speed

Memories II: Byte Error
Control Codes

In the application of error correcting codes to computer systems, there are a number of

situations where an error-correcting code capable of correcting clusters of adjacent bits in

error is uniquely suited. An example is errors due to a failure in a b-bit organized

semiconductor memory chip, which is called a byte-organized memory chip. In this

chapter we refer to this cluster of b bits, b 	 2, as a byte. With the advent of high-density

semiconductor memory chips, these b-bit organized RAM chips, for example,

b ¼ 4; 8; 16, and 32 bits organized RAM chips, have been fabricated and are now

marketed. If a failure occurs in such a chip, the resulting information read out from the

memory is likely to have the b-bit cluster in error. In this kind of application it may be

desirable to have an error control code capable of correcting / detecting byte errors as well

as bit errors [FUJI82, HORI83, CHEN83, DENG87, FUJI90].

The recent high-density RAM chip with wide input / output (I / O) data of 8, 16, and 32

bits has an inside structure organized by multiple subarrays almost physically separated

from each other. For this organization more suitable byte error control codes have been

studied.

This chapter deals with design of practical byte error correcting / detecting codes for

high-speed semiconductor memories. From a practical standpoint, it is about the code

design method for controlling at most double-byte errors. These practical code classes are

abbreviated and designated as follows:

1. SbEC codes: Single b-bit byte error correcting codes.

2. SbEC-DbED codes: Single b-bit byte error correcting and double b-bit byte error

detecting codes.

Code Design for Dependable Systems: Theory and Practical Applications, by Eiji Fujiwara
Copyright # 2006 John Wiley & Sons, Inc.

133



3. SbEC-Sp�b=BED codes: Single b-bit byte error correcting and single p-byte within a

B-bit block error detecting codes.

The SbEC-DbED codes have found many applications in recent large capacity

semiconductor memory systems with b ¼ 4 bits byte size. The SbEC-Sp�b=BED codes

with b ¼ 4; p ¼ 2, and B ¼ 16 have also been applied to large-capacity high-speed

memory systems using RAM chips each having 16-bit I / O data.

5.1 SINGLE-BYTE ERROR CORRECTING (SbEC) CODES

In this section we discuss a class of single-symbol error correcting codes over GFð2bÞ.
Each symbol is a b-bit byte, and therefore the codes are called SbEC codes.

5.1.1 Hamming-Type Codes

It is well known that a Hamming single-error correcting code can be constructed by

elements from any finite field [HAMM50]. If F is such a field, then the H matrix for the

single-error correcting code with elements from F is constructed as follows: Choose as

columns of the H matrix all the nonzero r-tuples of elements from F such that no column

of H is a multiple of another column. Then, since every pair of columns is linearly

independent, the code has dmin ¼ 3, that is, the code is capable of correcting single

(symbol) errors.

If, in particular, F is GFð2bÞ, these Hamming codes are an SbEC class of codes. To

implement the Hamming-type SbEC code, it is necessary to transform the H matrix over

GFð2bÞ to a binary form as follows [BOSS70, HONG72].

Definition 5.1 Given a binary primitive polynomial gðxÞ of degree b, the companion

matrix T corresponding to gðxÞ is defined as

g x
b

∑
i 0

gix
i g0 gb 1

T ,

,

Ib –1

b –1

0 0  0 g0. . .

g

g

1.
.
.

b × b

=

Ib 1 : b 1 b 1 identity matrix. &

Let a be a primitive element in GFð2bÞ and a root of gðxÞ. Its companion matrix T

has as its columns

j
ai

j
for i ¼ 1; 2; . . . ; b, where

j
ai

j
is the coefficient vector of

xi mod gðxÞ.

134 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



The companion matrix of a j is T j, and its column vectors are shown in Eq. (5.2). (Also

see Example 5.1.)

T ¼
j j j j
a a2 a3 . . . ab

j j j j

264
375
b�b

;

Tj ¼
j j j
aj ajþ1 . . . ajþb�1

j j j

264
375
b�b

:

ð5:2Þ

Some of the properties of the companion matrix are covered next [HONG72].

Property 1 Let e be the exponent of gðxÞ (i.e., y ¼ e is the least positive solution of

xy � 1mod gðxÞ).

(a) T is nonsingular.

(b) T0 ¼ Te ¼ Ib.

(c) Ti ¼ Tj if and only if i � jmod e.

Property 2 The i-th column of theTj is the same as the coefficient vector of the ðb� 1Þ-th
degree polynomial xiþj�1 mod gðxÞ.

Property 3 Let V be the coefficient column vector of vðxÞ ¼
Pb�1

i¼0 vix
i and V 0 for

v0ðxÞ ¼
Pb�1

i¼0 v0ix
i. Then Ti � V ¼ V 0 if and only if xivðxÞ ¼ v0ðxÞmod gðxÞ.

The set of companion matrices and the included zero matrix have the same structure as

GFð2bÞ and are field isomorphic to GFð2bÞ. Therefore we state

f0; T; T2; T3; . . . ;T2b�2;T2b�1 ¼ Ig ¼ GFð2bÞ;

where I is the b� b identity matrix and 0 is the b� b zero matrix. In the following

example we use the T matrices to represent GFð2bÞ as well as the vectors (b-tuples over
binary) as required.

Example 5.1

The companion matrix T in GFð24Þ defined by the primitive polynomial gðxÞ ¼
x4 þ xþ 1 is given as follows:

T ¼

0 0 0 1

1 0 0 1

0 1 0 0

0 0 1 0

2664
3775:

SINGLE-BYTE ERROR CORRECTING (SbEC) CODES 135



This matrix is used to express all elements included in GFð24Þ in binary form as

follows:

0 I

1
1

1
1

T

1
1 1

1
1

T2

1
1 1

1 1
1

T3

1
1 1

1 1
1 1

T4

1 1
1 1 1

1 1
1 1

T5

1 1
1 1
1 1 1

1 1

T6

1 1
1 1

1 1
1 1 1

T7

1 1 1
1 1 1

1 1
1 1

T8

1 1
1 1 1

1 1 1
1 1

T9

1 1
1 1 1 1

1 1 1
1 1 1

T10

1 1 1
1 1 1
1 1 1 1

1 1 1

T .11

1 1 1
1 1
1 1 1
1 1 1 1

T12

1 1 1 1
1
1 1
1 1 1

T13

1 1 1
1

1
1 1

T14

1 1
1

1
1

The addition and multiplication rules in GFð24Þ are determined as follows:

þ 0 I T T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

0 0 I T T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

I I 0 T4 T8 T14 T T10 T13 T9 T2 T7 T5 T12 T11 T6 T3

T T T4 0 T5 T9 I T2 T11 T14 T10 T3 T8 T6 T13 T12 T7

T2 T2 T8 T5 0 T6 T10 T T3 T12 I T11 T4 T9 T7 T14 T13

T3 T3 T14 T9 T6 0 T7 T11 T2 T4 T13 T T12 T5 T10 T8 I
T4 T4 T I T10 T7 0 T8 T12 T3 T5 T14 T2 T13 T6 T11 T9

T5 T5 T10 T2 T T11 T8 0 T9 T13 T4 T6 I T3 T14 T7 T12

T6 T6 T13 T11 T3 T2 T12 T9 0 T10 T14 T5 T7 T T4 I T8

T7 T7 T9 T14 T12 T4 T3 T13 T10 0 T11 I T6 T8 T2 T5 T

T8 T8 T2 T10 I T13 T5 T4 T14 T11 0 T12 T T7 T9 T3 T6

T9 T9 T7 T3 T11 T T14 T6 T5 I T12 0 T13 T2 T8 T10 T4

T10 T10 T5 T8 T4 T12 T2 I T7 T6 T T13 0 T14 T3 T9 T11

T11 T11 T12 T6 T9 T5 T13 T3 T T8 T7 T2 T14 0 I T4 T10

T12 T12 T11 T13 T7 T10 T6 T14 T4 T2 T9 T8 T3 I 0 T T5

T13 T13 T6 T12 T14 T8 T11 T7 I T5 T3 T10 T9 T4 T 0 T2

T14 T14 T3 T7 T13 I T9 T12 T8 T T6 T4 T11 T10 T5 T2 0

136 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



� 0 I T T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I 0 I T T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

T 0 T T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 I

T2 0 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 I T

T3 0 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 I T T2

T4 0 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 I T T2 T3

T5 0 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 I T T2 T3 T4

T6 0 T6 T7 T8 T9 T10 T11 T12 T13 T14 I T T2 T3 T4 T5

T7 0 T7 T8 T9 T10 T11 T12 T13 T14 I T T2 T3 T4 T5 T6

T8 0 T8 T9 T10 T11 T12 T13 T14 I T T2 T3 T4 T5 T6 T7

T9 0 T9 T10 T11 T12 T13 T14 I T T2 T3 T4 T5 T6 T7 T8

T10 0 T10 T11 T12 T13 T14 I T T2 T3 T4 T5 T6 T7 T8 T9

T11 0 T11 T12 T13 T14 I T T2 T3 T4 T5 T6 T7 T8 T9 T10

T12 0 T12 T13 T14 I T T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

T13 0 T13 T14 I T T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

T14 0 T14 I T T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

By way of these elements expressed in binary form, the single-symbol error correcting

Hamming codes over GFð2bÞ are transformed into Hamming-type SbEC codes. This

transformation is illustrated in Example 5.2 below.

Example 5.2

Our objective in this example is to obtain a ð72; 64Þ S2EC code from a ð36; 32Þ code
over GFð22Þ. The companion matrix T is derived by using the primitive polynomial

gðxÞ ¼ x2 þ xþ 1. The following H matrix shows such a ð72; 64Þ S2EC code whose

weight (i.e., total number of 1’s in the H matrix) is near minimal [BOSS70, � 1970

IBM]. Note that every column here has at least one identity element I.

H ,

I I I T2 T I I I T2 T 0 0 I I I I I I I 0 0 0 0 0 0 0 0 0 0 T2 T I I 0 0 0
T2 T I 0 0 0 I I I I T2 T 0 0 I I I I 0 I 0 0 0 T2 T I I I I 0 0 0 0 I 0 0
0 0 0 I I I T T2 I I I I T2 T 0 0 0 I I I I I I 0 0 0 T2 T I 0 0 0 0 0 I 0
0 0 0 0 0 0 T2 T 0 0 I I I I T2 T I 0 I I T2 T I I I I 0 0 0 I I I 0 0 0 I

0 .
0 0
0 0

I
1 0
0 1

T
0 1
1 1

T2 1 1
1 0

ð5:3Þ

In the Hamming-type code over GFð2bÞ the parameters n and k denote the code length

(in bytes) and the information length (in bytes), respectively. So the SbEC code derived

from these parameters will be an ðN;KÞ code in binary form, where N ¼ n� b bits and

K ¼ k � b bits. Also the number of check bits is R ¼ r � b ¼ ðn� kÞ � b.

The maximum length (in bits) of this class of SbEC codes is given by

NH ¼ b� n ¼ bð2br � 1Þ
2b � 1

: ð5:4Þ

Figure 5.1 shows the relation between the information-bit length K and the check-bit

length R of this code for b ¼ 2; 3, and 4.

SINGLE-BYTE ERROR CORRECTING (SbEC) CODES 137



Next a possible method of implementing a single-error correction with Hamming-type

codes is shown. Let syndrome be equal to S ¼ ðs0 s1 . . . sr�1Þ and the i-th column vector

of the H matrix be ðh0; i h1; i . . . hr�1; iÞT , where hj; i 2 GFð2bÞ; j ¼ 0; 1; . . . ; r � 1. Then

an error of value E ðE 2 GFð2bÞÞ in symbol i yields a syndrome that is equal to

S ¼ ðE � h0;i E � h1;i . . . E � hr�1;iÞ:

Since every column of H contains at least one identity element I, then the original

syndrome contains the error magnitude in one of the positions s0; s1; . . . ; sr�1. Without loss

of generality, assume that hj;i is equal to I. Then

sj ¼ E � hj;i ¼ E � I ¼ E:

That is, the error pattern E equals Sj. Under this condition the error byte pointer gi
is a scalar that indicates the location of the i-th byte and is given by the Boolean

expression

gi ¼
\r�1
m¼ 0
m 6¼ j

½sm ¼ sj � hm;i�; where
\

: AND:

This means that gi equals 1 only if every relation of sm ¼ sj � hm;i is satisfied for

m ¼ 0; 1; 2; . . . ; r � 1, m 6¼ j.

The corrected i-th byte data bDi can be obtained as

bDi ¼ Di þ gi � E for i ¼ 0; 1; . . . ; k � 1:

In this equation the þ expresses addition in GFð2bÞ.

16 32 64 128 256

Information-bit length K = NH - R

6

7

8

9

10

11

12

C
he

ck
-b

it 
le

ng
th

 R
 =

 b
⋅ r

b = 2

b = 3b = 4

K = 21 36

60 K = 162

210

Figure 5.1 Comparison of check-bit lengths and information-bit lengths of the Hamming-type SbEC
codes.

138 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



5.1.2 Burton Code and Its Generalized 2-Redundant Codes

There is an interesting subclass of Hamming codes over GFð2bÞ that has only two check

symbols and is capable of correcting single errors in GFð2bÞ. These codes are known as

2-redundant code for this reason [BOSS70]. The H matrix of the Hamming-type

2-redundant code has the following form:

H ¼ I I I � � � I I 0

I T T2 � � � T2b�2 0 I

� �
:

It is clear that no two columns ofH are linearly dependent. The code has distance-3 and is

therefore a single-error correcting code over GFð2bÞ.
Burton code [BURT71] is also a 2-redundant SbEC code. This code is called a class of

phased-burst error correcting cyclic code. The generator polynomial of the code is

expressed as

gðxÞ ¼ ðxb þ 1Þ � pðxÞ: ð5:5Þ

Here pðxÞ is an irreducible polynomial of degree b. The maximal code length N (bits) of

this code is given by

N ¼ LCMðe; bÞ;

where LCM denotes the least common multiple and e the exponent (or the period) of pðxÞ.
The code defined by Eq. (5.5) can be expressed as the following H matrix:

H ¼
Ib Ib Ib Ib . . . Ib

H0 H0 . . . H0

" #
; ð5:6Þ

where Ib is the b� b identity matrix and H0 is an H matrix of the binary Hamming code

generated by the polynomial pðxÞ. H0 is given by

H0 ¼
j j j j
1 a a2 . . . ae�1

j j j j

24 35;

where

j
ai

j
is the coefficient vector of xi mod pðxÞ. If pðxÞ is primitive, then e ¼ 2b � 1.

This matrix design is indicated in Subsection 2.3.7. On the other hand, the companion

matrix T, defined by the primitive polynomial pðxÞ of degree b, and Ti (for

i ¼ 0; 1; . . . ; 2b � 2) are expressed as in Eq. (5.2). Therefore the H matrix shown in

Eq. ð5:6Þ can be rewritten using these T and Ti as

H ¼ Ib Ib Ib . . . Ib . . . Ib
Ib Tb T2b . . . Tib . . . Tðe�1Þb

� �
:

SINGLE-BYTE ERROR CORRECTING (SbEC) CODES 139



This matrix can be reduced to echelon canonical form as

H ¼ Ib 0 h0;2 h0;3 . . . h0;i . . . h0;e�1
0 Ib h1;2 h1;3 . . . h1;i . . . h1;e�1

� �
;

where 0; Ib; h0;2; . . . ; h0;i; and h1;i; . . . ; h1;e�1 are all elements in GFð2bÞ.
The systematic form of the matrix has the following properties for j ¼ 0; 1; 2; . . . ; e� 1

[FUJI77a]:

Property 1

h0; j þ h1; j ¼ Ib: ð5:7Þ

Property 2

Hj ¼
h0; j
h1; j

� �
¼ Hj�1 þ Tð j�1Þb

Tð j�1Þb

� �
: ð5:8Þ

Property 3

h0;2 ¼ Tb: ð5:9Þ

The þ expresses addition in GF(2b).

Example 5.3 [FUJI76]

The (21, 15) Burton code is defined by the generator polynomial gðxÞ ¼ ðx3 þ 1Þ � pðxÞ,
where pðxÞ ¼ x3 þ xþ 1 is a primitive polynomial with exponent e ¼ 7. ItsHmatrix in

canonical form (i.e., in systematic form) is given below:

H .β 0 β 1 β 2 β 3 β 20

0 1 2 3 4 5 6 7 8 9 10 11 121314151617181920
1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

As before,

j
bi

j
is the coefficient vector of xi mod gðxÞ. Next we can divide thisHmatrix

by 3� 3 square matrices as follows:

H = .

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

ð5:10Þ

140 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



On the other hand, H0 can be given by

H0 ¼
j j j j j j j
1 a a2 a3 a4 a5 a6

j j j j j j j

264
375;

where a is a root of pðxÞ. From the polynomial pðxÞ the following companion matrix

and the addition table on GFð23Þ can be derived:

T ¼
0 0 1

1 0 1

0 1 0

24 35

þ 0 I T T2 T3 T4 T5 T6

0 0 I T T2 T3 T4 T5 T6

I I 0 T3 T6 T T5 T4 T2

T T T3 0 T4 I T2 T6 T5

T2 T2 T6 T4 0 T5 T T3 I

T3 T3 T I T5 0 T6 T2 T4

T4 T4 T5 T2 T T6 0 I T3

T5 T5 T4 T6 T3 T2 I 0 T

T6 T6 T2 T5 I T4 T3 T 0

Hence the H matrix of this code can be expressed as

H
I3 I3 I3 I3 I3 I3 I3

H H H

1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 α α2 α3 α4 α5 α6 1 α α2 α3 α4 α5 α6 1 α α2 α3 α4 α5 6

I3 I3 I3 I3 I3 I3 I3
I3 T3 T6 T2 T5 T T4

I3 0 T3 T4 T T6 T5

0 I3 T T5 T3 T2 T4 .

The resultant H matrix in an echelon canonical form is equivalent to the matrix shown

in Eq. (5.10). It is clear that this matrix satisfies the properties shown in Eqs. (5.7), (5.8),

and (5.9).

The interesting properties of the Burton code, especially property 1 in Eq. (5.7), can

make this an odd-weight-column SbEC code. Actually every column vector of the H

matrix shown in Eq. (5.10) is of odd weight, and property 1 in Eq. (5.7) satisfies Definition

3.4 of the odd-weight-column code (see Section 3.2).

SINGLE-BYTE ERROR CORRECTING (SbEC) CODES 141



Property 2 in Eq. ð5:8Þ and property 3 in Eq. ð5:9Þ express the sequential structure of
this code. These properties are not particularly important when parallel decoding is

employed, as required, for high-speed memories.

Next we consider the double-byte error detection capability of these 2-redundant

SbEC codes.

Theorem 5.1 [FUJI77b] The double-byte error detection capability, Pd, of the

2-redundant ððk þ 2Þb; kbÞ SbEC code is given by

Pd ¼ 1� k

2b � 1
:

Proof The probability Pd is calculated by counting the fraction of double-byte errors

that are detected by this code. Double-byte errors, say E1 and E2, generate a syndrome

that may equal the syndrome caused by a single-byte error, say E3. This will result in a

miscorrection as stated before. We analyze the cases occurred by these byte errors of E1,

E2, and E3, in the following:

Case 1. E1, E2, and E3 are all in the information-bit part.

Case 2. E1 and E2 are in the information-bit part, and E3 in the check-bit part.

Case 3. E1 is in the information-bit part, and E2 and E3 in the check-bit part.

Case 4. E1, E2, and E3 are all in the check-bit part. (The miscorrection will be harmless

if it occurs.)

For each case the number of miscorrections can be counted as follows:

Case 1: 3ð2b � 1Þ
k

3

� �
;

Case 2: 2� 3ð2b � 1Þ
k

2

� �
;

Case 3: 3ð2b � 1Þ
k

1

� �
;

Case 4: 0:

Therefore the detection ability, Pd is as follows:

Pd ¼ 1�
3ð2b � 1Þ k

3

� �
þ 2

k

2

� �
þ k

1

� �� �
k þ 2

2

� � Pb
i; j¼1

b

i

� �
� b

j

� � :

By simple algebra, the equation above reduces to 1� fk=ð2b � 1Þg, which completes

the proof. Q.E.D.

142 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



Example 5.4

The 2-redundant ð80; 64Þ S8EC code has the following double-byte error detection

probability Pd ¼ 1� 8=ð28 � 1Þ ¼ 0:9686. That is, 96:86% of all double-byte errors

are detected, and therefore it is ‘‘very nearly’’ an S8EC-D8ED code.

Theorem 5.1 gives us an important result that for a large value of b (e.g., b ¼ 8 and

16 bits), the 2-redundant SbEC code is very nearly an SbEC-DbED code. Also this result is

practical and suitable for high-speed memories because the information-bit length of these

memories is rather short [ARLA84]. Thus the class of SbEC-DbED codes discussed later

may not be all that necessary for the case where b is large.

Here, we consider a generalized class of Burton codes that can be constructed by using

a generator polynomial gðxÞ ¼ ðxb þ 1ÞpðxÞ, where the degree of pðxÞ is l. It is important

that if l is equal to b, the codes defined by the polynomial gðxÞ are equal to the Burton

codes. If l is greater than b, the codes can also correct all single-byte errors [VARA83]. If

pðxÞ is a primitive polynomial of degree l, then the code length N (bits) and the check-bit

length R can be expressed as

N ¼ bð2l � 1Þ;
R ¼ lþ b:

If l is less than b, the codes can correct single-bit errors and detect both double-bit errors

and single b-bit burst errors [VARA83]. This will be shown in Section 6.1.

5.1.3 Odd-Weight-Column Codes — Fujiwara Codes —

From the property of the Burton code Fujiwara derives a new class of SbEC codes that

has an odd-weight-column characteristic [FUJI77b, FUJI78]. This generalized code over

GFð2bÞ includes an excellent odd-weight-column SEC-DED code, especially for b ¼ 1.

In an odd-weight-column matrix code over GFð2bÞ (see Definition 3.4 in Section 3.2),

no two columns are identical and no column is all zero or a multiple of another column.

The last is true because if a column vector hi is a multiple of hj (i.e., hi ¼ b � hj, where
b 2 GFð2bÞ, and b 6¼ 0; b 6¼ 1), then sum of the elements of hi equals b, contradicting the
odd-weight-column property. Therefore the columns hi and hj are a linearly independent

pair and the code is of distance-3 or higher. And we have proved the following.

Theorem 5.2 An odd-weight-column matrix code over GFð2bÞ is an SbEC code.

Lemma 5.1 There exists exactly 2bðr�1Þ odd-weight-column vectors, each having r ele-

ments over GFð2bÞ.

Proof Let hi be the i-th odd-weight-column vector over GFð2bÞ in the parity-check

matrix of this code. Also let the sum of arbitrary r � 1 elements in hi be g 2 GFð2bÞ.
Then the remaining one element can be determined as gþ I, where I is an identity ele-

ment in GFð2bÞ; that is, the remaining one element in hi is uniquely determined from the

other r � 1 elements. Since each element can have any one of 2b values, there are exactly

2bðr�1Þ such column vectors. Q.E.D.

SINGLE-BYTE ERROR CORRECTING (SbEC) CODES 143



This gives the maximal code length NF (bits) of the Fujiwara code as

NF ¼ b � n ¼ b � 2bðr�1Þ: ð5:11Þ

Compared to the Hamming-type SbEC code, this code is shorter in code length. From

Eqs. ð5:4Þ and ð5:11Þ the ratio NF=NH can be written as follows:

NF

NH

¼ 1� 2bðr�1Þ � 1

2br � 1

� 1� 1

2b
for r � b� 1:

This code is equivalent to the popular odd-weight-column SEC-DED code (see Section 4.1.1),

especially for b ¼ 1. Therefore this type of codes can be said to include the odd-weight-

column SEC-DED code as a special case of b ¼ 1. Figure 5.2 shows the relation between the

information-bit length K and the check-bit length R of this code for b ¼ 1; 2; 3, and 4 bits.

Example 5.5

Consider a (72, 64) S2EC code having parameters b ¼ 2 and r ¼ 4. The companion

matrix T is determined by the polynomial gðxÞ ¼ x2 þ xþ 1. Its H matrix is given as

follows:

I I I T T I T2 T2 T T2 0 0 0 0 0 0 T2 T T T I T2 T2 I I I T I T T2 I T2 I 0 0 0
I I T I T T2 I T2 I I I T T I T2 T2 T T2 0 0 0 0 0 0 T2 T T T I T2 T2 I 0 I 0 0

T2 T T T I T2 T2 I I I T I T T2 I T2 I I I T T I T2 T2 T T2 0 0 0 0 0 0 0 0 I 0
T T2 0 0 0 0 0 0 T2 T T T I T2 T2 I I I T I T T2 I T2 I I I T T I T2 T2 0 0 0 I

0 =
0 0
0 0

I =
1 0
0 1

T =
0 1
1 1

T =2 1 1
1 0

,

. ð5:12Þ

16 32 64 128 256

Information-bit length K

6

7

8

9

10

11

12

C
he

ck
-b

it 
le

ng
th

 R

b = 2

b = 3

b = 4

b = 1 (Odd-weight-column
          SEC-DED code)11

18 26

K = 57

56

120

K = 183
247

5

Figure 5.2 Comparison of check-bit lengths and information-bit lengths of the Fujiwara SbEC codes.
Source: [FUJI78, 81].� 1978 IECE Japan.

144 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



The decoding procedure of this code is presented as follows: Let the i-th column vector

in the H matrix be ðh0; i h1; i . . . hr�1; iÞT , where hm;i 2 GFð2bÞ, m ¼ 0; 1; . . . ; r � 1, and

the syndrome due to error in the i-th position be ðS0 S1 . . . Sr�1Þ. Then an error Ei in

symbol i yields a syndrome that is equal to

Sm ¼ Ei � hm;i for m ¼ 0; 1; . . . ; r � 1:

Clearly, for odd-weight-column codes the sum of syndrome components must equal Ei,

that is,

Ei ¼
Xr�1
i¼0

Si;
X

: addition in GFð2bÞ:

The error byte pointer gi is given by substituting Ei, for example, by S0 � h�10;i ,

gi ¼
\r�1
m¼1
½Sm ¼ S0 � h�10;i � hm;i�:

From these operations, the corrected i-th byte data bDi can be obtained as

bDi ¼ Di þ gi � Ei for i ¼ 0; 1; . . . k � 1:

In the equation above, þ expresses addition in GFð2bÞ. Figure 5.3 shows the decoding

circuit of the odd-weight-column SbEC code.

Another important feature of this odd-weight-column SbEC code exists in its error

detection capability for certain double-byte errors.

Theorem 5.3 Odd-weight-column SbEC codes can detect double-byte errors in posi-

tions i and j provided that their error values Ei and Ej are equal.

Proof The condition for detecting double-byte errors is given by

Ei � hTi þ Ej � hTj 6¼ Ek � hTk ð5:13Þ

for all nonzero Ei, Ej, and Ek existing in three distinct byte positions i, j, and k,

respectively. The corresponding column vectors of the H matrix are hi, hj, and hk.

Since the code is an SbEC code, Ei � hTi þ Ej � hTj 6¼ 0. If Ei ¼ Ej, the sum of all

elements in the vector Ei � hTi þ Ej � hTj is equal to the error value Ei þ Ej, and hence the sum

equals zero. However, the sum of the elements in the vector Ek � hTk is equal to the error value
Ek and does not equal zero. Therefore Eq. ð5:13Þ holds for Ei ¼ Ej, and the theorem is

proved. Q.E.D.

Theorem 5.3 guarantees the partial double-byte error detection of the codes. In

particular, all bit errors in two bytes, meaning 2b-bit errors over any two bytes, can be

detected.

SINGLE-BYTE ERROR CORRECTING (SbEC) CODES 145



In addition, from the odd-weight-column characteristic of this code, the following

relations are valid:

1. The even number of bit errors over two bytes cannot be miscorrected to the odd

number of bit errors over single bytes.

2. The odd number of bit errors over two bytes cannot be miscorrected to the even

number of bit errors over single bytes.

It is important that the SbEC codes minimize the probability of miscorrection of the

double-byte errors. Table 5.1 compares the miscorrection probability of the typical (72,

64) S2EC codes. According to these results the odd-weight-column S2EC codes have

better error detection capability for double-byte errors than the non–odd-weight-column

S2EC codes. For more details, refer to [FUJI78].

TABLE 5.1 Miscorrection Probabilities of (72, 64) S2EC Codes

Probabilityofmiscorrected Probabilityofmiscorrected
Codes double 2-bit byte errors (%) 2-bit errorsoverdouble bytes (%)

Hamming-type (72,64) S2EC
code shown in Eq. (5.3) 45.9 48.3

Odd-weight-column (72,64)
S2ECcodeshownin Eq. (5.12) 33.6 25.2

...

...

+

+

+

...

...

...

...

...

... ...

XOR
tree

Data and check bits

Syndrome
generator

Sr-1 S1 S0

e1, j
e0, j

eb-1, j

gj

Ej dj,0

dj,1

dj,b -1

Dj

Dj

dj,0

dj,1

dj,b -1

^
^

^

^

+ :  Exclusive-OR (XOR)

Dj =(dj,0 ~ dj,b -1) : Readout data  (j-th byte)

Dj =(dj,0 ~ dj,b -1) : Corrected data  (j-th byte)
^      ^ ^

Ej : Error pattern

gj : Error byte pointer (j-th byte)

S0 ~ Sr-1 : Syndrome

S1=S0 h0, j h1, j.. -1

S2=S0 h0, j h2, j.. -1

Sr-1=S0 h0, j hr-1, j.. -1

Figure 5.3 Error correction circuit for byte j for Fujiwara code. Source : [FUJI78, 81].� 1978 IECE Japan.

146 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



Rotational Fujiwara Codes We can also derive rotational odd-weight-column SbEC

codes [FUJI77b, FUJI78]. Before obtaining the code length of this code, we need the fol-

lowing modified Möbius inversion formula.

Theorem 5.4 [FUJI78] If the relation

f ðrÞ ¼
X

ðr=mÞ:odd
gðmÞ ð5:14Þ

is valid between two functions, f ðrÞ and gðrÞ, for any positive integer r, then gðrÞ can be

expressed by f ðrÞ as

gðrÞ ¼
X
mjr

m:odd

mðmÞ � f r

m

� �
: ð5:15Þ

Here mðmÞ is the Möbius function defined in Section 3.5, and
P

mjr
m:odd

means the

summation over all odd m that divides r.

Proof Because Eq. ð5:14Þ is valid for any positive integer, the following relation should

hold for any divisor m of r:

f
r

m

� �
¼

X
ðr=mÞ=c:odd

gðcÞ:

This is substituted into the right-hand side of Eq. ð5:14Þ. The group of all combinations of

m and c that satisfies
mjr

m : odd
and ðr=mÞ=c: odd is equivalent to the group of all combinations

of m and c that satisfies cjr and mjðr=cÞ
ðr=cÞ : odd . Then the following equation is valid:

X
mjr

m:odd

mðmÞ � f r

m

� �
¼
X
mjr

m:odd

mðmÞ �
X

ðr=mÞ=c:odd
gðcÞ ¼

X
cjr

gðcÞ �
X

mjðr=cÞ
ðr=cÞ:odd

mðmÞ:
ð5:16Þ

The property of a Möbius function says that

X
mjn

mðmÞ ¼ 1; n ¼ 1;
0; n > 1:

�

As a result the right-hand side of Eq. ð5:16Þ equals gðrÞ, and the relation in Eq. ð5:15Þ is
proved. Q.E.D.

The discussion that follows is related to the rotational error control codes (see

Section 3.5).

SINGLE-BYTE ERROR CORRECTING (SbEC) CODES 147



The H matrix of the rotational odd-weight-column codes has r rows and n columns.

The column vector that has r elements is assumed to have some nondegenerate cyclic

equivalence classes, each of which has m elements of GFð2bÞ. The summation of m

elements of the class is equal to I. Moreover the whole summation of r elements of the

column vector should be equal to I. Thus r divided by m should be an odd integer.

Let nðr; bÞ be a total number of nondegenerate cyclic equivalence classes that have m

elements of GFð2bÞ. Then the following equation is valid:

2bðr�1Þ ¼
X

ðr=mÞ:odd
m � nðm; bÞ:

From the modified Möbius inversion formula of Theorem 5.4, nðr; bÞ can be easily

obtained as

nðr; bÞ ¼ 1

r

X
mjr

m : odd

mðmÞ � 2bðr=m�1Þ:

Here nðr; bÞ means the length of each Hi of the rotational H matrix. Thus the code length

(in bytes) of the rotational odd-weight-column SbEC code is expressed as

n ¼ r � nðr; bÞ ¼
X
mjr

m : odd

mðmÞ � 2bðr=m�1Þ:

Table 5.2 shows the code length n (bytes) of this code. Note that there exists no significant

difference between the code lengths of the rotational and the nonrotational codes. And for

TABLE 5.2 Code Lengths (in Bytes) of Rotational Fujiwara SbEC Codes Compared

to the Nonrotational Codes

r b 1 2 3 4 6 8

2
2
2

4
4

8
8

16
16

64
64

256
256

3
3
4

15
16

63
64

255
256

4; 095
4; 096

65; 535
65; 536

4
8
8

64
64

512
512

4; 096
4; 096

_ _

5
15
16

255
256

4; 095
4; 096

65; 535
65; 536

_ _

6
30
32

1; 020
1; 024

32; 760
32; 768

_ _ _

7
63
64

4; 095
4; 096

_ _ _ _

8
128
128

16; 384
16; 384

_ _ _ _

Note: The codes with b ¼ 1 are equal to the rotational odd-weight-column SEC-DED codes with code length in bits

n ¼
P

mjr
m:odd

mðmÞ � 2ðr=m�1Þ. n=n0: The numerator n gives the rotational code length in bytes and the denominator n0 the

nonrotational code length in bytes.

148 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



b ¼ 1, this is equal to the code length of the rotational odd-weight-column SEC-DED

codes. Figure 5.4 shows two examples of the rotational Fujiwara (72, 64) S2EC codes.

5.1.4 Maximal Codes — Hong-Patel Codes —

We study here a class of maximal SbEC codes over GFð2bÞ called Hong-Patel codes

[HONG72]. A byte is not equated to a symbol from GFð2bÞ but instead is treated as a

convenient cluster of b individual bits. The number of check bits may or may not be a

multiple of b, and sometimes it may be arbitrary. Hong-Patel codes contain subclasses

that are equivalent to all single-symbol error correcting codes over GFð2bÞ, including
the binary Hamming codes. Furthermore these codes are easily implementable and

expandable, and they are either perfect ormaximal. Hence they are called the general class

of maximal codes [HONG72]. In this context, a maximal code is defined such that no

longer code with the same error-correcting capability for a given check-bit length exists.

Given a check-bit length R and a byte-length b, consider the matrix HR;b shown in

Figure 5.5, where R 	 2b, a is a primitive element in GFð2R�bÞ; that is, it is a root of a

primitive polynomial gðxÞ of degree R� b, and hence

j
ai

j
is the coefficient vector of

xi mod gðxÞ.

Lemma 5.2 The code given by the following H matrix corrects all single-byte errors:

H ¼ ½HR;b j IR�:

Proof The information bits can be grouped as 2R�b � 1 bytes, D0;D1, . . . , D2R�b�2. The
check bits are similarly grouped as check bytes C0 C1 . . . Cr�1, where r ¼ Rd =

be and Cr�1
is the last check byte, which may be of a length less than b. For the codeword

W ¼ ½D0 D1 . . . D2R�b�2 C0 C1 . . . Cr�1�, we have W �HT ¼ 0. The erroneous word

W 0 then produces a syndrome S given by

S ¼ W 0 �HT ¼ ½S0 S1 . . . Sr�1�:

H0 =

T T2 I T I T T2 T I

T T2 T I T2 T2 T 0 0

T T2 T T T2 0 0 T2 0
T2 T 0 0 0 0 0 0 0

H0 =

I I I T T I T2 T2 I

I I T I T T2 I T2 0

T2 T T T I T2 T2 I      0
T T2 0 0 0 0 0 0 0

T =
0 1

1 1
T2 =

1 1

1 0

I =
1 0

0 1
0 =

0 0

0 0

R =

0 0 0 I

I 0 0 0
0 I 0 0

0 0 I 0

H = H0 R H0 R2 H0 R3 H0[                            ].              .              .

Figure 5.4 Two examples of rotational Fujiwara (72, 64) S2EC codes. Source: [FUJI78].� 1978 IECE Japan.

SINGLE-BYTE ERROR CORRECTING (SbEC) CODES 149



The syndrome consists of r bytes called syndrome bytes. With the considerations above,

we can now proceed to prove Lemma 5.2.

First, any error byte in the information portion, say, error pattern Ei 6¼ 0 in the i-th byte,

gives the following syndrome:

S0 ¼ Ei

and

½S1; S2; . . . ; Sr�1� ¼ Ei � jTijTb :

Here note that jTijb is an ðR� bÞ � b matrix ðR 	 2bÞ after deleting the last R� b

columns from the original ðR� bÞ � ðR� bÞ matrix Ti, which will be defined in

Definition 6.4 as a slimmed matrix. Clearly, S0 ¼ Ei 6¼ 0 and ½S1; S2; . . . ; Sr�1� 6¼ 0. The

error byte in the check portion, however, gives the following syndromes: Let Ej 6¼ 0 in the

j-th check byte. Then

Sl ¼ 0; l 6¼ j;

Sj ¼ Ej 6¼ 0:

Hence an error in the information portion must give at least two types of nonzero

syndromes, and an error in the check portion gives only one nonzero syndrome byte.

Distinct errors in the check portion obviously yield distinct syndromes. Now suppose that

byte errors Ei 6¼ 0 and Ej 6¼ 0 in the i-th and the j-th ði 6¼ jÞ information bytes generate

identical syndromes. Then we have

Ei ¼ Ej and Ei � jTijTb ¼ Ej � jTjjTb :

1
1

1
..

.

1
1

1
..

.

0 1 b 1-... 1 2 b...

....

1
1

1
..

.

i i+1 i+b-1...

....

1
1

1
..

.

2-2 0 b 2-...
R-b

b

-R b

H b,R

=
Ib Ib

T
...

Ib

T
i

...
Ib

T 2-2 b-R

=
1

1

1

..
.

1

bb

T i = i i 1+ i+b-1...

(R-b) b

i 2-2,...,1,0= R-b

Ib

=

b bT
0

b b

b

Figure 5.5 MatrixHR;b of Hong-Patel codes.

150 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



Since Ti 6¼ Tj for i 6¼ j, this cannot occur. Therefore errors in information bytes have

distinct syndromes and hence are correctable. Q.E.D.

Lemma 5.3 The code described by the following H matrix corrects all single-byte

errors:

H ¼ HR;b
0b 0b � � � 0b
HR�b;b

���� ����IR� �
; R 	 3b; ð5:17Þ

where 0b is a b� b zero matrix.

Proof Let the information portions corresponding to HR;b and HR�b;b be called the first

and the second partition of information bytes. An error byte in the first partition yields

S0 6¼ 0 and at least one more nonzero syndrome byte. An error byte in the second parti-

tion yields S0 ¼ 0, S1 6¼ 0, and at least one more nonzero syndrome byte. This is because

HR�b;b itself is a single-byte error correcting code having R� b check bits. An error byte

in the check portion yields one and only one nonzero syndrome byte. Distinct byte errors

in the same partition yield distinct syndromes due to Lemma 5.2. Q.E.D.

Lemma 5.3 suggests an iterative concatenation of partitions as defined in Eq. ð5:17Þ,
maintaining the single-byte error correcting capability. From the two lemmas a new class

of code can be defined as the code given by the following H matrix:

H HR b

0b 0b 0b

H

0b 0b 0b
0b 0b 0b

H

0b 0b 0b
0b 0b 0b

...

H(2  +   ),b c b

IR

P0 P1 P2 Pr 2 I .R

(R–2b),b

(R–b),b

,
ð5:18Þ

The second form shown above is to define r � 1 partitions for the information portion.

Each partition Pj contains b � ð2ðr�j�1Þbþc � 1Þ columns.

Theorem 5.5 The code defined by theHmatrix of Eq. (5.18) corrects all single-byte errors.

Proof Any two distinct errors within a partition or within the check portion yield dis-

tinct syndromes due to Lemma 5.3. A single error E 6¼ 0 in the i-th byte of partition Pj

yields the syndrome

S0 ¼ S1 ¼ � � � ¼ Sj�1 ¼ 0;

Sj ¼ E;

½Sjþ1 . . . Sr�1� ¼ E � jTijTb 6¼ 0;

SINGLE-BYTE ERROR CORRECTING (SbEC) CODES 151



which is distinct from the syndrome of any single-byte error in another partition or in the

check portion. Q.E.D.

A few remarks about the structure of this code follow.

1. When b ¼ 1, the code length n (bits) becomes

n ¼
Xr�1
j¼1
ð2ðr�jÞ � 1Þ þ r ¼

Xr�1
i¼1

2i þ 1

¼ 2r � 1;

ð5:19Þ

which is the code length of the Hamming SEC code. Therefore this new code defines

an alternative structure for a single-bit error correcting Hamming code.

2. The structure of each partition HðR�jbÞ;b resembles very closely that of a Fire code

[FIRE59] shown in Subsection 2.3.7. In fact, when b and 2R�b � 1 are relatively prime,

the Fire code given by the following H matrix, H0R;b, has the same properties asHR;b:

H0R;b ¼
Ib Ib � � � Ib

H0 H0 � � � H0

" #
;

where H0 denotes the binary Hamming code generated by a primitive polynomial

gðxÞ of degree R� b. There are b repetitions of the H0 in H0R;b.

3. The code construction reveals a systematic and regular method of code concatena-

tion whereby the code length is increased in an iterative fashion.

We turn next to the length of this code. We saw in Eq. ð5:19Þ that this is a perfect code
when b ¼ 1. A code is called perfect if all possible 2R syndromes are used to correct 2R

different error patterns.

In this code, how the check bits are divided into bytes (in case b does not divide R

exactly) gives rise to the following two classes of codes MC1 and MC2, respectively:

IR ¼

Ib

Ib

. .
.

Ib

Ibþc

266666664

377777775

9>>>>=>>>>; ðr � 1Þ Ib matrices;



1 Ibþc matrix;

ð5:20Þ

IR ¼

Ib

Ib

. .
.

Ib

Ic

266666664

377777775

9>>>>=>>>>; r Ib matrices;



1 Ic matrix:

ð5:21Þ

152 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



In general, the check-bit length R ¼ r � bþ c, where 0 � c < b. The leftover c check bits,

if any, may form a special check byte. Another way is to form r � 1 regular size check

bytes and allow a special check byte of length bþ c.

Here MC1 is defined as the code given by the H matrix of Eq. ð5:18Þ, where the check
portion IR is divided into bytes according to Eq. ð5:20Þ. MC2 is given by the same matrix

except that the check portion is divided into bytes according to Eq. ð5:21Þ.

Theorem 5.6 MC1 is a perfect code.

Proof Given R, define M1 to be the number of distinct error patterns that MC1 can cor-

rect. From Eqs. ð5:18Þ and ð5:20Þ we see that for R ¼ r � bþ c 	 2b,

M1 ¼
Xr�1
j¼1
ð2b � 1Þð2ðr�jÞbþc � 1Þ þ ðr � 1Þð2b � 1Þ þ ð2bþc � 1Þ þ 1

¼ ð2b � 1Þ
Xr�1
i¼1

2ibþc þ 2bþc

¼ 2bþcð2b � 1Þ 2
ðr�1Þb � 1

2b � 1
þ 2bþc

¼ 2rbþc ¼ 2R:
Q.E.D.

As for MC2, it is perfect only when c ¼ 0, and it is maximal whenever c ¼ 1 for

R ¼ r � bþ c. For the special case of c ¼ 0 and 1, the code length (in bits) of theMC2 can

be expressed as follows [HONG72]:

N ¼ b
2R � 1� 2bð2c � 1Þ

2b � 1
:

Note that whenever b divides the given number of check bitsR,MC1, andMC2 are exactly

the same, M1 ¼ M2 ¼ 2R (M2: number of distinct error patterns that MC2 can correct), and

the code length becomes equal to that of the Hamming-type code, expressed as Eq. (5.4).

The number of information bits, K, is the same in both MC1 and MC2.

K ¼ b �
Xr�1
j¼1
ð2ðr�jÞbþc � 1Þ

 !

¼ b �
 
2R � 2bþc

2b � 1
� ðr � 1Þ

!

¼ b
2R � 1� 2bð2c � 1Þ

2b � 1
� Rþ c:

Example 5.6

Consider a Hong-Patel code with b ¼ 2 bits and K ¼ 76 bits. This can have check-bit

length R ¼ 7. First, for R� b ¼ 5, obtain the primitive element a0 of the primitive

SINGLE-BYTE ERROR CORRECTING (SbEC) CODES 153



polynomial gðxÞ ¼ x5 þ x2 þ 1 in GFð2R�bÞ ¼ GFð25Þ. From this information we can

construct H7;2 as

H7;2 ¼
I2 I2 I2 � � � I2
A0;0 A0;1 A0;2 � � � A0;30

� �
;

where

A0;0 ¼ ½I a0�
A0;1 ¼ ½a0 a20�
A0;2 ¼ ½a20 a30�

..

.

A0;30 ¼ ½a300 I�

I ¼

1

0

0

0

0

26666664

37777775; a0 ¼

0

1

0

0

0

26666664

37777775; a20 ¼

0

0

1

0

0

26666664

37777775; . . . ; a300 ¼

0

1

0

0

1

26666664

37777775:

Next, for R� 2b ¼ 3, we obtain the primitive element a1 of the primitive polynomial

gðxÞ ¼ x3 þ xþ 1 in GFð2R�2bÞ ¼ GFð23Þ. Similarly we obtain

H5;2 ¼
I2 I2 I2 � � � I2
A1;0 A1;1 A1;2 � � � A1;6

� �
;

where

A1;0 ¼ ½I a1�
A1;1 ¼ ½a1 a21�
A1;2 ¼ ½a21 a31�

..

.

A1;6 ¼ ½a61 I�

I ¼
1

0

0

264
375; a1 ¼

0

1

0

264
375; a21 ¼

0

0

1

264
375; . . . ; a61 ¼

1

0

1

264
375:

This is how the (83, 76) S2EC code shown in Figure 5.6 is designed.

In this example the maximal code with byte length b ¼ 2 bits and information-bit

length K ¼ 64 has one less check bit, compared to the equivalent Hamming-type code. For

b ¼ 4 bits, the code has 3 less check bits. Table 5:3 gives the maximal code lengths (in

bits) of the SEC codes, the maximal S2EC codes, the maximal S4EC codes, and the SEC-

DED codes for the given R ranging from 2 to 12 bits.

5.2 SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BYTE
ERROR DETECTING (SbEC-DbED) CODES

This section deals with a class of single b-bit byte error correcting and double b-bit byte

error detecting (SbEC-DbED) codes. From practical point of view, the SbEC codes have a

problem such that detection of random double-bit errors spanning over two bytes is not

guaranteed. That is, large-capacity semiconductor memory systems tend to have errors

caused by two RAM chips failures, such as when hard errors occur in one chip and soft

154 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



I2

H
 
=

1
0

0
1

1
0

0
1

0
0

0
0

0
0

1
0

0
1

0
0

1
0

0
1

0
0

0
0

1
0

0
1

0
0

0
0

1
0

0
1

0
0

1
0

0
1

0
0

0
0

0
0

1
0

0
1

1
0

0
1

0
1

0
0

0
1

0
0

1
0

1
0

0
1

1
0

0
1

1
0

0
1

0
0

1
0

0
1

0
0

1
0

0
1

1
0

0
1

1
0

0
1

0
1

0
0

1
1

0
1

1
0

1
0

0
1

1
0

0
1

1
0

1
1

0
1

1
0

0
1

0
1

1
0

0
0

1
0

1
1

1
0

0
1

1
1

0
1

0
1

0
0

1
0

1
0

0
1

1
0

1
1

1
1

0
1

0
0

1
0

0
1

0
0

1
0

1
1

1
1

0
1

1
0

0
1

0
1

0
0

1
1

1
1

1
1

1
0

0
1

1
1

0
1

1
1

1
1

1
1

1
0

0
1

1
1

1
1

1
0

1
1

1
1

1
0

0
1

1
1

1
1

0
0

1
0

1
1

1
0

0
1

1
1

1
1

0
0

0
0

1
0

1
0

0
1

1
0

1
1

0
1

0
0

0
0

1
0

0
1

0
0

1
0

1
1

0
1

0
0

1
0

0
1

0
0

0
0

1
0

1
1

0
1

1
0

0
1

1
0

0
0

0
1

1
0

1
1

1
0

0
1

1
1

0
1

1
1

0
1

1
0

1
0

0
1

1
0

1
1

1
1

1
1

0
1

1
0

0
1

0
1

1
0

1
0

1
1

1
1

1
0

0
1

1
1

0
1

0
1

1
0

1
1

1
0

0
1

1
1

1
1

1
0

0
1

1
0

1
0

0
1

1
0

1
1

0
1

1
0

0
1

1
0

0
1

0
1

1
0

1
0

0
1

1
0

1
0

0
1

1
0

0
1

0
0

1
0

0
1

1
0

0
1

0
1

1
0

0
0

0
0

1
0

0
0

0
0

1
0

0
1

1
0

0
1

0
0

0
0

0
0

1
0

0
1

0
0

1
0

0
1

0
0

0
0

1
0

0
1

0
1

0
1

1
0

0
0

0
0

1
0

0
1

1
0

1
1

0
1

0
0

0
0

1
0

0
1

0
1

1
1

1
1

0
0

0
0

1
0

0
1

1
1

1
0

1
1

0
0

0
0

1
0

0
1

1
1

0
0

1
0

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0 0 0 0 0 0 1

A
0,

0

A
0,

1

A
0,

2

A
0,

3

A
0,

4

A
0,

5

A
0,

6

A
0,

7

A
0,

8

A
0,

9

A
0,

10

A
0,

11

A
0,

12

A
0,

13

A
0,

14

A
0,

15

A
0,

16

A
0,

17

A
0,

18

A
0,

19

A
0,

20

A
0,

21

A
0,

22

A
0,

2

A
0,

24

A
0,

25

A
0,

26

A
0,

27

A
0,

28

A
0,

29

A
0,

30

A
1,

0

A
1,

1

A
1,

2

A
1,

3

A
1,

4

A
1,

5

A
1,

6

P
0

P
1

IR

I2
I2

I2
I2

. .
 .

A
0,

0
A

0,
1

. .
 .

A
0,

30

O
2 I2

I2
I2

. .
 .

O
2

O
2

. .
 .

A
1,

0
. .

 .
A

1,
6

1
1

1
1

1
1

1

P
0

P
1

IR

F
ig
u
re

5
.6

H
on

g
-P
at
el
(8
3,
76
)S

2E
C
co

de
.

155



errors in another chip simultaneously. Therefore they need at least to detect the double-byte

errors. For this reason SbEC-DbED codes have been applied to computer memory systems

with byte length b ¼ 4 bits [NARA80, KANE82, BISH96]. This is because 4-bit-byte

organized semiconductor DRAM chips have been popularly used in high-speed memory

systems.

5.2.1 Reed-Solomon (RS) Codes

Reed-Solomon codes are a general class of codes having any distance d over GFðqÞ
[REED60]. We can design the SbEC-DbED codes as the RS codes with distance 4 over

GFð2bÞ. The codes can be expressed by the H matrix with three rows:

H ¼
I I I I

I T � � � Ti � � � T2b�2

I T2 T2i T2ð2b�2Þ

24 35; ð5:22Þ

where f0;T;T2; . . . ;T2b�2;T2b�1 ¼ Ig 2 GFð2bÞ and T is the companion matrix defined

by Eq. ð5:1Þ.
Wolf [WOLF69] suggested lengthening distance-4 RS codes by appending three

columns to the H matrix without weakening the error control capability of the codes. The

appended columns are the 3� 3 identity matrix

H ¼
I I I I I 0 0

I T � � � Ti � � � T2b�2 0 I 0
I T2 T2i T2ð2b�2Þ 0 0 I

24 35: ð5:23Þ

TABLE 5.3 Maximum Code Length N (Bits) Compared

Check-bit
length
R

SEC code length
in bits

N ¼ 2R � 1

Maximal SbEC code length in bits

N ¼ b
2R � 1� 2bð2c � 1Þ

2b � 1
þ c

SEC-DED code
length in bits
N ¼ 2R�1

b ¼ 2 bits b ¼ 4 bits

2 3 � � 2
3 7 � � 4
4 15 10 � 8
5 31 19 � 16
6 63 42 � 32
7 127 83 � 64
8 255 170 68 128
9 511 339 133 256
10 1,023 682 262 512
11 2,047 1,363 519 1,024
12 4,095 2,730 1,092 2,048

Source: [HONG72].� 1972 IEEE.

156 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



The code length N (bits) of this modified code is equal to

N ¼ b � ð2b þ 2Þ: ð5:24Þ

An implementation of the high-speed parallel encoder / decoder of the extended RS codes

is given in [BHAT78].

Today’s high-speed computer systems have adopted the information-bit lengths

K ¼ 64, 128, or 256 bits. The conventional Reed-Solomon SbEC-DbED codes, hereafter

abbreviated as RS SbEC-DbED codes, however, cannot be used in memory systems with a

byte lengths of b ¼ 2, 3, and 4 bits. This is because the maximum information-bit lengths

of these codes are 6, 21, and 60 bits for b ¼ 2, 3, and 4 bits, respectively. This is shown in

Table 5:4 and calculated using Eq. ð5:24Þ. From this reason modified RS SbEC-DbED

codes must take any values of byte size b and code length N [CART74, CART80,

KANE82, ITOH83, CHEN86a, CHEN86b].

5.2.2 Kaneda-Fujiwara Codes

The RS SbEC-DbED codes always require three check bytes, and hence do not have the

flexibility to extend the code length. Here a new class of SbEC-DbED codes is shown for

an arbitrary code length and byte length [KANE82].

TheHmatrix shown in Eq. ð5:23Þ can be converted to theHmatrix whose first row has

all I’s. This can be accomplished by the following algorithm:

Step 1. The second row of H shown in Eq. (5.23) is multiplied by a suitable nonzero

element Ta, where 0 � a � 2b � 2.

Step 2. The multiplied result and the third row are added to the first row ofH in Eq. (5.23).

Step 3. If an element of the resultant (first) row is not equal to I, then this can be made

equal to I by multiplying the column by a nonzero scalar. Note that multiplying a

column of H by a nonzero scalar does not change the distance of the code.

For example, let H be the following (12, 6) S2EC-D2ED codes:

H ¼
I I I I 0 0

I T2 T 0 I 0

I T T2 0 0 I

24 35: ð5:25Þ

Here T is the companion matrix defined by the primitive polynomial gðxÞ ¼ x2 þ xþ 1, I

is a 2� 2 identity matrix, and 0 is a 2� 2 zero matrix. According to the algorithm

mentioned above, theHmatrix can be converted to the matrix having all I’s in the first row

by the following two steps.

TABLE 5.4 Code Parameters for RS SbEC-DbED Codes

b (bits) Nmax (bits) Kmax (bits)

2 12 6
3 30 21
4 72 60

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BYTE ERROR DETECTING (SbEC-DbED) CODES 157



Step 1. Multiply the second row by T and add the second and third rows to the first. We

then get the following H0:

H0 ¼
T T I I T I

T I T2 0 T 0

I T T2 0 0 I

24 35:
Step 2. To obtain all I’s in the first row, we need to multiply columns 1, 2, and 5 by T2.

We then get H00 shown below ð,T2 � T2 � T2 ¼ T6 ¼ IÞ:

H00 ¼
I I I I I I

I T2 T2 0 I 0

T2 I T2 0 0 I

24 35: ð5:26Þ

In general, we can find at least one aða � 2b � 2Þ to multiply the second row by Ta, and

then we can finally get the matrix including the first row having all I’s. This is easy to

prove.

Here we can write the converted matrix of Eq. ð5:26Þ, in general, as

H1 ¼
I I I . . . I

h0 h1 h2 . . . hn�1

� �
; n ¼ 2b þ 2; ð5:27Þ

where h0; h1; . . . ; hn�1 are column vectors each having two elements. For example, in

Eq. ð5:26Þ we can express the second and the third rows in H00 by the following:

h0 ¼
I

T2

� �
; h1 ¼ T2

I

� �
; h2 ¼ T2

T2

� �
; h3¼

0

0

� �
; h4 ¼

I

0

� �
; h5¼

0

I

� �
:

By this approach and notation, a new class of SbEC-DbED codes is obtained as shown in

the following theorem.

Theorem 5.7 Let H1 be the converted H matrix of an ðN1;N1 � R1Þ SbEC-DbED code

whose first row is an all-I’s vector of the following form:

H1 ¼
I I I . . . I
h0 h1 h2 . . . hn1�1

� �
;

where N1 ¼ n1b, R1 ¼ r1b. Let H2 be the nonconverted H matrix of an (N2;N2 � R2)

SbEC-DbED code, where N2 ¼ n2b, R2 ¼ r2b. The linear code defined by the

following H matrix is an SbEC-DbED code of length n1n2 bytes with r1 þ r2 � 1

check bytes.

H ¼
H2 H2 H2

. . .
h0 h0 . . . h0 h1 h1 . . . h1 hn1�1 hn1�1 . . . hn1�1

24 35:
ð5:28Þ

158 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



The theorem can be easily proved such that every combination of three or fewer

columns in the H matrix shown in Eq. ð5:28Þ is linearly independent. The details of the

proof are left to the reader.

Theorem 5.8 Let H0 be the H matrix of an ðN;N � RÞ SbEC-DbED code, where

N ¼ nb, R ¼ rb. The code defined by the following H matrix is a ð2N; 2N � R� bÞ
SbEC-DbED code:

Proof It is simple to show that the H matrix defined by Eq. ð5:29Þ has an SbEC prop-

erty. If there are double-byte errors, E1 and E2, in the received word such that one byte

error E1 is in first portion in H that has all 0’s in the bottom row, and the other byte error

E2 is in the second portion that has all I’s in the bottom row, the resultant syndrome can

be expressed as

E1 �

h0; i
h1; i

..

.

hr�1; i
0

2666664

3777775þ E2 �

h0; j
h1; j

..

.

hr�1; j
I

2666664

3777775 ¼
E1 � h0; i þ E2 � h0; j
E1 � h1; i þ E2 � h1; j

..

.

E1 � hr�1; i þ E2 � hr�1; j
E2

2666664

3777775;

where ½h0; i h1; i . . . hr�1; i 0�T is the i-th column vector included in the first portion

in H and ½h0; j h1; j . . . hr�1; j I�T is the j-th column vector included in the second

portion. It is easy to see that this syndrome is nonzero and not equal to that of the

single-byte errors. Therefore the code defined by Eq. ð5:29Þ is an SbEC-DbED

code. Q.E.D.

Example 5.7 [KANE82]

Let H2 be the following ð12; 6Þ S2EC-D2ED code:

H2 ¼
I I I I 0 0

I T T2 0 I 0

I T2 T 0 0 I

24 35: ð5:30Þ

As was mentioned before, the H matrix indicated in Eq. ð5:30Þ can be converted to the

form of H1 in Eq. ð5:31Þ by choosing Ta ¼ T as follows:

H1 ¼
I I I I I I

I T2 T2 0 I 0

T2 T2 I 0 0 I

24 35: ð5:31Þ

H ¼ H0 H0

0 0 0 � � � 0 I I I � � � I

� �
; f0; Ig 2 GFð2bÞ: ð5:29Þ

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BYTE ERROR DETECTING (SbEC-DbED) CODES 159



The following ð72; 62Þ S2EC-D2ED code is designed [KANE82] by combining H1

and H2:

H = .

I I I I I I I I I I I I I I I I I I I I I I I I
I T T2 I I T T2 I I T T2 I I T T2 I I T T2 I I T T2 I
I T2 T I I T2 T I I T2 T I I T2 T I I T2 T I I T2 T I
I I I I I I 2 T2 T2 T2 T2 T2T2 T2 T2 T2 T2 T2 I I I I I I

T2 T2 T2 T2 T2 T2 I I I I I I2 T2 T2 T2 T2 T2 I I I I I IT
T

In the same manner the S2EC-D2ED codes, whoseHmatrices have seven rows, can be

designed from two S2EC-D2ED codes—one having five rows and the other having

three rows. In general, the SbEC-DbED codes, whose H matrices have odd number of

rows, can be obtained according to this method.

If an even number of rows, for example, six rows, is required, then Theorem 5.8 is

used to design the code with six rows, as shown in Figure 5.7 [KANE82].

The H matrix shown in the figure does not indicate the check byte positions clearly.

The fourth, fifth, and sixth rows in this matrix are added to the first row. Then we obtain

the position of the check bytes, whose columns have exactly one I and five zeros in the

remaining positions. The resultant matrix is shown in the lower panel, where the check-

byte positions are indicated by circled I’s [KANE82].

The code length N (bits) of this code is given as follows:

N ¼
b � ð2b þ 2Þðr�1Þ=2 r : odd ð	3Þ;
2b � ð2b þ 2Þðr�2Þ=2 r : even ð	4Þ:

(

Table 5.5 shows the code length N (bits) for byte length b (bits) and the number of rows r.

For the byte length b ¼ 1 bit, the code is reduced to the SEC-DED code.

Figure 5.8 shows the check-bit length of the SbEC-DbED codes for byte lengths

b ¼ 2; 3, and 4 bits. The decoding procedure of this code is simple. A single-byte error is

corrected by using the same procedure as that of the SbEC codes. A double-byte error is

detected when the syndrome is nonzero and none of the error byte pointers indicate an

error.

Rotational / Modularized SbEC-DbED Codes In theory, derivation of rotational

SbEC-DbED codes is difficult, and no derivation has yet been obtained for arbitrary

values of b and r. However, in practice, some code parameters of byte length b ¼ 4

bits and information lengths K ¼ 64 and 128 bits have been tried and produced some

excellent codes having the property of the minimum-weight & equal-weight-row code

(see Section 3.1) [KANE82]. Although such modularized codes are not identical to

the rotational codes, they provide modularized organization of the encoding / decoding

circuits, and hence some modularized codes have been applied to commercial computer

systems.

Definition 5.2 The SbEC-DbED codes whose encoding / decoding circuits can be

organized using p identical circuit modules are called p-modularized SbEC-DbED

codes. &

160 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



H
 =

H
 =

I
I

I
I

I
I

I
I

I

T
T

I
2

T
T

2

I
I

I
I

I

T
T

2

I
I

T
T

2

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

T
T

2
I

T
T

2

I
I

I
I

T
T

2
2

I
I

I

I
T

T
2

I
I

T
T

2

I
I

I
I

T
T

T
T

2
2

2
2

I
I

I
I

I
I

T
T

T
T

2
2

2
2

I
I

I
I

I
I

I

T
T

2
I

T
T

2

T
   

T
2

2
2

2
2

2

I
I

T
T

2
2

I
I

I

T
T

2
I

I
I

T
T

2

T
T

T
T

2
2

T
T

T
T

2
2

2
2

I

I

I

I II

I
I

I
I

I
I

I
I

I
I

I

T
T

2
I

T
T

2

I
I

I
I

I
I

I
I

I
I

I
I

T
T

2
T

T
2

II
I

I
I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

T
T

2
I

T
T

2

I

I
I

I
I

I
I

I T
T

2
2

T
T

T
T

2
2

2
2

I
I

I
I

I
I

I
I

I
I

T
T

2
T

T
2

I

I
I

I
I

I
I

I
I

I

T
T

T
T

2
2

I

I
I

I
I

I
I

I

I
I

I

T
T

2
I

T
T

2

T
T

2
2

2
2

2
2

I
I

T
T

2
2

I
I

I
I

I

I
III

I

I
I

I
I

T
T

T
T

2
2

2
T

T
T

T
2

2
2

I
I

I
I

I
I

I
I

T
T

2

T
T

2
I

I

I
I

I I
I

I
I

I
I

I

T
T

2
T

T
2

I
I I

I

I
I

I
I

I
I

T
T

2

T
T

2

T
T

2
I

I
I

I
I

T
T

2
2

T
T

T
T

2
2

2

T
T

2
I

I
I

T
T

2

I
I

I
I

T
T

T
T

2
2

2
2

T
T

T
T

2
2

I
I

I
I

I
I

I
I

T
T

T
T

2
2

2
2

T
T

2
2

T
T

2

T
T

2

T
T

2
2

T
T

2
2

2
2

I
I

T
T

2
2

I
I

I

I
II

T
T

2

T
T

2

T
T

T
T

2
2

T
T

T
T

2
2

2
2

I
I I

I

I
I

I
I

I
I

I I
I

I
I

I
II

T
T

2
T

T
2

I
I

I

I
I

I
I

I
I

I
T

T
2

T
T

2

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
II

T
T

2

T
T

2

T
T

2

I
I

I
I

I
I

T
T

2
2

T
T

T
T

2

I
T

T
2

I
I

T
T

2

I
I

I
I

I
I

I
I

T
T

T
T

2
2

2
2

T
T

T
T

2
2

I

I
I

I
I

I
I

I

I
I

I
I

T
T

T
T

2
2

2
2

T
T

T
T

2
I I

T
T

2

T
T

T
T

T
T

2
2

T
T

2
2

I
I

T
T

2
2

I
I

I
I

I
II

I

T
T

2

T
T

2

2
2

2

T
T

T
T

2
2

2

I
I

I
I

I

T
T

2
T

T
2

I

I

22 22

T
T

T
T

F
ig
u
re

5
.7

(1
44
,1
22
)S

2E
C
-D
2E

D
co

de
s.
(n
on

sy
st
em

at
ic
co

de
(u
pp

er
)a

nd
sy
st
em

at
ic
co

de
(l
ow

er
)).

S
ou

rc
e:

[K
A
N
E
82
].
�

19
82

IE
EE

.

161



Theorem 5.9 The code shown in Eq. (5.32) presents 2-modularized SbEC-DbED codes:

H = ,
I I I . . .

. . .

. . .

. . .

. . .

. . .

I I I I I I
T T2 T3 Tp T p T p +1 T p +2 T 1 I
T 1 T 2 T 3 T p Tp Tp 1 Tp 2 T I

module 0 module 1

ð5:32Þ

where 0 and I are zero element and identity element in GFð2bÞ, respectively, and

0; I;T;T2;T3; . . . ;Tp;T�1;T�2;T�3; . . . ;T�p
	 


2 GFð2bÞ for p ¼ 2b�1 � 1:

Proof In the original Reed-Solomon SbEC-DbED code shown in Eq. ð5:22Þ, the second
column of its H matrix is divided by T, and the third column is divided by T2. In the same

TABLE 5.5 Code Length N (Bits) of Kaneda-Fujiwara SbEC-DbED Code

Numberof rows b: Byte length (bits)

r 1a 2 3 4 5

3 4 12 30 72 170
4 8 24 60 144 340
5 16 72 300 1,296 5,780
6 32 144 600 2,592 11,560
7 64 432 3,000 23,328 196,520

Source: [KANE82].� 1982 IEEE.

Note:Numberof check bits R ¼ b� r.
a The codeswith b ¼ 1are equal to the SEC-DED codes.

16 32 64 128 256

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

5

10

15

20

b = 2

b = 3
b = 4

16
21

K = 62

48
60

128

132

285

Figure 5.8 Comparison of check-bit lengths and information-bit lengths of the Kaneda-Fujiwara SbEC-
DbED codes.

162 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



manner the i-th column is divided by Ti�1. In this case the first column (all I vectors) is

removed. Next each row of the obtained matrix is cyclically shifted upward by one place.

Finally the 3� 3 identity matrix is appended to the resultant matrix to derive the H
matrix of Eq. ð5:32Þ. Therefore this code satisfies the SbEC-DbED conditions. The mod-

ule 0 and the module 1 shown in Eq. ð5:32Þ have the same circuits for encoding / decoding

because the same three row vectors are used in each module. Thus the code shown in

Eq. ð5:32Þ is a 2-modularized SbEC-DbED code. Q.E.D.

The code length (in bits) of this 2-modularized code is given by

N ¼ b � ð2b þ 1Þ:

In the H matrix shown in Eq. ð5:32Þ, the product value of the second row element and the

third row element in each column is constant, meaning all I’s, except for the columns of

check bytes. This constant value can be selected from the nonzero elements in GFð2bÞ. If
there is a column vector whose second row element is same as the third row element, then

this column should be removed. The H matrix shown in Eq. ð5:33Þ is an example of this

type of 2-modularized ð68; 56Þ S4EC-D4ED code whose constant product value is T14:

H ¼
I I I . . . I I I . . . I I

I T T2 . . . T6 T14 T13 . . . T8 I

T14 T13 T12 . . . T8 I T . . . T6 I

ð5:33Þ

In this case the companion matrix T is derived from the primitive polynomial

gðxÞ ¼ x4 þ xþ 1.

Another interesting type of modularized code is introduced in [NARA80]. The code shown

in Figure 5.9 is an example of the modularized ð80; 64Þ S4EC-D4ED code. This matrix also

C0

C2

C1

C3

Module 0 Module 1 Check part

Submodule A Submodule B

Submodule B Submodule A

I I I I I I I I

O O O O O O O O

I T T T T T T T

I T T T T T T T

2 3 4 5 6 7

2 4 6 8 10 12 14

O O O O O O O O

I I I I I I I I

I T T T T T T T
2 4 6 8 10 12 14

I T T T T T T T
2 3 4 5 6 7

I O O O

O I O O

O O I O

O O O I

I I I I I I I I

I T T T T T T T
2 3 4 5 6 7

O O O O O O O O

I T T T T T T T
2 4 6 8 10 12 14

O O O O O O O O

I T T T T T T T
2 4 6 8 10 12 14

I I I I I I I I

I T T T T T T T
2 3 4 5 6 7

Figure 5.9 Modularized (80, 64) S4EC-D4ED code.

.

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BYTE ERROR DETECTING (SbEC-DbED) CODES 163



has two identical modules, module 0 and module 1 of Figure 5.9. In addition to this, each

module can be comprised of two types of submodules, submodule A and submodule B in the

figure. Hence this organization presents an easy implementation of the encoding / decoding

circuit. In this case the columns for the check bytes can be appended to the matrix obtained.

Next we consider the rotational SbEC-DbED codes. These codes are sometimes derived

via an exhaustive computer search, and hence they are optimized as minimum-weight

& equal-weight-row codes (see Section 3.1). To increase the modularity of the matrix

organization, the 2-modularized technique shown in Theorem 5.9 can be applied to the

rotational SbEC-DbED code. That is, we can apply this technique to the basic submatrix

H0 in the H matrix of the rotational code. Let submatrix H0 have an all-I row vector in

the first row. The product of the second row element and the third row element provides a

constant element in each column of H0, except for the columns of check bytes. Thus the

submatrix H0 itself has a 2-modularized organization.

To see this property, take the following simple example where the companion matrix T is

derived from the polynomial gðxÞ ¼ x4 þ xþ 1. Eight column vectors and one check

columnvector are selected from theHmatrix of Eq. ð5:33Þ as shown in Eq. ð5:34Þ. Note that
to have four submatrices in theHmatrix of the rotational code, one all-0 row vector is added.

H0 ¼

I I I I I I I I I

T14 T13 T12 T11 I T T2 T3 0

I T T2 T3 T14 T13 T12 T11 0

0 0 0 0 0 0 0 0 0

ð5:34Þ

The rotational code organized by the submatrix shown in Eq. ð5:34Þ does not always
have the D4ED property. This can be verified by a computer program. This is the way we

were able to select 35 ¼ 7
4

� �� �
submatrices and 15 product values. Table 5.6 shows the

number of rotational (144, 128) S4EC-D4ED codes for each product value. Figure 5.10

shows an example of the rotational (144, 128) S4EC-D4ED code with minimum-weight &

equal-weight-row property. The weight of this matrix is equal to 592.

Figure 5.11 shows four H0 submatrices satisfying the minimum-weight & equal-weight-

row rotational (144, 128) S4EC-D4ED codes that do not have constant product values in each

column. Theweight of eachHmatrix is equal to 568. These codes, including the code shown in

Figure 5.10, finally give an 8-modularized organization of their encoding / decoding circuits.

As another practical example, let us look at a minimum-weight & equal-weight-row

rotational (80, 64) S4EC-D4ED code provided in the H matrix shown in Eq. (5.35):

H = .

I I I I I T2 T I T14 T14 I T T2

T14 I T T2 I I I I I T2 T I T14

T2 T I T14 T14 I T T2 I I I I I
T2 T I T14 T14 I T T2 I I I I I

H0 H1 H2 H3 (b=4)

ð5:35Þ

TABLE 5.6 Number of Rotational (144, 128) S4EC-D4ED Codes

Product value I T T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

Numberof codes 0 4 4 11 4 0 11 11 4 11 0 11 11 11 11

Source: [KANE82].� 1982 IEEE.

164 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



I  
   

I  
   

I  
   

I
T

   
 T

   
 T

   
 T

11
12

13
14

T
   

 T
   

 T
   

  I
3

2

I  
   

I  
   

I  
   

I
I  

  T
   

 T
   

 T
2

3

T
   

 T
   

 T
   

  I
14

13
12

11

 I
I  

   
I  

   
I  

   
I

T
   

 T
   

 T
   

  I
3

2
T

   
 T

   
 T

   
 T

11
12

13
14

I  
   

I  
   

I  
   

I

T
   

 T
   

 T
   

 T
14

13
12

 I 
   

T
   

 T
   

 T
2

3 11

I
T

   
 T

   
 T

   
  I

3
2

 I 
   

 I 
   

  I
   

  I
T

   
 T

   
 T

   
 T

11
12

13
14

T
   

 T
   

 T
   

 T
14

13
12

 I 
   

 I 
   

  I
   

  I
 I 

   
T

   
 T

   
 T

2
311

  I
I  

   
I  

   
 I 

   
 I

T
   

 T
   

 T
   

 T
11

12
13

14

T
   

 T
   

 T
   

  I
 

3
2

I  
   

I  
   

 I 
   

 I

I  
   

T
   

 T
   

 T
2

3

T
   

 T
   

 T
   

 T
 

14
13

12
11

 I

H
 =

H
0

H
1

H
2

H
3

(b
 =

 4
)

F
ig
u
re

5
.1
0

M
in
im
um

-w
ei
gh

t&
eq

ua
l-
w
ei
gh

t-
ro
w
ro
ta
tio
na

l(
14
4,
12
8)
S
4E

C
-D
4E

D
co

de
.
S
ou

rc
e:

[K
A
N
E
82
].
�

19
82

IE
EE

.

165



Figure 5.12 shows an example of the syndrome decoder corresponding to the basic

submatrix H0 of the code in Eq. (5.35). Note that the circuit complexity and the

propagation delay of the decoder for the SbEC-DbED codes with K ¼ 64 and 128 bits

represent a 20% to 30% increase compared to those of the SEC-DED codes [KANE82].

5.2.3 Chen Codes

We now introduce a new class of SbEC-DbED codes that is more efficient than the Kaneda-

Fujiwara codes [CHEN86a, CHEN86b]. The Chen code design is based on Theorems 5.7

and 5.8 in the Kaneda-Fujiwara codes. In this code the H1 and H2 in Theorem 5.7 are

replaced by codes based on the theory of a generalized BCH bound [HART72].

The following theorem is a special case of the generalized BCH bound:

Theorem 5.10 [HART72] Let b be a primitive root of xn � 1, and let

fba0 ; ba0þa1 ; ba0þa2 ; ba0þa1þa2g

be a subset of the zeros of the generator polynomial of a cyclic code of length n over

GFðqÞ, where q ¼ 2b. If a1 and a2 are relatively prime to n, then the minimum distance of

the code is equal to or greater than 4.

Theorem 5.11 [CHEN86a] Let C be a cyclic code over GFðqÞ of length n ¼ qm þ 1

bytes and generated by the minimal polynomial of b, where q ¼ 2b, m is even, and b
is a primitive root of xn � 1. Then C is an SbEC-DbED code with 2m check bytes.

Proof Since the generator polynomial gðxÞ of the cyclic code over GFðqÞ is the minimal

polynomial of b, the roots of gðxÞ can be expressed as bi, where

i ¼ 1; q; q2; . . . ; qm; qmþ1; . . . ; q2m�1:

Since bn ¼ 1, then bq
m ¼ b�1, and bq

mþ1 ¼ b�q. Thus gðxÞ contains a subset of the roots b,
bq, b�q, and b�1. Let a0 ¼ 1, a1 ¼ q� 1, and a2 ¼ �ðqþ 1Þ. Since m is even, a1 and a2
are relatively prime to n. According to Theorem 5.10, the code is an SbEC-DbED code.

Since the degree of gðxÞ is 2m, the number of check bytes of the code is 2m. Q.E.D.

I I I I I I I I I
I T T3 T14 T2 T13 T4 T7 O
T2 T13 T4 T7 I T T3 T14 O
O O O O O O O O O

I I I I I I I I I
I T T2 T14 T4 T13 T3 T12 O
T4 T13 T3 T12 I T T2 T14 O
O O O O O O O O O

I I I I I I I I I
I T T2 T14 T6 T13 T3 T12 O
T6 T13 T3 T12 I T T2 T14 O
O O O O O O O O O

I I I I I I I I I
I T T2 T5 T12 T3 T13 T14 O
T12 T3 T13 T14 I T T2 T5 O
O O O O O O O O O

[b = 4]

H = H0

Figure 5.11 Basic submatricesH0’s for rotational (144,128) S4EC-D4ED codes. Source: [KANE82].� 1982 IEEE.

166 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



B
p0

B
p1

B
p2

B
p3

S
0 

=
 S

1
S

0 
=

 S
2

S
0

S
1

S
2

S
3 S

0

B
pc

B
yt

e 
er

ro
r 

po
in

te
r

M
od

ul
e 

er
ro

r 
po

in
te

r

   
  B

it 
er

ro
r 

po
in

te
r

: A
N

D

: O
R

: N
O

R

: X
O

R

S
0 

 T
  =

 S
1

14

S
0 

 T
  =

 S
2

2
S

0 
 T

  =
 S

2
1

S
0 

 T
  =

 S
1

1
S

0 
 T

  =
 S

1
2

S
0 

 T
  =

 S
2

14

F
ig
u
re

5
.1
2

S
yn
dr
om

e
de

co
de

rL
S
If
or

th
e
H

0
m
od

ul
e
of
th
e
co

de
sh
ow

n
in
Eq
.(
5.
35
).

S
ou

rc
e:

[K
A
N
E
82
].
�

19
82

IE
EE

.

167



Example 5.8

Let b ¼ 2, q ¼ 22, and m ¼ 2, then n ¼ 17. There exists a cyclic SbEC-DbED code

over GFð22Þ of byte length 17. The code contains 13 information bytes in each

codeword.

Theorem 5.12 [CHEN86a] A cyclic code over GFðqÞ of length n ¼ q2m � 1 bytes gen-

erated by the product of the minimal polynomials of 1, b, and bq
mþ1, where q ¼ 2b and b

is a primitive root of xn � 1, is an SbEC-DbED code with 3mþ 1 check bytes.

Proof The generator polynomial is the product of x� 1 and the minimal polynomials of

b and bq
mþ1. The degrees of the minimal polynomials of b and bq

mþ1 are 2m and m,

respectively. Thus the number of check bytes is 3mþ 1. The generator polynomial con-

tains as roots the elements 1, b, bq
m

, and bq
mþ1. Let a0 ¼ 0, a1 ¼ 1, and a2 ¼ qm. Since a1

and a2 are relatively prime to n, the cyclic code is an SbEC-DbED code according to

Theorem 5.10. Q.E.D.

Example 5.9

Let b ¼ 3, q ¼ 23 ¼ 8, and m ¼ 2, then n ¼ 4095. A cyclic SbEC-DbED code over

GFð23Þ of length 4095 with seven check bytes can be constructed. The generator

polynomial can be taken as the product of the minimal polynomials of 1, b, and b65,
where b is a primitive root of x4095 � 1.

Since the generator polynomial of a code in Theorem 5.12 contains 1 as the root, the H

matrix of the code can be arranged so that the first row is a vector of all ones. By this

H matrix form, the code can be extended by one byte in adding to the matrix a column

vector of a one followed by 3m zeros. It can be shown that the extended code is also an

SbEC-DbED code. We state this result as the next theorem.

Theorem 5.13 [CHEN86a] An SbEC-DbED code of byte length n ¼ q2m with 3mþ 1

check bytes, where q ¼ 2b, can be obtained by extending the code of Theorem 5.12.

The codes obtained by Theorems 5.11, 5.12, and 5.13 can be used as H1 in Theorem

5.7. Theorem 5.8 can also be applied to these codes to double the code length. The code

length obtained is given in Table 5.7.

Table 5.8 shows the code length N ¼ n � b bits of the Chen code. Figure 5.13 shows the
check-bit length of the Chen SbEC-DbED code for byte lengths b ¼ 2; 3, and 4 bits.

TABLE 5.7 Code Length n (Bytes) of Chen Codes

Class H1 H2 n r

1 ExtendedRScode Codeof Theorem5.11 ðqþ 2Þðqm1 þ 1Þ 2m1 þ 2
2 ExtendedRScode Codeof Theorem5.13 ðqþ 2Þq2m3 3m3 þ 3
3 Codeof Theorem5.12 Codeof Theorem5.11 ðq2m2 � 1Þðq2m1 þ 2Þ 3m2 þ 2m1

4 Codeof Theorem5.12 Codeof Theorem5.13 ðq2m2 � 1Þq2m3 3m2 þ 3m3 þ 1

Note: H1 andH2 are defined inTheorem 5.7. m1:m ¼ even inTheorem 5.11, m2:m inTheorem 5.12, m3:m inTheorem 5.13.

168 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



Converted Chen Codes A simple code design technique for constructing efficient

SbEC-DbED codes was proposed by [CHEN92]. The code designed by this technique

requires fewer check bits than the existing codes.

First, the H matrix of the existing SbEC-DbED codes, such as the former Chen codes,

are converted to a normalized form of H matrix whose first row is an all-I vector. That is,

the first nonzero element in GFð2bÞ; for example, To; j 2 GFð2bÞ; j ¼ 0; 1; � � � ; n� 1, in

each column of the original Hmatrix is transformed into an identity element and the other

elements of the column are calculated by Ti; j � T�1o; j, where Ti; j is an i-th row and j-th

column element, i ¼ 0; 1; � � � ; r � 1. The resultant matrix has a normalized form of H. It

can be easily proved that the code function of the resultant matrix is preserved even in this

transformation.

Second, the conversion procedure is performed to the H matrix of the existing

SbEC-DbED code as follows.

TABLE 5.8 Code Length N (Bits) of Chen Codes

r
b (bits) 2 3 4 5

3 12 30 72 170 ExtendedRScode [WOLF69]
4 34 195 1,028 5,125 Theorem5.11
5 68a 390a 2,056 10,250 Theorem5.8
6 204 1,950 18,504 174,250 Class1
7 876 12,672 264,192 5,253,120 Construction 4 in [CHEN86b]

Source : [CHEN86a,CHEN86b]. � 1986 IEEE.

Note:Check-bit length R ¼ r � b.
a(82, 72) S2EC-D2ED code and (399, 384) S3EC-D3ED code are obtained by computer experiments in [ITOH83] and
[CHEN86b], respectively.

16 32 64 128 256

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

5

10

15

20

b = 2
b = 3
b = 4

(82,72) code [ITOH 83]
b = 2

K = 26

21
K = 58

60 183

192

Figure 5.13 Comparison of check-bit lengths and information-bit lengths of the Chen SbEC-DbED codes.

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BYTE ERROR DETECTING (SbEC-DbED) CODES 169



Conversion Procedure

Step 1. Transform the H matrix of SbEC-DbED code into a normalized form H1.

Step 2. Let � ¼ fi1; i2; � � � ; isg be a subset of f1; 2; � � � ; bg.
Step 3. For each of the n columns of H1, delete binary columns whose position numbers

belong to �. Let the number of deleted columns be s.

Step 4. Delete s binary rows that contain all zeros from the binary matrix obtained in

step 3. Let H2 be the resultant matrix.

It can be easily proved that the resultant matrix H2 is the H matrix of the SbEC-DbED

codes with symbol size b� s (bits), code length n (bytes), and number of check bits	br � s.

Example 5.10 (136, 122) S4EC-D4ED Code

The code design technique mentioned in this example starts from the code with b ¼ 5

bits that uses 3b check bits. The parity-check matrix with normalized form is presented

by

H ¼
I 0 0 I I � � � I � � � I

0 I 0 I T � � � Ti � � � T30

0 0 I I T2 � � � T2i � � � T29

24 35; ð5:36Þ

where I is a 5� 5 identity matrix, 0 is a 5� 5 zero matrix, and T is a companion

matrix determined by the binary primitive polynomial x5 þ x2 þ 1. Note that H

represents a 15� 170 binary matrix. To reduce symbol size to 4 bits, we delete the last

column of each of the 15� 5 binary submatrices in Eq. (5.36). That is, s ¼ 1 and

� ¼ f5g in step 2 of the conversion procedure. The resultant matrix has an all zeros

in the fifth row; these zeros can be deleted without affecting the error correction

capability. As a result the new 14� 136 binary matrix presents a parity-check matrix of

the S4EC-D4ED code. Selecting a set of 78 from the 136 available columns forms the

H matrix of an (78, 64) S4EC-D4ED code. This is shown in Figure 5.14. The error

detection capability of this code is shown in Table 5.9.

H=

1000 0000 0000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10
0100 0000 0000 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 01
0010 0000 0000 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 00
0001 0000 0000 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001 00

one row deleted
0000 1000 0000 1000 0000 0001 0010 0100 1001 0010 0101 1011 0110 1100 1001 0011 0111 1111 1111 11
0000 0100 0000 0100 1000 0000 0001 0010 0100 1001 0010 0101 1011 0110 1100 1001 0011 0111 1111 11
0000 0010 0000 0010 0100 1001 0010 0101 1011 0110 1100 1001 0011 0111 1111 1111 1110 1100 1000 00
0000 0001 0000 0001 0010 0100 1001 0010 0101 1011 0110 1100 1001 0011 0111 1111 1111 1110 1100 10
0000 0000 0000 0000 0001 0010 0100 1001 0010 0101 1011 0110 1100 1001 0011 0111 1111 1111 1110 11
0000 0000 1000 1000 0001 0100 0010 1011 1100 0011 1111 1110 1000 0011 1101 0111 1101 0101 0100 00
0000 0000 0100 0100 0000 0010 1001 0101 0110 1001 0111 1111 1100 0001 0110 1011 1110 1010 1010 10
0000 0000 0010 0010 1001 0101 0110 1001 0111 1111 1100 0001 0110 1011 1110 1010 1010 1000 0001 01
0000 0000 0001 0001 0100 0010 1011 1100 0011 1111 1110 1000 0011 1101 0111 1101 0101 0100 0000 00
0000 0000 0000 0000 0010 1001 0101 0110 1001 0111 1111 1100 0001 0110 1011 1110 1010 1010 1000 00

Figure 5.14 (136,122) S4EC-D4ED code.

170 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



The existing SbEC-DbED codes with b ¼ 4 bits and K ¼ 64 bits require at least 16

check bits, whereas this code requires 14 check bits. This type of SbEC-DbED code can be

constructed from the existing SbEC-DbED codes by following the previous procedure.

Some of the converted codes designed by this technique are more efficient than the

existing known codes. Table 5.10 provides a list of some efficient converted SbEC-DbED

codes, compared to other best known SbEC-DbED codes.

5.3 SINGLE-BYTE ERROR CORRECTING AND SINGLE p-BYTE
WITHIN A BLOCK ERROR DETECTING (SbEC-Sp�b=BED) CODES

Present-day high-density RAM chips have a multi-bank architecture. Each bank usually

has a number of memory subarrays that are somewhat separate from one another

[NUMA89]. It is therefore advantageous to consider the entire chip output as a B-bit block

and subarray output as a b-bit byte. Figure 5.15 shows how this concept’s organization

corresponds to the bit, byte, and block of a codeword.

For the chip’s organization we need to develop suitable byte error control codes. We

discuss here such codes that can correct single-byte errors caused by single-subarray faults

and that can detect multiple-byte (p-byte) errors in a block caused by p-subarray faults in a

chip, where 2 � p � B=b, denoted as SbEC-Sp�b=BED codes.

This class of codes is important for the recent large capacity memory systems using

high-density RAM chips with wide I/O data, such as 8-bit, 16-bit, and 32-bit DRAM chips.

5.3.1 Code Conditions and Bounds

First, we consider the necessary and sufficient conditions of the SbEC-Sp�b=BED code.

TABLE 5.9 Error Detection Capability of the (78, 64) S4EC-D4EDChenCode Shown in Figure 5.14

Errors Errordetection capability(%)

Single-bit plusdouble-byteerrors 98.41
Triple-byteerrors 98.37

TABLE 5.10 Converted SbEC-DbED Codes Compared to Existing Codes

Converted Chen codes Existing codes

Byte Code Original
size b length n Numberof Details ofR byte size (>b) Code length
(bits) (bytes) check bits R (bits) n (bytes)a

2 65 11 2 þ 3 þ 3 þ 3 3 41
2 1,025 17 2 þ 5 þ 5 þ 5 5 640
3 18 11 3 þ 4 þ 4 4 10
3 257 15 3 þ 4 þ 4 þ 4 4 133
3 1,025 18 3 þ 5 þ 5 þ 5 5 650
4 34 14 4 þ 5 þ 5 5 18
4 1,025 19 4 þ 5 þ 5 þ 5 5 257
5 130 19 5 þ 7 þ 7 7 34
6 130 20 6 þ 7 þ 7 7 66

aFor byte size band check-bit length b � bR=bc.

SINGLE-BYTE ERROR CORRECTING AND SINGLE p-BYTE WITHIN A BLOCK ERROR DETECTING 171



Theorem 5.14 The null space of H is an SbEC-Sp�b=BED code if and only if:

1. E �HT 6¼ 0 for all E 2 fEb [ Ep�b=Bg,
2. E1 �HT 6¼ E2 �HT for all E1;E2 2 Eb;E1 6¼ E2,

3. E1 �HT 6¼ E3 �HT for all E1 2 Eb, and for all E3 2 Ep�b=B,

where Eb is a set of single-byte errors, Ep�b=B is a set of p-byte errors in a block, where

Eb \ Ep�b=B ¼ f, 2 � p � B=b, and HT denotes the transpose of matrix H.

This theorem can be easily proved, and therefore the proof is omitted.

Next we consider the bound of this code.

Theorem 5.15 An SbEC-Sp�b=BED code requires at least bðpþ 1Þ check bits.

Theorem 5.16 A binary ðN;N � RÞ SbEC-Sp�b=BED code exists only if

2R 	 N

b
ð2b � 1Þ þ B

b
� pþ 1

� �
2pb � 1� pð2b � 1Þ
� �

þ 1:

It is left to the reader to prove these theorems.

5.3.2 Design for SbEC-Sp�b=BED Codes

1. Design Method I

Theorem 5.17 The null space of

H =n

I . . . . . . . . . . . . . . .
. . . . . .

I T T Ti Ti Tq 2 Tq 2 O O

Hn 1 Hn 1 Hn 1 Hn 1 Hn 1

B B B

b b b
(byte = b bits) 

B
(block = B bits) 

Erroneous bytes

RAM chip Subarray
Faulty

subarrays

Readout
data

RAM
card

Figure 5.15 Bits, bytes, and blocks of the corresponding organization in each high-density RAM chip with
multiple subarrays.

172 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



is an SbEC-Sp�b=BED code with check-bit length R and code length in bits N ¼
B � bNRS=Bc � 2bðR=b�p�1Þ, where n ¼ R=b� p� 1. HereH0 is anH matrix of RS code with

minimum distance d ¼ pþ 2, 2 � p � B=b, I is a b� b identity matrix, O is a b� b zero

matrix, T is a companion matrix defined by the binary primitive polynomial with degree b,

0 � i � q� 2, q ¼ 2b, bxc means the largest integer smaller than or equal to x, and NRS is

a code length (in bits) of distance-4 RS codes.

Proof Since H0 is a parity-check matrix of RS code with distance d ¼ pþ 2, this satis-

fies the code function of SbEC-Sp�b=BED. Next assume that Hn�1 is a parity-check matrix

of an SbEC-Sp�b=BED code. Then we need to prove that Hn is also a parity-check matrix

of an SbEC-Sp�b=BED code. It is apparent that Hn has the code function of SbEC. Also

Hn has the code function of Sp�b=BED because every Hn�1 in Hn has this function from

the assumption. Therefore Hn is a parity-check matrix of an SbEC-Sp�b=BED code, and

n ¼ R=b� p� 1.

As for the maximum code length, B � bNRS=Bc shows the length of H0, and 2bðR=b�p�1Þ

shows the maximum number of matrix elements I;T; . . . ;Tq�2;O. Therefore the

maximum code length in bits can be expressed as N ¼ B � bNRS=Bc � 2bðR=b�p�1Þ.
Q.E.D.

Example 5.11

The following shows (1024, 1008) S4EC-S2�4=16ED code with R ¼ 16, b ¼ 4, B ¼ 16,

and p ¼ 2, where HRS is a parity-check matrix of an S4EC-D4ED RS code:

H = ,

.

I I T T T14 T14 O O

HRS HRS HRS HRS

HRS I T T
I     I    I       I I         I      I         I I       I     I         I I        I      I        I

2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 O
I T2 T4 T6 T8 T10 T12 T14 T T3 T5 T7 T9 T11 T13 O

T: defined by g(x) = x4 x 1.

=

+ +

. . . . . . . . .

. . .

. . .

More efficient codes can be designed by using distance-4 converted Chen code

mentioned in the previous subsection.

For the practical code parameters of b ¼ 4 bits, B ¼ 16 bits, p ¼ 2, and K ¼ 64 bits, the

S4EC-S2�4=16ED code with check-bit length 16 can be designed from this example. Here

the S4EC-S2�4=16ED code with check-bit length R ¼ 12 shown by HRS in Example 5.11

can be lengthened by adding three columns to HRS. That is, the following matrix presents

the (76, 64) S4EC-S2�4=16ED code, where T is a companion matrix defined by the

primitive polynomial gðxÞ ¼ x4 þ xþ 1:

H .=RS

I I I I I I I I I I I I I I I I I      I      I
I T T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 O I

10 12
T T2

I T2 T4 T6 T8 T10 T12 T14 T T3 T5 T7 T9 T11 T13 O T T T2

ð5:37Þ

SINGLE-BYTE ERROR CORRECTING AND SINGLE p-BYTE WITHIN A BLOCK ERROR DETECTING 173



The last three columns are generated by computer search. This code has been practically

applied to the high-speed memory systems using RAM chips with 16-bit I/O data.

2. Design Method II
More efficient and sophisticated code design method of an SbEC-Sp�b=BED code is

presented here.

Theorem 5.18 [JOHJ97] The null space of the following matrix H is an SbEC-

Sp�b=BED code:

H =

=

=

=

H1 H2

H1,1 H1,2 H1,m H2,1 H2,2 H2,m

where

B

H1,i

I I I
Tαi,1 Tαi, 2 Tαi,B / b

...
...

...

T (p 1)

(p 1) (p 1) (p 1)

(p 1) (p 1)αi,1 T αi,2 T αi,B / b

Tpαi,1 Tpαi,2 Tpαi,B / b

,

B

H2,i

I I I
Tαi,1 Tαi,2 Tαi,B / b

...
...

...

T αi,1 T αi,2 T αi,B / b

Tpαi,1 I Tpαi,2 I Tpαi,B / b I

,

,. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

+++

i ¼ 1; 2; . . . ;m;�i ¼ fTai;1 ;Tai;2 ; . . . ;Tai;B=bg, j�ij ¼ B=b, Tai;j is a b� b companion

matrix included in GFð2bÞ; j ¼ 1; 2; . . . ;B=b, and where for fTa1 ;Ta2 ; . . . ;Tapg 2 �i

and Tb 2 �j ði 6¼ jÞ, the following relation is satisfied:

ðTa1 þ TbÞðTa2 þ TbÞ � � � ðTap þ TbÞ 6¼ I: ð5:38Þ

Proof It is apparent that the matrix H indicated in this theorem satisfies SbEC func-

tion. The matrix with upper p rows in H is equal to the parity-check matrix of the RS

code with distance pþ 1. That is, each submatrix of H1;i, and H2;i has function of

p� 1 bytes error detection as well as SbEC function in each block with length B bytes.

In addition to this, the following mentions that the matrix H has the function of p-byte

error detection.

1. The matrix H1 is an RS code with distance pþ 2, and hence the syndrome by

single-byte errors is distinct to that by p-byte errors in the block. Next assume that the

syndrome by single-byte errors in H2 is equal to that by p-byte errors in H2. Then for any

174 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



distinct pþ 1 elements in H2, such as Ta1 ;Ta2 ; . . . ;Tap ;Tapþ1 , the following relations

hold:

E1 þ E2 þ � � � þ Ep þ Epþ1 ¼ 0

E1T
a1 þ E2T

a2 þ � � � þ EpT
ap þ Epþ1T

apþ1 ¼ 0

..

.

E1ðTpa1 þ IÞ þ E2ðTpa2 þ IÞ þ � � � þ EpðTpap þ IÞ þ Epþ1ðTpapþ1 þ IÞ ¼ 0:

These relations are reduced to

E1 � ðTa1 þ Ta2ÞðTa1 þ Ta3Þ � � � ðTap þ Tapþ1Þ ¼ 0;

which does not hold because Ta1 6¼ Ta2 6¼ � � � 6¼ Tap 6¼ Tapþ1 . Therefore the syndrome by

single-byte errors in H2 is distinct to that by p-byte errors in H2.

2. Assume that the syndrome caused by p-byte errors in H1 is equal to that caused by

single-byte errors in H2.

E1 þ E2 þ � � � þ Ep þ Epþ1 ¼ 0

E1T
a1 þ E2T

a2 þ � � � þ EpT
ap þ Epþ1T

b ¼ 0

..

.

E1T
pa1 þ E2T

pa2 þ � � � þ EpT
pap þ Epþ1ðTpb þ IÞ ¼ 0;

where Ta1 ;Ta2 ; . . . ;Tap are elements inH1, and T
b is an element inH2. These relations are

reduced to

E1 � fðTa1 þ TbÞðTa2 þ TbÞ � � � ðTap þ TbÞ þ Ig ¼ 0;

which contradicts the relation ð5:38Þ. Therefore the syndrome by p-byte errors in H1 is

distinct to that by single-byte errors in H2. This result also holds for the relation between

p-byte errors in H2 and single-byte errors in H1.

From the discussion above, the matrix H satisfies the code functions of Sp�b=BED as

well as SbEC. Q.E.D.

Algorithm for Finding Block Elements Here we provide an algorithm used to

find the elements in GFð2bÞ that satisfy the relation (5.38) and to obtain the sets

�1;�2; . . . ;�m, each with B=b elements. First, we prepare the table in which elements

Ta2 ;Ta3 ; . . . ;Tap , satisfy the relation (5.38) for an element Ta1 and for any element Tb.

Table 5.11 shows an example of the elements Ta1 and Ta2 satisfying the relation (5.38),

with parameters of p ¼ 2 bytes and b ¼ 4 bits. The table lists I;T1;T2; . . . ;T14;O in

order for Ta1, and gives the elements for Ta2, where a1 < a2, which satisfy the relation

(5.38) for any Tb. Then we determine the B=b block elements from the following

algorithm:

Step 1. All elements are not marked at the first stage. The determined elements are

marked in the following steps.

SINGLE-BYTE ERROR CORRECTING AND SINGLE p-BYTE WITHIN A BLOCK ERROR DETECTING 175



Step 2. Determine the element Ta2 with the largest exponent. Next, find a row in the table

that includes Ta2 , and determine the nonmarked element Ta1 with the largest exponent

in the row. The result should be a set � ¼ fTa1 ;Ta2g. If a nonmarked elements cannot

be found, then stop.

Step 3. Find the rows that include all the elements of � in the Ta2 column, and determine

the nonmarked element Ta1 with the largest exponent. Include the element Ta1 in �,
that is, � ¼ � [ Ta1 . If such an element cannot be found, then go to step 5.

Step 4. If the number of elements in � (i.e., j�j) is equal to B=b, then � ¼ f and go to

step 1. If not, go to step 3.

Step 5. Remove the element last determined from �, and then go to step 3.

Table 5.12 presents the relation between the elements Ta1 and the elements ðTa2 , Ta3Þ
satisfying the relation (5.38) with parameters of p ¼ 3 bytes and b ¼ 4 bits.

Example 5.12 [JOHJ97]

With using Table 5.11, we try to find the block elements for p ¼ 2 bytes, b ¼ 4 bits, and

B ¼ 16 bits.

TABLE 5.11 Elements Satisfying Relation (5.38) for p ¼ 2 and b ¼ 4

Ta1 Ta2

I T T2 T4 T7 T8 T11 T13 T14

T T3 T5 T9 T10 T11 T13 O

T2 T3 T5 T6 T7 T10 T11 O

T3 T6 T7 T9 T10 T13 O

T4 T5 T6 T7 T10 T12 T14 O

T5 T6 T8 T9 T11 T14

T6 T11 T12 T14 O

T7 T10 T11 T12 T14

T8 T9 T10 T12 T13 T14 O

T9 T11 T12 T14 O

T10 T12 T13

T11 T13

T12 T13 O

T13 T14

T14

O

Source : [JOHJ97]. � 1997 IEICE Japan.

176 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



TABLE 5.12 Elements Satisfying Relation (5.38) for p ¼ 3 and b ¼ 4

Ta1 ðTa2 ; Ta3 Þ

I ðT1; T2Þ ðT1; T3Þ ðT1; T5Þ ðT1; T7Þ ðT1; T8Þ ðT1; T10Þ ðT2; T4Þ ðT2; T5Þ
ðT2; T6Þ ðT2; T10Þ ðT2; T14Þ ðT3; T7Þ ðT3; T10Þ ðT3; T11Þ ðT3; T14Þ ðT3; OÞ
ðT4; T5Þ ðT4; T8Þ ðT4; T10Þ ðT4; T12Þ ðT4; T13Þ ðT5; T6Þ ðT5; T7Þ ðT5; T8Þ
ðT5; T9Þ ðT5; T13Þ ðT6; T7Þ ðT6; T13Þ ðT6; T14Þ ðT6; OÞ ðT7; T9Þ ðT7; OÞ
ðT8; T9Þ ðT8; T10Þ ðT8; T11Þ ðT9; T11Þ ðT9; T13Þ ðT9; OÞ ðT10; T11Þ ðT10; T12Þ
ðT10; T14Þ ðT11; T12Þ ðT11; OÞ ðT12; T13Þ ðT12; T14Þ ðT12; OÞ ðT13; OÞ ðT14; OÞ

T1 ðT2; T5Þ ðT2; T6Þ ðT2; T7Þ ðT2; T9Þ ðT2; T10Þ ðT2; T13Þ ðT2; OÞ ðT3; T4Þ
ðT3; T7Þ ðT3; T8Þ ðT3; T12Þ ðT3; T14Þ ðT4; T6Þ ðT4; T7Þ ðT4; T9Þ ðT4; T11Þ
ðT4; T12Þ ðT4; T13Þ ðT4; T14Þ ðT5; T8Þ ðT5; T13Þ ðT5; T14Þ ðT5; OÞ ðT6; T9Þ
ðT6; T11Þ ðT6; T13Þ ðT6; OÞ ðT7; T9Þ ðT7; T13Þ ðT8; T10Þ ðT8; T11Þ ðT8; T12Þ
ðT8; T14Þ ðT8; OÞ ðT9; T10Þ ðT9; T12Þ ðT10; T12Þ ðT10; OÞ ðT11; T12Þ ðT11; T14Þ
ðT11; OÞ ðT13; T14Þ

T2 ðT3; T4Þ ðT3; T5Þ ðT3; T8Þ ðT3; T9Þ ðT3; T12Þ ðT3; T14Þ ðT4; T5Þ ðT4; T10Þ
ðT4; T11Þ ðT4; T12Þ ðT4; T14Þ ðT4; OÞ ðT5; T9Þ ðT5; OÞ ðT6; T8Þ ðT6; T9Þ
ðT6; T13Þ ðT6; T14Þ ðT7; T8Þ ðT7; T9Þ ðT7; T12Þ ðT7; T13Þ ðT7; OÞ ðT8; T9Þ
ðT8; T11Þ ðT8; T12Þ ðT8; T13Þ ðT8; T14Þ ðT10; T11Þ ðT10; T13Þ ðT10; OÞ ðT11; T12Þ
ðT11; T13Þ ðT11; T14Þ ðT12; OÞ

T3 ðT4; T6Þ ðT4; T10Þ ðT4; T12Þ ðT4; T14Þ ðT5; T9Þ ðT5; T10Þ ðT5; T11Þ ðT5; T14Þ
ðT5; OÞ ðT6; T7Þ ðT6; T9Þ ðT6; T10Þ ðT6; T11Þ ðT6; T12Þ ðT7; T11Þ ðT7; T12Þ
ðT7; T13Þ ðT8; T12Þ ðT8; T13Þ ðT8; T14Þ ðT8; OÞ ðT9; T11Þ ðT9; T12Þ ðT9; T13Þ
ðT10; T11Þ ðT10; T14Þ ðT11; T13Þ ðT11; OÞ ðT12; T13Þ ðT13; OÞ ðT14; OÞ

T4 ðT5; T7Þ ðT5; T8Þ ðT5; T11Þ ðT5; OÞ ðT6; T8Þ ðT6; T9Þ ðT6; T10Þ ðT6; T13Þ
ðT7; T8Þ ðT7; T9Þ ðT7; T11Þ ðT7; T13Þ ðT8; T9Þ ðT8; T10Þ ðT8; T13Þ ðT8; OÞ
ðT9; T14Þ ðT9; OÞ ðT10; OÞ ðT11; T12Þ ðT11; T14Þ ðT12; T13Þ ðT14; OÞ

T5 ðT6; T7Þ ðT6; T8Þ ðT6; T10Þ ðT6; T12Þ ðT6; T13Þ ðT7; T9Þ ðT7; T10Þ ðT7; T11Þ
ðT8; T12Þ ðT8; OÞ ðT9; T10Þ ðT9; T13Þ ðT10; T11Þ ðT10; T12Þ ðT10; T13Þ ðT10; T14Þ
ðT11; T12Þ ðT11; OÞ ðT12; T14Þ ðT12; OÞ ðT13; T14Þ ðT14; OÞ

T6 ðT7; T10Þ ðT7; T11Þ ðT7; T12Þ ðT7; T14Þ ðT7; OÞ ðT8; T9Þ ðT8; T12Þ ðT8; T13Þ
ðT9; T11Þ ðT9; T12Þ ðT9; T14Þ ðT10; T13Þ ðT10; OÞ ðT11; T14Þ ðT11; OÞ ðT12; T14Þ
ðT13; OÞ

T7 ðT8; T9Þ ðT8; T10Þ ðT8; T13Þ ðT8; T14Þ ðT9; T10Þ ðT9; OÞ ðT10; T14Þ ðT10; OÞ
ðT11; T13Þ ðT11; T14Þ ðT12; T13Þ ðT12; T14Þ ðT12; OÞ ðT13; T14Þ

T8 ðT9; T11Þ ðT10; T14Þ ðT10; OÞ ðT11; T12Þ ðT11; T14Þ ðT13; OÞ

T9 ðT10; T12Þ ðT10; T13Þ ðT10; OÞ ðT11; T13Þ ðT11; T14Þ ðT12; T13Þ ðT12; T14Þ ðT13; T14Þ
ðT13; OÞ ðT14; OÞ

T10 ðT11; T12Þ ðT11; T13Þ ðT12; T14Þ ðT13; OÞ

T11 ðT12; OÞ ðT13; T14Þ

T12 ðT13; T14Þ ðT14; OÞ

T13

T14

O

SINGLE-BYTE ERROR CORRECTING AND SINGLE p-BYTE WITHIN A BLOCK ERROR DETECTING 177



First, we choose � ¼ fT13;T14g. Next, we determine Ta1 ¼ T8 as having the largest

exponent because the row corresponding to the element Ta1 ¼ T8 includes both

elements T13 and T14, and hence we have � ¼ fT14;T13;T8g. Further we find the row
corresponding to the element Ta1 ¼ I, which includes all elements in �. Then we have

� ¼ fT14;T13;T8; Ig as a block.
In the next stage, we have � ¼ fT12;Og. We determine Ta1 ¼ T9 as with the largest

exponent, and then � ¼ fO;T12;T9g. However, we cannot find the row that includes all

these three elements inTa2 column, sowe remove the elementT9. Likewisewe determine an

element Ta1 ¼ T6 (T8 is already marked and we cannot choose T8), and then � ¼
fO;T12;T6g. Further we determine Ta1 ¼ T4, and then � ¼ fO;T12;T6;T4g as a block.

We proceed to choose� ¼ fT11;T9g and finally determine� ¼ fT11;T9;T5;Tg as a
block. In the sameway we choose� ¼ fT10;T7g, and determine� ¼ fT10;T7;T3;T2g.
From the �’s obtained above, we have the following H matrix of (128, 116) S4EC-

S2�4=16ED code:

H =
I I I I I I I I I I I I I I I I
I T8 T13 T14 T4 T6 T12 O T T5 T9 T11 T2 T3 T7 T10

I T T11 T13 T8 T12 T9 O T2 T10 T3 T7 T4 T6 T14 T5

I I I I I I I I I I I I I I I I
I T8 T13 T14 T4 T6 T12 O T T5 T9 T11 T2 T3 T7 T .10

O T4 T12 T6 T2 T11 T7 I T8 T5 T14 T9 T T13 T3 T10

ð5:39Þ

Converted Codes As was indicated in the Chen SbEC-DbED codes mentioned in

Subsection 5.2.3, the converted method adopted in the parity-check matrix of the byte

error control codes can also be applied to the code. For example, for b ¼ 5 we can deter-

mine the following sets of block elements, 5� 5 companion matrices defined by the pri-

mitive polynomial gðxÞ ¼ x5 þ x2 þ 1:

fO;T28;T26;T18g fT30;T27;T24;T11g fT25;T23;T22;T20g
fT29;T21;T15;T12g fT19;T17;T6;T4g fT16;T14;T13;T9g
fT10;T8;T7;T3g:

ð5:40Þ

By deleting one corresponding column of all 5� 5 matrix elements, for example, by

deleting the last column of all 5� 5 matrices, and hence by deleting one all-zero row inH,

we can design (224, 210) S4EC-S2�4=16ED code.

Lengthened Code The following theorem presents the generalized organization of

the lengthened code that can apply to the code obtained by Theorem 5.18. This is very

similar to the former code defined by Theorem 5.17.

Theorem 5.19 The null space of the following H matrix is a lengthened SbEC-

Sp�b=BED code:

H =
I I I T T T

H0 H0

Tq 2 Tq 2 Tq 2 O O O
H0 H0

,
. . . . . . . . . . . .

. . .

178 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



where H0 is the parity-check matrix of an SbEC-Sp�b=BED code determined, for example,

by Theorem 5.18, q ¼ 2b, T is a b� b companion matrix, and I and O are b� b identity

matrix and b� b zero matrix, respectively.

This can be easily proved and hence omitted.

5.3.3 Evaluation

Figure 5.16 shows the relationship of the check-bit length to the information-bit length

for the S4EC-S2�4=16ED code along with its code bound compared with the case of the

S4EC-D4ED code. From the computer simulation we know that the (76, 64) S4EC-S2�4=16ED
code shown in Eq. (5.37) has the following error detection capabilities:

� Random 2-bit errors: 98.11%

� Random 2-byte errors: 97.54%

� Random 3-bit errors: 91.99%

� Any burst errors in a block: 93.11%

� One-byte errors in a block and one-bit errors in another block occurred simulta-

neously: 97.08%

Further the (128, 116) S4EC-S2�4=16ED code shown in Eq. (5.39) has the following error

detection capabilities:

� Random 2-bit errors: 92.91%

� Random 2-byte errors: 90.97%

� Random 3-bit errors: 84.03%

� Any burst errors in a block: 88.35%

� One-byte errors in a block and one-bit errors in another block occurred simulta-

neously: 90.00%

12

14

16

18

20

64 256 1,024 4,096 16,384

S4EC-S2×4/16ED code (Theorems 5.18 and 5.19)

S4EC-S2×4/16ED code bound

S4EC-D4ED code

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

K = 1,012

122
K = 2,032

K = 90060 116
1,991

4,174
8,542

3,566

2,036

210

Figure 5.16 Comparison of check-bit lengths and information-bit lengths of the S4EC-S2�4=16 ED codes.
Source: [JOHJ97].� IEICE Japan.

SINGLE-BYTE ERROR CORRECTING AND SINGLE p-BYTE WITHIN A BLOCK ERROR DETECTING 179



EXERCISES

5.1 For the following (18, 12) S2EC code answer the questions shown below,

H ¼
T2 0 T I T2 T2 I 0 0
T T2 0 T2 T2 I 0 I 0

0 T T2 T2 I T2 0 0 I

24 35:
T: companion matrix defined by the polynomial of x2 þ xþ 1.

Codeword: ½D jC� ¼ ½D0 D1 D2 D3 D4 D5 j C0 C1 C2�,

Di ¼ ðdi;0 di;1Þ Cj ¼ ðcj;0 cj;1Þ:

(a) Encode the data ½D0 D1 D2 D3 D4 D5� ¼ ½1 0 1 1 0 1 0 0 1 1 0 1�.
(b) The received data ½D0 jC0� ¼ ½1 1 0 1 1 0 1 1 0 0 1 0 j 1 0 1 1 1 1� has a sin-

gle-byte error. Find the correct data.

(c) Let ½D jC� be a codeword. Find the codeword for D, complement of D.

5.2 Using the primitive polynomial of x2 þ xþ 1 over GFð2Þ, do the following:

(a) Design the Hmatrix of a single-symbol error correcting code over GFð22Þ with
k ¼ 18 (i.e., K ¼ 36 bits).

(b) Choose the column vectors in the H matrix obtained in (a) and find the H

matrix of the minimum-weight single-symbol error correcting code over

GFð22Þ with n ¼ 12 and k ¼ 9.

(c) Design the parallel decoding circuit of the (12, 9) code obtained in (b) by using

only AND, OR, NOT, and exclusive-OR (XOR) gates.

5.3 In the H matrix below, assume that the obtained nonzero syndrome does not point

to any one byte error, and that two error pointers have already been given in the

byte positions 1 and 5, shown by # in H.

# #

H ¼ I I I I I I I 0

I T T2 T3 T4 T5 0 I

" #
! S0

! S1

T: companion matrix defined by the primitive polynomial x4 þ xþ 1.

Show that these double-byte errors can be corrected, and express the error patterns

E1 and E5 by the syndromes S0 and S1.

5.4 Prove properties 1 through 3 of the companion matrix T.

5.5 Show that the rotational Hamming-type SbEC code has the following maximum

code length in bits:

N ¼ b

2b � 1

X
djr

mðdÞfð2bÞr=d � 1gGCDðd; 2b � 1Þ;

180 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



where
P

djr means the summation of d that divides r, mðdÞ is a Möbius function,

and GCDðx; yÞ means the greatest common divisor of x and y [IMAI79].

5.6 Prove that the Burton code has the properties 1 to 3 shown in Eqs. (5.7) to (5.9),

respectively.

5.7 Design the Fujiwara S4EC code with K ¼ 56 bits. Then, using this H matrix,

obtain the rotational Fujiwara S4EC code with K ¼ 56 bits. In this case let the

companion matrix T be defined by the primitive polynomial x4 þ xþ 1.

5.8 Find the generating submatrix H0 of the rotational Fujiwara S3EC code with

K ¼ 180 bits.

5.9 Design the Hong-Patel S2EC code with K ¼ 32 bits.

5.10 Prove Theorem 5.7.

5.11 Design the Kaneda-Fujiwara S4EC-D4ED code with K ¼ 128 bits.

5.12 Design the modularized decoding circuit of the code shown in Figure 5.9.

5.13 Assume that the code expressed by matrix H0, which includes submatrix H0

having an all-I (identity element I 2 GFð2bÞ) row, is a ððk þ rÞb; kbÞ SbEC-DbED
code. Prove that the following code expressed by H is a 2-modularized

ðð2k þ r þ 1Þb; 2kbÞ SbEC-DbED code:

( I    I     ... I )

H0

I
I

I

...

kb rb

H’ =

H0

0 0     ... 0
H

0 0     ... 0 I
I

I
...

2kb (r+1)b

H =
0

Here 0H is a matrix whose order of row vectors in H0 is turned upside down. Use

this code design method to design the 2-modularized S2EC-D2ED code with

N ¼ 76 bits and K ¼ 64 bits.

5.14 Use Theorems 5.11 through 5.13 to design the Chen S3EC-D3ED code with

K ¼ 183 bits.

5.15 Use the conversion procedure to design the (33, 22) S3EC-D3ED code from the

following H matrix with a normalized form of the (44, 32) S4EC-D4ED code:

H ¼
I 0 0 I I I I I I I I

0 I 0 I T T2 T3 T4 T5 T6 T7

0 0 I I T2 T4 T6 T8 T10 T12 T14

24 35;

EXERCISES 181



where

I : identity element 2 GFð24Þ,
0 : zero element 2 GFð24Þ,
T: companion matrix defined by the primitive polynomial x4 þ xþ 1.

5.16 Prove Theorems 5.15 and 5.16.

5.17 Verify that Table 5.11 satisfies the relation (5.38).

5.18 Use the conversion procedure shown in Subsection 5.2.3 to design the ð224; 210Þ
S4EC-S2�4=16ED code.

5.19 Prove Theorem 5.19.

5.20 Using Table 5.11, determine five sets of � for p ¼ 2 bytes and B=b ¼ 3 (b ¼ 4 bits,

B ¼ 12 bits). Design the ð120; 108Þ S4EC-S2�4=12ED code.

ðAnswer : ðT14; T13; T8Þ; ðO; T12; T9Þ; ðT11; T7; T2Þ; ðT6; T5; T4Þ,
ðT10; T3; TÞ:Þ

5.21 Determine the table of elements satisfying the relation (5.38) for p ¼ 2 bytes and

b ¼ 3 bits. Using this table, design the S3EC-S2�3=BED code with B ¼ 9 bits and

12 bits. Here the 3� 3 companion matrix T is defined by the primitive polynomial

gðxÞ ¼ x3 þ xþ 1.

(Answer:

Ta1 Ta2

I T3 T5 T6 O

T T2 T3 T4 O

T2 T4 T6 O

T3 T5 T6

T4 T5 O

T5 T6

T6

O

for B=b ¼ 3, � ¼ ðT6, T5, T3Þ and ðO; T4; T2Þ, and for B=b ¼ 4,

� ¼ ðT6; T5; T3; IÞ and ðO; T4; T2; TÞ:)

5.22 Use Table 5.12 to design the ð128; 112Þ S4EC-S3�4=16ED code.

(Hint: The sets of elements are obtained by the algorithm fO; T14; T12; T5g,
fT13; T11; T10; T2g, fT9; T8; T6; T4g, fT7; T3; T; Ig, where T is defined by

gðxÞ ¼ x4 þ xþ 1.)

5.23 As for the single-byte error correcting and adjacent double-byte error detecting

(SbEC-ADbED) codes, do the following:

182 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



(a) Prove that the relation below holds for ðN; N � RÞ SbEC-ADbED code:

N � bð2R � 22bÞ
2b � 1

þ 2b:

(b) Show that null space of the following parity-check matrix is an SbEC-ADbED

code:

H ,=n

I I T T Ti Ti Tq 2 Tq 2 O O

Hn 1 Hn 1 Hn 1 Hn 1 Hn 1

where H0 is a nonsingular binary matrix with rank 2b, 0 � i � q� 2, q ¼ 2b, I is

a b� b identity matrix, O is a b� b zero matrix, and T is a b� b companion

matrix defined by the binary primitive polynomial with degree b. Also show that

the maximum code length in bits is given by N ¼ 2b � 2bðR=b�2Þ, where

n ¼ R=b� 2.

(c) Take the challenge to design a more efficient code than the code shown in (b).

REFERENCES

[ARLA84] J. Arlet and W. C. Carter, ‘‘Implementation and Evaluation of a ðb; kÞ-Adjacent Error
Correcting / Detecting Scheme for Supercomputer Systems,’’ IBM J. Res. Dev., 28 (March 1984):

159–168.

[BHAT78] A. K. Bhatt and L. L. Kinney, ‘‘A High Speed Parallel Encoder / Decoder for b-Adjacent

Error-Checking Codes,’’ Proc. 3rd USA–Japan Computer Conf. (1978): 203–207.

[BISH96] J. W. Bishop, M. J. Campion, T. L. Jeremiah, S. J. Mercier, et al., ‘‘PowerPC AS A10

64-Bit RISC Microprocessor,’’ IBM J. Res. Dev., 40 (July 1996): 495–505.

[BOSS70] D. C. Bossen, ‘‘b-Adjacent Error Correction,’’ IBM J. Res. Dev., 14 (July 1970):

402–408.

[BURT71] H. O. Burton, ‘‘SomeAsymptotically Optimal Burst-Correcting Codes and Their Relation

to Single-Error Correcting Reed-Solomon Codes,’’ IEEE Trans. Info. Theory, IT-17 (January

1971): 92–95.

[CART74] W. C. Cater, G. B. Leeman Jr., and A. B. Wadia, ‘‘Practical Length Single-Bit Error

Correction / Double-Bit Error Detection Codes for small Values of b,’’ IBM Techn. Dis. Bull., 17

(December 1974): 2174–2176.

[CART80] W. C. Carter and A. B. Wadia, ‘‘Design and Analysis of Codes and Their Self-Checking

Circuit Implementations for Correction and Detection of Multiple-b-Adjacent Errors,’’Dig., 10th

IEEE Int. Symp. Fault-Tolerant Computing (October 1980): 35–40.

[CHEN83] C. L. Chen, ‘‘Error-Correcting Codes with Byte Error-Detection Capability,’’ IEEE

Trans. Comput., C-32 (July 1983): 615–621.

[CHEN86a] C. L. Chen, ‘‘Byte-Oriented Error-Correcting Codes for Semiconductor Memory

Systems,’’ IEEE Trans. Computers, C-35 (July 1986): 646–648.

[CHEN86b] C. L. Chen, ‘‘Error-Correcting Codes for Byte-Organized Memory Systems,’’ IEEE

Trans. Info. Theory, IT-32 (March 1986): 181–185.

REFERENCES 183



[CHEN91] C. L. Chen and L.E. Grosbach, ‘‘Fault-Tolerant Memory Design in the IBM Appli-

cation System/400TM,’’ Dig. 21th IEEE Int. Symp. Fault-Tolerant Computing (June 1991):

393–400.

[CHEN92] C. L. Chen, ‘‘Symbol Error-Correcting Codes for Computer Memory Systems,’’ IEEE

Trans. Comput., 41 (February 1992): 252–256.

[DENG87] R. H. Deng and D. J. Costello Jr., ‘‘Decoding of DBEC-TBED Reed-Solomon Codes,’’

IEEE Trans. Comput., C-36 (November 1987): 1359–1363.

[FIRE59] P. Fire, ‘‘AClass of Multiple-Error-Correcting Binary Codes for Non-Independent Errors,’’

Sylvania Report RSL-E-2, Sylvania Electronic Defense Laboratory, Reconnaissance, Systems

Division (1959).

[FUJI76] E. Fujiwara, ‘‘Modularized b-Adjacent Error Correction’’ (in Japanese), Paper of Technical

Group, IECE Japan, EC76–19 (1976).

[FUJI77a] E. Fujiwara, ‘‘A Modularized b-Adjacent Error Correction Memory Unit,’’ Trans. IECE

Japan, E60 (February 1977): 69–76.

[FUJI77b] E. Fujiwara and T. Kawakami, ‘‘Modularized b-Adjacent Error Correction,’’ Dig., 7th

IEEE Int. Symp. Fault-Tolerant Computing (June 1977): 199.

[FUJI78] E. Fujiwara, ‘‘Odd-Weight-Column b-Adjacent Error Correcting Codes,’’ Trans. IECE

Japan, E61 (October 1978): 781–787.

[FUJI81] E. Fujiwara, ‘‘Error Correcting Code and Its Application to Digital Systems’’ (in Japanese),

PhD Dissertation, Tokyo Institute of Technology (April 1981).

[FUJI82] E. Fujiwara and S. Kaneda, ‘‘Application of Error Correcting Codes for Increasing

Computer System Reliability’’ (in Japanese), J. Info. Process. Soc. (IPS) Japan, 23 (April

1982): 292–298.

[FUJI90] E. Fujiwara, in H. Imai (ed.), Essentials of Error-Correcting Coding Techniques, Academic

Press (1990), ch. 4.

[HAMM50] R. W. Hamming, ‘‘Error Detecting and Error Correcting Codes,’’ Bell Syst. Techn. J., 26

(April 1950): 147–160.

[HART72] C. R. P. Hartman and K. K. Tzeng, ‘‘Generalization of the BCH Bound,’’ Info. Control, 18

(1972): 489–498.

[HONG72] S. J. Hong and A. M. Patel, ‘‘A General Class of Maximal Codes for Computer

Applications,’’ IEEE Trans. Comput., C-21 (December 1972): 1322–1331.

[HORI83] T. Horiguchi and Y. Sato, ‘‘A Decoding Method for Reed-Solomon Codes over GFð2mÞ’’
(in Japanese), Trans. IECE Japan, J66-A (January 1983): 97–98.

[IMAI79] H. Imai and Y. Kamiyanagi, ‘‘On Burst-Error-Correcting Codes for Application to Main

Memories’’ (in Japanese), Trans. IECE Japan, J62-D (October 1979): 633–640.

[ITOH83] H. Itoh and M. Nakamichi, ‘‘SbEC-DbED Codes Derived from Experiments on a

Computer for Semiconductor Memory Systems’’ (in Japanese), Trans. IECE Japan, J66-A

(August 1983): 741–748.

[JOHJ97] Y. Johji and E. Fujiwara, ‘‘A Class of Byte Error Control Codes Based on Hierarchical

Error Model,’’ Technical Report of IEICE, FTS 96-58 (February 1997).

[KANE82] S. Kaneda and E. Fujiwara, ‘‘Single Byte Error Correcting-Double Byte Error Detecting

Codes for Memory Systems,’’ IEEE Trans. Comput., C-31 (July 1982): 596–602. (Also in Dig.,

10th Ann. Int. Symp. Fault-Tolerant Computing [October 1980]: 41–46.)

[NARA80] Y. Nara, Y. Sohma, and A. Hattori, ‘‘Error-Correcting and Error-Detecting Systems,’’ US

Patent 4214228 (July 22, 1980).

[NUMA89] K. Numata, Y. Oowaki, Y. Itoh, et al., ‘‘New Nibbled-Page Architecture for High-

Density DRAMs,’’ IEEE J. Solid-State Circ., 24 (August 1989): 900–904.

184 CODES FOR HIGH-SPEED MEMORIES II: BYTE ERROR CONTROL CODES



[REED60] I. S. Reed and G. Solomon, ‘‘Polynomial Codes over Certain Finite Fields,’’ SIAM J.

Appl. Math., 8 (June 1960): 300–304.

[SUNM95] Sun Microsystems, Inc. ‘‘UltraSPARC-I Data Buffer (UDB) DATA SHEET, Revision

0.3,’’ SPARC Technology (May 1995).

[VARA83] M. R. Varanasi, T. R. N. Rao, and S. Pham, ‘‘Memory Package Error Detection and

Correction,’’ IEEE Trans. Comput., C-32 (September 1983): 872–874.

[WOLF69] J. K. Wolf, ‘‘Adding Two Information Symbols to Certain Nonbinary BCH Codes and

Some Applications,’’ Bell Syst. Techn. J., 48 (September 1969): 2405–2424.

REFERENCES 185



CONTENTS

6.1 Single-Byte / Burst Error Detecting SEC-DED Codes . . . . . . . . . . . . . . . . . 188

6.1.1 Burst Error Detecting SEC-DED (SEC-DED-BED) Codes . . . . . . . . . . 188

6.1.2 Generalized Burst Error Detecting SEC-DED Codes . . . . . . . . . . . . . . 197

6.1.3 Byte Error Detecting SEC-DED (SEC-DED-SbED) Codes . . . . . . . . . . 205

6.2 Single-Byte Error Correcting and Double-Bit Error Detecting

(SbEC-DED) Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

6.2.1 Subfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

6.2.2 Design for SbEC-DED Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

6.3 Single-Byte Error Correcting and Double-Bit Error Correcting

(SbEC-DEC) Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

6.3.1 SbEC-DEC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

6.3.2 S4EC-DEC Codes—Davydov-Labinskaya Codes . . . . . . . . . . . . . . . . 234

6.3.3 SbEC-(DEC)B Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

6.4 Single-Byte Error Correcting and Single-Byte plus Single-Bit Error

Detecting (SbEC-(SbþS)ED) Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

6.4.1 Code Conditions and Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

6.4.2 Design for SbEC-(SbþS)ED Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 247

6.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258



6
Codes for High-Speed

Memories III: Bit / Byte
Error Control Codes

Byte-organized semiconductor memory chips arewidely used in today’s digital systems. The

usual errors occurred in these systems are soft errors induced by external noise, a particles,

etc., which are apt to be manifested as random bit errors in byte-organized systems. Memory

cell failure also results in random bit errors. Therefore designers of error control codes for

byte-organized memory systems must take into account two types of errors, byte errors and

bit errors. Strictly speaking, bit errors are a class of byte errors that corrupt exactly one bit

within a byte, but such errors are usually called bit errors, and all others called byte errors.

Based on the background above, this chapter deals with a class of practical codes that

controls such errors as mixing byte errors with bit errors. These are abbreviated and

designated as follows:

1. SEC-DED-SbED (or BED) codes. Single b-bit byte (or burst) error detecting SEC-

DED codes.

2. SbEC-DED codes. Single b-bit byte error correcting and double-bit error detecting codes.

3. SbEC-DECcodes. Singleb-bit byte error correcting anddouble-bit error correcting codes.

4. SbEC-(SbþS)ED codes. Single b-bit byte error correcting and single-byte plus

single-bit error detecting codes.

Here, ‘‘A plus B error’’ means A error and B error occurred simultaneously. Hence the

above code 4 can detect both single-byte errors and single-bit errors occurred simultaneously.

The SEC-DED-SbED codes have found many applications in computer memory

systems, all with byte size b ¼ 4 bits. Some of these codes have been applied to recent

microprocessor chips as well as to recent server systems.

Code Design for Dependable Systems: Theory and Practical Applications, by Eiji Fujiwara
Copyright # 2006 John Wiley & Sons, Inc.

187



6.1 SINGLE-BYTE / BURST ERROR DETECTING SEC-DED CODES

We recall here the definitions of byte errors and burst errors. Aword is divided into bytes

of length b; a single-byte error is meant to be any number of errors confined to one byte.

On the other hand, a burst error of length b is any number of errors confined to b adjacent

positions. A burst of length b may begin on any bit position of the word and can spread

over portions of two adjacent bytes. Also a code capable of detecting (or correcting) bursts

of length b implies that it is capable of detecting (or correcting) all bursts with smaller than

or equal to length b. For the purpose of this chapter, a byte always refers to a byte of length

b, and a burst refers to a burst of length b or less. Since we do not cover multiple burst error

control codes, the term burst here will mean a single burst only.

The SEC-DED codes are not capable of correcting or detecting byte errors or burst

errors. On the other hand, SbEC codes and SbEC-DbED codes can correct byte errors

but require higher redundancy. From this consideration, codes are required to detect

single-byte errors as well as to correct single-bit errors and to detect double-bit errors.

The SEC-DED-SbED class of codes is practical from the standpoint of requiring small

additional redundancy to the existing SEC-DED codes, and hence has become very

popular in recent commercial applications [CHEN84, TSUC86, SUNM95].

6.1.1 Burst Error Detecting SEC-DED Codes (SEC-DED-BED Codes)

Some types of codes that meet the requirements mentioned above have been proposed in

[BOSS78, REDD78, FUJI80a, VARA83]. It turns out, however, that all these proposed

codes are equivalent to the same type of codes, namely single-burst error detecting SEC-

DED code [KANE83]. Generally, the single-burst error detecting SEC-DED codes include

single-byte error detecting SEC-DED codes as a special case. Therefore, more efficient

codes of single-byte error detecting SEC-DED codes, namely SEC-DED-SbED codes,

will be studied in Subsection 6.1.3.

Here we consider the single-byte error detecting SEC-DED codes. Then it will be shown

that these codes are the single-burst error detecting SEC-DED codes, called SEC-DED-

BED codes. This type of codes is discussed in Subsection 6.1.2. The reader should be

careful to note and distinguish the abbreviations BED and SbED. The BED stands for single-

burst (of length b) error detection, and SbED stands for single-byte (of length b) error

detection.

We begin with the case of two sets of errors, E1 and E2, where E1 is the error set

consisting of all single-bit errors and E2 is the error set consisting of all byte errors,

excluding single-bit errors. Hence E1

T
E2 ¼ ;. (; is the empty set.)

Theorem 6.1 A linear code, described by the matrix H, corrects all errors in E1 and

detects all errors in E2, if and only if:

1. E �HT 6¼ 0 for all E 2 fE1

S
E2g;

2. Ei �HT 6¼ Ej �HT for all Ei;Ej 2 E1,

3. Ei �HT 6¼ Ej �HT for all Ei 2 E1, and for all Ej 2 E2.

This theorem can be easily proved so that the conditions 1 and 2 are those for satisfying

single-bit error correction, and the conditions 1 and 3 are for single-byte error detection. The

codes satisfying all these conditions will be referred to as SEC-SbED codes.

188 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



Theorem 6.2 [BOSS78] Let H be the R� Jb matrix:

H ¼
M1 M2 . . . MJ

Q Q . . . Q

� �
¼ H1 H2 . . . Hj �;


where,

Hi ¼
Mi

Q

� �
; 1 � i � J; J ¼ 2R�bþ1 � 1;

Q ¼

0

0

: Ib�1

:

0

26666664

37777775
ðb�1Þ�b

:

Q is a ðb� 1Þ � b matrix consisting of an all-0’s column and the identity matrix of dimension

b� 1, and Mi is an ðR� bþ 1Þ � b matrix whose columns are b copies of the binary

representation of integer i. The code expressed as the foregoingH matrix is a single b-bit byte

error detecting SEC code (SEC-SbED code) having code length in bits N ¼ b � ð2R�bþ1 � 1Þ.

In this chapter the code length in bits N is a multiple of b, whereas the check-bit length

R is not always a multiple of b. The reader should be careful not to confuse these with the

notations of a previous section. Theorem 6.2 can be easily proved such that the code

satisfies conditions 1, 2, and 3 in Theorem 6.1.

Example 6.1 [BOSS78]

For R ¼ 6, and b ¼ 4, we have a (28, 22) SEC-S4ED code with an H matrix

The foregoing can bemade an SEC-DED-S4ED code by adding an all-1’s row to thematrix.

The following matrix expresses a simple example of this type of SED-DED-S4ED code:

H ¼

0000 0000 0000 1111 1111 1111 1111

0000 1111 1111 0000 0000 1111 1111

1111 0000 1111 0000 1111 0000 1111

0100 0100 0100 0100 0100 0100 0100

0010 0010 0010 0010 0010 0010 0010

0001 0001 0001 0001 0001 0001 0001

2666666664

3777777775
:

H ¼

1111 1111 1111 1111

0000 0000 1111 1111

0000 1111 0000 1111

0100 0100 0100 0100

0010 0010 0010 0010

0001 0001 0001 0001

266666666664

377777777775
:

SINGLE-BYTE / BURST ERROR DETECTING SEC-DED CODES 189



In general, for the SEC-DED-SbED codes, the following condition is necessary in

addition to the conditions 1, 2, and 3 of Theorem 6.1:

4. Ei �HT þ Ej �HT 6¼ Ek �HT for all Ei, Ej, Ek 2 E1, i 6¼ j 6¼ k 6¼ i.

Theorem 6.3 [REDD78] The codes given by the following H matrix are SEC-SbED

codes when b ¼ 2; 3; or 4. When b 	 5, the codes are SEC-DED-SbED. The code

length (in bits) of the codes is N ¼ b � ð2R�bþ1 � 1Þ.

Proof The possible patterns of syndromes corresponding to the single-bit errors and

single-byte errors are given in Figure 6.1. The patterns in the figure indicate whether

the top R� bþ 1 positions of the syndrome are zero or nonzero and also the num-

ber of ones or the actual bit pattern in the last b� 1 positions of the syndrome. In the

figure note that the syndromes for the byte errors are nonzero and are different from

the syndromes for the single-bit errors. Hence, for 2 � b � 4, the codes simulta-

neously correct all single-bit errors and detect all single-byte errors. Similarly, for

b 	 5, the possible pattern of syndromes corresponding to single-bit errors, double-

bit errors, and single-byte errors are given in Figure 6.2. From this figure it is appar-

ent that the syndromes for the single-byte errors and double-bit errors are nonzero

and are different from the syndromes for the single-bit errors. Hence, for b 	 5,

b b b

.  .  .  .

.  .  .  .

R-b+1

b-1

H1 H2 H2       -  1r-b+1

HOE

or

HOO

HOE

or

HOO

HOE

or

HOO

H =

,

b(2       - 1)R-b+1

HOO = b - 1

Used for b an
odd integer

b

Ib-1

1
1
1

1

.

.

.

(b – 1) (b – 1) identity matrix.

(R – b + 1)   b matrix whose columns are b copies of the binary representation ofH :

where,

i

Ib-1 :

HOE = b - 1

Used for b an
even integer

b

Ib-1

0
1
1

1

.

.

.

integer i, i = 1, 2, . . . , 2 – 1,R-b+1

190 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



the codes simultaneously correct all single-bit errors and detect all double-bit errors

and all single-byte errors. Q.E.D.

Example 6.2 [REDD78]

For R ¼ 6 and b ¼ 3, we have a (35,39) SEC-S3ED code with the following H

matrix:

Non-
zero

1

R -1

1

Non-
zero

0

Zero

1

Single-bit error
syndromes

Byte error
syndromes

(a) b = 2 bits

Non-
zero

1 or 2
ones

R - 2

2

Zero

1 or 2
ones

Non-
zero

All
zeros

Single-bit error
syndromes

Byte error
syndromes

(b) b = 3 bits

Non-
zero

One
1

Non-
zero

0
1
1

Zero
Non-
zero

0
0
0

Non-
zero

1
1
1

Non-
zero

1
1
0

Non-
zero

1
0
1

1,2,
or 3
ones

Single-bit error
syndromes

Byte error
syndromes

(c) b = 4 bits

R - 3

3

Figure 6.1 Syndromes for b ¼ 2; 3, and 4bits. Source: [REDD78].� 1978 IEEE.

H¼

000 000 000 000 000 000 000 111 111 111 111 111 111 111 111

000 000 000 111 111 111 111 000 000 000 000 111 111 111 111

000 111 111 000 000 111 111 000 000 111 111 000 000 111 111

111 000 111 000 111 000 111 000 111 000 111 000 111 000 111

101 101 101 101 101 101 101 101 101 101 101 101 101 101 101

011 011 011 011 011 011 011 011 011 011 011 011 011 011 011

266666666664

377777777775
:

SINGLE-BYTE / BURST ERROR DETECTING SEC-DED CODES 191



Nonzero

One 1 or
(b - 1)
ones

Zero

One through
(b - 1)
ones

Nonzero

Zero or
two through

(b - 2)
ones

Zero

Two or
(b - 2)
ones

Nonzero

Zero, two,
or (b - 2)

ones

R - b + 1

b - 1

Syndromes for
single-bit errors

Syndromes for
byte errors with

even numbers of
bits in error

Syndromes for
byte errors with
odd numbers of

bits in error

Syndromes for
double-bit errors
with both errors
in the same byte

Syndromes for
double-bit errors
with the errors in

two different bytes

(a) Syndrome patterns for b an odd integer

Nonzero

 One 
1

Nonzero

(b - 2) ones
with a zero
in the top
element

Nonzero

One through
(b - 1)
ones

Nonzero

Zero or
(b - 1) or
2 through

(b - 3)
ones

Zero

(b - 2) ones
with a one
in the top
element

R - b + 1

b - 1

Syndromes for
single-bit errors

Syndromes for
byte errors with

even numbers of
bits in error

Syndromes for
byte errors with
odd numbers of

bits in error

0
1
1
:
1

1
x
x
:
x

Zero Nonzero

Zero or
two or

(b - 3) or
(b - 1)
ones

Two or
(b - 3) or

(b - 1)
ones

R - b + 1

b - 1

Syndromes for
double-bit errors
with both errors
in the same byte

Syndromes for
double-bit errors
with the errors
in two different

bytes

(b) Syndrome patterns for b an even integer

Figure 6.2 Syndrome for b 	 5bits. Source: [REDD78].� 1978 IEEE.

192 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



If one desires to detect double-bit errors for 2 � b � 4, an extra overall parity bit is added.

From theHmatrix above, we can also have the following (24,18) SEC-DED-S3ED code:

Theorem 6.4 [FUJI80a] The codes given by the following H matrix are SEC-SbED

codes. The code length in bits is N ¼ b � ð2R�bþ1 � 1Þ.

where

Hi: (R� b)� bmatrix whose columns are b copies of the binary representation of integer

i, i¼0, 1,. . ., 2R�b� 1

Proof Let the syndrome pattern from the H matrix in this theorem be

H ¼

111 111 111 111 111 111 111 111

000 000 000 000 111 111 111 111

000 000 111 111 000 000 111 111

000 111 000 111 000 111 000 111

101 101 101 101 101 101 101 101

011 011 011 011 011 011 011 011

266666666664

377777777775
:

b 2 b (2      - 1)R - b R - b

b

b b

b

R-b

b

.  .  .

.  .  .

.  .  .

.  .  .

H H H

H H H

H r-b

H H H H

H =

0 1 2 2 -1 H H1 2 H r-b2 -1

f f f f e e e

,

1

1

1
.

.
.

0

0
b    b

H  = = Ib H .=

b    b

0   1  1  .   .   .  1

0

0

0

.

.

.

1

1

1
.

.
.

0

0
=

b    b

0   1   1  .  .  .  1

0

0

0

.

.

.

Ib-1f e

S ¼

s0

..

.

sR�b�1

sR�b

..

.

sR�1

266666666664

377777777775
¼

SI

SII

� �

SINGLE-BYTE / BURST ERROR DETECTING SEC-DED CODES 193



The weight of each syndrome part is defined as follows:

WI ¼ W(SI) ¼ weight of SI,

WII ¼ W(SII) ¼ weight of SII.

Table 6.1 shows the weight of the syndromes for the error sets E1 and E2. Note that the

syndromes corresponding to byte errors are nonzero and are different from those

corresponding to single-bit errors. Q.E.D.

Example 6.3 [FUJI80a]

The H matrix shown in Figure 6.3 expresses the (60, 53) SEC-S4ED code.

Theorem 6.5 [FUJI80a] The codes given by the following H matrix are SEC-DED-

SbED codes. The code length in bits is N ¼ b � 2R�b.

where

H0;H1;H2; . . . ;Hf ;He: same as matrices in Theorem 6.4,

i: integer whose binary representation has even weight,

H0

Hf

H3 Hi

Hf

HNe

Hf

...

...

...

...

H1

HeHf

H =

H2 Hj HNf...

...

...

...He He He b

R - b

b b

b b

TABLE 6.1 Weight of Syndromes for Errors in E1 and E2

Error Ei 2 E1

Error location
Errorsin
information-bit part

Errorsin
check-bit part Ei 2 E2

Errorsinthe former
datapart having
b � 2R�b-bit length

WI 6¼ 0 WI ¼ 0 W(EjÞ ¼
evenð	2Þ

WI 6¼ 0
WII ¼ WðEjÞ
¼ evenð	2Þ

WII ¼ 1 WII ¼ 1 W(EjÞ ¼
oddð	3Þ

WI 6¼ 0
WII ¼ WðEjÞ
¼ oddð	3Þ

W(EjÞ ¼
evenð	2Þ

WI ¼ 0
WII ¼ WðEjÞ
¼ evenð	2Þ

Errorsinthelatter
datapart having
b � ð2R�b � 1Þ-bit length

WI 6¼ 0 WI ¼ 1
WI 6¼ 0

WII ¼
0
2#

�
WII ¼ 0 W(EjÞ ¼

oddð	 3Þ WII ¼
WðEjÞ

# � 1

WðEjÞ þ 1

( )
¼ evenð	2Þ

Source : [FUJI801].� 1980 IECE Japan.

# :ForW(EjÞ ¼ 3 in column 5, wehave sR�b ¼ 1 for Ei 2 E1, and sR�b ¼ 0 for Ej 2 E2.

194 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



H
 =

c0
 ~

 c
6:

 c
he

ck
 b

its
d0

 ~
 d

52
: i

nf
or

m
at

io
n 

bi
ts

1
1

1
1

1
1

1
1

1
1

1

1
1

1
1

1
1

1
1

1

1
1

1
1

1
1

1
1

1
1

1

1

1
1

1
1

1
1

1
1

1
1

1

1

1
1

1
1

1
1

1
1

1
1

1

1

1
1

1
1

1
1

1
1

1
1

1

1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

1

12
 1

3 
14

 1
5

d
d

d
d

 8
   

9 
 1

0 
11

d
d

d
d

 0
   

1 
  2

   
3

d
d

d
d

 3
   

4 
  5

   
6

c
c

c
c

16
 1

7 
18

 1
9

d
d

d
d

 4
   

5 
  6

   
7

d
d

d
d

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

20
 2

1 
22

 2
3

d
d

d
d

24
 2

5 
26

 2
7

d
d

d
d

34
 3

5 
36

 3
7

d
d

d
d

41
 4

2 
43

 4
4

d
d

d
d

45
 4

6 
47

 4
8

d
d

d
d

49
 5

0 
51

 5
2

d
d

d
d

d
d

d
c    
  3

1 
32

 3
3

 1
d

d
d

c    
  2

8 
29

 3
0

 2
d

d
d

c    
  3

8 
39

 4
0

 0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

F
ig
u
re

6
.3

(6
0,
53
)S

E
C
-S
4E

D
co

de
.
S
ou

rc
e:

[F
U
JI
80

a]
.�

19
80

IE
C
E
Ja
pa

n.

195



Ne: maximal integer i no greater than (2R�b � 1),

j: integer whose binary representation has odd weight,

Nf: maximal integer j no greater than (2R�b � 1).

Proof The H matrix shown in Theorem 6.5 is clearly a part of the H matrix of the SEC-

SbED codes shown in Theorem 6.4. Also, since every column vector in this matrix is odd

weight, it has the DED property. Therefore it is an SEC-DED-SbED code. Q.E.D.

Example 6.4 [FUJI80a]

The Hmatrix of the (32,25) SEC-DED-S4ED code with b ¼ 4, and r ¼ 7, is designed

as follows:

The H matrices of the codes defined in Theorems 6.4 and 6.5 have a nice characteristic

that the check-bit position can be directly determined without any row operations.

Theorem 6.6 [VARA83] Let pðxÞ be a polynomial of degree l < b and of exponent e

such that e > b and GCDðe; bÞ ¼ 1, where GCDðe; bÞ expresses the greatest common divi-
sor of e and b. Then the ðN;N � b� lÞ cyclic code generated by gðxÞ ¼ ðxb � 1ÞpðxÞ with
N ¼ e � b bits is an SEC-DED-SbED code.

Proof Let a be a primitive root of pðxÞ, Ib be the identity matrix of size b, and EðxÞ be
the error pattern. Then the H matrix can be constructed as

and the syndrome SðxÞ can be generated as two parts, S1ðxÞ and S2ðxÞ, due to the factors

xb � 1 and pðxÞ, respectively.

SðxÞ ¼ ðS1ðxÞ; S2ðxÞÞ;
S1ðxÞ � EðxÞ mod ðxb � 1Þ;
S2ðxÞ � EðxÞ mod pðxÞ:

c   c   c   c
3   4   5   6

1   1   1   1

c   c   c   c
0   1   2   3

1   1   1   1

1   1   1   1

1   1   1   1

d   d   d   d
4   5   6   7

d   d   d   d
8   9  10 11

c  d   d   d

1   1   1   1
1   1   1   1

c   d   d   d
2 12 13 14 1  15 16 17

c   d   d   d
0  18 19 10

d  d   d   d
21 22 23 24

H = 1
      1
           1
                1

1
      1
           1
                1

1
      1
           1
                1

1
      1
           1
                1                   1                   1                   1                   1

1   1   1   1
      1   1   1
      1
            1

      1   1   1
      1
            1

1   1   1   1

      1   1   1
      1
            1

1   1   1   1

      1   1   1
      1
            1

1   1   1   1
1   1   1   1
1   1   1   1

c  ~ c  : check bits0 6

d0 ~ d24 : information bits

ð6:1Þ

H ¼
Ib Ib � � � Ib � � � Ib Ib

1aa2 � � � ae�1 1aa2 � � � ae�1 � � � 1aa2 � � � ae�1

" #
;

196 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



Since GCDðe; bÞ¼1, that is, e and b are relatively prime, there are no two identical columns in

the matrix H, and hence the single errors are correctable. Also S1ðxÞ provides the byte error
pattern, and it is not equal to that of single-bit errors. Next we prove that together the two

components S1ðxÞ and S2ðxÞ detect random double-bit errors as follows: if random double-bit

errors occur,weneed toconsider thepossibility that theerroneousbitsmaybe in the samebyteor

in different bytes. In the first case, it is a byte error and it is detectable by S1ðxÞ. In the latter case,
theassumptionGCDðe; bÞ¼1guaranteesdouble-bit errorshavingdifferentvaluesat least forS1
orS2. Therefore double-bit errors have (1) different values forS2 and alsoS1, (2) different values

for S1 and the same values for S2, or (3) the same values for S1 and different values for S2. The

random double-bit errors are detectable, and the code is the SEC-DED-SbED code.

Since the exponent of the primitive polynomial pðxÞ of degree l ¼ R� b is

e ¼ 2R�b � 1, the code length (in bits) of this code can be expressed as

N ¼ b � ð2R�b � 1Þ:
Q.E.D.

Example 6.5

Let the primitive polynomial of degree 3 be pðxÞ ¼ x3 þ xþ 1 and b ¼ 4, l ¼ 3. Then

GCDðe; bÞ ¼ GCDð23 � 1; 4Þ ¼ 1, and the following (28, 21) cyclic SEC-DED-S4ED

code can be designed:

6.1.2 Generalized Burst Error Detecting SEC-DED Codes

Consider a class of generalized burst error detecting SEC-DED codes (i.e., generalized

SEC-DED-BED codes)[KANE83] that include the codes previously mentioned. Here it

will be shown that the foregoing codes are the burst error detecting SEC-DED codes.

Definition 6.1 A code of length N, where N is an integer multiple of b, is said to be

b-grouped parity checkable if it can be divided equally into b groups in an interlaced

form and the mod-2 sum of the data included in each group has constant value

regardless of the input codewords. &

The concept of this b-grouped parity checking is shown in Figure 6.4.

Definition 6.2 Let b be the byte length in bits andR be a check-bit length of the code defined

by the matrixH. A b� R binary matrix A whose any b columns are linearly independent,

that is, have rank b, is referred to as a grouping matrix, whereby R row vectors of the H
matrix are collected into b groups in which vectors are modulo 2 added. &

1   1
1   1   1

          1

     1        1

1   1   1
1             1

1        1   1

H  =

          1
1        1   1
1   1   1
     1   1   1

1             1
     1        1
          1

     1   1   1
1        1   1

1   1

     1        1
     1   1   1

1   1

1             1

1
      1
           1
                1

1
      1
           1
                1

1
      1
           1
                1

1
      1
           1
                1

1
      1
           1
                1

1
      1
           1
                1

1
      1
           1
                1

ð6:2Þ

SINGLE-BYTE / BURST ERROR DETECTING SEC-DED CODES 197



Let theH matrix of a code be denoted by its R row vectors P0;P1; . . . ;PR�1. The product
A �H is a matrix F, and its row vectors are denoted by F0;F1; . . . ;Fb�1. Then Fi is the result

of a bit-by-bit (mod 2) sum of all Pj’s for which aij ¼ 1. Here ai; j 2 f0; 1g is an element ofA:

F0

F1

..

.

Fb�1

26664
37775 ¼ A½ � �

P0

P1

..

.

PR�1

26664
37775:

Figure 6.5 shows the multiplication of A to H where byte length b ¼ 4 and check-bit

length R ¼ 8. In this example theHmatrix defines the type of code stated in Example 6.4.

+

. . .

. . .

. . . . . .. . .

+ + +

b                 b b b b b

Data bits Check bits

b

Memory
chip

Parity
checker

Figure 6.4 b-Groupedparity checking. Source: [KANE83].� 1983 IECE Japan.

 1  1  1  1  1
      1
          1
              1

 1  1  1  1  1  1  1  1
 1  1  1  1

 1  1  1  1
 1  1  1  1 1  1  1  1

 1
      1
          1
              1

 1
     1
          1
              1

     1  1  1
     1
          1
              1

     1  1  1
     1
          1
              1

     1  1  1
     1
          1
              1

      1  1  1
      1
           1
              1

 1
     1
         1
              1

 1
     1
         1
              1

 1
     1
         1
              1

 1
     1
         1
             1

 1
     1
          1
              1

 1
     1
          1
              1

F =

P

P
P

P
P

P
P

P

F

F
F

F

0
1
2

7

6

5

3
4

0

1
2

3

H=

A=

Figure 6.5 Example of groupingmatrixA. Source: [KANE83].� 1983 IECE Japan.

198 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



The first five rows ofH are added to obtain F0. The sixth, seventh, and eighth rows ofH are

the same as F1, F2, and F3, respectively.

The following theorem is relevant to the design of b-grouped parity checkable codes

using the grouping matrix A.

Theorem 6.7 A code is b-grouped parity checkable, if and only if there exists a matrix

A such that the product of A and H is identical to the concatenation of the b� b identity

matrices.

Proof Let the concatenation of the b� b identity matrix be F, and let the codeword be

W. Then from F ¼ A �H we have

W � FT ¼ W � ðA �HÞT ¼ ðW �HTÞ � AT

¼ 0 ð,W �HT ¼ 0Þ:

Note that the mod-2 sum of the data included in each group has a constant value (zero)

regardless of the codeword W . Since each column vector of F has weight 1, and each

row vector of F has equal constant weight, the code derived from the H matrix is

b-grouped parity checkable. This proves the necessity of the condition, and its sufficiency

can be proven in a similar manner. Q.E.D.

Figure 6.6 shows the b-grouped parity checking of the arbitrary codewords,W1 andW2.

Theorem 6.7 states that if the addition of subsets of row vectors ofH as prescribed by A

yields a concatenation of b� b identity matrices, then the code represented by H is

b-grouped parity checkable.

Theorem 6.8 Assume that the H matrix of a code C has distinct columns, and the code is

b-grouped parity checkable. Then C is an SEC-DED-BED code with code length in bits

N ¼ b � 2R�b:

Proof Let P0;P1; . . . ;Pr�1, be row vectors of H. Since the vector sum of some Pi’s

yields Fi’s, 0 � i � b� 1, there cannot be an all-0 column vector in H. Also, by

the assumption, these column vectors in H are distinct. Thus the code can correct all

single-bit errors.

According to Theorem 6.7, the mod-2 sum of F0; . . . ;Fb�1, yields an all-1 row vector.

This means that every column inH has odd weight. Therefore this code can also detect all

double-bit errors.

Next let us examine a vector obtained by multiplying the syndrome to the grouping

matrix A. It is easy to see that the result is identical to the single-byte error pattern. This

pattern can indicate whether the error is a correctable single-bit error or an

uncorrectable byte error. On the other hand, since the product of A and H yields the

concatenation of b� b identity matrices, this byte error pattern will always indicate any

b-adjacent errors, that is, burst errors. This means the code can detect single b-bit burst

errors (see Exercise 2.29).

Let us consider the bit length of this code. Since the product of A and H, which is F,

is the concatenation of identity matrices, the bit having 1 in the vector Fi shows that the

SINGLE-BYTE / BURST ERROR DETECTING SEC-DED CODES 199



corresponding H matrix column vectors are included uniquely in the i-th group. Let

ðx0; x1; . . . ; xR�1ÞT represent the H matrix column vector included in the i-th group.

These column vectors should satisfy the following relation. Note that only the i-th

element of the vector in the left-hand side is 1, and the other elements are all 0’s.

iÞ

0

..

.

0

1

0

..

.

0

26666666664

37777777775
b

¼ A½ �b�R�

x0
x1

..

.

xR�1

26664
37775: ð6:3Þ

According to Definition 6.2, the rank of A is b. From linear algebra we know that the first-

order equation of (6.3) has 2R�b solutions of ðx0; x1; . . . ; xR�1ÞT . Therefore the bit length N
of this code is b � 2R�b. Q.E.D.

Figure 6.7 shows some grouping matrices for SEC-DED-BED codes of Theorems 6.2

through 6.6 [KANE83]. As the figure shows, we can prove that the codes of Theorems 6.2,

            1 1 1 1 1 1 1 1
                                    1 1 1 1
                                                1 1 1 1 
            1 1 1 1                                     1 1 1 1
1          1             1 1 1    1 1 1    1 1 1    1 1 1
   1          1          1           1         1          1
      1          1          1          1          1          1 
         1          1          1          1          1          1

1 1 1 1 1
               1
                  1

 1

1          1          1          1          1          1
   1          1          1          1          1          1
      1          1          1          1          1          1
         1          1          1          1          1          1

[ 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 ]

[ 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 ]

H  = A  = 

F = A  H  =  .

W1 = 

W2 =

+ + + +

Figure 6.6 b-Grouped parity checking of codewordsW1 andW2.

200 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



b -1

b

1

1

1

      1

 1

 1   1

R

A =

R

A = 3

2

1

1

1

1

1        1

1   1

1   1   1

R

4

3

A =

1   1    .   .   .    1 1
    1
        .
            .
                .
                    1

R

b

b

A =

b

1
    1
        .
            .
                .
                    1

b

R

A =

Code of Theorem 6.2 :

Code of Theorem 6.3 :  b = 3:

b = 4:

The codes for b > 5 are not b-grouped parity checkable.

Code of Theorem 6.5 :

Code of Theorem 6.6 :

1 1  1  .  .  .  1
1
    1
        .
           .
              .
                 1

Figure 6.7 Groupingmatrices for existing SEC-DED-BED codes. (In order to have double-bit error detection
ability in the codes of Theorems 6.2 and 6.3, an all-1row vector is added to H.)

SINGLE-BYTE / BURST ERROR DETECTING SEC-DED CODES 201



6.3 (for b � 4), and 6.5 are equivalent to each other. The codes of Theorem 6.6 have a

cyclic structure and have smaller code length than the other codes. However, these are also

b-grouped parity checkable codes.

The grouping matrix A has the following properties:

Property 1 If every column in A has odd weight, then every column in H of the

SEC-DED-BED code has also odd weight. For examples, see Figure 6.5 and

Eq. (6.4).

Property 2 If every column in A has weight 1, then the H matrix of the SEC-DED-

BED code has r weight-1 check columns. For an example, see Figure 6.5 and

Eq. (6.4).

Property 3 If every column in A has weight 1 and every row in A has constant weight,

then the r columns for check bits in H of the SEC-DED-BED code are clustered

together in R=b places. For an example, see Eq. (6.4) and Theorem 6.9.

Now consider another b-grouped parity checkable code, as shown in Eq. (6.4), whose

matrix A is different from those shown in Figure 6.7. The matrix A of this code satisfies

properties 1, 2, and 3. The H matrix has all odd-weight columns and satisfies the

conditions of the equal-weight-row code, and this also satisfies the rotational code with

degree two, or 2-modularized code.

The error detection circuit of the b-grouped parity checkable codes can be

systematically obtained by multiplying the syndrome to matrix A. Figure 6.8 shows this

circuit of the code shown in Eq. (6.4). Figure 6.9 shows the relation between the

information-bit length K and the check-bit length R of the SEC-DED-BED codes for

b ¼ 3; 4; 8, and 12 bits.

Rotational Burst Error Detecting SEC-DED Codes Let us design the rotational

generalized SEC-DED-BED codes [KANE83].

H = ,

A = .

ð6:4Þ

202 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



Theorem 6.9 If the grouping matrix A is given as a concatenation of (R/b) b-th degree

identity matrices Ib,

A ¼ Ib Ib � � � Ib½ �R=b;

then the code generated by A is a rotational SEC-DED-BED code whoseH matrix has R=b
submatrices. The code length (in bits) of this code is given as follows:

N ¼ b �
X
mjðR=bÞ
m : odd

mðmÞ � 2R=m�b: ð6:5Þ

Here the summation is performed over the odd divisors of R=b, and mðmÞ is the Möbius

function defined in Section 3.5.

+

+

+

+

S0

S4

S1

S5

S2

S6

S3

S7

Weight = 1 detector

1 Bit error detection

Uncorrectable
error detection

A

Figure 6.8 Error detection circuit for the (40, 32) SEC-DED-BED code shown in Eq. (6.4). Source: [KANE83].�

1983 IECE Japan.

SINGLE-BYTE / BURST ERROR DETECTING SEC-DED CODES 203



Theorem 6.9 can be proved by using the definitions of the grouping matrix A, the b-

grouped parity checkable code, and the rotational code. The code length can be obtained

by using the modified Möbius inversion formula given in Theorem 5.4. From property 1 of

the grouping matrix A, this code is an odd-weight-column code. The code length N bits of

this code is shown in Table 6.2.

An example of the rotational (45, 36) SEC-DED-BED code (with b ¼ 3 bits) whose

rotational degree is three is given in Eq. (6.6). Earlier another example of a code with

rotational degree two was presented in Eq. (6.4).

Figure 6.9 Relationship between check-bit lengths and information-bit lengths of the SEC-DED-BED
codes.

TABLE 6.2 Code Length (in Bits) of the Rotational SEC-DED-BED Code

b (Bits)

R/b 1 2 3 4 5 6

2 2
2

8
8

24
24

64
64

160
160

384
384

3 3
4

30
32

189
192

1;020
1;024

5;115
5;120

24;570
24;576

4 8
8

128
128

1;536
1;536

16;384
16;384

163;840
163;840

1;572;864
1;572;864

5 15
16

510
512

12;285
12;288

� � �

Source: [KANE83]. � 1983 IECEJapan.
Note: Column1gives the rotational odd-weight-column SEC-DED code.The numeratorgives the rotational code length in bits
and thedenominator thenonrotationalcode length inbits.

204 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



6.1.3 Byte Error Detecting SEC-DED Codes (SEC-DED-SbED Codes)

We can say that the SEC-DED-SbED code is a special class of the SEC-DED-BED code in

the sense that the burst error is confined to the bounds of one byte. A BED code is also an

SbED code, but not necessarily the other way around. Therefore the SbED codes are likely

to have fewer check bits than the BED codes. For one of the practical code parameters of

information-bit length K ¼ 64 and byte length b ¼ 4 bits, an SEC-DED-SbED code could

have a check-bit length of R ¼ 8, which is the same check-bit length of the SEC-DED

code for K ¼ 64. On the other hand, from Figure 6.9, the SEC-DED-BED code requires a

check-bit length of R ¼ 9 for K ¼ 64.

The SEC-DED-SbED codes are important from the practical point of view, and hence

they have been actively studied. Some excellent codes are presented in [CHEN83,

KANE84, KANE85, DUNN83, DUNN85]. Chen [CHEN83] uses the structure of

orthogonal flats in finite Euclidean geometry to design these codes. Codes with b ¼ 3 bits

precisely meet the upper bound. For b ¼ 4 bits, Kaneda, Chen, Tsuchimoto, Boyarinov,

Davydov, and Holman [KANE84, CHEN84, TSUC86, BOYA87, DAVY91, HOLM99]

provide some practical codes especially for K ¼ 64 bits. Dunning [DUNN85] develops

some excellent codes with R ¼ bþ 2. However, the ‘‘best’’ code that meets the upper

bound of the code length for an arbitrary byte length b has not yet been found. Here we

introduce the codes with b ¼ 4 and R ¼ bþ 2.

Codes for b ¼ 4 The SEC-DED-SbED codes with 4-bit byte (i.e., b ¼ 4) [KANE84]

are important from the practical stand point because 4-bit byte organized RAM chips have

been commonly used in high-speed memories since the mid-1980s. Compared to the SEC-

DED-BED code, the check-bit length can be decreased by one bit for an information-bit

length of K ¼ 64. This is the same check-bit length as that of for the SEC-DED code with

K ¼ 64. We can design the (72, 64) SEC-DED-S4ED code by the following construction

methods: The code indicated here is not restricted to the length of K ¼ 64 bits, but the

code can take any value of K and N.

Construction 1

Step 1. Let R be an arbitrary but positive even integer (R > 3). Let G denote a column

vector having R=2 binary elements. Vector G is arbitrary, but G ¼ all 1’s vector is

recommended to use in order to reduce the H matrix weight.

H =

A = .

ð6:6Þ

SINGLE-BYTE / BURST ERROR DETECTING SEC-DED CODES 205



Step 2. Let Fq denote a column vector having R=2 binary elements. The weight of Fq

must be even for an odd weight of G and must be odd for an even weight of G. The

number of Fq’s is 2
R=2�1, where q ¼ 0; 1; . . . ; 2R=2�1 � 1.

Step 3. Two column vectors Fi and Fj are selected arbitrarily from the Fq’s, where

0 � i 6¼ j � 2R=2�1 � 1. Using Fi and Fj, define the following R� 4 matrix:

Hi; j ¼
Gþ Fi þ Fj Gþ Fi þ Fj Fi Fj

Fi Fj Gþ Fi þ Fj Gþ Fi þ Fj

" #
:

Here the plus sign represents the mod-2 sum of the column vectors.

Step 4. Construct the H matrix as follows:

H ¼ H0;1 H0;2 H0;3 . . . Hi; j . . . Hp�1;p
 �

; p � 2R=2�1 � 1 ð6:7Þ

Construction 2 LetW be a row vector of N 0’s followed by N 1’s, where N ¼ n � b.
Define

HRþ1 ¼
W

HR HR

� �
;

where HR is the parity-check matrix of the code CðR; bÞ with code length n bytes and

check-bit length R. Then the code CðRþ 1; bÞ defined by the parity-check matrixHRþ1 is
an SEC-DED-SbED code with a code length of 2n bytes. Here CðR; bÞ denotes an SEC-

DED-SbED code with R check bits and b bits in a byte. This is the same code extension

method as that shown in Theorem 5.8.

Theorem 6.10 The code designed by construction 1 is an odd-weight-column SEC-

DED-S4ED code with an even number of check bits larger than 3 and a code length in

bytes n ¼ 2R�3 � 2R=2�2.

Proof Obviously, the column vectors in H shown in Eq. (6.7) have odd weight. Now let

us assume that Fi has odd weight. In this case G must have even weight. When Fi has

even weight, the proof is the same, as will be shown.

1. Proof of single-error correction capability. The weight of Fi is odd and the weight

of Gþ Fi þ Fj is even. Then we assume that the following equations are satisfied for the

column vectors:

Fi ¼ F0i ;

Gþ Fi þ Fj ¼ Gþ F0i þ F0j :

If Fi ¼ F0i , then by construction 1, Fj should not be equal to F0j . However, we can derive

Fi ¼ F0i and Fj ¼ F0j from the equations above, and this is a contradiction. Therefore the

column vectors inH shown in Eq. (6.7) are distinct. Consequently the codes are SEC-DED

codes.

2. Proof of single 4-bit byte error detection capability. Double-bit errors within each

byte can be detected through the DED capability. We should verify the error detection

capability of triple-bit errors and quadruple-bit errors within a byte.

206 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



a. Triple-bit errors. In theH shown in Eq. (6.7), replace arbitrarily three column vectors

in the byte corresponding to the erroneous triple-bit errors in this byte, and then do a mod-2

sum of these vectors. The resultant column vector should be equal to the syndrome caused by

the triple-bit errors. It can be easily shown that either the lower-halfR=2 bits or the upper-half
R=2 bits in the syndrome are equal toG. From construction 1, Fi is not equal to Fj. Therefore

Gþ Fi þ Fj cannot be equal to G. So triple-bit errors within a byte can be detected.

b. Quadruple-bit errors. In the H shown in Eq. (6.7), take a mod-2 sum of the four

column vectors in a byte corresponding to the erroneous quadruple-bit errors in this byte.

Obviously, the resultant column vector has even weight and is not equal to the all-0

vector. Thus the quadruple-bit errors within a byte can be detected.

Note that the number of Fq ’s is 2R=2�1. In addition the number of Hi; j’s is the

combination number of two elements from 2R=2�1 elements. Hence the code length in

bytes is equal to n ¼ 2R=2�2ð2R=2�1 � 1Þ ¼ 2R�3 � 2R=2�2. Q.E.D.

If an odd number of check bits is required, construction 2 can be applied to the code in

Theorem 6.10. The codes obtained have the code length of 2R�2 � 2R=2�1 bytes for R

(¼ odd) check bits.

Example 6.6 [KANE84]

For b ¼ 4 and R ¼ 8, let G be an all-1 column vector:

G ¼

1

1

1

1

2664
3775:

This G is even weight; therefore, Fq must be odd weight. There are eight Fq’s:

0 0 0 1 1 1 1 0

0 0 1 0 1 1 0 1

0 1 0 0 1 0 1 1

1 0 0 0 0 1 1 1

and among these Fq’s, two columns are chosen. Then the Hij can be constructed. There

are
8

2

� �
¼ 28Hij’s. Examples for H01 and H02 are indicated as follows:

H01 ¼

1 1 0 0

1 1 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 0 1 1

0 1 0 0

1 0 0 0

2666666666666666664

3777777777777777775

H02 ¼

1 1 0 0

0 0 0 1

1 1 0 0

0 0 1 0

0 0 1 1

0 1 0 0

0 0 1 1

1 0 0 0

2666666666666666664

3777777777777777775

:

SINGLE-BYTE / BURST ERROR DETECTING SEC-DED CODES 207



The complete H matrix for b ¼ 4 and R ¼ 8 is given in Eq. (6.8).a This is a (112, 104)

SEC-DED-S4ED code.

The code shown in Figure 6.10 is a 2-modularized odd-weight-column (72, 64) SEC-

DED-S4ED code shortened and converted from the original code of Eq. (6.8). Check

columns are concentrated in two bytes using row operations (i.e., successive addition of

one row vector to another).

As a consequence we can design the SEC-DED-S4ED code having the same code

parameters of check-bit length R ¼ 8 and information-bit length K ¼ 64 as the SEC-DED

code. Furthermore the parallel encoding / decoding circuit of this (72, 64) SEC-DED-

S4ED code has almost the same hardware gate amount as that of the (72, 64) SEC-DED

code. Figure 6.11 shows the error detection circuit of the code shown in Eq. (6.8).

The codes with b ¼ 4 bits are important from a practical stand point. The code shown in

Figure 6.10 has been recently applied to a computer system [SUNM95]. In this system, 64K-

word � 4-bit byte (b ¼ 4)organizedhigh-speed staticRAMsareused in themain storageunits.

The computer-generated code with K ¼ 64 bits, and R ¼ 8 bits shown in Figure 6.12 has

also been applied to a computer system [TSUC86]. This code has the following properties:

1. Odd-weight-column code (see Section 3.2).

2. Minimum-weight & equal-weight-row code (see Section 3.1).

3. Eight bits error detection over any two bytes.

The codes shown in Figures 6.13 and 6.14 are also 2-modularized or nearly 4-modularized

odd-weight-column (72, 64) SEC-DED-S4ED codes, respectively [HOLM99] [BOYA87].

H =

1 1
1 1
         1
      1
      1 1
      1 1
   1
1

1 1
         1
1 1
      1

      1 1
   1
      1 1
1

         1
1 1
1 1
      1

   1
      1 1
      1 1
1

         1
         1
         1
      1
   1
   1
   1
1

         1
         1
1 1
1 1 1 1
   1
   1
      1 1
1 1 1 1

         1
1 1
         1
1 1 1 1
   1
      1 1
   1
1 1 1 1

1 1
         1
         1
1 1 1 1
      1 1
   1
   1
1 1 1 1

1 1
         1
      1
1 1
      1 1
   1
1
      1 1

         1
1 1
      1
1 1
   1
      1 1
1
      1 1

         1
         1
1 1 1 1
1 1
   1
   1
1 1 1 1
      1 1

         1
         1
      1
         1
   1
   1
1
   1

         1
1 1
1 1 1 1
         1
   1
      1 1
1 1 1 1
   1

1 1
         1
1 1 1 1
         1

      1 1
   1
1 1 1 1
   1

         1
      1
1 1
1 1

   1
1
      1 1
      1 1

         1
1 1 1 1
         1
1 1

   1
1 1 1 1
   1
      1 1

         1
1 1 1 1
1 1
         1

   1
1 1 1 1
      1 1
   1

         1
      1
         1
         1

   1
1
   1
   1

1 1
1 1 1 1
         1
         1

      1 1
1 1 1 1
   1
   1

1 1 1 1
         1
         1
1 1

1 1 1 1
   1
   1
      1 1

1 1 1 1
         1
1 1
         1

1 1 1 1
   1
      1 1
   1

1 1 1 1
1 1
         1
         1

1 1 1 1
      1 1
   1
   1

      1
         1
         1
         1

1
   1
   1
   1

1 1 1 1
1 1 1 1
      1
         1

1 1 1 1
1 1 1 1
1
   1

1 1 1 1
      1
1 1 1 1
         1

1 1 1 1
1
1 1 1 1
   1

      1
1 1 1 1
1 1 1 1
         1

1
1 1 1 1
1 1 1 1
   1

1 1 1 1
      1
         1
1 1 1 1

1 1 1 1
1
   1
1 1 1 1

      1
1 1 1 1
         1
1 1 1 1

1
1 1 1 1
   1
1 1 1 1

      1
         1
1 1 1 1
1 1 1 1

1
   1
1 1 1 1
1 1 1 1

(6.8)

aSource of Eq. (6.8): [KANE84]. � 1984 IEEE.

208 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



1
1

1

1
1

1

1
1

1
1

1

1
1

1
1

1

1
1

1

1
1

1 1
1

1
1

1

1
1

1
1

1

1
1

1

1
1

1

1
1

1
1

1

1
1

1
1

1

1
1

1

1
1

1

1
1

1
1

1

1
1

1
1

1

1
1

1
1 1

1
1

1
1

1

1
1

1
1

1
1

1
1

1
1 1

1
1

1
1

1

1
1

1
1

1
1

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

1
1

1
1

1

1
1

1
1

1

1
1

1
1

1

1
1

1
1

1 1
1

1

1
1

1

1
1

1
1

1

1
1

1
1

1

1
1

1

1
1

1

1
1

1
1

1

1
1

1
1

1 1
1

1

1
1

1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

F
ig
u
re

6
.1
0

2
-M

od
ul
ar
iz
ed

od
d-
w
ei
gh

t-
co
lu
m
n
(7
2,
64
)S

E
C
-D
ED

-S
4E

D
co

de
.
S
ou

rc
e:

[K
A
N
E
84
].
�

19
84

IE
EE

.

209



The three codes of Figures 6.12 to 6.14 are optimal in the sense that the number of 1’s in each

H matrix is minimum (i.e., 216), which is equal to that of the optimal (72, 64) odd-weight-

column SEC-DED code shown in Figure 4.2 in Subsection 4.1.1. These codes are also equal-

weight-row codes, and hence are minimum-weight & equal-weight-row codes. Other codes

are presented in Figures 6.15 and 6.16 [DAVY91] [CHEN84]. Table 6.3 shows an evaluation

of these six codes.

Codes for R = b+ 2 and Others Dunning suggests an excellent design method for a

rotational SEC-DED-SbED code with R ¼ bþ 2 bits [DUNN85]. The method deals with

the codes with other than b ¼ 4 bits and the code with R ¼ bþ 2 bits, as we explain here.

Theorem 6.11 [DUNN85] Let b > 2 be given and ðb� 1Þ � ðb� 2Þ matrix T ¼ ½Tij�
be defined by Tij ¼ 1 if i ¼ j or i ¼ jþ 1 and Tij ¼ 0 otherwise. The basic H matrix of

an SEC-DED-SbED code with byte length b bits, check-bit length R ¼ bþ 2, and code

length of bþ 2 bytes is given by

H0 ¼

0 1 0b�2
1 1 1b�2
0 1 0b�2
0b�1;2 T

2664
3775
R�b

;

S0

S1

S2

S3

S4

S5

S6

S7

Correctable
error

Error
detection

:AND

:OR

:EX-OR

:NOT

Uncorrectable
error

Figure 6.11 Error detection circuit of the code shown in Eq. (6.8). Source: [KANE84].� 1984 IEEE.

210 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



1
11

1
1

1
1 1

1
1

1

1
1

1

1
1

1

1
1

1
1

1
1

1 1

1
1

1
1 1

1
1

1
1

1

1 1

11

1
11

1
1

1
1

1

1
1

1
1

1
1

1
1

111

1
1

1

11

1
1

1

1 1
11

1

1
1 1

1

1
1 1

1

1
1

1
1

1
1

1 1
1

1
1

1

1
1

1
1

1

1
1 1

1

1
1

1
1

1
1

1

1
1

1
1

1

1
1

1

1
11

1
1

1
1

1
1

1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

1
1

1

1
1

1
1

1

1
1

1
1

11
1

1
1

1
1 1

11
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

1
1

1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

1
1

1
1

1
1

1

1
1

1
1

1

F
ig
u
re

6
.1
2

O
pt
im
al
od

d-
w
ei
gh

t-
co
lu
m
n
(7
2,
64
)S

E
C
-D
ED

-S
4E

D
co

de
.
S
ou

rc
e:

[T
S
U
C
86
].
�

19
86

N
ik
ke
iB

us
in
es

s
Pu

bl
is
he

rs
In
c.
;r
ep

ub
lis
he

d
by

pe
rm

is
si
on
.

211



0
1

2
3

1
1

1
1

1
1

1
1

1
1

1
1

68
69

70
71

1
1

1

1
1 1 1 1

1

1 1 1

4
5

6
7

1
1

1
1

1
1

1
1

1
1

1
1

8
9

10
11

1
1

1
1

1
1

1
1

1
1

1
1

12
13

14
15

1
1

1
1

1
1

1
1

16
17

18
19

1
1

1
1

20
21

22
23

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

24
25

26
27

1
1

1 1
1

1

28
29

30
31

1
1

1

1

32
33

34
35

36
37

38
39

40
41

42
43

44
45

46
47

1 11

11
1

1
1

1
1

1
1

1

1

1
1

1

B
its

 n
um

be
re

d 
by

 2
6,

 2
7,

 3
4,

 3
5,

 6
2,

 6
3,

 7
0,

 a
nd

 7
1 

ar
e 

ch
ec

k 
bi

ts
.

1
1

1
1

1

1 1
1

1
1

1 1

1
1

1

1
1

1
1

1
1

1

1 1

1
1

1

1
1

1

1
1

1

1

1 1

1
1

1

1
1

1

1
1

1

48
49

50
51

52
53

54
55

56
57

58
59

60
61

62
63

1
1

1

1
1

1

1
1

1
1

1
1

1

1

1

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1
1

1
1

1 1
111 1

1

1
1

1
1

1

64
65

66
67

1

1
1

1
11

1

1
1 1

1 1

F
ig
u
re

6
.1
3

O
pt
im
al
2
-m

od
ul
ar
iz
ed

od
d-
w
ei
gh

t-
co
lu
m
n
(7
2,
64
)S

E
C
-D
ED

-S
4E

D
co

de
.
S
ou

rc
e:

[H
O
LM

99
].

212



1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1 1

1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1 1
1

11
1

1
1

111
1

1
11

1
1

1

1
1

1
1

1
1

1
11

1
1

1 1
1

1
1

1
1

1
1

1
1

1
1

1
1

1 1

1
1

1 11
1

1
1 1 11

1
1

1

1
1

1
1

1
1

1
1

1 1

1
1

1
1

1
1

1
1 1

1
1 1

1
1

1 1
1

1

1
1

1
1

1
1

1
1

1
1

11
1

1

1
1

1

1
11

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1 1

1
1

1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

11 1
1 1

1

11

1
1

1
1

1
1

1
1

1
1

1
1

1
11

1
1

1

1
11

1
1

1

F
ig
u
re

6
.1
4

O
pt
im
al
od

d-
w
ei
gh

t-
co
lu
m
n
(7
2,
64
)S

E
C
-D
ED

-S
4E

D
co

de
(n
ea

rl
y
4
-m

od
ul
ar
iz
ed

).
S
ou

rc
e:

[B
O
YA

87
].

213



1
1

1
1

1

1

1
1

1
1

1
1

1

1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1 1

1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

1
1

1
1

11
1

1
1

1
1

1

1
1

1
1

1
1

1 1

11

1
1

1
1

1
1

1
1

1
1

1
1

1 1

11
1

1
1

1
1

1

1
1

1
1

1
1

1 1

11

1
1

1
1

1
1

1

1
1

1
1

1

1

1
1

1

1
1

1

1
1

1
1

1

1

1
1

1

1
1

1
1

1
1

1
1

1
1

11

1

1
1

1

1
1

1
1

1
1

1 1

1

1
1

1

1
1

1

1
1

1
1

1
1

1 1

1

1

1
1

1

1
1

1
1

1
1

1
1

1
1 1

1

1

1
1

1

1
1

1
1

1 1
11

1
1

1
1

F
ig
u
re

6
.1
5

(7
2,
64
)S

E
C
-D
ED

-S
4E

D
co

de
.
S
ou

rc
e:

[D
AV

Y
91
].
�

19
91

IE
EE

.

214



1
1

1
1

1
1

1
1 1

1
1

1
1

1
1

1

1
1

1
1

1
1

1

1 1
1

1
1

1
1

1

1

1

1
1

1
1

1

11
1

1
1

1
1

1
11

1
1

1
1

1
1

1
1

1

1
1

1
1

1
1 1

1
1

1
1

1
1

11

1
1

1
1

1
1 1

1

1
1

1
1

1
1

11

1
1

1
1

1
1 1

1

1
11

1
1

1
1

1
11

1
1

1
1

1
1

1
1

1 1
1

1
1

1
1

1

1
1 1

1

1
1

11

1

1
1

1

1
1

1
1

1

1
1

1 1
1

11

1

11
1

1
1

1
1

1

1 1
1

1
1

11

1
1

1

1
1

1
11

1

1
1

1
1

1
11

1

1 1
1

1
1

11
1

1

1 1 1
1

11

1

1
1

1
1

1
11

1
1

1
1

1 1
1

1

1

1
1

1
1

1
11

1
1

1
1

1 1
1

1

1
1

1
1

1
1

1
1

1

1
1

1
1

1
1

1
1

1
1

1 1
1

1
1

1

1
1

1
1 1

1
1

1

1
1

1
1

1
1

1

F
ig
u
re

6
.1
6

2
-M

od
ul
ar
iz
ed

(7
2,
64
)S

E
C
-D
ED

-S
4E

D
co

de
.
S
ou

rc
e:

[C
H
EN

84
].
�

C
op

yr
ig
ht
19
84

by
In
te
rn
at
io
na

lB
us
in
es

s
M
ac
hi
ne

s
C
or
po

ra
tio

n;
re
pu

bl
is
he

d
by

pe
rm

is
si
on
.

215



where 0b�2 means a row vector of b � 2 copies of 0, 1b�2 means a row vector of b� 2

copies of 1, and 0b�1;2 means ðb� 1Þ � 2 all-0 matrix. The resultingH matrix is given by a

concatenation of r Hi’s whose row vectors are cyclically rotated by one row compared to

the adjacent Hi’s ðsee Section 3:5Þ:

H ¼

H0jH1j � � � jHij � � � jHR�1

�
;

Hi ¼ Ri �H0; R ¼

0 0 0 1

1 0 0 0

0 1 0 0

..

. ..
. . .

. ..
. ..

.

0 0 1 0

266666664

377777775
R�R

:

Example 6.7

For b ¼ 3, the (15, 10) SEC-DED-S3ED code is shown as

H ¼

010 001 001 010 111

111 010 001 001 010

010 111 010 001 001

001 010 111 010 001

001 001 010 111 010

266664
377775:

For b ¼ 4, the (24, 18) SEC-DED-S4ED code is shown as

H ¼

0100 0001 0011 0010 0100 1111

1111 0100 0001 0011 0010 0100

0100 1111 0100 0001 0011 0010

0010 0100 1111 0100 0001 0011

0011 0010 0100 1111 0100 0001

0001 0011 0010 0100 1111 0100

26666664

37777775:

TABLE 6.3 Evaluation of the (72, 64) SEC-DED-S4ED Codes

ErrorDetectionCapabilities (%)

Codes
Triple-bit
errors

Double-byte
errors

8-Bit errorsover
any twobytes

Numberof
1’sinH Modularity

Figure 6.12 code [TSUC86] 43.72 71.44 100 216 No
Figure 6.13 code [HOLM99] 43.61 71.86 80.39 216 2-Modularized
Figure 6.14 code [BOYA87] 43.61 70.87 55.56 216 Nearly 4-modularized
Figure 6.15 code [DAVY91] 51.57 70.37 11.11 236 No
Figure 6.10 code [KANE84] 45.00 72.35 89.54 248 2-Modularized
Figure 6.16 code [CHEN84] 40.23 71.07 84.31 264 2-Modularized

216 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



The codes defined in Theorem 6.11 are optimal in the sense that these are odd-weight-

column rotational codes and also minimum-weight codes; that is, the number of 1’s inH is

minimum. As for the SEC-DED-SbED codes with other code parameters [GILS86], the

codes defined in Theorem 6.3 [DUNN85] are shown to be best for b ¼ 5, and R ¼ bþ 1

for b 	 5.

Table 6.4 shows the best codes so far obtained for byte length b bits and check-bit

length R. Figure 6.17 shows the relation between the information-bit lengthK and the check-

bit length R of the SEC-DED-SbED codes shown in this table for b ¼ 3, 4, 8, and 12 bits.

6.2 SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BIT ERROR
DETECTING (SbEC-DED) CODES

The SbEC code is capable of correcting single b-bit byte errors, but it is not guaranteed to

detect all random double-bit errors spanning over two bytes. Therefore an SbEC code

having random double-bit error detection capability, called SbEC-DED code, is required

as a small additional redundancy. The SbEC-DbED codes, of course, have an SbEC-DED

function but they require much more redundancy.

This section presents some code design methods of the SbEC-DED code that are

applicable to the high-speed memories using byte-organized RAM chips. In particular, we

will show that the code using elements in a coset of a subfield under addition gives a

practical (76, 64) S4EC-DED code with the same check-bit length of R ¼ 12 bits as the

Hamming S4EC code with byte length b ¼ 4 bits and K ¼ 64 bits.

6.2.1 Subfield

The definition of a subfield is given in Subsection 2.1.2. The following definition gives

more precise description of a subfield.

Definition 6.3 The set

0; T; Tl; T2l; . . . ; Tðp�1Þl ¼ I;

where 0; I; Tl, etc., are elements of GFðq ¼ 2bÞ, makes up a GFðp ¼ 2AÞ subfield of

GFðq ¼ 2bÞ if and only if A is a divisor of b and l is equal to ðq� 1Þ=ðp� 1Þ. &

Example 6.8

Consider the following subfield of GFð24Þ. The companion matrix T corresponding to

the fourth degree binary primitive polynomial gðxÞ ¼ x4 þ xþ 1 is written as

T ¼

0 0 0 1

1 0 0 1

0 1 0 0

0 0 1 0

2664
3775:

The set of powered elements, namely 0; T; T2; . . . ; T15 ¼ I , forms GFð24Þ. Then
the subset f0; T5; T10; T15 ¼ Ig forms a GFð22Þ subfield of GFð24Þ under A ¼ 2 and

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BIT ERROR DETECTING (SbEC-DED) CODES 217



b 
+

 1

b 
+

 2

b 
+

 3

b
+

 4

b 
+

 5

b 
>

 5

B
yt

e
le

ng
th

b
(b

its
)

C
he

ck
-

bi
t l

en
gt

h 
R

3 2 5 10 21 42

4 2 6 12 28 56

2 
  –

 2

5 3 7 15 31 63

2 
   

  –
 1

6 3 8 18 36 75

5(
2 

  –
  1

)

7 3 9 24 56 12
0

8(
2 

  –
  1

)

8 3 10 27 63 13
5

9(
2 

  –
 1

)

9 3 11 33 77 16
5

11
(2

   
 –

 1
)

b 
>

 9 3

b 
+

 2

3(
b 

+
 2

)

7(
b 

+
 2

)

15
(b

 +
 2

)

(2
   

   
– 

1)
(b

 +
 2

)
(2

   
– 

1)
/3

r–
1

r–
3

r/
2–

2
r–

b
+

1
r–

7
r–

8
r–

9
r–

10
r–

b
–1

(d
)

(b
)

(a
)

(c
)

(e
)

(f
)

(g
)

(h
)

(a
):
[C
H
E
N
83
];
(b
):
[K

A
N
E
84
];
(c
):
[D
U
N
N
85
];
(d
):
[R
E
D
D
78
];
(e
):
[C
H
E
N
83
];
(f
^h

):
[D
U
N
N
85

].
S
ou

rc
e:
[D
U
N
N
85
].
�

19
85

IE
EE

.
N
ot
e:
bx
c:
La

rg
es

ti
nt
eg

er
sm

al
le
r
th
an

or
eq

ua
lt
o
x;
dx
e:
S
m
al
le
st
in
te
ge

rl
ar
ge

r
th
an

or
eq

ua
lt
o
x;

:S
am

e
ty
pe

of
co

de
s.

T
A
B
L
E
6
.4

C
o
d
e
L
e
n
g
th
s
n
(B

y
te
s
)
o
f
S
E
C
-D

E
D
-S
b
E
D

C
o
d
e
s

218



l ¼ ð24 � 1Þ=ð22 � 1Þ ¼ 5. It can be easily understood that the subset satisfies the

axioms of the field.

The following lemmas pertaining to the subfield are demonstratedwithout proof [FUJI91b].

Lemma 6.1 Let A be a divisor of b, then l ¼ ð2b � 1Þ=ð2A � 1Þ > b.

Lemma 6.2 Every binary column vector of a b� b matrix element Til in the subfield

GFð2AÞ is different from that of the another b� b matrix element Tjl in the same subfield,

where i and j can take any value in the range of 1; 2; . . . ; 2A � 1, under i 6¼ j.

Lemma 6.3 No other elements than the identity element I in the subfield GFð2AÞ have
weight one binary column vectors.

6.2.2 Design for SbEC-DED Codes

Design by Using Elements of Subfield The elements from the subfield GFð2AÞ
can be used to design the H matrix of the SbEC-DED code with two rows in the parity-

check matrix [FUJI91a, 91b]. In terms of code length, A should be the largest divisor of b.

This always holds for b ¼ 2A as the best case.

Theorem 6.12 [PATE80] The code expressed by the followingH matrix is an SbEC-DED

code having maximum code length in bits N ¼ b � ð2A � 1Þ and check-bit length R ¼ 2b:

H ¼ I I I � � � I � � � I
Tl T 2l T3l � � � Til � � � Tð2

A�1Þl ¼ I

� �
;

where Tl; T2l; . . . ; Tð2
A�1Þl ¼ I, are elements in GFð2AÞ subfield of GFð2bÞ.

16 32 64 128 256

Information-bit length K

5

10

15

C
he

ck
-b

it 
le

ng
th

 R

b = 12

b = 8

b = 4

b = 3

K = 23
154

15
70

K = 225

223

18 24

41

K = 56

104

118
246

Figure 6.17 Relationship between check-bit lengths and information-bit lengths of the SEC-DED-SbED
codes.

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BIT ERROR DETECTING (SbEC-DED) CODES 219



Proof Let two single-bit errors be E1 and E2, located in the i-th byte and j-th byte,

respectively, and single-byte error be E3, located in the k-th byte. Suppose that the errors

E1 and E2 are miscorrected to the error E3. Then the following relations hold:

E1 þ E2 ¼ E3;

E1 � Til þ E2 � Tjl ¼ E3 � Tkl:

From these, we finally obtain the following relation:

E1 � ðTil þ TklÞðTjl þ TklÞ�1 ¼ E2:

Let ðTil þ TklÞðTjl þ TklÞ�1 be Tll. It is apparent that Tll 6¼ I. Since, by Lemma 6.3, Tll

does not have weight-one columns, we have E1 � Tll 6¼ E2 for any weight-one vectors E1

and E2. This is a contradiction. So the code in this theorem is an SbEC-DED code.

Q.E.D.

The SbED-DED code can be extended by adding a column vector as shown in the next

theorem.

Theorem 6.13 The SbEC-DED code shown in Theorem 6.12 is extended by adding one

column vector
I
0

� �
as follows:

H ¼ I I I I � � � I � � � I
0 Tl T2l T3l � � � Til � � � Tð2

A�1Þl ¼ I

� �
:

The maximum code length in bits is N ¼ b � 2A, and check-bit length is R ¼ 2b.

The preceding codes are problematic in that the code lengths are determined only by

byte length b.

Definition 6.4 The s� b slimmed matrix, where s 	 b, is a matrix whose s� b columns

are deleted from the original s� s matrix Til
s and is written as jTil

s jb. &

Theorem 6.14 Let Ts be a primitive element of GFð2sÞ, where s ¼ R� b and R 	 2b,

and let the set of 2A binary expressed s� s elements, namely 0, Tl
s , T

2l
s , . . ., Til

s , . . .,
Tðp�1Þls ¼ Is, be a GFðp ¼ 2AÞ subfield of GFð2sÞ. Also let jTil

s jb be an s� b slimmed

element of Til
s , where i ¼ 1; 2; � � � ; 2A � 1, and let Ib be an identity element of

GFð2bÞ. Then the following R� N H matrix shows the SbEC-DED code with code para-

meters of N ¼ b � 2A (bits) for any R and b in bits:

H ¼

Ib Ib � � � Ib � � � Ib

j0sjb jTl
s jb � � � jTil

s jb � � � jTð2A�1Þls jb ¼ jIsjb

26666664

37777775

"
b
#
"
s

#

:

220 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



This theorem can be easily proved, and therefore the proof is omitted.

Based on theHmatrix of the Theorem 6.14 code with two rows, a more general type of

SbEC-DED code having multiple rows in H can be designed as described in the next

theorem.

Theorem 6.15 The following H matrix having a linearly independent pair of columns

shows the SbEC-DED code with multiple rows:

H ¼

Ib Ib � � � � � � � � � � � � � � � Ib

elements from GFð2A1Þ subfield of GFð2s1Þ½ �

elements from GFð2A2Þ subfield of GFð2s2Þ½ �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

elements from GFð2AmÞ subfield of GFð2smÞ½ �

26666666666666666666666664

37777777777777777777777775

"
b

#
"
s1
#
"
s2

#
..
.

"
sm
#

;

where s ¼ R� b ¼ s1 þ s2 þ . . .þ sm for sj 	 b, j ¼ 1, 2, . . . ; m, Ib, is an identity element
of GFð2bÞ, and each element of GFð2AjÞ subfield of GFð2sjÞ, j ¼ 1, 2, . . . ; m, is a binary

expressed sj � b slimmed matrix. The maximum code length in bits is N ¼ b � 2A1þA2þ���þAm .

This theorem can be easily proved, and therefore the proof is omitted.

Example 6.9 (256, 240) S4EC-DED code

Let b ¼ 4 and R ¼ 16, then R� b ¼ 8þ 4. The elements ofGFð24Þ subfield ofGFð28Þ
and those of GFð22Þ subfield of GFð24Þ are used in the second and the third rows of the
H matrix, respectively:

GFð24Þ subfield of GFð28Þ ¼ f08; T17
8 ; T34

8 ; T51
8 ; . . . ; T255

8 ¼ I8g;
GFð22Þ subfield of GFð24Þ ¼ f04; T5

4; T10
4 ; T15

4 ¼ I4g;

H ¼
I4 I4 I4 � � � I4 � � � I4

j08j4 jT17
8 j4 jT34

8 j4 � � � jT17i
8 j4 � � � jT255

8 j4¼jI8j4
04 04 04 � � � T

5j
4 � � � T15

4

264
375:

Design by Using Elements of Multiplicative Coset The finite field GFð2bÞ
can be factored into l ¼ ð2b � 1Þ=ð2A � 1Þ multiplicative cosets by the subfield

GFð2AÞ.

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BIT ERROR DETECTING (SbEC-DED) CODES 221



Example 6.10

For b ¼ 4 and A ¼ 2, the subfield GFð22Þ can be used to factor GFð24Þ into l ¼ 5

multiplicative cosets as follows:

Q0 ¼ f0; T5; T10; T15 ¼ Ig ¼ GFð22Þ subfield of GFð24Þ
Q1 ¼ f0; T6; T11; Tg ¼ T �Q0

Q2 ¼ f0; T7; T12; T2g ¼ T2 �Q0

Q3 ¼ f0; T8; T13; T3g ¼ T3 �Q0

Q4 ¼ f0; T9; T14; T4g ¼ T4 �Q0:

Lemma 6.4 Every element in a multiplicative coset of the GFð2AÞ subfield of GFð2bÞ is
closed under addition in GFð2bÞ.

This lemma can be easily proved, and therefore the proof is omitted. The lemma leads

to the next theorem [FUJI91a, 91b].

Theorem 6.16 With elements in a multiplicative coset of the GFð2AÞ subfield of GFð2bÞ,
namely Qd ¼ f0; Tlþd; T2lþd; . . . ; Tð2

A�1Þlþdg, where d ¼ 0, 1, . . ., l� 1, the follow-

ing H matrix shows the SbEC-DED code with maximum code length in bits N ¼ b�2A:

H ¼
Ib Ib Ib � � � Ib � � � Ib

0R�bj jb Tlþd
R�b

�� ��
b

T2lþd
R�b

�� ��
b
� � � Tilþd

R�b
�� ��

b
� � � T

ð2A�1Þlþd
R�b

��� ���
b

2664
3775l b
lR� b

;

where j0R�bjb and jTilþd
R�b jb are ðR� bÞ � b binary slimmed elements of the original ones in

Qd, and Ib is an identity element in GFð2bÞ.

It is apparent that the SbEC-DED code having multiple rows inH can also be designed by

using the elements of a multiplicative coset as shown in Theorem 6.15.

Design by Using Elements of Additive Coset The finite field GFð2bÞ can be fac-

tored into 2b�A additive cosets by the subfield GFð2AÞ. Every element of the GFð2bÞ field
is in one and only one coset of a subfield GFð2AÞ.

Example 6.11

For b ¼ 4 and A ¼ 2, there exist four additive cosets of the GFð22Þ subfield of GFð24Þ
as shown below. In this case the companion matrix T is determined by the primitive

polynomial gðxÞ ¼ x4 þ xþ 1:

P0 ¼ f0; T5; T10; T15 ¼ Ig ¼ GFð22Þ subfield of GFð24Þ
P1 ¼ fT; T2; T4; T8g ¼ T þ P0

P2 ¼ fT3; T11; T12; T14g ¼ T3 þ P0

P3 ¼ fT6; T7; T9; T13g ¼ T6 þ P0:

222 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



Lemma 6.5 The addition with two elements in an additive coset results in an element of

the subfield GFð2AÞ.

This lemma can be easily proved by using the property of the additive coset. So we have

the following SbEC-DED code [HAMA91, FUJI93].

Theorem 6.17 For using elements in an additive coset of the GFð2AÞ subfield of

GFð2bÞ, the following H matrix shows the SbEC-DED code with maximum code length

in bits N ¼ b � 2A:

H2 ¼
Ib Ib Ib � � � Ib � � � Ib

Tp0 Tp1 Tp2 � � � Tpi � � � Tp2A�1

" #
;

where Ib is an identity element in GFð2bÞ and Tpi ’s, i ¼ 0, 1, 2, � � �, 2A � 1, are elements in

an additive coset.

From this theorem, it is apparent that the H matrix with multiple rows that satisfies

linear independence between any pair of columns gives the SbEC-DED code with

using elements in an additive coset. That is, the H matrix has the following structure:

all I elements are included in the first row and the remaining part of H with r � 1

rows has different column vectors from the elements of an additive coset, as shown

below:

Hr ¼

I I � � � I � � � I � � � I

� � � � � Ti1 � � � Tj1 � � � �
� � � � � Ti2 � � � Tj2 � � � �

..

. ..
.

� � � � � Tir�1 � � � Tjr�1 � � � �

266666664

377777775: ð6:9Þ

In this case, Ti1 , Ti2 , . . ., Tir�1 , Tj1 , Tj2 , . . . , Tjr�1 , are elements included in the

additive coset of GFð2AÞ and I is an identity element in GFð2bÞ. The maximum

number of column vectors, meaning the maximum code length n (bytes), can be

obtained as

n ¼ ð2AÞr�1 ¼ 2Aðr�1Þ: ð6:10Þ

By using the Hr with r rows above defined, we obtain the new SbEC-DED code with an

extended code length in the next theorem.

Theorem 6.18 The following H matrix shows the SbEC-DED code with a maximum

code length in bits N ¼ b � ð2Aðr�1Þ þ 2Aðr�t�1ÞÞ, where 1 � t � r � 2, elements in H

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BIT ERROR DETECTING (SbEC-DED) CODES 223



are included in an additive coset of GFð2AÞ except GFð2AÞ itself, and 0 and I are the zero
element and the identity element in GFð2bÞ, respectively:

Proof Because every pair of columns in H is linearly independent, the H matrix

satisfies the SbEC function. Next we consider the case of three types of errors ocur-

ring in the word. Let the two single-bit errors be E1 and E2, and the single-byte

error be E3. Then there are five cases of errors depending on the locations of the

errors.

1. All errors are located in one part of the word, corresponding to the region

including Hr in H, that is, region X indicated in H, or the region including Hr�t in
H, that is, the region Y in the H matrix not located in the span over the two

regions.

2. Errors E1 (or E2) and E3 are located in the different bytes of region X, and an error

E2 (or E1) is located in region Y.

3. Error E1 (or E2) is located in region X, and errors E2 (or E1) and E3 are located in

the different bytes of region Y.

4. Error E3 is located in region X, and errors E1 and E2 are located in the different

bytes of region Y.

5. Errors E1 and E2 are located in the different bytes of region X, and error E3 is

located in region Y.

H ¼ Hr

0 0 � � � 0

..

. ..
.
� � � ..

.

0 0 � � � 0

Hr�t

266666666666664

377777777777775

"

t

#

"

r � t

#

� � � � � � i � � � j � � � � � � � � � � � � � � � k � � � � � �

¼

I � � � I � � � I � � � I 0 0 � � � 0 � � � 0

� � � � � � Ti1 � � � Tj1 � � � � � � 0 0 � � � 0 � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

� � � � � � Tit�1 � � � Tjt�1 � � � � � � 0 0 � � � 0 � � � 0

� � � � � � Tit � � � Tjt � � � � � � I I � � � I � � � I

� � � � � � Titþ1 � � � Tjtþ1 � � � � � � � � � � � � � � � Tktþ1 � � � � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

� � � � � � Tir�1 � � � Tjr�1 � � � � � � � � � � � � � � � Tkr�1 � � � � � �

26666666666666664

37777777777777775

x??
t??y
x??

r � t??y

:

 ���������������X���������������! ������������Y����������!

224 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



In case 1, it is apparent that the indicated H matrix satisfies the SbEC-DED function of

Theorem 6.17 and the matrix shown in Eq. (6.9).

In cases 2 and 3, the errors E1 and E2 cannot be miscorrected to error E3 depending on

the structure of the matrix H.

In case 4, the error E3 cannot be miscorrected to errors E1 and E2 for the nonzero error

patterns of E1, E2, and E3.

As for case 5, let errors E1 and E2 be located in the i-th byte and the j-th byte of the

region X, respectively, and also let error E3 be located in the k-th byte of region Y. Suppose

that the errors E1 and E2 are miscorrected to error E3. Then the following relations hold:

E1 þ E2 ¼ 0; ð6:11Þ
E1 � Tit þ E2 � Tjt ¼ E3; ð6:12Þ
E1 � Titþ1 þ E2 � Tjtþ1 ¼ E3 � Tktþ1 : ð6:13Þ

Given Eq. (6.11), the Eqs. (6.12), and (6.13) are transformed into

E1 � ðTit þ TjtÞ ¼ E3; ð6:14Þ
E1 � ðTitþ1 þ Tjtþ1Þ ¼ E3 � Tktþ1 : ð6:15Þ

From Eqs. (6.14) and (6.15), we finally obtain the relation

ðTitþ1 þ Tjtþ1Þ � ðTit þ TjtÞ�1 ¼ Tktþ1 : ð6:16Þ

By Lemma 6.5, the result of the left-hand side in Eq. (6.16) is included in the subfieldGFð2AÞ,
while the element of the right-hand side in Eq. (6.16) is included in the additive coset. This

presents a contradiction. Hence the H matrix in the theorem shows the SbEC-DED code for

this error case. The H matrix also satisfies SbEC-DED function for all error cases. The

maximum code length in bits can be expressed easily from Eq. (6.10). Q.E.D.

Theorem 6.19 The following H matrix shows the SbEC-DED code with code para-

meters of N ¼ b � 2A � ð2Aðr�1Þ � 1Þ=ð2A � 1Þ and R ¼ r � b in bits for r 	 2:

whereHr,Hr�1,Hr�2, . . . ,H2, are the matrices defined in Theorems 6.17 and 6.18 and in

the matrix shown in Eq. (6.9).

H ¼

0 0 � � � 0 0 0 � � � 0 0 0 � � � 0

0 0 � � � 0 0 0 � � � 0

Hr � � � ..
.

Hr�1 Hr�2 0 0 � � � 0

H2

26666666666666664

37777777777777775
;

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BIT ERROR DETECTING (SbEC-DED) CODES 225



Proof In addition to the error cases mentioned in Theorem 6.18, it is necessary to con-

sider an error case where E1;E2, and E3 errors, defined in the proof of Theorem 6.18, are

located in different three regions. In this case it is apparent from the structure of the H
matrix that the error E3 cannot be miscorrected to the E1 and E2 errors.

From the above and the previous Theorems 6.17 and 6.18, the maximum code length in

bits can be expressed as

N ¼ b � fð2AÞr�1 þ ð2AÞr�2 þ . . .þ ð2AÞ2 þ 2Ag
¼ b � 2A � fð2AÞr�2 þ ð2AÞr�3 þ . . .þ 2A þ 1g

¼ b � 2A �
Xr�2
i¼0

2Ai

( )

¼ b � 2A � 2
Aðr�1Þ � 1

2A � 1
:

Q.E.D.

The code shown in Theorem 6.19 has better code length than the codes using elements

of subfield or multiplicative coset.

Figure 6.18 shows the relation between the information-bit length K and the check-

bit length R of the code shown in Theorem 6.19 for byte lengths b ¼ 4, 6, and 8 bits.

From this, the code shown in Theorem 6.19 is very practical from the point that the

S4EC-DED code with information-bit length K ¼ 64 is obtained with the same check-

bit length R ¼ 12 as that of the Hamming S4EC code with K ¼ 64. On the other

hand, the codes using elements of subfield or multiplicative coset require 13 check

bits for K ¼ 64.

C
he

ck
-b

it 
 le

ng
th

 R

0

4

8

12

16

20

24

1         2          4         8         16        32       64      128      256

Information-bit  length K

b = 4

b = 6

b = 8

K = 8

36 68

112

Figure 6.18 Relationship between check-bit lengths and information-bit lengths of the SbEC-DED codes.
Source: [FUJI93].� 1993 IEICE Japan.

226 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



The H matrix shown below is the (80, 68) S4EC-DED code using elements of an

additive coset, such as the elements of P1 shown in Example 6.11, and also using the

identity element I and zero element 0 in GFð24Þ.

H¼
I I I I I I I I I I I I I I I I 0 0 0 0

T T T T T2 T2 T2 T2 T4 T4 T4 T4 T8 T8 T8 T8 I I I I
T T2 T4 T8 T T2 T4 T8 T T2 T4 T8 T T2 T4 T8 T T2 T4 T8

24 35:
ð6:17Þ

The following matrix, shown below, is the (76, 64) S4EC-DED code deleted by one

column having maximum weight from the H shown in Eq. (6.17), and it is transformed

into, echelon canonical form. Computer simulation says that the code shown in Eq. (6.18)

has very high error detection capabilities of random double-byte errors and random triple-

bit errors, that is, 91.93% and 92.03%, respectively.

H¼
I I I I I I I I I I I I I I 0 0 I 0 0

T T2 T4 T8 T3 T11 T12 T14 T6 T7 T9 T13 I T5 T5 T10 0 I 0

T4 T8 T T2 T12 T14 T3 T11 T9 T13 T6 T7 I T5 T10 T5 0 0 I

24 35
ð6:18Þ

Single-byte error correction procedure of the SbEC-DED code is same as that of the

SbEC code. Double-bit error detection of the code requires the following logic operation:

ðNonzero syndromeÞ
^
ðNo byte error pointers existedÞ; ð6:19Þ

where
V

shows AND operation. That is, the code can detect double-bit errors when there

exist no byte error pointers for nonzero syndromes. It can be easily understood that the logic

operation of Eq. (6.19) can detect other multiple errors than double-bit errors, such as

double-byte errors and triple-bit errors, within the range of error detection capability of the

code. The hardware amount of this error detection logic is very small, around 10 to 20 gates.

Design by Using Elements of Subset of GF(2b) The former design methods are

based on using the cosets of a subfield ofGFð2bÞ. However, the code length depends on the
size of the cosets of the subfield of GFð2bÞ, and therefore they are inefficient when b is a

prime number, since there exist no nontrivial subfield. To overcome this disadvantage, a

more general construction method [XIAO96] using subsets of GFð2bÞ is presented here.

Definition 6.5 Suppose that T is a companion matrix corresponding to the primitive

polynomial gðxÞ over GFð2bÞ. We call� ¼ fTb; Tbþ1; . . . ; T2b�b�1g the weight-2 set
of GFð2bÞ. &

Lemma 6.6 The weight of any binary column vector of Ti 2 � is greater than or equal to 2.

Proof Let a be a primitive root of gðxÞ over GFð2bÞ. Then

Tj ¼ a j a jþ1 � � � a jþb�1 �
for j ¼ 0; 1; 2; . . . ; 2b � 2;

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BIT ERROR DETECTING (SbEC-DED) CODES 227



where ai’s weight is at least 2 for b � i � 2b � 2. Observe that if b � j � 2b � b� 1, and

ai is a column of Tj, then b � i � 2b � 2. Therefore ai’s weight is at least 2. Q.E.D.

Definition 6.6 Let G ¼ fTi1 ; Ti2 ; . . . ; Tikg be a subset of GFð2bÞ. We call G a

generating set in GFð2bÞ if ðTij þ TinÞðTim þ TinÞ�1 2 � for all distinct Tij , Tim , and

Tin in G. &

Clearly, any subset of a generating set in GFð2bÞ is a generating set.

Theorem 6.20 A subfield GFð2AÞ or an additive coset of the subfield GFð2AÞ of GFð2bÞ
is a generating set. Also a multiplicative coset of a subfield GFð2AÞ of GFð2bÞ plus zero is
a generating set.

Theorem 6.21 If F ¼ fTi1 ; Ti2 ; . . . ; Tivg is a generating set in GFð2bÞ, then

Fþ fTmg ¼ fTi1 þ Tm; . . . ; Tiv þ Tmg and

F � fTmg ¼ fTi1 � Tm; . . . ; Tiv � Tmg

are also generating sets in GFð2bÞ, for all Tm 2 GFð2bÞ.

Essentially Theorem 6.20 tells us that the generating set does exist and Theorem 6.21

tells us that varieties of generating sets can be found when an existing one is provided.

Example 6.12

Consider the field GFð24Þ ¼ f0; I; T; T2; . . . ; T14g. Clearly, GFð22Þ ¼
f0; I; T5; T10g is the nontrivial subfield of GFð24Þ. According to Theorem 6.20,

� ¼ GFð22Þ is a generating set in GFð24Þ. Moreover more generating sets can be

obtained by Theorem 6.21. For example, �1 ¼ �þ fTg ¼ fT; T2; T4; T8g and

�2 ¼ � � fT4g ¼ f0; T4; T9; T14g:

Because the generating set plays the key role in the design of the SbEC-DED code,

finding the generating set is important. Here we introduce a simple computer search

algorithm [XIAO96] for the generating set with given size in GFðqÞ.

Step 1. Generate the finite field GFðqÞ ¼ f0; I; T; T2; . . . ; Tq�2g.
Step 2. Input a positive integer v, the size of the desired generating set.

Step 3. Let � ¼ f�1; �2; . . . ; �ng be the family of all subsets each having v elements

in GFðqÞ.
Step 4. For i ¼ 1 to n do

If ðTij þ TinÞðTim þ TinÞ�1 2 �, for all distinct Tij , Tin , and Tim in �i,

then output �i and stop.

Example 6.13 [XIAO96]

By the algorithm above, we can find the following generating sets:

�1 ¼ fT26; T27; T29; T30g; �2 ¼ fT4; T27; T29; T30g;
�3 ¼ fT; T25; T29; T30g

228 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



in GFð25Þ, and

�4 ¼ f0; T73; T123; T136; T177; T233; T269; T284; T425; T480; T494g and

�5 ¼ fT2; T15; T48; T76; T143; T253; T270; T281; T342; T372; T420g

in GFð29Þ.

Using the elements of the generating set of GFð2bÞ, the SbEC-DED code with two rows

in its H matrix can be designed as below.

Theorem 6.22 Let F ¼ fTi1 ;Ti2 ; � � � ;Tivg be a generating set in GFð2bÞ. The code

expressed by the following H matrix is an SbEC-DED code having code length in bits

N ¼ v � b and check-bit length R ¼ 2b :

H ¼ Ib Ib � � � Ib
Ti1 Ti2 � � � Tiv

� �
:

Proof Every two column vectors of H are linearly independent and therefore the code is

of distance three or higher. Now let E1 and E2 be the error patterns with weight one

occurred at the m-th and the j-th bytes, respectively, and E3 be the byte error occurred at

the n-th byte. A miscorrection of two single-bit errors as a single-byte error implies that

E3 ¼ E1 þ E2;

E3 � Tin ¼ E1 � Tim þ E2 � Tij :

From the two equations above we have

ðTij þ TinÞðTim þ TinÞ�1 � E1 ¼ E2:

Let Tp ¼ ðTij þ TinÞðTim þ TinÞ�1. Since Tij ;Tin ;Tim 2 �, and � is a generating set in

GFð2bÞ, we have Tp 2 �. By Lemma 6.6, we know that the weight of any column vector

of Tp is 2 or higher. Thus Tp � E1 6¼ E2 for any weight-one vectors E1 and E2. This proves

that the code in this theorem is an SbEC-DED code. Q.E.D.

The code design presented here has the following advantages compared to the previous

ones.

1. If we choose the subfields, additive cosets, and multiplicative cosets plus zero used

in Theorems 6.12 through 6.17 as the generating sets, all the codes described in

these six theorems can be obtained.

2. If b is prime, there is no nontrivial subfield of GFð2bÞ. However, for the prime

number of b, we can find some generating sets in GFð2bÞ as shown in Example 6.13.

3. For an odd number of b, we can find generating sets in GFð2bÞ with more elements

than those of any proper subfield of GFð2bÞ. For example, �4 and �5 in GFð29Þ as
shown in Example 6.13. In this case we can obtain better SbEC-DED codes than

the previous ones.

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BIT ERROR DETECTING (SbEC-DED) CODES 229



Let � be a generating set with size v including the identity element I, and let

�� ¼ �� fIg. In the following H matrix defined on �, the elements are chosen in such a

way that any two columns are linearly independent:

Hr ¼

I � � � I � � � I

� � � Ti1 � � � Tj1 � � �
� � � Ti2 � � � Tj2 � � �
� � � Tir�1 � � � Tjr�1 � � �

266664
377775
x???
r???y
; ð6:20Þ

where Ti1 ;Tj1 2 �� and Ti2 ; � � � ;Tir�1 ;Tj2 ; � � � ; andTjr�1 2 �.
It can be easily proved that the matrixHr shows an SbEC-DED code with a code length

of ðv� 1Þvr�2 bytes. In general, we can construct the SbEC-DED code on � as in the

following theorem.

Theorem 6.23 Let � be a generating set with size v containing the identity element I in
GFð2bÞ. Then the following H matrix defines an SbEC-DED code with code length in bits

N ¼ b � vr�1 and check-bit length R ¼ r � b for r 	 2 :

Example 6.14

For an odd number of b ¼ 9, as we have shown in Example 6.13, there exist generating

sets �4 and �5 containing 11 elements in GFð29Þ. By Theorem 6.21,

�6 ¼ ðT73Þ�1 � �4 ¼ f0; I; T50; T63; T114; T160; T196; T211; T352; T407; T421g

is also a generating set that contains the identity element I. Thus �6 can be used as in

Theorem 6.23, and we obtain an SbEC-DED code with code length in bits

N ¼ 9 � 11r�1 that is much larger than that of the code given in Theorem 6.19 meaning

N ¼ 9 � 8ð8r�1 � 1Þ=7.

6.3 SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BIT ERROR
CORRECTING (SbEC-DEC) CODES

This section deals with the codes correcting both single b-bit byte errors and random

double-bit errors, but not correcting simultaneously. These type of codes are applied

H ¼

I I � � � I I I � � � I I I � � � I

I I � � � I I I � � � I

Hr � � � ..
.

Hr�1 Hr�2 I I � � � I

H2

26666666666666664

37777777777777775
:

230 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



today’s semiconductor memories with wide I/O data organization, which are extensively

found in the systems that are continually exposed by strong electromagnetic waves,

neutrons, and other cosmic rays. In these situations memory systems are highly vulnerable

to random double-bit errors, and therefore, in addition to correcting b-bit byte errors,

random double-bit error correction is needed to reduce the bit error rate to an acceptable

level. The SbEC-DEC codes with b ¼ 4 bits will be applied to the (4, 2) concept machine

in Subsection 12.4.1. Here we consider the situation where double-bit errors occur

simultaneously in one chip with wide I/O data B rather than randomly in the whole word.

The later subsection deals with this new type of SbEC-DEC codes, denoted as SbEC-

(DEC)B codes.

6.3.1 SbEC-DEC Codes

This subsection demonstrates how these type of codes can be designed, how to determine

the code length bounds, and evaluation of the codes designed [UMAN02a].

Code Conditions and Bounds The following theorems are fundamental to SbEC-

DEC code constructions.

Theorem 6.24 Let Esb be the set of single b-bit byte error patterns, and Ed be the set of

double-bit error patterns that corrupt exactly two bytes. The null space of H describes a

binary linear SbEC-DEC code if and only if

1. E �HT 6¼ 0 for all E 2 fEsb [ Edg,
2. E1 �HT 6¼ E2 �HT for all E1;E2 2 fEsb [ Edg with E1 6¼ E2,

where Esb \ Ed ¼ F, the null set, and HT is the transpose of H.

This theorem can be easily proved, and therefore its proof is omitted.

Theorem 6.25 A linear SbEC-DEC code needs at least 2b check bits.

Proof Condition 2 of Theorem 6.24 implies that wðE1 þ E2Þ binary columns of H are

linearly independent. Since wðE1 þ E2Þ takes all the integer values between 1 and 2b

inclusive for all E1;E2 2 Esb, 2b binary columns of H are linearly independent. Conse-

quently a linear SbEC-DEC code needs at least 2b check bits. Q.E.D.

Theorem 6.26 A linear ðN; KÞ SbEC-DEC code exists only if

N � K 	 log2
N

b
ð2b � 1Þ þ 1

2
NðN � bÞ þ 1

� �� �
;

where dxe shows the smallest integer greater than or equal to x.

Proof A codeword of length N (bits) has Nð2b � 1Þ=b distinct single b-bit byte errors.

This includes all the single-bit errors as well as double-bit errors occurring within a b-bit

byte. The number of distinct double-bit errors that do not occur within a b-bit byte is

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BIT ERROR CORRECTING (SbEC-DEC) CODES 231



given by NðN � bÞ=2. For the code capable of correcting random double-bit errors and

single b-bit byte errors, all these error patterns should generate Nð2b � 1Þ=bþ
NðN � bÞ=2 distinct error syndromes. From this, we have

2R � 1 ¼ 2N�K � 1 	 N

b
ð2b � 1Þ þ 1

2
NðN � bÞ:

By simply re-arranging variables, we can show that the inequality in Theorem 6.26

holds. Q.E.D.

Code Design Method Here a generic code design method, that is, a code design

method applicable to any value of byte length b is demonstrated.

Theorem 6.27 Let r 	 b and a be a primitive element of GFð2rÞ. Define the r � b bin-

ary matrix Ti and eTTi as follows:

Ti ¼
j j j j
ai aiþ1 aiþ2 � � � aiþb�1

j j j j

264
375;

eTTi ¼
j j j j
a3i a3ðiþ1Þ a3ðiþ2Þ � � � a3ðiþb�1Þ

j j j j

264
375;

where i ¼ 0, 1, 2, � � �, 2r � 2 and aj denotes a binary column vector of GFð2rÞ for
0 � j < 2r � 2. The null space of

H ¼
Ib Ib Ib Ib � � � Ib

T0 Tb T2b T3b � � � Tðn�1ÞbeTT0 eTTb eTT2b eTT3b � � � eTTðn�1Þb
264

375
is an SbEC-DEC code with the code length in bits N ¼ n � b and a check-bit length

R ¼ 2r þ b, where Ib denotes the b� b identity matrix and n ¼ 2r=bb c.

Proof We know that the submatrix containing the upper bþ r binary rows of the H

matrix represents the parity-check matrix of an SbEC code and the submatrix containing

the lower 2r binary rows represents the parity-check matrix of a BCH DEC code. There-

fore to show that the code is indeed SbEC-DEC, we only need to show that condition 2 of

Theorem 6.24 is satisfied for E1 2 Ed and E2 2 Esb; that is, double-bit errors, when they

occur in two byte positions, generate syndromes that are not equal to single-byte error

syndromes. Let E1 2 Ed and E2 2 Esb such that E1 �HT ¼ S1 and E2 �HT ¼ S2, where S1
and S2 are syndrome patterns corresponding to errorsE1 andE2, respectively. SinceE1 2 Ed,

there exists u1; u
0
1 2 GFð2bÞwithwðu1Þ ¼ wðu01Þ ¼ 1 such that S1 ¼ ½u1 þ u01 s1 s01�

T
, where

s1; s
0
1 2 GFð2rÞ. Similarly S2 ¼ ½u2 s2 s02�

T
for some u2 2 GFð2bÞ with wðu2Þ 6¼ 0, where

s2; s
0
2 2 GFð2rÞ. Suppose S1 ¼ S2; then, u1 þ u01 ¼ u2, meaning wðu1 þ u01Þ ¼ wðu2Þ as

well. Clearly, wðu1 þ u01Þ ¼ 0 cannot happen because wðu2Þ 6¼ 0. Therefore we have

wðu2Þ ¼ 2. This means that wðE1Þ þ wðE2Þ ¼ 4, which contradicts the DEC capability;

232 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



that is, none of the four binary columns ofH are linearly dependent. It is apparent that the

code length in bytes is given by n ¼ b2r=bc. Q.E.D.

Decoding Procedure The SbEC-DEC codes derived by using Theorem 6.27 can be

easily decoded by combining the decoding procedures of SbEC and DEC codes. Let v be

the received word. The syndrome S can be calculated as follows:

v �HT ¼ S ¼ ½S0 S1 S2�;

where S0 2 GFð2bÞ and S1; S2 2 GFð2rÞ. If S ¼ 0, the received word is assumed to be error

free. Otherwise, if wðS0Þ ¼ 0 or wðS0Þ ¼ 2, we assume that there exist random double-bit

errors; then we apply the existing decoding method of double-bit error correction by using

the syndromes S1 and S2 to find the error location. If, on the other hand, wðS0Þ 6¼ 0 and

wðS0Þ 6¼ 2, we apply the decoding procedure of single-byte error correction.

Evaluation Figure 6.19 illustrates the relationship between the information-bit length

and the check-bit length of the S4EC-DEC code [DAVY89] and the SbEC-DEC codes

with b ¼ 6, and 8 bits, and includes the bounds for these codes. We observe that for the

practical information-bit length of 64 the S8EC-DEC code requires 24 check bits, and the

Davydov-Labinskaya S4EC-DEC code shown in next subsection requires only 15 check

bits. In comparison, the S4EC-DEC code shown here requires 18 check bits. However,

RAM chips with wide I/O data, such as 16 and 32 bits, are usually made up of highly inde-

pendent memory subarrays [SAEK96, SUNA95, NUMA89]. In these cases we can con-

sider the subarray output, which is typically 4 or 8 bits, as a byte. Hence the indicated

codes can be applied to memory systems using RAM chips with wide I/O data.

8

10

12

14

16

18

20

22

24

26

28

16 32 64 128 256 512 1,024

b = 8

b = 6

b = 4

b = 8

b = 6

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

b = 4 [DAVY89]

12
21

33
51

K = 76
113

165239
344

493

21

51

113

K = 239

493

492

488

234

K = 232

K = 108

42

71
107

159
233

319
467

SbEC-DEC code bound

SbEC-DEC code

Figure 6.19 Check-bit lengths comparedwith information-bit lengths of the SbEC-DEC codeswith b ¼ 4; 6,
and 8 bits. Source: [UMAN02a].� 2002 IEICE Japan.

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BIT ERROR CORRECTING (SbEC-DEC) CODES 233



6.3.2 S4EC-DEC Codes — Davydov-Labinskaya Code —

Davydov and Drozhzhina-Labinskaya have constructed an excellent SbEC-DEC code

with the practical code parameter of b ¼ 4 bits [DAVY89].

Code Design Method Let a be a primitive element of GFð2rÞ. Define

Hðai; aiþ1Þ ¼

1 1 1 1

0

ai

 !
1

ai

 !
0

aiþ1

 !
1

aiþ1

 !

0

ai

 !3
1

ai

 !3
0

aiþ1

 !3
1

aiþ1

 !3

26666666664

37777777775
;

¼

1 1 1 1

hi 0 hi 1 hi 2 hi 3

h3i 0 h3i 1 h3i 2 h3i 3

2666664

3777775
x?y1x?yr þ 1;x?y r þ 1

hi 0 ¼
0

ai

� �
; hi 1 ¼

1

ai

� �
; hi 2 ¼

0

aiþ1

� �
; hi 3 ¼

1

aiþ1

� �
;

0; 1 2 GFð2Þ;

where hi 0; hi 1; hi 2, and hi 3 are elements of GFð2rþ1Þ. This Hðai; aiþ1Þ shows the parity-

check matrix of the BCH code with a minimum Hamming distance of 6. In the Hðai; aiþ1Þ
matrix above, there exist the following properties:

Property 1.

hi 0 þ hi 1 þ hi 2 þ hi 3 ¼
0

0r

� �
¼ 0rþ1:

Property 2.

hi 0 þ hi 1 ¼
1

0r

� �
¼ 1rþ1;

hi 2 þ hi 3 ¼
1

0r

� �
¼ 1rþ1:

The 0x and 1rþ1 stand for binary columnvectorswith x zeros and ð1 0Tr Þ
T ¼

r  

ð1 0 � � � 0ÞT ,

respectively.

234 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



Lemma 6.7

h3i 0 þ h3i 1 þ h3i 2 þ h3i 3 ¼ hi 0 þ hi 2ð Þ2þ hi 0 þ hi 2ð Þ
¼ hi 1 þ hi 3ð Þ2þ hi 1 þ hi 3ð Þ
6¼ 0rþ1:

Proof From property 2, hi 1 ¼ 1þ hi 0 and hi 3 ¼ 1þ hi 2, where 1 ¼ 1rþ1. Substituting
these to h3i 0 þ h3i 1 þ h3i 2 þ h3i 3, we have

h3i 0 þ h3i 1 þ h3i 2 þ h3i 3

¼ h3i 0 þ 1þ hi 0ð Þ3þh3i 2 þ 1þ hi 2ð Þ3

¼ h2i 0 þ h2i 2 þ hi 0 þ hi 2

¼ hi 0 þ hi 2ð Þ2þ hi 0 þ hi 2ð Þ
6¼ 0rþ1:

Similarly, substituting hi 0 ¼ 1þ hi 1 and hi 2 ¼ 1þ hi 3, we have

h3i 0 þ h3i 1 þ h3i 2 þ h3i 3

¼ 1þ hi 1ð Þ3þh3i 1 þ 1þ hi 3ð Þ3þh3i 3
¼ h2i 1 þ h2i 3 þ hi 1 þ hi 3

¼ hi 1 þ hi 3ð Þ2þ hi 1 þ hi 3ð Þ
6¼ 0rþ1:

Q.E.D.

Lemma 6.8 Addition of any three columns inHðai; aiþ1Þ gives 1 x y½ �T , where x is equal to the
remaining one column other than these three columns, and yþ x3 ¼ h3i 0 þ h3i 1 þ h3i 2 þ h3i 3:

Proof If we choose distinct three column vectors such as the a-th, b-th, and c-th columns

in Hðai; aiþ1Þ (i.e., the remaining column is the d-th one), a; b; c; d 2 f0; 1; 2; 3g, then
from property 1,

x ¼ hi a þ hi b þ hi c ¼ hi d ð, hi a þ hi b þ hi c þ hi d ¼ 0Þ;
yþ x3 ¼ h3i a þ h3i b þ h3i c

� �
þ hi a þ hi b þ hi cð Þ3

¼ h3i a þ h3i b þ h3i c
� �

þ h3i d

¼ h3i 0 þ h3i 1 þ h3i 2 þ h3i 3:

Q.E.D.

Theorem 6.28 Let H be defined as follows:

H ¼ Hð0; 1Þ Hða; a2Þ Hða3; a4Þ � � � Hðai; aiþ1Þ � � � Hða2r�3; a2r�2Þ
h i

:

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BIT ERROR CORRECTING (SbEC-DEC) CODES 235



Then the null space of H is the S4EC-DEC code with the code length in bits N ¼ 2rþ1 and
the check-bit length R ¼ 2r þ 3.

Proof Syndromes are presented in Table 6.5 for correctable errors such as single-bit

errors, double-bit errors, weight-three errors as well as weight-four errors in the i-th byte.

From this table we see that the syndromes of all correctable errors are nonzero and

distinct from each other. Also syndromes of weight-three errors and weight-four errors in

the i-th byte are different from those in the j-th byte, i 6¼ j, because h3i 0 þ h3i 1 þ h3i 2
þh3i 3 6¼ h3j 0 þ h3j 1 þ h3j 2 þ h3j 3 and hi d 6¼ hj d.

It is apparent that the code expressed by H has a code length in bits N ¼ 2rþ1 and a

check-bit length R ¼ 2r þ 3. Q.E.D.

Example 6.15 (80, 65) S4EC-DEC code [DAVY89]

If we use r ¼ 6 in the code design, then we have N ¼ 27 ¼ 128 bits and R ¼ 15 bits.

This gives us a (128, 113) S4EC-DEC code, where a is a root of primitive polynomial

gðxÞ ¼ x6 þ xþ 1, and expressed as binary column vector with sixth degree:

To obtain a practical code with 64 information bits, we can shorten this code. After

deleting the first two columns and the last 46 columns from the matrix above, we obtain

the parity-check matrix in Figure 6.20, showing an (80, 65) S4EC-DEC code in its

binary form.

Figure 6.21 shows the relationship between the check-bit length and the

information-bit length of S4EC-DEC code and its bound.

Decoding Procedure For a received word v, we compute the syndrome as

v �HT ¼ S ¼
p

x
y

24 35:

1 1 1 1 1 1 1 1

0
0

1
0

0
1

1
1

0
α

1
α

0
α2

1
α2

0
0

3
1
0

3
0
1

3
1
1

3
0
α

3
1
α

3
0

α2

3
1

α2

3

1 1 1 1 1 1 1 1

0
α3

1
α3

0
α4

1
α4

0
α61

1
α61

0
α62

1
α62

0
α3

3
1

α3

3
0

α4

3
1

α4

3
0

α61

3
1

α61

3
0

α62

3
1

α62

3

236 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



The decoding is done as follows:

1. S ¼ 0 �! No errors.

2. S 6¼ 0.

a. ðp ¼ 1Þ ^ ðy ¼ x3Þ �! single-bit errors.

b. ðp ¼ 1Þ ^ ðy 6¼ x3Þ �! weight-three single-byte errors.

c. ðp ¼ 0Þ ^ ðx 6¼ 0Þ �! random double-bit errors.

d. ðp ¼ 0Þ ^ ðx ¼ 0Þ �! weight-four single-byte errors.

Figure 6.22 shows a decoding procedure for the S4EC-DEC code.

TABLE 6.5 Syndromes for Correctable Errors

Correctable Errors
Syndrome

p

x

y

2664
3775
l 1

l rþ 1

l rþ 1

Single-bit errors 1

x

y

2664
3775 p ¼ 1

y ¼ x 3

Double-bit errors 0

x

y

2664
3775 p ¼ 0

x 6¼ 0rþ1

Weight-3 errorsin the i-thbyte 1

x

y

26664
37775

p ¼ 1

x ¼ hid

y 6¼ x3
,y þ x3 ¼ h3i0 þ h3i1 þ h3i2 þ h3i3

6¼ 0rþ1

 !

Weight-4 errorsinthe i-thbyte 0

0

y

26664
37775
p ¼ 0

x ¼ 0rþ1

y ¼ h3i0 þ h3i1 þ h3i2 þ h3i3 6¼ 0rþ1

Figure 6.20 (80, 65) S4ED-DEC code.

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BIT ERROR CORRECTING (SbEC-DEC) CODES 237



6.3.3 SbEC-(DEC)B Codes

Existing byte error control codes require too many check bits if applied to a memory

system that uses any of the recent semiconductor RAM chips with wide I/O data such as

16 or 32 bits. However, semiconductor RAM chips are highly vulnerable to random

double-bit within a chip errors when they are used in some applications, such as in

satellite memory systems. In satellite systems it is therefore necessary to design suitable

new codes with a double-bit within a chip error correcting capability for the computer

memory [UMAN02b].

S4EC-DEC code bound

Davydov-Labinskaya 
S4EC-DEC code 

C
he

ck
-b

it 
le

ng
th

   
R

8

10

12

14

16

18

20

8 16 32 64 128 256 512
Information-bit length   K

7

K = 21

51

113

239

493

21

12

33

51

113

165

239

344

493

K = 76

Figure 6.21 Check-bit lenghts comparedwith information-bit lengths of theDavydov-Labinskaya S4EC-DEC
codes.

Calculate S

S = [p x y]  = 0 ?T

p = 0 ?

y = x   ?3

x = 0 ?

No

No

No

Yes

Yes

Yes

No

Yes

Single-bit error correctionWeight-3 byte error correction

Codeword

Double-bit error correction Weight-4 byte error correction

Figure 6.22 Decoding procedure for the S4EC-DEC code.

238 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



The latest semiconductor RAM chips have a multi-bank architecture. Each bank is

generally constructed with highly independent subdivided memory arrays called memory

subarrays. Figure 6.23 shows an example of the architecture of a 16 Mb DRAM chip

[SUNA95]. Note how a 16-bit data output, consisting of four 4-bit outputs from four 2 Mb

memory subarrays is readout from the chip. Since the subarrays within the chip are highly

independent of each other, the 4-bit data output from a 2Mbmemory subarray forms a group

of data bits called a byte. The entire 16-bit output of the memory chip is called a block.

Figure 6.24 illustrates the hierarchical organization of the bit, byte, and block of a chip data

output. Unlike the previous byte-organized memory systems where a chip output is called a

byte, here the subarray output is called a byte and the chip output is called a block.

Because of the presently extensive use of the above type of RAM chips in high-speed

memories, this subsection is devoted to a class of codes called single b-bit byte error correcting

and double-bit within aB-bit block error correcting (SbEC-(DEC)B) codes. These codes correct

single b-bit byte errors and random double-bit errors occurring within a chip output.

Code Conditions and Bounds Throughout this subsection we will consider two sets

of error patterns, Eb and E2=B, where Eb ¼ fE 2 GFð2BÞ j E is a single b-bit byte error

pattern withwðEÞ 6¼ 2g andE2=B ¼ fE 2 GFð2BÞ j wðEÞ ¼ 2g. The error setE2=B includes

all double-bit error patterns that corrupt a single memory chip, in other words, error patterns

Subarray data 
output (4 bits) = Byte

Chip data output (16 bits ) = Block

B
an

k 
A

B
an

k 
B

Control Circuits Data I/O Circuits

2M
b

2M
b

2M
b

2M
b

2M
b

2M
b

2M
b

2Mb Memory subarray

2M
b

Figure 6.23 Organization of the 16Mb semiconductor DRAMchipwith 16-bit input /output.

Block

Byte

Bit

Figure 6.24 Organization of the bit, byte, and block of memory chip data output. Source: [UMAN02b]. � 2002

IEICE Japan.

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BIT ERROR CORRECTING (SbEC-DEC) CODES 239



of all random double-bit within a B-bit block errors. The error set Eb contains all single

b-bit byte error patterns excluding the double-bit error patterns. Since, for all E0 2 Eb,

0 6¼ wðE0Þ 6¼ 2 and, for all E1 2 E2=B, wðE1Þ ¼ 2, we have Eb \ E2=B ¼ ;, where ; is the
empty set. The following theorems are fundamental to the SbEC-(DEC)B code design.

Theorem 6.29 Let H ¼ ½H0 H1 H2 � � � Hn�1� where Hi, for 0 � i < n is an R� B

binary submatrix. The null space of H describes a binary linear ðnB; nB� RÞ SbEC-
(DEC)B code if and only if

1. E �HT
i 6¼ 0 for all E 2 fEb [ E2=Bg, 0 � i < n,

2. E1 �HT
i 6¼ E2 �HT

i for all E1;E2 2 fEb [ E2=Bg, E1 6¼ E2, 0 � i < n,

3. E1 �HT
i 6¼ E2 �HT

j for all E1;E2 2 fEb [ E2=Bg, 0 � i < j < n,

where HT is the transpose of H.

Proof To correct all single b-bit byte errors, the following three conditions are neces-

sary and sufficient:

1. E �HT
i 6¼ 0 for all E 2 Eb, 0 � i < n.

2. E1 �HT
i 6¼ E2 �HT

i for all E1;E2 2 Eb, E1 6¼ E2, 0 � i < n.

3. E1 �HT
i 6¼ E2 �HT

j for all E1;E2 2 Eb, 0 � i < j < n.

To correct all double-bit errors within a B-bit block, the following three conditions are

necessary and sufficient:

1. E �HT
i 6¼ 0 for all E 2 E2=B, 0 � i < n.

2. E1 �HT
i 6¼ E2 �HT

i for all E1;E2 2 E2=B, E1 6¼ E2, 0 � i < n.

3. E1 �HT
i 6¼ E2 �HT

j for all E1;E2 2 E2=B, 0 � i < j < n.

To distinguish between the single b-bit byte errors and the double-bit within a B-bit block

errors, the following condition is necessary and sufficient:

E1 �HT
i 6¼ E2 �HT

j for all E1 2 Eb; all E2 2 E2=B; and 0 � i; j < n:

Conditions 1, 2, and 3 of Theorem 6.29 include all these conditions and inversely all these

conditions result in the conditions of Theorem 6.29. Therefore we have the necessary and

sufficient conditions for correcting single b-bit byte errors and random double-bit errors

within a B-bit block. Q.E.D.

Theorem 6.30 A linear ðN; KÞ SbEC-(DEC)B code exists only if

N � K 	 log2
N

b
ð2b � 1Þ þ 1

2
NðB� bÞ þ 1

� �� �
;

where dxe shows the smallest integer greater than or equal to x.

240 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



Proof A codeword of length N (bits) can have Nð2b � 1Þ=b distinct single b-bit byte

errors. The number of double-bit errors occurring within a B-bit block, not the single

b-bit byte errors themselves, is NðB� bÞ=2. From this we have

2R � 1 ¼ 2N�K � 1

	 N

b
ð2b � 1Þ þ 1

2
NðB� bÞ:

By simple re-arrangement of variables in this inequality, we can show that the inequality in

Theorem 6.30 holds. Q.E.D.

Theorem 6.31 A binary linear SbEC-(DEC)B code needs at least 2b check bits.

Proof An SbEC-(DEC)B code needs at least 2b check bits because conditions 2 and 3 of

Theorem 6.29 imply that maximum 2b binary columns of the parity-check matrix H are

linearly independent. Q.E.D.

Code Design Method The code design method presented here uses short ðB; B� R0Þ
SbEC-DEC codes, shown previously in Subsection 6.3.1, to obtain practical SbEC-

(DEC)B codes with longer code lengths. The codes obtained by this method are practical

in that they do not require too many redundant bits at the usual information-bit lengths and

they are easily parallel decodable.

Theorem 6.32 Let Ĥ be a parity-check matrix of a ðB; B� R0Þ SbEC-DEC code. Let a
be a primitive element of GFð2rÞ such that r 	 maxðb; dlog2ðBþ 1ÞeÞ. Define the r � B

binary submatrix

Mj ¼

j j j j

aj ajþ1 ajþ2 � � � ajþB�1

j j j j

2664
3775

for 0 � j � 2r � 2, where

j
ak

j
denotes the binary column vector of GFð2rÞ for 0 � k �

2r � 2. The null space of

H ¼ Ĥ Ĥ Ĥ � � � Ĥ

O M0 M1 � � � M2r�2

" #

is an SbEC-(DEC)B code with code length in bits N ¼ 2rB and check-bit length

R ¼ R0 þ r. Here O is an all zero r � B binary submatrix.

Proof Since Ĥ is a parity-check matrix of a ðB; B� R0Þ SbEC-DEC code, we have

E � ĤT 6¼ 0, and also E1 � Ĥ
T 6¼ E2 � Ĥ

T
for any E; E1; E2 2 fEb [ E2=Bg with E1 6¼ E2.

Therefore conditions 1 and 2 of Theorem 6.29 are clearly satisfied.

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BIT ERROR CORRECTING (SbEC-DEC) CODES 241



On the other hand, we observe that the condition r 	 max b; dlog2ðBþ 1Þeð Þ implies

that 2r 	 Bþ 1 and r 	 b. Subsequently 2r 	 Bþ 1 implies that 0 6¼ E �MT
0 2 GFð2rÞ

for all E 2 E2=B, and r 	 b implies that 0 6¼ E �MT
0 2 GFð2rÞ for all E 2 Eb. Therefore

for all E 2 fEb [ E2=Bg, 0 6¼ E �MT
0 2 GFð2rÞ holds. Let E1 and E2 2 fEb [ E2=Bg be

such that

E1 �
Ĥ

Mi

" #T
¼ E2 �

Ĥ

Mj

" #T
or

E1 �
Ĥ

Mi

" #T
¼ E2 �

Ĥ

O

" #T

for 0 � i 6¼ j < n. We know that E1 � Ĥ
T ¼ E2 � Ĥ

T
implies E1 ¼ E2 because Ĥ itself is a

parity-check matrix of a ðB; R0Þ SbEC-DEC code. Therefore E1 �MT
i ¼ E2 �MT

j or

E1 �MT
i ¼ E2 �OT implies ai � ðE1 �MT

0 Þ ¼ aj � ðE2 �MT
0 Þ or ai � ðE1 �MT

0 Þ ¼ 0, where

0 6¼ E1 �MT
0 ¼ E2 �MT

0 2 GFð2rÞ. This is a contradiction because 0 6¼ ai 6¼ aj; thus

condition 3 of Theorem 6.29 is also satisfied. Q.E.D.

As an example of the code we consider the practical case where the chip data output is

16 bits and the subarray data output is 4 bits, meaning b ¼ 4 and B ¼ 16. We need to

choose r such that r 	 b ¼ 4 and 2r 	 Bþ 1 ¼ 17. This explains r 	 5.

By using the (16, 7) S4EC-DEC code presented in [DAVY89] and taking r ¼ 5, we can

design a S4EC-(DEC)16 code with code length N ¼ 25 � 16 ¼ 512 bits and a check-bit

length R ¼ ð16� 7Þ þ 5 ¼ 14. We can shorten this (512, 498) S4EC-(DEC)16 code to

obtain a practical code with information-bit lengths 64, 128, and 256. Figure 6.25 shows

the first and the last four blocks of the (512, 498) S4EC-(DEC)16 code in binary form.

Decoding Procedure Let v be the received word. The syndrome S can be calculated

as follows: v �HT ¼ S ¼ ½S0 S1�, where S0 2 GFð2R0 Þ and S1 2 GFð2rÞ. Then

Ĥ Ĥ Ĥ � � � Ĥ
O M0 M1 � � � M2r�2

� �
! S0
! S1

:

The syndrome vector S0 corresponds to the ðB; B� R0Þ SbEC-DEC code. We can

decode S0 by using any ðB; B� R0Þ SbEC-DEC decoding methods [DAVY89, MASS96].

The decoding of S0 could detect an uncorrectable error pattern or yield a correctable error

pattern E 2 fEb [ E2=Bg. In the latter case, if S1 ¼ 0, the first block is in error; otherwise,

we calculate E �MT
i for 0 � i � 2r � 2 until we find some j, where 0 � j � 2r � 2, such

that E �MT
j ¼ S1 holds. If such a j is found successfully, the ðjþ 1Þ-th block is in error,

otherwise the error pattern is uncorrectable.

Evaluation Figure 6.26 shows the relationship between the information-bit lengths and

the check-bit lengths of the SbEC-(DEC)B codes designed by Theorem 6.32 and the SbEC-

(DEC)B bounds indicated in Theorem 6.30 for the two practical cases where B ¼ 16 and

b ¼ 4, and B ¼ 8 and b ¼ 4. The S4EC-(DEC)8 code presented here requires only 12 check

bits for the practical information length of 64 bits. Further, for longer information-bit lengths

242 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111
0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101
0000 0011 0011 1111 0000 0011 0011 1111 0000 0011 0011 1111 0000 0011 0011 1111
0011 0011 1111 0000 0011 0011 1111 0000 0011 0011 1111 0000 0011 0011 1111 0000
0000 1100 1111 1100 0000 1100 1111 1100 0000 1100 1111 1100 0000 1100 1111 1100
0100 0111 0000 1001 0100 0111 0000 1001 0100 0111 0000 1001 0100 0111 0000 1001
0001 1100 0100 1001 0001 1100 0100 1001 0001 1100 0100 1001 0001 1100 0100 1001
0010 0100 0001 1101 0010 0100 0001 1101 0010 0100 0001 1101 0010 0100 0001 1101
0011 1100 1111 1111 0011 1100 1111 1111 0011 1100 1111 1111 0011 1100 1111 1111
0000 0000 0000 0000 1000 0100 1011 0011 0000 1001 0110 0111 0001 0010 1100 1111
0000 0000 0000 0000 0100 0010 0101 1001 1000 0100 1011 0011 0000 1001 0110 0111
0000 0000 0000 0000 0010 0101 1001 1111 0100 1011 0011 1110 1001 0110 0111 1100
0000 0000 0000 0000 0001 0010 1100 1111 0010 0101 1001 1111 0100 1011 0011 1110
0000 0000 0000 0000 0000 1001 0110 0111 0001 0010 1100 1111 0010 0101 1001 1111

. . .

. . .

1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111
0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101
0000 0011 0011 1111 0000 0011 0011 1111 0000 0011 0011 1111 0000 0011 0011 1111
0011 0011 1111 0000 0011 0011 1111 0000 0011 0011 1111 0000 0011 0011 1111 0000
0000 1100 1111 1100 0000 1100 1111 1100 0000 1100 1111 1100 0000 1100 1111 1100
0100 0111 0000 1001 0100 0111 0000 1001 0100 0111 0000 1001 0100 0111 0000 1001
0001 1100 0100 1001 0001 1100 0100 1001 0001 1100 0100 1001 0001 1100 0100 1001
0010 0100 0001 1101 0010 0100 0001 1101 0010 0100 0001 1101 0010 0100 0001 1101
0011 1100 1111 1111 0011 1100 1111 1111 0011 1100 1111 1111 0011 1100 1111 1111
0101 1001 1111 0001 1011 0011 1110 0011 0110 0111 1100 0110 1111 0001 1011 1010
0010 1100 1111 1000 0101 1001 1111 0001 1011 0011 1110 0011 1111 1000 1101 1101
1100 1111 1000 1101 1001 1111 0001 1011 0011 1110 0011 0111 1000 1101 1101 0100
0110 0111 1100 0110 1100 1111 1000 1101 1001 1111 0001 1011 1100 0110 1110 1010
1011 0011 1110 0011 0110 0111 1100 0110 1100 1111 1000 1101 1110 0011 0111 0101

Figure 6.25 Example of (512, 498) S4EC-(DEC)16 code. Source: [UMAN02b].� 2002 IEICE Japan.

10

12

14

16

32 64 128 256 512 1,024 2,048

Infomation-bit length K

C
he

ck
-b

it 
le

ng
th

R

43

94

198

408

827

1,666498

1,009
S4EC-(DEC)16 code

S4EC-(DEC)8 code

S4EC-(DEC)8 code bound

S4EC-(DEC)16 code bound

36

116

K = 243

2,835

1,411

700

345

K = 167

79

2,032

8

Figure 6.26 Check-bit lengths compared with information-bit lengths of the S4EC-(DEC)B codes for B ¼ 8
and16 bits. Source: [UMAN02b].� IEICE Japan.

SINGLE-BYTE ERROR CORRECTING AND DOUBLE-BIT ERROR CORRECTING (SbEC-DEC) CODES 243



(K 	 198), the check-bit length of the S4EC-(DEC)16 code has either 1 or 2 extra bits than

the bound of S4EC-(DEC)16 codes. For most of the practical cases where information-bit

length K ¼ 64, 128, or 256, however, the S4EC-(DEC)16 code requires 14 (< 16) check

bits, thus making it possible to dedicate one chip for check bits.

Table 6.6 shows the error detection capabilities of the (270, 256) S4EC-(DEC)16 and

(512, 498) S4EC-(DEC)16 codes for five types of errors such as random triple-bit errors, bit

plus byte errors, double-byte errors, double-byte within a block errors, and block errors. The

(270, 256) S4EC-(DEC)16 code considered here is a shortened code of the (512, 498) S4EC-

(DEC)16 code obtained by deleting the last 242 binary columns of the original parity-check

matrix. The decoder hardware complexity of the S4EC-(DEC)16 code is shown in Table 6.7

for the practical information lengths, such as 64, 128, and 256 bits. In this table a four-input

AND / OR gate counts as one gate and a two-input exclusive-OR gate as 1.5 gates.

6.4 SINGLE-BYTE ERROR CORRECTING AND SINGLE-BYTE PLUS
SINGLE-BIT ERROR DETECTING (SbEC-(Sb þ S)ED) CODES

Since the vast majority of the errors in the byte-organized semiconductor memory systems

are random bit errors, which may be caused by a particles, cell failures, or external noises, it
is more likely that a random bit error occurs lined up in a codeword with another existing

byte error due to a chip failure than that as many as two chips fail to yield a double-byte

error. We refer to such an error (i.e., an error that corrupts both one byte and one bit in

another byte) as a single-byte plus single-bit error. In other words, single-byte plus single-bit

errors are a type of double-byte error where at least one of the two byte errors has Hamming

weight one. The codes that control this type of error are presented in [HAMA93, HAMA97,

DUNN94, CHEN98]. Figure 6.27 shows examples of single-byte plus single-bit errors as

well as some other types of errors that occur in byte-organized memory systems.

TABLE 6.6 Error Detection Capabilities of (270, 256) S4EC-(DEC)16 Code (Code1)

and (512, 498) S4EC-(DEC)16 Code (Code2)

Errors Code1 (%) Code2 (%)

Triple-bit error 87.58 75.44
Bit plusbyteerror 75.98 51.70
Double-byteerror 78.27 56.56
Double-bytewithinablockerror 88.13 79.56
Blockerror 94.84 90.48

Source: [UMAN02b]. � 2002 IEICE Japan.

TABLE 6.7 Decoder Gate Count for S4EC-(DEC)16 Code

Circuits K ¼ 64bits K ¼ 128bits K ¼ 256bits

Syndromegenerator 748 1,482 3,010
Syndromedecoder 617 867 1,367
Errorcorrector 117 213 405

Total 1,482 2,562 4,782

Source: [UMAN02b]. � 2002 IEICE Japan.

244 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



SbEC-DbED codes can detect any double-byte errors that are caused by two failed

chips, such as the one shown in Figure 6.27 (d), which in fact occur less often than single-

bit plus single-byte errors, such as the one given in Figure 6.27 (c). Because double-byte

errors do not occur unless as many as two chips fail catastrophically, it is usually sufficient

for memory systems to provide against single-bit plus single-byte errors rather than protect

themselves for all the double-byte errors. For this reason the SbEC-(SbþS)ED codes have

been applied to the main storage of the server systems [DOET97, SPAI99].

Therefore the discussion of this section covers a new class of linear codes, called single b-

bit byte error correcting and single b-bit byte plus single-bit error detecting codes, or SbEC-

(SbþS)ED codes. This class of codes can correct all single-byte errors and detect any error

that corrupts both one byte and one bit in another byte. Suppose that an SbEC-(SbþS)ED

code is employed in a system. If a chip failure occurs, the code can correct the single-byte

error caused by the failure. If an a particle or an external noise should induce a soft error in

addition to the single-byte hard error, the code can detect these errors without miscorrection.

6.4.1 Code Conditions and Bounds

Three lower bounds on the check-bit length of a linear SbEC-(SbþS)ED code are given in

this subsection [HAMA97].

As a class of single b-bit byte error correcting codes, the SbEC-(SbþS)ED codes can

detect any double-byte error such that at least one of the two byte errors has Hammingweight

one. The next theorem follows directly from the definition of this class of linear codes.

Theorem 6.33 A linear (N, K) code with parity-check matrix H ¼ ½H0 H1 . . . Hn�1� is
an SbEC-(SbþS)ED code if and only if

1. E1 �HT
i 6¼ E2 �HT

j for all i; j 2 f0; 1; . . . ; n� 1g ði 6¼ jÞ; and for all E1;E2 2
GFð2bÞ; E1 E2½ � 6¼ o,

2. E1 �HT
i 6¼ E2 �HT

j þ E3 �HT
k for all i; j; k 2 f0; 1; . . . ; n� 1g ði 6¼ j 6¼ k 6¼ iÞ;

and for all E1;E2;E3 2 GFð2bÞ, where E3 has Hamming weight one.

Here Hi; i ¼ 0; 1; . . . ; n� 1, is the submatrix corresponding to the i-th byte.

Figure 6.27 Examples of errors in byte-organizedmemory systems. Source: [HAMA97].� 1997 IEEE.

SINGLE-BYTE ERROR CORRECTING AND SINGLE-BYTE PLUS SINGLE-BIT ERROR DETECTING CODES 245



This theorem can be easily proved, and therefore the proof is omitted.

Theorem 6.34 A linear SbEC-(Sbþ S)ED code needs at least 2bþ 1 check bits.

Another lower bound for the check-bit length of an SbEC-(Sbþ S)ED code can be

obtained by the puncturing technique [MCWI77]. Two lemmas explain this technique with

regard to single-bit error correcting and single b-bit byte error detecting (SEC-SbED)

codes.

Lemma 6.9 Puncturing a linear (N, K) SbEC-(Sb þ S)ED code by one byte gives a

linear (N�b, K) SEC-SbED code.

Proof Let C be a linear SbEC-(Sbþ S)ED code and C 0 be the punctured linear code that
can be obtained by deleting the i-th byte of each codeword in C. From the first condition

in Theorem 6.33, a single-byte error cannot be a codeword in C0, and neither can a single-

byte plus single-bit error from the second condition in the theorem. These imply that no

pair of distinct single-bit errors can result in the same syndrome and that the syndrome of

any single-byte error is different from that of any single-bit error occurring in another

byte. Therefore C 0 can correct any single-bit errors and detect any single-byte

errors. Q.E.D.

Lemma 6.10 A linear (N, K) SEC-SbED code must satisfy the following inequality:

N � 2N�K � 2b þ b:

Proof All the 2b � 1 byte errors in a fixed position and the N � b single-bit errors in the

remaining positions must result in nonzero syndromes that differ from one another. From

this it follows that

ð2b � 1Þ þ ðN � bÞ � 2N�K � 1:

Hence the inequality in the theorem holds. Q.E.D.

From the two lemmas, we can say that if a linear (N, K) SbEC-(Sbþ S)ED code exists,

so does a linear (N � b, K) SEC-SbED code, which is written as

N � b � 2N�b�K � 2b þ b;

and is the bound described by the next theorem.

Theorem 6.35 A linear (N, K) SbEC-(Sbþ S)ED code must satisfy the next inequality

R ¼ N � K 	 bþ log2 N � 2bþ 2b
� �� �

;

where dxe gives the smallest integer greater than or equal to x.

246 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



Another bound can be obtained as follows.

Theorem 6.36 If a linear (N, K) SbEC-(SbþS)ED code exists, the following inequality

holds:

R ¼ N � K 	 log2
ðbþ 1Þð2b � 1Þ

b
N � bð2b � 1Þ þ 1

� �� �
:

Proof The syndromes of any single-byte errors and those of single-bit plus single-byte

errors that corrupt both the first byte in the codewords and one bit in another byte are all

different from one another and not equal to the zeros vector. Consequently

ð2b � 1ÞN
b
þ ð2b � 1ÞðN � bÞ � 2R � 1:

That is to say, the inequality in the theorem holds. Q.E.D.

In the case where b ¼ 1, these bounds are the same as those for SEC-DED codes, which

are a natural consequence of the definition of SbEC-(SbþS)ED codes. In this case,

Theorem 6.34 states that a linear SEC-DED code must have at least three check bits, which

is the Singleton bound [SING64, MCWI77] for SEC-DED codes. The inequalities in

Theorems 6.35 and 6.36 can both be written as N � 2R�1, which is the Hamming bound

[MCWI77]. Roughly speaking, the bound in Theorem 6.35 is tighter than the one in

Theorem 6.36 when N is relatively small, and vice versa.

6.4.2 Design for SbEC-(Sb +S)ED Codes

Two code design methods of SbEC-(Sbþ S)ED codes are presented here [HAMA97]. The

first one derives codes of various byte lengths and code lengths. The second method

provides more efficient codes than the first, but lacks flexibility for code parameters. That

is, the second method allows the byte length to have an even integer not smaller than 4, and

then the code length is determined uniquely by the byte length.

Design Method I The following procedure derives the SbEC-(Sbþ S)ED codes from

Sb0EC codes, where b0 ¼ b� 1:

Step 1. Let H0 ¼ ½H00 H01 . . . H0n�1� denote the R0 � N 0 parity-check matrix of an Sb 0EC
code where R0, b0 and n are positive integers, N 0 ¼ nb0, and H0i, i ¼ 0; 1; . . . ; n� 1, is

the submatrix corresponding to the i-th byte. If b0 ¼ 1, regard the Sb 0EC code as a simple

SEC code.

Step2. TransformH0 ¼ ½H00 H01 . . . H0n�1� into anR0 � nbmatrix Ĥ ¼ ½Ĥ0 Ĥ1 . . . Ĥn�1�,
widening each H0i by one bit in the following way: Let fi be the sum of an even number

of column vectors in H0i for i ¼ 0; 1; . . . ; n� 1. It is possible for fi to be the zero

vector. Annex each fi to H0i to make Ĥi ¼ ½H0i fi� so that an R0 � nb matrix Ĥ ¼
½Ĥ0 Ĥ1 . . . Ĥn�1� is obtained.

Step 3. Let u0; u1; . . . ; un�1 2 GFð2R00 Þ be odd-weight-column vectors such that ui 6¼ uj
for i 6¼ j. Let an R00 � b matrix Ui ¼ ½ui ui � � � ui� denote the collection of b vectors ui’s

for i ¼ 0; 1; . . . ; n� 1. Prepare U ¼ ½U0 U1 . . . Un�1� consisting of those Ui’s.

SINGLE-BYTE ERROR CORRECTING AND SINGLE-BYTE PLUS SINGLE-BIT ERROR DETECTING CODES 247



Step 4. In the final matrix note that the null space of the following matrix is an SbEC-

(Sbþ S)ED code of byte length b ¼ b0 þ 1, code length N ¼ nb and check-bit length

R ¼ R0 þ R00:

Ĥ

U

� �
¼ Ĥ0 Ĥ1 � � � Ĥn�1

U0 U1 � � � Un�1

� �
:

Theorem 6.37 A code obtained with the procedure above is an SbEC-(Sbþ S)ED code.

Proof Let H ¼ ½H0 H1 . . . Hn�1� be the parity-check matrix of the code and Vi

denote the space spanned by the b column vectors in Hi for i ¼ 0; 1; � � � ; n� 1. For the

code to be SbEC, it is necessary and sufficient that Vi \ Vj ¼ fog for i 6¼ j, and Vi has

dimension b for each i. For i 6¼ j, the space spanned by the column vectors in Ĥi and the

one spanned by those of Ĥj have no vector in common other than o, since H0 is the parity-
check matrix of an Sb 0EC code. The space spanned by the column vectors in Ui and the

one spanned by those of Uj have no vector in common other than o for i 6¼ j, either. Hence

it follows that Vi \ Vj ¼ fog for i 6¼ j; i; j 2 f0; 1; � � � ; n� 1g.
To prove that Vi has dimension b for i ¼ 0; 1; . . . ; n� 1, we have only to show that

the first b� 1 column vectors in Hi are linearly independent and the last column vector

cannot be a linear combination of the first b� 1 column vectors. From the upper part Ĥi of

Hi, we see that the first b� 1 column vectors in Ĥi are linearly independent and the last

column vector is a linear combination of the even number of vectors taken from the first

b� 1 columns in Ĥi. On the other hand, from the lower part Ûi of Hi, we see that the last

column vector in Ui cannot be a linear combination of the even number of vectors taken

from Ui, which must be o. This implies that the b column vectors in Hi are linearly

independent. Consequently the code has the capability of SbEC.

Next we will show that the code is capable of detecting any single-bit plus single-byte

error owing to the lower part U of the parity-check matrix. Suppose that for some

i; j; k 2 f0; 1; . . . ; n� 1gði 6¼ j 6¼ k 6¼ iÞ and E1; E2; E3 2 GFð2bÞ, E3 has Hamming

weight one and

E1 �HT
i þ E2 �HT

j þ E3 �HT
k ¼ o: ð6:21Þ

Then each codeword in the code must have even weight, since each column in U has odd

weight. Therefore, with E3 having odd weight, either E1 or E2 is of odd weight and the

other is of even weight. If E1 has odd weight, however, it follows that ui ¼ uk from Eq.

(6.21), which contradicts the assumption. The case where E2 has odd weight also leads to a

contradiction. Consequently the code is an SbEC-(Sbþ S)ED code. Q.E.D.

Example 6.16 [HAMA97]

The following is the parity-check matrix of an Sb0EC code with b0 ¼ 2:

H0 ¼

10 10 10 10

01 01 01 01

10 01 11 00

01 11 10 00

26664
37775:

248 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



From this matrix the parity-check matrix of an S3EC-(S3þ S)ED code can be obtained

as follows:

Given byte length b (bits) and check-bit length R, the maximum code length in bits of

an SbEC-(Sbþ S)ED code derived from the maximal Sb 0EC code [HONG72] previously

known in Subsection 5.1.4 is as follows:

N ¼
b � 2R�2bþ1 for 2bþ 1 � R < 3b� 2;

b � 2ðR�bÞ=2 for 3b� 2 � R; R� b : even;

b � 2ðb�1Þþgf2ðb�1Þt � 1g=ð2b�1 � 1Þ þ b for 3b� 2 � R; R� b : odd;

8>><>>:
where t and g are the integers such that ðR� b� 1Þ=2 ¼ tðb� 1Þ þ g and 0 � g < b� 1.

Design Method II The following code design uses natures of finite fields, their sub-

fields, and minimal polynomials over the subfields.

Theorem 6.38 Let l be an integer greater than 1, and b equal 2l. Consider a matrix

H ¼ ½H1 H2 � � � Hn�

composed of the following matrices:

Hi ¼
aigi;1 aigi;2 � � � aigi;b

a�idi;1 a�idi;2 � � � a�idi;b

" #
ði ¼ 1; 2; � � � ; nÞ;

where a is a primitive element in GFð23lÞ, n ¼ ð23l � 1Þ=ð2l � 1Þ ¼ 22l þ 2l þ 1 and

gi;1; gi;2; � � � ; gi;b, di;1; di;2; � � � ; di;b are nonzero elements that belong to a subfield

GFð2lÞ ¼ f0; 1; an; a2n; � � � ; að2l�2Þng of GFð23lÞ for i ¼ 1; 2; � � � ; n. All the elements that

appear in the matrices are expressed as 3l-tuples over GFð2Þ. Suppose that the 3b� b

matrix Hi over GFð2Þ has rank b for each i. Then the code with the parity-check matrix H
is an SbEC-(Sbþ S)ED code.

Proof Let Vi denote the space spanned by the b column vectors in Hi, i ¼ 1; 2; � � � ; n. All
we have to show is that the space Vi has dimension b for each i and that Vi \ Vj ¼ fog for
i 6¼ j to prove that the code can correct any single b-bit byte errors. From the nature of the

H ¼

100 100 100 100

010 010 010 010

100 010 110 000

010 110 100 000

111 000 111 000

000 111 111 000

000 000 111 111

26666666666664

37777777777775
:

SINGLE-BYTE ERROR CORRECTING AND SINGLE-BYTE PLUS SINGLE-BIT ERROR DETECTING CODES 249



finite fields, it is known that b ¼ an is a primitive element of a subfield GFð2lÞ [MCWI77].

Consequently GFð2lÞ� ¼ GFð2lÞ � f0g ¼ f1; b; b2; � � � ; b2l�2g makes up a normal sub-

group of the multiplicative group GFð23lÞ� ¼ GFð23lÞ � f0g so that a quotient group

GFð23lÞ�=GFð2lÞ� ¼ faiGFð2lÞ� j i ¼ 1; 2; � � � ; ng can be obtained. Note that the elements

of GFð23lÞ that appear in Hi are taken from aiGFð2lÞ� ¼ fai; aib; aib2; � � � ; aib2l�2g.
Since no pair of members aiGFð2lÞ� and ajGFð2lÞ� in GFð23lÞ�=GFð2lÞ�, i 6¼ j,

have any elements in common, it follows that Vi \ Vj ¼ fog for i 6¼ j; i; j 2
f1; 2; � � � ; ng. Thus, from the assumption that Hi’s have rank b, it follows that the

code is SbEC.

Next, we will show the detecting capability of the code. Suppose that there exist

i; j; k 2 f1; 2; � � � ; ngði 6¼ j 6¼ k 6¼ iÞ and E1;E2;E3 2 GFð2bÞ such that E3 has Hamming

weight one and

E1 �HT
i þ E2 �HT

j þ E3 �HT
k ¼ o: ð6:22Þ

Then, for some elements x; y; z; u; v;w in the subfield GFð2lÞ,

E1 �HT
i ¼

aix

a�iu

" #
; E2 �HT

j ¼
ajy

a�jv

" #
; E3 �HT

k ¼
akz

a�kw

" #
:

Therefore Eq. (6.22) can be expressed as

aixþ ajyþ akz ¼ 0;

a�iuþ a�jvþ a�kw ¼ 0:

�
ð6:23Þ

Note that z;w 6¼ 0, since E3 has Hamming weight one. From Eq. (6.23) we obtain

ðaixþ ajyÞða�iuþ a�jvÞ ¼ zw; ð6:24Þ

that is,

a2a2ðj�iÞ þ a1aj�i þ a0 ¼ 0; ð6:25Þ

where a2 ¼ yu; a1 ¼ xuþ yvþ zw, and a0 ¼ xv. Since a2; a1; a0 2 GFð2lÞ, Eq. (6.25)
implies that aj�i is a root of the next equation over GFð2lÞ whose degree is less than or

equal to 2:

a2X
2 þ a1X þ a0 ¼ 0: ð6:26Þ

According to the theory of finite fields, the degree of the minimal polynomial over GFð2lÞ
of an element in an extension fieldGFð2lmÞ, wherem is a positive integer, must be a divisor

of m [MCWI77]. Therefore no element in GFð23lÞ has a minimal polynomial of degree 2

over GFð2lÞ. Hence in Eq. (6.26) either the coefficient a0 ¼ xv or a2 ¼ yumust equal zero.

If y ¼ 0, however, the first equation in Eq. (6.23) implies aix ¼ akz, which contradicts the

250 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



fact aiGFð2lÞ \ akGFð2lÞ� ¼ ; (i 6¼ k). Letting x ¼ 0, v ¼ 0 or u ¼ 0 leads to a

contradiction in the same way. Clearly, aj�i must have a minimal polynomial of degree

1. However, 2l elements 0; 1; an; a2n; . . . ; að2
l�2Þn, and no others have such minimal

polynomials in GFð23l), which contradicts the fact 0 < ji� jj < n. Therefore, the code

has the detecting capability. Finally, we conclude that the code specified in the theorem is

an SbEC-(Sbþ S)ED code. Q.E.D.

In the theorem we have assumed that Hi has rank b ¼ 2l for i ¼ 1; 2; � � � ; n; that is,
any b ¼ 2l columns of Hi are linearly independent. It is apparent that we can make

each Hi have rank b in any case, since aiGFð2lÞ ¼ f0; ai; aib; aib2; . . . ; aib2
l�2g is

a linear space over GFð2Þ of dimension l for i ¼ 1; 2; . . . ; n. For instance, provided

b ¼ an,

Hi¼
aið1þbÞ ai ai � � � ai ai aib aib2 � � � aibl�1

a�ib a�ið1þbÞ a�ið1þb2Þ � � � a�ið1þbl�1Þ a�i a�ib a�ib2 � � � a�ibl�1

" #

ði¼ 1;2; � � � ;nÞ

are such matrices.

Example 6.17 [HAMA97]

The theorem yields the following parity-check matrix of an (84, 72) S4EC-(S4þ S)ED

code when l ¼ 2:

H ¼ ½H1 H2 � � � Hn�;

where n ¼ 21, a is a root of a primitive polynomial gðxÞ ¼ x6 þ xþ 1 over GFð2Þ,
and

Hi ¼ ai aiþn aiþ2n ai

a�iþn a�i a�i a�iþ2n

� �
ði ¼ 1; 2; . . . ; nÞ:

A binary expression for this matrix can be found in Figure 6.28 (a). Deleting 2 bytes of

the code yields a practical (76, 64) S4EC-(S4þ S)ED code. In this case the 13-th and

the 17-th bytes are deleted. Then the systematic form of this code determined by row

operations is presented in Figure 6.28 (b).

6.4.3 Evaluation

Figure 6.29 shows the check-bit lengths of the most efficient SbEC-(Sbþ S)ED

codes, where b ¼ 4 bits, which can be obtained with the design methods given in

Subsection 6.4.2, as well as the tightest of those bounds on check-bit length

mentioned in Subsection 6.4.1 and the check-bit lengths of the most efficient SbEC-

DbED codes known [CHEN92]. For any byte length b 	 2, design method I provides

SINGLE-BYTE ERROR CORRECTING AND SINGLE-BYTE PLUS SINGLE-BIT ERROR DETECTING CODES 251



10
00

  0
00

1 
 1

10
1 

 1
10

0 
 0

11
1 

 0
00

1 
 1

00
1 

 0
10

1 
 1

00
0 

 0
01

0 
 1

00
0 

 1
11

1 
 0

01
1 

 1
10

1 
 0

10
0 

 0
01

1 
 1

00
0 

 0
00

0 
 0

00
0

01
00

  0
01

1 
 1

01
1 

 1
00

0 
 1

11
0 

 0
01

1 
 0

11
1 

 1
11

1 
 0

10
0 

 0
00

1 
 0

10
0 

 1
01

0 
 0

01
0 

 1
01

1 
 1

10
0 

 0
01

0 
 0

10
0 

 0
00

0 
 0

00
0

00
10

  0
10

1 
 0

11
0 

 0
01

1 
 1

11
0 

 0
10

1 
 0

11
1 

 0
10

0 
 0

01
0 

 1
01

0 
 0

01
0 

 1
10

0 
 1

11
1 

 0
11

0 
 0

00
1 

 1
11

1 
 0

01
0 

 0
00

0 
 0

00
0

00
01

  1
11

1 
 1

10
1 

 0
01

0 
 1

00
1 

 1
11

1 
 1

11
0 

 1
10

0 
 0

00
1 

 0
10

1 
 0

00
1 

 1
00

0 
 1

01
0 

 1
10

1 
 0

01
1 

 1
01

0 
 0

00
1 

 0
00

0 
 0

00
0

00
11

  0
01

0 
 1

01
0 

 1
10

0 
 1

01
1 

 1
10

1 
 1

00
0 

 0
00

1 
 0

11
0 

 0
11

1 
 0

00
1 

 1
10

0 
 1

11
0 

 1
00

0 
 1

11
1 

 0
01

0 
 0

00
0 

 1
00

0 
 0

00
0

00
10

  0
00

1 
 0

10
1 

 1
00

0 
 0

11
0 

 1
01

1 
 0

10
0 

 0
01

1 
 1

10
1 

 1
11

0 
 0

01
1 

 1
00

0 
 1

00
1 

 0
10

0 
 1

01
0 

 0
00

1 
 0

00
0 

 0
10

0 
 0

00
0

11
11

  1
01

0 
 1

00
0 

 0
01

1 
 1

10
1 

 0
11

0 
 0

01
0 

 0
10

1 
 1

01
1 

 1
11

0 
 0

10
1 

 0
01

1 
 1

00
1 

 0
01

0 
 1

10
0 

 1
01

0 
 0

00
0 

 0
01

0 
 0

00
0

10
10

  0
10

1 
 0

10
0 

 0
01

0 
 1

01
1 

 1
10

1 
 0

00
1 

 1
11

1 
 0

11
0 

 1
00

1 
 1

11
1 

 0
01

0 
 0

11
1 

 0
00

1 
 1

00
0 

 0
10

1 
 0

00
0 

 0
00

1 
 0

00
0

00
10

  0
11

0 
 0

10
0 

 1
00

1 
 0

01
0 

 1
11

0 
 1

01
0 

 1
10

0 
 0

01
1 

 1
10

0 
 0

10
1 

 1
10

1 
 0

11
0 

 1
00

0 
 1

00
1 

 1
10

0 
 0

00
0 

 0
00

0 
 1

00
0

00
01

  1
10

1 
 1

10
0 

 0
11

1 
 0

00
1 

 1
00

1 
 0

10
1 

 1
00

0 
 0

01
0 

 1
00

0 
 1

11
1 

 1
01

1 
 1

10
1 

 0
10

0 
 0

11
1 

 1
00

0 
 0

00
0 

 0
00

0 
 0

10
0

10
10

  1
01

1 
 0

00
1 

 0
11

1 
 1

01
0 

 1
00

1 
 1

00
0 

 0
01

1 
 1

11
1 

 0
01

1 
 0

10
0 

 0
11

0 
 1

01
1 

 0
01

0 
 0

11
1 

 0
01

1 
 0

00
0 

 0
00

0 
 0

01
0

01
01

  0
11

0 
 0

01
1 

 1
11

0 
 0

10
1 

 0
11

1 
 0

10
0 

 0
01

0 
 1

01
0 

 0
01

0 
 1

10
0 

 1
10

1 
 0

11
0 

 0
00

1 
 1

11
0 

 0
01

0 
 0

00
0 

 0
00

0 
 0

00
1

(b
) 

S
ys

te
m

at
ic

 (
76

, 6
4)

 S
4E

C
-(

S
4

+
S

)E
D

 c
od

e

(a
) 

(8
4,

 7
2)

 S
4E

C
-(

S
4

+
S

)E
D

 c
od

e

11
01

  0
11

0 
 0

11
0 

 0
11

0 
 0

00
0 

 0
11

0 
 1

01
1 

 0
00

0 
 0

00
0 

 0
11

0 
 0

11
0 

 1
10

1 
 1

01
1 

 0
00

0 
 0

11
0 

 0
00

0 
 1

01
1 

 0
11

0 
 1

01
1 

 0
11

0 
 0

11
0

01
10

  1
01

1 
 0

00
0 

 0
00

0 
 0

11
0 

 0
11

0 
 1

10
1 

 1
01

1 
 0

00
0 

 0
11

0 
 0

00
0 

 1
01

1 
 0

11
0 

 1
01

1 
 0

11
0 

 0
11

0 
 1

01
1 

 1
10

1 
 1

10
1 

 1
10

1 
 0

00
0

00
00

  0
11

0 
 1

01
1 

 0
00

0 
 0

00
0 

 0
11

0 
 0

11
0 

 1
10

1 
 1

01
1 

 0
00

0 
 0

11
0 

 0
00

0 
 1

01
1 

 0
11

0 
 1

01
1 

 0
11

0 
 0

11
0 

 1
01

1 
 1

10
1 

 1
10

1 
 1

10
1

01
10

  0
00

0 
 0

11
0 

 1
01

1 
 0

00
0 

 0
00

0 
 0

11
0 

 0
11

0 
 1

10
1 

 1
01

1 
 0

00
0 

 0
11

0 
 0

00
0 

 1
01

1 
 0

11
0 

 1
01

1 
 0

11
0 

 0
11

0 
 1

01
1 

 1
10

1 
 1

10
1

01
10

  0
11

0 
 0

00
0 

 0
11

0 
 1

01
1 

 0
00

0 
 0

00
0 

 0
11

0 
 0

11
0 

 1
10

1 
 1

01
1 

 0
00

0 
 0

11
0 

 0
00

0 
 1

01
1 

 0
11

0 
 1

01
1 

 0
11

0 
 0

11
0 

 1
01

1 
 1

10
1

01
10

  0
11

0 
 0

11
0 

 0
00

0 
 0

11
0 

 1
01

1 
 0

00
0 

 0
00

0 
 0

11
0 

 0
11

0 
 1

10
1 

 1
01

1 
 0

00
0 

 0
11

0 
 0

00
0 

 1
01

1 
 0

11
0 

 1
01

1 
 0

11
0 

 0
11

0 
 1

01
1

11
10

  0
11

1 
 0

11
1 

 1
11

0 
 0

11
1 

 1
11

0 
 0

00
0 

 0
11

1 
 0

00
0 

 1
11

0 
 1

00
1 

 0
11

1 
 0

11
1 

 0
00

0 
 0

00
0 

 1
11

0 
 0

11
1 

 0
00

0 
 0

11
1 

 0
11

1 
 0

11
1

10
01

  0
00

0 
 1

00
1 

 1
00

1 
 1

00
1 

 1
11

0 
 0

11
1 

 0
11

1 
 1

11
0 

 0
11

1 
 1

11
0 

 0
00

0 
 0

11
1 

 0
00

0 
 1

11
0 

 1
00

1 
 0

11
1 

 0
11

1 
 0

00
0 

 0
00

0 
 1

11
0

00
00

  1
00

1 
 1

00
1 

 1
00

1 
 1

11
0 

 0
11

1 
 0

11
1 

 1
11

0 
 0

11
1 

 1
11

0 
 0

00
0 

 0
11

1 
 0

00
0 

 1
11

0 
 1

00
1 

 0
11

1 
 0

11
1 

 0
00

0 
 0

00
0 

 1
11

0 
 0

11
1

10
01

  1
00

1 
 1

00
1 

 1
11

0 
 0

11
1 

 0
11

1 
 1

11
0 

 0
11

1 
 1

11
0 

 0
00

0 
 0

11
1 

 0
00

0 
 1

11
0 

 1
00

1 
 0

11
1 

 0
11

1 
 0

00
0 

 0
00

0 
 1

11
0 

 0
11

1 
 0

00
0

10
01

  1
00

1 
 1

11
0 

 0
11

1 
 0

11
1 

 1
11

0 
 0

11
1 

 1
11

0 
 0

00
0 

 0
11

1 
 0

00
0 

 1
11

0 
 1

00
1 

 0
11

1 
 0

11
1 

 0
00

0 
 0

00
0 

 1
11

0 
 0

11
1 

 0
00

0 
 0

11
1

10
01

  1
11

0 
 0

11
1 

 0
11

1 
 1

11
0 

 0
11

1 
 1

11
0 

 0
00

0 
 0

11
1 

 0
00

0 
 1

11
0 

 1
00

1 
 0

11
1 

 0
11

1 
 0

00
0 

 0
00

0 
 1

11
0 

 0
11

1 
 0

00
0 

 0
11

1 
 0

11
1

F
ig
u
re

6
.2
8

Pa
ri
ty
-c
he

ck
m
at
ri
ce

s
of

S
4E

C
-(
S
4
þ
S
)E
D
co

de
s.

S
ou

rc
e
of
pa

rt
(a
):
[H
A
M
A
97
].
�

19
97

IE
EE

.

252



SbEC-(Sbþ S)ED codes that meet the bound given in Theorem 6.34, namely codes

with 2bþ 1 check bits. The SbEC-DbED codes can never achieve this check-bit

length, since an SbEC-DbED code requires at least 3b check bits regardless of

its code rate from the Singleton bound [SING64, MCWI77]. When b is an even

integer not less than 4, design method II provides the codes with bð2b þ 2b=2 � 2Þ
information bits and 3b check bits, while it is known that the information-bit lengths

of the SbEC-DbED codes with 3b check bits are at most bð2b � 1Þ <
bð2b þ 2b=2 � 2Þ [CHEN86].

Particularly, in the practical case where byte length b ¼ 4 bits and information-bit

length K ¼ 64, design method II gives the SbEC-(Sbþ S)ED codes of check-bit length

R ¼ 12, which is same as that of the Hamming SbEC codes with b ¼ 4 bits and K ¼ 64

bits. In contrast, the previously known SbEC-DbED codes require at least 14 check bits

[CHEN92].

Figure 6.30 shows the parity-check matrix of another systematic (76, 64) S4EC-

(S4þ S)ED code [CHEN98]. The error detection capabilities of the codes shown in Figure

6.28 (b) and Figure 6.30 are as Follow:

9

10

11

12

13

14

15

16

17

18

4 8 16 32 64 128 256

K = 7

22

26

15

K = 72

114
120

122

60
207

99

46

240
S4EC-(S4+S)ED code

Bound

S4EC-D4ED code

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

Figure 6.29 Check-bit lengths comparedwith information-bit lengths of the S4EC-(S4þS)ED codes. Source:

[HAMA97].� 1997 IEEE.

(76, 64) S4EC-(S4þ S)ED

codes

Double-byte

errors (%)

Triple-bit

errors (%)

H matrix

weight

Code shown in Figure 6.28 (b) 92.84 93.97 394

Code shown in Figure 6.30 92.84 93.85 354

SINGLE-BYTE ERROR CORRECTING AND SINGLE-BYTE PLUS SINGLE-BIT ERROR DETECTING CODES 253



EXERCISES

6.1 Design four SEC-DED-BED codes with b ¼ 4 bits and K ¼ 56 bits by using the

methods of Theorems 6.2, 6.3, 6.5, and 6.6.

6.2 Prove properties 1 through 3 of the grouping matrix A.

6.3 Design an SEC-DED-S4ED code with information-bit length K ¼ 41 and check-

bit length R ¼ 7.

6.4 The following H matrix shows a (40, 32) SEC-DED-S4ED code [LUI78]. Explain

how this code satisfies the SEC-DED-S4ED function.

6.5 Prove that the SEC-DED-SbED code corrects a single-byte error in the presence of

a single-byte error pointer (i.e., erases a single-byte error).

6.6 Verify that the code shown in Figure 6.12 has the property of eight bits error

detection over two bytes.

6.7 Prove Lemmas 6.2 and 6.3.

6.8 For the syndrome space of an ðN;N � RÞ SbEC-DED code, show that the

following inequality holds:

2R � 1 	 N

b
2b � 1
� �

þ N � b:

6.9 By using Theorem 6.14 design the S4EC-DED code with code parameters of

K ¼ 114 bits, and R ¼ 14 bits.

  1
1 1 1 1

  1

1 1 1 1

1

  1
1 1 1 1
    1

      1
1 1 1 1

1
  1 
1 1 1 1

1 1 1 1
    1 
      1

1
  1 
    1
      1

1
  1
    1 

1

H =

1 1 1 1
1
  1

1
1 1 1 1

  1
1

1 1 1 11 1 1 1
11

  11
    1 
      1

1 1 1 1

    1 
      1

1 1 1 1
1 1 1 1

1 1 1 1

      1 

      1     1 

1 1 1 1 1 1 1 1

1  1  

    1     1  
      1       1

0100  0100  0100  0100  0100  0100  0100  0100  0111  1011  1010  0010  1000  1000  1001  1101  0100  0000  0000
1000  1000  1000  1000  1000  1000  1000  1000  1001  1101  1111  0011  1100  1100  1110  0110  1000  0000  0000

H =

0010  0010  0010  0010  0010  0010  0010  0010  0111  0110  1100  1111  0011  0011  1001  1011  0010  0000  0000
0001  0001  0001  0001  0001  0001  0001  0001  1110  1101  1000  1010  0010  0010  0111  0110  0001  0000  0000

0110  1000  0010  1011  1010  1101  0101  1110  1000  0001  1000  0111  1000  1110  1000  0100  0000  1000  0000
1101  0100  0001  0110  0101  1011  1111  1001  0100  0011  0100  1110  0100  1001  0100  1100  0000  0100  0000
1011  0010  1010  1101  1000  0110  0100  1001  0010  0101  0010  1110  0010  1001  0010  0001  0000  0010  0000
0110  0001  0101  1011  0100  1101  1100  0111  0001  1111  0001  1001  0001  0111  0001  0011  0000  0001  0000

1000  1110  0111  1010  1001  0010  0110  0001  0101  1000  1011  1000  0110  1000  0100  1000  0000  0000  1000
0100  1001  1110  0101  0111  0001  1101  0011  1111  0100  0110  0100  1101  0100  1100  0100  0000  0000  0100
0010  1001  1110  1000  0111  1010  1011  0101  0100  0010  1101  0010  1011  0010  0001  0010  0000  0000  0010
0001  0111  1001  0100  1110  0101  0110  1111  1100  0001  1011  0001  0110  0001  0011  0001  0000  0000  0001

Figure 6.30 Systematic (76, 64) S4EC-(S4þS)ED code [CHEN98].

254 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



6.10 Prove Theorem 6.14.

6.11 Prove that the Hmatrix shown in Eq. (6.17) defines the SbEC-DED code with code

length ðv� 1Þ � vr�2 bytes, where v shows the size of a generating set.

6.12 Prove that the following H matrix shows an SbEC-DED code over GFð2bÞ with
maximum code length in bits N ¼ b � fðv� 1Þvr�2 þ ðv� 1Þvr�t�2g, where

1 � t � r � 2. The elements in H are included in a generating set with size v

containing the identity element I in GFð2bÞ.

6.13 Prove Theorem 6.20.

6.14 Let � ¼ fTi1 ;Ti2 ; � � � ;Tikg be a generating set in GFð2bÞ. We call � a strong

generating set in GFð2bÞ if

ðTik þ TijÞðTim þ TinÞ�1 =2 �

for all distinct Tim , Tin , Tik , and Tij in �.

(a) Prove that any additive coset or multiplicative coset of a subfield GFð2AÞ of
GFð2bÞ plus zero is a strong generating set except GFð2AÞ itself.

H Hr

0 0 0
...

...
... t

0 0 0

Hr t r t

i j k

I I
Ti1

I
T j1

I 0
0

0
0

0
0

0
0

...
...

...
...

...
...

...
...

...
...

...
...

... t

Tit 1 T jt 1 0 0 0 0

Tit

Tit 1

T jt

T jt 1

I I I
Tkt 1

I
.

...
...

...
...

...
...

...
...

...
...

...
...

... r t

Tir 1 T jr 1 Tkr 1

X Y

EXERCISES 255



(b) Prove that if the additive cosets used in Theorems 6.18 and 6.19 are replaced

by strong generating sets of size v, then the code lengths in bits corresponding

to Theorems 6.18 and 6.19 are N1 ¼ b � ðvr�1 þ vr�t�1Þ and N2 ¼ b � v�
ðvr�1 � 1Þ=ðv� 1Þ, respectively.

6.15 Prove Theorem 6.23.

6.16 In the design of the Davydov-Labinskaya code with r ¼ 7, we have N ¼ 28 ¼ 256

bits and R ¼ 17 bits. This will give us a (256, 239) S4EC-DEC code. Design the

practical (144, 128) S4EC-DEC code by shortening the code to achieve a one-bit

reduction in check-bit length.

6.17 Find the bound on code length of the Davydov-Labinskaya S4EC-DEC code.

6.18 With using design method I of the SbEC-(Sbþ S)ED code, design the (64, 52)

S4EC-(S4þ S)ED code derived from the maximal (52, 45) S3EC code shown in

Subsection 5.1.4.

6.19 With using design method II of the SbEC-(Sbþ S)ED code, design the (438, 420)

S6EC-(S6þS)ED code.

6.20 Consider the codes capable of single-bit error correction and single-bit plus single-

byte error detection (SEC-(Sþ Sb)ED).

(a) Find the necessary and sufficient conditions of such codes.

(b) Prove that the bound on the code length of the ðN; N � RÞ SEC-(Sþ Sb)ED

code is expressed as

N � 2R�b þ b� 1:

(c) Show that the following code is an ðN; N � RÞ SEC-(Sþ Sb)ED code with

maximum code length in bits N ¼ b � 2c þ c and check-bit length R ¼ bþ 2c:

H ¼
Ib Ib Ib � � � Ib Ib 0c0

M0 M1 M2 � � � M2c�2 0c Ic

Q0 Q1 Q2 � � � Q2c�2 0c 0c00

264
375:

Here 0c, 0c0 , 0c00 are c� b, b� c, c� c zero matrices, respectively; Ib, Ic are

b� b, c� c identity matrices, respectively; Mi is a c� b matrix defined by

Mi ¼

j j j

ai aiþ1 � � � aiþb�1

j j j

2664
3775; 0 � i � 2c � 1;

where

j
ai

j
is a binary coefficient vector of xi mod pðxÞ, pðxÞ being a primitive

polynomial with degree c and b � 2c � 1; and Qj; 0 � j � 2c � 2, is a c� b

matrix whose columns are b copies of the binary representation of integer j.

(d) Try to design more efficient codes than the code shown in (c).

256 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



6.21 Consider a code capable of adjacent double-bit error correction and single-byte

error detection (ADEC-SbED) [UMAN02b].

(a) Find the necessary and sufficient conditions of such a code.

(b) Prove that a linear binary (N, N � R) ADEC-SbED code exists only if

N � 2R�1 � 2b�1 þ b:

(c) Prove that the null space of

is an ADEC-SbED code with code length in bits N ¼ b � 2r and check-bit

length R ¼ bþ r, where the elements in H are defined as the following: O is

an r � b binary zero matrix,

a, b are primitive elements of GFð2bÞ and GFð2rÞðr > 2Þ, respectively,

I ¼ a0 a1 a2 � � � ab�1
 �

b�b; Iy ¼ ab�1 ab�2 ab�3 � � � a0
 �

b�b, where ai

denotes a binary column vector of GFð2bÞ such that the i-th coordinate is

one and all other coordinates are zeros for i ¼ 0; 1; 2; � � � ; b� 1, and

Qi ¼ bi biþ1 biþ2


� � � biþb�2 bi�r�b, where b
i denotes a binary column vector

of GFð2rÞ for i ¼ 0; 1; 2; � � � ; 2r � 2.

(d) Design the (128, 119) ADEC-S4ED code based on the H matrix presented

in ðcÞ.

6.22 Consider the codes capable of correcting adjacent double-bit errors occurring

within a b-bit byte and detecting b-bit byte errors ((ADEC)b-SbED), where

b > 2.

(a) Find the necessary and sufficient conditions of such codes.

(b) Prove that a linear binary (N, N � R) (ADEC)b-SbED code exists only if

N � b� 2bð2R�b � 1Þ
2b� 1

þ 1

� �� �
:

(c) Prove that the null space of

H ¼ M0 M1 M2 � � � Mn�1½ �;

is an (ADEC)b-SbED code only if fai; bi; ai þ big
T
faj; bj; aj þ bjg ¼ ;,

where 0 � i 6¼ j � n� 1, ; denotes the null set, Mi is an ðr þ b� 2Þ � b

H ¼ Iy I I I � � � I

O Q0 Q1 Q2 � � � Q2r�2

� �

EXERCISES 257



matrix defined by

for 0 � i � n� 1, ai, bi 2 GFð2rÞ � f0g with r 	 4, ai 6¼ bi, and Ai is a

binary ðb� 2Þ � ðb� 2Þ nonsingular matrix [UMAN02c].

(d) Design the (72, 64) (ADEC)4-S4ED code and the (140, 128) (ADEC)8-S8ED

code.

REFERENCES

[BOSS78] D. C. Bossen, L. C. Chang, and C. L. Chen, ‘‘Measurement and Generation of Error

Correcting Codes for Package Failures,’’ IEEE Trans. Comput., C-27 (March 1978): 201–204.

[BOYA87] I. M. Boyarinov, A. A. Davydov, and B.M. Shabanov, ‘‘Error Correction inMainMemory

of a High-Capacity Computer,’’ Automation and Remote Control, Plenum (1987). (Original in

Russian, Automatika i Telemekhanika, no. 7 [July 1987]: 152–165, 48 [July 1987]: 956–965.)

[CHEN83] C. L. Chen, ‘‘Error-Correcting Codes with Byte Error-Detection Capability,’’ IEEE

Trans. Comput., C-32 (July 1983): 615–621.

[CHEN84] C. L. Chen and M. Y. Hsiao, ‘‘Error-Correcting Codes for Semiconductor Memory

Applications: A State-of-the-Art Review,’’ IBM J. Res. Dev., 28 (March 1984): 124–134.

[CHEN86] C. L. Chen, ‘‘Error-Correcting Codes for Byte-Organized Memory Systems,’’ IEEE

Trans. Info. Theory, IT-32 (March 1986): 181–185.

[CHEN92] C. L. Chen, ‘‘Symbol Error-Correcting Codes for Computer Memory Systems,’’ IEEE

Trans. Comput., 41 (February 1992): 252–256.

[CHEN98] C. L. Chen and M. Y. Hsiao, ‘‘Error Detection and Correction for Four-Bit-per-Chip

Memory System,’’ US Patent 5,757,823 (May 26, 1998).

[DAVY89] A. A. Davydov and A. Yu. Drozhzhina-Labinskaya, ‘‘Length 4 byte error and double

independent error correction by BCH code in semiconductor memories,’’ Automation and Remote

Control, 50 [November 1989]: 1570–1579, Plenum. (Original in Russian, Automatika i Tele-

mekhanika, 50 [November 1989]: 135–145.)

[DAVY91] A. A. Davydov and L. M. Tombak, ‘‘An Alternative to the Hamming Code in the Class of

SEC-DED Codes in Semiconductor Memory,’’ IEEE Trans. Info. Theory, 37 (May 1991): 897–902.

[DOET97] G. Doetting, K. J. Getziaff, B. Leppla, W. Lipponar, T. Pflueger, T. Shlipf, D.

Schmunkamp, and U. Wille, ‘‘S/390 Parallel Enterprise Server Generation 3: A Balanced System

and Cache Structure,’’ IBM J. Res. Dev., 41 (July–September 1997): 405–428.

[DUNN83] L. A. Dunning and M. R. Varanasi, ‘‘Code Constructions for Error Control in Byte

Organized Memory Systems,’’ IEEE Trans. Comput., C-32 (July 1983): 535–542.

[DUNN85] L. A. Dunning, ‘‘SEC-BED-DED Code for Error Control in Byte-Organized Memory

Systems,’’ IEEE Trans. Comput., C-34 (June 1985): 557–562.

258 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES



[DUNN94] L. A. Dunning, ‘‘A SEC-BED-DED Code with Byte Plus Bit Error Detection,’’ Dig. 24th

IEEE Int. Symp. on Fault-Tolerant Computing (June 1994): 208–211.

[FUJI80a] E. Fujiwara, ‘‘Error Control for Byte-per-Package Organized Memory Systems’’ (in

Japanese), Trans. IECE Japan, E-63 (February 1980): 98–103.

[FUJI81b] E. Fujiwara and S. Kaneda, ‘‘Rotational Byte Error Detecting Codes for Memory

Systems,’’ Trans. IECE Japan, E-64 (May 1981): 342–349.

[FUJI91a] E. Fujiwara and T. Gohya, ‘‘Single Byte Error Correcting — Double Bit Error

Detecting (SbEC-DED) Codes,’’ Proc. 1991 IEEE Int. Symp. on Information Theory (January

1991): 140.

[FUJI91b] E. Fujiwara and T. Gohya, ‘‘A Design Method for Single Byte Error Correcting—Double

Bit Error Detecting Codes’’ (in Japanese), IEICE Technical Report, FTS91-13 (May 1991).

[FUJI93] E. Fujiwara and M. Hamada, ‘‘Single b-bit Byte Error Correcting and Double Bit Error

Detecting Codes for High-Speed Memory Systems,’’ Trans. IEICE Japan, E76-A (September

1993): 1442–1448.

[GILS86] W. J. van Gils, ‘‘An Error-Control Coding System for Storage of 16-bit Words in Memory

Arrays Composed of Three 9-bit Wide Units,’’ Philips J. Res., 41 (1986): 391–399.

[HAMA91] M. Hamada and E. Fujiwara, ‘‘A New Design Method for Single b-Bit Byte Error

Correcting and Double Bit Error Detecting (SbEC-DED) Codes’’ (in Japanese), Proc. 1991 Symp.

on Infomation Theory and Its Applications (SITA’91), (December 1991): 61–64.

[HAMA93] M. Hamada and E. Fujiwara, ‘‘A Class of Error Control Codes for Memory Systems —

SbEC-(Sb+S)ED Codes — ,’’ Proc. 1993 IEEE Int. Symp. on Information Theory (January 1993):

244.

[HAMA97]M.Hamada and E. Fujiwara, ‘‘AClass of Error Control Codes for ByteOrganizedMemory

System—SbEC-(Sbþ S)ED Codes—,’’ IEEE Trans. Comput., 46 (January 1997): 105–109.

[HOLM99] T. J. Holman, ‘‘Encoder and Decoder for an SEC-DED-S4ED Rotational Code,’’ US

Patent 5,856,987 (January 5, 1999).

[HONG72] S. J. Hong and A. M. Patel, ‘‘A General Class of Maximal Codes for Computer

Applications,’’ IEEE Trans. Comput., C-21 (December 1972): 1322–1331.

[KANE83] S. Kaneda, ‘‘AClass of SEC-DED-SbEDCodes Detecting Byte Error through b-Grouped

Parity-Checking’’ (in Japanese), Trans. IECE Japan, J66-D (June 1983): 699–706.

[KANE84] S. Kaneda, ‘‘A Class of Odd-Weight-Column SEC-DED-SbED Codes for Memory

System Applications,’’ IEEE Trans. Comput., C-33 (August 1984): 737–739. (Also in Dig. 14th

An. Int. Symp. on Fault-Tolerant Comput. [June 1984]: 88–93.)

[KANE85] S. Kaneda, ‘‘A Class of SEC-DED-SbED Codes for Semiconductor Memory Systems’’

(in Japanese), Trans. IECE Japan, J68-D (January 1985): 17–24.

[LUI78] A. S. Lui and M. Arbab, ‘‘Error Checking and Correcting Device,’’ US Patent 4077028

(February 28, 1978).

[MASS96] L. W. Massengil, ‘‘Cosmic and Terrestrial Single Event Radiation Effects in Dynamic

Random Access Memories,’’ IEEE Trans. Nucl. Sci., 43 (April 1996): 576–593.

[MCWI77] F. J. McWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-

Holland (1977).

[NUMA89] K. Numata, Y. Oowaki, Y. Itoh, et al., ‘‘New Nibbled-Page Architecture for High-

Density DRAM’s,’’ IEEE J. Solid-State Circ., 24 (August 1989): 900–904.

[PATE80] A. M. Patel, ‘‘Error Recovery Scheme for the IBM 3850 Mass Storage System,’’ IBM J.

Res. Dev., 24 (January 1980): 32–42.

[PENZ95] L. Penzo, D. Sciuto, and C. Silvano, ‘‘Construction Techniques for Systematic SEC-DED

codes with Single Byte Error Detection and Partial Correction Capability for Computer Systems,’’

IEEE Trans. Info. Theory, 41 (March 1995): 584–591.

REFERENCES 259



[REDD78] S. M. Reddy, ‘‘A Class of Linear Codes for Error Control in Byte-per-Card Organized

Digital Systems,’’ IEEE Trans. Comput., C-27 (May 1978): 455–459.

[SAEK96] T. Saeki, Y. Nakaoka, and M. Fujita, et al., ‘‘A 2.5-ns Clock Access, 256 MHz, 256 Mb

SDRAM with Synchronous Mirror Delay,’’ IEEE J. Solid-State Circ., 31 (November 1996):

1656–1668.

[SING64] R. C. Singleton, ‘‘Maximum Distance Q-Nary Codes,’’ IEEE Trans. Info. Theory, IT-10

(April 1964): 116–118.

[SPAI99] L. Spainhower and T. A. Gregg, ‘‘IBM S/390 Parallel Enterprise Server G5 Fault

Tolerance: A Historical Perspective,’’ IBM J. Res. Dev., 43 (September–November 1999):

863–873.

[SUNA95] T. Sunaga, K. Hosokawa, Y. Nakamura, et al., ‘‘A Full Bit Perfect Architecture for

Synchronous DRAM’s,’’ IEEE J. Solid-State Circ., 30 (November 1995): 998–1005.

[SUNM95] Sun Microsystems, Inc., ‘‘Ultra SPARC-I Data Buffer (UDB) DATA SHEET, Revision

0.3,’’ SPARC Technology (May 1995).

[TSUC86] T. Tsuchimoto, K. Shimizu, M. Takamura, M. Shinohara, T. Miyazawa, and H. Tone, ‘‘A

Large Computer System M-780’’ (in Japanese), Nikkei Electronics, 396 (June 2, 1986): 179–209.

[UMAN02a] G. Umanesan and E. Fujiwara, ‘‘Random Double Bit Error Correcting — Single b-bit

Byte Error Correcting (DEC-SbEC) Codes for Memory Systems,’’ IEICE Trans. Fundamentals,

E85-A (January 2002): 273–276.

[UMAN02b] G. Umanesan and E. Fujiwara, ‘‘Single Byte Error Correcting Codes with Double Bit

within a Block Error Correcting Capability for Memory Systems,’’ IEICE Trans. Fundamentals,

E85-A (February 2002): 513–517.

[UMAN02c] G. Umanesan and E. Fujiwara, ‘‘Adjacent Double Bit Error Correcting Codes with

Single Byte Error Detecting Capability for Memory Systems,’’ IEICE Trans. Fundamentals,

E85-A (February 2002): 490–496.

[VARA83] M. R. Varanasi, T. R. N. Rao, and S. Pham, ‘‘Memory Package Error Detection and

Correction,’’ IEEE Trans. Comput., C-32 (September 1983): 872–874.

[XIAO96] S. Xiao, X. Shi, G. Feng, and T. R. N. Rao, ‘‘A Generalization of the Single b-bit Byte

Error Correcting and Double Bit Error Detecting Codes for High-SpeedMemory Systems,’’ IEEE

Trans. Comput., 45 (April 1996): 508–511.

260 CODES FOR HIGH-SPEED MEMORIES III: BIT / BYTE ERROR CONTROL CODES





CONTENTS

7.1 Spotty Byte Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

7.2 Single Spotty Byte Error Correcting (St=bEC) Codes . . . . . . . . . . . . . . . . . . 264

7.2.1 Codes Based on Tensor Product of Matrices . . . . . . . . . . . . . . . . . . . . 265

7.2.2 Efficient St=bEC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

7.2.3 Practical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

7.3 Single Spotty Byte Error Correcting and Single-Byte Error Detecting

ðSt=bEC-SbED) Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

7.3.1 Decoding St=bEC-SbED Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

7.3.2 Perfect St=bEC-SbED Codes with t ¼ b� 1 . . . . . . . . . . . . . . . . . . . . 278

7.3.3 St=BEC-SbEC-SBED Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

7.4 Single Spotty Byte Error Correcting and Double Spotty Byte Error

Detecting (St=bEC-Dt=bED) Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

7.4.1 Code Conditions and Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

7.4.2 Design for St=bEC-Dt=bED Codes and St=bEC-Dt=bED-SbED Codes . . . . 284

7.5 A General Class of Spotty Byte Error Control Codes . . . . . . . . . . . . . . . . . . 290

7.5.1 A General Class of Codes for s-Spotty Byte Errors . . . . . . . . . . . . . . . 290

1 s-Spotty Byte Error Control Codes . . . . . . . . . . . . . . . . . . . . . . . . . 290

2 s-Spotty Byte Error Correcting Codes with Byte Error Detection

Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

3 Examples and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

7.5.2 A General Class of Codes for m-Spotty Byte Errors . . . . . . . . . . . . . . 301

1 m-Spotty Byte Error Control Codes . . . . . . . . . . . . . . . . . . . . . . . . 302

2 Complex m-Spotty Byte Error Control Codes . . . . . . . . . . . . . . . . . 308

3 Codes for m-Spotty Byte Errors Occurred in a Limited

Number of Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330



7
Codes for High-Speed

Memories IV: Spotty Byte
Error Control Codes

Some of the error control codes mentioned in the previous chapters have been

applied to high-speed memory systems using RAM chips with either 1-bit I/O data

ðb ¼ 1Þ or 4-bit I/O data ðb ¼ 4Þ. However, modern large-capacity memory systems

use RAM chips with 8, 16, or 32 bits of I/O data. A new class of codes called spotty

byte error control codes has been developed for those memory systems that use

high-density DRAM chips with wide I/O data [UMAN03a, 03b, KASH04, SUZU04,

05a, 05b].

Spotty byte error is a special type of byte error, defined as a t-bit error in a b-bit byte,

where 1 � t � b. This is based on the fact that the dominant errors in byte-organized

chips, even in RAM chips with 8-bit, 16-bit, and 32-bit I/O data, are single-bit errors, or at

most double-bit or triple-bit errors, which are sometimes called low-density byte errors

[TANI92], or sparse byte errors.

Spotty byte error control codes, called t=b-error control codes, where t is larger

than or equal to 2 and less than at most b=2, are more practical than the conventional

byte error control codes because they require smaller number of check bits than the

existing byte error control codes. Here we deal with designing the code having

spotty byte error length t as taking any value from 1 to b. It is apparent that if t ¼ 1,

the codes are bit error control codes, and if t ¼ b, the codes are byte error control

codes.

In order to determine the code functions effectively applied to the solid-state data

recorder of the satellite systems, the encoder and decoder of some spotty byte error control

codes have been designed and implemented by FPGA to evaluate gate count and decoding

delays [KANE05].

Code Design for Dependable Systems: Theory and Practical Applications, by Eiji Fujiwara
Copyright # 2006 John Wiley & Sons, Inc.

263



7.1 SPOTTY BYTE ERRORS

Large-capacity high-speed memory systems often adopt high-density DRAM chips with

wide I/O data. Examples of this type of recent DRAMarchitecture are 16Mb chips with 8-bit

I/O data [NUMA89], 256Mb chips with 16-bit I/O data [SUGI93], 16Mb chips with

16-bit I/O data [SUNA95], and 256Mb chips with 32-bit I/O data [SAEK96, WATA96].

Because of their high-density nature, these DRAM chips are strongly vulnerable to a-
particles, neutrons, and so forth. [ZIEG96, OGOR96, SRIN96, MASS96]. In particular,

the large-capacity memory systems used at airplane altitudes or in a cosmic environment,

that is, memories in aircraft and spacecraft, need to be protected from high-energy

neutrons and cosmic rays.

From the coding standpoint the multiple errors that occur within a chip can result in a

byte error with only a few corrupted random bits. This is why we call such error a spotty

error, meaning that only two or three bits (i.e., less than b=2 bits) are corrupted in a byte.

We also refer to spotty errors within a byte as spotty byte errors. The burst / byte error

detecting codes with the SEC capability do not correct any multiple random bit errors

occurring within a single byte. Whereas the SbEC codes and SbEC-DbED codes can

correct any single-byte errors, they require many check bits proportional to the byte size b.

The byte error control codes treat a chip output as a byte. The minimum number of check

bits required by the SbEC codes and SbEC-DbED codes is at least 2b bits and 3b bits,

respectively. For example, an S16EC code applied to a memory system that adopts RAM

chips with 16-bit I/O data requires 32 check bits. For practical information lengths of 64,

128, and 256 bits, 32-bit or larger redundancy, in general, is not preferable. Spotty byte

error control codes, namely t=b-error control codes, offer a better practical solution to

such problems.

For mathematical tractability, spotty byte errors are denoted as t=b-errors, which
stands for random t-bit errors occurring within a single b-bit byte. In this chapter we

use a t=b-error to represent a binary row vector E 2 GFð2bÞ such that 1 � wðEÞ � t,

where wðEÞ is the Hamming weight of E, and we often take the value of t as being

either 2 or 3 and the value of b as being 8 or 16 for the practical parameters of the

spotty byte errors.

In this chapter we deal with two types of spotty byte errors: s-spotty byte errors and m-

spotty byte errors. An s-spotty byte error is defined as a set of random t or fewer bits errors

confined to a b-bit byte, and an m-spotty byte error is defined as multiple spotty byte errors

concentrated in one byte or distributed in multiple bytes. Sections 7.2 through 7.4 present

a class of m-spotty byte error control codes correcting one spotty byte error, and codes

detecting single-byte errors or two m-spotty byte errors besides correcting one spotty byte

error. Section 7.5 shows a general class of s-spotty byte error control codes and m-spotty

byte error control codes, both of which can correct and detect any number of spotty byte

errors.

7.2 SINGLE SPOTTY BYTE ERROR CORRECTING (St=bEC) CODES

An St=bEC code corrects all single t=b-errors in a received word. This code can be

considered a more generalized version of the SEC codes and the SbEC codes presented in

the previous chapters. That is, for t ¼ 1 and b, the S1=bEC and Sb=bEC code functions are

264 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



equivalent to SEC and SbEC code functions, respectively. For any ðN;N � RÞSt=bEC code,

the following two inequalities hold:

R 	 2t; ð7:1Þ

2R 	 1þ N

b
�
Xt
i¼1

b

i

� �
: ð7:2Þ

Inequality (7.1) provides a lower bound on the number of check bits required by an

St=bEC code. Inequality (7.2) provides the upper bound on code length or information-bit

length for a given check-bit length. In the following subsections we will study two design

methods of the St=bEC codes [UMAN03a].

7.2.1 Codes Based on Tensor Product of Matrices

St=bEC codes designed by a tensor product of two matrices were first implicitly suggested

by J. K. Wolf [WOLF65] in 1965. In 1992, N. H. Vaidya and D. K. Pradhan [VAID92]

explicitly proposed and evaluated St=bEC codes designed by a tensor product of two

matrices for application to byte-organized systems. In this subsection we will first study

the design of St=bEC codes using a tensor product of two matrices.

LetH0 ¼ ½h01k� be a 1� qmatrix andH00 ¼ ½h00ij� be anm� nmatrix. IfH0 andH00 can be
written as

H0 ¼ h011 h012 � � � h01q
 �

and H00 ¼

h0011 h0012 � � � h001n

..

. ..
. . .

. ..
.

h00m1 h00m2 � � � h00mn

26664
37775;

where h01k and h
00
ij are elements of GFð2pÞ, then the matrix H, defined as the tensor product

of matrices H00 and H0 (in this order), is the m� nq matrix over GFð2pÞ given by

H ¼ H00 �H0 ¼

h0011 �H0 � � � h001n �H0

..

. . .
. ..

.

h00m1 �H0 � � � h00mn �H0

266664
377775

¼

h0011h
0
11 h0011h

0
12 � � � h0011h

0
1q � � � � � � h001nh

0
11 h001nh

0
12 � � � h001nh

0
1q

..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
. ..

.

h00m1h
0
11 h00m1h

0
12 � � � h00m1h

0
1q � � � � � � h00mnh

0
11 h00mnh

0
12 � � � h00mnh

0
1q

266664
377775;

where h00ijh
0
1k denotes the usual multiplication of elements h00ij and h01k in GFð2pÞ. The

resulting matrix H can be conveniently considered an m� nq matrix over GFð2pÞ or an
mp� nq matrix over GFð2Þ, meaning a binary matrix. The following theorem, given in

[VAID92], illustrates the construction of St=bEC codes when using a tensor product of two

parity-check matrices.

SINGLE SPOTTY BYTE ERROR CORRECTING ðSt=bEC) CODES 265



Theorem 7.1 [VAID92] Let C0 be a binary ðb; b� r0Þ code with parity-check matrix H0

that corrects all t-bit errors. Let C00 be a single error correcting ðN 00; N 00 � R00Þ code over
GFð2r0 Þ. LetC00 have a parity-check matrixH00 ¼ ½gij�, gij being an element in GFð2r

0 Þ. Then

H ¼
g11H

0 � � � g1N 00H
0

..

. . .
. ..

.

gR001H
0 � � � gR00N 00H

0

264
375

is a parity-check matrix of a ðbN 00; bN 00 � r0R00ÞSt=bEC code over GFð2Þ.

In this construction the binary column vectors of H0 are treated as elements of GFð2r0 Þ.
The syndrome S consists of R00 component vectors where each such component vector is a

binary column vector of GFð2r0 Þ. The syndrome generated by a single t=b-error corrupting
the k-th byte is given by

S ¼

g1kðE �H0
TÞ

g2kðE �H0
TÞ

..

.

gR00kðE �H0
TÞ

26666664

37777775;

where E 2 GFð2bÞ is a nonzero binary row vector such that the Hamming weight of E

is less than or equal to t. Then, since 0 6¼ E �H0T 2 GFð2r0 Þ and C00 is a single-symbol

error correcting code over GFð2r0 Þ, we can determine both the error vector E and the error

location k from the syndrome S. Knowing E �H0T , which corresponds to the syndrome for

t-bit error in a codeword of C0, we can correct the bits in the k-th byte which are in error.

Example 7.1 [VAID92]

Let C0 be a ð15; 7Þ distance-5 BCH code over GFð2Þ, and let C00 be a ð257; 255Þ single
symbol error correcting Hamming code over GFð28Þ. Then the ð3855; 3839Þ code over
GFð2Þ obtained by using Theorem 7.1 is an S2=15EC code.

7.2.2 Efficient St=bEC Codes

Here we will study another code design technique that yields practical St=bEC codes. The

codes presented in this subsection require fewer check bits than the codes based on tensor

products of parity-check matrices [UMAN03a].

Let H0 ¼ ½h00 h01 � � � h0b�1� be a q� b binary matrix where any minð2t; bÞ or fewer
column vectors are linearly independent. In this matrix h00; h

0
1; � � � h0b�1 are all binary

column vectors of GFð2qÞ and minðu; vÞ expresses the minimum value of u and v. If

minð2t; bÞ ¼ b, the matrix H0 can be any b� b nonsingular matrix, including the b� b

identity matrix. On the other hand, if minð2t; bÞ ¼ 2t < b, we consider H0 to be a parity-
check matrix of a linear binary ðb; b� qÞ code with minimum distance at least 2t þ 1,

meaning it is a parity-check matrix of a binary t-error correcting code. Similarly we let

H00 ¼ ½h000 h001 h002 � � � h00i � � � h00b�1� be an r � b binary matrix where any t or fewer column

266 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



vectors are linearly independent. In this matrix, h000; h001; h002; � � � ; h00i ; � � � ; h00b�1 are all

binary column vectors of GFð2rÞ. If t ¼ b, the matrix H00 can be any b� b nonsingular

matrix, including the b� b identity matrix. If t < b, we consider H00 to be a parity-check

matrix of a linear binary ðb; b� rÞ code with minimum distance at least t þ 1, meaning it

is a parity-check matrix of a binary t-error detecting code. The following theorem shows

how an efficient St=bEC code can be designed using the above-definedH0 andH00 matrices.

Theorem 7.2 Let g be a primitive element of GFð2R�qÞ, where R 	 qþ r. Define the

R� b � 2R�q binary submatrix HR as follows:

HR ¼
H0 H0 H0 � � � H0 H0

g0H00 g1H00 g2H00 � � � g2
ðR�qÞ�2H00 0ðR�qÞ�b

� �
;

where, giH00 ¼ gifðh000Þ gifðh001Þ gifðh002Þ � � � gifðh00b�1Þ
 �

for 0 � i � 2R�q � 2, and

f : GFð2rÞ ! GFð2R�qÞ is a homomorphism of GFð2rÞ into GF 2R�q
� �

under addition.

Then the null space of

is an St=bEC code with check-bit length R and its code length in bits N ¼ b � 2R�q þ ðR� qÞ.
The Ix and 0x�y denote the x� x binary identity matrix and x� y binary all zero matrix,

respectively.

Proof The syndrome consists of two binary vectors, a q-bit vector and an ðR� qÞ-bit
vector. Let S� be the syndrome generated by any ðR� qÞ-bit byte error E� corrupting the

last byte of the codeword. Similarly let Sy be the syndrome generated by any t=b-error Ey

corrupting the second last byte of the codeword. Then

S� ¼ 0

E�

� �T
; Sy ¼ Ey �H0

0

� �T
;

where E� is a nonzero vector of GFð2R�qÞ and Ey is a nonzero vector of GFð2bÞ such that

the Hamming weight of Ey is not greater than t. For 0 � k � 2R�q � 2, let Sk be the

syndrome generated by the single t=b-error Ek corrupting the k-th byte. Then

Sk ¼
Ek �H0

Ek � gkH00
� �� �T

; ð7:3Þ

where Ek is a nonzero vector of GFð2bÞ such that the Hamming weight of Ek is not greater

than t. We know that Ey �H0T 6¼ 0 6¼ Ek �H0T because H0 is a parity-check matrix of a

binary t-error correcting code. Furthermore

Ek � ðgkH00ÞT ¼ gkfðEk �H00TÞ 6¼ 0

H ¼ HR

0q�ðR�qÞ

IR�q

� �
¼

H0 H0 H0 � � � H0 H0 0q�ðR�qÞ

g0H00 g1H00 g2H00 � � � g2
ðR�qÞ�2H00 0ðR�qÞ�b IR�q

" #

SINGLE SPOTTY BYTE ERROR CORRECTING ðSt=bEC) CODES 267



because H00 is a binary t-error detecting code. This implies that S� 6¼ Sy 6¼ Sk 6¼ S� for any
k where 0 � k � 2R�q � 2. Now, to show that the code is St=bEC, we only need to show

that any two t=b-errors corrupting any two different bytes generate two different

syndromes, that is, Si 6¼ Sj whenever i 6¼ j. Suppose that

Si ¼
Ei �H0

Ei � ðgiH00Þ

� �T
¼ Ej �H0

Ej � ðgjH00Þ

� �T
¼ Sj ð7:4Þ

holds for some 0 � i 6¼ j 6¼ 2R�q � 2. Errors Ei and Ej are nonzero vectors of GFð2bÞ
such that the Hamming weights of both vectors are not greater than t. Then, from

Eq. (7.4), Ei �H0T ¼ Ej �H0T implies that Ei ¼ Ej because H
0 is a parity-check matrix of

binary t-error correcting code. Subsequently f ðEi �H00TÞ ¼ f ðEj �H00TÞ where both

f ðEi �H00TÞ and f ðEj �H00TÞ are nonzero vectors of GFð2R�qÞ. Now, again from Eq.

(7.4), we have Ei � ðgiH00ÞT ¼ Ej � ðgiH00ÞT , that is, gif ðEi �H00TÞ ¼ g jf ðEj �H00TÞ, which
leads to i ¼ j and contradicts our initial assumption. This proves that the null space of

H is an St=bEC code. It is apparent that the code length (in bits) of the code is

N ¼ b � 2R�q þ ðR� qÞ, where R denotes the check-bit length. Q.E.D.

Note that we have conveniently grouped the last R� q check bits into an irregular byte

that is ðR� qÞ-bit long. The code is capable of correcting all random t-bit errors that occur

within this irregular byte. Therefore, if R� q > b, this byte can be divided into a regular

b-bit byte and another ðR� q� bÞ-bit byte. The code will still correct all random t-bit

errors that occur within these bytes.

Lemma 7.1 The null space of

H ¼ HR

0q�b 0q�b � � � 0q�b
HR�q

���� ���� 02q�ðR�2qÞ
IR�2q

� �
;

where R 	 2qþ r, is an St=bEC code with check-bit length R and code length in bits

N ¼ b � 2R�q þ b � 2R�2q þ ðR� 2qÞ. Here HR and HR�q are R� b � 2R�q and

ðR� qÞ � b � 2R�2q binary submatrices, respectively, as defined in Theorem 7.2.

Proof According to Theorem 7.2, the null spaces of HR and HR�q individually denote

two St=bEC codes. Therefore the null space of

HR

0q�b 0q�b � � � 0q�b
HR�q

����� �
is also an St=bEC code because any t-bit error pattern corrupting a byte in the first partition

generates a nonzero syndrome with a nonzero upper q-bit column vector. In the second

partition such a t-bit error pattern corrupting a byte generates a nonzero syndrome with an

all-zero upper q-bit column vector. On the other hand, any t-bit error pattern corrupting the

last byte generates a nonzero syndrome with an all-zero upper 2q-bit column vector.

Therefore the t-bit errors corrupting the last partition are distinguishable because no t-bit

error pattern corrupting any byte in the other two partitions can generate such an all-zero

2q-bit upper column vector. This proves that the null space of H is an St=bEC code. It is

268 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



apparent that the check-bit length of the code is R and the code length in bits is

N ¼ b � 2R�q þ b � 2R�2q þ ðR� 2qÞ. Q.E.D.

Theorem 7.2 and Lemma 7.1 suggest that if R 	 lqþ r, where l is a positive integer,

we can concatenate l iterative partitions to obtain a long St=bEC code. The following

theorem uses an iterative concatenation of partitions to obtain a new class of St=bEC codes.

This design technique is same as the one used in the Hong-Patel maximal SbEC codes of

Subsection 5.1.4. In this theorem we use Pc to denote the partition that corresponds to a

check-bit portion of the codeword and Pi, where 0 � i � l� 1, to denote the i-th partition

included in other portion of the codeword.

Theorem 7.3 Let R 	 lqþ r. Then the null space of

is an St=bEC code with check-bit length R and code length in bits N ¼
ðR� lqÞ þ

Pl
i¼1 b � 2R�iq. Here lð	 1Þ is an integer, and for p ¼ 0; 1; � � � ; l� 1,

HR�pq denotes the ðR� pqÞ � ðb � 2R�ðpþ1ÞqÞ binary submatrices, as defined in Theorem 7.2.

Proof From Theorem 7.2 we know that each partition corresponds to an St=bEC code.

Then, by iteratively applying Lemma 7.1, we can show that the null space of H is an

St=bEC code. The code length in bits of this code is given by

N ¼ ðR� lqÞ þ b � 2R�q þ b � 2R�2q þ � � � þ b � 2R�lb

¼ ðR� lqÞ þ
Xl
i¼1

b � 2R�iq;

where R denotes the check-bit length. Q.E.D.

Corollary 7.1 If any b column vectors both in H0 and H00 are linearly independent, the

code obtained by applying Theorem 7.2 is a single b-bit byte error correcting (SbEC) code.

Proof It is clear that when t ¼ b, the St=bEC code function becomes single b-bit byte

error correction (SbEC). Therefore, if any b column vectors both in H0 and H00 are linearly
independent, the code obtained by applying Theorem 7.3 is an SbEC code. Q.E.D.

H = HR

0q b 0q b 0q b

HR q

0q b 0q b 0q b

0q b 0q b 0q b

HR 2q

0q b 0q b 0q b

0q b 0q b 0q b

HR− (l−1)q

0λ q R λ q

IR λ q

P0 P1 P2 Pλ 1 Pc=

× × × × × ×

×

× ×
×

×

×××

××

( )–

–

−
−

−

. . . . . .

. . .

. . .

. . .

. . .

. . .

0q b 0q b 0q b

...

× × ×
. . .

SINGLE SPOTTY BYTE ERROR CORRECTING ðSt=bEC) CODES 269



For the case where t ¼ b we can choose the b� b binary identity matrix in the code

design, meaning H0 ¼ H00 ¼ Ib. Then the code obtained by applying Theorem 7.3

represents the well-known maximal codes called Hong-Patel codes [HONG72]. In other

words, the code denoted by Theorem 7.3 includes the Hong-Patel codes as a special case

when t ¼ b and H0 ¼ H00 ¼ Ib.

Corollary 7.2 If t ¼ b ¼ 1 and H0 ¼ H00 ¼ I1, the code obtained by applying Theorem

7.3 is a single-bit error correcting (SEC) code. Here I1 denotes 1� 1 binary identity

matrix, which is a binary 1.

Proof It is clear that when t ¼ b ¼ 1, the St=bEC code function becomes single-bit error

correction (SEC). Therefore, if any one column vector both in H0 and in H00 is linearly
independent, the code obtained by applying Theorem 7.3 is an SEC code. In this case

simply H0 ¼ H00 ¼ I1. Q.E.D.

For example, let t ¼ b ¼ 1, H0 ¼ H00 ¼ I1, and l ¼ 3. Then the following shows the

parity-check matrix obtained by applying Theorem 7.3:

Clearly, the matrix gives a single-bit error correcting Hamming code, which is the (15, 11)

SEC code. This demonstrates that the code denoted by Theorem 7.3 includes single-bit

error correcting Hamming code as a special case when t ¼ b ¼ 1 and H0 ¼ H00 ¼ I1.

7.2.3 Practical Examples

In this section we consider two practical St=bEC codes that can be applied to high-

speed memory systems using 8-bit or 16-bit I/O data memory chips. First, we take the

16-bit case and illustrate the design of the practical St=bEC code where t ¼ 3 and

b ¼ 16. The resulting code is called an S3=16EC code, and it corrects up to 3-bit

random errors corrupting a single 16-bit byte. We can design this code by using the

binary parity-check matrices of distance-7 and distance-4 codes as H0 and H00

matrices, respectively.

To this end, we know that 16
0

� �
þ 16

1

� �
þ 16

2

� �
þ 16

3

� �
¼ 697 > 29 ¼ 512. Nevertheless, a

computer search of the entireGFð210Þ space indicates that there is no (16, 6) distance-7 code.
A search of the GFð211Þ space yields the following (16, 5) distance-7 code:

H0 ¼ a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a275 a337 a863 a1412 a1849
 �

;

where a is a primitive element of GFð211Þ corresponding to primitive polynomial

pðxÞ ¼ x11 þ x2 þ 1. On the other hand, the parity-check matrix of a distance-4 binary

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 0 0 1 0 1 1 0 1 1 1 1 0 0 0

0 1 0 1 1 1 0 0 1 0 1 0 1 1 0

0 0 1 0 1 1 1 0 0 1 1 0 1 0 1

26666664

37777775:

270 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



extended cyclic Hamming code with code length 16 bits, meaning a (16, 11) SEC-DED

code, can be considered as H00 matrix. Then we have

H00 ¼ 1

0

1

b0
1

b1
1

b2
1

b3
1

b4
1

b5
1

b6
1

b7
1

b8
1

b9
1

b10
1

b11
1

b12
1

b13
1

b14

� �

¼ g0 g18 g5 g29 g10 g11 g8 g25 g26 g27 g22 g23 g14 g15 g16 g17
 �

;

where b is a primitive element of GFð24Þ corresponding to primitive polynomial

pðxÞ ¼ x4 þ xþ 1 and g is a primitive element of GFð25Þ corresponding to primitive

polynomial pðxÞ ¼ x5 þ x2 þ 1. Clearly,H0 is a parity-check matrix of a binary 3-bit error

correcting code and H00 is a parity-check matrix of a binary 3-bit error detecting code, as

required by Theorem 7.2. The parity-check matrix of the resulting ð517; 501Þ S3=16EC
code is given by the following matrix:

Here

giH00 ¼ gi giþ18 giþ5 giþ29 giþ10 giþ11 giþ8 giþ25 giþ26 giþ27 giþ22 giþ23 giþ14

giþ15 giþ16 giþ17

�
for 0 � i � 14. Notice that in this case the homomorphism f : GFð25Þ ! GFð25Þ is
simply given by fðxÞ ¼ x for any x 2 GFð25Þ. A shortened S3=16EC code with 256

information bits (i.e., an ð272; 256Þ S3=16EC code) can be obtained by simply choosing

the first 272 binary columns from the original ð517; 501Þ S3=16EC code. Furthermore this

shortened code can be made systematic by row operations. Figure 7.1 shows the binary

parity-check matrix of this shortened ð272; 256Þ S3=16EC code in systematic form. This

code requires only one RAM chip (with 16-bit I/O data) for check bits.

Our second example is an S3=8EC code that corrects up to three random bit errors

corrupting a single 8-bit byte. This code is suitable for memory systems that use chips with

8-bit I/O data. Figure 7.2 shows an example of an S3=8EC code, that is, the binary parity-

check matrix of a (132, 121) S3=8EC code. In this case we use the parity-check matrix of an

ð8; 1Þ 3-error correcting code as theH0 matrix, and that of an ð8; 4Þ 3-error detecting code
as the H00 matrix. These H0 and H00 matrices are given below in binary form:

H0 ¼

10000001

01000001

00100001

00010001

00001001

00000101

00000011

2666666664

3777777775
; H00 ¼

11111111

01001011

00101110

00010111

2664
3775:

H0 H0 H0 � � � H0 H0 O

g0H00 g1H00 g2H00 � � � g30H00 O I5

�
:

�

SINGLE SPOTTY BYTE ERROR CORRECTING ðSt=bEC) CODES 271



00
10

00
01

11
01

10
01

  0
01

10
01

01
00

00
11

1 
 0

00
10

10
00

01
11

01
1 

 0
10

11
00

10
10

00
01

1 
 1

01
10

10
11

11
00

01
0 

 1
00

11
01

01
11

10
00

1 
 1

10
00

10
01

10
10

11
1 

 0
00

01
11

01
10

01
01

0
01

01
00

11
01

01
11

10
  0

01
01

01
11

10
00

10
0 

 1
01

01
10

01
01

00
00

1 
 0

01
00

01
00

11
01

01
1 

 1
01

11
11

11
11

11
11

1 
 0

00
00

10
01

10
10

11
1 

 1
11

10
01

01
00

00
11

1 
 1

11
01

00
00

11
10

11
0

11
10

10
10

00
01

11
01

  1
11

10
00

01
11

01
10

0 
 1

10
00

10
10

00
01

11
0 

 1
01

01
11

01
10

01
01

0 
 0

00
01

11
10

00
10

01
1 

 1
10

01
10

01
01

00
00

1 
 1

01
11

10
11

00
10

10
0 

 0
01

01
00

11
01

01
11

1
01

10
10

00
10

01
10

10
  0

00
11

00
11

01
01

11
1 

 1
00

01
10

11
00

10
10

0 
 0

01
00

10
11

11
00

01
0 

 1
11

10
10

10
00

01
11

0 
 1

01
00

01
01

00
00

11
1 

 0
11

11
01

11
10

00
10

0 
 0

01
11

11
10

00
10

01
1

10
11

00
11

00
10

10
00

  1
11

00
10

01
01

00
00

1 
 0

01
11

10
11

11
00

01
0 

 0
11

11
00

10
01

10
10

1 
 1

00
00

11
01

10
01

01
0 

 1
00

01
11

10
11

00
10

1 
 1

00
11

10
00

01
11

01
1 

 1
01

11
01

01
00

00
11

1
01

10
01

10
01

10
10

11
  0

10
10

01
11

00
01

00
1 

 0
01

11
00

00
10

01
10

1 
 1

00
11

00
11

00
10

10
0 

 0
10

11
01

00
01

00
11

0 
 0

01
01

01
10

00
10

01
1 

 1
01

11
11

10
01

01
00

0 
 0

00
10

11
10

10
11

11
0

00
11

01
11

11
10

00
10

  1
10

01
00

00
00

11
10

1 
 1

10
00

00
11

01
10

01
0 

 1
10

10
01

01
11

01
10

0 
 1

11
10

10
00

10
10

00
0 

 1
01

11
00

10
01

01
00

0 
 0

10
10

10
11

00
01

00
1 

 0
11

11
01

01
00

11
01

0
11

01
10

00
01

00
00

11
  1

01
11

01
00

01
01

00
0 

 0
00

01
00

01
01

01
11

1 
 1

11
01

10
11

01
00

00
1 

 1
10

10
00

11
11

01
10

0 
 1

01
01

00
10

11
10

11
0 

 0
01

01
11

00
00

10
01

1 
 1

01
00

00
01

10
11

00
1

11
11

01
10

11
01

00
00

  0
01

01
11

11
00

10
01

1 
 0

11
01

01
10

10
00

10
0 

 1
00

10
10

01
01

11
01

1 
 1

00
11

10
10

00
10

10
0 

 1
00

01
11

00
10

01
01

0 
 1

01
01

00
01

11
10

11
0 

 1
11

00
10

11
00

01
11

0
01

01
11

10
01

10
01

10
  1

01
01

00
00

01
10

11
0 

 1
01

10
01

01
10

00
11

1 
 1

00
00

11
10

01
00

10
1 

 1
11

01
10

01
11

00
00

1 
 0

10
01

10
10

01
11

00
0 

 1
00

01
11

01
00

01
01

0 
 1

11
11

11
11

01
11

11
1

11
01

00
00

11
00

11
00

  1
00

01
11

01
11

01
01

0 
 0

10
00

10
01

11
10

11
1 

 0
01

00
11

01
00

11
10

0 
 1

00
10

10
00

00
11

01
1 

 0
11

10
00

10
00

10
10

1 
 0

10
01

10
10

10
11

00
0 

 0
01

10
10

11
10

00
01

0
00

10
11

11
00

00
00

11
  1

00
10

10
00

01
01

01
1 

 0
11

00
01

00
11

11
01

1 
 0

11
11

00
01

00
01

01
0 

 0
10

01
10

10
11

01
00

0 
 0

01
00

11
01

01
01

10
0 

 1
00

00
11

10
11

10
10

1 
 0

10
00

10
01

10
00

11
1

10
00

01
11

01
10

11
01

  0
00

10
01

10
10

10
11

0 
 1

01
11

01
10

01
00

00
0 

 0
11

01
01

11
10

01
10

0 
 0

01
11

10
00

10
00

10
1 

 1
11

00
10

10
00

00
11

0 
 1

01
00

00
11

10
10

00
1 

 0
10

11
11

00
01

01
11

0
00

00
10

01
10

10
10

11
  0

01
10

10
11

11
00

11
0 

 0
10

01
10

10
11

11
10

0 
 1

10
01

01
00

00
11

00
1 

 0
10

00
10

01
10

10
01

1 
 1

10
11

00
10

10
00

11
1 

 0
11

00
01

00
11

01
11

1 
 1

00
10

10
00

01
11

11
1

10
01

11
01

10
01

01
10

  0
10

01
10

10
11

11
01

0 
 0

00
11

01
01

11
10

01
1 

 1
10

00
01

11
01

10
00

0 
 1

00
00

11
10

11
00

11
1 

 0
11

11
00

01
00

11
00

0 
 0

11
10

00
10

01
10

11
1 

 0
11

00
01

00
11

01
00

1
11

10
11

00
10

10
00

00
  0

11
10

00
10

01
10

10
0 

 1
10

01
01

00
00

11
10

0 
 0

01
11

10
00

10
01

10
0 

 0
01

00
11

01
01

11
10

1 
 0

00
10

01
10

10
11

11
1 

 0
11

11
00

01
00

11
01

1 
 1

10
11

00
10

10
00

01
0

10
00

00
00

00
00

00
00

   
  1

11
10

00
10

01
10

10
1 

 0
11

00
10

10
00

01
11

0 
 1

10
01

10
10

11
11

00
0 

 0
00

11
10

11
00

10
10

0 
 0

10
01

01
00

00
11

10
1 

 1
00

10
01

10
10

11
11

0 
 1

10
10

11
11

00
01

00
1 

 0
01

01
00

00
11

10
11

0
01

00
00

00
00

00
00

00
   

  0
00

01
10

10
11

11
00

0 
 1

11
00

00
11

10
11

00
1 

 1
10

01
11

01
10

01
01

0 
 1

00
10

00
01

11
01

10
0 

 0
10

11
01

01
11

10
00

1 
 0

01
11

00
01

00
11

01
0 

 1
00

01
01

00
00

11
10

1 
 0

11
01

11
10

00
10

01
1

00
10

00
00

00
00

00
00

   
  1

00
10

01
01

00
00

11
1 

 0
11

10
11

11
00

01
00

1 
 0

10
01

01
11

10
00

10
0 

 0
01

10
01

10
10

11
11

0 
 1

01
10

10
00

01
11

01
1 

 0
01

11
01

01
11

10
00

1 
 1

01
00

11
10

11
00

10
1 

 0
00

11
10

00
10

01
10

1
00

01
00

00
00

00
00

00
   

  1
00

11
11

01
10

01
01

0 
 0

00
00

01
10

10
11

11
0 

 1
01

11
00

00
11

10
11

0 
 0

10
01

11
00

01
00

11
0 

 0
10

10
10

01
10

10
11

1 
 0

11
00

00
10

01
10

10
1 

 0
00

01
01

01
11

10
00

1 
 1

01
01

01
10

01
01

00
0

00
00

10
00

00
00

00
00

   
  0

00
10

01
01

11
10

00
1 

 0
01

00
11

10
00

10
01

1 
 0

10
01

10
01

10
10

11
1 

 1
11

01
10

10
00

01
11

0 
 0

01
01

11
01

01
11

10
0 

 0
10

11
11

11
00

01
00

1 
 1

10
01

01
11

01
10

01
0 

 0
11

00
01

11
10

00
10

0
00

00
01

00
00

00
00

00
   

  1
11

00
00

10
00

01
11

0 
 1

10
11

10
10

10
00

01
1 

 1
01

00
10

11
10

11
00

1 
 0

01
00

01
01

01
11

10
0 

 1
01

01
10

00
11

10
11

0 
 0

01
10

00
11

11
00

01
0 

 1
00

01
01

01
10

01
01

0 
 0

11
11

10
01

00
11

01
0

00
00

00
10

00
00

00
00

   
  1

01
00

01
11

10
11

00
1 

 0
11

00
00

00
11

01
01

1 
 0

00
10

00
10

10
11

11
0 

 1
00

00
10

10
11

00
10

1 
 0

01
01

10
10

00
10

01
1 

 1
11

11
10

11
11

11
11

1 
 1

01
01

01
00

11
10

11
0 

 0
11

10
01

10
01

10
10

1
00

00
00

01
00

00
00

00
   

  1
11

11
11

01
11

11
11

1 
 1

11
10

11
10

10
10

00
0 

 1
11

00
10

00
00

01
11

0 
 1

10
00

01
01

01
10

01
0 

 1
00

01
11

11
10

01
01

0 
 0

11
00

01
10

11
01

01
1 

 0
10

01
10

00
11

11
00

0 
 0

00
10

01
00

10
11

11
0

00
00

00
00

10
00

00
00

   
  0

01
10

10
10

11
00

01
0 

 0
10

11
11

01
01

00
11

0 
 1

11
11

11
10

11
11

11
1 

 0
01

11
10

01
10

01
10

1 
 0

10
01

10
11

11
11

00
0 

 1
10

11
00

11
10

00
01

1 
 0

11
10

00
11

01
10

10
1 

 1
01

00
00

10
10

11
00

1
00

00
00

00
01

00
00

00
   

  0
11

00
01

00
01

01
01

1 
 1

10
10

00
01

01
01

10
0 

 0
01

10
10

11
01

00
01

0 
 0

00
01

00
11

11
01

11
1 

 0
11

10
00

10
11

10
10

1 
 1

11
10

11
00

00
10

00
0 

 0
11

11
00

01
10

11
01

0 
 1

11
00

10
10

10
01

11
0

00
00

00
00

00
10

00
00

   
  1

10
11

00
10

11
00

01
1 

 1
00

11
10

11
01

10
10

0 
 0

11
00

01
00

10
01

01
1 

 0
11

01
01

11
11

00
10

0 
 0

11
11

00
01

01
11

01
0 

 0
10

11
11

00
00

00
11

0 
 0

00
10

01
10

11
11

11
0 

 1
11

11
11

11
10

11
11

1
00

00
00

00
00

01
00

00
   

  1
10

01
01

00
00

01
10

1 
 1

01
01

00
00

11
00

11
0 

 0
00

11
01

01
11

00
00

1 
 1

11
11

11
11

11
01

11
1 

 1
10

00
01

11
01

00
01

0 
 1

01
11

01
10

01
11

00
0 

 0
01

11
10

00
10

11
10

1 
 1

01
10

01
01

00
10

11
1

00
00

00
00

00
00

10
00

   
  1

00
11

10
11

00
11

10
0 

 0
01

00
11

01
01

10
10

0 
 1

10
10

00
01

11
00

10
0 

 1
10

01
01

00
00

10
10

1 
 1

11
11

11
11

11
10

11
1 

 1
00

10
10

00
01

10
01

1 
 0

01
10

10
11

11
01

01
0 

 1
11

10
11

00
10

11
00

0
00

00
00

00
00

00
01

00
   

  0
01

00
11

01
01

11
00

0 
 0

11
01

01
11

10
00

00
0 

 1
00

00
11

10
11

00
00

1 
 1

01
01

00
00

11
10

01
0 

 1
11

10
11

00
10

10
10

0 
 0

01
11

10
00

10
01

00
1 

 0
10

11
11

00
01

00
01

0 
 1

11
01

10
01

01
00

10
1

00
00

00
00

00
00

00
10

   
  1

11
10

11
00

10
10

01
0 

 1
11

01
10

01
01

00
01

1 
 1

10
11

00
10

10
00

00
1 

 1
01

10
01

01
00

00
10

1 
 0

00
10

01
10

10
11

10
0 

 1
10

10
00

01
11

01
11

0 
 1

01
00

00
11

10
11

01
1 

 0
01

10
10

11
11

00
00

0
00

00
00

00
00

00
00

01
   

  0
10

11
11

00
01

00
11

1 
 1

00
10

10
00

01
11

01
0 

 1
11

10
11

00
10

10
00

1 
 0

10
00

10
01

10
10

11
0 

 1
01

00
00

11
10

11
00

0 
 1

00
11

10
11

00
10

10
1 

 1
11

00
10

10
00

01
11

1 
 0

11
00

01
00

11
01

01
0

F
ig
u
re

7
.1

Ex
am

pl
e
of
a
pr
ac

tic
al
sy
st
em

at
ic
(2
72
,2
56
)S

3=
16
E
C
co

de
.

272



10
00

00
01

  1
00

00
00

1 
 1

00
00

00
1 

 1
00

00
00

1 
 1

00
00

00
1 

 1
00

00
00

1 
 1

00
00

00
1 

 1
00

00
00

1 
 1

00
00

00
1 

 1
00

00
00

1 
 1

00
00

00
1 

 1
00

00
00

1 
 1

00
00

00
1 

 1
00

00
00

1 
 1

00
00

00
1 

 1
00

00
00

1 
 0

00
0

01
00

00
01

  0
10

00
00

1 
 0

10
00

00
1 

 0
10

00
00

1 
 0

10
00

00
1 

 0
10

00
00

1 
 0

10
00

00
1 

 0
10

00
00

1 
 0

10
00

00
1 

 0
10

00
00

1 
 0

10
00

00
1 

 0
10

00
00

1 
 0

10
00

00
1 

 0
10

00
00

1 
 0

10
00

00
1 

 0
10

00
00

1 
 0

00
0

00
10

00
01

  0
01

00
00

1 
 0

01
00

00
1 

 0
01

00
00

1 
 0

01
00

00
1 

 0
01

00
00

1 
 0

01
00

00
1 

 0
01

00
00

1 
 0

01
00

00
1 

 0
01

00
00

1 
 0

01
00

00
1 

 0
01

00
00

1 
 0

01
00

00
1 

 0
01

00
00

1 
 0

01
00

00
1 

 0
01

00
00

1 
 0

00
0

00
01

00
01

  0
00

10
00

1 
 0

00
10

00
1 

 0
00

10
00

1 
 0

00
10

00
1 

 0
00

10
00

1 
 0

00
10

00
1 

 0
00

10
00

1 
 0

00
10

00
1 

 0
00

10
00

1 
 0

00
10

00
1 

 0
00

10
00

1 
 0

00
10

00
1 

 0
00

10
00

1 
 0

00
10

00
1 

 0
00

10
00

1 
 0

00
0

00
00

10
01

  0
00

01
00

1 
 0

00
01

00
1 

 0
00

01
00

1 
 0

00
01

00
1 

 0
00

01
00

1 
 0

00
01

00
1 

 0
00

01
00

1 
 0

00
01

00
1 

 0
00

01
00

1 
 0

00
01

00
1 

 0
00

01
00

1 
 0

00
01

00
1 

 0
00

01
00

1 
 0

00
01

00
1 

 0
00

01
00

1 
 0

00
0

00
00

01
01

  0
00

00
10

1 
 0

00
00

10
1 

 0
00

00
10

1 
 0

00
00

10
1 

 0
00

00
10

1 
 0

00
00

10
1 

 0
00

00
10

1 
 0

00
00

10
1 

 0
00

00
10

1 
 0

00
00

10
1 

 0
00

00
10

1 
 0

00
00

10
1 

 0
00

00
10

1 
 0

00
00

10
1 

 0
00

00
10

1 
 0

00
0

00
00

00
11

  0
00

00
01

1 
 0

00
00

01
1 

 0
00

00
01

1 
 0

00
00

01
1 

 0
00

00
01

1 
 0

00
00

01
1 

 0
00

00
01

1 
 0

00
00

01
1 

 0
00

00
01

1 
 0

00
00

01
1 

 0
00

00
01

1 
 0

00
00

01
1 

 0
00

00
01

1 
 0

00
00

01
1 

 0
00

00
01

1 
 0

00
0

11
11

11
11

  0
00

10
11

1 
 0

01
01

11
0 

 0
10

01
01

1 
 1

11
01

00
0 

 0
01

11
00

1 
 0

11
00

10
1 

 1
01

00
01

1 
 1

10
10

00
1 

 0
10

11
10

0 
 1

10
00

11
0 

 0
11

10
01

0 
 1

00
01

10
1 

 1
00

11
01

0 
 1

01
10

10
0 

 0
00

00
00

0 
 1

00
0

01
00

10
11

  1
11

01
00

0 
 0

01
11

00
1 

 0
11

00
10

1 
 1

01
00

01
1 

 1
10

10
00

1 
 0

10
11

10
0 

 1
10

00
11

0 
 0

11
10

01
0 

 1
00

01
10

1 
 1

00
11

01
0 

 1
01

10
10

0 
 1

11
11

11
1 

 0
00

10
11

1 
 0

01
01

11
0 

 0
00

00
00

0 
 0

10
0

00
10

11
10

  0
10

01
01

1 
 1

11
01

00
0 

 0
01

11
00

1 
 0

11
00

10
1 

 1
01

00
01

1 
 1

10
10

00
1 

 0
10

11
10

0 
 1

10
00

11
0 

 0
11

10
01

0 
 1

00
01

10
1 

 1
00

11
01

0 
 1

01
10

10
0 

 1
11

11
11

1 
 0

00
10

11
1 

 0
00

00
00

0 
 0

01
0

00
01

01
11

  0
01

01
11

0 
 0

10
01

01
1 

 1
11

01
00

0 
 0

01
11

00
1 

 0
11

00
10

1 
 1

01
00

01
1 

 1
10

10
00

1 
 0

10
11

10
0 

 1
10

00
11

0 
 0

11
10

01
0 

 1
00

01
10

1 
 1

00
11

01
0 

 1
01

10
10

0 
 1

11
11

11
1 

 0
00

00
00

0 
 0

00
1

F
ig
u
re

7
.2

Ex
am

pl
e
of
a
pr
ac

tic
al
(1
32
,1
21
)S

3=
8
E
C
co

de
.
S
ou

rc
e:

[U
M
A
N
03
a
].
�

20
03

IE
IC
E
Ja
pa

n.

273



Figures 7.3 and 7.4 show the check-bit length and information-bit length relationship

of the St=bEC codes for the practical values of b and t. These figures also give the

corresponding H0 and H00 matrices that are used in plotting these graphs. The graphs

clearly indicate that in all cases, when practical information lengths such as 64, 128, or 256

bits are considered, the number of check bits required by an St=bEC code is significantly

less than that of the counterpart SbEC code.

7.3 SINGLE SPOTTY BYTE ERROR CORRECTING AND
SINGLE-BYTE ERROR DETECTING ðSt=bEC-SbED) CODES

In this section we consider a class of codes known as St=bEC-SbED codes [UMAN03b].

An St=bEC-SbED code corrects all single t=b-errors, and detects single-byte errors. In

other words, correction is performed if t or fewer bits are in error in a byte, and detection is

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

10

12

14

16

18

64 128 256 512 1,024 2,048 4,096

51

110

K = 229

469

950

1,913

3,839

36

82

175

K = 362

738

1,490

2,996

504

1,016

2,040

4,088
K = 501

1,013

2,037

4,085

t = 2

t = 3

t = 2

t = 3

St/bEC code in Theorem 7.3

St/bEC code bound by Inequality (7.2)

b = 16

for t = 3

1111111111111111
0100010011010111
0010011010111100
0001001101011110
0000100110101111

H // = 
H / = 

1000000000011100
0100000000001110
0010000000010101
0001000000000111
0000100000010110
0000010000001101
0000001000011010
0000000100011011
0000000010001011
0000000001010011
0000000000111111

for t = 2

1111111111111111
0100010011010111
0010011010111100
0001001101011110
0000100110101111

H // = 

1000000001101101
0100000010101011
0010000001110110
0001000011111010
0000100011110101
0000010011010011
0000001011001111
0000000100111111

H / = 

Figure 7.3 Check-bit lengths, comparedwithinformation-bit lengthsof theSt=bECcodesand the correspond-
ingH 0, andH 00matrices for b ¼ 16and t ¼ 2; 3. Source: [UMAN03a].� 2003 IEICE Japan.

274 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



performed if more than t bits in a byte are in error. For any ðN;N � RÞSt=bEC-SbED code,

the following two inequalities hold:

R 	 bþ t; ð7:5Þ

N=b �
2R � 2b þ

Pt
i¼1

b
i

� �Pt
i¼1

b
i

� � : ð7:6Þ

Inequality (7.5) provides a lower bound on the number of check bits required by an

St=bEC-SbED code. Inequality (7.6) provides the upper bound on code length or

information-bit length for a given check-bit length.

Theorem 7.4 If H0 ¼ Ib, the codes described by the parity-check matrices of Theorem

7.2, Lemma 7.1, and Theorem 7.3 are all systematic St=bEC-SbED codes.

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

8

10

12

14

16

18

64 128 256 512 1,024 2,048 4,096

48

104

K = 217

443

898

1,807

3,626

78

167

K = 344

699

1,410

2,834

122

250

506

1,018

2,042

4,090

121

249

K = 505

1,017

2,041

4,089

St/bEC code bound

St/bEC code 

in Theorem 7.3

t = 2

t = 2

t = 3

t = 3

b = 8

for t = 3

H // = 
11111111
01001011
00101110
00010111

H / = 

10000001
01000001
00100001
00010001
00001001
00000101
00000011

for t = 2

H // = 
11111111
01001011
00101110
00010111

H / =

10000010
01000010
00100011
00010011
00001001
00000101

Figure 7.4 Check-bit lengths comparedwithinformation-bit lengthsof theSt=bEC codesand the correspond-
ingH 0,H 00 matrices for b ¼ 8and t ¼ 2; 3: Source: [UMAN03a].� 2003 IEICE Japan.

SINGLE-BYTE ERROR DETECTING ðSt=bEC-SbED) CODES 275



Proof It is obvious that if H0 ¼ Ib, all single t=b-errors can be corrected. Let

E1 2 GFð2bÞ denote a single t=b-error and E2 2 GFð2bÞ denote a b-bit byte error.

Then Ib � E1 6¼ Ib � E2 because wðE1Þ � t and wðE2Þ > t. This proves that the code

also detects all single-byte errors. Q.E.D.

Figure 7.5 gives a practical systematic ð76; 64Þ S3=8EC-S8ED code that is suitable for

application to memory systems with 8-bit RAM chips. This code is a shortened version of

the original ð132; 120ÞS3=8EC-S8ED code that corrects all single-byte errors with three or

fewer bits corrupted, and detects all single-byte errors with more than three bits corrupted.

For b ¼ 8 and 2 � t � 8, Figure 7.6 shows the check-bit lengths plotted against the

information-bit lengths of the St=bEC-SbED code. Table 7.1 presents the error detection

capabilities of the S3=8EC-S8ED code.

7.3.1 Decoding St=bEC-SbED Codes

The decoding method is presented here for the St=bEC-SbED codes derived in Theorem

7.4. This decoding method corrects all single t=b-errors plus some b-bit byte errors that are

correctable. Uncorrectable b-bit byte error patterns are only detected. Let v be the received

word. The syndrome S can be calculated as follows:

v �HT ¼ S ¼ S0; S1½ �;

where S0 2 GFð2bÞ and S1 2 GFð2rÞ are, respectively, the b-bit vector and the r-bit vector
of the syndrome

We know that the syndrome vector S0 corresponds to the error pattern in GFð2bÞ � f0g,
whereas the syndrome vector S1 indicates the location of the single t=b-error or a

correctable b-bit byte error pattern, except for the case where the error has corrupted the

last byte. Based on this knowledge, we can devise a decoding algorithm as follows:

Step 1. If S0 ¼ 0 and S1 ¼ 0, there are no errors. The received word is a codeword.

Step 2. If S0 ¼ 0, S1 6¼ 0, the last byte is in error. This byte has r bits in it. The error

pattern itself is given by S1.

Ib Ib � � � Ib Ib Ob�r
g0H00 g1H00 � � � g2

r�2H00 Or�b Ir

� �
! S0
! S1

:

TABLE 7.1 Error-Detection Capabilities of the S3=8EC-S8ED Code

Errordetectioncapability (%)

K ¼ 64 K ¼ 128 K ¼ 256
Error types ðR ¼ 12Þ ðR ¼ 13Þ ðR ¼ 14Þ

Double-bit errors 49.54 48.81 49.45
Triple-biterrors 45.00 47.34 48.70
Byteplusbiterrors 80.79 80.81 80.83

Source: [UMAN03b].� 2003 IEEE.

276 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



S
1

S
2

1 0 0 0 0 0 0 0 1 0 0 0d 0

0 1 0 0 0 0 0 0 1 1 0 0d 1

0 0 1 0 0 0 0 0 1 0 1 0d 2

0 0 0 1 0 0 0 0 1 0 0 1d 3

0 0 0 0 1 0 0 0 1 1 1 0d 4

0 0 0 0 0 1 0 0 1 0 1 1d 4

0 0 0 0 0 0 1 0 1 1 1 1d 6

0 0 0 0 0 0 0 1 1 1 0 1d 7

1 0 0 0 0 0 0 0 0 1 0 0d 8

0 1 0 0 0 0 0 0 0 1 1 0d 9

0 0 1 0 0 0 0 0 0 1 0 1d 1
0 0 0 0 1 0 0 0 0 1 0 0 0d 1

1 0 0 0 0 1 0 0 0 0 1 1 1d 1
2 0 0 0 0 0 1 0 0 1 0 0 1d 1

3 0 0 0 0 0 0 1 0 1 0 1 1d 1
4 0 0 0 0 0 0 0 1 1 0 1 0d 1

5
d 3

9

1 0 0 0 0 0 0 0 0 0 1 0d 1
6 0 1 0 0 0 0 0 0 0 0 1 1d 1

7 0 0 1 0 0 0 0 0 1 1 1 0d 1
8 0 0 0 1 0 0 0 0 0 1 0 0d 1

9 0 0 0 0 1 0 0 0 1 1 1 1d 2
0 0 0 0 0 0 1 0 0 1 0 0 0d 2

1 0 0 0 0 0 0 1 0 1 0 0 1d 2
2 0 0 0 0 0 0 0 1 0 1 0 1d 2

3

1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1 1 0 1

0 0 1 0 0 0 0 0 0 1 1 1

0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 1 0 1 1

0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 1 1 1 0

d 2
4 d 2

5 d 2
6 d 2

7 d 2
8 d 2

9 d 3
0 d 3

1

1 0 0 0 0 0 0 0 1 1 0 0

0 1 0 0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 0 0 1 1 1 1

0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 1 0 1 1 1

d 3
2 d 3

3 d 3
4 d 3

5 d 3
6 d 3

7 d 3
8

1 0 0 0 0 0 0 0 0 1 1 0

0 1 0 0 0 0 0 0 0 1 0 1

0 0 1 0 0 0 0 0 1 0 1 1

0 0 0 1 0 0 0 0 1 1 0 0

0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 1 1 1 1

d 4
0 d 4

1 d 4
2 d 4

3 d 4
4 d 4

5 d 4
6 d 4

7

1 0 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 0 0 1 1 1 0

0 0 1 0 0 0 0 0 1 0 0 1

0 0 0 1 0 0 0 0 0 1 1 0

0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 1 0 0

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 1 0 1 1

d 4
8 d 4

9 d 5
0 d 5

1 d 5
2 d 5

3 d 5
4 d 5

5

1 0 0 0 0 0 0 0 1 1 0 1

0 1 0 0 0 0 0 0 0 1 1 1

0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 1 1 0

0 0 0 0 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 1 1 0 0 1

d 5
6 d 5

7 d 5
8 d 5

9 d 6
0 d 6

1 d 6
2 d 6

3

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

c 0
c 1

c 2
c 3

c 4
c 5

c 6
c 7

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

c 8
c 9 c 1

0 c 1
1

d 0
 d

1 
d 2

 · 
· ·

 · 
d 6

3:
 In

fo
rm

at
io

n 
bi

ts

c 0
 c

1 
c 2

 · 
· ·

 · 
c 1

1:
 C

he
ck

 b
its

S
1 

: 8
-B

it 
sy

nd
ro

m
e 

ve
ct

or
 fo

r 
er

ro
r 

pa
tte

rn

S
2 

: 4
-B

it 
sy

nd
ro

m
e 

ve
ct

or
 fo

r 
er

ro
r 

lo
ca

tio
n

F
ig
u
re

7
.5

Ex
am

pl
e
of
a
pr
ac

tic
al
sy
st
em

at
ic
(7
6,
64
)S

3=
8
E
C
-S
8E

D
co

de
.

277



Step 3. If S0 6¼ 0, S1 ¼ 0, and S0 �H00T 6¼ 0, the error pattern is correctable. The error

pattern is given by S0, and the error location is the second last byte in the received

word. On the other hand, if S0 �H00T ¼ 0, the error pattern cannot be corrected. In this

case we generate a signal to detect such an error.

Step 4. If S0 6¼ 0, S1 6¼ 0, the error pattern is given by S0. To find the error location, we

calculate S0 � ðgiH00ÞT in parallel for 0 � i � 2r � 2. The i-th byte is in error if

S0 � ðgiH00ÞT ¼ S1 holds; otherwise, it is not.

Figure 7.7 shows the 8-bit byte error detector for the S3=8EC-S8ED code shown in

Figure 7.5. This implements the function S0 �H00T and outputs a logical 1 to indicate error

detection whenever S0 �H00T ¼ 0 for a nonzero syndrome. Figure 7.8 shows the syndrome

decoder and the error corrector circuitry corresponding to the first byte of the same

S3=8EC-S8ED code.

7.3.2 Perfect St=bEC-SbED Code with t ¼ b – 1

We know that for the case where t ¼ b, the St=bEC-SbED code becomes a single b-bit byte

error correcting code (i.e., an SbEC code). It is further well known that perfect SbEC codes

do exist, as Hong-Patel codes [HONG72] shown in Subsection 5.1.4. Here we consider the

case where t ¼ b� 1, that is, Sðb�1Þ=bEC-SbED codes that correct all single b-bit byte

error patterns except when all b bits in a b-bit byte are in error. It will be shown that perfect

Sðb�1Þ=bEC-SbED codes exist whenever R� 1 is an integer multiple of b� 1 and

N ¼ b � ð2R�1 � 1Þ=ð2b�1 � 1Þ.

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

t = 8
00000011

10000001
01000001
00100001
00010001
00001001
00000101

t = 5

11000000
00010111
00111001
01111111
00101101
00011110

t = 4

11111111
01001011
00101110
00010111

t = 3

11111111
01001011
00101110
00010111

t = 2
00000011

10000001
01000001
00100001
00010001
00001001
00000101

t = 6
00000011

10000001
01000001
00100001
00010001
00001001
00000101

t = 7

12

13

14

15

16

17

64 128 256 512 1,024 2,048

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

K = 120

248

504

1,016

2,040

t = 2, 3

t = 4

t = 5, 6, 7

t = 8

codeSt/8EC-S ED8

Figure 7.6 Check-bit lengths compared with information-bit lengths of the St=8EC-S8ED codes and H 00

matrices for 2 � t � 8: Source: [UMAN03b].� 2003 IEEE.

278 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



It is obvious that an Sðb�1Þ=bEC-SbED code requires at least 2b� 1 check bits. The

following lemma states that a binary linear Sðb�1Þ=bEC-SbED code with one shortened byte

cannot be a perfect code.

Lemma 7.2 A perfect binary linear Sðb�1Þ=bEC-SbED code with one shortened c-bit

byte, where 1 � c � b� 1, cannot exist.

Proof Assume that such a perfect code exists with a code length in bits N ¼ nbþ c and

a check-bit length R, where n is a positive integer. Since c � b� 1, the Sðb�1Þ=bEC-SbED
code corrects all error patterns that corrupt the shortened byte with c bits. The total num-

ber of different error patterns with b� 1 bits corrupted within a single b-bit byte is given

by
Pb�1

i¼1
b
i

� �
. There are n bytes each with b bits; therefore we need a total of n�

Pb�1
i¼1

b
i

� �
different syndromes to correct all these errors. Furthermore 2c � 1 syndromes are

necessary to correct all diffferent 2c � 1 errors that corrupt the shortened byte. Finally we

S0

 Byte error detection

S0· H// = 0

76
54

32
10

T S0 = 0 

Figure 7.7 Byte errordetector for the S3=8EC-S8EDcode showninFigure 7.5. Source: [UMAN03b].� 2003 IEEE.

S0

. . . .

S0 · (γ 0H// )   = S1

32
10

Corrected
V0

Corrected
V1

Received
V0

Received
V1

Received
V2

Received
V7

Corrected
V2

Corrected
V7

76
54

32
10

T

S1

Figure 7.8 Syndrome decoder and error corrector corresponding to first byte of the S3=8EC-S8ED code
shown in Figure 7.5. Source: [UMAN03b].� 2003 IEEE.

SINGLE-BYTE ERROR DETECTING ðSt=bEC-SbED) CODES 279



need just one syndrome to detect b-bit byte error patterns with all b bits corrupted in it. A

code is perfect if and only if it uses all available nonzero syndromes. Therefore we write

2R � 1 ¼ n �
Xb�1
i¼1

b

i

� �
þ ð2c � 1Þ þ 1

¼ n � ð2b � 2Þ þ ð2c � 1Þ þ 1:

From the above we get the following equation:

n ¼ ð2
R � 2Þ � ð2c � 1Þ

2b � 2
: ð7:7Þ

We know that 2R � 2 and 2b � 2 are even numbers, whereas 2c � 1 is an odd number.

Therefore the numerator ð2R � 2Þ � ð2c � 1Þ of Eq. (7.7) is an odd number and the

denominator 2b � 2 is an even number. But this case is impossible because n is a natural

number. So there is no perfect Sðb�1Þ=bEC-SbED code with one shortened byte with c bits,

where 1 � c � b� 1. Q.E.D.

Theorem 7.5 A perfect binary linear ðN; N � RÞ Sðb�1Þ=bEC-SbED code exists only if

R� 1 is an integer multiple of b� 1 and code length in bits N ¼ b � ð2R�1 � 1Þ=ð2b�1 � 1Þ.

Proof From Lemma 7.2 we know that a perfect Sðb�1Þ=bEC-SbED code with one shor-

tened byte cannot exist. Therefore we assume that the code length N is a multiple of byte

length b. Then, from the fact that a perfect code uses all available syndromes, we have

2R � 1 ¼ N

b
�
Xb�1
i¼1

b

i

� �
þ 1:

From the equation above we obtain the following equation:

N

b
¼ 2R � 2

2b � 2
¼ 2R�1 � 1

2b�1 � 1
: ð7:8Þ

We know that Eq. (7.8) is true for an integer N=b only when R� 1 is an integer multiple of

b� 1. Subsequently a perfect ðN; N � RÞ Sðb�1Þ=bEC-SbED codes exists only when R� 1

is an integer multiple of b� 1, and the code length in bits is given by N ¼
b � ð2R�1 � 1Þ=ð2b�1 � 1Þ. Q.E.D.

The following theorem shows how we can construct a perfect Sðb�1Þ=bEC-SbED code

by using the GFð2b�1Þ subfield of GFð2R�1Þ whenever R� 1 is an integer multiple of

b� 1.

Theorem 7.6 Let a be a primitive element of GFð2R�1Þ such that R� 1 is an integer

multiple of b� 1. For 0 � i � s� 1, define the ðR� 1Þ � b binary matrix Hi as follows:

Hi ¼ ai aiþs aiþ2s � � � aiþðb�2Þs f ðaiÞ
 �

;

280 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



where s ¼ ð2R�1 � 1Þ=ð2b�1 � 1Þ and f ðaiÞ ¼
Pb�2

j¼0 aiþjs. The null space of

is a perfect Sðb�1Þ=bEC-SbED code with a code length in bits N ¼ b� s ¼
bð2R�1 � 1Þ=ð2b�1 � 1Þ and a check-bit length R.

Proof Consider the submatrix Hi for any 0 � i � s� 1. Since ai þ aiþs þ aiþ2sþ
� � � þ aiþðb�2Þs ¼ f ðaiÞ, the summation of all binary column vectors in Hi results in a

zero vector. This means that any b� 1 or fewer columns in Hi are linearly independent

because the first b� 1 elements ai; aiþs; aiþ2s; . . . ; aiþðb�2Þs are linearly independent.

Further the subspace spanned by the binary column vectors of Hi in fact represents a mul-

tiplicative coset of the subfield GFð2b�1Þ. Therefore the subspaces spanned by the binary

columns of Hi and Hj are disjoint for all i; j; 0 � i 6¼ j � s� 1. This implies that the

code has Sðb�1Þ=bEC capability. On the other hand, when all the b bits are in error, the

resulting syndrome is

1

0

� �
;

which is clearly nonzero. Also this syndrome is distinguishable from any ðb� 1Þ=b-error
syndromes because the ðb� 1Þ=b-errors generate a syndrome of the form

a

b

� �
;

where a 2 GFð2Þ; b 2 GFð2R�1Þ � f0g. The optimality of the code in Theorem 7.6 can

be easily proved by showing that the code length b � ð2R�1 � 1Þ=ð2b�1 � 1Þ meets the

upper bound given by Inequality (7.6). Q.E.D.

By using Theorem 7.6, we can design perfect Sðb�1Þ=bEC-SbED codes for any value of

b 	 2, and any value of R such that R� 1 in an integer multiple of b� 1. Figure 7.9 shows

a perfect Sðb�1Þ=bEC-SbED code with b ¼ 4 and R ¼ 7. In this case there are

9�
P3

i¼1
4
i

� �
¼ 126 different 3-bit in a 4-bit byte error patterns, so we need 126

syndromes to correct them. On the other hand, there are nine different byte error patterns

with all four bits are corrupted, and we need just one more syndrome to detect them.

Therefore the total number of syndromes required is 127, which is same as 27 � 1. Since

the code uses only 7 check bits, it is a perfect code.

7.3.3 St=BEC-SbEC-SBED Codes

Today’s high-density DRAM chips have a multi-bank architecture where each bank

usually has a number of memory subarrays that are almost physically separated from each

H ¼
100 � � � 00 100 � � � 00 100 � � � 00 � � � 100 � � � 00

H0 H1 H2 � � � Hs�1

24 35

SINGLE-BYTE ERROR DETECTING ðSt=bEC-SbED) CODES 281



other [NUMA89]. In particular, the binary bits stored in a memory subarray are highly

independent of bits stored in other memory subarrays. It is therefore advantageous to

consider the entire chip output as a B-bit block and subarray output as a b-bit byte

[UMAN02]. Figure 7.10 illustrates these concepts in terms of the architecture of a recent

16Mb high-density DRAM chip along with its corresponding organization of bit, byte,

and block in a codeword.

In these memory chips, apart from multiple random bit errors (i.e., t=B-errors), errors
caused by subarray data faults (i.e., b-bit byte errors) are a source concern too. Therefore,

in addition to correcting multiple random bit errors corrupting a single memory chip,

correction of errors caused by single subarray data faults is desired as well. In other words,

an St=BEC-SBED code with SbEC capability (i.e., an St=BEC-SbEC-SBED code) is

desirable in this situation.

1000 1000 1000 1000 1000 1000 10001000 1000

1010 0011 0011 1111 1001 0011 1001 0000 1100

0011 0101 0110 0110 1100 0011 0110 0011 0000

0011 0011 1111 1001 0011 1001 0000 1100 0110

0110 0101 1001 0101 0000 1111 0011 1100 1100

0101 1010 0000 0110 1001 1111 1111 1010 0110

0000 0011 0101 0110 0110 1100 0011 0110 0011

Figure 7.9 Example of a perfect (36, 29) S3=4EC-S4ED code. Source: [UMAN03b].� 2003 IEEE.

Figure 7.10 Organization of the bit, byte, and block for a 16Mb high-density DRAMchip with a nibbled-page
architecture. Source: [NUMA89], [UMAN03b].� 1989, and 2003 IEEE.

282 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



Theorem 7.7 For t < b, letH0 ¼ IB. Also letH
00 ¼ h000 h001 h002 � � � h00B�1

 �
represent a bin-

ary t-error detecting code such that any b column vectors in H00 (i.e., h00bi; h00biþ1; h00biþ2;
� � � ; h00biþb�1) are linearly independent for 0 � i < B=b. Then the codes described by the

parity-check matrices of Theorem 7.2, Lemma 7.1, and Theorem 7.3 are all systematic

St=B EC-SbEC-SBED codes.

Proof We know that codes capable of correcting single t=B-errors for the case where

t 	 b are also capable of correcting b-bit byte errors. Hence it suffices to consider the

case where t < b. Clearly, from Theorem 7.2 the code has St=BEC-SBED capability.

An additional condition is that linear independence of any b column vectors of

h00bi; h
00
biþ1; h

00
biþ2; � � � ; and h00biþb�1, ensures that the second part of the syndrome is nonzero

for b-bit byte errors. Since the error pattern is given by the first B-bits of the syndrome,

the second nonzero part locates the b-bit byte error position. Hence it is an St=BEC-SbEC-

SBED code. Q.E.D.

The example code shown in Figure 7.5 is in fact capable of correcting 4-bit byte errors

(i.e., it is an S3=8EC-S4EC-S8ED code) because the H00 matrix in this case is given by

where a and b are primitive elements of GFð23Þ and GFð24Þ, respectively. Clearly, any 4

column vectors ofH0 and ofH1 are linearly independent, as required by Theorem 7.7. Also

note that the decoding method given in the previous section corrects b-bit byte errors. Figure

7.11 shows the check-bit length versus information-bit length relationship of the S3=8EC-

S4EC-S8ED codes, along with the S8EC codes and the S3=8EC-S4EC-S8ED code bound.

H00 ¼ H0 j H1½ � ¼
1 1 1 1 1 1 1 1

0 1 a a2 a3 a4 a5 a6

" #

¼ b0 b4 b8 b14 j b10 b13 b12 b7
 �

;

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

12

13

14

15

16

17

64 128 256 512 1,024 2,048

K = 120

248

K = 504

1,016

2,040

K = 322

670

1,366

2,759

t = 3 
b = 4 
B = 8

in Theorem 7.7
St/BEC-SbEC-SBED

SBEC code

code

Bound

Figure 7.11 Check-bit lengths compared with information-bit lengths of the S3=8EC-S4EC-S8ED codes,
alongwith the S8EC codes and the S3=8EC-S4EC-S8ED code bound. Source: [UMAN03b].� 2003 IEEE.

SINGLE-BYTE ERROR DETECTING ðSt=bEC-SbED) CODES 283



7.4 SINGLE SPOTTY BYTE ERROR CORRECTING AND DOUBLE
SPOTTY BYTE ERROR DETECTING (St=bEC-Dt=bED) CODES

Here we study the St=bEC-Dt=bED codes that correct single t=b-errors and detect double

t=b-errors. An St=bEC-Dt=bED code is primarily inspired by the architecture of Reed-

Solomon SbEC-DbED code, denoted as RS SbEC-DbED code. Since the RS SbEC-DbED

code has a strong error control function of single-byte error correction and double-byte

error detection, this requires check-bit length equal to three times the length of a byte. In

particular, in computer and communication systems that are prone only to a few transient

bit errors in a byte, this code function becomes unnecessary.

7.4.1 Code Conditions and Bounds

Theorem 7.8 Let Hi denote an r � b binary submatrix for 0 � i � n� 1. The null

space of H ¼ ½H0 H1 H2 H3 � � � Hn�1� is an St=bEC-Dt=bED code, if and only if:

1. ðE1 þ E2Þ �Hi
T 6¼ 0 for E1 6¼ E2 ,

2. E1 �Hi
T 6¼ E2 �Hj

T for i 6¼ j;

3. E1 �Hi
T 6¼ ðE2 þ E3Þ �Hj

T for i 6¼ j, E2 6¼ E3;

4. E1 �Hi
T þ E2 �Hj

T 6¼ E3 �Hk
T for i 6¼ j 6¼ k 6¼ i,

where 0 � i; j; k � n� 1, 8E1;E2;E3 2 Et=b, Et=b ¼ E 2 GFð2bÞj1 � wðEÞ � t
	 


.

Proof Conditions 1 and 2 confirm that all single t=b-error patterns within a b-bit byte

generate unique nonzero syndromes. Hence these satisfy the conditions of an St=bEC

code. On the other hand, condition 3 together with condition 4 confirm that the syndrome

generated by a single t=b-error is different from that generated by a double t=b-error. This
asserts that double t=b-errors are detectable, and hence the code that satisfies these con-

ditions is an St=bEC-Dt=bED code. Q.E.D.

Theorem 7.9 A linear binary St=bEC-Dt=bED code requires at least 3t check bits.

Proof According to condition 3, at least 3t binary columns of H (t columns each cor-

responding to the three t=b-errors) are linearly independent. Therefore a linear binary

St=bEC-Dt=bED code requires at least 3t check bits. Q.E.D.

Theorem 7.10 An ðN; N � RÞ St=bEC-Dt=bED code exists only if

2R � 1 	 N

b
�
Xt
i¼1

b

i

� �
þ ð2t � 1Þ � N

b
� 1

� �
�
Xt
j¼1

b

j

� �
:

The proof of this theorem will be given in a generalized form in Subsection 7.5.1.

7.4.2 Design for St=bEC-Dt=bED Codes and St=bEC-Dt=bED-SbED Codes

Let H0 ¼ ½h00 h01 � � � h0b�1� be a q� b binary matrix (q � b) whose at least minð3t; bÞ
columns are linearly independent. Here h00; h01; � � � ; h0b�1, are binary column vectors of

284 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



GFð2qÞ. If minð3t; bÞ ¼ b, H0 can be any b� b nonsingular matrix, including the b� b

identity matrix. On the other hand, if minð3t; bÞ ¼ 3t < b, we consider H0 to be a parity-
check matrix of a linear binary ðb; b� qÞ code with minimum distance at least 3t þ 1,

(i.e., it is a parity-check matrix of a binary t-error correcting and 2t-error detecting code).

Similarly let H00 ¼ ½h000 h001 � � � h00b�1� be an r � b matrix with at least t columns that are

linearly independent. Here h000; h001 ; � � � ; h00b�1, are binary column vectors of GFð2rÞ. If
t ¼ b, the matrix H00 can be any b� b nonsingular matrix, including the b� b identity

matrix. If t < b, we consider H00 to be a parity-check matrix of a linear binary ðb; b� rÞ
code with the minimum distance being at least t þ 1, which is to say, it is a parity-check

matrix of a binary t-error detecting code.

We now use the H0 and H00 matrices defined above in the following theorem to design

the St=bEC-Dt=bED code.

Theorem 7.11 Let g be a primitive element of GFð2ðR�qÞ=2Þ, where R 	 bþ 2r. Let HR

be an R� b � 2ðR�qÞ=2 binary submatrix given by

where

giH00 ¼ gifðh000Þ gifðh001Þ gifðh002Þ � � � gifðh00b�1Þ
 �

for 0 � i � 2ðR�qÞ=2 � 2, and f : GFð2rÞ ! GFð2ðR�qÞ=2Þ is a homomorphism of GFð2rÞ
into GFð2ðR�qÞ=2Þ under addition. Then the null space of

is an St=bEC-Dt=bED code with check-bit length R and code length in bits

N ¼ b � 2ðR�qÞ=2 þ ðR� qÞ. Here Ix and Oy�z denote a binary x� x identity matrix and

a y� z all-zero matrix, respectively.

Theorem 7.12 If H0 ¼ Ib in Theorem 7.11, then the code is an St=bEC-Dt=bED-SbED

code with code length in bits N ¼ b � 2ðR�bÞ=2 þ ðR� bÞ.

It is left to the reader to prove the theorems above.

HR ¼

H0 H0 � � � H0 � � � H0 H0

g0H00 g1H00 � � � giH00 � � � g2
ðR�qÞ=2�2H00 OððR�qÞ=2Þ�b

g0H00 g2H00 � � � g2iH00 � � � g2ð2
ðR�qÞ=2�2ÞH00 OððR�qÞ=2Þ�b

266664
377775;

H ¼ HR j IR½ �

¼
H0 H0 � � � H0 � � � H0 H0

g0H00 g1H00 � � � giH00 � � � g2
ðR�qÞ=2�2H00 OððR�qÞ=2Þ�b

g0H00 g2H00 � � � g2iH00 � � � g2ð2
ðR�qÞ=2�2ÞH00 OððR�qÞ=2Þ�b

264
Oq�ððR�qÞ=2Þ Oq�ððR�qÞ=2Þ

IðR�qÞ=2 OððR�qÞ=2Þ�ððR�qÞ=2Þ

OððR�qÞ=2Þ�ððR�qÞ=2Þ IðR�qÞ=2

375

DOUBLE SPOTTY BYTE ERROR DETECTING (St=bEC-Dt=bED) CODES 285



Example 7.2 S3=8EC-D3=8ED code and S3=8EC-D3=8ED-S8ED code.

We design a practical St=bEC-Dt=bED code, where t ¼ 3 and b ¼ 8, that is, an S3=8EC-

D3=8ED code. Since minð3t; bÞ ¼ 8, H0 can be an 8� 8 identity matrix. The matrix H00

is a parity-check matrix of a distance-4 code, that is, a 3-bit error detecting code. In this

example we use the following binary matrix as H00.

H00 ¼

11111111

01001011

00101110

00010111

2664
3775

By using these H0 and H00, we have a parity-check matrix of ð136; 120Þ S3=8EC-
D3=8ED code. According to Theorem 7.12, the matrix of ð136; 120Þ S3=8EC-D3=8ED

code, is shown in Figure 7.12. Since H0 ¼ I8, i.e., 8� 8 identity matrix, then the code

shown in this figure is a ð136; 120Þ S3=8EC-D3=8ED code.

It is noteworthy that when t ¼ 3 and b ¼ 8, the S3=8EC-D3=8ED code can be designed

with check-bit length R ¼ 15, as shown in Figure 7.13. In this example, H0 is given by

H0 ¼

10000001

01000001

00100001

00010001

00001001

00000101

00000011

2666666664

3777777775
;

which is a 7-bit error detecting code. The parity-check matrix given by Figure 7.13 still

works as an S3=8EC-D3=8ED code.

It can be investigated that the code shown in Figure 7.12 can detect double

3=8-errors occurred in any one byte as well as occurred in any different two bytes. The
code shown in Figure 7.13, however, can detect double 3=8-errors occurred in different
two bytes, but cannot detect these errors in any one byte. The former code is called an

m-spotty byte error detecting code, and the latter is called an s-spotty byte error

detecting code, which will be defined in the next Section 7.5.

Evaluation It is clear that if any b column vectors in the matrix H0 are linearly indepen-
dent, the St=bEC-Dt=bED code possesses an extra function of single-byte error detection,

which is the St=bEC-Dt=bED-SbED code. This argument naturally holds for any value of b.

A graphic relationship between the check-bit lengths and the information-bit lengths

for the St=8EC-Dt=8ED codes and St=8EC-Dt=8ED-S8ED codes is provided in Figure 7.14.

Compared to the 24 check bits required by the S8EC-D8ED code, the S3=8EC-D3=8ED

code and the S3=8EC-D3=8ED-S8ED code require only 15 and 16 check bits, respectively,

for the practical information length of 64 bits. Furthermore, for other practical information

lengths of 128 and 256 bits, these codes require fewer check bits than the S8EC-D8ED

code. However the S3=8EC-D3=8ED codes presented in Theorem 7.11 require a large

number of check bits compared to the bound shown in Theorem 7.10, especially for large

information-bit lengths.

286 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



10
00

00
00

 1
00

00
00

0 
10

00
00

00
 1

00
00

00
0 

10
00

00
00

 1
00

00
00

0 
10

00
00

00
 1

00
00

00
0 

10
00

00
00

 1
00

00
00

0 
10

00
00

00
 1

00
00

00
0 

10
00

00
00

 1
00

00
00

0 
10

00
00

00
 1

00
00

00
0 

00
00

00
00

01
00

00
00

 0
10

00
00

0 
01

00
00

00
 0

10
00

00
0 

01
00

00
00

 0
10

00
00

0 
01

00
00

00
 0

10
00

00
0 

01
00

00
00

 0
10

00
00

0 
01

00
00

00
 0

10
00

00
0 

01
00

00
00

 0
10

00
00

0 
01

00
00

00
 0

10
00

00
0 

00
00

00
00

00
10

00
00

 0
01

00
00

0 
00

10
00

00
 0

01
00

00
0 

00
10

00
00

 0
01

00
00

0 
00

10
00

00
 0

01
00

00
0 

00
10

00
00

 0
01

00
00

0 
00

10
00

00
 0

01
00

00
0 

00
10

00
00

 0
01

00
00

0 
00

10
00

00
 0

01
00

00
0 

00
00

00
00

00
01

00
00

 0
00

10
00

0 
00

01
00

00
 0

00
10

00
0 

00
01

00
00

 0
00

10
00

0 
00

01
00

00
 0

00
10

00
0 

00
01

00
00

 0
00

10
00

0 
00

01
00

00
 0

00
10

00
0 

00
01

00
00

 0
00

10
00

0 
00

01
00

00
 0

00
10

00
0 

00
00

00
00

00
00

10
00

 0
00

01
00

0 
00

00
10

00
 0

00
01

00
0 

00
00

10
00

 0
00

01
00

0 
00

00
10

00
 0

00
01

00
0 

00
00

10
00

 0
00

01
00

0 
00

00
10

00
 0

00
01

00
0 

00
00

10
00

 0
00

01
00

0 
00

00
10

00
 0

00
01

00
0 

00
00

00
00

00
00

01
00

 0
00

00
10

0 
00

00
01

00
 0

00
00

10
0 

00
00

01
00

 0
00

00
10

0 
00

00
01

00
 0

00
00

10
0 

00
00

01
00

 0
00

00
10

0 
00

00
01

00
 0

00
00

10
0 

00
00

01
00

 0
00

00
10

0 
00

00
01

00
 0

00
00

10
0 

00
00

00
00

00
00

00
10

 0
00

00
01

0 
00

00
00

10
 0

00
00

01
0 

00
00

00
10

 0
00

00
01

0 
00

00
00

10
 0

00
00

01
0 

00
00

00
10

 0
00

00
01

0 
00

00
00

10
 0

00
00

01
0 

00
00

00
10

 0
00

00
01

0 
00

00
00

10
 0

00
00

01
0 

00
00

00
00

11
11

11
11

 0
00

10
11

1 
00

10
11

10
 0

10
01

01
1 

11
10

10
00

 0
01

11
00

1 
01

10
01

01
 1

01
00

01
1 

11
01

00
01

 0
10

11
10

0 
11

00
01

10
 0

11
10

01
0 

10
00

11
01

 1
00

11
01

0 
10

11
01

00
 0

00
00

00
0 

10
00

00
00

01
00

10
11

 1
11

01
00

0 
00

11
10

01
 0

11
00

10
1 

10
10

00
11

 1
10

10
00

1 
01

01
11

00
 1

10
00

11
0 

01
11

00
10

 1
00

01
10

1 
10

01
10

10
 1

01
10

10
0 

11
11

11
11

 0
00

10
11

1 
00

10
11

10
 0

00
00

00
0 

01
00

00
00

00
10

11
10

 0
10

01
01

1 
11

10
10

00
 0

01
11

00
1 

01
10

01
01

 1
01

00
01

1 
11

01
00

01
 0

10
11

10
0 

11
00

01
10

 0
11

10
01

0 
10

00
11

01
 1

00
11

01
0 

10
11

01
00

 1
11

11
11

1 
00

01
01

11
 0

00
00

00
0 

00
10

00
00

00
01

01
11

 0
01

01
11

0 
01

00
10

11
 1

11
01

00
0 

00
11

10
01

 0
11

00
10

1 
10

10
00

11
 1

10
10

00
1 

01
01

11
00

 1
10

00
11

0 
01

11
00

10
 1

00
01

10
1 

10
01

10
10

 1
01

10
10

0 
11

11
11

11
 0

00
00

00
0 

00
01

00
00

00
00

00
01

 0
00

00
00

1 
00

00
00

01
 0

00
00

00
1 

00
00

00
01

 0
00

00
00

1 
00

00
00

01
 0

00
00

00
1 

00
00

00
01

 0
00

00
00

1 
00

00
00

01
 0

00
00

00
1 

00
00

00
01

 0
00

00
00

1 
00

00
00

01
 0

00
00

00
1 

00
00

00
00

11
11

11
11

 0
01

01
11

0 
11

10
10

00
 0

11
00

10
1 

11
01

00
01

 1
10

00
11

0 
10

00
11

01
 1

01
10

10
0 

00
01

01
11

 0
10

01
01

1 
00

11
10

01
 1

01
00

01
1 

01
01

11
00

 0
11

10
01

0 
10

01
10

10
 0

00
00

00
0 

00
00

10
00

01
00

10
11

 0
01

11
00

1 
10

10
00

11
 0

10
11

10
0 

01
11

00
10

 1
00

11
01

0 
11

11
11

11
 0

01
01

11
0 

11
10

10
00

 0
11

00
10

1 
11

01
00

01
 1

10
00

11
0 

10
00

11
01

 1
01

10
10

0 
00

01
01

11
 0

00
00

00
0 

00
00

01
00

00
10

11
10

 1
11

01
00

0 
01

10
01

01
 1

10
10

00
1 

11
00

01
10

 1
00

01
10

1 
10

11
01

00
 0

00
10

11
1 

01
00

10
11

 0
01

11
00

1 
10

10
00

11
 0

10
11

10
0 

01
11

00
10

 1
00

11
01

0 
11

11
11

11
 0

00
00

00
0 

00
00

00
10

00
01

01
11

 0
10

01
01

1 
00

11
10

01
 1

01
00

01
1 

01
01

11
00

 0
11

10
01

0 
10

01
10

10
 1

11
11

11
1 

00
10

11
10

 1
11

01
00

0 
01

10
01

01
 1

10
10

00
1 

11
00

01
10

 1
00

01
10

1 
10

11
01

00
 0

00
00

00
0 

00
00

00
01

F
ig
u
re

7
.1
2

(1
36
,1
20
)S

3=
8
E
C
-D

3=
8
ED

-S
8E

D
co

de
.

287



10
00

00
01

 1
00

00
00

1 
10

00
00

01
 1

00
00

00
1 

10
00

00
01

 1
00

00
00

1 
10

00
00

01
 1

00
00

00
1 

10
00

00
01

 1
00

00
00

1 
10

00
00

01
 1

00
00

00
1 

10
00

00
01

 1
00

00
00

1 
10

00
00

01
 1

00
00

00
1 

00
00

00
00

01
00

00
01

 0
10

00
00

1 
01

00
00

01
 0

10
00

00
1 

01
00

00
01

 0
10

00
00

1 
01

00
00

01
 0

10
00

00
1 

01
00

00
01

 0
10

00
00

1 
01

00
00

01
 0

10
00

00
1 

01
00

00
01

 0
10

00
00

1 
01

00
00

01
 0

10
00

00
1 

00
00

00
00

00
10

00
01

 0
01

00
00

1 
00

10
00

01
 0

01
00

00
1 

00
10

00
01

 0
01

00
00

1 
00

10
00

01
 0

01
00

00
1 

00
10

00
01

 0
01

00
00

1 
00

10
00

01
 0

01
00

00
1 

00
10

00
01

 0
01

00
00

1 
00

10
00

01
 0

01
00

00
1 

00
00

00
00

00
01

00
01

 0
00

10
00

1 
00

01
00

01
 0

00
10

00
1 

00
01

00
01

 0
00

10
00

1 
00

01
00

01
 0

00
10

00
1 

00
01

00
01

 0
00

10
00

1 
00

01
00

01
 0

00
10

00
1 

00
01

00
01

 0
00

10
00

1 
00

01
00

01
 0

00
10

00
1 

00
00

00
00

00
00

10
01

 0
00

01
00

1 
00

00
10

01
 0

00
01

00
1 

00
00

10
01

 0
00

01
00

1 
00

00
10

01
 0

00
01

00
1 

00
00

10
01

 0
00

01
00

1 
00

00
10

01
 0

00
01

00
1 

00
00

10
01

 0
00

01
00

1 
00

00
10

01
 0

00
01

00
1 

00
00

00
00

00
00

01
01

 0
00

00
10

1 
00

00
01

01
 0

00
00

10
1 

00
00

01
01

 0
00

00
10

1 
00

00
01

01
 0

00
00

10
1 

00
00

01
01

 0
00

00
10

1 
00

00
01

01
 0

00
00

10
1 

00
00

01
01

 0
00

00
10

1 
00

00
01

01
 0

00
00

10
1 

00
00

00
00

11
11

11
11

 0
00

10
11

1 
00

10
11

10
 0

10
01

01
1 

11
10

10
00

 0
01

11
00

1 
01

10
01

01
 1

01
00

01
1 

11
01

00
01

 0
10

11
10

0 
11

00
01

10
 0

11
10

01
0 

10
00

11
01

 1
00

11
01

0 
10

11
01

00
 0

00
00

00
0 

10
00

00
00

01
00

10
11

 1
11

01
00

0 
00

11
10

01
 0

11
00

10
1 

10
10

00
11

 1
10

10
00

1 
01

01
11

00
 1

10
00

11
0 

01
11

00
10

 1
00

01
10

1 
10

01
10

10
 1

01
10

10
0 

11
11

11
11

 0
00

10
11

1 
00

10
11

10
 0

00
00

00
0 

01
00

00
00

00
10

11
10

 0
10

01
01

1 
11

10
10

00
 0

01
11

00
1 

01
10

01
01

 1
01

00
01

1 
11

01
00

01
 0

10
11

10
0 

11
00

01
10

 0
11

10
01

0 
10

00
11

01
 1

00
11

01
0 

10
11

01
00

 1
11

11
11

1 
00

01
01

11
 0

00
00

00
0 

00
10

00
00

00
01

01
11

 0
01

01
11

0 
01

00
10

11
 1

11
01

00
0 

00
11

10
01

 0
11

00
10

1 
10

10
00

11
 1

10
10

00
1 

01
01

11
00

 1
10

00
11

0 
01

11
00

10
 1

00
01

10
1 

10
01

10
10

 1
01

10
10

0 
11

11
11

11
 0

00
00

00
0 

00
01

00
00

00
00

00
11

 0
00

00
01

1 
00

00
00

11
 0

00
00

01
1 

00
00

00
11

 0
00

00
01

1 
00

00
00

11
 0

00
00

01
1 

00
00

00
11

 0
00

00
01

1 
00

00
00

11
 0

00
00

01
1 

00
00

00
11

 0
00

00
01

1 
00

00
00

11
 0

00
00

01
1 

00
00

00
00

11
11

11
11

 0
01

01
11

0 
11

10
10

00
 0

11
00

10
1 

11
01

00
01

 1
10

00
11

0 
10

00
11

01
 1

01
10

10
0 

00
01

01
11

 0
10

01
01

1 
00

11
10

01
 1

01
00

01
1 

01
01

11
00

 0
11

10
01

0 
10

01
10

10
 0

00
00

00
0 

00
00

10
00

01
00

10
11

 0
01

11
00

1 
10

10
00

11
 0

10
11

10
0 

01
11

00
10

 1
00

11
01

0 
11

11
11

11
 0

01
01

11
0 

11
10

10
00

 0
11

00
10

1 
11

01
00

01
 1

10
00

11
0 

10
00

11
01

 1
01

10
10

0 
00

01
01

11
 0

00
00

00
0 

00
00

01
00

00
10

11
10

 1
11

01
00

0 
01

10
01

01
 1

10
10

00
1 

11
00

01
10

 1
00

01
10

1 
10

11
01

00
 0

00
10

11
1 

01
00

10
11

 0
01

11
00

1 
10

10
00

11
 0

10
11

10
0 

01
11

00
10

 1
00

11
01

0 
11

11
11

11
 0

00
00

00
0 

00
00

00
10

00
01

01
11

 0
10

01
01

1 
00

11
10

01
 1

01
00

01
1 

01
01

11
00

 0
11

10
01

0 
10

01
10

10
 1

11
11

11
1 

00
10

11
10

 1
11

01
00

0 
01

10
01

01
 1

10
10

00
1 

11
00

01
10

 1
00

01
10

1 
10

11
01

00
 0

00
00

00
0 

00
00

00
01

F
ig
u
re

7
.1
3

(1
36
,1
21
)S

3=
8
E
C
-D

3=
8
ED

co
de
.

288



The error detection capabilities of the S3=8EC-D3=8ED code are shown in Table 7.2 for

three types of errors: random triple-bit errors, random quadruple-bit errors, and single 4-

bit byte plus single-bit errors. These errors are outside the error control capability of the

S3=8EC-D3=8ED code. In the table ‘‘byte plus bit errors’’ means that single 4-bit byte errors

and single-bit errors are occurred simultaneously. The error detection capabilities of the

S3=8EC-D3=8ED-S8ED code are shown in Table 7.3.

10

12

14

16

18

20

22

24

26

28

30

32 64 128 256 512 1,024 2,048 4,096

C
he

ck
-b

it 
le

ng
th

 R

Information-bit length K

t = 8

t = 5,6,7

t = 4

t = 2,3 249

248 505

504 1,017

1,016

K = 121
K = 120

2,041

2,040
4,089

4,088

S   EC-D   ED-S8ED code in Theorem 7.12t/8 t/8

K = 41
83

173
350

703
1,414

2,840

S    EC-D    ED code in Theorem 7.113/8 3/8

Bound of S    EC-D    ED code shown in Theorem 7.103/8 3/8

Figure 7.14 Comparisonof check-bit lengths and information-bit lengths of the St=8EC-Dt=8ED codes and the
St=8EC-Dt=8ED-S8ED codes.

TABLE 7.2 Error Detection Capabilities of the S3=8EC-D3=8ED Code

Error detectioncapability (%)

K ¼ 64 K ¼ 128 K ¼ 256
Errors ðR ¼ 15Þ ðR ¼ 17Þ ðR ¼ 19Þ

Triple-biterrors 97.57 98.34 98.76
Quadruple-bit errors 98.19 99.07 99.53
Byteplusbiterrors 94.25 94.03 94.07

TABLE 7.3 Error Detection Capabilities of the S3=8EC-D3=8ED-S8ED Code

Errordetectioncapability (%)

K ¼ 64 K ¼ 128 K ¼ 256
Errors ðR ¼ 16Þ ðR ¼ 18Þ ðR ¼ 20Þ

Triple-biterrors 97.47 98.22 98.73
Quadruple-bit errors 96.45 97.96 98.65
Byteplusbiterrors 88.95 90.14 90.36

DOUBLE SPOTTY BYTE ERROR DETECTING (St=bEC-Dt=bED) CODES 289



7.5 A GENERAL CLASS OF SPOTTY BYTE ERROR CONTROL CODES

In Section 7.1 we saw that when a small number of random bit errors collect in a byte, we

have a situation called a spotty byte error. From a generalized and theoretical code design

standpoint, the single spotty errors in a byte are called s-spotty byte errors, and the

multiple spotty errors in a byte are called m-spotty byte errors. In this section the code

design for generalized s-spotty and m-spotty byte error control codes over GFð2bÞ is
discussed [KASH04, SUZU04, 05a, 05b].

7.5.1 A General Class of Codes for s-Spotty Byte Errors

The s-spotty byte error has been defined as a set of t or fewer bits errors confined to a b-bit

byte. In this case the maximum number of erroneous bits in each byte does not exceed

tð< bÞ. Below we present a general class of s-spotty byte error control codes [KASH04].

1. s-Spotty Byte Error Control Codes

Preliminaries

Definition 7.1 An error is called an s-spotty byte error if a set of random t or fewer bits

errors is confined to a byte, meaning the maximum number of erroneous bits in a byte

does not exceed t. &

The necessary and sufficient conditions of the s-spotty byte error control codes are

presented as follows.

Theorem 7.13 Let Hi be an R� b binary submatrix for 0 � i � n� 1, and also let

Et=b ¼ fE 2 GFð2bÞ j 1 � wðEÞ � tg be a set of all t=b-error patterns in a b-bit bytewhere
wðEÞ denotes the Hamming weight of b-bit vector E. The null space of

H ¼ ½H0 H1 H2 H3 � � � Hn�1� is a l t=b-errors correcting and m t=b-errors detecting

code if and only if

ðE1 þ E2Þ �HT
i1
þ � � � þ ðE2v�1 þ E2vÞ �HT

iv
þ E2vþ1 �HT

ivþ1
þ � � � þ E2vþw �HT

ivþw
6¼ 0R

for 2vþ w � lþ m; 0 � v � l; 0 � w � lþ m;

where m 	 l, 8E1; E2; . . . ; E2v; E2vþ1; . . . ; E2vþw 2 Et=b, i1; i2; . . . ; iv; ivþ1; . . . ;
ivþw are distinct integers of i satisfying 0 � i1; i2; � � � ; iv; ivþ1; . . . ; ivþw � n� 1, 0R is

an R-bit zero vector, and T is a transpose of vector or matrix.

Proof Let two sets having rð� lÞ and sð� mÞ s-spotty byte errors be

Ei ¼ fEi1 ; Ei2 ; � � � ; Eirg and Ej ¼ fEj1 ; Ej2 ; � � � ; Ejsg, respectively. In each set, r
s-spotty byte errors are assumed to have occurred in the different r bytes and s s-spotty

byte errors in the different s bytes. For l t=b-errors correcting and m t=b-errors detecting
code, the following relation should be satisfied:

Ei1 �HT
i1
þ Ei2 �HT

i2
þ � � � þ Eir �HT

ir
6¼ Ej1 �HT

j1
þ Ej2 �HT

j2
þ � � � þ Ejs �HT

js
:

290 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



Without loss of generality, say two s-spotty byte errors, occur in the same byte such as in

the x-th byte, Eix 2 Ei and Ejx 2 Ej. Now assume that this type of errors occurs in v bytes,

where 0 � v � l. Then the following relation holds:

Ei1 �HT
i1
þ Ei2 �HT

i2
þ � � � þ Eiv �HT

iv
þ Eivþ1 �HT

ivþ1
þ � � � þ Eir �HT

ir

6¼ Ej1 �HT
i1
þ Ej2 �HT

i2
þ � � � þ Ejv �HT

iv
þ Ejvþ1 �HT

jvþ1
þ � � � þ Ejs �HT

js
:

Consequently, we have

ðEi1 þ Ej1Þ �HT
i1
þ ðEi2 þ Ej2Þ �HT

i2
þ � � � þ ðEiv þ EjvÞ �HT

iv

þ Eivþ1 �HT
ivþ1
þ � � � þ Eir �HT

ir
þ Ejvþ1 �HT

jvþ1
þ � � � þ Ejs �HT

js
6¼ 0:

If rþ s� 2v ¼ w, then the relation in Theorem 7.13 holds. Q.E.D.

Theorem 7.14 A linear l t=b-errors correcting and m t=b-errors detecting code

requires at least (lþ m)t check bits.

Proof From Theorem 7.13, the ðlþ mÞt binary columns of the parity-check matrix H

should be linearly independent. Therefore a linear l t=b-errors correcting and m t=b-errors
detecting code requires at least ðlþ mÞt check bits. Q.E.D.

Theorem 7.15 If the code length N is a multiple of the byte length b, a linear

ðN; N � RÞl t=b-errors correcting code exists only if

2R � 1 	
Xl
i¼1

N=b
i

� �
�
Xt
j¼1

b

j

� �( )i( )
: ð7:9Þ

Proof The total number of t=b-error is given by
Pt

j¼1
b
j

� �
. There are N=b bytes in a

codeword with N bit lengths. Therefore we need N=b
i

� �
�
Pt

j¼1
b
j

� �n oi

different syndrome

patterns to correct all i t=b-error patterns. The i can take any value from 1 to l, and hence

the total number of different nonzero syndromes necessary to correct up to l t=b-errors
can be expressed as

Xl
i¼1

N=b
i

� �
�
Xt
j¼1

b

j

� �( )i( )
:

Clearly, the inequality in Theorem 7.15 holds. Q.E.D.

Theorem 7.16 If a code length N is a multiple of a byte length b, a linear (N; N � R)

l t=b-errors correcting and (lþ 1) t=b-errors detecting code exists only if

2R � 1 	
Xl
i¼1

N=b
i

� �
�
Xt
j¼1

b

j

� �( )i( )
þ ð2t � 1Þ � N=b� 1

l

� �
�
Xt
j¼1

b

j

� �( )l

:

ð7:10Þ

A GENERAL CLASS OF SPOTTY BYTE ERROR CONTROL CODES 291



Proof The total number of different nonzero syndromes to correct up to l t=b-errors can

be expressed as
Pl

i¼1
N=b
i

� �
�
Pt

j¼1
b
j

� �n oi
� �

.

For the number of extra syndromes caused by ðlþ 1Þ t=b-errors, We can assume

without loss of generality that a single t=b-error E0 has occurred in the first byte. Then

l t=b-errors Ei1 ; Ei2 ; � � � ; Eil , have occurred in the remaining N=b� 1 bytes. Now we

consider ðlþ 1Þ t=b-errors, including the error E0 in the first byte, that is,

E0; Ei1 ; Ei2 ; � � � ; and Eil . We also consider another ðlþ 1Þ t=b-errors including the

error E00 in the first byte, that is, E00;Ej1 ; Ej2 ; � � � ; and Ejl . The syndrome caused by all

these errors can be assumed to satisfy the following relation:

E0 �HT
0 þ Ei1 �HT

i1
þ Ei2 �HT

i2
þ � � � þ Eil �HT

il

� �
þ E00 �HT

0 þ Ej1 �HT
j1
þ Ej2 �HT

j2
þ � � � þ Ejl �HT

jl

� �
¼ 0TR:

That is,

ðE0 þ E00Þ �HT
0 þ Ei1 �HT

i1
þ Ei2 �HT

i2
þ � � � þ Eil �HT

il

� �n
þ Ej1 �HT

j1
þ Ej2 �HT

j2
þ � � � þ Ejl �HT

jl

� �o
¼ 0TR:

This equation says that the total 2lþ 1 syndrome sum caused by ð2lþ 1Þ t=b-errors,
including the one in the first byte, is equal to zero. This contradicts the necessary and

sufficient condition in Theorem 7.13.

Hence the syndrome sum of ðlþ 1Þ t=b-errors should not be equal to the sum of any

other ðlþ 1Þ t=b-errors, including the same one t=b-error. The number of distinct t bits

errors in the fixed byte is counted as 2t � 1. Therefore the number of the extra syndromes

necessary for detecting distinct ðlþ 1Þ t=b-errors is calculated as

ð2t � 1Þ � N=b� 1

l

� �
�
Xt
j¼1

b

j

� �( )l

:

Therefore the inequality in Theorem 7.16 holds. Q.E.D.

Code Design First, we design the s-spotty byte error control codes by using the

tensor product.

Definition 7.2 Let H0 ¼ ½h00 h01 � � � h0b�1� be an r � b binary matrix whose minð2t; bÞ
column vectors are linearly independent, where h00; h01; � � � ; h0b�1 are the binary column

vectors of GFð2rÞ. Here minðx; yÞ means that if x < y, then minðx; yÞ ¼ x, and if

x 	 y, then minðx; yÞ ¼ y. &

If minð2t; bÞ ¼ b, the matrix H0 can be any b� b nonsingular matrix, including the

b� b identity matrix. On the other hand, if minð2t; bÞ ¼ 2t < b, the matrixH0 is a parity-

292 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



check matrix of a linear binary ðb; b� rÞ code with minimum Hamming distance 2t þ 1,

meaning a parity-check matrix of binary t-error correcting code.

In using the above-defined H0, the following theorem outlines the design of the l s-

spotty byte errors correcting and m s-spotty byte errors detecting code.

Theorem 7.17 Let g be a primitive element in GFð2rÞ. Let H00 be a distance-

(lþ mþ 1) Reed-Solomon code over GFð2rÞ. In terms of g, the matrix H00 is expressed
as follows:

H00 ¼

1 1 1 � � � 1 1 0

g0 g1 g2 � � � gn�1 0 0

g0 g2 g4 � � � g2ðn�1Þ 0 0

..

. ..
. ..

. ..
. ..

. ..
.

g0 glþm�1 g2ðlþm�1Þ � � � gðlþm�1Þðn�1Þ 0 1

2666664

3777775;

where g0 ¼ 1 is the unit element of GFð2rÞ and 0 is the zero element of GFð2rÞ. Then the

null space of

H ¼ H00 �H0

is a l t=b-errors correcting and m t=b-errors detecting code with a check-bit length

R ¼ rðlþ mÞ and a code length in bits N ¼ bðnþ 2Þ, where l � m, n ¼ 2r � 1, and

giH0 ¼ gih00 gih01 � � � gih0b�1
 �

for 0 � i � n� 1. Here gih0j means the product of g
i and h0j over GFð2rÞ.

Proof The following shows how the code presented in this theorem satisfies the condi-

tion of Theorem 7.13. Without loss of generality, we assume that Eq. (7.11) holds for

E1 þ E2 6¼ 0; . . . ; E2v�1 þ E2v 6¼ 0. Here 0r means an r-bit zero vector

ðE1 þ E2Þ �

H0

gi1H0

g2i1H0

..

.

gðlþm�1Þi1H0

266666664

377777775

T

þ � � � þ ðE2v�1 þ E2vÞ �

H0

givH0

g2ivH0

..

.

gðlþm�1ÞivH0

266666664

377777775

T

þ E2vþ1 �

H0

givþ1H0

g2ivþ1H0

..

.

gðlþm�1Þivþ1H0

266666664

377777775

T

þ � � � þ E2vþw �

H0

givþwH0

g2ivþwH0

..

.

gðlþm�1ÞivþwH0

266666664

377777775

T

¼

0Tr

0Tr

0Tr

..

.

0Tr

266666664

377777775: ð7:11Þ

A GENERAL CLASS OF SPOTTY BYTE ERROR CONTROL CODES 293



This equation does not include the last and second last column ofH. Multiplying g0 to both
sides of first row in Eq. (7.11) comes to

g0 ðE1 þ E2Þ �H0T
� �

þ � � � þ g0 ðE2v�1 þ E2vÞ �H0T
� �

þ g0 E2vþ1 �H0T
� �

þ � � � þ g0 E2vþw �H0T
� �

¼ g0 � ð0Tr Þ ¼ 0Tr0 : ð7:12Þ

Now we let ðE1 þ E2Þ �H0T ; � � � ; ðE2v�1 þ E2vÞ �H0T , E2vþ1 �H0T ; � � �, and E2vþw �H0T
be x1; � � � ; xv; xvþ1; � � �, and xvþw, respectively. Since H0 is a r � b matrix whose

minð2t; bÞ column vectors are linearly independent, x1 6¼ 0, � � �, xv 6¼ 0, xvþ1 6¼ 0, � � �,
xvþw 6¼ 0. From Eqs. (7.11) and (7.12), the following relations hold:

g0x1 þ g0x2 þ � � � þ g0xvþw ¼ 0;

gi1x1 þ gi2x2 þ � � � þ givþwxvþw ¼ 0;

g2i1x1 þ g2i2x2 þ � � � þ g2ivþwxvþw ¼ 0;

� � �
gðlþm�1Þi1x1 þ gðlþm�1Þi2x2 þ � � � þ gðlþm�1Þivþwxvþw ¼ 0:

The coefficient matrix of the top vþ wð� lþ mÞ relations is nonsingular because its

determinant is a Vandermonde’s determinant. Multiplying the inverse matrix of this

ðvþ wÞ � ðvþ wÞ matrix to the coefficient matrix from the left side yields

x1 x2 x3 � � � xvþw½ �T¼ 0 0 0 � � � 0½ �T ;

which is a contradiction because x1 6¼ 0, x2 6¼ 0, � � �, and xvþw 6¼ 0. The condition of Theorem

7.13 is now satisfied, and therefore the matrix H represents a parity-check matrix of a l t=b-
errors correcting and m t=b-errors detecting code. It is apparent that the check-bit length

takes R ¼ rðlþ mÞ and the code length in bits takes N ¼ bðnþ 2Þ ¼ bð2r þ 1Þ. Q.E.D.

Note that if b=2 � t � b, the code shown in Theorem 7.17 is identical to the maximum

distance separable (MDS) RS code over GFð2bÞ because H0 is equal to the b� b identity

matrix.

Lemma 7.3 Let H0 ¼ ½h00 h01 � � � h0b�1� be an r � b binary matrix whose p or fewer col-

umn vectors are linearly independent, and let f be an injective homomorphism of GFð2rÞ
into GFð2r0 Þ under addition. Then any p column vectors in fðH0Þ ¼ ½fðh00Þfðh01Þ
� � �fðh0b�1Þ� are linearly independent.

Proof First, if f is a injective homomorphism of additive group, then KerðfÞ ¼ f0g,
where KerðfÞ is the kernel of f. For all b 2 GFð2rÞ, the following relation holds because

f is an injective homomorphism under addition:

fð0Þ þ fðbÞ ¼ fð0þ bÞ ¼ fðbÞ:

Therefore fð0Þ ¼ 0 is obtained. Since f is injective, then KerðfÞ ¼ f0g.

294 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



Nextweassume thats ð� pÞ columnvectors infðH0Þ are linearlydependent, that is, that the
followingrelationholds fordistinct integers i1; i2; � � � ; is,where0 � i1; i2; � � � ; is � b� 1:

fðhi1Þ þ fðhi2Þ þ � � � þ fðhisÞ ¼ 0: ð7:13Þ

Since f is an injective homomorphism under addition, we have

fðhi1Þ þ fðhi2Þ þ � � � þ fðhisÞ ¼ fðhi1 þ hi2 þ � � � þ hisÞ: ð7:14Þ

From Eqs. (7.13) and (7.14),

hi1 þ hi2 þ � � � þ his ¼ 0:

This contradicts that s column vectors of the matrix H0 are linearly independent. Hence

any p column vectors in fðH0Þ are linearly independent. Q.E.D.

Lemma 7.4 Let H0 ¼ ½h00 h01 � � � h0b�1� be an r � b matrix, g be a primitive element of

GFð2rÞ, f be an injective homomorphism of GFð2rÞ into GFð2r0 Þ under addition, and

giH0 ¼ ½gifðh00Þ gifðh01Þ � � � gifðh0b�1Þ�. Then the following relation holds for a vector

Ej ¼ ½Ej0 Ej1 � � � Ejb�1 � :

Ej � giH0
� �T¼ gif Ej �H0T

� �
:

Proof The term Ej � giH0ð ÞT can be calculated as follows:

Ej � giH0
� �T ¼ Ej0g

ifðh0Þ þ Ej1g
ifðh1Þ þ � � � þ Ejb�1g

ifðhb�1Þ
¼ gi Ej0fðh0Þ þ Ej1fðh1Þ þ � � � þ Ejb�1fðhb�1Þ

� �
;

where EjpfðhpÞð0 � p � b� 1Þ represents a vector fðhpÞ multiplied by a scalar

Ejp 2 GFð2Þ. On the other hand, gif Ej �H0T
� �

can be calculated as follows:

gif Ej �H0T
� �

¼ gi fðEj0h0Þ þ fðEj1h1Þ þ � � � þ fðEjb�1hb�1Þ
� �

:

Here, if Ejp ¼ 0, the following relation holds for EjpfðhpÞ and fðEjphpÞ, where

0 � p � b� 1:

EjpfðhpÞ ¼ 0fðhpÞ ¼ 0r 0 ;

fðEjphpÞ ¼ fð0hpÞ ¼ fð0rÞ ¼ 0r 0 :

If Ejp ¼ 1, the following relation holds:

EjpfðhpÞ ¼ 1fðhpÞ ¼ fðhpÞ;
fðEjphpÞ ¼ fð1hpÞ ¼ fðhpÞ:

A GENERAL CLASS OF SPOTTY BYTE ERROR CONTROL CODES 295



Therefore EjpfðhpÞ ¼ fðEjphpÞ for Ejp 2 GFð2Þ.
From the above we end up with

Ej � giH0
� �T¼ gif Ej �H0T

� �
;

as required by Lemma 7.4.

The following theorem presents the lengthened codes. This can further lengthen the

code by taking r0 being larger than the original r.

Theorem 7.18 Let g be a primitive element in GFð2r0 Þ, where r0 	 r. The null space of

H ¼

H0 H0 � � � H0 H0 O

g0H0 g1H0 � � � gn�1H0 O O

g0H0 g2H0 � � � g2ðn�1ÞH0 O O

..

. ..
. . .

. ..
. ..

. ..
.

g0H0 glþm�1H0 � � � gðlþm�1Þðn�1ÞH0 O g0H0

26666664

37777775
is a lengthened l t=b-errors correcting and m t=b-errors detecting code with check-bit

length R ¼ r þ r0ðlþ m� 1Þ and code length in bits N ¼ bðnþ 2Þ, where H0 is an r � b

binary matrix defined in Definition 7.2, n ¼ 2r
0 � 1, O is zero matrix, and

giH0 ¼ gifðh00Þ gifðh01Þ � � � gifðh0b�1Þ
 �

for 0 � i � n� 1. Here f : GFð2rÞ ! GFð2r0 Þ is an injective homomorphism of GFð2rÞ
into GFð2r0 Þ under addition.

Theorem 7.18 can be proved in the same way as Theorem 7.17.

Decoding Decoding of the s-spotty byte error control code given by Theorem 7.18

is presented here. Let v, c, and E be the received word, the codeword, and the error vector,

respectively. Then the syndrome S is calculated as follows:

S ¼ S0 S1 S2 . . . Slþm�1½ �
¼ v �HT ¼ ðcþ EÞ �HT ¼ E �HT ;

where S0 2GF(2r) is an r-bit binary row vector and Si 2 GFð2r0 Þ is an r0-bit binary row

vector, where i ¼ 1; 2; . . . ; lþ m� 1. If pð� lÞ s-spotty byte errors, E0; E1; � � � ; Ep�1
2 Et=b, have occurred in the i0-th, i1-th, � � �, ip�1-th bytes, respectively, then the syndrome

S is given as follows:

S ¼ S0 S1 S2 . . . Slþm�1½ �

¼
Xp�1
x¼0

Ex �H0T
Xp�1
x¼0

Ex � gixH0T
Xp�1
x¼0

Ex � g2ixH0T . . .
Xp�1
x¼0

Ex � gðlþm�1ÞixH0T
" #

: ð7:15Þ

296 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



From Lemma 7.4 this syndrome can be expressed as follows:

Xp�1
x¼0

Ex �H0T
Xp�1
x¼0

gixf Ex �H0T
� � Xp�1

x¼0
g2ixf Ex �H0T

� �"

. . .
Xp�1
x¼0

gðlþm�1Þixf Ex �H0T
� �#

: ð7:16Þ

Here let eS0 ¼ fðS0Þ ¼
Pp�1

x¼0 fðEx �H0TÞ. Each eSi 2 GFð2r0 Þ, i ¼ 0; 1; . . . ; lþ m� 1,

is an r0-bit binary row vector. Then eS is written as follows:

eS ¼ eS0 eS1 eS2 . . . eSlþm�1 �
: ð7:17Þ

Now let fðE0 �H0TÞ; fðE1 �H0TÞ; � � � ; fðEp�1 �H0TÞ 2 GFð2r0 Þ be eE0; eE1; � � � ;eEp�1 2 GFð2r0 Þ, respectively. Then eS shown in Eq. (7.17) is expressed as follows:

Xp�1
x¼0

eEx

Xp�1
x¼0

gixeEx

Xp�1
x¼0

g2ixeEx . . .
Xp�1
x¼0

gðlþm�1ÞixeEx

" #
: ð7:18Þ

The eS corresponds to the syndrome of the following l bytes error correcting and m bytes

error detecting RS code over GFð2r0 Þ where the errors eE0; eE1; � � � ; eEp�1 2 GFð2r0 Þ have
occurred in the i0-th, i1-th, � � �, ip�1-th byte, respectively:

eH ¼ eH0
eH1

eH2 � � � eHn�1
 �

¼

g0 g0 g0 � � � g0

g0 g1 g2 � � � gn�1

g0 g2 g4 � � � g2ðn�1Þ

..

. ..
. ..

. . .
. ..

.

g0 g lþm�1 g2ðlþm�1Þ � � � g ðlþm�1Þðn�1Þ

26666666664

37777777775
;

where g 2 GFð2r0 Þ and n ¼ 2r
0 � 1. Therefore from Eq. (7.18) we can obtain the error

locations i0; i1; � � � ; ip�1, and the error patterns eE0; eE1; � � � ; eEp�1 2 GFð2rÞ by

using the existing decoding algorithms of the RS codes, such as the Berlekamp-

Massey algorithm, and the Euclidean algorithm shown in Subsections 2.3.5 and

2.3.6.

Sinceminð2t; bÞ columnvectors ofH0 are linearly independent, that is,H0 is a parity-check
matrix of the t-bit error correcting codes, the error patterns E0; E1; � � � ; Ep�1 2 GFð2bÞ can
be obtained from the relations E0 �H0T ¼ eE0; E1 �H0T ¼ eE1; � � � ; Ep�1 �H0T ¼ eEp�1,
respectively, by using a lookup table.

It should be clear that the lengthened code given by Theorem 7.18 can be decoded in the

same way.

A GENERAL CLASS OF SPOTTY BYTE ERROR CONTROL CODES 297



2. s-Spotty Byte Error Control Codes with Byte Error Detection Capability

Preliminaries Using Theorems 7.15 and 7.16, we need to calculate a number of

extra syndromes to detect single-byte errors, as shown below:Xb
j¼tþ1

b

j

� �
¼ ð2b � 1Þ �

Xt
j¼1

b

j

� �
: ð7:19Þ

From this relation, we have the following theorem:

Theorem 7.19 If a code length N is a multiple of a byte length b, a linear ðN; N � RÞ
l t=b-errors correcting code with a single-byte error detection capability exists only if

2R � 1 	
Xl
i¼1

N=b
i

� �
�
Xt
j¼1

b

j

� �( )i( )
þ ð2b � 1Þ �

Xt
j¼1

b

j

� �
: ð7:20Þ

Code Design

Theorem 7.20 The null space of

H ¼

Ib Ib Ib � � � Ib
g0H0 g1H0 g2H0 � � � gn�1H0

g0H0 g2H0 g4H0 � � � g2ðn�1ÞH0

..

. ..
. ..

. . .
. ..

.

g0H0 glþm�1H0 g2ðlþm�1ÞH0 � � � gðlþm�1Þðn�1ÞH0

2666664

3777775
is a l t=b-errors correcting and m t=b-errors detecting code with single-byte error

detection capability, where H0 is an r � b binary matrix, as defined in Definition 7.2, and

Ib is a b� b identity matrix. This code has a check-bit length R ¼ bþ r0ðlþ m� 1Þ and a
code length in bits N ¼ nb, where n ¼ 2r

0 � 1.

The lengthened code is obtained by adding two columns in the same way as the code in

Theorem 7.18.

Decoding The way to decode the s-spotty byte error control code given by Theorem

7.20 is presented here. The decoding method is similar to that of the previous codes.

First, the syndrome is calculated as S ¼ ½S0 S1 S2 � � � Slþm�1�. If S0 6¼ 0 and

S1 ¼ � � � ¼ Slþm�1 ¼ 0, the error cannot be corrected. In other cases we can obtain the

error locations and the error patterns in GFð2r0 Þ from the syndrome shown in Eq. (7.17) by

using the existing decoding algorithm of the RS codes. If the received word has only one

erroneous byte, S0 represents the error pattern of the erroneous byte. Therefore, if

wHðS0Þ > t, the error can be detected. Otherwise, the error patterns in GFð2bÞ must be

determined from the corresponding error patterns in GFð2r0 Þ.

Examples and Evaluation We proceed here to look at some example codes of The-

orems 7.17 and 7.20, and evaluate them from the standpoint of check-bit length, error

detection capability, and decoder hardware complexity.

Figure 7.15 gives an example code with parameters l ¼ m ¼ 2, b ¼ 8 bits, t ¼ 3 bits, and

information-bit lengthK ¼ 128 for a parity-checkmatrix of the shortened double s-spotty byte

298 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



10
00

00
01

  1
00

00
00

1 
 1

00
00

00
1 

 1
00

00
00

1 
 1

00
00

00
1 

 1
00

00
00

1 
 1

00
00

00
1 

 1
00

00
00

1 
 1

00
00

00
1 

 1
00

00
01

00
00

01
  0

10
00

00
1 

 0
10

00
00

1 
 0

10
00

00
1 

 0
10

00
00

1 
 0

10
00

00
1 

 0
10

00
00

1 
 0

10
00

00
1 

 0
10

00
00

1 
 0

10
00

00
10

00
01

  0
01

00
00

1 
 0

01
00

00
1 

 0
01

00
00

1 
 0

01
00

00
1 

 0
01

00
00

1 
 0

01
00

00
1 

 0
01

00
00

1 
 0

01
00

00
1 

 0
01

00
00

01
00

01
  0

00
10

00
1 

 0
00

10
00

1 
 0

00
10

00
1 

 0
00

10
00

1 
 0

00
10

00
1 

 0
00

10
00

1 
 0

00
10

00
1 

 0
00

10
00

1 
 0

00
10

00
00

10
01

  0
00

01
00

1 
 0

00
01

00
1 

 0
00

01
00

1 
 0

00
01

00
1 

 0
00

01
00

1 
 0

00
01

00
1 

 0
00

01
00

1 
 0

00
01

00
1 

 0
00

01
00

00
01

01
  0

00
00

10
1 

 0
00

00
10

1 
 0

00
00

10
1 

 0
00

00
10

1 
 0

00
00

10
1 

 0
00

00
10

1 
 0

00
00

10
1 

 0
00

00
10

1 
 0

00
00

00
00

00
11

  0
00

00
01

1 
 0

00
00

01
1 

 0
00

00
01

1 
 0

00
00

01
1 

 0
00

00
01

1 
 0

00
00

01
1 

 0
00

00
01

1 
 0

00
00

01
1 

 0
00

00
00

01
10

00
  0

01
10

00
0 

 0
11

00
00

0 
 1

10
00

01
1 

 1
00

00
10

0 
 0

00
01

01
0 

 0
00

10
10

0 
 0

01
01

00
0 

 0
10

10
00

0 
 1

01
00

00
01

01
00

  0
01

01
00

0 
 0

10
10

00
0 

 1
01

00
01

1 
 0

10
00

11
1 

 1
00

01
11

0 
 0

00
11

11
0 

 0
01

11
10

0 
 0

11
11

00
0 

 1
11

10
00

00
10

10
  0

00
10

10
0 

 0
01

01
00

0 
 0

10
10

00
0 

 1
01

00
01

1 
 0

10
00

11
1 

 1
00

01
11

0 
 0

00
11

11
0 

 0
01

11
10

0 
 0

11
11

10
00

01
00

  0
00

01
01

0 
 0

00
10

10
0 

 0
01

01
00

0 
 0

10
10

00
0 

 1
01

00
01

1 
 0

10
00

11
1 

 1
00

01
11

0 
 0

00
11

11
0 

 0
01

11
11

00
00

11
  1

00
00

10
0 

 0
00

01
01

0 
 0

00
10

10
0 

 0
01

01
00

0 
 0

10
10

00
0 

 1
01

00
01

1 
 0

10
00

11
1 

 1
00

01
11

0 
 0

00
11

01
10

00
00

  1
10

00
01

1 
 1

00
00

10
0 

 0
00

01
01

0 
 0

00
10

10
0 

 0
01

01
00

0 
 0

10
10

00
0 

 1
01

00
01

1 
 0

10
00

11
1 

 1
00

01
00

11
00

00
  0

11
00

00
0 

 1
10

00
01

1 
 1

00
00

10
0 

 0
00

01
01

0 
 0

00
10

10
0 

 0
01

01
00

0 
 0

10
10

00
0 

 1
01

00
01

1 
 0

10
00

01
00

01
11

  0
00

11
11

0 
 0

11
11

00
0 

 1
11

00
10

0 
 1

00
10

00
0 

 0
10

00
10

0 
 0

00
10

11
1 

 0
10

11
00

1 
 0

11
00

11
0 

 1
00

11
11

10
01

00
  1

00
10

00
0 

 0
10

00
10

0 
 0

00
10

11
1 

 0
10

11
00

1 
 0

11
00

11
0 

 1
00

11
10

0 
 0

11
10

10
0 

 1
10

10
10

0 
 0

10
10

11
11

00
11

  1
10

01
00

1 
 0

01
00

01
0 

 1
00

01
01

1 
 0

01
01

10
1 

 1
01

10
01

0 
 1

10
01

11
1 

 0
01

11
01

0 
 1

11
01

01
1 

 1
01

01
01

11
10

00
  1

11
00

10
0 

 1
00

10
00

0 
 0

10
00

10
0 

 0
00

10
11

1 
 0

10
11

00
1 

 0
11

00
11

0 
 1

00
11

10
0 

 0
11

10
10

0 
 1

10
10

00
11

11
00

  1
11

10
01

1 
 1

10
01

00
1 

 0
01

00
01

0 
 1

00
01

01
1 

 0
01

01
10

1 
 1

01
10

01
0 

 1
10

01
11

1 
 0

01
11

01
0 

 1
11

01
00

01
11

10
  0

11
11

00
0 

 1
11

00
10

0 
 1

00
10

00
0 

 0
10

00
10

0 
 0

00
10

11
1 

 0
10

11
00

1 
 0

11
00

11
0 

 1
00

11
10

0 
 0

11
10

10
00

11
10

  0
01

11
10

0 
 1

11
10

01
1 

 1
10

01
00

1 
 0

01
00

01
0 

 1
00

01
01

1 
 0

01
01

10
1 

 1
01

10
01

0 
 1

10
01

11
1 

 0
01

11
01

00
01

00
  0

01
01

10
1 

 0
11

00
11

0 
 0

01
11

01
0 

 1
10

10
10

0 
 1

01
00

11
0 

 0
01

11
11

1 
 1

11
10

10
1 

 1
01

00
00

0 
 0

00
01

01
10

01
10

  0
01

11
01

0 
 1

10
10

10
0 

 1
01

00
11

0 
 0

01
11

11
1 

 1
11

10
10

1 
 1

01
00

00
0 

 0
00

01
11

1 
 0

11
10

00
1 

 1
00

01
10

11
00

10
  1

00
11

10
0 

 1
11

01
01

1 
 0

10
10

01
1 

 1
00

11
11

1 
 1

11
11

01
0 

 1
10

10
00

1 
 1

00
00

11
1 

 0
01

11
00

1 
 1

10
00

01
01

10
01

  1
10

01
11

1 
 0

11
10

10
0 

 1
01

01
00

1 
 0

10
01

11
0 

 0
11

11
10

1 
 1

11
01

00
0 

 0
10

00
01

0 
 0

00
11

10
1 

 1
11

00
00

10
11

01
  0

11
00

11
0 

 0
01

11
01

0 
 1

10
10

10
0 

 1
01

00
11

0 
 0

01
11

11
1 

 1
11

10
10

1 
 1

01
00

00
0 

 0
00

01
11

1 
 0

11
10

00
01

01
11

  1
01

10
01

0 
 1

00
11

10
0 

 1
11

01
01

1 
 0

10
10

01
1 

 1
00

11
11

1 
 1

11
11

01
0 

 1
10

10
00

1 
 1

00
00

11
1 

 0
01

11
10

00
10

11
  0

10
11

00
1 

 1
10

01
11

1 
 0

11
10

10
0 

 1
01

01
00

1 
 0

10
01

11
0 

 0
11

11
10

1 
 1

11
01

00
0 

 0
10

00
01

0 
 0

00
11

10
00

00
01

  0
00

00
01

1 
 0

00
00

10
1 

 0
00

01
00

1 
 0

00
10

00
1 

 0
01

00
00

1 
 0

10
00

00
1 

 1
00

00
01

0 
 0

00
00

11
0 

 0
00

01
10

0
01

00
00

01
  1

00
00

01
0 

 0
00

00
11

0 
 0

00
01

10
0 

 0
00

11
00

0 
 0

01
10

00
0 

 0
11

00
00

0 
 1

10
00

01
1 

 1
00

00
10

0 
 0

00
01

01
0

00
10

00
01

  0
10

00
00

1 
 1

00
00

01
0 

 0
00

00
11

0 
 0

00
01

10
0 

 0
00

11
00

0 
 0

01
10

00
0 

 0
11

00
00

0 
 1

10
00

01
1 

 1
00

00
10

0
00

01
00

01
  0

01
00

00
1 

 0
10

00
00

1 
 1

00
00

01
0 

 0
00

00
11

0 
 0

00
01

10
0 

 0
00

11
00

0 
 0

01
10

00
0 

 0
11

00
00

0 
 1

10
00

01
1

00
00

10
01

  0
00

10
00

1 
 0

01
00

00
1 

 0
10

00
00

1 
 1

00
00

01
0 

 0
00

00
11

0 
 0

00
01

10
0 

 0
00

11
00

0 
 0

01
10

00
0 

 0
11

00
00

0
00

00
01

01
  0

00
01

00
1 

 0
00

10
00

1 
 0

01
00

00
1 

 0
10

00
00

1 
 1

00
00

01
0 

 0
00

00
11

0 
 0

00
01

10
0 

 0
00

11
00

0 
 0

01
10

00
0

00
00

00
11

  0
00

00
10

1 
 0

00
01

00
1 

 0
00

10
00

1 
 0

01
00

00
1 

 0
10

00
00

1 
 1

00
00

01
0 

 0
00

00
11

0 
 0

00
01

10
0 

 0
00

11
00

0
10

00
00

01
  0

00
00

10
1 

 0
00

10
00

1 
 0

10
00

00
1 

 0
00

00
11

0 
 0

00
11

00
0 

 0
11

00
00

0 
 1

00
00

10
0 

 0
00

10
10

0 
 0

10
10

00
0

01
00

00
01

  0
00

00
11

0 
 0

00
11

00
0 

 0
11

00
00

0 
 1

00
00

10
0 

 0
00

10
10

0 
 0

10
10

00
0 

 0
10

00
11

1 
 0

00
11

11
0 

 0
11

11
00

0
00

10
00

01
  1

00
00

01
0 

 0
00

01
10

0 
 0

01
10

00
0 

 1
10

00
01

1 
 0

00
01

01
0 

 0
01

01
00

0 
 1

01
00

01
1 

 1
00

01
11

0 
 0

01
11

10
0

00
01

00
01

  0
10

00
00

1 
 0

00
00

11
0 

 0
00

11
00

0 
 0

11
00

00
0 

 1
00

00
10

0 
 0

00
10

10
0 

 0
10

10
00

0 
 0

10
00

11
1 

 0
00

11
11

0
00

00
10

01
  0

01
00

00
1 

 1
00

00
01

0 
 0

00
01

10
0 

 0
01

10
00

0 
 1

10
00

01
1 

 0
00

01
01

0 
 0

01
01

00
0 

 1
01

00
01

1 
 1

00
01

11
0

00
00

01
01

  0
00

10
00

1 
 0

10
00

00
1 

 0
00

00
11

0 
 0

00
11

00
0 

 0
11

00
00

0 
 1

00
00

10
0 

 0
00

10
10

0 
 0

10
10

00
0 

 0
10

00
11

1
00

00
00

11
  0

00
01

00
1 

 0
01

00
00

1 
 1

00
00

01
0 

 0
00

01
10

0 
 0

01
10

00
0 

 1
10

00
01

1 
 0

00
01

01
0 

 0
01

01
00

0 
 1

01
00

01
1

10
00

00
01

  0
00

01
00

1 
 0

10
00

00
1 

 0
00

01
10

0 
 0

11
00

00
0 

 0
00

01
01

0 
 0

10
10

00
0 

 1
00

01
11

0 
 0

11
11

00
0 

 1
10

01
00

1
01

00
00

01
  0

00
01

10
0 

 0
11

00
00

0 
 0

00
01

01
0 

 0
10

10
00

0 
 1

00
01

11
0 

 0
11

11
00

0 
 1

10
01

00
1 

 0
10

00
10

0 
 0

01
01

10
1

00
10

00
01

  0
00

00
11

0 
 0

01
10

00
0 

 1
00

00
10

0 
 0

01
01

00
0 

 0
10

00
11

1 
 0

01
11

10
0 

 1
11

00
10

0 
 0

01
00

01
0 

 0
00

10
11

1
00

01
00

01
  1

00
00

01
0 

 0
00

11
00

0 
 1

10
00

01
1 

 0
00

10
10

0 
 1

01
00

01
1 

 0
00

11
11

0 
 1

11
10

01
1 

 1
00

10
00

0 
 1

00
01

01
1

00
00

10
01

  0
10

00
00

1 
 0

00
01

10
0 

 0
11

00
00

0 
 0

00
01

01
0 

 0
10

10
00

0 
 1

00
01

11
0 

 0
11

11
00

0 
 1

10
01

00
1 

 0
10

00
10

0
00

00
01

01
  0

01
00

00
1 

 0
00

00
11

0 
 0

01
10

00
0 

 1
00

00
10

0 
 0

01
01

00
0 

 0
10

00
11

1 
 0

01
11

10
0 

 1
11

00
10

0 
 0

01
00

01
0

00
00

00
11

  0
00

10
00

1 
 1

00
00

01
0 

 0
00

11
00

0 
 1

10
00

01
1 

 0
00

10
10

0 
 1

01
00

01
1 

 0
00

11
11

0 
 1

11
10

01
1 

 1
00

10
00

0

10
00

00
01

  1
00

00
00

1 
 1

00
00

00
1 

 1
00

00
00

1 
 1

00
00

00
1 

 1
00

00
00

1 
 1

00
00

00
1 

 1
00

00
00

1 
 1

00
00

00
1 

 1
00

00
00

1
01

00
00

01
  0

10
00

00
1 

 0
10

00
00

1 
 0

10
00

00
1 

 0
10

00
00

1 
 0

10
00

00
1 

 0
10

00
00

1 
 0

10
00

00
1 

 0
10

00
00

1 
 0

10
00

00
1

00
10

00
01

  0
01

00
00

1 
 0

01
00

00
1 

 0
01

00
00

1 
 0

01
00

00
1 

 0
01

00
00

1 
 0

01
00

00
1 

 0
01

00
00

1 
 0

01
00

00
1 

 0
01

00
00

1
00

01
00

01
  0

00
10

00
1 

 0
00

10
00

1 
 0

00
10

00
1 

 0
00

10
00

1 
 0

00
10

00
1 

 0
00

10
00

1 
 0

00
10

00
1 

 0
00

10
00

1 
 0

00
10

00
1

00
00

10
01

  0
00

01
00

1 
 0

00
01

00
1 

 0
00

01
00

1 
 0

00
01

00
1 

 0
00

01
00

1 
 0

00
01

00
1 

 0
00

01
00

1 
 0

00
01

00
1 

 0
00

01
00

1
00

00
01

01
  0

00
00

10
1 

 0
00

00
10

1 
 0

00
00

10
1 

 0
00

00
10

1 
 0

00
00

10
1 

 0
00

00
10

1 
 0

00
00

10
1 

 0
00

00
10

1 
 0

00
00

10
1

00
00

00
11

  0
00

00
01

1 
 0

00
00

01
1 

 0
00

00
01

1 
 0

00
00

01
1 

 0
00

00
01

1 
 0

00
00

01
1 

 0
00

00
01

1 
 0

00
00

01
1 

 0
00

00
01

1

F
ig
u
re

7
.1
5

(1
56
,1
28
)s
-s
po

tty
D
3=
8
E
C
co

de
.

299



error correcting code, that is, the (156, 128) s-spotty D3=8EC code. In this case, g is a primitive

element in GFð27Þ defined by the primitive polynomial gðxÞ ¼ x7 þ xþ 1, and H0 is the

following 7� 8 binary matrix whose any 6 or fewer column vectors are linearly independent:

H0 ¼ 1 g g2 g3 g4 g5 g6 g121
 �

¼

1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1

266666664

377777775:

The error detection capabilities of the D3=8EC code and the D3=8EC-S8ED code are

presented in Table 7.4 for three types of errors that are beyond the error correction or

detection capability of the code. Here, ‘‘single 8-bit byte plus single bit errors’’ means the

errors caused by single 8-bit byte errors in a byte and single bit errors that occurred in

another byte simultaneously.

Figure 7.16 shows the relations between the information-bit lengths and the check-bit

lengths of the lengthened D3=8EC codes and D3=8EC-S8ED codes, along with the double

8-bit byte error correcting codes, which are the D8EC codes.

TABLE 7.4 Error Detection Capabilities of D3=8EC Codes and D3=8EC-S8ED Codes

for Three Types of Multiple Errors

D3=8ECcodes (%) D3=8EC-S8EDcodes (%)

K ¼ 64 K ¼ 128 K ¼ 256 K ¼ 64 K ¼ 128 K ¼ 256
Errors ðR ¼ 28Þ ðR ¼ 28Þ ðR ¼ 28Þ ðR ¼ 29Þ ðR ¼ 29Þ ðR ¼ 29Þ

Randomtriple-bit errors 99.93 99.72 98.81 99.94 99.80 99.13
Single 8-bit byteerrors 63.72 63.64 63.59 100 100 100
Singlebyteplussinglebit errors 63.13 63.05 63.00 100 100 100

15

20

25

30

35

40

32 64 128 256 512 1,024 2,048 4,096

D8EC code

D3/8EC-S8ED code

D3/8EC code

D2/8EC code

D3/8EC-S8ED bound
D3/8EC bound

D2/8EC bound
46

K = 69
101

148
212

306
439

625
892

1,268
1,800

2,554
3,618

K = 33
51

75
112

162
233

338
486

693
987

1,403
1,993

2,825
4,006

K = 496

1,005

2,026

4,071

K = 1,004

2,025

4,070

K = 1,003

2,024

4,069

C
he

ck
-b

it 
le

ng
th

 R

Information-bit length K

Figure 7.16 Comparison of information-bit lengths and check-bit lengths of the s-spotty D2=8EC codes, the
D3=8EC codes, and the D3=8EC-S8ED codes.

300 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



7.5.2 A General Class of Codes for m-Spotty Byte Errors

When high-energy particles strike a particular RAM chip, more than t-bit errors may

result in the corresponding byte. Hence we would have to deal with another type of

spotty byte error, that is, multiple spotty byte error—called m-spotty byte error for short.

The m-spotty byte error control codes can correct or detect multiple spotty byte errors that

are distributed in multiple bytes or have become concentrated in a few bytes. This code

can flexibly correct or detect any size of errors in a byte. The m-spotty byte error control

codes are applicable to the devices at one time in the circumstances that change every

time. For example, very strong particles can strike the particular device at one time in a

cosmic space and so cause multiple errors in a byte, or at another time a shower of particles

may strike a number of such devices and cause multiple spotty byte errors distributed over

multiple bytes.

Figure 7.17 gives examples of erroneous words with three spotty byte errors, that is, each

with triple t=b-errors, where t ¼ 2 and b ¼ 8. In Figure 7.17(a) note that the word has three

erroneous bytes, each of which has a single t=b-error. In this case, the maximum number of

erroneous bits in a byte does not exceed t ¼ 2 bits, so these are triple s-spotty byte errors.

Figure 7.17(b) shows a second byte with 3-bit errors. Because d3=te ¼ d3=2e ¼ 2, these

errors are double t=b-error in a byte. Here, dde means the smallest integer larger than or

equal to d. Because there is another erroneous byte that includes a single t=b-error, the total
number of t=b-errors is three, which illustrates the case of a triple t=b-error. In Figure 7.17(c)
we see a single erroneous byte that includes five bits errors. Because d5=te ¼ d5=2e ¼ 3, the

word also includes triple t=b-error. The triple m-spotty byte error control codes with t ¼ 2

and b ¼ 8 can detect or correct all these erroneous bytes.

This subsection is focused on a generalized m-spotty byte error control codes with a

minimum m-spotty distance d. The practical design of the m-spotty byte error control

codes with d ¼ 3 and 4 have been shown in Sections 7.2 through 7.4. Herewe have a general

class of m-spotty byte error control codes with any value d. We also present a complex

m-spotty byte error control codes that can control two kinds of spotty errors with different

sizes, t and t0. Furthermore, efficient and practical m-spotty byte error control codes are

Figure 7.17 Examples of triple spotty byte errors where t ¼ 2 bits and b ¼ 8 bits. Source: [SUZU04].� 2004

IEEE.

A GENERAL CLASS OF SPOTTY BYTE ERROR CONTROL CODES 301



presented, where the codes are designed based on the fact that errors usually occur in a small

number of RAM chips at most two or three chips simultaneously even in large capacity

memory systems. This makes it possible to reduce the number of check bits of the codes.

1. m-Spotty Byte Error Control Codes

Preliminaries

Definition 7.3 Let E be an error vector with length n bytes. And let Ei be the i-th byte of

E, where 0 � i � n� 1. If the vector E satisfies the relationXn�1
i¼0

wHðEiÞ
t

� �
¼ l;

then this type of errors is called l m-spotty byte errors, where wHðEiÞ is a Hamming

weight of vector Ei. In particular, if the total number of t=b-errors l is equal to the number

of erroneous bytes, then this type of errors is called l s-spotty byte errors. &

Definition 7.4 For codewords x and y with n byte, the m-spotty distance function

dMðx; yÞ of the code C is defined as follows:

dMðx; yÞ ¼
Xn�1
i¼0

dHðxi; yiÞ
t

� �
; ð7:21Þ

where dHðxi; yiÞ denotes the Hamming distance between the i-th bytes of x and y. Also

minimum m-spotty distance d is defined as d ¼ min
x; y2C
x 6¼y

dMðx; yÞ .
&

Theorem 7.21 Let Hi be an R� b binary submatrix for 0 � i � n� 1, and also let

Et=b ¼ E 2 GFð2bÞ j 1 � wHðEÞ � t
	 


be a set of t=b-errors in a byte. The null space

of H ¼ H0 H1 H2 H3 � � � Hn�1½ � is an m-spotty byte error control code with minimum

m-spotty distance d if and only if the following relation is satisfied:

E1 �HT
i1
þ . . .þ Ev1 �HT

iv1

þðEv1þ1 þ Ev1þ2Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
2

�HT
iv1þ1
þ . . .þ ðEv1þ2v2�1 þ Ev1þ2v2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2

�HT
iv1þv2

þ . . .

þðEv1þ2v2þ...þðc�1Þvc�1þ1 þ . . .þ Ev1þ2v2þ...þðc�1Þvc�1þcÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
c

�HT
iv1þv2þ...þvc�1þ1

þ . . .þ ðEv1þ2v2þ...þcvc�ðc�1Þ þ . . .þ Ev1þ2v2þ...þcvcÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
c

�HT
iv1þv2þ...þvc

6¼ 0

for 0 < v1 þ 2v2 þ . . .þ cvc � d � 1; 0 � v1 � d � 1;

0 � v2 � bðd � 1Þ=2c; � � � ; 0 � vc � bðd � 1Þ=cc;

ð7:22Þ

where 8Ej 2 Et=b ðj ¼ 1; 2; � � � ; v1 þ 2v2 þ � � � þ cvcÞ, c ¼ db=te and i1; i2; � � � ;
iv1þv2þ...þvc are distinct integers of i satisfying 0 � i1; i2; � � � ; iv1þv2þ...þvc � n� 1.

302 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



Theorem 7.22 A linear m-spotty byte error control code with minimum m-spotty dis-

tance d requires at least ðd � 1Þt check bits.

Theorem 7.23 If N is a multiple of b, a linear (N; N � R) m-spotty byte error control

code with minimum m-spotty distance d exists only if

2R 	 1þ
Xbðd�1Þ=2c
j¼1

SjðnÞ

þ ðd � 1Þ mod 2ð Þ � ð2t � 1Þ � Sbðd�1Þ=2cðn� 1Þ
	

þ
XM
v¼1

Xt�1
u¼0

t

t � u

 !
�

Xminðv�t; b�tÞ

i¼uþðv�1Þ�tþ1

b� t

i

 !8<:
9=;� Sbðd�1Þ=2c�vðn� 1Þ

8<:
9=;
9=;; ð7:23Þ

where bdc is the largest integer smaller than or equal to d, M ¼ minðc� 1; bðd � 1Þ=2cÞ,

SmðnÞ ¼
X

p1 ; p2 ; ���; pc	0
p1þ2p2þ���þcpc¼m

n

p1 þ p2 þ � � � þ pc

 !(

�
p1 þ p2 þ � � � þ pc

p1; p2; . . . ; pc

 !
�
Yc
z¼1

Xminðz�t; bÞ

i¼ðz�1Þ�tþ1

b

i

 !8<:
9=;

pz
9=; ðm 	 1Þ;

S0ðnÞ ¼ 1, and

p1 þ p2 þ � � � þ pc
p1; p2; . . . ; pc

� �
¼ ðp1 þ p2 þ � � � þ pcÞ!

p1!� p2!� � � � � pc!
:

Code Design

Definition 7.5 Let H0 ¼ ½h00 h01 � � � h0b�1� be a q� b binary matrix whose any

minððd � 1Þt; bÞ or fewer column vectors are linearly independent, where

h00; h01; � � � ; h0b�1 are binary column vectors of GFð2qÞ. Also let H00 ¼ ½h000 h001 � � � h00b�1�
be an r � b binary matrix whose any minðbðd � 1Þ=2ct; bÞ or fewer column vectors are

linearly independent, where h000; h001; � � � ; h00b�1 are binary column vectors of GFð2rÞ. &

If minððd � 1Þt; bÞ ¼ b, the matrix H0 can be any nonsingular b� b matrix, including

b� b identity matrix. On the other hand, if minððd � 1Þt; bÞ ¼ ðd � 1Þt < b, the matrix

H0 is a parity-check matrix of a linear binary ðb; b� qÞ code with minimum Hamming

distance ðd � 1Þt þ 1. And if minðbðd � 1Þ=2ct; bÞ ¼ b, the matrix H00 can be any

nonsingular b� b matrix, including b� b identity matrix. Nevertheless, if

minðbðd � 1Þ=2ct; bÞ ¼ bðd � 1Þ=2ct < b, the matrix H00 is a parity-check matrix of a

linear binary ðb; b� rÞ code with minimum Hamming distance bðd � 1Þ=2ct þ 1.

We use the above-defined H0 and H00 matrices in the following theorems to design the

distance-d m-spotty byte error control codes.

A GENERAL CLASS OF SPOTTY BYTE ERROR CONTROL CODES 303



Theorem 7.24 Let g be a primitive element of GFð2rÞ. The null space of

H ¼

H0 H0 � � � H0

g0H00 g1H00 � � � gn�1H00

g0H00 g2H00 � � � g2ðn�1ÞH00

..

. ..
. . .

. ..
.

g0H00 gðd�2ÞH00 � � � gðd�2Þðn�1ÞH00

266666664

377777775
is a distance-d m-spotty byte error control code with check-bit length R ¼ qþ ðd � 2Þr
and code length in bits N ¼ n � b, where n ¼ 2r � 1, and giH00 ¼ ½gih000 gih001 � � � gih00b�1� for
0 � i � n� 1.

Note that for b=bðd � 1Þ=2c � t � b, the code shown in Theorem 7.24 is identical to

the maximum distance separable (MDS) RS code over GFð2bÞ because H0 and H00 are
equal to b� b identity matrices.

Next, we consider the lengthened code which is further lengthened by taking r0 being
larger than the original r.

Theorem 7.25 Let g be a primitive element of GFð2r0 Þ, where r0 ¼ ðR� qÞ=ðd � 2Þ,
r0 	 r, and R� q is a multiple of d � 2. The null space of

is a distance-d m-spotty byte error control code with check-bit length R and code length in

bits N ¼ ðnþ 1Þ � bþ r0, where n ¼ 2r
0 � 1, giH00 ¼ ½gifðh000Þ gifðh001Þ � � � gifðh00b�1Þ� for

0 � i � n� 1, f: GFð2rÞ ! GFð2r0 Þ is a homomorphism of GFð2rÞ into GFð2r0 Þ under
addition, and Ir0 is r

0 � r0 identity matrix.

Example 7.3

Figure 7.18 gives an example of a parity-checkmatrix of the shortened doublem-spotty byte

error correcting code, which is a ð285; 256Þ m-spotty D3=8EC code with parameters of

d ¼ 5, b ¼ 8 bits, and t ¼ 3 bits, and information-bit length K ¼ 256. Original is a

lengthened (1031,1002) code. Here g is a primitive element in GFð27Þ defined by the

primitive polynomial gðxÞ ¼ x7 þ xþ 1, H0 is an 8� 8 identity matrix, and H00 is the

following7� 8binarymatrixwhoseany6or fewercolumnvectors are linearly independent:

H00 ¼

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

2666666664

3777777775
¼ g0 g1 g2 g3 g4 g5 g6 g121
 �

:

H ¼

H0 H0 � � � H0 H0 O
g0H00 g1H00 � � � gn�1H00 O O
g0H00 g2H00 � � � g2ðn�1ÞH00 O O

..

. ..
. . .

. ..
. ..

. ..
.

g0H00 gðd�2ÞH00 � � � gðd�2Þðn�1ÞH00 O Ir0

2666664

3777775

304 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



10
00

00
00

 1
00

00
00

0 
10

00
00

00
 1

00
00

00
0 

10
00

00
00

 1
00

00
00

0 
10

00
00

00
 1

00
00

00
0 

10
00

00
00

 1
00

00
00

0 
10

00
00

00
 1

00
00

00
0 

10
00

00
00

 1
00

00
00

0 
10

00
00

00
 1

00
00

00
0 

10
00

00
00

 1
00

00
00

0
01

00
00

00
 0

10
00

00
0 

01
00

00
00

 0
10

00
00

0 
01

00
00

00
 0

10
00

00
0 

01
00

00
00

 0
10

00
00

0 
01

00
00

00
 0

10
00

00
0 

01
00

00
00

 0
10

00
00

0 
01

00
00

00
 0

10
00

00
0 

01
00

00
00

 0
10

00
00

0 
01

00
00

00
 0

10
00

00
0

00
10

00
00

 0
01

00
00

0 
00

10
00

00
 0

01
00

00
0 

00
10

00
00

 0
01

00
00

0 
00

10
00

00
 0

01
00

00
0 

00
10

00
00

 0
01

00
00

0 
00

10
00

00
 0

01
00

00
0 

00
10

00
00

 0
01

00
00

0 
00

10
00

00
 0

01
00

00
0 

00
10

00
00

 0
01

00
00

0
00

01
00

00
 0

00
10

00
0 

00
01

00
00

 0
00

10
00

0 
00

01
00

00
 0

00
10

00
0 

00
01

00
00

 0
00

10
00

0 
00

01
00

00
 0

00
10

00
0 

00
01

00
00

 0
00

10
00

0 
00

01
00

00
 0

00
10

00
0 

00
01

00
00

 0
00

10
00

0 
00

01
00

00
 0

00
10

00
0

00
00

10
00

 0
00

01
00

0 
00

00
10

00
 0

00
01

00
0 

00
00

10
00

 0
00

01
00

0 
00

00
10

00
 0

00
01

00
0 

00
00

10
00

 0
00

01
00

0 
00

00
10

00
 0

00
01

00
0 

00
00

10
00

 0
00

01
00

0 
00

00
10

00
 0

00
01

00
0 

00
00

10
00

 0
00

01
00

0
00

00
01

00
 0

00
00

10
0 

00
00

01
00

 0
00

00
10

0 
00

00
01

00
 0

00
00

10
0 

00
00

01
00

 0
00

00
10

0 
00

00
01

00
 0

00
00

10
0 

00
00

01
00

 0
00

00
10

0 
00

00
01

00
 0

00
00

10
0 

00
00

01
00

 0
00

00
10

0 
00

00
01

00
 0

00
00

10
0

00
00

00
10

 0
00

00
01

0 
00

00
00

10
 0

00
00

01
0 

00
00

00
10

 0
00

00
01

0 
00

00
00

10
 0

00
00

01
0 

00
00

00
10

 0
00

00
01

0 
00

00
00

10
 0

00
00

01
0 

00
00

00
10

 0
00

00
01

0 
00

00
00

10
 0

00
00

01
0 

00
00

00
10

 0
00

00
01

0
00

00
00

01
 0

00
00

00
1 

00
00

00
01

 0
00

00
00

1 
00

00
00

01
 0

00
00

00
1 

00
00

00
01

 0
00

00
00

1 
00

00
00

01
 0

00
00

00
1 

00
00

00
01

 0
00

00
00

1 
00

00
00

01
 0

00
00

00
1 

00
00

00
01

 0
00

00
00

1 
00

00
00

01
 0

00
00

00
1

10
00

00
01

 0
00

00
10

1 
00

01
00

01
 0

10
00

00
1 

00
00

01
10

 0
00

11
00

0 
01

10
00

00
 1

00
00

10
0 

00
01

01
00

 0
10

10
00

0 
01

00
01

11
 0

00
11

11
0 

01
11

10
00

 1
11

00
10

0 
10

01
00

00
 0

10
00

10
0 

00
01

01
11

 0
10

11
00

1
01

00
00

01
 0

00
00

11
0 

00
01

10
00

 0
11

00
00

0 
10

00
01

00
 0

00
10

10
0 

01
01

00
00

 0
10

00
11

1 
00

01
11

10
 0

11
11

00
0 

11
10

01
00

 1
00

10
00

0 
01

00
01

00
 0

00
10

11
1 

01
01

10
01

 0
11

00
11

0 
10

01
11

00
 0

11
10

10
0

00
10

00
01

 1
00

00
01

0 
00

00
11

00
 0

01
10

00
0 

11
00

00
11

 0
00

01
01

0 
00

10
10

00
 1

01
00

01
1 

10
00

11
10

 0
01

11
10

0 
11

11
00

11
 1

10
01

00
1 

00
10

00
10

 1
00

01
01

1 
00

10
11

01
 1

01
10

01
0 

11
00

11
11

 0
01

11
01

0
00

01
00

01
 0

10
00

00
1 

00
00

01
10

 0
00

11
00

0 
01

10
00

00
 1

00
00

10
0 

00
01

01
00

 0
10

10
00

0 
01

00
01

11
 0

00
11

11
0 

01
11

10
00

 1
11

00
10

0 
10

01
00

00
 0

10
00

10
0 

00
01

01
11

 0
10

11
00

1 
01

10
01

10
 1

00
11

10
0

00
00

10
01

 0
01

00
00

1 
10

00
00

10
 0

00
01

10
0 

00
11

00
00

 1
10

00
01

1 
00

00
10

10
 0

01
01

00
0 

10
10

00
11

 1
00

01
11

0 
00

11
11

00
 1

11
10

01
1 

11
00

10
01

 0
01

00
01

0 
10

00
10

11
 0

01
01

10
1 

10
11

00
10

 1
10

01
11

1
00

00
01

01
 0

00
10

00
1 

01
00

00
01

 0
00

00
11

0 
00

01
10

00
 0

11
00

00
0 

10
00

01
00

 0
00

10
10

0 
01

01
00

00
 0

10
00

11
1 

00
01

11
10

 0
11

11
00

0 
11

10
01

00
 1

00
10

00
0 

01
00

01
00

 0
00

10
11

1 
01

01
10

01
 0

11
00

11
0

00
00

00
11

 0
00

01
00

1 
00

10
00

01
 1

00
00

01
0 

00
00

11
00

 0
01

10
00

0 
11

00
00

11
 0

00
01

01
0 

00
10

10
00

 1
01

00
01

1 
10

00
11

10
 0

01
11

10
0 

11
11

00
11

 1
10

01
00

1 
00

10
00

10
 1

00
01

01
1 

00
10

11
01

 1
01

10
01

0
10

00
00

01
 0

00
01

00
1 

01
00

00
01

 0
00

01
10

0 
01

10
00

00
 0

00
01

01
0 

01
01

00
00

 1
00

01
11

0 
01

11
10

00
 1

10
01

00
1 

01
00

01
00

 0
01

01
10

1 
01

10
01

10
 0

01
11

01
0 

11
01

01
00

 1
01

00
11

0 
00

11
11

11
 1

11
10

10
1

01
00

00
01

 0
00

01
10

0 
01

10
00

00
 0

00
01

01
0 

01
01

00
00

 1
00

01
11

0 
01

11
10

00
 1

10
01

00
1 

01
00

01
00

 0
01

01
10

1 
01

10
01

10
 0

01
11

01
0 

11
01

01
00

 1
01

00
11

0 
00

11
11

11
 1

11
10

10
1 

10
10

00
00

 0
00

01
11

1
00

10
00

01
 0

00
00

11
0 

00
11

00
00

 1
00

00
10

0 
00

10
10

00
 0

10
00

11
1 

00
11

11
00

 1
11

00
10

0 
00

10
00

10
 0

00
10

11
1 

10
11

00
10

 1
00

11
10

0 
11

10
10

11
 0

10
10

01
1 

10
01

11
11

 1
11

11
01

0 
11

01
00

01
 1

00
00

11
1

00
01

00
01

 1
00

00
01

0 
00

01
10

00
 1

10
00

01
1 

00
01

01
00

 1
01

00
01

1 
00

01
11

10
 1

11
10

01
1 

10
01

00
00

 1
00

01
01

1 
01

01
10

01
 1

10
01

11
1 

01
11

01
00

 1
01

01
00

1 
01

00
11

10
 0

11
11

10
1 

11
10

10
00

 0
10

00
01

0
00

00
10

01
 0

10
00

00
1 

00
00

11
00

 0
11

00
00

0 
00

00
10

10
 0

10
10

00
0 

10
00

11
10

 0
11

11
00

0 
11

00
10

01
 0

10
00

10
0 

00
10

11
01

 0
11

00
11

0 
00

11
10

10
 1

10
10

10
0 

10
10

01
10

 0
01

11
11

1 
11

11
01

01
 1

01
00

00
0

00
00

01
01

 0
01

00
00

1 
00

00
01

10
 0

01
10

00
0 

10
00

01
00

 0
01

01
00

0 
01

00
01

11
 0

01
11

10
0 

11
10

01
00

 0
01

00
01

0 
00

01
01

11
 1

01
10

01
0 

10
01

11
00

 1
11

01
01

1 
01

01
00

11
 1

00
11

11
1 

11
11

10
10

 1
10

10
00

1
00

00
00

11
 0

00
10

00
1 

10
00

00
10

 0
00

11
00

0 
11

00
00

11
 0

00
10

10
0 

10
10

00
11

 0
00

11
11

0 
11

11
00

11
 1

00
10

00
0 

10
00

10
11

 0
10

11
00

1 
11

00
11

11
 0

11
10

10
0 

10
10

10
01

 0
10

01
11

0 
01

11
11

01
 1

11
01

00
0

10
00

00
00

 1
00

00
00

0 
10

00
00

00
 1

00
00

00
0 

10
00

00
00

 1
00

00
00

0 
10

00
00

00
 1

00
00

00
0 

10
00

00
00

 1
00

00
00

0 
10

00
00

00
 1

00
00

00
0 

10
00

00
00

 1
00

00
00

0 
10

00
00

00
 1

00
00

00
0 

10
00

00
00

 1
00

00
01

00
00

00
 0

10
00

00
0 

01
00

00
00

 0
10

00
00

0 
01

00
00

00
 0

10
00

00
0 

01
00

00
00

 0
10

00
00

0 
01

00
00

00
 0

10
00

00
0 

01
00

00
00

 0
10

00
00

0 
01

00
00

00
 0

10
00

00
0 

01
00

00
00

 0
10

00
00

0 
01

00
00

00
 0

10
00

00
10

00
00

 0
01

00
00

0 
00

10
00

00
 0

01
00

00
0 

00
10

00
00

 0
01

00
00

0 
00

10
00

00
 0

01
00

00
0 

00
10

00
00

 0
01

00
00

0 
00

10
00

00
 0

01
00

00
0 

00
10

00
00

 0
01

00
00

0 
00

10
00

00
 0

01
00

00
0 

00
10

00
00

 0
01

00
00

01
00

00
 0

00
10

00
0 

00
01

00
00

 0
00

10
00

0 
00

01
00

00
 0

00
10

00
0 

00
01

00
00

 0
00

10
00

0 
00

01
00

00
 0

00
10

00
0 

00
01

00
00

 0
00

10
00

0 
00

01
00

00
 0

00
10

00
0 

00
01

00
00

 0
00

10
00

0 
00

01
00

00
 0

00
10

00
00

10
00

 0
00

01
00

0 
00

00
10

00
 0

00
01

00
0 

00
00

10
00

 0
00

01
00

0 
00

00
10

00
 0

00
01

00
0 

00
00

10
00

 0
00

01
00

0 
00

00
10

00
 0

00
01

00
0 

00
00

10
00

 0
00

01
00

0 
00

00
10

00
 0

00
01

00
0 

00
00

10
00

 0
00

01
00

00
01

00
 0

00
00

10
0 

00
00

01
00

 0
00

00
10

0 
00

00
01

00
 0

00
00

10
0 

00
00

01
00

 0
00

00
10

0 
00

00
01

00
 0

00
00

10
0 

00
00

01
00

 0
00

00
10

0 
00

00
01

00
 0

00
00

10
0 

00
00

01
00

 0
00

00
10

0 
00

00
01

00
 0

00
00

00
00

00
10

 0
00

00
01

0 
00

00
00

10
 0

00
00

01
0 

00
00

00
10

 0
00

00
01

0 
00

00
00

10
 0

00
00

01
0 

00
00

00
10

 0
00

00
01

0 
00

00
00

10
 0

00
00

01
0 

00
00

00
10

 0
00

00
01

0 
00

00
00

10
 0

00
00

01
0 

00
00

00
10

 0
00

00
00

00
00

01
 0

00
00

00
1 

00
00

00
01

 0
00

00
00

1 
00

00
00

01
 0

00
00

00
1 

00
00

00
01

 0
00

00
00

1 
00

00
00

01
 0

00
00

00
1 

00
00

00
01

 0
00

00
00

1 
00

00
00

01
 0

00
00

00
1 

00
00

00
01

 0
00

00
00

1 
00

00
00

01
 0

00
00

10
10

00
00

 0
00

01
11

1 
01

11
00

01
 1

00
01

00
0 

01
00

10
00

 0
10

01
10

1 
01

10
11

00
 0

11
01

01
0 

01
01

10
10

 1
10

11
11

0 
11

11
01

10
 1

01
10

00
1 

10
00

11
01

 0
11

01
00

1 
01

00
10

11
 0

10
11

10
0 

11
10

11
10

 0
11

10
01

11
00

01
 1

00
01

00
0 

01
00

10
00

 0
10

01
10

1 
01

10
11

00
 0

11
01

01
0 

01
01

10
10

 1
10

11
11

0 
11

11
01

10
 1

01
10

00
1 

10
00

11
01

 0
11

01
00

1 
01

00
10

11
 0

10
11

10
0 

11
10

11
10

 0
11

10
01

0 
10

01
10

01
 1

10
01

00
11

10
01

 1
10

00
10

1 
00

10
01

00
 0

01
00

11
1 

00
11

01
10

 1
01

10
10

0 
10

10
11

00
 0

11
01

11
1 

01
11

10
11

 1
10

11
00

0 
11

00
01

10
 0

01
10

10
1 

10
10

01
01

 0
01

01
11

0 
01

11
01

11
 1

01
11

00
0 

11
00

11
00

 0
11

00
00

01
11

01
 1

11
00

01
0 

00
01

00
10

 1
00

10
01

1 
10

01
10

10
 1

10
11

01
1 

11
01

01
11

 1
01

10
11

1 
10

11
11

01
 1

11
01

10
1 

01
10

00
11

 0
00

11
01

1 
11

01
00

10
 1

00
10

11
0 

10
11

10
11

 1
10

11
10

1 
11

10
01

11
 0

01
10

00
00

11
11

 0
11

10
00

1 
10

00
10

00
 0

10
01

00
0 

01
00

11
01

 0
11

01
10

0 
01

10
10

10
 0

10
11

01
0 

11
01

11
10

 1
11

10
11

0 
10

11
00

01
 1

00
01

10
1 

01
10

10
01

 0
10

01
01

1 
01

01
11

00
 1

11
01

11
0 

01
11

00
10

 1
00

11
10

00
01

11
 0

01
11

00
1 

11
00

01
01

 0
01

00
10

0 
00

10
01

11
 0

01
10

11
0 

10
11

01
00

 1
01

01
10

0 
01

10
11

11
 0

11
11

01
1 

11
01

10
00

 1
10

00
11

0 
00

11
01

01
 1

01
00

10
1 

00
10

11
10

 0
11

10
11

1 
10

11
10

00
 1

10
01

01
00

00
10

 0
00

11
10

1 
11

10
00

10
 0

00
10

01
0 

10
01

00
11

 1
00

11
01

0 
11

01
10

11
 1

10
10

11
1 

10
11

01
11

 1
01

11
10

1 
11

10
11

01
 0

11
00

01
1 

00
01

10
11

 1
10

10
01

0 
10

01
01

10
 1

01
11

01
1 

11
01

11
01

 1
11

00

01
10

01
10

 1
00

11
10

0 
01

11
01

00
 1

10
10

10
0 

01
01

00
11

 0
10

01
11

0 
00

11
11

11
 1

11
11

01
0 

11
10

10
00

 1
01

00
00

0 
10

00
01

11
 0

00
11

10
1 

01
11

00
01

 1
10

00
10

1 
00

01
00

10
 0

10
01

00
0 

00
10

01
11

 1
00

11
11

01
01

00
 0

10
10

01
1 

01
00

11
10

 0
01

11
11

1 
11

11
10

10
 1

11
01

00
0 

10
10

00
00

 1
00

00
11

1 
00

01
11

01
 0

11
10

00
1 

11
00

01
01

 0
00

10
01

0 
01

00
10

00
 0

01
00

11
1 

10
01

10
10

 0
11

01
10

0 
10

11
01

00
 1

10
10

11
10

10
11

 1
01

01
00

1 
10

10
01

10
 1

00
11

11
1 

01
11

11
01

 1
11

10
10

1 
11

01
00

01
 0

10
00

01
0 

00
00

11
11

 0
01

11
00

1 
11

10
00

10
 1

00
01

00
0 

00
10

01
00

 1
00

10
01

1 
01

00
11

01
 0

01
10

11
0 

11
01

10
11

 0
11

01
01

11
01

00
 1

10
10

10
0 

01
01

00
11

 0
10

01
11

0 
00

11
11

11
 1

11
11

01
0 

11
10

10
00

 1
01

00
00

0 
10

00
01

11
 0

00
11

10
1 

01
11

00
01

 1
10

00
10

1 
00

01
00

10
 0

10
01

00
0 

00
10

01
11

 1
00

11
01

0 
01

10
11

00
 1

01
10

00
11

10
10

 1
11

01
01

1 
10

10
10

01
 1

01
00

11
0 

10
01

11
11

 0
11

11
10

1 
11

11
01

01
 1

10
10

00
1 

01
00

00
10

 0
00

01
11

1 
00

11
10

01
 1

11
00

01
0 

10
00

10
00

 0
01

00
10

0 
10

01
00

11
 0

10
01

10
1 

00
11

01
10

 1
10

11
10

01
11

00
 0

11
10

10
0 

11
01

01
00

 0
10

10
01

1 
01

00
11

10
 0

01
11

11
1 

11
11

10
10

 1
11

01
00

0 
10

10
00

00
 1

00
00

11
1 

00
01

11
01

 0
11

10
00

1 
11

00
01

01
 0

00
10

01
0 

01
00

10
00

 0
01

00
11

1 
10

01
10

10
 0

11
01

11
00

11
11

 0
01

11
01

0 
11

10
10

11
 1

01
01

00
1 

10
10

01
10

 1
00

11
11

1 
01

11
11

01
 1

11
10

10
1 

11
01

00
01

 0
10

00
01

0 
00

00
11

11
 0

01
11

00
1 

11
10

00
10

 1
00

01
00

0 
00

10
01

00
 1

00
10

01
1 

01
00

11
01

 0
01

10

01
01

00
00

 1
01

00
01

1 
01

00
01

11
 1

00
01

11
0 

00
01

11
10

 0
01

11
10

0 
01

11
10

00
 1

11
10

01
1 

11
10

01
00

 1
10

01
00

1 
10

01
00

00
 0

01
00

01
0 

01
00

01
00

 1
00

01
01

1 
00

01
01

11
 0

01
01

10
1 

01
01

10
01

 1
01

10
01

11
10

00
 1

11
10

01
1 

11
10

01
00

 1
10

01
00

1 
10

01
00

00
 0

01
00

01
0 

01
00

01
00

 1
00

01
01

1 
00

01
01

11
 0

01
01

10
1 

01
01

10
01

 1
01

10
01

0 
01

10
01

10
 1

10
01

11
1 

10
01

11
00

 0
01

11
01

0 
01

11
01

00
 1

11
01

00
11

11
00

 0
11

11
00

0 
11

11
00

11
 1

11
00

10
0 

11
00

10
01

 1
00

10
00

0 
00

10
00

10
 0

10
00

10
0 

10
00

10
11

 0
00

10
11

1 
00

10
11

01
 0

10
11

00
1 

10
11

00
10

 0
11

00
11

0 
11

00
11

11
 1

00
11

10
0 

00
11

10
10

 0
11

10
00

01
11

10
 0

01
11

10
0 

01
11

10
00

 1
11

10
01

1 
11

10
01

00
 1

10
01

00
1 

10
01

00
00

 0
01

00
01

0 
01

00
01

00
 1

00
01

01
1 

00
01

01
11

 0
01

01
10

1 
01

01
10

01
 1

01
10

01
0 

01
10

01
10

 1
10

01
11

1 
10

01
11

00
 0

01
11

10
00

11
10

 0
00

11
11

0 
00

11
11

00
 0

11
11

00
0 

11
11

00
11

 1
11

00
10

0 
11

00
10

01
 1

00
10

00
0 

00
10

00
10

 0
10

00
10

0 
10

00
10

11
 0

00
10

11
1 

00
10

11
01

 0
10

11
00

1 
10

11
00

10
 0

11
00

11
0 

11
00

11
11

 1
00

11
01

00
01

11
 1

00
01

11
0 

00
01

11
10

 0
01

11
10

0 
01

11
10

00
 1

11
10

01
1 

11
10

01
00

 1
10

01
00

1 
10

01
00

00
 0

01
00

01
0 

01
00

01
00

 1
00

01
01

1 
00

01
01

11
 0

01
01

10
1 

01
01

10
01

 1
01

10
01

0 
01

10
01

10
 1

10
01

10
10

00
11

 0
10

00
11

1 
10

00
11

10
 0

00
11

11
0 

00
11

11
00

 0
11

11
00

0 
11

11
00

11
 1

11
00

10
0 

11
00

10
01

 1
00

10
00

0 
00

10
00

10
 0

10
00

10
0 

10
00

10
11

 0
00

10
11

1 
00

10
11

01
 0

10
11

00
1 

10
11

00
10

 0
11

00

10
00

00
01

 0
00

00
01

1 
00

00
01

01
 0

00
01

00
1 

00
01

00
01

 0
01

00
00

1 
01

00
00

01
 1

00
00

01
0 

00
00

01
10

 0
00

01
10

0 
00

01
10

00
 0

01
10

00
0 

01
10

00
00

 1
10

00
01

1 
10

00
01

00
 0

00
01

01
0 

00
01

01
00

 0
01

01
00

0
01

00
00

01
 1

00
00

01
0 

00
00

01
10

 0
00

01
10

0 
00

01
10

00
 0

01
10

00
0 

01
10

00
00

 1
10

00
01

1 
10

00
01

00
 0

00
01

01
0 

00
01

01
00

 0
01

01
00

0 
01

01
00

00
 1

01
00

01
1 

01
00

01
11

 1
00

01
11

0 
00

01
11

10
 0

01
11

10
0

00
10

00
01

 0
10

00
00

1 
10

00
00

10
 0

00
00

11
0 

00
00

11
00

 0
00

11
00

0 
00

11
00

00
 0

11
00

00
0 

11
00

00
11

 1
00

00
10

0 
00

00
10

10
 0

00
10

10
0 

00
10

10
00

 0
10

10
00

0 
10

10
00

11
 0

10
00

11
1 

10
00

11
10

 0
00

11
11

0
00

01
00

01
 0

01
00

00
1 

01
00

00
01

 1
00

00
01

0 
00

00
01

10
 0

00
01

10
0 

00
01

10
00

 0
01

10
00

0 
01

10
00

00
 1

10
00

01
1 

10
00

01
00

 0
00

01
01

0 
00

01
01

00
 0

01
01

00
0 

01
01

00
00

 1
01

00
01

1 
01

00
01

11
 1

00
01

11
0

00
00

10
01

 0
00

10
00

1 
00

10
00

01
 0

10
00

00
1 

10
00

00
10

 0
00

00
11

0 
00

00
11

00
 0

00
11

00
0 

00
11

00
00

 0
11

00
00

0 
11

00
00

11
 1

00
00

10
0 

00
00

10
10

 0
00

10
10

0 
00

10
10

00
 0

10
10

00
0 

10
10

00
11

 0
10

00
11

1
00

00
01

01
 0

00
01

00
1 

00
01

00
01

 0
01

00
00

1 
01

00
00

01
 1

00
00

01
0 

00
00

01
10

 0
00

01
10

0 
00

01
10

00
 0

01
10

00
0 

01
10

00
00

 1
10

00
01

1 
10

00
01

00
 0

00
01

01
0 

00
01

01
00

 0
01

01
00

0 
01

01
00

00
 1

01
00

01
1

00
00

00
11

 0
00

00
10

1 
00

00
10

01
 0

00
10

00
1 

00
10

00
01

 0
10

00
00

1 
10

00
00

10
 0

00
00

11
0 

00
00

11
00

 0
00

11
00

0 
00

11
00

00
 0

11
00

00
0 

11
00

00
11

 1
00

00
10

0 
00

00
10

10
 0

00
10

10
0 

00
10

10
00

 0
10

10
00

0

F
ig
u
re

7
.1
8

S
ho

rt
en

ed
(2
85
,2
56
)m

-s
po

tty
D
3=

8
E
C
co

de
.

305



Decoding The m-spotty byte error control code given by Theorem 7.24 is decoded

here. Let v, c, and E be the received word, codeword, and error vector, respectively. Then

the syndrome S is calculated as follows:

S ¼ S0 S1 S2 . . . Sd�2½ �
¼ v �HT ¼ ðcþ EÞ �HT ¼ E �HT ;

where S0 2 GFð2qÞ is an q-bit binary row vector and Si 2 GFð2rÞ is an r-bit binary row

vector for i ¼ 1; 2; . . . ; d � 2. If pð� dðd � 1Þ=2eÞ m-spotty byte errors,

E0; E1; . . . ; Ep�1 2 Et=b have occurred in the i0-th, i1-th, . . ., ip�1-th byte, respectively,

then the syndrome S is given by Eq. (7.24):

S ¼

S0

S1

S2

..

.

Sd�2

266666664

377777775

T

¼

E0 �H0T þ E1 �H0T þ � � � þ Ep�1 �H0T

gi0E0 �H00T þ gi1E1 �H00T þ � � � þ gip�1Ep�1 �H00T

g2i0E0 �H00T þ g2i1E1 �H00T þ � � � þ g2ip�1Ep�1 �H00T

..

.

gðd�2Þi0E0 �H00T þ gðd�2Þi1E1 �H00T þ � � � þ gðd�2Þip�1Ep�1 �H00T

2666666664

3777777775

T

ð7:24Þ

We let
Pp�1

x¼0 Ex be expressed as E
�. The relation S0 ¼ E� �H0T leads to E� because H0 is a

parity-check matrix of bðd � 1Þ=2c t=b-error correcting and dðd � 1Þ=2e t=b-error
detecting code. Multiplying this by H00

T
from the right gives E� �H00T . We also let

E0 �H00T , E1 �H00T , . . ., Ep�1 �H00T 2 GFð2rÞ be e0, e1, . . ., ep�1, respectively, and then the
syndrome S0 is given by Eq. (7.25):

S0 ¼

S00
S1
S2

..

.

Sd�2

2666664

3777775
T

¼

e0 þ e1 þ � � � þ ep�1
gi0e0 þ gi1e1 þ � � � þ gip�1ep�1

g2i0e0 þ g2i1e1 þ � � � þ g2ip�1ep�1
..
.

gðd�2Þi0e0 þ gðd�2Þi1e1 þ � � � þ gðd�2Þip�1ep�1

2666664

3777775
T

ð7:25Þ

This syndrome is identical to that of the RS code with a minimum Hamming distance d

over GFð2rÞ. The error patterns of GFð2rÞ and error locations are determined next by

using a decoding algorithm of the RS code such as the Berlekamp-Massey algorithm

mentioned in Subsections 2.3.5 and 2.3.6.

In the final step of the decoding, the error patterns bEx 2 GFð2bÞ, where

x ¼ 0; 1; . . . ; p� 1, are transformed from the corresponding error patterns ex 2 GFð2rÞ
to bEx by one-to-one mapping for x ¼ 0; 1; . . . ; p� 1. In this case at most one of bEx ’s may

306 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



be miscorrected, that is, bEx 6¼ Ex. The following relation determines whether or not bEx is

identical to Ex. That is, if bEx satisfies the relation (7.26), then bEx is equal to Ex. Otherwise,bEx 6¼ Ex.

wMð bEx þ E�Þ � bðd � 1Þ=2c � wMð bExÞ: ð7:26Þ

This relation can be proved based on the fact that wMðEÞ satisfies the triangle inequality

[IMAI79].

Evaluation Figure 7.19 shows the relation between the information-bit length K and

the check-bit length R for the lengthened m-spotty double byte error correcting codes with

d ¼ 5, b ¼ 8, t ¼ 2 and 3, and for the double byte error correcting codes, namely the

D8EC codes. Here bound is the one given by Theorems 7.22 and 7.23. The error detection

capabilities of the m-spotty D2=8EC code are presented in Table 7.5 for four types of errors

that are beyond the error correction capability of the code.

10

15

20

25

30

35

40

32 64 128 256 512 1,024 2,048 4,096

t = 4~8

t = 3

t = 2 

46
K = 69

101
147

212
306

438
625

891
1,268

1,798
2,553

3,618

m-Spotty D EC Codet /  8

t = 3

t = 2
33 51

75
K = 112

162
233

336
485

693
987

1,403
1,993

2,825
4,006

K = 492

1,002

2,024

4,070

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R
D8EC Code

m-Spotty D EC code boundt / 8

Figure 7.19 Comparison of information-bit lengths and check-bit lengths of the m-spotty Dt=8EC codes.
Source: [SUZU04]� 2004 IEEE.

TABLE 7.5 Error Detection Capabilities of m-Spotty D2=8EC Codes for Four Types of Errors

Errordetectioncapability (%)

Errors K ¼ 64 K ¼ 128 K ¼ 256
ðR ¼ 26Þ ðR ¼ 26Þ ðR ¼ 26Þ

Randomtriple-bit errors 99.97 99.64 98.45
Single-byteerrors 100 100 100
Single-byteplussingle-biterrors 99.51 99.51 99.51
Double-byteerrors 92.54 92.53 92.53

A GENERAL CLASS OF SPOTTY BYTE ERROR CONTROL CODES 307



2. Complex m-Spotty Byte Error Control Codes
We now come to a new error model of two spotty errors with different lengths; that is we

are interested in the case of t=b-error and t0=b-error, where t0 6¼ t, called complex spotty

byte errors. When these two errors occur in one byte at a time, they are included in the m-

spotty byte errors, meaning t þ t0 � b. Here we consider two types of complex m-spotty

byte error control codes. One is the complex spotty byte error detecting code type, and the

other is the complex spotty byte error correcting code type [SUZU05a].

(1) St=bEC-(St=b þ St 0=b)ED Codes
We start our discussion with distance-4 type complex m-spotty byte error control codes.

The following theorem shows the necessary and sufficient condition of the single t=b-error
correcting and single t=b-error plus single t0=b-error detecting codes, called m-spotty

St=bEC-(St=bþ St0=b)ED codes. This class of codes can detect both single t=b-error and
single t0=b-error in a byte that have occurred simultaneously for t þ t0 � b and it can detect

these errors simultaneously in the different two bytes.

Code Conditions and Bounds

Theorem 7.26 Let Hi be an R� b binary submatrix for 0 � i � n� 1, and let

Et=b ¼ fE 2 GFð2bÞ j 1 � wHðEÞ � tg, Et0=b ¼ fE0 2 GFð2bÞ j 1 � wHðE0Þ � t0g, and

t 6¼ t0. Here wHðEÞ means the Hamming weight over GFð2Þ of E. The null space of

H ¼ H0 H1 H2 H3 � � � Hn�1½ � is an St=bEC-(St=bþSt0=b)ED code if and only if

1. ðE1 þ E2 þ E03Þ �HT
i 6¼ 0 for E1 þ E2 þ E03 6¼ 0,

2a. ðE1 þ E2Þ �HT
i þ E03 �HT

j 6¼ 0 for E1 þ E2 6¼ 0,

2b. ðE1 þ E03Þ �HT
i þ E2 �HT

j 6¼ 0 for E1 þ E03 6¼ 0,

3. E1 �HT
i þ E2 �HT

j þ E03 �HT
k 6¼ 0,

where 8E1; E2 2 Et=b, 8E03 2 Et0=b, and i; j; k are mutually distinct integers, satisfying

0 � i; j; k � n� 1.

Proof Condition 1 of this theorem ensures that single t=b-errors generate a nonzero syn-

drome. Condition 1 also says that a syndrome generated by a single t=b-error is different from
that generated by other single t=b-errors and single t0=b-errors occurred in the same byte.

Condition 2a includes the condition E1 �HT
i þ E03 �HT

j 6¼ 0, where the syndrome caused

by a single t=b-error plus single t0=b-error should be a nonzero. Condition 2a, together

with conditions 2b and 3, says that the syndrome caused by a single t=b-error should
be different from that caused by a single t=b-error plus single t0=b-error. So these double
spotty byte errors of a single t=b-error plus single t0=b-error are detectable. Condition 2b
includes the condition E1 �HT

i þ E2 �HT
j 6¼ 0, which ensures that the syndromes caused

by different single t=b-errors are distinguishable. Therefore the code that satisfies the

conditions above is capable of correcting single t=b-errors and detecting a single t=b-error
plus single t0=b-error.

Theorem 7.27 A linear St=bEC-(St=bþSt0=b)ED code requires at least 2t þ t0 check bits.

Proof According to the conditions of the previous theorem, the 2t þ t0 binary columns

of the parity-check matrix of this code are linearly independent. Therefore this code

requires at least 2t þ t0 check bits. Q.E.D.

308 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



Theorem 7.28 If N is a multiple of b, a linear (N; N � R) St=bEC-(St=bþSt0=b)ED code

exists only if

2R � 1 	 N

b
�
Xt
i¼1

b

i

� �
þ ð2t0 � 1Þ � N

b
� 1

� �
�
Xt
i¼1

b

i

� �
þ ð2t0 � 1Þ � b� t0

t

� �
:

ð2:27Þ

Proof The total number of t=b-errors that can corrupt a single b-bit byte is given byPt
i¼1

b
i

� �
. There are N=b bytes in a codeword with length N bits. Therefore we need

N=b�
Pt

i¼1
b
i

� �
different syndrome patterns to correct all single t=b-errors. Next, we con-

sider the number of extra syndromes for error detection of single t=b-errors plus single t0=b-
errors. The syndromes of a single t0=b-error plus single t=b-error that corrupts both a certain
t0-bit in the fixed byte and a t-bit in another byte are all different and not equal to zero. The

syndromes of this type of errors that corrupts both the t0-bit in the fixed byte and another t-

bit in the same byte are also different and not equal to zero. These syndromes are further

different from those of single t=b-errors. Therefore the number of extra syndromes neces-

sary for detecting distinct single t=b-errors plus single t0=b-errors is calculated as

ð2t0 � 1Þ � N

b
� 1

� �
�
Xt
i¼1

b

i

� �
þ ð2t0 � 1Þ � b� t0

t

� �
:

Q.E.D.

Code Design

Definition 7.6 Let H0 ¼ h00 h01 � � � h0b�1
 �

be a q� b matrix whose minð2t þ t0; bÞ
column vectors are linearly independent, where h00; h01; . . . ; h0b�1 are binary column

vectors of GFð2qÞ. Also let H00 ¼ h000 h001 � � � h00b�1
 �

be an r � b binary matrix whose

maxðt; t0Þ column vectors are linearly independent, where h000; h
00
1 ; . . . ; h

00
b�1 are binary

column vectors of GFð2rÞ. &

The matrix H0 is a b� b nonsingular matrix that includes a b� b identity matrix for

minð2t þ t0; bÞ ¼ b. On the other hand, for minð2t þ t0; bÞ ¼ 2t þ t0 < b, the matrix H0

is a parity-check matrix of a linear binary ðb; b� qÞ code with minimum Hamming

distance 2t þ t0 þ 1. For maxðt; t0Þ ¼ t, the matrix H00 is a parity-check matrix of a linear

binary ðb; b� rÞ code with minimum Hamming distance t þ 1. For maxðt; t0Þ ¼ t0, the
matrix H00 is a parity-check matrix of a linear binary ðb; b� rÞ code with minimum

Hamming distance t0 þ 1.

From the above-definedH0 andH00 we can design the St=bEC-(St=b+St0=b)ED code in the

following theorem.

Theorem 7.29 Let g be a primitive element of GFð2r0 Þ, where r � r0. The null space of

H ¼
H0 H0 H0 � � � H0 H0 Oq�r0 Oq�r0

g0H00 g1H00 g2H00 � � � gðn�1ÞH00 Or0�b Ir0 Or0�r0

g0H00 g2H00 g4H00 � � � g2ðn�1ÞH00 Or0�b Or0�r0 Ir0

264
375

A GENERAL CLASS OF SPOTTY BYTE ERROR CONTROL CODES 309



is an St=bEC-(St=bþSt0=b)ED code with check-bit length R ¼ qþ 2r0 and code length in bits

N ¼ ðnþ 1Þ � bþ 2r0, where n ¼ 2r
0 � 1, Oq�r0 is a q� r0 zero matrix, Or0�b is an r0 � b

zero matrix, Or0�r0 is an r0 � r0 zero matrix, Ir0 is an r0 � r0 identity matrix,

giH00 ¼ gifðh000Þ gifðh001Þ � � � gifðh00b�1Þ
 �

for 0 � i � n� 1, and f : GFð2rÞ !
GFð2r0 Þ is an injective homomorphism of GFð2rÞ into GFð2r0 Þ under addition.

Proof The following shows how the code indicated in this theorem satisfies the condi-

tions in Theorem 7.26.

Condition 1: Since H0 is a q� b binary matrix whose minð2t þ t0; bÞ column vectors

are linearly independent, ðE1 þ E2 þ E03Þ �H0
T 6¼ 0 for 8E1; E2 2 Et=b, 8E03 2 Et0=b, and

E1 þ E2 þ E03 6¼ 0.

Condition 2a:Without loss of generality, we assume that the following equation holds

for ðE1 þ E2Þ 6¼ 0:

ðE1 þ E2Þ �
H0

giH00

g2iH00

264
375
T

þ E03 �
H0

gjH00

g2jH00

264
375
T

¼
0

0

0

264
375:

The relation ðE1 þ E2 þ E03Þ �H0
T ¼ 0 leads to E1 þ E2 þ E03 ¼ 0 because H0 is a q� b

binary matrix whose minð2t þ t0; bÞ column vectors are linearly independent. Multiplying

ðE1 þ E2 þ E03Þ byH00
T
from the right gives ðE1 þ E2 þ E03Þ �H00

T ¼ 0. Let ðE1 þ E2Þ �H00T
and E03 �H00

T
be expressed by x and y, respectively. Then the following relations hold:

xþ y ¼ 0;
gixþ g jy ¼ 0;
g2ixþ g2jy ¼ 0;

8<:
where y 6¼ 0. The top two relations can be expressed in the following matrix form:

1 1

gi gj

� �
x

y

� �
¼ 0

0

� �
: ð7:28Þ

The 2� 2 matrix in this equation is nonsingular because its determinant is a

Vandermonde’s determinant. Multiplying Eq. (7.28) by the inverse matrix of this

2� 2 matrix from the left comes to x ¼ y ¼ 0, which is a contradiction because

y 6¼ 0.

For other columns of H, we assume that the following equation holds for

ðE1 þ E2Þ 6¼ 0:

ðE1 þ E2Þ �
H0

giH00

g2iH00

24 35T

þ E03 �
H0

O

O

24 35T

¼
0

0

0

24 35:
The relation ðE1 þ E2 þ E03Þ �H0

T ¼ 0 leads to E1 þ E2 þ E03 ¼ 0; that is, E1 þ E2 ¼ E03.
Multiplying ðE1 þ E2Þ by H00

T
from the right gives ðE1 þ E2Þ �H00T ¼ E03 �H00

T 6¼ 0,

which contradicts to ðE1 þ E2Þ �H00T ¼ 0.

310 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



It can be easily proved that the following equation holds because E03 �H00
T 6¼ 0.

E03 �
H0

giH00

g2iH00

24 35T

þ ðE1 þ E2Þ �
H0

O

O

24 35T

6¼
0

0

0

24 35:
For all the other combinations of columns of H, condition 2a is proved to be satisfied.

Conditions 2b and 3: These can be proved in the same way as condition 2a. Q.E.D.

The code length is almost doubled every time we add an additional two check bits. In

the case where maxðt; t0Þ ¼ b, the code given by Theorem 7.29 is identical to the

maximum distance separable (MDS) RS code over GFð2bÞ with a minimum distance 4

because H0 and H00 are equal to the b� b identity matrix.

Example 7.4 [SUZU05a]

Figure 7.20 shows an example of a parity-check matrix of the ð79; 64Þ S3=8EC-

(S3=8+S)ED code given in Theorem 7.29, with parameters of b ¼ 8 bits, t ¼ 3 bits,

t0 ¼ 1 bit, and information-bit length K ¼ 64. The maximum code length of the original

code is N ¼ 136 bits. HereH0 is a 7� 8 matrix whose seven column vectors are linearly

independent, and H00 is the 4� 8 matrix with r0 ¼ 4 whose three column vectors are

linearly independent. These H0 and H00 matrices are given below in binary form:

H0 ¼

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

2666666664

3777777775
; H00 ¼

1 1 1 1 1 1 1 1

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

2664
3775:

Let g be a primitive element of GFð24Þ defined by the primitive polynomial pðxÞ ¼
x4 þ xþ 1.ThenH00 isexpressedas ½ g0 g4 g8 g14 g10 g7 g13 g12 �,andtherefore
gi H00 ¼ ½ gi giþ4 giþ8 giþ14 giþ10 giþ7 giþ13 giþ12 �, where 0 � i � 14.

Decoding Decoding of the St=bEC-(St=bþSt0=b)ED code given by Theorem 7.29 is

presented here. Let v, c, and E ¼ ðE0; E1; . . . ; En�1Þ be a received word, a codeword,

10000001  10000001  10000001  10000001  10000001  10000001  10000001  10000001  10000001  1000000
01000001  01000001  01000001  01000001  01000001  01000001  01000001  01000001  01000001  0100000
00100001  00100001  00100001  00100001  00100001  00100001  00100001  00100001  00100001  0010000
00010001  00010001  00010001  00010001  00010001  00010001  00010001  00010001  00010001  0001000
00001001  00001001  00001001  00001001  00001001  00001001  00001001  00001001  00001001  0000100
00000101  00000101  00000101  00000101  00000101  00000101  00000101  00000101  00000101  0000010
00000011  00000011  00000011  00000011  00000011  00000011  00000011  00000011  00000011  0000001
11111111  00010111  00101011  01001101  11101000  00111100  01100110  10100101  11010100  0101101
01001101  11101000  00111100  01100110  10100101  11010100  01011010  11000011  01110001  1000111
00101011  01001101  11101000  00111100  01100110  10100101  11010100  01011010  11000011  0111000
00010111  00101011  01001101  11101000  00111100  01100110  10100101  11010100  01011010  1100001
11111111  00101011  11101000  01100110  11010100  11000011  10001110  10110010  00010111  0100110
01001101  00111100  10100101  01011010  01110001  10011001  11111111  00101011  11101000  0110011
00101011  11101000  01100110  11010100  11000011  10001110  10110010  00010111  01001101  0011110
00010111  01001101  00111100  10100101  01011010  01110001  10011001  11111111  00101011  1110100

Figure 7.20 Parity-check matrix of the shortened (79, 64) S3=8EC-(S3=8þSÞ ED code. Source: [SUZU05a].

� 2005 IEEE.

A GENERAL CLASS OF SPOTTY BYTE ERROR CONTROL CODES 311



and an error vector, respectively. Ei shows the i-th byte of E for 0 � i � n� 1. The

syndrome S is calculated by using the matrix H in Theorem 7.29 such that

S ¼ ½ S0 S1 S2 �
¼ v �HT ¼ ðcþ EÞ �HT ¼ E �HT ;

where S0 2 GFð2qÞ is a q-bit binary row vector and S1; S2 2 GFð2r0 Þ are r0-bit binary row
vectors. The decoding is performed for the following syndrome cases:

1. S0 ¼ 0 and S1 ¼ 0 and S2 ¼ 0. There exist no errors, and hence the received word

is correct.

2. S0 ¼ 0 and (S1 6¼ 0 or S2 6¼ 0). The errors cannot be corrected. In this case

uncorrectable errors are detected.

3. S0 6¼ 0 and (S1 ¼ 0 or S2 ¼ 0). The errors cannot be corrected. In this case

uncorrectable errors are detected.

4. S0 6¼ 0 and S1 6¼ 0, and S2 6¼ 0. The first element S0 of S is expressed as follows:

S0 ¼
Pn�1

k¼0 Ek �H0T
� �

¼
Pn�1

k¼0 Ek

� �
�H0T . Let

Pn�1
k¼0 Ek be E�. If there exists an

E� that satisfies the relation E� �H0T ¼ S0 uniquely, the error location is found from

the error pattern E� and the syndromes S1 and S2. These syndromes must satisfy the

relations E� � ðgiH00TÞ ¼ S1 and E� � ðg2iH00TÞ ¼ S2 for i ¼ 0, 1, . . ., n� 1. That is,

for i ¼ 0, 1, . . ., n� 1, if at particular i, (i.e., i ¼ j), both relations E� � ðgjH00TÞ ¼ S1

and E� � ðg2jH00TÞ ¼ S2 are satisfied, then the error location is determined such that

the j-th byte is an erroneous byte. In this case j-th error pattern Ejð¼ E�Þ is also
determined, and therefore errors in the j-th byte can be corrected. If the error

location is not determined in the above, then uncorrectable errors are detected.

Figure 7.21 shows the decoding flowchart of the code.

(2) (St=b þ St 0=b)EC Codes
We move our discusssion here to the distance-5 type complex m-spotty byte error control

codes, that is, single t=b-error plus single t0=b-error correcting codes, called m-spotty

(St=b þ St0=b)EC codes. These codes correct both single t=b-errors and t0=b-errors that have
occurred in two distinct bytes simultaneously, or they can correct single ðt þ t0Þ=b-errors
in just one byte.

Code Conditions and Bounds

Theorem 7.30 Let Hi, i ¼ 0; 1; . . . ; n� 1, be an R� b submatrix of H ¼ ½H0 H1

H2 . . . Hn�1�. The null space of H is an (St=b þ St0=b)EC code if and only if

1. ðE1 þ E2 þ E3 þ E4Þ �HT
i 6¼ 0 for E1 þ E2 þ E3 þ E4 6¼ 0,

2a. ðE1 þ E2Þ �HT
i þ ðE03 þ E04Þ �HT

j 6¼ 0 for E1 6¼ E2; E03 6¼ E04,

2b. ðE1 þ E03Þ �HT
i þ ðE2 þ E04Þ �HT

j 6¼ 0 for E1 6¼ E03; E2 6¼ E04,

2c. ðE1 þ E2 þ E03Þ �HT
i þ E04 �HT

j 6¼ 0 for E1 þ E2 þ E03 6¼ 0,

2d. ðE1 þ E03 þ E04Þ �HT
i þ E2 �HT

j 6¼ 0 for E1 þ E03 þ E04 6¼ 0,

3a. E1 �HT
i þ E2 �HT

j þ ðE03 þ E04Þ �HT
k 6¼ 0 for E03 6¼ E04,

3b. E1 �HT
i þ E03 �HT

j þ ðE2 þ E04Þ �HT
k 6¼ 0 for E2 6¼ E04,

312 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



3c. ðE1 þ E2Þ �HT
i þ E03 �HT

j þ E04 �HT
k 6¼ 0 for E1 6¼ E2,

4. E1 �HT
i þ E2 �HT

j þ E03 �HT
k þ E04 �HT

l 6¼ 0,

where 8E1; E2 2 Et=b, 8E03; E04 2 Et0=b, and i; j; k; l are mutually distinct integers

satisfying 0 � i; j; k; l � n� 1.

The conditions of this theorem ensure that the syndromes created by any single t=b-
errors plus single t0=b-errors are all different and not equal to zero. Since the codes are

m-spotty byte error correcting codes, it should be noted that such t=b-errors and t0=b-errors
that occur in one byte occur as well as in two different bytes.

Theorem7.31 AlinearðN; N � RÞ (St=b þ St0=b)ECcoderequiresat least2t þ 2t0 checkbits.

This theorem can be proved in the same way as Theorem 7.27 is proved.

Theorem 7.32 If N is a multiple of b, a linear (N; N � R) (St=b þ St0=b)EC code exists

only if

2R � 1

	N

b
�
Xtþt0
i¼1

b

i

� �
þ N

b

N

b
� 1

� � Xt
i¼1

b

i

� �( ) Xt0
i¼1

b

i

� �( )
�

N=b

2

� � Xminðt;t0Þ

i¼1

b

i

� �( )2

:

ð7:29Þ

Compute
S = [S0 S1 S2]

S = 0? Yes

Yes

Error detection

No

No

Compute E*

No

Yes

Corrected word

Stop Continue

Correct   -th byte
with error pattern *E  .

j

.
and

Calculate j*E and .

E   [ H   ]   = S2γ* 2j T’’

E   [ H  ]   = S1γ.* j T’’

?

S0 = 0 or S1 = 0 or S2 = 0?

Figure 7.21 Decoding flowchart of the St=bEC-(St=b þ St0=b)ED code.

A GENERAL CLASS OF SPOTTY BYTE ERROR CONTROL CODES 313



Proof The total number of single ðt þ t0Þ=b-errors that corrupt a single b-bit byte is

given by
Ptþt0

i¼1
b
i

� �
. There exist N=b bytes in a codeword, and therefore the

ðN=bÞ �
Ptþt0

i¼1
b
i

� �
syndromes should be distinct.

On the other hand, the total number of single t=b-errors plus single t0=b-errors
corrupting two different bytes is given by

N=b
2

� � Xt
i¼1

b

i

� �( ) Xt0
i¼1

b

i

� �( )
þ N=b

2

� � Xminðt; t0Þ

i¼1

b

i

� �( ) Xmaxðt; t0Þ

i¼minðt; t0Þþ1

b

i

� �8<:
9=;:

This leads to

N

b

N

b
� 1

� � Xt
i¼1

b

i

� �( ) Xt0
i¼1

b

i

� �( )
� N=b

2

� � Xminðt; t0Þ

i¼1

b

i

� �( )2

:

Consequently the relation in this theorem holds. Q.E.D.

Code Design

Definition 7.7 Let H0 ¼ h00 h01 � � � h0b�1
 �

be a q� b binary matrix whose 2t þ 2t0

column vectors are linearly independent, where h00; h01; . . . ; h0b�1 are binary column

vectors of GFð2qÞ. Also let H00 ¼ h000 h001 � � � h00b�1
 �

be an r � b binary matrix whose

t þ t0 column vectors are linearly independent, where h000; h001; . . . ; h00b�1 are binary

column vectors of GFð2rÞ. &

The matrix H0 is a b� b nonsingular matrix including a b� b identity matrix for

minð2t þ 2t0; bÞ ¼ b. On the other hand, for minð2t þ 2t0; bÞ ¼ 2t þ 2t0 < b, the matrixH0

is a parity-check matrix of a linear binary ðb; b� qÞ code with minimum Hamming

distance 2t þ 2t0 þ 1. For minðt þ t0; bÞ ¼ b, the matrix H00 is a b� b nonsingular matrix

that includes a b� b identity matrix. For minðt þ t0; bÞ ¼ t þ t0 < b, the matrix H00 is a
parity-check matrix of a linear binary ðb; b� rÞ code with minimum Hamming distance

t þ t0 þ 1.

We use the above-defined H0 and H00 in the following theorem to design the

(St=b+St0=b)EC codes.

Theorem 7.33 Let g be a primitive element of GFð2r0 Þ, where r0 	 r. The null space of

is an (St=b þ St0=b)EC code with check-bit length R ¼ qþ 3r0 and code length in bits

N ¼ ðnþ 1Þ � bþ r0, where n ¼ 2r
0 � 1, Oq�r0 is a q� r0 zero matrix, Or0�b is an r0 � b

zero matrix, Or0�r0 is an r0 � r0 zero matrix, Ir0 is an r0 � r0 identity matrix,

H ¼
H0 H0 H0 � � � H0 H0 Oq�r0

g0H00 g1H00 g2H00 � � � gðn�1ÞH00 Or0�b Or0�r0
g0H00 g2H00 g4H00 � � � g2ðn�1ÞH00 Or0�b Or0�r0
g0H00 g3H00 g6H00 � � � g3ðn�1ÞH00 Or0�b Ir0

2664
3775

314 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



giH00 ¼ gifðh000Þ gifðh001Þ � � � gifðh00b�1Þ
 �

for 0 � i � n� 1, and f : GFð2rÞ !
GFð2r0 Þ is an injective homomorphism of GFð2rÞ into GFð2r0 Þ under addition.

This theorem can be proved in the same way as Theorem 7.29 is proved.

Example 7.5 [SUZU05a]

Shown in Figure 7.22 is an example of a parity-checkmatrix of the (90, 64) ðS3=8 þ SÞEC
code given in Theorem 7.33 with parameters of b ¼ 8 bits, t ¼ 3 bits, t0 ¼ 1 bit, and

information-bit length K ¼ 64. The maximum code length of the original code is

N ¼ 518 bits. In the figure H0 is an 8� 8 identity matrix, and H00 is the following 6� 8

matrix with r0 ¼ 6, whose four column vectors are linearly independent:

H00 ¼ g0 g1 g2 g3 g4 g5 g18 g20
 �

¼

1 0 0 0 0 0 1 0

0 1 0 0 0 0 1 0

0 0 1 0 0 0 1 1

0 0 0 1 0 0 1 1

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 1

2666666664

3777777775
:

Here g is a primitive element of GFð26Þ defined by the primitive polynomial pðxÞ ¼
x6 þ xþ 1. Then giH00 ¼ ½gi giþ1 giþ2 giþ3 giþ4 giþ5 giþ18 giþ20�, where 0 � i � 62.

Decoding To decode the (St=b+St0=b)EC code given by Theorem 7.33 we proceed as

follows: Let v, c, and E ¼ ðE0 E1 . . . En�1Þ be the received word, the codeword, and the

error vector, respectively. Ei shows the i-th byte of E for 0 � i � n� 1. Then the syndrome

S is calculated as

S ¼ ½ S0 S1 S2 S3 �
¼ v �HT ¼ ðcþ EÞ �HT ¼ E �HT ;

10000000  10000000  10000000  10000000  10000000  10000000  10000000  10000000  10000000  10000000  10000000  10
01000000  01000000  01000000  01000000  01000000  01000000  01000000  01000000  01000000  01000000  01000000  01
00100000  00100000  00100000  00100000  00100000  00100000  00100000  00100000  00100000  00100000  00100000  00
00010000  00010000  00010000  00010000  00010000  00010000  00010000  00010000  00010000  00010000  00010000  00
00001000  00001000  00001000  00001000  00001000  00001000  00001000  00001000  00001000  00001000  00001000  00
00000100  00000100  00000100  00000100  00000100  00000100  00000100  00000100  00000100  00000100  00000100  00
00000010  00000010  00000010  00000010  00000010  00000010  00000010  00000010  00000010  00000010  00000010  00
00000001  00000001  00000001  00000001  00000001  00000001  00000001  00000001  00000001  00000001  00000001  00
10000010  00000101  00001001  00010011  00100011  01000010  10000111  00001100  00011010  00110000  01100001  11
01000010  10000111  00001100  00011010  00110000  01100001  11000101  10001011  00010110  00101010  01010001  10
00100011  01000010  10000111  00001100  00011010  00110000  01100001  11000101  10001011  00010110  00101010  01
00010011  00100011  01000010  10000111  00001100  00011010  00110000  01100001  11000101  10001011  00010110  00
00001001  00010011  00100011  01000010  10000111  00001100  00011010  00110000  01100001  11000101  10001011  00
00000101  00001001  00010011  00100011  01000010  10000111  00001100  00011010  00110000  01100001  11000101  10
10000010  00001001  00100011  10000111  00011010  01100001  10001011  00101010  10100100  10011101  01111011  11
01000010  00001100  00110000  11000101  00010110  01010001  01001110  00111100  11110101  11010011  01000111  00
00100011  10000111  00011010  01100001  10001011  00101010  10100100  10011101  01111011  11101010  10100001  10
00010011  01000010  00001100  00110000  11000101  00010110  01010001  01001110  00111100  11110101  11010011  01
00001001  00100011  10000111  00011010  01100001  10001011  00101010  10100100  10011101  01111011  11101010  10
00000101  00010011  01000010  00001100  00110000  11000101  00010110  01010001  01001110  00111100  11110101  11
10000010  00010011  10000111  00110000  10001011  01010001  10011101  11110101  10100001  00011111  11100110  00
01000010  00011010  11000101  00101010  01001110  01111011  11010011  10001110  01110010  10010001  10010100  10
00100011  00001100  01100001  00010110  10100100  00111100  11101010  01000111  00111001  11001001  01001011  01
00010011  10000111  00110000  10001011  01010001  10011101  11110101  10100001  00011111  11100110  00100110  00
00001001  01000010  00011010  11000101  00101010  01001110  01111011  11010011  10001110  01110010  10010001  10
00000101  00100011  00001100  01100001  00010110  10100100  00111100  11101010  01000111  00111001  11001001  01

Figure 7.22 Parity-checkmatrix of the shortened (90, 64) (S3=8þS)EC code. Source: [SUZU05a].� 2005 IEEE.

A GENERAL CLASS OF SPOTTY BYTE ERROR CONTROL CODES 315



where S0 2 GFð2qÞ is a q-bit binary row vector and each S1, S2, S3 2 GFð2r0 Þ is an r0-bit
binary row vector:

S ¼ S0 S1 S2 S3½ �

¼
Pn�1
i¼0

Ei �H0T
� � Pn�1

i¼0
Ei � giH00T
� � Pn�1

i¼0
Ei � g2iH00T
� � Pn�1

i¼0
Ei � g3iH00T
� �� �

ð7:30Þ

The syndrome S0 in S can be expressed as

S0 ¼
Xn�1
i¼0

Ei �H0T
� �

¼
Xn�1
i¼0

Ei

 !
�H0T :

Next we determine
Pn�1

i¼0 Ei by using the syndrome S0 becauseH
0 is a parity-check matrix

of ðb; b� qÞ ðt þ t0Þ-bit error correcting code. Let
Pn�1

i¼0 Ei be E�. Multiplying this by

g0H00T from the right gives S00 ¼ E� � ðg0H00TÞ. Also we have Ei � ðgiH00TÞ ¼ giðEi �H00TÞ.
Then the syndrome is newly represented by S0 ¼ ½S00 S1 S2 S3�. We let ei ¼ Ei �H00T for

i ¼ 1, 2, . . ., n� 1. Then

S0 ¼ S00 S1 S2 S3½ �

¼
Pn�1
i¼0

ei
Pn�1
i¼0

gieið Þ
Pn�1
i¼0

g2ieið Þ
Pn�1
i¼0

g3ieið Þ
� �

: ð7:31Þ

This syndrome is identical to that of the RS code with distance 5 over GFð2r0 Þ. Then the

error patterns of GFð2r0 Þ and the error locations are determined by using the existing

decoding algorithm of the RS code. If the number of erroneous bytes is one, the byte error

pattern is E� 2 GFð2bÞ, as was given above. If the number of erroneous bytes is two, one

byte has t or fewer bits in error and another has t0 or fewer bits in error. The error patterns

Ex and Ey of GFð2bÞ, where 0 � x; y � n� 1, and x 6¼ y, are transformed by the

corresponding error patterns ex and ey of GFð2r
0 Þ. At least one of the error patterns can be

determined because H00 is a parity-check matrix of minðt; t0Þ bits error correcting and

maxðt; t0Þ bits error detecting code. If one of these two error patterns is determined and

another is not determined but is detected, then the detected error pattern can be obtained by

sum of E� and the determined error pattern.

Figure 7.23 shows the decoding flowchart of the code.

Evaluation Figure 7.24 shows the relation between the information-bit length and

the check-bit length of the St=bEC-(St=bþSt0=b)ED code and its bound at b ¼ 8 bits, t ¼ 3

bits, and t0 ¼ 1 bit, along with the single-byte error correcting and double-byte error

detecting code (i.e., the S8EC-D8ED code) and the single t=b-error correcting and double
t=b-error detecting code (i.e., the S3=8EC-D3=8ED code) [SUZU04]. The bound in the

figure is as given by Theorems 7.27 and 7.28. Figure 7.25 further shows the relation of

the (St=bþSt0=b)EC code and its bound at b ¼ 8 bits, t ¼ 3 bits, and t0 ¼ 1 bit, along with the

D8EC code and the m-spotty D3=8EC code [SUZU04]. The bound in the figure is as given

by Theorems 7.31 and 7.32.

Tables 7.6 and 7.7 show the error detection capabilities of the S3=8EC-(S3=8þS)ED
codes and the (S3=8þS)EC codes for three types of errors that are beyond the error control

316 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



No

Error detection

Yes

Corrected word

Stop Continue

with error pattern *E
i

Compute
S = [S0 S1 S2 S3]

is obtained ?
i = 0

n -1

Ei

Compute  S′

error patterns over GF(2  )r’

Single erroneous byte

Double erroneous bytes

Search failed

E   and E   over GF(2  )b
Search error patterns

Search
error positions and

Correct   -th byte

x y

Calculate

(or E   = E   +  E*x y

E   = E   +  E*y x
Any error patterns
are not determined

E* =

are determined
Both E   and Ex y

is obtained
Only E   (or E  )x y

)

Figure 7.23 Decoding flowchart of the (St=bþSt0=b )EC code.

8

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

18
37

K = 82
170

346
703

1,414
2,838K = 121

249

505

1,017

2,041

4,089

K = 120

248

504

1,016

2,040

4,088

S     EC-(S     + S)ED code bound3/8 3/8

S     EC-(S     + S)ED code3/8 3/8 

S     EC-D     ED code3/8 3/8

S8EC-D8ED code

m-Spotty

Figure 7.24 Check-bit lengths compared with information-bit lengths of the S3=8EC-ðS3=8þS)ED codes,
alongwith thoseof them-spotty S3=8EC-D3=8EDcodesand the S8EC-D8EDcodes. Source: [SUZU05a].� 2005 IEEE.

A GENERAL CLASS OF SPOTTY BYTE ERROR CONTROL CODES 317



10

15

20

25

30

35

40

16 32 64 128 256 512 1,024 2,048 4,096

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

D     EC code3/8

D  EC code8

(S3/8 + S)EC code

K = 2,024

4,070

K = 492

K = 1,002

19
K = 33

49
68

100
142

205
292

419
602

857
1,216

1,727
2,454

3,477

(S3/8 + S)EC code bound

m-Spotty

Figure 7.25 Check-bit lengths compared with information-bit lengths of the (S3=8þS)EC codes, along with
those of the D3=8EC codes and the D8EC codes. Source: [SUZU05a].� 2005 IEEE.

TABLE 7.6 Error-Detection Capabilities of the S3=8EC-(S3=8+S)ED Codes for Three Types

of Errors

Errordetectioncapability (%)

K ¼ 64 K ¼ 128 K ¼ 256
Errors ðR ¼ 15Þ ðR ¼ 17Þ ðR ¼ 19Þ

Triple-biterrors 97.57 98.34 98.76
Double-byteerrors 91.64 91.47 91.48
Byteplusbiterrors 94.26 94.07 94.09

TABLE 7.7 Error Detection Capabilities of the (S3=8+S)EC Codes for Three Types of Errors

Errordetectioncapability (%)

K ¼ 64 K ¼ 128 K ¼ 256
Errors ðR ¼ 26Þ ðR ¼ 26Þ ðR ¼ 26Þ

Triple-biterrors 99.97 99.63 98.45
Double-byteerrors 92.02 92.02 92.01
Byteplusbiterrors 99.51 99.51 99.51

318 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



capabilities of these codes. Since these codes are m-spotty byte error control codes, it is

noted that the S3=8EC-(S3=8 þ S)ED code can detect any 4-bit errors in a byte as well

as simultaneously detect any single 3=8-error in a byte and single-bit error in another

byte. Also the (S3=8 þ S)EC code can correct any 4 bits errors in a byte as well as

simultaneously correct any single 3=8-error in a byte and single-bit error in another byte.

Table 7.8 shows the check-bit lengths of the St=16EC-(St=16 þ St0=16) ED codes and the

(St=16 þ St0=16) EC codes, compared to the corresponding m-spotty byte error control codes

for b ¼ 16 bits and K ¼ 256 bits. Filled in are the check-bit lengths of these complex

spotty byte error control codes that are smaller than those of the corresponding m-spotty

byte error control codes.

3. A Class of Codes for m-Spotty Byte Errors Occurred in a Limited Number
of Bytes
In large-capacity semiconductor memory systems, errors occur usually in a limited

number of RAM chips at a time, for example, at most two or three chips at the same

address [VAID92]. For such systems we must consider a different class of m-spotty byte

error control codes where the errors are confined to a small number of bytes. Fewer

number of check bits can be expected than the preceding discussion’s m-spotty byte error

control codes [SUZU05b].

Preliminaries We denote the codes correcting m1 m-spotty byte errors in p1 bytes

and detecting m2 m-spotty byte errors in p2 bytes as [m1 t=bEC]p1 -[m2 t=bED]p2 codes, where

m1 	 p1; and m2 	 p2. More precisely, the codes correct m1 t=b-errors that occur in less

than or equal to p1 bytes, and detect m2 t=b-errors that occur in less than or equal to p2
bytes. If m1 ¼ m2 and p1 ¼ p2, then these codes correct m1 m-spotty byte errors in p1 bytes,

and are simply expressed by [mt=bEC]p codes, where m ¼ m1 and p ¼ p1. And if m1 ¼ 0 and

p1 ¼ 0, then these codes detect m2 m-spotty byte errors in p2 bytes, and are expressed by

[mt=bED]p codes where m ¼ m2 and p ¼ p2. Unless otherwise noted, the codes are denoted

as code C in the rest of this chapter.

TABLE 7.8 Check-Bit Lengths of the St=16EC-(St=16þSt 0=16)ED Codes and the ðSt=16þSt 0=16ÞEC
Codes ðt 0 < tÞ for K ¼ 256 Bits

Codes t0 t

2 3 4 5 6 7 8

1 19 22 30 33 37 39 48
St=16EC-(St=16þSt0=16)ED 2 � 24 31 33 37 40 48

3 � � 31 33 37 40 48
4 � � � 33 38 40 49

m-Spotty St=16EC-Dt=16ED 21 24 31 33 38 40 48

1 26 38 42 48 51 58 58
2 � 42 48 51 58 58 61

(St=16þSt0=16)EC 3 � � 51 58 58 61 61
4 � � � 58 61 61 61
5 � � � � 61 61 61
6 � � � � � 61 61

m-SpottyDt=16EC 32 44 56 60 60 60 64

A GENERAL CLASS OF SPOTTY BYTE ERROR CONTROL CODES 319



Theorem 7.34 Let Hi be an R� b binary submatrix for 0 � i � n� 1. The null space of

H ¼ H0 H1 H2 H3 � � � Hn�1½ � is a code C if and only if the following relation is satisfied:

E1 �HT
i1
þ � � � þ Ev1 �HT

iv1
þ Ev1þ1 �HT

iv1þ1
þ � � � þ Ev1þv2 �HT

iv1þv2
þ � � �

þ Ev1þv2þ���þvl�1þ1 �HT
iv1þv2þ...þvl�1þ1

þ � � � þ Ev1þv2þ���þvl �HT
iv1þv2þ���þvl

6¼ 0

for wMðE1Þ ¼ � � � ¼ wMðEv1Þ ¼ 1; wMðEv1þ1Þ ¼ � � � ¼ wMðEv1þv2Þ ¼ 2;

. . . ; wMðEv1þv2þ...þvl�1þ1Þ ¼ � � � ¼ wMðEv1þv2þ...þvlÞ ¼ l;

0 <
Xv1þ���þvl

x¼1
wMðExÞ � m1 þ m2; 0 <

Xl
x¼1

vx � p1 þ p2; and

0 � v1 � p1 þ p2; 0 � v2 � minðbðm1 þ m2Þ=2c; p1 þ p2Þ;

ð7:32Þ

. . . ; 0 � vl � minðbðm1 þ m2Þ=lc; p1 þ p2Þ;

where Ej is the j-th byte error in error vector E, meaning Ej 2 Et=b ¼ fE 2 GFð2bÞ j
1 � wHðEÞ � tg, wMðEjÞ ¼

Pn�1
j¼0 wHðEjÞ=t
� �

ðj ¼ 1; 2; . . . ; v1; v1 þ 1; . . . ; v1 þ v2 þ . . .
þvlÞ; l ¼ db=te, and i1; i2; � � � ; iv1þv2þ...þvl are mutually distinct integers of i satisfying

0 � i1; i2; � � � ; iv1þv2þ...þvl � n� 1.

Proof Let an error set having l1ð� m1Þ spotty byte errors that occur in r1ð� p1Þ bytes be
Ei ¼ fEi1 ; Ei2 ; . . . ; Eir1

g, where wMðEixÞ � l, and
Pr1

x¼1 wMðEixÞ ¼ l1. Also let an error

set having l2ð� m2Þ spotty byte errors that occur in r2ð� p2Þ bytes be Ej ¼ fEj1 ;
Ej2 ; . . . ; Ejr2

g, where wMðEjxÞ � l, and
Pr2

x¼1 wMðEjxÞ ¼ l2. The equationPr1
x¼1 wMðEixÞ ¼ l1 shows that the total number of spotty byte errors occurring in different

r1ð� l1Þ bytes is l1. The same holds for
Pr2

x¼1 wMðEjxÞ ¼ l2; that is, this equation shows that

the total number of spotty byte errors occurring in different r2ð� l2Þ bytes is l2. The code C
should satisfy the following relation between the error patterns in Ei and those in Ej:

Ei1 �HT
i1
þ Ei2 �HT

i2
þ � � � þ Eir1

�HT
ir1
6¼ Ej1 �HT

j1
þ Ej2 �HT

j2
þ � � � þ Ejr2

�HT
jr2
:

Spotty byte errors in Ei and Ej can occur in the same byte. To see this, assume that these

errors occur in V bytes, where 0 � V � bðp1 þ p2Þ=2c. Then the following relation holds:

Ei1 �HT
i1
þ Ei2 �HT

i2
þ � � � þ EiV �HT

iV
þ EiVþ1 �HT

iVþ1
þ � � � þ Eir1

�HT
ir1

6¼ Ej1 �HT
i1
þ Ej2 �HT

i2
þ � � � þ EjV �HT

iV
þ EjVþ1 �HT

iVþ1
þ � � � þ Ejr2

�HT
jr2
:

From this relation we have

ðEi1 þ Ej1Þ �HT
i1
þ ðEi2 þ Ej2Þ �HT

i2
þ � � � þ ðEiV þ EjV Þ �HT

iV

þ EiVþ1 �HT
iVþ1
þ � � � þ Eir1

�HT
ir1
þ EjVþ1 �HT

jVþ1
þ � � � þ Ejr2

�HT
jr2
6¼ 0;

where wMðEix þ EjxÞ � l for x ¼ 1; 2; . . . ; V. Equation (7.32) is obtained by replacing

ðEix þ EjxÞ above by Eix for x ¼ 1; 2; . . . ; V. In this case, r1 þ r2 � V ¼ v1þ
v2 þ � � � þ vl, so the relation in Theorem 7.34 holds. Q.E.D.

320 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



Theorem 7.35 A linear code C requires at least ðm1 þ m2Þt check bits.

Proof According to Theorem 7.34, ðm1 þ m2Þt binary columns of the parity-check matrix

of this code are linearly independent. Therefore this code requires at least ðm1 þ m2Þt check
bits. Q.E.D.

Theorem 7.36 If N is a multiple of b, a linear (N; N � R) [mt=bEC]p code exists

only if

2R � 1 	
Xm
j¼1

S
p
j

N

b

� �
;

where S
p
j ðN=bÞ is the total number of j spotty byte errors occurred in less than or equal

to p bytes, and is expressed by

S
p
j ðnÞ ¼

X
d1 ; d2 ; ���; dl	0
d1þd2þ���þdl�p
d1þ2d2þ���þldl¼j

n

d1 þ d2 þ � � � þ dl

� ��

�
d1 þ d2 þ � � � þ dl
d1; d2; . . . ; dl

� �
�
Yl
z¼1

Xminðz�t; bÞ

i¼ðz�1Þ�tþ1

b

i

� �8<:
9=;

dz9=;;

N=b ¼ n, and

d1 þ d2 þ � � � þ dl
d1; d2; . . . ; dl

� �
¼ ðd1 þ d2 þ � � � þ dlÞ!

d1!� d2!� � � � � dl!
:

Code Design

Definition 7.8 Let H0 ¼ h00 h01 � � � h0b�1
 �

be a q� b binary matrix whose

minððm1 þ m2Þt; bÞ column vectors are linearly independent, where h00; h01; . . . ; h0b�1
are binary column vectors ofGFð2qÞ. Also letH00 ¼ h000 h001 � � � h00b�1

 �
be an r � b binary

matrix whose minðbðm1 þ m2Þ=2ct; bÞ column vectors are linearly independent, where

h000; h001; . . . ; h00b�1 are binary column vectors of GFð2rÞ. &

The matrix H0 is a b� b nonsingular matrix including a b� b identity matrix for

minððm1 þ m2Þt; bÞ ¼ b. On the other hand, for minððm1 þ m2Þt; bÞ ¼ ðm1 þ m2Þt < b,

the matrix H0 is a parity-check matrix of a linear binary ðb; b� qÞ code with minimum

Hamming distance ðm1 þ m2Þt þ 1. The matrix H00 is also a b� b nonsingular matrix

including a b� b identity matrix for minðbðm1 þ m2Þ=2ct; bÞ ¼ b. On the other hand, for

minðbðm1 þ m2Þ=2ct; bÞ ¼ bðm1 þ m2Þ=2ct < b, the matrix H00 is a parity-check matrix of

a linear binary ðb; b� rÞ code with minimum Hamming distance bðm1 þ m2Þ=2ct þ 1.

We use the above-defined H0 and H00 in the following theorems to design the

[m1 t=bEC]p1 -[m2 t=bED]p2 code C.

A GENERAL CLASS OF SPOTTY BYTE ERROR CONTROL CODES 321



Theorem 7.37 Let g be a primitive element of GFð2rÞ. The null space of

H ¼

H0 H0 � � � H0

g0H00 g1H00 � � � gn�1H00

g0H00 g2H00 � � � g2ðn�1ÞH00

..

. ..
. . .

. ..
.

g0H00 gðp1þp2�1ÞH00 � � � gðp1þp2�1Þðn�1ÞH00

266666664

377777775
is a code C with check-bit length R ¼ qþ ðp1 þ p2 � 1Þr and code length in bits

N ¼ n � b, where n ¼ 2r � 1 and giH00 ¼ gih000 gih001 � � � gih00b�1
 �

for 0 � i � n� 1.

Proof Without loss of generality, we assume that Eq. (7.33) holds for Ev1þ1 6¼ 0,

Ev1þ2 6¼ 0, . . ., and Ev1þv2þ���þvl 6¼ 0.

E1 �

H0

gi1H00

g2i1H00

..

.

gðp1þp2�1Þi1H00

26666666664

37777777775

T

þ � � � þ Ev1þ1 �

H0

giv1þ1H00

g2iv1þ1H00

..

.

gðp1þp2�1Þiv1þ1H00

26666666664

37777777775

T

þ � � � þ Ev1þv2þ���þvl �

H0

giv1þv2þ���þvl�1þvlH00

g2iv1þv2þ���þvl�1þvlH00

..

.

gðp1þp2�1Þiv1þv2þ���þvl�1þvlH00

26666666664

37777777775

T

¼

0T

0T

0T

..

.

0T

26666666664

37777777775
: ð7:33Þ

The relation
Pv1þv2þ���þvl

x¼1 Ex

� �
�H0T ¼ 0 leads to

Pv1þv2þ���þvl
x¼1 Ex ¼ 0 because H0 is a

q� b binary matrix whose minððm1 þ m2Þt; bÞ column vectors are linearly independent.

Multiplying this relation by H00
T
from the right gives

Pv1þv2þ���þvl
x¼1 Ex

� �
�H00T ¼ 0. Next

we let E1 �H00T , E2 �H00T , . . ., and ðEv1þv2þ���þvlÞ �H00
T
be expressed as x1, x2, . . ., and

xv1þv2þ���þvl , respectively. Since H00 is a parity-check matrix of a linear binary ðb; b� rÞ
code with minimum Hamming distance bðm1 þ m2Þ=2ct þ 1, then x1 6¼ 0, x2 6¼ 0, . . .,
xv1þv2þ���þvbðm1þm2Þ=2c 6¼ 0. So the following relations hold:

x1 þ x2 þ � � � þ xv1þv2þ���þvl ¼ 0

gi1x1 þ gi2x2 þ � � � þ giv1þv2þ���þvl xv1þv2þ���þvl ¼ 0

� � �
gðp1þp2�1Þi1x1 þ gðp1þp2�1Þi2x2 þ � � � þ gðp1þp2�1Þiv1þv2þ���þvl xv1þv2þ���þvl ¼ 0:

8>>>><>>>>:

322 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



The coefficient matrix of the top v1 þ v2 þ � � � þ vl ð� p1 þ p2Þ relations is nonsingular
because its determinant is a Vandermonde’s determinant. Therefore these relations have a

solution of x1 ¼ x2 ¼ � � � ¼ xv1þ���þvbðp1þp2Þ=2c ¼ 0. This contradicts the assumption.

Consequently this code satisfies the condition in Theorem 7.34. Q.E.D.

Example 7.6

Presented in Figure 7.26 is an example of a parity-check matrix of the code correcting

triple m-spotty byte errors in two bytes, as the (157, 128) ½T2=8EC�2 code, with

parameters of m ¼ 3, p ¼ 2, t ¼ 2 bits, b ¼ 8 bits, and information-bit length K ¼ 128.

The maximum code length of the code has originally N ¼ 1; 016 bits (not lengthened).
Here g is a primitive element of GFð27Þ defined by the primitive polynomial

gðxÞ ¼ x7 þ xþ 1. H0 is an 8� 8 identity matrix, and H00 is the following 7� 8 binary

matrix whose column 7 vectors are linearly independent:

H00 ¼

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

2666666664

3777777775
¼ ½ g0 g1 g2 g3 g4 g5 g6 g121 �:

This code requires R ¼ 29 check bits, whereas the conventional triple m-spotty byte

error correcting (T2=8EC) code requires R ¼ 43 bits.

The following theorem gives the lengthened code.

Theorem 7.38 Let g be a primitive element of GFð2r0 Þ, where r0 	 r. The null space of

is a code C with check-bit length R ¼ qþ ðp1 þ p2 � 1Þr0 and code length in bits

N ¼ ðnþ 1Þ � bþ r0, where n ¼ 2r
0 � 1, giH00 ¼ gifðh000Þ gifðh001Þ � � � gifðh00b�1Þ

 �
for 0 � i � n� 1, f : GFð2rÞ ! GFð2r0 Þ is a homomorphism of GFð2rÞ into GFð2r0 Þ
under addition, and Ir0 is an r0 � r0 identity matrix.

This theorem is easily proved, and therefore omitted.

Decoding We decode here the code in Theorem 7.37.

Let C0 be a [mt=bEC]p code. Also let c; v, and E be a codeword of C0, a received word, and
an error vector, respectively. The syndrome S is calculated by using the matrixH in Theorem

7.37 such that

S ¼ S0 S1 S2 � � � S2p�1
 �

¼ v �HT ¼ ðcþ EÞ �HT ¼ E �HT ;

H ¼

H0 H0 � � � H0 H0 O
g0H00 g1H00 � � � gn�1H00 O O
g0H00 g2H00 � � � g2ðn�1ÞH00 O O

..

. ..
. . .

. ..
. ..

. ..
.

g0H00 gðp1þp2�1ÞH00 � � � gðp1þp2�1Þðn�1ÞH00 O Ir0

2666664

3777775

A GENERAL CLASS OF SPOTTY BYTE ERROR CONTROL CODES 323



10
00

00
00

  1
00

00
00

0 
 1

00
00

00
0 

 1
00

00
00

0 
 1

00
00

00
0 

 1
00

00
00

0 
 1

00
00

00
0 

 1
00

00
00

0 
 1

00
00

00
0 

 1
00

00
00

0 
 1

00
00

00
0 

 1
00

00
00

0 
 1

00
00

00
0 

 1
00

00
00

0 
 1

00
00

00
0 

 1
00

00
00

0 
 1

00
00

00
0 

 1
00

00
00

0 
 1

00
00

00
0 

 1
00

00
01

00
00

00
  0

10
00

00
0 

 0
10

00
00

0 
 0

10
00

00
0 

 0
10

00
00

0 
 0

10
00

00
0 

 0
10

00
00

0 
 0

10
00

00
0 

 0
10

00
00

0 
 0

10
00

00
0 

 0
10

00
00

0 
 0

10
00

00
0 

 0
10

00
00

0 
 0

10
00

00
0 

 0
10

00
00

0 
 0

10
00

00
0 

 0
10

00
00

0 
 0

10
00

00
0 

 0
10

00
00

0 
 0

10
00

00
10

00
00

  0
01

00
00

0 
 0

01
00

00
0 

 0
01

00
00

0 
 0

01
00

00
0 

 0
01

00
00

0 
 0

01
00

00
0 

 0
01

00
00

0 
 0

01
00

00
0 

 0
01

00
00

0 
 0

01
00

00
0 

 0
01

00
00

0 
 0

01
00

00
0 

 0
01

00
00

0 
 0

01
00

00
0 

 0
01

00
00

0 
 0

01
00

00
0 

 0
01

00
00

0 
 0

01
00

00
0 

 0
01

00
00

01
00

00
  0

00
10

00
0 

 0
00

10
00

0 
 0

00
10

00
0 

 0
00

10
00

0 
 0

00
10

00
0 

 0
00

10
00

0 
 0

00
10

00
0 

 0
00

10
00

0 
 0

00
10

00
0 

 0
00

10
00

0 
 0

00
10

00
0 

 0
00

10
00

0 
 0

00
10

00
0 

 0
00

10
00

0 
 0

00
10

00
0 

 0
00

10
00

0 
 0

00
10

00
0 

 0
00

10
00

0 
 0

00
10

00
00

10
00

  0
00

01
00

0 
 0

00
01

00
0 

 0
00

01
00

0 
 0

00
01

00
0 

 0
00

01
00

0 
 0

00
01

00
0 

 0
00

01
00

0 
 0

00
01

00
0 

 0
00

01
00

0 
 0

00
01

00
0 

 0
00

01
00

0 
 0

00
01

00
0 

 0
00

01
00

0 
 0

00
01

00
0 

 0
00

01
00

0 
 0

00
01

00
0 

 0
00

01
00

0 
 0

00
01

00
0 

 0
00

01
00

00
01

00
  0

00
00

10
0 

 0
00

00
10

0 
 0

00
00

10
0 

 0
00

00
10

0 
 0

00
00

10
0 

 0
00

00
10

0 
 0

00
00

10
0 

 0
00

00
10

0 
 0

00
00

10
0 

 0
00

00
10

0 
 0

00
00

10
0 

 0
00

00
10

0 
 0

00
00

10
0 

 0
00

00
10

0 
 0

00
00

10
0 

 0
00

00
10

0 
 0

00
00

10
0 

 0
00

00
10

0 
 0

00
00

00
00

00
10

  0
00

00
01

0 
 0

00
00

01
0 

 0
00

00
01

0 
 0

00
00

01
0 

 0
00

00
01

0 
 0

00
00

01
0 

 0
00

00
01

0 
 0

00
00

01
0 

 0
00

00
01

0 
 0

00
00

01
0 

 0
00

00
01

0 
 0

00
00

01
0 

 0
00

00
01

0 
 0

00
00

01
0 

 0
00

00
01

0 
 0

00
00

01
0 

 0
00

00
01

0 
 0

00
00

01
0 

 0
00

00
00

00
00

01
  0

00
00

00
1 

 0
00

00
00

1 
 0

00
00

00
1 

 0
00

00
00

1 
 0

00
00

00
1 

 0
00

00
00

1 
 0

00
00

00
1 

 0
00

00
00

1 
 0

00
00

00
1 

 0
00

00
00

1 
 0

00
00

00
1 

 0
00

00
00

1 
 0

00
00

00
1 

 0
00

00
00

1 
 0

00
00

00
1 

 0
00

00
00

1 
 0

00
00

00
1 

 0
00

00
00

1 
 0

00
00

10
00

00
01

  0
00

00
01

1 
 0

00
00

10
1 

 0
00

01
00

1 
 0

00
10

00
1 

 0
01

00
00

1 
 0

10
00

00
1 

 1
00

00
01

0 
 0

00
00

11
0 

 0
00

01
10

0 
 0

00
11

00
0 

 0
01

10
00

0 
 0

11
00

00
0 

 1
10

00
01

1 
 1

00
00

10
0 

 0
00

01
01

0 
 0

00
10

10
0 

 0
01

01
00

0 
 0

10
10

00
0 

 1
01

00
01

00
00

01
  1

00
00

01
0 

 0
00

00
11

0 
 0

00
01

10
0 

 0
00

11
00

0 
 0

01
10

00
0 

 0
11

00
00

0 
 1

10
00

01
1 

 1
00

00
10

0 
 0

00
01

01
0 

 0
00

10
10

0 
 0

01
01

00
0 

 0
10

10
00

0 
 1

01
00

01
1 

 0
10

00
11

1 
 1

00
01

11
0 

 0
00

11
11

0 
 0

01
11

10
0 

 0
11

11
00

0 
 1

11
10

00
10

00
01

  0
10

00
00

1 
 1

00
00

01
0 

 0
00

00
11

0 
 0

00
01

10
0 

 0
00

11
00

0 
 0

01
10

00
0 

 0
11

00
00

0 
 1

10
00

01
1 

 1
00

00
10

0 
 0

00
01

01
0 

 0
00

10
10

0 
 0

01
01

00
0 

 0
10

10
00

0 
 1

01
00

01
1 

 0
10

00
11

1 
 1

00
01

11
0 

 0
00

11
11

0 
 0

01
11

10
0 

 0
11

11
00

01
00

01
  0

01
00

00
1 

 0
10

00
00

1 
 1

00
00

01
0 

 0
00

00
11

0 
 0

00
01

10
0 

 0
00

11
00

0 
 0

01
10

00
0 

 0
11

00
00

0 
 1

10
00

01
1 

 1
00

00
10

0 
 0

00
01

01
0 

 0
00

10
10

0 
 0

01
01

00
0 

 0
10

10
00

0 
 1

01
00

01
1 

 0
10

00
11

1 
 1

00
01

11
0 

 0
00

11
11

0 
 0

01
11

00
00

10
01

  0
00

10
00

1 
 0

01
00

00
1 

 0
10

00
00

1 
 1

00
00

01
0 

 0
00

00
11

0 
 0

00
01

10
0 

 0
00

11
00

0 
 0

01
10

00
0 

 0
11

00
00

0 
 1

10
00

01
1 

 1
00

00
10

0 
 0

00
01

01
0 

 0
00

10
10

0 
 0

01
01

00
0 

 0
10

10
00

0 
 1

01
00

01
1 

 0
10

00
11

1 
 1

00
01

11
0 

 0
00

11
00

00
01

01
  0

00
01

00
1 

 0
00

10
00

1 
 0

01
00

00
1 

 0
10

00
00

1 
 1

00
00

01
0 

 0
00

00
11

0 
 0

00
01

10
0 

 0
00

11
00

0 
 0

01
10

00
0 

 0
11

00
00

0 
 1

10
00

01
1 

 1
00

00
10

0 
 0

00
01

01
0 

 0
00

10
10

0 
 0

01
01

00
0 

 0
10

10
00

0 
 1

01
00

01
1 

 0
10

00
11

1 
 1

00
01

00
00

00
11

  0
00

00
10

1 
 0

00
01

00
1 

 0
00

10
00

1 
 0

01
00

00
1 

 0
10

00
00

1 
 1

00
00

01
0 

 0
00

00
11

0 
 0

00
01

10
0 

 0
00

11
00

0 
 0

01
10

00
0 

 0
11

00
00

0 
 1

10
00

01
1 

 1
00

00
10

0 
 0

00
01

01
0 

 0
00

10
10

0 
 0

01
01

00
0 

 0
10

10
00

0 
 1

01
00

01
1 

 0
10

00

10
00

00
01

  0
00

00
10

1 
 0

00
10

00
1 

 0
10

00
00

1 
 0

00
00

11
0 

 0
00

11
00

0 
 0

11
00

00
0 

 1
00

00
10

0 
 0

00
10

10
0 

 0
10

10
00

0 
 0

10
00

11
1 

 0
00

11
11

0 
 0

11
11

00
0 

 1
11

00
10

0 
 1

00
10

00
0 

 0
10

00
10

0 
 0

00
10

11
1 

 0
10

11
00

1 
 0

11
00

11
0 

 1
00

11
01

00
00

01
  0

00
00

11
0 

 0
00

11
00

0 
 0

11
00

00
0 

 1
00

00
10

0 
 0

00
10

10
0 

 0
10

10
00

0 
 0

10
00

11
1 

 0
00

11
11

0 
 0

11
11

00
0 

 1
11

00
10

0 
 1

00
10

00
0 

 0
10

00
10

0 
 0

00
10

11
1 

 0
10

11
00

1 
 0

11
00

11
0 

 1
00

11
10

0 
 0

11
10

10
0 

 1
10

10
10

0 
 0

10
10

00
10

00
01

  1
00

00
01

0 
 0

00
01

10
0 

 0
01

10
00

0 
 1

10
00

01
1 

 0
00

01
01

0 
 0

01
01

00
0 

 1
01

00
01

1 
 1

00
01

11
0 

 0
01

11
10

0 
 1

11
10

01
1 

 1
10

01
00

1 
 0

01
00

01
0 

 1
00

01
01

1 
 0

01
01

10
1 

 1
01

10
01

0 
 1

10
01

11
1 

 0
01

11
01

0 
 1

11
01

01
1 

 1
01

01
00

01
00

01
  0

10
00

00
1 

 0
00

00
11

0 
 0

00
11

00
0 

 0
11

00
00

0 
 1

00
00

10
0 

 0
00

10
10

0 
 0

10
10

00
0 

 0
10

00
11

1 
 0

00
11

11
0 

 0
11

11
00

0 
 1

11
00

10
0 

 1
00

10
00

0 
 0

10
00

10
0 

 0
00

10
11

1 
 0

10
11

00
1 

 0
11

00
11

0 
 1

00
11

10
0 

 0
11

10
10

0 
 1

10
10

00
00

10
01

  0
01

00
00

1 
 1

00
00

01
0 

 0
00

01
10

0 
 0

01
10

00
0 

 1
10

00
01

1 
 0

00
01

01
0 

 0
01

01
00

0 
 1

01
00

01
1 

 1
00

01
11

0 
 0

01
11

10
0 

 1
11

10
01

1 
 1

10
01

00
1 

 0
01

00
01

0 
 1

00
01

01
1 

 0
01

01
10

1 
 1

01
10

01
0 

 1
10

01
11

1 
 0

01
11

01
0 

 1
11

01
00

00
01

01
  0

00
10

00
1 

 0
10

00
00

1 
 0

00
00

11
0 

 0
00

11
00

0 
 0

11
00

00
0 

 1
00

00
10

0 
 0

00
10

10
0 

 0
10

10
00

0 
 0

10
00

11
1 

 0
00

11
11

0 
 0

11
11

00
0 

 1
11

00
10

0 
 1

00
10

00
0 

 0
10

00
10

0 
 0

00
10

11
1 

 0
10

11
00

1 
 0

11
00

11
0 

 1
00

11
10

0 
 0

11
10

00
00

00
11

  0
00

01
00

1 
 0

01
00

00
1 

 1
00

00
01

0 
 0

00
01

10
0 

 0
01

10
00

0 
 1

10
00

01
1 

 0
00

01
01

0 
 0

01
01

00
0 

 1
01

00
01

1 
 1

00
01

11
0 

 0
01

11
10

0 
 1

11
10

01
1 

 1
10

01
00

1 
 0

01
00

01
0 

 1
00

01
01

1 
 0

01
01

10
1 

 1
01

10
01

0 
 1

10
01

11
1 

 0
01

11

10
00

00
01

  0
00

01
00

1 
 0

10
00

00
1 

 0
00

01
10

0 
 0

11
00

00
0 

 0
00

01
01

0 
 0

10
10

00
0 

 1
00

01
11

0 
 0

11
11

00
0 

 1
10

01
00

1 
 0

10
00

10
0 

 0
01

01
10

1 
 0

11
00

11
0 

 0
01

11
01

0 
 1

10
10

10
0 

 1
01

00
11

0 
 0

01
11

11
1 

 1
11

10
10

1 
 1

01
00

00
0 

 0
00

01
01

00
00

01
  0

00
01

10
0 

 0
11

00
00

0 
 0

00
01

01
0 

 0
10

10
00

0 
 1

00
01

11
0 

 0
11

11
00

0 
 1

10
01

00
1 

 0
10

00
10

0 
 0

01
01

10
1 

 0
11

00
11

0 
 0

01
11

01
0 

 1
10

10
10

0 
 1

01
00

11
0 

 0
01

11
11

1 
 1

11
10

10
1 

 1
01

00
00

0 
 0

00
01

11
1 

 0
11

10
00

1 
 1

00
01

00
10

00
01

  0
00

00
11

0 
 0

01
10

00
0 

 1
00

00
10

0 
 0

01
01

00
0 

 0
10

00
11

1 
 0

01
11

10
0 

 1
11

00
10

0 
 0

01
00

01
0 

 0
00

10
11

1 
 1

01
10

01
0 

 1
00

11
10

0 
 1

11
01

01
1 

 0
10

10
01

1 
 1

00
11

11
1 

 1
11

11
01

0 
 1

10
10

00
1 

 1
00

00
11

1 
 0

01
11

00
1 

 1
10

00
00

01
00

01
  1

00
00

01
0 

 0
00

11
00

0 
 1

10
00

01
1 

 0
00

10
10

0 
 1

01
00

01
1 

 0
00

11
11

0 
 1

11
10

01
1 

 1
00

10
00

0 
 1

00
01

01
1 

 0
10

11
00

1 
 1

10
01

11
1 

 0
11

10
10

0 
 1

01
01

00
1 

 0
10

01
11

0 
 0

11
11

10
1 

 1
11

01
00

0 
 0

10
00

01
0 

 0
00

11
10

1 
 1

11
00

00
00

10
01

  0
10

00
00

1 
 0

00
01

10
0 

 0
11

00
00

0 
 0

00
01

01
0 

 0
10

10
00

0 
 1

00
01

11
0 

 0
11

11
00

0 
 1

10
01

00
1 

 0
10

00
10

0 
 0

01
01

10
1 

 0
11

00
11

0 
 0

01
11

01
0 

 1
10

10
10

0 
 1

01
00

11
0 

 0
01

11
11

1 
 1

11
10

10
1 

 1
01

00
00

0 
 0

00
01

11
1 

 0
11

10
00

00
01

01
  0

01
00

00
1 

 0
00

00
11

0 
 0

01
10

00
0 

 1
00

00
10

0 
 0

01
01

00
0 

 0
10

00
11

1 
 0

01
11

10
0 

 1
11

00
10

0 
 0

01
00

01
0 

 0
00

10
11

1 
 1

01
10

01
0 

 1
00

11
10

0 
 1

11
01

01
1 

 0
10

10
01

1 
 1

00
11

11
1 

 1
11

11
01

0 
 1

10
10

00
1 

 1
00

00
11

1 
 0

01
11

00
00

00
11

  0
00

10
00

1 
 1

00
00

01
0 

 0
00

11
00

0 
 1

10
00

01
1 

 0
00

10
10

0 
 1

01
00

01
1 

 0
00

11
11

0 
 1

11
10

01
1 

 1
00

10
00

0 
 1

00
01

01
1 

 0
10

11
00

1 
 1

10
01

11
1 

 0
11

10
10

0 
 1

01
01

00
1 

 0
10

01
11

0 
 0

11
11

10
1 

 1
11

01
00

0 
 0

10
00

01
0 

 0
00

11

F
ig
u
re

7
.2
6

Pa
ri
ty
-c
he

ck
m
at
ri
x
of
th
e
(1
57
,1
28
)[
T
2=

8
E
C
] 2
co

de
.
S
ou

rc
e:
[S
U
Z
U
05

b]
.�

20
05

IE
EE

.

324



where S0 2 GFð2qÞ is a q-bit binary row vector and Sj 2 GFð2rÞ; j ¼ 1; 2; . . . ; 2p� 1,

is an r-bit binary row vector. If m or fewer spotty byte errors Ei1 ; Ei2 ; . . . ; Eir , that satisfyPr
x¼1 wMðEixÞ � m have occurred in the i1-th, i2-th, . . ., ir-th byte, respectively, then the

syndrome S is given by Eq. (7.34), where r � p � m:

S ¼

S0

S1

S2

..

.

S2p�1

266666664

377777775

T

¼

E1 �H0T þ E2 �H0T þ � � � þ Er �H0T

gi1E1 �H00T þ gi2E2 �H00T þ � � � þ girEr �H00T

g2i1E1 �H00T þ g2i2E2 �H00T þ � � � þ g2irEr �H00T

..

.

gð2p�1Þi1E1 �H00T þ gð2p�1Þi2E2 �H00T þ � � � þ gð2p�1ÞirEr �H00T

2666666664

3777777775

T

; ð7:34Þ

S0 ¼

S00
S1

S2

..

.

S2p�1

266666664

377777775

T

¼

ei1 þ ei2 þ � � � þ eir
gi1ei1 þ gi2ei2 þ � � � þ gir eir

g2i1ei1 þ g2i2ei2 þ � � � þ g2ir eir

..

.

gð2p�1Þi1ei1 þ gð2p�1Þi2ei2 þ � � � þ gð2p�1Þir eir

266666664

377777775

T

: ð7:35Þ

Next, let
Pr

x¼1 Eix be expressed as E�. The relation S0 ¼ E� �H0T leads to E�, since H0

is a parity-check matrix of m t=b-error correcting code. Multiplying this by H00
T
from

the right gives E� �H00T . Let Ei1 �H00
T
, Ei2 �H00

T
, . . ., Eir �H00

T 2 GFð2rÞ be

ei1 ; ei2 ; . . . ; eir , respectively. Then the syndrome S0 is as given by Eq. (7.35). This

syndrome is identical to that of the RS code with distance 2pþ 1 over GFð2rÞ. The
error patterns over GFð2rÞ and error locations are determined by using the decoding

algorithms of the RS code such as the Berlekamp-Massey algorithm and the

Euclidean algorithm.

In the final step of the decoding, the error patterns cEix 2 GFð2bÞ, where

x ¼ 1; 2; . . . ; r, are transformed from the corresponding error patterns eix 2 GFð2rÞ
according to one-to-one mapping from eix to cEix for x ¼ 1; 2; . . . ; r. This mapping is

implemented by the table. Here, at most, one of the cEix ’s may be miscorrected, that is,cEix 6¼ Eix . The following relation determines whether or not cEix is identical to Eix . That is,

if cEix satisfies the relation (7.36), then cEix is equal to Eix . Otherwise,
cEix 6¼ Eix .

wMðcEix þ E�Þ � m� wMðcEixÞ: ð7:36Þ

This relation can be proved based on the fact that wMðEÞ satisfies the triangle inequality

[IMAI79].

In sum, from the discussion above, the decoding is performed according to the

following algorithm:

Step 1. The first element S0 in S is transformed to S00 2 GFð2rÞ by the operation

S00 ¼ E� �H00T .
Step 2. Error locations i1; i2; . . . ; ir, and error patterns ei1 ; ei2 ; . . . ; eir , are obtained

from the syndrome S0 by the decoding algorithm of the RS codes over GFð2rÞ.
Step 3. The error pattern cEix is obtained from eix according to the mapping table.

A GENERAL CLASS OF SPOTTY BYTE ERROR CONTROL CODES 325



Step 4. The error patterns cEix , x ¼ 1; 2; . . . ; r, obtained in the previous step are

checked whether or not they satisfy the relation (7.36). If satisfied, then cEix ¼ Eix .

Step 5. If cEiy does not satisfy the relation (7.36) or cannot be transformed from eix in the

mapping table, the error pattern Eiy is recovered from the other error patterns obtained

in step 4, meaning Eiy ¼ e� þ Ei1 þ � � � þ Eiy�1 þ Eiyþ1 þ � � � þ Eir .

Evaluation Figure 7.27 shows the relation between the information-bit length and

the check-bit length of the lengthened [T2=8EC]2 code and its bound where m ¼ 3, p ¼ 2,

t ¼ 2 bits, and b ¼ 8 bits, along with the conventional triple m-spotty byte error correcting

(T2=8EC) codes, the double-byte error correcting (D8EC) codes, and the triple-byte error

correcting (T8EC) codes. In this case the bound is the one given by Theorems 7.35

and 7.36.

EXERCISES

7.1 Prove that for any ðN;N � RÞ St=bEC codes the following inequality holds:

2R 	 N

b
�
Xt
i¼1

b

i

� �
þ 1:

In your proof show that the equality holds when t ¼ b and R is an integer

multiple of b. Also show how perfect SbEC codes can be constructed by using

Theorem 7.2.

15

20

25

30

35

40

45

50

55

60

32 64 128 256 512 1,024 2,048 4,096

D8EC code

[T    EC]   code2/8 2

[T    EC] code bound2/8 2

T    EC code2/8

44 67 K = 99 145
209 304

437 622 890 1,2661,797
2,552

3,616
1,002

K = 2,024

4,070

988

K = 2,008

4,052

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

T8EC code

m-Spotty

Figure 7.27 Check-bit lengths compared with information-bit lengths of the [T2=8EC]2 codes, along with the
T2=8EC codes, D8EC codes, andT8EC codes. Source: [SUZU05b].� 2005 IEEE.

326 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



7.2 Investigate: if H00 denotes a parity-check matrix of a perfect single symbol error

correcting code over GFð2bÞ, and H0 ¼ Ib, the binary code defined as the null

space of the tensor product of H00 and H0 in that order (i.e., H00 �H0) is a perfect

single b-bit byte error correcting code. Provide simple examples or counter-

examples to validate your investigation.

7.3 Let H0 ¼ I2t j h½ �, where h denotes the all-1 binary column vector of GFð22tÞ.
Show that any 2t or fewer binary columns of H0 are linearly independent, and

convince yourself that H0 can be regarded as a ð2t þ 1; 1Þ perfect t-error correcting
binary code. Design a perfect St=2tþ1EC code by taking tensor product of H0.

7.4 Designing an S2=5EC code: Consider the following H0 and H00 matrices:

H0 ¼

10001

01001

00101

00011

2666664

3777775 ¼
j j j j j

g0 g1 g2 g3 ð
P3

i¼0 g
iÞ

j j j j j

2664
3775;

where g is a primitive element of GFð24Þ. Write down the H matrix defined by

H00 �H0. Why this H matrix represents a perfect S2=5EC code?

7.5 Design a perfect S3=7EC code. Clearly illustrate your design procedure. What is

the code length of your code? Explain why your code is perfect?

7.6 Figure 7.2 shows a ð132; 121Þ S3=8EC code. Using the illustrations provided in

Subsection 7.2.3, show how this code was generated?

7.7 Decoding the ð132; 121Þ S3=8EC code: As shown below, let S0 and S1 be the first

7-bit and the second 4-bit vectors of the syndrome, respectively:

Explain the following four steps, and convince yourself that these steps basically

provide the decoding algorithm for the S3=8EC code.

Step 1. If S0 ¼ 0 and S1 ¼ 0, there are no errors.

Step 2. If S0 ¼ 0 and S1 6¼ 0, the last byte is corrupted by error pattern S1.

Step 3. If S0 6¼ 0 and S1 ¼ 0, the second last byte is corrupted by an 8-bit error

pattern.

Step 4. If S0 6¼ 0 and S1 6¼ 0, one of the first 15 bytes is corrupted by an 8-bit error

pattern.

H00 ¼
g0 g0 g0 � � � g0 g0 0

g0 g1 g2 � � � g14 0 g0

" #
;

H0 H0 � � � H0 H0 O7�4
g0H00 g1H00 � � � g15H00 O4�8 I4

� �
! S0
! S1

EXERCISES 327



In steps 3 and 4 we need to determine the 8-bit error pattern. The S3=8EC code uses

the following H0 matrix:

H0 ¼

10000001

01000001

00100001

00010001

00001001

00000101

00000011

2666666664

3777777775
:

Explain how the 8-bit error pattern can be obtained from S0. (Hint: How many

one’s would be there in S0 if it is a 3=8-error.) Explain how to determine the error

location in step 4. Do you need to know the error pattern in advance in order to

determine the error location?

7.8 The ð272; 256Þ S3=16EC code shown in Figure 7.1 is a systematic code obtained by

performing row operations on the original code. Can this code be decoded by the

method mentioned in Exercise 7.7? If not, can you think of another method for

decoding this code? (Hint: Read Chapter 8 on parallel decoding for burst / byte

error control codes.)

7.9 A memory system with a 256-bit information length uses 16-bit RAM chips. It is

believed that the random double-bit errors occurring within a single RAM chip are

the most significant errors. Design an efficient S2=16EC code for this memory

system. How many check bits are required by your code? Estimate the decoding

hardware complexity of your code.

7.10 Is it possible to construct a ð74; 64Þ S2=8EC code with 10 check bits? If it is

possible, design this code. (Hint: See Figure 7.4.)

7.11 A memory system with a 64-bit information length uses 8-bit RAM chips. Design

a ð74; 64Þ S2=8EC code for this memory system. Estimate the decoding hardware

complexity of your code.

7.12 Let g be a primitive element of GFð26Þ determined by the primitive polynomial

gðxÞ ¼ x6 þ xþ 1. Define Hi ¼ gi giþ21 giþ42½ �, where 0 � i � 20. Explain why

the code represented by the H matrix below is a perfect S2=3EC-S3ED code.

7.13 Write down the GFð23Þ subfield elements of the field GFð29Þ. Using these sub-

field elements, demonstrate how a perfect S3=4EC-S4ED code can be constructed.

7.14 Prove that inequalities ð7:5Þ and ð7:6Þ hold for an St=bEC-SbED code.

7.15 Explain what type of H00 matrix you would use in Theorem 7.4 to obtain the Hong-

Patel type of codes presented in Theorem 7.3.

H ¼
100 100 100 � � � 100

H0 H1 H2 � � � H20

" #

328 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



7.16 Design an S4=8EC-S8ED code with an information length of 256 bits. How many

check bits are required by your code?

7.17 A memory system with a 64-bit information length uses 8-bit RAM chips. The

RAM chips have the multi-bank architecture shown in Figure 7.10. Design an

S2=8EC-S4EC-S8ED code for this memory system. Does your S2=8EC-S4EC-

S8ED code correct all or some single 3/8-errors?

7.18 Prove Theorem 7.11.

7.19 Prove Theorem 7.12.

7.20 Find the bound on code length of an ðN;N � RÞ St=bEC-SbEC-SBED code.

7.21 Explain that the code presented in Figure 7.12 works as an S3=8EC-D3=8ED

code.

7.22 Design the St=bEC-Dt=bED codes with code parameters b ¼ 6 bits and t ¼ 2, 3, 4,

5 bits.

7.23 Show that the code in Theorem 7.11 can also detect double spotty byte errors in a

byte as well as detect double spotty byte errors in distinct two bytes.

7.24 Find the decoding method of the St=bEC-Dt=bED codes, especially how to detect

double t=b-errors.

7.25 Find the matrix H0 in s-spotty byte error control codes with b ¼ 6 and t ¼ 2.

7.26 Design a binary ð504; 480Þ s-spotty D2=8EC code by using the primitive element g
over GFð26Þ defined by the primitive polynomial gðxÞ ¼ x6 þ x5 þ 1 and by

If the errors occurred in the first byte and the 60th byte, written as

E1 ¼ ð0 0 1 0 0 0 1 0Þ and E60 ¼ ð0 0 0 1 0 0 1 0Þ, respectively, indicate the

decoding procedure to obtain the error positions and the error values by using

the Berlekamp-Massey algorithm.

7.27 Design the lengthened s-spotty Dt=bEC-SbED code. Find the code in binary form

with t ¼ 2 bits and b ¼ 5 bits.

7.28 Show that H matrices in Theorems 7.24 and 7.25 having H0 ¼ I, i.e., q� q

identity matrix, are the distance-d m-spotty byte error control codes with SbED

capability.

7.29 Design the complex m-spotty S2=8EC-(S2=8þS)ED code with information-bit

length K ¼ 64, and 128.

7.30 Design the complex m-spotty (S2=8þS)EC code with K ¼ 64 and 128 bits.

H′ =

1 1 0
1 1 0

1 1 1
1 1 1

1 0 1
1 0 1

γ 0 γ 1 γ 2 γ 3 γ 4 γ 5 γ 48 γ 50
0

0
6 × 8

= .

EXERCISES 329



7.31 Let’s consider the single t=b-error correcting and double-bit error detecting (St=bEC-
DED) code. For the given H matrix shown below, answer the following questions.

where t 	 2,

H0 ¼ ½h00 h01 � � � h0b�1�r0�b, h0i 2 GFð2r0 Þ, 0 � i � b� 1, whose minð2t; bÞ col-
umn vectors are linearly independent,

H00 ¼ ½h000 h001 � � � h00b�1�r00�b, h00i 2 GFð2r00 Þ, 0 � i � b� 1, whose t column vec-

tors are linearly independent,

g : primitive element of GFð2r00 Þ,

1 ¼ ½1 1 � � � 1�1�b,

d : primitive element of GFð2r000 Þ,

Ir00 : r
00 � r00 identity matrix,

Ir000 : r
000 � r000 identity matrix, and

the code length in bits N ¼ bðn000 þ 1Þ þ r00 þ r000,

n00 ¼ 2r
00 � 1 	 n000 ¼ 2r

000 � 1:

(a) Show that the null space of the matrix H above is an St=bEC-DED code.

(b) Design the ð21; 10Þ S2=8EC-DED code with parameters of b ¼ 8, t ¼ 2 and

r000 ¼ 1, and the ð38; 26Þ S2=8EC-DED code with b ¼ 8, t ¼ 2, and r000 ¼ 2.

(c) Verify that the code indicated here has smaller check-bit length by 1 to 3 bits

for information-bit length K � 58, compared to the complex m-spotty St=bEC-

Dt0=bED code with t0 ¼ 1 for b ¼ 8 bits and t ¼ 2 bits.

7.32 Design the [T3=8EC]2 code with K ¼ 128 bits.

7.33 Design the D2=8EC-[T2=8ED]2 code with K ¼ 128 bits.

7.34 Prove Theorems 7.18 through 7.29

7.35 Design the complex s-spotty byte error control codes of the St=bEC-(St=bþSt0=b)ED
code, and the (St=bþSt0=b)EC code.

REFERENCES

[BLAH83] R. E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley

(1983).

[DAVY89] A. A. Davydov and A. Yu. Drozhzhina-Labinskaya, ‘‘Length 4 byte error and double

independent error correction by BCH code in semiconductor memories,’’ Autom. Remote Contr.,

50 (November 1989): 1570–1579.

H ¼
H0 H0 H0 � � � H0 H0 O O

g0H00 g1H00 g2H00 � � � gn
000�1H00 O Ir00 O

d01 d11 d21 � � � dn
000�11 O O Ir000

24 35jNHjN
H

jN
H

;

r0

r00

r000

330 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES



[FUJI04] E. Fujiwara, K. Namba, and M. Kitakami, ‘‘Parallel Decoding for Burst Error Control

Codes,’’ Electron. Commun. Japan, 87 (January 2004): 38–48.

[HONG72] S.J. Hong and A.M. Patel, ‘‘A General Class of Maximal Codes for Computer

Applications,’’ IEEE Trans. Comput., 21 (December 1972): 1322–1331.

[IMAI79] H. Imai and H. Fujiya, ‘‘A Construction Method for Simply-Decodable Error-Correcting

Codes’’ (in Japanese), Trans. IECE Japan, 62-A (May 1979): 271–277.

[KANE05] H. Kaneko, ‘‘Error Control Coding for Semiconductor Memory Systems in the Space

Radiation Environment,’’ Proc. IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems,

(October 2005): 93–101.

[KASH04] T. Kashiyama and E. Fujiwara, ‘‘A General Class of Byte Error Control Codes for

S-Spotty Byte Errors,’’ Proc. IEEE Int. Symp. on Information Theory Applications (October

2004): 1297–1302.

[MASS96] L. W. Massengil. ‘‘Cosmic and Terrestrial Single Event Radian Effects in Dynamic

Random Access Memories,’’ IEEE Trans. Nucl. Sci., 43 (April 1996): 576–593.

[NUMA89] K. Numata, Y. Oowaki, et al, ‘‘New Nibbled-Page Architecture for High-Density

DRAM’s,’’ IEEE J. Solid-State Circ., 24 (August 1989): 900–904.

[OGOR96] T. J. O’Gorman et al, ‘‘Field Testing for Cosmic Ray Soft Errors in Semiconductor

Memories,’’ IBM J. Res. Dev., 40 (January 1996): 41–50.

[SAEK96] T. Saeki, Y. Nakaoka et al, ‘‘A 2.5-ns Clock Access, 256MHz, 256Mb SDRAM with

Synchronous Mirror Delay,’’ IEEE J. Solid-State Circ., 31 (November 1996): 1656–1668.

[SHU83] Shu Lin, and D. J. Costello, Jr., Error Control Coding, Prentice Hall (1983).

[SRIN96] G. R. Srinivasan, ‘‘Modeling the Cosmic Ray Induced Soft Error Rate in Integrated

Circuits: An Overview,’’ IBM J. Res. Dev., 40 (January 1996): 77–89.

[SUGI93] T. Sugibayashi, T. Takeshima, et al., ‘‘A 30-ns 256 Mb DRAM With Multidivided Array

Structure,’’ IEEE J. Solid-State Circ., 28 (November 1993): 1092–1098.

[SUNA95] T. Sunaga, K. Hosokawa, et al., ‘‘A Full Bit Perfect Architecture for Synchronous

DRAM’s,’’ IEEE J. Solid-State Circ., 30 (November 1995): 998–1005.

[SUZU04] K. Suzuki, T. Kashiyama, and E. Fujiwara, ‘‘A General Class of M-Spotty Byte

Error Control Codes,’’ Proc. 4th Asia–Europe Workshop on Information Theory (October

2004): 24–26.

[SUZU05a] K. Suzuki, T. Kashiyama, and E. Fujiwara, ‘‘Complex M-spotty Byte Error Control

Codes,’’ Proc. IEEE Information Theory Workshop (September 2005): 211–215.

[SUZU05b] K. Suzuki, M. Shimizu, T. Kashiyama, and E. Fujiwara, ‘‘A Class of Error Control

Codes for M-Spotty Byte Errors Occurred in a Limited Number of Bytes,’’ Proc. IEEE Int. Symp.

on Information Theory (September 2005): 2109–2113.

[TANI92] K. Tanigawa, Y. Kinoshita, and M. Morii, ‘‘Low-Density Byte Error-Control Codes’’ (in

Japanese), IEICE Technical Report, IT 92-18 (1992): 41–46.

[UMAN02a] G. Umanesan and E. Fujiwara, ‘‘Random Double Bit Error Correcting–Single b-bit

Byte Error Correcting (DEC-SbEC) Codes for Memory Systems,’’ IEICE Trans. Fundamentals,

E85-A (January 2002): 273–276.

[UMAN02b] G. Umanesan and E. Fujiwara, ‘‘Single Byte Error Correcting Codes with Double Bit

Within a Block Error Correcting Capability for Memory Systems,’’ IEICE Trans. Fundamentals,

E85-A (February 2002): 513–517.

[UMAN03a] G. Umanesan and E. Fujiwara, ‘‘A Class of Codes for Correcting Single Spotty Byte

Errors,’’ IEICE Trans. Fundamentals, E86-A (March 2003): 704–714.

[UMAN03b] G. Umanesan and E. Fujiwara, ‘‘A Class of Random Multiple Bits in a Byte Error

Correcting and Single Byte Error Detecting (St=bEC-SbED) Codes,’’ IEEE Trans. Comput., 52

(July 2003): 835–847.

REFERENCES 331



[VAID92] N. H. Vaidya and D. K. Pradhan. ‘‘A New Class of Bit and Byte Error Control Codes,’’

IEEE Trans. Info. Theory, 38 (September 1992): 1617–1623.

[WICK94] S. B. Wicker and V. K. Bhargava, Reed-Solomon Codes and Their Applications, IEEE

Press (1994).

[WATA96] Y. Watanabe, H. Wong et al, ‘‘A 286 mm2 256Mb DRAM with �32 Both-Ends DQ,’’

IEEE J. Solid-State Circ., 31 (April 1996): 567–574.

[WOLF65] J. K. Wolf, ‘‘On Codes Derivable from the Tensor Product of Check Matrices,’’ IEEE

Trans. Info. Theory, 11 (April 1965): 281–284.

[ZIEG96] J. F. Ziegler, et al., ‘‘IBM Experiments in Soft Fails in Computer Electronics

(1978–1994),’’ IBM J. Res. Dev., 40 (January 1996): 3–18.

332 CODES FOR HIGH-SPEED MEMORIES IV: SPOTTY BYTE ERROR CONTROL CODES





CONTENTS

8.1 Parallel Decoding Burst Error Control Codes . . . . . . . . . . . . . . . . . . . . . . . 336

8.1.1 Error Pattern Generation by Inverse Matrices . . . . . . . . . . . . . . . . . . . 336

8.1.2 Frames for Burst Error Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

8.1.3 Parallel Decoding Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

8.1.4 Evaluation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

8.1.5 Multiple Burst / Byte Error Correction . . . . . . . . . . . . . . . . . . . . . . . 350

8.2 Parallel Decoding Cyclic Burst Error Correcting Codes . . . . . . . . . . . . . . . . 351

8.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

8.2.2 Parallel Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

8.3 Transient Behavior of Parallel Encoding / Decoding Circuits of Error

Control Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

8.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

8.3.2 Generation, Propagation, and Accumulation of Glitches in

Exclusive-OR Tree Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

8.3.3 Glitches in Encoding / Decoding Circuits of Error Control Codes . . . . . 358

8.3.4 Two Potential Solutions to Reduce Glitch Accumulation . . . . . . . . . . . 365

8.3.5 Maximum Temporal Accumulated Glitches (TAGs) and Matrix

Code Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370



8
Parallel Decoding
Burst / Byte Error

Control Codes

Optical and magnetic recording systems, and communication systems usually read / write

(or receive / transmit) the data serially bit by bit. Therefore sequential decoding methods

implemented by linear feedback shift registers (LFSRs) are popularly used for error

correction and detection [MEGG61, CHIE69]. It is known that two-dimensional burst

errors occur in ultra–large capacity holographic memories [NISH97] in which a large

amount of data are sometimes readout at once. Therefore parallel decoding implemented

only by combinational logic is required for high-speed burst error correction. A parallel

encoding / decoding can be easily converted to a serial encoding / decoding by using serial

to / from parallel transformation of the data.

An interleaving method for bit or byte error control codes has been popularly used for

burst error correction and detection [PETE72] because parallel decoding of the interleaved

codes can be easily implemented. However, longer burst error correction requires

interleaving with higher degree, subsequently increasing the number of check bits to

unacceptable levels for practical applications. On the other hand, Fire codes are well

known as efficient burst error control codes [PETE72, ELSP62, KASA62a, KASA62b].

The Fire code has been discussed in Subsection 2.3.7.

The parallel decoding method we deal with here is applicable to any linear burst error

control code, including the Fire code. As we explain below, this decoding treats byte

errors as a special case of burst errors, so it requires less hardware than the existing

methods. The parallel decoding method can therefore be applied to any type of linear

burst / byte / bit error correcting code. It is very general in the sense that this decoding

not only completely includes the conventional parallel decoding of the linear bit /

byte error correcting codes but also applies to the multiple burst / byte error correcting

codes [FUJI02].

Code Design for Dependable Systems: Theory and Practical Applications, by Eiji Fujiwara
Copyright # 2006 John Wiley & Sons, Inc.

335



The last section of this chapter addresses the important problem of glitches, meaning

the logical noises that occur in parallel decoding circuits. Parallel decoding circuits depend

heavily on large exclusive-OR (XOR) tree circuits that are well known to produce glitches

readily. This section clarifies why glitches are generated, how they are propagated and

accumulated in the circuits, and how to reduce these undesirable effects.

8.1 PARALLEL DECODING BURST ERROR CONTROL CODES

8.1.1 Error Pattern Generation by Inverse Matrices

Let H be an R� N parity-check matrix of a linear burst error correcting code capable

of correcting single l-bit burst errors. Let E be the error vector denoting an l-bit burst

error pattern starting from the i-th bit ð0 � i < NÞ of the N-bit word. Let Hi be the

R� L submatrix of length Lð	 lÞ starting from the i-th column of the matrix H. Figure 8:1
shows an error E with length L in an error vector E� that includes the l-bit burst error.

It also shows the corresponding submatrix Hi. The syndrome S in this case can be

calculated as

S ¼ E� �HT

¼ E �HT
i :

ð8:1Þ

Let the column vectors of the submatrixHi be linearly independent. Let Ai be an R� R

nonsingular matrix obtained by appending an R� ðR� LÞ matrix Bi to the submatrix Hi�
i:e:, Ai ¼ ½HiBi�

�
. Again, let A�1i ¼

"
H
y
i

B
y
i

#
be the inverse matrix of Ai. Here H

y
i and B

y
i

are L� R and ðR� LÞ � R matrices, respectively. The error E can be obtained from the

matrices H
y
i and B

y
i and the syndrome S as shown by the following theorem.

Theorem 8.1 If there exists a burst error E starting from the i-th bit of the received

word, the following holds for syndrome S:

S �Hyi
T ¼ E;

S � Byi
T ¼ 0: ð8:2Þ

=E

H=

E

H i

i i + -1

R

0 N -1

0 0 0 0... ...

L

L
*

Figure 8.1 Error E in an error vector E� and the corresponding submatrix Hi in a parity-check matrix H.
Source: [FUJI02].� 2002 IEICE Japan.

336 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES



Proof Since A�1i is the inverse matrix of Ai, we have

A�1i � Ai ¼
H
y
i

B
y
i

" #
� Hi Bi½ �

¼
H
y
i �Hi H

y
i � Bi

B
y
i �Hi B

y
i � Bi

" #
¼ I:

Subsequently the following holds:

H
y
i �Hi ¼ IL�L;

B
y
i �Hi ¼ OðR�LÞ�L;

H
y
i � Bi ¼ OL�ðR�LÞ;

B
y
i � Bi ¼ IðR�LÞ�ðR�LÞ:

Therefore the following two equations hold for the syndrome given by Eq. ð8:1Þ:

S �Hyi
T ¼ ðE �Hi

TÞ �Hyi
T ¼ E � ðHyi �HiÞT ¼ E � I ¼ E;

S � Byi
T ¼ ðE �Hi

TÞ � Byi
T ¼ E � ðByi �HiÞT ¼ 0:

Q.E.D.

Example 8.1 [FUJI02]

Consider the error pattern generation of the (22, 13) 3-bit burst error correcting Fire

code shown below. Note that the 9� 22 parity-check matrix H includes a 9� 7

submatrix H5 representing binary columns starting from i ¼ 5. The error vector E

represents a 3-bit burst error starting from the 9-th bit of the word.

The syndrome is therefore written as follows:

S ¼ E �HT
5 ¼ ð000101010Þ:

0 0 0 00 1 00 1

L = 7

R = 9.

Error vector E * = ,

Error E

Parity-check matrix H =

Submatrix H5

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1
0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0
0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0

0 0 0 0 0 0 0 00 0 0 0 0

PARALLEL DECODING BURST ERROR CONTROL CODES 337



An example of B5 is given below. Matrix B5 can be appended to H5 to obtain a 9� 9

nonsingular matrix A5.

B5 = ,

R – L = 2

0 0
0 0
0 0
0 0
0 0

1
0 0

1
0 0
1

0

Nonsingular matrix A5 5 5H B= =

R = 9

R = 9.

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 1
1 1 1 0 0 1 0
1 0 0 1 0 1 1
1 1 0 0 1 0 1

0 0
0 0
0 0
0 0
0 0

1

0
0 0

1
0 0

1

H†
5 and B†

5
are then obtained as follows:

Inverse matrix .A5

H†
5

=–1

B†
5

=

H†
5

B†
5

R – L = 2

L = 7

R = 9

1 1 0 0 1 0 1 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
1 1 1 0 0 0 1 1 0
1 0 0 1 0 1 0 0 1
0 0 1 0 1 1 0 1 0

Finally we have

S �Hy5
T ¼ ð0000101Þ ¼ E;

S � By5
T ¼ ð00Þ:

8.1.2 Frames for Burst Error Location

We will discuss the decoding of l-bit burst error correcting and dð	 lÞ-bit burst error
detecting codes. For burst error correction, the burst error pattern and the burst error

location can be extracted from the syndrome. To calculate the burst error location, we

then consider frames of length Lð	 lÞ that completely include any l-bit burst error

occurring in any position in the received word. As shown in Figure 8:2, the codeword

is divided by a number of frames where adjacent frames overlap by z bits. The first

338 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES



and the last frames overlap only at one side. The length of the last frame is less than

or equal to L bits. For a received word of length N, the total number of frames can then

be given by

m ¼ N � z

L� z

� �
; ð8:3Þ

where dxe represents the smallest integer greater than or equal to x. The starting position of

the j-th ð0 � j < mÞ frame is given by j � ðL� zÞ.

Lemma 8.1 Assume that the error pattern generation method described in the previous

subsection is used for generating l-bit burst error patterns in a linear l-bit burst error

correcting and d-bit burst error detecting code. Then the frame length L satisfies the fol-

lowing inequality:

l � L � lþ d:

Proof The rank of submatrix Hi should be at least l, and therefore l � L. Clearly, any

linear combination of consecutive lþ d or lesser columns of the parity-check matrix of

the code above is nonzero. Hence L can have a maximum value of lþ d, meaning

L � lþ d. This proves that l � L � lþ d, as required. Q.E.D.

Lemma 8.2 If l � L and z 	 l� 1, any l-bit burst error is completely included in at

least one of the frames.

This lemma can be easily proved, and therefore the proof is omitted.

When frame length L is given by l � L � lþ d and length of overlap z is greater

than or equal to l� 1, we have the following two theorems obtained by rewriting

Theorem 8.1.

Theorem 8.2 When a burst error E of length l or smaller is completely included in the

j-th frame, the following holds:

S �Hy T
j�ðL�zÞ ¼ E and S � By T

j�ðL�zÞ ¼ 0:

Received word
z

L

Frame

j-th Frame Frame

j  (L - z).

Figure 8.2 Frame with length L bits overlapping at adjacent frames by z bits. Source: [FUJI02].� 2002 IEICE

Japan.

PARALLEL DECODING BURST ERROR CONTROL CODES 339



Theorem 8.3 When a burst error E0d of length greater than l and smaller than or equal

to d is completely included in the j-th frame, the following holds:

S �Hy T
j�ðL�zÞ ¼ E0d and S � By T

j�ðL�zÞ ¼ 0:

On the other hand, when E is not included or partially included in the j-th frame, the

following theorem holds.

Theorem 8.4 When a burst error of length d bits or less is not included or partially

included in the j-th frame, then the following equation holds:

S �Hy T
j�ðL�zÞ ¼ Ed; or S � By T

j�ðL�zÞ 6¼ 0:

Here Ed is a burst error of length greater than l.

Proof The theorem is proved by contradiction. First, consider the case where the d-bit

burst error pattern is not at all included in the j-th frame. Assume that S �Hy T
j�ðL�zÞ ¼ E

and S � By T
j�ðL�zÞ ¼ 0 hold. Here E is a burst error pattern of length l or shorter. From

H
y
j�ðL�zÞ �Hj�ðL�zÞ ¼ I and H

y
j�ðL�zÞ � Bj�ðL�zÞ ¼ O we have

S �
H
y
j�ðL�zÞ

B
y
j�ðL�zÞ

24 35T

¼ S � H
y T
j�ðL�zÞ B

y T
j�ðL�zÞ

h i
¼

E 0

�
¼ E � H

y
j�ðL�zÞ �Hj�ðL�zÞ

� �
E � H

y
j�ðL�zÞ � Bj�ðL�zÞ

� �h i
¼ E �Hy

j�ðL�zÞ � Hj�ðL�zÞ Bj�ðL�zÞ
 �

:

Multiplying both sides from the right by nonsingular matrix

A�1j�ðL�zÞ ¼
H
y
j�ðL�zÞ

B
y
j�ðL�zÞ

" #
;

we obtain the following equation:

S ¼ E �Hy T
j�ðL�zÞ:

This shows that the syndrome S caused by d-bit burst error occurred outside the j-th frame

matches with the syndrome of l-bit burst error E completely included inside the j-th frame,

which is absurd. Therefore, if a d-bit burst error occurs and j-th frame does not include any

error, S �Hy T
j�ðL�zÞ is equal to either error pattern Ed of length greater than l or S � By Tj�ðL�zÞ 6¼ 0

holds.

340 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES



Next we consider the case where a part of the d-bit burst error pattern is included in the

j-th frame but the error pattern is not completely included in that frame. We assume that

S �Hy T
j�ðL�zÞ ¼ E and S � By T

j�ðL�zÞ ¼ 0 hold. In this case the following equation is derived in

the same way as the case where the j-th frame does not contain any error:

S ¼ E �HT
j�ðL�zÞ:

This indicates that the syndrome S for the case where a part of d-bit burst error pattern is

included in the j-th frame, but not completely included in that frame, is identical to that

for the case where the l-bit burst error pattern E is completely included in the j-th frame,

and this contradicts the code function. Therefore, if a part of the d-bit burst error pattern

is included in the j-th frame, then either S �Hy T
j�ðL�zÞ gives error pattern Ed having length

greater than l, or S � By T
j�ðL�zÞ 6¼ 0 holds. Q.E.D.

Figure 8:3 illustrates the relations between the burst error locations and S �Hy Tj and S � By Tj

in accordance to Theorems 8.2, 8.3, and 8.4.

The following provides a decoding algorithm for the l-bit burst error correcting and

d-bit burst error detecting codes.

Algorithm 8.1

Step 1. Calculate syndrome S. If S ¼ 0, there is no error; otherwise, move to step 2.

Received word

Burst error

Frame that completely
includes E

Frame that incompletely Frame that does not

E

HS . = E , and

BS . = 0

HS . =
BS . = 0

is larger than

is less than or equal to )

includes E include Eor

E ), or

Received word

Burst error

is larger than
)dless than or equal to

, and

d

Frame that completely
includes

Frame that incompletely Frame that does not

HS . = , and

BS . † = 0j

includes includeor

(Length of E

(Length of

(Length of Ed

Theorem 8.2

Theorem 8.3

Theorem 8.4

HS . =
BS . = 0

is larger than ), or(Length of

dE dE dE

dE
T †

†
j

j

T

†

†
j

j

T

†
j

†

†
j

j

T

Ed

Ed

E d
′
′

′ ′
′

′
′

′
E d

Figure 8.3 Relations between burst error locations and S � H yj
T
, S � Byj

T
for the ‘-bit burst error correcting

and d-bit burst error detecting codes. Source: [FUJI02].� 2002 IEICE Japan.

PARALLEL DECODING BURST ERROR CONTROL CODES 341



Step 2. Calculate S �Hy T
j�ðL�zÞ and S � By T

j�ðL�zÞ for each frame. If S �Hy T
j�ðL�zÞ is an l-bit burst

error pattern E and S � By T
j�ðL�zÞ ¼ 0, then assume that an error E ¼ S �Hy T

j�ðL�zÞ has

occurred in the j-th frame. Next correct the error E, and finally the algorithm ends. If,

however, for all frames S �Hy T
j�ðL�zÞ the burst error pattern is greater than l bits or

S � By T
j�ðL�zÞ 6¼ 0 ðj ¼ 0; � � � ;m� 1Þ, we move to step 3.

Step 3. Assume that an error of length greater than l bits, and less than or equal to d bits

has occurred. Detect this error.

Theorem 8.5 For l � L � lþ d and z 	 l�1, the algorithm above can correct l-bit

burst errors and detect d-bit burst errors where d > l.

Theorem 8.5 can be easily proved by using Theorems 8.2, 8.3, and 8.4. Therefore the

proof is omitted here.

Example 8.2 [FUJI02]

In this example we are interested in decoding the (22, 13) 3-bit burst error correcting

and 4-bit burst error detecting Fire codes. From l ¼ 3 and d ¼ 4 we have L ¼ lþ d ¼ 7

bits. Let the size of frame overlap z ¼ 2 bits. The parity-check matrix H and submatrix

H5�j, where j ¼ 0; 1; 2; 3, are shown below:

H

H =

0 H5

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1
0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0
0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0

H15H10

.

Assume that a 3-bit burst error ð0000101Þ has occurred in the first frame (frame 1),

starting at the 4-th bit. The syndrome is then given by S ¼ ð000101010Þ. Next S �Hy T5j

and S � By T5j are calculated for each frame as follows:

Frame 0: S �Hy T0 ¼ ð1001011Þ, S � By T0 ¼ ð01Þ,
Frame 1: S �Hy T5 ¼ ð0000101Þ, S � By T5 ¼ ð00Þ,
Frame 2: S �Hy T10 ¼ ð0100011Þ, S � By T10 ¼ ð01Þ,
Frame 3: S �Hy T15 ¼ ð0010001Þ, S � By T15 ¼ ð00Þ.

Now, S � By T0 ¼ 0 holds for frames 1 and 3, but S �Hy T15 ¼ ð0010001Þ in frame 3 is not a

3-bit burst error pattern. Since S �Hy T5 ¼ ð0000101Þ in frame 1 is a 3-bit burst error

pattern, we assume that frame 1 is corrupted by error pattern ð0000101Þ, which can

finally be corrected.

342 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES



Next assume that a 4-bit burst error ð0001101Þ has occurred in frame 1. Then the

syndrome is given by S ¼ ð001101000Þ. In this case, S �Hy T5j and S � By T5j are calculated

for each frame as follows:

Frame 0: S �Hy T0 ¼ ð0011010Þ, S � By T0 ¼ ð00Þ,
Frame 1: S �Hy T5 ¼ ð0001101Þ, S � By T5 ¼ ð00Þ,
Frame 2: S �Hy T10 ¼ ð1100111Þ, S � By T10 ¼ ð10Þ,
Frame 3: S �Hy T15 ¼ ð1010010Þ, S � By T15 ¼ ð10Þ.

We observe that although S � By T0 ¼ 0 and S � By T5 ¼ 0, the error patterns ð0011010Þ
and ð0001101Þ do not represent 3-bit burst error patterns. They are 4-bit burst error

patterns, so the error is detected.

8.1.3 Parallel Decoding Circuit

Figure 8:4 shows the block diagram of a parallel decoding circuit for burst error control

codes. The decoding circuit consists of a syndrome generator, m number of error pattern

generators, an error pattern calculator, and an inverting circuit. All these circuits are

implemented by combinational logic.

1. Syndrome generator. The parity-check matrix H and the received vector v are used

to obtain the syndrome S. The parity checks of the received information bits in v

correspond to ‘1’ in each row vector of H. For an ðN;N � RÞ code, we have R

number of parity-check circuits, and therefore we have R syndrome bits.

2. Error pattern generator. For each frame there exists an error pattern generator

that receives the R-bit syndrome vector as an input. Figure 8:5 shows an error

m

Signal indicating
uncorrectable errors

: OR gate

: AND gate

: NOR gate

SyndromeS
.........

E

...

Error pattern calculator

Inverting circuit

L

R

N

N

N

Received
word

Correct word

Syndrome
generator

Error pattern
generator

for the 0-th frame
CE E

Error pattern
generator

for the 1-st frame

L

E

Error pattern
generator

L

for the (m-1)-th frame

0 CE1 CE -1m

CEj : Correctable

(j -th frame)
error pointer

Figure 8.4 Parallel decoding circuit for burst error control codes. Source: [FUJI02].� 2002 IEICE Japan.

PARALLEL DECODING BURST ERROR CONTROL CODES 343



pattern generator for the j-th frame. The output from the error pattern generator is

an L-bit pattern E, which is either an l-bit burst error pattern or an all-zero vector.

The j-th error pattern generator calculates S �Hy T
j�ðL�zÞ and S � By T

j�ðL�zÞ. If S �H
y T
j�ðL�zÞ

represents an l-bit burst error pattern, and S � By T
j�ðL�zÞ is an all-zero vector, then the

output is error pattern E ¼ S �Hy T
j�ðL�zÞ; otherwise, the output is an all-zero vector.

In Figure 8:5 the circuit M indicates whether or not the error is greater than l-bit

burst error, that is, it gives output ‘0’ if the error is greater than l bits, which

finally gives all-zero error pattern. For example, an L-bit binary pattern

E ¼ ðe0; e1; � � � ; eL�1Þ represents an (lþ 1)-bit or greater error pattern if

_L�l�1
j¼0

ej ^
_L�1
i¼jþl

ei

 !
¼ 1:

Figure 8:6 shows the logic circuitry M for this equation.

3. Error pattern calculator and inverting circuit. Using the m L-bit error patterns, the

error pattern calculator outputs the overall N-bit error pattern. Since each frame

overlaps with adjacent frames by z bits, the m number of L-bit vectors are adjusted

to obtain the N-bit error pattern. Figure 8:7 shows the circuit that performs this

adjustment by logically OR’ing the bits in the overlap, and outputs the N-bit error

pattern. The inverting circuit performs bit by bit exclusive-OR addition of the N-bit

error pattern and the received word.

Optimal Hyi and Byi The smaller the number of 1’s included in theH
y
i and B

y
i matrices,

the smaller is the number of exclusive-OR gates needed to implement multiplication with

the syndrome during error pattern generation. Therefore, for a given submatrix Hi, the

optimal H
y
i and B

y
i matrices are the ones with the least number of 1’s.

The algorithm to obtain an optimal H
y
i is given as below. Here Hi ¼ ½hi;0 hi;1

hi;2 � � � hi;L�1�, where hi;j ð0 � j � L� 1Þ is a binary column vector of length R.

... ...

...
...

...

Syndrome

...

...

...

S

M

R R

L

R L-

‘1’ : gives -bit burst error.

‘0’ : Otherwise

‘1’ :

‘0’ : Otherwise, i.e., uncorrectable errors

Error is included completely in the j-th frame,
i.e., correctable errors.

H+
j.( )S .

z-L
T

B +
j.S .

( z- )L
T

Error pattern E
Signal indicating
correctable errors (CE  )j

S .H+
j .( z- )L
T

Figure 8.5 Error pattern generator for j-th frame. Source: [FUJI02].� 2002 IEICE Japan.

344 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES



Algorithm 8.2 for Optimal H yi

Step 1. t :¼ 0.

Step 2. If t ¼ L, end; else w :¼ 1.

Step 3. Let V be a set of binary row vectors of length R and weight w.

Step 4. If V ¼ fg, then w :¼ wþ 1 and go to step 3.

Step 5. Choose an arbitrary vector x from V and V :¼ V � fxg.
Step 6. If xhi;j ¼ 0 and xhi;t ¼ 1 for all j 6¼ t, replace the t-th row of H

y
i by x, set

t :¼ t þ 1, and go to step 2.

Step 7. Go to step 4.

Syndrome

N-Bit error pattern

S

R R

z z z z

Error pattern generator Error pattern generator

Error pattern
calculator

Figure 8.7 Error pattern calculator for adjacent two frames. Source: [FUJI02].� 2002 IEICE Japan.

e
0

e
l

e
L -1l-L -2l-L -3l-

... L- l

...

L- l

L-1
e
L-1

e
L-2

e
L-1

e
L-1

e
L-2

e
L-2

e e

‘1’ : Error E is an -bit burst error.
‘0’ : Otherwise

e

Figure 8.6 An l-bit burst error detecting circuit (circuit Min Figure 8.5). Source: [FUJI02].� 2002 IEICE Japan.

PARALLEL DECODING BURST ERROR CONTROL CODES 345



Since Algorithm 8:2 considers all the possible cases, the H
y
i obtained is optimal.

Next we present an algorithm to find out optimal B
y
i . In this case

B
y
i ¼

ui;0
ui;1
ui;2

..

.

ui;R�L�1

2666664

3777775;

where ui; j ð0 � j < R� LÞ is a binary row vector.

Algorithm 8.3 for Optimal Byi

Step 1. Set t :¼ 0, w :¼ 1. Let V be a set of binary row vectors of length R and weight 1.

Step 2. If t ¼ R� L, end.

Step 3. If V ¼ fg, then w :¼ wþ 1. V is a set of binary row vectors of length R and

weight w, which cannot be represented as a linear combinations of ui; 0, � � �, ui; t�1, but
V is a set of all binary row vectors of length R and weight w for t ¼ 0:

Step 4. Let x be an arbitrary vector in V, and V :¼ V � fxg.
Step 5. If x �Hi 6¼ 0, go to step 3.

Step 6. #Exclude from V all the vectors that can be represented as a linear combination

of x and ui;0, � � �, ui;t�1. Set ui;t :¼ x, t :¼ t þ 1, and go to step 2.

Since Algorithm 8:3 considers all the possible cases, the B
y
i obtained is optimal.

8.1.4 Evaluation and Discussion

Circuit Gate Amount and Check-Bit Length Figure 8:8 shows the check-bit

length and the parallel decoding circuit complexity of the Fire codes correcting burst

32 64 128

10

20

30

200

500

1,000

2,000

0

Information-bit length K

G
at

e 
am

ou
nt

l = 4

Fire codes + Generalized method

Fire codes

Interleaved Hamming code

with optimum and

R = 11

R = 12

R = 16 R = 20

R = 24+ Generalized method

Bi
+

iH
+

(p = 4)

C
he

ck
-b

it 
le

ng
th

 R

Figure 8.8 Check-bit lengths and gate amounts of parallel decoding circuits for 4-bit burst error correcting
codes. Source: [FUJI02].� IEICE Japan.

346 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES



errors of length l ¼ 4 bits. It also illustrates the hardware gate amount whenH
y
i and B

y
i are

optimal. Figures 8:9 and 8:10 illustrate the hardware complexity and the check-bit length

of the Fire codes correcting burst errors of length l ¼ 12 bits. Figures 8:8, 8:9, and 8:10
also show the check-bit lengths and the hardware complexities of degree l interleaved sin-

gle-bit error correcting Hamming codes, which are capable of correcting l-bit burst errors.

In this case the decoding circuit consists of l number of decoding circuits for single-bit

error correcting code placed in parallel. Here the 4-input AND, OR, and NOR gates are

counted as 1 gate, and the 2-input exclusive-OR gates are counted as 1:5 gates. The hardware
complexity of the proposed decoding method is worse than that of decoding interleaved

codes. However, the interleaved single-bit error correcting Hamming codes require many

more check bits than the Fire codes with same burst error correction capability. In general,

64 128 256 512 1,024

Fire codes + Generalized method

Interleaved

l = 12

G
at

e 
am

ou
nt

Information-bit length K

Hamming codes

Interleaved Fire codes (p = 3 )
+ Generalized method

500

1,000

2,000

5,000

10,000

20,000

50,000

p : Interleaving
degree

(p = l = 12)

Figure 8.9 Gate amounts of paralleldecodingcircuits for12-bit burst error correcting codes. Source: [FUJI02].

� 2002 IEICE Japan.

64 128 256 512 1,024

50

100

0

l = 12

Information-bit length K

R = 35

R = 60

R = 72

R = 84

R = 48

Fire codes

Interleaved
Hamming codes

Interleaved Fire codes

R = 34

R = 36
R = 42

(p = 3 )

p : Interleaving
degree

C
he

ck
-b

it 
le

ng
th

 R

(p = l = 12)

Figure 8.10 Check-bit lengths for 12-bit burst error correcting codes. Source: [FUJI02].� 2002 IEICE Japan.

PARALLEL DECODING BURST ERROR CONTROL CODES 347



for any burst error length, a smaller hardware complexity of the interleaved codes with inter-

leaving degree p is achieved at the expense of introducingmore check bits than necessary.We

will discuss the interleaved Fire codes in Figures 8:9 and 8:10 last in this subsection.

For the 4-bit burst error correcting Fire codes, we will compare the indicated

generalized decoding method with the existing methods, including Meggit decoding

[MEGG61] and Chien’s high-speed decoding [CHIE69] performed sequentially. As shown

in Algorithm 8:1, the decoding speed is defined as the time required from syndrome

generation to error correction. Figure 8:11 shows the number of clock cycles required for

decoding. Compared to the sequential decoding methods that require a decoding speed

proportional to the code length, the indicated method requires only two or fewer clock

cycles for K � 6; 000 information bits. The clock cycle is assumed to be 100MHz and

gate delay to be 1 ns. Again, the decoder gate amount is compared in Figure 8:12. In this

figure, one shift register is assumed to have six gates.

32 64 128
Information-bit length K

C
lo

ck
s

l = 4

Generalized method

Meggitt decoding [MEGG61]

decoding [CHIE69]

0

200

100

Chien’s high-speed

Figure 8.11 Clocks for decoding 4-bit burst error correcting Fire code. Source: [FUJI02].� 2002 IEICE Japan.

32 64 128

200

500

1,000

2,000

0

Information-bit length K

G
at

e 
am

ou
nt

Generalized method

Meggitt decoding [MEGG61]

decoding [CHIE69]
Chien’s high-speed

l = 4

Figure 8.12 Gate amounts of decoding circuits for 4-bit burst error correcting Fire Codes. Source: [FUJI02].

� 2002 IEICE Japan.

348 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES



Parallel Decoding Byte Error Control Codes Since byte errors are a special

case of burst errors, the decoding method in this chapter can also be applied to the

byte error control codes. In the case of byte errors, each byte corresponds to a frame,

and the overlap between frames is zero. Therefore setting L ¼ b, z ¼ 0 in this decoding

method yields a parallel decoder of the b-bit byte error correcting code. In such a case

the error pattern calculator in Figure 8:4 becomes unnecessary because the frames are

nonoverlapped.

We will now consider applying the decoding method mentioned in this chapter, for

example, to the single-byte error correcting and double-byte error detecting Reed-

Solomon code with code length m bytes. This class of codes has been mentioned precisely

in Section 5.2. The parity-check matrix of the code has three rows and m columns with

elements of GFð2bÞ as shown below:

H ¼
I I � � � I � � � I

I T � � � Tj � � � Tm�1

I T2 � � � T2j � � � T2ðm�1Þ

264
375

¼ H0 Hb � � � Hjb � � � Hðm�1Þb
 �

:

Note that m � 2b � 1, Hjb (0 � j < m) is a 3b� b binary submatrix, T is a b� b

companion matrix defined by a b-th degree primitive polynomial, and I is a b� b identity

matrix, where fI; T; T2; . . . ; T2ðm�1Þg 2 GFð2bÞ.
Assuming that there is an error E in the j-th byte of the received word. The syndrome

S ¼ ½S1 S2 S3� will be given by

S1 ¼ E; S2 ¼ S1 � Tj; S3 ¼ S1 � T2j: ð8:4Þ

Each binary vector S1, S2, and S3 has length b. The existing decoding method performs this

calculation in parallel byte by byte in order to obtain the error pattern and the error

location. Once all the relations given by Eq. (8.4) are satisfied in the j-th byte, we

determine that the j-th byte is in error, and the error pattern is given by S1.

This existing method completely matches the method described in this section where

Bjb is appended to Hjb. That is, Hjb ¼
I

Tj

T2j

24 35 and Bjb ¼
O O

I O

O I

24 35, so we get

H
y
jb ¼ I O O½ �; B

y
jb ¼

Tj I O

T2j O I

� �
:

These matrices combined with the syndrome S in Theorem 8.1 yield Eq. (8.4).

Once Bjb is given, the method described in this section matches the existing ones, even

the ones using single-byte error correcting codes such as the Hong-Patel codes

[HONG72]. This is because the decoding method of this section is very general, so it

completely includes the existing parallel decoding methods. In addition Algorithms 8:2
and 8:3, which give the optimal H

y
jb and B

y
jb, can be used with less decoding hardware.

The hardware gate amount of this generalized decoding method is compared to the

conventional method for the single 4-bit byte error correcting codes. The result obtained

PARALLEL DECODING BURST ERROR CONTROL CODES 349



by optimization of the algorithms above shows that it is possible to decrease the decoding

circuit gate amount by 2% to 10%. Similar results are found for different byte lengths and

for other byte error correcting RS codes.

The conventional parallel decoding method can be applied to the burst / byte error

control codes designed by using only elements over GFð2bÞ. The conventional method

cannot be applied, for example, to the single-byte error correcting and single-byte plus

single-bit error detecting (SbEC-(Sbþ S)ED) codes shown in Section 6.4. However, the

generalized parallel decoding method is applicable to these codes and in general, to any

linear error control codes.

Decoding of Interleaved Codes Here we consider the parallel decoding of the

interleaved burst error correcting codes. We can apply degree-p interleaving to an

ðl=pÞ-bit burst error correcting codes, and obtain an l-bit burst error correcting code.

For this interleaved burst error correcting code, the entire decoding circuit usually consists

of p number of parallel decoding circuits of the ðl=pÞ-bit burst error correcting code. The

hardware gate amount of this decoder is much less than that of the generalized decoding

method. For example, the hardware gate amount is reduced to half of that of the gen-

eralized decoder for the case where the burst length l ¼ 12 bits and the interleaving degree

p ¼ 3, as shown in Figure 8:9. Furthermore, as shown in Figure 8:10, interleaved b-bit

burst error correcting Fire codes with interleaving degree p require much less check-bit

length compared to that of the interleaved single-bit error correcting Hamming codes

with degree l ¼ pb.

8.1.5 Multiple Burst / Byte Error Correction

We have discussed generalized parallel decoding single-burst / byte error correcting codes

in the previous subsections. As we will demonstrate below, these types of code can be

extended to parallel decoding multiple burst / byte error control codes. In other words,

when t number of l-bit burst errors are given by E1; E2; E3; � � � ; Et, completely included

in t frames each with length L starting at bit positions i1; i2; i3; � � � ; it, respectively, the

syndrome S is given by

S ¼ E1 �HT
i1
þ E2 �HT

i2
þ E3 �HT

i3
þ � � � þ Et �HT

it
:

Then we annex an R� ðR� tLÞ matrix Bði1; i2; i3; ���; itÞ to an R� tL matrix Hði1; i2; i3; ���; itÞ ¼
½Hi1Hi2Hi3 � � �Hit � to obtain an R� R nonsingular matrix Aði1; i2; i3; ���; itÞ ¼
½Hði1; i2; i3; ���; itÞBði1; i2; i3; ���; itÞ�. Its inverse matrix A�1ði1; i2; i3; ���; itÞ is given by

A�1ði1; i2; i3; ���; itÞ ¼
H
y
ði1; i2; i3; ���; itÞ

B
y
ði1; i2; i3; ���; itÞ

" #
:

In this case H
y
ði1; i2; i3; ���; itÞ and B

y
ði1; i2; i3; ���; itÞ are tL� R and ðR� tLÞ � R matrices,

respectively. So the following conditions hold:

S �Hy Tði1;i2;i3;���;itÞ ¼ ½E1E2E3 � � �Et�;

S � By Tði1;i2;i3;���;itÞ ¼ 0:

350 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES



From these equations, we obtain the error patterns Ej ð1 � j � tÞ and the error locations ij,
1 � j � t. Hence we can correct these multiple burst errors.

The discussion above also holds for multiple-byte errors. So the decoding method

presented here can further be applied to multiple-byte error correcting codes.

8.2 PARALLEL DECODING CYCLIC BURST ERROR CORRECTING CODES

This section presents a simplified method for parallel decoding burst error correcting

cyclic codes [UMAN03,05]. With this method we define the entire decoding process in

terms of a binary companion matrix T that generates a multiplicative group under the usual

matrix multiplication. This method does not involve any matrix inversions.

8.2.1 Preliminaries

Let C be a binary ðN; KÞ cyclic or shortened quasi-cyclic code with l-bit burst error-

correcting capability. Assume thatC is defined by a generator polynomial gðxÞ overGFð2Þ
with degree R, where R ¼ N � K. That is,

gðxÞ ¼
XR
i¼0

gix
i; gi 2 GFð2Þ;

where g
0
¼ g

R
¼ 1. Furthermore N � l, where l denotes the exponent of gðxÞ. Without

loss of generality, we can assume that the j-th column of the parity-check matrix H of the

code C is given by the vector of binary coefficients in the remainder obtained by dividing

xj by gðxÞ. Therefore the parity-check matrix H can be written as

H ¼
j j j j j j
b0 b1 b2 � � � bi � � � bN�2 bN�1

j j j j j j

2664
3775;

where, for 0 � i � N � 1,

j
bi

j
denotes the R-bit binary coefficient vector representing

xi mod gðxÞ.
The elements xi mod gðxÞ, for i ¼ 0; 1; 2; � � � ; l� 1, form a multiplicative group

where xl mod gðxÞ ¼ x0 mod gðxÞ ¼ 1. Therefore we can represent these elements in

companion matrices as well. Define an R� R companion matrix corresponding to

xi mod gðxÞ as follows:

Ti ¼
j j j j
bi biþ1 biþ2 � � � biþR�1

j j j j

2664
3775:

Then the set fT0; T1; T2; T3; . . . ; Tl�1g is also a multiplicative group with the usual

matrix multiplication over GFð2Þ. The matrix T that generates the multiplicative group is

PARALLEL DECODING CYCLIC BURST ERROR CORRECTING CODES 351



given in terms of the binary coefficients of the generator polynomial of the code.

This matrix has been presented earlier, in Definition 2.9 of Subsection 2.1.3 and in

Definition 5.1 of Subsection 5.1.1.

8.2.2 Parallel Decoding

For parallel decoding, it is preferable to perform error pattern and error location

calculations as matrix or vector multiplications over GFð2Þ. The matrix or vector

multiplication over GFð2Þ corresponds to simple exclusive-OR additions and is therefore

suitable for combinational logic realizations. The companion matrix T corresponding to

the generator polynomial gðxÞ is a handy tool because the error pattern calculation

becomes treated as matrix and vector multiplications, and not polynomial calculations. Let

E 2 GFð2RÞ � f0g represent an R-bit error pattern (R-bit row vector) starting at the j-th bit

of the received word. The syndrome generated by this error is given by

S ¼ E � Tj:

Then, since T is a nonsingular matrix, the error pattern E is simply given by

E ¼ S � T�j ¼ S � Tl�j:

For burst error correction we need information about the burst error pattern as well as

the location where the burst error occurs. As illustrated in Figure 8:2, we divide the

received word into a number of overlapping L-bit frames where each frame overlaps with

its adjacent frames by z bits. In this case L is equal to R. So the last frame in the received

word will have less than or equal to R bits.

The N-bit received word is divided by m overlapping R-bit frames where each frame

overlaps its adjacent frames by exactly z bits. If z ¼ l� 1, every l-bit burst error pattern is

completely included in a unique frame, as was shown in Subsection 8.1.2.

The binary column vectors of the H matrix corresponding to the j-th frame are shown

below:

j j j j
bjðR�lþ1Þ bjðR�lþ1Þþ1 bjðR�lþ1Þþ2 � � � bjðR�lþ1ÞþðR�1Þ

j j j j
:

These column vectors are exactly the same as that of the companion matrix TjðR�lþ1Þ.
Therefore the j-th frame is associated with the companion matrix TjðR�lþ1Þ for syndrome

calculations and Tl�jðR�lþ1Þ for error pattern calculations. In order to perform l-bit burst

error correction on the received word, we need to locate the frame that is corrupted by an

R-bit error pattern representing an l-bit burst error. Theorem 8.6 illustrates how the

location of the corrupted frame and the corresponding error pattern can be determined

uniquely.

Theorem 8.6 Let C be an ðN; KÞ binary cyclic or shortened quasi-cyclic code with

l-bit burst error correcting capability. Let S be the syndrome generated by a received

word v ofC. Then S � Tl�jðR�lþ1Þ ¼ E, where 0� j � m�1, such that E 2GF(2R) represents
an l-bit burst error pattern if and only if v is corrupted by the error pattern E at the j-th frame.

352 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES



Here m ¼ dðN � zÞ=ðR� zÞe, and T denotes the R� R companion matrix corresponding

to the generator polynomial of C.

Proof Suppose that the received word v is corrupted by the error pattern

E 2 GFð2RÞ � f0g at the j-th frame of the received word. Then S ¼ E � TjðR�lþ1Þ. There-

fore E ¼ S � Tl�jðR�lþ1Þ holds, as required. Now, assume that S � Tl�wðR�lþ1Þ ¼ Ey, where

Ey 2 GFð2RÞ � f0g represents a correctable l-bit burst error pattern for some

0 � w � m� 1. Then S ¼ Ey � TwðR�lþ1Þ, that is

E � TjðR�lþ1Þ ¼ Ey � TwðR�lþ1Þ: ð8:5Þ

No l-bit burst error patterns are included in two frames when the received word is

divided by m ¼ dðN � zÞ=ðR� zÞe R-bit frames where adjacent frames overlap by

exactly l� 1 bits. Therefore, since the code is l-bit burst error correcting, Eq. (8.5)

implies j ¼ w. However, then E ¼ Ey because T is a nonsingular matrix. This

completes the proof. Q.E.D.

Table 8.1 shows the hardware complexity of the parallel decoding circuit for the 4-bit

burst error correcting code that is generated by gðxÞ ¼ ðx11 þ 1Þðx4 þ xþ 1Þ. The codes

considered in this table are shortened quasi-cyclic codes of the original (165, 150) code

with information lengths K equal to 32, 64, and 128 bits. In this table, a 4-input AND / OR

gate is counted as 1 gate and a 2-input XOR (exclusive-OR) gate as 1:5 gates.

8.3 TRANSIENT BEHAVIOR OF PARALLEL ENCODING / DECODING
CIRCUITS OF ERROR CONTROL CODES

The relation between the transient behavior (i.e., glitches) of the encoding / decoding

circuit and the H matrix construction of an error control code (ECC) has not been

addressed before. In the parallel encoding and decoding circuits of error correcting

codes, glitches are known to consume extra power and induce simultaneous switching

noise [LO05]. It is shown in this section that the probability of a given number of

glitches that may accumulate in the encoding / decoding circuit exhibits a Gaussian-like

distribution. An estimation methodology was developed so that the transient behavior

of an ECC for very large word length can be predicted. As a result the principle of

minimum-weight & equal-weight-row construction of H matrix (defined in Subsection

3.1.1) is demonstrated to be the best design strategy.

TABLE 8.1 Decoder Gate Amount for 4-Bit Burst Error-Correcting Codes

Decodercomponents K ¼ 32 K ¼ 64 K ¼ 128

Syndromegenerator 249 492 927
Syndromedecoder 535 1,000 1,740
Errorcorrector 90 157 270
Errordetector 7 8 10

Total 881 1,657 2,947

Source : [UMAN05]. � 2005 IEEE.

TRANSIENT BEHAVIOR OF PARALLEL ENCODING / DECODING 353



8.3.1 Introduction

For high-speed transfer of data, parallel encoding / decoding of the error control codes is

essential. However, parallel decoding circuits can be very bulky and they constitute

primarily from exclusive-OR (XOR) circuits. For example, for a 128-bit information

length, a 12-bit burst error correcting code, such as a Fire code, will need about 2,000 to

5,000 logic gates in its parallel decoding circuit, as shown in Subsection 8.1.4. Most of

these logic gates, around 80% of them, are XOR gates. As the advent of system-on-chip

(SoC), these parallel decoding circuits are an integrated part of a system fabricated along

side other circuits and subsystems. Hence the transient behavior (i.e., glitches) of these

parallel decoding circuits need to be carefully analyzed.

We use the term transient behavior to describe the circuit activities between the

insertion of inputs to the final stabilization of the circuit outputs. Exclusive-OR (i.e., XOR)

is a hazardous Boolean function such that its tendency to produce glitches is inherent to the

function itself. In other words, there is no way to avoid glitches in the XOR circuits. A

glitch is a temporary and unwanted logic state occurs at the circuit output. Often a glitch

will not complete a full logic swing and thus may not have impact if the circuit at the next

stage is not fast enough to respond. However, as the circuit speed increases, even a half-

swing glitch may induce some response at the subsequent circuit. This motivates us to

perform in-depth analysis of the transient behavior of the encoding and decoding circuits

of the error control codes.

Besides creating a difficult situation for the timing of logic designs [LAVA93, BENI00],

glitches in general will consume extra energy [MEHT95, ROY99, BENI00, GHOS04] and

elevate the simultaneous switching noise (SSN) [CHEN97, PARR01, TANG02, ROSS04].

As demonstrated in [TANG02], a power bus noise is tied to the total number of switching

activities accumulated at any given time. Because glitches cause extra switching activities,

they intensify the power bus noise problem. So the total number of glitches is directly

proportional to the degree of impact at any given time. The increase of power bus noise

will in fact add circuit delays [JIAN00, BAI01].

Until recently the transient behavior of the encoding / decoding circuits of error control

codes had rarely been studied. In one recent study [ROSS04], the SSN was analyzed for

the Hamming encoded bus. This work concentrates on how the added check bits, to be

carried by the additional wires of the bus, can enlarge the SSN problem. In another recent

work [GHOS04], the memory traces of benchmark programs are used to determine the

probability of transient behavior in each memory bit or pair. Such information is then used

to select the H matrix in Hsiao’s odd-weight-column SEC-DED code such that the power

consumption can be minimized. This is essentially the extension of the idea of [ZHOU00],

where the switching activities can be reduced in an XOR circuit if the probability of

transient in individual input bit is known.

The XOR circuits in a parallel decoding circuit usually have large number of inputs

and are typically formed as an XOR tree. The glitches will not only be generated by any

XOR gate but will also propagate along the sensitized path to the primary output. The

most devastating effect is that the glitches will accumulate in succeeding stages of

propagation. The impact to the power bus, in the form of energy consumption or the

causes for simultaneous switching noise, is all the glitches accumulated at every stage of

the XOR tree.

Modern-day SoC’s are extremely dense with tens and even hundreds of millions of

transistors. The simultaneous switching of so many transistors contributes to the problem

354 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES



of power bus instability. Because the power bus noise is so closely allied to the total

number of switching activities at any given time, and the glitches cause extra switching

activities, it follows that glitches create noise problem.

8.3.2 Generation, Propagation, and Accumulation of Glitches
in Exclusive-OR Tree Circuits

Recent work on glitches in exclusive-OR (XOR) functions is in the area of power

estimation. In this context the interest in glitches is usually in a more accurate estimate of

total power consumption. Hence these studies are mostly concerned with the probability

that glitches will occur under various delay models and / or input pattern possibilities

[MEHT95, ROY99]. Here we are interested in the worst case of glitch phenomena, namely

(1) all input patterns are equally likely to occur, (2) signals cannot be controlled, so they

arrive exactly at the same time, and (3) individual logic gates have different delay times.

There are many XOR gate implementation possibilities. Without lost of generality, we

will concentrate on the structure of the large XOR function without specifying the actual

implementations of the XOR gates involved.

Glitch Generation The generation and propagation of glitches in logic circuit are well

known. For an n-variable exclusive-OR function, a glitch is generated whenever more than

one input variable is changed simultaneously. Because the changes can never occur

exactly at the same time, a multiple-variable change is accomplished by changing one

variable at a time. Note that we are dealing with the worst-case analysis, so any nonzero

difference is considered. We may describe a multiple-variable change as a traverse on the

binary cube.

Figure 8.13 illustrates the well-known 2-input Boolean functions. Figure 8.13(a) shows

an OR / NOR function. A glitch can occur only if the input is going from (01) to (10), or

from (10) to (01), and only if (01) changes to (00) before arriving at (10). Similarly only

one such possibility exists for the AND /NAND function, as shown in Figure 8.13(b).

However, for the XOR /XNOR function shown in Figure 8.13(c), any simultaneous

changes in both input variables will induce a glitch. The assumption here is, of course, that

no two signals can change exactly at the same time. This assumption may be relaxed for

slower operating frequency but not for modern-day high-speed logic circuits.

For an n-input XOR function, there are a total of 2n possible input patterns. For

transient analysis, we are concerned about the input sequence pairs, the pairing of the

(a) OR / NOR (b) AND / NAND (c) XOR / XNOR

00 01

1110

00 01

1110

00 01

1110

2-Input logic function output
: ‘1’

: ‘0’

Figure 8.13 Generation of glitches in 2-input Boolean functions.

TRANSIENT BEHAVIOR OF PARALLEL ENCODING / DECODING 355



previous input and the present input. There are 22n possible input pairs. To simplify

the discussion, we use N to denote a 0! 0 or a 1! 1 transient, and T to represent

a 0! 1 or a 1! 0 transient. For example, when the inputs to a 4-input XOR

function changes from (0, 0, 1, 1) to (0, 1, 0, 1), we denote the transition as (N, T , T , N).

Since each transient pattern represents 2n input pairs, there are only 2n possible

transient patterns.

A glitch is generated at the output of a 2-input XOR function if both inputs receive T .

Thus

T  T ) G;

whereG denotes a temporary change to the opposite logic value such that a logic 1 appears

while the logic value is supposed to maintain at 0, and vice versa. This can be easily

verified by looking at Figure 8.13(c).

Glitch Propagation Typically a large exclusive-OR function is synthesized as an

XOR tree constructed from 2-input XOR gates. In this construction, a glitch can pro-

pagate through the full height, log2n, for an n-variable function. The exact condition

that makes XOR gates easily testable also easily guarantees the propagation of glitches

through the XOR gates. Whenever a glitch arrives at one of the inputs, a 2-input XOR

gate will always propagate this glitch to its output regardless of the condition of the other

input. Hence

N  G) G

and

T  G) T þ G:

Here we use the ‘‘þ ’’ sign to represent the combination of a logic value change T and

a glitch. The logic value may change before the glitch occurs, and it may change after the

glitch. However, we use the same notation because our interest is in the propagation of

the glitch.

What happens when both inputs receive glitch? Since the glitch can be propagated

regardless, glitches on both inputs will be propagated to the output. There is, of course, an

odd chance that both glitches will arrive at the same time. In that case both glitches may

get cancel out if they are of different polarities or only one glitch is generated at the output

if the same polarity. In the analysis we will ignore such an unlikely event and assume that

the two glitches are both propagated to the output. In other words, the glitches are

accumulated as they propagate through the circuit.

Glitch Accumulation There are two types of glitch accumulations: spatial and tem-

poral. Spatial glitch accumulation is the accumulation of glitches, which appear one by

one, at the output of a large XOR circuit. This is a result of glitch propagation as described

above. Since we use ‘‘þ ’’ to represent the accumulated effect of transient behavior, ‘‘�’’
will be used to represent the accumulation of the glitches. We find that

T  ðT þ GÞ ) Gþ G)
X2

G;

356 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES



or in general,

T  ðT þ
Xd

GÞ )
Xdþ1

G:

Table 8.2 summarizes these transient behaviors.

Temporal glitch accumulation refers to the fact that all glitches, which occur at different

times but still within the same circuit transition period, have the collected effect on the

power bus. For a large XOR circuit built from 2-input XOR gates, the temporal

accumulation counts all the glitches on all 2-input XOR gates from the insertion of the

input to the stabilization of the output.

Figure 8.14 shows an 8-input exclusive-OR function realized with seven 2-input XOR

gates in the conventional XOR tree construction. Here, for simplicity, N and T are

TABLE 8.2 Transient Behavior of XOR Functions

 N T �dG T þ �dG

N N T �dG T þ �dG
T T G T þ �dG �dþ1G

�d0G �d0G T þ �d0G �dþd0G T þ �dþd0G
T þ �d0G T þ �d0G �d0þ1G T þ �dþd0G �dþd0þ1G

Source: [LO05].� 2005 IEEE.

N

T

0

1

T

T

2

3

N

N

4

5

T

T

6

7

8

9

T

G

10

11

N

G

12
T+G

13 G

T+G+G

14

Psc

Ptran

0, 4, 5

Circuit in transient

1, 2, 3, 6, 7

8

9

10

11

12

13

14

Figure 8.14 Glitch generation, propagation, and accumulation in an 8-input XOR function. Source: [LO05].

� 2005 IEEE.

TRANSIENT BEHAVIOR OF PARALLEL ENCODING / DECODING 357



represented by a 0! 0 and a 0! 1 transients, respectively. The glitch, G, is thus

represented by a momentary change to logic 1 state, as illustrated at nets 9, 11, 12, 13, and

14. These glitches affect both Psc and Ptran because they behave just like logic state

changes. Here Psc is the power consumption from the short circuit current every time a

logic gate is changing its output state. Ptran is the power consumption due to the changing

of the output capacitance of a logic gate. The worst-case scenario is, of course, when all

four inputs change simultaneously. As the glitches are propagated forward, they

accumulate. In the given example we see how glitches may accumulate and show their

effects at the primary output, and thus the spatial accumulation.

The temporal accumulation, on the other hand, is the total number of glitches shown in

Figure 8.14 including all the internal nodes. Recall that T represents a change of input,

either 0! 1 or 1! 0. The changes in the input logic values induce a change in the output

logic value within one clock cycle. Therefore glitches that occur along the circuit paths to

the output will have a cumulative impact. For the worst-case analysis, we simply add up

the number of all the glitches, G’s, in the circuit. The number of temporal accumulated

glitches (TAG) in Figure 8.14 is six. Figure 8.14 shows PSC and PTran separately so their

impacts can be clearly distinguished. The true impact to the power supply should be the

sum of these two factors.

8.3.3 Glitches in Encoding / Decoding Circuits of Error Control Codes

The encoding / decoding circuits of ECCs have multiple XOR functions working together.

The relations among these XOR functions, or parity functions, are defined by theHmatrix

of the code. Essentially the total weight ofHmatrix, meaning the total number of 1’s inH,

dictates how complex the encoding / decoding circuits will be.

Exhaustive Examinations of Transient Behavior The H matrix of single error

correcting and double error detecting (SEC-DED) Hsiao’s odd-weight-column codes is

shown below. We will concentrate on the encoding circuit in the following analysis.

The decoding circuit will have the similar transient behavior.

Figure 8.15 shows the encoding circuit of the above (13, 8) odd-weight-column SEC-

DED code. The transient behavior analysis methods described above are applied

exhaustively. Table 8.3 shows the summary of the results. WT denotes the number of T ’s

in the k ¼ 8 inputs to the encoding circuit. The example shown in Figure 8.15 has a

transient input pattern with WT ¼ 4. However, for the five XOR tree circuits in this

encoding circuit, they receive transient input patterns with WT ¼ 2; 4; 2; 2, and 2 for

d0 d1 d2 d3 d4 d5 d6 d7 c0 c1 c2 c3 c4

H ¼

0 0 0 1 1 1 1 1 1 0 0 0 0

1 1 1 0 0 0 1 1 0 1 0 0 0

0 1 1 0 1 1 0 0 0 0 1 0 0

1 0 1 1 0 1 0 1 0 0 0 1 0

1 1 0 1 1 0 1 0 0 0 0 0 1

2666666664

3777777775
: ð8:6Þ

358 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES



circuits c0; c1; c2; c3, and c4, respectively. Obviously a different construction of the H

matrix will lead to a very different encoding circuit design and thus different transient

behavior.

Since even the transient patterns with same weight may result in different TAG

numbers, we count the frequency in which the same number of TAG is produced when the

transient patterns have the same weight. For instance, the one transient pattern of WT ¼ 4

shown in Figure 8.15 results in TAG ¼ 9. There are total 8
4

� �
¼ 70 transient patterns of

WT ¼ 4 and actually only 19 of them (shown as ‘freq: ¼ 19’ in Table 8.3) will result in

TAG ¼ 9, as shown in Table 8.3. In fact there are five transient patterns of WT ¼ 4 that

d0 (N)
d1 (T)
d2 (T)
d3 (N)
d4 (N)
d5 (N)
d6 (T)
d7 (T)

T
A

G
 =

 (1+
1) +

WT = 4

(1)
+

 (1+
2+

1+
1+

1) =
 9

T NT NN

NT

G

T

T TT NT NN TT NN NTN TN T

TG TN TN

T+G T T

2G G G G

GN

c0 c1 c2 c3 c4

NT

Figure 8.15 Encoding circuit of the (13, 8) odd-weight column SEC-DED code. Source: [LO05].� IEEE.

TABLE 8.3 TAG Frequencies for all Transient Weights (WT) of the SEC-DED Encoding

Circuit in Figure 8.15

WT < 2 WT ¼ 2 WT ¼ 3 WT ¼ 4 WT ¼ 5 WT ¼ 6 WT ¼ 7

TAG freq. TAG freq. TAG freq. TAG freq. TAG freq. TAG freq. TAG freq.

0 9 1 4 4 6 7 5 11 2 16 5 22 6
2 9 5 12 8 9 12 16 17 10 24 1
3 8 6 13 9 19 13 11 18 4 28 1
4 3 7 11 10 6 14 9 19 2
5 2 8 9 11 18 15 7 20 4
6 2 9 3 12 9 16 2 21 2

10 0 13 1 17 9 22 1 WT ¼ 8

11 2 14 2 TAG freq.
15 1 28 1

Source: [LO05].� 2005 IEEE.

TRANSIENT BEHAVIOR OF PARALLEL ENCODING / DECODING 359



produce only TAG ¼ 7, and one transient pattern of WT ¼ 4 that produces TAG ¼ 15.

Figure 8.16 shows the histogram of the results shown in Table 8.3. In Figure 8.16, the total

number of transient patterns that may produce the same number of TAG are added. For

instance, TAG ¼ 9 may be produced by 3 transient patterns of WT ¼ 3 and 19 patterns of

WT ¼ 4. Thus the total number of transient patterns that may result in TAG ¼ 9 is 22.

Since we assume that all inputs have equal arrival rates, we derive the probability for a

particular TAG number as follows:

PrðTAG ¼ aÞ ¼ Number of transient pairs that produce TAG ¼ a
Total Number of possible transient pairs

:

For example, from Table 8.3 we find that two patterns of WT ¼ 3, 18 patterns of

WT ¼ 4, and two pairs of WT ¼ 5 can all produce TAG ¼ 11. Therefore there are 22

out of the total 256 transient pairs that will result in TAG ¼ 11. Accordingly, we say

PrðTAG ¼ 11Þ ¼ 22=256 ¼ 0:086. Figure 8.17 shows the distribution of the TAG

probabilities for the (13, 8) SEC-DED code. The x-axis represents the TAG number and the

y-axis denotes the probability.

Next we perform an exhaustive examination of the following (22, 16) odd-weight-

column SEC-DED code. In this case the number of 1’s per row is exactly 8 for all rows.

This means that all six XOR circuits have 8 inputs, a power of two. The previous (13, 8)

Figure 8.16 Histogramof the frequencydistribution andaccumulation given inTable 8.3. Source: [LO05].� IEEE.

0.1

0.08

0.06

0.04

0.02

0

0 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 2010 21 22 23 24 25 26 27 28

TAG number

Pr
ob

ab
ili

ty

Figure 8.17 Distribution of TAGprobabilities of the (13, 8) SEC-DED code. Source: [LO05].� 2005 IEEE.

360 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES



encoding circuits did not have such perfectly even distribution of H row weights and the

XOR circuits did not have power of two inputs.

Table 8.4 shows the TAG frequencies for the (22, 16) SEC-DED code with all possible

216 input transient pairs. Since the H row weights are evenly distributed, the TAG

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 c0 c1 c2 c3 c4 c5

H ¼

0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0

1 0 1 1 0 0 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 0

1 1 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0

1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1

26666664

37777775
ð8:7Þ

TABLE 8.4 TAG Frequencies for All Transient Weights (WT) of the SEC-DED Encoding

Circuit of the (22, 16) Odd-Weight-Column SEC-DED Code

WT < 2 WT ¼ 3 WT ¼ 4 WT ¼ 5 WT ¼ 6 WT ¼ 7 WT ¼ 8

TAG freq. TAG freq. TAG freq. TAG freq. TAG freq. TAG freq. TAG freq.

0 17 3 67 6 152 9 87 12 8 17 90 21 10
4 143 7 310 10 404 13 138 18 743 22 418
5 142 8 460 11 914 14 734 19 1924 23 1556

WT ¼ 2 6 97 9 385 12 1033 15 1552 20 2779 24 2800
TAG freq. 7 55 10 261 13 867 16 1937 21 2532 25 3194
0 7 8 36 11 143 14 563 17 1650 22 1697 26 2368
1 38 9 14 12 74 15 292 18 1080 23 1015 27 1386
2 33 10 3 13 23 16 135 19 518 24 421 28 712
3 24 11 2 14 9 17 51 20 253 25 164 29 272
4 8 12 1 15 3 18 15 21 96 26 53 30 106
5 6 19 4 22 30 27 19 31 42
6 3 20 2 23 10 28 2 32 2
8 1 21 1 24 2 30 1 33 4

WT ¼ 9 WT ¼ 10 WT ¼ 11 WT ¼ 12 WT ¼ 13 WT ¼ 14 WT ¼ 15

TAG freq. TAG freq. TAG freq. TAG freq. TAG freq. TAG freq. TAG freq.

26 90 30 8 36 87 42 152 48 67 54 7 63 16
27 743 31 138 37 404 43 310 49 143 55 38
28 1924 32 734 38 914 44 460 50 142 56 33
29 2779 33 1552 39 1033 45 385 51 97 57 24
30 2532 34 1937 40 867 46 261 52 55 58 8
31 1697 35 1650 41 563 47 143 53 36 59 6
32 1015 36 1080 42 292 48 74 54 14 60 3 WT ¼ 16
33 421 37 518 43 135 49 23 55 3 62 1 TAG freq.
34 164 38 253 44 51 50 9 56 2 72 1
35 53 39 96 45 15 51 3 57 1
36 19 40 30 46 4
37 2 41 10 47 2
39 1 42 2 48 1

Source: [LO05].� 2005 IEEE.

TRANSIENT BEHAVIOR OF PARALLEL ENCODING / DECODING 361



frequency distribution is also symmetrical. For example, the frequency column for

WT ¼ 2 is identical to that of WT ¼ 14. Similarly the frequency columns for WT ¼ 3 is

identical to that of WT ¼ 13, and so on. Figure 8.18 shows the result of exhaustive

examination of the (22, 16) SEC-DED code. As expected, the probability distribution

looks almost like normal distribution.

Estimating the Transient Behavior The previous example demonstrates how an

ECC’s encoding circuit can be analyzed. However, an exhaustive examination is only pos-

sible for short word lengths. To analyze the transient behavior of an ECC with long word

lengths, the following estimation technique is required.

From the examination of encoding circuits above recall that the probability distribution

tends to be Gaussian-like regardless of the H matrix’s construction. Not surprisingly,

normal, or Gaussian, distributions are commonly found in situations like this. Recall also

that the TAG count for a transient pair is the total of the TAG in the individual XOR circuit.

For each transient pair, different XOR circuits will receive different transient patterns

according to the H matrix. Therefore a different transient pair with the same WT will

produce different TAG numbers. However, in Table 8.3 we saw that for transient pairs with

the same weight, the TAG numbers also are Gaussian-like in their distribution.

Let TAGavgðWT ¼ iÞ denote the average TAG number for WT ¼ i, we estimate that the

mean and standard deviation of the Gaussian distribution as

m ¼ TAGavg WT ¼ k

2

� �
ð8:8Þ

and

s ¼ TAGavg WT ¼ k

2

� �
� TAGavg WT ¼ 3k

8

� �
: ð8:9Þ

Here we follow the convention that uses k for the information-bit length, r for the

check-bit length, and n to denote the codeword length such that n ¼ k þ r. In prac-

tice, TAGavgðWT ¼ iÞ may be difficult to obtain as all k
i

� �
transient pairs have to be

exhaustively examined. On the other hand, as we will see in Subsection 8.3.5, the

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  10  20  30  40  50  60  70

P
ro

ba
bi

lit
y

TAG number

Figure 8.18 Distribution of TAGprobabilities of the (22,16) SEC-DED code. Source: [LO05].� IEEE.

362 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES



maximum number can be easily calculated. Let TAGmaxðWT ¼ iÞ denote the worst-case
TAG number when WT ¼ i. Then the alternative estimation can be made as follows:

mmax ¼ TAGmax WT ¼ k

2

� �
ð8:10Þ

and

smax ¼ TAGmax WT ¼ k

2

� �
� TAGmax WT ¼ 3k

8

� �
: ð8:11Þ

Example 8.3

Consider the (13, 8) SEC-DED code encoding circuit shown in Figure 8.15. From

Table 8.3 find TAGavgðWT ¼ 4Þ ¼ 10 and TAGavgðWT ¼ 3Þ ¼ 6:43. Therefore the

estimated m ¼ 10 and s ¼ 3:57. We will use only the worst-case numbers

TAGmaxðWT ¼ 4Þ ¼ 15 and TAGmaxðWT ¼ 3Þ ¼ 11. Then mmax ¼ 15 and smax ¼ 4.

Figure 8.19 shows the plots based on the actual data and the previous estimation

schemes. Obviously the first estimation scheme where the average numbers are used fits

better with the real data. The worst-case estimation tends to be pessimistic because the

estimation always gives lower probability for the lower TAG numbers and higher

probability for higher TAG numbers.

Example 8.4

From Table 8.4, for the (22, 16) SEC-DED code encoding circuit, finds TAGavg

ðWT ¼ 8Þ ¼ 25:15 and TAGavgðWT ¼ 6Þ ¼ 16:46. Therefore the estimated m ¼ 25:15
and s ¼ 8:69. The worst-case numbers are TAGmaxðWT ¼ 8Þ ¼ 33 and TAGmax

ðWT ¼ 6Þ ¼ 24. Thus mmax ¼ 33 and smax ¼ 9. Figure 8.20 shows the plots based on

the actual data and from the estimations. Again, observe that the estimation based on avenge

TAGnumbermatches verywell with the real data. The estimation using themaximumTAG

0

0.02

0.04

0.06

0.08

0.10

0.12

0 5 10 15 20 25

P
ro

ba
bi

lit
y

TAG number

(13, 8) SEC-DED

estimation

est-max

Figure 8.19 Plots of TAG probabilities in the encoding circuit of (13, 8) SEC-DED codes: From actual data,
shown as ‘‘(13, 8)SEC-DED,’’ from the estimation using averageTAG numbers, shown as ‘‘estimation,’’ and from
the estimationusing themaximumTAGnumbers, shownas‘‘est-max.’’ Source: [LO05].� 2005 IEEE.

TRANSIENT BEHAVIOR OF PARALLEL ENCODING / DECODING 363



numbers is naturally pessimistic. In this example the second method overestimates the

mean by mmax � m ¼ 7:85 and standard deviation by smax � s ¼ 0:31. However, as the
maximum TAG numbers can be easily obtained, this second method is more practical.

An important observation can also be made about the difference between Figures 8.19

and 8.20. In the case of the (22, 16) SEC-DED code, the estimations fit better the real data

because of its perfectly even distribution of H row weights. However, for most practical

code lengths such perfect arrangement is rarely found. Therefore the estimation, in most

cases, matches only loosely the real data as shown in Figure 8.19.

Importance of Weight in H Matrix Design As defined in Section 3.1, a minimum-

weight & equal-weight-row code is a code that has the minimum-weight in the H matrix

and in which the number of 1’s in each row of H is equal, or as close as possible, to the

average number. We will use an odd-weight-column code design to examine this practical

design principle.

Example 8.5 [LO05]

Consider the Hsiao’s (72, 64) SED-DED code, where n ¼ 72; k ¼ 64, and r ¼ 8. Since

there are eight check bits, there are eight rows in the H matrix. We can only pick from

the odd-weight columns. So the minimum weight H matrix is to be constructed by all
8
1

� �
weight-1 columns, for the check bits, all 8

3

� �
weight-3 columns, and eight weight-5

columns. The total number of 1’s, or the weight, in the H matrix is thus 208. When

choosing the eight weight-5 column correctly, we can make each row having exactly 26

1’s for encoding. This is thus a minimum-weight & equal-weight-row code. An

example of such a (72, 64) code can be found in Figure 4.2 in Chapter 4. For this code

we can find mmax ¼ 192 and smax ¼ 48.

Next, construct a ‘‘medium-weight’’ version of (72, 64) code. This time we will use

32 weight-3 columns and 32 weight-5 columns, in addition to the eight weight-1

columns. The weight of theHmatrix is then 256. By carefully selecting theH columns,

we can achieve 32 one’s for each row. The estimation parameters for this code are

mmax ¼ 256 and smax ¼ 80.

Figure 8.20 Plots of TAG probabilities in the encoding circuit of (22, 16) SEC-DED codes: From actual data,
shown as ‘‘(22, 16)SEC-DED,’’ from the estimation using averageTAG numbers, shown as ‘‘estimation,’’and from
the estimationusing themaximumTAGnumbers, shownas‘‘est-max.’’ Source: [LO05].� 2005 IEEE.

364 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  10  20  30  40  50  60  70

P
ro

ba
bi

lit
y

TAG number

(22, 16) SEC-DED

estimation

est-max



Finally, construct a ‘‘maximum-weight’’ version. This is accomplished by using all
8
5

� �
weight-5 columns and all 8

7

� �
weight-7 columns, in addition to the eight weight-1

columns. The weight of the H matrix is 336, or 42 one’s per row. Note that all three

versions are of equal-weight-row type but with different H matrix weights. This code

has mmax ¼ 384 and smax ¼ 96.

Figure 8.21 shows the estimated TAG probability plots of all three versions above.

Obviously the minimum-weight version has the best transient behavior. Further the gap

between the minimum-weight and the medium-weight seems to be smaller than that

of the medium-weight and the maximum-weight. One possible explanation is that the

increase in the average number of one’s in a row is 6 in the former case and 10 in the

latter case. The number of one’s in a row is also the number of inputs to parity

functions.

8.3.4 Two Potential Solutions to Reduce Glitch Accumulation

Here we will examine two potential solutions to reduce the glitch accumulation: gate

sharing and pipelining. Typically the gate-sharing possibilities are exploited by the

logic synthesis process to reduce the number of logic gates needed in a multi-output

circuit.

Example 8.6 [LO05]

The encoding circuit of the (13, 8) SEC-DED code can be further optimized as shown in

Figure 8.22. In the original form, as shown in Figure 8.15, when d6 and d7 both have

T’s, glitches are generated and propagated through circuits for c0 and c1, respectively.

With the gate-sharing version such a scenario will still create the same glitch

accumulation at c0 and c1, but the glitch on the shared XOR gate will only be counted

once for the TAG. Figure 8.23 shows the TAG probabilities of the encoding circuits

shown in Figures 8.15 and 8.22, respectively.

From Figure 8.23 we find that gate sharing can reduce the maximum TAG from 28 to

22. Also the distribution is shifted significantly to the left, or lower TAG numbers then

have higher probability. However, gate sharing is very difficult to formulate as it is an

NP-hard problem. Therefore there is no easy way to predict the reduction of glitch

accumulation based only on the H matrix design.

0

0.002

0.004

0.006

0.008

0 50 100 150 200 250 300 350 400 450 500 550 600

P
ro

ba
bi

lit
y

TAG number

Minimum-weight
Medium-weight

Maximum-weight

Figure 8.21 Estimated TAG probability plots of the (72, 64) odd-weight-column SEC-DED codes. Source:

[LO05].� 2005 IEEE.

TRANSIENT BEHAVIOR OF PARALLEL ENCODING / DECODING 365



Another potential solution is to insert pipeline registers. Figure 8.24 shows an

example of how pipeline registers (flip-flops) are inserted in the c0 circuit of the (13, 8)

SEC-DED encoding circuit. The 5-input XOR function is constructed in three stages.

The flip-flops are inserted at each stage. In the schematic of Figure 8.24, note that d7 is

connected directly to the XOR gate at the third stage. However, for the pipeline

operations each stage holds the different intermediate results from different data inputs.

Therefore two flip-flops are inserted in the d7 line such that it can hold different data

and be synchronized with the rest of the circuit.

Recall from the previous examples that the accumulation of glitches is mainly due to

the easy propagation of glitches by an XOR gate. The pipeline register can effectively

filter out the glitches and thus guarantee no glitch propagation. Note that while G can

d0 (N)
d1 (T)
d2 (T)
d3 (N)
d4 (N)
d5 (N)
d6 (T)
d7 (T)

T
A

G
 =

 (1+
1) +

WT = 4

(1+
1+

1)
+

 (1+
2+

1+
1+

1) =
 11

TT TT

G

G

N

TT NN NN

NG TN

G T T

2G G G

T

c0 1 c2 c3 c4

N

G G T T

TN TTN TNNN

G

c

Figure 8.22 Encoding circuit of the (13, 8) SEC-DED codewith sharedXORgates. Source: [LO05].� 2005 IEEE.

Figure 8.23 TAG probabilities plots of the (13, 8) SEC-DED encoding circuit and of the gate-shared version.
Source: [LO05].� 2005 IEEE.

366 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES



be blocked by the flip-flop, T will not be filtered out. In this extreme example the

worst-case scenario, with all five inputs having T , will generate only two glitches, or

TAG ¼ 2. Recall that the worst case is TAG ¼ 6 for an 5-input XOR function without

pipeline.

We believe that the pipelining of the encoding / decoding circuits is inevitable for the

ever-increasing word length. The insertion of pipeline registers will add to the hardware

overhead as well as extra delay time. The rise in delay time due to the flip-flops is not a

major concern because the performance is measured in throughput rather than the

actual latency time of encoding data. Nevertheless, the scenario shown in Figure 8.24 is

simply too costly for practical applications. The hardware overhead can be reduced by

inserting pipeline registers every few XOR levels. However, this has to also be related

to the targeted data rate of the overall design.

8.3.5 Maximum Temporal Accumulated Glitches (TAGs) and Matrix Code
Design

In the worst-case estimation technique presented previously, the mean and standard

deviation are calculated directly from the maximum TAG numbers. The maximum TAG

number can be further estimated with just the knowledge of how the 1’s in the H matrix is

distributed. In other words, only a few simple steps will be needed to estimate the transient

behavior of any error control code defined by an H matrix, regardless of the information

length.

First, let’s revisit the topic discussed previously about obtaining the TAG number in an

XOR circuit. The upper bound of the number of TAG of an m-input XOR function can be

calculated as follows:

TAGm ¼ TAGmðWT ¼ mÞ ¼ m log2 m

2
; ð8:12Þ

when m is a power of two and TAG1 ¼ 0. If m is not a power of two, then we first find its

binary form such that

m ¼ ml�1 � 2l�1 þ ml�2 � 2l�2 þ � � � þ m1 � 21 þ m0 � 20;

clk

d3

d4

d5

d6

d7

c0

D Q

D Q

D Q

D Q

D Q

D Q

Figure 8.24 Encoding circuit for c0 of the (13, 8) SEC-DED code with pipeline register (flip-flops) inserted.
Source: [LO05].� 2005 IEEE.

TRANSIENT BEHAVIOR OF PARALLEL ENCODING / DECODING 367



where l ¼ dlog2me. We assume that the m-input XOR function will be composed

systematically with smaller XOR functions whose input numbers are all power of two. The

worst-case TAG can be computed as

TAGm ¼
Xl�1
i¼1

miTAG2i þ
Xl�2
i¼1

mi

m

2

j k
�
Xl�1
j¼iþ1

mj2
j�1

 !
þ ml�1

m

2

j k
þ ðm0 � 1Þ2w�1;

ð8:13Þ

where w 	 1 such that mw is the smallest nonzero digit in the binary form of m besides m0.

Example 8.7 [LO05]

The worst-case TAG number of a 28-input XOR circuit can be computed as follows:

First, we find m4 ¼ m3 ¼ m2 ¼ 1, m1 ¼ m0 ¼ 0, and w ¼ 2. Therefore

TAG28 ¼ TAG24 þ TAG23 þ TAG22 þ ð14� ð22 þ 23ÞÞ þ ð14� 23Þ þ 14� 21 ¼ 68:

We will now use this formula to calculate the maximum TAG number of the minimum-

weight & equal-weight-row Hsiao’s SEC-DED code. Table 8.5 shows Hsiao’s code

parameters and the maximum TAG number for several power of 2 information bit lengths

up to 1,024. All codes listed in Table 8.5 are minimum-weight & equal-weight-row codes.

TABLE 8.5 Code Parameters and Maximum TAG Numbers of the Minimum-Weight &

Equal-Weight-Row Hsiao SEC-DED Codes

n k r H structurea H Weightb AverageHb Maximum TAG

13 8 5
5
1

� �
þ 8=

5
3

� �
24 4.8 28

22 16 6
6
1

� �
þ 16=

6
3

� �
48 8 72

39 32 7
7
1

� �
þ 32=

7
3

� �
96 13.7 183

72 64 8
8
1

� �
þ 8

3

� �
þ 8=

8
5

� �
208 26 504

137 128 9
9
1

� �
þ 9

3

� �
þ 44=

9
5

� �
472 52.4 1,376

266 256 10
10
1

� �
þ 10

3

� �
þ 136=

10
5

� �
1,040 104 3,560

523 512 11
11
1

� �
þ 11

3

� �
þ 347=

11
5

� �
2,230 202.8 8,764

1,036 1,024 12
12
1

� �
þ 12

3

� �
þ 12

5

� �
þ 12=

12
7

� �
4,704 392 20,976

Source: [LO05].� 2005 IEEE.
aThe notation j= r

i

� �
means that j out of all possible r

i

� �
combinations is used.

bEncodingHmatrix where

Hweight: Totalnumberof1’s in encodingHmatrix
Average H : Hweight divided by numberof rows r ¼ average numberof1’s in a row.

368 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES



From this table we observe that the maximum TAG number is intimately tied to the H

weight, or the total number of 1’s inH. Also the maximum TAG grows exponentially with

respect to k. This can be clearly seen in Figure 8.25.

EXERCISES

8.1 (a) In Example 8.2, a 2-bit burst error ð0110000Þ is assumed to have occurred in the

second frame (frame 2). Using the (22, 13) 3-bit burst error correcting and 4-bit

burst error detecting Fire code indicated in this example, calculate H
y
10 � S, and

B
y
10 � S for each frame, and then explain how this error can be corrected.

(b) For the 5-bit burst error ð010011Þ occurred in the frame 2, explain how this

error can be detected.

(c) Design the parallel decoding circuit of the (22, 13) 3-bit burst error correcting

and 4-bit burst error detecting Fire code in Example 8.2, implemented by the

combinational circuits.

8.2 For word length N and frame length L, prove that the number of frames m

overlapped with adjacent ones by length z is expressed as

m ¼ N � z

L� z

� �
;

where dxe represents the smallest integer greater than or equal to x.

8.3 Prove Lemma 8.2.

8.4 Prove Theorem 8.3.

8.5 For the (42, 33) cyclic 3-bit burst error correcting and 4-bit burst error detecting Fire

code generated by gðxÞ ¼ ðx6 þ 1Þðx3 þ xþ 1Þ over GFð2Þ, answer the following:

(a) Find the binary 9� 9 companion matrix T.

(b) Express the parity-check matrix H of this (42, 33) code over GFð2Þ.
(c) Using the H, write the matrices of T0; T7;T14; T21, T28, and T35 necessary for

parallel decoding.

(d) Design the parallel decoding circuit of this (42, 33) code.

Figure 8.25 H weights and maximumTAGs of odd-weight-column SEC-DED codes for various k. Source:

[LO05].� 2005 IEEE.

EXERCISES 369



(e) Suppose that the syndrome generated by a received word is S ¼ ð011011111ÞT .
Show that frame 2 is corrupted by an error pattern ð001110000Þ.

(f) Suppose that the syndrome generated by a received word is S ¼ ð011111010ÞT .
Show that none of the frames (from frame 0 to frame 5) results in a correctable

3-bit burst error pattern.

8.6 The 2-input XOR function is expressed as F ¼ A B ¼ ðAþ BÞ � ðA � BÞ with OR,

NAND, and AND gates. Explain how a glitchmay be generated when the inputs (A, B)

change from (0, 1) to (1, 0).

8.7 Construct an 8-input XOR circuit using seven 2-input XOR gates in a perfect

binary tree, and obtain the TAG frequency table for all transient weight of the

circuit. Use the transient behavior of the XOR functions shown in Table 8.2 to

determine the worst-case TAG number of this 8-input XOR circuit when all inputs

receive transient T’s.

8.8 For the syndrome generation circuit of Hsiao’s (13, 8) SEC-DED code shown in

Eq. (8.6), answer the following questions:

(a) For the received 9 inputs of d00ðNÞ; d01ðNÞ; d02ðNÞ; d03ðTÞ; d04ðNÞ, d05ðNÞ,
d06ðNÞ, d07ðNÞ, and c00ðTÞ (i.e., WT ¼ 2), indicate the T and G marks at the

inputs and the outputs of each XOR gate in the syndrome S0 generation circuit.

(b) In the above S0 circuit, count the temporal accumulated glitches (TAGs).

(c) There are 9
2

� �
¼ 36 transient patterns of WT ¼ 2. Count among them the

frequency for TAG ¼ 4.

(d) Using Eqs. (8.12) and (8.13), find the maximum TAGs of this S0 circuit.

(e) Design the gate-shared syndrome generation circuit of the code, and discuss the

difference of TAG probabilities of the gate-shared circuit and the nonshared

circuit.

REFERENCES

[BAI01] G. Bai, S. Bobba, and I. N. Hajj, ‘‘Static Timing Analysis Including Power Supply Noise

Effect on Propagation Delay in VLSI Circuits,’’ Proc. Design Automation Conf. (June 2001):

295–300.

[BENI00] L. Benini, G. D. Micheli, A. Macii, M. Poncino, and R. Scarsi, ‘‘Glitch Power

Minimization by Selective Gate Freezing,’’ IEEE Trans. VLSI Syst., 8 (June 2000): 287–298.

[CHEN97] H. H. Chen and D. D. Ling, ‘‘Power Supply Noise Analysis Methodology for Deep-

submicron VLSI Chip Design,’’ Proc. IEEE Design Automation Conf. (June 1997): 638–643.

[CHIE69] R. T. Chien, ‘‘Burst-Correcting Codes with High-Speed Decoding,’’ IEEE Trans. Info.

Theory, IT-15 (January 1969): 109–113.

[ELSP62] B. Elspas and R. A. Short, ‘‘A Note on Optimum Burst-Error-Correcting Codes,’’ IRE

Trans. Info. Theory, IT-9 (January 1962): 39–42.

[FUJI02] E. Fujiwara, K. Namba, and M. Kitakami, ‘‘Parallel Decoding for Burst Error Control

Codes’’ (in Japanese), Trans. IEICE Japan, J85-A (November 2002): 1284–1295. (Translated into

English in: Electron. Commun. in Japan, 87 (January 2004): 38–48).

[GHOS04] S. Ghosh, S. Basu, and N. A. Touba, ‘‘Reducing Power Consumption in Memory ECC

Checkers,’’ Proc. IEEE Int. Test Conf. (October 2004).

370 PARALLEL DECODING BURST / BYTE ERROR CONTROL CODES



[HAMA97]M.Hamada and E. Fujiwara, ‘‘AClass of Error Control Codes for ByteOrganizedMemory

Systems—SbEC-ðSbþ SÞED Codes—,’’ IEEE Trans. Comput., 46 (January 1997): 105–109.

[HONG72] S. J. Hong and A. M. Patel, ‘‘A General Class of Maximal Codes for Computer

Applications,’’ IEEE Trans. Comput., C-21 (December 1972): 1322–1331.

[JIAN00] Y.-M. Jiang, A. Krstic, and K.-T. Cheng, ‘‘Dynamic Timing Analysis Considering Power

Supply Noise Effects,’’ Proc. Int. Symp. on Quality of Electronic Design (March 2000): 137–144.

[KASA62a] T. Kasami, ‘‘Systematic Cyclic Codes for Burst Error Correction’’ (in Japanese),

J. IEICE, 45 (January 1962): 9–16.

[KASA62b] T. Kasami, ‘‘Burst Error Correcting Codes Constructed by Computer’’ (in Japanese),

J. IECE Japan, 45 (November 1962): 1527–1532.

[LAVA93] L. Lavagno and A. Sangiovanni-Vincentelli, Algorithms for Synthesis and Testing of

Asynchronous Circuits, Kluwer Academic (1993).

[LO05] J. C. Lo, Y. L. Wan, and E. Fujiwara, ‘‘Transient Behavior of the Encoding / Decoding

Circuits of Error Control Codes,’’ Proc. IEEE Int. Symp. on Defect and Fault Tolerance in VLSI

Systems (October 2005): 120–128.

[MEGG61] J. E. Meggitt, ‘‘Error Correcting Codes and Their Implementation for Data Transmission

Systems,’’ IRE Trans. Info. Theory, IT-7 (1961): 232–244.

[MEHT95] H. Mehta, M. Borah, R. M. Owens, and M. J. Irwin, ‘‘Accurate Estimation of

Combinational Circuit Activity,’’ Proc. IEEE Design Automation Conf. (June 1995): 618–622.

[NISH97] H. Nishihara and S. Ura, Introduction to Optical Electronics (in Japanese), Corona

Publishing (1997).

[PARR01] P. Parra, A. J. Acosta, and M. Valencia, ‘‘Reduction of Switching Noise in Digital CMOS

Circuits by Pin Swapping of Library Cells,’’ Proc. Int. Workshop—Power and Timing Modeling,

Optimization and Simulation (September 2001): paper 9.3.

[PETE72] W. W. Peterson and E. J. Weldon Jr., Error-Correcting Codes, 2d ed., MIT Press (1972).

[ROSS04] D. Rossi, A Muccio, A. K. Nieuwland, A. Katoch, and C. Metra, ‘‘Impact of ECCs on

Simultaneous Switching Output Noise for On-Chip Buses of High Reliability Systems,’’ Proc.

IEEE Int. Online Test Symp. (July 2004): 135–140.

[ROY99] Y. Y. ans K. Roy and R. Drechsler, ‘‘Power Consumption in XOR-Based Circuits,’’ Proc.

Asian and South Pacific Design Automation Conf. (January 1999): 299–302.

[TANG02] K. T. Tang and E. G. Friedman, ‘‘Simultaneous Switching Noise in On-Chip CMOS

Power Distribution Networks,’’ IEEE Trans. VLSI Syst., 10, 4 (August 2002): 487–493.

[UMAN03] G. Umanesan and E. Fujiwara, ‘‘Parallel Decoding Burst Error Correcting Codes,’’ Proc.

IEEE Int. Symp. on Information Theory, (July 2003): 420.

[UMAN05] G. Umanesan and E. Fujiwara, ‘‘Parallel Decoding Cyclic Burst Error Correcting

Codes,’’ IEEE Trans. Comput., 54 (January 2005): 87–92.

[ZHOU00] H. Zhou and D. F. Wong, ‘‘Optimal Low Power XOR Gate Decomposition,’’ Proc. IEEE

Design Automation Conf. (June 2000): 104–107.

REFERENCES 371



CONTENTS

9.1 Error Location of Faulty Packages and Faulty Chips . . . . . . . . . . . . . . . . . . 373

9.2 Block Error Locating (Sb=p�bEL) Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

9.3 Single-Bit Error Correcting and Single-Block Error Locating

(SEC-Sb=p�bEL) Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

9.3.1 Code Conditions and Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

9.3.2 Design for SEC-Sb=p�bEL Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

1. Codes Designed by Tensor Product—Codes I— . . . . . . . . . . . . . . . 379

2. Codes Designed by Odd / Even-Weight Column Square

Matrices — Codes II — . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

9.3.3 Decoding Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

9.3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

9.4 Single-Bit Error Correcting and Single-Byte Error Locating

(SEC-Se=bEL) Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

9.4.1 Code Conditions and Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

9.4.2 Design for SEC-Se=bEL Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

9.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

9.5 Burst Error Locating Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

9.5.1 Frame Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

9.5.2 Burst Error Locating (BlEL) Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 397

9.5.3 Single-Bit Error Correcting and Burst Error Locating

(SEC-BlEL) Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

9.5.4 Decoding Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

9.5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

9.6 Code Conditions of Error Locating Codes . . . . . . . . . . . . . . . . . . . . . . . . . 404

9.6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

9.6.2 Code Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

9.6.3 Relation between Error Locating Codes and

Error Correcting / Detecting Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410



9
Codes for Error Location:

Error Locating Codes

Almost all the error control code functions are error correction and error detection.

Another important error control function that lies midway between the functions of error

correction and error detection is error location.

The codeword of error locating codes can be regarded as consisting of mutually

exclusive blocks. The codes indicate which blocks are in error, without providing a precise

determination of the erroneous digit position within each block. This type of code was

originally proposed for use in an efficient retransmission of the word in communication

systems, without whole words being retransmitted [WOLF63]. In dependable computer

systems, on the other hand, this has a powerful potential for fault isolation and

reconfiguration. In byte-organized systems the code could effectively locate the erroneous

block containing faulty bytes and replace it by a spare one [FUJI94, KITA95].

The first attempt at an error locating code was by J. K. Wolf and B. Elspas in 1963

[WOLF63], but since then there have been only a few papers dedicated to the idea presented in

journals and conference proceedings [WOLF65a,WOLF65b, CHAN65, GOET67, VAID92].

Recently To and Sakaniwa [TO89] have proposed an error discriminating code that covers a

broad range of code functions including error location as well as error correction and detection.

This chapter covers the error locating codes for high-speed computer systems. Among the

topics discussed are single-byte error locating codes [FUJI94], single-bit error correcting and

single faulty package / chip locating codes [KITA95], burst error locating codes [KITA05],

and also the necessary and sufficient conditions of the error locating codes [KITA97].

9.1 ERROR LOCATION OF FAULTY PACKAGES AND FAULTY CHIPS

As was shown in Figure 1.11 in Subsection 1.4.1, error location falls midway between the

functions of error correction and error detection. In the codes designed byWolf and Elspas,

Code Design for Dependable Systems: Theory and Practical Applications, by Eiji Fujiwara
Copyright # 2006 John Wiley & Sons, Inc.

373



the codeword is divided into p distinct bytes, each having b-bit length. The code detects

eð< bÞ or fewer errors, all occurring within a single byte and identifies that byte. For this

reason the code is referred to as the Single e-bit (within a b-bit byte) Error Locating code, or

Se=bEL code. For instance, if we letEiðEjÞ be the set of e or fewer errors occurring within the
iðjÞ-th byte, the code must satisfy the relation

E1 �HT 6¼ E2 �HT 6¼ 0 for all E1 2 Ei; and for all E2 2 Ej; i 6¼ j:

The number of check bits r is bounded from below by

r 	 log2 1þ p
Xde=2e
i¼1

b

i

� �( )
; ð9:1Þ

where dxe is the smallest integer not less than x.

In general, the error locating code is derived from the tensor product of the parity-check

matrices [WOLF65a].

Definition 9.1 Let the X ¼ ðxi; jÞ and Y ¼ ðyi; jÞ matrices be an a� b matrix and a c� d

matrix, respectively. The matrix Z, defined as the tensor product of X and Y, is the

ac� bd matrix given by

Z ¼ X� Y ¼
x1;1Y � � � x1;bY

..

. . .
. ..

.

xa;1Y � � � xa;bY

264
375:

&

Let HD be the r� b parity-check matrix for a binary ðb; b� rÞ linear code CD that

detects the class of errors ED. Let HC be the m� p parity-check matrix for a nonbinary

ðp; p� mÞ linear code CC, with symbols from GFð2rÞ, that corrects the class of errors EC.

Here, a column vector with r-bit length in the parity-check matrix of CD corresponds to a

symbol in CC, meaning a symbol from GFð2rÞ. Finally, let C be the binary ðpb; pb� rmÞ
linear code with the rm� pb parity-check matrix H given by

H ¼ HC �HD:

Theorem 9.1 If all binary byte errors corresponding to the erroneous bytes are within

class ED, and if the erroneous bytes form a pattern of errors over GFð2rÞ that falls in
class EC, then code C detects the errors and identifies the erroneous bytes.

If CD is an e-bit (within a b-bit byte) error detecting code with r check bits and CC is a

single-symbol error correcting code on GFð2rÞ, then C is an Se=bEL code.

The codes described above only apply to errors having fewer than b bits. If the

maximum number of errors located by the codes is equal to b, then the Sb=bEL code is an

SbEC code. This is shown in the following theorem [VAID92].

Theorem 9.2 An error locating code that can locate all single-byte errors is a single-

byte error correcting code.

374 CODES FOR ERROR LOCATION: ERROR LOCATING CODES



From the result above the existing error locating codes are not always suitable for

application to byte-organized semiconductor memory systems.

In general, a semiconductor memory module has a hierarchical organization consisting

of memory cards or memory packages on which memory chips are mounted. The memory

card on which b-bit byte-organized RAM chips are mounted provides data output having

B-bit length, where B is a multiple of b, meaning B ¼ p� b. The output of the clustered

data from the package or card is called here a block; its code length is in B bits. The output

of the clustered data from the chip is called a byte; its length is in b bits.

So we now have a new class of error locating codes that pertains to byte-organized

systems. We introduce the term block to denote a set of bytes. Each codeword is divided

into disjoint blocks, and the block is subdivided into bytes. This new class of codes will

locate an erroneous block that contains a single-byte error. We can call these codes single

b-bit byte (within a B-bit block) error locating codes (i.e., Sb=p�bEL codes) or as block

error locating codes. We will also use the terms code length in bits, code length in bytes,

and code length in blocks to denote the lengths of a codeword in bits, bytes, and blocks,

respectively. Figure 9.1 illustrates these relations.

The predominant errors, even in the byte-organized semiconductor memory chips, are

soft errors induced by a particles and external noises. These errors are still apt to be

manifest as single-bit errors in byte-organized RAM chips. Therefore an error locating

code capable of correcting single-bit errors is very useful. We call these codes single-bit

error correcting and single b-bit byte (within a B-bit block) error locating codes (i.e.,

SEC-Sb=p�bEL codes [FUJI94]) or block error locating codes with single-bit error

correction capability. In this regard, codes such as the Sb=p�bEL codes and the SEC-

Sb=p�bEL codes discussed above can also be called codes for locating the package / card

with faulty chips. Once the faulty package / card is located by a code, and the faulty

package / card is replaced by a correct one, then the system can be recovered and proceed

with normal operation. As for the location of the faulty chips, we depend on such codes as

the single-bit error correcting and single e-bit (within a b-bit byte) error locating codes

. ..

. ..

. ..

..
.

..
.

..
.

..
.

..
.

. . .

. ..

. ..

..
.

..
.

..
.

..
.

..
.

.

.

.
.
.
.

.

.

.

. ..
. ..

Package / Card

Module

. ..

. ..

. ..

..
.

..
.

..
.

..
.

..
.

. . .

. .. . ... ..

Byte-organized chip
b Byte

Block
B

b Readout data

Figure 9.1 Relationship between byte and block.

ERROR LOCATION OF FAULTY PACKAGES AND FAULTY CHIPS 375



(i.e., SEC-Se=bEL codes [KITA95]) or byte error locating codes with single-bit error

correction capability. This type of codes is called codes for locating faulty chips.

9.2 BLOCK ERROR LOCATING (Sb=p�bEL) CODES

First, we study a class of block error locating codes that can locate an erroneous block

containing a single-byte error. This is the Sb=p�bEL codes, where B ¼ p� b, that locate a

single b-bit byte within a B-bit block.

It is simple to construct the Sb=p�bEL codes by using SbEC codes. This is shown in the

following theorem.

Theorem 9.3 Let the following matrix H0 be a parity-check matrix of the SbEC code:

 b! b!  �b�!

H0 ¼
h

H0 H1 � � � Hn0�1

i
;

where n0 is the code length (in bytes) of the code andHi, i ¼ 0; 1; � � � ; n0 � 1, is the linearly

independent column with rank b corresponding to the i-th byte. Then the code described by

the following matrix H is an Sb=p�bEL code:

 ���B���! ���B���!  �����B�����!

H ¼
h
H0 � � � H0 H1 � � � H1 � � � Hn0�1 � � � Hn0�1

i
;

where B is a multiple of b, meaning, B ¼ p� b.

This theorem can be easily proved because parity-check matrix of the Sb=p�bEL codes

is organized by p repetitions of Hi in the i-th block, i ¼ 0; 1; � � � ; n0 � 1, where Hi is the

linearly independent column in H0.
The maximal SbEC codes shown in Subsection 5.1.4 are used to express the code

length (in bits) of the Sb=p�bEL codes as follows:

N ¼ B � 2
R � 1� 2bð2c � 1Þ

2b � 1
þ c � B

b
;

where R ¼ br þ c, 0 � c < b, is the check-bit length of the Sb=p�bEL codes and B ¼ p� b.

Theorem 9.3 leads to the following corollary.

Corollary 9.1 Let the following matrixH0 be a parity-check matrix of the Sb=p�bEL code:

 B! B!  �B�!

H0 ¼
h

H0 H1 � � � Hn0�1

i
;

where B ¼ p� b, n0 is the code length (in blocks) of the code andHi, i ¼ 0; 1; . . . ; n0 � 1,

is the submatrix corresponding to the i-th block. Then the code described by the following

376 CODES FOR ERROR LOCATION: ERROR LOCATING CODES



matrix H is an Sb=B0EL code:

 ���B0 ���! ���B0 ���!  ���� B0 ����!

H ¼
h
H0 � � � H0 H1 � � � H1 � � � Hn0�1 � � � Hn0�1

i
;

where B0 is a multiple of B.

This corollary can be easily proved in the same way as the theorem above.

Figure 9.2 shows the relation between the information-bit lengths and the check-bit

lengths of the Sb=p�bEL codes for the cases of ðb;BÞ ¼ ð4; 16Þ; ð4; 32Þ, and ð8; 32Þ.

9.3 SINGLE-BIT ERROR CORRECTING AND SINGLE-BLOCK ERROR
LOCATING (SEC-Sb=p�bEL) CODES

This section deals with the SEC-Sb=p�bEL codes, where B ¼ p� b that correct single-bit

errors and locate single b-bit byte errors within a B-bit block.

9.3.1 Code Conditions and Bounds

Necessary and Sufficient Conditions Let Es be the error set consisting of all

single-bit errors, and let EiðEjÞ be the error set consisting of all single-byte errors in the

ið jÞ-th block excluding single-bit errors. Thus Ei \ Es ¼ Ej \ Es ¼ f for all i 6¼ j, where

f is the empty set. The following theorem describes necessary and sufficient conditions

that characterize SEC-Sb=p�bEL codes.

7

8

10

12

14

16

18

128 256 512 1,024 2,048 4,096 8,192 16,384

9

11

13

15

17

19

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

K = 264 536

1,055523

1,038 2,086

2,065 4,141

4,356 8,724

8,711 17,435

17,418

16,403

K = 8,208

b = 4, B = 16

b = 8, B = 32

b = 4, B = 32
B = p × b

Figure 9.2 Check-bit lengths compared with information-bit lengths of the Sb=p�bEL codes. Source: [FUJI94].

� 1994 IEEE.

SINGLE-BIT ERROR CORRECTING AND SINGLE-BLOCK ERROR LOCATING (SEC-Sb=p�bEL) CODES 377



Theorem 9.4 A linear code, described by the parity-check matrix H, corrects all errors

in Es and locates all errors in Ei, or Ej , where i 6¼ j, if and only if

1. E �HT 6¼ 0 for all E 2 fEs [ Ei [ Ejg,
2. E1 �HT 6¼ E2 �HT for all E1, E2 2 Es;E1 6¼ E2,

3. E3 �HT 6¼ E4 �HT for all E3 2 Ei, and for all E4 2 Ej,

4. E1 �HT 6¼ E3 �HT for all E1 2 Es, and for all E3 2 Ei.

Proof It is apparent that conditions 1 and 2, and conditions 1 and 3 are necessary

conditions for correcting all single-bit errors and for indicating the location of an

erroneous block containing single-byte errors, respectively. Conditions 1 and 4 are

also necessary conditions for distinguishing single-bit errors from a single-byte error

excluding single-bit errors. So the SEC-Sb=p�bEL codes must satisfy all the conditions

1 to 4.

Conversely, if a code satisfies conditions 1 to 4, then we can distinguish single-bit errors

from single-byte errors. We can also correct all single-bit errors and locate all single-byte

errors. Therefore this code is an SEC-Sb=p�bEL code. Q.E.D.

Bounds

Theorem 9.5 Linear ðN; N � RÞ SEC-Sb=p�bEL codes satisfy

R 	 2b:

Proof For two bytes each belonging to different blocks, there exist 2b column vectors in

the parity-check matrix on GFð2Þ. These vectors should be linearly independent by con-

dition 3 of Theorem 9.4, and therefore the number of rows of the parity-check matrix

should be 2b or more. Q.E.D.

Theorem 9.6 Linear ðN; N � RÞ SEC � Sb=p�bEL codes satisfy

N � Bð2R � 1Þ
Bþ 2b � b� 1

; ð9:2Þ

where B ¼ p� b.

Proof In the SEC-Sb=p�bEL codes, in general, the syndromes caused by single-bit errors

should be different from each other, and those caused by single-byte errors excluding sin-

gle-bit errors should be different from the ones caused by single-bit errors. Therefore the

errors in one block have at least Bþ 2b � b� 1 different syndromes, and hence there are

at least N
B
ðBþ 2b � b� 1Þ different syndromes in the received word. Hence the following

inequality is satisfied:

2R 	 N

B
ðBþ 2b � b� 1Þ þ 1:

From this, the inequality (9.2) can be deduced. Q.E.D.

378 CODES FOR ERROR LOCATION: ERROR LOCATING CODES



9.3.2 Design for SEC-Sb=p�bEL Codes

1. Codes Designed by Tensor Product — Codes I —
In general, we can design the error locating codes by means of the tensor product of two

codes, one being an error correcting code and the other an error detecting code. The codes

designed by this method are called here type I codes. This method can be applied to the

design of SEC-Sb=p�bEL codes by using the single-bit error correcting and single b-bit

byte error detecting code, or the SEC-SbED code presented in Section 6.1, and a single

b-bit byte error correcting code, or an SbEC code presented in Section 5.1.

Theorem 9.7 The code described by the following matrix H is an SEC � Sb=p�bEL
code:

H ¼ H0b0 �H00b

¼ H00 H01 � � � H0ðN=BÞ�1
 �

�H00b

¼ H00 �H00b H01 �H00b � � � H0ðN=BÞ�1 �H00b
 �

¼ H0 H1 � � � HðN=BÞ�1
 �

;

where � represents tensor product, B ¼ p� b, N is the code length (in bits) of the SEC-

Sb=p�bEL code, H0b0 is the parity-check matrix of the Sb0EC code, H00b is the parity-check

matrix of the ðB;B� b0Þ SEC-SbED codes, and H0i is the submatrix of H
0
b0 corresponding

to the i-th byte.

Proof It is apparent that the code satisfies condition 1 of Theorem 9.4 for any single-bit

errors and any single-byte errors. Because the binary columns of H are distinct, con-

dition 2 of Theorem 9.4 is satisfied. The syndrome resulting from any single-byte error

in the i-th block is different from that in the j-th block for i 6¼ j because each column

in Hi is determined by the product of H0i and H00b . Hence condition 3 is satisfied. In

general, every H0i includes b0 � b0 identity matrix, meaning Ib0 , and therefore every

Hi has H00b as a column element. This implies that the syndrome resulting from any

single-bit error is different from that resulting from any single-byte error excluding

single-bit errors. Based on this and on condition 3, condition 4 in Theorem 9.4 is satis-

fied. From Theorem 9.4 it follows that the code described by H is an SEC-Sb=p�bEL
code. Q.E.D.

Example 9.1 [FUJI94]

For b ¼ 4 and b0 ¼ 5 the S5EC code with r ¼ 2 described by the matrix H0b0 is

H =

=

b H0 H1 H2 H3 H32

I5 O5 I5 I5 I5

O5 I5 I5 T5 T30
5

′ ′ ′ ′ ′ ′

,...

...

where T5 is a primitive element in GFð25Þ, and O5 and I5 are the zero element and

identity element in GFð25Þ, respectively. Let H00b be the parity-check matrix of the

ð12; 7Þ SEC-S4ED code having b0 ¼ 5 check bits. With these two codes the ð396; 386Þ

SINGLE-BIT ERROR CORRECTING AND SINGLE-BLOCK ERROR LOCATING (SEC-Sb=p�bEL) CODES 379



SEC-S4=3�4EL code obtained is shown in the following matrix H:

H Hb Hb

I5 O5 I5 I5 I5
O5 I5 I5 T5 T30

5
Hb

Hb O Hb Hb Hb
O Hb Hb T5 Hb T30

5 H
.

b

The code length (in bits) of the SEC-Sb=p�bEL codes, defined by Theorem 9.7, can be

expressed as follows. In this case the maximal codes shown in Subsection 5.1.4 are used to

determine the length of the Sb0EC codes.

N ¼ bð2b0�bþ1 � 1Þ 2R � 1� 2b
0 ð2c � 1Þ

2b
0 � 1

� 1

� �
þ bð2b0þc�bþ1 � 1Þ ð9:3Þ

In this equation, R ¼ b0r þ c, 0 � c < b0, is the check-bit length of the SEC-Sb=p�bEL
codes.

Figure 9.3 shows the relations between the information-bit lengths and the check-bit

lengths of the SEC-Sb=p�bEL codes for b ¼ 4 bits. In this case, B shows the maximum

block length in bits determined by the value of b0ð> bÞ.

2. Codes Designed by Odd / Even-Weight Column Square Matrices —
Codes II —
Here the SEC-Sb=p�bEL codes designed by another method are presented and called type

II codes.

9

10

11

12

13

14

15

16

17

18

256 512 1,024 2,048 4,096 8,192 16,384 32,768

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

K = 386

785

1,584 1,808

3,183 3,631

6,382
7,278 7,726

12,669
14,573 15,469

25,356
29,164 30,956

31,852

B = 4(2        –1)

(b  > 4, p = 2     –1)

b = 4

b -4+1

B = 12 (b  = 5)

B = 28 (b  = 6)

B = 60 (b  = 7)

B = 124 (b  = 8)

b′-3

’

’

’

’
’

’

Figure 9.3 Check-bit lengths compared with information-bit lengths of the SEC-S4=p�4EL type I codes.
Source : [FUJI94].� 1994 IEEE.

380 CODES FOR ERROR LOCATION: ERROR LOCATING CODES



Preliminaries

Definition 9.2 Let an odd-weight column squarematrix be a nonsingular b� bmatrixwhose

columns are odd weight. Let an even-weight column square matrix be a b� b matrix

whose columns are b copies of an even-weight vector (including the zero vector). &

Because there are 2b�1 even-weight column vectors having dimension b, there exist

2b�1 even-weight column square matrices.

Here, we show an example design method of nonsingular odd-weight column b� b

square matrices.

Definition 9.3 The matrix Mb shown below is defined as the matrix having b rows and

2b�1 odd-weight columns:

Mb ¼

a0 a1 a2 � � � a2b�1�1

�

¼

p0 p1 p2 � � � p2b�1�1

j j j j
0 a0 a � � � a2

b�1�2

j j j j

266664
377775
b�2b�1

:

In Mb, a is a root of the ðb� 1Þ-th degree binary primitive polynomial gðxÞ,
j
ai

j
is a

coefficient vector of xi mod gðxÞ, and pi 2 f0; 1g is a bit determined to make the

column vector ai, i ¼ 0; 1; � � � ; 2b�1 � 1, be odd weight. &

Lemma 9.1 The following shows a nonsingular odd-weight column square matrix gen-

erated from any consecutive b column vectors in the matrix Mb:

Ai ¼ ai0 ai1 � � � aib�1½ �b�b;

where ij � iþ j mod 2b�1, and 0 � j � b� 1.

From this lemma we obtain 2b�1 nonsingular odd-weight column square matrices.

Design of the Parity-Check Matrices Let A and B be the sets of the odd-weight

column square matrices and the even-weight column square matrices, respectively. The

following lemma provides the basic idea of the code design method.

Lemma 9.2 Consider two different vectors each having degree r (i.e., Q and Q0) and
each being constructed of elements from the even-weight column square matrices and the

odd-weight column square matrices (i.e., Qj;Q
0
j 2 A [ B for j ¼ 0; 1; � � � ; r � 1). In each

vector there exists at least one matrix included in A.

Q ¼

Q0

Q1

..

.

Qr�1

26664
37775; Q0 ¼

Q00
Q01
..
.

Q0r�1

26664
37775:

SINGLE-BIT ERROR CORRECTING AND SINGLE-BLOCK ERROR LOCATING (SEC-Sb=p�bEL) CODES 381



Assume that the i-th elements in Q and Q0 (i.e., Qi and Q0i), respectively, are different

square matrices. In other words, Qi is an odd-weight column square matrix and Q0i is an
even-weight column square matrix, and vice versa. Then any summation of binary column

vectors inQ produces a different result than that given by any summation of binary column

vectors in Q0.

Proof Let V and V0, each having r b-tuples, be the results of the summation of column

vectors in Q and Q0, respectively:

V ¼

v0
v1
..
.

vr�1

26664
37775; V0 ¼

v00
v01
..
.

v0r�1

26664
37775:

Without loss of generality,Qi and Q
0
i can be regarded as the odd-weight column square

matrix and the even-weight column square matrix, respectively. Assume vi ¼ v0i. ThenV is

the vector resulting from the summation of an even number of columns inQ, and V0 is that
resulting from the summation of odd number of columns inQ0. There exists an odd-weight
column matrix in Q0, say Q0l, in the l-th row for l 6¼ i. So v0l is an odd-weight b-tuple and vl
has even weight. Therefore, V 6¼ V0. Q.E.D.

Below we provide an example expressed as a submatrix Hi corresponding to the i-th

block. In other words, if we use the matrix from B in the first row, then we write in this

place, and so on:

Hi ¼
..
.

2664
3775:

In order to distinguish single-bit errors from single-byte errors, excluding single-bit errors,

every submatrix has at least one b� b identity matrix, which is included in A. In the

submatrix Hi, for example, this can be expressed as follows:

where Ai 2 A; Bi 2 B, 0 � i � 2b�1 � 1, and Ib ¼ A0 is a b� b identity matrix.

382 CODES FOR ERROR LOCATION: ERROR LOCATING CODES



Theorem 9.8 The code described by the following matrix H is an SEC- Sb=p�bEL code

with check-bit length R ¼ br and codeword length N bits:

H H0 H1 H2r 3 H2r 2

...
...

. . .
...

...

br N

where and are row vectors in which odd-weight square matrices and even-weight

square matrices are used, respectively, and the top in each column is the row vector

including all b� b identity matrices. In this matrix each submatrix Hi includes different

pattern of ’s and ’s and has at least one .

The code length (in bits) of the code above is expressed by the following equation:

N ¼ ð2r � 1ÞB ¼ bð2r � 1Þ2ðb�1Þðr�1Þ; ð9:4Þ

where r is the number of check-bytes.

Proof It is apparent that the code satisfies condition 1 of Theorem 9.4 for any single-bit

errors and any single-byte errors. The binary columns in H are distinct. Therefore con-

dition 2 of Theorem 9.4 is satisfied as well. If i 6¼ j, then matrices Hi and Hj have differ-

ent patterns of ’s and ’s. By Lemma 9.2, condition 3 of Theorem 9.4 is satisfied. Since

every submatrix has at least one identity matrix, condition 4 of Theorem 9.4 is satisfied.

Hence the code described by H is an SEC-Sb=p�bEL code.

The number of blocks is equal to that of the nonzero integers expressed by r-digit binary

numbers, meaning 2r � 1. The block length B is determined by the number of distinct

column vectors using r matrices of the odd-weight column square matrices and the even-

weight column square matrices. B is also determined by the condition that everyHi includes

at least one row of identity matrices. Based on this, the maximum block length B bits can be

expressed as bð2b�1Þr�1 ¼ b2ðb�1Þðr�1Þ. Therefore Eq. (9.4) is valid. Q.E.D.

Example 9.2 [FUJI94]

For b ¼ 4 and R ¼ 8 the ð96; 88Þ SEC-S4=8�4EL code is given by the following

matrix H:

Figure 9.4 shows this matrix expressed in binary form.

H ¼
h
H0 H1 H2

i
¼
" #

¼
"
B0 B1 � � � B7 I4 I4 � � � I4 I4 I4 � � � I4

I4 I4 � � � I4 B0 B1 � � � B7 A0 A1 � � � A7

#
:

SINGLE-BIT ERROR CORRECTING AND SINGLE-BLOCK ERROR LOCATING (SEC-Sb=p�bEL) CODES 383



00
00

 1
11

1 
00

00
 0

00
0 

11
11

 1
11

1 
00

00
 1

11
1 

 1
00

0 
10

00
 1

00
0 

10
00

 1
00

0 
10

00
 1

00
0 

10
00

  1
00

0 
10

00
 1

00
0 

10
00

 1
00

0 
10

00
 1

00
0 

10
00

00
00

 1
11

1 
11

11
 0

00
0 

00
00

 0
00

0 
11

11
 1

11
1 

 0
10

0 
01

00
 0

10
0 

01
00

 0
10

0 
01

00
 0

10
0 

01
00

  0
10

0 
01

00
 0

10
0 

01
00

 0
10

0 
01

00
 0

10
0 

01
00

00
00

 0
00

0 
11

11
 1

11
1 

00
00

 1
11

1 
00

00
 1

11
1 

 0
01

0 
00

10
 0

01
0 

00
10

 0
01

0 
00

10
 0

01
0 

00
10

  0
01

0 
00

10
 0

01
0 

00
10

 0
01

0 
00

10
 0

01
0 

00
10

00
00

 0
00

0 
00

00
 1

11
1 

11
11

 0
00

0 
11

11
 1

11
1 

 0
00

1 
00

01
 0

00
1 

00
01

 0
00

1 
00

01
 0

00
1 

00
01

  0
00

1 
00

01
 0

00
1 

00
01

 0
00

1 
00

01
 0

00
1 

00
01

10
00

 1
00

0 
10

00
 1

00
0 

10
00

 1
00

0 
10

00
 1

00
0 

 0
00

0 
11

11
 0

00
0 

00
00

 1
11

1 
11

11
 0

00
0 

11
11

  1
00

0 
00

01
 0

01
0 

01
01

 1
01

1 
01

11
 1

11
0 

11
00

01
00

 0
10

0 
01

00
 0

10
0 

01
00

 0
10

0 
01

00
 0

10
0 

 0
00

0 
11

11
 1

11
1 

00
00

 0
00

0 
00

00
 1

11
1 

11
11

  0
10

0 
10

01
 0

01
1 

01
10

 1
10

1 
10

10
 0

10
1 

10
10

00
10

 0
01

0 
00

10
 0

01
0 

00
10

 0
01

0 
00

10
 0

01
0 

 0
00

0 
00

00
 1

11
1 

11
11

 0
00

0 
11

11
 0

00
0 

11
11

  0
01

0 
01

01
 1

01
1 

01
11

 1
11

0 
11

00
 1

00
0 

00
01

00
01

 0
00

1 
00

01
 0

00
1 

00
01

 0
00

1 
00

01
 0

00
1 

 0
00

0 
00

00
 0

00
0 

11
11

 1
11

1 
00

00
 1

11
1 

11
11

  0
00

1 
00

10
 0

10
1 

10
11

 0
11

1 
11

10
 1

10
0 

10
00

H
 =

F
ig
u
re

9
.4

B
in
ar
y
fo
rm

of
th
e
(9
6,
88
)S

E
C
-S

4=
8�

4
EL

co
de

s.
S
ou

rc
e
:[
FU

JI
94
].
�

19
94

IE
EE

.

384



Expanding the Code Length The code design method of Theorem 9.8 says that

the check-bit length should be a multiple of the byte length b. This condition can be

relaxed by taking any check-bit length R > 2b, as shown by the following theorem.

Theorem 9.9 Let the following matrix H be a parity-check matrix of an SEC-Sb=p�bEL
code with a code length in bits bð2r � 1Þ2ðb�1Þðr�1Þ and a check-bit length br:

H ¼
h
H0 H1 � � � Hn�1

i
;

where Hi, i ¼ 0; 1; � � � ; n� 1, is a submatrix of H. The code described by the following

matrix H0 is an SEC-Sb=p�bEL code with check-bit length br þ 1:

If this procedure is performed c times onH, then the code length in bits of the expanded

code with check-bit length R ¼ br þ c, 0 � c < b can be expressed as follows:

N ¼ ð2r � 1ÞB ¼ bð2r � 1Þ2ðb�1Þðr�1Þþc: ð9:5Þ

Figure 9.5 illustrates the relation between the information-bit length and the

check-bit length of the SEC-Sb=p�bEL code determined by Theorems 9.8 and 9.9 for

b ¼ 4.

H0 ¼
H0 H0 H1 H1 Hn�1 Hn�1

� � �
0 � � � 0 1 � � � 1 0 � � � 0 1 � � � 1 0 � � � 0 1 � � � 1

264
375:

8

10

12

14

16

18

20

22

24

26

28

64 128 256 512 1,024 2,048

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

40 88
K = 183

212
436

757

464 944

1,780

1,946972

984 1,992

2,004

476

224

100

B = 32

B = 64

B = 256

B = 16

b = 4

B = p × b

Figure 9.5 Check-bit lengths compared with information-bit lengths of the SEC-Sb=p�bEL type II codes for
b ¼ 4. Source: [FUJI94].� 1994 IEEE.

SINGLE-BIT ERROR CORRECTING AND SINGLE-BLOCK ERROR LOCATING (SEC-Sb=p�bEL) CODES 385



9.3.3 Decoding Procedure

It is apparent that single-bit error correction using an SEC-Sb=p�bEL code can be

performed in the same way as an SEC code.

The single-byte error location procedure of this code depends on the code design

method. For type I codes (codes I), the decoding circuit of the Sb0EC codes includes the

error locating circuit of the SEC-Sb=p�bEL codes. This is because the location of any

erroneous byte is determined in the decoding procedure of Sb0EC codes.

On the other hand, for type II codes (codes II), the error locating circuit is implemented

by using the first br bits of the syndrome having length R ¼ br þ c bits, where 0 � c < b.

To see this, let the first br bits of the syndrome be Swith r b-tuples, S0; S1; � � � ; Sr�1, shown
below:

S ¼

S0 S1 � � � Sr�1

�
¼

s0;0 s0;1 � � � s0;b�1 s1;0 s1;1 � � � s1;b�1 � � � sr�1;0 sr�1;1 � � � sr�1;b�1

�
sl;m 2 f0; 1g; 0 � l � r � 1; 0 � m � b� 1:

Let the syndrome Sl be obtained by the product of a byte error corresponding to the j-th

byte in the i-th block and the transposed b� b square matrix located at the l-th position

in the corresponding column in the parity-check matrix. The location of an erroneous

block is determined by using the weight of Sl’s. We define two variables, pl and zl,

using sl;m’s:

pl ¼
Xb�1
m¼0

 sl;m

and

zl ¼
_b�1
m¼0

sl;m;

where
P

represents modulo-2 sum. Next we define two additional binary variables, p0

and ql, using the variables pl and zl, where 0 � l � r � 1:

p0 ¼
_r�1
l¼1

pl

and

ql ¼ p0pl _ p0zl:

Here p0 denotes the complement of p0. If the error vector has odd weight, then at least

one of Sl ’s has odd weight, and hence p0 ¼ 1. In this case, Sl obtained by the product of

odd-weight column square matrix has odd weight, and the one obtained by the product

386 CODES FOR ERROR LOCATION: ERROR LOCATING CODES



of even-weight column square matrix has even weight. Therefore pl indicates which

matrices of the odd-weight column square matrix and the even-weight column square

matrix are used at the l-th element of the corresponding column in the parity-check

matrix. If the error vector has even weight, then p0 ¼ 0. In this case, zl indicates

which matrices of the odd-weight column square matrix and the even-weight column

square matrix are used at the l-th element of the corresponding column in the parity-

check matrix. The variable ql combines the two cases above; that is, if ql ¼ 1, then

the odd-weight column square matrix is used at the l-th element of the corresponding

column in the parity-check matrix, and if ql ¼ 0, then the even-weight column square

matrix is used. Based on the outcome above, the variable sequence q0q1 � � � qr�1,
where q0 is the most significant bit, expresses the value equal to iþ 1, where i is the

location number of the erroneous block. This follows from the fact that if and

are replaced by ‘1’ and ‘0’, respectively, in the column vector Hi shown in Theorem

9.8, which corresponds to the i-th block, then the binary vector takes the value of

iþ 1. Figure 9.6 illustrates the error locating circuit based on this concept.

9.3.4 Evaluation

Error Detection Capabilities The SEC-Sb=p�bEL codes do not always detect random

double-bit errors and also do not always detect double-byte errors. These errors sometimes

induce the following erroneous decoding cases:

Case 1. Indicate location of the error-free block as an erroneous block, or mislocate.

Case 2. Invert the error-free bit, or miscorrect.

Case 3. Indicate as error free, or misdetect.

..
..

..
..

...
...

..

p0

p1

pr – 1

z0

z1

zr – 1

S0

S1

Sr – 1

q 0

q 1

q r – 1

p ′

..

Figure 9.6 Error locating circuit of SEC-Sb=p�bEL type II codes. Source: [FUJI94].� 1994 IEEE.

SINGLE-BIT ERROR CORRECTING AND SINGLE-BLOCK ERROR LOCATING (SEC-Sb=p�bEL) CODES 387



The following cases cover situations where the codes neither miscorrect, mislocate, or

misdetect errors:

Case 4. Detect errors, but cannot correct or locate.

Case 5. Indicate correct location of the erroneous block in which all errors are included.

The ð72; 64Þ SEC-S4=8�4EL code can be obtained by deleting the last 6 columns (i.e., 24

binary columns) from the matrix shown in Figure 9.4, and hence the last block size is

8 bits. The probabilities of the above-described five cases are calculated by computer

simulation and are shown in Table 9.1.

Decoder Hardware Complexity Figure 9.7 shows the decoder hardware complexity

of the SEC-Sb=p�bEL codes for b ¼ 4 bits and B ¼ 4� 4 bits. In this figure we count a

four-input AND / OR gate as one gate and an XOR gate as 2.5 gates. For the two code,

design methods I and II, the difference in the gate count of the error correcting circuits in

the decoder depends mainly on the number of check bits. On the other hand, the difference

TABLE 9.1 Decoding Probabilities of the (72, 64) SEC-S4=8�4EL Code of Design Method II

Cases Double-bit errors (%) Double-byte errors (%)

Case1. Mislocation 31.0 25.5
Case 2. Miscorrection 15.0 27.0
Case 3. Misdetection 0 1.1
Case 4. Detection 49.8 30.4
Case 5. Location 4.2 16.0

Source : [FUJI94]. � 1994 IEEE.

10

100

1,000

10,000

64 256 1,024

Information-bit length K

G
at

e 
am

ou
nt

Total decoding circuit
Error locating circuit
Error correcting circuit Type I codes

Type II codes

Type II codes

Figure 9.7 Decoder gate counts of SEC-S4=4�4EL codes. Source: [FUJI94].� 1994 IEEE.

388 CODES FOR ERROR LOCATION: ERROR LOCATING CODES



in the gate count of the error locating circuits depends on the decoding procedure for error

location, meaning the type II codes provide direct and therefore simple decoding from the

syndrome, whereas the type I codes require the decoding procedures of both the Sb0EC
codes and the SEC-SbED codes.

The total gate count of the decoding circuit for the SEC-S4=4�4EL codes is around 15%

larger than that for the SEC-DED codes. This arises from the following facts. The

redundancy of the former codes is greater than that of the latter codes, and therefore the

syndrome generator and single-bit error correcting circuit of the former codes have almost

a 10% larger gate count than those of the latter codes. Furthermore the single-byte error

locating circuit is included in the decoder of the former codes.

Code Length Figure 9.8 shows the relation between the information-bit lengths and

the check-bit lengths of the type I codes and the type II codes with code parameters of

b ¼ 4 bits and B ¼ 60 bits. This also indicates the bounds on code length described in

Theorems 9.5 and 9.6.

9.4 SINGLE-BIT ERROR CORRECTING AND SINGLE-BYTE ERROR
LOCATING (SEC-Se=bEL) CODES

We study here another class of error locating codes, namely Single-bit Error Correcting

and Single e-bit (within a b-bit byte) Error Locating codes, or SEC-Se=bEL codes.

9.4.1 Code Conditions and Bounds

Let Es be the error set consisting of all single-bit errors, and let EiðEjÞ be the set of e

or fewer bits errors in the ið jÞ-th byte excluding single-bit errors, where e < b and b is

the byte length. Thus Ei \ Es ¼ Ej \ Es ¼ f for all i 6¼ j, where f is the empty set. The

8

10

12

14

16

18

20

22

64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

K = 207
422

854
1,718

3,448
6,908

13,830
27,675

30,956
15,469

7,726

1,840

884

408

K = 171

Type II codes

Bounds

b = 4, B = 60

Type I codes

Figure 9.8 Check-bit lengths compared with information-bit lengths of the SEC-S4=15�4EL codes. Source:

[FUJI94].� 1994 IEEE.

SINGLE-BIT ERROR CORRECTING AND SINGLE-BYTE ERROR LOCATING (SEC-Se=bEL) CODES 389



following theorem describes the necessary and sufficient conditions that characterize

SEC-Se=bEL codes.

Theorem 9.10 A linear code, described by the parity-check matrix H, corrects all

errors in Es and locates all errors in Ei, or Ej , where i 6¼ j, if and only if:

1. E �HT 6¼ 0 for all E 2 fEs [ Ei [ Ejg,
2. E1 �HT 6¼ E2 �HT for all E1, E2 2 Es, E1 6¼ E2,

3. E3 �HT 6¼ E4 �HT for all E3 2 Ei, and all E4 2 Ej,

4. E1 �HT 6¼ E3 �HT for all E1 2 Es, and all E3 2 Ei,

where HT means the transpose of H.

Proof It is apparent that conditions 1 and 2 and conditions 1 and 3 are necessary conditions

for correcting all single-bit errors and for indicating the location of an erroneous byte

containing e or fewer errors, respectively. Conditions 1 and 4 are also necessary conditions

for distinguishing single-bit errors from single-byte errors that exclude single-bit errors. So

the SEC-Se=bEL codes must satisfy conditions 1 to 4.

Inversely, a code that satisfies conditions 1 to 4 allows us to distinguish single-bit errors

from single-byte errors. Then we can correct all single-bit errors and locate all single-byte

errors. Therefore this code is an SEC-Se=bEL code. Q.E.D.

Since the Se=bEL codes, where e ¼ b, are equivalent to the single b-bit byte error

correcting codes (or SbEC codes), the SEC-Se=bEL codes, where e ¼ b, are also equivalent

to the SbEC codes. This leads to the following theorem.

Theorem 9.11 Linear SEC-Se=bEL codes satisfy

2 � e � b� 1:

The next two theorems give the lower bounds on check-bit length of the SEC-Se=bEL codes.

Theorem 9.12 Linear ðN; N � RÞ SEC-Se=bEL codes satisfy

2R 	

1þ N

b

Pðeþ1Þ=2
i¼1

b

i

� �
for odd e;

1þ N

b

Pe=2
i¼1

b

i

� �
þ

b

ðeþ 2Þ=2

� �
2b=ðeþ 2Þb c

8>><>>:
9>>=>>; for even e:

8>>>>>>><>>>>>>>:
Proof The lower bounds on the check-bit length of the Se=bEL codes are obtained by the

fact that syndromes produced by e=2 or fewer bits errors should be different from each

other [WOLF63].

1. For odd e. Syndromes produced by ðe� 1Þ=2 or fewer bits errors in a given byte

should differ from each other because, otherwise, there might exist e� 1 or fewer bits

390 CODES FOR ERROR LOCATION: ERROR LOCATING CODES



errors in that byte that result in a zero syndrome. This violates condition 3 of Theorem 9.10.

Conditions 3 and 4 say that syndromes produced by ðe� 1Þ=2þ 1 ¼ ðeþ 1Þ=2-bit errors
in a byte should be different from each other and also different from those produced by

ðe� 1Þ=2 or fewer bits errors in that byte. In this case it is because, otherwise, there might

exist e or fewer bits errors in that byte that result in a zero syndrome. This case violates the

conditions of the code. Therefore syndromes produced by ðeþ 1Þ=2 or fewer bits errors in

a byte should differ from each other. It is apparent that syndromes produced by ðeþ 1Þ=2
or fewer bits errors in a byte should also be different from those in another byte. Hence the

following inequality holds:

2R 	 1þ N

b

Xðeþ1Þ=2
i¼1

b

i

� �
:

2. For even e. By condition 3 of Theorem 9.10, the syndromes produced by e=2 or

fewer bits errors in a byte should differ from each other. However, syndromes produced

by ðeþ 2Þ=2-bit errors in a byte are capable of being equal to those produced by other

ðeþ 2Þ=2-bit errors in the same byte only when there exist no erroneous bits at the same

bit positions in these two ðeþ 2Þ=2-bit errors. There exist at most

b=
eþ 2

2

� �� �
¼ 2b

eþ 2

� �
of the ðeþ 2Þ=2-bit errors in a byte that have the same syndromes, where bxc means the

largest integer less than or equal to x. From conditions 3 and 4 of Theorem 9.10, any

syndromes produced by ðeþ 2Þ=2-bit errors should be different from those produced by

e=2-bit errors. Hence there exists at least the following number of distinct nonzero

syndromes:

N

b

Xe=2
i¼1

b

i

� �
þ

b

ðeþ 2Þ=2

� �
2b=ðeþ 2Þb c

8>><>>:
9>>=>>;:

Hence we have the following inequality:

2R 	 1þ N

b

Xe=2
i¼1

b

i

� �
þ

b

ðeþ 2Þ=2

� �
2b=ðeþ 2Þb c

8>><>>:
9>>=>>;:

Q.E.D.

Theorem 9.13 Linear ðN; N � RÞ SEC-Se=bEL codes satisfy

R 	 2e:

This theorem can be easily proved, and the proof is therefore omitted.

SINGLE-BIT ERROR CORRECTING AND SINGLE-BYTE ERROR LOCATING (SEC-Se=bEL) CODES 391



9.4.2 Design for SEC-Se=bEL Codes

The tensor product of the error correcting codes and the error detecting codes is also

applied in the design of SEC-Se=bEL codes. That is, tensor product of an SbEC code and a

single-bit error correcting and e-bit error detecting code (or SEC-eED code) produces the

SEC-Se=bEL code, as shown in the following theorem.

Theorem 9.14 The code described by the following matrix H is an SEC-Se=bEL code

whose code length N ¼ b� n bits:

H ¼ H0 �H00

¼ H00 H01 � � � H0n�1
 �

�H00

¼ H00 �H00 H01 �H00 � � � H0n�1 �H00
 �

¼ H0 H1 � � � Hn�1
 �

;

where � represents the tensor product, H0 is the parity-check matrix of the Sb0EC code

whose code length is n bytes,H0i is the submatrix ofH
0 corresponding to the i-th byte,H00 is

the parity-check matrix of the ðb; b� b0Þ SEC-eED code, and Hi is the submatrix of H
corresponding to the i-th byte.

Proof It is apparent that the code satisfies condition 1 of Theorem 9.10 for any single-

bit errors and any e or fewer bits errors. Condition 2 of Theorem 9.10 is satisfied

because the binary columns of H all differ. The syndromes resulting from any single-

byte errors in the i-th byte is different from those in the j-th byte, where i 6¼ j, because

each column in Hi is determined by the product of H0i by H00. In general, every H0i
includes a b0 � b0 nonsingular matrix, and every Hi includes a b0 � b matrix obtained

by the product of the nonsingular matrix and H00. Consequently any syndrome resulting

from e or fewer errors in a byte is nonzero and therefore satisfies condition 3 of The-

orem 9.10. This condition also tells us that the syndromes caused by any single-bit

errors are different from those caused by any single-byte errors excluding single-bit

errors, and therefore condition 4 is also satisfied. From the above, the indicated matrix

H satisfies all conditions of Theorem 9.10, and hence the code described by H is an

SEC-Se=bEL code. Q.E.D.

If we apply the maximal Sb0EC codes [HONG72] shown in Subsection 5.1.4, the

maximum code length in bits of the SEC-Se=bEL codes, defined by Theorem 9.14, can be

expressed as follows:

N ¼ b
2R � 1� 2b

0 ð2c � 1Þ
2b
0 � 1

þ b00; ð9:6Þ

where R is the check-bit length of the SEC-Se=bEL code and b00 is the code length in bits of
the SEC-eED code having c check bits where c ¼ R mod b0. If e ¼ 2, for example, then

b ¼ 2b
0�1 and b00 ¼ 2c�1.

392 CODES FOR ERROR LOCATION: ERROR LOCATING CODES



Example 9.3 [KITA95]: (36, 30) SEC-S2=4EL Code

For b ¼ 4, e ¼ 2 and b0 ¼ 3, the following matricesH0 andH00 show the ð27; 21Þ S3EC
code and the ð4; 1Þ SEC-DED code, respectively:

H H0 H1 H2 H3 H4 H5 H6 H7 H8

100 000 100 100 100 100 100 100 100
010 000 010 010 010 010 010 010 010
001 000 001 001 001 001 001 001 001
000 100 100 001 010 101 011 110 100
000 010 010 101 011 111 110 100 001
000 001 001 010 101 011 111 111 110

H

,

.
1001
0101
0011

The tensor product of these two codes produces the ð36; 30Þ SEC-S2=4EL code shown

in the following matrix H:

H

.

H H

H0 H H1 H H2 H H3 H H4 H H5 H

H6 H H7 H H8 H

1001 0000 1001 1001 1001 1001 1001 1001 1001
0101 0000 0101 0101 0101 0101 0101 0101 0101
0011 0000 0011 0011 0011 0011 0011 0011 0011
0000 1001 1001 0011 0101 1010 0110 1100 1001
0000 0101 0101 1010 0110 1111 1100 1001 0011
0000 0011 0011 0101 1010 0110 1111 1111 1100

9.4.3 Evaluation

Code Length Figure 9.9 illustrates the relation between the information-bit length and

the check-bit length of the SEC-Se=8EL codes for e ¼ 2 and 6. In the figure the lower

bounds are those obtained by Theorems 9.12 and 9.13. For comparison, the cases of

SEC codes, SEC-DED-S8ED codes, and S8EC codes are also shown. Note that the codes

are close to the bounds for smaller values of e and for larger information-bit lengths.

Therefore they are very efficient under some code parameters. Note also that the SEC-

S2=8EL codes have larger check-bit lengths than the SEC codes by almost one bit.

Although not indicated in the figure, they have almost the same check-bit lengths as the

SEC-DED codes. The maximal SbEC codes [HONG72] and the efficient SEC-eED

codes—meaning the BCH codes with Hamming distance eþ 2 for b < 1000 and

ðeþ 2Þ < b=2, the Hamming SEC-DED codes for e ¼ 2, and the repetition codes

[MCWL77] for e ¼ b� 2 should then provide the efficient SEC-Se=bEL code.

SINGLE-BIT ERROR CORRECTING AND SINGLE-BYTE ERROR LOCATING (SEC-Se=bEL) CODES 393



Figure 9.10 gives an example of the (72, 64) SEC-S2=4EL codes that is a shortened version

of the original (132, 124) SEC-S2=4EL codes.

Next we find the restriction on e existing in the SEC-Se=bEL codes, which we obtain by

the tensor product of two codes.

Lemma 9.3 An ðn; n� rÞ binary linear code with minimum Hamming distance d does

not exist under the following condition of the parameters, d and n:

2

3
n < d < n:

Proof For d ¼ n, the code is a repetition code and includes only two codewords. For

0 < d � n=2, it is apparent that the code includes at least four codewords.

6

7

8

9

10

11

12

13

14

15

16

17

18

19

64 128 256 512 1,024 2,048 4,096 8,192

Lower bounds

S8EC codes

e = 6

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

e = 2

8,202

4,088

2,034

8,2398,183

4,1124,088

2,0492,041

1,018

4,521

2,218

1,067499

492244

K = 205

70

57

K = 67

K = 120

247
128

255 263

512 524

502

1,025

1,013

1,077

2,036

2,172

4,083

4,347 4,355

8,178

8,698 8,722

SEC-DED-S8ED codes

SEC codes

SEC-S EL codese/8

b = 8

Figure 9.9 Check-bit lengths comparedwith information-bit lengths of the SEC-Se=8ELcodes. Source: [KITA95].

� 1995 IEICE Japan.

Figure 9.10 Example of (72, 64) SEC-S2=4EL codes. Source: [KITA95].� 1995 IEICE Japan.

394 CODES FOR ERROR LOCATION: ERROR LOCATING CODES



Next we consider the case for n=2 < d < n. Assume that there exist more than two

nonzero distinct codewords in the ðn; n� rÞ linear code. Let c1 and c2, where c1 6¼ c2, be
codewords of the linear code. In this case we can choose c1 and c2 that satisfy the

following conditions:

1. wHðc1Þ ¼ wHðc2Þ ¼ d.

2. There exist no 0’s in the same bit positions in c1 and c2.

Here wHðcÞ means the Hamming weight of c. Let f be the number of bit positions having

the same value of 1 between c1 and c2. Then the Hamming weight of c1 þ c2 is expressed
by wHðc1 þ c2Þ ¼ n� f . Since c1 þ c2 is another codeword of the code, the following

relation holds:

n� f 	 d: ð9:7Þ

Under d > n=2, the code length n (bits) can be expressed as

n ¼ 2d � f : ð9:8Þ

From Eq. (9.8) we have f ¼ 2d � n. Substituting this relation into (9.7) leads to

1

2
n < d � 2

3
n:

For the remaining region of d (i.e., ð2=3Þn < d < n) the number of codewords in

the ðn; n� rÞ linear code is less than or equal to 2. The code length of the code

having two codewords must be less than n because each codeword has larger than or

equal to one ‘0’. This contradicts the code that we now consider whose code length

has n bits.

We can conclude in this case that an ðn; n� rÞ binary linear code with minimum

Hamming distance d does not exist for the condition that

2

3
n < d < n:

Q.E.D.

Theorem 9.15 The SEC-Se=bEL codes based on the tensor product of the SbEC codes

and the ðb; b� b0Þ SEC-eED codes exist under the following condition:

2 � e � 2

3
b� 2; or e ¼ b� 2:

Proof For e ¼ b, the SEC-Se=bEL codes are equivalent to the SbEC codes, and

therefore they do not exist. For e ¼ b� 1, the SEC-eED codes do not exist because

minimum distance of the code is eþ 2. By Lemma 9.3, the SEC-eED codes whose

code length is b bits also do not exist for ð2=3Þb < d ¼ eþ 2 < b, that is, for

ð2=3Þb� 2 < e < b� 2.

SINGLE-BIT ERROR CORRECTING AND SINGLE-BYTE ERROR LOCATING (SEC-Se=bEL) CODES 395



From the above, the SEC-Se=bEL codes exist under the following condition:

2 � e � 2

3
b� 2; or e ¼ b� 2:

Q.E.D.

By Theorem 9.15, for example, the SEC-eED codes with e ¼ 4 and 5, for b ¼ 8, do not

exist. This is why Figure 9.9 does not include codes with these values of e.

Error Detection Capabilities The SEC-Se=bEL codes do not always detect random

double-bit errors and random double-byte errors, and these codes also do not always indi-

cate the correct location of an erroneous byte with larger than e bits errors. These errors

sometimes engage the five decoding cases mentioned in Subsection 9.3.4.

Table 9.2 lists the rate of the decoding cases expressed by percentage of the shortened

(72, 64) SEC-S2=4EL code shown in Figure 9.10 for random double-bit errors, double-byte

errors, and random 3- or 4-bit errors in a byte that are beyond the original error control

capability of the code.

9.5 BURST ERROR LOCATING CODES

This section deals with a class of error locating codes for burst errors. These codes locate

the erroneous frame containing the burst errors, l-bit burst error locating codes, called

BlEL codes [DASS82], and single-bit error correcting and l-bit burst error locating

codes, called SEC-BlEL codes [KITA98, 05].

9.5.1 Frame Set

Let a frame be defined as a set of clustered symbols in a codeword. A frame that begins and

ends at the i-th and j-th positions, respectively, is described by ½i; j�. Here we define the

frame set F for a codeword having N symbols as

F ¼ f½di; diþ L� 1� j 0 � i � ðN � Lþ 1Þ=dg:

Figure 9.11 illustrates the frame set F. Adjacent frames in F are partially overlapped by

L� d symbols. If L� d 	 l� 1 and L 	 l, there exists at least one frame in F that

contains some l-burst errors. This is the same idea as the frame overlapping with adjacent

frames by l� 1 mentioned in Subsection 8.1.2.

TABLE 9.2 Rate of Decoding Cases in (72, 64) SEC-S2=4EL Code

Double-bit errors Double-byte errors 3- or 4-Bit errors in a byte
Decoding cases (%) (%) (%)

Case1. Mislocation 34.0 27.0 0
Case 2. Miscorrection 9.0 29.5 80.0
Case 3. Misdetection 0 0.5 20.0
Case 4. Detection 52.8 43.0 0
Case 5. Location 4.2 0 0

Source: [KITA95]. � 2005 IEICE Japan.

396 CODES FOR ERROR LOCATION: ERROR LOCATING CODES



9.5.2 Burst Error Locating (BlEL) Codes

By using the concept of the frame, we define a new class of burst error locating codes.

Definition 9.4 A code is called an l-burst error locating code if and only if there exists at

least one frame that contains single l-burst error, and the code indicates the one such

frame in F. &

Next we present the BlEL codes [KITA05] that satisfy Definition 9.4.

Theorem 9.16 Let H0 ¼ ½h00 h01 � � � h0n�1� be a parity-check matrix of an ðn; n� R0Þ
l-bit burst error correcting code, where h0i is an i-th binary column vector of H0,
0 � i � n� 1, and R0 is a check-bit length. Also let H0i ¼ ½h0i h0iþ1 � � � h0iþl�1� be a sub-

matrix including consecutive l columns from the i-th column of H0, where 0 � i � n� l.

The code defined by the following parity-check matrix H is a ððplþ 1Þðn� lþ 1Þ;
ðplþ 1Þðn� lþ 1Þ � R0Þ BlEL code with a frame set F:

H H0 H0 H0 h0 H1 H1 H1 h1

p l 1 p l 1

Hn l Hn l Hn l hn l

p l 1

F i pl 1 i l pl 1 1 0 i n 2l 1

where p is an integer.

Proof Let P be the n� ðplþ 1Þðn� lþ 1Þ matrix defined below:

P P0 P0 P0 p0 P1 P1 P1 p1

p l 1 p l 1

Pn l Pn l Pn l pn l

p l 1
ð9:9Þ

L
L

Codeword

Frame

d
d

d

L

N

L - d L - d L - d

L

Figure 9.11 Frame set. Source: [KITA05].� 2005 IEEE.

BURST ERROR LOCATING CODES 397



In Eq. (9.9), Pi is an n� l binary matrix and pi is a binary n-tuple, whose elements are

defined below:

ðPiÞj;m ¼
1 m ¼ iþ j;
0 otherwise;

�
ðpiÞj ¼

1 j ¼ i;
0 otherwise:

�

Let E be an error vector with length ðplþ 1Þðn� lþ 1Þ bits including an l-bit burst error.

A vector E0 with length n bits is defined by the product of E and the transposed P, meaning

E0 ¼ E � PT . Let m be a bit position of the first nonzero element in E0. From the

organization of the matrix P, E0 is an error vector with length n bits including the l-bit burst
error. Then the burst error in E exists in the frame ½mðplþ 1Þ; ðmþ lÞðplþ 1Þ � 1�.

It is apparent that the parity-check matrix H is expressed by the product of H0 and P,

meaning H ¼ H0 � P. Let S be the syndrome caused by the error vector E. Then the

following relation holds:

S ¼ E �HT ¼ E � H0 � Pð ÞT¼ E � PT
� �

H0
T
:

Since the code defined by H0 is an l-bit burst error correcting code, E � PT is uniquely

determined by the syndrome, and the frame that includes E is also determined. Therefore

the code defined by H is a BlEL code. Q.E.D.

9.5.3 Single-Bit Error Correcting and Burst Error Locating (SEC-BlEL)
Codes

Let Es be an error set consisting of all single-bit errors, and El be an error set of all l-burst

errors excluding single-bit errors, meaning Es \ El ¼ f. The following theorem indicates

the necessary and sufficient conditions of the SEC-BlEL codes.

Theorem 9.17 A linear code, described by a parity-check matrix H, corrects all errors

in Es and indicates a frame in Fall that contains errors in El if and only if:

1. E �HT 6¼ 0 for all E 2 fEs [ Elg,
2. E1 �HT 6¼ E2 �HT for all E1;E2 2 Es;E1 6¼ E2,

3. Ep �HT 6¼ Eq �HT for all Ep;Eq 2 El, f1; f2 2 Fall; Ep 
 f1;Eq 
 f2;Ep;Eq 6

f1 \ f2,

4. E1 �HT 6¼ Ep �HT for all E1 2 Es, all Ep 2 El.

Theorem 9.17 can be easily proved. Conditions 1 to 4 are for error detection, single-bit

error correction, burst error location, and discrimination between single-bit errors and

burst errors, respectively. The following theorem presents the SEC-BlEL code [KITA05]

that satisfies Theorem 9.17.

Theorem 9.18 The code defined by the following parity-check matrix HL is a

ððplþ 1Þðn� lþ 1Þ; ðplþ 1Þðn� lþ 1Þ � R0 � dlog2ðplþ 1ÞeÞ SEC-BlEL code:

HL ¼
H
Q

� �
;

398 CODES FOR ERROR LOCATION: ERROR LOCATING CODES



whereH is the parity-checkmatrix of a ððplþ 1Þðn� lþ 1Þ; ðplþ 1Þðn� lþ 1Þ � R0ÞBlEL

code defined in Theorem 9.16, Q is a dlog2ðplþ 1Þe � ðplþ 1Þðn� lþ 1Þ matrix added to

make every binary column in HL distinct, and dx e is the smallest integer no less than x.

Proof Since column hj appears in H at most plþ 1 times in the BlEL code in Theorem

9.16, it is possible to make every column in HL distinct by adding the matrix Q with

dlog2ðplþ 1Þe rows. From the organization of the matrix HL, conditions 1 and 2 of

Theorem 9.17 are satisfied. Since H is a parity-check matrix of BlEL code, condition

3 is satisfied. Condition 4 is also satisfied because E1 � P 6¼ Ep � P for all E1 2 Es and

Ep 2 El, where P is the matrix defined by Eq. (9.9). Therefore the code defined by HL is

an SEC- BlEL code. Q.E.D.

Example 9.4 [KITA05]

The following shows the parity-check matrix of a ð15; 9Þ 3-bit burst error correcting
code with parameters of l ¼ 3, n ¼ 15 and R0 ¼ 6:

H0 ¼

1 1 0 0 1 1 1 0 0 1 0 0 0 0 0

0 1 1 0 0 1 1 1 0 0 1 0 0 0 0

0 0 1 1 0 0 1 1 1 0 0 1 0 0 0

0 0 0 1 1 0 0 1 1 1 0 0 1 0 0

0 0 0 0 1 1 0 0 1 1 1 0 0 1 0

0 0 0 0 0 1 1 0 0 1 1 1 0 0 1

26666664

37777775 ¼ h00 h
0
1 h
0
2; � � � ; h014

 �
:

Submatrices H00; H01; � � � ; H012 can be obtained from H0 as follows:

1 1 0
0 1 1
0 0 1
0 0 0
0 0 0
0 0 0

h0 h1 h2

1

1 0 0
1 1 0
0 1 1
0 0 1
0 0 0
0 0 0

h1 h2 h3

12

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

h12 h13 h14

H′H ′0 H ′    =

The following ð91; 85Þ B3EL code with p ¼ 2 can be designed:

H H0 H0 h0 H1 H1 h1 H12 H12 h12

This code has a frame set f½0; 20�; ½7; 27�; ½14; 34�; � � � ; ½70; 90�g. After appending
the matrix Q having dlog2ðplþ 1Þe ¼ 3 rows, the parity-check matrix of ð91; 82Þ
SEC-B3EL code becomes

HL

H0 H0 h0 H1 H1 h1 H12 H12 h12

Q

Figures 9.12 and 9.13 show the parity-check matrices of the ð91; 85Þ B3EL code and

the ð91; 82Þ SEC-B3EL code, respectively.

BURST ERROR LOCATING CODES 399



11
01

10
  1

  1
00

10
0 

 1
  0

01
00

1 
 0

  0
11

01
1 

 0
  1

11
11

1 
 1

  1
10

11
0 

 1
  1

00
10

0 
 1

  0
01

00
1 

 0
  0

10
01

0 
 0

  1
00

10
0 

 1
  0

00
00

0 
 0

  0
00

00
0 

 0
  0

00
00

0 
 0

01
10

11
  0

  1
10

11
0 

 1
  1

00
10

0 
 1

  0
01

00
1 

 0
  0

11
01

1 
 0

  1
11

11
1 

 1
  1

10
11

0 
 1

  1
00

10
0 

 1
  0

01
00

1 
 0

  0
10

01
0 

 0
  1

00
10

0 
 1

  0
00

00
0 

 0
  0

00
00

0 
 0

00
10

01
  0

  0
11

01
1 

 0
  1

10
11

0 
 1

  1
00

10
0 

 1
  0

01
00

1 
 0

  0
11

01
1 

 0
  1

11
11

1 
 1

  1
10

11
0 

 1
  1

00
10

0 
 1

  0
01

00
1 

 0
  0

10
01

0 
 0

  1
00

10
0 

 1
  0

00
00

0 
 0

00
00

00
  0

  0
01

00
1 

 0
  0

11
01

1 
 0

  1
10

11
0 

 1
  1

00
10

0 
 1

  0
01

00
1 

 0
  0

11
01

1 
 0

  1
11

11
1 

 1
  1

10
11

0 
 1

  1
00

10
0 

 1
  0

01
00

1 
 0

  0
10

01
0 

 0
  1

00
10

0 
 1

00
00

00
  0

  0
00

00
0 

 0
  0

01
00

1 
 0

  0
11

01
1 

 0
  1

10
11

0 
 1

  1
00

10
0 

 1
  0

01
00

1 
 0

  0
11

01
1 

 0
  1

11
11

1 
 1

  1
10

11
0 

 1
  1

00
10

0 
 1

  0
01

00
1 

 0
  0

10
01

0 
 0

00
00

00
  0

  0
00

00
0 

 0
  0

00
00

0 
 0

  0
01

00
1 

 0
  0

11
01

1 
 0

  1
10

11
0 

 1
  1

00
10

0 
 1

  0
01

00
1 

 0
  0

11
01

1 
 0

  1
11

11
1 

 1
  1

10
11

0 
 1

  1
00

10
0 

 1
  0

01
00

1 
 0

H
 =

F
ig
u
re

9
.1
2

Pa
ri
ty
-c
he

ck
m
at
ri
x
H
of
th
e
(9
1,
85
)B

3
EL

co
de
.
S
ou

rc
e:

[K
IT
A
05
].
�

20
05

IE
EE

.

400



H
L 

=

11
01

10
  1

  1
00

10
0 

 1
  0

01
00

1 
 0

  0
11

01
1 

 0
  1

11
11

1 
 1

  1
10

11
0 

 1
  1

00
10

0 
 1

  0
01

00
1 

 0
  0

10
01

0 
 0

  1
00

10
0 

 1
  0

00
00

0 
 0

  0
00

00
0 

 0
  0

00
00

0 
 0

01
10

11
  0

  1
10

11
0 

 1
  1

00
10

0 
 1

  0
01

00
1 

 0
  0

11
01

1 
 0

  1
11

11
1 

 1
  1

10
11

0 
 1

  1
00

10
0 

 1
  0

01
00

1 
 0

  0
10

01
0 

 0
  1

00
10

0 
 1

  0
00

00
0 

 0
  0

00
00

0 
 0

00
10

01
  0

  0
11

01
1 

 0
  1

10
11

0 
 1

  1
00

10
0 

 1
  0

01
00

1 
 0

  0
11

01
1 

 0
  1

11
11

1 
 1

  1
10

11
0 

 1
  1

00
10

0 
 1

  0
01

00
1 

 0
  0

10
01

0 
 0

  1
00

10
0 

 1
  0

00
00

0 
 0

00
00

00
  0

  0
01

00
1 

 0
  0

11
01

1 
 0

  1
10

11
0 

 1
  1

00
10

0 
 1

  0
01

00
1 

 0
  0

11
01

1 
 0

  1
11

11
1 

 1
  1

10
11

0 
 1

  1
00

10
0 

 1
  0

01
00

1 
 0

  0
10

01
0 

 0
  1

00
10

0 
 1

00
00

00
  0

  0
00

00
0 

 0
  0

01
00

1 
 0

  0
11

01
1 

 0
  1

10
11

0 
 1

  1
00

10
0 

 1
  0

01
00

1 
 0

  0
11

01
1 

 0
  1

11
11

1 
 1

  1
10

11
0 

 1
  1

00
10

0 
 1

  0
01

00
1 

 0
  0

10
01

0 
 0

00
00

00
  0

  0
00

00
0 

 0
  0

00
00

0 
 0

  0
01

00
1 

 0
  0

11
01

1 
 0

  1
10

11
0 

 1
  1

00
10

0 
 1

  0
01

00
1 

 0
  0

11
01

1 
 0

  1
11

11
1 

 1
  1

10
11

0 
 1

  1
00

10
0 

 1
  0

01
00

1 
 0

00
00

00
  0

  0
00

00
0 

 1
  1

00
10

0 
 1

  1
00

10
0 

 1
  1

00
10

0 
 1

  1
00

10
0 

 1
  1

00
10

0 
 1

  1
00

10
0 

 1
  1

00
10

0 
 1

  1
00

10
0 

 1
  1

00
10

0 
 1

  1
00

10
0 

 1
  1

00
10

0 
 1

00
00

00
  1

  1
10

11
0 

 0
  0

10
01

0 
 1

  0
10

01
0 

 1
  0

10
01

0 
 1

  0
10

01
0 

 1
  0

10
01

0 
 1

  0
10

01
0 

 1
  0

10
01

0 
 1

  0
10

01
0 

 1
  0

10
01

0 
 1

  0
10

01
0 

 1
  0

10
01

0 
 1

00
01

11
  0

  0
00

11
1 

 0
  0

00
11

1 
 0

  0
00

11
1 

 0
  0

00
11

1 
 0

  0
00

11
1 

 0
  0

00
11

1 
 0

  0
00

11
1 

 0
  0

00
11

1 
 0

  0
00

11
1 

 0
  0

00
11

1 
 0

  0
00

11
1 

 0
  0

00
11

1 
 0

F
ig
u
re

9
.1
3

Pa
ri
ty
-c
he

ck
m
at
ri
x
H

L
of
th
e
(9
1,
82
)S

E
C
-B

3
EL

C
od

e.
S
ou

rc
e:

[K
IT
A
05
].
�

20
05

IE
EE

.

401



9.5.4 Decoding Procedure

Single-bit error correction is easily executed. If the syndrome of the received word is equal

to one column vector of the parity-check matrix H, the corresponding bit in the received

word is erroneous, and then the error is corrected by inverting the bit.

Burst error location is determined by decoding the burst error correcting codes defined

by H0. The upper R0 bits of the syndrome are used for the burst error location by a parallel

procedure based on the method shown in Section 8.1. That is, using the R0 � l matrix H0i,
appended by the R0 � ðR0 � lÞ matrix B0i, we have an R0 � R0 nonsingular matrix

A0i ¼ ½H0i B0i� for 0 � i � n� l. The inverse matrix ðA0iÞ
�1

is as presented below, where H
y
i

and B
y
i are l� R0 and ðR0 � lÞ � R0 matrices, respectively:

A0i
� ��1¼ �Hyi

B
y
i

�
:

Suppose that first R0 bits of the syndrome are S. If S � Byj
T ¼ 0, then the frame

½ jðplþ 1Þ; ðjþ lÞðplþ 1Þ � 1� is determined to be erroneous for 0 � j � n� 1. The last

frame ½ðn� 2lþ 1Þðplþ 1Þ; ðn� lþ 1Þðplþ 1Þ � 1� is erroneous if the following

relation is satisfied:

_n�l
j¼n�2lþ1

S � Byj
T ¼ 0

� �
:

For burst errors of lengths less than l bits, S � Byj
T ¼ 0 will hold for the two adjacent

frames. This means that the burst error has occurred in the overlapped area of two frames.

In such a case it is enough to indicate one of the erroneous frames.

Figure 9.14 illustrates the parallel decoder of the SEC-BlEL codes in a block diagram.

9.5.5 Evaluation

Figure 9.15 shows the check-bit lengths of the SEC-B3EL codes. The parity-check matrix

of the burst error correcting code is generated by computer search [KASA63]. For

H
Syndrome
generatorN

Received
word R′+r

R′+r

R′

Syndrome

Syndrome (first R′′ bits)

Single-bit error pattern generator
N

Inverting circuit

N

Pointers indicating erroneous frame 

Corrected word

N=(pl+1)(n-l+1)

r=  log2( pl+1)

l l l l l

l

S

B
†

S
T

B
†

S
T

B
†

S
T

B
†

S
T

B
†

S
T

0 1 n-2l n-2l+1 n-l

Figure 9.14 Block diagramof the parallel decoder of SEC-BlEL codes. Source: [KITA05].� 2005 IEEE.

402 CODES FOR ERROR LOCATION: ERROR LOCATING CODES



comparison, the existing SEC-B3EL codes [KAIS02] and the burst error correcting Fire

codes [FIRE59] are also included in this figure.

The parallel decoder of the codes is designed by hardware description language.

Figure 9.16 shows the decoder hardware amounts of the ð132; 122Þ, ð231; 220Þ, and
ð528; 516Þ SEC-B3EL codes. In this figure the hardware amount is expressed by the

6

7

8

9

10

11

12

13

14

15

16 32 64 128 256 512 1,024 2,048

C
he

ck
-b

it 
le

ng
th

 R

Information-bit length K

SEC-B3EL code
Existing code [KAIS02]

B3EC Fire code

17

27 40 44

K = 66

82
87

145

K = 182 

K = 198

304

373
K = 392

623

756
820

1,262

1,523
1,638

Figure 9.15 Check-bit lengths comparedwith information-bit lengths of the SEC-B3EL codes. Source: [KITA05].

� 2005 IEEE.

0

2

4

6

8

10

12

10 11 12

R
el

at
iv

e 
ha

rd
w

ar
e 

am
ou

nt

Check-bit length

B3EC Fire code

SEC-B3EL code

(155, 145) code

(132, 122) code (231, 220) code

(528, 516) code

(315, 304) code

(635, 623) code

1

Figure 9.16 Relative hardware amounts of the parallel decoder for the SEC-B3EL codes. Source: [KITA05].�

2005 IEEE.

BURST ERROR LOCATING CODES 403



relative circuit area of the decoder, where the area for the ð132; 122Þ SEC-B3EL code

is considered to be 1. For comparison, the cases of the ð155; 145Þ, ð315; 304Þ, and
ð635; 623Þ B3EC Fire codes (i.e., three cases of 3-bit burst error correcting Fire codes)

are also presented. The parallel decoder of the Fire code is designed by the method

shown in Section 8.1. This figure says that the hardware amount of the parallel decoder

of the SEC-B3EL code is 20 to 40 percent of that of the burst error correcting Fire

codes.

9.6 CODE CONDITIONS OF ERROR LOCATING CODES

This section mentions the necessary and sufficient conditions of the error locating codes in

a generalized form, and clarifies the relation between the error locating codes and the error

correcting / detecting codes [KITA97].

9.6.1 Preliminaries

Suppose that each of the codewords X and Y has N-bit length divided into n bytes, each

having b-bit length (i.e., N ¼ b� n). Also suppose that the i-th bytes of X and Y are Xi and

Yi, 0 � i � n� 1, respectively. If e or fewer errors occur in the b-bit byte, this type of error

is expressed as e=b-error, where 1 � e � b. If e ¼ 1, this shows a single-bit error in a byte,

and if e ¼ b, this shows an ordinary byte error.

Definition 9.5 The metric function for the vectors X ¼ ðX0; X1; . . . ; Xn�1Þ and

Y ¼ ðY0; Y1; . . . ; Yn�1Þ is defined by

DeðX;YÞ ¼
Xn�1
i¼0

dHðXi; YiÞ
e

� �
e;

where dHðXi; YiÞ shows the Hamming distance between the i-th b-bit bytes Xi and Yi,

1 � e � b, and dAe expresses the minimum integer greater than or equal to A. &

Theorem 9.19 The function DeðX;YÞ satisfies the distance metrics, that is:

1. DeðX;YÞ > 0 for X 6¼ Y and DeðX;YÞ ¼ 0 for X ¼ Y,

2. DeðX;YÞ ¼ DeðY;XÞ,
3. DeðX;YÞ � DeðX;ZÞ þ DeðZ;YÞ.

Theorem 9.19 can be easily proved, and so the proof is omitted.

Definition 9.6 The following shows the function for the vectorsX ¼ ðX0; X1; � � � ; Xn�1Þ
and Y ¼ ðY0; Y1; � � � ; Yn�1Þ defined by

gf2f1ðX;YÞ ¼ fi j f1 � dHðXi; YiÞ � f2; 0 � f1 < f2 � bgj j;

where jAj expresses the number of elements in set A. &

404 CODES FOR ERROR LOCATION: ERROR LOCATING CODES



9.6.2 Code Conditions

By using the defined functions, DeðX;YÞ and gf2f1ðX;YÞ, we obtain the necessary and

sufficient conditions of the error locating codes as well as the error correcting / detecting

codes. We consider the error control codes of the generalized form, such as t e=b-errors
correcting codes (i.e., te=bEC codes), m e=b-errors detecting codes (i.e., me=bED codes),

l e=b-errors locating codes (i.e., le=bEL codes), and the codes with combination of these

functions, where t, m, and l are integers.

Conditions for te=bEC Codes

Lemma 9.4 The following shows the necessary and sufficient condition of a code that

corrects any errors included in the error set E:

X þ Ex 6¼ Y þ Ey for all X; Y 2 C; X 6¼ Y; and for all Ex; Ey 2 E:

Theorem 9.20 The necessary and sufficient conditions of the te=bEC codes that correct

t e=b-errors in a word are shown as

gb2eþ1ðX;YÞ 	 1 or DeðX;YÞ 	 2teþ 1:

Proof Let Exi and Eyi be the i-th bytes of Ex and Ey, respectively, where 0 � i � n� 1.

If gb2eþ1ðX;YÞ 	 1, then there exists the byte (e.g., the i-th byte) that satisfies

dHðXi; YiÞ 	 2eþ 1. In this case, even if there exist e=b-errors at the i-th byte of both

X and Y, the resulting i-th bytes of these vectors are not coincident. By Lemma 9.4,

the code that satisfies gb2eþ1ðX;YÞ 	 1 is a te=bEC code.

Next let Ete=b be the error set of t or fewer e=b-errors. By Theorem 9.19,

DeðX;YÞ � DeðX;X þ ExÞ þ DeðX þ Ex;Y þ EyÞ þ DeðY;Y þ EyÞ:

For DeðX;YÞ 	 2teþ 1,

DeðX þ Ex;Y þ EyÞ 	 DeðX;YÞ � DeðX;X þ ExÞ � DeðY;Y þ EyÞ
	 1:

Then X þ Ex 6¼ Y þ Ey is always satisfied. Therefore the code that satisfies

DeðX;YÞ 	 2teþ 1 is a te=bEC code.

Conversely, if gb2eþ1ðX;YÞ ¼ 0 and DeðX;YÞ < 2teþ 1, then 0 � dHðXi; YiÞ � 2e for

any bytes of X and Y. Let w be the number of bytes that satisfy eþ 1 � dHðXi; YiÞ � 2e.

Then the number of bytes that satisfy 1 � dHðXi;YiÞ � e is at most 2t � 2w. In this case we

can select Ex and Ey to satisfy the following: (1) Exi 6¼ 0;Eyi 6¼ 0 and Xi þ Exi ¼ Yi þ Eyi

for the bytes having the relation eþ 1 � dHðXi; YiÞ � 2e, (2) Exi ¼ Xi þ Yi; Eyi ¼ 0 for the

ðt � wÞ bytes having the relation 1 � dHðXi; YiÞ � e and Exi ¼ 0;Eyi ¼ Xi þ Yi for the

remaining bytes. Then we have X þ Ex ¼ Y þ Ey for all Ex;Ey 2 Ete=b . Therefore, this does

not satisfy the condition of the te=bEC code. Q.E.D.

CODE CONDITIONS OF ERROR LOCATING CODES 405



Conditions for me=bED Codes

Lemma 9.5 The following shows the necessary and sufficient conditions of a code C
that detects any errors included in the error set E:

X þ Ex 6¼ Y for all X;Y 2 C; X 6¼ Y; and for all Ex 2 E:

Theorem 9.21 The necessary and sufficient conditions of the me=bED codes that detect

m e=b-errors in a word are

gbeþ1ðX;YÞ 	 1 or DeðX;YÞ 	 meþ 1:

Theorem 9.21 can be proved in the same manner as the previous theorem.

Conditions for le=bEL Codes

Lemma 9.6 The following shows the necessary and sufficient conditions of a code C
that locates any errors included in the error set E:

1. X þ Ex ¼ Y þ Ey ) ðExi ¼ 0 ^ Eyi ¼ 0Þ or ðExi 6¼ 0 ^ Eyi 6¼ 0Þ for 0 � i �n� 1:

2. X þ Ex 6¼ Y,

where 8X; 8Y 2 C, X 6¼ Y, 8Ex; 8Ey 2 E, and Exi ; Eyi express the i-th byte errors in

Ex; Ey, respectively.

Lemma 9.6 can be roughly proved as follows: Condition 1 tells us that the relation

X þ Ex ¼ Y þ Ey is satisfied only if the location of the byte errors in Ex is the same as that

of the errors in Ey. In this case the errors cannot be corrected, but their locations can be

correctly indicated. Condition 2 tells us that all errors in E are detected. Therefore both

conditions 1 and 2 are the necessary and sufficient conditions of the error locating code.

Theorem 9.22 The necessary and sufficient conditions of the le=bEL codes that locate

l e=b-errors in the word are

gb2eþ1ðX;YÞ 	 1;

ge1ðX;YÞ ¼ 0; or

DeðX;YÞ 	 2leþ 1:

Proof By Theorem 9.20, the condition gb2eþ1ðX;YÞ 	 1 or DeðX;YÞ 	 2leþ 1 shows

the necessary and sufficient condition of the le=bEC codes, and therefore this is also

the condition of the le=bEL codes.

If the condition ge1ðX;YÞ ¼ 0 is satisfied for the vectors X and Y, there exists the

possibility to have the relation X þ Ex ¼ Y þ Ey for 9Ex and 9Ey, where dHðXi; YiÞ is no
less than eþ 1 or zero. This shows that Exi 6¼ 0 and Eyi 6¼ 0 for the erroneous i-th bytes in

X and Y with relation dHðXi; YiÞ 	 eþ 1, or Exi ¼ Eyi for the i-th bytes in X and Y that

satisfy dHðXi;YiÞ ¼ 0, where Exi and Eyi show the i-th byte of Ex and Ey, respectively. By

Lemma 9.6, the above satisfies the conditions of the le=bEL codes.

Conversely, we consider the conditions gb2eþ1ðX;YÞ ¼ 0, ge1ðX;YÞ 	 1, and

DeðX;YÞ < 2leþ 1. In this case there always exist the bytes that satisfy

1 � dHðXi; YiÞ � e. For these bytes we can select the errors Ex and Ey in the error set

406 CODES FOR ERROR LOCATION: ERROR LOCATING CODES



comprising of l or less e=b-errors where X þ Ex ¼ Y þ Ey for Exi 6¼ 0 and Eyi ¼ 0.

Therefore, they do not satisfy the conditions of Lemma 9.6. Q.E.D.

Conditions for Codes with Combination of Code Functions Here we consider

the codes with two code functions such as error correction and error detection, error cor-

rection and error location, and error location and error detection.

Table 9.3 demonstrates the necessary and sufficient conditions of the te1=bEC-me3=bED

codes, the te1=bEC-le2=bEL codes, and the le2=bEL-me3=bED codes, where t < l < m. The

conditions of the te1=bEC-le2=bEL codes, for example, can be obtained by taking logical

AND of the following conditions:

1. Conditions of the te1=bEC codes,

2. Conditions of the le2=bEL codes,

3. Conditions to discriminate the t e1=b-errors and the l e2=b-errors.

This table also includes the conditions of the te=bEC codes, the me=bED codes and the

le=bEL codes given in Theorems 9.20, 9.21, and 9.22, respectively.

TABLE 9.3 Necessary and Sufficient Conditions of Codes

Codes Conditions

te=bECcode gb2eþ1ðX ;Y Þ 	 1, or DeðX ;Y Þ 	 2teþ 1

le=bEL code gb2eþ1ðX ;Y Þ 	 1, ge1ðX ;Y Þ ¼ 0, or DeðX ;Y Þ 	 2leþ 1

me=bEDcode gbeþ1ðX ;Y Þ 	 1, or DeðX ;Y Þ 	 meþ 1

te1=bEC-me3=bEDcode geb1þe�1;3þ1ðX ;Y Þ 	 1, ðDe1 ðX ;Y Þ 	 2te1 þ 1 ^ gbe3 ðX ;Y Þ 	 t þ 1Þ,

De�1;3
ðX ;Y Þ 	 ðt þmÞe�1;3 þ 1, ðgbe1þ1ðX ;Y Þ 	 mþ 1 if e1 � e3Þ, or

ðDeðX ;Y Þ 	 2te1 þ 1 ^ gbe1þe3þ1ðX ;Y Þ 	 1 if e1 > e3Þ

gb2e�1;2þ1ðX ;Y Þ 	 1,

ðDe1 ðX ;Y Þ 	 2te1 þ 1 ^ gbe2þ1ðX ;Y Þ 	 t þ 1 ^ ge21 ðX ;Y Þ ¼ 0Þ,

ðDe1 ðX ;Y Þ 	 ðt þ lÞe1 þ 1 ^ De2 ðX ;Y Þ 	 2le2 þ 1Þ,

te1=bEC-le2=bEL code ðge21 ðX ;Y Þ ¼ 0 ^ gbe1þe2þ1ðX ;Y Þ 	 1 if e1 � e2Þ,

ðDe1 ðX ;Y Þ 	 2te1 þ 1 ^ gbe1þe2þ1ðX ;Y Þ 	 1 if e1 > e2Þ,

fDe1 ðX ;Y Þ 	 2te1 þ 1 ^ gbe2þ1ðX ;Y Þ 	 t þ 1^

ðgb2e2þ1ðX ;Y Þ 	 1, or De2 ðX ;Y Þ 	 2le2 þ 1Þ if e1 > e2g, or

fDe1 ðX ;Y Þ 	 ðt þ lÞe1 þ 1 ^ ðgb2e2þ1ðX ;Y Þ 	 1or ge21 ðX ;Y Þ ¼ 0Þ if e1 > e2g

gbe2þe�2;3þ1ðX ;Y Þ 	 1,

ðDe2 ðX ;Y Þ 	 2le1 þ 1 ^ gbe3þ1ðX ;Y Þ 	 lþ 1Þ,

le2=bEL-me3=bEDcode g
e�2;3
1 ðX ;Y Þ ¼ 0,

De�2;3
ðX ;Y Þ 	 ðlþmÞe�2;3 þ 1,

ðgbe2þ1ðX ;Y Þ 	 mþ 1 if e2 � e3Þ, or

ðDe2 ðX ;Y Þ 	 2le2 þ 1 ^ gbe2þe3þ1ðX ;Y Þ 	 1 if e2 > e3Þ

Source: [KITA97].� 1997 IEICE Japan.

Note: � : ei;j ¼ maxðei; ejÞ ¼
ei if ei 	 ej;
ej if ei < ej:

�

CODE CONDITIONS OF ERROR LOCATING CODES 407



Table 9.4 shows the conditions of the existing codes induced by substituting appropriate

values to the parameters of t; l; m; e1; e2, and e3 of the codes in Table 9.3.

9.6.3 Relation between Error Locating Codes and Error Correcting /
Detecting Codes

The necessary and sufficient conditions of the error locating codes include the condition of

ge1ðX;YÞ ¼ 0 in addition to the conditions of the error correcting codes. The necessity of

including this condition makes the number of codewords of error locating codes greater

than that of the error correcting codes. The same is true for the relation between the

le2=bEL-me3=bED codes and the te1=bEC-me3=bED codes.

As the value of e becomes equal to b, the number of codewords that satisfy

ge1ðX;YÞ ¼ 0 becomes small, and therefore the error locating codes has to be equal to the

error correcting codes. If e ¼ b, the following theorem holds.

TABLE 9.4 Code Conditions of Existing Codes

Codes Code conditions t l m e1 e2 e3

SECcode D1ðX ;Y Þ 	3 1 � � 1 � �

DEDcode D1ðX ;Y Þ 	3 � �
1
2

� �
2�

1

SEC-DEDcode D1ðX ;Y Þ 	4 1 �
1
2

1 �
2�

1

tbEC-mbEDcode DbðX ;Y Þ	 ðt þmÞbþ 1 t � m b � b

SEC-SbEDcode gb2ðX ;Y Þ 	2, or DbðX ;Y Þ	 2bþ 1 1 � 1 1 � b

SEC-DED-SbEDcode gb2ðX ;Y Þ 	2, 1 2�

ðDbðX ;Y Þ	 2bþ 1 ^ gb3ðX ;Y Þ	 1Þ, or 1 � 2 1 � 1

ðDbðX ;Y Þ	 2bþ 1 ^ D1ðX ;Y Þ	 4Þ 1 b

SbEC-DEDcode DbðX ;Y Þ	 3bþ 1, or 1 � 2 1 � 1

ðgb2ðX ;Y Þ	 2 ^ DbðX ;Y Þ	 2bþ 1Þ
SEC-Se=bEL code gb2eþ1ðX ;Y Þ	 1,

ðgbeþ2ðX ;Y Þ	 1 ^ ge1ðX ;Y Þ¼ 0Þ, 1 1 � 1 e �

ðgb2ðX ;Y Þ	 2 ^ ge1ðX ;Y Þ¼ 0Þ, or
DeðX ;Y Þ	 2eþ 1

gb2eþ1ðX ;Y Þ	 1,

SEC-DED-Se=bEL code DeðX ;Y Þ	 3eþ 1,

ðge1ðX ;Y Þ¼ 0 ^ gbeþ2ðX ;Y Þ	 1Þ, or 1 1 1 1 e 2�

fDeðX ;Y Þ	 2eþ 1 ^ ðgbeþ2ðX ;Y Þ	 1, 2 1

ge1ðX ;Y Þ¼ 0, or gb2ðX ;Y Þ	 2Þg
Sb=p�bEL code gp3ðX ;Y Þ	 1, g11ðX ;Y Þ¼ 0, or � 1 � � 1 �

DpðX ;Y Þ	 2pþ 1

SbEC-Si�b=p�bEDcode gpiþ2ðX ;Y Þ	 1, gpiþ1ðX ;Y Þ	 2, or

DiðX ;Y Þ	 2iþ 1 1 � 1 1 � i

Source: [KITA97].� 1997 IEICE Japan.
Note: The �meansthat the code conditionsof the DED code, forexample, are inducedby takinglogical ANDing
the conditionsof theme3=bED codesgivenby substituting two casesof ðm ¼ 1; e3 ¼ 2Þand ðm ¼ 2; e3 ¼ 1Þ.

408 CODES FOR ERROR LOCATION: ERROR LOCATING CODES



Theorem 9.23 If e ¼ b, an le=bEL code is an le=bEC code.

Theorem 9.2 indicates a particular case of the theorem above where l ¼ 1.

The number of bytes in the vectors X and Y, where Xi and Yi are i-th bytes of X and Y,
respectively, that satisfy dHðXi; YiÞ 	 eþ 1, can be expressed as

Xb
j¼eþ1

b

j

� �
:

As the value of e becomes equal to b, the value above rapidly becomes small, and therefore

the error locating codes rapidly become equal to the error correcting codes. So we have the

following theoremon the relation between the error locating codes and the error detecting codes.

Theorem 9.24 If byte length is equal to code length, an error locating code is an error

detecting code.

Proof By Theorems 9.21 and 9.22, the conditions of the le=bEL codes and the me=bED

codes are expressed as ge1ðX;YÞ ¼ 0 and gbeþ1ðX;YÞ 	 1, respectively. If there exists only

one byte in the codeword, it is apparent that these conditions are equivalent, and therefore

an error locating code is an error detecting code. Q.E.D.

EXERCISES

9.1 Derive the bound expressed in (9.1).

9.2 Let CD be a binary (5, 1) quadruple-bit error detecting code generated by the

polynomial gðxÞ ¼ x4 þ x3 þ x2 þ xþ 1, and let Cc be a (7, 5) single-symbol error

correcting code over the field generated by the polynomial gðxÞ. Design the H

matrix of the (35, 27) S4=5EL code using the tensor product of the H matrices of

the CD and Cc codes.

9.3 Prove Theorem 9.2.

9.4 Prove that the SEC-Sb=p�bEL code of design method I can locate an erroneous

block that includes single b-bit burst error.

9.5 Design the H matrix of the SEC-S2=3�2EL code of design method I with R ¼ 6 bits.

9.6 Prove Lemma 9.1. Obtain the eight nonsingular odd-weight 4� 4 square matrices.

9.7 Design two (115, 105) SEC-S3=7�3EL codes by applying the designmethods of I and II.

9.8 The following H matrix shows a (36, 30) SEC-S3=4�3EL code of design type II.

H .

000 111 000 111 100 100 100 100 100 100 100 100
000 111 111 000 010 010 010 010 010 010 010 010
000 000 111 111 001 001 001 001 001 001 001 001
100 100 100 100 000 111 000 111 100 001 011 110
010 010 010 010 000 111 111 000 010 101 010 101
001 001 001 001 000 000 111 111 001 011 110 100

CODE CONDITIONS OF ERROR LOCATING CODES 409



(a) The following received wordsW1 andW2 have a single-bit error and a single-

byte error, respectively. Locate or correct the errors inW1 andW2 by the code

shown above.

W1 101 011 100 011 000 010 100 010 101 101 010 111

W2 011 010 100 110 011 110 101 110 101 001 011 100

(b) Design the error locating circuit of the code.

9.9 Prove Theorem 9.9.

9.10 Prove Theorem 9.11.

9.11 Prove Theorem 9.13.

9.12 Find the maximum code length (in bits) of the SEC-Sðb�2Þ=bEL code having 2b� 2

check bits.

9.13 Design the H matrix of a (136, 128) SEC-S2=8EL code.

9.14 Design a ð40; 32Þ SEC-B3EL code and its decoder circuit.

9.15 Derive the necessary and sufficient conditions of the te1=bEC-le2=bEL code and the

le2=bEL-me3=bED code.

REFERENCES

[BOSE92] B. Bose and S. Al-Bassam, ‘‘Byte Unidirectional Error Correcting and Detecting Codes,’’

IEEE Trans. Comput., C-41 (December 1992): 1601–1606.

[CHAN65] S.-H. Chang and L.-J. Weng, ‘‘Error Locating Codes,’’ IEEE Int. Conv. Rec., Pt. 7 (1965):

252–258.

[DASS82] B. K. Dass, ‘‘Burst Error Locating Linear Codes,’’ J. Info. Optimization Sci., 3 (January

1982): 77–80.

[DUNN89] L. A. Dunning, G. Dial, and M. R. Varanasi, ‘‘Unidirectional 9-bit Byte Error Detecting

Codes for Computer Memory Systems,’’ Dig. 19th IEEE Int. Symp. Fault-Tolerant Computing,

FTCS-19 (June 1989): 216–221.

[FIRE59] P. Fire, ‘‘A Class of Multiple-Error Correcting Binary Codes for Non-independent Errors,’’

Sylvania Report, RSL-E-2 (1959).

[FUJI94] E. Fujiwara and M. Kitakami, ‘‘A Class of Error-Locating Codes for Byte-Organized

Memory Systems,’’ IEEE Trans. Info. Theory, 40 (November 1994): 1857–1865.

[GOET67] J. M. Goethals, ‘‘Cyclic Error-Locating Codes,’’ Info. Contr., 10 (1967): 378–385.

[HONG72] S. J. Hong and A. M. Patel, ‘‘A General Class of Maximal Codes for Computer

Applications,’’ IEEE Trans. Comput., C-21 (December 1972): 1322–1331.

[KAIS02] T. Kaise andM. Kitakami, ‘‘Single-Bit Error Correcting and Burst Error Locating Codes,’’

Proc. 2002 IEEE Int. Symp. on Information Theory (June 2002): 117.

[KASA63] T. Kasami, ‘‘Optimum Shortened Cyclic Codes for Burst Error Correction,’’ IEEE Trans.

Info. Theory, IT-9 (April 1963): 105–109.

[KITA95] M. Kitakami and E. Fujiwara, ‘‘A Class of Error Locating Codes—SEC-Se=bEL codes—,’’

IEICE Trans. Fundamentals, E78-A (September 1995): 1086–1091.

410 CODES FOR ERROR LOCATION: ERROR LOCATING CODES



[KITA97] M. Kitakami, S. Jiang, and E. Fujiwara, ‘‘Metrics of Error Locating Codes,’’ IEICE Trans.

Fundamentals, E80-A (November 1997): 2117–2122.

[KITA98] M. Kitakami and E. Fujiwara, ‘‘A Class of Burst Error Locating Codes,’’ Proc. IEEE Int.

Symp. Information Theory and Its Applications (October 1998): 435–438.

[KITA05] M. Kitakami and J. Sano, ‘‘Code Design and Decoding Method for Burst Error Locating

Codes,’’ IEEE Pacific Rim Int. Symp. on Dependable Computing (2005): 125–132.

[MCWL77] F. J. Mcwilliams and N. J. A. Sloan, The Theory of Error Correcting Codes, North-

Holland (1977).

[PETE72] W. W. Peterson and E. J. Weldon Jr., Error-Correcting Codes, 2d ed., MIT Press (1972).

[TO89] L. P. To and K. Sakaniwa, ‘‘A Discussion on m-Ary Error Discriminating Codes,’’ Dig. 12th

IEEE Symp. Information Theory and Its Application (December 1989): 121–125.

[VAID92] N. H. Vaidya and D. K. Pradhan, ‘‘A New Class of Bit- and Byte Error Control Codes,’’

IEEE Trans. Info. Theory, IT-38 (September 1992): 1617–1623.

[WOLF63] J. K. Wolf and B. Elspas, ‘‘Error-Locating Codes—A New Concept in Error Control,’’

IEEE Trans. Info. Theory, IT-9 (April 1963): 113–117.

[WOLF65a] J. K. Wolf, ‘‘On Codes Derivable from the Tensor Product of Check Matrices,’’ IEEE

Trans. Info. Theory, IT-11 (April 1965): 281–284.

[WOLF65b] J. K. Wolf, ‘‘On an Extended Class of Error-Locating Codes,’’ Info. Contr., 8 (1965):

163–169.

CODE CONDITIONS OF ERROR LOCATING CODES 411



CONTENTS

10.1 Error Models for UEC Codes and UEP Codes . . . . . . . . . . . . . . . . . . . . . . 413

10.2 Fixed-Byte Error Control UEC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

10.2.1 Optimal Fixed-Byte Error Correcting j Single-Bit Error Correcting
(Optimal FbECjSEC) Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

10.2.2 Optimal Fixed-Byte Error Correcting j Single-Bit Error Correcting
and Double-Bit Error Detecting (Optimal FbECjSEC-DED) Codes . . 422

10.3 Burst Error Control UEC / UEP Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

10.3.1 Burst Error Control UEC Codes—BlECjSEC Codes— . . . . . . . . . . . 427

10.3.2 Burst Error Control UEP Codes—(BlECÞn0 j(SECÞn1 Codes— . . . . . . 431

10.4 Application of UEC / UEP Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

10.4.1 Application of q-Ary UEC Codes to Holographic Memories . . . . . . . 439

1 Combination of Error Control Coding and Block Modulation

Coding for Holographic Memories . . . . . . . . . . . . . . . . . . . . . . . 440

2 q-Ary FlECjSEC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

3 q-Ary (Flþ S)EC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

10.4.2 Application of UEP Scheme to Lossless Compressed Data . . . . . . . . 450

1 Lossless Text Data Compression . . . . . . . . . . . . . . . . . . . . . . . . 450

2 UEP Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461



10
Codes for Unequal Error

Control / Protection
(UEC / UEP)

In almost all applications the error control capability of a code is characterized by the

probability of correct reception of the information over the entire codeword, where every

position in the codeword requires an equal error control level against errors.We find, however,

that some applications of these coding systems leave some positions in a codeword with a

higher error rate than others [LO96]. Some such situations may be caused by low reliability

devices or by certain error-sensitive positions in a codeword that are vulnerable to external

noises or have a low noise margin. Further some types of computer words or communication

messages have a structure whereby the information included in a part of the word is more

important or more valuable than that in other parts of the word [MASN67]. Control and

address information in computer / communication messages and pointer information in

database words are good examples. In these cases any errors in the control information or in

the pointer information cause serious damage to the subsequent processes in the system.

This chapter presents a new class of codes, called unequal error control (UEC) codes

and unequal error protection (UEP) codes, that has different error control levels in a

codeword such that some part of the word is more strongly controlled from errors than

other parts [FUJI98, FUJI95, MASN67]. The discussion is organized as follows: Error

models for the UEC codes and the UEP codes are clarified first. Then this chapter

demonstrates some types of UEC codes and UEP codes and their applications to

holographic memories and to lossless compressed text data, respectively.

10.1 ERROR MODELS FOR UEC CODES AND UEP CODES

Before proceeding to the UEC codes, we consider in this section a similar class of

codes called unequal error protection (UEP) codes [MASN67]. These codes are designed

Code Design for Dependable Systems: Theory and Practical Applications, by Eiji Fujiwara
Copyright # 2006 John Wiley & Sons, Inc.

413



on the concept that some information digits in a codeword are protected against a higher

number of errors than other information digits. For example, during the processing of

digital data using conventional decimal numbers or measurement data, errors in the higher

order digits of numbers can yield more serious effects on the subsequent processes in the

digital systems than errors in the lower order digits. The UEP codes are defined such that

some of the digits in a codeword, which should be strongly protected, are correctly

decoded if I1 or fewer errors occur, and others are correctly decoded only if I2 or fewer

errors occur, where I1 > I2. Figure 10.1 shows this model. The UEP codes have the

property that the strongly protected area should not be miscorrected by I1 errors occurring

outside the protected area. I1 errors that occur inside the strongly protected area errors

should all be corrected.

In this chapter we will later deal mainly with a different class of error control

codes from the UEP codes. Unlike the UEP codes, the codes have distinct error control

levels in a codeword such that some part of the word is more strongly controlled

from errors than other parts. The binary codewords used in computer systems won’t

necessarily require different error control level in each bit of the words. As we will

see, binary codewords rather require uniform level in the clustered bit positions

in the word. These positions are called a byte, and as these positions in the word

are determined in advance, they are called a fixed-byte. In general, the codeword is

assumed to be constructed from some fixed-bytes with different error control levels.

In order to apply an error control code to tolerate errors occurring in this type of computer /

communication word, we must transform the error control level into a code function.

The higher the level, the stronger the code function that must be applied. Figure 10.2

gives an example of this unequal error control model with two levels in the codeword.

This UEC model is much simpler than the existing model shown in Figure 10.1,

and therefore we will use this model to design more practical and simpler codes for

computer / communication systems.

I1

I2P
ro

te
ct

io
n 

le
ve

l

Codeword :

Higher order digits
(decimal numbers)

Figure 10.1 Unequal error protection (UEP)model in numeral codeword (decimalnumbers).

414 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



In generalized form, the definitions of a class of UEC codes are presented as follows.

Definition 10.1 Let X be a codeword divided into L fixed-bytes, X0 , X1, � � �, XL�1, and let
Ni be the length of the i-th fixed-byte Xi, where Ni’s are not necessarily equal to each

other. Also let Fi be the error control function in Xi. The L-level UEC code is defined as

the one with Fi 6¼ Fj for 0 � i 6¼ j � L� 1, and it is expressed as F0jF1j � � � jFL�1 code
with code length N ¼ N1 þ N2 þ � � � þ NL�1. &

If we consider random bit error correction and detection, the error control function Fi

can be expressed by ti-bit error correction and di-bit error detection, where ti < di � Ni. In

this case the error control level Fi is measured by the minimum Hamming distance of the

code with error control level Fi (i.e., ti þ di þ 1), and therefore Fi is stronger than Fj if and

only if ti þ di þ 1 > tj þ dj þ 1.

Definition 10.2 Let X be a codeword that is divided according to Definition 10.1, and let

Fij be the error control function against errors occurring in Xi and Xj simultaneously.

The code with functions Fij, 0 � i 6¼ j � L� 1, and Fk, 0 � k 6¼ i; j � L� 1, is also

defined as the UEC code. &

Definition 10.2 can be extended to the code with error control functions against errors

occurring in more than two fixed-bytes simultaneously.

In this chapter we have some optimal 2-level UEC codes, for example, Fixed b-bit byte

Error Correcting j Single-bit Error Correcting (FbEC j SEC) codes and Fixed b-bit byte

error correcting j Single-bit Error Correcting and Double-bit Error Detecting (FbEC j
SEC-DED) codes. The former codes have two error control functions in a codeword: the

stronger one is a fixed-byte error correction (FbEC) that corrects any error in the fixed-byte

X0, and the other is a single-bit error correction (SEC) in X1. The latter codes have also two

error control functions in a codeword, and in particular, the area X1 has the SEC-DED code

function.

b

N

Fixed-byte

E
rr

or
 c

on
tr

ol
 le

ve
l

Codeword

X0

Fixed-byte X1

Figure 10.2 Two-level unequal error control (2-level UEC)model in codeword. Source: [FUJI98].� 1998 IEEE.

ERROR MODELS FOR UEC CODES AND UEP CODES 415



From the previous definitions, the FbECjSEC code is a 2-level UEC code with N0 ¼ b

and N1 ¼ N � b, where F0 is a b-bit byte error correction in X0 and F1 is a single-bit error

correction in X1. The FbECjSEC-DED code is also a 2-level UEC code with N0 ¼ b and

N1 ¼ N � b that has an error control function F0 of correcting b-bit byte errors in X0, and

also F1 of correcting single-bit errors and detecting double-bit errors in X1.

Let C be a code whose codewords consist of two parts as shown in Figure 10.3: the

fixed-byte area X0 and the remaining fixed-byte area X1. Without loss of generality, we

assume that X0 always precedes X1 in a codeword. Since check bits are not always used in

a decoded output, we assume that the whole check bits are included in X1.

Let us recall the relation between the UEC codes and the UEP codes. If the errors

occurring outside the strongly controlled area X0 in the codeword are detected and are not

miscorrected as errors in X0, then the UEC codes approach in function the UEP codes. In

the case of the FbECjSEC codes, for example, if a b-bit burst error has occurred in X1 and

is very highly detected, then the codes can be regarded as fixed-byte error protection

codes. The same may be said about applications of the UEC codes with multiple-levels

and their relation to existing UEP codes.

It easily follows that many types of 2-level UEC codes can be designed by combining

the basic code functions of single-bit error correction (SEC), double-bit error detection

(DED), fixed b-bit byte error detection (FbED), fixed b-bit byte error correction

(FbEC), byte plus single-bit error detection ((FbþS)ED), and byte plus single-bit error

correction ((FbþS)EC). Here, the code functions of (A þ B)ED and (A þ B)EC must

allow the code to detect A errors and B errors simultaneously, and correct A errors and

B errors simultaneously, respectively; that is, ‘(A þ B)E’ means that A errors and B

errors occur simultaneously. Figure 10.4 provides an overview of the 2-level UEC

X0 X1

b N - b

Figure 10.3 Codewordwith 2-UEC levels.

(F  +S)EC | DED

F  EC | SEC-DED

(F  +S)EC

F  EC | SEC-DED-(F  +S)ED (F  +S)ED | SEC-DED

F  EC | SEC-(F  +S)ED F  EC | DED-(F  +S)ED

(F  +S)ED | SEC

F  ED | SEC-DED

F  EC | DED

F  EC | SEC F  ED | SEC (F  +S)ED | DED

F  ED | DED F  EC | (F  +S)ED (F  +S)ED

b

b b b b

b b b b

b b

b b

bbb

bbbb

*

* :  included in this chapter
† :  [FUJI95]

*

††

†† :  [FUJI98]

Figure 10.4 Overview of basic two-level unequal error control functions. Source: [FUJI98].� 1998 IEEE.

416 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



codes combined with the indicated pieces of basic code functions [FUJI98, RITT96].

In this figure the single-barb arrow (!) means that the upper code function includes

the lower one, and the double-barb arrow ($) means that the code functions at both

ends are equivalent. For example, the FbECjSEC-DED code function includes the

(FbþS)EC code function as well as the FbEDjSEC-DED code function. It is also

equivalent to the code function of FbECjSEC-DED-(FbþS)ED. While we can combine

some other pieces of basic code functions, from the practical stand point, the com-

bination of the basic code functions shown in Figure 10.4 are sufficient. Note that in this

figure the codes presented in this chapter are treated as the nuclei of the basic 2-level

UEC codes.

10.2 FIXED-BYTE ERROR CONTROL UEC CODES

10.2.1 Optimal Fixed-Byte Error Correcting j Single-Bit Error Correcting
(Optimal FbECjSEC) Codes

As one of the optimal 2-level UEC codes, we discuss the fixed b-bit byte error correcting j
single-bit error correcting (FbECjSEC) code, which corrects b-bit byte errors in X0 and

also corrects single-bit errors in X1.

Code Conditions and Bounds Here we consider two sets of errors, E0 and E1,

where E0 is the error set caused by all possible errors in the fixed-byte X0 (i.e., byte

errors in X0) and E1 the error set caused by single-bit errors in X1, and then

E0 \ E1 ¼ f, where f is the empty set. The following theorem provides the necessary

and sufficient condition for a linear code that can correct all patterns in E0 and also

correct all error patterns in E1.

Theorem 10.1 A binary linear code, described by the parity-check matrix H, corrects

all errors in E0 as well as all errors in E1, if and only if:

1. E �HT 6¼ 0 for all E 2 fE0 [ E1g,
2. Ei �HT 6¼ Ej �HT for all Ei;Ej 2 E1; Ei 6¼ Ej,

3. Ep �HT 6¼ Eq �HT for all Ep;Eq 2 E0 ; Ep 6¼ Eq,

4. Ep �HT 6¼ Ei �HT for all Ep 2 E0 and for all Ei 2 E1.

Proof The theorem can be easily proved such that conditions 1 and 2 are the necessary

and sufficient conditions for single-bit error correction, conditions 1 and 3 for fixed-byte

error correction, and condition 4 guarantees error correction both of single-bit errors and

of fixed-byte X0 errors independently. Q.E.D.

Without loss of generality, the fixed-byte X0 is assumed to be the area with the

highest error control level and to be located at the beginning of the word, as shown in

Figure 10.3. The check-bit part is assumed to be always located in the byte with the

lowest error control level. Here the H matrix of the code is divided into two

submatrices shown in Eq. (10.1). That is, H0 contains b columns and H1 contains the

remaining columns in H, which amounts to N � b columns. The submatrix H0 shows

the matrix corresponding to the fixed-byte X0 having b-bit length, and the adjacent

FIXED-BYTE ERROR CONTROL UEC CODES 417



submatrix H1 shows the remaining matrix corresponding to X1 having ðN � bÞ-bit
length.

H ¼ ½H0 jH1�: ð10:1Þ

Theorem 10.2 The maximum code length (in bits) of an ðN; N � rÞ FbEC j SEC code is

Nmax ¼ 2r � 2b þ b:

Proof We consider two sets of syndromes. One syndrome is that caused by single-bit

errors in X1 and the other syndrome is that caused by byte errors in X0. The maximum

size of the former syndrome is 2r � 1, where r is the check-bit length. The number of all

possible distinct syndromes in the fixed-byte X0 having length b (i.e., the maximum size

of the latter set) equals
Pb

i¼1 bCi ¼ 2b � 1. In the FbECjSEC code with code length N

and check-bit length r whose H matrix is shown in Eq. (10.1), these two syndrome

sets should be disjoint, and therefore the number of columns in H1 (i.e., N � b), satisfies

the following relation:

N � b � ð2r � 1Þ � ð2b � 1Þ:

From this we have Nmax ¼ 2r � 2b þ b. Q.E.D.

Substituting b ¼ 1 in the equation shown in Theorem 10.2 gives the maximum length

of the SEC codes, which is Nmax ¼ 2r � 1. Table 10.1 lists the maximum information-bit

lengths of the FbECjSEC codes (i.e., Nmax � r) for fixed-byte X0 length b and check-bit

length r.

Lemma 10.1 In the FbEC j SEC codes the byte errors in X0 and single-bit errors in X1

occurring simultaneously, which are denoted as byte errors in X0 plus single-bit errors in

X1, are not miscorrected as the errors occurring in the fixed-byte X0 .

Proof If byte errors in X0 plus single-bit errors in X1 lead to miscorrection of fixed-byte

X0 in the codewords of the FbECjSEC codes, there exist such errors Ei;Ep; and Eq having

the following relation:

Ep �HT þ Ei �HT ¼ Eq �HT , ð10:2Þ

TABLE 10.1 Bounds on Information-Bit Lengths of FbECjSEC Codes

b
r

3 4 5 6 7 8 10 12

bþ 1 7 15 31 63 127 255 1,023 4,095
bþ 2 22 46 94 190 382 766 3,070 12,286
bþ 3 53 109 221 445 893 1,789 7,165 28,669
bþ 4 116 236 476 956 1,916 3,836 15,356 61,436
bþ 5 243 491 987 1,979 3,963 7,931 31,739 126,971

Source: [FUJI98]. � 1998 IEEE.

418 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



where Ep;Eq, Ep 6¼ Eq, are byte errors in X0, and Ei is single-bit error in X1. Since

Ep � Eq ¼ Ep0 is a byte error in X0, the relation shown in Eq. (10.2) is equivalent to the

following relation:

Ei �HT þ Ep0 �HT ¼ 0:

This relation contradicts condition 4 of Theorem 10.1. So the fixed-byte X0 is not

miscorrected by the byte errors in X0 plus the single-bit errors in X1. Q.E.D.

Design for Optimal FbECjSEC Codes

Theorem 10.3 The following H matrix shows a systematic FbEC jSEC code satisfying

the bounds on the code length given by Theorem 10.2:

where

Ib: b� b identity matrix,

Pðr�bÞ�b: ðr � bÞ � b matrix with all 1’s,

i: integer whose binary representation has even weight,

j: integer whose binary representation has odd weight,

Ne: maximum integer i having value no greater than 2b � 1,

No: maximum integer j having value no greater than 2b � 1,

MiðMjÞ: b� ð2r�b � 1Þ matrix whose binary column vector of b-bit length

indicates integer i(j),

Qe: ðr � bÞ � ð2r�b � 1Þ matrix whose distinct column vectors indicate

integers from 1 to 2r�b � 1,

Qo: ðr � bÞ � ð2r�b � 1Þ matrix whose distinct column vectors indicate

integers from zero to 2r�b � 2.

Proof Since nonzero column vectors in H are all distinct, the code satisfies conditions

1 and 2 of Theorem 10.1 for the error set E1, and therefore the code has an SEC func-

tion. Since matrix Ib is nonsingular, the code satisfies conditions 1 and 3 for the error

set E0.

Let the upper b bits of syndrome S be SF and the lower r � b bits of S be Sp. For the byte

errors in X0, Sp is an all-0 or an all-1 vector. If Sp is an all-0 vector, then X0 includes an even

number of bit errors and SF is of even weight. If Sp is an all-1 vector, then X0 has an odd

number of bit errors and SF is of odd weight. Syndromes caused by single-bit errors

occurring outside X0 are different from those caused by byte errors in X0. This is because

in the case of single-bit errors, Sp is not all-0 for SF with even weight while Sp is not all-1

for SF with odd weight. So condition 4 of Theorem 10.1 is satisfied. Hence the H matrix

shown in the theorem is an FbECjSEC code.

H ¼
Ib M0 M3 � � � Mi � � � MNe

Pðr�bÞ�b Qe Qe � � � Qe � � � Qe

�
M1 M2 � � � Mj � � � MNo

Qo Qo � � � Qo � � � Qo

�
;

FIXED-BYTE ERROR CONTROL UEC CODES 419



The maximum number of columns in H1 shown in the previous H is 2b � ð2r�b � 1Þ,
and hence the maximum code length in bits equals

Nmax ¼ bþ 2b � ð2r�b � 1Þ
¼ 2r � 2b þ b:

This code length is equal to the maximum code length of the FbECjSEC code shown in

Theorem 10.2. Q.E.D.

We see from the proof that the code indicated in Theorem 10.3 is optimal.

Example 10.1 Systematic (27, 22) F3ECjSEC Code

Decoding Procedure Single-bit error correction can be easily performed such that

if the nonzero syndrome is equal to one of the column vectors in H, the corresponding

bit is inverted and then corrected as a single-bit error. If the nonzero syndrome is not

equal to any column vector in H, then byte errors in X0 can be assumed to exist. Let

the upper b bits of the syndrome S be SF and the lower r � b bits of S be Sp. Further let

calculation of SF � ðIbÞ�1 be Ep, meaning Ep ¼ SF . If Ep � PT
ðr�bÞ�b ¼ Sp, then Ep is a

byte-error pattern, which is added to the original fixed-byte information of X0. This

provides a correction of the erroneous fixed-byte X0. If Ep � PT
ðr�bÞ�b 6¼ Sp, then we

can assume that there exist multiple-bit errors in the word other than single-bit errors

in X1 and fixed-byte errors in X0 (i.e., uncorrectable errors) that are finally detected by

the code.

The FbECjSEC code does not require large decoding hardware augmentation com-

pared to the existing SEC-DED code. For example, the decoder of the ð72; 64Þ F7ECjSEC
code requires only 11.6% hardware augmentation compared to that of the (72, 64)

SEC-DED code.

Evaluation The FbECjSEC codes are evaluated by their check-bit lengths and error

detection capabilities. Figure 10.5 shows the relation between the information-bit lengths

and the check-bit lengths of the FbECjSEC codes for the fixed-byte X0 with lengths

b ¼ 4; 6; 7; 8, and 10 bits. For comparison, the lengths of SEC codes are indicated in

the figure as well. Note that the F4ECjSEC code has almost the same check-bit length

as that of the SEC code.

Figure 10.6 provides an example of (72, 64) F7ECjSEC code in a shortened version of

the original (135, 127) F7ECjSEC code. In the obtained H matrix of the (135, 127)

H ¼

100 000 000 111 111 000 000 111 111

010 000 111 000 111 000 111 000 111

001 000 111 111 000 111 000 000 111

111 011 011 011 011 001 001 001 001

111 101 101 101 101 010 010 010 010

266664
377775:

"" " " "

The place of the check bits is indicated by the upward-pointing arrow (").

420 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



F7ECjSEC code, 63 column vectors having a larger number of 1’s are deleted, and then the

code shown in Figure 10.6 is obtained.

Table 10.2 lists the error detection capabilities of some shortened ðk þ r; kÞ FbECjSEC
codes for two types of errors: random double-bit errors in the entire word and byte errors in

X0 plus single-bit errors in X1 that are beyond the original error correction capabilities of

5

6

7

8

9

10

11

12

13

16 32 64 128 256 512

Information-bit length K

C
he

ck
-b

it 
le

ng
th

 R

15
26

b = 4 46

K = 57

b = 6

b = 7

b = 8

63 K = 109
120

127 190
236 247

255

382 445
502

491
766 893

1,023
b = 10

SEC code

1,024

Figure 10.5 Check-bit lengths compared with information-bit lengths of the FbECjSEC codes. Source:

[FUJI98].� 1998 IEEE.

H′ =

1000000 000000000000000111111000000000000000000001111111111111111 10000000

0100000 000000000011111000001000000000011111111110000000000111111 01000000

0010000 000000111100001000010000011111100000011110000001111000011 00100000

0001000 000111000100010000100011100011100011100010001110001000101 00010000

0000100 011001001000100001000101101100101100100100110010010001001 00001000

0000010 101010010001000010000110110101010101001001010100100010000 00000100

0000001 110100100010000100000111011010011010010001101001000100000 00000010

1111111 111111111111111111111000000000000000000000000000000000000 00000001

Figure 10.6 Example of the (72, 64) F7ECjSEC code.

TABLE 10.2 Error Detection Capabilities of (k+r ; k ) FbEC j SEC Codes

Double-bit Byte errors in X0 plus
b k r errors (%) single-bit errors inX1 (%)

6 32 7 17.41 49.21
6 64 8 45.58 65.75
7 64 8 6.57 49.61
8 128 9 6.40 49.80

FIXED-BYTE ERROR CONTROL UEC CODES 421



the codes. The shortening method of the codes in this table is same as that of the (72, 64)

F7ECjSEC codes shown in Figure 10.6.

10.2.2 Optimal Fixed-Byte Error Correcting j Single-Bit Error Correcting
and Double-Bit Error Detecting (Optimal FbECjSEC-DED) Codes

The FbECjSEC code does not strongly protect the fixed-byte X0. Table 10.3 lists the

miscorrection tendencies of the ðk þ r; kÞ FbECjSEC codes for random double-bit errors

occurring outside the fixed-byte. This table gives a more precise picture of the

miscorrection of double-bit errors in Table 10.2. The percentage of errors miscorrected

in the fixed-byte X0 is high. As is evident, linear codes are needed that give the fixed-byte

X0 strong error protection against a large number of errors that occurr outside X0 such as

random double-bit errors, and burst errors. The 2-level UEC code shown here offers this

required strong error protection of the fixed-byte X0. The FbEC jSEC-DED code corrects

b-bit byte errors in X0 and, in addition, corrects single-bit errors in X1 and detects double-

bit errors in X1.

Code Conditions and Bounds

Theorem 10.4 A binary linear code, described by the parity-check matrix H, corrects

any error in the fixed-byte X0 and, in addition, corrects single-bit errors and detects dou-

ble-bit errors in X1, if and only if:

1. E �HT 6¼ 0 for all E 2 fE0 [ E1g,
2. Ei �HT 6¼ Ej �HT for all Ei;Ej 2 E1; Ei 6¼ Ej,

3. Ep �HT 6¼ Eq �HT for all Ep;Eq 2 E0 ; Ep 6¼ Eq,

4. Ep �HT 6¼ Ei �HT for all Ep 2 E0 and for all Ei 2 E1,

5. ðEi þ EjÞ �HT 6¼ Ep �HT for all Ei;Ej 2 E1 and for all Ep 2 E0 ;Ei 6¼ Ej,

6. ðEi þ EjÞ �HT 6¼ Ek �HT for all Ei;Ej;Ek 2 E1; Ei 6¼ Ej 6¼ Ek 6¼ Ei,

where E0 is the error set caused by all possible errors in X0 and E1 the error set caused by

single-bit errors in X1, and HT is the transpose of H.

Proof It is apparent that conditions 1, 2, and 6, and conditions 1 and 3 are necessary

and sufficient conditions for single-bit error correction and double-bit error detection in

X1, and also the conditions for byte error correction in X0, respectively. In addition to

these, single-bit error correction in X1 and byte error correction in X0 can be performed

TABLE 10.3 Miscorrection Rates of (k þ r ; k ) FbECjSEC Codes

Double-bit errors occurringoutside the fixed-byte X0
b k r

Miscorrect single bit in X1 (%) Miscorrect fixed-byte X0 (%)

6 32 7 11.34 71.26
6 64 8 26.56 27.86
7 64 8 12.05 81.38
8 128 9 4.98 88.62

422 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



independently by condition 4. Double-bit error detection in X1 and byte error correction

in X0 can be performed independently by adding condition 5. So conditions 1 to 6 are the

necessary and sufficient conditions for the FbECjSEC-DED code. Q.E.D.

Theorem 10.5 The maximum code length (in bits) of an ðN; N � rÞ FbEC jSEC-DED
code is

Nmax ¼ 2r�b þ b� 1: ð10:3Þ

Proof We first consider the minimum number of distinct syndromes necessary for satis-

fying the conditions of the FbECjSEC-DED code:

Case 1. Number of syndromes by single-bit errors occurring outside X0 : N � b

Case 2. Number of syndromes for byte error correction in X0 : 2b � 1

Any byte error Ep in X0 included in E0 can be expressed as Ep ¼ E0p þ E00p , where E
0
p and

E00p are distinct byte errors included in E0. As a result, condition 5 of Theorem 10.4 is

equivalent to the following condition:

5 0. ðE0p þ EiÞ �HT 6¼ ðE00p þ EjÞ �HT for all E0p;E
00
p 2 E0; Ei 6¼ Ej; E0p 6¼ E00p and for

all Ei;Ej 2 E1.

Condition 5 0 says that the syndromes caused by distinct byte plus single-bit errors are not

equal to each other.

Case 3. Number of syndromes caused by byte plus single-bit errors: ð2b � 1ÞðN � bÞ
Case 4. Number of syndromes caused by double-bit errors occurring outside

X0 : N � b� 1

The syndrome space of case 4 can all be included in that of case 3. From conditions 4 and 5

of Theorem 10.4, the syndrome spaces of cases 1 to 3 should be distinct, and therefore the

following relation holds:

2r � 1 	 ðN � bÞ þ ð2b � 1Þ þ ð2b � 1ÞðN � bÞ:

So we have Nmax ¼ 2r�b þ b� 1. Q.E.D.

Equation (10.3) can be used to express the maximum information-bit length, Kmax, as

Kmax ¼ Nmax � r ¼ 2r�b þ b� 1� r

¼ 2x � x� 1;

where x ¼ r � b. We see that Kmax is treated as a function of x ¼ r � b. Table 10.4 presents

the relation between r ¼ bþ x and Kmax.

FIXED-BYTE ERROR CONTROL UEC CODES 423



Theorem 10.6 A linear FbECjSEC-DED code can detect byte plus single-bit errors;

that is, it can detect byte errors in X0 and single-bit errors in X1 simultaneously.

Theorem 10.6 can be proved by conditions 4 and 5 of Theorem 10.4.

The next theorem holds for the byte errors in X0 and the double-bit errors in X1

occurring simultaneously, which are denoted as byte plus double-bit errors.

Theorem 10.7 In a linear FbECjSEC-DED code the byte plus double-bit errors do not

miscorrect any bits in the fixed-byte X0.

Proof Assume that the byte plus double-bit errors are miscorrected as byte errors. Then

the following relation holds:

ðEp þ Ei þ EjÞ �HT ¼ Eq �HT ,

where Ep;Eq 2 E0, and Ei;Ej 2 E1. This can be transformed into the following relation:

ðEp þ EiÞ �HT ¼ ðEq þ EjÞ �HT ,

which contradicts condition 5 0 shown in the proof of Theorem 10.5. Hence the

byte plus double-bit errors are not miscorrected as byte errors in the FbECjSEC-DED
code. Q.E.D.

Design for Optimal FbECjSEC-DED Codes Without loss of generality, the fixed-

byte X0 is assumed to be located at the beginning of the word, as was noted previously

in Section 10.1. Here the H matrix of the code is divided into two submatrices shown

in Eq. (10.1), with H0 having b columns and H1 the remaining columns in H, that is,

N � b columns.

Theorem 10.8 The following H matrix shows an FbECjSEC-DED code satisfying the

bounds on code length in bits shown in Theorem 10.5:

H ¼ H0 H1

�
¼

Ib Q O

P Me Mo

Ir

� �
;

�
where

H0 ¼
Ib

P

� �
; H1 ¼

Q O

Me Mo

Ir

� �
;

TABLE 10.4 Relation between r ¼ b þ x and Kmax of the FbECjSEC-DED Codes

r ¼ bþ x bþ 2 bþ 3 bþ 4 bþ 5 bþ 6 bþ 7 bþ 8 bþ 9 bþ 10

Kmax ¼ 2x � x � 1 1 4 11 26 57 120 247 502 1,013

Source: [FUJI98]. � 1998 IEEE.

424 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



IbðIrÞ: b� b ðr � rÞ identity matrix,

O: zero matrix,

P: ðr � bÞ � b matrix having distinct b nonzero even-weight columns,

Q: matrix whose columns are repetitions of the first column in Ib,

Me: matrix having ðr � bÞ-bit nonzero even-weight columns except for b � 1

columns obtained by adding the first column in P to each remaining column

in P as well as for the first column in P,

Mo: matrix having ðr � bÞ-bit odd-weight columns except for weight-one columns.

Proof Since nonzero column vectors in H are all distinct and odd weight, the code satis-

fies conditions 1, 2, and 6 of Theorem 10.4 for the error set E1; therefore the code has the

SEC-DED function. Since the matrix Ib is nonsingular, the code satisfies conditions 1 and

3 in the fixed-byte X0 for the error set E0. It is easy to see that the syndrome caused by

any byte error in X0 is not equal to the syndrome caused by any single-bit error in X1. So

condition 4 holds. Figure 10.7 shows the syndrome patterns caused by byte errors in X0

and by double-bit errors in X1. Note that the syndromes caused by byte errors are distinct

from those caused by double-bit errors, so condition 5 holds. Based on the above, the H

matrix given in this theorem satisfies all the conditions of Theorem 10.4 and therefore is

the parity-check matrix of the FbECjSEC-DED code.

Since the matrices Me andMo have the maximum number of columns, 2r�b�1 � b� 1

and 2r�b�1 � ðr � bÞ, respectively, the maximum length (in bits) of this code can be

expressed as

Nmax ¼ bþ ð2r�b�1 � b� 1Þ þ ð2r�b�1 � ðr � bÞÞ þ r

¼ 2r�b þ b� 1:

(a) Syndrome patterns of byte errors in X

(b) Syndrome patterns of double-bit errors occurring outside X

One 1

1

Any
pattern

Three
through

1’s
b

Even
weight

One
1

Even
weight

(nonzero)

Two 1’s

0

Even
weight

0
Two 1’s

0

One 1

1

Odd
weight

One
1

00

One 1

1

One
column in

0

0

Me

b

r-b
The 1st

column in
   + another

 column in
P

P

b

r-b

Figure 10.7 Syndrome patterns caused by byte errors in X0 and also by double-bit errors occurring outside
X0. Source: [FUJI98].� 1998 IEEE.

FIXED-BYTE ERROR CONTROL UEC CODES 425



This is equal to the maximum code length (in bits) of the FbECjSEC-DED code given in

Theorem 10.5. Q.E.D.

Consequently the code indicated in Theorem 10.8 is optimal.

Example 10.2 (19, 11) F4ECjSEC-DED Code

Evaluation The FbECjSEC-DED codes are evaluated from the perspectives of error

detection capabilities and decoder hardware amount.

The FbECjSEC-DED codes sometimes miscorrect b-bit burst errors and random triple-

bit errors, some of which are beyond the original error correction / detection capabilities of

the code, as single-bit errors in X1 or as fixed-byte errors in X0. Table 10.5 shows the

miscorrection tendencies of the example codes with information-bit lengths k ¼ 32, 64,

and 128, which are shortened ðk þ r; kÞ FbECjSEC-DED codes with k ¼ 32, 64, and 128

bits. Here the reader should recall Theorems 10.6 and 10.7 that the byte plus single-bit or

double-bit errors do not miscorrect any bits in the fixed-byte X0 in the FbECjSEC-DED
code. The table indicates that the miscorrection of fixed-byte X0 is very small, and

therefore the fixed-byte X0 has strong error protection against multiple-bit errors.

The FbECjSEC-DED code does not require large decoding hardware augmentation

compared to the existing SEC-DED code. For example, the decoder of the (75, 64)

F4ECjSEC-DED code requires 15.49% larger hardware than the (72, 64)SEC-DED code.

H ¼

1000 111 0000 10000000

0100 000 0000 01000000

0010 000 0000 00100000

0001 000 0000 00010000

0110 101 1110 00001000

1101 011 1101 00000100

0011 110 1011 00000010

1000 000 0111 00000001

266666666664

377777777775
:

TABLE 10.5 Miscorrection Rates of (k+r ; k ) FbECjSEC-DED Codes

b-Bit burst errors Triple-bit errors

b k r Miscorrect Miscorrect Miscorrect Miscorrect

single bit fixed-byte single bit fixed-byte

inX1 (%) X0 (%) inX1 (%) X0 (%)

4 32 10 17.55 0.63 35.11 1.17
8 32 14 17.13 1.23 19.06 0.91
12 32 18 10.38 1.33 12.50 0.75
4 64 11 16.81 0.51 43.02 0.63
8 64 15 21.97 0.89 29.93 0.56
12 64 19 18.60 0.81 20.57 0.50
4 128 12 24.21 0.09 52.39 0.29
8 128 16 31.27 0.41 43.58 0.27
12 128 20 28.94 0.41 36.20 0.27

Source: [FUJI98]. � 1998 IEEE.

426 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



10.3 BURST ERROR CONTROL UEC / UEP CODES

10.3.1 Burst Error Control UEC Codes — BlECjSEC Codes —

Another class of UEC codes is the BlECjSEC codes. The BlECjSEC codes correct l-bit

burst errors in the X0 area having n0-bit length, where l < n0, as well as correct single-bit

errors in the X1 area having n1-bit length [NAMB03]. This UEC code type can be extended

such that burst errors with larger lengths of L ¼ p� l bits can be corrected in X0 as well as

burst errors with lengths of p bits by applying the interleaving method of degree p to the

BlECjSEC code.

Code Conditions and Bounds The relation between the codeword and the corre-

sponding parity-check matrix H of the BlECjSEC codes is shown in Figure 10.8. The

matrix H is constituted by an r � n0 submatrix HBEC and an r � n1 submatrix HSEC.

Theorem 10.9 A binary linear code, described by the parity-check matrix H, corrects

l-bit burst errors in X0 and, in addition, corrects single-bit errors in X1, if and only if:

1. E �HT
BEC 6¼ 0 for all E 2 EB

2. E �HT
BEC 6¼ E0 �HT

BEC for all E;E0 2 EB;E 6¼ E0,

3. E �HT
SEC 6¼ 0 for all E 2 Eb,

4. E �HT
SEC 6¼ E0 �HT

SEC for all E;E0 2 Eb;E 6¼ E0

5. E �HT
BEC 6¼ E0 �HT

SEC for all E 2 EB, and for all E0 2 Eb,

where EB and Eb are error sets of l-bit burst errors in X0 and single-bit errors in X1,

respectively.

The proof of this theorem is left to the reader.

Theorem 10.10 An ðn0 þ n1; n0 þ n1 � rÞ BlECjSEC code satisfies the following

relations:

r 	 minð2l, n0Þ, ð10:4Þ
r 	 log2 ðn0 � lþ 2Þ � 2l�1 þ n1

	 
� �
, ð10:5Þ

where min(x, y) means x if x � y and y if x > y, and dze is the smallest integer larger than
or equal to z.

X 0 X1

n
1

n
0

Codeword

H = H
BEC

H
SEC

r

Figure 10.8 Parity-checkmatrix of the BlECjSEC code corresponding to the 2-level UEC codeword. Source:

[NAMB03].� 2003 IEICE Japan.

BURST ERROR CONTROL UEC / UEP CODES 427



Proof In general, l-bit burst error correcting codes satisfy the Reiger bound [REIG60]

written as r 	 2l. However, for n0 < 2l, by condition 2 of Theorem 10.9, every column

vector in HBEC should be linearly independent, so r 	 n0. Therefore a BlECjSEC code

should satisfy the relation (10.4).

In the area X0, there exist ðn0 � lþ 2Þ � 2l�1 � 1 distinct l-bit burst errors, and also

these exist n1 single-bit errors in X1. The syndromes of these errors should be distinct, and

thus the following relation holds:

2r � 1 	 ðn0 � lþ 2Þ � 2l�1 þ n1 � 1:

This satisfies the relation (10.5). Q.E.D.

Code Design I

Theorem 10.11 The following parity-check matrix H shows a BlECjSEC code:

where

In0 : n0 � n0 identity matrix,

O: ðr � n0Þ � n0 zero matrix,

Qi: ðr � n0Þ � 2n0 matrix whose columns are all equal, and its column patterns

are binary representation of integer i, and Qi 6¼ Qj where i 6¼ j,

and 1 � i � 2r�n0 � 1,

M: n0 � 2n0 matrix whose columns are distinct with each other,

M0: matrix constituted by the columns of M from which columns with zero pattern

and l-bit burst pattern are excluded.

This theorem can be easily proved, and therefore the proof is omitted.

Example 10.3 (56, 50) B3ECjSEC code with n0 ¼ 4

In this code we have to pay attention to the construction of the matrix M0. That is, we
have to delete zero pattern columns and 3-bit burst pattern columns, surrounded by the

four-sided figures in M in the code of Figure 10.9.

Code Design II In this code design we use the parity-check matrix of the Fire code for

the submatrix HBEC. We assume that the code can correct cyclic burst error patterns.

These cyclic burst error patterns of l-bit length exist as w-bit burst errors at the beginning

H ¼ HBEC HSEC� ,½

HBEC ¼
In0

O

� �
l n0
l r � n0,

H SEC ¼
M0 M M � � � M
O Q1 Q2 � � � Q2r�n0�1

� �
l no
l r � n0,

428 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



of the pattern and ðl� wÞ-bit burst errors at the end of the pattern, and in between there are
no errors so that 0 < w < l.

The following shows the parity-check matrix of the l-bit cyclic burst error correcting

Fire code generated by gðxÞ ¼ ðxc � 1Þ � pðxÞ, where pðxÞ is a primitive polynomial with

degree m ð	 lÞ, c is an integer larger than or equal to 2l� 1, and ne ¼ LCMð2m � 1; cÞ
where LCMðy; zÞ is the least common multiple of y and z:

In this case, a is a root of pðxÞ, and i is an arbitrary integer.

From the preparation above, we have another type of BlECjSEC code shown in the

following theorem.

Theorem 10.12 The following parity-check matrix H shows a BlECjSEC code:

H ¼ ½HBEC jHSEC�,
where

HBEC : ðcþ mÞ � n0 matrix deleting the lastðne � n0Þ columns in eH0 shown in ð10:6Þ
with i ¼ 0;

HSEC ¼ ½HA HB HG�;

Wc

m

O

O
2c -1

W m

1

m

...

...

c

m

Y Y2c-c 2l -1-2

m

0Y

W W W
H ,=

A

2m-1 2m-1 2m-1 2m-1

.

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

M =

1 1 1 1
1 1 0 0
0 1 1 0
1 1 1 1

M′ =

1 0 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0
0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0
0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

H =

HBEC HSEC

M′

Q2Q1 Q3

M

1
1
0
1
0
0

Figure 10.9 Parity-checkmatrixof the (56, 50)B3ECjSECcodewith n0 ¼ 4. Source: [NAM03].� 2003 IEICEJapan.

eHi ¼
Ic Ic � � � Ic

j j j j j j
ai � � � aiþc�1 aiþc � � � aiþ2c�1 � � � aiþne�c � � � aiþne�1

j j j j j j

26666666664

37777777775

x??
c??yx??
m??y
: ð10:6Þ

BURST ERROR CONTROL UEC / UEP CODES 429



Wx : x� ð2x � 1Þ matrix having distinct nonzero column vectors,

Yj : ½yj yj � � � yj� l c,
 2m �1!
yj ð0 � j < 2c � c � 2l�1 � 1Þ : nonzero column vectors with lenght c, not

equal to the vectors with l-bit cyclic burst patterns,

HB ¼ ½H�1 H�2 � � �H�GCDðc;2m�1Þ�1�,
H�i ¼ eHi � Z � P,

Example 10.4 [NAMB03]: (116, 109) B2ECjSEC Code for n0 ¼ 12

Figure 10.10 shows the H matrix of the code with submatrices eH0; eH1; eH2; P, and Z.

Evaluation Figure 10.11 shows the burst error lengths and the check-bit lengths of

codes I and II discussed above, for n0 ¼ 64 bits and n1 ¼ 1; 024 bits. The figure also shows
the bound given in Theorem 10.10. Note that code II is superior in the region l < n0=3 to

code I, whereas code I is superior to code II in the region l 	 n0=3 and is equal to the

bound in the region l > n0=2. This relation is applicable to the codes with other code

parameters.

I
I

One

l–1

n l –1+e

neZ ,=

Q
Q

Q

Q

1 bit

O

O

n l – 1,–e

2l –1ne

P =

Q ,
1 1 1

Ml 1
=

Ml�1 : ðl� 1Þ � 2l�1 matrix with distinct column vectors,

HG ¼ eH0 � Z � P0;

P0: matrix deleting the cokumn vectors whose bottom ne � n0 þ l� 1 bits are

all 0’s in the matrix P:

The proof is complicated and the reader is recommended to refer to [NAM 03].

430 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



10.3.2 Burst Error Control UEP Codes — (BlEC)no
-(SEC)n1

UEP Codes —

There is a class of burst error control UEP codes with two different levels of error

correction capabilities in a codeword: lð	 2Þ-bit burst error correction in an important area

of the word and single-bit error correction in the remaining area of it [NAMB02]. A class

of byte error control UEP codes has already been presented in [HAYA00, IWAS97]. The

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

n
e=15

n
0=12

n
0=12

HBEC

c=3

m=4
H 0 =

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
1 0 0 1 1 0 1 0 1 1 1 1 0 0 0
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 1 1 0 1 0 1 1 1 1 0 0 0 1
1 0 0 1 1 0 1 0 1 1 1 1 0 0 0
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

,H 1 = H 2 =

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Q P′

P =
n

0=12

n
e+ - 1=16

n
e + - 1= 4n

0-

Z =

1
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0
0
0

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

1
0
0

0

0
1
0

0

0
0
1

0

0
0
0

1

0
0

00
0

0
0

0
0

0 0 0

0
0

0
0

0
0

0 0 0
0
0

0
0

0
0

0 0 0
0
0

0
0

0
0

0 0 0
0
0

0
0

0
0

0 0 0

n
e+ -1=16

n
e=15

1 1 1 0 0 0 1
0 0 1 1 1 0 0
1 0 0 0 1 1 1
1 1 0 1 0 1 0
0 1 1 0 0 0 0
0 1 0 1 1 0 0
0 1 0 1 0 1 1

1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1
1 0 0 0 1 0 0 1 1 0 1 0
0 1 0 0 1 1 0 1 0 1 1 1
0 0 1 0 0 1 1 0 1 0 1 1
0 0 0 1 0 0 1 1 0 1 0 1

1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1
0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1
1 1 0 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1
0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0

1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1
0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
0 0 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0
0 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1
1 1 0 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1
0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

c=3

m=4

H =

HBEC HSEC

HSEC

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

H1
*

HA

HB HH2
*

G

Figure 10.10 Parity-check matrix of the (116, 109) B2ECjSEC code with n0 ¼ 12: Source: [NAMB03]. � 2003

IEICE Japan.

BURST ERROR CONTROL UEC / UEP CODES 431



byte error control UEP codes correct any single-bit errors in the whole word and also

correct single-byte errors in an important area of the word.

Code Conditions and Bounds Let C be a code whose codewords consist of two

parts: an important part X0 and the other less important part X1. Without loss of generality,

assume that X0 always precedes X1 in a codeword and check bits are included in X1. Let n0
and n1 be lengths of X0 and X1, respectively. If C is capable of correcting l-bit burst errors

(BlEC) in X0 and of correcting single-bit errors (SEC) in X1, then C is denoted as a

(BlEC)n0 -(SEC)n1 UEP code, which is a different notation from the UEC codes. It is noted

that the BlEC function includes an SEC function, and therefore the codes correct single-bit

errors not only in X1 but also in the whole word.

Figure 10.12 shows the code functions of the (BlEC)n0 -(SEC)n1 UEP codes. The latter

two cases—that is, the one where the l-bit burst errors are spanned over X0 and X1, and the

other where the l-bit burst errors are in X1—are important to note. In the first case, the

errors included in X0 should be corrected, and the remaining errors in X1 should not

miscorrect any bits in X0. This is because the X0 part should be strongly protected from

0

32

64

96

128

160

192

8 16 24 32 40 48 56 64

Code Design  I
Code Design  II
Bound

= 64, = 1,024

Burst error length  (bits) 

C
he

ck
-b

it 
le

ng
th

 r

n1n
0

Figure 10.11 Comparison of burst error lengths and check-bit lengths of the BlECjSEC codes. Source:

[NAMB03].� 2003 IEICE Japan.

Figure 10.12 Code functions of the (BlEC)n0 -(SEC)n1 UEP code. Source: [NAMB02].� 2002 IEICE Japan.

432 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)

Corrected

Corrected

Corrected

X0 X1

n0 n1

Burst errors
occurring in both parts

Not miscorrect any bits in X0

X0
X1

Corrected
Not miscorrect any bits in X0

:
:

Single bit errors
occurring in X0

Single bit errors

Burst errors

occurring in X1

occurring in X0

Burst errors
occurring in X1

Errors in
Errors in



errors that occurr in any other part. Similarly, in the second case, the l-bit burst errors in X1

should not miscorrect any bits in X0.

To better see this consider four sets of errors, EB0, EB1, EB, and Eb, where EB0 and EB1

are the error sets caused by l-bit burst errors in X0 and in X1, respectively, EB the error set

caused by l-bit burst errors spanned over two parts X0 and X1, and Eb the error set caused

by single-bit errors. Let X0ðEÞ and X1ðEÞ represent the error E in the former part X0 of the

word and in the latter part X1, respectively.

The following theorem provides the necessary and sufficient conditions of the

(BlEC)n0 -(SEC)n1 UEP code.

Theorem 10.13 A binary linear code, described by the parity-check matrix H, is a

(BlEC)n0 -(SEC)n1 UEP code if and only if:

1. E �HT 6¼ 0 for all E 2 EB0 [ EB [ Ebf g,
2. E �HT 6¼ E0 �HT for all E;E0 2 EB0, E 6¼ E0,

3. E �HT 6¼ E0 �HT for all E 2 EB0, and for all E0 2 EB, X0ðEÞ 6¼ X0ðE0Þ,
4. E �HT 6¼ E0 �HT for all E;E0 2 EB, X0ðEÞ 6¼ X0ðE0Þ,
5. E �HT 6¼ E0 �HT for all E;E0 2 Eb, E 6¼ E0,

6. E �HT 6¼ E0 �HT for all E 2 EB0, and for all E0 2 EB1,

7. E �HT 6¼ E0 �HT for all E 2 EB, and for all E0 2 EB1,

where HT is the transpose of H.

Proof It can be easily proved such that conditions 1 and 2 are the necessary and suffi-

cient conditions for correcting l-bit burst errors in X0, conditions 1, 3, and 4 for correcting

errors in X0 when l-bit burst errors corrupting both X0 and X1, conditions 1 and 5 for cor-

recting single-bit errors, and conditions 6 and 7 for preventing l-bit burst errors in X1 from

being mistaken as correctable errors in X0. Q.E.D.

Next the theoretical lower bounds on the check-bit length of a linear (BlEC)n0 -(SEC)n1
UEP code are presented.

Theorem 10.14 A linear (n0 þ n1, n0 þ n1 � r) (BlEC)n0 -(SEC)n1 UEP code must

satisfy the following inequalities:

r 	 2 l; ð10:7Þ
r 	 log2 n0 � lþ 4ð Þ � 2l�1 þ n1 � l� 1

	 

: ð10:8Þ

Proof In general, l-bit burst error correcting codes satisfy the Reiger bound [REIG60]

presented in relation (10.7).

Correctable errors of the (BlEC)n0 -(SEC)n1 UEP codes have distinct nonzero

syndromes, and hence we can count the number of all correctable errors in the following

three cases:

Case 1. Number of l-bit burst errors in X0 excluding single-bit errors:

n0 � lþ 2ð Þ � 2l�1 � n0 � 1

BURST ERROR CONTROL UEC / UEP CODES 433



Case 2. Number of l-bit burst errors spanning over X0 and X1 whose Hamming weight is

one in X1:
Pl�1

i¼1 2i � 1ð Þ ¼ 2l � l� 1

Case 3. Number of single-bit errors: n0 þ n1

Hence we have the following inequality in the syndrome space:

2r � 1 	 n0 � lþ 2ð Þ � 2l�1 � n0 � 1
	 

þ 2l � l� 1
� �

þ n0 þ n1ð Þ
¼ n0 � lþ 4ð Þ � 2l�1 þ n1 � l� 2;

which expresses the relation (10.8). Q.E.D.

Design for the (BlEC)n0
-(SEC)n1

UEP Code We will use here a matrix P that

converts the error pattern E with length n0 þ n1, including l-bit burst errors in X0 and

single-bit errors in X1 in the output word, into an error pattern E � PT with length np,

including uniform l-bit burst errors. That is, we will use a matrix P that is an

np � ðn0 þ n1Þ conversion matrix: matrix P converts l-bit burst errors in X0 into the

same l-bit burst errors in the former part with length n0 of the output word, and also

converts single-bit errors in X1 into l-bit burst errors in the latter part with length

np � n0 of the output word. These converted errors in the output word with length np
can be corrected by applying an ðnp; np � rÞ l-bit burst error correcting code. In order

to prevent l-bit burst errors in X1 from being mistaken as correctable errors in X0, the

matrix P converts the burst errors in X1 to the l-bit burst errors, that is, correctable errors,

in the latter part of the output word.

Theorem 10.15 Let HBEC be a parity-check matrix of an ðnp; np � rÞ l-bit burst error
correcting code. Then the null space of

H ¼ HBEC � P

is an (n0 þ n1, n0 þ n1 � r) (BlEC)n0-(SEC)n1 UEP code, where

O

O

HΓ H
A

P

O O

O

n
0

n
1

In0

H
B ...

=
H

A H
B

H
A H

B

H
A H

B

n ,
p

n
0

In0 : n0 � n0 identity matrix,

O : zero matrix,

434 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



HA ¼
1 � � � 1
Q

1 � � � 1

24 35
l�q

,

HB ¼
Q

1 � � � 1

� �
ðl�1Þ�q

,

Q : ðl� 2Þ � q matrix having distinct q binary columns where l� 1 �q � 2l�2,

HG : ðl� 1Þ � q0 matrix having distinct q0 binary columns where the element hi; j in

HG equals zero for i > j and l� 1 � q0 � 2l�1 � 1.

Proof The syndrome caused by error E is expressed as

E �HT ¼ E � HBEC � Pð ÞT ¼ E � PT
� �

�HT
BEC,

where E is an error vector with length n0 þ n1 and output of E � PT is called a converted

error of E.

From the structure of the matrix P, any error that occurs in X0 is always converted to

the original error E in E � PT , because there exists an identity submatrix In0 in P. That

is, the l-bit burst errors occurring in X0 give the converted errors including the input l-bit

burst error e0 in the former part of E � PT :

E � PT ¼ ð0 � � � 0 e0
 !l

0 � � � 0 ..
.
0 � � � 0Þ:

 ������������������!  ���!
n0 np � n0

These converted errors can be corrected by the l-bit burst error correcting code

expressed by HBEC. Hence the code satisfies conditions 1 and 2 of Theorem 10.13 for the

error set EB0.

When l-bit burst errors corrupt both X0 and X1, that is

E ¼ ð0 � � � 0 e0
 �����!l

..

.
e1 0 � � � 0Þ,

 �! !
w l�w

 ������! ������!
n0 n1

then the former part of the error, e0, with length w (< l) bits is converted to the original

error e0 and the remaining part of the error, e1, with a length of l� w bits in X1 is

converted to an error ey with a length of at most l� w bits because of the property that

hi; j ¼ 0 for i > j in the matrix H�. That is, the converted error is an l-bit burst error,

shown as

E � PT ¼ ð0 � � � 0 e0

 ��!l
..
.
ey 0 � � � 0Þ:

 �����! �����!
n0 np � n0

BURST ERROR CONTROL UEC / UEP CODES 435



Especially in this case, the former part of the converted errors can be properly corrected,

but the remaining part is not guaranteed to be properly corrected in X1. Hence the code

satisfies conditions 1, 3, and 4 of Theorem 10.13 for the error set EB.

Nonzero column vectors in P are all distinct, and therefore every single-bit error E is

always converted to different pattern of E � PT . Single-bit errors in X0 are always converted

to single-bit errors, and the errors in X1 are converted to l-bit burst errors because of the

matrix structure of H�, HA, and HB, which must have l or fewer nonzero rows. Because

these converted errors can be properly corrected, the code satisfies conditions 1 and 5 of

Theorem 10.13 for the error set Eb.

When l-bit burst errors occur in X1, the latter part of E � PT with length ðnp � n0Þ can
include a zero pattern or a nonzero pattern of e� having at most l 1’s:

E � PT ¼ ð0 � � � 0 ..
.
0 � � � 0

 ��!l
e� 0 � � � 0Þ:

 ���! �������������!
n0 np � n0

It is apparent that the syndrome caused by l-bit burst errors in X1 is different from the

syndrome due to errors in X0, and the syndrome due to errors spanned over X0 and X1.

Hence the code satisfies conditions 6 and 7 of Theorem 10.13. Consequently the H matrix

indicated in the theorem satisfies the conditions of Theorem 10.13, so the code is a

(BlEC)n0 -(SEC)n1 UEP code. Q.E.D.

Example 10.5 [NAMB02]: (55, 44) (B4EC)8-(SEC)47 UEP Code

The parity-check matrix of a (16, 5) 4-bit burst error correcting Fire code is shown

below:

The conversion matrix P and the resultant parity-check matrix of the (55, 44) (B4EC)8-

(SEC)47 UEP code in a binary form are shown in Figures 10.13 and 10.14, respectively.

Theorem 10.16 The code parameters l, np, n0, and n1 in Theorem 10.15 satisfy the fol-

lowing inequality:

np 	 n0 þ
n1 þ 1

2l�1

� �
þ l�2, ð10:9Þ

where dxe shows the smallest integer larger than or equal to x.

HBEC ¼

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1

0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0

0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0

0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0

266666666666666664

377777777777777775

 
��
��
��
���
��

��
��
��
��
�!

r ¼ 11:

 ���������������� np ¼ 16 ��������������������!

436 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



Proof Length n1 is less than or equal to the sum of the following three values: the pro-

duct value of the number of HA matrices in matrix P and the number of columns in HA,

the product value of the number of HB matrices in matrix P and the number of columns in

HB, and the number of columns in H�. The maximum number of columns in HA is equal

to that in HB, meaning 2l�2. The number of HA matrices in P is equal to that of HB

matrices in P, meaning np � n0 � lþ 1. The maximum number of columns in H� is

2l�1 � 1. Consequently we have the inequality

n1 � np � n0 � lþ 2
� �

� 2l�1 � 1:

By simply re-arranging the variables, we obtain the inequality (10.9). Q.E.D.

Decoding Procedure The decoding proceduce is demonstrated for the (BlEC)n0 -

(SEC)n1 UEP code. The syndromes for the received word V that may include error E

are expressed as

S ¼ V � PT
� �

�HT
BEC

¼ V0 þ Eð Þ � PT �HT
BEC

¼ E � PT
� �

�HT
BEC,

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

P =

n
0 = 8

n
p =16

n
1 = 47

H =AH =G H =B,,
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

1 1 1 1
1 1 0 0
1 0 1 0
1 1 1 1

1 1 0 0
1 0 1 0
1 1 1 1

Figure 10.13 The conversionmatrixP. Source: [NAMB02].� 2002 IEICE Japan.

1 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0
0 1 0 0 0 0 0 0 1 0 10 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0 1 10 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 01 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 00 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0
1 0 0 0 1 1 1 1 0 1 10 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1
0 1 0 0 0 1 1 1 1 0 11 0 1 0 0 1 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0
0 0 1 0 0 0 1 1 1 1 00 1 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0
0 0 0 1 1 1 1 0 1 0 11 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1 0

n
0 = 8 n

1 = 47

r =11H = HBEC P =

Figure 10.14 Parity-checkmatrix of the (55, 44) (B4EC)8-(SEC)47 UEP code. Source: [NAMB02]. � 2002 IEICE

Japan.

BURST ERROR CONTROL UEC / UEP CODES 437



where V0 is a transmitted word. The decoding is performed by the following four steps:

Step 1. Generate syndrome S ¼ V � PT
� �

�HT
BEC.

Step 2. Calculate E � PT from syndrome S.

Step 3. Calculate the correctable error pattern E from E � PT .

Step 4. Correct the received word by bV ¼ V  E.

These operations are performed in parallel and implemented by combinational circuits.

Figure 10.15 shows the block diagram of the decoding circuit.

Evaluation Figure 10.16 shows the relation between the information-bit length

k1 ¼ n1 � r and the check-bit length r of the (B4EC)32-(SEC)n1 UEP code with l ¼ 4

bits and n0 ¼ 32 bits. Figure 10.16 also shows the bound given in Theorem 10.16.

Received word v

E PT.

Corrected word v

Syndrome Generator

Calculation Circuit of

Correction  Circuit

rS

E PT.

E

Error Pattern Generator

np

+n0 n1

0 1+n n

0 1+n n

Figure 10.15 Blockdiagramof the decoding circuit. Source: [NAMB02].� 2002 IEICE Japan.

256

Information-bit length

C
he

ck
-b

it 
le

ng
th

 r

Bound

(B4EC)32- (SEC)n1
UEP code

k
1

= 556

k1 – r )(= n 1

12

16

252

763

1,786

1,451

= 4, n   = 32

1,02464

k
1

=

0

Figure 10.16 Comparison of the information-bit lengths and check-bit lengths of the (B4EC)32-(SEC)n1 UEP
code. Source: [NAMB02].� 2002 IEICE Japan.

438 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



Figure 10.17 shows the amount of decoder hardware for the (BlEC)32-(SEC)n1 UEP

code with n0 ¼ 32 bits, l ¼ 4 and 8 bits. In this case, a four-input AND/OR gate is counted

as one gate and a two-input exclusive-OR (XOR) gate as 1.5 gates.

10.4 APPLICATION OF THE UEC /UEP CODES

10.4.1 Application of q-Ary UEC Codes to Holographic Memories

In two-dimensional storage media the bit error rate (BER) is not equal in general in overall

area of the media. For example, in holographic memories the BER of readout data from the

edge of the media is much higher than that from the center of the media [CHOU98,

BETZ98, ASHL00]. This type of error can be effectively corrected using unequal error

control (UEC) codes. This subsection demonstrates two classes of optimal q-ary UEC

codes whose codewords have two disjoint areas with distinct error control capabilities

[KANE03]. Each q-ary symbol in a codeword of the UEC code is mapped to a codeword

of a block modulation code.

Conventional error control codes, such as Reed-Solomon codes, BCH codes, and Fire

codes, are not suitable for such two-dimensional storage media because they require a

large number of check bits to provide a uniform error correction strong enough to correct

errors in the edge of the media. In contrast, two-level binary unequal error control (UEC)

codes are suitable for this type of storage media because a codeword of the UEC code has

two disjoint areas with distinct error control capabilities: the area X0 with a strong error

control capability and the remaining area X1 with a moderate error control capability.

In addition to the error control codes, optical storage systems employ modulation codes

to improve the signal-to-noise ratio (SNR) of the readout signals and finally to reduce the

BER of the readout data. Typical modulation codes applied to the holographic memories

are the balanced codes, the low-pass filtering codes [BURR97], and the sparse modulation

codes [KING00]. A balanced code is a block code of length n whose codewords have a

constant Hamming weight bn=2c, where bxc shows the largest integer less than or equal to
x. These codes are effective in reducing the errors that occur in the binarization stage of the

readout gray-scale signal. That is, these gray-scale signals can be binarized without using

32 64 128 256

= 4

= 8

G
at

e 
am

ou
nt

1,000

2,000

5,000

n 0 = 32

Information-bit length k1 – r )(= n 1

Figure 10.17 Paralleldecoder gate amount of the (BlEC)32-(SEC)n1UEPcode. Source: [NAMB02].� 2002 IEICE

Japan.

APPLICATION OF THE UEC /UEP CODES 439



an explicit threshold value; for example, the brightest bn=2c pixels can be set to 1 and the

remaining ones set to 0. A low-pass filtering code tolerates high-frequency error-prone

recording patterns such as a dark pixel surrounded by bright pixels, and thus improves the

SNR of the readout signals. A sparse modulation code generates binary sequences with

low Hamming weight; this reduces the number of bright pixels in a recording medium,

thereby improving the SNR of the holographic memories [KING00].

Error control coding and block modulation coding can be combined using q-ary error

control codes, where each q-ary symbol in a codeword of the error control code is mapped

to a codeword of the block modulation code [TILB89]. Here a q-ary symbol is simply

referred to as a symbol. This subsection deals with a new class of two-level q-ary UEC

codes whose codeword consists of two disjoint areas X0 and X1. As indicated in Section

10.2, X0 and X1 correspond to the areas with high symbol error rate (SER) and low SER,

respectively. The area X0 is called here a fixed-area, and any error confined to X0 is referred

to here as a fixed-area error. Without loss of generality, X0 is located in the leftmost l

symbols of a codeword, where l is the length (in symbols) of the fixed-area, and X1 has the

remaining n� l symbols. This subsection presents the following two classes of two-level

q-ary UEC codes:

1. Fixed l-symbol Error Correcting j Single-symbol Error Correcting codes (FlECjSEC
codes). These codes are capable of correcting fixed-area errors in X0 as well as

correcting single-symbol errors in X1, and

2. Fixed l-symbol plus Single-symbol Error Correcting codes ((Fl+S)EC codes). These

codes are capable of correcting both fixed-area errors in X0 and single-symbol errors

in X1 simultaneously.

1. Combination of Error Control Coding and Block Modulation Coding for
Holographic Memories
Before designing q-ary UEC codes for holographic memory systems, an encoding process

that employs a q-ary UEC code combined with a block modulation code is clarified here.

Let CM be a block modulation code having jCM j codewords, let q be the largest prime or

power of prime satisfying q � jCMj, and also let b be the largest integer satisfying 2b � q.

A binary information word D composed of k vectors is expressed as

D ¼ ðD0 D1 . . . Dk�1Þ;

where Di ¼ ðdi;0 di;1 . . . di;b�1Þ, 0 � i � k � 1, is a binary vector with length b. The

information word D thus has a total length of bk bits. The encoding process for D is

constituted by the following steps [KANE03]:

Step 1. Each binary vector Di in the information word D is mapped to an element of

GFðqÞ, and hence an information word over GFðqÞ is constituted by these mapped

elements. Note that the mapping from the set of binary vectors Di to GFðqÞ should be

injective.

Step 2. The information word over GFðqÞ is encoded by a q-ary UEC code, which

reduces to a codeword over GFðqÞ.
Step 3. Each q-ary symbol in the codeword over GFðqÞ is mapped to a codeword of the

modulation code CM . The mapping from GFðqÞ to CM should be injective. The binary

sequence of the resulting word is the recording pattern.

440 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



Figure 10.18 illustrates an example of the encoding process, where CM is the balanced

code with length 4 bits, jCMj ¼ 6, q ¼ 5, b ¼ 2, and a is a primitive element in GFð5Þ.

2. q-Ary F lEC jSEC Codes
Let’s design the linear q-ary FlECjSEC codes capable of correcting any fixed-area errors in

X0 as well as correcting single-symbol errors in X1 [KANE03].

Preliminaries We first consider the necessary and sufficient conditions of the linear

q-ary FlECjSEC codes and then derive an upper bound on code length.

Let E0 and E1 be sets of vectors over GFðqÞ having length n and defined as follows:

E0 ¼ fðx0 x1 . . . xn�1Þ j 1 � wHðx0 . . . xl�1Þ � l; ðxl . . . xn�1Þ ¼ og;
E1 ¼ fðx0 x1 . . . xn�1Þ j ðx0 . . . xl�1Þ ¼ o; wHðxl . . . xn�1Þ ¼ 1g;

where xi 2 GFðqÞ for 0 � i � n� 1, o ¼ ð0 . . . 0Þ, and wHðXÞ is the Hamming weight of

vector X. Here E0 represents the set of fixed-area error patterns in X0, and E1 represents the

set of single-symbol error patterns in X1. The following theorem gives the necessary and

sufficient conditions for the linear q-ary FlECjSEC codes.

Theorem 10.17 The null space of a parity-check matrix H over GFðqÞ is a linear q-ary

FlECjSEC code if and only if:

1. E �HT 6¼ o for all E 2 ðE0 [ E1Þ,
2. Ep �HT 6¼ Eq �HT for all Ep;Eq 2 E0;Ep 6¼ Eq,

3. Ei �HT 6¼ Ej �HT for all Ei;Ej 2 E1;Ei 6¼ Ej,

4. Ep �HT 6¼ Ei �HT for all Ep 2 E0; and for all Ei 2 E1.

The proof is left to the reader.

Theorem 10.18 The code length in symbols n and the number of check symbols r of a

linear q-ary FlECjSEC code satisfy the following inequality:

n � qr � ql

q� 1
þ l: ð10:10Þ

Information word 01 ...

Encode

5-Ary word

...α3 0 α0 αα2

0101 1010 00110110 1100...Codeword of modulation code

Injective

5-Ary UEC code

...

...

00 10

...α3 0 α2
Injective mapping

b = 2

mapping
...

4(including 4-bit balanced codewords)

GF(5) = {0,α α α α0, 1 2 3, , }

CM

: Check part

Figure 10.18 Combination of error control coding andmodulation coding by using 5-ary UEC code. Source:

[KANE03].� 2003 IEEE.

APPLICATION OF THE UEC /UEP CODES 441



Proof Condition 2 of Theorem 10.17 says that all syndromes caused by fixed-area

errors in X0 should be distinct, where there exist ql � 1 fixed-area error patterns. Condi-

tion 3 says that all syndromes for single-symbol errors in X1 should be distinct, where

there exist ðq� 1Þðn� lÞ single-symbol error patterns. Therefore the total number of

nonzero syndromes (i.e., qr � 1) should satisfy the following inequality:

qr � 1 	 ðql � 1Þ þ ðq� 1Þðn� lÞ:

After re-arranging this inequality , the relation (10.10) is derived. Q.E.D.

Table 10.6 shows the upper bound on the information-symbol length k ¼ n� r of the

FlECjSEC codes over GFð5Þ for 4 � r � 9 and 3 � l � 8.

Code Design Let H0r�l be a parity-check matrix of a single-symbol error correcting

Hamming code over GFðqÞ with r � l check symbols, defined as

H0r�l ¼ ½h
0
0 h01 � � � h0n0�1�ðr�lÞ�n0 ;

where h0i is a column vector over GFðqÞ with length r � l for 0 � i � n0 � 1, and

n0 ¼ ðqr�l � 1Þ=ðq� 1Þ. Note that H0 ¼ ½1� for r � l ¼ 1. By using one column vector in

H0r�l, the matrix Qi is defined as

Qi ¼ ½h0i h0i � � � h0i�ðr�lÞ�ql ;

where i 2 f0; 1; . . . ; n0 � 1g.

Theorem 10.19 The null space of

is an optimal linear FlECjSEC code over GFðqÞ satisfying the upper bound on code length
given by the relation (10.10), where submatrices in H are defined as follows:

Il : l� l identity matrix,

Oðr�lÞ�l : ðr � lÞ � l zero matrix,

TABLE 10.6 Upper Bounds on the Information-Symbol Lengths of the F‘ECjSEC Codes

over GF (5)

l
r

3 4 5 6 7 8

4 124 � � � � �
5 748 624 � � � �
6 3,872 3,748 3,124 � � �
7 19,496 19,372 18,748 15,624 � �
8 97,620 97,496 96,872 93,748 78,124 �
9 488,244 488,120 487,496 484,372 468,748 390,624

Note: r : numberof check symbols

H ¼ H0 jH1½ � ¼ Il M M � � � M
Oðr�lÞ�l Q0 Q1 � � � Qn0�1

� �

442 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



M : l� ql matrix with all distinct column vectors over GF(q),

H0 ¼
Il

Oðr�lÞ�l

" #
;

H1 ¼
M M � � � M

Q0 Q1 � � � Qn0�1

� �
.Proof This theorem can be proved such that the code satisfies conditions 1 to 4 of

Theorem 10.17. Since Il is a nonsingular matrix and all column vectors in H1 are nonzero,

conditions 1 and 2 are satisfied. Condition 3 is also satisfied because H1 is a parity-check

matrix of a shortened single-symbol error correcting Hamming code. In order to prove

that the code satisfies condition 4, let S ¼ ðs0 s1 . . . sl�1 sl . . . sr�1Þ ¼ E �HT be

a syndrome caused by an error pattern E. If E 2 E0, then ðsl slþ1 . . . sr�1Þ ¼
ð0 0 . . . 0Þ, but, if E 2 E1, then ðsl slþ1 . . . sr�1Þ 6¼ ð0 0 . . . 0Þ. Therefore condition

4 is satisfied because the last r � l symbols of the syndrome S caused by fixed-area errors

in X0 are different from those of the single-symbol errors in X1.

The maximum code length n of the code can be determined by counting the number of

column vectors in H, which is written as

n ¼ qr�l � 1

q� 1
� ql þ l ¼ qr � ql

q� 1
þ l:

Therefore the code is optimal from the relation (10.10). Q.E.D.

The FlECjSEC code given in Theorem 10.19 is systematic because H has r distinct

column vectors, each having Hamming weight one. The FlECjSEC codes over GFðqÞ
coincide with the binary FbECjSEC codes when q ¼ 2, mentioned in Subsection

10.2.1.

Example 10.6

Figure 10.19 shows the parity-check matrix of the (111, 106) F3ECjSEC code over

GFð3Þ designed by using the following parity-check matrix of the single-symbol error

1
0
0

0
1
0

0
0
1

0
0

0
0

0
0

0
0
0

0
0
1

0
0
2

0
1
0

0
1
1

0
1
2

0
2
0

0
2
1

0
2
2

1
0
0

1
0
1

1
0
2

1
1
0

1
1
1

1
1
2

1
2
0

1
2
1

1
2
2

2
0
0

2
0
1

2
0
2

2
1
0

2
1
1

2
1
2

2
2
0

2
2
1

2
2
2

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
0
0

0
0
1

0
0
2

0
1
0

0
1
1

0
1
2

0
2
0

0
2
1

0
2
2

1
0
0

1
0
1

1
0
2

1
1
0

1
1
1

1
1
2

1
2
0

1
2
1

1
2
2

2
0
0

2
0
1

2
0
2

2
1
0

2
1
1

2
1
2

2
2
0

2
2
1

2
2
2

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

0
0
0

0
0
1

0
0
2

0
1
0

0
1
1

0
1
2

0
2
0

0
2
1

0
2
2

1
0
0

1
0
1

1
0
2

1
1
0

1
1
1

1
1
2

1
2
0

1
2
1

1
2
2

2
0
0

2
0
1

2
0
2

2
1
0

2
1
1

2
1
2

2
2
0

2
2
1

2
2
2

0
0
0

0
0
1

0
0
2

0
1
0

0
1
1

0
1
2

0
2
0

0
2
1

0
2
2

1
0
0

1
0
1

1
0
2

1
1
0

1
1
1

1
1
2

1
2
0

1
2
1

1
2
2

2
0
0

2
0
1

2
0
2

2
1
0

2
1
1

2
1
2

2
2
0

2
2
1

2
2
2

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

I 3

O2   3

M M 

M M
Q0 Q 1

Q 2 Q 3
Column vectors indicated by bold font correspond to check part

Figure 10.19 Parity-checkmatrix of the (111,106) F3ECjSEC code over GFð3Þ:

APPLICATION OF THE UEC /UEP CODES 443



correcting Hamming code over GFð3Þ,

H02 ¼
0 1 1 1

1 0 1 2

� �
:

In Fig. 10.19, the column vectors indicated by bold font correspond to check part.

Decoding Procedure For a received word U0 ¼ ðu00 u01 . . . u0n�1Þ, the syndrome S

is defined by

S ¼ ðSF SPÞ
¼ ðs0 s1 . . . sl�1 sl slþ1 . . . sr�1Þ ¼ U0 �HT ;

where SF ¼ ðs0 s1 . . . sl�1Þ and SP ¼ ðsl slþ1 . . . sr�1Þ. The received word U0 is then

decoded as follows:

Step 1. If S ¼ 0, then U0 has no error.

Step 2. If SF 6¼ 0 and SP ¼ 0, then a fixed-area error exists in X0 and is corrected using

the error pattern given by SF.

Step 3. If SP 6¼ 0, then a single-symbol error exists in X1. In this case, S is a multiple of a

column vector in H1, in particular, 9i 2 f0; 1; � � � ; n� l� 1g such that S ¼ wvi, where

vi is the i-th column vector in H1 and w 2 GFðqÞ � f0g. Since any two column vectors

in H1 are linearly independent, w and vi can be uniquely determined from S, and thus a

single-symbol error in X1 can be corrected.

3. q-Ary (Fl+S)EC Codes
Next we turn to design the linear q-ary (FlþS)EC codes capable of correcting both fixed-

area errors in X0 and single-symbol errors in X1 that occur simultaneously, called q-ary

fixed-area plus single-symbol error correcting codes [KANE03].

Preliminaries Let us consider the necessary and sufficient conditions of the linear

(FlþS)EC codes, and derive the upper bound on code length.

Theorem 10.20 The null space of a parity-check matrix H over GF(q) is a linear q-ary

(FlþS)EC code if and only if:

1. E �HT 6¼ o for all E 2 ðE0 [ E1Þ ,
2. Ep �HT 6¼ Eq �HT for all Ep;Eq 2 E0; Ep 6¼ Eq,

3. Ei �HT 6¼ Ej �HT for all Ei;Ej 2 E1; Ei 6¼ Ej,

4. Ep �HT 6¼ Ei �HT for all Ep 2 E0; and for all Ei 2 E1,

5. ðEi þ EpÞ �HT 6¼ ðEj þ EqÞ �HT for all Ep;Eq 2 E0; and for all Ei;Ej 2 E1;
Ep 6¼ Eq; Ei 6¼ Ej ,

where E0 and E1 are the sets of q-ary vectors defined in the previous FlECjSEC codes.

444 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



Proof Conditions 1 and 2 are necessary and sufficient conditions for correcting fixed-

area errors in X0, conditions 1 and 3 are those for correcting single-symbol errors in X1,

and condition 4 is that for discriminating between the fixed-area errors and the single-

symbol errors. Condition 4 also provides those for discriminating between the fixed-

area X0 errors and the fixed area plus single-symbol errors because it follows from the

condition that E0p �HT 6¼ ðEi þ E00pÞ �HT , where Ep;E
00
p 2 E0 and Ei 2 E1. Condition 5

provides those for correcting errors in the fixed-area plus single-symbol errors; it

also provides those for discriminating between the single-symbol errors and the

errors in the fixed-area plus single-symbol errors because it includes the relation

Ei �HT 6¼ ðEj þ E0qÞ �HT , where E0q 2 E0 and Ei;Ej 2 E1. Therefore conditions 1 through

5 are necessary and sufficient conditions of the linear q-ary (FlþS)EC codes. Q.E.D.

Theorem 10.21 The code length in symbols n and the number of check-symbols r of a

liner q-ary (FlþS)EC code satisfy the following inequality:

n � qr�l � 1

q� 1
þ l: ð10:11Þ

Proof Theorem 10.20 says that all syndromes for fixed-area errors in X0, single-symbol

errors in X1, and fixed-area plus single-symbol errors should be distinct. There exist

ql � 1 error patterns in X0, ðq� 1Þðn� lÞ single-symbol error patterns in X1, and

ðql � 1Þ � ðq� 1Þðn� lÞ fixed-area plus single-symbol error patterns. Thus the following

inequality holds:

qr � 1 	 ðql � 1Þ þ ðq� 1Þðn� lÞ þ ðql � 1Þðq� 1Þðn� lÞ:

By re-arranging this inequality, the relation (10.11) is derived. Q.E.D.

Table 10.7 shows the upper bound on information-symbol length k ¼ n� r of the

(FlþS)EC codes over GFð5Þ for 5 � r � 12 and 3 � l � 7.

TABLE 10.7 Upper Bounds on Information-Symbol Length of (F‘+S)EC Codes over GF (5)

‘
r

3 4 5 6 7

5 4 � � � �
6 28 4 � � �
7 152 28 4 � �
8 776 152 28 4 �
9 3,900 776 152 28 4
10 19,524 3,900 776 152 28
11 97,648 19,524 3,900 776 152
12 488,272 97,648 19,524 3,900 776

Note: r : numberof check symbols.

APPLICATION OF THE UEC /UEP CODES 445



Code Design

Theorem 10.22 The null space of

is an optimal linear (FlþS)EC code over GFðqÞ satisfying the upper bound on code length
given by the relation (10.11), where the submatrices in H are defined as follows:

Ix : x� x identity matrix,

Oy�z : y� z zero matrix,

P j Q j Ir�l½ �: parity-check matrix of a systematic single-symbol error correcting

Hamming code over GFðqÞ having r � l check symbols,

Proof This can be proved such that the code satisfies conditions 1 through 5 of Theorem

10.20. Conditions 1, 2, and 3 are satisfied because Il is a nonsingular matrix, and any two

column vectors in H1 are linearly independent. In order to prove that the code satisfies

condition 4, let S ¼ ðSF SPÞ ¼ ðs0 s1 . . . sl�1 sl . . . sr�1Þ ¼ E �HT be a syndrome

caused by an error pattern E, where SF ¼ ðs0 s1 . . . sl�1Þ and SP ¼ ðsl slþ1 . . . sr�1Þ.
Syndromes caused by fixed-area errors E 2 E0 satisfy the following condition:

wHðSFÞ 	 2� _ ½wHðSFÞ ¼ 1� ^ ½wHðSPÞ 	 2�½ �:½

Note that the latter condition holds because the Hamming weight of a column vector in P is

greater than or equal to two. In contrast, syndromes caused by single-symbol errors

E 2 E1 satisfy the following condition:

wHðSFÞ ¼ 0� _ ½wHðSFÞ ¼ 1� ^ ½wHðSPÞ ¼ 0�½ �:½

Therefore the fixed-area errors in X0 can be discriminated from the single-symbol errors in

X1, thus satisfying condition 4. Condition 5 can be proved by contradiction; we assume

that the condition does not hold, then for 9Ep;Eq 2 E0 and 9Ei;Ej 2 E1 the following

relation holds:

Ep � Eq

� �
�HT ¼ �Ei þ Ej

� �
�HT ; ð10:12Þ

where Ep 6¼ Eq and Ei 6¼ Ej. Each row vector ðEp � EqÞ �HT and ð�Ei þ EjÞ �HT is

divided into two parts as follows:

ðSF SPÞ ¼ ðEp � EqÞ �HT ;

ðS0F S0PÞ ¼ ð�Ei þ EjÞ �HT ;

H ¼
"
H 0 H1

#
¼

Il Ol�ðn�l�rÞ Il Ol�ðr�lÞ

P Q Oðr�lÞ�l Ir�l

" #

H0 ¼
Il

P

� �
;

H1 ¼
Ol�ðn�l�rÞ Il Ol�ðr�lÞ

Q Oðr�lÞ�l Ir�l

" #
:

446 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



where SF and S0F are row vectors each having length l, and SP and S0P are also row vectors

each having length r � l. For ðSF SPÞ, exactly one of the following conditions holds:

a. ½wHðSFÞ ¼ 1� ^ ½STP ¼ a column vector in P�,
b. ½wHðSFÞ ¼ 2� ^ ½SP 6¼ o�,
c. ½wHðSFÞ 	 3�.

For ðS0F S0PÞ, exactly one of the following conditions holds:

a’. ½wHðS0FÞ ¼ 0�,
b’. ½wHðS0FÞ ¼ 1� ^ ½S0TP ¼ a column vector in Q�,
c’. ½wHðS0FÞ ¼ 1� ^ ½S0TP ¼ a column vector in Ir�l�,
d’. ½wHðS0FÞ ¼ 2� ^ ½S0P ¼ o�.

It follows from these two sets of conditions that ðSP SFÞ 6¼ ðS0P S0FÞ, which contradicts

Eq. (10.12), and the assumption that condition 5 does not hold. Therefore condition 5 is

satisfied.

The maximum code length n of the code can be determined by counting the number of

column vectors in H, which is written as

n ¼ qr�l � 1

q� 1
þ l:

Therefore the code is optimal by relation (10.11). Q.E.D.

Example 10.7

The following shows the parity-check matrix of the (16, 10) (F3þS)EC code overGFð3Þ:

where ½P jQ j I3 � is the parity-check matrix of the (13, 10) Hamming code over GFð3Þ.

Decoding Procedure By performing the row operations, the matrix H defined in

Theorem 10.22 can be transformed into the following matrix H0:

H ¼
I3 O3�7 I3 O3�3

P Q O3�3 I3

� �

¼

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0

1 1 0 0 1 1 1 2 2 2 0 0 0 0 1 0

1 2 1 2 0 1 2 0 1 2 0 0 0 0 0 1

2666666664

3777777775
;

H0 ¼
Il Ol�ðn�l�rÞ Il Ol�ðr�lÞ

Oðr�lÞ�l Q �P Ir�l

" #
:

APPLICATION OF THE UEC /UEP CODES 447



Note that the null space of H is identical to that of H0, and therefore the matrices H

and H 0 are the parity-check matrices of the identical (Flþ S)EC code. Decoding is

performed by the matrix H0. For a received word U0 ¼ ðu00 u01 . . . u0n�1Þ, the syndrome S

is expressed as

S ¼ ðSF SPÞ
¼ ðs0 s1 . . . sl�1 sl slþ1 . . . sr�1Þ ¼ U0 �H0T ;

where SF ¼ ðs0 s1 . . . sl�1Þ and SP ¼ ðsl slþ1 . . . sr�1Þ. The received word U0 is then
decoded as follows:

Step 1. If S ¼ 0, then U0 has no error.

Step 2. If SF 6¼ 0 and SP ¼ 0, then a fixed-area error exists in X0 and is corrected by the

error pattern given by SF.

Step 3. If SP 6¼ 0, then a single-symbol error or a fixed-area plus single-symbol error

exists in U0. In this case the syndrome is expressed as follows:

S ¼ ðSF SPÞ ¼ ðEp þ EiÞ �H0T ;

where Ep 2 E0 [ fog and Ei 2 E1. Since any two column vectors in ½Q j �P j Ir�l�
are linearly independent, the single-symbol error pattern Ei in X1 can be uniquely

determined and thus corrected by SP, regardless of whether or not a fixed-area error

exists in X0. In addition a fixed-area error pattern Ep can be determined simul-

taneously by the equation above because the first l columns in H0 are also linearly

independent.

4. Evaluation
The designed codes are evaluated in terms of the probability of correct decoding, that is,

the probability of the received word U0 being decoded correctly as the original codeword

U. For the q-ary UEC codes and the RS codes over GFðqÞ, we are interested in the correct
decoding of a received word. We denote, P0 and P1 as the symbol error rates in X0 and in

X1, respectively.

q-Ary FlEC jSEC Code A received word U0 is decoded correctly if and only if (1)

X1 has no error or (2) X0 has no error and X1 has a single-symbol error. Therefore the

probability of correct decoding U0 by the q-ary FlECjSEC code is

Pa ¼ ð1� P1Þn�l þ ð1� P0Þl � ðn� lÞ � P1 � ð1� P1Þn�l�1:

q-Ary (Fl+S)EC Code A received wordU0 is decoded correctly if and only if (1) X1

has no error or (2) X1 has a single-symbol error. Therefore the probability of correct

decoding of U0 by the q-ary (FlþS)EC code is

Pb ¼ ð1� P1Þn�l þ ðn� lÞ � P1 � ð1� P1Þn�l�1:

t-Symbol Error Correcting RS Code A received word U0 is decoded correctly if
and only if the total number of errors in U0 is less than or equal to t. Therefore the

448 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



probability of correct decoding of U0 by the t-symbol error correcting RS code is

PcðtÞ ¼
Xt
i¼0

Xi
j¼0

l

j

� �
P

j
0ð1� P0Þl�j

n� l

i� j

� �
P
i�j
1 ð1� P1Þn�l�iþj

� �
;

where
x

y

� �
denotes a binomial coefficient defined as

x

y

� �
¼ x!

y!ðx� yÞ! :

Comparison of Error Correction Capabilities Under the code parameters

q ¼ 67, n ¼ 66, and l ¼ 6, Figure 10.20 shows the probability of correct decoding for the

following codes:

(a) 67-ary (66, 59) F6ECjSEC code,

(b) 67-ary (66, 58) (F6þS)EC code,

(c) 3-symbol error correcting (66, 60) RS code over GFð67Þ,
(d) 4-symbol error correcting (66, 58) RS code over GFð67Þ,

where P0 ¼ 0:05. The F6ECjSEC code (a) has higher probability of correct decoding than

the 3-symbol error correcting RS code (c) for P1 � 5:0� 10�6, and also higher than the

4-symbol error correcting RS code (d) for P1 � 1:0� 10�7. The (F6þS)EC code (b) has

higher probability of correct decoding than the 3-symbol error correcting RS code

(c) for P1 � 2:5� 10�4, and also higher than the 4-symbol error correcting RS code (d) for

0.99991

0.99992

0.99993

0.99994

0.99995

0.99996

0.99997

0.99998

0.99999

1.00000

10 10 10 10 10 10

P
ro

ba
bi

lit
y 

of
 c

or
re

ct
 d

ec
od

in
g

–8 –7 –6 –5 –4 –3

P1 : Symbol error rate in X1

(b) (F6+S)EC code(a) F6EC|SEC code
(r=8)(r=7)

(d) RS code (t=4,r=8)

(c) RS code (t=3,r=6)

Figure 10.20 Probability of correct decoding of the codes with code parameters q ¼ 67, n ¼ 66, l ¼ 6, and
P0 ¼ 0:05.

APPLICATION OF THE UEC /UEP CODES 449



P1 � 3:2� 10�5. Therefore the q-ary UEC codes are suitable for the unequal error model

in which P1 is much smaller than P0, as is the case of the readout data in the holographic

memories.

10.4.2 Application of UEP Scheme to Lossless Compressed Data

This subsection deals with an application of UEP coding scheme to error tolerance in

lossless compressed text data [FUJI03].

Data compression is popularly applied to computer systems and communication

systems in order to save storage area and communication bandwidth [BELL90]. Lossless

compression, which can obtain the same decompressed data as the source data, is suitable

to the text data. Ziv-Lempel coding is a typical class of lossless compression based on

LZ77 coding [ZIV77] and LZW coding [WELC84], which is a modified version of LZ78

coding [ZIV78]. This class of coding uses an adaptive dictionary that encodes future

segments of the source data via maximum-length copying from a dictionary containing the

recent past output.

This subsection shows the influence of errors that occur in the text data compressed by

Ziv-Lempel coding. From theoretical analysis and computer simulation we know that

errors in the error-sensitive part of compressed data give more serious damage to the

decompressed data than errors in the other parts. In LZW coding, the part of the data used

to build the dictionary is sensitive to error, while in the LZ77 coding, the matched length

part is sensitive to error. Therefore the UEP scheme, which protects the error-sensitive part

of the compressed data more strongly than the other parts, is applied to the compressed

data. Computer simulation tells us that the UEP scheme can recover from the errors in

compressed data more effectively than a method using the existing burst error correcting

Fire codes applied uniformly to the compressed data.

1. Lossless Text Data Compression
First, lossless compression algorithms of LZW coding and LZ77 coding are briefly

introduced.

LZW Coding The LZW algorithm is organized by a translation table (i.e., a

dictionary) that maps the strings of input characters onto the fixed-length words. The

LZW string table has a prefix property where, for every string in the table, a

corresponding prefix string is also in the table and is initialized to contain all single-

character strings. Each string in the table is assigned a sequential index, called an

output code, that represents the compressed strings. LZW coding adopts a ‘‘greedy’’

parsing algorithm, whereby the input string is examined character-serially in one pass,

and the longest recognized string is parsed off each time. Each parsed input string

extended by its next input character forms a new string added to the dictionary if the

number of strings in the dictionary does not reach its limit. The following algorithm

explains the compression process:

Step 1. Let the dictionary contain all single-character strings.

Step 2. Parse the longest string that matches a character string in the dictionary. Output

the index of the string in log2md e bits binary expression, where dxe is the smallest

integer not less than x and m is the maximum number of the strings the dictionary can

store.

450 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



Step 3. If the number of strings in the dictionary does not reach its limit, add the parsed

string extended by its next input character as a new string.

Step 4. Repeat steps 2 and 3 until the input string is exhausted.

Example 10.8 [FUJI03]

Let ‘‘aabababaaa’’ be the input string and fa, bg be the input alphabet. Initially the

dictionary contains two strings, ‘‘a’’ and ‘‘b.’’ The first parsed string is ‘‘a’’ and its

index ‘‘0’’ is the output. Then the string extended by its next input character forms a

new string ‘‘aa’’ and is added to the dictionary. The index of the new string is ‘‘2.’’ The

compression is illustrated in Figure 10.21, and Table 10.8 lists the dictionary.

LZ77 Coding The LZ77 coding consists of a rule for parsing strings of symbols

from a finite alphabet into substrings, or words, and a coding scheme that maps these

substrings sequentially onto uniquely decodable codewords of fixed length. The LZ77

coding uses an n-symbol buffer. The buffer contains a part of the input string that starts at

the ðn� Ls � 1Þ-th symbol and ends after Ls symbols from the point. That is, the former

n� Ls symbols, which have already been encoded, are in the dictionary and the remaining

Ls symbols, which are going to be encoded, are in the lookahead buffer. The input string is

assumed to be preceded by n� Ls zeros, the first symbol of the source alphabet. The LZ77

searches the dictionary to find the longest match with the beginning of the lookahead

buffer. The matched string in the lookahead buffer and the following symbol are parsed

and encoded into a fixed-length word that consists of three elements: the offset of the

matched string from the lookahead buffer, the length of the match, and the last symbol of

a b

2 3 4 5 6

0 0 1 3 5 2

a a b aba a a

Output

New string
added to
dictionary

Index of
new string

Figure 10.21 Compression process of LZWcoding for an input string ‘‘aabababaa.’’ Source: [FUJI03]. � 2003

IEICE Japan.

TABLE 10.8 Dictionary of LZW Coding

for Input String ‘‘aabababaa’

Index String

0 a
1 b
2 aa
3 ab
4 ba
5 aba
6 abaa

Source: [FUJI03]. � 2003 IEICE Japan.

APPLICATION OF THE UEC/UEP CODES 451



the parsed string. Then the buffer is shifted so that the new coding point is located at the

ðn� LsÞ-th symbol of the buffer.

The following algorithm shows the compression process:

Step 1. Let the former n� Ls symbols of the buffer be n� Ls copies of zero, the first

symbol of the input alphabet, and let the remaining Ls symbols be the first Ls symbols

of the input string.

Step 2. Search the dictionary to find the longest match with the beginning of the

lookahead buffer. Parse the matched string in the lookahead buffer and the following

symbol. Let the offset of the matched string and the length of the match be pi and li,

respectively. If the matched string cannot be found, let pi ¼ 1; li ¼ 0.

Step 3. Output the fixed length word Ci ¼ Ci;1Ci;2Ci;3, where Ci;1; Ci;2, and Ci;3 are

binary expressions of pi � 1; li, and the last symbol of the parsed string, with lengths

log2ðn� LsÞd e; log2Lsd e, and log2Md e, respectively, where M is the cardinality of the

source alphabet.

Step 4. Shift the buffer by li þ 1 symbols, and put the following li þ 1 symbols of the

source string into the lookahead buffer.

Step 5. Repeat steps 2, 3, and 4 until the last source symbol is compressed.

Example 10.9 [FUJI03]

Let ‘‘ccabcaa’’ be the input string, let fa, b, cg be the input alphabet, and let

n ¼ 8; Ls ¼ 4. Initially the dictionary contains four copies of ‘‘a’’ and the lookahead

buffer has ‘‘ccab,’’ the first 4 symbols of the input string. Since any strings in the

dictionary do not match with the content of the lookahead buffer, only ‘‘c,’’ the first

symbol of the lookahead buffer, is parsed and the output is ‘‘00c.’’ The buffer is shifted

by one symbol and the following source symbol ‘‘c’’ is put into the buffer. In this case

the string, including the last symbol of the dictionary, matches with the content of the

lookahead buffer and ‘‘ca’’ is parsed. Since the offset is 4 and the length of the match is

1, the output is ‘‘31a.’’ The compression steps are illustrated in nonbinary expression in

Figure 10.22.

a a a a c c a b c a a

a a a a c c a b c a a

Source string

Dictionary Lookahead
buffer

Buffer

0    0    c

3    1    a

0    0    b

1    2    a

C i, 1 C i, 2 C i, 3

Output

a a a a c c a b c a a

a a a a c c a b c a a

Figure 10.22 Compression by LZ77 coding for the input string ‘‘ccabcab.’’ Source: [FUJI03]. � 2003 IEICE

Japan.

452 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



2. UEP Scheme

(1) UEP in LZW Coding
LZW coding algorithm is organized by a translation table (i.e., a dictionary) that maps

strings of input characters into fixed-length words. In the decompression process of LZW

coding, the same dictionary used in the compression is constructed. Until the number of

strings in the dictionary reaches the limit, a new string is added to the dictionary when a

compressed word is decompressed. The error in the compressed word that is added to the

dictionary corrupts the dictionary and can seriously damage the following decompression.

The error in the compressed word that is not added to the dictionary, however, does not

seriously damage the following decompression. Therefore the errors in the former part

of the compressed data can more seriously damage the decompression than errors in

the remaining latter part. The size of the former part is given by ðm�MÞ log2md e bits,
where m is the size of the dictionary,M is the cardinality of the source alphabet, and dxe is
the smallest integer larger than or equal to x.

In order to verify the analysis above, the relation between an error location in the

compressed data and the influence of the error is tested by computer simulation.

Figure 10.23 shows the simulation result for a source file ‘‘paper1,’’ the standard source

file for compression [BELL90], having m ¼ 8, 192 string dictionary and M ¼ 256

symbols source alphabet. The effect of the error is obtained by comparing the data

decompressed from the compressed data, which include 30-bit burst errors, with the

original source data. The error value is expressed as the ratio of erroneous lines (i.e., lines

in the decompressed data that differ from those in the source data) to total lines. Here we

use a ‘‘return mark’’ to separate each line of a string of characters from each other. Note in

the figure that errors in the first ðm�MÞ log2md e ¼ 103; 168 bits in the compressed data

have much more effect than errors in the remaining bits. This is why the former part of the

compressed data should be protected more strongly than the latter part.

EncodingMethod The scheme divides the compressed data into two parts: the former

part with ðm�MÞ log2md e bits and the remaining part. So the error control codes are

Figure 10.23 Effect of errors in data compressedbyLZWcoding. Source: [FUJI03].� 2003 IEICE Japan.

APPLICATION OF THE UEC /UEP CODES 453



applied to these parts separately. The code function in the former part should be stronger

than that in the latter part. The following lists the encoding method.

Step 1. Compress the source data by ordinary LZW coding.

Step 2. Divide the compressed data into two parts. The former part has the first

ðm�MÞ log2md e bits, and the latter part does the remaining bits in the compressed data.

Step 3. Apply l1-bit and l2-bit burst error correcting codes, where l1 > l2, to the former

part and the latter part, respectively. Let the check-bit parts of the codes be C1 and C2,

respectively.

Step 4. Output the compressed data by LZW coding, and the check-bit parts C1 and C2.

Evaluation Figure 10.24 shows the error recovery capability of the scheme for source

file ‘‘paper1’’. The parameters of dictionary size, the cardinality of the source alphabets,

and the injected burst error lengths are same as those in Figure 10.23. The former part of

the compressed data employs a burst error correcting Fire code of l1 ¼ 30 bits and the

latter part does a burst error correcting Fire code of l2 ¼ 10 bits. The proposed scheme

requires 89 check bits for 213,512 bits of compressed data. Also injected are 30 bits of

burst errors. For comparison, this figure includes the case of a 20-bit burst error correcting

Fire code with 64-check bits, which is applied to the compressed data uniformly, and also

includes a no error control code, denoted as ‘‘without ECC.’’ Note that the average ratio of

the erroneous lines in the indicated UEP scheme is about 0.005% while that in the method

using the conventional Fire code applied uniformly to the compressed data is about 3.83%.

Simulation results for other source files [BELL90] lead to a similar conclusion.

(2) UEP in LZ77 Coding
The compressed data by LZ77 coding have fixed-length words, each consisting of

three elements—the offset of the matched string, the matched length, and the last

symbol of the parsed string. Here we consider the influence of the errors that occur in

Figure 10.24 Error recovery capability of the UEPscheme for ‘‘paper 1’’LZWcoding. Source: [FUJI03].� 2003

IEICE Japan.

454 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



these three elements. Errors in the matched length corrupt the shift operations of the

buffer and affect the decoding of the following words. Errors in the offset and the last

symbol corrupt the decoding only of the corresponding word; only the strings that

depend on the erroneous words are decompressed incorrectly. So errors in the matched

length cause more serious damage to the decompression than those in the offset and the

last symbol.

This result is verified by computer simulation. Figure 10.25 shows the relation

between the error location in the compressed data and the influence of the error to

the decompressed data. The source file is ‘‘paper1,’’ and the influence of the error is

evaluated in the same manner as in Figure 10.23. The lengths of the offset, the matched

length, and the last symbol in the compressed data are 12, 4, and 8 bits, respectively. In

the three cases, 4-bit burst errors are injected in the offset, the matched length, and the

last symbol of the compressed data. This says that errors in the matched length give

more serious damage to the decompression than those in the offset and the last symbol.

Also errors in the former part of the matched length corrupt larger amounts of

compressed data than those in the latter part. Therefore the matched length in the

compressed words, especially its former part of the compressed data, should be strongly

protected from errors.

Encoding Method The encoding scheme divides the compressed data into three sets.

The first set consists of the offsets and the last symbols. The second and the third sets are

the former and latter halves of the collected matched lengths, respectively. These three sets

are encoded by error control codes separately. Since errors in the second set give more

Figure 10.25 Influence of errors in data compressedbyLZ77 coding. Source: [FUJI03].� 2003 IEICE Japan.

APPLICATION OF THE UEC /UEP CODES 455



serious damage to the decompressed data, the code in this set has stronger error control

capability than the codes in the other sets. The following shows the encoding method,

which is illustrated in Figure 10.26.

Step 1. Compress by LZ77 coding, and let the compressed data be C1;1 C1;2 C1;3 C2;1

C2;2 C2;3 � � � CN;1 CN;2 CN;3, where Ci;1, Ci;2, and Ci;3 are the offset of the matched

string in the lookahead buffer, the matched length, and the last symbol of the parsed

string, respectively, in the i-th word for 1 � i � N.

Step 2. Divide the compressed data into three sets. The first set consists of the offsets and

the last symbols, C1;1 C1;3 C2;1 C2;3 � � � CN;1 CN;3. The second and the third sets are the

former and the latter half of the collected matched lengths, C1;2 C2;2 � � � CbN=2c;2 and

CbN=2cþ1;2 CbN=2cþ2;2 � � � CN;2, respectively.

Step 3. Apply l1; l2, and l3 bits burst error correcting codes to theses three sets,

respectively, and also let the check-bit parts of the codes be C1, C2, and C3,

respectively.

Step 4. Output the compressed data by LZ77 coding and the check-bit parts C1, C2,

and C3.

Evaluation Figure 10.27 shows relation between the error location in the compressed

data and the error recovery capability of the scheme. In this case, C1, C2, and C3 are

determined by l1 ¼ 16 bits, l2 ¼ 12 bits, and l3 ¼ 8 bits burst error correcting Fire codes,

respectively. Because the combined length of the offset and the last symbol is much larger

than the total length of the matched length in this model, the burst error correction length l1
takes rather large value. The source file is ‘‘paper1.’’ The check-bit length is 105 bits for

the 238,176 bits of compressed data and 48-bit burst errors are injected. The length of the

offset, the matched length, and the length of the last symbol are same as those in Figure

10.25. Note in the comparison of Figure 10.27 the dramatic difference between the case of

the 40-bit burst error correcting Fire code with 119 check bits applied to compressed data

uniformly and the case of no error control code, denoted as ‘‘without ECC.’’ Also note that

the UEP scheme is the more powerful method to control errors than the existing burst

error control code method applied uniformly to the compressed data. The simulations using

other source files [BELL90] yielded similar results.

Figure 10.26 Encoding process inLZ77 coding. Source: [FUJI03].� 2003 IEICE Japan.

456 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



EXERCISES

10.1 Design a (37, 21) F5ECjSEC code.

10.2 Design the decoding circuit of the (27, 22) F3ECjSEC code shown in Example 10.1.

10.3 Prove that the FbECjSEC code is equivalent to the (FbþS)EDjDED code.

10.4 Design a (36, 26) F5ECjSEC-DED code.

10.5 Prove Theorem 10.6.

10.6 Assume that the codewords contain separated fixed-bytes with equal level, meaning

multiple parts (i.e., fixed bytes) not located adjacently and having equal error rate.

Then explain how to design the fixed-byte error control UEC codes for this model.

10.7 Recall that a fixed b-bit byte error correcting plus single-bit error correcting

((FbþS)EC) code corrects b-bit byte errors in X0 and corrects single-bit errors in

X1, and in addition corrects byte errors in X0 as well as single-bit errors in X1

occurring simultaneously.

(a) Provide the necessary and sufficient conditions of the code.

(b) Prove that the maximal code length of an ðN; N � rÞ (FbþS)EC code is

shown as Nmax ¼ 2r�b þ b� 1.

(c) Prove that the FbECjSEC-DED code includes the (FbþS)EC code.

(d) Prove that the following H matrix reflects an (FbþS)EC code satisfying the

bounds on code length shown in (b):

Figure 10.27 Error recovery capability of the UEP scheme for ‘‘paper 1’’ in LZ77 coding. Source: [FUJI03].

� 2003 IEICE Japan.

H ¼ ½H0 H1� ¼
Ib O

Ir
P Q

" #
;

EXERCISES 457



O: zero matrix,

P: ðr � bÞ � b matrix with distinct b columns each of weight 2 or

more,

Q: matrix with distinct ðr � bÞ-bit columns each of weight 2 or more

except for those in P.

(e) Design a (36, 26) (FbþS)EC code.

(f) Find the decoding method of the code shown in (d).

10.8 Recall the fixed b-bit byte error correcting j fixed b-bit byte plus single-bit error

detecting (FbECj(FbþS)ED) code. In Figure 10.2 and in Definitions 10.1 and

10.2, the code is a 2-level UEC code with N0 ¼ b and N1 ¼ N � b, where F0 is a

correction of b-bit byte error in X0 and F01 is a detection of b-bit byte error in X0

plus single-bit error in X1.

(a) Provide the necessary and sufficient conditions of the code.

(b) Prove that the minimum number of check bit is bþ 1.

(c) Design the code with minimum number of check bit.

(d) Find the decoding method based on the code designed above.

10.9 Prove that the (FbþS)EC code is equivalent to the (FbþS)EDjSEC code as well

as to the FbECjDED code.

10.10 Consider now the 3-level UEC code of the fixed b-bit byte error correcting j
single-bit error correcting j single-bit error detecting (FbECjSECjSED) code

whose codeword is divided into three fixed-bytes, X0, X1, and X2, with lengths (in

bits) N0ð¼ bÞ;N1, and N2, respectively.

(a) Provide the necessary and sufficient conditions of the code.

(b) Prove that the maximum length of N1 is equal to 2r � 2b � 1, meaning

N1max ¼ 2r � 2b � 1, where r is a check-bit length.

(c) Design the code with N1max in a generalized form.

(d) Design the code with b ¼ 3, r ¼ 5, and N1max ¼ 23.

10.11 The 2-level UEC codes can correct single b-bit byte errors in low-reliability areas

with L bytes, meaning N0 ¼ L� b bits, and correct single-bit errors in high-

reliability areas with N1 bits including check bits, which is called an SbECjSEC
code. Answer the following questions:

(a) Prove that the ðN ¼ N0 þ N1; N � RÞ SbECjSEC codes have the following

relation between code parameters:

N0

b
� ð2b � 1Þ þ N1 � 2R � 1:

where

H0 ¼
Ib

P

" #
; H1 ¼

O
Ir

Q

" #
;

458 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



(b) Prove that the following code shows the (72, 64) S4ECjSEC code with

N0 ¼ 16, N1 ¼ 56, L ¼ 4; and b ¼ 4:

where

T: 4� 4 companion matrix defined by gðxÞ ¼ x4 þ xþ 1,

I: 4� 4 identity matrix,

O: 4� 4 zero matrix,

P: parity check matrix of (15,11) SEC code,

P ¼

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

2664
3775;

jPj3: first 3 columns in P,

jT7 � Pj3: first 3 columns in T7 � P.

(c) Referring to the code design shown in (b), design the generalized matrix

form of the ðN; N � RÞ SbECjSEC code using the maximal SbEC codes

indicated in Subsection 5.1.4.

10.12 Prove that the BlECjSEC codes denoted by Theorem 10.12 satisfy the following

relation in addition to those indicated in Theorem 10.10:

r > minðcþ mÞ;
n0 � LCMðc; 2m � 1Þ;

2l� 1 � c;

l � m;

where LCMðx; yÞ means a least common multiple of x and y.

10.13 Design the 2-level l1-bit burst error correcting and l2-bit burst error correcting

UEP codes, denoted as (Bl1EC)n0 -(Bl2EC)n1 UEP codes, where l1 > l2, which

can be designed by applying the interleaving method to the (BlEC)n0 -(SEC)n1
codes. In your design of the codes, also use conversion matrix P mentioned in

Subsection 10.3.2.

10.14 Design the 2-level l1-bit burst error correcting and l2-bit burst error correcting

UEC codes (called Bl1ECjBl2EC code) where l1 > l2.

10.15 Prove Theorem 10.17.

10.16 Design an (18, 15) F2ECjSEC code over GF(4).

10.17 Design a (34, 28) (F3þS)EC code over GF(5).

H ¼ I I I I P P P jPj3 I O

I T T2 T3 T4 � P T5 � P T6 � P jT7 � Pj3 O I

� �
;

EXERCISES 459



10.18 Recall the two-level burst error control q-ary UEC code, denoted as Bl=n0ECjSEC
code, capable of correcting q-ary l-symbol burst errors in X0 with length n0
symbols as well as correcting q-ary single-symbol errors in X1 with length

n1 ¼ n� n0 symbols. Answer the following questions.

(a) Find the necessary and sufficient conditions of this code.

(b) Prove that a linear ðn; n� rÞ q-ary Bl=n0ECjSEC code exists only if

n � qr � q� 1ð Þ n0 � lð Þ þ qð Þ � ql�1
q� 1

þ n0;

where n indicates the code length in symbols and r the check-symbol length.

(c) Show that the null space of the following matrix H over GFðqÞ is an optimal

linear q-ary Bl=n0ECjSEC code that satisfies the bound on code length shown

in (b):

H ¼
H0 H1

0 0 � � � 0 1 1 � � � 1

2664
3775 ¼

H0;0 l 2
H0;1 H1

..

.

H0; l�1

0 0 � � � 0 1 1 � � � 1

26666666664

37777777775

x??���
2l??y
l 1

;

 �� n0 ��! n1¼ n�n0!

where

H0;0 ¼

j j j
0 � � � 0 0 � � � 0 0 � � � 0

aq0 � � � a10 a00
0 � � � 0 0 � � � 0 0 � � � 0

j j j

266664
377775
x??
2??y
;

 �� l ��!  ��� l���! ���l���!
 ���������������� n0 ��������������!

2l � n0 � ðqþ 1Þ � l

H0;i: 2� n0 matrix that shifts i symbols cyclically leftward in

H0;0; 1 � i < l� 1,

H1 ¼

0
j j j j

0
an1�21 an1�31 � � � a11 a01

..

.

j j j j
0

2666666664

3777777775

x????
2l????y
;

 ������ n1 ¼ n� n0 ������!
n1 ¼ n� n0 � q2l

460 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)



j
aj00
j
: q-ary coefficient vector of j0-th power of a0, where a0 is a root of 2nd degree

q-ary primitive polynomial, 0 � j0 � q,

j
aj11
j
: q-ary coefficient vector of j1-th power of a1, where a1 is a root of 2l-th degree

q-ary primitive polynomial, 0 � j1 � n1 � 2.

(d) Show that the following H matrix is an example of a (64, 57) B3=12ECjSEC code

over GFð3Þ with 7 check symbols, where a0 is a root of 2nd-degree 3-ary primi-

tive polynomial g0ðxÞ ¼ x2 þ 2xþ 2, and a1 is a root of 6th-degree 3-ary primitive

polynomial g1ðxÞ ¼ x6 þ 2xþ 2:

REFERENCES

[ASHL00] J. Ashley, M. P. Bermal, H. Coufal, H. Guenther, et al., ‘‘Holographic Data Storage,’’ IBM

J. Res. Dev., 44 (May 2000): 341–366.

[BELL90] T. C. Bell, et al., Text Compression, Prentice-Hall (1990).

[BETZ98] G. A. Betzos, M. S. Porter, J. F. Hutton, and P. A. Mitkas, ‘‘Optical Storage Interactive

Simulator (OASIS): An Interactive Tool for the Analysis of Page-Oriented Optical Memories,’’

Appl. Optics, 37 (September 1998): 6115–6126.

[BURR97] G. W. Burr and B. Marcus, ‘‘Coding Tradeoffs for High-Density Holographic Data

Storage,’’ Proc. SPIE, 3802 (July 1999): 18–29.

[CHEN01] H. Chen, M. Kitakami, and E. Fujiwara, ‘‘Burst Error Recovery for VF Arithmetic

Coding,’’ IEICE Trans. Fundamentals, E84-A (April 2001): 1050–1063.

[CHO98] S. H. Cho, R. Kohno, and J. H. Park, ‘‘Non-Proper Variable-to-Fixed Length Arithmetic

Coding,’’ IEICE Trans. Fundamentals, E81-A (August 1998): 1739–1747.

[CHOU98] W. Chou and M. A. Neifeld, ‘‘Interleaving and Error Correction in Volume Holographic

Memory Systems,’’ Appl. Optics, 37 (October 1998): 6951–6968.

[FUJI95] E. Fujiwara and M. Kitakami, ‘‘A Class of Optimal Fixed-Byte Error Protection Codes for

Computer Systems,’’Dig. 25th IEEE Int. Symp. on Fault-TolerantComputing (June 1995): 310–319.

[FUJI98] E. Fujiwara, T. Ritthongpitak, and M. Kitakami, ‘‘Optimal Two-Level Unequal Error

Control Codes for Computer Systems,’’ IEEE Trans. Comput., 47 (December 1998): 1313–1325.

[FUJI02] E. Fujiwara, K. Namba and M. Kitakami, ‘‘Parallel Decoding for Burst Error Control

Codes’’ (in Japanese), IEICE Trans. Fundamentals, J85-A (November 2002): 1284–1295.

(Translated into English in Electron. Commun. Japan, P. 3, 87 [January 2004]: 38–48.)

H .=

001001000001  1220122021020022112111011010010012100011000010000010
002001001000  0121012201220210200221121110110100100121000110000100
010010000010  1210122012202102002211211101101001001210001100001000
020010010000  2101220122021020022112111011010010012100011000010000
100100000100  1012201220210200221121110110100100121000110000100000
200100100000  0122012202102002211211101101001001210001100001000000
000000000000  1111111111111111111111111111111111111111111111111111

shows the check symbol position

REFERENCES 461



[FUJI03] E. Fujiwara and M. Kitakami, ‘‘Unequal Error Protection in Ziv-Lempel Coding,’’ IEICE

Trans. Info. Syst., E86-D (December 2003): 2595–2600.

[GUPT75] S. N. Gupta, ‘‘On UEP Burst Codes,’’ J. Math. Sci., 10, (1975): 21–27.

[HAYA00] T. Hayashi and E. Fujiwara, ‘‘Bit and Byte Error Protection Codes with Two Protection

Levels’’ (in Japanese), IEICE Trans. Fundamentals, J83-A (February 2000): 196–207.

[IWAS97] A. Iwasaki and E. Fujiwara, ‘‘SEC-DED Codes with Byte Error Protection Capabilities,’’

(in Japanese), Proc. IEICE Fundamental Convention, A-6-4 (1997): 122.

[KANE03] H. Kaneko and E. Fujiwara, ‘‘Optimal Two-Level q-Ary Unequal Error Control Codes,’’

Proc. 2003 IEEE Int. Symp. on Information Theory (June 2003): 215.

[KING00] B. M. King and M. A. Neifeld, ‘‘Sparse modulation coding for increased capacity in

volume holographic storage,’’ Appl. Optics, 39 (December 2000): 6681–6688.

[LIN83] S. Lin and D. J. Costello Jr., Error Control Coding: Fundamentals and Applications,

Prentice-Hall (1983).

[LO96] J. C. Lo, M. Kitakami, and E. Fujiwara, ‘‘Reliable Logic Circuits with Byte Error Control

Codes—A Feasibility Study,’’ Proc. IEEE Int. Symp. on Defect and Fault Tolerance in VLSI

Systems (November 1996): 286–295.

[MASN67] B. Masnick and J. Wolf, ‘‘On Linear Unequal Error Protection Codes,’’ IEEE Trans. Info.

Theory, IT-3 (October 1967): 600–607.

[MORE94] R. H. Morelos-Zaragoza and S. Lin, ‘‘On a Class of Optimal Nonbinary Linear Unequal-

Error-Protection Codes for Two Sets of Messages,’’ IEEE Trans. Info. Theory, IT-40 (January

1994): 196–200.

[NAMB02] K. Namba and E. Fujiwara, ‘‘Two-Level Unequal Error Protection Codes with Burst and

Bit Error Correcting Capabilities,’’ IEICE Trans. Fundamentals, E-85-A (June 2002): 1426–1430.

[NAMB03] K. Namba, ‘‘Unequal Error Control Codes with Two-Level Burst and Bit Error

Correcting Capabilities’’ (in Japanese), IEICE Trans. Fundamentals, J-86-A, (May 2003):

578–586. This is translated in English in Electronics and Communications in Japan Part II :

Fundamental Electronics Science, 87 (April 2004) : 21–29.

[PETE72] W. W. Peterson and E. J. Weldon Jr., Error-Correcting Codes, 2d ed., MIT Press (1972).

[REIG60] S. H. Reiger, ‘‘Codes for the Correction of Clustered Errors,’’ IRE Trans. Info. Theory, IT-6

(March 1960): 16–21.

[RITT95] T. Ritthongpitak and E. Fujiwara, ‘‘A Class of Optimal Fixed-Byte Error Protection

Codes,’’ Proc. 1995 IEEE Int. Symp. on Information Theory (September 1995): 148.

[RITT96] T. Ritthongpitak, M. Kitakami, and E. Fujiwara, ‘‘Optimal Two-Level Unequal Error

Control Codes for Computer Systems,’’ Dig. 26th IEEE Int. Symp. on Fault-Tolerant Computing

(June 1996): 190–199.

[TILB89] H. V. Tilborg and M. Blaum, ‘‘On Error-Correcting Balanced Codes,’’ IEEE Trans. Info.

Theory, 35 (September 1989): 1091–1095.

[WELC84] T. A.Welch, ‘‘ATechnique for High-Performance Data Compression,’’ IEEE Compu., 17

(June 1984): 8–16.

[ZIV77] J. Ziv and A. Lempel, ‘‘A Universal Algorithm for Sequential Data Compression,’’ IEEE

Trans. Info. Theory, IT-23 (May 1977): 337–343.

[ZIV78] J. Ziv and A. Lempel, ‘‘Compression of Individual Sequences via Variable-Rate Coding,’’

IEEE Trans. Info. Theory, IT-24(5) (September 1978): 530–536.

462 CODES FOR UNEQUAL ERROR CONTROL / PROTECTION (UEC / UEP)





CONTENTS

11.1 Tape Memory Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

11.1.1 Optimal Rectangular Codes (ORC) . . . . . . . . . . . . . . . . . . . . . . . . 466

11.1.2 Adaptive Cross-Parity (AXP) Codes . . . . . . . . . . . . . . . . . . . . . . . . 475

11.1.3 Interleaved RS SbEC Codes for Mass Storage System (MSS) . . . . . . 481

11.2 Magnetic Disk Memory Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

11.2.1 Fire Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

11.2.2 Interleaved RS SbEC-DbED Codes . . . . . . . . . . . . . . . . . . . . . . . . 492

11.2.3 Computer-Generated Polynomial Codes . . . . . . . . . . . . . . . . . . . . . 497

11.2.4 Introduction to Disk Array Codes . . . . . . . . . . . . . . . . . . . . . . . . . 497

11.3 Optical Disk Memory Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

11.3.1 Cross-interleaved RS Code (CIRC) . . . . . . . . . . . . . . . . . . . . . . . . 500

11.3.2 Long-Distance Code (LDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

11.3.3 RS Product Codes for DVDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512



11
Codes for Mass Memories

This chapter deals with the codes for mass memories such as for magnetic tapes, magnetic

disks, and optical disks. Characteristic problems with these memories include burst

errors, caused by defects and dust particles on the recording surfaces, and random errors

caused by noise in the read / write heads. Burst error correcting codes such as Fire

codes [FIRE59] have been used in these memories, and also Reed-Solomon byte error

correcting / detecting codes [REED60] combined with interleaving methods or erasure

correction methods have been applied in order to extend their error correction capabilities.

Today the optical disk memories of CDs and DVDs depend on the powerful interleaved

byte error correcting codes. Some examples are the cross-interleaved RS code (CIRC), the

long-distance code (LDC), and the RS product code (RSPC). Also high-speed decoding is

implemented by use of LSI circuits, especially formodem-dayLDCs in optical erasable disks.

Holographic memories are being studied and developed as forthcoming ultra-large-

capacity two-dimensional memories. In these memories a new type of error control

coding, including a combination of UEC coding and modulation coding, has been

proposed, as we saw in Chapter 10.

11.1 TAPE MEMORY CODES

Magnetic tapes are widely used in computer and audio / video systems. The half-inch, nine-

track tape system has been especially prevalent, having evolved through the extensive use of

tapes over many years. The nine-track system basically depends on an 8-bit byte of

information and a parity bit. The checking for these nine bits in the vertical direction is called

a vertical redundancy check (VRC). Another parity bit is appended horizontally to each track

at the end of the record. The checking in the horizontal direction is called a longitudinal

Code Design for Dependable Systems: Theory and Practical Applications, by Eiji Fujiwara
Copyright # 2006 John Wiley & Sons, Inc.

465



redundancy check (LRC). In the low-density recording tape, the VRC and LRC were

sufficient. As the bit density increased, another redundancy check, called a cyclic redundancy

check (CRC), was replaced for the LRC. That is, the check bits of the CRC codes were

appended for the LRC. So the double-redundancy check provided a single-track error

correction that can recover from a total track failure within a block of data in the nine-

parallel-track system [BROW70].

Because of increased bit densities and tape speeds, the new tape systems require more

sophisticated error correction codes. Two coding schemes are presented in this chapter: an

optimal rectangular code (ORC) for the 6,250 bits-per-inch (bpi) 9-track tape units [PATE74]

and an adaptive cross parity (AXP) code for the higher density, 18-track tape units [PATE85].

The progress made in developing correction codes for half-inch tape systems has

moved to its unique application in a mass storage system (MSS) that attains greater data

storage at extremely low cost. For example, the IBM 3850 mass storage system adopts a

unique storage architecture that uses a cartridge and a rotating head [PATE80]. The

cartridge concept requires a different data format than the conventional parallel-track

system and thus has abandoned the track error correction scheme. Instead, the MSS uses

an interleaved byte error correction code to correct single-burst error section. The MSS

coding scheme is also presented in this section.

Errors in magnetic tape recording are primarily caused by defects on the magnetic media

or variations in head-media separation in the presence of dust particles. These errors often

affect as many as 100 bits at a time, depending on the density of recording. Furthermore long

errors can occur through loss of synchronization of the read clock, which renders subsequent

data unreadable. As recording density is increased, another type of error plays a more

important role: the bit-shift phenomenon in which magnetic flux transition is shifted from

its normal position because of interference from neighboring flux transitions. The bit shift

usually results in a double-bit error, where 01 is read in place of 10, and vice versa. Thus the

data in magnetic tape systems are organized to facilitate recovery from mixed-mode errors

in magnetic recording read-write processes involving random single-bit errors caused by

random noise, multiple double-bit errors caused by bit shifts, and clusters of errors caused

by defects and dust particles [PATE80].

As for other tape recording systems, powerful error correcting codes, such as product

code using two Reed-Solomon codes, cross-interleaved codes, and a combination of the

Reed-Solomon code and the cyclic redundancy check (CRC) code, have been extensively

applied to recent digital audio and video systems, including the multitrack PCM tape-

recording system, DAT (digital audio tape) units, and 8-mm video units [INOU78,

TANA80, IMAI90]. The cross parity-check code is an attractive new class of tape memory

codes. It belongs to the convolutional class of codes and has been demonstrated to be a

maximum distance separable (MDS) convolutional code with a geometric regularity that

gives both error and erasure decoding algorithms [FUJA89]. Two-dimensional product

codes with reduced redundancy are provided for burst error correction [ROTH98].

11.1.1 Optimal Rectangular Codes (ORC)

The optimal rectangular code (ORC) [PATE74] is designed to correct any single-track

errors and, when given erasure pointers, to correct any double-track errors in the tape. The

codewords of the ORC have a rectangular format, and the check bits are located on two

orthogonal sides of the rectangle. The data format for the ORC of 9-track tapes is

illustrated in Figure 11.1. In the figure B1 through B7 denote the seven bytes of information

466 CODES FOR MASS MEMORIES



in the standard 8-bit bytes. C denotes the check byte computed from the information bits.

This data format clearly shows how the information bits are written as Bi.

The code corrects track errors as those in cluster of b bits along the tracks. Because we

are interested in a natural description of the code, the track vectors of the codeword will be

used as track bytes denoted by Zi’s as in Figure 11.2. Therefore we will first establish the

error correcting capability of the code in the Zi notation of Figure 11.2. Later, we will

introduce a novel feature of the orthogonal symmetry of the ORC that gives the conversion

of this Zi notation to the Bi notation of Figure 11.1.

The ORC will be generated by using the companion matrix T (see Section 5.1.1)

of the irreducible polynomial gðxÞ of degree 8 with binary coefficients gi (i.e.,

gðxÞ ¼
P8

i¼0 gi � xi). Here gðxÞ is selected to obtain some specific advantages:

1. The exponent of the polynomial is small enough for high-speed error correction.

2. The polynomial gðxÞ is self-reciprocal (i.e., gðxÞ ¼ x8 � gð1=xÞ) for read backward

facility [PATE74].

P P8

7

6

5

4

3

2

1

0

VRC

Track number

C B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
1

B
2C . . . Tape

motion

Codeword Codeword

Figure 11.1 Data format for ORC showing the information bytes as vertical columns. Source: [PATE74].� 1974

by International BusinessMachines Corporation; republished by permission.

P8

7

6

5

4

3

2

1

0

(VRC)

Track number

Tape
motion

8

Z7

Z6

Z5

Z4

Z3

Z2

Z1

Z0

Check
bits

Figure 11.2 Horizontal trackbytesinORC. Source: [PATE74].� 1974 by InternationalBusinessMachinesCorporation;

republished by permission.

TAPE MEMORY CODES 467



Table 11.1 shows the list of binary irreducible polynomials with degree 8. Note among

them that the self-reciprocal polynomial gðxÞ ¼ 1þ x3 þ x4 þ x5 þ x8 having a minimum

exponent e ¼ 17 is chosen for the ORC application. The corresponding companion matrix

T is

T ¼

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

266666666664

377777777775
:

The parity-check matrix H of the ORC is written as

H ¼ I I I I I I I I I
I T T2 T3 T4 T5 T6 T7 0

� �
: ð11:1Þ

That is, the parity-check matrix is equivalent to that of the (72, 56) 2-redundant S8EC

code (see Section 5.1.2). In this case the codeword is expressed as WZ ¼
½Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 P�, and I is an 8� 8 identity matrix and 0 is an 8� 8 matrix

with all zero elements. Therefore any correct codewordWZ should satisfy the parity-check

rule WZ �HT ¼ 0, which means that it should satisfy the parity-check equations given by

X7
i¼0

Zi

" #
 P ¼ 0 ð11:2Þ

TABLE 11.1 Binary Irreducible Polynomials with Degree 8

Coefficients of Polynomial gðxÞ Exponent

g0 g1 g2 g3 g4 g5 g6 g7 g8 e

1 0 0 0 1 1 1 0 1 255
1 0 1 1 1 0 1 1 1 85
1 1 1 1 1 0 0 1 1 51
1 0 1 1 0 1 0 0 1 255
1 1 0 1 1 1 1 0 1 85
1 1 1 1 0 0 1 1 1 255
1 0 0 1 0 1 0 1 1 255
1 1 1 0 1 0 1 1 1 17
1 0 1 1 0 0 1 0 1 255
1 1 0 0 0 1 0 1 1 85
1 0 1 1 0 0 0 1 1 255
1 0 0 0 1 1 0 1 1 51
1 0 0 1 1 1 1 1 1 85
1 0 1 0 1 1 1 1 1 255
1 1 1 0 0 0 0 1 1 255
1 0 0 1 1 1 0 0 1 17

Source: [PATE74].� 1974 by International BusinessMachines Corporation; republished by permission.

468 CODES FOR MASS MEMORIES



and

X7
i¼0

Zi � Ti

" #
¼ 0; ð11:3Þ

where
P indicates modulo-2 sum and 0 is the null vector with all zero elements.

When the codeword is corrupted by either a single- or double-track error, the erroneous

received word is denoted byW 0Z ¼ Z 00 Z 01 Z 02 Z 03 Z 04 Z 05 Z 06 Z 07 P0
 �

. From the received word

W 0Z, the syndromes S1 and S2 are computed as

S1 ¼
X7
i¼0

Z 0i

" #
 P0; ð11:4Þ

S2 ¼
X7
i¼0

Z 0i � Ti: ð11:5Þ

If there is no error, S1 ¼ S2 ¼ 0. Suppose that only the i-th track ð0 � i � 8Þ has errors and
the error pattern is denoted by an eight-digit vector E (i.e., E ¼ Zi  Z 0i ). Then Eqs. (11.4)
and (11.5) are rewritten as

S1 ¼ E; ð11:6Þ

S2 ¼
(
E � Ti for 0 � i � 7;

0 for j ¼ 8:
ð11:7Þ

If S2 6¼ 0, then the track position i is uniquely determined by the following fact:

S2 � T�i ¼ S1 ¼ E: ð11:8Þ

The erroneous tracks are often identified externally by external pointers obtained upon

detecting loss of signal in the read amplifiers, an excessive phase shift in clock,

inadmissible recording patterns, and so on. We will see that if two erroneous tracks are

identified by the external pointers, any two-track bytes in error in the ORC are correctable.

Let Ei and Ej denote the two error-pattern vectors representing errors in tracks i and j,

respectively (i < j). That is, the received bytes are error free except in tracks i and j, where

Z 0i ¼ Zi  Ei, and Z 0j ¼ Zj  Ej if 0 � j � 7, or P0 ¼ P Ej if j ¼ 8. Then syndromes S1
and S2 of Eqs. (11.4) and (11.5) can be represented in the following way:

S1 ¼ Ei  Ej;

S2 ¼
Ei � Ti  Ej � Tj for 0 � i 6¼ j � 7;

Ei � Ti for j ¼ 8 or j ¼ i:

(

These equations uniquely determine the error patterns Ei and Ej as

Ei ¼ S1  Ej

TAPEMEMORY CODES 469



F
ig
u
re

1
1
.3

H
m
at
ri
x
fo
r
th
e
O
R
C
in
Eq
.(
11
.1)
.
S
ou

rc
e:

[P
AT

E
74
].
�

19
74

by
In
te
rn
at
io
na

lB
us
in
es

s
M
ac
hi
ne

s
C
or
po

ra
tio
n ;
re
pu

bl
is
he

d
by

pe
rm

is
si
on
.

470



and

Ej ¼ ðI Tj�iÞ�1 � ðS1  S2 � T�iÞ for 0 � i 6¼ j � 7;
S1  S2 � T�i for j ¼ 8 or j ¼ i:

�
Here we have an interesting conversion of the parity-check matrix into the information-

byte format. The alternate form allows direct computation of the check byte and

syndrome. In addition the new format allows a fast implementation of the ORC without

requiring a buffer for the encoding.

Figure 11.3 gives the binary version of the H matrix in Eq. (11.1). In the figure ai is an
element of GFð28Þ expressed as an 8-digit column vector ai of the binary coefficients of

the polynomial xi modulo gðxÞ. First, consider the column of the H matrix corresponding

to the bit Zið jÞ of the track byte Zi for all i and j such that 0 � i � 7 and 0 � j � 7. The

lower half of this column is ak, where k ¼ iþ j, which is the same for the column

corresponding to ZjðiÞ.
We call this property the orthogonal symmetry of the code. To complete the symmetry,

let B0 denote the check byte C. Then

ZjðiÞ � Bið jÞ for 0 � i � 7 and 0 � j � 7

Figure 11.4 shows the orthogonal symmetry and the powers of a that appear in the

lower half columns of the H matrix. We can proceed to re-arrange the columns of

the H matrix of Figure 11.3 to obtain another H matrix, H0 in Figure 11.5, corresponding

to a codeword W 0B in terms of the information bytes, written as W 0B ¼ B0 B1 B2 B3½
B4 B5 B6 B7 P�.

Note that this re-arrangement does not alter the parity-checking rules. The orthogonal

symmetry of the code has produced Ti in the lower half of the matrixH0, corresponding to
the information byte Bi, which is the same as that corresponding to the track byte Zi. The

upper half of H0 is the conventional VRC, and it can be represented by a matrix Gi, where

Gi is an 8� 8 all-zero matrix, except the row i, which is all ones.

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7

2 3 4 5 6 7

3 4 5 6 7

4 5 6 7

5 6 7

6 7

7

8

8

8

8

8

8

8

9

9

9

9

9

9

10

10

10

10

10

11

11

11

11

12

12

12

13

13 14

B0 B1 B2 B3 B4 B5 B6 B7

Z0

Z1

Z2

Z3

Z4

Z5

Z6

Z7

P

B6 (3)      Z3 (6)
Corresponds to α 3 + 6

Corresponds to α 6 + 3

Line of 
Symmetry

B3 (6)      Z6 (3)

Figure 11.4 Orthogonal symmetry and powers of a in the H matrix. Source: [PATE74]. � 1974 by International

BusinessMachines Corporation; republished by permission.

TAPE MEMORY CODES 471



F
ig
u
re

1
1
.5

H
m
at
ri
x
fo
r
th
e
O
R
C
in
Eq
.(
11
.9
).

S
ou

rc
e:

[P
AT

E
74
].
�

19
74

by
In
te
rn
at
io
na

lB
us
in
es

s
M
ac
hi
ne

s
C
or
po

ra
tio

n ;
re
pu

bl
is
he

d
by

pe
rm

is
si
on
.

472



Thus the new parity-check matrix H0 is expressed as follows:

H0 ¼ G0 G1 G2 G3 G4 G5 G6 G7 I

I T T2 T3 T4 T5 T6 T7 0

� �
ð11:9Þ

for the codeword W 0B ¼ B0 B1 B2 B3 B4 B5 B6 B7 P½ �. The parity-checking equation is

W 0B �H0T ¼ 0

Alternatively, the parity check can be computed from the information bytes as

C � B0 ¼
X7
i¼1

Bi � Ti ð11:10Þ

and

PðiÞ ¼
X7
j¼0

BiðjÞ; 0 � i � 7: ð11:11Þ

Equation (11.11) gives the conventional parity computation, which can be implemented by

the usual exclusive-OR network. Equation (11.10) can be implemented by means of a

linear feedback shift register (LFSR) connected for modulo gðxÞ operation (shown in

Figure 11.6).

The shift operation in this LFSR corresponds to multiplying the content polynomial

by x modulo gðxÞ, which is equivalent to multiplying the content vector by the

companion matrix T. Input connections are such that the entering information bytes

are premultiplied by T. Initially this LFSR contains all zeros. The information byte

B7; B6; B5; . . . ; B2; B1 are successively shifted in parallel into the LFSR, in this

order. Thus at the end of seven shifts the LFSR contains the vector

B1 � T B2 � T2  � � �  B7 � T7, which equals the check byte C.

Syndrome generation, especially generation of S2, can be implemented by an

LFSR similar to the one used in encoding. This can be accomplished by satisfying the

equation

S2 ¼ C0 
X7
i¼1

B0i � Ti;

where B0i and C0 denote the received vectors that are corrupted by error. The erroneous

track can be uniquely pointed out only when Eq. (11.8) is satisfied. If we use a backward-

shifting register [PATE74], its contents after i shifts should match S1 ¼ E. Thus, when a

match occurs, the number of shifts determines the track position. Alternatively, a forward-

shifting register, such as the LFSR shown in Figure 11.6, can be used for determination of

the error track position i. Because T�i ¼ Te�j, this requires a maximum of e shifts to

determine the index i. In this case the polynomial gðxÞ with the lowest exponent e saves

correction time.

TAPEMEMORY CODES 473



+

0

1

+

2

+

3

+

4

+

5

+

6

+

7

+

g3 = 1

g4 = 1

g5 = 1

B1 B2 B3 B4 B5 B6 B7

Input

C

Exclusive-OR

g(x) = x  + x  + x  + x  + 13458

Output

Shift register

Figure 11.6 LFSR encoder (information bytes arrive from B7, B6; . . . ;B1, in parallel to the shift (register).
Source: [PATE74].� 1974 by International BusinessMachines Corporation; republished by permission.

474 CODES FOR MASSMEMORIES



When tracks have erasures (instead of errors), double-track erasures can be corrected.

(See [PATE74] or [LIN83].) The ORC is extended to become a code that can correct a

track error together with a track erasure, or three track erasures. This can also be

generalized to a Bðn;mÞ code of an ðnþ 1Þ � n array code in an ðnþ 1Þ-track tape, where
there are check columns B0; B1; . . . ; Bm; 0 � m � n� 1, that can correct s track errors

and t track erasures whenever 2sþ t � mþ 2 [BLAU85]. So the ORC is a particular case

of this family, Bð8; 0Þ.

11.1.2 Adaptive Cross-Parity (AXP) Codes

The AXP code has been developed for a new high-density, 18-track tape storage subsystem

[PATE85]. In this coding scheme the 18 tracks are divided into two sets of 9 tracks, with

each set consisting of 7 data tracks and 2 check tracks. The proportion of check tracks is thus

the same as that of the 9-track scheme. However, through adaptive use of the checks in the

two sets, the new scheme corrects up to 3 erased tracks in any one set of 9 tracks and up to 4

erased tracks in two sets together. The coding structure, however, is simple, for it avoids the

complex computations of Galois fields. It is based on vertical and cross-parity checks.

Figure 11.7 shows the data format for 18 tracks grouped into two sets. The set A

consists of 9 parallel tracks, and the set B consists of the remaining 9 parallel tracks. In

Figure 11.7 the two sets are shown side by side with a symmetrically ordered arrangement

of the tracks.

Let AmðtÞ and BmðtÞ denote the m-th bit in the track t of sets A and B, respectively. The

track number t takes on values from 0 to 8 in each set. The bit position m takes on values

from 0 to M. Tracks labeled 0 and 8 in each set are check tracks.

Each check bit in track 0 of set A provides a cross-parity check along the diagonal with

positive slope, involving bits from both sets, as seen in Figure 11.7. The m-th cross-parity

check of set A is given by the encoding equation

Amð0Þ ¼
X7
t¼1

Am�tðtÞ 
X7
t¼0

Bmþt�15ðtÞ; ð11:12Þ

where
P  indicates module-2 sum.

Each check bit in track 0 of set B provides a cross-parity check along the diagonal with

the negative slope, involving bits from both sets, as seen in Figure 11.7. The m-th cross-

parity check of set B is given by the encoding equation

Bmð0Þ ¼
X7
t¼1

Bm�tðtÞ 
X7
t¼0

Amþt�15ðtÞ: ð11:13Þ

Equations (11.12) and (11.13) can be rewritten as follows:

X7
t¼0

 Am�tðtÞ  Bmþt�15ðtÞ½ � ¼ 0; ð11:14Þ

X7
t¼0

 Bm�tðtÞ  Amþt�15ðtÞ½ � ¼ 0: ð11:15Þ

TAPEMEMORY CODES 475



8 0 2 3 4 5 6 7 7 6 5 4 3 2 1 0 81

B
0

B
1

B
2

B
4

B
5

B
6

B
7

B
8

.
.

.

A
0

A
1

A
2

A
4

A
5

A
6

A
7

A
8

.
.

.

B
3

A
3

0
1

2
3

4
5

6
7

8
.

.
.

m

T
ra

ck
n

u
m

b
er

m
-t

h
 v

er
ti

ca
l-

p
ar

it
y 

ch
ec

k 
o

f 
se

t 
A

m
-t

h
 c

ro
ss

-p
ar

it
y 

ch
ec

k 
o

f 
se

t 
A

m
-t

h
 v

er
ti

ca
l-

p
ar

it
y 

ch
ec

k 
o

f 
se

t 
B

m
-t

h
 c

ro
ss

-p
ar

it
y 

ch
ec

k 
o

f 
se

t 
B

S
et

 B

S
et

 A

F
ig
u
re

1
1
.7

D
at
a
fo
rm

at
of
18

tr
ac
ks

gr
ou

pe
d
in
to
tw
o
se
ts
.
S
ou

rc
e:

[P
AT

E
85
].
�

19
85

by
In
te
rn
at
io
na

lB
us
in
es

s
M
ac
hi
ne

s
C
or
po

ra
tio
n ;
re
pu

bl
is
he

d
by

pe
rm

is
si
on
.

476



Each check bit in the track 8 of set A is a vertical parity over the bits of same

position number m in set A. The m-th vertical-parity bit of set A is given by the

equation

Amð8Þ ¼
X7
t¼0

AmðtÞ: ð11:16Þ

Similarly the m-th vertical-parity bit of set B is given by the equation

Bmð8Þ ¼
X7
t¼0

BmðtÞ: ð11:17Þ

The encoding equations (11.12), (11.13), (11.16), and (11.17) are simple parity

equations. These can be implemented by means of exclusive-OR circuits receiving inputs

of appropriate data bit values.

Let A0mðtÞ and B0mðtÞ denote the bit values corresponding to AmðtÞ and BmðtÞ,
respectively, as they are read from the tape. These bits may be corrupted by errors.

A nonzero syndrome indicates the presence of an error.

From Eqs. (11.14) through (11.17) the syndrome can be computed as follows:

Sdam ¼
X7
t¼0

 A0m�tðtÞ  B0mþt�15ðtÞ
 �

;

Sdbm ¼
X7
t¼0

 B0m�tðtÞ  A0mþt�15ðtÞ
 �

;

Svam ¼
X8
t¼0

A0mðtÞ;

Svbm ¼
X8
t¼0

B0mðtÞ:

Here Sdam is them-th cross-parity syndrome of set A, Sdbm is them-th cross-parity syndrome

of set B; Svam is the m-th vertical syndrome for set A, and Svbm is the m-th vertical syndrome

for set B.

The modulo-2 difference between the read A0mðtÞ and the written AmðtÞ is

called the error pattern Ea
mðtÞ in the m-th position of track t in set A. So for set A

we have

Ea
mðtÞ ¼ A0mðtÞ  AmðtÞ:

Similarly for set B,

Eb
mðtÞ ¼ B0mðtÞ  BmðtÞ:

TAPE MEMORY CODES 477



From the relations above we have the following syndromes expressed by the error patterns:

Sdam ¼
X7
t¼0

 Ea
m�tðtÞ  Eb

mþt�15ðtÞ
 �

;

Sdbm ¼
X7
t¼0

 Eb
m�tðtÞ  Ea

mþt�15ðtÞ
 �

;

Svam ¼
X8
t¼0

Ea
mðtÞ;

Svbm ¼
X8
t¼0

Eb
mðtÞ:

The erroneous track can be identified by the external pointers mentioned before. In the

absence of the pointers, the erroneous track is identified by processing the syndromes.

According to [PATE85], any one of the following combinations of track errors can be

corrected by the AXP code:

(1) Up to three known erroneous tracks in one set and up to one known erroneous

track in the other set.

(2) Up to two known erroneous tracks in one set and up to one unknown or two known

erroneous tracks in the other set.

(3) Up to one unknown erroneous track in one set and up to one unknown or two

known erroneous tracks in the other set.

(4) Up to one known and one unknown erroneous tracks in one set and up to one

known erroneous track in the other set.

Figure 11.8 shows the combinations of track errors correctable by the AXP code. Using the

error correction for the basic case described next, the reader should attempt to demonstrate

the correction procedures for other cases.

We consider a case with three known erroneous tracks in set A. The three tracks are

correctable if set B is error free or has only one known erroneous track. The erroneous

1 1

1 1

1 3 2

3 1 2

1

1 1

1

Set

 A

 B

Number of known
erroneous tracks

Number of unknown
erroneous tracks

Number in each circle shows the maximum number of correctable tracks.

(1) (1) (2)

(4)

(4)

(2)
or

(3)

(2)
or

(3)

(3)

Figure 11.8 Combinations of trackerrors correctable by theAXP code.

478 CODES FOR MASS MEMORIES



tracks are indicated by track-error pointers i, j, and k in set A and l in set B. For

convenience, assume that i < j < k. Since set B has only one known erroneous track, the

vertical parity-check syndrome Svbm yields the error patterns for this track:

Svbm ¼ Eb
mðlÞ: ð11:18Þ

Let us assume that all errors have been corrected up to byte m� 1 and that the

syndrome equations have been adjusted for all corrected error patterns. Then, as shown in

Figure 11.9, the error patterns for the m-th position of track i, j, and k of set A can be

determined from the syndromes Sdamþi, Sd
b
mþ15�k and Svam as follows:

Sdamþi ¼ Ea
mðiÞ; ð11:19Þ

Sdbmþ15�k ¼
Ea
mðkÞ  Eb

mþ15�l�kðlÞ if l < 8;

Ea
mðkÞ if l ¼ 8 or set B is error free;

ð11:20Þ
(

Svam ¼ Ea
mðiÞ  Ea

mð jÞ  Ea
mðkÞ: ð11:21Þ

From Eq. (11.18) we have

Svbmþ15�l�k ¼ Eb
mþ15�l�kðlÞ: ð11:22Þ

Equations (11.19) through (11.22) yield the following error patterns:

Ea
mðiÞ ¼ Sdamþi;

Ea
mðkÞ ¼

Sdbmþ15�k  Svbmþ15�l�k if l < 8;

Sdbmþ15�k if l ¼ 8 or set B is error free;

(
Ea
mð jÞ ¼ Svam  Ea

mðiÞ  Ea
mðkÞ:

The m-th bits in tracks i, j, and k are corrected by these error patterns as follows:

AmðiÞ ¼ A0mðiÞ  Ea
mðiÞ;

Amð jÞ ¼ A0mð jÞ  Ea
mð jÞ;

AmðkÞ ¼ A0mðkÞ  Ea
mðkÞ:

Before proceeding to the correction of the next position, we must modify the

syndromes affected by these corrections. The modification is shown by an arrow pointing

from the previous value of a syndrome to its new value:

Sdamþi  Sdamþi  Ea
mðiÞ;

Sdamþj  Sdamþj  Ea
mð jÞ if j < 8;

Sdamþk  Sdamþk  Ea
mðkÞ;

Sdbmþ15�i  Sdbmþ15�i  Ea
mðiÞ;

Sdbmþ15�j  Sdbmþ15�j  Ea
mð jÞ if j < 8;

Sdbmþ15�k  Sdbmþ15�k  Ea
mðkÞ:

TAPEMEMORY CODES 479



8 0 2 3 4 5 6 7 7 6 5 4 3 2 1 0 81

S
et

 B

S
et

 A

S
vm

+
15

-
-k

b
S

vm
+

15
-k

b

S
dm

+
i

a
S

vma
E

rr
or

 c
or

re
ct

ed
 u

p 
to

 p
os

iti
on

 (
m

 –
 1

)

E
rr

on
eo

us
 tr

ac
k 

E
rr

on
eo

us
 tr

ac
k 

E
rr

on
eo

us
 tr

ac
k 

E
rr

on
eo

us
 tr

ac
k

i j k

F
ig
u
re

1
1
.9

Ex
am

pl
e
of
th
re
e
-t
ra
ck

er
ro
r
co
rr
ec

tio
n
in
se
tA

.
S
ou

rc
e:

[P
AT

E
85
].
�

19
85

by
In
te
rn
at
io
na

lB
us
in
es

s
M
ac
hi
ne

s
C
or
po

ra
tio

n ;
re
pu

bl
is
he

d
by

pe
rm

is
si
on
.

480



Now the decoding procedure can be applied to the next bit position by changing the value

of m by 1.

Next we consider determination of the track error pointers. Errors confined to only one

unknown track in set A can be detected and corrected if set B has at most one unknown or two

known erroneous tracks. It is assumed that errors in all tracks of set B have been corrected up

to bit position m� 1 and that the syndrome values have been adjusted for all corrected error

patterns. When all tracks in set A are error free, the parity-check syndromes Svam and Sdam are

equal to zero for 0 < i < 7. When any of these syndromes are found to be nonzero, it is

indicated that an error is present in at least one of the tracks in the neighborhood. Assuming

that only one erroneous track is affecting the syndromes, the index of the erroneous track can

be determined by examining syndromes Sdamþ7 and Sv
a
m as the bit position valuem progresses.

Let m1 and m2 denote the lowest values of bit positions such that

Sdamþi 6¼ 0 for m ¼ m1; i ¼ 7;

Svam 6¼ 0 for m ¼ m2:

Then track q is in error at bit position m2 and the track index q is given by

q ¼ 7� ðm2 � m1Þ if m2 	 m1;
8 otherwise:

�
Figure 11.10 shows the case where m2 is greater than or equal to m1. Note that if the

resulting value q in this case is smaller than zero, then the syndromes are affected by two

or more unknown erroneous tracks and the errors are uncorrectable. The error can be easily

corrected by using the syndrome Svam as follows:

Em2
ðqÞ ¼ Svam2

;

Am2
ðqÞ ¼ A0m2

ðqÞ  Em2
ðqÞ:

Also syndromes should be adjusted as

Svam2
 Svam2

 Em2
ðqÞ;

Sdam1þ7  Sdam1þ7  Em2
ðqÞ:

Since the coding rules possess a built-in mirror-image symmetry around set A and set

B, the encoding and decoding equations for set B obviously can be obtained from those of

set A by substitution of the corresponding variables.

11.1.3 Interleaved RS SbEC Codes for Mass Storage System (MSS)

The mass storage system (MSS) of the IBM 3850 system [PATE80], for example, stores

digital data on flexible magnetic tape media; however, it is different in many respects from

the conventional multitrack tape machines. The IBM system consists of an array of data

cartridges about 1.9 in (4.8 cm) in diameter and 3.5 in (8.9 cm) long, each with a capacity

of 50.4 million bytes (byte ¼ 8-bit) of data. Each cartridge contains a spool of magnetic

tape of 2.7 in (6.9 cm) wide and 64 ft (195m) long. Up to 4,720 cartridges are stored in

TAPEMEMORY CODES 481



8 0 2 3 4 5 6 7 7 6 5 4 3 2 1 0 81

S
et

 B

S
et

 A

S
vm

=
 0

a
2

S
dm

  +
7

=
 0

a
1

B
it 

po
si

tio
n 

m
1

7 
- 

q 
=

 
2 -

 m
1

m

m
1 

- 
m

2

U
nk

no
w

n 
er

ro
ne

ou
s 

tr
ac

k 
q

F
ig
u
re

1
1
.1
0

G
en

er
at
io
n
of
po

in
te
r
to
th
e
fir
st
er
ro
ne

ou
s
tr
ac
k
w
he

n
q
6¼

8.
S
ou

rc
e:
[P
AT

E
85
].
�

19
85

by
In
te
rn
at
io
na
lB

us
in
es
s
M
ac
hi
ne

s
C
or
po

ra
tio
n ;
re
pu

bl
is
he

d
by

pe
rm

is
si
on
.

482



hexagonal compartments in a honeycomblike apparatus that includes mechanisms for

fetching cartridges from the compartments, for reading and writing of data on them, and

for the replacement of cartridges in the compartments. Unlike the conventional fixed head

of the multitrack tape machines, this system uses a rotary read-write head. Recent mass

storage systems with peta-byte order capacity can accept commercial magnetic tapes,

commercial video cassette tapes [ITAO85], or optical disks [YAMA91] as data cartridges,

and reduce the system cost.

In the IBM3850 MSS systems, data are recorded in short slanted stripes across the tape.

The tape follows a helical path around a read-write mandrel and is stepped in position from

one slanted stripe to the next over a circular slit. The rotary read-write heads revolve with

the mandrel. The stripe is divided into 20 segments, each of which consists of 13 data

sections followed by 2 check sections. Each section consists of 16 bytes (a total of 128

bits). This arrangement is shown in Figure 11.11. Figure 11.12 shows the rectangular array

of each segment, in which 15 bytes in each column form a codeword from a (15, 13)

single-symbol error correcting code with symbols from the Galois field GFð28Þ. The
codewords are interleaved in the data format of 15 sections in a segment.

All detected errors, such as errors in a ZM (zero modulation) decoding algorithm,

which checks for errors through stringent runlength and dc charge constraints, and odd-

parity checked errors at the end of each section, are reported to the decoder of the error

correction code for error recovery. When a defect or dust particle affects up to two full

sections (i.e., 32 data bytes), the resultant error is recoverable by correcting the

corresponding two bytes in each of the 16 codewords.

The basic structure of the codeword W is designated as

W ¼ B0 B1 B2 � � � B14½ �:

In this codeword, B0 and B1 are the check bytes, and the remaining 13 bytes are the data

bytes. Consider the Galois field GFð28Þ, which is constructed based on the primitive

polynomial

pðxÞ ¼ x8 þ x5 þ x3 þ xþ 1: ð11:23Þ

Let a be a primitive element in GFð28Þ such that

pðaÞ ¼ a8 þ a5 þ a3 þ aþ 1 ¼ 0:

Let b ¼ al represent a primitive element of the 16-element subfield of GFð28Þ, where l is
a multiple of 17 and prime to 15. The choice of l ¼ 68 is made simple because it provides

a minimum number of hardware connections in the implementation of multiplication by b
[PATE80]. Therefore we can easily check that

0; 1; b; b2; . . . ; b14

form the field GFð24Þ, which is a subfield of GFð28Þ. Then the code is generated by

gðxÞ ¼ ðxþ 1Þðxþ bÞ
¼ x2 þ ð1þ bÞxþ b:

ð11:24Þ

TAPEMEMORY CODES 483



This code can also be expressed in binary form by way of the companion matrix T, an

8� 8 matrix, obtained from the primitive polynomial of Eq. (11.23):

T ¼

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

266666666664

377777777775
:

Stri
pe

 1 2 3 4 52.7 in.

Magnetic recording tape

Stripe 1 2

Segment

3 20

Codeword

14 13 12 1 0

2 Check
sections

0 1 2 3 14 15 p

128 Binary bits
Sync
bits

Odd
parity

bit

13 Data sections

Segment

Section

Section

Sync

Figure 11.11 Stripe data format. Source: [PATE80]. � 1980 by International Business Machines Corporation; repub-

lished by permission.

484 CODES FOR MASS MEMORIES



The H matrix of this code is expressed as

H ¼ I I I . . . I

I Tl T2l . . . T14l

� �
; ð11:25Þ

where I is an 8� 8 identity matrix, and l is 68. This code has minimum distance 3, and

therefore it can correct any single-byte error. The coding rules are given in the form of the

following (modulo-2) equations:

B0  B1  B2  . . . B14 ¼ 0;

B0  B1 � Tl  B2 � T2l  . . . B14 � T14l ¼ 0:

The encoding circuit for this MSS code is presented in Figure 11.13. The block diagram

of the shift register can be derived from Eq. (11.24). As soon as the 13 data symbols have

been shifted into the register, the parity-check symbols B0 and B1 are in the low- and high-

order stages.

Suppose that the i-th byte Bi is in error. Let Ei denote the error pattern. Then

B0i ¼ Bi  Ei:

The syndrome can be obtained such that

S0 ¼ Ei;
S1 ¼ Ei � Til:

ð11:26Þ

B14-0

B13-0

B12-0

B11-0

Bj-0

B2-0

B1-0

B0-0

B14-1

B13-1

B12-1

B11-1

Bj-1

B2-1

B1-1

B0-1

B14-2

B13-2

B12-2

B11-2

Bj-2

B2-2

B1-2

B0-2

B14-3

B13-3

B12-3

B11-3

Bj-3

B2-3

B1-3

B0-3

B14-4

B13-4

B12-4

B11-4

Bj-4

B2-4

B1-4

B0-4

B14-k

B13-k

B12-k

B11-k

Bj-k

B2-k

B1-k

B0-k

B14-14

B13-14

B12-14

B11-14

Bj-14

B2-14

B1-14

B0-14

B14-15

B13-15

B12-15

B11-15

Bj-15

B2-15

B1-15

B0-15

SyncP

SyncP

SyncP

SyncP

SyncP

SyncP

SyncP

SyncP

0 1 2 3 4 k 14 15

14

13

12

11

j

2

1

0

.

.

.

.

.

.

Section

Codeword
Odd

parity

13 Data
sections

2 Check
sections

Figure 11.12 A segment of 15 sections formed with 16 interleaved codewords. Source: [PATE80]. � 1980 by

International BusinessMachines Corporation; republished by permission.

TAPE MEMORY CODES 485



Thus the error pattern Ei is determined by the syndrome S0. From these equations we

further have

S1 � T�il ¼ S0 ¼ Ei; ð11:27Þ

that is,

S1 � Tð15�iÞl ¼ S0 ¼ Ei ð11:28Þ

because T15l ¼ I. Therefore the error byte position i is uniquely determined from the fact

that either Eq. (11.27) or Eq. (11.28) is satisfied. Error correction is accomplished by

adding S0 ¼ Ei to Bi.

When the erroneous sections are indicated by external pointers, this information

is passed on to the decoder in the form of error pointers. Let i and j denote the position

values of two erroneous bytes in a codeword, where i < j. The error patterns Ei and Ej are

errors in bytes Bi and Bj, respectively, so that

B0i ¼ Bi  Ei and B0j ¼ Bj  Ej:

The syndrome can be obtained such that

S0 ¼ Ei  Ej;

S1 ¼ Ei � Til  Ej � Tjl:

Since i and j are known, the two simultaneous equations can be solved for the two

unknown variables Ei and Ej, to obtain

Ej ¼ I Tð j�iÞl
h i�1

� S0  S1 � T�il
 �

and

Ei ¼ S0  Ej:

β

x

1    β

x

+

X0 + X1 +

3 3

1 2 1 2
1: Storage of field element.

2: Addition of field elements.

3: Multiplication by a field element.

Figure 11.13 Block diagram of encoding network. Source: [PATE80]. � 1980 by International Business Machines

Corporation; reprinted by permission.

486 CODES FOR MASS MEMORIES



Let ½I Tð j�iÞl��1 ¼ Tql and T�il ¼ Tpl. Then we obtain the following:

Ei ¼ S0  Ej

Ej ¼ Tql � ½S0  S1 � Tpl�:

The parameters p and q for all possible values of i and j are listed in Table 11.2 and

Table 11.3, respectively.

The decoder then consists of the following five steps.

Step 1. Multiply S1 by the matrix Tpl.

Step 2. Add S0 to the result of step 1.

Step 3. Multiply the result of step 2 by Tql. This gives the error pattern Ej.

Step 4. Add S0 to the result of step 3. This results in the error pattern Ei.

Step 5. Add Ei to byte B0i and Ej to byte B0j.

Note that the designed code corrects single-byte errors and also detects random double-

bit errors, mentioned in Section 6.2.

11.2 MAGNETIC DISK MEMORY CODES

Magnetic disk memory has played an important role in high-speed, large-capacity file

memory of computer systems over many years. Since the 1960s disk technology has

greatly improved in terms of density, storage capacity, data rate, cost, and reliability.

A disk has a higher data rate than a tape because of its higher rotation speed. Hence its

sensing circuit design has to allow for greater tolerance. In the first generation of magnetic

disk memories, only simple parity checkswere used for checking data integrity. In the next

generation, the burst error detecting 16-bit polynomial code was used for improved error

detection capability. In the 1970s a high-density and high-data-rate disk (e.g., IBM 3330)

established a new basic disk technology. This disk memory used a Fire code that had burst

error correction and detection capabilities. In the latest generation of disk design,

interleaved Reed-Solomon codes and computer-generated polynomial codes have

displaced the Fire code for error correction. Besides error correction / detection codes,

other important recovery techniques used to enhance reliability and data integrity are

defect skip, alternate data block, and reread [HSIA81].

TABLE 11.3 Parameter q As a Function of ( j � i)

j� i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

q 3 6 11 12 5 7 2 9 13 10 1 14 8 4

Source: [PATE80].� 1980 by International BusinessMachines Corporation; republished by permission.

TABLE 11.2 Parameter p As a Function of i

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

p 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Source: [PATE80].� 1980 by International BusinessMachines Corporation; republished by permission.

MAGNETIC DISK MEMORY CODES 487



As with the magnetic tape systems, burst errors predominate in magnetic disk systems.

Most errors are related to imperfections on disk surfaces, or surface irregularities, such as

defects. The remaining errors are mostly due to heads, which are susceptible to random

noise-induced errors [HOWE84].

In this section Fire codes, interleaved Reed-Solomon codes, and computer-generated

polynomial codes are introduced for magnetic disk memories, and a recovering technique

from single-disk failure using parity-check codes is presented for high-performance disk

array systems, namely RAID systems. Codes for RAID systems will be more fully

discussed in Chapter 14.

11.2.1 Fire Codes

As shown in Subsection 2.3.7, the Fire code [FIRE59], which is capable of correcting any

burst of length l or less, and of simultaneously detecting any burst of length d 	 l, is

generated by the following generator polynomial:

gðxÞ ¼ ðxc þ 1ÞpðxÞ;

where pðxÞ is an irreducible polynomial of degree m with exponent e and l � m,

c 	 lþ d � 1. The length n of this code is equal to the least common multiple (LCM) of e

and c:

n ¼ LCMðe; cÞ

The number of check digits of this code is cþ m.

Figure 11.14 shows the decoding circuit for this code. In the decoding scheme the

received word rðxÞ is stored in the buffer register and, at the same time, is entered into

+

+

.    .    .

.    .    .

l stages (c-l) stages

Comparator Counter
Error position

calculator

Error location register
generated from p(x)

Buffer register

Error pattern register

Received
word r(x)

δ i = n - δ

Figure 11.14 Fire code decoder.

488 CODES FOR MASS MEMORIES



the two shift registers, called the error pattern register and the error location register, to

store residue polynomials divided by xc þ 1 and pðxÞ, respectively. For this code, suppose
that the transmitted codeword is vðxÞ and that the burst error polynomial is bðxÞ whose
degree is less than or equal to l� 1. Then rðxÞ can be expressed as

rðxÞ ¼ vðxÞ þ xi � bðxÞ;

where i shows the position that the burst error starts. If bðxÞ ¼ 0, then rðxÞ can be divided

by both xc þ 1 and pðxÞ, and hence the residue is equal to zero. If bðxÞ 6¼ 0, the shift

registers have the following residues:

xi � bðxÞ ¼ s1ðxÞ mod xc þ 1; ð11:29Þ
xi � bðxÞ ¼ s2ðxÞ mod pðxÞ: ð11:30Þ

We use these residues, s1ðxÞ and s2ðxÞ, to obtain bðxÞ and the value i. After n� i shifts of

these shift registers, we have the following residues:

s1ðxÞ � xn�i ¼ xn � bðxÞ
¼ bðxÞ mod xc þ 1;

s2ðxÞ � xn�i ¼ xn � bðxÞ
¼ bðxÞ mod pðxÞ:

So, when the contents of the lower part of the l registers of the error pattern register are

equal to those of the error location register after d shifts of these registers, the burst error

pattern, expressed as polynomial bðxÞ, can be set in these registers. In addition to bðxÞ, the
error position i can be computed from the number of shifts dð¼ n� iÞ, and hence

i ¼ n� d.
The foregoing decoding method takes a lot more decoding time when i is small

compared to n. In that case the high-speed decoding method is desirable [CHIE69]. To see

this, assume that c and e are relatively prime. Figure 11.15 shows a high-speed decoding

circuit.

In this decoding scheme the received word rðxÞ is simultaneously entered into the

buffer register, the error pattern register, and the error location register. Then the residues

expressed by Eqs. (11.29) and (11.30) are obtained in the error pattern register and the

error location register, respectively. At this stage we can decode from the obtained residues

the received word as follows:

s1ðxÞ ¼ s2ðxÞ ¼ 0! rðxÞ : error free;

s1ðxÞ 6¼ 0 and s2ðxÞ ¼ 0

s1ðxÞ ¼ 0 and s2ðxÞ 6¼ 0

�
! rðxÞ : uncorrectable:

If s2 6¼ 0 and s2 6¼ 0, the decoding can be processed by the following algorithm:

Step 1. Shift the error pattern register until the contents of the higher c� l registers are

all 0’s, and store the required number of shift d0 . If the contents of the error pattern

register are not equal to all 0’s after c� l shifts, an uncorrectable error is assumed to

have occurred; therefore stop the decoding process.

MAGNETIC DISK MEMORY CODES 489



Step 2. Shift the error location register until its contents are equal to those of the lower l

bits of the error pattern register, and store the number of shift d1. If the contents of the
lower part of the error pattern register are not equal to those of the error location

register after e�1 shifts, an uncorrectable error is assumed to have occurred; therefore
stop the decoding process.

Step 3. Calculate the error position i from the value d0 and d1. Hence the errors can be

corrected by using the error pattern bðxÞ. That is, the contents of the lower l bits of the
error pattern register denote bðxÞ.

In the algorithm the error position can be calculated by the Chinese remainder theorem

[BLAH83] such that

d0 ¼ c� i

¼ �i mod c;

d1 ¼ e� i

¼ �i mod e:

Then �i ¼ d0 � A0 � eþ d1 � A1 � c mod n, where A0 and A1 are such integers that satisfy

A0 � eþ A1 � c ¼ 1 mod n:

The computation of A0 and A1 can be easily done off line with the numbers A0 � e and A1 � c
stored in the error position calculator shown in Figure 11.15. In this decoding the

+

+

.   .   .

.   .   .

l stages (c-l) stages

Comparator Counter
Error position

calculator

Error location
register

Buffer register

Error pattern register

Received
word r(x)

.  .  .

CounterAll 0 detector

δ1

δ0

Figure 11.15 High-speed decoder for the Fire code.

490 CODES FOR MASS MEMORIES



maximum number of shifts is eþ c� 2; recall that in the former decoding, it was e � c� 1.

Hence this decoding has proceeded at a much faster rate.

Next we consider a class of codes that is a generalization of the Fire codes [CHIE69].

They are generated by a polynomial of the form

gðxÞ ¼ ðxc þ 1Þ
Yh
i¼1

piðxÞ; ð11:31Þ

where piðxÞ is a distinct irreducible polynomial having exponent ei and degree ri. It is

further assumed that the ei’s (i ¼ 1; 2; . . . ; h) do not divide c. The code length is

n ¼ LCMðc; e1; e2; . . . ; ehÞ:

Theorem 11.1 [CHIE69]. The code generated by gðxÞ given by Eq. (11.31) detects all

error bursts of length � d; it corrects all bursts bðxÞ of length � l that are relatively

prime to
Qh

i¼1 piðxÞ, provided that c 	 lþ d�1 and l �
Ph

i¼1 ri.

Equations that determine the error position i can be written as

�i ¼ d0 � A0 �
Yh
j¼1

ej þ c �
Xh
j¼1

dj � Aj �
Yh
k¼ 1
k 6¼ j

ek; ð11:32Þ

A0 �
Yh
j¼1

ej þ c �
Xh
j¼1

Aj �
Yh
k¼ 1
k 6¼ j

ek ¼ 1: ð11:33Þ

The IBM 3330-compatible disk systems use the generalized Fire code generated by the

following polynomial:

gðxÞ ¼ ðx22 þ 1Þ
Y3
i¼1

piðxÞ;

where

p1ðxÞ ¼ x11 þ x7 þ x6 þ xþ 1

p2ðxÞ ¼ x12 þ x11 þ x10 þ x9 þ x8 þ x7 þ x6 þ x5 þ x4 þ x3 þ x2 þ xþ 1

p3ðxÞ ¼ x11 þ x9 þ x7 þ x6 þ x5 þ xþ 1

are distinct irreducible polynomials. The exponents of p1ðxÞ, p2ðxÞ, and p3ðxÞ are 89, 13,
and 23, respectively. Therefore the code length is

n ¼ LCMð22; 89; 13; 23Þ ¼ 585; 442:

It has 22þ 11þ 12þ 11 ¼ 56 check bits and is capable of correcting any single error

burst of length 11 bits or less and detecting any single error burst of length 22 bits or less

[GLOV91].

MAGNETIC DISK MEMORY CODES 491



From Eqs. (11.32) and (11.33), the error position can be determined as follows:

i ¼ d0A0e1e2e3 þ d1A1ce2e3 þ d2A2ce1e3 þ d3A3ce1e2 mod n; ð11:34Þ

where A0, A1, and A3 satisfy the following.

A0e1e2e3 þ A1ce2e3 þ A2ce1e3 þ A3ce1e2 ¼ �1 mod n: ð11:35Þ

For this code we can find that

A0e1e2e3 ¼ �1 mod c;

A1ce2e3 ¼ �1 mod e1;

A2ce1e3 ¼ �1 mod e2;

A3ce1e2 ¼ �1 mod e3:

ð11:36Þ

The minimum integers that satisfy Eqs. (11.35) and (11.36) are A0 ¼ 5, A1 ¼ 78, A2 ¼ 6,

and A3 ¼ 10. These integers are substituted into Eq. (11.34), and then we have the

following equation that can determine the error position:

i ¼ 133; 055d0 þ 513; 084d1 þ 270; 204d2 þ 254; 540d3 mod 585; 442:

The decoding circuit for this code is shown in Figure 11.16.

Shift operations of the error pattern register are performed until the contents of the

upper 11 stages of the register are all 0’s. Shift operations of the error location register

are also performed until all contents of the three error location registers are equal to

those of the lower 11 stages of the error pattern register. Given that these numbers of

shifts are d0, d1, d2, and d3, then K0 ¼ 133; 055d0, K1 ¼ 513; 084d1, K2 ¼ 270; 204d2,
and K3 ¼ 254; 540d3 are calculated, and hence i can be obtained by i ¼ K0 þ K1þ
K2 þ K3 mod n.

Another faster error correction scheme using the ordinary Fire code is proposed in

[ADI84]. This is a hybrid technique combining sequential error-trapping and table lookup

techniques. The decoder needs at most cþ m� 1 shift cycles to find both the burst error

pattern and its location. The decoder can be implemented by making use of programmable

read-only memories (PROMs) and programmable logic arrays suitable for LSI

implementation.

11.2.2 Interleaved RS SbEC-DbED Codes

Distance-4 RS Code Interleaved to Degree 3 The magnetic disk system (e.g.,

found in the IBM 3370 and 3380 systems) uses an interleaved Reed-Solomon (RS) dis-

tance-4 code, as discussed in [HODG80], in a fixed-block data format. Each data block

consists of 512 bytes. For error control, nine check bytes are appended to it. The code

of this system is a shortened Reed-Solomon distance-4 code with symbols from the field

GFð28Þ. The generator polynomial of the code is

gðxÞ ¼ ðxþ 1Þðxþ aÞðxþ a�1Þ;

492 CODES FOR MASSMEMORIES



where a is the primitive element of GFð28Þ and is a root of pðxÞ ¼ x8 þ x4 þ x3 þ x2 þ 1.

The RS distance-4 code is capable of correcting any single-symbol (one-byte) error and

simultaneously detecting any combination of double-symbol (two-byte) errors. The code

is a ð174; 171Þ code over GFð28Þ.
For encoding, a data block is divided into three subblocks, D�1, D0, and D1, each

consisting of 171 bytes. We represent these three subblocks in polynomial form as follows:

DiðxÞ ¼ Di;170x
170 þ Di;169x

169 þ � � � þ Di;1xþ Di;0; i ¼ �1; 0; 1;

where each byte Di;k, ði ¼ �1; 0; 1; k ¼ 0; 1; . . . ; 170Þ, is regarded as a symbol in

GFð28Þ. The three check bytes for Di, denoted as Ci;�1, Ci;0, and Ci;1; i ¼ �1; 0; 1, are
obtained as follows:

Ci; j ¼ x � DiðxÞ mod ðxþ a jÞ;
i ¼ �1; 0; 1; j ¼ �1; 0; 1:

0 10
(11 stages) (11 stages)

11 21

Comparator

All 0 detector

Error location register 1
(11 stages)

1 6 7

+

+

Error pattern register

. . .

+

+

1 2 3 4 5 6 7 8 9 10 11

1 5 6 7 9

Error location register 3
(11 stages)

Error location register 2
(12 stages)

To comparator

To comparator

Received
word r(x)

Counter

Counter

Counter

Counter

δ0

δ1

δ2

δ3

Error location
calculator

A0  A1  A2  A3

Figure 11.16 Decoding circuit for the generalizedFire code used in IBM 3330-compatible disk system.

MAGNETIC DISK MEMORY CODES 493



Note the difference between this encoding method and the method used for encoding

cyclic codes, where all three check bytes are computed by dividing x3 � DiðxÞ by gðxÞ.
After the three check bytes for Di have been formed, they are appended to Di to form a

codeword Wi, as shown in Figure 11.17.

The three codewordsW1,W0, andW�1 are interleaved to form a coded block as shown

in Figure 11.18. Therefore the overall code is the ð174; 171Þ RS code interleaved to

degree 3. This code is capable of correcting any burst error confined to three consecutive

bytes and detecting any burst error confined to six consecutive bytes.

When a coded block is read from the disk, it is decomposed into three subwords, W0
1,

W0
0, and W0

�1, where

W0
i ¼ ðD0i;C0i;1;C0i;0;C0i;�1Þ;
i ¼ 1; 0;�1:

Syndrome Si; j (i ¼ 1; 0;�1, j ¼ 1; 0;�1) is obtained as follows:

Si; j ¼ x � D0iðxÞ þ C0i; j mod ðxþ a jÞ
¼ a j � D0iða jÞ þ C0i; j;

where D0ðxÞ ¼ D0i;170x
170 þ . . .þ D0i;1xþ D0i;0. If Si;1 ¼ Si;0 ¼ Si;�1 ¼ 0, the word is error

free. If all syndromes Si;1, Si;0, and Si;�1 are nonzeros, there are single-byte errors in the

readout word. This is because if error amð0 � m � 254Þ is added to the data symbol Di:l

(l ¼ 0; 1; . . . ; 170), then the readout word is expressed as

D0i;l ¼ Di;l þ am;

D0i;k ¼ Di;k; k 6¼ l; k ¼ 0; 1; . . . ; 170;

C0i; j ¼ Ci; j:

Hence not all zero syndromes can be obtained as

Si;1 ¼ amþlþ1;

Si;0 ¼ am;

Si;�1 ¼ am�ðlþ1Þ:

D–1,170 D1,169 ... C1,1D1,170 D0,170 D1,0 D0,0 D–1,0 C0,1 ...C–1,0 C1,–1 C0,–1 C–1,–1

513 Data bytes 9 Check bytes

Figure 11.18 Overall interleaved codeword.

D1,170 D1,169 ... D1,1 D1,0 C1,1 C1,0 C1,–1W1

D0,170 D0,169 ... D0,1 D0,0 C0,1 C0,0 C0,–1W0

D-1,170 D-1,169 ... D-1,1 D-1,0 C-1,1 C-1,0 C-1,–1W-1

Data bytes Check bytes

Figure 11.17 Codewords,W1,W0, andW�1.

494 CODES FOR MASS MEMORIES



In this case the error pattern can be expressed as Si;0, and error position can be determined

by the following relation:

Si;1

Si;0
¼ amþlþ1

am
¼ alþ1;

Si;0

Si;�1
¼ am

am�ðlþ1Þ
¼ alþ1:

Other information regarding errors is given in Table 11.4.

Two-Level Coding for Multiple-Burst Errors Another coding architecture for the

correction of multiple-burst errors that has been applied to IBM 3380J and 3380K disk

files [PATE89] is a two-level coding scheme. This coding scheme offers high coding effi-

ciency along with a fast decoding strategy that closely matches the requirements of online

correction of multiple bursts of errors. The first level, on a smaller block size, provides

very fast correction of most errors commonly encountered in disks. The second level,

on a larger block size, provides a reserved capability for correcting additional errors

that may be encountered in a device with symptoms of a weaker component or oncoming

failure.

The basic error event is a byte-in-error. A burst error may cause correlated errors in

adjacent bytes; however, sufficient interleaving is assumed to effectively randomize these

errors. With appropriate interleaving, all bytes are assumed to be seen by the coding

scheme as equally likely to be in error. In disk files, major defects in the media are avoided

by means of surface analysis test and defect-skipping strategy. The error correction code is

expected to provide coverage for errors caused by noise and small defects that cannot be

identified easily in the surface analysis test. These errors are usually two to four bits long

[PATE89]. Therefore two-way or three-way byte interleaving of the codewords is adequate

in magnetic disks. The data format of the IBM 3380J and 3380K disks is designed with a

two-level architecture consisting of subblocks within a block, combined with two-way

interleaved codewords. This is shown in Figure 11.19. Each subblock (except the last)

consists of 96 data bytes and six first-level check bytes in the form of two interleaved

codewords. At the end of the block, six additional check bytes are appended, two of which

are used for second-level error correction and the remaining four for an overall data-

integrity check after correction of the errors at both levels. The two-way interleaved two-

level code of Figure 11.19 provides correction of at least one byte error in each subblock

and detection of up to two byte errors in any one of the many subblocks of a block.

TABLE 11.4 Error Information Based on Syndromes

Si;1 Si;0 Si;�1 Error information

0 0 0 Error free
NZ NZ NZ Single-byteerrors
NZ 0 0 ErrorsinC0i;1
0 NZ 0 ErrorsinC0i;0
0 0 NZ ErrorsinC0i;�1
NZ NZ 0 ErrorsinC0i;1 andC

0
i;0

0 NZ NZ ErrorsinC0i;0 andC
0
i;�1

NZ 0 NZ Double-byteerrors

Note: NZ: nonzero syndrome.

MAGNETIC DISK MEMORY CODES 495



The first-level codeword consists of three check bytes denoted by C3, B0, and B1, and of

m data bytes denoted by B2; B3; . . . ; Bmþ1. The H matrix for a block is expressed as

H ,

block
subblock

Bm 1 C3 B0 B1 B2 Bm 1 C3 B0 C0

0 I T T2 Tm 1 0
0 I T2 T4 T2 m 1 0
I I T3 T6 T3 m 1 0

I 0 I I I I 0 I I

where Bi is an 8-bit, i ¼ 0; 1; . . . ;mþ 1 � 28 � 2, T is a companion matrix of the

primitive polynomial of degree 8, meaning gðxÞ ¼ x8 þ x7 þ x5 þ x3 þ 1. We use m ¼ 48.

The code in each subblock is an extended RS code with a Hamming distance-4. The

second-level codeword consists of n subblocks with one additional check byte denoted by

C0 at the end. This check byte is the modulo-2 sum of all subblock bytes excluding C3 and

accumulated over all subblocks. It is readily seen that for n ¼ 1, theHmatrix shown above

represents a code that is an extended RS code for correction of double-byte errors. In

the case of n greater than 1, the second-level codeword (i.e., the block codeword) can be

viewed as modulo-2 superposition of n first-level codewords (i.e., the n subblock

codewords). Double-byte errors in this superpositioned codeword are correctable. Suppose

that a block consisting of n subblocks encounters multiple bytes in error. If these errors

are located in separate subblocks, each error will be corrected as a single-byte error in the

corresponding subblock. If one of the subblocks has double bytes in error, the first-level

code will detect these errors. Then, at the second-level, the first-level syndromes, together

with the second-level syndromes, will be reprocessed for the correction of the subblock

with the double byte in error. If any subblock has more than double bytes in error, or

if two or more subblocks have multiple bytes in error, these errors cannot be corrected.

The two-level code includes four additional check bytes at the second level shown in

Figure 11.19. They are denoted as CRC checks. These four CRC check bytes provide an

overall data-integrity confirmation against miscorrections in the presence of an excessive

number of errors.

Figure 11.19 Data format of the IBM3380Jand 3380Kdisk files. Source: [PATE89].� 1989 by InternationalBusiness

Machines Corporation; republished by permission.

496 CODES FOR MASS MEMORIES



In general, the data format and the error control capabilities of the two-level coding

scheme can be described as follows [PATE89]. Let each subblock be a codeword from a

code with a minimum Hamming distance of d1 consisting of m data bytes and r1 check

bytes. Also let the block consist of n subblocks and r2 check bytes that are shared by its

subblocks. The data part of the block-level code is viewed as modulo-2 superposition of

n subblock codewords. The r2 check bytes (either independently or along with the

superpositioned r1 check bytes of all subblocks) provide a minimum Hamming distance

of d2 (over one subblock) at the block-level where d2 > d1. The codewords of both

levels may be interleaved in order to provide correction for burst errors or clustered

multi-byte errors. The decoding process provides correction of up to t1 errors and

detection of up to t1 þ c errors in each subblocks, where d1 ¼ 2t1 þ cþ 1. If the number

of errors in a subblock exceeds the error correcting capability at the first-level, such

errors are either left uncorrected or are miscorrected. If all errors are confined to one

subblock and exceed the error correcting capability at the first-level, the block-level

code will provide correction of up to t2 errors, where d2 	 2t2 þ 1. However, many

combinations of errors in multiple subblocks, including t2 errors not confined to one

subblock, are also correctable.

11.2.3 Computer-Generated Polynomial Codes

A computer-generated polynomial code has been applied to recent small-sized 2.5 in or

3.5 in HDD (hard disk drive) units. An example is the code generated by the polynomial

gðxÞ ¼ x32 þ x28 þ x26 þ x19 þ x17 þ x10 þ x6 þ x2 þ 1, which has a maximum code

length of 526 bytes including 32 check bits, and has an error control capability of

detecting any single burst of 14 bits or less as well as correcting any single burst of 8 bits or

less with a miscorrection probability of 1:25� 10�4 [WEST, GLOV91]. An extended

polynomial code with degree 48, 56, or 64, has been generated by computer search and

employed in the recent HDD units. A disk controller is mounted on each recent HDD unit

and it includes encoding / decoding functions.

11.2.4 Introduction to Disk Array Codes

In the 1980s parallel disk arrays using multiple disks were discussed as a way to ensure

total I/O performance. The driving force behind the parallel arrays concept was the rapid

improvement in semiconductor technology that made possible faster microprocessors and

larger primary memory systems. The faster microprocessors required larger capacity,

higher performance secondary storage systems.

Large disk arrays are highly vulnerable to disk failure. The obvious solution is to

employ redundancy in the form of error correcting codes to tolerate disk failures.

However, redundancy has negative consequences. Since all write operations must update

the check information, the performance of writes in redundant disk arrays can be

significantly worse than that of writes in nonredundant disk arrays.

In recent years the interest in redundant array of independent disks, called RAID, has

grown explosively [GIBS92]. Successful parity-check coding techniques for RAID levels

3, 4 and 5 will be discussed here and in Section 14.1. These RAID architectures are shown

in Figure 11.20.

Before discussing the architectures, we should keep in mind that each disk has its

own strong error correction and detection capability due to the Fire codes, interleaved

MAGNETIC DISK MEMORY CODES 497



Read-Solomon (RS) codes, or computer-generated polynomial codes mentioned in the

previous subsections. As a disk detects unrecoverable errors by these codes, the

information is sent to the disk controller, which is located upward among the disk arrays

pictured in Figure 11.20. In RAID system the disk controller gathers every data bit readout

from all disks together with the information above, and therefore can identify which disk is

in error or in an unrecoverable state. By this information the simple parity-check code can

recover the lost information in a single disk; that is, single erasure correction can be

performed by using distance-2 parity-check codes.

We first consider the RAID system with n data disks and one parity disk. The simple

parity-check bit p of the parity disk is determined as

p ¼ d0  d1  . . . di�1  di  diþ1  . . . dn�1;

where, di, i ¼ 0; 1; . . . ; n� 1, is the data bit of the i-th disk. If the i-th disk has failed, then

the data di can be recovered by using the readout data of the other disks and the readout

parity data of the parity disk as

d̂i ¼ d00  d01  . . . d0i�1  d0iþ1  . . . d0n�1  p0;

where d0i and p0 are the readout i-th data and the readout parity data, respectively.

In a RAID level 3 (i.e., a bit-interleaved parity disk array), the data are conceptually

interleaved bitwise over the data disks, and a single parity disk is added to tolerate any

single-disk failure. Each read request accesses all data disks, and each write request

accesses all data disks and the parity disk.

Figure 11.20 RAIDarchitecture.

498 CODES FOR MASS MEMORIES



In a RAID level 4 (i.e., a block-interleaved parity disk array), the data are interleaved as

in the level 3 except that the interleaving is across disks in blocks of arbitrary size rather

than in bits. Each block size is called a striping unit. Read requests smaller than the

striping unit access only a single data disk. Write requests must update the requested data

blocks, and must compute and update the parity block. For large-writes that touch the

blocks on all disks, the parity is easily computed by exclusive-ORing the new data in each

disk. For small-write requests that update only one data and apply the differences to the

parity block, four disk operations are required: one to write the new data, two to read the

old data and old parity for computing the new parity, and one to write the new parity. This

is referred to as a read-modify-write procedure. The new parity can be calculated from the

old data, the old parity, and the new data as follows:

New parity ¼ ðOld dataÞ  ðNew dataÞ  ðOld parityÞ:

Since this type of disk array has only one parity disk that must be updated on all write

operations, the parity disk can easily become a bottleneck.

In a RAID level 5 (i.e., a block-interleaved distributed-parity disk array), the parity

disk bottleneck is eliminated by distributing the parity blocks uniformly over all of the

disks. That is, several reads and writes can be serviced concurrently. For example, the

small-writes on the blocks of the fourth and the fifth disks marked by an� in Figure 11.20

can be operated simultaneously because the corresponding parity blocks marked by a�
are in different disks, that is, in the first and the third disks. In addition to this, small-read

on the second disk can also be performed simultaneously. Block-interleaved distributed-

parity disk arrays have the best small-read, large-read, and large-write performance among

any redundant disk arrays. Small-write requests, however, need to perform read-modify-

write operations to update parity. In the RAID level 5, a performance evaluation is done for

the different parity placements [LEE93].

Some extended practical schemes for tolerating double-disk failures in RAID

architectures are proposed in [HELL94], [BLAU95], [XU99a, 99b]. Theoretically, in

order to retrieve the information lost in two failed (erased) disks, we need at least two

redundant disks. In coding theory this is known as the Singleton bound. These schemes

give an efficient encoding procedure that is based on exclusive-OR (or XOR) operations

and independent parities, and also give a simple decoding procedure for two erasures and

for a single error with small number of XOR operations. This will be discussed in detail in

Section 14.1.

The MDS (maximum distance separable) array codes with small number of 1’s in the

parity-check matrix, namely the low-density parity-check matrix, require a small number

of additions (XORs) and hence enable high-speed decoding upon disk failure [BLAU93,

96, 99], [HELL94]. As was discussed in Subsection 3.1.2, Blaum and Roth [BLAU99]

demonstrated how to design low-density MDS array codes, and also the lower bounds on

the number of nonzero elements in the systematic parity-check matrix, along with the

upper bound on the length of any MDS array code that attains those lower bounds.

To prepare for the detailed discussion on practical erasure-correcting codes in

Section 14.1, we need to give attention to the following four important metrics for

redundancy in disk arrays: mean time to data loss, check disk overhead, update penalty,

and group size [HELL94].

The mean time to data loss is the expected number of repair periods until an

unrecoverable set of failures occurs. Using independent exponential disk lifetime with

MAGNETIC DISK MEMORY CODES 499



mean M, we can calculate the probability of y failures (erasures) in a repair period

T as

N

y

� �
ð1� e�T=MÞyðe�T=MÞN�y;

where N is the total number of disks. The check disk overhead for a coding scheme is the

ratio of the number of check disks to that of information disks or to the total number of

disks. The update penalty of a coding scheme is the number of check disks whose contents

should be changed when a change is made in the contents of a given information disk. The

number of disks accessed to effect a small data update has to be minimized. The set of

disks that must be accessed during the reconstruction of a single failed disk form a group.

The group size is an important metric because the duration of reconstruction is likely to

scale linearly with the number of disks to be read. Until reconstruction is completed, the

group size indicates the number of disks that must be accessed.

The latter three metrics are easily expressed in terms of parity-check matrix H. The check

disk overhead is the ratio of the number of rows inH (i.e., the number of check columns r) to

the number of columns inH (i.e., the code length n). The size of a group is theweight of the row

for that group, meaning the number of 1’s in that row. The update penalty for any information

disk, which is the number of groups including that disk, is the weight of its column.

11.3 OPTICAL DISK MEMORY CODES

Digital optical disks are a relatively new technology for storing data. Each disk is coated

with special reflective materials. Reading and writing are performed by a laser. More

specifically, reading involves determining the reflectivity of a given position on the disk,

while writing usually consists of melting holes into the coating (at a high-power setting

of the laser). In erasable disks, however, magneto-optical recording has a different

reading / writing principle, one based on the Faraday-effect and Curie-point reorientation.

The bit density on digital optical disks can be much higher, since optical recording permits

a much finer ‘‘grain’’ than magnetic recording. Therefore this medium can be expected to

play an increasingly important role in memory systems—document file, image file, digital

data file for large computer systems, and so forth [LEIS84].

Errors are primarily due to imperfections in the optical disk medium, and are also due to

a focusing shift in recording and random noise in reading. Therefore both burst error and

random error correcting facilities are needed for optical disk memories [SAIT86,

ITAO87]. Presently, especially for erasable disks, powerful error correction techniques,

mainly a doubly encoded Reed-Solomon (RS) code (a combination of a cyclic code and an

RS code) and an RS code with a large minimum Hamming distance, are being applied to

attain the same level of reliability as that of the magnetic media. As for the recent DVDs

(digital versatile discs), the powerful error correcting RS product codes have been applied

for correcting two-dimensional clustered errors.

11.3.1 Cross-interleaved RS Code (CIRC)

In the optical disk systems, burst errors as well as random errors have to be considered. Thus

a code is required to correct both types of errors.The Cross-Interleaved Reed-Solomon

500 CODES FOR MASS MEMORIES



Code (CIRC) is a new class of doubly encoded codes in which the second RS code

encodes the delayed and dispersed (i.e., cross-interleaved) output of the first encoded RS

code [DOI79]. To illustrate the concept behind this class of codes, a simple example is

provided.

Example 11.1

Let the two codes that can individually correct single-symbol errors be C1 and C2.

Figure 11.21 shows the encoding circuit of the CIRC. Assume that the check symbols P

and Q are represented as two symbols for the code C2 and C1, respectively.

Check symbols P4n are produced from the consecutive four symbols, D4n, D4nþ1,
D4nþ2, and D4nþ3 by using the C2 encoder. The encoded symbols, D4n, D4nþ1, D4nþ2,
D4nþ3, and P4n, are delayed by unequal length and then yield to D4n, D4n�3, D4n�6,
D4n�9, and P4n�16. These delays are different for each symbol. Check symbols Q4n are

produced from the delayed symbols by using the C1 encoder. The delay lines, which

characterize the cross-interleaved concept, yield an encoding scheme such that check

symbols Q4n can be produced from the symbols included in the positive slope shown in

Figure 11.22.

Figure 11.22 also shows the decoding concept of this code. As a result of

cross-interleave, even if there are consecutive four symbols errors, for example, errors

in D7, D10, D13, and D16 (circled in Figure 11.22(a), that cannot be corrected in C1

decoding. These four symbols errors, however, are dispersed into single-symbol errors

in each C2 code, and hence these can be corrected in C2 decoding. In this case, Ci

decoding, i ¼ 1; 2, means the decoding of the code Ci. If there exist errors in three

symbols, for example, in D13, D16, and D17 (shown in Figure 11.22(b), these errors can

also be corrected in sequential steps such that a single-symbol error in D13 can be

corrected by C2 decoding, and then a single-symbol error inD16 can be corrected by C1

decoding; finally, a single-symbol error in D17 can be corrected by C2 decoding. In

Figure 11.22(c), however, errors in four symbols, for example, in D13, D14, D16, and

D17, cannot be corrected, since there are double-symbol errors in both C1 decoding and

C2 decoding at the first stage. In order to correct these four symbols errors, we apply the

4δ

8δ

12δ

16δ

C2

C1

D4n

D4n+1

D4n+2

D4n+3

P4n

D4n

D4n-3

D4n-6

D4n-9

P4n-16

D4n

D4n+1

D4n+2

D4n+3

D4n

D4n-3

D4n-6

D4n-9

P4n-16

Q4n
Delay lines

C2 encoder

C1 encoder
δ : Single symbol delay

: Symbol delay line implemented by shift registers

P4n : Check symbols produced by C2 encoder

Q4n : Check symbols produced by C1 encoder

Figure 11.21 CIRCencoder.

OPTICAL DISK MEMORY CODES 501



Q-4

Q4

Q8

Q12

Q16

Q20

D0 D1 D2 D3 P0

D4 D5 D6 D7 P4

D8 D9 D10 D11 P8

D12 D13 D14

D17 D18 D19

D21 D22 D23

D25 D26 D27

P12

P16

P20

P24

D16

D20

D24

D15

Q0

C1

C2

C2

C2

C2

(a)

Q-4

Q4

Q8

Q12

Q16

Q20

D0 D1 D2 D3 P0

D4 D5 D6 D7 P4

D8 D9 D10 D11 P8

D12 D13 D14

D17 D18 D19

D21 D22 D23

D25 D26 D27

P12

P16

P20

P24

D16

D20

D24

D15

Q0

C1

C2

C2

(b)C1

Q-4

Q4

Q8

Q12

Q16

Q20

D0 D1 D2 D3 P0

D4 D5 D6 D7 P4

D8 D9 D10 D11 P8

D12 D13 D14

D17 D18 D19

D21 D22 D23

D25 D26 D27

P12

P16

P20

P24

D16

D20

D24

D15

Q0

C1

C2

C2

(c)C1

Di :  Symbol Di error

Figure 11.22 Decodingmethod.

502 CODES FOR MASS MEMORIES



erasure correction method to the distance-3 single-symbol error correcting codes,

which allows correction of up to double-symbol errors. Therefore, at the first stage,

when double-symbol errors are detected in C1 decoding (i.e., where code C1 acts as a

double-symbol error detecting code), error pointers are set to all symbols included in

the positive slopes. At the next stage, C2 decoding can correct these double-symbol

errors indicated by the error pointers. This is because the codes C1 and C2 are distance-

3 codes, and therefore can correct up to double-symbol erasures.

Codes for Compact Disc (CD) Digital Audio Systems The following two dis-

tance-5 RS codes over GFð28Þ are applied to the compact disc (CD) digital audio system

[VRIE80]. The codes C1 and C2 are as follows:

C1 : (32,28) double-symbol error correcting RS code.

C2 : (28,24) double-symbol error correcting RS code.

In this coding scheme many decoding strategies can be considered. Among these, this

system adopts the following decoding method called super strategy:

C1 Decoding

1. All-zero syndrome ! error free.

2. Single-symbol errors ! single-symbol error correction.

3. Double-symbol errors ! double-symbol error correction. Error location pointers are

given to the C2 decoding.

4. More than triple-symbol errors ! only detection. Error location pointers are given to

the C2 decoding.

C2 Decoding

1. All-zero syndrome ! error free.

2. Single-symbol errors ! single-symbol error correction.

3. Double-symbol errors !

(a) Number of error pointers from the C1 decoding is less than or equal to four, and at

the same time the error locations of the two error pointers are equal to those

calculated from the syndrome ! double-symbol error correction.

(b) Others ! only error detection.

4. More than triple-symbol errors ! only error detection.

Note that when double-symbol errors are corrected in the C1 decoding, these two error

location pointers are given to the C2 decoding in order to avoid miscorrection of triple-

symbol errors as double-symbol errors in the C1 decoding.

In case where the C2 decoder cannot correct, it lets pass through 24 data symbols

uncorrected but marked only with error pointers originally given by the C1 decoder. This

OPTICAL DISK MEMORY CODES 503



way, even if the C2 decoder cannot decode, most of the symbols are nevertheless probably

error free, and the uncorrected marked sample values can be reconstructed via linear

interpolation [VRIE80] in digital audio systems. For the marked sample values, this can

estimate and interpolate their correct values from both sides of values that have not been

marked with error pointers. The CIRC scheme having super strategy is said to have a

maximum fully correctable burst length up to 4,000 bits.

Codes for Digital Data Storage (CD-ROM) For digital data storage systems, called

compact disc ROM (CD-ROM), linear interpolation cannot be applied, and therefore

another method for increasing data quality should be added. One system applies both

doubly encoded RS SbEC codes and cyclic redundancy check (CRC) code to the data

already encoded by CIRC. That is, the CD-ROM employs such a powerful error coding

scheme that the original data are encoded by CIRC, and then the resulting data are

further encoded by two RS SbEC codes. Thus the data are quadruply encoded as fol-

lows. (If CRC is included, they are quintuply encoded.) One disc has about 540-megabyte

data capacity.

1. CRC code. This code is appended in order to check the miscorrection of the RS

codes, or to detect uncorrectable errors. The generator polynomial of the CRC code

is as follows:

gðxÞ ¼ ðx16 þ x15 þ x2 þ 1Þðx16 þ x2 þ xþ 1Þ:

2. Doubly encoded RS codes. The codes are determined by the following primitive

polynomial g0ðxÞ, and a is a primitive element in GFð28Þ (i.e., a root of g0ðxÞ):

g0ðxÞ ¼ x8 þ x4 þ x3 þ x2 þ 1:

The code includes two RS codes (i.e., (26, 24) RS code C1, and (45, 43) RS code

C2). Both codes are distance-3 RS codes.

Two check bytes of the code C1 are generated from the data included in the vertical

direction. Also two check bytes of the codeC2 are generated from the user data included in

the negative slope that has 24� 43 bytes (¼ 1; 032 bytes) in a two-dimensional data

format. This can be seen in Figure 11.23. The H matrices of the code C1 and the code C2

are expressed as follows:

H1 ¼
1 1 1 . . . 1 1

a25 a24 a23 . . . a 1

� �
;

H2 ¼
1 1 1 . . . 1 1

a44 a43 a42 . . . a 1

� �
:

In Figure 11.23 the codeC1 is generated first, and then the codeC2 is generated. Note that the

decoding is permitted for either of the sequences, that is, from C1 decoding to C2 decoding,

or from C2 decoding to C1 decoding. These sequences can be repetitive: for example, C1

decoding ! C2 decoding ! C1 decoding ! C2 decoding ! . . .. Furthermore we can

504 CODES FOR MASS MEMORIES



make use of the results of CIRC decoding. Each code has the following error correction

capability:

1. Single-byte error correction

2. Double-byte erasure correction

Therefore there are many possible decoding strategies. For example, by using the

erasure correction capability of the codes shown as item 2 above, the following decoding is

applicable:

C1ð2Þ ! C2ð2Þ ! C1ð2Þ ! C2ð2Þ ! � � � ;

where Cið2Þ i¼ 1, 2, shows the Ci decoding with error correction shown as item 2 above.

To guard against miscorrection in item 2, the CRC code checks these miscorrections and

detects uncorrectable errors. This decoding strategy can attain the same bit-error rate as

the commercial magnetic disk or tape units [SAKO85, IMAI90].

11.3.2 Long-Distance Code (LDC)

Another type of optical disk system, theWrite Once Read Many optical disk (CD-WORM

or CD-R), has been popularly applied to the computer mass memories. With these disks,

there are two types of error distribution: one is caused by a short burst error (less than

10 bits) with a high rate and the other by a long burst error (10 to 100 bits) with a low rate

[SAIT86]. The following strategies have been proposed for correcting these types of

errors: one is the large distance (d � 17) RS code with 120 to 140 bytes code length,

interleaved to degree 4 to 10, and another is the product code using two RS codes (with

distance 3 to 5), which result in a distance 15 to 25 code, with 30 to 50 bytes code length

[YAMA86, KURT87].

Figure 11.23 Code design format for CD-ROM.

OPTICAL DISK MEMORY CODES 505



The recent erasable optical disks or rewritable optical disks, called CD-RW, which are

a magneto-optical recording type, have similar error characteristic, and therefore RS codes

with large Hamming distances (i.e., long-distance RS codes) are effectively applied to

them as well [FUNK87, ITAO87, KATO87]. An example of the error length histogram for

magneto-optical disk is shown in Figure 11.24 [SAIT90a].

A powerful error correcting code has been applied to this type of optical disk, that is, a

shortened RS code with a minimum Hamming distance-17 and 10-way byte interleaving,

called long-distance code (LDC). The LDC codeword has 104 data bytes (byte ¼ 8 bits)

and 16 check bytes, that is, 120 code length in bytes. Figure 11.25 shows the data format of

10-2

10-1

1

10

10
2

10
3

10
4

10
5

1 10 10
2

Bit-error length (bits)

N
u

m
be

r 
of

 b
it

-e
rr

or
s

Figure 11.24 Example of a bit-error length distribution of themagneto-optical disk. Source: [SAIT90a].� 1990

IEICE Japan.

R
ec

or
d

in
g 

d
ir

ec
ti

on

104 Information bytes 16 Check bytes

10
 W

ay
-i

n
te

rl
ea

vi
n

g

R119

R239

R1079 R1078 R1077

R1197R1198R1199

R238 R237 R137 R136 R135 R134 R121 R120

R960

R1080R1081

R118 R117 R17 R16 R15 R14 R1 R0

.  .  .

.  .  .

.  .  .

.  .  .

.  .

.  .

.  .

.  .

Figure 11.25 Data format of LDC.

506 CODES FOR MASS MEMORIES



this code. This code can correct up to consecutive 80 erroneous bytes. The generator

polynomial of the code is expressed as

gðxÞ ¼
Y135
i¼120
ðxþ b88iÞ;

where b is a primitive element in GFð28Þ, generated by pðxÞ ¼ x8 þ x5 þ x3 þ x2 þ 1. This

powerful code requires a very complex decoding circuit. It also is required to finish the

decoding process within a disk rotation time, that is, to perform real-time error correction.

One-chip decoder LSI that satisfies this requirement has been fabricated using a 1.3 mm
CMOS process and mounted in 160-pin plastic QFP [YOSH90]. A Euclidean algorithm

[SUGI75] is applied to this decoding for computing the error byte locations and error values.

As an effective defect-tolerant technique, alternate data tracks or sectors are used in

order to switch the defective tracks or sectors to the spare ones [SAIT88]. An error control

strategy mixed with this defect management and powerful error correcting code can

achieve a highly reliable optical disk system [SAIT90a].

11.3.3 RS Product Codes for DVDs

Large-capacity optical DVDs (digital versatile discs) with 4.7 giga byte (GB) capacity,

such as DVD-ROM (read-only memory), DVD-R (recordable, write-once memory),

DVD-RW (rewritable), DVD-RAM, and DVDþRW, are now in wide use for audio-video

systems. In this type of optical disk more powerful error control scheme has proved to

reduce the error correction redundancy rate to approximately half of that of the CDs.

A DVD error correction scheme using the Reed-Solomon (RS) product code with much

more powerful error correction than the CIRC in CD has been applied across a large

amount of disc data. Figure 11.26 shows the information recorded on a DVD, formatted

Identification data

ECC

Others

.

.

.
User data

.

.

.

EDC

4

2

6

4 bytes

2,048
bytes

12
bytes

Control data

Error detection code
(EDC)

Main data

Figure 11.26 DVDData Sector with total 2,064 bytes.

OPTICAL DISK MEMORY CODES 507



into sectors. A sector is the smallest addressable part of the information track. A data

sector has 2,064 bytes, consists of main data with 2,048 bytes, control data with 12 bytes,

and the error detection code (EDC) with 4 bytes. In order to certify the identification data

(ID) in control data, two check bytes (ECC) are appended to correct single byte errors

in ID.

Like CD-ROMs, the CRC with 32 bits redundancy is given for the EDC in order to

check the miscorrection of the corrected data, or to detect uncorrectable errors. After the

EDC calculation over the data sectors, scrambling is performed to the 2,048 bytes of main

data in the sector in order to randomize the data.

After scrambling the main data in the data sectors, the check information generated by

the RS product code is added to each group of 16 data sectors to form an ECC block. This

ECC block forms a two-dimensional array of 208 rows by 182 columns in which 16 check

bytes for vertical check (VC) are generated by the (208, 192) RS code and then added to

each column, and similarly 10 check bytes for horizontal check (HC) are generated by

the (182, 172) RS code and then added to each of the 208 rows. These result in a

Reed-Solomon (RS) product code with 208 rows (192 data-rows þ 16 rows formed by

VC) and 182 columns (172 data columns þ 10 columns formed by HC). This is shown in

Figure 11.27. This RS product code can correct at least 5 bytes in each row and at least 8

bytes errors in each column. That is, at least 5� 8 bytes clustered errors can be corrected.

By several alternating calculations applied over row and column, much larger erroneous

bytes can be corrected or detected.

The rows for VC are interleaved with the data rows in a regular order, which forms a

recording sector with (12 data rows þ 1 VC row). Hence the interleaved ECC block is

divided into 16 recording sectors. This way each recording sector contains the original

data with 12 rows � 172 bytes/row þ 12 � 10 HC-bytes þ 1 row of 182 bytes, that is, a

total of 2,366 bytes. This is shown in Figure 11.28. The DVD-ROM, DVD-R, and

DVD-RW have the same sector format and ECC block format.

12 rows    1 Data sector

172 Data bytes 10 HC

bytes

19
2 

D
at

a 
by

te
s

16
 V

C

by
te

s
.    .    .

.    .    . .    .

.    .

HC: Horizontal check,  VC: Vertical check

Figure 11.27 ECCBlock with a product code of a (208,192) RS code � a (182,172) RS code.

508 CODES FOR MASS MEMORIES



A high-speed VLSI architecture for the RS product code decoder has been proposed,

and implemented using a Euclidean algorithm or a Berlekamp-Massey algorithm to solve

the key equations of the RS code with a large Hamming distance [YOSH90, WILH99,

CHAN01, LEE03]. These equations were shown in Subsections 2.3.5 and 2.3.6.

EXERCISES

11.1 For the ORC in the 7-track tape memory unit, do the following:

(a) Design an ORC that consists of five information bytes, B1, B2, B3, B4 and B5,

and two check bytes, C and P, where a byte has 6 bits. The binary irreducible

polynomial gðxÞ with degree 6 is shown below.

HC : Horizontal Check,   VC : Vertical Check

Data HC

172 Data bytes 10 HC bytes

1 Recording
sector

16 Recording
sectors VC is row-interleaved

12 Data rows

1 VC row

.

.

.

.

.

.

(172 columns) (10 columns)

= 208 rows
16 x 13

Figure 11.28 Recording sectors, eachwith (12 data rows þ 1interleavedVCrow).

Coefficients of polynomial gðxÞ Exponent

g0 g1 g2 g3 g4 g5 g6 e

1 1 0 0 0 0 1

1 1 1 0 1 0 1

1 1 1 0 0 1 1

1 0 0 1 0 0 1

1 0 1 1 0 1 1

63

21

63

9

63

EXERCISES 509



(b) Design the LFSR encoder that produces check bytes P and C. The state of

the LFSR is changed by a clock pulse. Next, for the following five information

bytes

B1 ¼ ð 0 1 1 0 1 0 Þ;
B2 ¼ ð 1 0 1 1 0 1 Þ;
B3 ¼ ð 1 1 1 0 0 0 Þ;
B4 ¼ ð 0 0 1 1 1 0 Þ;
B5 ¼ ð 1 1 0 1 1 1 Þ;

give the state sequence of the LFSR encoder clock by clock in which

information bytes B5; B4; B3; B2; B1 are entered in this order to the LFSR

encoder, and finally check byte C is produced.

(c) In the five information bytes above, assume that the fourth track data Z3 has an

error E ¼ ð 0 1 1 0 1 1 Þ. Give the state sequence of the LFSR decoder clock

by clock in which the LFSR decoder corrects the error E with forward shift of

the LFSR as well as with backward shift of the LFSR. Show that, in general,

the backward shift of the LFSR decoder has high possibility to decode faster

than the forward shift.

11.2 In an AXP code, consider the case where set A is being corrected for errors in a

known erroneous track, and another unknown track in set A begins to be affected

by errors. Show that these erroneous tracks of set A can be corrected, provided that

set B has at most one known erroneous track.

11.3 Show that the AXP code can correct track errors of up to one unknown erroneous

track in one set and up to one unknown or two known erroneous tracks in the

other set.

11.4 Show that the AXP code can correct track errors of up to two known erroneous

tracks in one set and up to one unknown or two known erroneous tracks in the

other set.

11.5 Design the encoding circuit of the MSS code shown in Eq. ð11:25Þ with

Tl ¼ T68 ¼

00001000

10001100

01000110

00101011

10010101

01000010

00100001

00010000

266666666666664

377777777777775
:

11.6 Prove that the code adopted in MSS, shown in Eq. (11.25), has the following

characteristics:

510 CODES FOR MASSMEMORIES



(a) If the code is used for correction of single-byte errors, then it does not

miscorrect any combination of double-bit errors.

(b) If the code is used for correction of single-bit errors, then it does not

miscorrect any combination of a single-byte error with single-bit error in

another byte.

11.7 For the Fire code generated by gðxÞ ¼ ðx9 þ 1Þðx5 þ x2 þ 1Þ, do the following:

(a) Find the code length of this code.

(b) Find the burst error correction length of this code.

(c) Suppose that an error burst bðxÞ ¼ x6 þ x5 þ x4 þ x3 þ x2 has occurred. Show

the decoding procedure of this case using a high-speed decoding method.

(d) Design the high-speed decoder of this code.

11.8 Design the high-speed decoder for the code generated by gðxÞ ¼
ðx11 þ 1Þðx3 þ xþ 1Þðx4 þ xþ 1Þ. Determine the error detection and correction

capability of this code.

11.9 Discuss the decoding procedure of the two-level coding in IBM 3390J and 3380K

disk systems, shown in Figure 11.19.

11.10 In the CIRC systems, assume that half of the data information shown below is in

errors. Show how to correct these errors using the codes C1 and C2, each having a

minimum Hamming distance dmin ¼ 3.

Q-4

Q4

Q8

Q12

Q16

Q20

D0 D1 D2 D3 P0

D4 D5 D6 D7 P4

D8 D9 D10 D11 P8

D12 D13 D14

D17 D18 D19

D21 D22 D23

D25 D26 D27

P12

P16

P20

P24

D16

D20

D24

D15

Q0

C1

C2 Dk :  symbol Dk error

:  data symbols

:  check symbols of code C2

:  codeword Ci, i = 1,2

Dk

Qj

Pi

:  check symbols of code C1

11.11 Determine the error correction capability of the CIRC in which the codes C1 and

C2 both have minimum Hamming distance dmin ¼ 2.

11.12 For the two-dimensional code, do the following:

(a) Show that the following ð20; 12Þ two-dimensional code with parity-check

bits 16, 13, 10, 11, 15, 19, 3, 7 can correct any burst error of length up to 3

bits in readout data if the data bits are read diagonally instead of horizontally

(i.e., readout order: 0! 1! 2! 3! 16). The horizontal syndrome is

represented by a vector ðh0 h1 h2 h3 h4Þ, where hi is modulo-2 sum of all

the received bits in row i. Similarly the vertical syndrome is represented by

a vector ðv0 v1 v2 v3Þ, where vj is modulo-2 sum of the received bits in

column j.

EXERCISES 511



0

4

8

12

16 13 10 7

9 6 3

5 2 19

1 18 15

17 14 11

h1

v0

h0

h2

h3

h4

v1 v2 v3

(5 × 4, 4 × 3) code

(b) Prove that, in general, the ðk2 þ 1Þ � ðk1 þ 1Þ two-dimensional code, in which

the last row and the last column contain parity bits, can correct any burst error of

length up to k1 if and only if the data bits are read diagonally and k2 	 2ðk1 � 1Þ.

k1

k2

Check
bits

((k 2 + 1) × (k1 + 1), k1k 2) code

11.13 Discuss error correction capability and redundancy of the RS product codes in

DVDs as compared to the CIRC and the LDC in CDs.

REFERENCES

[ADI84] W. Adi, ‘‘Fast Burst Error-Correction with Fire Code,’’ IEEE Trans. Comput., C-33

(July 1984): 613–618.

[AVIZ83] A. Avizienis, ‘‘Two-Dimensional Low-Cost Arithmetic Error Codes,’’ Dig., 6th IEEE Int.

Symp. on Comput. Arithmetic (June 1983): 169–172.

[BLAH83] R. E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley (1983).

[BLAU85] M. Blaum and R. L. McEliece, ‘‘Coding Protecting for Magnetic Tapes: AGeneralization

of the Patel-Hong Code,’’ IEEE Trans. Info. Theory, IT-31 (September 1985): 690–693.

[BLAU86] M. Blaum, P. G. Farrell, and H. C. A. van Tilbory, ‘‘A Class of Burst Error-Correcting

Array Codes,’’ IEEE Trans. Info. Theory, IT-32 (November 1986): 836–839.

[BLAU95] M. Blaum, J. Brady, J. Bruck, and J. Menon, ‘‘EVENODD: An Efficient Scheme for

Tolerating Double Disk Failures in RAID Architectures,’’ IEEE Trans. Comput., 44 (February

1995): 192–202.

[BLAU96] M. Blaum, J. Bruck, and A. Vardy, ‘‘MDS Array Codes with Independent Parity

Symbols,’’ IEEE Trans. Info. Theory, 42 (March 1996): 529–542.

512 CODES FOR MASS MEMORIES



[BLAU99] M. Blaum and R.M. Roth, ‘‘On Lowest Density MDS Codes,’’ IEEE Trans. Info. Theory,

45 (January 1999): 46–59.

[BOSE84b] B. Bose and T. R. N. Rao, ‘‘Unidirectional Error Codes for Shift-Register Memories,’’

IEEE Trans. Comput., C-33 (June 1984): 575–578.

[BOSE84c] B. Bose, ‘‘Two Dimensional ARC Codes,’’ Dig., 14th IEEE Int. Symp. on Fault-Tolerant

Computing (June 1984): 324–329.

[BOSS72] D. C. Bossen, R. A. Henle, M. Y. Hsiao, G. A. Maley, and W. D. Pricer, ‘‘System for

Expanded Detection and Correction of Errors in Parallel Binary Data Produced by Data Tracks,’’

US Patent 3675200 (July 4, 1972).

[BROW70] D. T. Brown and F. F. Sellers, ‘‘Error Correction for IBM 800-Bit-per-Inch Magnetic

Tape,’’ IBM J. Res. Dev., 14 (July 1970): 384–389.

[CHAN01] H. -C. Chang, C. B. Shung, and C. -Y. Lee, ‘‘A Reed-Solomon Product-Code (RS-PC)

Decoder Chip for DVD Applications,’’ IEEE J. Solid-State Circ., 36 (February 2001): 229–238.

[CHEN94] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson, ‘‘RAID: High-

Performance, Reliable Secondary Storage,’’ ACM Comput. Surveys, 26 (June 1994): 145–185.

[CHIE69] R. T. Chien, ‘‘Burst-Correcting Codes with High-Speed Decoding,’’ IEEE Trans. Info.

Theory, IT-15 (January 1969): 109–113.

[DOI79] T. Doi, K. Odaka, G. Fukuda, and S. Furukawa, ‘‘Cross Interleave Code for Error Correction

of Digital Audio Systems,’’ Proc. 64th AES Convention (November 1979).

[FIRE59] P. Fire, ‘‘AClass of Multiple-Error-Correcting Binary Codes for Non-independent Errors,’’

Sylvania Report, RSL-E-2, Sylvania Electronic Defense Laboratory, Reconnaissance, Systems

Division (1959).

[FUJA89] T. Fuja, C. Heegard, and M. Blaum, ‘‘Cross Parity Check Convolutional Codes,’’ IEEE

Trans. Info. Theory, 35 (November 1989): 1264–1276.

[FUNK87] A. W. Funkenbusch, T. Rinehart, D. W. Siitrari, Y. S. Hwang, and R. N. Gardner,

‘‘Magneto-Optics Technology forMass Storage Systems,’’Dig., 8th IEEE Symp. onMass Storage

Systems (May 1987): 101–106.

[GIBS92] G. A. Gibson, Redundant Disk Arrays, MIT Press (1992).

[GOTO80] M. Goto, ‘‘Rates of Unidirectional 2-Column Errors Detectable by Arithmetic Codes,’’

Dig., 10th IEEE Int. Symp. on Fault-Tolerant Computing (October 1980): 21–25.

[GLOV91] N. Glover and T. Dudley, Practical Error Correction Design for Engineers, rev. 2d ed.,

Cirrus Logic (1991).

[HELL94] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, and D. A. Patterson, ‘‘Coding

Techniques for Handling Failures in Large Disk Arrays,’’ Algorithmica, 12 (1994): 182–208.

[HODG80] P. Hodges, W. J. Schaeuble, and P. L. Shaffer, ‘‘Error Correcting System for Serial by

Byte Data,’’ US Patent 4185269 (January 22, 1980).

[HOWE84] T. D. Howell, ‘‘Analysis of Correctable Errors in the IBM3380 Disk File,’’ IBM J. Res.

Dev., 28 (March 1984): 206–211.

[HSIA81] M. Y. Hsiao, W. C. Carter, J. W. Thomas, andW. R. Stringfellow, ‘‘Reliability, Availability

and Serviceability of IBM Computer System: AQuarter Century of Progress,’’ IBM J. Res. Dev.,

25 (September 1981): 453–465.

[IMAI90] H. Imai (ed.), Essentials of Error-Correcting Coding Techniques, Academic Press (1990),

chs. 7, 8.

[INOU78] T. Inoue, Y. Sugiyama, K. Ohnishi, T. Kanai, and K. Tanaka, ‘‘A New Class of Burst-

Error-Correcting Codes and Its Application to PCM Tape Recording Systems,’’ Proc. Nat.

Telecommun. Conf. (1978): 20.6.1–20.6.5.

[ITAO85] K. Itao and S. Hosakawa, ‘‘An Automated Mass Storage System with Magnetic Tape

Cartridge,’’ Dig., 7th IEEE Symp. on Mass Storage Systems (November 1985): 87–90.

REFERENCES 513



[ITAO87] K. Itao, A. Yamaji, S. Hara, and N. Izawa, ‘‘Magneto-Optical Mass Storage System with

130mm Write-Once Disk Compatibility,’’ Dig., 8th IEEE Symp. on Mass Storage Systems

(May 1987): 92–97.

[KATO87] O. Kato, K. Kurosawa, K. Iwakuni, and M. Shimbo, ‘‘Development of Error Correction

Method and LSI for Optical Disk Data Storage System,’’ Paper of Technical Group on Computer

Architecture, IPS Japan (September 1987): 67–73.

[KURT87] C. Kurtz, ‘‘Development of a High-Capacity Performance Optical Storage System,’’Dig.,

8th IEEE Symp. on Mass Storage Systems (May 1987): 107–111.

[LEE93] L. -W. Lee, J. -F. Wang, J. -Y. Lee, and J. -D. Shie, ‘‘Dynamic Search-Window Adjustment

and Interlaced Search for Block-Matching Algorithm,’’ IEEE Trans. Circ. Syst. Video Technol., 3

(February 1993): 85–87.

[LEE03] H. Lee, ‘‘High-Speed VLSI Architecture for Parallel Reed-Solomon Decoder,’’ IEEE Trans.

VLSI Syst., 11, (April 2003): 288–294.

[LEIS84] E. L. Leis, ‘‘Data Integrity in Digital Optical disks,’’ IEEE Trans. Comput., C-33

(September 1984): 818–827.

[LIN83] S. Lin and D. J. Costello, Jr., Chap. 16.2 in Error Control Coding: Fundamentals and

Applications, Prentice Hall (1983).

[PATE74] A. M. Patel and S. J. Hong, ‘‘Optimal Rectangular Code for High Density Magnetic

Tapes,’’ IBM J. Res. Dev., 18 (November 1974): 579–588.

[PATE80] A. M. Patel, ‘‘Error Recovery Scheme for the IBM3850 Mass Storage System,’’ IBM

J. Res. Dev., 24 (January 1980): 32–42.

[PATE85] A. M. Patel, ‘‘Adaptive Cross-Parity (AXP) Code for a High-Density Magnetic Tape

Subsystem,’’ IBM J. Res. Dev., 29 (November 1985): 546–562.

[PATE86] A. M. Patel, ‘‘On-the-Fly Decoder for Multiple Byte Errors,’’ IBM J. Res. Dev., 30

(May 1986): 259–269.

[PATE89] A. M. Patel, ‘‘Two-Level Coding for Error Control in Magnetic Disk Storage Products,’’

IBM J. Res. Dev., 33 (July 1989): 470–484,

[PATT88] D. A. Patterson, G. A. Gibson, and R. H. Katz, ‘‘A Case for Redundant Arrays of

Inexpensive Disks (RAID),’’ Proc. Int. Conf. on Management of Data (SIGMOD), ACM (1998):

109–116.

[REED60] I. S. Reed and G. Solomon, ‘‘Polynomial Codes over Certain Finite Fields,’’ SIAM J. Appl.

Math., 8 (June 1960): 300–304.

[ROTH98] R. Roth and G. Seraussi, ‘‘Reduced-Redundancy Product Codes for Burst Error

Correction,’’ IEEE Trans. Info. Theory, 44 (July 1998): 1395–1406.

[SAIT86] M. Saito, T. Takeda, and M. Nunotani, ‘‘An Evaluation of Error Correcting Codes for

Optical Disks’’ (in Japanese), Paper of Technical Group, IECE Japan IT86–48 (1986).

[SAIT88] M. Saito and T. Takeda, ‘‘Optical Disk Redundancy Design Considering Bit-Error

Characteristics’’ (in Japanese), Trans. IEICE Japan, J71-C (February 1988): 287–295.

[SAIT90a] M. Saito, T. Takeda, and K. Itao, ‘‘Optimum Error Control Strategy for Optical Micro-

Disk Subsystems,’’ Trans. IEICE Japan, E73 (May 1990): 712–717.

[SAIT90b] M. Saito, ‘‘Optical Disk Reliability Estimation Considering Error Control Strategy’’

(in Japanese), Trans. IEICE Japan, J73-C-II (February 1990): 112–118.

[SAKO85] Y. Sako, T. Suzuki, T. Furuya, and S. Furukawa, ‘‘Data Quality of CD-ROM’’

(in Japanese), Paper of Technical Group, IECE Japan, IT85-31 (1985).

[SUGI75] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, ‘‘A Method for Solving Key

Equation for Decoding Goppa Codes,’’ Info. Contr., 27 (1975): 87–95.

[TANA80] K. Tanaka, M. Ozaki, T. Inoue, and T. Yamaguchi, ‘‘On a Tape Format for Reliable PCM

Multi-Channel Tape Recorders,’’ Proc. 66th AES Convention (May 1980): 1669.

514 CODES FOR MASS MEMORIES



[TSUN83] Y. Tsunoda, M. Miyazaki, and S. Abe, ‘‘Large Capacity Optical Disk File Unit’’

(in Japanese), Nikkei Electronics (November 21, 1983): 189–213.

[VRIE80] L. B. Vores, K. A. Imink, J. G. Nibor, H. Hoeve, T. Doi, K. Okada, and H. Ogawa, ‘‘The

Compact Disc Digital Audio System-Modulation and Error Correction,’’ Proc. 67th AES

Convention (October 1980): 1674 (H-8).

[YAMA86] A. Yamagishi, ‘‘Encoder and Decoder LSIs for BCH Code and RS Code’’ (in Japanese),

Proc. 1986 IEEE Workshop on Coding Theory and Its Applications, WCTA86-2 (August 1986).

[WEST] Western Digital, WD1100-06 ECC/CRC Logic, Data Catalog, Western Digital Corp.

[WILH99] W.Wilhelm, ‘‘A New Scalable VLSI Architecture for Reed-Solomon Decoders,’’ IEEE J.

Solid-State Circ., 34 (March 1999): 388–396.

[XU99] L. Xu and J. Bruck, ‘‘X-Code: MDS Array Codes with Optimal Encoding,’’ IEEE Trans.

Info. Theory, 45 (January 1999): 272–276.

[YAMA91] I. Yamada, M. Saito, A. Watabe, and K. Itao, ‘‘Automated Optical Mass Storage Systems

with 3-Bean Magneto-Optical Disk Drives,’’ Dig., 11th IEEE Symp. on Mass Storage Systems

(October 1991): 149–154.

[YOSH90] H. Yoshida, A. Yamagishi, T. Inoue, and K. Tanaka, ‘‘Erasures and Error Correction LSI

for Optical Disk Systems’’ (in Japanese), Trans. IEICE Japan, J73-A (February 1990): 261–268.

[ZEMO91] G. Zmor and G. D. Cohen, ‘‘Error-Correcting WOM-Codes,’’ IEEE Trans. Info. Theory,

37 (May 1991): 730–734.

REFERENCES 515



CONTENTS

12.1 Self-checking Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

12.1.1 General Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

1 Fault Secure and Self-testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

2 Error Secure and Error Preserving . . . . . . . . . . . . . . . . . . . . . . . 525

3 Self-Checking Logic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 527

12.1.2 Checker Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

12.2 Self-testing Checkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

12.2.1 Parity Code Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

12.2.2 Two-Rail Code Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

12.2.3 Generalized Prediction Checker (GPC) . . . . . . . . . . . . . . . . . . . . . . 542

12.3 Self-checking ALU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

12.3.1 Parity-Checked Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

12.3.2 Addition with Checksum Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

12.3.3 ALU with Parity-Based Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

12.4 Self-checking Design for Computer Systems . . . . . . . . . . . . . . . . . . . . . . . 570

12.4.1 Coding for Dependable Computer Systems . . . . . . . . . . . . . . . . . . . 571

1 Dependable Special Purpose Systems . . . . . . . . . . . . . . . . . . . . . 571

2 (4, 2) Concept Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572

3 Dependable General Purpose Systems . . . . . . . . . . . . . . . . . . . . . 574

12.4.2 Coding for VLSI Processors / Microprocessors . . . . . . . . . . . . . . . . 578

1 Duplicate VLSI Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

2 Self-checking Microprocessors . . . . . . . . . . . . . . . . . . . . . . . . . . 579

3 On-Chip ECCs in Recent Microprocessors . . . . . . . . . . . . . . . . . 583

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590



12
Coding for Logic and

System Design

A number of techniques exist nowadays for improving computer reliability and

availability [ANDE81, SIEW82]. The general technique of standby sparing seems to

have found much acceptance in logic and system design. Standby sparing requires a

modular design in which several identical modules of each type are present, some being

used actively to perform the computing function and the others waiting to be switched in

when one of the active modules fails. An ultrareliable computer, the JPL self-testing and

repairing (STAR) computer [AVIZ71], for example, makes extensive use of the techniques

of modularity and standby sparing.

The fundamental task of standby sparing is to detect and localize a malfunction so that

restructuring of the computer can take place by switching the faulty module out of service.

Thus an important part of the design of a highly reliable computer utilizing the standby

sparing technique is an efficient and complete method of error detection and fault location

[CART71a]. Errors caused by faults may be detected by hardware check circuits (i.e.,

checkers). The recently devised diagnostic approach for fault isolation in logic systems

also uses checkers extensively to capture errors, interpret their syndromes, and locate the

faulty positions [BOSS82]. A circuit whose faults or malfunctions are always checked by

itself is said to be self-checking [WAKE78].

Self-checking circuits offer a number of advantages, the most obvious of which is

the immediate detection of errors during online operation. Another is the capability of

detecting errors caused by transient faults. Further self-checking circuits are becoming

more attractive with the advances in VLSI.

Self-checking circuits rely on redundancy to detect errors. That is, during error-free

operation the circuit outputs cannot assume all possible states. This redundancy by a check

circuit is to determine if they form a proper codeword; if they do not, an error is presumed.

Hence the theory of error detecting codes is important in the design of these circuits.

Code Design for Dependable Systems: Theory and Practical Applications, by Eiji Fujiwara
Copyright # 2006 John Wiley & Sons, Inc.

517



Some error detecting codes, such as simple parity-check codes, checksum codes, low-

cost residue codes, and some unidirectional error detecting codes (e.g., m-out-of-n codes

and Berger codes), have been studied for application. These applications are for logic

circuits, such as the arithmetic logic unit (ALU), the field programmable gate array

(FPGA), and some kinds of decoding circuits. Considerable literature has appeared on the

implementation of these checking circuits. Checkers can no longer be assumed to be error

free in computer systems because check circuits are constructed from the same

components as the circuits that perform the computer operations and hence are subject

to the same types of faults. Clearly, a good design is important to have an effective self-

checking checker.

This chapter discusses the self-checking concept and how the error detecting or

correcting codes are applied to some logic circuits and systems. An implementation

method for a self-checking checker is also discussed. That is, this chapter demonstrates

how these checkers are made self-testing—how they can be designed so that if there are

faults in the checker, the checker itself detects them. In such self-testing checkers we

have to tend to the input space of the checker because the checker is generally an

embedded circuit and not all input codewords are given to the checker. This chapter also

provides some examples of self-checking ALUs and self-checking computers in which

self-testing checkers are extensively used. Again, it should be noted that in today’s

microprocessors, some types of error detecting / correcting codes are embedded on

chips, as is the case extensively with on-chip ECCs. This chapter also briefly covers

these innovations.

12.1 SELF-CHECKING CONCEPT

In order to detect transient faults, as well as stuck faults in logic circuits, many kinds of

checkers, such as parity code checkers, duplication checkers, parity-prediction checkers,

and residue code checkers, have already been applied in an adaptive manner to some

functional circuits (e.g., adders, multipliers, decoding circuits, and data path circuits

[SELL68]). Further the theory of self-checking circuits (e.g., totally self-checking (TSC)

circuits, strongly fault-secure (SFS) circuits, and error-secure (ES) circuit) has been

studied extensively [CART68, CART71b, ANDE71, WAKE74, SMIT78, NICO84,

NANY88]. Some practical design methods for self-checking circuits appear in [CART77,

SMIT83, NANY88].

Here we study both the general concept of the self-checking circuits and the checker

concept for the self-checking checkers.

12.1.1 General Concept

Basically the logic circuits should be designed such that they indicate any malfunction

during normal operation and not produce an erroneous result without an error indication.

In some actual circuits any fault from a specified set of faults can cause a detectable

erroneous output without also producing an error signal [CART68, ANDE71]. The general

structure of the self-checking circuits is shown in Figure 12.1; the error indicator output Z

must be designed to produce an error signal for some normal circuit input whenever a fault

from a specified set of faults occurs within the circuit.

518 CODING FOR LOGIC AND SYSTEM DESIGN



In the design of the circuits in Figure 12.1, the circuitG is considered to be divided into

two connected circuit blocks, the functional circuit block L and the check circuit block

CK. These circuit blocks are shown in Figure 12.2.

First we discuss self-checking functional circuits and then extend that to self-checking

functional networks. Check circuits will be covered in a subsequent section.

We begin with a combinational circuit L that produces an output vector YðX; f Þ that is a
function of the input vector X and a fault f 2 F, which is a specified set of faults in the

circuit. The absence of a fault is called a null fault and is denoted by l. If the circuit L has n

inputs, then the input space �x of L is the set of all 2n input vectors. Similarly, if L has r

outputs, then the set of all 2r output vectors is the output space �y of L. In general, logic

circuits will receive only a subset of their input space during ‘‘normal’’ (i.e., fault-free)

operation; this subset is called the input codespace N. Then �x � N is the input

noncodewords. Here we consider only circuits whose outputs under normal operation are

codewords, and therefore we also define for each circuit its output codespace S. Then

Figure 12.1 Self-checking circuit.

Figure 12.2 Self-checking circuitmodel.

SELF-CHECKING CONCEPT 519



�y � S is the output noncodespace. For a given input X 2 N, a fault may or may not cause an

error in the output. If the fault does cause an error, it may change the output, either to a

noncodeword (i.e., a detectable error), or to a different codeword (i.e., an undetectable error).

1. Fault Secure and Self-testing

Definition 12.1 A circuit L is fault secure (FS) for an input set N and a fault set F if for

input X in N and for any fault f in F, YðX; f Þ ¼ YðX; lÞ, or YðX; f Þ 62 S. &

That is, the output of a fault-secure circuit is always either the correct codeword or

a noncodeword but never a wrong codeword for any fault in F. This is illustrated in

Figure 12.3.

Definition 12.2 A circuit L is self-testing (ST) for an input set N and a fault set F if for

every fault f in F there is some input X in N such that YðX; f Þ is not in S. &

Figure 12.4 illustrates this definition. By this definition, an input X for which YðX; f Þ is
not in S, or YðX; f Þ 6¼ YðX; lÞ, is called a test pattern for f . If each input in N occurs

during the normal operations of the circuit, then self-testing guarantees that all faults in F

produce detectable errors during normal operation.

The properties of self-testing and fault secureness are further illustrated in Figure 12.5.

Shown in the figure are also the set of all faults and its subset F, the input space �y and its
subset S. For example, F shows the set of single-stuck faults, or the set of unidirectional

faults. The outside of F shows all possible faults excluding the faults in F. For input

vectors, N shows the set of normal input codewords, and the outside of N shows the set of

input noncodewords. For output vectors, S shows the set of output codewords, and outside

of S shows the set of output noncodewords.

In the absence of faults, inputs from N produce outputs in S, as indicated by the

translation YðX; lÞ for various X. Self-testing is demonstrated by the existence of a test

or

Y(X,f)

Circuit L

f    F

X    N Y (X, f) = Y (X,λ)
or

Y (X, f)      S

Input
space Ωx

N

X    N

Not permissible

Output
space Ωy

Y(X, λ)

S

Figure 12.3 Fault-secure circuit.

520 CODING FOR LOGIC AND SYSTEM DESIGN



pattern in N for each of the faults f1 and f2 in F (X2 for f1, and X1 and X2 for f2 are test

patterns). The fault-secure property is illustrated by the transition of YðX1; f Þ for the

various faults f . In the presence of a fault from F, the output is either correct (e.g.,

YðX1; f1Þ), or it is a noncodeword (e.g., YðX1; f2Þ). However, faults outside of F may

produce erroneous codeword outputs (e.g., YðX2; f3Þ) that are undetectable.

Definition 12.3 A circuit L is totally self-checking (TSC) if it is both self-testing and

fault secure. &

Self-testing is necessary in addition to fault secureness because even if the circuit

output is always a correct codeword for a single fault in the fault-secure circuit, the second

fault may appear after some time has elapsed, and then this circuit may not detect these

two faults.

Y(X, f)

Circuit L

f    F

X    N Y (X, )     S   for all  X    N
Y (X, f)     S   for some  X    N
     F

Input space
Ωx

N

Output space
Ωy

Y(X, λ )

S

X    N X    N

λ

λ

Figure 12.4 Self-testing circuit.

f 3 f 1 f 2

All faults

F

Input space Ωx Output space Ωy

Y(X1, f1)

Y(X1, λ)

Y(X1, f2)

Y(X2, f1)

Y(X2, f3)

Y(X2, λ)

Y(X2, f2)

N                                                                                                                S

X1

X2

Figure 12.5 Examples of self-testing and fault secure properties [WAKE78].

SELF-CHECKING CONCEPT 521



Example 12.1

Figure 12.6 shows a circuit that computes in parallel the exclusive-OR (XOR) of

two input vectors, A ¼ ða0 a1 . . . an�1 apÞ and B ¼ ðb0 b1 . . . bn�1 bpÞ, where ap
and bp are even-parity bits. It is apparent that XOR of any two even-parity codewords

is also an even-parity codeword. That is, an output vector C ¼ ðc0 c1 . . . cn�1 cpÞ,
where cp is a parity bit, is also an even-parity codeword. This property is called code

preserving, and the code is said to be preserved under this operation. We now consider

F to be the set of single faults. Input codespace N is defined as the set in which both A

and B are even-parity codewords. Output codespace S is defined as the set of even-

parity codewords (shown in Figure 12.7).

.

.

.

b0

b1

a0

a1

c0

c1

bn -1

bp

an -1

ap

cn -1

cp

L

A = (a0 a1 . . . an -1 ap)

B = (b0 b1 . . . bn -1 bp)

C = (c0 c1 . . . cn -1 cp)

: Exclusive-OR (XOR)
  gate

Figure 12.6 Self-checking exclusive-ORcircuit.

F = {single faults}

A

B
CCircuit L

Input codespace:
N = { (A,B) | A and B:
      even-parity codewords}

N

Output codespace:
S = {C | C:
      even-parity codewords}

Input space x Output space y

S

Figure 12.7 Input and output codespaces for the example circuit of Figure 12.6.

522 CODING FOR LOGIC AND SYSTEM DESIGN



The even-parity code is a distance-2 linear code, and the circuit of Figure 12.6 is code

preserving. This circuit is also fault secure for all single faults, since a single fault

produces at most a distance-1 change in the output. That is, single faults produce single

errors in the output, or produce masked output (i.e., correct output). Therefore the

output always belongs to noncodespace, or correct output. This satisfies the definition

of fault secureness. As for the self-testing property, we can easily find out test patterns

for each single fault (see Table 12.1). For example, for a single-stuck fault input in an

XOR gate (e.g., stuck-at ‘0’ fault in ai or bi input), the codeword inputs A and B that

include ðai; biÞ ¼ ð1; 1Þ are the test pattern. Clearly, the circuit shown in Figure 12.6 is
self-testing and fault secure, and hence is TSC for all codeword inputs under single

faults.

From the standpoint of reliability, TSC is ideal. However, in general, self-testing is a

rather difficult condition to satisfy perfectly, as compared to fault secureness. This is

because there are sometimes not enough inputs N to detect every fault in F. With this

difficulty in mind, another self-checking concept is proposed in [SMIT78]. It has to do

with a fault sequence h f1; f2; . . . ; fni, where fi 2 F, 1 � i � n, is defined to represent the

event where fault f1 occurs, followed later by f2 (at which point both f1 and f2 are present in

the circuit), and so forth, until fn occurs. It is assumed that once a line becomes stuck-at ‘0’

or ‘1’, it remains stuck-at that value; also assumed is that faults occur one at a time and that

between any two fault occurrences there is a time interval sufficient for all input code

combinations to be applied to the circuit.

The following definitions are based on [SMIT78].

Definition 12.4 Assume that circuit L always gives correct codewords for a sequence of

fewer than m faults (accumulated m� 1 faults), 2 � m � n, in F, and for all X 2 N.

That is,

YðX; h f1; f2; . . . ; fm�1iÞ ¼ YðX; lÞ:

Also assume that for the m-fault sequence h f1; f2; . . . ; fm�1; fmi there is some X 2 N

such that

YðX; h f1; f2; . . . ; fmiÞ 62 S:

Then L is said to be strong fault secure (SFS) for h f1; f2; . . . ; fmi. &

Definition 12.5 A circuit L is strongly fault secure (SFS) for F ¼ f f1; f2; . . . ; fmg if it
is SFS for all sequences of faults in F. &

Figure 12.8 illustrates the concept of SFS.

TABLE 12.1 Test Patterns ðai ;biÞ for Single Faults

Input single fault Output single fault

Stuck-at ‘0’ Stuck-at ‘1’ Stuck-at ‘0’ Stuck-at ‘1’

(1,1) (0,0) (1,0) or (0,1) (0,0) or (1,1)

SELF-CHECKING CONCEPT 523



Example 12.2

For the circuit L given in Figure 12.9, let faults in F occur in the following

sequence:

f1: stuck-at ‘1’ fault at one input of the AND1 gate.

f2: stuck-at ‘0’ fault at the input of the NOT gate.

f3: stuck-at ‘1’ fault at one input of the AND2 gate.

f4: stuck-at ‘1’ fault at the output of the AND1 gate.

<f1, f2, . . ., fm -1>
Circuit L

Fewer than m faults 

X    N Y(X, <f1, f2, . . ., fm-1>) = Y(X, )

Y(X, <f1, f2, . . ., fm-1>)
SN

X    N Y(X, )

m faults

Y(X, <f1, f2, . . ., fm>)    S
<f1, f2, . . ., fm -1, fm>

Circuit L

X    N

Y(X, <f1, f2, . . ., fm>)

x y

SN

X    N

Figure 12.8 SFS circuit for hf1; f2; . . . ; fm�1; fmi.

AND1

NOT

AND2

OR

(1 0 0
0 1 0)= N

x1

x2

f1: stuck-at ‘1’

f2: stuck-at ‘0’

f3: stuck-at ‘1’

f4: stuck-at ‘1’

1 0
1 0 = S

F = {f1, f2, f3, f4}

Figure 12.9 Example SFS circuit for hf1; f2; f3; f4i.

524 CODING FOR LOGIC AND SYSTEM DESIGN



In this case, circuit L is fault secure for input X, X 2 N,

N ¼ x1
x2

� �� �
¼ 0

0

� �
;

0

1

� �
;

1

0

� �� �
;

and for the fault sequence h f1; f2; f3i, since

YðX; h f1; f2; f3iÞ ¼ YðX; lÞ for all X 2 N:

That is, circuit L always gives correct output regardless of the fault sequences: h f1i,
h f1; f2i, and h f1; f2; f3i.

Next, let the stuck-at ‘1’ fault f4 occur at the output of the AND1 gate. For

X1 2
0

0

� �
;

0

1

� �� �
, the circuit manifests itself as

YðX1; h f1; f2; f3; f4iÞ ¼
1

0

� �
62 S:

Therefore the circuit L is SFS for the fault sequence h f1; f2; f3; f4i.

It can be shown that any SFS circuit satisfies TSC conditions. Furthermore, if a

circuit is not SFS, it is always possible to produce an erroneous code output prior to a

noncode output. Hence SFS circuits form the largest class of circuits to satisfy TSC

conditions.

2. Error Secure and Error Preserving
Note that both fault secureness and self-testing specify only the behavior of the circuit for

codeword inputs. That is, inputs are always assumed to be error free. For some circuits,

such as self-checking checkers, we are also interested in the behavior of the circuit for

noncodeword inputs. When the interconnection of self-checking circuit blocks is

considered, it is necessary to examine the mapping of the input noncodeword, since

under failures in previous circuit blocks a circuit block might receive noncodeword inputs.

Now we define a pair ðXp; XqÞ where Xp is a member of the input codespace of the

circuit L and Xq is member of the input noncodespace. The significance of the ordered pair

is that Xq represents an erroneous input that may be received by L instead of Xp. That is,

Xq ¼ Xp þ E, where Xp 2 N, Xq 2 �x � N, and E expresses an input error. The circuit L
we consider here is assumed to be fault free, and Xp and Xq are entirely dependent on

circuit blocks that are previous to L.

Definition 12.6 [SMIT76] A circuit L with output codespace S is error secure (ES) for

noncodespace (input) �x � N if for any input Xq in �x � N, where Xq ¼ Xp þ E,

Xp 2 N, E 6¼ 0.

YðXq; lÞ 62 S or YðXq; lÞ ¼ YðXp; lÞ: &

Figure 12.10 illustrates this definition.

SELF-CHECKING CONCEPT 525



If the circuit is error secure and receives an erroneous input, then it either passes a

noncodeword on to subsequent circuit blocks, or masks (i.e., corrects) the error in the input

word.

Definition 12.7 [SMIT76] A circuit L with output codespace S is error preserving for

noncodespace �x � N, if for any input X in �x � N,

YðX; lÞ 62 S: &

A circuit that is error preserving is error secure, but the converse is not necessarily

true. The term code disjoint (CD) is synonymous with error preserving [ANDE71]. That

is, a code disjoint (or error preserving) circuit maps all of the members of its input

noncodespace to noncodeword outputs, and this concept applies only to circuits under

fault-free operation.

Next we consider the case of a circuit L having a fault sequence h f1; f2; . . . ; fni,
where fi 2 F, 1 � i � n, in addition to noncodeword inputs. The following definitions are

based on [NICO84].

Definition 12.8 Before the occurrence of any fault, circuit L is code disjoint. Suppose

that circuit L is such that for a sequence of fewer thanm ð2 � m � nÞ faults in F and for

all noncodeword inputs X 2 �x � N,

YðX; h f1; f2; . . . ; fm�1iÞ 62 S:

Assume that for the m-fault sequence h f1; f2; . . . ; fmi, circuit L is self-testing. That is,

YðX; h f1; f2; . . . ; fmiÞ 62 S for some X 2 N:

Then L is said to be strongly code disjoint (SCD) for h f1; f2; . . . ; fmi. &

Definition 12.9 A circuit L is strongly code disjoint (SCD) for F ¼ f f1; f2; . . . ; fm;
. . . ; fng if it is SCD for all sequence of faults in F. &

This circuit is illustrated in Figure 12.11.

Circuit L
(fault free)

or

Ωx Ωy

Y(Xq, λ)

Y(Xp, λ)

N E S

Xq Ω x -N

Xp N Y(Xp, λ)

Xq Ωx -N

Xq Xp +E=

Xp N

Y(Xq, λ) S

Y(Xq, λ) Y(Xp, λ)=
or

Figure 12.10 Error secure circuit.

526 CODING FOR LOGIC AND SYSTEM DESIGN



In this definition an assumption has to be made regarding the occurrence of faults in the

circuit such that faults occur one at a time, and between any two fault occurrences there is

sufficient interval for all code inputs to be applied to the circuit.

In Definition 12.8 we could also say that for all inputs X 2 �x � N and an

m-fault sequence fault h f1; f2; . . . ; fmi, the circuit satisfies YðX; h f1; f2; . . . ; fmiÞ 62 S

[NICO84]. That is to say, there is no such input X 2 �x � N that satisfies YðX; h f1; f2:,
. . . ; fmiÞ 2 S. This definition is stronger than Definition 12.8. Notice that the stronger

property is not necessary, because it is more difficult to implement.

3. Self-checking Logic Networks
We consider the logic network of circuit blocks shown in Figure 12.12.

In this network we have to consider the faults in the interconnection between circuit

blocks as well as those in each circuit block. That is, input noncodewords are given to the

circuit block not only by the faults in the previous circuit blocks but also by the faults in

the input connection lines.

We divide the network into two subnetworks. One is the subnetwork LI of the output

interface circuit blocks, whose outputs are primary outputs of the network, and the other

one is the subnetwork LII of the remaining internal circuit blocks. If the subnetwork LII is

SFS for a fault set FII, the outputs of LII are always correct codewords or noncodewords.

Furthermore, if the subnetwork LI is SFS and SCD for a fault set F1 the outputs of LI are

<f1, f2, . . ., fm -1>
Circuit L

Fewer than m faults

X Y(X, <f1, f2, . . ., fm-1>)

Y(X, <f1, f2, . . ., fm-1>)

Ω x Ωy

SN

X    N

m Faults

Y(X, <f1, f2, . . ., fm>)    S
<f1, f2, . . ., fm -1, fm>

Circuit L

X    N

Y(X, <f1, f2, . . ., fm>)

Ω x Ω y

SN

X    N

Ω x - N S

X Ω x - N

Figure 12.11 Strongly code disjoint circuit.

SELF-CHECKING CONCEPT 527



always correct codewords or noncodewords. This is because LI is SFS for codeword inputs

and SCD for noncodeword inputs, and therefore the outputs of LI are always correct

codewords or noncodewords for all inputs to LI (i.e., all outputs of LII), even if some faults

exist in both LI and LII. Hence the total network is SFS. From the foregoing

considerations, an SFS network can be obtained as follows.

Theorem 12.1 If the subnetwork LI consisting of the output interface circuit blocks is

SFS and SCD for fault set FI , and if the remaining subnetwork LII consisting of the inter-

nal circuit blocks is SFS for fault set FII , then the total network is SFS for all fault

sequences in FI and FII .

If the faults exist in either LI or LII but not in both, then the code disjoint (CD) property

can replace SCD as a requirement for subnetwork LI.

Corollary 12.1 If the subnetwork LI of the output interface block is SFS and CD, and if

the subnetwork LII of the remaining internal blocks is SFS, then the total network is SFS

for all fault sequences in either LI or LII, but not in both.

The SFS network has important advantages. In an SFS network it may not be necessary

to place checkers at every circuit block but only at the output interface blocks. The checker

placement will then be determined by the mean time between failures (MTBF) of the

network. General design methods for SFS networks have not yet been fully established.

However, an SFS combinational circuit network can be easily realized if it is inverter free,

that is, if it contains only AND gates and OR gates, as stated in the following theorem.

L0, 0
Li -1, 0

Li, 0

Li -1, k

L0, l

Li -1, k+1

Li, j

Li, m

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

Subnetwork
LII

Subnetwork
LI

Circuit block

Interface
circuit
block

Circuit network

Figure 12.12 Circuit block network.

528 CODING FOR LOGIC AND SYSTEM DESIGN



Theorem 12.2 [SMIT78] A network that consists of only inverter-free combinational

circuit blocks and in which the block input / output interfaces are encoded with unidirec-

tional error detecting codes is SFS with respect to unidirectional faults.

Proof Unidirectional faults in an inverter-free circuit block or in the input interconnec-

tion line always cause unidirectional errors. Every combinational circuit block has an

input and output encoded with a unidirectional error detecting code (e.g., the m-out-of-

n code and the Berger code), so the unidirectional errors always map a codeword to a

noncodeword. Further, because unidirectional faults in the inverter-free circuit block

never map unidirectional error input to a codeword output, these faults at a circuit block

can be propagated to the output interface of the network and be detected by a unidirec-

tional error decoder. Q.E.D.

Example 12.3

Consider a network that consists of three inverter-free combinational circuit blocks, L0,

L1, and L2 interconnected in cascade as shown in Figure 12.13. The 1-out-of-2 codes

are used at all block interfaces as well as the primary output of the network (i.e., the

observable interface).

In the example the two unidirectional faults, stuck-at ‘1’ faults, are assumed to exist at

the output of the A0 gate first and then at one input of the O2 gate. Outputs in each block

interface are shown in Figure 12.14, where inputs ða0; a1Þ and ðb0; b1Þ are, for example,

equal to ð1; 0Þ and ð0; 1Þ, respectively. At the first fault stage, which includes only the f1
fault, only case IVof Figure 12.14 has the noncodeword output. If there is no such input

as in case IV—that is, no such input set as ða0; a1Þ ¼ ð1; 0Þ, ðb0; b1Þ ¼ ð0; 1Þ,
ðd0; d1Þ ¼ ð1; 0Þ, and ðg0; g1Þ ¼ ð1; 0Þ—this network always has the correct codeword

outputs. Because of the inputs at the second fault stage, which include the f2 fault as well

as the f1 fault, case II also has noncodeword outputs. So the primary output ðh0; h1Þ is
always the correct codeword or noncodeword for these inputs. In case III of Figure 12.14

it should be noted that all circuit blocks are not always CD.

In the example above we saw that the circuit network shown in Figure 12.13 is SFS

for the unidirectional fault sequence h f1; f2i and for restricted inputs, even though each

L2L1L0

A0

O0
b0
b1

a0
a1

c1
d0
d1

c 0

f1: stuck-at ‘1’

A1

O1

e1

e0

g
g

0
1

A2

O2

f2 : stuck-at ‘1’

h0

h1

Primary inputs: (a0, a1), (b0, b1), (d0, d1), (g0, g1): 1-out-of-2 codes

Observable interface (primary output): (h0, h1)

Fault sequence: <f1, f2> f : stuck-at ‘1’ faultii

Figure 12.13 Cascaded inverter-free network.

SELF-CHECKING CONCEPT 529



circuit block is not always CD. Clearly, noncodewords can appear at embedded interfaces

of the network before a noncodeword is produced as the first erroneous output. Therefore

we turn next to consider some new comprehensive concepts of error secure and error

propagating are defined for the circuit block interfaces.

Let F be the set of all faults in a network consisting of some circuit blocks and let hFi
be the set of all sequences of faults in F. Given a fault sequence in hFi, the network

is assumed to be initially fault free and capable of performing the correct function.

Once the first fault in the sequence occurs, the network goes into the first fault stage;

further on, when the second fault occurs, the system will go into the second fault

stage, and so on.

The following definitions and theorem are based on [NANY88].

Definition 12.10 A circuit block interface is error secure ðESÞ at a given fault stage if

any error that can occur at the interface never causes an incorrect codeword at any

observable interface during the fault stage. &

Definition 12.11 A circuit block interface is error propagating ðEPÞ at a given fault

stage if any error that can occur at the interface eventually produces a noncodeword at

some observable interface during the fault stage. &

It is noted that error secure (ES) in Definition 12.10 and error secure in Definition 12.6

are different in that the former is defined for block interfaces that may include some

faults within them while the latter is defined for fault-free circuit blocks. Therefore the

Definition 12.10 covers Definition 12.6, but the converse is not necessarily true.

The concept of error propagating includes both error preserving (i.e., code disjoint) and

self-testing. Theorem 12.3 gives the relation between ES / EP and SFS in a network that

consists of some circuit blocks and their interfaces.

(a0, a1) = (1, 0)
(b0, b1) = (0, 1)

(c0, c1) = (1, 1)

(d0, d1) = (0, 1) (d0, d1) = (1, 0)

(e0, e1) = (0, 1) (e0, e1) = (1, 1)

(h0, h1) = (0, 1):
correct codeword

I

(h0, h1) = (1, 0):
    correct codeword
    < first fault stage>

(h0, h1) = (1, 1):
    noncodeword
    <second fault stage>

II

(h0, h1) = (0, 1):
correct codeword

III

(h0, h1) = (1, 1):
noncodeword

IV

(g0, g1) =
(0, 1)

(g0, g1) =
(1, 0)

(g0, g1) =
(0, 1)

(g0, g1) =
(1, 0)

Input O2 : stuck-at ‘1’ fault
<f2>

Output A0 : stuck-at ‘1’ fault
<first fault stage>

<f1>

<second fault stage>
<f1, f2>

Figure 12.14 Interface outputs in the circuit of Figure 10.13.

530 CODING FOR LOGIC AND SYSTEM DESIGN



Theorem 12.3 A network is SFS for a fault set F if for every fault sequence in hFi all
the observable interfaces remain error secure ðESÞ until the earliest fault stage at which
at least one observable interface becomes error propagating ðEPÞ.

A design method for an SFS microprocessor based on this theorem is given in

[NANY88], and will be shown in Section 12.4.

12.1.2 Checker Concept

For a functional circuit to be a TSC or an SFS circuit, the error detection circuit (i.e., the

checker) must include an error indicator. Consider a circuit G that consists of a functional

circuit under check (L) and a checker (CK), as is shown in Figure 12.2.

The model for the error detection circuit is also as given in Figure 12.2 [SELL68]. In

general, a checker receives inputs X, and also W and Y from a circuit L. The line W

generated in the process of generating outputs may not be the output Y itself. There have

already been many kinds of checkers for special functional circuits [SELL68]. Some are

code checkers such as parity-code checkers, residue code checkers, m-out-of-n code

checkers, and Berger code checkers (Berger code will be discussed in Subsection 12.4.2).

Others are prediction checkers. The self-checking concepts in Subsection 12.1.1 have been

defined for code checkers, that is, for checking the coded output Y . They do not always

hold for other types of checkers (e.g., prediction checkers). Here we will outline two cases:

Case 1. Output Y encoded. The checker included in this case is a code checker. The

checker’s input is always Y , which is the output of the circuit L. This is shown in

Figure 12.15.

Case 2. Output Y nonencoded. Many types of functional circuits, such as control

circuits, have their outputs nonencoded. For this type of circuit, duplication checkers,

parity prediction checkers, and input regeneration checkers [SELL68] have been

designed and applied to computer logic systems.

Figure 12.16 gives the concept of the duplication checker. Note that the functional

circuit L is duplicated, and the outputs are compared.

Figure 12.17 gives the concept of the parity prediction checker for circuit L. A parity

bit of the output Y is generated independently by the prediction circuit P having input X,

while an equivalent output parity bit is generated from output Y . Then these parity bits are

compared.

Circuit
L

X
G

Y

ZCode
checker

CK

Figure 12.15 Checkingby examining outputs�that is, a code checker.

SELF-CHECKING CONCEPT 531



Figure 12.18 gives the concept of the input regeneration checker. This checker regenerates

the inputs from the outputs by inverse logic L�1 of the original circuit L and compares the

regenerated inputs with the original inputs. So the functional logic of L of the input

regeneration checker has a unique inverse operation. Example 12.4 illustrates this principle.

Example 12.4 [SELL68]

Let L be a 3-input ðx0 x1 x2Þ, 3-output ðy0 y1 y2Þ, combinational circuit defined by the

following truth table:

Select x1 to form a sub-inverse circuit L�11 according to the following equation:

x1 ¼ y0  y1 � y2:

L

L

X

G

Y

Z
Compare

circuit

CK

Figure 12.16 Checkingby duplication�that is, a duplication checker.

L

Output parity
perdiction

circuit

X

G

Y

Z
Compare

circuit

CK

+
P

Output parity
generator

Figure 12.17 Checkingby parity prediction�that is, a parity prediction checker.

x0 x1 x2 y0 y1 y2

0 0 0 1 1 1
0 0 1 0 0 1
0 1 0 1 0 0
0 1 1 0 1 1
1 0 0 0 0 0
1 0 1 0 1 0
1 1 0 1 1 0
1 1 1 1 0 1

532 CODING FOR LOGIC AND SYSTEM DESIGN



Then the error detection circuit CK is as shown in Figure 12.19. This checker’s ability

is limited because not all inputs are checked. This checker will detect if either y0 or

y1 � y2 is in error, but not both.

The duplication checker and the input regeneration checker can also be considered

special cases of the prediction checker because the circuit output Y is exactly ‘‘predicted’’

by the duplicated circuit in the duplication checker, and inversely, the circuit input X can

be said to be ‘‘predicted’’ from the circuit output Y in the input regeneration checker. This

will be discussed more fully in Subsection 12.2.5. Hence the checker included in case 2 is

called a prediction checker.

Note that the use of internal logic signals W shown in Figure 12.2 sometimes plays an

important role in error detection. In some cases it is difficult to check a logic circuit

perfectly without such signals. For example, in parity-checked adders it is necessary to use

the carries generated during addition (see Subsection 12.3.1). In this case a single fault

may cause several outputs to be in error. These errors cannot be detected by only

examining the output alone.

Compare
circuit

L

L-1

CK

G

X

Z

Y

Figure 12.18 Checking by regenerating inputs�that is, an input regeneration checker. Source: [SELL68].

�McGraw-Hill Companies.

L

CK

A
XOR

x0

x1

x2

y0

y1

y2

Z

Figure 12.19 Simplified input regeneration checker. Source: [SELL68].� 1968 McGraw-Hill Book Company.

SELF-CHECKING CONCEPT 533



Further note that in case 2, if input X is encoded and the prediction checker includes the

function of code checker, then this prediction checker may detect input errors under the

condition that the circuit under check and the checker itself are fault free. This case

satisfies the conditions for circuit G being code disjoint. Such cases can be seen in self-

checking adders (e.g., full-sum parity-checked adders; see Subsection 12.3.1).

Next we consider the case where faults exist also in the checkers. In this case we

require a self-checking checker, and the input and output codespaces should be clearly

defined.

Lemma 12.1 [CART68] For single faults it is necessary that any checker must have at

least two outputs and that no outputs take constant values.

The combinational circuit being tested is always monitored by a checker that signals

the appearance of a noncodeword. For example, the output of a checker might be 0

whenever a codeword is present in the output of the circuit under test, and one when a

noncodeword is present. It is also desirable that the checker be self-checking so that a fault

in the checker itself produces an error signal. It is obvious that the simple encoding

mentioned above is not sufficient, since a single stuck-at ‘0’ output of the checker would

never be detected. Therefore it is necessary that the checker has at least two outputs

and that no outputs take constant values for codespace input. This is a brief proof for

Lemma 12.1.

In order to make the checker self-checking, its output must be encoded in an error

detecting code. The simplest distance-2 error detecting codes are the 1-out-of-2 code

(codeword = fð0; 1Þ; ð1; 0Þg) and the duplication code (codeword = fð0; 0Þ; ð1; 1Þg). In
the 1-out-of-2 code, the outputs ð0; 0Þ and ð1; 1Þ indicate errors. The 1-out-of-2 code is

generally preferred because it detects unidirectional errors, such as those produced by a

loss of power.

From this consideration, the checker output space �z is defined as the set

fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg, the checker output codespace B ¼ fð1; 0Þ; ð0; 1Þg,
and the checker output noncodespace �z � B ¼ fð0; 0Þ; ð1; 1Þg.

Next we will define the input space for the two types of checkers, the code checker and

the prediction checker, shown in Figure 12.20. Note that in the prediction checker the input

of the checker (i.e., the output of the circuit L) does not have redundancy. The output Y

is only defined by the input X and the function of the circuit L (i.e., YðXÞ). Because the

input of the checker is input X and output Y of the circuit L, we can define ðX; YÞ as
the checker input space. We let the fault-free output Y be Y0 ¼ YðX; lÞ, X 2 N. Hence the

input codespace of the prediction checker is ðX; YÞ, where Y ¼ Y0, and the input

noncodespace is ðX; YÞ, where Y 6¼ Y0. If the signalW is also applied to the checker, then

the input space will be defined as ðX; Y ; WÞ.
As already mentioned, the error-preserving property (i.e., the code-disjoint property)

requires a checker. That is, the checker always maps an input codeword in S to an output

codeword in fð0; 1Þ; ð1; 0Þg, and an input noncodeword 62 S to an output noncodeword in

fð0; 0Þ; ð1; 1Þg.

Definition 12.12 A circuit is a self-testing checker if it is self-testing and code

disjoint. &

Lemma 12.2 The fault-secure property is not necessary for a checker.

534 CODING FOR LOGIC AND SYSTEM DESIGN



It is not important that the checker has any erroneous codewords at its output. That

is, we are interested only in whether or not the checker’s output is a codeword or

noncodeword, not which codeword it is. The self-testing property must only ensure the

detection of faults inside the checker. Therefore a self-testing checker should be

satisfactory. This is the brief proof for Lemma 12.2.

If the checker CK is a self-testing (ST) checker and the circuit L is TSC, then the total

circuit G shown in Figure 12.2 is TSC. Note that the checker is an embedded circuit; that

is, not all input codewords are given to the checker. Input to the checker is output of the

circuit L that does not always provide all codewords to the checker. Hence it is difficult for

the checker to satisfy the self-testing property perfectly without adopting some special

design techniques [KHAK84, JHA84, HUGH84, FUJI87a].

We are interested in preserving the code-disjoint property even in the presence of faults

inside the checker. In this case the checker should be strongly code disjoint (SCD); see

Definitions 12.8 and 12.9.

If the circuit under check L is SFS and the checker CK is SCD, then the total circuit G

is SFS. In this case note that an assumption has to be made regarding the occurrence of

faults in the checker CK and the circuit L, as follows [NICO84]:

After the occurrence of a fault affecting the checker, a sufficient time elapses such that

all code inputs included in S are applied before a new fault can occur in the checker

CK or in the circuit under check L. After the occurrence of a fault affecting the

circuit under check L, a sufficient time elapses such that all code inputs included in N
are applied before a new fault can occur in the checker CK or in the circuit under

check L.

Code
checker

Ω y Ωz

BS

Prediction
checker

Ωy Ω z

BS

Z

Z

Y

X

Y

Codespace
Y(X, f)    S

Noncodespace
Y(X, f)    S

Codespace
{(0, 1) (1, 0)}

Noncodespace
{(0, 0) (1, 1)}

Codespace
{(0, 1) (1, 0)}

Noncodespace
{(0, 0) (1, 1)}

Codespace
{(X, Y) | Y = Y0}

Noncodespace
{(X, Y) | Y = Y0}

Y0 = Y(X, λ)

(a) Input and output spaces of the code checker

(b) Input and output spaces of the predication checkers.

Figure 12.20 Input and output spaces of the checkers.

SELF-CHECKING CONCEPT 535



12.2 SELF-TESTING CHECKERS

As we saw in the preceding section, the checker should have a code disjoint property or

an error preserving property. The self-checking checker should satisfy in addition the

self-testing property for all faults in the prescibed fault set F. Note that the latter condition

is sometimes difficult to satisfy as was mentioned previously because the checker is

generally an embedded circuit and all input codewords cannot be applied to the checker.

In other words, the inputs to the checker are the outputs of the circuit under check, and

therefore it may not be possible to apply all the input codewords to the checker. This

depends on the circuit whose outputs are the inputs to the checker.

Considerable literature has appeared on implementing self-testing checkers for all input

codewords and for all single faults, or for all unidirectional faults [CART70, ANDE71,

ANDE73, REDD74a, REDD74b, SMIT77, ASHJ77, MARO78b, FUJI87a, LALA01].

Much work has been done on self-testing m-out-of-n code checkers and separable code

checkers [ASHJ77, DAVI78a, GAIT83, GOLA84, HALA83, ITOH80, IZAW81,

IZAW84a, IZAW84b, KHAK82c, LO87b, MARO78a, PIES83, TAO87, LALA01]. In

this section practical self-testing checkers, such as parity code checkers, two-rail code

checkers, and prediction checkers, are discussed from the standpoint of implementation.

12.2.1 Parity Code Checker

This checker can be constructed using a multiple exclusive-OR circuit () in a tree

structure. The self-checking parity-tree circuit is easily implemented when the input code

vectors have odd parity. Two parity-tree circuits are obtained by dividing the inputs

[CART70]. As a simple example we implement a self-checking parity code checker with

five inputs. Input Y ¼ ðy0 y1 y2 y3 y4Þ is divided into two sets, for example, fy0; y1; y2g
and fy3; y4g, and the two independent parity trees are constructed from these input sets, as

shown in Figure 12.21.

Table 12.2 shows the function and lines tested by the self-checking parity code checker

of Figure 12.21. All exclusive-OR (or XOR) gates in the table have all possible input pairs

fð0; 0Þ; ð1; 0Þ; ð0; 1Þ; ð1; 1Þg and output ðz0; z1Þ takes fð0; 1Þ; ð1; 0Þg for all input

codewords. For even-parity encoded inputs (i.e., noncodeword inputs), this checker always

gives output ðz0; z1Þ ¼ fð0; 0Þ; ð1; 1Þg. Hence the circuit is code disjoint. Also apparently

+

+

+

y0 y1 y2 y3 y4

z0 z1

Y = {y0, y1, y2, y3, y4}

Figure 12.21 Self-checking parity checker.

536 CODING FOR LOGIC AND SYSTEM DESIGN



a single fault always causes the output to be noncodeword for some codeword input.

Therefore we have the following theorem.

Theorem 12.4 The parity-tree circuit that is divided into two independent parity-tree sub-

circuits is a self-testing checker for all odd-parity encoded inputs and for all single faults.

When the input code vectors have even parity, one subcircuit output is designed to be

inverted.

We now consider the case where not all codeword inputs are given to the checker. In this

situation it is difficult to satisfy the self-testing property at all times.* Some methods for

overcoming this difficulty were proposed in [KHAK82b, KHAK84, FUJI87a]. Here we

consider the XOR tree circuit with a cascaded form and an extra input v that can take any

value in f0; 1g [FUJI87a]. Figure 12.22 gives an example of this type of tree structure.

Theorem 12.5 If the cascaded XOR tree circuit having m XOR gates satisfies the fol-

lowing conditions, then every single fault in this circuit can be detected:

1. Primary input yi 6¼ constant, i ¼ 0; 1; . . . ; m� 1.

2. Independent of yi ’s, input v can take any value in f0; 1g.

*Typically, four- or five-input test patterns are necessary to test the multiple-input parity-tree circuits consisting of

only two-input XOR or XNOR (exclusive-NOR) gates [BOSS70, HONG81, REDD85, MOUR86a, MOUR86b].

TABLE 12.2 Function and Lines Tested of Parity-Tree Circuit

y0 y1 l y2 y3 y4 z0 z1

1 0 1 0 0 0 1 0
0 1 1 0 0 0 1 0
0 0 0 1 0 0 1 0
1 0 1 0 1 1 1 0
0 1 1 0 1 1 1 0
0 0 0 1 1 1 1 0
1 1 0 1 0 0 1 0
1 1 0 1 1 1 1 0
1 1 0 0 1 0 0 1
0 1 1 1 1 0 0 1
1 0 1 1 1 0 0 1
1 1 0 0 0 1 0 1
0 1 1 1 0 1 0 1
1 0 1 1 0 1 0 1
0 0 0 0 0 1 0 1
0 0 0 0 1 0 0 1

+ + + +...

y0 y1 y2 ym -1

v

Figure 12.22 Cascadedparity-tree circuit with one additional input v.

SELF-TESTING CHECKERS 537



Any error due to a fault in this circuit can be propagated to the output, and there exists

at least one input pattern to detect this fault. Therefore each divided tree circuit of

Figure 12.21 can be transformed into a cascaded structure like that shown in Figure 12.22.

Then the circuit is a self-testing checker for the restricted number of input codewords that

satisfy the condition 1 of Theorem 12.5. This is shown in Figure 12.23. In this figure it

should be noted that synchronized inputs v0 and v1 ðv0 ¼ v1 2 f0; 1gÞ are applied to each

XOR tree. This is because the checker can also detect faults in v0 and v1. This self-testing

checker structure requires only two more XOR gates than the previously given structure.

12.2.2 Two-Rail Code Checker

A two-rail code checker (also called a comparator) is required for a duplication check,

meaning a comparison check. This is shown in Figure 12.24. In order to prevent identical

failure states in both the functional circuit and its duplicated circuit, the duplicated circuit

is sometimes designed in a complementary form [SEDM80b], which will be shown in

Figure 12.51 in Subsection 12:4:2. In Figure 12.24 the output of one of the two identical

circuits is inverted and fed into a self-checking two-rail code checker, discussed below. In

a complementary duplication, no inverter gates are needed, and the outputs from both

functional circuits are fed directly to a two-rail code checker.

In a two-rail encoding, bits of information occur as complementary pairs, ð0; 1Þ and
ð1; 0Þ; the pairs ð0; 0Þ and ð1; 1Þ indicate errors. Thus the same circuit that checks a two-

rail encoding can be used to combine several self-checking checker output pairs into one

pair. That is, a self-checking two-rail code checker (i.e., a self-testing comparator) will

map m input pairs, referred to as fða0; b0Þ; ða1; b1Þ; . . ., ðam�1; bm�1Þg, to one output

+

+

+

...

...

+

...

+

+

...

z1z0

v1v0

Y1 Y2

Y = {Y1, Y2}
v0, v1 : Synchronized inputs, and
            v0 = v1    {0, 1}
Y1, Y2: Disjoint lists of inputs

Cascaded XOR tree

Figure 12.23 Self-testing parity code checker.

538 CODING FOR LOGIC AND SYSTEM DESIGN



pair, referred to as ðz0; z1Þ. The output pair must be complementary if and only if each and

every input pair is all complementary [TAMI84].

A two-rail code checker for m ¼ 2 is shown in Figure 12.25 [CART70]. This is a two-

level AND-OR realization. The table in Figure 12.25 shows this circuit to be self-testing

for single faults and also code disjoint.

Lemma 12.3 [FUJI87a] Let the input to the checker be Ai ¼ ða0;i; a1;iÞ and

Bi ¼ ðb0;i; b1;iÞ, and the output be Ciþ1 ¼ ðc0;iþ1; c1;iþ1Þ. Here Ai, Bi, Ciþ1 2 f0; 1; Wg,

Functional
circuit L

Duplicated
circuit L

......
a0 a1 am -1 b0 b1 bm -1

...

z0 z1

Inverters

Two-rail
code checker
(Comparator)

Figure 12.24 Two-rail code checker for duplication check.

a0 b0 a1 b1

c0 c1

a0 b0 a1 b1 c0 c1

0 1 0 1 0 0 0 1 0 1
0 1 1 0 0 1 0 0 1 0
1 0 0 1 1 0 0 0 1 0
1 0 1 0 0 0 1 0 0 1
0 0 x x 0 0 0 0 0 0
x x 0 0 0 0 0 0 0 0
1 1 1 x x 1 1 x 1 1
1 1 x 1 1 x x 1 1 1
1 x 1 1 1 x 1 x 1 1
x 1 1 1 x 1 x 1 1 1

‘x’ can take any value of 0, 1.

0 1 2 3

2 30 1

Figure 12.25 A two-rail code checker for m ¼ 2. Source: [CART70].� 1970 IEEE.

SELF-TESTING CHECKERS 539



where 0 ¼ ð0; 1Þ, 1 ¼ ð1; 0Þ, W 2 fð0; 0Þ; ð1; 1Þg. Then Ciþ1 can be expressed as the

following truth table:

Bi
Ai

0

1

W

0

1

W

0 1

0

1

W W

W

W

W
BiAiCi+1=

0=(0,1)

1=(1,0)

W={(0,0),(1,1)}

The operation performed in the checker is expressed as , meaning Ciþ1 ¼ Ai ~ Bi,

defined in the truth table.

Lemma 12.4 Every single fault in the checker can be detected if the inputs Ai and Bi

have the following four distinct patterns:

ðAi; BiÞ ¼ fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg; 0 ¼ ð0; 1Þ; 1 ¼ ð1; 0Þ:

Multi-input two-rail code checker can be implemented by interconnecting such two-

level blocks to form multilevel trees of arbitrary size [ITOH82]. For example, a tree with

eight input pairs formed by interconnecting seven blocks is shown in Figure 12.26.

Corollary 12.2 [FUJI87a]

1. For Ai; Bi 2 f0; 1g, the two-input two-rail code checker is equal to modulo-2 adder

on f0; 1g.
2. As for the multi-input two-rail code checker implemented with the two-input two-

rail code checkers, the output of this checker takes the values W if at least one

input to this checker is equal to W, where W ¼ fð0; 0Þ; ð1; 1Þg.

a0b0 a1b1 a2b2 a3b3 a4b4 a5b5 a6b6 a7b7

z0 z1

: 2-Input
  two-rail
  code checker

Figure 12.26 Eight-input two-rail code checker.

540 CODING FOR LOGIC AND SYSTEM DESIGN



In general, 2m test patterns are sufficient to diagnose such multiple-input trees if each

two-rail block has no more than m input pairs [ANDE71]. Therefore the two-rail tree

shown in Figure 12.26 is completely diagnosed by the four test patterns. These test

patterns are systematically obtained in [ANDE71]. Figure 12.27 shows an example of the

four test patterns systematically obtained for the eight-input two-rail code checker. In this

test pattern generation every two-input two-rail code checker has four distinct input

patterns defined in Lemma 12.4.

In normal operation, however, all these patterns may not be applied to the multiple-input

tree circuit. This is because these checkers are placed at the output of the circuit under check,

as shown in Figure 12.24. That is, they are embedded, and hence a restricted number of

patterns may be given to the checkers. Even for this situation some techniques have been

proposed to satisfy the self-testing condition [HUGH84, FUJI87a]. The following theorem

deals with the self-testing property of the multi-input two-rail code checkers.

Theorem 12.6 [FUJI87a] If the M-input two-rail code checker having one input V

shown in Figure 12.28 satisfies the following conditions,

1. Primary input Ai 6¼ constant, Ai 6¼ W, i ¼ 0; 1; . . . ; M � 1.

2. Independent of Ai ’s, input V ¼ ðv; vÞ can take any value in f0; 1g,

then every single fault in this checker can be detected.

Proof The output of the i-th level two-input two-rail code checker can be expressed as follows:

Ciþ1 ¼ Ai ~ Ci; i ¼ 0; 1; . . . ;M � 1;

C0 ¼ V;

Q1 Q2 Q0 Q1 Q0 Q2 Q0 Q1

Q0 Q2 Q1 Q2

Q2

(0
(0
(1
(1

0
1
0

0

1

1
1 1
0 1

0
0 0

1
1
0

0
1
0
1

0
1
1
0

1)
1)

0)
0)

1
0

1
0

1
1

0
0

( )0
1

1
0

Q0 Q1 Q2=
Q1 Q2 Q0=
Q2 Q0 Q1=

0 = (0, 1)
1 = (1, 0)

Q0= 1
0

1
0

Q1= 1
1

0
0

Q2= 0
1

1
0

4 Test patterns

( )

( ) ( ) ( )
( )

Q1 Q0

Figure 12.27 Example of four test patterns generated systematically for 8-input two-rail code checker.

SELF-TESTING CHECKERS 541



where ~ is defined in Lemma 12.3. This can be expanded as follows:

Ciþ1ðV ; A0; A1; . . . ; AiÞ ¼ V ~ ðA0 ~ A1 ~ . . . ~ AiÞ;
Ciþ1ðV ; A0; A1; . . . ; AiÞ ¼ V ~ ðA0 ~ A1 ~ . . . ~ AiÞ

¼ Ciþ1ðV ; A0; A1; . . . ; AiÞ;

where Ciþ1ðV; A0; A1; . . . ; AiÞ means that Ciþ1 is the function of V; A0; A1; . . ., and Ai.

Here 1 ¼ 0, 0 ¼ 1. Hence Ciþ1 can take any value in f0; 1g by controlling the value

of V . Furthermore, from the conditions 1 and 2 in this theorem, ðAi;CiÞ can take four

distinct patterns such as in Lemma 12.4.

The output of the tree circuit CM can also be expressed as follows:

CMðCiþ1; Aiþ1; Aiþ2; . . . ; AM�1Þ ¼ Ciþ1 ~ ðAiþ1 ~ Aiþ2 ~ . . . ~ AM�1Þ:

If a single fault in this circuit causes the value of Ciþ1; Aiþ1, or Ciþ2 to be W, then

CM ¼W from the truth table of Lemma 12.3. Therefore the error due to this fault can be

propagated to the output of this circuit.

For all these reasons there exists at least one input satisfying the conditions 1 and 2 that

can detect single faults in this checker. (Q.E.D.)

The input V can be generated from 2 J-K or toggle flip-flops whose outputs are inverted

with every clock (see Figure 12.33 in Subsection 12.2.3.

12.2.3 Generalized Prediction Checker (GPC)

We consider a design for self-testing checker of the combinational circuits having

nonencoded inputs and outputs. As stated in Section 12.1, we need to apply a prediction

2-Input two-rail
  code checker

. . .

A0 A1 AM -1

V

C1

C2

CM = Z

Cj Aj

Cj +1

. . .

z0z1

Figure 12.28 Multi-input two-rail code checker with cascaded tree structure.

542 CODING FOR LOGIC AND SYSTEM DESIGN



checking concept to these circuits. First, we have a generalized prediction checker that

includes a complementary duplication checker and a parity prediction checker as special

cases, and then we have a self-checking prediction checker [FUJI84, FUJI87a].

A prediction checker always checks the relation between the circuit input and the output.

The combinational circuit under check L is assumed to have a nonencoded n-bit input

X ¼ ðx0 x1 . . . xn�1Þ and a nonencoded k-bit output Y ¼ ðy0 y1 . . . yk�1Þ. The multi-

output combinational circuit can then be expressed in a disjunctive canonical form as

Y ¼ A � U; ð12:1Þ

where

Y ¼ ðy0 y1 . . . yk�1ÞT ,
U ¼ ðu0 u1 . . . u2n�1ÞT : vector of minterms

¼ ðx0x1 � � � xn�1 x0x1 � � � xn�1 . . . x0x1 � � � xn�1 x0x1 � � � xn�1ÞT ;
A ¼ ðaijÞk�2n ; aij 2 f0; 1g,

i ¼ 0, 1, . . . ; k � 1; j ¼ 0; 1; . . . ; 2n � 1,

and the operation � between A and U shows that

yi ¼ [2
n�1

j¼0 aij � uj ð[ and �mean logical OR and AND; respectivelyÞ;
yi : canonical sum of minterms indicated by the i-th row elements of A

where i ¼ 0; 1; . . . ; k � 1:

In this case, Y can also be expressed in a Reed-Muller canonic expansion, which is an

easily testable realization [REDD72a, REDD72b].

Checker Implementation Compared to the conventional parity prediction checkers,

the new checker can be systematically implemented by using the matrix A. We consider a

prediction matrixK, a k � 2n matrix, having the same size as that of matrixA, and obtain a

prediction function whose output is I with k tuples:

I ¼ K � U: ð12:2Þ

By changing the elements of K, any desired prediction function can be obtained. We

also generate another function whose output is J with k tuples:

J ¼ Y  ðAKÞ � U ð12:3Þ

If there exist no errors, then Y ¼ A � U, and J will then beK � U, the complement of I. The

circuit Z is thus a two-rail comparator of I and J; a mismatch is signaled by the outputs

Z ¼ ðz0; z1Þ ¼
\k�1
i¼0

~ ðIi; JiÞ;

Ii ¼ ½I�i; Ji ¼ ½J�i; i ¼ 0; 1; . . . ; k � 1:

ð12:4Þ

SELF-TESTING CHECKERS 543



The notations used in Eq. (12.4) are as follows:

K � U: logical inversion of K � U. This inversion can be applied either to circuit I or to

circuit J,

½Q�i: i-th element of vector Q,Tk�1
i¼0

~ ðIi; JiÞ: comparison of k input pairs, ðI0; J0Þ; ðI1; J1Þ; . . . ; ðIk�1; Jk�1Þ, which
gives output Z as a 1-out-of-2 code only when all k input pairs are 1-out-of-2

codewords,

: XOR operation.

The basic structure of the checker is shown as circuit CK in Figure 12.29. When the

prediction matrix K is equal to A, this checker is identical to the complementary

duplication checker. This is because circuit J does not exist, and hence output Y goes

directly to circuit Z. On the other hand, circuit I performs the function of A � U, which is

complement of the original circuit output Y shown in Eq. (12.1). Hence this checker

includes the complementary duplication checker as a special case.

The checker has an input space ðX; YÞ and an output space Z. The error-free output of

circuit L is defined as Y0, meaning Y0 ¼ YðX; lÞ; X 2 N. The input and the output

codespaces of the prediction checkers are defined and shown in Figure 12.20b.

Theorem 12.7 The circuit defined by Eqs. (12.2) through (12.4) is code disjoint.

Proof If circuit CK has input codeword ðX; Y0Þ 2 S, it is apparent that this circuit has

an output Z 2 B ¼ f10; 01g. On the other hand, if circuit CK has an input noncodeword

n

X                                        L Y

K U Y (A K) U+ +. .

kk

Z

CK

JI

Z1Z0

Z

k

Figure 12.29 Basic structure of generalized prediction checker. Source: [FUJI87a].� 1987 IEEE.

544 CODING FOR LOGIC AND SYSTEM DESIGN



ðX; Y 0Þ 62 S, where Y 0 ¼ Y0  E and E is a nonzero error vector, the following relation

holds from Eq. (12.3):

J ¼ Y 0  ðAKÞ � U ¼ ðY0  EÞ  ðAKÞ � U
¼ E K � U: ð,Y0 ¼ A � UÞ:

If E 6¼ 0, not all pairs of ðIi; JiÞ, i ¼ 0; 1; . . . ; k � 1, are 1-out-of-2 code vectors. That is,

at least one pair is not equal to a 1-out-of-2 code vector, meaning (0, 0) or (1, 1). Hence, by

the properties of circuit Z, the output of circuit CK, ðz0; z1Þ is included in �z � B. In other

words, the noncodeword inputs are always mapped to the noncodeword outputs.

Q.E.D.

Here an encoding matrix is introduced to the checker. This matrix gives a simplified

organization of the checker, thereby allowing circuit Z to make comparisons of a reduced

number of ðIi; JiÞ pairs, less than or equal to k pairs; it also gives expression of various error
detection capabilities of the checker. Thematrix is an r � kmatrix denoted asH, where r � k.

Using this H, we can express the checker shown in Eqs. (12.2) through (12.4) as follows:

Circuit I : I ¼ ðH �KÞ � U; ð12:5Þ
Circuit J : J ¼ H � Y H � ðAKÞ � U; ð12:6Þ

Circuit Z : Z ¼ ðz0; z1Þ ¼
\r�1
i¼0

~ ðIi; JiÞ: ð12:7Þ

In this checker circuit Z compares r (� k) pairs. This is shown in Figure 12.30. Circuit J is
composed of circuits J0, J00, and J000, also shown in this figure. The checker is called a

n

X

k

H Y.
(A K) UH +. .

r

r
J

r r

r

UH.K.

z0 z1

Z

CK

J′′J′

J′′′

I

r

Y

Figure 12.30 Generalizedprediction checker. Source: [FUJI87a].� 1987 IEEE.

SELF-TESTING CHECKERS 545



generalized prediction checker (GPC) because it can predict any logic function and has a

wide range of error detection capabilities.

In the GPC we newly define the input noncodespace.

Definition 12.13 The input noncodespace of the checker shown in Figure 12.30 is

defined by �y � S ¼ fðX; YÞjH � Y 6¼ H � Y0g, where Y0 is an error-free output of the

circuit under check. &

Theorem 12.8 The circuit defined by Eqs. (12.5) through (12.7) is code disjoint for

input noncodespace fðX; YÞjH � Y 6¼ H � Y0g and output noncodespace {(0, 0), (1, 1)}.

The proof of this theorem is straightforward and therefore omitted.

Theorem 12.9 The error detection ability of this checker is determined by matrix H.

Proof In general, the checker’s error detection ability can be expressed in terms of

syndrome F. When error E exists and output Y is expressed as Y ¼ Y0  E, then the

syndrome F of the checker can be expressed as follows:

F ¼ I  J ¼ H �K � U  fH � ðY0  EÞ H � ðAKÞ � Ug
¼ H � E: ð, Y0 ¼ A � UÞ:

Errors can be detected only when F 6¼ 0. This means that F is determined directly by H.

Hence the error detection ability of this checker is determined by H. Q.E.D.

We can use H matrices of various error detecting codes, such as simple parity-check

codes, double-error detecting codes (i.e., SEC codes), triple-error detecting codes (i.e.,

SEC-DED codes), and so forth.

Example 12.5 [FUJI87a]

Let us implement the GPC for the circuit expressed by the following 4-input, 3-output

logic function. The outputs of the circuit, y0, y1, and y2, are expressed as

y0 ¼ x0ðx1 þ x2x3Þ;
y1 ¼ x0x1ðx2 þ x3Þ;
y2 ¼ x0 þ x1 þ x2 þ x3:

Matrix A and vectors U and Y can be expressed as

A ¼
0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

264
375;

U ¼ ðx0x1x2x3 x0x1x2x3 . . . x0x1x2x3 x0x1x2x3ÞT ;
Y ¼ ðy0 y1 y2ÞT ¼ A � U:

546 CODING FOR LOGIC AND SYSTEM DESIGN



Let the prediction functions in this example be AND, OR, and the parity function of

the inputs for y0, y1 and y2, respectively. In this case, K can be expressed as follows:

K ¼
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

24 35
That is, the prediction function x0x1x2x3 is adopted for y0, x0 þ x1 þ x2 þ x3 for y1, and

x0  x1  x2  x3 for y2.

Next we apply the code whose encoding matrix H is expressed as

H ¼ 0 1 0

1 0 1

� �
:

This matrix can detect double errors, such as y0 and y1 errors, and y1 and y2 errors, as

well as detect single and triple errors in Y .

Given the above K and H, the checking logic can be formulated systematically as

follows:

Circuit I:

H �K ¼
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1

� �
;

I ¼ H �K � U ¼ x0 þ x1 þ x2 þ x3
x0  x1  x2  x3  x0x1x2x3

� �
¼

I0

I1

� �
:

Circuit J:

H � ðAKÞ ¼
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0

� �
;

J ¼ H � Y H � ðAKÞ � U

¼
y1  ðxo þ x1Þ

y0  y2  ðx0x1x2x3 þ x1x2x3 þ x0x1x3 þ x0x2x3 þ x1x2x3Þ

� �
¼

J0

J1

� �
:

Circuit Z:

Z ¼ ðz0; z1Þ ¼ ðI0; J0Þ ~ ðI1; J1Þ:

Operation ‘‘ ~ ’’ is defined in Lemma 12:3:

Figure 12.31 shows the GPC having the capability of detecting some double errors as

well as single and triple errors.

SELF-TESTING CHECKERS 547



If K ¼ A, then the circuits I and J can be expressed as

Circuit I : I ¼ H �K � U ¼ H � A � U;

Circuit J : J ¼ H � Y :

We can apply the simple parity-check code to the GPC whose encoding matrix is

H ¼ 1 1 1½ �:

Then the circuits I and J can be expressed as follows.

Circuit I : H � A � U ¼ ð0101010111010101Þ � U ¼ x0ðx1 þ x2 þ x3Þ;
Circuit J : y0  y1  y2:

Figure 12.32 shows this checker, which is equal to the parity prediction checker shown

in Figure 12.17.

We now consider the method of reducing the gate amount of this checker under given

matrix H. The circuit Z and the circuit J00 are determined by H. We let K ¼ A. Then the

J

y0

y1

y2
x2

x3

x1

x0

I

J11J0I I0

z1z0

L

z

Figure 12.31 Example of a generalized prediction checker (GPC). Source: [FUJI87a].� 1987 IEEE.

548 CODING FOR LOGIC AND SYSTEM DESIGN



circuit J0 does not exist because H � ðAKÞ � U ¼ 0, so the circuit J000 is left out. For

the circuits J0, J00, and J000 shown in Figure 12.30, this would reduce the gate amount of the

circuit J to the minimum. In this case the checker is equivalent to the parity-based

prediction checker determined by H. In general, for K 6¼ A, reducing the gate amount of

the checker, especially in the circuits I and J0, is basically equivalent to a logic

minimization problem. For the example circuit shown in Figure 12.31, the gate amount is

reduced from 44 to 18 when K is equal to A for the same matrix H.

Self-testing GPC The self-testing GPC can detect faults in the checker itself. The

checker will operate correctly even if single faults occur in both the circuit L and the

checker CK. To make the checker self-checking, an input v that can take any value in

f0; 1g is added to the checker as follows:

Circuit I : Ii ¼ ½H �K � U�i  v; ð12:8Þ
Circuit J : Ji ¼ ½H � Y�i  ½H � ðAKÞ � U�i  v; ð12:9Þ

Circuit Z : Z ¼ ðz0; z1Þ ¼
\r�1
i¼0

~ ðIi; JiÞ
" #

~ ðv; vÞ; ð12:10Þ

v 2 f0; 1g; i ¼ 0; 1; . . . ; r � 1:

Theorem 12.10 The circuit determined by Eqs. (12.8) through (12.10) is code disjoint.

Input v is added to both circuits I and J, and therefore this does not affect any checking

logic defined by Eqs. ð12:5Þ through ð12:7Þ. Therefore Theorem 12.10 can be easily proved.

The circuit Z consists of several two-input two-rail code checkers. According to

Theorem 12.6, if these are connected in a cascaded tree structure having r þ 1 input pairs,

meaning ðI0; J0Þ ðI1; J1Þ . . . ðIr�1; Jr�1Þ, and ðv; vÞ, then the circuit Z is self-testing for

single faults, provided that every input does not have constant value and V ¼ ðv; vÞ can
take any value in f0; 1g during normal operation.

x0

x1

x2

x3

y0

y1

y2

z0 z1

L

Figure 12.32 Example of a GPC equal to a parity prediction checker.

SELF-TESTING CHECKERS 549



Circuit J is constructed from circuits J0; J00, and J000 as shown in Figure 12.30, and it is

realized by using r subcircuits J0; J1; . . . ; Jr�1. The circuits J
00 and J000 are designed by

using exclusive-OR (XOR) gates. From Theorem 12.5, if these circuits are designed in

cascaded tree structure having input v that can take any value in f0; 1g in normal

operation, then this cascaded exclusive-OR circuit is self-testing for single faults. Circuit

J0 has input X, same as circuit L.

Circuit I is also realized by using r subcircuits I0; I1; . . . ; Ir�1, and each subcircuit

has input X. The resulting self-testing prediction checker is shown in Figure 12.33.

The control input v is generated from a J-K flip-flop, or a toggle flip-flop, whose output

is inverted with every clock input during online error detection. Furthermore the

duplicated flip-flops operate simultaneously with the same clock and are connected to

circuits I and J, respectively, as shown in Figure 12.33. Input vector V to the circuit Z is

also produced from the flip-flop. The checker can detect faults in the cascaded comparator

circuits (i.e., the cascaded two-rail code checker) as well as in one of these flip-flops. This

also detects input faults to the cascaded comparator circuit Z. This is because these faults

Figure 12.33 Self-testing generalizedprediction checker. Source: [FUJI87a].� 1987 IEEE.

550 CODING FOR LOGIC AND SYSTEM DESIGN



cause at least one W at the circuit Z inputs, where W is defined in Lemma 12.3, that can

finally be detected according to condition 2 of Corollary 12.2.

Theorem 12.11 The circuit CK in Figure 12.33 is a self-testing checker for single faults

if input X can take all patterns.

Proof Circuit CK shown in Figure 12.33 is implemented according to Eqs. (12.8)

through (12.10). Hence this circuit is code disjoint by Theorem 12.6. Circuits I and J0

are self-testing for single faults because input X to these circuits can take all patterns.

It is apparent from Theorem 12.5 that the multi-input XOR tree circuit having a cascaded

structure and one control input v satisfy the self-testing property for single faults. This is

satisfied unless the circuit output Y has a constant value. The cascaded tree circuit Z satis-

fies conditions 1 and 2 of Theorem 12.6, and therefore it is self-testing. Then the nonco-

deword output of circuits I and J always cause the noncodeword output, that is, W, in the

cascaded circuit Z. Therefore the circuit CK is a self-testing checker. Q.E.D.

Applications to Built-in Testing Online error detection can be combined with off-

line functional testing of combinational circuits by using the checker hardware for both

purposes [SEDM79, SEDM80a, KHAK82a, FUJI84, FUJI87a]. This built-in testing

method takes advantage of the checker’s fault detection capability and eliminates the

need for sophisticated test systems and precalculated test patterns or signatures

[KONE80, WILL82, MACC85, CART86]. It also allows testing at online operation speeds.

In Figure 12.34 the circuit R is an input register in the normal mode and also a pattern

Figure 12.34 Testing scheme using self-testing checker. Source: [FUJI87a]. � 1987 IEEE.

SELF-TESTING CHECKERS 551



generator (which generates 2n patterns for an n-input vector X) in the test mode. One J � K

flip-flop or one toggle flip-flop is connected to the lowest level of the pattern generator as

shown in Figure 12.33, which realizes an ðnþ 1Þ-bit pattern generator. The faults in circuit

L and checker CK can be detected only when the output of checker Z 2 fð0; 0Þ; ð1; 1Þg. It
is important in this test scheme that if we use such a self-testing checker, the faults in the

checker itself or in the circuit L can be detected in the test mode as well as in the normal

mode. Figure 12.34 shows the built-in testing scheme using a self-testing checker.

12.3 SELF-CHECKING ALU

Considerable research has already been done on how to check functional circuits, such as

adder, multiplier, decoder, and error checking / correcting circuits. A variety of checking

circuits that use simple error detecting codes and prediction concepts have been proposed

[CART70, LANG70, AVIZ71, RAO77, WANG79, FUJI81, MAK82]. Here we study an

error checking scheme for the arithmetic logic unit (ALU).

We give attention to the relation between faults and errors. In the special circuits such as

fan-out-free circuits, faults and errors are in one-to-one correspondence. That is, single

faults always cause single errors. However, in other circuits, in general, single faults may

cause multiple errors. This depends on the circuit’s structure. Therefore in this section the

faults in the set F are defined as those that cause detectable errors. That is, if the checker, or

the encoded output of the circuit under check (CUC) has single-error detection capability,

then we can detect faults that cause single errors at the CUC output, and F consists of only

such faults.

Considerable research appears on error detection / correction in ALU. Earlier work on

application of simple parity-check codes and residue codes to ALU includes [GARN58,

GARN59, GARN66, PETE58, PETE59, BROW60, RAO68b, GADD70]. Extended

residue codes such as AN codes [RAO74], multiresidue codes [RAO70, RAO71,

MAND72], systematic AN codes [RAO72], and byte-error correcting AN codes

[NEUM75], effective parity prediction methods [SELL68], and alternate data retry

(ADR) methods [SHED78] for application to adder, multiplier, divider, and general

logic have been extensively studied [KHOD79, TAKE80, FUJI81, PATE83, FURU83a,

FURU83b, FURU83c, HUAN84, TOHM86].

In other important works, checksum codes [WAKE76] and combination codes using

both parity checks and residue checks [RAO77] have been proposed for byte error

detection in adders and cost-effective error detection / correction in ALU, respectively.

Effective methods using Reed-Muller codes [PRAD72a, PRAD72b, PRAD74] and residue

codes [MONT72] have been proposed for checking errors in logical operations as well as

in arithmetic operations.

Below we study error detection mechanism for adders and ALUs [OBER79] using

simple parity-check codes and checksum codes.

12.3.1 Parity-Checked Adder

The adders considered here add two operands A and B together to give a resultant sum S.

The addition is done on a bit-by-bit basis. The sum bit si for the i-th stage depends not only

on the input bits ai and bi for that stage but also on the carry ci�1 from the previous stage.

552 CODING FOR LOGIC AND SYSTEM DESIGN



The following equations express sum and carry in the i-th stage of an adder:

si ¼ ai  bi  ci�1; ð12:11Þ
ci ¼ ai � bi þ ðai þ biÞ � ci�1; ð12:12Þ
0 � i � n� 1; c�1 ¼ cin;

A ¼ ðan�1 . . . ai . . . a1 a0Þ;
B ¼ ðbn�1 . . . bi . . . b1 b0Þ:

The following functions are sometimes convenient to express the adder functions:

Half sum : Hi ¼ ai  bi:

Generation function : Gi ¼ ai � bi:
Transmission function : Ti ¼ ai þ bi; 0 � i � n� 1:

Using these functions, we can express Eqs. ð12:11Þ and ð12:12Þ

si ¼ Gi  Ti  cn�1

¼ Hi  cn�1; ð12:13Þ
ci ¼ Gi þ Ti � ci�1: ð12:14Þ

Adders are classified into two categories according to how the carries are handled. In the

ripple adder, shown in Figure 12.35, each carry bit depends on the preceding carry bit.

This requires that the overall carry circuitry forms a serial string. The carry equation is

given by Eq. ð12:14Þ.
It can be seen that addition is slow when the carries ripple through the entire adder.

Thus, to speed up the addition process, the carry path can be shortened by using the

parallel implementation of Eq. ð12:14Þ, called look-ahead:

cn�1 ¼ Gn�1 þ Tn�1 � cn�2 ¼ Gn�1 þ Tn�1ðGn�2 þ Tn�2 � cn�3Þ ¼ . . .

¼ Gn�1 þ Tn�1Gn�2 þ Tn�1Tn�2Gn�3 þ Tn�1Tn�2Tn�3Gn�4 þ . . . : ð12:15Þ

Equation ð12:15Þ shows that each carry bit does not depend on the previous carry but on

the transmission and generation functions. Figure 12.36 shows an implementation of an

adder using carry look-ahead.

Next we have to refer to the error characteristic of these adders. We call the circuit that

satisfies Eq. ð12:11Þ or ð12:13Þ a ‘‘sum circuit,’’ and the circuit that satisfies Eq. ð12:12Þ or
ð12:14Þ a ‘‘carry circuit.’’ So we have the following error characteristics:

1. Sum-circuit errors do not propagate and thus cause single errors only.

2. A carry-bit error always propagates to cause an error in the next sum bit.

3. Any faults in the ripple-carry circuit can cause error bursts, whereas only Ti and Gi

failures in the look-ahead circuit can cause error bursts.

4. In a look-ahead carry circuit, all carries are independent of the previous ones.

SELF-CHECKING ALU 553



A O
R

A
O

R
O

Ra3 b3 a3 b3

G
3

T
3

c2

a3 b3
H

3

s3

c3

A O
R

A
O

Ra2 b2 a2 b2

G
2

T
2

c1

a2 b2
H

2

s2

A O
R

A
O

Ra1 b1 a1 b1

G
1

T
1

c0

a1 b1
H

1

s1

A O
R

A

a0 b0 a0 b0

G
0

T
0

a0 b0
H

0

s0

ci
n

F
ig
u
re

1
2
.3
5

R
ip
pl
e
ad

de
r.

S
ou

rc
e:

[S
EL

L6
8]
.�

19
68

M
cG

ra
w
-H
ill
C
om

pa
ni
es
.

554



A A A

O
R

A A

O
R

A
O

R

O
R A

O
R A

O
R A

ci
n

T
0

T
1

T
2

G
0

T
1

T
2

T
2

G
1

G
2

G
2T

2

a2 b2 a2 b2 a2 b2
c1 H

2

s2

c 2

c1

ci
n

T
0

T
1

G
0

T
1

G
1

a1 b1 a1 b1 a1 b1

G
1T

1

c0

s1

G
0T

0

ci
n

s0

H
1

H
0

ci
n

T
0

G
0

ci
n

a0 b0 a0 b0 a0 b0

c0

F
ig
u
re

1
2
.3
6

C
ar
ry
-lo

ok
-a
he

ad
ad

de
r.

S
ou

rc
e:

[S
EL

L6
8]
.�

19
68

M
cG

ra
w
-H
ill
C
om

pa
ni
es
.

555



Based on these characteristics, we now consider the parity-checked adder. Let pA
and pB be the parity check bits of the two input operands. The parity of the sum is

given by

ps ¼ sn�1  sn�2  . . . s1  s0

¼ ðan�1  bn�1  cn�2Þ  ðan�2  bn�2  cn�3Þ  . . . ða0  b0  cinÞ
¼ ðan�1  an�2  . . . a0Þ  ðbn�1  bn�2  . . . b0Þ  ðcn�2  cn�3  . . . cinÞ
¼ pA  pB  pc: ð12:16Þ

Here pc denotes the parity of the carries within the adder. The check defined by Eq. ð12:16Þ
will be referred to as the full-sum parity check. The predicted parity pA  pB  pC is

compared with the actual parity of the sum ps, shown in Figure 12.37.

This checking circuit is equal to the circuit shown in Figure 12.2. That is, the input

parities pA and pB in the input X ¼ fðA; pAÞ; ðB; pBÞg, the sum output

S ¼ ðs0 s1 . . . sn�1Þ, and the internal signals W ¼ ðcin; c0; . . . ; cn�2Þ, which are carry

signals, are passed on to the checker. The sum parity is predicted from pA, pB, and W , and

compared with the parity of the output sum.

Example 12.6

Let inputs A and B be ð0010Þ and ð0110Þ, respectively. Hence input parities are pA ¼ 1

and pB ¼ 0. Assume that the output sum S equals ð1010Þ. Figure 12.38 shows how to

detect sum bit error.

In the checking method a problem arises because carry errors are undetectable. This is

because every carry error also causes a sum bit error and hence always results in an even

number of carry plus sum bit errors.

Use of duplicate carries and a carry-dependent sum adder have been proposed to

overcome this problem [HSIA63, SELL68]. An example of the method of duplicate carry

Adder

(A, pA) (B, pB)

(S, ps )

cin ~ cn -2

ps

pA pB pC

Compare
circuit

CK

Z Error
indicator

Predicted
parity bit

Checker

Figure 12.37 Full-sumparity check.

556 CODING FOR LOGIC AND SYSTEM DESIGN



with parity check is shown in Figure 12.39. In this method the carry generation circuit is

duplicated and pcd is generated from these duplicated carry bits. Therefore the parity check

performed by ps ¼ pA  pB  pcd in a ripple adder can detect all carry errors caused by a

single fault and in a look-ahead adder can detect all carry errors caused by an error in Ti orGi.

The next method is the carry-dependent sum adder [HSIA63] shown in Figure 12.40.

If a carry error could be made to cause an odd error burst, then parity checking alone

could be used for complete adder checking. The adder that satisfies this requirement is

called a carry-dependent sum adder. An even error burst ci; siþ1; . . . ; ciþt�1; siþt caused
by a carry error in ci can be made ‘‘odd’’ if the carry bit error in ci also causes the

corresponding sum bit si to be in error. This can be satisfied by introducing the following

equation relating to the sum bit si:

si ¼ fi  ci; ð12:17Þ

where fi is a function of ai, bi, and ci�1. This function fi can be derived from the following

table:

From this table fi can be expressed as the following equation:

fi ¼ aibici�1 þ aibici�1

¼ Gici�1 þ Tici�1:

Therefore Eq. ð12:17Þ becomes

si ¼ Gici�1ci þ Gici�1ci þ Tici�1ci þ Tici�1ci:

This type of parity-checked adder is shown in Figure 12.40.

A = 0 10 0

B = 0 1 1 0

C = 1 1 0 0(                            )

p = 1

p = 0

p = 0

S = 1 0 1 0

p = 1

p = 0

error

Error detected

A

B

C

S

S

Figure 12.38 Parity checking for addition.

ai bi ci�1 si ci fi ¼ si  ci

0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 1 0 1
0 1 1 0 1 1
1 0 0 1 0 1
1 0 1 0 1 1
1 1 0 0 1 1
1 1 1 1 1 0

SELF-CHECKING ALU 557



F
ig
u
re

1
2
.3
9

D
up

lic
at
e
ca
rr
y
w
ith

pa
ri
ty
ch
ec

k
ap

pl
ie
d
to
ca
rr
y
lo
ok
-a
he

ad
ad

de
r.

S
ou

rc
e:

[S
EL

L6
8]
.�

19
68

M
cG

ra
w
-H
ill
C
om

pa
ni
es
.

558



Let us consider the case where an error exists in the input but not in the adder. From Eq.

ð12:16Þ we can predict the parity ps of the sum output S. Figure 12.41 shows the circuit

whose output is encoded in a simple parity-check code ðS; psÞ.
If a single error is in ðA; pAÞ or ðB; pBÞ, where pA and pB are parity bits of the operands A

and B, respectively, and we assume there are no faults in circuit G shown in Figure 12.41,

then a single input error is always propagated to the output. This is explained as follows: If

there is an error in pA or pB, this error is always propagated to the output parity ps, and not

A

OR

N

N

A

A

A

A

OR

ci

ci

ci

ai

bi

A

OR

N

N

A

A

A

A

ORai +1

bi +1

si si +1

Gi Ti Ti +1Gi +1

ci -1 ci

ci -1

Carry look-head adder

pA pB pspc

Error

ci +1

ci +1

ci +1

ci +1

ci +1

ci -1

ci -1

ci -1

ci

ci

ci

ci

ci

Figure 12.40 Carry-dependent sumadder. Source: [SELL68].� 1968 McGraw-Hill Book Company.

Adder

(A, pA) (B, pB)
X

C

S ps
G

Figure 12.41 Code-disjoint adder.

SELF-CHECKING ALU 559



to S. Therefore the output ðS; psÞ is a noncodeword. Next we assume that an error exists in

A or B. Without loss of generality we assume that an error exists in A. Let the i-th bit in A

(i.e., ai) be in error. Then this error is always propagated to si because si is a linear function

of ai (i.e., si ¼ ai  bi  ci�1). On the other hand, the error is sometimes propagated and

other times not propagated to carry bit ci. This depends on the value of bi and ci�1. If this
error is propagated to ci, then this is always propagated to sum output siþ1 of the next

stage. Similarly, if the error is propagated to the carry of another stage (e.g., ciþt), then
siþtþ1 is always in error. From this, the single input error can be propagated to

si; ðci; siþ1Þ; . . . ; ðciþt; siþtþ1Þ; . . .. The result is an odd number of errors in the output

sum and carry bits. This means that if an even number of errors occurs in sum, an odd

number of errors exists in carries, and vice versa. Therefore the output ðS; psÞ will be a

noncodeword. We assume that the input noncodeword space is defined as

�x � N ¼ fðA; pAÞ; ðB; pBÞ j ðA; pAÞ or ðB; pBÞ includes single errorg:

Then circuit G always maps a noncodeword input to a noncodeword output. Therefore we

have proved the following theorem.

Theorem 12.12 The circuit G shown in Figure 12.41 is code disjoint for single errors in

the input space.

12.3.2 Addition with Checksum Codes

Checksum codes, also called digit parity [GARN58], can be used to detect single-byte

errors. A checksum code is a set of vectors of nþ 1 symbols from the set Zq (integers mod

q). Each vector has a component, called a check symbol, that equals sum mod q of the

other components, called information symbols in the vector.

Definition 12.14 [WAKE76] A checksum code is the set

ðxc xn�1 . . . x0Þ j ðxc; xn�1; . . . ; x1; x0 2 ZqÞ; and xc ¼
X

0�i�n�1
xi mod q

 !( )
:

&

By this definition, it is apparent that the minimum Hamming distance of a checksum

code is two. Of particular interest are the codes where q equals 2b for some integer b

greater than 1. If b ¼ 1, it is an even parity code. In these codes each symbol from Z2b may

be encoded as a byte of b bits. Hence each codeword has n � b information bits and b check

bits. All errors confined to a single b-bit byte are detected.

We now consider the addition modulo 2b of vectors with any number of components from

Z2b . In this self-checking adder we can detect single-byte errors. Therefore any faults in the

adder that cause single-byte errors can be detected. These faults belong to the fault set F.

Let two codewords, namely input vectors, of the checksum codes have the form

A ¼ ðac an�1 an�2 . . . a0Þ;
B ¼ ðbc bn�1 bn�2 . . . b0Þ;

560 CODING FOR LOGIC AND SYSTEM DESIGN



where ac and bc are the check symbols, and ðan�1 an�2 . . . a0Þ and ðbn�1 bn�2 . . . b0Þ
are the information parts,

Ad � ðan�1 an�2 . . . a0Þ;
Bd � ðbn�1 bn�2 . . . b0Þ:

The information parts Ad and Bd are considered to be the binary representation of the

integers, expressed as ½Ad�, and ½Bd�, respectively, such that

½Ad� ¼
X

0�i�n�1
ai2

bi;

½Bd� ¼
X

0�i�n�1
bi2

bi:

Ordinary addition of the information parts of codewords is expressed as

Sd ¼ Ad þ Bd þ C;

½Sd� ¼ ½Ad� þ ½Bd� mod M;

C ¼ ðcn�2 . . . c0 cinÞ;

ci ¼
0 if ai þ bi þ ci�1 < 2b;

1 if ai þ bi þ ci�1 	 2b;

�
0 � i � n� 2; c�1 ¼ cin:

In the equations above, M equals 2bn and cin equals 0 for two’s complement addition;

M equals 2bn � 1 and cin equals cn�1 for one’s complement addition.

The check symbol of the sum of two information parts is equal to the result of an

addition of the obtained sum symbols:

sc ¼
X

0�i�n�1
si mod 2b: ð12:18Þ

On the other hand, sc can be predicted by using the check symbols of the inputs and of the

carry as

sc ¼ ac þ bc þ cc mod 2b: ð12:19Þ

Here

cc ¼
X

0�i�n�1
ci�1 mod 2b;

where c�1 ¼ cin.

Example 12.7

Let n ¼ 4, b ¼ 3, A ¼ ð7 2 2 4 7Þ, B ¼ ð5 3 3 4 3Þ, andM ¼ 212 (two’s complement).

Then C ¼ ð0 1 1 0Þ and Sd ¼ ð2 2 4 7Þ þ ð3 3 4 3Þ þ ð0 1 1 0Þ ¼ ð5 6 1 2Þ, from

SELF-CHECKING ALU 561



which we get sc ¼ ðs3 þ s2 þ s1 þ s0Þmod 23 ¼ 6. On the other hand, from Eq. ð12:19Þ
for ac ¼ 7; bc ¼ 5, and cc ¼ 2, sc can be predicted as sc ¼ ðac þ bc þ ccÞ mod 23 ¼ 6.

As with the full-sum parity check, the obtained check symbols from Eqs. ð12:18Þ and
ð12:19Þ are compared, and the result is shown as an error indication (Figure 12.42). This

checker belongs to the class of prediction checkers. Like result of Theorem 12.12 the

circuit including the adder and the check symbol prediction circuit is code disjoint for

single symbol errors in the input.

The checker has the same problem as that found in the full-sum parity check. That is,

faults in the carry generation circuit are not detected because they produce compensating

errors in both sc and cc, and although the output is incorrect, there is no error indication.

This problem can also be overcome by using the duplicated carry logic, as stated before.

This checking scheme can be effectively applied to the adder consisting of byte-sliced

adders, as shown in Figure 12.43 [WAKE76,78].

12.3.3 ALU with Parity-Based Codes

Parity-based codes have proved to be very efficient and cost effective for detecting /

correcting errors in the memory and the data transfer circuits in computer systems. If these

codes are successfully applied to the arithmetic logic units (ALU), a single code can be used

throughout the system. This is attractive because it eliminates the need for self-checking

code translators and reduces a number of different types of code checkers required.

In general, however, parity-based codes are not preserved* in logical operations, except

exclusive-OR (XOR) and exclusive-NOR (XNOR) operations. The technique given here is

Adder

(Ad, ac) (Bd, bc)

cin ~ cn -2

Compare
circuit Error

indicator

Z

Checker

s0 ~ sn -1

(Sd, sc)

cc

sc

CK

sc

+: addition mod 2 b

Figure 12.42 Check symbolprediction checker.

*As typical logic operations, AND and OR operations are not linear. Therefore linear codes cannot be applied to

these nonlinear operations. That is, check bits of the output of these nonlinear operations are not determined by

modulo-2 addition of the input information.

562 CODING FOR LOGIC AND SYSTEM DESIGN



based on the idea that the result of an arbitrary operation F can be linearly transformed

into that of an XOR operation. This enables a parity prediction of the output of the

operation F [FUJI81].

Let two input data words A and B each having k bits be given as follows:

A ¼ ðak�1 ak�2 . . . a1 a0Þ;
B ¼ ðbk�1 bk�2 . . . b1 b0Þ:

Parity bits pA and pB are generated from the relation

pA ¼
Xk�1
i¼0

ai;

pB ¼
Xk�1
i¼0

bi;

where
P  denotes modulo-2 sum. The circuit has two inputs, ðA; pAÞ and ðB; pBÞ, and an

output, ðY; pYÞ. In this case output from ALU is defined as follows:

Y ¼ ðyk�1 yk�2 . . . y1 y0Þ

Parity bit pY of Y satisfies the following relation:

pY ¼
Xk�1
i¼0

yi:

Figure 12.44 shows this circuit model.

Figure 12.43 Check symbolprediction circuit for checksum code usingbyte-slicedadders [WAKE78].

SELF-CHECKING ALU 563



Parity checking, that is, syndrome S generation, by XOR operations is performed as

follows:

S ¼
Xk�1
i¼0

yi

 !
 pA  pB;

yi ¼ ai  bi ði ¼ 0; 1; . . . ; k � 1Þ;
S ¼ 1 : error detection;

S ¼ 0 : error-free:

�
The i-th transformation function fFðyiÞ expresses the transformation of the i-th result of

the ALU operation, yi, into the ith result of the XOR operation (i.e., ai  bi) shown

in Figure 12.45. Hence the output of the function fFðyiÞ is given as fFðyiÞ ¼ ai  bi,

i ¼ 0; 1; . . . ; k � 1.

If the function fFðyiÞ satisfies the relation mentioned in the following Theorem 12.13,

an error in yi is propagated to the output of fFðyiÞ, and the parity of the ALU output can be

predicted.

Definition 12.15 [SELL68] The Boolean difference of a function F ¼ Fðx0; x1; . . .,
xi; . . . ; xn�1Þ with respect to xi is defined as

dF

dxi
¼ Fðx0; x1; . . . ; xi; . . . ; xn�1Þ  Fðx0; x1; . . . ; xi; . . . ; xn�1Þ &

ALU

(A, pA) (B, pB)

(Y, pY)

Φ

Figure 12.44 ALUcircuitmodel.

f (yk -1)F Φ Φ Φ Φ Φ

yk -1

ak -1 bk -1

f (yk -2)

yk -2

ak -2 bk -2

... f (yi)

yi

ai bi

... f (y0)

y0

a0 b0

Figure 12.45 Transformation function. Source: [FUJI81].� 1981IEICE Japan.

564 CODING FOR LOGIC AND SYSTEM DESIGN



Theorem 12.13 If the transformation function fFðyiÞ satisfies the relation

dðfFðyiÞÞ
dyi

¼ 1; i ¼ 0; 1; . . . ; k � 1; ð12:20Þ

fFðyiÞ ¼ ai  bi; ð12:21Þ

then parity bit of the ALU output, p0Y , can be predicted as follows:

For ri ¼ yi  ai  bi,

p0Y ¼ pA  pB 
Xk�1
i¼0

ri

 !
: ð12:22Þ

For ri ¼ yi  ai  bi,

p0Y ¼
pA  pB 

Pk�1
i¼0

ri

� �
k : even;

pA  pB 
Pk�1

i¼0
ri

� �
k : odd:

8<: ð12:23Þ

In order to prove this theorem, the following lemma is prepared.

Lemma 12.5 Let F be a function of two independent variables Y and R. Then

F ¼ Y  R and Y  R are the solutions to satisfy the following relation:

dF

dY
¼ 1: ð12:24Þ

Proof Assume that F ¼ Y � R, where � expresses an arbitrary ALU operation, satisfies

Eq. ð12:24Þ. Then, by Definition 12.15, the following relation should be satisfied:

dF

dY
¼ ð1 � RÞ  ð0 � RÞ ¼ 1: ð12:25Þ

The following four cases are the only solutions to satisfy Eq. ð12:25Þ:

Since R is a variable, the cases (3) and (4) are the solutions satisfying Eq. ð12:25Þ. Hence
F ¼ Y  R and F ¼ Y  R are the solutions that satisfy Eq. ð12:24Þ. Q.E.D.

Case 1 � R 0 � R Solutions

(1) 1 0
R ¼ 1 and � ¼ AND
R ¼ 0 and � ¼ OR

�
(2) 0 1

R ¼ 1 and � ¼ NAND
R ¼ 0 and � ¼ NOR

�
(3) R R � ¼ exclusive-NOR (XNOR)
(4) R R � ¼ exclusive-OR (XOR)

SELF-CHECKING ALU 565



It is apparent that F ¼ Y � R, Y � R, and Y � R, where the � shows an exclusive-OR

(XOR) operation or an exclusive-NOR (XNOR) operation, are also solutions that satisfy

Eq. ð12:24Þ.

Proof of Theorem 12.13 From Lemma 12.5 the following relation satisfies Eq. ð12:20Þ:

fFðyiÞ ¼ yi  ri: ð12:26Þ

By Eqs. ð12:21Þ and ð12:26Þ, ri can be obtained such that

ri ¼ yi  ai  bi:

Modulo-2 addition with respect to i for both sides of Eqs. ð12:21Þ and ð12:26Þ produces the
relations

Xk�1
i¼0

fFðyiÞ ¼
Xk�1
i¼0

ai  bi

 !
¼ pA  pB;

Xk�1
i¼0

fFðyiÞ ¼
Xk�1
i¼0

yi  ri

 !

¼
Xk�1
i¼0

yi

 !


Xk�1
i¼0

ri

 !
:

From these equations the predicted parity bit p0Y is obtained:

p0Y ¼
Xk�1
i¼0

yi ¼ pA  pB 
Xk�1
i¼0

ri

 !
:

This satisfies Eq. ð12:22Þ.
On the other hand, from Lemma 12.5 the following relation also satisfies Eq. (12.21):

fFðyiÞ ¼ yi  ri:

In the same manner, for ri ¼ yi  ai  bi, the predicted parity bit p0Y can be obtained as

Eq. ð12:23Þ. Q.E.D.

From the definition of the Boolean difference, Eq. ð12:20Þ demonstrates that an error in

yi is always propagated to the output of the function fFðyiÞ. Equations ð12:20Þ and ð12:21Þ
are important from the point of producing the predicted parity bits as well as giving the

condition for propagating an error in yi to the output of fFðyiÞ.
Table 12.3 shows the function ri for the basic arithmetic and logic operations, where R

is defined as follows.

R ¼ ðrk�1 rk�2 . . . r1 r0Þ:

Theorem 12.14 describes the parity checking for an arbitrary ALU operation using the

predicted parity bit p0Y shown in Eq. (12.22).

566 CODING FOR LOGIC AND SYSTEM DESIGN



Theorem 12.14 For inputs A and B, each having k bits, the parity checking (i.e., syn-

drome generation) for an ALU operation F is performed as

SF ¼ pY  p0Y

¼
Xk�1
i¼0

yi

 !


Xk�1
i¼0

ri

 !
 pA  pB

( )

¼
Xk�1
i¼0

fFðyiÞ
 !

 pA  pB;

ð12:27Þ

where

fFðyiÞ ¼ yi  ri ¼ ai  bi;

SF ¼ 1 : error detected;

SF ¼ 0 : error free:

Figure 12.46 shows the parity-checking scheme for an ALU operation F.

Theorem 12.15 The parity-checking scheme shown in Fig. 12.46 detects any single

errors in input A or B, if there exist no faults in both ALU and checker.

Proof Equation ð12:27Þ can be also written as

SF ¼
Xk�1
i¼0

fFðyiÞ
 !

 pA  pB

¼
Xk�1
i¼0

ai  bi

 !
 pA  pB:

Therefore we have

dSF

dai
¼ 1 and

dSF

dbi
¼ 1:

This shows that any single input error can always be detected. Q.E.D.

TABLE 12.3 Function ri

ri

OperationF yi � ¼ XOR � ¼ XNOR

AND a1 \ bi ai [ bi �ai \ �bi
OR ai [ bi ai \ bi �ai [ �bi
XOR ai  bi 0 1
XNOR ai  bi 1 0
ADD ai þ bi ci�1 ci�1

Source: [FUJI81].� 1981IECE Japan.
Note: ci�1 is a carry bit that enters the position i.

SELF-CHECKING ALU 567



Next we consider an error correction of ALU operation based on the foregoing

principle. Parity checking is performed according to the check group indicated by the H

matrix row. That is, the check group is defined as a set of input data determined by the row

pattern of H. There exist n� k ¼ r check bits in the ðn; kÞ code

H ¼ He j Ir½ �r�n:

Here He is an r � k encoding matrix and Ir is an r � r identity matrix. Two input

codewords are shown as ðA;CAÞ and ðB;CBÞ, where CA and CB are check-bit vectors, such

that

CA ¼ ðcA;0 cA;1 . . . cA;r�1Þ;
CB ¼ ðcB;0 cB;1 . . . cB;r�1Þ:

We also define C such that

C ¼ CA  CB;

C ¼ ðc0 c1 . . . cr�1Þ;
ci ¼ cA;i  cB;i; i ¼ 0; 1; . . . ; r � 1:

Figure 12.46 Parity-checking scheme for arbitrary operationF. Source: [FUJI81].� 1981IEICE Japan.

568 CODING FOR LOGIC AND SYSTEM DESIGN



The output of ALU is shown as ðY ;CYÞ, where CY is a check-bit vector for output Y :

CY ¼ ðcY ;0 cY ;1 . . . cY ;r�1Þ:

Recall that an error correction procedure consists of three main steps: (1) syndrome

generation, (2) determination of error location (syndrome decoding), and (3) inversion of

the erroneous bit.

For syndrome generation for output Y , we have the following sequence of steps:

Step 1. Check-bit generation,

CY ¼ Y �HT
e :

Step 2. Check-bit prediction,

Cp ¼ R �HT
e  C;

Cp ¼ ðcp;0 cp;1 . . . cp;r�1Þ:

Step 3. Syndrome generation,

S ¼ CY  Cp

¼ Y �HT
e  ðR �HT

e  CÞ
¼ FF �HT

e  C; where FF ¼ Y  R:

The error location is determined from the syndrome, such that

wðSÞ ¼ 0 : No error:

wðSÞ ¼ 1 : Error in check-bit part Cp:

wðSÞ 	 2 : Error in ALU output Y ;

where wðSÞ means the weight of syndrome S. Location of the erroneous bits, especially

the erroneous bits in the output Y , is determined precisely by the column vectors of the

H matrix.

An error pointer E ¼ ðEY ;EcÞ specifies the error pattern to be corrected, where EY is the

output Y error and Ec the check-bit error. The corrected output ðŶ ; ĈYÞ is obtained by the

error pointer such that

Ŷ ¼ Y  EY ;

ĈY ¼ Cp  Ec:

Figure 12.47 shows an error correction circuit ðECÞ for ALU. Note particularly that the
circuit EC0 in EC, enclosed by the broken line, is the same error decoding circuit as that

for the high-speed memories.

Therefore any type of error detecting / correcting parity-based code, that is, any linear

code, can be applied to an error detection / correction in ALU operations. In [FUJI81],

SELF-CHECKING ALU 569



where a comparison with the triplication (TMR) is given for total hardware amount, the

TMR is about 1.5 times larger than the scheme above using single 4-bit byte error correcting

(S4EC) code and 4-bit byte-sliced ALUs for k ¼ 16 bits and r ¼ 8 bits. Nevertheless, for

operational speed and error correction capability, the TMR is superior to this scheme.

12.4 SELF-CHECKING DESIGN FOR COMPUTER SYSTEMS

The original concept for self-checking computers was first presented by [CART68]. The

specific design methods for TSC systems or SFS networks were developed by [SMIT78, 83].

Figure 12.47 Error correction scheme forALU using ðkþ r; kÞ parity-based codes. Source: [FUJI81]. � 1981

IEICE Japan.

570 CODING FOR LOGIC AND SYSTEM DESIGN



From self-checking design point, the code detecting or correcting hard errors as well as

transient errors on the spot has proved to be essential not only to special / general purpose

computer systems but also to recent high-speed microprocessors.

12.4.1 Coding for Dependable Computer Systems

1. Dependable Special Purpose Systems

STAR Computer A special purpose ultra-reliable computer that makes extensive

use of the technique of modularity and standby sparing, as well as error detection

methods, is the Jet Propulsion Lab’s self-testing and repair (STAR) computer [AVIZ71].

In the STAR computer, low-cost arithmetic error detecting codes are used in the data

word, or instruction word. For the byte-organized computer word with four-bit bytes,

modulo-15 arithmetic checking is especially effective. All words are encoded as shown in

Figure 12.48.

Note in the figure that the 32-bit numeric operand word consists of a 28-bit binary

number b and a 4-bit check CðbÞ. The check byte, which is a binary number, has the

value

CðbÞ ¼ 15� jbj15,

where jbj15 means residue modulo-15 of b. The 32-bit instruction word consists of a 12-bit

operation code and a 20-bit residue-coded address part. The 16-bit address is encoded in

the same residue-check code as the operands. The operation code is divided into three

bytes, and each byte is encoded in a 2-out-of-4 code. This code permits each byte to be

checked individually.

Electronic Switching Systems In electronic switching systems (ESS), the

self-checking hardware has been integrated into the design so that faults are detected

during normal system operation [TOY78]. In the microprogram controller, an efficient

nonsystematic 4-out-of-8 code is applied to the control information in order to detect all

multiple unidirectional errors. Also a TSC 4-out-of-8 code checker is implemented.

C(a) a3 a2 a1 a0 d2 d1 d0

Address part Op-code

Instruction word (32 bits)

C(b) b6 b5 b4 b3 b2 b1 b0

Numeric operand word (32 bits)

C(a) =15 - | a | 15 2-out-of-4 code

C(b) = 15 - | b | 15

a = (a  a  a  a  ),3 2 1 0

b = (b  b  b  b  b  b  b  )6 5 4 3 2 1 0

|x|  means x mod yy

Figure 12.48 STAR Instructionword and operandword format. Source: [AVIZ71].� 1971IEEE.

SELF-CHECKING DESIGN FOR COMPUTER SYSTEMS 571



2. (4, 2) Concept Machine
An important fault-tolerant system concept, that is, (4, 2) concept, [KROL86], has

practically applied to the Philips digital telephone exchange system [GEEL85]. It is very

unique that the coding is applied at the system level, not applied to a specific circuit or

module. This system consists of four modules. The 16-bit processor is quadrupled while

the memory consists of four parts each with half a data word length, namely 8 bits. The

information stored in the four memory modules is protected by a single-symbol error

correcting code. This code consists of four 8-bit symbols, two of which are information

symbols and the other two are check symbols, which is the (4, 2) code. The basic (4, 2)

concept architecture is shown in Figure 12.49. In this system the data word has a length of

16 bits. Each module comprises a 16-bit microprocessor (P), a memory (M) with 8-bit data

input / output, and a decoder (DEC) of the (4, 2) single-symbol error correcting code. The

memory contents are protected by the code, where symbol expresses an 8-bit data. Each

symbol is stored in a different module. Four processors process identical 16 bits

information and run synchronously. Therefore the system basically tolerates any faults /

errors in any one of the four modules.

When the information is sent from the processor (P) to the memory (M) in write

operation, the 16-bit data word is encoded into 8 bits in each module and written into the

memory by way of the circuit Gi, i ¼ 0; 1; 2; 3. Note that the hardware implementation

in each module differs only in the encoders G0, G1, G2, and G3. Each encoder receives

16-bit information data, namely two information symbols. Each of the two encoders (e.g.,

G2, and G3 in Figure 12.49) among the four Gi’s generates two check symbols and selects

one 8-bit check symbol out of the two generated symbols that is finally stored in the

corresponding memory M. The remaining two Gi’s (e.g., G0, and G1 in Figure 12.49)

select one 8-bit symbol among the input two information symbols that is stored in the

corresponding M.

When the information is transferred from the memory to the processor in the read

operation, each module receives at the decoder (DEC) not only its own 8-bit symbol

but also the other three symbols transmitted from the other modules. Therefore the

decoder in each module receives the complete word of the four 8-bit symbols. If any

one of these symbols is in error, then the error is corrected by the decoder (DEC) in each

module. In this case, whatever faults occur in one module, these affect only one 8-bit

symbol that is also sent to the other modules. So the decoder in each module may contain

single-symbol errors that are finally corrected. That is, any hardware faults existed

in one module that may cause single-symbol errors do not affect the operation of the

total system.

The code adopted is built up from two interleaved codes, each consisting of four

4-bit bytes. The code can correct any single-byte errors and any double-bit errors;

that is, the code is an SbEC-DEC code as presented in Section 6.3. However, the single-

byte errors and double-bit errors cannot be corrected simultaneously. The S4EC-DEC

code was designed by an exhaustive computer search and is given in the following H

matrix:

H ¼ T7 T11 I 0

T11 T7 0 I

� �
, ð12:28Þ

where T is a companion matrix defined by the 4-th degree binary primitive polynomial

gðxÞ ¼ x4 þ xþ 1.

572 CODING FOR LOGIC AND SYSTEM DESIGN



F
ig
u
re

1
2
.4
9

Th
e
(4
,2
)
co
nc
ep

tm
ac
hi
ne
.

S
ou

rc
e:

[K
R
O
L8

6]
.�

19
86

IE
EE

.

573



The total interleaved code has various bit or byte (or symbol) error control capabilities

and is at least capable of correcting single 8-bit symbol errors that occur in any one

module and double-bit errors that occur in two different modules. More extensive work

on these combined byte and bit error control codes is presented in [GILS86a, GILS86b,

GILS87].

This concept can be expanded to an ðn; kÞ concept, in general, where an ðn; kÞ symbol

error correcting code is applied [KROL86]. This makes it possible to choose a redundancy

ratio between the numbers of processors and the memories, and this way to optimize the

total amount of redundancy. In the ðn; kÞ concept the processor data are encoded into an

n-folded repetition code, but the memory data are encoded into an ðn; kÞ symbol error

correcting code. That is, a copy of the processor data exists in each module, and each

memory of the module contains one symbol of the codeword. However, the symbol size of

the ðn; kÞ code is k times smaller than that of the n-folded repetition code. The ðn; kÞ
symbol error correcting code is capable of correcting up to bðn� kÞ=2c symbols errors and

requires a factor of ðn� kÞ=k additional memory hardware.

3. Dependable General Purpose Systems

(1) Self-Checking Computer Design for IBM S/360 General Purpose Computer
The self-checking computer system was first studied for cost-effectiveness by Carter

[CART77]. The target machine was constructed with a small number of LSI chip types,

about 10. The design objectives were as follows:

1. To make the processing unit (PU) completely checkable and self-testing, and to

consider hardware trade-offs.

2. To achieve in the processing unit a retry capability without speed degradation and

without significant additional hardware.

It was found that complete checking of a PU is relatively inexpensive (35% of additional

hardware over the unchecked PU and 6.5% over the S/360 checked PU, with only one

additional new chip type) and that a simple instruction retry could be achieved with one

additional chip and with no apparent speed degradation.

Since 1990s the general purpose data-processing systems have adopted a variety

of dependable techniques of concurrent error detection, fault isolation, and recovery.

High availability has been achieved by minimizing the component failure rate through

improvements in the base technologies, and by applying the design techniques that enable

hard and soft error detection / correction, recovery and isolation, and component replace-

ment concurrent with system operation.

(2) RAS Design for Recent General Purpose System and Server Machine
Here we take a brief look, from the standpoint of coding, at the dependable design

techniques of a recent general purpose system and a server machine.

(a) The IBM Enterprise System/9000. The system design includes a variety of

dependable techniques to detect, recover, and isolate failures of circuits and components.

Its two points of merit are continuous availability and short repair time [CHEN92]. A big

objective of the design of the system is to provide high levels of reliability, availability, and

574 CODING FOR LOGIC AND SYSTEM DESIGN



serviceability (RAS). All system hardware components, including logic, memory, and

power, have significantly increased levels of coverage in error detection, fault isolation,

error correction, coverage effectiveness, and concurrent maintenance.

The basis for all the hardware fault tolerance and data integrity is a concurrent error

detection. As a result the system achieves nearly the error detection effectiveness of logic

duplication and comparison but with less than 30% circuit overhead. The additional

hardware design accomplishes fault isolation. The built-in hardware error detection and

replaceable unit isolation have been proved to isolate faults quickly. In order to achieve

this, the key design characteristic has to (1) detect errors during normal operation, (2)

capture machine status information at the time of error detection, and (3) isolate the failing

unit by analysis of the data captured at the detection of the error. Error detection and retry

are used for recovery from logic errors. Concurrent error correction and standby spares are

applied to memory fault tolerance.

From coding point of view, the following techniques are applied to this system.

For logic circuits. Concurrent error detection

� Parity checking for data flow registers

� Parity checking for control registers

� Parity prediction checking for transformation logic

� Parity prediction checking for sequential controls

� Decoder output check (one and only one check) and invalid logic output checks

� Residue checking for arithmetic functions (e.g., residue modulo-3 check for high-

speed multipliers)

For semiconductor memories. Error control codes for error correction and detection,

retry, and fault isolation

� Level-1 instruction cache and data cache: simple parity-check code and spare word

lines for hard fault-tolerance

� Level-2 cache: SEC-DED codes and faulty word line deletion

� Control memory: simple parity-check code and spare word lines for replacing the

faulty line

� Main memory: (72, 64) SEC-DED code, spare DRAM chip for replacing faulty

chip, memory background scrubbing (mentioned later), and fetch with retry request

� Expanded main memory: (144, 128) DEC-TED code, spare memory chip, and

background scrubbing

DEC-TED BCH Codes The (144, 128) double-bit error correcting and triple-bit

error detecting (DEC-TED) codes are applied to the expanded memory. The code is

obtained by shortening a (255, 239) cyclic BCH code whose generator polynomial

contains a and a3 as roots, where a 2 GFð28Þ is a root of binary primitive polynomial of

degree 8. In addition the code is modified to have extra property of detecting all single

4-bit symbol errors, which is useful in isolating the memory support logic faults.

Decoding the DEC-TED code is performed as follows [CHEN92]: Assume that there

are two errors, at positions X1 and X2, and that the syndrome can be represented by two

SELF-CHECKING DESIGN FOR COMPUTER SYSTEMS 575



8-bit vectors, S1 and S3, with S1 ¼ X1 þ X2, and S3 ¼ X3
1 þ X3

2 . Given the syndrome

ðS1; S3Þ, the following relation holds:

D ¼ S31 þ S3

¼ X3
1 þ X2

1X2 þ X1X
2
2 þ X3

2 þ X3
1 þ X3

2

¼ X2
1X2 þ X1X

2
2

¼ X1X2ðX1 þ X2Þ
¼ S21X1 þ S1X

2
1 :

The expression S21X1 þ S1X
2
1 can be represented by S1Tx, where Tx is an 8� 8 binary

matrix uniquely determined by the position X. The double-error decoding algorithm is

shown as follows:

Step 1. Compute D ¼ S31 þ S3.

Step 2. For each of the 144 codeword position X, compute Qx ¼ S1Tx. The computation

of all 144 Qx values can be carried out in parallel in hardware involving XOR circuits.

Step 3. If Qx ¼ D for particular X, then X is a position of error. The data at position X are

then corrected by an inversion of the data bit.

(b) Recent Server Machines A typical server machine of IBM eServer z900 and

z990, whose dependable system structure is based on the former server IBM S/390 G5

and G6, has the strategy to enable continuous reliable operation, supported by the follow-

ing building blocks [MUEL99, ALVE02, FAIR04]:

� Error prevention

� Error detection

� Error recovery

� Problem determination

� Service / support

� Change management

� Measurement

These blocks provide the capabilities of self-protecting, self-healing, self-configuring,

and self-optimizing. This design strategy is illustrated in Figure 12.50. Major enhance-

ments in RAS design, concurrent upgrade and concurrent repair for the system have

been made in the processor, memory, I/O, power / cooling, service / support subsystem,

and so forth.

The dependable techniques of duplication, N þ 1 redundancy and coding are

extensively applied to the subsystems of processor, storage, I/O, and so forth. In the

processor subsystem the processor units (PUs) each having the level-1 cache (L1 cache)

and the secondary cache (L2 cache) are duplicated and are tightly coupled. Parity-

prediction and carry checking are applied to the adders and the arithmetic logic units

(ALUs). Also residue checking is applied to the modular exponentiation engines in the

cryptographic coprocessor element.

576 CODING FOR LOGIC AND SYSTEM DESIGN



In memories some type of bit or byte error correcting / detecting codes are applied to

the following various storages:

� Level-1 cache (L1 cache): simple parity-check code

� Level-2 cache (L2 cache): (25, 19) ECC for address field in the directory, (11, 5)

ECC for ownership field in the directory, and (72, 64) SEC-DED code for memory

data field

� Main memory: minimum-weight & equal-weight-row (140, 128) S2EC-D2ED code

[CHEN96] for data field* and background scrubbing

For address information, two memory address parity bits are added to prevent data from

being fetched from an erroneous location. However, these address parity bits are not stored

in the main memory. In another memories and the bus-line circuit, the following codes are

applied:

� Address translation buffer: (16, 10) SEC-DED code for each of duplicated stored

data, and background scrubbing

*The (76, 64) S4EC-DED code is applied to the former Server G3 and G4 to ensure that all single 4-bit errors in a

DRAM chip with 4-bit I/O data are corrected and also random double-bit errors are detected [DOET97, SPAI99].

This type of code is presented in Section 6.2.

Figure 12.50 zSeries RAS strategy building blocks and eServer self-management. Source: [ALVE02].� 2002

by International BusinessMachines Corporation; republished by permission.

SELF-CHECKING DESIGN FOR COMPUTER SYSTEMS 577



� Bus interface between L2 cache and memory controller: simple parity-check code

for command and status bus

� Cryptographic key storage: triplicated key data, each appended by simple parity-

check bit

Background Memory-Scrubbing and Sparing In main memories the dynamic form

of sparing is performed via background scrubbing, a process of error avoidance. The

memory-scrubbing process serves two functions. The first function is to eliminate the

accumulation of soft errors in the memory chip. The purpose is to reduce the likelihood

of the alignments of existing soft errors and future hard or soft errors. The second function

of scrubbing is to identify and record hard errors in the memory chip. Multiple hard errors

are prime targets to line up in the same ECC word because they can result in uncorrectable

error events. Error counts are accumulated while scrubbing, and DRAMs with high counts

are spared. Once a memory chip with multiple hard errors is identified, a spare chip

replacement is invoked to transfer data from the failing chip to the spare chip. The fail-

ing chip then is set to become inactive. The scrubbing process runs in the background,

with minimal interference with the normal system operations. With up to 32 spare DRAMs

per memory card, a memory card will rarely need to be replaced because of DRAM failure.

12.4.2 Coding for VLSI Processors / Microprocessors

In today’s microprocessors a variety of coding techniques are being applied not only

to the ALU logics and the cache memories but also to the data transfer circuits such as

bus-line circuits, the register arrays, the key storage, and the address translation arrays.

1. Duplicate VLSI Processors
Sedmak [SEDM80b] studied the fault tolerance of a general purpose computer utilizing

very large scale integration chips. A major method of achieving fault tolerance is by

internal redundancy using duplicate complementary logic. This kind of complementary

duplication is used in the VLSI chips shown in Figure 12.51. In these figures it is easy to

see that for a given combination logic element in the functional portion, the signals into

and out of the gate are polarities, opposite to those of the complementary portion. This

technique serves two purposes. First, it eliminates a problem associated with applying the

same mask or cell type twice internally. The problem is that failures (designs, process, and

wearout) undetected by the comparators could occur in noncomplementary duplication

where a mask or cell fault might materialize in both the functional and duplicate circuits

and thus create an identical failure state. Second, the design with complementary

duplication will be much less susceptible to bridging faults than noncomplementary

duplication. This is because there will be far fewer occurrences of long nets of

metalization with the same Boolean function and the same polarity signal, which, if

bridged, might result in an undetected error should a subsequent failure occur.

Each of the code checkers and comparators is implemented using a self-checking

design approach. The self-checking comparators shown in Figures 12.24 and 12.25 are

extensively used. As a result of the cost-effectiveness of the design, the logic overhead

that consists of duplicate complementary gates, comparators, and other fault detection

circuits, comprises approximately 55% of the total gates in the CPU. Compared to the

conventionally checked VLSI machine, the increase in chip count is only 5.5%. In this

578 CODING FOR LOGIC AND SYSTEM DESIGN



case a conventionally checked VLSI machine is assumed to have simple parity-check code

for memories and complete checking for single faults in data paths, both with no fault

detection in the control logic.

2. Self-checking Microprocessors
Microprocessors have been extensively applied to recent digital systems. They are also

sometimes used in ultra-reliable process controls for industry and medicine. A con-

siderable body of work on a self-checking version of the commercial microprocessors

or microprogram control unit has been done, as can be found in [DISP81, TSAO82,

WONG83, HALB84, HALB84, NICO85a, YEN87, NANY88].

N0

Comparator
check 1

Comparator
check n

Output check
code generation

Error multiplexing
and encoding logic

Output check
code generation

Input clock
check

Input power
comparators

Input code
check 1

Input code
check m

NE

ND NC NP NP NCL

Functional
logic

Duplicate
complementary

logic

Output control
and data lines

with code

Encoded
error

signals

Redundant
power
inputs

Clock
inputs

Data and control
input lines

Figure 12.51 Generalized VLSI chip. Source: [SEDM80b]. � 1980 IEEE.

SELF-CHECKING DESIGN FOR COMPUTER SYSTEMS 579



The techniques adopted commonly are classified as follows:

1. Duplication of circuits (e.g., a control circuit, or ALU) and an output comparison

check using a self-checking comparator (or self-checking two-rail code checker).

2. Coding for control signals (encoded in two-rail codes, or Berger codes) and for

address and data signals (encoded in simple parity-check codes, or m-out-of-n

codes).

3. Extensive use of programmable gate arrays together with the self-checking techniques.

A diagram of a VLSI self-checking microprocessor is given in Figure 12.52 [DISP81]. The

hardware overhead of this self-checking microprocessor is 30% to 60% greater as

compared to the microprocessor without self-checking capability.

The SFS microprocessor’s target architecture is Intel’s i8080 8-bit microprocessor

[NANY88]. This design is related to the error-secure / error-propagating (ES / EP)

concepts of Theorem 12.3 and Definitions 12.10 and 12.11. The new SFS processor design

requires only a few TSC checkers (i.e., four checkers at embedded interfaces) and no

duplicated subsystems except a few registers. Therefore a hardware overhead of only 38%

additional gates is required for the SFS version, as compared with the non-SFS version of

the i8080.

The SFS design approach includes the following features.

1. A complete set of functional building blocks that has been defined and investigated

for ES and EP properties in all interfaces of each block. Each section of the

processor consists of only these building blocks. This feature facilitates the

verification of the SFS property in each section and drastically reduces the number

of TSC checkers required for the SFS processor as a whole.

2. Every interface of the blocks is encoded in an unordered code [LALA01] that

detects unidirectional errors. For the register section and the microprogram section,

the Berger code [BERG61], which will be presented in Definition 12.16, is

considered to be the most cost-effective to use, while the two-rail code is applied

to the ALU section, the timing controller, and the external control signals.

The modeled faults in the processor are single stuck-at faults in gate outputs; single stuck-

at line faults, the single crosspoint faults, and the bridging faults between adjacent lines

in programable gate arrays; single-bit slice faults in registers; and unidirectional faults

in buses.

Some new design techniques are applied to every building block in order to satisfy the

ES and EP properties at each interface. A unique design is utilized for a sequential circuit

with its next-state function d and output function w such that, for unidirectional faults in d

and w, the circuit is SFS if the outputs of w are encoded in an unordered code [LALA01],

and d and w are implemented with inverter-free circuits. This brings a significant

advantage to the practical design of complex SFS systems [NANY87]. For further details,

refer to [NANY88].

The overall organization of the SFS processor is shown in Figure 12.53. It consists

basically of an ALU section, a control section, a register section, and an internal data bus.

Four TSC checkers of TSC 2-rail code checker and TSC Berger code checkers are used as

indicated in the figure.

580 CODING FOR LOGIC AND SYSTEM DESIGN



F
ig
u
re

1
2
.5
2

Ex
am

pl
e
of
se
lf-
ch
ec

ki
ng

m
ic
ro
pr
oc

es
so
r.

S
ou

rc
e:

[D
IS
P
81
].
�

19
81

IE
EE

.

581



F
ig
u
re

1
2
.5
3

SF
S
pr
oc

es
so
r
or
ga

ni
za
tio

n.
S
ou

rc
e:

[N
A
N
Y
88
].
�

19
88

IE
EE

.

582



Unordered Codes A word A ¼ ða0; a1; . . . ; ak�1Þ covers another word B ¼ ðb0;
b1; . . . ; bk�1Þ, written as A 	 B, if bi ¼ 1 implies ai ¼ 1 for i ¼ 0; 1; . . . ; k � 1. In

other words, the positions of 1’s in B are subset of the positions of 1’s in A. For example, if

A ¼ ð1 0 1 0 1 0Þ and B ¼ ð0 0 1 0 1 0Þ, then A > B. It is noted that if A covers B, then

NðB; AÞ, which means the number of 1�!0 crossovers from B to A, equals 0. If A does

not cover B, and B does not cover A, then A and B are unordered. A code in which no

codeword is covered by any other codeword is said to be an unordered code. An unordered

code is capable of detecting all unidirectional errors. The m-out-of-n code, whose

codewords have exactly m 1’s and n� m 0’s, and the Berger code are typical unordered

codes.

Berger Codes for All Unidirectional Error Detection (AUED) The Berger code

[BERG61] is known as an optimal systematic AUED code. For the codeword ða0, a1, . . .,
ak�1, ak, . . ., an�1Þ, ða0; a1; . . . ; ak�1Þ ¼ A is an information part and

ðak; . . . ; an�1Þ ¼ f ðAÞ is a check part induced from A, where the function f ðAÞ is the
binary representation of number of 0’s in A. Hence the number of check bits r required

is given by r ¼ n� k ¼ log2k þ 1b c, where byc means the largest integer smaller than

or equal to y. For example, for a 6-bit ðk ¼ 6Þ information A ¼ ð1 1 0 1 0 0Þ,
then r ¼ blog26þ 1c ¼ 3 and the number of 0’s is 3, and hence f ðAÞ ¼ 011. Thus

ð1 1 0 1 0 0 ..
...
.
0 1 1Þ is a codeword. Consider a unidirectional error, for example, with

1-errors. In this situation the number of 0’s in the information part may only increase, and

not the check part because of 1-errors. Therefore any number of 1-errors cannot make a

codeword into another codeword. This also holds for 0-errors.

Definition 12.16 The Berger code is a systematic all unidirectional error detecting code

whose codeword consists of a k-bit information part A and a blog2k þ 1c bits check part
f ðAÞ, where f ðAÞ gives the binary representation of the number of 0’s in A. &

3. On-Chip ECCs in Recent Microprocessors
A substantial error detection and correction mechanism is now installed in recent

microprocessors [BISH96, TEND02, RUSU03, STIN03, CHAN05, MCIN05, TAKA05,

NAKA05, SHIN05]. For example, in the 64-bit RISC microprocessor the on-chip data

cache and instruction cache, as well as the multiport register array, employ ECCs such as

the SEC code, the SEC-DED code, or a simple parity-check code that allow most single-

bit errors to be corrected or detected. The floating-point unit in the chip is checked by a

residue-check code, and the majority of the data-flow circuits also maintain parity check,

which adds error-detection capabilities.

The microprocessor chip includes an interface control circuit block which controls the

interface between the processor chip and the outside cache memories or the main

memories. The bit / byte error control codes presented in Chapters 4 through 6 are

employed for these memories, and therefore encoder and decoder circuits are included in

the control circuit block. Hence the errors exist in the outside cache or the main memory,

or the errors in the interface circuits, such as bus-line circuits connected with these

memories, are corrected or detected at the processor chip.

Also in recent microprocessors, the SEC-DED codes and the SEC-DED-SbED codes

are extensively applied to the inside bus-line circuits and to the inside cache memories.

Intermittent errors caused by signal coupling between adjacent bus lines can be corrected

or detected.

SELF-CHECKING DESIGN FOR COMPUTER SYSTEMS 583



Figures 12.54 and 12.55 show the block diagram of a recent microprocessor and its

RAS (reliability, availability, and serviceability) features, where ECCs such as bit error

control codes or bit / byte error control codes are applied substantially to the inside

cache memories and bus-line circuits. In this example the microprocessor chip, the

Figure 12.54 Circuit block diagram of a microprocessor. Source: [RUSU03]. � 2003 IEEE.

Core
Pipeline

Error Log

Timer
DTLB1

(32)

ITLB1
(32)

L1D
(16KB)

L1I
(16KB)

DTLB2
(128)

IPC
(128)

L2 (256KB)

Tag

HW Page
Walker

L3 (6MB)

Bus Unit

Bus Queues

Data
Poisoning

System bus

: ECC protected

: Parity protected

A
dd

er
 B

us

D
at

a 
B

us

Data
Data + Tag

Figure 12.55 ECC /parity-protected area in themicroprocessor chip. Source: [RUSU03].� 2003 IEEE.

584 CODING FOR LOGIC AND SYSTEM DESIGN



level-1 cache (both instruction cache L1I and data cache L1D), the translation

lookaside buffers (TLBs), the level-2 cache tag (L2 tag), and the 44-bit system address

bus are protected by a simple parity-check code. The level-2 cache (L2) data array, the

level-3 cache (L3 data and tag), and the 128-bit system data bus are protected by ECCs

such as the bit / byte error control codes. The recent level-3 cache with 9MB capacity

of this microprocessor employs ECCs with 10 check bits for 256 information data bits

[CHAN05].

EXERCISES

12.1 Show that the circuit in Figure 12.6 is self-testing for all faults affecting fewer

than nþ 1 bits output if the input has an even-parity codeword.

12.2 Find the tested and secure fault sets of the parallel exclusive-OR circuit in

Figure 12.6 when the inputs are encoded in a distance-3 Hamming code.

12.3 Let the input codespace of the circuit shown below be N 2 fða0; b0Þ ða1; b1Þ j
ða0; b0Þ; ða1; b1Þ ¼ 1-out-of-2 codesg. Let the output codespace be S 2
fðc0; c1Þ j ðc0; c1Þ ¼ 1-out-of-2 codeg. Show that the circuit is a TSC checker

for all single faults, provided that it receives all four possible codeword

inputs.

12.4 Verify that the cascaded inverter-free network shown in Figure 12.13, whose

primary inputs are encoded in 1-out-of-2 codes, is SFS with respect to unidirec-

tional faults.

12.5 Consider the bit-sliced system in Figure P12.5 where each slice consists of three

registers and a multiplexer that loads unordered codewords from one of I1 and I2,

depending on a two-rail encoded load signal ðC; CÞ into D, as shown in the

a0 b0 a1 b1

c0 c1

0 1 2 3

Figure P12.3 Two-input two-rail code checker.

EXERCISES 585



figure [NANY88]. Show that the system is SFS for unidirectional faults, even

though it does not satisfy the code-disjoint (CD) property.

12.6 Show that the fault-free system shown in Exercise 12.5 is error secure (ES).

12.7 Answer the following questions for the circuit in Figure 12.19.

(a) Show that this checking circuit CK can detect errors in y0 or y1 � y2, but not
both.

(b) Errors due to y1 or y2 can be detected with certain input conditions. Find

these conditions.

12.8 Design the parity prediction checker for the combinational circuit with 3-input

ðx0 x1 x2Þ, and 3-output ðy0 y1 y2Þ defined by the following truth table.

Next design the self-testing parity prediction checker by slightly modifying the

checker above. In this case verify that every stuck-at-1 fault and stuck-at-0 fault

at every gate output can be detected by at least one input (x0 x1 x2).

12.9 Design the input regeneration checker for the 1-out-of-8 decoder.

12.10 Verify that the 1-out-of-8 decoder shown in ðaÞ of Figure P12.10 is self-testing

for all single faults, while the decoder shown in ðbÞ is not self-testing

[CART71b, WAKE78]. Here the output codespace is defined as fðd0; d1; . . . ;
d7Þ ðz0; z1Þ j ðd0; d1; . . . ; d7Þ ¼ 1-out-of-8 codeword, and ðz0; z1Þ ¼1-out-of
-2 codewordg.

x0 x1 x2 y0 y1 y2

0 0 0 1 1 1
0 0 1 0 0 1
0 1 0 1 0 0
0 1 1 0 1 1
1 0 0 0 0 0
1 0 1 0 1 0
1 1 0 1 1 0
1 1 1 1 0 1

Ι2

Ι1

D

C C

Figure P12.5 Bit-sliced circuit.

586 CODING FOR LOGIC AND SYSTEM DESIGN



z1z0

000

001

010

011

100

101

110

111 d7

d6

d5

d4

d3

d2

d1

d0

i0

i1

i2

z1z0

000

001

010

011

100

101

110

111 d7

d6

d5

d4

d3

d2

d1

d0

i0

i1

i2

(a)

(b)

Figure P12.10 1-Out-of-8 decoder checks.

EXERCISES 587



12.11 Find the test patterns sufficient to test the self-testing (odd) parity checker shown

in Figure 12.21.

12.12 Prove Theorem 12.4.

12.13 Prove Theorem 12.5.

12.14 Design the complementary duplication checker for the 4-input, 3-output circuit

shown in Example 12.5. Also show the circuit designed in a complementary form

of this circuit.

12.15 Verify that the two-rail code checker in Figure 12.25 is self-testing for all

unidirectional multiple faults.

12.16 Find the minimum number of test patterns for the following two-rail code

checker.

12.17 Design the self-testing checker for a Berger code with length k ¼ 4, and n ¼ 7.

12.18 Design the GPCs with the following prediction functions and H matrices for the

four-input, and three-output combinational circuit shown in Example 12.5.

(a) Prediction function: K � U ¼ simple parity-check function of inputs,

K ¼
01101000100000000

01101000100000000

01101000100000000

264
375:

H ¼ ½1 1 1�

a0 b0 a1 b1 a2 b2 a3 b3

a4 b4 a5 b5

z0 z1

A = (a0 a1 a2 a3 a4 a5)
B = (b0 b1 b2 b3 b4 b5)

Figure P12.16 Six-input two-rail code checker.

588 CODING FOR LOGIC AND SYSTEM DESIGN



(b) Prediction function: K � U ¼ OR function of inputs,

K ¼
0111111111111111

0111111111111111

0111111111111111

264
375,

H ¼ ½1 1 1�:

12.19 Using the following two-dimensional cross-parity code, design the 4-modularized

error correction circuit for the 16 bits adder:

12.20 Suppose that two binary operands, ða0 a1 a2 a3Þ and ðb0 b1 b2 b3Þ, are encoded

by the following H matrix:

H ¼
1 1 0 1 1 0 0

0 1 1 1 0 1 0

1 0 1 1 0 0 1

24 35:
Design the error correction circuit for the 4-bit binary adder, and demonstrate that

a single error at an output of the adder can be corrected.

12.21 Show that an adder error can be masked by an alternate data retry (ADR), where

ADR is defined as an extra operation retried by using the bitwise complement

input data, as shown in Subsection 1.3.2.

12.22 Find the necessary and sufficient conditions of the self-complementing checksum

code. A self-complementing code is defined such that the bitwise complement of

the codeword is also a codeword, as shown in Definition 3.6.

12.23 Prove Theorem 12.12.

12.24 Obtain the parity prediction in the AND or OR operation under the condition

that input operands are encoded in a simple parity-check code. Show the

difference between the straightforward duplication-comparison scheme and this

method.

12.25 By extending the results of Theorem 12.14, find the generalized parity prediction

scheme for combinational logic.

12.26 Verify that the code presented in Eq. (12.28) corrects any single-symbol errors

and any double-bit errors. (Note that double-bit errors and single-symbol errors

H

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

EXERCISES 589



cannot be corrected simultaneously.) Also verify that this corrects any single-bit

errors in the presence of a symbol erasure.

12.27 Prove that an unordered code can detect all unidirectional errors.

REFERENCES

[ABRA86] J. A. Abraham and W. K. Fuchs, ‘‘Fault and Error Models for VLSI,’’ Proc. IEEE, 74

(May 1986): 639–654.

[ALVE02] L. C. Alves, M. L. Fair, P. J. Meaney, C. L. Chen, W. J. Clarke, G. C. Wellwood, N. E.

Weber, I. N. Modi, B. K. Tolan, and F. Freier, ‘‘RAS Design for the IBM eServer z900,’’ IBM

J. Res. Dev., 46 (July–September 2002): 503–521.

[ANDE71] D. A. Anderson, ‘‘Design of Self-Checking Digital Networks Using Coding Techniques,’’

Report of Coordinated Science Labs, University of Illinois, R-527 (October 1971).

[ANDE73] D. A. Anderson and G. Metze, ‘‘Design of Totally Self-Checking Check Circuits for

m-out-of-n Codes,’’ IEEE Trans. Comput., C-22 (March 1973): 263–269.

[ANDE81] T. Anderson and P. A. Lee, Fault Tolerance, Principle and Practice, Prentice Hall

(1981).

[ASHJ77] M. J. Ashjaee and S. M. Reddy, ‘‘On Totally Self-Checking Checkers for Separable

Codes,’’ IEEE Trans. Comput., C-26 (August 1977): 737–744.

[AVIZ71] A. Avizienis, G. C. Gilley, F. P. Mathur, D. A. Rennels, J. A. Rohr, and D. K. Rubin,

‘‘The STAR (Self-Testing and Repairing) Computer: An Investigation of the Theory and

Practice of Fault-Tolerant Computer Design,’’ IEEE Trans. Comput., C-20 (November 1971):

1312–1321.

[BERG61] J. M. Berger, ‘‘A Note on Error Detecting Codes for Asymmetric Channels,’’ Info. Contr.,

4 (March 1961): 68–73.

[BISH96] J. W. Bishop, M. J. Campion, T. L. Jeremiah, S. J. Mercier, E. J. Mohring, K. P. Pfarr, B. G.

Rudolph, G. S. Still, and T. S. White, ‘‘Power PC AS A10 64-bit RISC Microprocessor,’’

IBM J. Res. Dev., 40 (July 1996): 495–505.

[BOSE84] B. Bose and D. J. Lin, ‘‘PLA Implementation of k-out-of-n Code TSC Checker,’’

IEEE Trans. Comput., C-33 (June 1984): 583–588.

[BOSS70] D. C. Bossen, D. L. Ostapko, and A. M. Patel, ‘‘Optimum Test Patterns for Parity

Networks,’’ Proc. Fall Joint Computer Conf., AFIPS (1970): 63–68.

[BOSS82] D. C. Bossen and M. Y. Hsiao, ‘‘Model for Transient and Permanent Error-Detection and

Fault-Isolation Coverage,’’ IBM J. Res. Dev., 26 (January 1982): 67–77.

[BROW60] D. T. Brown, ‘‘Error Detecting and Correcting Binary Codes for Arithmetic Operations,’’

IEEE Trans. Electron. Comput., EC-9 (September 1960): 333–337.

[CARL86] R. O. Carlson and C. A. Neugebauer, ‘‘Future Trends in Wafer Scale Integration,’’

Proc. IEEE, 74 (December 1986): 1741–1752.

[CART68] W. C. Carter and P. R. Schneider, ‘‘Design of Dynamically Checked Computers,’’ Proc.

IFIPS 68, Edinburgh, Scotland, 2 (August 1968): 878–883.

[CART70] W. C. Carter, D. C. Jessep, and A. Wadia, ‘‘Error-Free Decoding for Failure-Tolerant

Memories,’’ Proc. IEEE Int. Computer Group Conf. (June 1970): 229–239.

[CART71a] W. C. Carter, D. C. Jessep, A. B. Wadia, P. R. Schneider, and W. G. Bouricius, ‘‘Logic

Design for Dynamic and Interactive Recovery,’’ IEEE Trans. Comput., C-20 (November 1971):

1300–1305.

[CART71b] W. C. Carter, K. A. Duke, and D. C. Jessep, ‘‘A Simple Self-Testing Decoder Checking

Circuit,’’ IEEE Trans. Comput., C-20 (November 1971): 1413–1414.

590 CODING FOR LOGIC AND SYSTEM DESIGN



[CART77] W. C. Carter, G. R. Putzolu, A. B. Wadia, W. G. Bouricius, D. C. Jessep, E. P. Hsieh, and

C. J. Tan, ‘‘Cost Effectiveness of Self-Checking Computer Design,’’ Dig. 7th IEEE Int. Symp. on

Fault-Tolerant Computing (June 1977): 117–123.

[CART86] W. C. Carter, ‘‘Improved Parallel Signature Checker/Analyzers,’’ Dig., 16th IEEE Int.

Symp. on Fault-Tolerant Computing (June 1986): 416–421.

[CHAN05] J. Chang, S. Rusu, J. Shoemaker, S. Tam, M. Huang, M. Haque, S. Chiu, K. Truong,

M. Karim, G. Leong, K. Desai, R. Goe, and S. Kulkarni, ‘‘A 130-nm Triple-Vt 9MB Third-Level

On-Die Cache for the 1.7-GHz Itanium 2 Processor,’’ IEEE J. Solid-State Circ., 40 (January

2005): 195–203.

[CHEN92] C. L. Chen, N. N. Tendolkar, A. J. Sutton, M. Y. Hsiao, and D. C. Bossen, ‘‘Fault-

Tolerance Design of the IBM Enterprise System / 9000 Type 9021 Processors,’’ IBM J. Res. Dev.,

36 (July 1992): 765–779.

[CHEN96] C. L. Chen, ‘‘Symbol Error Correcting Codes for Memory Applications,’’ Proc. 26th

IEEE Int. Symp. on Fault-Tolerant Computing (June 1996): 200–207.

[CHUA78] H. Y. H. Chuang and S. Das, ‘‘Design of Fail-Safe Sequential Machines Using Separable

Codes,’’ IEEE Trans. Comput., C-27 (March 1978): 249–251.

[DAVI78a] R. David, ‘‘A Totally Self-Checking 1-Out-of-3 Checker,’’ IEEE Trans. Comput., C-27

(June 1978): 570–572.

[DAVI78b] R. David and P. Thevenod-Fosse, ‘‘Design of Totally Self-Checking Asynchronous

Modular Circuits,’’ J. Design Autom. Fault Tolerant Comput., 2 (October 1978): 271–278.

[DIAZ74a] M. Diaz, J. C. Geffroy, and M. Courooisier, ‘‘On-Set Realization of Fail-Safe Sequential

Machines,’’ IEEE Trans. Comput., C-23 (February 1974): 133–138.

[DIAZ74b] M. Diaz, ‘‘Design of Totally Self-Checking and Fail-Safe Sequential Machines,’’

Dig., 4th IEEE Int. Symp. on Fault-Tolerant Computing (June 1974): 3-19–3-24.

[DIAZ79] M. Diaz, P. Azema, and J. M. Ayache, ‘‘Unified Design of Self-Checking and Fail Safe

Combinational Circuits and Sequential Machines,’’ IEEE Trans. Comput., C-28 (March 1979):

276–281.

[DISP81] C. P. Disparte, ‘‘A Self-Checking VLSI Microprocessor for Electronic Engine Control,’’

Dig. 11th IEEE Int. Symp. on Fault-Tolerant Computing (June 1981): 253.

[DOET97] G. Doetting, K. J. Getzlaff, B. Leppla, W. Lipponer, T. Pflueger, T. Schlipf,

D. Shmunkamp, and U. Wille, ‘‘S/390 Parallel Enterprise Server Generation 3: A Balanced

System and Cache Structure,’’ IBM J. Res. Dev., 41 (July–September 1997): 405–428.

[EFST83] C. Efstathiou and C. Halatsis, ‘‘Modular Realization of Totally Self-Checking Checker

for m-out-of-n Codes,’’ Dig. 13th IEEE Int. Symp. on Fault-Tolerant Computing (June 1983):

154–161.

[ENGL66] W. A. England, ‘‘Improving Reliability by the Application of Selected Redundant

Techniques,’’ Proc. Workshop on Reliability Technique, UCLA (April 1966).

[FAIR04] M. L. Fair, C. R. Conclin, S. B. Swaney, W. J. Clanke, et al., ‘‘Reliability, Availability, and

Serviceability (RAS) of the IBM eServer z990,’’ IBM J. Res. Dev., 48 (May–July 2004): 519–534.

[FRAN66] H. Frank and S. S. Yau, ‘‘Improving Reliability of a Sequential Machine by Error-

Correcting State Assignments,’’ IEEE Trans. Comput., C-15 (1966): 111–113.

[FUJI79] E. Fujiwara and K. Haruta, ‘‘Design of Totally Self-Checking Checker for Main Storage

Error Checking and Detecting Circuit’’ (in Japanese), Trans. IECE Japan, 62-D (June 1979):

419–426.

[FUJI81] E. Fujiwara and K. Haruta, ‘‘Fault-Tolerant Arithmetic Logic Unit Using Parity-Based

Codes,’’ Trans. IECE Japan, E64 (October 1981): 653–660.

[FUJI84] E. Fujiwara, N.Mutoh, and K.Matsuoka, ‘‘A Self-Testing Group-Parity Prediction Checker

and Its Use for Built-In Testing,’’ IEEE Trans. Comput., C-33 (June 1984): 578–583.

REFERENCES 591



[FUJI87a] E. Fujiwara and K. Matsuoka, ‘‘A Self-Checking Generalized Prediction Checker and

Its Use for Built-In Testing,’’ IEEE Trans. Computers, C-36 (January 1987): 86–93. (Also inDig.,

15th IEEE Int. Symp. on Fault-Tolerant Computing [June 1985]: 384–389.)

[FUJI87b] E. Fujiwara and K. Matsuoka, ‘‘Fault-Tolerant k-out-of-n Logic Unit Networks’’

(in Japanese), Trans. IECE Japan, J70-D (September 1987): 1791–1800.

[FUJI87c] E. Fujiwara and K. Matsuoka, ‘‘A Hardware Implementation of Permuter’’ (in Japanese),

Trans. IECE Japan, J70-D (October 1987): 1995–1998.

[FURU83a] K. Furuya, K. Takeda, and Y. Tohma, ‘‘Logic Design of Fault-Tolerant Arithmetic Units

with Check-Sum Code Based on Alternate-Data-Retry Strategy’’ (in Japanese), Trans. IECE

Japan, J66-D (March 1983): 243–250.

[FURU83b] K. Furuya, K. Takeda, and Y. Tohma, ‘‘Extension of Alternate-Data-Retry Strategy to

Adders with Biresidue Code and Estimates of Several Configurations’’ (in Japanese), Trans. IECE

Japan, J66-D (March 1983): 251–258.

[FURU83c] K. Furuya, Y. Akita, and Y. Tohma, ‘‘Logic Design of Fault-Tolerant Dividers Based

on Data Complementation Strategy,’’ Dig., 13th IEEE Int. Symp. on Fault-Tolerant Computing

(June 1983): 306–313.

[GADD70] T. G. Gaddess, ‘‘An Error-Detecting Binary Adder: A Hardware-Shared Implementa-

tion,’’ IEEE Trans. Comput., C-19 (January 1970): 34–38.

[GAIT83] N. Gaitanis and C. Halatsis, ‘‘A New Design Method for m-out-of-n TSC Checkers,’’

IEEE Trans. Comput., C-32 (March 1983): 273–283.

[GAIT84] N. Gaitanis, ‘‘Totally Self-Checking Checkers for Low Cost Arithmetic Codes,’’

Dig., 14th IEEE Int. Symp. on Fault-Tolerant Computing (June 1984): 260–264.

[GARN58] H. L. Garner, ‘‘Generalized Parity Checking,’’ IRE Trans. Electron. Comput., EC-7

(September 1958): 207–213.

[GARN59] H. L. Garner, ‘‘The Residue Number System,’’ IRE Trans. Electron. Comput., EC-8

(September 1959): 140–147.

[GARN66] H. L. Garner, ‘‘Error Codes for Arithmetic Operations,’’ IEEE Trans. Electron. Comput.,

EC-15 (October 1966): 763–770.

[GEEL85] M. B. Geelhoed and M. J. Jordan, ‘‘SOPHO S2500, The Heigh Range Communication

Swith,’’ Philips Telecommun. Rev., 43 (June 1985): 92–113.

[GILS86a] W. J. van Gils, ‘‘An Error-Control Coding System for Storage of 16-Bit Words in Memory

Arrays Composed of Three 9-Bit Wide Units,’’ Philips J. Res., 41 (1986): 391–399.

[GILS86b] W. J. van Gils, ‘‘ATriple Modular Redundancy Technique Providing Multiple-Bit Error

Protection without Using Extra Redundancy,’’ IEEE Trans. Comput., C-35 (July 1986): 623–631.

[GILS87] W. J. van Gils and J.-P. Boly, ‘‘On Combined Symbol-and-Bit Error-Control [4, 2] Codes

over f0; 1g8 to Be Used in the ð4; 2Þ Concept Fault-Tolerant Computer,’’ IEEE Trans. Info.

Theory, IT-33 (November 1987): 911–917.

[GOLA84] P. Golan, ‘‘Design of Totally Self-Checking Checker for 1-out-of-3 Code,’’ IEEE Trans.

Comput., C-33 (March 1984): 285.

[HALA83] C. Halatasis, N. Gaitanis, and M. Sigala, ‘‘Fast and Efficient Totally Self-Checking

Checkers for m-out-of-ð2mþ 1Þ Codes,’’ IEEE Trans. Comput., C-32 (May 1983): 507–511.

[HALB84] M. P. Hallbert and S. M. Bose, ‘‘Design Approach for a VLSI Self-Checking MIL-STD-

1750A Microprocessor,’’ Dig., 14th IEEE Int. Symp. on Fault-Tolerant Computing (June 1984):

254–259.

[HONG81] S. J. Hong and D. L. Ostapko, ‘‘A Simple Procedure to Generate Optimum Test Patterns

for Parity Logic Networks,’’ IEEE Trans. Comput., C-30 (May 1981): 356–358.

[HSIA63] M. Y. Hsiao and F. F. Sellers, ‘‘The Carry Dependent Sum Adder,’’ IEEE Trans. Electron.

Comput., EC-12 (June 1963): 265–268.

592 CODING FOR LOGIC AND SYSTEM DESIGN



[HUAN84] K. Huang and J. A. Abraham, ‘‘Algorithm-Based Fault-Tolerance for Matrix Opera-

tions,’’ IEEE Trans. Comput., C-33 (June 1984): 518–528.

[HUGH84] J. L. A. Hughes, E. J. McCluskey, and D. J. Lu, ‘‘Design of Totally Self-Checking

Comparators with an Arbitrary Number of Inputs,’’ IEEE Trans. Comput., C-33 (January 1984):

546–550.

[ITOH80] H. Itoh and M. Nakamichi, ‘‘Design of Self-Checking Checkers for Berger Code and

m-out-of-n Code’’ (in Japanese), Trans. IECE Japan, J63-D (April 1980): 326–331.

[ITOH82] H. Itoh and M. Nakamichi, ‘‘Self-Checking Checker Designs for Various 2-Rail Codes,’’

Trans. IECE Japan, E65 (November 1982): 665–671.

[IZAW81] N. Izawa, ‘‘3-Level Realization of Self-Checking 1-out-of-n Code Checkers’’ (in Japanese),

Dig., 1981 IECE Nat. Convention of Information Systems, IECE of Japan, 504 (October 1981).

[IZAW84a] N. Izawa, ‘‘Design of Totally Self-Checking Checkers for Unordered Codes’’

(in Japanese), Trans. IECE Japan, J67-D (May 1984): 585–592.

[IZAW84b] N. Izawa, ‘‘Reduced-Gate Design of Totally Self-Checking Checkers for Unordered

Codes’’ (in Japanese), Trans. IECE Japan, J67-D (December 1984): 1395–1402.

[JANS85] I. Jansch and B. Courtois, ‘‘Strongly Language Disjoint Checking,’’ Dig., 15th IEEE Int.

Symp. on Fault-Tolerant Computing (June 1985): 390–395.

[JHA84] N. K. Jha and J. A. Abraham, ‘‘The Design of Totally Self-Checking Embedded Checkers,’’

Dig., 14th IEEE Int. Symp. on Fault-Tolerant Computing (June 1984): 265–270.

[KHAK82a] J. Khakbaz and E. J. McCluskey, ‘‘Concurrent Error Detection and Testing for Large

PLA’s,’’ IEEE J. Solid-State Circ., SC-17 (April 1982): 386–394.

[KHAK82b] J. Khakbaz, ‘‘Self-Testing Embedded Parity Trees,’’ Dig., 12th IEEE Int. Symp. on

Fault-Tolerant Computing (June 1982): 109–116.

[KHAK82c] J. Khakbaz, ‘‘Totally Self-Checking Checker for 1-out-of-n Code Using Two-Rail

Codes,’’ IEEE Trans. Comput., C-13 (July 1982): 667–681.

[KHAK84] J. Khakbaz and E. J. McCluskey, ‘‘Self-Testing Embedded Parity Checkers,’’ IEEE

Trans. Comput., C-33 (August 1984): 753–794.

[KHOD79] B. Khodadad-Mostershiry, ‘‘Parity Prediction in Combinational Circuit,’’ Dig., 9th IEEE

Int. Symp. on Fault-Tolerant Computing (June 1979): 185–188.

[KONE80] B. Könemann, J. Mucha, and G. Zwiehoff, ‘‘Built-in Test for Complex Digital Integrated

Circuits,’’ IEEE J. Solid-State Circ., SC-15 (June 1980): 315–319.

[KORE86] I. Koren and D. K. Pradhan, ‘‘Yield and Performance Enhancement Through Redundancy

in VLSI and WSI Multiprocessor Systems,’’ Proc. IEEE, 74 (May 1986): 699–711.

[KROL86] T. Krol, ‘‘(N, K) Concept Fault Tolerance,’’ IEEE Trans. Comput., C-35 (April 1986):

339–349.

[LALA85] P. K. Lala, Fault Tolerant and Fault Testable Hardware Design, Prentice-Hall (1985).

[LALA01] P. K. Lala, Self-Checking and Fault-Tolerant Digital Design, Morgan Kaufmann (2001).

[LANG70] G. G. Langdon Jr. and C. K. Tang, ‘‘Concurrent Error Detection for Group Look-Ahead

Binary Adders,’’ IBM J. Res. Dev., 14 (September 1970): 563–573.

[LO87a] J. C. Lo and S. Thanwastien, ‘‘The Design of Fast Totally Self-Checking Berger Codes

Checkers Based on Berger Code Partitioning,’’ Research Paper, University of Southwestern

Louisiana, Lafayette (March 25, 1987). (Also in Dig., 18th IEEE Int. Symp. on Fault-Tolerant

Computing [June 1988].)

[LO87b] J. C. Lo and S. Thanawastien, ‘‘On the Design of Combinational Totally Self-Checking

1-out-of-3 Code Checkers,’’ Research Paper, University of Southwestern Louisiana, Lafayette

(May 25, 1987).

[MACC85] E. J. McCluskey, ‘‘Built-In Self-Test Techniques, Built-In Self-Test Structures,’’ IEEE

Design Test, 2 (April 1985): 21–28, 29–36.

REFERENCES 593



[MAK82] G. P. Mak, J. A. Abraham, and E. S. Davidson, ‘‘The Design of PLAs with Concurrent

Error Detection,’’Dig., 12th IEEE Int. Symp. on Fault-Tolerant Computing (June 1982): 303–310.

[MAKI74] G. Maki and D. H. Sawain III, ‘‘Fault-Tolerant Asynchronous Sequential Machines,’’

IEEE Trans. Comput., C-23 (July 1974): 651–657.

[MAND72] D. Mandelbaum, ‘‘Error Correction in Residue Arithmetic,’’ IEEE Trans. Comput., C-21

(June 1972): 538–545.

[MARO78a] M. A. Marouf and A. D. Friedman, ‘‘Design of Self-Checking Checkers for Berger

Codes,’’ Dig., 8th IEEE Int. Symp. on Fault-Tolerant Computing (1978): 179–184.

[MARO78b] M. A. Marouf and A. D. Friedman, ‘‘Efficient Design of Self-Checking Checker for

Any m-out-of-n Code,’’ IEEE Trans. Comput., C-27 (June 1978): 482–490.

[MCIN05] H. McIntyre, D. Wendell, K. J. Lin, P. Kaushik, S. Seshadri, A. Wang, V. Sundararaman,

P. Wang, S. Kim, W-J. Hsu, H-C. Park, G. Levinsky, J. Lu, M. Chirania, R. Heald, P. Lazar, and

S. Dharmasena, ‘‘A 4-MB On-Chip L2 Cache for a 90-nm 1.6-GHz 64-Bit Microprocessor,’’

IEEE J. Solid-State Circ., 40 (January 2005): 52–59.

[MONT72] P. M. Monteiro and T. R. N. Rao, ‘‘A Residue Checker for Arithmetic and Logical

Operations,’’ Dig., 12th IEEE Int. Symp. on Fault-Tolerant Computing (June 1972): 8–13.

[MOUR86a] S. Mourad, J. L. A. Hughes, and E. J. McCluskey, ‘‘Multiple Fault Detection in Parity

Trees,’’ Proc. IEEE Compcon Spring (1986): 441–444.

[MOUR86b] S. Mourad, J. L. A. Hughes, and E. J. McCluskey, ‘‘Stuck-at Fault Detection in Parity

Trees,’’ Proc. IEEE Fall Joint Computer Conf. (September 1986): 836–840.

[MUEL99] M. Mueller, L. C. Alves, W. Fisher, M. L. Fair, and I. Modi, ‘‘RAS Strategy for IBM

S/390 G5 and G6,’’ IBM J. Res. Dev., 43 (September–November 1999): 875–888.

[MUKA74] Y. Mukai and Y. Tohma, ‘‘A Method for the Realization of Fail-Safe Asynchronous

Sequential Circuits,’’ IEEE Trans. Comput., C-23 (July 1974): 736–739.

[MUKA76] Y. Mukai and Y. Tohma, ‘‘A Masked-Fault Free Realization of Fail-Safe Asynchronous

Sequential Circuits,’’ Dig., 6th IEEE Int. Symp. on Fault-Tolerant Computing (June 1976): 69–74.

[NAKA05] M. Nakai, S. Akui, K. Seno, T. Meguro, T. Seki, T. Kondo, A. Hashiguchi, H. Kawahara,

K. Kumano, and M. Shimura, ‘‘Dynamic Voltage and Frequency Management for a Low-Power

Embedded Microprocessor,’’ IEEE J. Solid-State Circ., 40 (January 2005): 28–35.

[NANY79] T. Nanya and Y. Tohma, ‘‘Universal Multicode STT State Assignments for Asynchronous

Sequential Machines,’’ IEEE Trans. Comput., C-28 (November 1979): 811–818.

[NANY83] T. Nanya and Y. Tohma, ‘‘A 3-Level Realization of Totally Self-Checking Checkers

for m-out-of-n Codes,’’ Dig., 13th IEEE Int. Symp. on Fault-Tolerant Computing (1983): 173–

176.

[NANY85] T. Nanya and T. Hamamatsu, ‘‘Totally Self-Checking Checkers for Subsets of m-out-of-

2m Codes’’ (in Japanese), Trans. IECE Japan, J68-D (March 1985): 229–236.

[NANY87] T. Nanya and T. Kawamura, ‘‘A Note on Strongly Fault Secure Sequential Circuits,’’

IEEE Trans. Comput., C-36 (September 1987): 1121–1123.

[NANY88] T. Nanya and T. Kawamura, ‘‘Error Secure / Error Propagating Concept and Its

Application to Design of Strongly Fault Secure Processors,’’ IEEE Trans. Comput., C-37 (January

1988): 14–24.

[NEUM75] P. G. Neumann and T. R. N. Rao, ‘‘Error-Correction Codes for Byte-Organized

Arithmetic Processors,’’ IEEE Trans. Comput., C-24 (March 1975): 226–232.

[NICO84] M. Nicolaidis, I. Jansch, and B. Courtois, ‘‘Strongly Code-Disjoint Checkers,’’ Dig., 14th

IEEE Int. Symp. on Fault-Tolerant Computing (June 1984): 16–21.

[NICO85] M. Nicolaidis, ‘‘Evaluation of a Self-Checking Version of the MC68000Microprocessor,’’

Dig., 15th IEEE Int. Symp. on Fault-Tolerant Computing (June 1985): 350–356.

[OBER79] R. M. M. Oberman, Digital Circuits for Binary Arithmetic, Macmillian (1979).

594 CODING FOR LOGIC AND SYSTEM DESIGN



[OZGU77] F. Özgüner, ‘‘Design of Totally Self-Checking Asynchronous and Synchronous Sequen-

tial Machines,’’ Dig., 7th IEEE Int. Symp. on Fault-Tolerant Computing (June 1977): 124–129.

[PASC88] A. M. Paschalis, D. Nikolos, and C. Halatsis, ‘‘Efficient Modular Design of TSC Checkers

for m-out-of-2m Codes,’’ IEEE Trans. Comput., C-37 (March 1988): 301–309.

[PATE83] J. H. Patel and L. Y. Fung, ‘‘Concurrent Error Detection in Multiply and Divide Arrays,’’

IEEE Trans. Computers, C-32 (April 1983): 417–422.

[PETE58] W. W. Peterson, ‘‘On Checking Adder,’’ IBM J. (April 1958): 166–168.

[PETE59] W. W. Peterson and M. O. Rabin, ‘‘On Codes for Checking Logical Operations,’’ IBM

J. Res. Dev., 3 (1959): 163–168.

[PIER65] W. H. Pierce, ‘‘Interconnection Structure for Redundant Logic (The Theory of Interwoven

Redundant Logic),’’ in Failure-Tolerant Computer Design, Academic Press (1965), ch. 5.

[PIES83] S. J. Pristrak, ‘‘Design Method of Totally Self-Checking Checkers for m-out-of-n Codes,’’

Dig., 13th IEEE Int. Symp. on Fault-Tolerant Computing (June 1983): 162–168.

[PIES85] S. J. Piestrak, ‘‘PLA Implementations of Totally Self-Checking Circuits Using M-out-of-N

Codes,’’ Proc. IEEE Int. Conf. on Computer Design (October 1985): 777–781.

[PIES87] S. J. Piestrak, ‘‘Design of Fast Self-Testing Checkers for a Class of Berger Codes,’’ IEEE

Trans. Comput., C-36 (May 1987): 629–634.

[PRAD72a] D. K. Pradhan and S. M. Reddy, ‘‘A Design Technique for Synthesis of Fault-Tolerant

Adders,’’ Dig., 12th IEEE Int. Symp. on Fault-Tolerant Computing (June 1972): 20–24.

[PRAD72b] D. K. Pradhan and S. M. Reddy, ‘‘Error Control Techniques for Logic Processors,’’ IEEE

Trans. Comput., C-21 (December 1972): 1331–1337.

[PRAD73] D. K. Pradhan and S. M. Reddy, ‘‘Fault-Tolerant Asynchronous Networks,’’ IEEE Trans.

Comput., C-22 (July 1973): 662–669.

[PRAD74] D. K. Pradhan, ‘‘Fault-Tolerant Carry-Save Adders,’’ IEEE Trans. Comput., C-23

(December 1974): 1320–1322.

[PRAD76] D. K. Pradhan and S. M. Reddy, ‘‘Techniques to Construct (2, 1) Separating Systems from

Linear Error-Correcting Codes,’’ IEEE Trans. Comput., C-25 (September 1976): 945–949.

[PRAD78] D. K. Pradhan, ‘‘Asynchronous State Assignments with Unateness Properities and Fault-

Secure Design,’’ IEEE Trans. Comput., C-27 (May 1978): 396–404.

[RAO68b] T. R. N. Rao, ‘‘Error-Checking Logic for Arithmetic-Type Operations of a Processor,’’

IEEE Trans. Comput., C-17 (September 1968): 845–849.

[RAO70] T. R. N. Rao, ‘‘Biresidue Error-Correcting Codes for Computer Arithmetic,’’ IEEE Trans.

Comput., C-19 (May 1970): 398–402.

[RAO71] T. R. N. Rao and O. N. Garcia, ‘‘Cyclic and Multiresidue Codes for Arithmetic

Operations,’’ IEEE Trans. Info. Theory, IT-17 (January 1971): 85–91.

[RAO72] T. R. N. Rao, ‘‘Error Correction in Adders Using Systemtic Subcodes,’’ IEEE Trans.

Comput., C-21 (March 1972): 254–259.

[RAO74] T. R. N. Rao, Error Coding for Arithmetic Processors, Academic Press (1974).

[RAO77] T. R. N. Rao and H. J. Reinheimer, ‘‘Fault-Tolerant Modularized Arithmetic Logic Unites,’’

Proc. Nat. Computer Conf., AFIPS (1977): 703–710.

[REED70] I. S. Reed, ‘‘Error Tolerant Sequential Circuits,’’ US Patent 3529141 (September 15,

1970).

[REDD72a] S. M. Reddy, ‘‘Easily Testable Realization for Logic Functions,’’ IEEE Trans. Comput.,

C-21 (November 1972): 1183–1188.

[REDD72b] S. M. Reddy, ‘‘Easily Testable Relization for Logic Functions,’’ IEEE Trans. Comput.,

C-21 (December 1972): 1421–1426.

[REDD72c] S. M. Reddy, ‘‘A Design Procedure for Fault-Locatable Switching Circuits,’’ IEEE

Trans. Comput., C-21 (December 1972): 1421–1426.

REFERENCES 595



[REDD74a] S. M. Reddy and J. R. Wilson, ‘‘Easily Testable Cellular Realization for the (Exactly p)-out-

of-n and (p orMore)-out-of-n Logic Functions,’’ IEEE Trans. Comput., C-23 (January 1974): 98–100.

[REDD74b] S. M. Reddy, ‘‘A Note on Self-Checking Chechers,’’ IEEE Trans. Comput., C-23

(October 1974): 1100–1102.

[REDD85] S. M. Reddy, K. K. Saluja, andM. Karpovsky, ‘‘A Data Compression Technique for Built-

in Self-Test,’’ Dig., 15th IEEE Int. Symp. on Fault-Tolerant Computing (June 1985): 294–299.

[RENN84] D. A. Rennels, ‘‘Fault-Tolerant Computing—Concepts and Examples,’’ IEEE Trans.

Comput., C-33 (December 1984): 1116–1129.

[RUSU03] S. Rusu, J. Stinson, S. Tam, J. Leung, H. Muljono, and B. Cherkauer, ‘‘A 1.5-GHz 130-nm

Itanium1 2 Processor with 6-MB On-Die L3 Cache,’’ IEEE J. Solid-State Circ., 38 (November

2003): 1887–1895.

[SAWI74] D. H. Sawin III, and G. K. Maki, ‘‘Asynchronous Sequential Machines Designed for Fault

Detection,’’ IEEE Trans. Comput., C-23 (July 1974): 239–249.

[SEDM79] R. M. Sedmak, ‘‘Design for Self-Verfication: An Approach for Dealing with Testability

Problems in VLSI-Based Designs,’’ Proc. IEEE Int. Test Conf. (1979): 112–120.

[SEDM80a] R. M. Sedmak, ‘‘Implementation Techniques for Self-Verification,’’ Proc. IEEE Int. Test

Conf. (1980): 267–278.

[SEDM80b] R. M. Sedmak and H. L. Liebergot, ‘‘Fault Tolerant of a General Purpose Com-

puter Implemented by Very Large Scale Integration,’’ IEEE Trans. Comput., C-29 (June 1980):

492–500.

[SELL68] F. F. Sellers Jr., M. Y., Hsiao, and L. W. Bearnson, Error Detecting Logic for Digital

Computers, McGraw-Hill (1968).

[SHED78] J. J. Shedletsky, ‘‘Error Correction by Alternate-Data Retry,’’ IEEE Trans. Comput., C-27

(February 1978): 106–112.

[SHIN05] J. L. Shin, B. Petride, M. Singh, and A. S. Leon, ‘‘Design and Implementation of

an Embedded 512-KB Level-2 Cache Subsystem,’’ IEEE Journal of Solid-State Circuit, 40

(September 2005): 1815–1820.

[SIEW82] D. P. Siewiorek and R. Swarz, The Theory and Practice of Reliability Systems, Digital

Press (1982).

[SMIT76] J. E. Smith, ‘‘The Design of Totally Self-Checking Combinational Circuits,’’ Report

of Coordinated Science Labs, University of Illinois, R-737 (February 1976).

[SMIT77] J. E. Smith, ‘‘The Design of Totally Self-Checking Check Circuits for a Class of

Unordered Codes,’’ J. Design Autom. Fault-Tolerant Comput., 1 (August 1977): 321–342.

[SMIT78] J. E. Smith and G. Mertze, ‘‘Strongly Fault Secure Logic Networks,’’ IEEE Trans.

Comput., C-27 (June 1978): 495–499.

[SMIT83] J. E. Smith and P. Lam, ‘‘ATheory of Totally Self-Checking System Design,’’ IEEE Trans.

Comput., C-32 (September 1983): 831–844.

[SPAI99] L. Spainhower, and T. A. Gregg, ‘‘IBMS/390 Parallel Enterprise Server G5 Fault Tolerance

: A Historical Perspective,’’ IBM J. Res. Dev., 43 (September–November 1999): 863–873.

[STIN03] J. Stinson, and S. Rusu, ‘‘A 1.5GHz Third Generation Itanium1 Processor,’’ 2003 IEEE

Int. Solid-State Circuits Conf., 14.4 (February 2003).

[TAKA05] T. Takayanagi, J. L. Shin, B. Petrick, J. Y. Su, H. Levy, H. Pham, J. Son, N. Moon,

D. Bistry, U. Nair, M. Singh, V. Mathur, and A. S. Leon, ‘‘A Dual-Core 64-Bit UltraSPARC

Microprocessor for Defence Server Applications,’’ IEEE J. Solid-State Cir., 40 (January 2005):

7–17.

[TAKE80] K. Takeda and Y. Tohma, ‘‘Logic Design of Fault-Tolerant Arithmetic Units Based on the

Data Complementation Strategy,’’ Dig., 10th IEEE Int. Symp. on Fault-Tolerant Computing

(October 1980): 348–350.

596 CODING FOR LOGIC AND SYSTEM DESIGN



[TAMI84] Y. Tamir and C. H. Sequin, ‘‘Design and Application of Self-Testing Comparators

Implemented with MOS PLA’s,’’ IEEE Trans. Comput. C-33 (June 1984): 494–506.

[TANG83] D. T. Tang and L. S. Woo, ‘‘Exhaustive Test Pattern Generation with Constant Weight

Vectors,’’ IEEE Trans. Comput., C-32 (December 1983): 1145–1150.

[TANG84] D. T. Tang and C. L. Chen, ‘‘Logic Test Pattern Generation Using Linear Codes,’’ IEEE

Trans. Comput., C-33 (September 1984): 845–850.

[TAO86] D. L. Tao, P. K. Lala, and C. R. P. Hartmann, ‘‘A Concurrent Strategy for PLAs,’’ Proc.

IEEE Int. Test Conf. (1986): 705–709.

[TAO87] D. L. Tao and P. K. Lala, ‘‘Three Level Totally Self-Checking Checker for 1-out-of-n

Code,’’ Dig., 17th IEEE Symp. on Fault-Tolerant Computing (July 1987): 108–113.

[TEND02] J. M. Tendler, J. S. Dodson, J. S. Field Jr., H. Le, and B. Sinharoy, ‘‘POWER 4 System

Microarchitecture,’’ IBM J. Res. Dev., 46 (January 2002): 5–25.

[TOHM71] Y. Tohma, Y. Ohyama, and R. Sakai, ‘‘Realization of Fail-Safe Sequential Machines by

Using k-out-of-n Code,’’ IEEE Trans. Comput., C-20 (November 1971): 1270–1275.

[TOHM74] Y. Tohma, ‘‘Design Techique of Fail-Safe Circuits Using Flip-Flops for Internal

Memory,’’ IEEE Trans. Comput., C-23 (November 1974): 1149–1154.

[TOHM86] Y. Tohma, ‘‘Coding Techniques in Fault-Tolerant, Self-Checking and Fail-Safe Cir-

cuits,’’ in D. K. Pradhan (ed.), Fault-Tolerant Computing, Theory and Techniques, Prentice-Hall

(1986), ch. 5.

[TOY78] W. N. Toy, ‘‘Fault-Tolerant Design of Local ESS Processor,’’ Proc. IEEE, 66 (October

1978): 1126–1145.

[TSAO82]M.M. Tsao, A.W.Wilson, R. C.McGarity, C. T. Tseng, and D. P. Siewiorek, ‘‘The Design

of C. Fast: Single Chip Fault Tolerant Microprocessor,’’ Dig., 12th IEEE Int. Symp. on Fault-

Tolerant Computing (June 1982): 63–69.

[VIAU80] J. Viaud and R. David, ‘‘Sequentially Self-Checking Circuits,’’Dig., 10th IEEE Int. Symp.

on Fault-Tolerant Computing (October 1980): 263–268.

[WAKE74] J. F. Wakerly, ‘‘Partially Self-Checking Circuits and Their Use in Performing Logical

Operations,’’ IEEE Trans. Comput., C-23 (July 1974): 658–666.

[WAKE76] J. F. Wakerly, ‘‘Checked Binary Addition with Checksum Codes,’’ J. Design Autom.

Fault-Tolerant Comput., 1 (October 1976): 18–27.

[WAKE78] J. F. Wakerly, Error Detecting Codes, Self-Checking Circuits, and Applications, North-

Holland (1978).

[WANG79] S. L. Wang and A. Avizienis, ‘‘The Design of Totally Self-Checking Circuits Using

Programmable Logic Arrays,’’ Dig., 9th IEEE Int. Symp. on Fault-Tolerant Computing (June

1979): 173–180.

[WILL82] T. W. Williams and K. P. Parker, ‘‘Design for Testability—A Survey,’’ IEEE Trans.

Comput., C-31 (January 1982): 2–5.

[WONG83] C. Y. Wong, W. K. Fuchs, J. A. Abraham, and E. S. Davidson, ‘‘The Design of a

Microprogram Control Unit with Concurrent Error Detection,’’ Dig., 13th IEEE Int. Symp. on

Fault-Tolerant Computing (June 1983): 476–483.

[YEN87] M. M. Yen, W. K. Fuchs, and J. A. Abraham, ‘‘Designing for Concurrent Error Detection

in VLSI: Application to a Microprogram Control Unit,’’ IEEE J. Solid-State Cir., SC-22

(August 1987): 595–605.

REFERENCES 597



CONTENTS

13.1 M-Ary Asymmetric Errors in Data Entry Systems . . . . . . . . . . . . . . . . . . . . . . . 599

13.2 M-Ary Asymmetric Symbol Error Correcting Codes . . . . . . . . . . . . . . . . . . 600

13.2.1 Systematic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600

13.2.2 Nonsystematic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

13.3 Nonsystematic M-Ary Asymmetric Error Correcting Codes with Deletion /

Insertion / Adjacent-Symbol-Transposition Error Correction Capabilities . . . . 623

13.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

13.3.2 Code Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

13.3.3 Numeric Keypad Code Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 628

13.4 Codes for Two-dimensional Matrix Symbols . . . . . . . . . . . . . . . . . . . . . . . 632

13.4.1 QR Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632

13.4.2 Two-dimensional Unidirectional Clustered Error Correcting Codes . . . 637

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646



13
Codes for Data Entry Systems

Nonbinary M-ary words processed by data entry systems often suffer from asymmetric

errors. In character recognition systems, for example, two symbols ai and aj with similar

shapes have a high probability of being mistaken for one another. Among the many types

of data processed by data entry systems,M-ary words selected from a specified codebook,

such as postal codes and product numbers, should be strongly protected from asymmetric

errors because these words are often used for indexing a database. This chapter presents

two types of M-ary asymmetric error correcting codes, that is, systematic codes and

nonsystematic codes, that can be utilized to generate these codebooks.

In the data entry systems such as keyboard input systems and character recognition

systems, some types of human-made errors may add to the asymmetric errors. These

errors are, for example, symbol deletion / insertion errors in the keyboard input systems, or

adjacent-symbol-transposition errors in the keyboard input systems or the handwritten

character recognition systems. This chapter also presents another class of M-ary

asymmetric error correcting codes capable of correcting single deletion / insertion /

adjacent-symbol-transposition errors as well as correcting single asymmetric errors.

As another data entry systems, new types of bar codes (i.e., two-dimensional matrix

symbols) have been popularly used in various sales items and products. This chapter

discusses quick response codes (i.e., QR codes) and two-dimensional unidirectional

clustered error correcting codes for high-density two-dimensional matrix symbols.

13.1 M-ARY ASYMMETRIC ERRORS IN DATA ENTRY SYSTEMS

Improved reliability is strongly required for data entry systems, for example, keyboard

input systems and character recognition systems, because they often suffer from errors

such as mis-typing and mis-identification. Among the many types of data processed by

Code Design for Dependable Systems: Theory and Practical Applications, by Eiji Fujiwara
Copyright # 2006 John Wiley & Sons, Inc.

599



data entry systems,M-ary words selected from a specified codebook, such as postal codes,

product numbers, bank account numbers, and driver’s license numbers, should be strongly

protected from errors because these words are often used for indexing a database. Errors in

these M-ary words can be corrected or detected by applying M-ary error control codes

[GALL96, TANG70].

Generally, the numberM of symbols used in data entry systems is neither prime nor the

power of a prime, for instance, M ¼ 10 for numerals and M ¼ 10þ 26þ 26 ¼ 62 for

alphanumeric symbols using upper-case and lower-case letters as well as numerals.

Therefore conventional error control codes defined over a Galois field cannot be directly

applied to M-ary words in most cases. To overcome this problem, systematic M-ary error

correcting codes have been designed based on the prime factorization of M-ary symbols

[BROW73]. Recently a class of systematicM-ary single-symbol error correcting codes has

been designed using a prime field and an integer residue ring [NAMB01]. As an extension

to this class of codes, systematic M-ary single-symbol error correcting codes capable of

correcting adjacent-symbol transposition errors have been proposed [SUZU98].

The aforementioned M-ary error control codes are designed based on the assumption

that the error is symmetric, which means that each symbol in a codeword may be

erroneously changed to another symbol with equal probability. In data entry systems,

however, errors are generally asymmetric; that is to say, the probability of a symbol ai
being mistaken for another symbol aj, denoted by pðajjaiÞ, is generally not equal to

pðakjaiÞ, where aj 6¼ ak. For example, in character recognition systems, the probability of a

7 being mistaken for a 9 is much higher than that of a 7 being mistaken for a 4, or

pð9j7Þ � pð4j7Þ, because the numerals 7 and 9 are similar in shape whereas 7 and 4 are

dissimilar in shape. Likewise, in keyboard input systems, symbols located on adjacent

keys are mistaken for one another with high probability. Based on this observation,

systematic M-ary asymmetric single-symbol error locating codes [SAOW01] have been

designed. Several classes of asymmetric symbol error control codes for M-ary channels

have been proposed in [VARS73], [SAIT90a]. These codes correct either additive errors,

where transmitted integer u ðu 2 f0; 1; � � � ;M � 1gÞ is changed to uþ e ðe > 0; uþ
e � M � 1Þ, or subtractive errors, where u is changed to u� e ðe > 0; u� e 	 0Þ. On the

other hand, errors in data entry systems cannot be expressed as additive or subtractive

errors. Therefore the codes for M-ary channels are not applicable to these systems. An

asymmetric symbol error correction scheme for character recognition systems have been

proposed in [INAB94]. This scheme employs concatenated codes to correct asymmetric

symbol errors.

13.2 M-ARY ASYMMETRIC SYMBOL ERROR CORRECTING CODES

This section presents a new class of M-ary single asymmetric symbol error correcting

codes that are far more efficient than the existing single symmetric symbol error correcting

codes [KANE04a].

13.2.1 Systematic Codes

A new class of systematic M-ary single asymmetric symbol error correcting codes is

presented in this subsection. This class of codes is designed based on a new class of rings,

and injective and surjective mappings.

600 CODES FOR DATA ENTRY SYSTEMS



1. Preliminaries

-Asymmetric Symbol Error

Definition 13.1 Let A ¼ fa0; a1; � � � ; aM�1g be a set of M-ary symbols. An asymmetric

symbol error set is defined as follows:

¼ fðai ! ajÞ j ai; aj 2 A; PrðajjaiÞ > T ; 0 � i 6¼ j � M � 1g;

where PrðajjaiÞ is the probability of an error such that ai is changed into aj, and T is a

threshold error probability given in advance. &

Definition 13.2 Let ðai ! ajÞ 2 . An error where ai is changed into aj is called an

-asymmetric symbol error. &

Definition 13.3 An error directionality graph G corresponding to the asymmetric

symbol error set is defined as G ¼ ðV;EÞ, where V ¼ A ¼ fa0; a1; � � � ; aM�1g is a set
of vertices and E ¼ ¼ fðai ! ajÞ j PrðajjaiÞ > T , 0 � i 6¼ j � M � 1g is a set of

edges. &

An edge ðai ! ajÞ 2 E of the error directionality graph G indicates that the probability of

ai being changed into aj is larger than T .

Example 13.1 [KANE04a]

As an example of asymmetric symbol errors in data entry devices, Table 13.1 shows the

confusion matrix of handwritten numeral recognition systems [NOUM93]. The value at

the intersection of the i-th row and the j-th column in the table indicates a probability

where handwritten numeral i is recognized as numeral j. These values are calculated

TABLE 13.1 Confusion Matrix of Handwritten Numeral Recognition Systems

lare
m un

ne tt ir
wdna

H

Recognized numeral

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0.9957

0

0

0

0

0

0.0012

0

0

0.0002

0.0011

0.9991

0

0

0.0002

0.0007

0.0003

0.0003

0

0.0010

0.0002

0.0009

0.9983

0.0009

0

0

0

0.0005

0

0.0002

0.0004

0

0.0002

0.9985

0

0.0007

0

0.0010

0

0.0002

0

0

0

0

0.9988

0.0007

0.0005

0

0

0.0005

0

0

0

0

0

0.9972

0

0

0.0007

0

0.0013

0

0

0

0.0008

0.0002

0.9978

0

0.0002

0

0.0011

0

0.0007

0.0004

0

0

0

0.9948

0

0.0014

0

0

0.0007

0

0

0.0005

0.0003

0

0.9990

0.0005

0.0002

0

0

0.0002

0.0002

0

0

0.0035

0

0.9959

i
j

Source: [KANE04a]. c 2004 IEEE.

M-ARYASYMMETRIC SYMBOL ERROR CORRECTING CODES 601



from statistical data [NOUM93]. The asymmetric symbol error set A in these systems

is presented as follows:

A ¼ fð0! 1Þ; ð0! 6Þ; ð0! 7Þ; ð1! 2Þ; ð2! 7Þ; ð2! 8Þ;
ð3! 2Þ; ð4! 6Þ; ð5! 1Þ; ð5! 3Þ; ð5! 4Þ; ð6! 0Þ;
ð7! 3Þ; ð7! 9Þ; ð8! 5Þ; ð9! 1Þ; ð9! 7Þg;

where the threshold error probability is T ¼ 0:0006. Another asymmetric symbol error

set B with T ¼ 0:0011 is given by

B ¼ fð0! 6Þ; ð6! 0Þ; ð7! 9Þ; ð9! 7Þg:

The error directionality graphs GA and GB based, respectively, on A and B are shown

in Figure 13.1.

As another data entry device, the symbols of two adjacent keys in the numeric

keypads have high error probabilities because adjacent keys are sometimes mis-tapped.

Figure 13.2(a) illustrates the typical layout of a numeric keypad. Although the value of

T is not explicitly indicated, the following asymmetric symbol error set C can be

presented:

C ¼ fð0! 1Þ; ð0! 2Þ; ð1! 0Þ; ð1! 2Þ; ð1! 4Þ; ð2! 0Þ;
ð2! 1Þ; ð2! 3Þ; ð2! 5Þ; ð3! 2Þ; ð3! 6Þ; ð4! 1Þ;
ð4! 5Þ; ð4! 7Þ; ð5! 2Þ; ð5! 4Þ; ð5! 6Þ; ð5! 8Þ;
ð6! 3Þ; ð6! 5Þ; ð6! 9Þ; ð7! 4Þ; ð7! 8Þ; ð8! 5Þ;
ð8! 7Þ; ð8! 9Þ; ð9! 6Þ; ð9! 8Þg:

0

1

2

97

6

8 5

4

3
T = 0.0006

0

1

2

97

6

8 5

4

3
T = 0.0011

GA GB

Figure 13.1 Example of error directionality graphs for handwritten numeral recognition systems. Source:

[KANE04a].� 2004 IEEE.

7 8 9

4 5 6

1 2 3

0

7 8 9

4 5 6

1 2 3

0

(a) Typical layout of 
      numeric keypad

(b) Error directionality 
     graph GC

Figure 13.2 Asymmetric errors in numeric keypad. Source: [KANE04a].� 2004 IEEE.

602 CODES FOR DATA ENTRY SYSTEMS



This error set includes all pairs of symbols corresponding to adjacent keys in the

numeric keypad. Figure 13.2(b) shows the error directionality graph GC based on C.

Definition 13.4 Let u ¼ ðu0; u1; � � � ; uN�1Þ be a codeword of code C over the set of

M-ary symbolsA ¼ fa0; a1; � � � ; aM�1g, i.e., ui 2 A ð0 � i � N � 1Þ. If the codeC can

correct every single-symbol error ðui ! u0iÞ 2 , then C is an M-ary single -

asymmetric symbol error correcting code. &

Bound for Single -Asymmetric Symbol Error Correcting Codes Here we

observe the systematic M-ary codes that are capable of correcting single -asymmetric

symbol errors that occur in the check part as well as those in the information part.

However, in order to derive the upper bound on the information symbol length of the

codes, Lemma 13.1 deals with the codes capable of correcting single -asymmetric

symbol errors only in the information part. Define the following functions:

dðaiÞ ¼
����fðaj ! aiÞ j ðaj ! aiÞ 2 E ¼ g

����;
�ðGÞ ¼ max

i2f0;1;���;M�1g
dðaiÞ;

where jXj denotes the cardinality of X. In other words, dðaiÞ is the indegree of ai, and

�ðGÞ is the maximum indegree of vertices in G.

Lemma 13.1 A systematic code that corrects single -asymmetric symbol errors in the

information part exists only if

k � Mr � 1

�ðGÞ

� �
;

where bxc shows the maximum integer less than or equal to x, k is the information-symbol

length, r the check-symbol length, and G the error directionality graph based on .

Proof Let u1 and u2 be any two distinct codewords expressed by

u1 ¼ ðea; � � � ;ea|fflfflfflffl{zfflfflfflffl}
s

; a0;ea; � � � ;ea|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
k�s

; p1;0; � � � ; p1;r�1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
r

Þ;

u2 ¼ ðea; � � � ;ea|fflfflfflffl{zfflfflfflffl}
t

; a00;ea; � � � ;ea|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
k�t

; p2;0; � � � ; p2;r�1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
r

Þ;

where

ea; a0; a00; p1; j; p2; j 2 V ¼ A ð0 � j � r � 1Þ;
dðeaÞ ¼ �ðGÞ; 0 � s; t � k � 1;

ða0 ! eaÞ 2 ;

and ða00 ! eaÞ 2 . If u1 and u2 have identical check parts (i.e., p1; j ¼ p2; j ¼ pj for

0 � j � r � 1), then both u1 and u2 may be changed into the following identical word by a

single -asymmetric symbol error in the information part:

u0 ¼ ðea;ea; � � � ;ea|fflfflfflfflfflffl{zfflfflfflfflfflffl}
k

; p0; � � � ; pr�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
r

Þ:

M-ARYASYMMETRIC SYMBOL ERROR CORRECTING CODES 603



In this case errors in u1 and u2 cannot be corrected. Therefore all codewords with the

following information part should not have an identical check part:

ðea � � � ea a0 ea � � � ea Þ;
0 � � � i�1 i iþ1 � � � k�1

where ða0 ! eaÞ 2 or a0 ¼ ea, and 0 � i � k � 1. So the inequality

k�ðGÞ þ 1 � Mr

is satisfied because there are k�ðGÞ þ 1 codewords with this property. Subsequently the

inequality in Lemma 13.1 holds. Q.E.D.

This lemma indicates that any code capable of correcting single -asymmetric symbol

errors in the information part has at most ðMr � 1Þ=�ðGÞb c information symbols. Since

M-ary single -asymmetric symbol error correcting codes include this error correction

capability, the information symbol length of these codes never exceeds bðMr � 1Þ=�ðGÞc.
The following theorem is obvious.

Theorem 13.1 A systematic M-ary single -asymmetric symbol error correcting code

exists only if

k � Mr � 1

�ðGÞ

� �
:

Rings We define a new class of rings on which the M-ary single -asymmetric

symbol error correcting codes are designed.

Definition 13.5 Let c be a positive integer, and also qi be a prime number or a power of a

prime number, where 1 � i � c. A set Rðq1; q2; � � � ; qcÞ is defined by

Rðq1; q2; � � � ; qcÞ ¼ fhx1; x2; � � � ; xci j xi 2 GFðqiÞ; 1 � i � cg:

Let x ¼ hx1; x2; � � � ; xci and y ¼ hy1; y2; � � � ; yci be elements in Rðq1; q2; � � � ; qcÞ.
Addition ðþÞ and multiplication ð�Þ in Rðq1; q2; � � � ; qcÞ are defined as follows:

xþ y ¼ hx1; x2; � � � ; xci þ hy1; y2; � � � ; yci
¼ hðx1 þ1 y1Þ; ðx2 þ2 y2Þ; � � � ; ðxc þc ycÞi;

x� y ¼ hx1; x2; � � � ; xci � hy1; y2; � � � ; yci
¼ hðx1 �1 y1Þ; ðx2 �2 y2Þ; � � � ; ðxc �c ycÞi;

where þi and �i ð1 � i � cÞ are additive and multiplicative operators in GFðqiÞ,
respectively. &

Theorem 13.2 The set Rðq1; q2; � � � ; qcÞ is a ring.

This theorem can easily be proved by showing that the set Rðq1; q2; � � � ; qcÞ with the

operators þ and � above defined satisfies the ring axioms. Therefore the proof is omitted.

604 CODES FOR DATA ENTRY SYSTEMS



A column vector over Rðq1; q2; � � � ; qcÞ having length r is denoted by

hhx1; x2; � � � ; xcii ¼

hx1;1; x1;2; � � � ; x1;ci
hx2;1; x2;2; � � � ; x2;ci

..

.

hxr;1; xr;2; � � � ; xr;ci

0BBB@
1CCCA;

where xi; j 2 GFðqjÞ and xj is the transpose of ðx1; j; x2; j; � � � ; xr; jÞ. Let y ¼ hy1; y2; � � � ; yci
be an element in Rðq1; q2; � � � ; qcÞ. The product of y and hhx1; x2; � � � ; xcii is defined as

yhhx1; x2; � � � ; xcii ¼

hy1; y2; � � � ; yci � hx1;1; x1;2; � � � ; x1;ci
hy1; y2; � � � ; yci � hx2;1; x2;2; � � � ; x2;ci

..

.

hy1; y2; � � � ; yci � hxr;1; xr;2; � � � ; xr;ci

0BBB@
1CCCA:

Similarly the product of a matrix and a vector over Rðq1; q2; � � � ; qcÞ is simply defined as

follows:

m0;0 m0;1 � � � m0;N�1

m1;0 m1;1 � � � m1;N�1

..

. ..
.

� � � ..
.

mr�1;0 mr�1;1 � � � mr�1;N�1

266664
377775

v0

v1

..

.

vN�1

0BBBB@
1CCCCA

¼

ðm0;0 � v0Þ þ ðm0;1 � v1Þ þ � � � þ ðm0;N�1 � vN�1Þ
ðm1;0 � v0Þ þ ðm1;1 � v1Þ þ � � � þ ðm1;N�1 � vN�1Þ

..

.

ðmr�1;0 � v0Þ þ ðmr�1;1 � v1Þ þ � � � þ ðmr�1;N�1 � vN�1Þ

0BBBB@
1CCCCA;

where mi; j; vj 2 Rðq1; q2; � � � ; qcÞ, 0 � i � r � 1, and 0 � j � N � 1.

Example 13.2 [KANE04a]

The ring Rð3; 3Þ is defined by the following:

Rð3; 3Þ ¼ fhx1; x2i j x1; x2 2 GFð3Þg
¼ fh0; 0i; h0; 1i; h0; 2i; h1; 0i; h1; 1i; h1; 2i; h2; 0i; h2; 1i; h2; 2ig:

The following shows examples of addition and multiplication in Rð3; 3Þ:

h2; 0i þ h2; 2i ¼ hð2þ 2 mod 3Þ; ð0þ 2 mod 3Þi ¼ h1; 2i;
h2; 0i � h2; 1i ¼ hð2� 2 mod 3Þ; ð0� 1 mod 3Þi ¼ h1; 0i:

M-ARYASYMMETRIC SYMBOL ERROR CORRECTING CODES 605



Product of h1; 2i and
h0; 1i
h2; 1i

� �
is performed as follows:

h1; 2i
h0; 1i
h2; 1i

� �
¼
h1; 2i � h0; 1i
h1; 2i � h2; 1i

� �
¼
h0; 2i

h2; 2i

 !
:

Definition 13.6 A set of regular elements in Rðq1; q2; � � � ; qcÞ is denoted by

R0ðq1; q2; � � � ; qcÞ:

R0ðq1; q2; � � � ; qcÞ ¼ fhx1; x2; � � � ; xci j xi 2 GFðqiÞ � f0g; 1 � i � cg;

where regular element is defined as an element having its multiplicative inverse. &

2. Code Design

Parity-Check Matrix H over Rings Let Rðq1; q2; � � � ; qcÞ be the ring defined by

Definition 13.5, and also let Hi be an r � ni parity-check matrix of a systematic single-

symbol error correcting code over GFðqiÞ expressed by

Hi ¼
j j j

hi;0 hi;1 � � � hi;ni�1
j j j

24 35;
where

j
hi;j
j
, 0 � j � ni � 1, is a column vector with r elements in GFðqiÞ, ni is code length,

and 1 � i � c. Here the Hamming codes are applied toHi’s because they have the maximum

code length ni ¼ ðqri � 1Þ=ðqi � 1Þ for single-symbol error correction. Let N ¼
Qc

i¼1 ni. A
function Ji is defined as an arbitrary mapping from ZN ¼ f0; 1; � � � ; N � 1g into

Zni ¼ f0; 1; � � � ; ni � 1g, satisfying

ðJ1ðsÞ; J2ðsÞ; � � � ; JcðsÞÞ 6¼ ðJ1ðtÞ; J2ðtÞ; � � � ; JcðtÞÞ; ð13:1Þ

where s; t 2 ZN; JiðsÞ; JiðtÞ 2 Zni ; and s 6¼ t. By using column vectors in H1; H2; � � � ;
Hc, we define the s-th column vector hs of a parity-check matrixH over Rðq1; q2; � � � ; qcÞ
as

hs ¼ hh
j j j

h1;J1ðsÞ; h2;J2ðsÞ; � � � ; hc;JcðsÞ
j j j

ii;

where 0 � s � N � 1. The parity-check matrix H over Rðq1; q2; � � � ; qcÞ, having check

symbol length r, is given by the following:

H ¼
�
h0 h1 � � � hN�r�1

���� hN�r � � � hN�1

�
;

where hN�r � � � hN�1½ � is the r � r identity matrix over Rðq1; q2; � � � ; qcÞ. The last r
columns of H indicate the check part of H.

606 CODES FOR DATA ENTRY SYSTEMS



Example 13.3 [KANE04a]

Let H1 and H2 be identical 2� 4 parity-check matrices of a single-symbol error

correcting Hamming code over GFð3Þ expressed by

H1 ¼
j j j j

h1;0 h1;1 h1;2 h1;3
j j j j

24 35 ¼ 0 1 1 1

1 0 1 2

� �
;

H2 ¼
j j j j

h2;0 h2;1 h2;2 h2;3
j j j j

24 35 ¼ 0 1 1 1

1 0 1 2

� �
:

A column vector hs over Rð3; 3Þ is given by the following:

hs ¼ hh
j j

h1;J1ðsÞ h2;J2ðsÞ
j j

ii;

where 0 � s � N � 1 ¼ 4� 4� 1 ¼ 15, and J1 and J2 are mappings given in Table 13.2.

The parity-check matrix H over Rð3; 3Þ having r ¼ 2 check symbols is given by

The last two columns indicate the check part.

Mapping Functions As mentioned previously, the M-ary single -asymmetric

symbol error correcting codes should correct any single-symbol error indicated by an edge

ðax ! ayÞ of error directionality graph. In order to correct the error ðax ! ayÞ by using the
parity-check matrix H over Rðq1; q2; � � � ; qcÞ, the corresponding error value over Rðq1;
q2; � � � ; qcÞ should be a regular element, meaning f should satisfy f ðayÞ � f ðaxÞ 2 R0

ðq1; q2; � � � ; qcÞ for all ðax ! ayÞ 2 . Further, since f is not an injective mapping, the

original value ax can be obtained from f ðaxÞ only if f satisfies f ðaxÞ 6¼ f ðazÞ for all

ðaz ! ayÞ 2 . Therefore the function f should satisfy two classes of conditions related to

graph coloring problems of error directionality graph G, as illustrated in Figure 13.3

TABLE 13.2 Example of Mapping Ji

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

J1ðsÞ 0 0 0 1 1 1 2 2 2 2 3 3 3 3 1 0
J2ðsÞ 1 2 3 0 2 3 0 1 2 3 0 1 2 3 1 0

Source: [KANE04a].� 2004 IEEE.

ax)

ay)

aw)az)

ax

ay

awaz

Error directionality graph

af ( ) - af ( ) R’(q1,q2,...,qc)
af ( ) - azf ( ) R’(q1,q2,...,qc)
af ( ) - awf ( ) R’(q1,q2,...,qc)

af ( ) azf ( )
awf ( )

=
af ( ) =
azf ( ) awf ( )=

y

y

y

x

x

x

f

f (

f (

f ( f (

Figure 13.3 Conditions for function f. Source: [KANE04a].� 2004 IEEE.

H¼"
h0;1ih0;1ih0;1ih1;0ih1;1ih1;1ih1;0ih1;1ih1;1ih1;1ih1;0ih1;1ih1;1ih1;1i h1;1ih0;0i

h1;0ih1;1ih1;2ih0;1ih0;1ih0;2ih1;1ih1;0ih1;1ih1;2ih2;1ih2;0ih2;1ih2;2i h0;0ih1;1i

#
:

M-ARYASYMMETRIC SYMBOL ERROR CORRECTING CODES 607



Based on the considerations above, the function f is defined as follows.

Definition 13.7 Let G ¼ ðV;EÞ be an error directionality graph based on asymmetric

symbol error set . Function f is a mapping from V ¼ A ¼ fa0; a1; � � � ; aM�1g into
Rðq1; q2; � � � ; qcÞ satisfying the following conditions:

½ðax ! ayÞ 2 E ^ f ðaxÞ ¼ hx1; x2; � � � ; xci
^f ðayÞ ¼ hy1; y2; � � � ; yci� ð13:2Þ

! ½xi 6¼ yi; where 1 � i � c�;
½ðax ! ayÞ 2 E ^ ðaz ! ayÞ 2 E ^ ax 6¼ az�

! ½ f ðaxÞ 6¼ f ðazÞ�; ð13:3Þ

where hx1; x2; � � � ; xci; hy1; y2; � � � ; yci 2 Rðq1; q2; � � � ; qcÞ, and Rðq1; q2; � � � ;
qcÞ satisfies

Yc
i¼1

qi � M: ð13:4Þ

&

In order to design M-ary single -asymmetric symbol error correcting code, ring

Rðq1; q2; � � � ; qcÞ and function f that satisfy the conditions above must be determined.

However, Rðq1; q2; � � � ; qcÞ and f cannot be obtained systematically because the

conditions shown by Eqs. (13.2) and (13.3) are related to graph coloring problems. Thus

Rðq1; q2; � � � ; qcÞ and f are determined by brute force computer search over a set of

parameters fðq1; q2; � � � ; qcÞ j qi 	 CNðGÞ;
Qc

i¼1 qi � Mg, where CNðGÞ is the chro-

matic number of G, meaning the number of colors of G, and qi is prime or power of prime.

If Rðq1; q2; � � � ; qcÞ and f satisfying the conditions do not exist, then the code cannot be

designed. In this case the conventional M-ary single symmetric symbol error correcting

codes [NAMB01] should be used.

Definition 13.8 Function g is an arbitrary surjective mapping from A onto

Rðq1; q2; � � � ; qcÞ. Inverse function g�1 is a mapping from Rðq1; q2; � � � ; qcÞ into A

that satisfies gðg�1ðxÞÞ ¼ x, where x 2 Rðq1; q2; � � � ; qcÞ. &

The function g can be easily determined, e.g., gðaiÞ ¼WimodQ, where Q ¼
Qc

i¼1 qi and
Rðq1; q2; � � � ; qcÞ ¼ fW0; W1; � � � ; WQ�1g.

Although both functions f and g map A into Rðq1; q2; � � � ; qcÞ, there exist differences
in their necessary conditions. That is, f has some constraints related to the coloring

problems of the error directionality graph G , whereas g does not have such constraints but

has a condition of surjection.

Example 13.4 [KANE04a]

Let A ¼ f0; 1; � � � ; 9g ba a set of 10-ary symbols. We derive the functions

f : A! Rð3; 3Þ, g : A! Rð3; 3Þ, and g�1 : Rð3; 3Þ ! A for the error directionality

graph GA shown in Figure 13.1. The functions f and g label each vertex of GA with an

608 CODES FOR DATA ENTRY SYSTEMS



element in Rð3; 3Þ. Figure 13.4 expresses the functions f and g by means of the graph

GA labeled with elements in Rð3; 3Þ. The function f satisfying Eqs. (13.2) and (13.3) is
obtained by a brute force search through all possible labeling patterns of GA. The

function g is obtained by labeling each vertex with an element in Rð3; 3Þ in such a way
that every element in Rð3; 3Þ is used at least once. The function g�1 is determined as

g�1ðhx1; x2iÞ ¼ ai, where gðaiÞ ¼ hx1; x2i. Note that g�1ðh0; 1iÞ, which is determined

as 7 in Figure 13.4, can also be determined as 8 because gð7Þ ¼ gð8Þ ¼ h0; 1i.
Figure 13.5 shows an example of the functions f : A! Rð9Þ, g : A! Rð9Þ, and

g�1 : Rð9Þ ! A for the error directionality graphGC. These functions are derived in the

same way as the case of GA. In this case the functions f and g are identical.

Code Design

Theorem 13.3 Let H be an r � N parity-check matrix over Rðq1; q2; � � � ; qcÞ, and also

let f and g be mapping functions defined in Definitions 13.7 and 13.8, respectively. Code

0

1

2

97

6

8 5

4

3

G
0

f
0,

11, 20, 11,

21,

10,

02, 10, 02,

20,

:A R(3,3)
0

g
0,

01, 12, 11,

02,

21,

10, 01, 20,

22,

:A R(3,3)

f(3)= 20, g(3)= 22,

A

g :R(3,3)-1 A g-1( 00, )=0

g-1( 01, )=7

g-1( 02, )=6

g-1( 10, )=2

g-1( 11, )=1

g-1( 12, )=9

g-1( 20, )=5

g-1( 21, )=4

g-1( 22, )=3

Figure 13.4 Examples of functions f, g, and g�1 for GA. Source: [KANE04a].� 2004 IEEE.

0

97 8
G f:A R(9)

f(3)=

C

64 5

31 2

0

0

1 α

g:A R(9)

α

α α α

α α

2

3 4 5

6 7

α2

α:primitive element inGF(9)

g(3)=0

0

1 α α

α α α

α α

2

3 4 5

6 7

α2

g-1( )=0

g-1( )=1

g-1( )=2

g-1( )=3

g-1( )=4

g-1( )=5

g-1( )=6

g-1( )=7

g-1( )=8

g :R(9) A
0

1

α

α2

α3

α4

α5

α6

α7

-1

Figure 13.5 Examples of functions f, g, and g�1 for GC: Source: [KANE04a].� 2004 IEEE.

M-ARYASYMMETRIC SYMBOL ERROR CORRECTING CODES 609



C defined by the following is a systematic M-ary single -asymmetric symbol error

correcting code:

C ¼
H � ðf ðd0Þ � � � f ðdk�1Þ gðp0Þ � � � gðpr�1ÞÞT

u ¼ ðd0 � � � dk�1 p0 � � � pr�1Þ

¼ hh0; � � � ; 0
zfflfflfflffl}|fflfflfflffl{c

ii

8>><>>:
9>>=>>;;

where di 2 A; 0 � i � k � 1; is an information symbol, pj 2 A; 0 � j � r � 1; is a check
symbol, 0 is a zero column vector with length r, k ¼ N � r, and

N ¼
Yc
i¼1

qri � 1

qi � 1
: ð13:5Þ

Proof Let u ¼ ðd0 � � � dk�1 p0 � � � pr�1Þ be the original codeword, and let

u0 ¼ ðd00 � � � d0k�1 p00 � � � p0r�1Þ be the corresponding received word. The received

word u0 having single -asymmetric symbol errors that occur in the following cases

can be corrected.

Case 1. Single -asymmetric symbol errors in the information part. Assume that there is

an error in the l-th information symbol, meaning d0i ¼ di ð0 � i � k � 1; i 6¼ lÞ and
ðdl ! d0lÞ 2 E, where 0 � l � k � 1. Since ðf ðd0lÞ � f ðdlÞÞ 2 R0ðq1; q2; � � � ; qcÞ from
Eq. (13.2), and two column vectors in Hi are linearly independent, the syndrome

defined by

S ¼ hhs1; s2; � � � ; scii
¼ H � ðf ðd00Þ � � � f ðd0k�1Þ gðp00Þ � � � gðp0r�1ÞÞ

T

can be factorized as follows without any ambiguity:

S ¼ ðf ðd0lÞ � f ðdlÞÞhl:

Thus the error location l can be determined from the syndrome S. Since f is not a one-

to-one mapping, an original M-ary symbol dl cannot always be uniquely determined

only by f ðdlÞ. The original symbol dl, however, can be obtained from a pair of values

ðf ðdlÞ; d0lÞ because Eq. (13.5) indicates that if

½ax 6¼ ay� ^ ½ðax ! d0lÞ 2 E� ^ ½ðay ! d0lÞ 2 E�;

then f ðaxÞ 6¼ f ðayÞ. In other words, an M-ary symbol ax that satisfies f ðaxÞ ¼ f ðdlÞ and
ðax ! d0lÞ 2 E gives the original symbol dl. Hence the error in d0l can be corrected.

Case 2. Single -asymmetric symbol errors in the check part. Assume that there is an

error in the l0-th check symbol, meaning p0i ¼ pi ð0 � i � r � 1; i 6¼ l0Þ and

ðpl0 ! p0l0 Þ 2 E, where 0 � l0 � r � 1.

610 CODES FOR DATA ENTRY SYSTEMS



� If ðgðp0l0 Þ � gðpl0 ÞÞ 2 R0ðq1; q2; � � � ; qcÞ, then the error location l ¼ l0 þ k 	 k, which

indicates that an error exists in the check part, is obtained from the syndrome in the

same way as the case 1. Then the correct check symbols can be recovered by re-

encoding the received error-free information part.

� If ðgðp0l0 Þ � gðpl0 ÞÞ =2R0ðq1; q2; � � � ; qcÞ, then there exists i that satisfies si ¼ o,

where 1 � i � c. This means that the error is discriminated from the errors in the

information part because the syndromes caused by errors in the information part do

not satisfy si ¼ o for any i. Thus correct check symbols can be recovered by

re-encoding the received error-free information part.

Clearly, C can correct single -asymmetric symbol errors. Further it is obvious

from the definition of H that the code is systematic and the code length N is given by

Eq. (13.5). Q.E.D.

3. Decoding Procedure
Let the received word be denoted as

u0 ¼ ðd00 d01 � � � d0k�1 p00 p01 � � � p0r�1Þ

and also the output of the decoder be denoted as û ¼ ðd̂0 d̂1 � � � d̂k�1 p̂0 p̂1 � � � p̂r�1Þ.
The word u0 is transformed into elements in Rðq1; q2; � � � ; qcÞ by the functions f and g:

U0 ¼ ðD00 D01 � � � D0k�1 P00 P01 � � � P0r�1Þ
¼ ðf ðd00Þ f ðd01Þ � � � f ðd0k�1Þ gðp00Þ gðp01Þ � � � gðp0r�1ÞÞ:

The syndrome of U0 is calculated as follows:

S ¼ hhs1; s2; � � � ; scii ¼ H � U0T :

If there exists i that satisfies si ¼ 0, then the information part of u0 has no error. In this

case the output û is obtained by re-encoding the error-free information part, meaning

ðd00 d01 � � � d0k�1Þ. If si 6¼ 0 for all i’s, the syndrome S is factorized as S ¼ ehhv1;
v2; � � � ; vcii, where e 2 R0ðq1; q2; � � � ; qcÞ, vi is a column vector in Hi, and 1 � i � c.

The error location is given by l, which satisfies the following equation:

hhh1;J1ðlÞ; h2;J2ðlÞ; � � � ; hc;JcðlÞii ¼ hhv1; v2; � � � ; vcii:

If this is not satisfied for any l, then uncorrectable errors exist in u0. If l 	 k, then an error

exists in the check part of u0. In this case, û is obtained by re-encoding ðd00 d01 � � � d0k�1Þ. If
l < k, û is given by the following:

û ¼ ðd00 d01 � � � d0l�1 d̂l d
0
lþ1 � � � d0k�1 p00 p01 � � � p0r�1Þ;

where f ðd̂lÞ ¼ D0l � e and ðd̂l ! d0lÞ 2 E.

Figure 13.6 illustrates the procedure above.

M-ARYASYMMETRIC SYMBOL ERROR CORRECTING CODES 611



Example 13.5 [KANE04a]

Let H0 be the parity-check matrix over Rð3; 3Þ defined by the following:

This code is obtained by deleting the last seven columns in the information part of H of

Example 13.3. Let the codeword of 10-ary single A-asymmetric symbol error

correcting code be u ¼ ðd0 d1 d2 d3 d4 d5 d6 p0 p1Þ ¼ ð3 8 9 0 1 2 5 5 9Þ over

A ¼ f0; 1; � � � ; 9g, which satisfies

H0 � ð f ð3Þ f ð8Þ f ð9Þ f ð0Þ f ð1Þ f ð2Þ f ð5Þ gð5Þ gð9ÞÞT ¼ hh0; 0ii;

where f : A! Rð3; 3Þ and g : A! Rð3; 3Þ are the functions given in Figure 13.4.

v,

d

k-1

’Received word:u’=(d0’ ... dk-1 ’p0’ ... pr-1)

Transformation of u’:

’U’=(D0’ ... D ’P0’ ... Pr-1)

’=( d0’ ... dk-1 ’p0’ ... pr-1)f( ) ( )f g( ) g( )

Syndrome calculation:

S= s1,...,sc = H U’T

Is there i

si=0

Factorization of S:
S= e v1,...,vc

e (q
1
,...,qR’ c),vi:Column vector in Hi

No

Is there 
that satisfies

h1 , ,
1

... hc c
=

v1,... c

?

?

> k

Yes

Output: ’d0’ ...d -1( ’d +1
... ’dk-1

f(d )’-e ,(d ’d ) E

No

Single symbol error
in the check part

Re-encode

Yes

No error in the 
information part

Yes

Uncorrectable
error

No

^

^ ^

that satisfies

D =

) )

’P0’ ... Pr-1)
’d0’ ... dk-1( )

and give output

Does satisfy
?

,J ( ,J (

.

Figure 13.6 Decoding procedure. Source: [KANE04a].� 2004 IEEE.

H0 ¼ h0 h1 � � � h8½ �

¼
h0; 1i h0; 1i h0; 1i h1; 0i h1; 1i h1; 1i h1; 0i h1; 1i h0; 0i
h1; 0i h1; 1i h1; 2i h0; 1i h0; 1i h0; 2i h1; 1i h0; 0i h1; 1i

� �
:

612 CODES FOR DATA ENTRY SYSTEMS



Assume that an error exists in d2; that is, d2 ¼ 9 is changed to d02 ¼ 1:

u0 ¼ ðd00 d01 d02 d03 d04 d05 d06 p00 p01Þ ¼ ð3 8 1 0 1 2 5 5 9Þ:

Decoding is performed by the following procedure:

The received word u0 is transformed into elements in Rð3; 3Þ by the functions f and g,

U0 ¼ ðD00 D01 D02 D03 D04 D05 D06 P00 P01Þ
¼ ðf ð3Þ f ð8Þ f ð1Þ f ð0Þ f ð1Þ f ð2Þ f ð5Þ gð5Þ gð9ÞÞ
¼ ðh2; 0i h1; 0i h1; 1i h0; 0i h1; 1i h0; 2i h0; 2i h2; 0i h1; 2iÞ:

The syndrome S is calculated as

S ¼ H0 � ðh2; 0i h1; 0i h1; 1i h0; 0i h1; 1i h0; 2i h0; 2i h2; 0i h1; 2iÞT

¼
h0; 1i
h2; 2i

� �
:

Then this syndrome is factorized as

S ¼ hh2 0

1

� �
; 1

1

2

� �
ii ¼ h2; 1ihh 0

1

� �
;

1

2

� �
ii ¼ eh2;

where e ¼ h2; 1i. Therefore the error location l ¼ 2 is obtained. Since D02 � e ¼
h1; 1i � h2; 1i ¼ h2; 0i ¼ f ð9Þ and ð9! d02Þ ¼ ð9! 1Þ 2 E, the symbol d̂2 is

determined as 9.

The corrected output is û ¼ ð3 8 9 0 1 2 5 5 9Þ.
Assume that the check symbol p0 ¼ 5 in u is changed to p00 ¼ 4. Then the

syndrome S is calculated as

S ¼ h0; 1i
h0; 0i

� �
:

In this case the error is discriminated from errors in the information part because

s1 ¼ ð0; 0ÞT . Hence the output û is obtained by re-encoding ð3 8 9 0 1 2 5Þ.

4. Evaluation
FromEq. (13.5) the information-symbol length of the code overRðq1; q2; � � � ; qcÞ is given by

k ¼ N � r ¼
Yc
i¼1

qri � 1

qi � 1
� r;

where r is the check-symbol length. This means that the information-symbol length k

depends on Rðq1; q2; � � � ; qcÞ and r. In order to obtain Rðq1; q2; � � � ; qcÞ, which gives the

greatest information-symbol length k for given error directionality graph G, brute force

computer search is performed as follows: (1) Enumerate the rings that satisfy Eq. (13.4),

M-ARYASYMMETRIC SYMBOL ERROR CORRECTING CODES 613



(2) calculate the information-symbol length k for each ring, and (3) find a ring

Rðq1; q2; � � � ; qcÞ that gives the maximal value of k and for which the function f satisfying

Eqs. (13.2) and (13.3) exists.

Table 13.3 shows the information-symbol length k of the codes for two types of data entry

devices: the handwritten numeral recognition system and the numeric keypad. Note that

the upper bound on the information-symbol lengths of the M-ary single -asymmetric

symbol error correcting codes are obtained from Theorem 13.1. For handwritten numeral

recognition systems, two classes of codes are evaluated: one with threshold error probability

T ¼ 0:0006 and the other with T ¼ 0:0011. The last column of the table shows the

information-symbol lengths of the existing excellent M-ary single symmetric symbol error

correcting codes [NAMB01]. The indicated asymmetric codes have greater information-

symbol length than the existing symmetric codes. Also the codes require two check symbols,

whereas the existing symmetric codes require at least three check symbols.

13.2.2 Nonsystematic Codes

From a practical standpoint, M-ary asymmetric error control codes for data entry systems

are not necessarily systematic because in many cases, there is no significance to

distinguishing between information symbols and check symbols. Furthermore M-ary

asymmetric error control codes can be flexibly designed by using nonsystematic codes. In

this subsection we look at a new class of nonsystematicM-ary asymmetric error correcting

codes [KANE04b] that are based on a multilevel coding method and a set partitioning

algorithm originally developed for M-ary communication channels [IMAI77].

1. Preliminaries
This subsection presents some mathematical definitions used for code design.

Rooted Tree T(q1, q2, . . . , qc) Let the level of a node v in a rooted tree be the

length of the path from the node v to the root node, where each edge has a length of 1, and

let the level of the root node be 0. A rooted tree Tðq1; q2; . . . ; qcÞ is defined as follows:

TABLE 13.3 Check-Symbol Lengths and Information Symbol Lengths of Codes

0

1

2

97

6

8 5

4

3
T= 0.0006

0

1

2

97

6

8 5

4

3
T = 0.0011

handwritten numeral recognition systems for numeric keypads

7 8 9

4 5 6

1 2 3

0

Error
directionality

graph

Ring
r
2
3
4
5

R(3,3) R(2,2,2) R(9)

Existing
10-ary
single

symmetric
symbol
error

correcting
codes [NAMB01]

k Bound k Bound k Bound
14

166
1,596

14,636

25
340

3,371
29,786

8
88

816
7,376

k

46
498

4,998

33
333

3,333
33,333

99
999

9,999
99,999

24
249

2,499
24,999

Note: r : check-symbol length, k : information-symbol length, bound: upper bound on the information-symbol length
given in Theorem 13.1.

10-Ary codes10-Ary codes for

Source : [KANE04a]. c 2004 IEEE.

614 CODES FOR DATA ENTRY SYSTEMS



� Each node in level i has qiþ1 child nodes, for 0 � i � c� 1.

� Each node in level c has no child node (i.e., every node in level c is a leaf node).

� All edges connecting a node in level i with its qiþ1 child nodes are labeled, each

with a distinct element x 2 GFðqiþ1Þ for 0 � i � c� 1.

Example 13.6 [KANE04b]

Figure 13.7 gives an example of a tree Tð3; 2; 2Þ, where GFð2Þ ¼ f0; 1g and

GFð3Þ ¼ f0; 1; 2g.

Confusion Matrix P Let A ¼ fa0; a1; . . . ; aM�1g be a set ofM-ary symbols. Nonsys-

tematic M-ary asymmetric error correcting codes are constructed based on the following

confusion matrix P:

P ¼

pða0ja0Þ pða1ja0Þ . . . pðaM�1ja0Þ
pða0ja1Þ pða1ja1Þ . . . pðaM�1ja1Þ

..

. ..
. ..

.

pða0jaM�1Þ pða1jaM�1Þ . . . pðaM�1jaM�1Þ

26664
37775;

where pðajjaiÞ are the transition probabilities for a transmitted symbol ai being received as

a symbol aj, which are given a priori.

Recall the example in Table 13.1 of the confusion matrix P for a class of handwritten

postal code recognition systems, where A ¼ f0; 1; . . . ; 9g and ai ¼ i for 0 � i � 9. The

matrix P is derived from statistical data given in [NOUM93].

2. Code Design
The code design method of the nonsystematic M-ary asymmetric error correcting codes

C is based on a multilevel coding method [IMAI77]. That is, C is determined by a

function F that maps a set A of M-ary symbols to a ring Rðq1; q2; � � � ; qcÞ mentioned

in Definition 13.5 and Theorem 13.2 of Subsection 13.2.1, and by a series of block

codes C1;C2; . . . ;Cc, where Ci is defined over GFðqiÞ for 1 � i � c. Figure 13.8 shows

the relation between a codeword U ¼ ðu0 u1 . . . un�1Þ of the M-ary code C and a

codeword Wi ¼ ðwi;0 wi;1 . . . wi;n�1Þ of the block code Ci. Note in this figure that

U ¼ ðu0 u1 . . . un�1Þ is a codeword ofC only ifWi ¼ ðwi;0 wi;1 . . . wi;n�1Þ is a codeword
of Ci for all i 2 f1; 2; . . . ; cg, where FðujÞ ¼ hw1; j;w2; j; . . . ;wc; ji for 0 � j � n� 1.

The following shows a construction of the function F based on a newly defined set

partitioning algorithm, and then defines a new class of nonsystematic M-ary asymmetric

error correcting codes using the function F.

0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1

0
1

2

Figure 13.7 Tree T(3, 2, 2). Source: [KANE04b].� 2004 IEEE.

M-ARYASYMMETRIC SYMBOL ERROR CORRECTING CODES 615



(1) Set-Partitioning Algorithm
In order to define the function F that maps a set A of M-ary symbols to a ring

Rðq1; q2; . . . ; qcÞ, the set A is iteratively partitioned into qi subsets for each i, 1 � i � c.

This is achieved by using the new algorithm indicated here, which is based on the set-

partitioning algorithm described in [IMAI77]. Similar to the conventional set-partitioning

algorithm that divides a set of M-ary symbols into subsets based on Euclidean distance in

the signal constellation, the new algorithm defined here divides the set A into subsets

based on the following probability:

pðas; atÞ ¼ max
ak2A
fminfpðakjasÞ; pðakjatÞgg;

where as; at 2 A and as 6¼ at. Figure 13.9 shows examples of transition probabilities

corresponding to small and large values for pðas; atÞ, respectively, where the width of each
arrow indicates the transition probability, as and at are transmitted symbols, and ak is a

received symbol. In case 13.9(a), the transmitted symbol, either as ¼ 2 or at ¼ 4, can be

reliably estimated from the received symbol ak because either pðakjasÞ or pðakjatÞ is

U= u0 u1 un-1... C over A

W = w1,0 w1,1 w1,n-1... C over1 1 GF(q1)

W = w2,0 w2,1 w2,n-1... C over2 2 GF(q2)

W = wc,0 wc,1 wc,n-1... C overc c GF(qc)

.
.
.

.
.
.

.
.
.

F F F

R(q1,q2,...,qc)w1,j w2,j, , ..., wc,j

uj

w1,j

w2,j

wc,j

.
.
.

F

...

...

...

...

F(uj)=

Figure 13.8 Relation between codeword Uof nonsystematicM-ary asymmetric error correcting code C and
codewordWi of block code Ci over GFðqiÞ for 1 � i � c: Source: [KANE04b].� 2004 IEEE.

(a) p(2,4) = 0

0

1

2

3

4

5

6

7

8

9

2 4

0.0000

0.0000

0.9983

0.0002

0.0000

0.0000

0.0000

0.0007

0.0007

0.0000

0.0000

0.0002

0.0000

0.0000

0.9988

0.0000

0.0008

0.0000

0.0000

0.0002

(b) p(7,9) = 0.0035

0

1

2

3

4

5

6

7

8

9

7 9

0.0000

0.0003

0.0005

0.0010

0.0000

0.0000

0.0000

0.9948

0.0000

0.0035

0.0002

0.0010

0.0002

0.0002

0.0005

0.0000

0.0000

0.0014

0.0005

0.9959

as at as at

ak ak

as,at: Transmitted symbol

ak: Received symbol

Transition probability:

low

high

Figure 13.9 Examples of transition probabilities: (a) For a small value of pðas; atÞ and (b) for a large value of
pðas; atÞ. Source: [KANE04b].� 2004 IEEE.

616 CODES FOR DATA ENTRY SYSTEMS



sufficiently small for all ak 2 A. In case 13.9(b), however, the transmitted symbol, either

as ¼ 7 or at ¼ 9, cannot always be reliably estimated from the received symbol ak because

there exists ak 2 A such that both pðakjasÞ and pðakjatÞ have a large value, such as ak ¼ 7

or 9. This implies that a small value for pðas; atÞ should correspond to a large Euclidean

distance between the two transmitted symbols because as and at are easily distinguished

from each other regardless of the received symbol; conversely, a large value for pðas; atÞ
should correspond to a small Euclidean distance between the two symbols.

Based on the probability pðas; atÞ as defined above, a new set-partitioning algorithm is

derived for a given confusion matrix P and a tree Tðq1; q2; . . . ; qcÞ, where

Yc
i¼1

qi 	 M:

In the following set-partitioning algorithm, a subsetAðvÞ ofA is assigned to each node v in

Tðq1; q2; . . . ; qcÞ.

New Set-Partitioning Algorithm

Step 1. Assign set A to the root node vR in the rooted tree Tðq1; q2; . . . ; qcÞ, that is,
AðvRÞ :¼ A.

Step 2. Set i :¼ 0.

Step 3. For each node v in level i, divide AðvÞ into qiþ1 disjoint subsets A1ðvÞ, A2ðvÞ, . . . ;
Aqiþ1ðvÞ, in such a way that the following value is minimized:

max
1 �j�qiþ1

max
as; at 2 AjðvÞ

as 6¼ at

fpðas; atÞg

8>>><>>>:
9>>>=>>>;;

where the cardinality of AjðvÞ satisfies the condition

jAjðvÞj �
Qc

k¼1 qkQiþ1
k¼1 qk

for all 1 � j � qiþ1:

Each of the obtained subsets A1ðvÞ;A2ðvÞ; . . . ; Aqiþ1ðvÞ is then assigned to a distinct
offspring node v0j of v, namely Aðv0jÞ :¼ AjðvÞ for 1 � j � qiþ1.

Step 4. If i < c� 1, then set i :¼ iþ 1 and go to step 3; otherwise, terminate the algorithm.

Figure 13.10 shows an overview of the algorithm. The tree obtained by this algorithm,

with a subset of A assigned to each node, will be denoted by ðq1; q2; . . . ; qcÞ. As the
algorithm is performed, each M-ary symbol is assigned to a distinct leaf node in

ðq1; q2; . . . ; qcÞ.

Definition 13.9 For a given ðq1; q2; . . . ; qcÞ, the function F : A! Rðq1; q2; . . . ; qcÞ is
defined as follows:

FðajÞ ¼ hf1ðajÞ; f2ðajÞ; . . . ; fcðajÞi ¼ hx1; x2; . . . ; xci;

M-ARYASYMMETRIC SYMBOL ERROR CORRECTING CODES 617



where fi is a function that maps A to GFðqiÞ for 1 � i � c and hx1; x2; . . . ;
xci 2 Rðq1; q2; . . . ; qcÞ represents the sequence of edge labels for a path from the

root node vR to the leaf node v for which AðvÞ ¼ fajg. &

Example 13.7 [KANE04b]

Figure 13.11 shows a ð3; 2; 2Þ tree for the confusion matrix P given in Table 13.1. In

this case function F : A! Rð3; 2; 2Þ is determined as follows:

Fð0Þ ¼ h1; 0; 0i; Fð1Þ ¼ h2; 0; 0i; Fð2Þ ¼ h1; 1; 1i;
Fð3Þ ¼ h0; 0; 0i; Fð4Þ ¼ h2; 0; 1i; Fð5Þ ¼ h2; 1; 0i;
Fð6Þ ¼ h0; 0; 1i; Fð7Þ ¼ h2; 1; 1i; Fð8Þ ¼ h0; 1; 0i;
Fð9Þ ¼ h0; 1; 1i:

(2) Code Design

Definition 13.10 Let ðq1; q2; . . . ; qcÞ be a tree obtained by the new set-partitioning

algorithm, and let Ci be a block code over GFðqiÞ having length n and minimum

{a4}{a5}{a7}

{a4,a5,a7}

{a1}{a8}{a9}

{a1,a8,a9}

{a0}{a2}

{a0,a2}

...

{ ...,a5 ,...} { ...,a2 ,...}

A={a0,a1,...,aM-1} : Set of M-ary symbols

Pair of error-prone symbols

tree structure

Sets of plainly distinguishable

having high probability p(as,at )

symbols having low probability p(as,at )

Figure 13.10 Overview of new set-partitioning algorithm. Source: [KANE04b].� 2004 IEEE.

{0,1,2,3,4,5,6,7,8,9}

{3,6,8,9} {1,4,5,7}{0,2}

{3,6} {8,9} {0} {2} {1,4} {5,7}

{3} {6} {8} {9} {0} {2} {1} {4} {5} {7}

0 1 2

0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1

Figure 13.11 Example of a T (3, 2, 2) tree. Source: [KANE04b].� 2004 IEEE.

618 CODES FOR DATA ENTRY SYSTEMS



Hamming distance di, where 1 � i � c and d1 	 d2 	 � � � 	 dc. A nonsystematic

M-ary code C is then defined as follows:

C ¼ fðu0 . . . un�1Þjð fiðu0Þ . . . fiðun�1ÞÞ 2 Ci for all i 2 f1; . . . ; cg; uj 2 A

and for all j 2 f0; . . . ; n� 1gg;

where h f1ðujÞ; f2ðujÞ; . . . ; fcðujÞi ¼ FðujÞ is determined by ðq1; q2; . . . ; qcÞ. &

By the Hamming distance property of codewords inC, the following theorem shows thatC

has the desired asymmetric error correction capability.

Theorem 13.4 Let UA ¼ ðuA0 uA1 . . . uAn�1Þ and UB ¼ ðuB0 uB1 . . . uBn�1Þ be codewords of
C, and let Ij be theminimumvalue that satisfies fIjðuAj Þ 6¼ fIjðuBj Þ, where j 2 f0; 1; . . . ; n� 1g.
Then the Hamming distance between UA and UB satisfies the following inequality:

dðUA;UBÞ 	 dI ;

where I ¼ min0�j�n�1fIjg and dI is the minimum Hamming distance of CI .

Proof By the definition of I, there exists j 2 f0; 1; . . . ; n� 1g that satisfies fIðuAj Þ 6¼
fIðuBj Þ. Then the Hamming distance between

ð fIðuA0 Þ fIðuA1 Þ . . . fIðuAn�1ÞÞ

and

ð fIðuB0 Þ fIðuB1 Þ . . . fIðuBn�1ÞÞ

is greater than or equal to dI . Therefore dðUA;UBÞ 	 dI holds. Q.E.D.

Figure 13.12 illustrates the Hamming distance between two distinct codewords of the

code. On the one hand, as shown in Figure 13.12(a), if the above two codewords

UA ¼ ðuA0 uA1 . . . uAn�1Þ and UB ¼ ðuB0 uB1 . . . uBn�1Þ have at least one pair of error-prone
symbols ðuAj ; uBj Þ whose value of pðuAj ; uBj Þ is large, where uAj 6¼ uBj , then there exists a

small Ij that satisfies fIjðuAj Þ 6¼ fIjðuBj Þ because the new set-partitioning algorithm

preferentially divides such error-prone symbols uAj and uBj into distinct nodes in

ðq1; q2; . . . ; qcÞ, as shown in Figure 13.10. Consequently dðUA;UBÞ is guaranteed to be

relatively large in this case because d1 	 d2 	 � � � 	 dc. On the other hand, as shown in

Figure 13.12(b), if UA and UB do not have any pairs of error-prone symbols; that is,

pðuAj ; uBj Þ is small for all j 2 f0; 1; . . . ; n� 1g, then I ¼ min0�j�n�1fIjg may have a large

value. In this case dðUA;UBÞ is small compared to the former case in Figure 13.12(a).

Therefore the code C has a stronger error correction capability for pairs of error-prone

codewords; that is, C is an asymmetric error correcting code.

In practice, the set C of codewords is generated by computer search. The exact number

of codewords in C cannot be systematically determined because of the enumerative

generation of C. However, the number of codewords in C can be approximated by the

following theorem.

M-ARYASYMMETRIC SYMBOL ERROR CORRECTING CODES 619



Theorem 13.5 If every symbol in GFðqiÞ appears with the same probability 1=qi in all

codewords of Ci for i 2 f1; 2; . . . ; cg, then the number of codewords in C defined by

ðq1; q2; . . . ; qcÞ is approximated as follows:

jCj ’
Yc
i¼1
jCij �

MQc
i¼1 qi

� �n

:

Proof Let X be a set of vectors over Rðq1; q2; . . . ; qcÞ defined as

X ¼ fðx0 x1 . . . xn�1Þ j xj ¼ hx1; j; x2; j; . . . ; xc; ji 2 Rðq1; q2; . . . ; qcÞ;
ðxi;0 xi;1 . . . xi;n�1Þ 2 Ci; 1 � i � c; 0 � j � n� 1g:

By using the set X, we can redefine the code C as

C ¼ fðF�1ðx0Þ F�1ðx1Þ . . . F�1ðxn�1ÞÞ j ðx0 x1 . . . xn�1Þ 2 X;

xj 2 �ðFÞ; 8j 2 f0; 1; . . . ; n� 1gg;

where F�1 is the inverse function of F, and

�ðFÞ ¼ fx j x ¼ FðuÞ; u 2 Ag

UA = uA
0 uA

1 uA
2 uA

3 ...

p(uA
j ,uB

j )

= uB
0 uB

1 uB
2 uB

3 ...UB

... Value of I = large

Small Hamming
distance d(UA,UB)

Error probability: low

high

UA = uA
0 uA

1 uA
2 uA

3 ...

p(uA
j ,uB

j )

= uB
0 uB

1 uB
2 uB

3 ...UB

... Value of I = small

Large Hamming
distance d(UA,UB)

(a) U  and U  : having at least one pair of error-prone symbolsA B

(b) U  and U  : not having any pairs of error-prone symbolsA B

Figure 13.12 Hamming distance between two distinct codewords UA and UB. Source: [KANE04b]. � 2004

IEEE.

620 CODES FOR DATA ENTRY SYSTEMS



denotes the range of F. Given the equiprobability condition for Ci, the probability of every

symbol in ðx0 x1 . . . xn�1Þ 2 X being included in �ðFÞ is

j�ðFÞj
jRðq1; q2; . . . ; qcÞj

� �n

¼ MQc
i¼1 qi

� �n

:

Therefore the number of codewords in C is approximated by

jCj ’ jXj � MQc
i¼1 qi

� �n

¼
Yc
i¼1
jCij �

MQc
i¼1 qi

� �n

:

Q.E.D.

Table 13.4, shown later, indicates that this approximation is highly accurate for the class of

codes indicated.

3. Decoding Procedure
Amaximum likelihood decoding, in general, gives a low probability of erroneous decoding.

A received wordU0 ¼ ðu00 u01 . . . u0n�1Þ can be decoded by a brute force search through the
setC of codewords to find a codeword ðû0 û1 . . . ûn�1Þ 2 C that maximizes the probability

Yn�1
i¼0

pðu0ijûiÞ:

In the conventional block codes used in communication and memory systems, a brute

force search, in general, requires a prohibitively long time because there exists a huge

number of codewords. In contrast, the indicated code is designed to generate a codebook

forM-ary data, such as postal codes and product numbers, where the number of codewords

is relatively small, and also the constraint on decoding delay is not so severe compared to

the communication and memory systems. Therefore the maximum likelihood decoding

using brute force search is feasible for the codes.

TABLE 13.4 Number of Codewords jCj, Code Rate, and Decoded SER for n ¼ 7

Approximation Decoded
Code C1 d1 C2 d2 of jCj jCj Code rate SER

I (11) RS 5 � � 683 685 0.405 �10� 9

II (11) RS 4 � � 7,513 7,513 0.554 2:1� 10�6

III (11) HM 3 � � 82,644 82,644 0.702 2:7� 10�5

IV (11) PC 2 � � 909,090 909,091 0.851 2:3� 10�3

V (7,2) ERS 5 PC 2 2,082 2,086 0.474 3:3� 10�8

VI (7,2) ERS 4 PC 2 14,577 14,644 0.595 5:0� 10�6

VII (7,2) HM 3 PC 2 102,040 102,232 0.716 2:8� 10�5

VIII (2,5) HM 3 PC 2 250,000 250,000 0.771 1:3� 10�3

Noncodedcase 107 1.000 2:3� 10�3

7-Digitalpostalcode 142,705 0.736 1:4� 10�3

Source: [KANE04b].� 2004 IEEE
Note: RS: Reed-Solomon code, ERS: Extended Reed-Solomon code, HM: Hamming code; PC: Simple parity-check code.
The approximation of jCj is derived fromTheorem13.5.

M-ARYASYMMETRIC SYMBOL ERROR CORRECTING CODES 621



4. Evaluation
The codes are evaluated in terms of the number of codewords and the decoded SER

(symbol error rate), which is defined as

Decoded SER ¼ Total number of erroneously decoded symbols

Total number of decoded symbols
:

Figure 13.13 illustrates the trees used in the following evaluation, which is based on the

confusion matrix P for handwritten numeral recognition systems shown in Table 13.1. The

trees ð11Þ; ð2; 5Þ; and ð7; 2Þ are constructed using the new set-partitioning algorithm

described previously. Table 13.4 shows the results of computer simulations, which indicate

the relation between the number of codewords jCj, the code rate ðlogM jCjÞ=n, and the

decoded SER for M-ary asymmetric error correcting codes having length n ¼ 7, where

c 2 f1; 2g. The code construction parameters used in the simulations are given by

;C1; d1;C2; and d2. Also shown in the table are the approximations of jCj given by

0 1 2 3 4 5 6 7 8 9 10

{0} {1} {2} {3} {4} {5} {6} {7} {8} {9}

(a) (11)

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

0
1 2 3 4 5

6

0 1 0 1 0 1 0 1 0 1 0 1 0 1

{8, 9} {7} {3, 6} {5} {2, 4} {1} {0}

{8} {9} {7} {4}{3} {6} {5} {2} {1} {0}

(c) (7,2)

(b) (2,5)

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

0 1

0
1 2 3

4 0
1 2 3

4

{0, 1, 2, 3, 7} {4, 5, 6, 8, 9}

{0} {1} {2} {3} {7} {4} {5} {6} {8} {9}

Figure 13.13 Trees used for evaluation. Source: [KANE04b].� 2004 IEEE.

622 CODES FOR DATA ENTRY SYSTEMS



Theorem 13.5. The last two rows in the table show the decoded SER for the noncoded

case, where jCj ¼ 10; 000; 000, and for the 7-digit postal code, where jCj ¼ 142; 705.
Note that the postal code does not have explicit error correction capability. Figure 13.14

illustrates the relation between jCj and the decoded SER of the codes, where each label of

II through VIII corresponds to the code shown in Table 13.4. Code IV has a high decoded

SER because this code has a small minimum Hamming distance d1 ¼ 2, which results in

many erroneous decodings. All of the other codes achieve a low decoded SER with a

reasonable number of codewords. For example, if the total number of postal codes is

reduced from 142; 705 to 102; 232, then the decoded SER drops from 1:4� 10�3 to

2:8� 10�5 while using the code VII.

13.3 NONSYSTEMATIC M-ARY ASYMMETRIC ERROR CORRECTING
CODES WITH DELETION / INSERTION / ADJACENT-SYMBOL-
TRANSPOSITION ERROR CORRECTION CAPABILITIES

Another new class of M-ary asymmetric error correcting codes is suitable for data entry

systems, such as keyboard input systems and character recognition systems. The codes are

capable of correcting single deletion / insertion / adjacent-symbol-transposition errors as

well as correcting single asymmetric errors [KANE04c].

In order to correct these errors, single deletion / insertion error correcting codes

[TENE84] and single adjacent-symbol-transposition error correcting codes [TANG70]

have been proposed. These conventional codes, however, are designed so as to correct

only one type of error—asymmetric errors, deletion / insertion errors, or transposition

errors—and therefore these codes are not necessarily suitable for data entry systems where

three or four error types sometimes occur.

10

10

10

10

10

10

10

100 1,000 10,000 100,000 1,000,000 10,000,000

–2

–3

–4

–5

–6

–7

–8

Number of codewords |C|

D
ec

od
ed

 S
E

R

Code V

Code II

Code VI

Code III
Code VII

Postal code
Code VIII

Code IV
Noncoded

Codes II to VIII:  Correspond to the codes shown in Table 13.4

Figure 13.14 Relation between number of codewords jCj and decoded SER (symbol error rate) for n ¼ 7.
Source: [KANE04b].� 2004 IEEE.

NONSYSTEMATIC 623



The design for this class of codes is based on a combination of anM-ary single deletion /

insertion error correcting code, a single adjacent-symbol-transposition error correcting code

over GFðqÞ, and a mapping derived from vertex coloring for an error directionality graph.

This section also presents a simple decoding procedure and an evaluation of the designed

codes.

13.3.1 Preliminaries

The indicated M-ary codes are capable of correcting four types of errors shown below:

Asymmetric error. A symbol uiðujÞ in a codeword is changed to another symbol u0iðu0jÞ
with probability pðu0ijuiÞ ¼ pi ðpðu0jjujÞ ¼ pjÞ, and 0 � pi 6¼ pj < e; i 6¼ j, where e
is the threshold error probability given in advance.

Adjacent-symbol-transposition error. The order of two adjacent symbols in a code-

word is reversed.

Deletion error. A symbol in a codeword is deleted, and hence the word length is

shortened by one symbol.

Insertion error. An extra symbol is inserted into a codeword, and hence the word

length is lengthened by one symbol.

The following theorem gives a class of M-ary codes capable of correcting single

insertion errors as well as correcting single deletion errors.

Theorem 13.6 [TENE84] The following code CDI is a single deletion / insertion error

correcting code over ZM ¼ f0; 1; . . . ; M � 1g:

CDI ¼ ðv0 v1 . . . vn�1Þ
Xn�2
i¼0
ðiþ 1Þvi

 !
mod n ¼ 0;

����� Xn�1
i¼0

vi

 !
mod M ¼ 0

( )
:

Here vi 2 ZM for all i 2 f0; 1; . . . ; n� 1g and ðv0 v1 . . . vn�2Þ is an associate vector for

ðv0 v1 . . . vn�1Þ defined as follows:

vi ¼
1 ðvi � viþ1Þ;
0 ðvi > viþ1Þ:

�
Note in the theorem that the associate vector is a codeword of the binary single deletion /

insertion error correcting code proposed in [LEVE66].

Theorem 13.7 Let b be a primitive element in GFðqrÞ, where q is a prime or power of a
prime. The null space of

H ¼ b0 b1 . . . bn�1
 �

r�n ð13:6Þ

is a single-symbol error correcting code over GFðqÞ, where n ¼ ðqr � 1Þ=ðq� 1Þ and bi is
a column vector having length r.

This theorem can be proved by showing that two column vectors in H are linearly

independent.

624 CODES FOR DATA ENTRY SYSTEMS



Theorem 13.8 The null space of H given in Eq. (13.6) is a single adjacent-symbol-

transposition error correcting code over GFðqÞ.

Proof Let

X ¼ ðx0 x1 . . . xi�2 xi�1 xi xiþ1 . . . xn�1Þ

be a transmitted codeword, and let

X0 ¼ ðx0 x1 . . . xi�2 xi xi�1 xiþ1 . . . xn�1Þ

be a received word having single adjacent-symbol-transposition error in xi�1 and xi.

Syndrome S for X0 is given as follows:

S ¼ X0HT ¼ ðxibi�1 þ xi�1b
iÞ � ðxi�1bi�1 þ xib

iÞ
¼ ðxi�1 � xiÞðbi � bi�1Þ:

Hence the adjacent-symbol-transposition errors can be corrected if the following condition

is satisfied:

ðbi � bi�1Þ 6¼ aðbj � bj�1Þ
for all i; j 2 f1; 2; ; n� 1g; and for all a 2 GFðqÞ � f0g;

ð13:7Þ

where i < j. Suppose that there exist i; j; and a satisfying

ðbi � bi�1Þ ¼ aðb j � b j�1Þ;

then the following equations hold:

bi�1ðb� b0Þ ¼ ab j�1ðb� b0Þ;
bi�1 ¼ ab j�1;

ðbi�1Þq�1 ¼ ðab j�1Þq�1;
bði�1Þðq�1Þ ¼ bð j�1Þðq�1Þ: ð, aq�1 ¼ 1Þ

The equations above imply i ¼ j because b is a primitive element in GFðqrÞ and

0 � ði� 1Þðq� 1Þ < ðj� 1Þðq� 1Þ < qr � 1. This contradicts the hypothesis of i < j,

and hence Eq. (13.7) holds. Q.E.D.

By Theorems 13.7 and 13.8, the null space of H can be used as either a single-symbol

error correcting code or a single adjacent-symbol-transposition error correcting code. Note

that the code defined by H cannot distinguish between single-symbol errors and single

adjacent-symbol-transposition errors.

13.3.2 Code Design

The codes are defined over the set of M-ary symbols A ¼ fa0; a1; ; aM�1g. For given
asymmetric error probabilities pðajjaiÞ and the threshold error probability e, error

directionality graph G is defined in Definition 13.3.

Mapping f is defined as a vertex coloring function for the error directionality graph G,

shown below.

NONSYSTEMATIC 625



Definition 13.11 For the set ofM-ary symbolsA and Galois fieldGFðqÞ, f is defined as a
mapping from A to GFðqÞ satisfying the following condition:

½ðai ! ajÞ 2 E� ! ½ f ðaiÞ 6¼ f ðajÞ�
for all ai; aj 2 A; ai 6¼ aj;

where E is the set of edges in the error directionality graph G ¼ ðV;EÞ. &

Definition 13.12 For the set ofM-ary symbols A and the set of integers ZM ¼ f0; 1; . . . ;
M � 1g, g is defined as an arbitrary bijective mapping from A to ZM . &

The following theorem gives a new class of nonsystematic M-ary codes capable of

correcting single deletion / insertion errors and single adjacent-symbol-transposition

errors as well as correcting single asymmetric errors [KANE04c].

Theorem 13.9 Let C be a set of codewords u ¼ ðu0 u1 . . . un�1Þ satisfying the follow-

ing three conditions:

1.
Pn�1

i¼0 gðuiÞ
� �

mod M ¼ 0,

2.
Pn�2

i¼0 ðiþ 1ÞgðuiÞ
� �

mod n ¼ 0,

3. ð f ðu0Þ; f ðu1Þ; . . . ; f ðun�1ÞÞHT ¼ 0,

where ui 2 A ¼ fa0; a1; . . . ; aM�1g for all i 2 f0; 1; . . . ; n� 1g, ðgðu0Þ gðu1Þ . . .
gðun�2ÞÞ is the associate vector for ðgðu0Þ gðu1Þ . . . gðun�1ÞÞ, H is the parity-check

matrix given by Eq. (13.6), and 0 is a zero vector. The code C is a nonsystematic M-ary

asymmetric error correcting code with deletion / insertion / adjacent-symbol-transposition

error correction capabilities. In other words, a received word v ¼ ðv0 v1 . . . vn0�1Þ is
correctly decoded if v has no error or has one of the following errors:

a. Single asymmetric errors,

b. Single deletion / insertion errors,

c. Single adjacent-symbol-transposition errors existing in ðvi; viþ1Þ, where f ðviÞ 6¼
f ðviþ1Þ.

Here a single asymmetric error is a single-symbol error indicated by an edge

ðui ! ujÞ 2 E, that is, an error in which symbol ui is changed to another symbol vi
with probability pðvijuiÞ > e .

Proof Let u ¼ ðu0 u1 . . . un�1Þ be a codeword having length n, and let v ¼
ðv0 v1 . . . vn0�1Þ be a received word having length n0. Syndromes S1 and S2 for v is deter-
mined as follows:

S1 ¼
Xn0�1
i¼0

gðviÞ
 !

mod M;

S2 ¼
Xn0�2
i¼0
ðiþ 1ÞgðviÞ

 !
mod n;

626 CODES FOR DATA ENTRY SYSTEMS



where ðgðv0Þ gðv1Þ . . . gðvn0�2ÞÞ is the associate vector for GðvÞ ¼ ðgðv0Þ gðv1Þ . . .
gðvn0�1ÞÞ. For the case where n0 ¼ n, syndrome S3 is determined as

S3 ¼ FðvÞHT ¼ ðf ðv0Þ f ðv1Þ . . . f ðvn0�1ÞÞHT ;

where FðvÞ ¼ ðf ðv0Þ f ðv1Þ . . . f ðvn0�1ÞÞ. The received word v is decoded as follows:

1. If n0 ¼ n� 1, then v has a single deletion error. This error is correctable because

GðuÞ ¼ ðgðu0Þ gðu1Þ . . . gðun�1ÞÞ is a codeword of the single deletion / insertion

error correcting code given by Theorem 13.6.

2. If n0 ¼ nþ 1, then v has a single insertion error. This error is also correctable

because GðuÞ ¼ ðgðu0Þ gðu1Þ . . . gðun�1ÞÞ is a codeword of the single deletion /

insertion error correcting code given by Theorem 13.6.

3. If n0 ¼ n; S1 6¼ 0; and S3 6¼ 0, then v has a single asymmetric error. This error is

correctable for the following reasons:

� The mapping f satisfies f ðaiÞ 6¼ f ðajÞ for any pair of symbols ai and aj having

error probability pðajjaiÞ > e .
� The vector FðuÞ ¼ ð f ðu0Þ f ðu1Þ . . . f ðun�1ÞÞ is a codeword of the single-

symbol error correcting code defined by H, and hence the error location l in

FðvÞ ¼ ðf ðv0Þ f ðv1Þ . . . f ðvn0�1ÞÞ is determined by S3.

� The syndrome S1 satisfies S1 ¼ gðvlÞ � gðulÞ mod M, and hence the original

correct symbol ul is obtained from S1.

4. If n0 ¼ n; S1 ¼ 0; and S3 6¼ 0, then v has a single adjacent-symbol-transposition

error in ðvl; vlþ1Þ, where f ðvlÞ 6¼ f ðvlþ1Þ and S3 ¼ aðbl � blþ1Þ for 9a 2 GFðqÞ�
f0g. This error is correctable because FðuÞ ¼ ð f ðu0Þ f ðu1Þ . . . f ðun�1ÞÞ is a

codeword of the single adjacent-symbol-transposition error correcting code defined

by H, and therefore error location is uniquely determined by S3.

5. If n0 ¼ n; S1 ¼ 0; S2 ¼ 0; and S3 ¼ 0, then v has no error.

6. Otherwise, v has uncorrectable errors.

Therefore the code C has the required error correction capabilities. Q.E.D.

Figure 13.15 illustrates conditions 1, 2, and 3 for the codewords of the code.

Corollary 13.1 If the mapping f used in Theorem 13.9 is injective, then C is capable of

correcting the following three types of errors:

a. Single asymmetric errors, where e ¼ 0,

b. Single deletion / insertion errors,

c. Single adjacent-symbol-transposition errors.

The proof of this corollary is obvious from Theorem 13.9.

The codebook C of the code, which corresponds to a codebook of, for example, postal

codes and product numbers, is generated by a computer enumerating M-ary words

u ¼ ðu0 u1 . . . un�1Þ that satisfy conditions 1, 2, and 3 of Theorem 13.9.

NONSYSTEMATIC 627



13.3.3 Numeric Keypad Code Example

This subsection presents an example of the code for numeric keypads, where

A ¼ f0; 1; . . . ; 9g [KANE04c]. Figure 13.16 shows a typical layout of numeric keypads

and error directionality graph G for the keypads.

1. Code Design
Let f : A! GFð7Þ be a mapping defined as follows:

f ð0Þ ¼ 0; f ð1Þ ¼ 1; f ð2Þ ¼ 2; f ð3Þ ¼ 3; f ð4Þ ¼ 4;

f ð5Þ ¼ 5; f ð6Þ ¼ 6; f ð7Þ ¼ 1; f ð8Þ ¼ 2; f ð9Þ ¼ 3:

The vertices in G are colored with elements in GFð7Þ by the mapping f , as shown in

Figure 13.16. Let g : A! Z10 be a mapping defined as gðiÞ ¼ i. The parity-check matrix

H over GFð7Þ with code length n ¼ 7 is given as follows:

H ¼ 1 0 4 3 6 6 4

0 1 6 5 5 1 5

� �
: ð13:8Þ

u=

u0 un-1u1 un-2...f(u)= f( ))f(f( )f( )

u0 un-1u1 un-2...

f

Parity-check matrix H
over GF(q)

=
0

0

......

u0 un-1u1 un-2... g( ))g(g( )g( )g(u)=

mod M =0

u0 u1 un-2... )g(g( )g( )g(u)=

T T
g

Associate vector

(n-1)21

mod n =0

Figure 13.15 Conditions for codewordU. Source: [KANE04c].� 2004 IEEE.

7 8 9

4 5 6

1 2 3

0

Typical layout of 
numeric keypad

7 8 9

4 5 6

1 2 3

0

Error directionality graph

G:

f

f(7)=1
1 2 3

4 5 6

1 2 3

0

Figure 13.16 Typical layout of a numeric keypad and error directionality graphs. Source: [KANE04c]. � 2004

IEEE.

628 CODES FOR DATA ENTRY SYSTEMS



Consider the following word u over A ¼ f0; 1; . . . ; 9g:

u ¼ ðu0 u1 u2 u3 u4 u5 u6Þ ¼ ð4 8 8 3 5 2 0Þ:

The following vectors are obtained for u:

FðuÞ ¼ ðf ðu0Þ f ðu1Þ . . . f ðu6ÞÞ ¼ ð4 2 2 3 5 2 0Þ;
GðuÞ ¼ ðgðu0Þ gðu1Þ . . . gðu6ÞÞ ¼ ð4 8 8 3 5 2 0Þ;
GðuÞ ¼ ðgðu0Þ gðu1Þ . . . gðu5ÞÞ ¼ ð1 1 0 1 0 0Þ:

Hence u ¼ ð4; 8; 8; 3; 5; 2; 0Þ is a codeword because the following equations hold:

X6
i¼0

gðuiÞ
 !

mod 10 ¼ ð4þ 8þ 8þ 3þ 5þ 2þ 0Þ mod 10 ¼ 0;

X5
i¼0
ðiþ 1ÞgðuiÞ

 !
mod 7 ¼ ð1þ 2þ 4Þ mod 7 ¼ 0;

FðuÞHT ¼ ð4 2 2 3 5 2 0ÞHT ¼ ð0 0Þ:

2. Decoding Procedure
Errors that occur in the preceding codeword u ¼ ð4; 8; 8; 3; 5; 2; 0Þ are corrected as follows:

Asymmetric Error Correction. Let v ¼ ðv0 v1 . . . v6Þ ¼ ð4 8 5 3 5 2 0Þ be a received
word having an asymmetric error in v2, that is, u2 ¼ 8 is changed to v2 ¼ 5. The following

vectors are determined for v:

FðvÞ ¼ ð4 2 5 3 5 2 0Þ;
GðvÞ ¼ ð4 8 5 3 5 2 0Þ;
GðvÞ ¼ ð1 0 0 1 0 0Þ:

Syndromes S1; S2; and S3 are calculated as follows:

S1 ¼ ð4þ 8þ 5þ 3þ 5þ 2þ 0Þ mod 10 ¼ 7;

S2 ¼ ð1þ 4Þ mod 7 ¼ 5;

S3 ¼ ð4 2 5 3 5 2 0Þ
1 0 4 3 6 6 4

0 1 6 5 5 1 5

� �T
¼ 5; 4ð Þ ¼ 3� 4; 6ð Þ:

Thus the received word v has an asymmetric error because S1 6¼ 0 and the length of v is

n0 ¼ 7. The syndrome S3 indicates that the error exists in v2 because S3 is a multiple of the

column vector ð4; 6ÞT. The original correct symbol ev2 is determined using S1 as follows:

ev2 ¼ g�1ððgðv2Þ � S1Þ mod MÞ ¼ g�1ð�2 mod 10Þ ¼ 8:

Finally, corrected word ð4 8 8 3 5 2 0Þ is obtained.

NONSYSTEMATIC 629



Adjacent-Symbol-Transposition Error Correction. Let v ¼ ðv0 v1 . . . v6Þ ¼ ð4 8 3 8

5 2 0Þ be a received word having an adjacent-symbol-transposition error in v2 and v3; that

is, ðu2; u3Þ ¼ ð8; 3Þ is changed to ðv2; v3Þ ¼ ðu3; u2Þ ¼ ð3; 8Þ. The following vectors are

determined for v:

FðvÞ ¼ ð4 2 3 2 5 2 0Þ;
GðvÞ ¼ ð4 8 3 8 5 2 0Þ;
GðvÞ ¼ ð1 0 1 0 0 0Þ:

Syndromes S1; S2; and S3 are calculated as follows:

S1 ¼ ð4þ 8þ 3þ 8þ 5þ 2þ 0Þ mod 10 ¼ 0;

S2 ¼ ð1þ 3Þ mod 7 ¼ 4;

S3 ¼ ð4 2 3 2 5 2 0Þ
1 0 4 3 6 6 4

0 1 6 5 5 1 5

� �T
¼ 1; 1ð Þ ¼ 1� 4; 6ð Þ � 3; 5ð Þð Þ:

Thus the received word v has an adjacent-symbol-transposition error because S1 ¼ 0,

S3 6¼ ð0; 0Þ, and the length of v is n0 ¼ 7. The syndrome S3 indicates that the error exists in

ðv2; v3Þ because S3 is a multiple of ð4; 6Þ � ð3; 5Þ ¼ ð1; 1Þ. Hence the correct word

ð4 8 8 3 5 2 0Þ can be obtained by reversing the order of the received symbols v2 and v3.

Deletion Error Correction. Let v ¼ ðv0 v1 . . . v5Þ ¼ ð4 8 8 5 2 0Þ be a received

word having a deletion error in u3 ¼ 3. The following vectors are determined for v:

FðvÞ ¼ ð4 2 2 5 2 0Þ;
GðvÞ ¼ ð4 8 8 5 2 0Þ;
GðvÞ ¼ ð1 1 0 0 0Þ:

Syndromes S1 and S2 are calculated as follows:

S1 ¼ ð4þ 8þ 8þ 5þ 2þ 0Þ mod 10 ¼ 7;

S2 ¼ ð1þ 2Þ mod 7 ¼ 3:

The received word v has a deletion error because the length of the received word is

n0 ¼ n� 1 ¼ 6. The deletion error in GðvÞ ¼ ð4 8 8 5 2 0Þ can be corrected using S1 and

S2 because the original vector GðuÞ for the transmitted word u is a codeword of theM-ary

single deletion / insertion error correcting code. Therefore the following correct M-ary

vector is obtained:

eGðvÞ ¼ ð4 8 8 3 5 2 0Þ:

Finally, corrected word is determined as follows:

ðg�1ð4Þ g�1ð8Þ g�1ð8Þ g�1ð3Þ g�1ð5Þ g�1ð2Þ g�1ð0ÞÞ
¼ ð4 8 8 3 5 2 0Þ:

630 CODES FOR DATA ENTRY SYSTEMS



Insertion Error Correction. Let v ¼ ðv0 v1 . . . v7Þ ¼ ð4 8 8 3 5 2 9 0Þ be a received
word having an insertion error between u5 ¼ 2 and u6 ¼ 0. The following vectors are

determined for v:

FðvÞ ¼ ð4 2 2 3 5 2 3 0Þ;
GðvÞ ¼ ð4 8 8 3 5 2 9 0Þ;
GðvÞ ¼ ð1 1 0 1 0 1 0Þ:

Syndromes S1 and S2 are calculated as follows:

S1 ¼ ð4þ 8þ 8þ 3þ 5þ 2þ 9þ 0Þ mod 10 ¼ 9;

S2 ¼ ð1þ 2þ 4þ 6Þ mod 7 ¼ 6:

The received word v has an insertion error because the length of the received word is

n0 ¼ nþ 1 ¼ 8. The insertion error in GðvÞ ¼ ð4 8 8 3 5 2 9 0Þ can be corrected using

S1 and S2 because the original vector GðuÞ for the transmitted word u is a codeword of

the M-ary single deletion / insertion error correcting code. Therefore the following

correct M-ary vector is obtained:

eGðvÞ ¼ ð4 8 8 3 5 2 0Þ:

Finally the following determines the correct word:

ðg�1ð4Þ g�1ð8Þ g�1ð8Þ g�1ð3Þ g�1ð5Þ g�1ð2Þ g�1ð0ÞÞ
¼ ð4 8 8 3 5 2 0Þ:

3. Evaluation
Here we evaluates the number of codewords jCj and the code rate R ¼ ðlogM jCjÞ=n of the
codes for numeric keypads. Table 13.5 shows the number of codewords and the code

rate of the codes for the error directionality graphs GA and GB shown in Figure 13.17,

where A ¼ f0; 1; . . . ; 9g and the code length is n ¼ 7. The matrix H7 is given by

Eq. (13.8), and the matrix H11 is given as

H11 ¼
1 0 4 7 9 8 6

0 1 10 5 2 7 1

� �
:

Also f7 : A! GFð7Þ is the mapping shown in the previous subsection, and

f11 : A! GFð11Þ is an injective mapping satisfying f ðiÞ ¼ i for all i 2 f0; 1; . . . ; 9g.
Although the code rate for GB is lower than that for GA, the code for GB has higher error

TABLE 13.5 Number of Codewords and Code Rates

Errordirectionalitygraph q Parity-checkmatrixH Mapping f Numberof codewords Code Rate

GA 7 H7 f7 2,941 0.495
GB 11 H11 f11 1,171 0.438

Source: [KANE04c].� 2004 IEEE.

NONSYSTEMATIC 631



correction capabilities. More precisely, the code for GB is capable of correcting single

deletion / insertion errors and single adjacent-symbol-transposition errors as well as

correcting single-symbol errors, whereas the code for GA corrects neither single-symbol

errors ðai ! ajÞ =2 E nor single adjacent-symbol-transposition errors existing in ðui; uiþ1Þ,
where f ðuiÞ ¼ f ðuiþ1Þ.

13.4 CODES FOR TWO-DIMENSIONAL MATRIX SYMBOLS

Bar codes have wide applications, such as in point-of-sales (POS) systems, in mail

delivery services, and in transport industries. Two-dimensional (2D) codes [PALV92],

which meet a need to encode significantly larger data than the conventional bar codes, are

the most popular in use today. There are two types of 2D codes: stacked-type codes and

matrix-type codes. The former include stacked bar codes of CODE 49, CODE 16K,

PDF417, and so forth. The latter include VERICODE, OP CODE, MAXI CODE [MATR],

and QR code [JAPA02]. Some 2D codes are even being used for sales items and various

other store products, for parts and components in factories, and for packages in shipping

industries and transport industries. The recording density of conventional bar codes is low

because the codes do not effectively utilize the recording space in the vertical direction,

and the capacity is strictly limited by size. Two-dimensional codes express recording data

by two-dimensional black-and-white cell patterns that capture a large volume of detailed

information on the items. These codes include some redundancy so that they can restore

symbols partially damaged by blots, scratches, and so on.

In this section, the codes for two-dimensional matrix symbols are presented for QR

codes and two-dimensional unidirectional error correcting codes.

13.4.1 QR Codes

Quick response codes (i.e., QR codes) were developed by the Denso Corporation in Japan.

As shown in Figure 13.18(a), the code contains information in both vertical and horizontal

directions and is capable of expressing a maximum of 4,296 alphanumeric characters and

restoring a maximum of 30% damage in the code symbol due to scratches, blots, and the

like, as shown in Figure 13.18(b). The code contains three square-shaped marks at three

corners so that the right position of the code symbol can be detected in a 360 degree (omni-

directional) high-speed stable reading. This 2D code is standardized in accord with the

ISO international standard (ISO/IEC 18004) and the JIS standard (Japanese Industrial

Standards, JIS X 0510) [JAPA02].

7 8 9

4 5 6

1 2 3

0

GA GB

9 0

5 4

2

1

3

8

6

7

Complete graph

Figure 13.17 Error directionality graphs used for evaluation. Source: [KANE04c].� 2004 IEEE.

632 CODES FOR DATA ENTRY SYSTEMS



Formation of the QR Code Some control informations of character mode, input

character length, and the like, are appended to the main body of the input data added

by check information, all expressed in binary numbers. There are several character modes,

such as numerical mode, alphanumeric mode, Kanji character mode, and mixed mode. For

example, in the alphanumeric mode, there exist 45 characters each named by the integers

shown in Table 13.6 [JAPA99].

An important feature of the code exists in the input data formation. That is, in almost all

character modes, every two or three characters set is encoded in binary, which expresses

the nonbinary input sequence efficiently, and finally compresses the input data. For

example, in numeric mode, 8 numeral characters sequence ‘‘01234567’’ is assumed to be

given as an input. Every three-character set is encoded in a 10-bit binary form, and the

remaining two characters in 7 bits, that is,

012 ¼ 0000001100;

345 ¼ 0101011001;

67 ¼ 1000011:

The total input binary data can be expressed as

0000001100 0101011001 1000011:

After some of the header information is appended, we get the input binary sequence of the

code. In the numeric mode the total binary length of the input data, except for the header

length, can be expressed by

Ln ¼ 10� LD=3b c þ Ld;

Figure 13.18 Matrix symbol of the QR codes, and the disturbances in a QR code symbol due to blots or
scratches. Source: [KANE03].� 2003 IEEE.

TABLE 13.6 Assignment of Alphanumeric Characters

0 0 6 6 C 12 I 18 O 24 U 30 SP 36 . 42

1 1 7 7 D 13 J 19 P 25 V 31 $ 37 / 43

2 2 8 8 E 14 K 20 Q 26 W 32 % 38 : 44

3 3 9 9 F 15 L 21 R 27 X 33 � 39

4 4 A 10 G 16 M 22 S 28 Y 34 þ 40

5 5 B 11 H 17 N 23 T 29 Z 35 � 41

Source: [JAPA02].

CODES FOR TWO-DIMENSIONAL MATRIX SYMBOLS 633



where LD is the input character length, bxc denotes the largest integer smaller than or equal

to x, and Ld is defined by

if LD mod 3 ¼ 0; then Ld ¼ 0;
if LD mod 3 ¼ 1; then Ld ¼ 4;
if LD mod 3 ¼ 2; then Ld ¼ 7:

If we encode each numeral in 4 bits, this example sequence would require total 32 bits.

However, encodingwith LD ¼ 8 requires 27 bits, that is, compressed and shortened by 5 bits.

In alphanumeric mode, every two characters set is encoded. For example, the five-

character sequence ‘‘AC-42’’ is first encoded according to Table 13.6 to

10; 12; 41; 4; 2:

So every two-character set is expressed as ð10; 12Þ ð41; 4Þ ð2Þ. Each set is encoded in

binary form as

ð10; 12Þ ¼ 10� 45þ 12 ¼ 462 : 00111001110;

ð41; 4Þ ¼ 41� 45þ 4 ¼ 1849 : 11100111001;

ð2Þ ¼ 2 : 000010:

The total binary data can be expressed as

00111001110 1100111001 000010 :

The total binary length of the input data in alphanumeric mode can be expressed by

La ¼ 11� LD=2b c þ 6� ðLD mod : 2Þ:

Next the binary expressed data are divided by 8 bits, each of which is called a byte, and

then the last byte with less than 8 bits is appended by some 0’s to satisfy the last byte by

having 8 bits length.

In the case above of 8 numerals encoded ‘‘01234567,’’ the binary information of the

numeric mode expressed by ‘‘0001’’ and the binary information of the input character

code length expressed by ‘‘0000001000’’ are appended ahead to the binary input data

‘‘000000110001010110011000011.’’ The 27-bit sequence is then also added by the binary

terminal information of ‘‘0000’’ to the end of the sequence. This results in

“00010000, 00100000, 00001100, 01010110, 01100001, 10000000”
012 345 67

ð13:9Þ

having six 8-bit bytes. In this case the last underlined three 0’s are appended to the last byte

in order to satisfy the condition of this byte having 8 bits of length.

Check Information Generation—Encoding— The QR codes have four restoration

levels—the L, M, Q, and H levels whereby level L restores around 7% damage in a

code symbol, level M around 15%, level Q around 25%, and level H around 30%. The

input information is encoded by selecting the RS codes with the appropriate code

634 CODES FOR DATA ENTRY SYSTEMS



parameters determined according to these restoration levels. If we apply the code in an

industrial environment, level Q or H is recommended, whereas level L is adequate in a

clean environment. Level M is most frequently applied because it is suited to various

environments.

Some simple examples of the QR codes are provided in Table 13.7 for four RS codes,

all having code length n of 26 bytes with four different levels. The ðn; k; tÞ of the RS

codes means that the code has a length of n ð¼ 26Þ bytes, an input information length of k

bytes, and a correction length of t bytes. The code function tc-md means that the code

corrects t-byte errors and detects m-byte errors. It can be easily checked that the value of

t=n represents the restoration ratio at each level, since 2=26 ¼ 0:077 at level L,

4=26 ¼ 0:154 at level M, 6=26 ¼ 0:231 at level Q, and 8=26 ¼ 0:307 at level H.

Another interesting case is that of the code with length n ¼ 196 bytes and with level H,

shown in the last row of Table 13.7. The code has five ðn; kÞ code blocks, which are

composed of four ð39; 13Þ code blocks and one ð40; 14Þ code block, each capable of

correcting 13 bytes errors. Hence the total 196 bytes are organized by the following five

blocks:

In this code organization the recording is performed in a serial form by D1 D14 D27 D40

D53 D2 D15 D28 . . . D13 D26 D39 D52 D65 D66 C1 C27 C53 C79 C105 C2 . . . C26 C52 C78 C104

C130. The layout of this information in the code symbol is shown in Figure 13:19. As can
be easily observed in the figure, the total 196 bytes encoded in the five code blocks are

arranged in an interleaved layout. This way the two-dimensional clustered errors (i.e.,

maximum 5� 13 bytes errors) can be corrected by the interleaved code. According to

[JAPA02], many RS codes with four restoration levels and with code lengths of 26 to 3,706

bytes can be generated.

Likewise check bytes can be generated by using the RS codes over GFð28Þ. If we
determine the restoration level, for example, to be H, then in the former case of 8 input

numerals, three extra bytes (arbitrary nonzero bytes) should be added to the binary

TABLE 13.7 RS Codes with Different Restoration Levels

Level
Code length n Check length r RS code Code function

(bytes) (bytes) ðn; k; tÞ tc-md

L 26 7 (26,19,2) 2c-5d
M 26 10 (26,16,4) 4c-6d
Q 26 13 (26,13,6) 6c-7d
H 26 17 (26,9,8) 8c-9d

H 196 130 4� (39,13,13), 13� 5c (5 interleaved)
and (40,14,13)

Source: [JAPA02].
Note: t: correction length in bytes; tc-md-t-byte error correction andm-byte error detection.

Input Information Check Information

Block1: D1 D2 . . . D13 C1 C2 . . . C26

Block 2: D14 D15 . . . D26 C27 C28 . . . C52

Block 3: D27 D28 . . . D39 C53 C54 . . . C78

Block 4: D40 D41 . . . D52 C79 C80 . . . C104

Block 5: D53 D54 . . . D65 D66 C105 C106 . . . C130

CODES FOR TWO-DIMENSIONAL MATRIX SYMBOLS 635



sequence of input data having a six-byte length shown in (13.9). Then, in accordance

with Table 13.7, the total 9 input information bytes are encoded in RS codes defined by

the irreducible polynomial with a 17-th degree over GFð28Þ; that is, 17 check bytes are

generated. The resulting ð26; 9; 8Þ RS codeword with a 26-byte length is determined,

and finally the binary expressed codeword is arranged in a two-dimensional matrix

format.

Decoding QR Codes Multiple bytes error correction is generally performed in QR

codes. That is, in QR codes, decoding of the RS codes with a minimum Hamming distance

dð¼ r þ 1 ¼ t þ mþ 1Þ is performed by applying the Berlekamp-Massey algorithm or the

Euclid algorithm, as mentioned in Subsections 2.3.5 and 2.3.6. These algorithms deter-

mine the byte error locations and the byte error values (i.e., byte error patterns), each

by solving t equations, and then these t bytes errors are corrected.

Figure 13.19 Layout of the QR code interleaved by four (39,13) RS codes and one (40,14) RS code. Source:

[JAPA02].

636 CODES FOR DATA ENTRY SYSTEMS



Modulation For the QR code symbols to be read correctly and quickly, it is important

to randomize the two-dimensional recording pattern of the code symbol and also to

remove, as much as possible, the specified binary pattern of the square-shaped marks

from the recording data. To satisfy these, the recording data is modulo-2 added by

some specific patterns, that is, modulation is performed. (For more details, the reader

should refer to [JAPA02].)

13.4.2 Two-dimensional Unidirectional Clustered Error Correcting Codes

Two-dimensional unidirectional clustered error correcting codes are suitable for high-

density two-dimensional matrix symbols [KANE03]. The codes are capable of correcting

unidirectional errors confined to a rectangle having lm rows and ln columns.

Because these symbols are usually printed on surfaces such as paper, plastic, and metal,

they can sometimes be damaged by blots or scratches, as was mentioned before. Further

these errors are unidirectional because blotted white cells change into black cells while

black cells remain unchanged, and scratched black cells change into white cells while

white cells remain unchanged. These types of errors can be effectively corrected by two-

dimensional unidirectional clustered error correcting codes.

Efficient one-dimensional unidirectional burst error correcting codes are presented in

[PARK90] and [SAIT90b]. Also one-dimensional unidirectional byte error correcting

codes have been constructed in [SAOW00]. Two-dimensional clustered error correcting

codes, which are capable of correcting any errors confined in a rectangle with lm rows and

ln columns, are presented in [BREI98]. No efficient two-dimensional unidirectional

clustered error correcting codes, however, have been presented. This subsection covers

this new class of array codes and shows them to be capable of correcting unidirectional

lm � ln-clustered errors.

1. One-dimensional Unidirectional Burst Error Correcting Codes
The existing one-dimensional unidirectional r-bit burst error correcting codes

[PARK90] are abbreviated as 1D-UrBEC codes. These codes can be used to construct

the two-dimensional unidirectional lm � ln-clustered error correcting codes, abbreviated

as 2D-Ulm�lnEC codes.

Let Di ¼ ðdi;r�1 di;r�2 � � � di;0Þ be a binary information block having length r bits.

The information part of the 1D-UrBEC code having length k � r bits is expressed as

ðDk�1 Dk�2 � � � D0Þ. The parity check PC1D and arithmetic residue check ARC1D for

ðDk�1 Dk�2 � � � D0Þ are performed as follows:

PCT
1D ¼

pr�1

pr�2

..

.

p0

0BBBB@
1CCCCA ¼

dk�1;r�1

dk�1;r�2

..

.

dk�1;0

0BBBB@
1CCCCA

dk�2;r�1

dk�2;r�2

..

.

dk�2;0

0BBBB@
1CCCCA � � � 

d0;r�1

d0;r�2

..

.

d0;0

0BBBB@
1CCCCA;

ARC1D ¼
Xk�1
i¼0
ðiþ 1ÞwðDiÞ

 !
mod ð2krþ 1Þ;

where PCT
1D is a transpose of PC1D,  denotes addition over GFð2Þ, and wðDiÞ is the

Hamming weight of Di. Let C be a balanced code [PARK90] having jCj 	 2krþ 1

CODES FOR TWO-DIMENSIONAL MATRIX SYMBOLS 637



codewords. That is, the Hamming weight of every codeword with length n0 in C is bn0=2c,
and n0 is the minimum integer satisfying 2krþ 1 � n0Cbn0=2c, where bxc is the maximum

integer smaller than or equal to x. Codeword V of the 1D-UrBEC code is defined as follows:

V ¼ ðDk�1 Dk�2 � � � D0 PC1D f ðARC1DÞÞ;

where f is an injective mapping from f0; 1; � � � ; 2krg toC. Table 13.8 shows an example of

f mapping for n0 ¼ 7.

We denote the check-bit length of the 1D-UrBEC code by RðK; rÞ, where K is the

required information-bit length and r the burst error length. If K is not a multiple of r, then
k ¼ dK=re, and the leftmost kr� K bits are filled with 0’s, where dxe is the minimum

integer greater than or equal to x.

2. Two-dimensional Unidirectional Clustered Error Correcting Codes

(1) Codeword Structure The two-dimensional codeword U of the 2D-Ulm�lnEC code

is represented by the following binary M � N matrix:

U ¼

u
0;0
0;0 � � � u

0;ln�1
0;0 u

0;0
0;n�1 � � � u

0;ln�1
0;n�1

..

. ..
.

� � � ..
. ..

.

u
lm�1;0
0;0 � � � u

lm�1;ln�1
0;0 u

lm�1;0
0;n�1 � � � u

lm�1;ln�1
0;n�1

..

. ..
.

u
0;0
m�1;0

� � � u
0;ln�1
m�1;0 u

0;0
m�1;n�1

� � � u
0;ln�1
m�1;n�1

..

. ..
.

� � � ..
. ..

.

u
lm�1;0
m�1;0 � � � u

lm�1;ln�1
m�1;0 u

lm�1;0
m�1;n�1 � � � u

lm�1;0
m�1;n�1

2666666666666664

3777777777777775
¼

U0;0 � � � U0;n�1

..

. ..
.

Um�1;0 � � � Um�1;n�1

2666666666666664

3777777777777775
;

where M ¼ mlm;N ¼ nln; and Ui; j is a binary lm � ln submatrix expressed by

Ui; j ¼
u
0;0
i; j � � � u

0;ln�1
i; j

..

. ..
.

u
lm�1;0
i; j � � � u

lm�1;ln�1
i; j

2664
3775
lm�ln

:

Note that the 2D-Ulm�lnEC code is designed as being capable of correcting single

unidirectional lm � ln-clustered errors in any place, that is, errors even existing in the

boundaries of the submatrices Us;t;Us;tþ1;Usþ1;t; and Usþ1;tþ1, where 0 � s � m� 1 and

0 � t � n� 1. The codeword U is constituted by disjoint three parts, namely the

TABLE 13.8 Example of Function f for n0 ¼ 7

i fðiÞ i fðiÞ i fðiÞ i fðiÞ i fðiÞ i fðiÞ i fðiÞ

0 0 0 0 0111 5 0 010101 10 010 0 011 15 010 010 0 20 10 0 0 011 25 10 0110 0 30 110 0 0 01
1 0 0 01011 6 0 010110 11 010 0101 16 0110 0 01 21 10 0 0101 26 1010 0 01 31 110 0 010
2 0 0 01101 7 0 0110 01 12 010 0110 17 0110 010 22 10 0 0110 27 1010 010 32 110 010 0
3 0 0 01110 8 0 011010 13 01010 01 18 011010 0 23 10 010 01 28 101010 0 33 11010 0 0
4 0 010 011 9 0 01110 0 14 0101010 19 01110 0 0 24 10 01010 29 10110 0 0 34 1110 0 0 0

Source: [KANE03].� 2003 IEEE.

638 CODES FOR DATA ENTRY SYSTEMS



parity-check part UPC, the arithmetic residue-check part UARC, and the information part

UD. The parity-check part UPC is assigned to U0;0, meaning UPC ¼ U0;0. The arithmetic

residue-check part UARC consists of mn� 1 binary vectors, each of which is denoted by

U
ði; jÞ
ARC where

ði; jÞ 2 � ¼ fðI; JÞ j 0 � I � m� 1; 0 � J � n� 1; ðI; JÞ 6¼ ð0; 0Þg:

As illustrated in Figure 13.20, the vector U
ði; jÞ
ARC is assigned to the left most rði; jÞ bits in the

first row in Ui; j. The length rði; jÞ of U
ði; jÞ
ARC is specified in the following code design. The

remaining bits in U constitute the information part UD. Figure 13.20 illustrates the total

codeword structure.

(2) Code Design The parity-check part UPC is determined as

UPC ¼ U0;0 ¼
u
0;0
0;0 � � � u

0;ln�1
0;0

..

. ..
.

u
lm�1;0
0;0 � � � u

lm�1;ln�1
0;0

2664
3775 ¼ X

ði; jÞ2�

Ui; j;

where
P

denotes summation of matrices over GFð2Þ excluding rði; jÞ check bits inU
ði; jÞ
ARC.

The arithmetic residue-check part UARC is determined by the following procedure:

Step 1. Arithmetic residue checks ARCV and ARCH are written as

ARCV ¼
Xm�1
i¼0

ðiþ 1Þ
Xn�1
j¼0

wðUi; jÞ
 ! !

mod MV ;

ARCH ¼
Xn�1
j¼0

j
Xm�1
i¼0

wðUi; jÞ
 ! !

mod MH ;

where MV ¼ 2mlmln þ 1;MH ¼ ðn� 1Þlmln þ 1;U0;0 ¼ UPC, and wðUi; jÞ is the num-

ber of 1’s in Ui; j excluding that in U
ði; jÞ
ARC.

Figure 13.20 Codeword structure. Source: [KANE03].� 2003 IEEE.

CODES FOR TWO-DIMENSIONAL MATRIX SYMBOLS 639



Step 2. Let ½ARCV �2 and ½ARCH �2 be binary representations of ARCV and ARCH ,

respectively. These binary vectors are concatenated in order to generate a vector

ð½ARCV �2; ½ARCH �2Þ having length K ¼ dlog2MVe þ dlog2MHe bits.
Step 3. Let rð� lnÞ be the minimum integer satisfying the inequality

r� ðmn� 1Þ 	 RðK; rÞ þ K ð13:10Þ

Also let 0 ¼ ð0 � � � 0Þ be a zero vector having length kr� K bits, where k ¼ dK=re.
The binary vector ð0; ½ARCV �2; ½ARCH �2Þ is equally divided into k binary blocks each

having length r bits,

ð 0|{z}
kr�K

; ½ARCV �2; ½ARCH �2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K

Þ ¼ ðDk�1;Dk�2; � � � ;D0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kr

Þ;

where Di, 0 � i � k � 1, is a binary block having length r bits.

Step 4. The binary vector ðDk�1;Dk�2; � � � ;D0Þ is encoded by 1D-UrBEC code as shown

previously, and the codeword obtained is

V ¼ ðDk�1 Dk�2 � � � D0 PC1D f ðARC1DÞÞ:

Step 5. The leftmost kr� K bits in V are removed, and the remaining part V 0 of V is

divided into mn� 1 binary vectors, each of which corresponds to a vector U
ði; jÞ
ARC where

ði; jÞ 2 �. The resulting arithmetic residue-check part is

UARC ¼ V 0 ¼ ðUð0;1ÞARC ;U
ð0;2Þ
ARC ; � � � ;U

ð0;n�1Þ
ARC ;U

ð1;0Þ
ARC ;U

ð1;1Þ
ARC ; � � � ;U

ðm�1;n�1Þ
ARC Þ;

where length rði; jÞ of U
ði; jÞ
ARC satisfies

P
ði; jÞ2� rði; jÞ ¼ RðK; rÞ þ K and r� 1 � rði; jÞ � r.

Figure 13.21 illustrates this residue-check procedure.

If the condition given by the inequality (13.10) is not satisfied for any r � ln, the

2D-Ulm�lnEC code cannot be designed, and then the conventional two-dimensional

clustered error correcting codes [BREI98] are used.

0

ARCV = Σ
i=0

m-1
(i+1) Σ

j=0

n-1
w(Ui,j) ARCH = Σ

j=0

n-1
j Σ

i=0

m-1
w(Ui,j)mod MV mod MH

[ARC V]2 [ARC H]2Binary representations

[ARC V]2( ,[ARC H]2 ) Concatenated0...

...Dk-1 Dk-2 D0

...Dk-1 Dk-2 D0 PC1D f(ARC1D)

Divided into binary blocks

Encoded by 1D-UρBEC codeρ bits

UARC
(0,1)UARC

(0,2) UARC
(m-1,n-1)...

V

UARC =

K bits

ρ       ρor -1 bits

=

Figure 13.21 Generation of UARC. Source: [KANE03].� 2003 IEEE.

640 CODES FOR DATA ENTRY SYSTEMS



Theorem 13.10 Codeword U obtained by the above procedure is a codeword of 2D-

Ulm�lnEC code.

(3) Decoding Procedure Figure 13.22 illustrates the decoding procedure of the 2D-

Ulm�lnEC code.

Example 13.8 [KANE03]

Encoding The objective is to design the 2D-U3�3EC code with code parametersm ¼ 3

and n ¼ 4. We have MV ¼ 55;MH ¼ 28;K ¼ dlog2MVe þ dlog2MHe ¼ 11; r ¼ 2; and
Rð11; 2Þ þ K ¼ 9þ 11 ¼ 20. From the information part shown in Figure 13.23 (a), the

parity-check part is determined as

UPC ¼
0 1 1

0 1 0

0 1 1

24 35:
Then ARCV and ARCH are calculated as follows:

ARCV ¼ ð1� 17þ 2� 12þ 3� 17Þ mod 55 ¼ 37;

ARCH ¼ ð0� 14þ 1� 8þ 2� 14þ 3� 10Þ mod 28 ¼ 10:

0-error

U’=

of U’ by 1D-
ARCV and ARCHand determine

SP =
i=0

m-1

j=0

n-1
U’i,j SV= Σ

i=0

m-1
(i+1)Σ

j=0

n-1
w(U’i,j ) -ARCV mod MV SH= Σ

j=0

n-1
j Σ
i=0

m-1
w(U’i,j ) -ARCH mod

1 SV mlmln
SP=O no error

T

F
FSV= -SV

SH= -SH

T

γ= SV
w(SP)

t= SH
w(SP)

A=SV mod w(SP) B=SHmod w(SP)

Divide P

into 4 submatrices:
E1,1 E1,0

E0,1 E0,0

=
where w

-1

(E1,0)+w(E1,1)=A
w(E0,1)+w(E1,1)=B

Error correction in

U’s,t ,U’s,t+1 ,U’s+1,t and, U’s+1,t+1
U’s,t U’s,t+1

U’s+1,t U’s+1,t+1

+ E0,0E0,1
E1,0E1,1

O O

O O

U0,0 U0,n-1
...

... ...

U’m-1,0
... U’m-1,n-1

: Received word

=0

SP

) mod

MH

M V
(MH MH

<_ <_

, ,

Syndrome calculation:

...

...

...

...

... ...

... ...

...

...

...

...

... ...

... ...

’ ’

Decode UARC
Each bit in UARC

1-error

UρBEC code

S

:

Σ Σ

Figure 13.22 Decoding procedure. Source: [KANE03].� 2003 IEEE.

CODES FOR TWO-DIMENSIONAL MATRIX SYMBOLS 641



Thus UARC is determined as follows:

( [ARCV ] 2 , [ARCH ] 2 ) 1 0 0 1 0 1 , 0 1 0 1 0 )

( D5 , D4 , D3 , D2 , D1 , D0 )

= (

= ( 0 1 0 0 1 0 1, 0 1 0 1 0 ), , , ,

( D5 ,..., D0 ,PC1D ,f(ARC1D )) = ( 0 1 0 0 1 0 1, 0 1 0 1 0 ), , , , , 0 1, 0 1 1 0 0 0 1

UARC = ( 1 0 0 1 0 1 0, 1 0 1 0 0 ), , , , , 1 0, 1 1 0 0 0 1, , ,

UARC
(0,1)

UARC
(0,2)

UARC
(0,3)

UARC
(1,0)

UARC
(1,1)

UARC
(1,2)

UARC
(1,3)

UARC
(2,0)

UARC
(2,1)

UARC
(2,2)

UARC
(2,3)

where ðPC1D; f ðARC1DÞÞ is the check part of the 1D-U2BEC code for the information

part ðD5 D4 � � � D0Þ, and f ðARC1DÞ ¼ f ðð1� 1þ 2� 1þ 3� 1þ 4� 1þ 5� 0þ 6

�1Þ mod 25Þ ¼ f ð16Þ ¼ ð0110001Þ is a codeword of the balanced code given in

Table 13.8. Finally, the codeword shown in Figure 13.23(b) is obtained.

Decoding Assume that a received word U0 has a cluster of five unidirectional 0-errors,
meaning five 0’s are changed to 1’s as shown in Figure 13.23 (c), where ‘1’ denotes

erroneous bit. The received word U0 is decoded based on the decoding procedure shown

in Figure 13.22. First, arithmetic residue-check part UARC in U0 is decoded by using the

1D-U2BEC code, and then an erroneous bit in UARC is corrected. From this, original

ARCV ¼ 37 and ARCH ¼ 10 are obtained. Next, syndromes SP; SV , and SH are deter-

mined as

SP ¼
X2
i¼0

X3
j¼0
U0i; j ¼

0 0 1

1 0 1

0 0 1

264
375;

SV ¼
X2
i¼0

ðiþ 1Þ
X3
j¼0

wðU0i; jÞ
 !

� ARCV

 !
mod MV ¼ 7;

SH ¼
X3
j¼0

j
X2
i¼0

wðU0i; jÞ
 !

� ARCH

 !
mod MH ¼ 5;

1 01 0

1
0

1

0 01

0 0
0

10

0

0

0

11

01

0

1

11

1

0 1 1
0 1 0
0 1 1

1 0 0 1 0 1

0 1 0 1 0 0 1

:Check bit in :Check bit in:Information bit

U=

UPC UARC

1
0 1 0
0 1 0

1
0 1 1
1 0 1

0
1 1 1

1
0

0 1 0
1

0
1 0 0

0

0
0 1
0 1

0
0 1 0
1 0

1
0

0 1 1

0
1

0 1 0

1
1 1
1 0 0

1 1
1 1
0 10

0
0

0

0

11

01

0

1

11

1

1
0 1 0
0 1 0

1
0 1 1
1 0 1

0
1 1 1
0 0 1

0
0 1 0

1

0
1 0

0

0
0 1 1
0 1

0
0 1 0
1 0

1
0

0 1 1

0
1

0 1 0

1
1 1

1 0 0

1 1
1 1

0 1 0

0

(a)Information part (b)Codeword

1 0 1

0

0

0

0

11

01

0

1

11

1

0 1 1
0 1 0
0 1 1

1 0 0 1 0 1

0 1 0 1 0 1 1
U’=

1
0 1 0
0 1

1
0 1 1

1

0
1 1 1
0 0 1

0
0 1 0

1

1
1 0 1

0

0
1 1 1
0 1

0
0 1 0
1 0

1
0

0 1 1

0
1

0 1 0

1
1 1

1 0 0

1 1
1 1

0 1 0

00 1

(c)Received word

Figure 13.23 Example code with parameters lm ¼ lm ¼ 3, m ¼ 3, and n ¼ 4. Source: [KANE03]. � 2003

IEEE.

642 CODES FOR DATA ENTRY SYSTEMS



where U0i; j is a 3� 3 submatrix of U0:

U0 ¼
U00;0 U00;1 U00;2 U00;3
U01;0 U01;1 U01;2 U01;3

U02;0 U02;1 U02;2 U02;3

264
375:

In the syndrome calculation above, all the bits in UARC are excluded. Since

1 � SV ¼ 7 � mlmln ¼ 27, the received word U0 has unidirectional 0-errors. Therefore
s, t, A, and B are determined as follows:

g¼ SV

wðSPÞ

� �
�1¼0; t¼ SH

wðSPÞ

� �
¼1; A¼SV mod wðSPÞ¼3; B¼SH mod wðSPÞ¼1:

The syndrome SP is divided into four submatrices:

SP ¼
E1;1 E1;0

E0;1 E0;0

� �
¼

0 0 1

1 0 1

0 0 1

24 35:
Note that the submatrices of SP satisfy wðE1;0Þ þ wðE1;1Þ ¼ A ¼ 3 and wðE0;1Þþ
wðE1;1Þ ¼ B ¼ 1. Finally, unidirectional 0-errors in the information part of

U0s;t;U
0
s;tþ1;U

0
sþ1;t, and U0sþ1;tþ1, where s ¼ 0 and t ¼ 1, are corrected as follows:

01
1

0

0

0

0

11

01

0

1

11

1

1
0 1 0
0 1 1

1
0 1 1

1

0
1 1
0 1

0
0 1 0

1

1
1 0 1

0

0
1 1 1
0 1

0
0 1 0
1 0

1
0

0 1 1

0
1

0 1 0

1
1 1

1 0 0

1 1
1 1

0 1 0

0

+

E0,0 E0,1

E1,0 E1,1

0 1 0
0
0
1
1
0
1

s=0

t=1

=

00

0

0

0

11

01

0

1

11

1

1
0 1 0
0 1 0

1
0 1 1
1 1

0
1 1 1
0 1

0
0 1 0

1

0
1 0 0

0

0
0 1 1
0 1

0
0 1 0
1 0

1
0

0 1 1

0
1

0 1 0

1
1 1

1 0 0

1 1
1 1

0 1 0

0
.

(4) Evaluation The 2D-Ulm�lnEC codes are evaluated in terms of the number of check

bits given by lm � ln þ RðK; rÞ þ K; where RðK; rÞ þ K is the length of UARC shown in 2.

Figure 13.24 shows the number of check bits for the 2D-Ulm�lnEC codes with code

parameters M ¼ N ¼ 100 and M ¼ N ¼ 150, where lm ¼ ln. This figure also shows the

cases of the existing two-dimensional lm � ln-clustered error correcting codes [BREI98],

and the QR code [JAPA02] using interleaved Reed-Solomon code. For the cases where lm
and ln are not divisors ofMð¼ NÞ, the 2D-Ulm�lnEC code is designed by using parameters

m ¼ n ¼ dM=lme ¼ dN=lne. Also the bottom mlm �M rows and the rightmost nln � N

columns are deleted from the codeword. Note that the deleted rows and columns should

not include any check bits. The number of check bits of the 2D-Ulm�lnEC code is much

smaller than that of the existing codes, especially for a large error size. For M ¼ N ¼ 100

and lm ¼ ln ¼ 40, the code requires 1,639 check bits, whereas the existing two-dimensional

clustered error correcting code requires 4,800 bits and the QR code 3,812 bits.

CODES FOR TWO-DIMENSIONAL MATRIX SYMBOLS 643



EXERCISES

13.1 Find the error directionality graph G of the confusion matrix shown in Table 13.1

with threshold error probability T ¼ 0:0008.

13.2 Prove Theorem 13.2.

13.3 Find all regular elements in Rð3; 3Þ.

13.4 Design the parity-check matrix H over Rð2; 5Þ of a systematic M-ary asymmetric

symbol error correcting code with r ¼ 2 check symbols.

13.5 Suppose that the confusion matrix for the set of 4-ary symbols A ¼ A; T; C; Gf g
is given as follows:

2D-U m × nEC code
QR code [JAPA 02] using two-dimensional interleaved RS codes

Existing two-dimensional m × n-clustered error correcting code [BREI 98]

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

10 x 10 20 x 20 30 x 30 40 x 40 50 x 50

C
he

ck
-b

it 
le

ng
th

Error size ( m × n)

M = N = 100

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

10 x 10 20 x 20 30 x 30 40 x 4050 x 50 60 x 60 70 x 70

C
he

ck
-b

it 
le

ng
th

Error size ( m × n)

M = N = 150

Figure 13.24 Check-bit length of the 2D-Ulm�lnEC codes. Source: [KANE03].� 2003 IEEE.

644 CODES FOR DATA ENTRY SYSTEMS



A T C G

A 0:90 0:05 0 0:05
T 0:05 0:70 0:10 0:15
C 0 0:10 0:80 0:10
G 0:05 0:15 0:10 0:70

(a) With this matrix, perform the set-partitioning algorithm for Rð2; 2Þ, and find
the mapping F : A; T; C; Gf g �! Rð2; 2Þ.

(b) Find a codeword of the 4-ary nonsystematic asymmetric symbol error

correcting code having length n ¼ 5 using the above-obtained mapping F,

where C1 is a binary Hamming code with minimum distance-3 and C2 is a

parity-check code.

(c) Find the number of codewords of the 4-ary nonsystematic asymmetric

symbol error correcting code using Theorem 13.5.

13.6 Both codes VII and VIII of Table 13.4 are designed by using the Hamming

code with minimum distance-3 and the parity-check code with minimum

distance-2. Explain why code VII has a much lower decoded SER than code

VIII.

13.7 Prove Theorem 13.6.

13.8 Design the parity-check matrix H over GFð5Þ of a nonsystematic M-ary asym-

metric error correcting code with deletion / insertion / adjacent-symbol-transposi-

tion error correction capabilities, whose code length is n ¼ 5. Prove that the

obtained code has the function of deletion / insertion / adjacent-symbol-transposi-

tion error correction capabilities.

13.9 Given the error directionality graph shown in Figure 13.16, find a mapping

f : f0; 1; . . . ; 9g �! GFð5Þ satisfying the condition of Definition 13.11.

13.10 Using the parity-check matrix H in Exercise 13.8 and the mapping f in Exercise

13.9, find the codeword of a nonsystematic 10-ary asymmetric error correcting

code with deletion / insertion / adjacent-symbol-transposition error correction

capabilities, where the code length n ¼ 5, A ¼ f0; 1; . . . ; 9g, and gðiÞ ¼ i for all

i 2 A.

13.11 Find the balanced code with a length of 6 bits.

13.12 Based on the specification of the QR codes, do the following:

(a) Convert ‘‘REED-SOLOMON’’ into a binary sequence in the alphanumeric

mode.

(b) Convert ‘‘5299714’’ into a binary sequence in the numerical mode.

(c) Convert ‘‘5299714’’ into a binary sequence in the alphanumeric mode.

(d) Compare the lengths of the binary sequences obtained in (b) and (c), and

give the reason why QR codes have several conversion modes.

13.13 In the numerical mode conversion of QR code, p ¼ 3 digits are converted to

q ¼ 10 bits, and hence each numeral is expressed by q=p ¼ 10=3¼3:33 bits.

EXERCISES 645



Complete the following table and confirm effectiveness of the numerical mode

conversion with p ¼ 3:

p X ¼ 10 p q ¼ log2 Xd e q=p

1 10 4 4
2
3 1,000 10 3.33
4
5

(Answer: For p ¼ 2: X ¼ 100, q ¼ 7, q=p ¼ 3:5; for p ¼ 4: X ¼ 10; 000,
q ¼ 14, q=p ¼ 3:5; and for p ¼ 5: X ¼ 100; 000, q ¼ 17, q=p ¼ 3:4:Þ

13.14 In the QR code shown in Figure 13.19, find the uncorrectable clustered error

pattern.

13.15 Find the codeword of 2D-U3�3EC code using the function f shown in Table 13.8,

where m ¼ n ¼ 3.

13.16 Given the codeword obtained in Exercise 13.15, find the decoding procedure of

the received word having a unidirectional 3� 3-clustered error.

13.17 Explain why 2D-Ulm�lnEC codes cannot correct symmetric (bidirectional) lm � ln-

clustered errors.

REFERENCES

[BREI98] M. Breitbach, M. Bossert, V. Zyablov, and V. Sidorenko, ‘‘Array Codes Correcting a Two-

Dimensional Cluster of Errors,’’ IEEE Trans. Info. Theory, 44 (September 1998): 2025–2031.

[BROW73] D. A. H. Brown, ‘‘Construction of Block Error-Detection and Correction Codes to any

Base,’’ Electron. Letts., 9 (June 1973): 290.

[GALL96] J. A. Gallian, ‘‘Error Detection Methods,’’ ACM Comput. Surveys, 28 (September 1996):

504–517.

[IMAI77] H. Imai and S. Hirakawa, ‘‘A New Multilevel Coding Method Using Error-Correcting

Codes,’’ IEEE Trans. Info. Theory, IT-23 (May 1977): 371–377.

[INAB94] H. Inaba, F. Terashima, K.Wakasugi, andM. Kasahara, ‘‘ANote on Character Recognition

System Using Error Correcting Codes’’(in Japanese), Trans. IEICE D-II, J77-D-II (February

1994): 353–361.

[JAPA02] Japanese Industrial Standard, ‘‘Two Dimensional Symbol—QR Code—Basic specifica-

tion,’’ JIS X 0510:2002 Japanese Standard Association (November 2002).

[KANE03] H. Kaneko and E. Fujiwara, ‘‘Array Codes Correcting a Cluster of Unidirectional Errors

for Two-Dimensional Matrix Symbols,’’ Proc. IEEE Int. Symp. on Defect and Fault Tolerance in

VLSI Systems (November 2003): 242–249.

[KANE04a] H. Kaneko and E. Fujiwara, ‘‘A Class of M-Ary Asymmetric Symbol Error Correcting

Codes for Data Entry Devices,’’ IEEE Trans. Comput., C-53 (February 2004): 159–167.

[KANE04b] H. Kaneko, M. Numakami, and E. Fujiwara, ‘‘NonsystematicM-Ary Asymmetric Error

Correcting Codes Designed by Multilevel CodingMethod,’’ Proc. IEEE Pacific Rim Int. Symp. on

Dependable Computing (March 2004): 219–226.

646 CODES FOR DATA ENTRY SYSTEMS



[KANE04c] H. Kaneko and E. Fujiwara, ‘‘Nonsystematic M-Ary Asymmetric Error Correcting

Codes with Deletion / Insertion / Adjacent-Symbol-Transposition Error Correction Capabilities,’’

Proc. 2004 IEEE Int. Symp. on Information Theory and Its Applications (October 2004): 959–964.

[LEVE66] V. I. Levenstein, ‘‘Binary Codes Capable of Correcting Deletion, Insertion, and Rever-

sals,’’ Sov. Phys.-Dokl., 10 (February 1966): 707–710.

[MATR] hhttp://www.aimglobal.org/aimstore/matrixsymbologies.htmi.
[NAMB01] K. Namba and E. Fujiwara, ‘‘A Class of m-Ary Single-Symbol Error Correcting Codes,’’

Syst. Computs. in Japan, 32 (June 2001): 21–28.

[NOUM93] T. Noumi, T. Matsui, I. Yamashita, T. Wakahara, and M. Yoshimuro, ‘‘An Analysis of

Substituted / Rejected Patterns in Handwritten Numeral Recognition’’ (in Japanese), Technical

Report of IEICE, PRU93-46 (September 1993): 25–32.

[PARK90] S. Park and B. Bose, ‘‘Burst Asymmetric / Unidirectional Error Correcting / Detecting

Codes,’’ Dig. 20th IEEE Int. Symp. on Fault-Tolerant Computing (June 1990): 273–280.

[PAVL90] T. Pavlidis, J. Swartz, and Y. P. Wang, ‘‘Fundamentals of Bar Code Information Theory,’’

IEEE Computer, 23 (April 1990): 74–86.

[PAVL92] T. Pavlidis, J. Swartz, and Y. P. Wang, ‘‘Information Encoding with Two-Dimensional Bar

Codes,’’ IEEE Computer, 25 (June 1992): 18–28.

[SAIT90a] Y. Saitoh and H. Imai, ‘‘Constructions of Codes Correcting Burst Asymmetric Errors,’’

Lecture Notes in Computer Science, Applied Algebraic Algorithms and Error Correcting Codes,

508 (1990): 59–70.

[SAIT90b] Y. Saitoh and H. Imai, ‘‘Some Classes of Burst Asymmetric or Unidirectional Error

Correcting Codes,’’ Electron. Letts., 26 (March 1990): 286–287.

[SAOW00] K. Saowapa, H. Kaneko, and E. Fujiwara, ‘‘Unidirectional Byte Error Correcting Codes

for q-Ary Data,’’ Proc. 2000 IEEE Int. Symp. on Information Theory (June 2000): 8.

[SAOW01] K. Saowapa, H. Kaneko, and E. Fujiwara, ‘‘q-Ary Asymmetric Error Locating Codes

under Directional Error Model’’(in Japanese), Trans. IEICE, J84-A (January 2001): 73–83.

[SUZU98] H. Suzuki and E. Fujiwara, ‘‘q-Ary Single Substitution and Transposition Error

Correcting Codes’’ (in Japanese), IEICE Technical Report, FTS97-77 (February 1998).

[TANG70] D. T. Tang and V. Y. Lum, ‘‘Error Control for Terminals with Human Operators,’’ IBM

J. Res. Dev., 14 (July 1970): 409–416.

[TENE84] G. Tenengolts, ‘‘Nonbinary Codes, Correcting Single Deletion or Insertion,’’ IEEE Trans.

Info. Theory, 30 (September 1984): 766–769.

[VARS73] R. R. Varshamov, ‘‘A Class of Codes for Asymmetric Channels and a Problem from the

Additive Theory of Numbers,’’ IEEE Trans. Info. Theory, 19 (January 1973): 92–95.

REFERENCES 647



CONTENTS

14.1 MDS Array Codes Tolerating Multiple-Disk Failures . . . . . . . . . . . . . . . . . 650

14.1.1 Theory for MDS Array Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650

1 MDS Array Codes with Code Length n � p . . . . . . . . . . . . . . . . 650

2 Modified MDS Array Codes with Code Length n ¼ pþ r . . . . . . . 653

14.1.2 Low-Density MDS Array Codes Tolerating Two Erased Disks . . . . . 655

1 EVENODD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

2 X-Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658

14.2 Codes for Distributed Storage Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 661

14.2.1 Models for Distributed Storage Systems and Code Conditions . . . . . . 661

14.2.2 BIBD Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664

14.2.3 Additive Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

14.2.4 Extended BIBD Codes and Additive Codes . . . . . . . . . . . . . . . . . . . 670

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677



14
Codes for Multiple /

Distributed Storage Systems

This chapter deals with the codes for multiple disk systems such as RAID (redundant

arrays of independent disks) systems [GIBS89] [GIBS92] and for distributed storage

subsystems connected by network.

Based on the discussion in Subsection 11.2.4, this chapter clarifies the requirements for

the codes of RAID systems and then presents the MDS (maximum distance separable)

array codes defined over certain polynomial rings that satisfy the requirements. Low-

density MDS array codes tolerating two erased disk failures such as EVENODD, the

X-code, and the B-code were presented in [BLAU93, 95], [XU99a, 99b]. With using

circular permutation matrices, an MDS array code was designed to tolerate three erased

disk failures [FENG05]. Here EVENODD and the X-code are explained more precisely.

Another different coding technique that also tolerates multiple-disk failures in the disk

arrays is called DATUM [ALVA02]. In this case user data and check data are de-clustered

uniformly based on the layout function over the disk arrays in order to achieve high data

throughput and small average response time especially for write accesses in disk failures.

The chapter also includes a disucssion of the scheme used for correcting erased data

caused by multiple-disk failures in the distributed storage system, namely in the multiple-

disk subsystems connected by network. The BIBD (balanced incomplete block design)

codes [HELL94], whose parity-check matrices are designed based on the block design, are

presented for tolerating erased data caused by three- or four-disk failures. The column

vectors in the parity-check matrices of the codes are constructed by the Steiner system of

block design. The extended codes provide simple and direct decoding that can recover the

erased data only by simple parity calculations. The additive codes are also extended to

enable the direct decoding for tolerating multiple-disk failures in the distributed storage

systems.

Code Design for Dependable Systems: Theory and Practical Applications, by Eiji Fujiwara
Copyright # 2006 John Wiley & Sons, Inc.

649



14.1 MDS ARRAY CODES TOLERATING MULTIPLE-DISK FAILURES

As was mentioned in Subsection 11.2.4, single-disk failures in the RAID system are

tolerated by simple parity-check codes, so theoretically a single erasure could be corrected

by distance-2 codes. Recall from Subsection 2.2.4 that an erasure is an error whose

location is indicated in advance by means of some error detection mechanism. For

example, a pointer indicating disk failure is generated by the strong burst / byte error

detecting codes in each disk memory subsystem, as discussed in Section 11.2. In this

subsection, as we design practical erasure correcting codes for RAID systems, we will give

careful consideration on four metrics: mean time to data loss, check disk overhead, update

penalty, and group size [HELL94].

In our study of MDS array codes tolerating multiple-disk failures [BLAU93, 94, 96],

[XU99a, 99b], an array code is used to express a codeword in two dimensions. That is, we

consider t � n (t rows by n columns) arrays. In this model the column errors and column

erasures can arise in the disk arrays. Further each disk contains mmemory (striping) units,

where the unit can be a bit, a byte, a sector, or the whole disk. We view such disk arrays as

m layers of t � n arrays.

An optimal solution to correct t column errors and r column erasures in the t � n arrays

can be obtained by using ðn; n� rÞ RS codes over GFð2tÞ, where r 	 2tþ r. In this

scheme each element of GFð2tÞ is regarded as a t-bit column, thus transforming the (row-

vector) codewords of the RS codes into t � n bits array. The optimal solution can exist

because RS codes are maximum distance separable (MDS). Furthermore any pattern of t
errors and up to r � 2t erasures can be decoded efficiently using the Berlekamp-Massey

algorithm (i.e., error-erasure version; see Subsections 2.3.5 and 2.3.6), which requires tn
operations of additions, multiplications, or divisions over GFð2tÞ for syndrome calculation

and also Oðrðtþ rÞÞ ð� Oðr2ÞÞ operations for determining the error value and the erased

data.

In order to attain simple and high-speed decoding, the array codes are required to have

the following properties:

1. The number of parity symbols must be one less than the minimum distance of the

codes; that is, the codes are MDS.

2. The parity columns must be computable by simple XOR operations of the infor-

mation columns.

3. Updating a single information bit requires updating minimum number of parity bits.

14.1.1 Theory for MDS Array Codes

1. MDS Array Codes with Code Length n � p
The new family of MDS codes presented here is defined over certain polynomial rings

[BLAU93]. The decoding procedure is very simple compared to the RS codes with same

code parameters. The simplified decoding scheme is accomplished by replacing the

extension field multiplications with cyclic shifts and XOR operations of binary vectors.

The codeword has a form of t � n arrays where t ¼ p� 1 and n � p for some prime p. The

parity-check matrices are similar to those of RS codes; however, the field GFð2tÞ is
substituted by the ring of binary polynomials modulo xt þ xt�1 þ � � � þ xþ 1. The

requirement that t þ 1 is a prime guarantee that the resulting codes are MDS. These codes

650 CODES FOR MULTIPLE / DISTRIBUTED STORAGE SYSTEMS



will be explained in the following paragraphs. In the decoding of correcting multiple

erasures and single errors, the only multiplications required during encoding and decoding

involve ring elements of the form xi, i ¼ 0; 1; 2; � � �, as one of the operands. Because of
the fact that ðx� 1Þ ð

Pt
i¼0 x

iÞ ¼ xtþ1 � 1 ¼ xp � 1, the multiplication can be performed

by cyclic shifts of binary vectors of length p ¼ t þ 1, and the implementation of any

arithmetic ring operation requires only XOR operations.

The following shows the ðp� 1Þ � n array codeword of linear array code Cp�1

Cðp� 1; n; rÞ ¼ C0 C1 C2 � � � Cn�1½ �

¼

c0;0 c0;1 c0;2 � � � c0;n�1

c1;0 c1;1 c1;2 � � � c1;n�1

..

. ..
. ..

. ..
.

cp�2;0 cp�2;1 cp�2;2 � � � cp�2;n�1

266664
377775; ð14:1Þ

where Ci, i ¼ 0; 1; 2; � � � ; n� 1, is an i-th symbol expressed by ðp� 1Þ-th degree

column vector, p is a prime, and n � p.

For an integer a, let jajp stand for the integer b 2 f0; 1; 2; � � � ; p� 1g such that

b � a ðmod pÞ. The linear array code Cp�1 over F ¼ GFðqÞ, where GCDðp; qÞ ¼ 1, is

defined as a subspace of all arrays of the Cð p� 1; n; rÞ above that satisfy the following

pr linear constraints: Xn�1
j¼0

cjm�jzjp; j ¼ 0; ð14:2Þ

where
P

means summation modulo 2, 0 � m � p� 2, 0 � z � r � 1, and this has an

extra all-zero row ðcp�1;0 cp�1;1 . . . cp�1;n�1Þ. Figure 14.1 shows Cðp� 1; n; rÞ
illustrated for the case where n ¼ p ¼ 5 and r ¼ 3. By this figure it is easy to verify

that the array in Figure 14.2 is a codeword of array code Cð4; 5; 3Þ over GFð2Þ.
The r � n parity-check matrix H of this code over RpðqÞ, which is the ring of

polynomials of degree less than p� 1 over F ¼ GFðqÞ with multiplication taken modulo

MpðxÞ, where
MpðxÞ ¼ ðxp � 1Þ=ðx� 1Þ

¼ xp�1 þ x p�2 þ � � � þ xþ 1 ð14:3Þ

is defined by

H ¼

1 1 1 � � � 1

1 a a2 � � � an�1

..

. ..
. ..

. ..
.

1 ar�1 a2ðr�1Þ � � � aðn�1Þðr�1Þ

266664
377775; ð14:4Þ

where a is a root of MpðxÞ, and r � n � p. And also the linear code C of length n over

RpðqÞ is defined as

Cp�1 ¼ fC 2 RpðqÞ
� �n jC �HT ¼ 0g: ð14:5Þ

C ¼ Cðp� 1; n; rÞ ¼ C0 C1 � � � Cn�1½ �

MDS ARRAY CODES TOLERATING MULTIPLE-DISK FAILURES 651



Since every r columns in H are linearly independent over RpðqÞ, C is a linear code of

length n and minimum distance r þ 1, and it is MDS. The lengthened code with additional

2 columns is expressed as

H0 ¼

1 0

0 0

H ..
. ..

.

0 0

0 1

2666664

3777775: ð14:6Þ

0 1 2 3

0

1

2

3

1
1
0
1

1
0
1
0

0
0
1
0

0
1
1
1

0
0
1
0

C =

4

Figure 14.2 Example of a codeword of the array code C(4, 5, 3) over GF(2). Source: [BLAU93].� 1993 IEEE.

0 1 2 3 4

0

1

2

3

(a)  Horizontal line (z = 0)

0 1 2 3 4

0

1

2

3

(b)  Slope 1 (z = 1)

0 1 2 3 4

0

1

2

3

(c)  Slope 2 (z = 2)

: m = 0, : m = 1, : m = 2, : m = 3, : not defined

Figure 14.1 Elements of the array code C(4, 5, 3) satisfying Eq. (14.2). Source: [BLAU93].� 1993 IEEE.

652 CODES FOR MULTIPLE / DISTRIBUTED STORAGE SYSTEMS



Example 14.1

The H matrix over R5ð2Þ with n ¼ p ¼ 5, r ¼ 3, and q ¼ 2 is expressed by

H ¼
1 1 1 1 1

1 a a2 a3 a4

1 a2 a4 a6 a8

24 35;
where a is a root ofM5ðxÞ ¼ ðx5 � 1Þ=ðx� 1Þ ¼ x4 þ x3 þ x2 þ xþ 1 and is expressed

by 4� 4 binary companion matrix:

0 0 0 1

1 0 0 1

0 1 0 1

0 0 1 1

2664
3775:

This is expressed in binary form as

where I is a 4� 4 identity matrix. It can be verified that the word C shown in

Figure 14.2 is a codeword, meaning C �HT ¼ 0. &

2. Modified MDS Array Codes with Code Length n = p + r
A modified MDS array code with a code length larger than p, where p is a prime, that is,

n ¼ pþ r, has been presented [BLAU96]. The codes are also defined over the ring of

polynomials of degree less than or equal to p� 2 modulo MpðxÞ, shown in Eq. (14.3). In

terms of the ð p� 1Þ � n array C ¼ ½C0 C1 � � � Cn�1�, each column Ci in the array is a

binary coefficient vector of the polynomial modulo MpðxÞ. In this new model, the array

has an imaginary row of zeros, which makes it a p� n array. A cyclic shift of a column

in this array, that is, a multiplication by x modulo xp � 1, can cause the bit corresponding

to the last row to be nonzero. In this case, however, the arithmetic modulo MpðxÞ forces
to take the complement of the shifted column, restoring the zero in the last position.

We can use the notation

CiðaÞ ¼ cp�2; iap�2 þ cp�3; iap�3 þ � � � þ c1; iaþ c0; i ð14:8Þ

to denote an i-th column polynomial modulo MpðxÞ. A codeword C( p; n; r) of a linear

code Cp with length n ¼ pþ r over the ring of binary polynomials of degree less than or

H

I I I I I

I

1
1 1

1 1
1 1

1 1
1

1 1
1 1

1 1
1 1
1

1 1

1 1
1 1
1 1
1

I

1 1
1

1 1
1 1

1 1
1 1
1 1
1

1
1 1

1 1
1 1

1 1
1 1
1

1 1

, ð14:7Þ

MDS ARRAY CODES TOLERATING MULTIPLE-DISK FAILURES 653



equal to p� 2 modulo MpðxÞ is defined by

Here
P

means summation modulo 2. The first p columns, C0ðaÞ to Cp�1ðaÞ, are

information symbols, and the last r columns, CpðaÞ to Cpþr�1ðaÞ, are parity symbols.

Equation (14.9) specifies how the parity columns should be computed from the

information columns. Note that the parity symbols depend on the information symbols,

but not on each other, that is, independent. This is the major difference between the

modified code and the former code defined by Eqs. (14.2) through (14.4). This means that

updating a single bit in the information part would in most cases require updating a single

bit in each of the parity symbols.

The parity-check matrix of the code Cp has a systematic form such as

H ¼

1 1 � � � 1 1 0 � � � 0

1 a � � � ap�1 0 1 � � � 0

..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
.

1 ar�1 � � � aðr�1Þðp�1Þ 0 0 � � � 1

2664
3775: ð14:10Þ

It can be proved that the codes defined by the above H are MDS, and the minimum

distance of Cp is equal to r þ 1 for r � 3. The latter can be proved by using the fact that

GCDðxi; MpðxÞÞ ¼ GCDðxi þ x j; MpðxÞÞ ¼ 1 for i 6� j ðmod pÞ: ð14:11Þ

An example code with p ¼ 5 and r ¼ 3 is given by

H ¼
1 1 1 1 1 1 0 0

1 a a2 a3 a4 0 1 0

1 a2 a4 a6 a8 0 0 1

24 35:
This is extended by r ¼ 3 check columns, compared to the previous code shown in

Example 14.1. According to [BLAU96], the MDS property of the code Cp is clarified such

that if 2 is a primitive element in GFðpÞ, then:

1. The codes with r ¼ 4 and 5 are MDS for all p 6¼ 3.

2. The codes with r ¼ 6 are MDS for all p 6¼ 3; 5; 13.

3. The codes with r ¼ 7 are MDS for all p 6¼ 3; 5; 11; 13.

4. The codes with r ¼ 8 are MDS for all p 6¼ 3, 5, 11, 13, 19, 29.

Encoding and decoding of the codes, Cp�1 and Cp, are performed by simple cyclic

shifts and XOR operations on the columns of the code array [BLAU93, 96].

Cð p; n; rÞ ¼ C0ðaÞ C1ðaÞ C2ðaÞ � � � Cp�1ðaÞ CpðaÞ Cpþ1ðaÞ � � � Cpþr�1ðaÞ
 �

;

 �������������������� p������������������!  ����������� r �������������������������������!

where

CpþjðaÞ ¼
Xp�1
i¼0

ajiCiðaÞ for j ¼ 0; 1; � � � ; r � 1: ð14:9Þ

654 CODES FOR MULTIPLE / DISTRIBUTED STORAGE SYSTEMS



14.1.2 Low-Density MDS Array Codes Tolerating Two Erased Disks

Based on the aforementioned background and theoretical basis of the MDS array codes, the

following shows two efficient and practical schemes for tolerating double-disk failures in RAID

architectures. Another efficient coding scheme, calledB-code, not introduced here, is also a class

of low-density MDS array codes expressed by a new graphic description, and constructed by

using a combinatorial problem known as perfect one-factorization of complete graphs [XU99b]

1. EVENODD
The coding scheme of EVENODD requires two redundant disks, and its decoding is

accomplished by simple XOR computation with independent parities [BLAU94]. The

codes are ðp� 1Þ � ðpþ 2ÞMDS array codes, where p is prime, with minimum distance 3

that can recover two erased disks or correct one disk failure.

Encoding Procedure There are two types of parity calculations, horizontal and

diagonal parity calculations. For horizontal redundancy,

ck;p ¼
Xp�1
i¼0

ck;i for k ¼ 0; 1; � � � ; p� 2: ð14:12Þ

For diagonal redundancy,

ck;pþ1 ¼ Qþ
Xp�1
i¼0

cjk�ijp;i for k ¼ 0; 1; � � � ; p� 2; ð14:13Þ

where

Q ¼
Xp�1
j¼1

cp�1�j; j: ð14:14Þ

In the equations above,
P

means summation modulo 2.

The ðp� 1Þ � ðpþ 2Þ array defined above can recover the information lost in any two

columns; that is, the minimum distance of the code is 3. This means that any nonzero array

has at least 3 nonzero columns. The key condition exists in the diagonal calculation of Q.

Wewill see in the following example that without this diagonal calculation Q, the resulting

code does not have minimum distance 3.

Example 14.2 [BLAU94]

Let p ¼ 5, and let the symbols be denoted by ci; j, 0 � i � 3, 0 � j � 6. The redundant

symbols are in columns 5 and 6. The sets of symbols associated with horizontal parity

are illustrated as follows:

0 1 2 3 4

0

1

2

3

5 6

imaginary
          row

Horizontal parity: ck 5

4

∑
i 0

ck i k 0

888888

1 2 3

MDS ARRAY CODES TOLERATING MULTIPLE-DISK FAILURES 655



Similarly the sets of symbols associated with diagonal parity are illustrated as follows.

Note that1 is associated with the special diagonal corresponding to Q that determines

whether the diagonal parity is EVEN or ODD.

Assume that we encode the following five columns based on the Eqs. (14.12) through

(14.14), where diagonal parity Q ¼ 1. Then we obtain the two parity columns 5 and 6:

If we do not make the assumption that the diagonal carry either even or odd parity, the

code does not have minimum distance 3. Assume that the encoding is given only by

Eqs. (14.12) and (14.13), where the parameter Q is ignored in Eq. (14.13). Then the

following is a codeword of weight 2:

If columns 1 and 5 are erased in the array above, we cannot retrieve them because the

all-zero array is also a codeword. From this, the parameter Q is the key to the MDS

property of the code.

Decoding Two Erasures The algorithm for correcting two erasures is presented in

the following example in order to provide a rough overview of the decoding procedure.

Example 14.3 [BLAU94]

Suppose that p ¼ 5, and the data in columns 0 and 2 have been erased, that is, lost in the

following array:

0 1 2 3 4

0

1

2

3

5 6

imaginary
          row

Diagonal parity: ck 6 Q

8

8

8

8

8

8

4

∑
i 0

c k i 5 i Q
4

∑
j 0

c4 j j , k 0 1 2 3

0 1 2 3 4 5 6

0 1 0 1 1 0 1 0
1 0 1 1 0 0 0 0
2 1 1 0 0 0 0 1 Q ¼ 1
3 0 1 0 1 1 1 0

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 1 0 0 0 1 0

0 1 2 3 4 5 6

0 ? 0 ? 1 0 1 1
1 ? 1 ? 0 0 0 1
2 ? 1 ? 0 0 1 1
3 ? 1 ? 1 1 0 0

656 CODES FOR MULTIPLE / DISTRIBUTED STORAGE SYSTEMS



The first step is to find the parity of the diagonals. This parity is given by exclusive-OR

of the bits of the two parity columns. If this is 0, then the diagonals have even parity;

otherwise, they have odd parity. This is not difficult to see, and hence the reader

is encouraged to undertake the proof. In the array we can see that the exclusive-OR of

the bits in the two redundant columns is 1. Therefore the diagonals have odd parity,

that is, Q ¼ 1.

Next, the algorithm starts a recursion to retrieve the missing bits ci; 0 and ci; 2,

0 � i � 3. The diagonal entries (3, 1), (2, 2), (1, 3), (0, 4) intersect column 2 in entry

(2, 2) only. From Q ¼ 1, we conclude that c2; 2 ¼ 0. So we retrieve bit (2, 0), using the

horizontal parity, which is always even. We obtain c2; 0 ¼ 0. Then we consider the

diagonal going through entry (2, 0), which consists of the entries (2, 0), (1, 1), (0, 2),

(3, 4), (2, 6). The only bit missing is in entry (0, 2), and we can conclude that c0; 2 ¼ 0.

Again, using the horizontal parity, we find that c0; 0 ¼ 0. Now, using the diagonal

through (0, 0), we obtain c3; 2 ¼ 0, which implies, by the horizontal parity, that

c3; 0 ¼ 1. Using the diagonal through (3, 0), we obtain c1; 2 ¼ 0, which finally implies

that c1; 0 ¼ 1. The final reconstructed array is illustrated below:

We could give a decoding that corrects one error (i.e., only one column has failed

but its location is unknown). This is not the model in RAID architectures, where disk

failures are catastrophic events in which pointers identify the failed disks. (The reader

is encouraged to reconstruct the erroneous example array with one failed column in

Exercises 14.6.

AlgebraicDescriptionofEVENODD In the array of ð p� 1Þ � ð pþ 2Þ, each column

in the array is a polynomial moduloMpðxÞ ¼ ðxp � 1Þ=ðx� 1Þ ¼ xp�1 þ xp�2 þ � � � þ xþ 1.

It is convenient to assume that the array has an imaginary row of zeros that makes

it a p� ðpþ 2Þ array. A cyclic shift of a column in such an array can cause the bit

corresponding to the last row to be nonzero. However, if this is the case, the arithmetic

moduloMpðxÞ forces to take the complement of the shifted column, restoring the zero in

the last position. As was mentioned earlier, we will use Eq. (14.8) to denote a polynomial

modulo MpðxÞ. The codeword for EVENODD is defined as follows:

½C0ðaÞ C1ðaÞ � � � Cp�1ðaÞ CpðaÞ Cpþ1ðaÞ�; where a is a root of MpðxÞ;

CpðaÞ ¼
Xp�1
i¼0

CiðaÞ; and Cpþ1ðaÞ ¼
Xp�1
i¼0

aiCiðaÞ:

9>>>>=>>>>;:

ð14:15Þ

0 1 2 3 4

0

1

2

3

5 6

0

0

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

1

0

1

recovered columns

MDS ARRAY CODES TOLERATING MULTIPLE-DISK FAILURES 657



Note that the parameter Q, defined in Eq. (14.14) and included in Eq. (14.13),

essentially renders Eq. (14.13) to be the sum of cyclic shifts modulo MpðxÞ rather than
ordinary cyclic shifts.

The following is a parity-check matrix for EVENODD:

H ¼ 1 1 � � � 1 1 0

1 a � � � ap�1 0 1

� �
: ð14:16Þ

For p ¼ 5, for example, a can be expressed by a 4� 4 binary matrix defined by M5ðxÞ ¼
x4 þ x3 þ x2 þ xþ 1:

0 0 0 1

1 0 0 1

0 1 0 1

0 0 1 1

2664
3775

Note that the parity symbols CpðaÞ and Cpþ1ðaÞ depend on the information symbols but

not on each other. It is easy to see from the parity-check matrix shown in Eq. (14.16) that

the minimum distance of EVENODD is 3, which gives alternative proof to the basic MDS

property of the code.

2. X-Codes
Anew class ofMDS array codes, calledX-codes, has size n� n, where n is a prime [XU99a].

The X-codes are of minimum column distance 3; that is, they can correct either two

column erasures or one column error. The key novelty in X-code is its simple geometrical

construction that achieves optimal complexity for the encoding or the update, whereby a

change of any single information bit affects exactly two parity bits. The key idea exists in

the code construction such that all parity symbols are placed in rows rather than columns.

In X-codes, information symbols are placed in an array of size ðn� 2Þ � n. Parity

symbols are constructed from the information symbols along several parity-check lines or

diagonals of some slopes with addition operations. But the parity symbols are placed in

two additional rows. So the coded array is of size n� n, with the first n� 2 rows

containing information symbols, and the last two rows containing parity symbols. Note

that information symbols and parity symbols are mixed in each column of the array.

Encoding Procedure Let ci; j be the symbol located at the i-th row and the j-th column.

The parity symbols of X-codes are constructed according to the following calculations:

cn�2;i ¼
Xn�3
k¼0

ck;jiþkþ2jn

cn�1;i ¼
Xn�3
k¼0

ck;ji�k�2jn

9>>>>>>=>>>>>>;
; ð14:17Þ

where i ¼ 0; 1; � � � ; n� 1, and jxjn ¼ x mod n. Geometrically the two parity rows are

just the checksums along diagonals of slopes þ1 and �1, respectively.
From this construction it is easy to see that the two parity rows are obtained

independently; that is, each information symbol affects exactly one parity symbol in

each parity row. All parity symbols depend only on information symbols, and therefore

658 CODES FOR MULTIPLE / DISTRIBUTED STORAGE SYSTEMS



updating one information symbol results in updating only two parity symbols. Thus the X-

code has the optimal encoding property, that is, the optimal updating property. Note that

the X-code is a cyclic code in terms of columns; that is, the cyclically shifting columns of a

codeword of the X-code results in another codeword of the X-code. Also it can be proved

that the X-code has column distance 3; that is, it is MDS if and only if n is a prime number.

The reader is urged to attempt a proof of this.

Example 14.4

The following arrays show an X-code for n ¼ 5:

0 1 2 3 4

0

1

2

3

imaginary row

1st parity row

0 1 2 3 4

0

1

2

3

imaginary row

2nd parity row

c ,

.

n 2 i

n 3

∑
k 0

ck i k 2 n

cn 1 i

n 3

∑
k 0

ck i k 2 n

The example codeword for n ¼ 5 is as follows:

0 1 2 3 4

0

1

2

3 1st parity row

1
0
0

0
0

0
1
0

0
0

0
0
1

1
0

1
1
0

1
0

1
1
1

0
0

2nd parity row

1
0
0

1
0

0
1
0

1
0

0
0
1

0
0

1
1
0

1
0

1
1
1

1
0

0 1 2 3 4

0

1

2

3

MDS ARRAY CODES TOLERATING MULTIPLE-DISK FAILURES 659



It can be easily verified that the example codeword,

C ¼ ð10001 01001 00110 11011 11101Þ;
0-th column 1-st column 2-nd column 3-rd column 4-th column

satisfies C �HT ¼ 0. &

Decoding Procedure

1. Correcting Two Erasures. If two columns are erased, then the basic unknown sym-

bols of the two columns are information symbols. So the number of unknown symbols is

2ðn� 2Þ. On the other hand, in the remaining array, there are 2ðn� 2Þ parity symbols

related to all the 2ðn� 2Þ unknown symbols. Hence correction of two erasures is only

a problem of solving 2ðn� 2Þ unknowns from the 2ðn� 2Þ linear equations. Since the

X-code is of distance 3, it can correct two erasures. Thus the 2ðn� 2Þ linear equations
must be linearly independent, meaning the linear equations are solvable. Note that since

each parity symbol cannot be affected by more than one information symbol in the same

column, each equation has at most two unknown symbols. Some equations have only one

unknown symbol. The equations each having one unknown symbol can be solved, and

hence these erased symbols can be corrected. The corrected symbols induce other

unknown symbols to be solved. The process proceeds recurrently to solve all unknown

symbols.

Suppose that the i-th and j-th columns are erased, where 0 � i < j � n� 1. Each

diagonal traverses only n� 1 columns. If a diagonal crosses a column at the last row, no

symbols of that column are included in this diagonal. This determines the position of the

parity symbol related to only one information symbol in these two erased columns, and

thus this symbol can be immediately recovered by a simple checksum along this

diagonal. With this symbol as the starting point, we have a decoding chain. Together

with the remaining one (if j� i ¼ 1) decoding chain, all unknown symbols can be

recovered.

2. Correcting One Error. In order to correct one error, it is necessary to locate the error

position. This can be done by computing two syndrome vectors corresponding to the two

parity rows. Since the error is a column error, it is natural to compute the syndromes with

The parity-check matrix of this example code is written as

H
H0 T H0 T2 H0 T3 H0 T4 H0
H1 T H1 T2 H1 T3 H1 T4 H1

00010 00000 10000 01000 00100
00100 00010 00000 10000 01000
01000 00100 00010 00000 10000
10000 01000 00100 00010 00000
00000 10000 01000 00100 00010
00001 00100 01000 10000 00000
00000 00001 00100 01000 10000
10000 00000 00001 00100 01000
01000 10000 00000 00001 00100
00100 01000 10000 00000 00001

H0

00010
00100
01000
10000
00000

H1

00001
00000
10000
01000
00100

T

00001
10000
01000
00100
00010

660 CODES FOR MULTIPLE / DISTRIBUTED STORAGE SYSTEMS



respect to columns. Once the error location is determined, the correct value can be com-

puted along the diagonals of either slope.

Suppose R ¼ ½ri; j�, where 0 � i; j � n� 1, is the error corrupted array with one

corrupted column. Then we compute two syndromes S0 and S1 as follows:

S0½i� ¼
Xn�1
k¼0

riþk; k ;

S1½i� ¼
Xn�1
k¼0

ri�k; k ;

where all subindexes are mod n.

It is easy to see that the two syndromes are respectively the column checksums along

the diagonals of slope þ1 and �1, and they should be all zeros if there is no error in the

array R. If there is one (column) error in the array R, then the two syndromes are just the

cyclic-shifted version of the error vector with respect to the position of the error column,

thus its location can be determined simply by the cyclic equivalence test, which tests if two

vectors are equal after cyclic shift of one vector.

Example 14.5 Syndrome Computation for 5� 5 X-code [XU99a]

Suppose that the third column of the X-code is an erroneous column. Then the two

syndrome vectors, S0 and S1, and their corresponding error arrays are as follows:

Note that these two syndromes are actually just the original error column vector

(cyclically) shifted by two symbols with different directions. When they are shifted

back, then they only differ in at most one position. So the number of the positions

shifted gives the location of the error column. &

14.2 CODES FOR DISTRIBUTED STORAGE SYSTEMS

14.2.1 Models of Distributed Storage Systems and Code Conditions

System Models A large-scale distributed storage system consists of a large number of

disk subsystems connected by networks. In this section we show how the scheme is used to

S0

0 0 0 e0 0 e3
0 0 0 e1 0 0
0 0 0 e2 0 e0
0 0 0 e3 0 e1
0 0 0 0 0 e2

S1

0 0 0 e0 0 e2
0 0 0 e1 0 e4
0 0 0 e2 0 0
0 0 0 e4 0 e0
0 0 0 0 0 e1

CODES FOR DISTRIBUTED STORAGE SYSTEMS 661



recover destructed user data due to disk memory failures. Figure 14.3 shows an example of

a distributed system in which client PCs and disk subsystems are connected via networks.

We consider two models of the user data in distributed storage systems: one is to divide

the user file data and to store these divided ones in several disk subsystems in a parallel

manner, and the other is to store the whole user data basically in one disk. RAID systems

are typical of the former model. In both models the disk subsystems are grouped and their

data are encoded by parity-based codes in order to protect and recover the data from disk

failure. We will assume that the disk controller in each disk subsystem has information on

the groups, that is on which other disks are parity encoded in the group.

In order to express the encoded disk group, we use the parity-check matrix with n

columns, each corresponding to one disk subsystem. The i-th row in the matrix expresses

the i-th group of the disks, where ‘1’ in the j-th bit of the row expresses the disk #j in the

i-th group. Figure 14.4 gives a simple example of the matrix, where disks#0,#1, and#2

Network

Client PC Disk subsystem / File server

disk

Network

Client PC

Disk subsystem

Figure 14.3 Models of the distributed storage system.

# 0 # 1 # 3

(a) Recovery of data in failed disk #2

1

0

1

1

1

1

0

1

# 0 # 1 # 2 # 3

(b) Nonrecovery of data in failed disks #1 and #2

1

0

1

1

1

1

0

1

H =

H =

# 2

Figure 14.4 Parity-checkmatrix and corresponding disk groups.

662 CODES FOR MULTIPLE / DISTRIBUTED STORAGE SYSTEMS



in the first row are grouped and parity encoded, and also disks #1, #2, and #3 in the

second row are grouped and parity encoded. In Figure 14.4(a), the data in the failed disk

#2 can be recovered by exclusive-ORing the data in other disks #0 and #1, or disks #1

and#3. On the other hand, in Figure 14.4(b), the data in the failed disks#1 and#2 cannot

be recovered because every parity group includes erased data of these two failed disks.

From this simple example, some conditions of matrix design are required in order to

recover the erased data directly.

In the storage model these are four metrics for redundancy in the distributed system that

are important. As was mentioned in Subsection 11.2.4, these metrics are mean time to data

loss, check disk overhead, update penalty, and group size.

Code Conditions for Direct Decoding for t Erased Disk Data It can be easily

understood that the parity-check matrix with minimum Hamming distance 3 can correct

erased data caused by two failed disks by the simple decoding. But how about the matrix

with a minimum Hamming distance 4? Does the simple decoding always correct the

erased data due to three failed disks? Consider the following example of the parity-check

matrix of a distance-4 modified Hamming SEC-DED code:

If three disks corresponding to the three columns enclosed by the broken line in the matrix

above are failed, then we cannot correct the erased data immediately by simple decoding.

We can, however, correct the erased data by solving three simultaneous equations. If we

have another server in the system that supervises the total disk subsystems and hence

solves these equations, then these erased data can be corrected. We assume, however, that

there exists no such server in the system, and therefore we adopt the model to correct the

erased data simply and directly, and not by solving the equations. This simple decoding of

erased data is called here a direct decoding.

We consider the error recovery from the erased data caused by t-disk failures in the

distributed storage systems that satisfies the above-defined direct decoding. In this model

the following theorem determines the condition of the code matrix to recover the data

caused by t-disk failures [HELL94].

Theorem 14.1 Let an r � n binary matrix H ¼ ½ P j I � be a parity-check matrix of the

code with minimum Hamming distance tþ1, where I is an r � r identity matrix and every

kð¼ n� rÞ distinct columns of P has weight t (	 3), and every pair of two columns in any

t columns in P has 1’s in at most one same row position. Then the code defined by the

matrix H corrects t erasures by the direct decoding.

Proof This theorem can be proved by discussing on any t distinct columns in the matrix

P corresponding to the erased t disks. This is shown in Figure 14.5 where we have one

column vector ui and the other t � 1 column vectors each with t 1’s. Let these t � 1 col-

umns be uiþ1, uiþ2, . . ., uiþt�1, where every pair of two columns including ui has 1’s in at

most one same row position. In these t columns it can be understood that there exists one

H ¼

1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1
0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

266664
377775:

CODES FOR DISTRIBUTED STORAGE SYSTEMS 663



row with weight one in at most one row place. We assume that every row having 1 in ui
has weight larger than or equal to two in these t columns. Then we must have at least one

extra column (i.e., t columns) in addition to ui because every pair of two columns includ-

ing ui has 1’s in at most one same row position. This contradicts the present case of total t

columns including ui. In these t columns the failed disk that corresponds to ui can be

recovered directly by exclusive-ORing the data of the nonfailed disks in the parity group

corresponding to the row with weight one. It is apparent from Figure 14.5 that any t col-

umns of H are linearly independent, and therefore the code can correct t erasures. Also

there exists at least one row with weight one. These satisfy the conditions of the

direct decoding for t erased disk data. Hence, in general, the erased data corresponding

to the i-th failed disk can be recovered by exclusive-ORing the correct data of the other

disks corresponding to the columns outside these t columns. This recovery of data leads

to the recovery of the remaining t � 1 erased data in a chain using the recovered disk

data. Even if the matrix I is appended to P, it is apparent that the discussion above

also holds for columns in I and P as well as for weight one columns in I. Q.E.D.

14.2.2 BIBD Codes

The matrix P shown in Theorem 14.1 can be designed by using the Steiner system in a

block design [HELL94]. First, let us define the block design, meaning BIBD.

Definition 14.1 (Balanced Incomplete Block Design, BIBD) [HALL86] A balanced

incomplete block design, or BIBD, is an arrangement of r distinct objects into k blocks

satisfying the following conditions:

1. Each block contains exactly t distinct objects.

2. Each object occurs in exactly m different blocks.

3. Every pair of distinct objects ai, and aj occurs together in exactly l blocks.

&

The four parameters k, r, t, m given above can be translated into the parameters of the

parity-check matrix H in Theorem 14.1 as follows:

k: number of columns in P which means the number of information disks.

r: number of rows in P which means the number of check disks.

1

1

1

1

1

1

1

ui

weight-1 row

ui +1 ui +2

0

ui + t -1

0

0  0

0 0

0 0 0

t distinct columns each having weight t

weight-2 rowst -1

1

r

Figure 14.5 Example array of t columnvectors inP.

664 CODES FOR MULTIPLE / DISTRIBUTED STORAGE SYSTEMS



t: weight of column vector in P which means the number of erased disks being

corrected.

m: weight of row vector in P.

k þ r ¼ n: code length which means the total number of disks.

The words, block and object, in the definition of BIBD are also translated here as

follows:

Block: Column vector in P.

Object: Binary element 1 at the designated place in a column vector.

Every pair of distinct objects ai and aj together in l blocks: Every pair of ele-

ments 1’s at the i-th and the j-th row places existing together in l columns, where

i 6¼ j.

Theorem 14.2 [HALL86] The block design BIBD satisfies the following two elemen-

tary relations on the five parameters:

kt ¼ rm

mðt � 1Þ ¼ lðr � 1Þ:

)
ð14:18Þ

The design with l ¼ 1 is called a Steiner system, and it satisfies Theorem 14.1 because

of the condition 3 of Definition 14.1. For l ¼ 1, it is important that the relations (14.18)

lead to the following:

r � 1; 3 ðmod 6Þ for t ¼ 3; ð14:19Þ
r � 1; 4 ðmod 12Þ for t ¼ 4: ð14:20Þ

The relations (14.19) and (14.20) are important for designing a matrix H that can

correct three or four erased disk data in this distributed storage systems. The following

theorems show how to design a Steiner system that satisfies the relations.

Theorem 14.3 [HALL86] With the additive group of residues modulo s ¼ 2qþ 1, the

blocks

½11; 2q1; 02�; � � � ; ½i1; ð2qþ 1� iÞ1; 02�; � � � ; ½q1; ðqþ 1Þ1; 02�
½12; 2q2; 03�; � � � ; ½i2; ð2qþ 1� iÞ2; 03�; � � � ; ½q2; ðqþ 1Þ2; 03�
½13; 2q3; 01�; � � � ; ½i3; ð2qþ 1� iÞ3; 01�; � � � ; ½q3; ðqþ 1Þ3; 01�

½01; 02; 03�

form a base for a design with r ¼ 6qþ 3, k ¼ ð3qþ 1Þð2qþ 1Þ, m ¼ 3qþ 1, t ¼ 3, and

l ¼ 1, where xy or ðxÞy means ðy� 1Þsþ x.

The remaining blocks are obtained by adding 1, 2, � � �, s� 1, to each base block.

CODES FOR DISTRIBUTED STORAGE SYSTEMS 665



Example 14.6

For q ¼ 1, s ¼ 3, r ¼ 9, k ¼ 12, m ¼ 4, and t ¼ 3, we get the following 4 base blocks

and remaining 8 blocks:

½11; 21; 02� ½12; 22; 03� ½13; 23; 01� ½01; 02; 03� : base blocks

½21; 01; 12� ½22; 02; 13� ½23; 03; 11� ½11; 12; 13� : þ1
½01; 11; 22� ½02; 12; 23� ½03; 13; 21� ½21; 22; 23� : þ2

These are transformed to the following:

B0 : ½1; 2; 3�; B3 : ½4; 5; 6�; B6 : ½7; 8; 0�; B9 : ½0; 3; 6� � � � base blocks

B1 : ½2; 0; 4�; B4 : ½5; 3; 7�; B7 : ½8; 6; 1�; B10 : ½1; 4; 7� � � � þ 1

B2 : ½0; 1; 5�; B5 : ½3; 4; 8�; B8 : ½6; 7; 2�; B11 : ½2; 5; 8� � � � þ 2

Numbers, x; y and z in Bi : ½x; y; z� express the elements 1’s positions, namely at the

x-th, y-th, and z-th row positions in the i-th column. Hence we have the following

9� 12 incidence matrix P:

This matrix satisfies the previous code conditions for the direct decoding for 3 erased

disks data, and will be used in the extended BIBD codes in Subsection 14.2.4.

Theorem 14.4 [HALL86] Suppose r ¼ 6qþ 3 ¼ 3s, where s ¼ 2qþ 1 6� 0 (mod 3).

Let us determine unordered pairs (a; b) modulo 3s by the conditions a � b � 1

(mod 3), aþ b � 0 (mod s), a; b 6� 0 (mod s). Then the base blocks

½0; a; b� ðmod 3sÞ

and the single ½0; s; 2s� of period s yield a design with r ¼ 6qþ 3, k ¼ ð2qþ 1Þ ð3qþ 1Þ,
m ¼ 3qþ 1, t ¼ 3, and l ¼ 1.

The remaining blocks of Theorem 14.4 are obtained by adding 1, 2, � � � ; 3s� 1 to each

base block ½0; a; b� (mod 3s), and also by adding 1; 2; � � � ; s� 1 to the base block ½0; s; 2s�.

P ¼

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

0 1 1 0 0 0 1 0 0 1 0 0 0

1 0 1 0 0 0 0 1 0 0 1 0 1

1 1 0 0 0 0 0 0 1 0 0 1 2

1 0 0 0 1 1 0 0 0 1 0 0 3

0 1 0 1 0 1 0 0 0 0 1 0 4

0 0 1 1 1 0 0 0 0 0 0 1 5

0 0 0 1 0 0 0 1 1 1 0 0 6

0 0 0 0 1 0 1 0 1 0 1 0 7

0 0 0 0 0 1 1 1 0 0 0 1 8

666 CODES FOR MULTIPLE / DISTRIBUTED STORAGE SYSTEMS



Example 14.7

For q ¼ 2, s ¼ 5, r ¼ 15, k ¼ 35, m ¼ 7, and t ¼ 3, we have ða; bÞ ¼ ð1; 4Þ; ð7; 13Þ,
and ðs; 2sÞ ¼ ð5; 10Þ. Therefore we have the following 35 blocks:

½0; 1; 4�; ½0; 7; 13�; ½0; 5; 10� : base blocks

½1; 2; 5�; ½1; 8; 14�; ½1; 6; 11� : þ1
½2; 3; 6�; ½2; 9; 0�; ½2; 7; 12� : þ2
½3; 4; 7�; ½3; 10; 1�; ½3; 8; 13� : þ3
½4; 5; 8�; ½4; 11; 2�; ½4; 9; 14� : þ4
½5; 6; 9�; ½5; 12; 3� : þ5
½6; 7; 10�; ½6; 13; 4� : þ6
½7; 8; 11�; ½7; 14; 5� : þ7
½8; 9; 12�; ½8; 0; 6� : þ8
½9; 10; 13�; ½9; 1; 7� : þ9
½10; 11; 14�; ½10; 2; 8� : þ10
½11; 12; 0�; ½11; 3; 9� : þ11
½12; 13; 1�; ½12; 4; 10� : þ12
½13; 14; 2�; ½13; 5; 11� : þ13
½14; 0; 3�; ½14; 6; 12� : þ14

The incidence matrix P is shown in Figure 14.6.

For r ¼ 6qþ 1 and r ¼ 12qþ 1, we have another set of blocks based on the following

theorems:

Theorem 14.5 [HALL86] Let r ¼ 6qþ 1 ¼ pn where p is a prime. In the field GFð pnÞ,
let x be a primitive element. Then the blocks

½x0; x2q; x4q�; � � � ; ½xi; x2qþi; x4qþi�; � � � ; ½xq�1; x3q�1; x5q�1�

are base blocks of the additive group of GFðpnÞ with r ¼ 6qþ 1, k ¼ 6q2 þ q, m ¼ 3q,

t ¼ 3, and l ¼ 1.

P =

1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0
0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Figure 14.6 IncidencematrixP with t ¼ 3, m ¼ 7, r ¼ 15, and k ¼ 35.

CODES FOR DISTRIBUTED STORAGE SYSTEMS 667



Theorem 14.6 [HALL86] If r ¼ pn ¼ 12qþ 1 where p is a prime, and if x is a primi-

tive element of GFðpnÞ such that x4q � 1 ¼ xw where w is odd, the blocks

½0; x0; x4q; x8q�; � � � ; ½0; x2i; x2iþ4q; x2iþ8q�; � � � ; ½0; x2q�2; x6q�2; x10q�2�

are a base with respect to the additive group of GFðpnÞ of a design with r ¼ 12qþ 1,

k ¼ qð12qþ 1Þ, m ¼ 4q, t ¼ 4, and l ¼ 1.

14.2.3 Additive Codes

A new type of code capable of correcting t erasures is called an additive-t code. The

additive-t code satisfies the code conditions indicated in Theorem 14.1. An additive-3 code

satisfies the practical case of Theorem 14.1 for t ¼ 3. The existing work by [HELL94]

treats the codes with some restricted parameters; the next subsection discusses this more

general class of additive-3 codes.

Lemma 14.1 The number of solutions of an integer x that satisfy 3x � 1 (mod r), where

0 � x � r � 1 and r is an integer (r 	 3), is denoted as b1 and expressed as

b1 ¼
0 for r ¼ multiple of 3;
1 for r ¼ integer other than multiple of 3:

�
Proof For some integer m, the relation 3x � 1 (mod r) is expressed as

3x ¼ 1þ mr;

and then this is also expressed as

3x� ð1þ mrÞ ¼ 0 for 0 � x � r � 1:

Therefore inequality 0 � x � r � 1 can be expressed by 0 � 1þ mr � 3ðr � 1Þ, which
comes to m ¼ f0; 1; 2g.

Case 1. For r ¼ multiple of 3 (i.e., r ¼ 3n):

3x� ð1þ mrÞ ¼ 3x� ð1þ 3nmÞ 6¼ 0:

Hence there exist no integer solutions of x, meaning b1 ¼ 0.

Case 2. For r ¼ 3nþ 1:

3x� ð1þ mrÞ ¼ 3x� ð1þ 3nmþ mÞ:

In this case, x has a solution 2nþ 1 only when 1þ m is 3; that is, m ¼ 2, meaning

b1 ¼ 1:

Case 3. For r ¼ 3nþ 2:

3x� ð1þ mrÞ ¼ 3x� ð1þ 3nmþ 2mÞ:

In this case, x has a solution nþ 1 only when 1þ 2m is 3, that is, m ¼ 1, meaning

b1 ¼ 1. Q.E.D.

668 CODES FOR MULTIPLE / DISTRIBUTED STORAGE SYSTEMS



Lemma 14.2 For a given integer r (	 3), the number of cases each having three distinct

integers y, z, and w, 0 � y; z; w � r�1, that satisfy

yþ zþ w � 1 ðmod rÞ ð14:21Þ

is r2 � 3r þ 2b1.

Proof It is apparent that the number of combinations of all three integers that satisfy

Eq. (14.21) is r2. The cases with two equal integers and with all three equal integers

can be deducted from the r2 cases. The number of the former case is obtained by

r�b1C1 � 3 ¼ 3ðr � b1Þ. The number of the latter case is b1 by Lemma 14.1. Therefore

the number of having three distinct integers that satisfy Eq. (14.21) is expressed as

r2 � 3ðr � b1Þ � b1 ¼ r2 � 3r þ 2b1. Q.E.D.

Theorem 14.7 The additive-3 code C defined by the parity-check matrix H ¼ ½ PA j I �,
where I is an r � r identity matrix and PA is an r � k binary incidence matrix with

distinct weight-3 columns, can correct 3 erasures by the direct decoding. Here let integers

y, z, and w (0 � y; z; w � r�1) be row numbers of column in PA that satisfy

yþ zþ w � 1 (mod r). Then the parameter k is determined by ðr2 � 3r þ 2b1Þ=6, where
b1 is the number of solutions of x that satisfy 3x � 1 (mod r), and r is an integer larger

than or equal to 3.

The order of ðy; z; wÞ is used to obtain the parameter k such that the number of cases

determined in Lemma 14.2 (i.e., r2 � 3r þ 2b1) is divided by 3! ¼ 6. The following table

shows the parameters r and k.

Note that the codes also enable direct decoding. This is easily proved, and therefore the

reader is encouraged to attempt the proof.

Example 14.8

The following shows an example code expressed by H with r ¼ 9, k ¼ 9, and n ¼ 18:

ðy; z; wÞ ¼fð1; 4; 5Þ; ð5; 6; 8Þ; ð1; 2; 7Þ; ð0; 2; 8Þ; ð4; 7; 8Þ; ð0; 3; 7Þ; ð0; 4; 6Þ;
ð1; 3; 6Þ; ð2; 3; 5Þg;

r ðr2 � 3rÞ þ 2b1 k

4 4þ 2 1
5 10þ 2 2
6 18 3
7 28þ 2 5
8 40þ 2 7
9 54 9
10 70þ 2 12
11 88þ 2 15
12 108 18
13 130þ 2 22
14 154þ 2 26
15 180 30

CODES FOR DISTRIBUTED STORAGE SYSTEMS 669



In the next subsection we consider a general class of codes satisfying yþ zþ w � a
(mod r) and also 3x � a (mod r), where a is an integer, 0 � a � r � 1. This is a general

class of additive-3 codes mentioned earlier.

14.2.4 Extended BIBD Codes and Additive Codes

The new generalized condition for direct decoding of the triple erasure correcting

codes generates an efficient code that reduces the number of check disk subsystems

[OHDE05a, 05b].

Theorem 14.8 The codes can correct three erased disk data by direct decoding if and

only if any three distinct binary weight-3 column vectors, hi, hj, and hk, in the matrix P
with r rows (	 4) of the codes shown by H ¼ P j I½ � satisfy the following:

wðhi _ hj _ hkÞ 	 5; ð14:22Þ

where x _ y means logical OR of binary vectors x and y.

Proof Let h be a resultant vector of hi _ hj _ hk, then the relation (14.22) says that h has

weight larger than or equal to 5. If each of the corresponding 5 rows of these three distinct

column vectors has weight larger than or equal to two, then these three column vectors

have the number of 1’s larger than or equal to 10. Since each of these three column

vectors has weight three, h should have at most weight 9. This means there exists at least

one row of these three vectors, for example, the z-th row, 0 � z � r � 1, having weight

one. Assume that hi has ‘1’ at the z-th row position, then the other two weight-3 columns

hj and hk have at least two other row positions having patterns ‘01’ and ‘10’ because

these two column vectors are distinct. So the three erasures can be corrected by direct

decoding.

Conversely, for the following three distinct weight-3 column vectors, hi, hj, and hk, for

example, the resultant vector h satisfies wðhÞ ¼ wðhi _ hj _ hkÞ ¼ 4. This means every

row has weight two or three, which does not enable direct decoding. If there exists one row

with weight one in these three column vectors in order to satisfy the direct decoding, such

as hj having ‘1’ at this row position, then the remaining two column vectors hi and hk
should be same. This contradicts the notion that every column is distinct. That is,

wðhÞ 6¼ 4. Therefore wðhi _ hj _ hkÞ 	 5.

H ¼ ½ PA j I � ¼

0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0

1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0

1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0

0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

26666666666664

37777777777775

0

1

2

3

4 :
5

6

7

8

670 CODES FOR MULTIPLE / DISTRIBUTED STORAGE SYSTEMS



Q.E.D.

The following theorem gives an extension code to the one in Theorem 14.1.

Theorem 14.9 If the incidence matrix P ¼ P0 P1½ � satisfies the following conditions,

the matrix H ¼ P j I½ � is the parity-check matrix of the triple erasure correcting codes

that satisfies the direct decoding:

1. Every weight-3 column in P is distinct.

2. Every pair of two weight-3 columns, namely hi and hj, in each of P0 and P1 has 1’s

at most in one same row position, that is, wðhi ^ hjÞ � 1, where x ^ y means logical

AND of binary vectors of x and y.

This theorem can be easily proved such that any three weight-3 columns in P satisfy the

relation (14.22). The following shows how to design P0 and P1 based on the BIBD codes

and the additive-3 codes.

Extended BIBD Codes

Theorem 14.10 The following matrices P0 and P1 show the incidence matrices in BIBD

codes that satisfy Theorem 14.9:

Here Psi , 0 � i � q� 1, is an s� s binary matrix, where s ¼ 2qþ 1, shown in Theorem

14.3, in which the first column vector of s-th degree has two 1’s at the (iþ 1)-th and the

(2q� i)-th positions, and the remaining s� 1 distinct vectors are generated by the first

column vector cyclic shifted in downward by s� 1 times. The information length of

the code defined by H ¼ P0 P1 j I½ � is k ¼ rðr � 2Þ=3, where r � 3 (mod 6).

hi h j hk h hi h j hk

0 0 0

0 0 0
1 0 1
1 1 0
1 1 1
0 1 1
0 0 0

0 0 0

0

0
1
1
1
1
0

0

r .

P0 ¼
Ps0 0 I � � � � � � Psq�1 0 I I

I Ps0 0 � � � � � � I Psq�1 0 I

0 I Ps0 � � � � � � 0 I Psq�1 I

264
375;

P1 ¼
Ps0 0 I � � � � � � Psq�1 0 I

0 I Ps0 � � � � � � 0 I Psq�1

I Ps0 0 � � � � � � I Psq�1 0

264
375:

CODES FOR DISTRIBUTED STORAGE SYSTEMS 671



An example of Ps0 with q ¼ 1, and s ¼ 3 is shown below:

Ps0 ¼
0 1 1

1 0 1

1 1 0

24 35:
From this example we have the incidence matrix P0 with r � k0, where r ¼ 9, and k0 ¼ 12,

the same as considered in Example 14.6.

The maximum numbers of column vectors in P0 and P1 are shown as k0 ¼ rðr � 1Þ=6
and k1 ¼ rðr � 3Þ=6, where r � 3 (mod 6), respectively. Therefore the information length

of the code defined by H ¼ P j I½ � ¼ ½ P0
..
.
P1 j I � can be expressed by

k ¼ k0 þ k1 ¼
rðr � 2Þ

3
;

where r � 3 (mod 6). Since Psi has all weight-2 columns, the matrix P satisfies two

conditions of Theorem 14.9. Therefore H ¼ P0 P1 j I½ � is a parity-check matrix of the

triple erasure correcting codes that satisfies the direct decoding.

Example 14.9 [OHDE05b]

The following shows the parity-check matrix of the (30, 21) codes that satisfies

Theorem 14.9 with parameters of q ¼ 1, and r ¼ 9:

Extended Additive-3 Codes The extended additive-3 code with larger code length

than that of the existing additive code, called an additive-3a code, is defined by the follow-

ing lemmas and theorems.

Lemma 14.3 The number of solutions of an integer x that satisfies 3x � a (mod r),

where 0 � x � r � 1, r is an integer (	 3), and a is also an integer (0 � a � r � 1), is

denoted as ba and expressed as follows:

ba ¼
3 for a ¼ multiple of 3; and r ¼ multiple of 3;
1 for a ¼ any integer; and; r ¼ integer other than multiple of 3;
0 for a ¼ integer other than multiple of 3; and r ¼ multiple of 3:

8<:
The reader is encouraged to prove this. This lemma gives a generalized form for a, that is,
Lemma 14.1 is a special case of a ¼ 1 of this lemma.

0 1 1   0 0 0   1 0 0   1 0 0   0 1 1   0 0 0   1 0 0   1 0 0 0 0 0 0 0 0
1 0 1   0 0 0   0 1 0   0 1 0   1 0 1   0 0 0   0 1 0   0 1 0 0 0 0 0 0 0
1 1 0   0 0 0   0 0 1   0 0 1   1 1 0   0 0 0   0 0 1   0 0 1 0 0 0 0 0 0

1 0 0   0 1 1   0 0 0   1 0 0   0 0 0   1 0 0   0 1 1   0 0 0 1 0 0 0 0 0
0 1 0   1 0 1   0 0 0   0 1 0   0 0 0   0 1 0   1 0 1   0 0 0 0 1 0 0 0 0
0 0 1   1 1 0   0 0 0   0 0 1   0 0 0   0 0 1   1 1 0   0 0 0 0 0 1 0 0 0

0 0 0   1 0 0   0 1 1   1 0 0   1 0 0   0 1 1   0 0 0   0 0 0 0 0 0 1 0 0
0 0 0   0 1 0   1 0 1   0 1 0   0 1 0   1 0 1   0 0 0   0 0 0 0 0 0 0 1 0
0 0 0   0 0 1   1 1 0   0 0 1   0 0 1   1 1 0   0 0 0   0 0 0 0 0 0 0 0 1

H .=

P0 IP1

672 CODES FOR MULTIPLE / DISTRIBUTED STORAGE SYSTEMS



Theorem 14.11 An additive-3a code defined by the parity-check matrix H ¼ P0 j I½ �,
where I is an r � r identity matrix and P0 is an r � k binary matrix with distinct weight-3

columns, can correct three erasures by the direct decoding. Let y, z, and w be row num-

bers of three 1’s in each column in P0 that satisfy yþ zþ w � a mod r, where

0 � a � r � 1. Then the parameter k is determined by ðr2 � 3r þ 2baÞ=6, where ba is

the number of solutions of an integer x that satisfies 3x � a (mod r).

This theorem can be proved such that any two columns in P0 have at most one row with

two 1’s in the same row positions; that is, the AND operation of these two column vectors

results in a vector with weight at most one.

Lemma 14.4 The additive-3a codes with a ¼ 0 have the following information

length:

k ¼ r
ðr � 3Þ

6

� �
þ 1:

Let r be multiple of 3, then the additive-3a code with a ¼ 0 has

k ¼ rðr � 3Þ
6

þ 1:

Example 14.10 [OHDE05a]

For r ¼ 9 and a ¼ 0, the information length k is determined as ðr2 � 3r þ 2baÞ=6 ¼
ð81� 27þ 6Þ=6 ¼ 10, which is larger than the code shown in Example 14.8 by one

where k ¼ 9 and a ¼ 1. In this case the set of three integers is as follows:

ðy; z; wÞ ¼ fð0; 1; 8Þ; ð0; 2; 7Þ; ð0; 3; 6Þ; ð0; 4; 5Þ; ð1; 2; 6Þ; ð1; 3; 5Þ, ð2;
3; 4Þ, ð3; 7; 8Þ; ð4; 6; 8Þ; ð5; 6; 7Þg. This gives the following incidence matrix

P0:

P0 ¼

1 1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1

26666666666664

37777777777775
:

Theorem 14.12 Let P1 be an incidence matrix cyclic shifted downward by one row of the

matrix P0 with a ¼ 0. With using these matrices of P0 and P1, a general class of additive-

3a code C with a ¼ 0 defined by the parity-check matrix H ¼ P0 P1 j I½ � with informa-

tion length k ¼ 2ð rðr � 3Þ=6b c þ 1Þ corrects triple erasures by direct decoding for a given
r ð	 4Þ.

CODES FOR DISTRIBUTED STORAGE SYSTEMS 673



Example 14.11 [OHDE05b]

The following shows the parity-check matrix of the (29, 20) triple erasure correcting

additive-3a (with a ¼ 0) code:

Evaluation Figure 14.7 presents the relation between the information-bit length k

and the check-bit length r of the extended BIBD codes shown in Theorem 14.10 and

the additive-3a codes with a ¼ 0, denoted as additive-30 codes, shown in Theorem

14.12. Note that for k ¼ 120 bits the extended codes, both extended BIBD codes and

additive-3a codes, require r ¼ 21 bits while the existing BIBD codes and the existing

additive-3 codes with a ¼ 1, denoted as additive-31 codes, require r ¼ 33 bits.

Figure 14.8 shows the relation between the group size multiplied by three and the

number of check disk subsystems r. The group size is an average row weight in H that is

equal to the weight ofH (i.e., 3k þ r) divided by the number of rows r (i.e., 3k=r þ 1). The

group size indicates the average number of disk subsystems that should be read in order to

recover single-disk subsystem failures. This influences the distributed system’s

performance, and therefore it is an important metric of system performance. If the group

size is large, then the system has to read the data from a large number of nonfailed disks

in order to recover the failed disk data, which eventually degrades system performance.

Here we assume that three times as many as the (group size –1) of the disk subsystems

1 1 1 1 0 0 0 0 0 0    1 0 0 0 0 0 0 1 1 0    1 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0    1 1 1 1 0 0 0 0 0 0    0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0    1 0 0 0 1 1 0 0 0 0    0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 1 1 0 0    0 1 0 0 1 0 1 0 0 0    0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0 1 0    0 0 1 0 0 1 1 1 0 0    0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0 1    0 0 0 1 0 0 1 0 1 0    0 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 1 1    0 0 0 1 0 1 0 0 0 1    0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 1    0 0 1 0 1 0 0 0 1 1    0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 1 0    0 1 0 0 0 0 0 1 0 1    0 0 0 0 0 0 0 0 1

H .=

IP0 P1

10

20

30

40

50

C
he

ck
-b

it 
le

ng
th

 r

Information-bit length k

OWC SEC-DED code

BIBD code

Extended BIBD code

16 36 64 100 144 196 256 324 400

Additive-3  code0

6
20

7
35

8
56

9
k = 84

r = 10
k = 120

r = 11 12

165

13

220

14

286

15

364 455

9

15
30 k = 65

r = 15

k = 63
r = 21

k = 133
r = 21

k = 108
r = 27 k = 117

33

39

45

51

57

27
225

33

234

341

315

39

408

165

(Extended code)

Additive-3  code1

k = 35

70

176

247

330

425

Figure 14.7 Comparison of information-bit lengths and check-bit lengths of the distributed storage system.

674 CODES FOR MULTIPLE / DISTRIBUTED STORAGE SYSTEMS



(i.e., 3�(3k=r) ) are required in order to recover three erased disk data. In this figure

the cases of the ‘OWC SEC-DED code’, namely odd-weight-column SEC-DED code, are

out of the 9k=r line. Because the matrix P in H of the code is constructed by all distinct

weight-3 columns, which does not necessarily satisfy the conditions of direct decoding,

the row operations are performed to satisfy the conditions of direct decoding, which will

finally increase the number of 1’s in the row.

EXERCISES

14.1 Prove that the code defined by Eq. (14.4) over the ring of binary polynomial

MpðxÞ ¼ ðxp � 1Þ=ðx� 1Þ ¼ xp�1 þ xp�2 þ � � � þ xþ 1, where p is prime, is

MDS.

14.2 Prove that the code Cp has the minimum distance r þ 1 for r � 3 by the relation

shown in Eq. (14.11).

14.3 Prove that the codes Cp with r ¼ 4 and 5 are MDS for all p 6¼ 3.

14.4 Prove that in EVENODD the diagonal parity Q can be obtained by exclusive-OR

of the bits in two parity columns.

14.5 Prove that if p is not prime in EVENODD, then the code has minimum distance 2.

14.6 Assume that the following EVENODD array with p ¼ 5 has an erroneous column

data in the array. Indicate how to correct the erroneous array.

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80

Check-bit length r

k = 400

k = 120

k = 30

Extended BIBD code

N
um

be
r 

of
 d

is
k 

su
bs

ys
te

m
s 

w
ith

 r
ea

d 
op

er
at

io
ns

OWC SEC-DED code
(OWC : odd-weight-column)

BIBD code

0Additive-3  code

1Additive-3  code

9k/r

Figure 14.8 Relationbetweencheck-bit lengthandnumberof disksubsystemswithreadoperations for three
disks recovery.

1 0 0 1 0 1 1
0 1 1 0 0 1 0
1 1 0 0 0 0 1
1 1 0 1 1 1 0

EXERCISES 675



14.7 Prove that the X-code has a column distance 3; that is, it is an MDS array code

with size n� n, if and only if n is a prime number.

14.8 Encode the following 5� 7 information array of the X-code.

14.9 Decode the following two 5� 5 binary arrays of the X-code, where the first array

includes a single column error and the second array includes two erased columns.

14.10 Derive the relations (14.19) and (14.20).

14.11 Design a Steiner system with 2qþ 1 ¼ 5 based on Theorem 14.3.

14.12 Design the BIBD code with t ¼ 4 based on Theorem 14.6.

14.13 Show that the code indicated in Theorem 14.7 enables direct decoding.

14.14 Find five columns of PA in Theorem 14.7 for r ¼ 7; that is, find five combinations

of three integers of ðy; z; wÞ that satisfy Lemma 14.2.

14.15 Prove that ðr2 � 3r þ 2b1Þ=6 has always integer values for a given integer r and

b1 defined by Lemma 14.1. Also prove that k indicated in Theorem 14.7 always

takes integer values.

14.16 Design the (80, 65) extended BIBD code with parameters q ¼ 2 and s ¼ 5.

14.17 Prove Lemmas 14.3 and 14.4.

14.18 Prove Theorems 14.9 through 4.12.

14.19 Prove that the code C defined by the binary parity-check matrix H ¼ ½ P j I �,
where I is an r � r identity matrix and P an r � k binary matrix with distinct

weight-4 columns, can correct four erasures if the following relation is satisfied

for any four columns, ui, uj, uk, and um in P:

wðui _ uj _ uk _ umÞ 	 11;

where wðvÞmeans the weight of binary vector v, and x _ y expresses logical OR of

two binary vectors x and y.

14.20 Discuss additive-4 codes.

0 1 2 3 4 5 6

0 1 0 1 1 0 0 0
1 0 1 1 0 0 1 0
2 1 1 0 0 0 0 1
3 0 1 0 1 1 0 0
4 1 0 0 1 1 0 0

0 1 2 3 4

0

1

2

3 1st parity row

1
0
0

0
1

0
1
0

0
1

1
1
1

0
0

1
1
0

1
1

1
1
1

0
1

1
0
0

0
1

?
?
?

?
?

?
?
?

?
?

1
1
0

1
1

1
1
1

0
14 2nd parity row

1st parity row

2nd parity row

676 CODES FOR MULTIPLE / DISTRIBUTED STORAGE SYSTEMS



REFERENCES

[ALVA02] G. A. Alvarez, W. A. Burkhard, and F. Cristian, ‘‘Tolerating Multiple Failures in

RAID Architectures with Optimal Storage and Uniform Declustering,’’ Proc. 24th IEEE Int.

Symp. on Computer Architecture (June 2002): 62–72.

[BLAU93] M. Blaum and R. M. Roth, ‘‘New Array Codes for Multiple Phased Burst Correction,’’

IEEE Trans. Info. Theory, 39 (January 1993): 66–77.

[BLAU94] M. Blaum, J. Brady, J. Bruck, and J. Menon, ‘‘EVENODD: An Efficient Scheme

for Tolerating Double Disk Failures in RAID Architectures,’’ IEEE Trans. Comput., 44

(February 1994): 192–202.

[BLAU96] M. Blaum, J. Bruck, and A. Vardy, ‘‘MDS Array Codes with Independent Parity

Symbols,’’ IEEE Trans. Info. Theory, 42 (March 1996): 529–542.

[FENG05] G.-L. Feng, R. H. Deng, F. Baq, and J.-C. Shen, ‘‘New Efficient MDS Array Codes for

RAID Part I: Read-Solomon-Like Codes for Tolerating Three Disk Failures,’’ IEEE Trans.

Comput., 54 (September 2005): 1071–1080.

[GIBS89] G. A. Gibson, L. Hellerstein, R. M. Karp, R. H. Katz, and D. A. Patterson, ‘‘Failure

Correction Techniques for Large Disk Arrays,’’ Proc. 11th IEEE Int. Conf. on Computer

Architecture (April 1989): 123–132.

[GIBS92] G. A. Gibson, Redundant Disk Arrays, Reliable Parallel Secondary Storage, MIT Press

(1992).

[HALL86] M. H. Hall Jr., Combinatorial Theory, Wiley (1986).

[HELL94] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, and D. A. Patterson, ‘‘Coding

Techniques for Handling Failures in Large Disk Arrays,’’ Algorithmica, 12 (1994): 182–208.

[OHDE05a] H. Ohde and E. Fujiwara, ‘‘A Code Construction Method for Distributed File Memory

Systems’’ (in Japanese), IEICE Technical Report, FIIS 05, no. 162 (June 2005): 1–8.

[OHDE05b] H. Ohde and E. Fujiwara, ‘‘A Class of Low Density Codes for Distributed Storage

Systems’’ (in Japanese), Proc. 2005 Forum on Information Technology (September 2005): 6S-1.

[XU99a] L. Xu and J. Bruck, ‘‘X-Code: MDS Array Codes with Optimal Encoding,’’ IEEE Trans.

Info. Theory, 45 (January 1999): 272–276.

[XU99b] L. Xu, V. Bohossian, J. Bruck, and D. G. Wagner, ‘‘Low-Density MDS Codes and Factor of

Complete Graphs,’’ IEEE Trans. Info. Theory, 45 (September 1999): 1817–1826.

REFERENCES 677





Index

Abelian, 25

group, 4, 25, 26, 34

access time, 119

increase, 121

overhead, 121

penalty, 121

adaptive cross parity code, see also AXP

code, 466

adder, 13, 518, 559

additive code, 649, 668, 670

-30 code, 674, 675

-31 code, 674, 675

-3a code, 672–674

-3 code, 668, 670, 671, 674

-t code, 668

additive coset, 222–229

additive error, 600

additive group, 294, 665, 667, 668

address reallocation, 119

address translation

array, 119, 578

buffer, 577

(ADEC)4-S4ED code, 258

(ADEC)8-S8ED code, 258

(ADEC)b-SbED code, see also adjacent double-bit

within b-bit byte error correcting - single

b-bit byte error detecting code, 257

ADEC-S4ED code, 257

ADEC-SbED code, see also adjacent double-bit

error correcting - single b-bit byte error

detecting code, 257

ADR, see also alternate data retry, 85, 552

algebra, 19, 23

algebraic parallel decoding, 109

algorithm

Berlekamp-Massey, 62, 297, 306, 325, 509,

636, 650

Euclid, 636

Euclidean, 297, 325, 507, 509

set partitioning, 614–618, 622

shortening, 103

alphanumeric character, 632, 633

symbol, 9, 600

a-particle, 4, 5, 9, 97, 104, 110, 113, 187, 244,
245, 264, 375

-induced plasma short, 121

alternate data block, 487

alternate data retry, see also ADR, 85, 552

alternate data track, 507

ALU, see also arithmetic logic unit, 518, 552,

562–564, 567, 570, 576

operation, 565

AN code, 552

APC, see also augmented product code, 121

Code Design for Dependable Systems: Theory and Practical Applications, by Eiji Fujiwara
Copyright # 2006 John Wiley & Sons, Inc.

679



arithmetic checking, 571

residue-check, 639, 642

arithmetic error detecting code, 571

arithmetic logic unit, see also ALU, 518, 552,

562

circuit, 48

arithmetic ring operation, 651

array code, 475, 499, 637, 649–653, 655, 658

associate vector, 624, 626, 627

associative, 25

law, 34

associativity, 23

asymmetric error

masking code, 121

model, 9

symbol error set, 601, 608

AUED, see also all unidirectional error

detection, 583

augmented product code, 121

availability, 517, 574

AXP code, see also adaptive cross-parity code,

466, 478

B3EL code, 399, 400

background scrubbing, 575, 577, 578

backward shifting register, 473

balanced code, 439, 441, 637, 642

balanced incomplete block design, see also

BIBD, 664

code, see also BIBD code, 649

bank, 239, 281

bar code, 632

BCH code, 58–60, 105, 107, 234, 439

-based code, 106

binary, 58, 60

cyclic, 575

DEC, 107, 109, 110, 232

DEC-TED, 575

nonbinary, 58, 61

primitive binary, 59, 60

t-error correcting, 58

triple-bit error correcting, 59

triple-error correcting, 64

with Hamming distance e+2, 393

B-code, 649, 655

BED, see also burst error detecting, 188

code, 205

BER, see also bit error rate, 439

Berger code, 518, 529, 531, 580, 581

b-grouped parity checkable code, 199, 202,

204

b-grouped parity checking, 197–199

BIBD, see also balanced incomplete block

design, 664, 665

BIBD code, see also balanced incomplete

block design code, 649, 664, 671, 674,

675

bi-directional, 9

bijection, 24

bijective mapping, 626

binomial coefficient, 449

bit/byte error control code, 584

bit error rate, see also BER, 231, 439

bit-interleaved parity disk array, 498

bit line, 112, 116, 118, 122, 123

bit-sliced decoder, 110

bitwise complement, 85, 87

Bl1
ECjBl2

EC code, 459

(Bl1
EC)n0-(Bl2

EC)n1 code, 459

(BlEC)n0-(SEC)n1 code, 431–437

BlECjSEC code, see also Burst l-bit Error

Correcting j Single-bit Error Correcting
code, 427–429, 432, 460

BlEL code, see also Burst l-bit Error Locating

code, 396–399

block, 171, 172, 178, 239, 242, 282, 373, 375,

376, 378, 382, 383, 386, 387

block code, 33, 34, 36, 42, 43, 47, 439, 615,

616, 618, 621

block design, 649, 664

block-interleaved distributed-parity disk array,

499

block-interleaved parity disk array, 499

block modulation, 439, 440

Boolean

difference, 564, 566

expression, 138

function, 354, 355

bound, 172

Reiger, 68, 433

Singleton, 247, 253, 499

bug, 3

built-in testing, 551

burst error, 7–9, 18, 19, 53, 56, 179, 188, 199,

205, 396, 398, 402, 465

control UEC code, 427

control UEP code, 431

correcting code, 402, 465

correcting cyclic code, 68

correcting Fire code, 68, 403, 404

detecting code, 264

detecting SEC-DED code, 197

detection, 56

length, 18, 68

680 INDEX



locating code, 373, 396, 397

location, 338, 342, 398, 402

pattern, 56, 338

polynomial, 489

Burton code, 70, 139–141, 143

bus

interface, 578

-line circuit, 583, 584

byte, 7, 65

-error correcting AN code, 552

interleaving, 506

length, 18, 156, 168, 198, 205, 217, 218,

220, 226

-organized chip, 205, 263, 375

-organized system, 187, 244, 265, 373, 375

-sliced adder, 562, 563

byte error

control code, 133, 171, 178, 238, 263, 264

correcting / detecting code, 133

detecting code, 264

detecting SEC-DED code, 205

detection, 174, 279, 298

detector, 278, 279

locating code, 376, 389

pattern, 197, 199, 276, 280, 281, 316

pointer, 167, 227

syndrome, 191

canonical form, 140

carry, 553, 560

checking, 576

-dependent sum adder, 556, 557

look-ahead, 553

-look-ahead adder, 555, 557

cascaded comparator, 550

cascaded two-rail code checker, 550

cascaded XOR, 537

CCITT, 56

CD, see also code disjoint, 465, 503, 507, 526,

528, 530

CD, see also compact disc

-R, 505

-ROM, 504

-RW, 506

-WORM, 505

checkpoint, 16

interval, 16

technique, 16

character recognition system, 9, 599–601, 614,

622, 623

check-bit prediction, 569

check disk overhead, 499, 500, 663, 650

checker, 11, 16, 517, 518, 534, 567

cascaded two-rail code, 550

code, 531, 534, 562

complementary duplication, 543, 544

duplication, 518, 531, 532

generalized prediction, 543

input regeneration, 531–533

m-out-of-n code, 531, 536

output noncodespace, 534

output space, 534

parity, 89, 198

parity-based prediction, 549

parity code, 518, 531, 536

parity prediction, 518, 531, 543

prediction, 531, 534, 536, 544, 562

residue code, 518, 531

separable code, 536

two-rail code, 536, 538, 539, 541

check part, 42

checksum, 660

code, 552, 560, 563

check symbol prediction circuit, 562, 563

Chen code, 166, 168, 169

Chien’s high-speed decoding, 348

Chien’s search, 63

Chinese remainder theorem, 490

chromatic number, 608

CIRC, see also cross-interleaved RS code, 465,

501, 504, 507

circuit

complexity, 166, 346

delay, 354

under check, see also CUC, 552

circular permutation matrix, 649

closed under addition, 222

closure, 23, 25

cluster, 133

clustered data, 375

clustered symbol, 396

CODE 16K, 632

CODE 49, 632

code concatenation, 152

code design, 290

method, 217, 232

process, 16–18

technique, 266

code disjoint, 526, 530, 534, 536, 539, 544, 546,

549, 560

property, 534–536

code polynomial, 53–55, 57, 59, 68

code preserving, 522, 523

code rate, 622, 631

INDEX 681



codeword, 36, 40–43, 46, 54, 86, 108

input, 526, 545

number of, 619, 622, 631

numeral, 414

structure, 638

coding technique, 16

coefficient

matrix, 294, 323

vector, 29, 57, 134, 139, 140, 381, 653

cold standby sparing, 14

column

checksum, 661

rank, 36

space, 36

combination code, 552

combinational logic circuit, 77, 335, 352, 519

communication system, 65, 77, 284, 373

commutative, 25

group, 24

compact disc, see also CD, 503

digital audio system, 503

companion matrix, 30, 38, 78–80, 83, 134, 135,

137, 139, 141, 467, 468, 572, 653

comparator, 578

comparison check, 538

complementary, 539

duplication, 538, 578

retry, 13

complemented duplication code, 85

complete graph, 632

complex m-spotty byte error, 308

control code, 301, 308, 319

St/bEC-Dt 0/bED code (Single t/b-Error

Correcting - Double t 0/b-Error Detecting
code), 330

complex s-spotty byte error control code, 330

computer-generated code, 208, 487, 488

polynomial code, 487, 490, 497

concatenated code, 600

concatenation, 199, 203, 216

concurrent error detection, 574, 575

concurrent maintenance, 575

concurrent repair, 576

concurrent upgrade, 576

confusion matrix, 601, 615, 617, 618, 622

conjugate, 32, 38, 59

constant weight, 202

control flow check, 11

conversion matrix, 434, 437

converted code, 171, 178

Chen code, 169, 171, 173

SbEC-DbED code, 171

converted matrix, 158

correctable error, 210

pattern, 47

correct codeword, 520, 523, 527, 529

correction

adjacent-symbol-transposition error, 630

asymmetric error, 629

byte plus single-bit error, 416

deletion error, 630

double-bit error, 233, 238

fixed b-bit byte error, 415, 416

insertion error, 631

multiple bytes error, 636

random double-bit error, 231

single-bit error, 188, 238, 270, 386, 398, 402

single-byte error, 227, 233, 269, 284

single error, 138, 139

weight-3 byte error, 238

weight-4 byte error, 238

coset, 25, 47, 217, 280, 281

decomposition, 25, 46

leader, 25, 47

of subfield, 222

cosmic ray, 5, 97, 104, 231, 264

cover, 581

coverage, 495

crash failure, 5, 6

CRC, see also cyclic redundancy check, 466,

496

code, 505

cross-interleaved code, 466

RS code, see also CIRC, 465, 501

cross-parity

check, 114, 115, 475

code, 116, 121

syndrome, 477

crosspoint fault, 580

crosstalk, 4

cryptographic key storage, 578

CUC, see also circuit under check, 552

cyclic burst error, 428, 429

cyclic check, 56

cyclic code, 11, 53, 59, 68, 69, 166, 168, 196,

494, 500, 659

BCH code, 575

burst error correcting code, 351

Hamming code, 56

parity-check code, 56

SbEC-DbED code, 168

SEC-DED-S4ED code, 197

cyclic equivalence class, 90, 91

cyclic order, 93

682 INDEX



cyclic redundancy check, see also CRC, 466

cyclic shift, 53, 89, 90, 650, 651, 654

D2/8EC-[T2/8ED]2 code, 330

D2/8EC code, 300

D3/8EC code, 300

D3/8EC-S8ED code, 300

D8EC code, 300, 307, 316, 318, 326

DAT, see also digital audio tape, 466

data

cache, 575, 585

compression, 450

entry system, 599, 600, 614, 623

integrity, 575

I/O circuit, 239

path circuit, 518

rate, 487

transfer circuit, 562

database word, 10

data-path logic circuit, 48

DATUM, 649

Davydov-Labinskaya S4EC-DEC code, 233,

234, 238

Davydov-Tombak code, 101

DEC (Double-bit Error Correcting), 105

code, 97, 233

decimal number, 10, 414

decoded SER, 622, 623

decoder, 45, 166, 263, 388, 389, 404, 572

output check, 575

decoding, 61, 105, 276

Chien’s high-speed, 348

circuit, 100, 115, 350, 386, 389, 438, 518

delay, 12, 77, 263

Meggitt, 348

parallel, 142, 335, 336, 346, 351

probability, 388

QR code, 636

RS code, 297, 298, 306, 316, 325

sequential, 335, 348

speed, 18, 19

DEC-TED (Double-bit Error Correcting -

Triple-bit Error Detecting), 105

code, see also double-bit error correcting and

triple-bit error detecting code, 575

DED (Double-bit Error Detecting), 50

code, see also double error detecting code,

408

defect, 3, 7, 120, 456, 466, 495

skip, 487, 495

-tolerant technique, 119, 507

degenerate cyclic equivalence class, 90

dependable system, 3, 6, 11, 373, 571

design, 10

detectable error, 520

detection

all unidirectional error, 583

burst error, 56

byte error, 174, 279

double-byte error, 145, 227, 284

fixed b-bit byte error, 416

single-burst error, 188

single byte error, 188, 286

uncorrectable error, 203

determinant, 39

nonzero, 59

diagnostic test pattern, 105

diagonal element, 84

diagonal parity, 121, 656

diagonal redundancy, 655

digital audio tape, see also DAT, 466

digital versatile disc, see also DVD, 500

digit parity, 560

dimension, 35, 36, 81, 249, 381

direct decoding, 649, 663, 664, 666,

669–675

discrepancy, 63

disjoint subset, 46, 47

disjunctive canonical form, 543

disk

array, 488, 497, 649

cache memory, 97

controller, 497, 662

failure, 650, 662

subsystem, 661–663, 674

distance, 44, 65, 156, 157, 229

Euclidean, 616

Hamming, 39, 302, 404, 619, 620

minimum, 40, 41, 43, 44, 59, 98, 166, 311,

395

minimum Hamming, 40, 49, 65, 234, 394,

395, 415, 560, 623, 663

minimum m-spotty, 301, 302

distributed storage system, 649, 661–663, 665

distributive law, 26, 34

double 8-bit byte error correcting code, see also

D8EC code, 300

double-bit error correcting and triple-bit error

detecting code, see also DEC-TED code,

105, 575

double-bit error correcting code, see also DEC

code, 97, 105

double byte error correcting code, see also

D8EC code, 307, 326

INDEX 683



double error detecting code, see alsoDED code,

50, 546

double-precision horizontal and vertical parity

check, 116

doubly encoded RS SbEC code, 504

DRAM, see also dynamic RAM, 97, 171, 264

dual code, 73

duplicate carry, 556, 558

duplicate complementary logic, 578

duplicated circuit, 533

carry logic, 562

flip-flop, 550

duplication, 11, 14, 576, 580

check, 538

checker, 518, 531, 532

code, 534

dust particle, 7, 465, 466

DVD, see also digital versatile disc, 465, 500,

507

-R, 507

-RAM, 507

-ROM, 507

þRW, 507

-RW, 507

dynamic RAM, see also DRAM, 97

ECC circuit, 112, 119–121, 123

echelon canonical form, 37, 38, 140, 141, 227

8-modularized organization, 164

electro magnetic wave, 4

electro-migration, 4

electron, 5

-hole pair, 5

elementary row operation, 37, 43, 58

empty set, 188, 377

encoding/decoding circuit, 12, 160, 164

encoding matrix, 42, 568

EP (error propagating), 530, 531

equal-weight-row code, 78, 202, 210, 216

erasable optical disk, 506

erasure, 41, 475

correcting code, 650

correction, 104, 105, 465, 498

pointer, 466

track, 475

zone, 41

erroneous codeword output, 521

erroneous decoding, 101, 387, 623

error

0-, 9

1-, 9

additive, 600

adjacent-symbol-transposition, 599, 623,

624, 626, 627, 632

asymmetric, 9, 18, 599, 602, 623–627

(b-1)/b-, 281

b-adjacent, 199

bit, 18, 133, 145, 146, 187, 245

bit plus byte, 18, 171, 244–247, 248, 276,

289, 300

block, 244

burst, 7–9, 18, 19, 53, 56, 69, 143, 179, 188,

199, 205, 351, 396–398, 402, 465

byte, 7–9, 18, 53, 142, 150, 159, 171, 172,

174, 175, 187, 188, 194, 217, 229,

230–232, 239–241, 244, 245, 249, 263,

264, 276, 282, 283, 320, 351, 374, 386,

404, 406

carry, 556

carry plus sum bit, 556

clustered, 7, 8

complex spotty byte, 308

cyclic burst, 428, 429

deletion/insertion, 599, 623, 624, 626, 627,

632

detectable, 520

e-asymmetric symbol, 601, 603

equal, 18

hard, 7, 105, 154, 578

hard-plus-soft, 104, 105

human-made, 599

intermittent, 7, 533

low-density byte, 263

M-ary asymmetric, 599

mixed type, 7

m-spotty byte, 264, 290, 301, 302, 306, 308,

312, 314

multiple, 227, 264

permanent, 7

quadruple, 101, 207

random, 7–9, 53, 465

random double-byte, 227

random bit, 9, 18, 154, 187, 197, 227, 230–233,

237, 238, 240, 244, 264, 289, 290

single-bit, 143, 188, 190, 191, 194, 197, 199,

220, 224, 229, 246, 263, 289, 375, 377–379,

382, 383, 389, 390, 392

single-byte, 142, 143, 149, 151, 152, 159,

160, 171, 172, 175, 188, 190, 191, 220,

224, 229, 245–247, 264, 274, 276, 298,

374–379, 382, 383, 390, 392, 560

soft, 5, 7, 97, 104, 105, 111, 112, 154, 187,

245, 375, 578

solid, 105

684 INDEX



sparse byte, 263

spotty byte, 18, 263, 264, 290, 301, 308, 320,

321, 325

s-spotty byte, 264, 290, 291, 296, 301,

302

subtractive, 600

sum bit, 556

symmetric, 9, 18

t/b-, 264, 266–268, 274, 276, 282–284, 291,

292, 301, 302, 308, 309, 312, 313, 319,

404, 405, 407

track, 467

transient, 7, 9, 284

uncorrectable, 53, 105, 110, 199, 210, 312,

343, 489, 505

undetectable, 520

unequal, 18

unidirectional , 9, 18, 125, 534, 580, 583,

637, 642, 643

unidirectional clustered, 637, 638

error avoidance, 578

error byte, 150, 151

pointer, 138, 145, 146, 160

position, 486

error checking concept, 10, 11

error control level, 413, 415

error correcting code, 6, 12, 133, 379, 392, 408,

409

error correction, 17, 18, 373, 407

circuit, 146

period, 113

error corrector, 244, 278, 279, 353

error decoding circuit, 112, 569

error detecting code, 11, 286, 379, 392, 409,

518, 534

error detection, 17, 18, 210, 278, 317, 373, 398,

407, 517, 576

capability, 145, 146, 170, 171, 179, 206, 216,

227, 244, 289, 298, 300, 307, 316, 318,

387, 396, 421, 426

circuit, 202, 203, 208, 210, 531

logic, 227

mechanism, 10

method, 11

probability, 19

procedure, 10

error detector, 353

error directionality graph, 601–603, 607–609,

625, 626, 628, 631, 632

error discriminating code, 373

error graph, 9

error locating circuit, 386–388

error locating code, 17, 18, 373–375, 379, 389,

396, 404, 405, 408, 409

block, 375, 376

burst, 373, 396, 397

byte, 376, 389

error location, 17, 18, 62, 194, 233, 266, 325,

373, 407, 569

number, 62, 63, 65, 67

polynomial, 61–64, 67

register, 489

technique, 104

error pattern, 45, 47, 61, 229, 232, 569

calculation, 352

calculator, 343–345, 349

generation, 336, 337, 339, 344

generator, 343–345

register, 489

error pointer, 105, 124, 167, 569

error polynomial, 56, 63, 65, 67

error position calculator, 490

error preserving, 525, 526

property, 534, 536

error prevention, 576

error propagation, 6

error rate, 18

error recovery, 576

capability, 456, 457

technique, 10, 11

error secure, see also ES, 518, 525, 530, 531

error set, 377

error trapping, 492

error type, 18

error value, 17, 18, 66, 68, 145

error vector, 45, 65, 336, 337

ES, see also error secure, 518, 525, 530, 531

ESS (electronic switching system), 571

Euclidean algorithm, 297, 325, 507, 509

Euclidean distance, 616

evaluator polynomial, 66

EVENODD, 649, 655, 657, 658

even-parity, 537, 657

bit, 522

code, 48, 523, 560

codeword, 522

data, 12

encoded bus circuit, 12

even-weight

column vector, 381

row, 85

-row code, 84, 86

-row condition, 85

-row SEC-DED code, 105

INDEX 685



exclusive-OR tree, see also XOR tree, 4, 336,

355

exerciser diagnostic pattern, 105

expanded code, 385

exponent, 29, 57, 80, 135, 139, 140, 176, 178,

196, 197, 351, 467, 473

extended code, 168

additive-3 code, 672

BIBD code, 670, 671, 674, 675

extension code, 671

extension field, 27, 250, 650

extra overall parity bit, 193

factor, 54, 57

failure, 133, 245

catastrophic, 5, 6

cell, 244

chip, 244, 245

crash, 5, 6

disk, 650, 662

memory cell, 187

multiple-disk, 649, 650

system, 6, 10, 11

temporary, 5, 6

timing, 6

value, 6

fan-out-free circuit, 552

fault

activation, 6

asymmetric, 9, 121

bridging, 578, 580

cell, 578

crosspoint, 580

hard random single-cell, 123

hardware, 4

human-made, 4, 9

intermittent, 4, 7, 12

isolation, 373, 574, 575

line, 580

location, 517

mask, 578

null, 519

permanent, 12, 13

physical, 4, 8, 9

p-subarray, 171

secure, 520, 521, 523, 525

secureness, 520, 523, 525

-secure property, 521, 534

sequence, 523, 524, 527, 531

single-subarray, 171

software, 14

solid, 4

stuck, 518

stuck-at, 529, 580

stuck-at ‘0’, 4, 13

stuck-at ‘1’, 4

subarray data, 282

symmetric, 9

transient, 4, 12, 517, 518

unidirectional, 9, 520, 529, 580

FbECjSEC code, see also Fixed b-bit byte Error

Correcting j Single-bit Error Correcting
code, 415–421

FbECjSEC-DED code, see also Fixed b-bit byte

Error Correcting j Single-bit Error
Correcting - Double-bit Error Detecting

code, 415–417, 424–426

FbECjSECjSED code, see also Fixed b-bit Error

Correcting j Single-bit Error Correcting j
Single-bit Error Detecting code, 458

(Fbþ S)EC code (Fixed b-bit byte plus Single-

bit Error Correcting code), 417

field, 26, 228

element, 33, 34

finite, 26, 28, 39, 221, 222, 228, 249, 250

isomorphic, 30, 135

field programmable gate array, see also FPGA,

518

finite Euclidean geometry, 205

finite group, 25

finite element, 26

Fire code, 68, 152, 335, 346–348, 350, 354,

404, 428, 429, 436, 439, 450, 454, 456,

457, 465, 487–489, 497

B3EC, 403, 404

burst error correcting, 68, 403, 404

generalized, 491

interleaved, 347, 348

single-burst error correcting, 69

3-bit burst error correcting, 404

5MR, 14

fixed-area, 440

error, 440, 441, 444–446, 448

Fixed b-bit byte Error Correcting j Single-bit
Error Correcting and Double-bit Error

Detecting code, see also FbECjSEC-DED
code, 415

Fixed b-bit byte Error Correcting j Single-bit
Error Correcting code, see also

FbECjSEC code, 415

Fixed b-bit byte Error Correcting j Single-bit
Error Correcting j Single-bit Error
Detecting code, see also FbECjSECjSED
code, 458

686 INDEX



fixed-byte, 414–417, 424

error protection code, 416

Fixed l-symbol Error Correcting j Single-symbol

Error Correcting code, see also FlECjSEC
code, 440

Fixed l-symbol plus Single-symbol Error

Correcting code, see also (Flþ S)EC code,

440

FlECjSEC code, see also Fixed l-symbol

Error Correcting j Single-symbol

Error Correcting code, 440, 441, 443,

448

flip-flop, 366, 367

J-K, 542, 550, 552

toggle, 542, 550, 552

floor, 99

(Flþ S)EC code, see also Fixed l-symbol plus

Single-symbol Error Correcting code, 440,

444, 448

focusing shift, 500

(4, 2) concept architecture, 572

(4, 2) concept machine, 231, 572

FPGA, see also field programmable gate array,

18, 263, 518

frame, 338, 339, 396–399, 402

FS, see also fault secure, 520, 521

Fujiwara SbEC code, 143, 144, 146

full-sum parity check, 556, 562

full-sum parity-checked adder, 534

Galois field, see also GF, 23, 26, 31,

600

gap length, 93

vector, 93

gate, 227, 388

sharing, 365

Gaussian distribution, 353, 362

GCD, see also greatest common divisor, 28

generalized code, 143

m-spotty byte error control code, 290, 301

SEC-DED-BED code, 197

s-spotty byte error control code, 290

2-redundant code, 139

generalized prediction checker, 543

generating set, 228–230

generating submatrix, 88

generation function, 553

generator matrix, see also G matrix, 34, 44, 45,

55

generator polynomial, 48, 54, 56–59, 64, 65, 67,

139, 140, 143, 166, 168

GF, see also Galois field, 26

glitch, 4, 336, 353–358, 365–367

accumulation, 356, 365

generation, 355

propagation, 356, 366

G matrix, see also generator matrix, 45

GPC, see also generalized prediction checker,

546, 547

graph coloring problem, 607, 608

greatest common divisor, see also GCD, 28

group, 23, 24

group size, 499, 500, 650, 663, 674

half-sum, 553

Hamming

bound, 247

code, 134, 139, 149, 152, 350, 606, 607

cyclic code, 56

distance, 39, 302, 404, 619, 620

distance-3 code, 98, 113

distance-4 code, 98

encoded bus, 354

extended cyclic code, 270

interleaved code, 346, 347

S4EC code, 217, 226

SbEC code, 253

SEC code, 59, 115, 120, 152

SEC-DED code, 53, 57, 98, 393, 663

single-bit error correcting code, 152, 270

single-error correcting code, 49, 134

single-symbol error correcting code, 137, 266

-type 2-redundant code, 139

-type code, 137, 138, 153, 154

-type S2EC code, 146

-type SbEC code, 134, 137, 138, 144

weight, 39, 40, 244, 245, 248, 250, 264,

266–268, 290, 302, 308, 395

hard disk drive, see also HDD, 497

hard error, 7, 105, 154, 578

hardware fault, 4

HDD, see also hard disk drive, 497

hierarchical organization, 239, 375

H matrix, see also parity-check matrix, 45, 57,

58, 108

weight, 205, 253

holographic memory, 10, 335, 413, 439, 440,

450, 465

homomorphism, 24, 267, 271, 285, 304, 323

Hong-Patel code, 149, 150, 153, 270, 278

maximal SbEC code, 269

S2EC code, 155

Horiguchi-Morita code, 107

horizontal and vertical parity, 113, 114, 121

INDEX 687



horizontal parity, see also horizontal and

vertical parity, 114, 655, 657

hot standby sparing, 14

Hsiao code, 98, 101

odd-weight-column code, 358

SEC-DED code, 368

human mistake, 9

hybrid redundancy, 14

ideal, 26

identity element, 23, 25, 83

imaginary row, 653, 657, 659

Imai-Kamiyanagi code, 107

imperfection, 488, 500

inadmissible recording pattern, 469

incidence, 113

matrix, 666, 667, 669, 671–673

incorrect codeword, 40

infinite field, 39

information

bit, 42

-bit length, 77, 98

part, 42

initial activation, 6

injective, 294, 627

homomorphism, 294–296, 310, 315

mapping, 441, 600, 638

inner product, 35

input

codespace, 519, 546

codeword, 520, 527, 536

error, 567

noncodespace, 519, 546, 560

noncodeword, 520, 544

space, 519

instruction

cache, 575, 583, 585

retry, 574

integer, 561

set modulo q, 49

interleaved

code, 71, 335, 350, 572, 573

Fire code, 347, 348

Hamming code, 346, 347

layout, 635

RS code, 481, 488

interleaving, 71, 335, 427, 465

degree, 71, 350

method, 71

intermittent error, 7, 533

intermittent fault, 4, 7, 12

invalid logic output check, 575

inverse, 23, 62, 65

logic, 532

operation, 532

inversion, 569

inverter, 89

free, 528, 580

inverting circuit, 343, 344, 402

irreducible, 81

polynomial, 28, 60, 69, 70, 80, 139, 467, 636

isomorphic, 24

isomorphism, 24

J-K flip-flop, 542, 550, 552

Kaneda-Fujiwara SbEC-DbED code, 157, 162,

166

kernel, 294

keyboard input system, 9, 599, 600, 623

key equation, 109, 110

key storage, 578

Kronecker product, 108

le/bEL code, 405–407, 409

le2/bEL-me3/b
ED code, 407, 408

l1-bit burst error correcting and l2-bit burst error

correcting UEC code, see also

Bl1ECjBl2EC code, 459

l1-bit burst error correcting and l2-bit burst error

correcting UEP code, see also

(Bl1EC)n0 -(Bl2EC)n1 code, 459

latchup, 5

latency, 6, 16

l-bit burst error, 398

correcting code, 397, 398

locating code, see also BlEL code, 396, 397

LCM, see also least common multiple, 28, 69,

70, 488

LDC, see also long distance code, 465, 505

leading element, 37, 38

least common multiple, see also LCM, 28, 69,

488

lengthened code, 66, 178, 296–298, 304

[T2/8EC]2 code, 326

D3/8EC code, 300

l t/b-errors correcting and m t/b-errors

detecting code, 296

m-spotty double byte error correcting code,

307

RS code, 66

SbEC-Sp�b/BED code, 178

LFSR, see also linear feedback shift register,

53, 55, 77, 473

688 INDEX



linear code, 33, 36, 40–42, 54

array code, 651

block code, 33, 43

cyclic code, 53

MDS code, 81

(n, k) code, 42

polynomial code, 53

systematic block code, 42

linear combination, 34–36, 54

linear feedback shift register, see also LFSR,

53, 55, 77, 473

linear interpolation, 504

linearly dependent, 34, 35, 43, 44

linearly independent, 35, 36, 38, 43, 44, 49, 50,

59, 108

line fault, 580

logical noise, 336

logic circuit, 11

long-distance code, see also LDC, 465, 505

RS code, 506

longitudinal redundancy check, see also LRC,

465

look-ahead, 553

buffer, 451, 452, 456

carry circuit, 553

lossless compression, 450

low-pass filtering code, 439, 440

LRC, see also longitudinal redundancy check,

465

LZ77 coding, 450–452, 454, 456, 457

LZ78 coding, 450

LZW coding, 450, 451, 453, 454

MA code, 107

magnetic disk, 465

magneto-optical disk, 506

main diagonal, 36

main memory, 97, 583

maintenance code, 87

majority-logic decodable code, 105–107

majority vote, 13

majority voting principle, 14

malfunction, 518

manufacturing defect, 122

M-ary channel, 600

M-ary error control code, 600

asymmetric error control code, 599

asymmetric symbol error correcting code,

600

deletion/insertion error correcting code, 624

single e-asymmetric symbol errorcorrecting

code, 603, 604, 607, 610

symmetric symbol error correcting code,

608, 614

mask, 10

error correction, 85, 104

fault, 578

mass memory, 77

mass storage system, see also MSS, 466, 481

matched length, 454–456

matched string, 451, 454, 456

matrix

algebra, 36

circular permutation, 649

code, 43, 77

coefficient, 294, 323

companion, 30, 38, 78–80, 83, 134, 135, 137,

139, 141, 467, 572, 653

confusion, 601, 615, 617, 618, 622

conversion, 434, 437

converted, 158

encoding, 42, 568

even-weight column square, 380–383, 387

G, 45

generator, 34, 44, 45, 55

grouping, 197–204

H, 45, 57, 58, 108

identity, 30, 31, 38, 43, 70, 80, 83, 84, 108, 568

incidence, 666, 667, 669, 671–673

inverse, 38, 336–338, 350

inversion, 351

nonconverted H, 158

nonsingular, 38, 39, 78, 336, 338, 340, 350,

352, 353

nonsingular odd-weight column square, 381

odd-weight-column, 83, 382

odd-weight column square, 380–383, 386, 387

prediction, 543, 544

rotational H, 148

rotational operating, 88

slimmed, 150, 220, 221

sparse, 79

square, 38, 59, 84

-type code, 632

Vandermonde, 39, 59

zero, 31, 108

MAXI CODE, 632

maximal code, 149, 154, 270, 380

S2EC code, 154

S4EC code, 154

SbEC code, 149, 249, 376, 392, 393

maximum code length, 51, 52, 66, 103, 173,

219–226, 249, 311, 315, 323, 392, 418,

423, 426

INDEX 689



maximum distance separable, see also MDS,

66, 650

array code, 649

code, 78

RS code, 294, 304, 311

maximum likelihood decoding, 621

MDS, see also maximum distance separable,

66, 78, 650, 652, 654, 656

property, 658

MDS code, 81, 82, 650

array code, 499, 649, 650, 655, 658

convolutional code, 466

low-density, 79

lowest density, 78

mean time between failure, see also MTBF,

528

mean time to data loss (MTTDL), 499, 650,

663

Meggitt decoding, 348

Melas code, 124

memory, 133, 264, 572

cache, 97, 111, 119, 578, 583, 584

cell, 113

cell array, 119

cell failure, 187

controller, 578

disk cache, 97

holographic, 10, 335, 413, 439, 440, 450, 465

magnetic/optical disk, 65, 465, 487

mass, 77

programmable read-only, see also PROM,

492

random access, see also RAM, 97

subarray, 171, 239, 281, 282

tape, 65

memory chip, 198, 239, 282, 375

byte organized, 133, 156, 205, 217, 263, 375

memory system, 48, 157, 231, 233, 238, 245,

264, 271, 276

byte-organized, 187, 239, 244, 265, 373, 375

metric, 39

function, 404

microprocessor, 112, 187, 518, 572, 583

on-chip ECC, 112

RISC, 583

minimal polynomial, 32, 33, 59, 61, 63, 166,

168, 249–251

minimum distance, 40, 41, 43, 44, 59, 98, 166,

311, 395

Hamming distance, 40, 49, 65, 234, 394, 395,

415, 560, 623, 663

m-spotty distance, 301, 302

minimum weight, 40

code, 78, 98, 104, 160, 164, 208, 210, 217,

364, 368

construction, 353

rotational S4EC-D4ED code, 164, 165

S2EC-D2ED code, 577

minimum-weight & equal-weight-row code, 78,

98, 104, 160, 164, 208, 210, 364, 368

minterm, 543

mirror-image symmetry, 481

miscorrection, 50, 101, 142, 146, 229, 245, 307,

388, 396, 503, 505

probability, 146

rate, 422, 426

misdetection, 388, 396

mis-identification, 599

mislocation, 388, 396

mis-typing, 599

Möbius function, 90, 125, 147, 203

Möbius inversion formula, 91

modified, 147, 148, 204

mod-2 sum, 197, 199, 206, 207

modified code, 157

Hamming SEC-DED code, 53, 97, 98, 121

MDS array code, 653

RS SbEC-DbED code, 157

modularity, 89, 164, 216, 517, 571

modularized code, 160, 163

S4EC-D4ED code, 163

SbEC-DbED code, 160

modularized encoding/decoding circuit, 88

modularized organization, 77

modular redundancy technique, 14

modulation, 637

coding, 439–441, 465

module, 162–164, 375

error pointer, 167

modulo-2

adder, 540

addition, 566

sum, 42, 386

monic polynomial, 27, 28, 54

monoid, 24

m-out-of-2m code, 85

m-out-of-h modular redundancy, 119

m-out-of-n code, 518, 529, 580, 581

checker, 531, 536

m-spotty (St/bþ St 0/b)ED code, 312

m-spotty byte error, 264, 290, 301, 302, 306, 308

control code, 264, 301–303, 306, 319

correcting code, 313

detecting code, 286

690 INDEX



m-spotty D2/8EC code, 307

m-spotty D3/8EC code, 304, 316, 318

m-spotty distance function, 302

m-spotty Dt/8EC code, 307

m-spotty S3/8EC-D3/8ED code, 317

m-spotty St/bEC-(St/bþ St 0/b)ED code (Single

t/b-Error Correcting – Single t/b plus

Single t 0/b Error Detecting code), 308

m-spotty T2/8EC code, 326

MSS, see also mass storage system, 466, 481

MTBF, see alsomean time between failure, 528

multi-bank architecture, 171, 239, 281

multilevel coding method, 614, 615

multiple-disk failure, 649, 650

multiple error control code

burst/byte error, 188, 350, 351

random error, 58

multiplicative coset, 221, 222, 226, 228, 229

multiplicative group, 250, 351

multiplier, 13, 518

multiresidue code, 552

Nþ 1 redundancy, 576

NCEC, see also nondegenerate cyclic

equivalence class, 93

n-dimensional sphere, 40

necessary and sufficient conditions of error

locating code, 406, 408

negative binomial statistics, 119

neutron, 4, 5, 97, 104, 231, 264

n-folded repetition code, 574

(n, k) concept, 573

linear block code, 47

N-modular redundancy, see also NMR, 13, 14,

119

with spare, 14

NMR, see also N-modular redundancy, 13, 14

noise, 465

external, 9, 10, 97, 187, 244, 245, 375

logical, 336

margin, 10

power bus, 354

random, 466, 500

simultaneous switching, see also SSN, 354

switching, 353

white, 7

nonbinary, 18

BCH code, 58, 61

error value, 61

linear code, 374

noncodespace, 523

noncodeword, 527, 528, 529, 534, 536, 545, 560

nondegenerate cyclic equivalence class, see

also NCEC, 90, 91, 93, 148

nonrotational code, 148

Hamming SEC code, 92

nonsingular, 38, 39, 79–82

matrix, 38, 39, 78, 336, 338, 340, 350, 352,

353

odd-weight b� b square matrix, 381

nonsystematic code, 161, 614

4-out-of-8 code, 571

M-ary asymmetric error correcting code, 614,

615

M-ary asymmetric error correcting code with

deletion/insertion/adjacent-symbol-

transposition error correction capabilities,

623, 626

nontrivial subfield, 227–229

non-uniform error probability, 10

normal distribution, 362

normalized form, 169, 170

null fault, 519

null space, 35

number theory, 19

numeral, 9

numeric keypad, 602, 614, 628, 631

numeric operand, 571

N-way multiplexer, 15

odd parity, 536, 657

code, 48

odd weight, 58

b-tuple, 382

odd-weight-column, 202, 364, 381

and odd-weight-row SEC-DED code, 87

characteristic, 143, 146

code, 82, 83, 141, 143, 145, 204, 208,

364

condition, 85

matrix, 83

matrix code, 143

property, 143

rotational code, 217

S2EC code, 146

SbEC code, 141, 145

SEC-DED code, see also OWC SEC-DED

code, 53, 89, 98, 100, 101, 122, 143, 144,

354, 358–361, 365, 369

SEC-DED-S4ED code, 206

vector, 143, 247

odd-weight-row

code, 86, 87

vector, 85

INDEX 691



on-chip error control code, 97, 110, 113, 116,

121, 122

Hamming SEC code, 119

single-bit error correcting code, 113

one-dimensional unidirectional error correcting

code, 637

1D-U2BEC code, 642

1D-UrBEC code, see also one-dimensional

unidirectional error correcting code, 637,

638, 640

1-error, 9

1-out-of-2 code, 529, 534, 544

one’s complement addition, 561

one-to-one, 24

1-zone, 41

online testing, 11

onto, 24

OP CODE, 632

open circuit, 4

open line, 4

optical disk, 465

erasable disk, 465

memory code, 500

optimal code

FbECjSEC code, 417, 419

FbECjSEC-DED code, 422, 424

fixed b-bit byte error correcting j single-bit
error correcting code, see also optimal

FbECjSEC code, 417

fixed-byte error correcting j single-bit error
correcting and double-bit error detecting

code, see also optimal FbECjSEC-DED
code, 422

FlECjSEC code, 442

(Flþ S)EC code, 446

odd-weight-column SEC-DED code, 210

odd-weight-column SEC-DED-S4ED code,

211, 213

rectangular code, see also ORC, 466

2-level code, 415, 417

2-modularized odd-weight-column SEC-

DED-S4ED code, 212

optimal encoding property, 659

optimal updating property, 659

ORC, see also optimal rectangular code,

466

order, 24, 27, 29

orthogonal, 35, 45

flat, 205

Latin square code, 107

symmetry, 467, 471

orthogonality, 35

output

capacitance, 358

codespace, 519

comparison check, 580

noncodespace, 519, 520, 546

noncodeword, 520

parity bit, 11

space, 519

overall data-integrity check, 495, 496

overall parity , 99, 100

check, 52, 98

OWC SEC-DED code, see also odd-weight-

column SEC-DED code, 674, 675

pairwise linearly independent, 57

parallel decoder, 109, 402–404

parallel decoding, 142, 335, 336, 346, 351

circuit, 4, 100, 180, 336, 343, 354

parallel encoding/decoding, 97, 354

circuit, 208, 353

parity-based code, 562

parity check, 12, 639

bit, 42, 48

circuit, 343

line, 658

polynomial, 55

parity-checked adder, 552, 557

parity-check equation, 34

parity checking, 568, 575

parity-check matrix, see also H matrix, 38, 41,

43, 48, 55, 57–59, 65, 69, 77, 81, 103, 241,

242, 247, 271, 286, 294, 304, 311, 315,

323, 325, 303, 315, 316, 324, 374, 376

low-density, 499

lowest density, 78

systematic, 81, 82

parity equation, 55

parity group, 664

parity prediction, 11, 563

checking, 575

parity-tree circuit, 536, 537

partial store, 124

PCM tape recording system, 466

PDF417, 632

perfect code, 152, 153, 279–281

S(b-1)/bEC-SbED code, 278–281

S3/4EC-S4ED code, 282

SbEC code, 278

St/bEC-SbED code, 278, 281

perfect graph, 9

perfect one-factorization of complete graph,

655

692 INDEX



period, 29, 57, 69

permanent error, 7

permutation, 89

phased burst error correcting cyclic code, 70,

139

pipeline register, 366, 367

p-modularized SbEC-DbED code, 160

pointer information, 10, 413

Poisson distribution, 113, 119

polynomial

binary primitive, 57, 217, 381

burst error, 489

code, 53–55, 57, 59, 68, 77, 487

error, 56, 63, 65, 67

evaluator, 66

generator, 48, 54, 56–59, 64, 65, 67, 139,

140, 143, 166, 168

irreducible, 28, 60, 69, 70, 80, 139, 467, 636

minimal, 32, 33, 59, 61, 63, 166, 168, 249–251

monic, 27, 28, 54

monic irreducible, 28

parity-check, 55

primitive, 29–31, 33, 58, 60, 107, 134, 135,

137, 139, 143, 152–154, 163, 222, 227,

251, 572

quotient, 54

received, 65, 68

reciprocal, 29

ring, 27, 28, 649, 650

self-reciprocal, 468

syndrome, 66

positive definiteness, 39

power bus instability, 355

powered element, 217

power supply breakdown, 4

predicted, 533

output, 10, 11

prediction, 10, 11

checker, 531, 534, 536, 544, 562

function, 547

preserved, 522, 562

primary input, 541

primary output, 358, 529

prime, 27, 81

field, 27, 600

number, 27

primitive, 80

element, 29, 33, 58, 64, 65, 67, 134, 153, 154,

185, 220, 249, 250, 280, 293, 493

polynomial, 29–31, 33, 58, 60, 107, 134, 135,

137, 139, 143, 152–154, 163, 222, 227,

251, 572

probability

correct decoding, 448, 449

erroneous decoding, 621

process-induced defect, 119

processing unit, see also PU, 574, 576

processor, 572, 583

state, 11

product code, 121, 466

programmable read-only memory, see also

PROM, 492

PROM, see also programmable read-only

memory, 492

propagation delay, 166

proper subfield, 229

protection level, 414

PU, see also processing unit, 574, 576

puncturing, 246

q-ary fixed-area plus single-symbol error

correcting code, see also q-ary

(Flþ S)EC code, 444

QR code, see also quick response code, 599,

632–634, 636, 643, 644

quadruple-bit error detecting code, 409

quick response code, see also QR code, 599, 632

quotient group, 250

quotient polynomial, 54

RAID, see also redundant arrays of independent

disks, 497, 649

architecture, 497, 655, 657

system, 78, 488, 649, 650, 662

RAM, see also random access memory, 97, 110,

112

chip, 7, 134, 172, 174, 233, 239, 263, 264,

271, 301, 302, 319

random error, 7–9, 53, 465

bit error, 9, 18, 187, 244, 290

double-bit error, 154, 197, 217, 230–233,

237, 239, 240

triple-bit error, 227, 289

random noise, 466, 500

rank, 36, 200

RAS, see also reliability, availability and

serviceability, 583

design, 574

read backward facility, 467

Read-Invert-Write-Read-Invert procedure, 104

read-modify-write procedure, 499

read-retry operation, 104

read/write memory cycle, 112

received polynomial, 65, 68

INDEX 693



received vector, 44, 65, 67

received word, 40, 41, 45, 47, 48, 61

reciprocal, 63, 67

polynomial, 29

reconfiguration, 13, 14, 373

recording medium, 7

recovery, 11, 574

rectangular array, 36, 71, 483

reduced-echelon canonical form, 38

redundancy, 14, 81, 188, 217

redundant arrays of independent disks, see also

RAID, 649

redundant bit-line, 122

redundant word-line, 122

Reed-Muller canonic expansion, 543

Reed-Muller code, 552

Reed-Solomon code, see also RS code, 58, 65,

78, 156, 349, 439

refresh memory cycle, 112

regular element, 606, 607

Reiger bound, 68, 433

reliability, 122, 517, 523, 574

improvement, 122

requirement, 16

reliability, availability and serviceability, see

also RAS, 584

remainder, 33, 55, 61, 64

repair period, 499

repair time, 574

repetition code, 393, 394

reread, 487

residue, 54

-check code, 571, 583

checking, 575, 576

code, 85, 518, 552

code checker, 518, 531

-coded address, 571

restoration level, 634, 635

retransmission, 373

retry, 6, 16, 104, 574

rewritable optical disk, 506

rewrite operation, 104

ring, 23, 25, 26, 28, 600, 604

axiom, 604

integer, 27

integer residue, 600

ripple adder, 553, 554, 557

ripple-carry circuit, 553

rollback, 16

ROM, 110, 121

root, 31, 32, 62, 65

rooted tree, 614

rotational code, 87, 89, 147, 148, 160, 164,

202, 204

Fujiwara code, 147

Fujiwara S2EC code, 149

Fujiwara SbEC code, 148

generalized SEC-DED-BED code, 202

odd-weight-column SbEC code, 147, 148

odd-weight-column SEC-DED code, 148,

149, 204

S4EC-D4ED code, 164, 166

SbEC-DbED code, 160, 164

SEC code, 91, 92

SEC-DED-BED code, 203, 204

SEC-DED-SbED code, 210

single-bit error correcting code, 89

single-byte error correcting and double-byte

error detecting code, 89

single-byte error correcting code, 89

rotational degree, 204

rotational H matrix, 148

rotational operating matrix, 88

row

operation, 447

rank, 36

space, 36, 39

RS code, see also Reed-Solomon code, 61, 65,

78, 156, 173, 174, 306, 316, 325, 448, 449,

505, 634–636, 650

cross-interleaved, 465, 501

distance-(lþ mþ 1), 293

doubly encoded, 500

extended, 66, 157, 168, 169, 496

interleaved, 488

l bytes error correcting and m bytes error

detecting, 297

lengthened, 66

lengthening, 156

long-distance, 506

maximum distance separable (MDS), 294,

304, 311

S4EC-D4ED, 173

SbEC-DbED, 157, 162, 284, 492

triple-error correcting, 67

two-dimensional interleaved, 644

RSPC, see also RS product code, 465

RS product code, see also RSPC, 465, 500, 507,

508

runlength, 483

S16EC code, 264

S2/15EC code, 266

S2/8EC-DED code, 330

694 INDEX



S2EC code, 137, 144, 146, 154

non-odd-weight-column, 146

S2EC-D2ED code, 157, 159–161, 169

S3/16EC code, 270, 272

S3/8EC code, 271, 273

S3/8EC-D3/8ED code, 286–289, 316

S3/8EC-D3/8ED-S8ED code, 286, 289

S3/8EC-(S3/8þ S)ED code, 316, 317, 319

S3/8EC-S4EC-S8ED code, 283

S3/8EC-S8ED code, 276–278

(S3/8þ S)EC code, 316, 318, 319

S3EC code, 393

S3EC-D3ED code, 169

S3EC-S2�3/BED code, 182

S3EC-(S3þ S)ED code, 249

S4/5EL code, 409

S4EC-D4ED code, 170, 179, 253

S4EC-(DEC)16 code, 242–244

S4EC-(DEC)8 code, 242, 243

S4EC-(DEC)B code, 243

S4EC-DEC code, 234, 236, 237, 242

S4EC-DED code, 217, 221, 226, 227

S4EC-S2�4/12ED code, 182

S4EC-S2�4/16ED code, 173, 178, 179

S4EC-S3�4/16ED code, 182

S4EC-(S4þ S)ED code, 251–254

S5EC code, 379

S8EC code, 283, 393, 394

S8EC-D8ED code, 143, 286, 316, 317

S8EC-DEC code, 233

Sb/bEL code, 374

Sb/B’EL code, 377

Sb/p�bEL code, see also single b-bit byte within

B-bit block error locating code,

375–377, 408

S(b-1)/bEC-SbED code, 278, 279

SbEC (Single b-bit byte Error Correcting), 175,

248, 250, 269

SbEC-ADbED code, see also single byte error

correcting and adjacent double-byte error

detecting code, 182

SBEC code (Single B-bit block Error Correcting

code), 283

SbEC code, see also single-byte error

correcting code, 133, 134, 137, 143, 146,

160, 188, 217, 227, 232, 233, 247, 248,

264, 269, 274, 278, 283, 374, 376, 379,

380, 386, 390, 392, 395

SbEC-DbED code, see also single b-bit byte

error correcting and double b-bit byte error

detecting code, 133, 134, 143, 154, 156–160,

166, 168–171, 188, 217, 245, 253, 264

SbEC-(DEC)B code, see also single b-bit byte

error correcting and double-bit within a

B-bit block error correcting code, 231,

238–242

SbEC-DEC code, see also single b-bit byte

error correcting and double-bit error

correcting code, 187, 230–234, 241, 242,

572

SbEC-DED code, see also single b-bit byte

error correcting and double-bit error

detecting code, 187, 217, 219–230, 408

SbEC-(Sbþ S)ED code, see also single b-bit

byte error correcting and single b-bit byte

plus single-bit error detecting code, 187,

244–249, 251, 253, 350

SbEC-Si�b/p�bED code , 408

SbEC-Sp�b/BED code, see also single b-bit byte

error correcting and single p-byte within a

B-bit block error detecting code, 134,

171–174, 179

SbED (Single b-bit byte Error Detecting),

188

code, 205

SCD, see also strongly code disjoint, 526, 527,

528, 535

scrambling, 508

Se/bEL code, see also single e-bit withina b-bit

byte error locating code, 374, 390

SEC (Single-bit Error Correcting), 49, 264,

270

SEC-B3EL code, 399, 401–404

SEC-BlEL code, see also single-bit error

correcting and l-bit burst error locating

code, 396, 398, 399, 402

SEC code, 119, 154, 247, 264, 270, 386, 393,

408, 420, 546, 583

cyclic Hamming, 57

Hamming, 59, 115, 120, 152

nonrotational Hamming, 92

on-chip Hamming, 119

rotational, 91, 92

single b-bit byte error detecting, 189

SEC-DED-BED code, 187, 188, 199–205

SEC-DED code, see also single-bit error

correcting and double-bit error detecting

code, 52, 97, 98, 104, 154, 160, 162, 166,

188, 205, 206, 208, 247, 271, 360–367,

389, 393, 408, 420, 546, 577, 583

burst error detecting, 188, 197

byte error detecting, 187, 205

distance-4 Hamming, 57

even-weight-row, 105

INDEX 695



SEC-DED code (Continued)

generalized burst error detecting, 197

Hamming, 53, 98, 393, 663

Hsiao’s, 368

modified Hamming, 53, 97, 98, 121

odd-weight-column (OWC), 53, 89, 98, 100,

101, 122, 143, 144, 354, 358–361, 365,

369, 674, 675

rotational burst error detecting, 202

rotational odd-weight-column, 148, 149, 204

shortened, 101

SEC-DED encoding circuit, 366

SEC-DED-S3ED code, 193, 216

SEC-DED-S4ED code, 189, 196, 205, 208, 216

nearly 4-modularized odd-weight-column, 208

SEC-DED-S8ED code, 393, 394

SEC-DED-SbED code, see also single-byte

error detecting SEC-DED code, 112, 187,

188, 190, 194, 196, 197, 205, 206, 210,

217–219, 408, 583

SEC-DED-Se/bEL code, 408

SEC-eED code (Single-bit Error Correcting - e-bit

Error Detecting code), 392, 393, 395, 396

SEC-S2/3�2EL code, 409

SEC-S2/4EL code, 393, 394, 396

SEC-S2/8EL code, 393, 410

SEC-S3/7�3EL code, 409

SEC-S3ED code, 191

SEC-S4/15�4EL code, 389

SEC-S4/3�4EL code, 380

SEC-S4/8�4EL code, 383, 384, 388

SEC-S4/p�4EL type I code, 380

SEC-S4ED code, 189, 194, 195, 379

SEC-Sb/p�bEL code, 375, 377–380, 383, 385–387

SEC-Sb/p�bEL type II code, 385

SEC-S(b-2)/bEL code, 410

SEC-SbED code, see also single-bit error

correcting and single b-bit byte error

detecting code, 188–190, 193, 196, 246,

379, 408

SEC-Se/8EL code, 393, 394

SEC-Se/bEL code, see also single-bit error

correcting and single e-bit within a b-bit

byte error locating code, 376, 389,

390–396, 408

sector, 650

SED (Single-bit Error Detecting), 124

segment, 483

self-checked duplication, 11, 14

self-checked module, 14

self-checking

adder, 534, 560

ALU, 518

checker, 518, 525

circuit, 517

code translator, 562

comparator, 578, 580

computer, 518, 570

concept, 11

microprocessor, 580

two-rail code checker, 580

self-complementary, 86

circuit, 13, 85

function, 13

self-complementing, 85

ANþB code, 85

checksum code, 589

code, 85, 104, 589

self-configuring, 576

self-healing, 576

self-optimizing, 576

self-protecting, 576

self-purging, 14, 15

self-reciprocal, 467

polynomial, 468

self-testing, see also ST, 520, 523, 525,

530, 539

and repairing computer, see also STAR

computer, 517, 571

checker, 11, 518, 534, 535, 537, 538, 542,

551, 552

comparator, 538

GPC, 549

prediction checker , 550

property, 535, 536, 551

semiconductor memory, 65, 231, 375, 575

semi-distance, 121

code, 121

semigroup, 24, 25

sense circuit, 112

sensitized path, 354

separable code checker, 536

sequential decoding, 335, 348

SER, see also symbol error rate, 440, 622, 623

serial decoding, 53

serviceability, 575

set, 23, 24

partitioning algorithm, 614–618, 622

SFS, see also strongly fault secure, 518, 523,

525, 527–529, 531, 535

microprocessor, 531, 580

network, 570

processor, 580

property, 580

696 INDEX



shared XOR gate, 365, 366

short circuit, 4

shortened code, 51, 77, 244

cyclic code, 69

m-spotty D3/8EC code, 305

S3/16EC code, 271

SEC-S2/4EL code, 396

shortening algorithm, 103

sift-out redundancy, 11, 14

signal coupling, 4, 583

signal-to-noise ratio, see also SNR, 439

signature, 11, 551

simple parity check, 57, 487

code, 11, 48, 49, 57, 518, 552, 546, 548, 559,

575, 578–580

single adjacent-symbol-transposition error

correcting code, 623–625

single b-bit byte error correcting and double

b-bit byte error detecting code, see also

SbEC-DbED code, 133, 154, 316

single b-bit byte error correcting and double-bit

error correcting code, see also SbEC-DEC

code, 187, 230

single b-bit byte error correcting and double-bit

error detecting code, see also SbEC-DED

code, 217

single b-bit byte error correcting and double-bit

within a B-bit block error correcting code,

see also SbEC-(DEC)B code, 239

single b-bit byte error correcting and single

b-bit byte plus single-bit error detecting

code, see also SbEC-(Sbþ S)ED code,

244, 245, 350

single b-bit byte error correcting and single

p-byte within a B-bit block error detecting

code, see also SbEC-Sp�b=BED code,

134, 171

single b-bit byte error correcting code,

see also SbEC code, 133, 245, 269,

278, 379, 390

single b-bit byte within a B-bit block error

locating code, see also Sb=p�bEL code,

375

single-bit error correcting and double-bit error

detecting code, see also SEC-DED code,

97

single-bit error correcting and l-bit burst error

locating code, see also SEC-BlEL code,

396, 398

single-bit error correcting and single b-bit byte

error detecting code, see also SEC-SbED

code, 246, 379

single-bit error correcting and single b-bit byte

within a B-bit block error locating code,

375

single-bit error correcting and single-block

error locating code, 377, 389

single-bit error correcting and single e-bit

within a b-bit byte error locating code, see

also SEC-Se=bEL code, 375

single-bit error correcting and single faulty

package/chip locating code, 373

single-bit error correcting circuit, 389

single-bit error correcting code, see also SEC

code, 112, 266, 270

single-bit error pattern generator, 402

single-bit error syndrome, 191

single-burst error correcting code, 68

single-byte error, 142, 143, 149, 151, 152,

159, 160, 171, 172, 175, 188, 190, 191,

220, 224, 229, 245–247, 264, 274,

276, 298, 374–379, 382, 383, 390,

392, 560

single-byte error correcting and adjacent

double-byte error detecting code, see also

SbEC-ADbED code, 182

single-byte error correcting code, see also

SbEC code, 70, 134, 151, 374

single-byte error detecting SEC-DED code, see

also SEC-DED-SbED code, 188

single-byte error locating circuit, 389

single-byte error locating code, 373

single deletion/insertion error correcting

code, 623, 624

single e-bit within a b-bit byte error locating

code, see also Se=bEL code, 374

single error correcting and double error

detecting code, see also SEC-DED

code, 52

single-error correcting code, see also SEC

code, 134

single spotty byte error correcting and

single-byte error detecting code,

see also St=bEC-SbED code, 274

single spotty byte error correcting code, see also

St=bEC code, 264

single-symbol error correcting code, 134, 149,

266, 374, 624, 625

single t/b-error correcting and double-bit error

detecting code, see also St=bEC-DED

code, 330

single t/b-error correcting and double t/b-error

detecting code, see also St=bEC-Dt=bED

code, 284, 316

INDEX 697



single t/b-error correcting and single t/b-error

plus single t 0/b-error detecting code,

see also St=bEC-(St=bþ St0=b)ED code,

308

single t/b-error plus single t 0/b-error correcting
code, see also (St=bþ St0=b)EC code, 312

Singleton bound, 247, 253, 499

slimmed element, 220, 222

slimmed matrix, 150, 220, 221

small read, 499

small-write, 499

SNR, see also signal-to-noise ratio, 439, 440

SoC, 119, 354

soft error, 5, 7, 97, 104, 105, 111, 112, 154, 187,

245, 375, 578

rate, 112, 113, 115, 121

software, 16

duplication, 11

solid error, 105

solid fault, 4

solid-state data recorder, 263

space redundancy, 12, 14

span, 35, 45

spare, 14

bit-line , 122, 123

chip replacement, 578

circuit, 122

DRAM chip, 575

module, 14

word line, 122, 123, 575

sparing, 104, 578

sparse matrix, 79

sparse modulation code, 439, 440

spatial glitch accumulation, 356

speed degradation, 574

sphere, 40

spotty byte error, 18, 263, 264, 290, 301, 308,

320, 321, 325

control code, 263, 264, 290

square matrix, 38, 59, 84

SRAM, see also static RAM, 111

SSN, see also simultaneous switching noise,

354

s-spotty byte error control code, 264, 290, 292,

298

s-spotty byte error detecting code, 286

s-spotty D2/8EC code, 300

s-spotty D3/8EC code, 299, 300

ST, see also self-testing, 520, 521

St/8EC-Dt/8ED code, 286

St/8EC-Dt/8ED-S8ED code, 286, 289

St/8EC-S8ED code, 278

standard array, 34, 45–47

standby sparing, 517, 571

STAR, see also self-testing and repairing, 517

computer, see also self-testing and repairing

computer, 571

static RAM, see also SRAM, 111

St/bEC code, see also single spotty byte error

correcting code, 264–270, 274, 275, 284

St/bEC-DED code, see also single t/b-error

correcting and double-bit error detecting

code, 330

St/bEC-Dt/bED code, see also single t/b-error

correcting and double t/b-error detecting

code, 284–286

St/bEC-Dt/bED-SbED code (Single t/b-Error

Correcting - Double t/b-Error Detecting -

Single b-bit byte Error Detecting code),

284–286

St/BEC-SbEC-SBED code (Single t/B-Error

Correcting - Single b-bit byte Error

Correcting - Single B-bit block Error

Detecting code), 281–283

St/BEC-SBED code (Single t/B-Error

Correcting - Single B-bit block

Error Detecting code), 282

St/bEC-SbED code, see also single spotty byte

error correcting and single byte error

detecting code, 274, 275

St/bEC-(St/bþ St 0/b)ED code, see also single

t/b-error correcting and single t/b-error

plus single t 0/b-error detecting code,

308–311, 316

(St/bþ St 0/b)EC code, see also single t/b-error

plus single t 0/b-error correcting code,

312–316

Steiner system, 664, 665, 649

striping, 499

unit, 650

strongly code disjoint, 526

strongly fault secure, see also SFS, 523

circuit, 518

subarray, 133, 172, 239

data, 239

multiple, 172

output, 233, 239, 242, 282

subfield, 27, 217, 219–229, 249, 250, 280, 281,

483

sub-inverse circuit, 532

submatrix, 166, 174

submodule, 163, 164

subnetwork, 527, 528

subset, 34, 40, 219, 227, 228

698 INDEX



subspace, 33–36, 42, 44, 281, 651

substitution, 41

subtractive error, 600

sum, 553, 560

superposition, 497

super strategy, 503, 504

surjection, 608

surjective mapping, 600, 608

switching noise, 353

symbol, 65, 374, 396, 493

error rate, see also SER, 440, 449

symmetric error, 9, 18

symmetric fault, 9

symmetric function, 62

symmetric nonbinary error model, 9

symmetry, 39

symptom, 495

syndrome, 34, 45–47, 49, 61, 99, 100, 105, 110,

115, 517, 564

calculation, 50

component, 145

decoder, 166, 167, 244, 279, 353

decoding, 569

element, 67

generation, 61, 473, 567, 569

generator, 244, 343, 353, 389, 402

pattern, 52

polynomial, 66

system

address bus, 585

character recognition, 9, 599–601, 614, 622,

623

communication, 65, 77, 284, 373

data bus, 585

dependable, 3, 6, 11, 373, 571

distributed storage, 649, 661–663, 665

failure, 6, 10, 11

interface, 10

keyboard input, 9, 599, 600, 623

mass storage, see also MSS, 466, 481

memory, 48, 157, 231, 233, 238, 245, 264,

271, 276

-on-chip, see also SoC, 119, 354

PCM tape recording, 466

recovery, 16

reliability, 11

Steiner, 664, 665, 649

systematic, 152

AN code, 552

AUED code, 583

code, 34

form, 38, 43, 58, 140, 251, 271

M-ary code, 600

parity-check matrix, 81, 82

[T2/8EC]2 code, 323, 326

T2/8EC code, 323, 326

T8EC code, 326

TAG, see also temporal accumulated glitches,

358–360, 362, 365, 367–369

count, 362

frequency, 359, 361

frequency distribution, 361

number, 359–369

probability, 360, 362–366

tape memory, 65

target error rate, 18

t/b-error, 290, 291

control code, 263, 264

te1/bEC-le2/bEL code, 407

temporal accumulated glitches, see also TAG,

357, 358, 367

temporary failure, 5, 6

10-ary code, 614

tensor product, 292, 374, 379, 392–395

code, 379

matrix, 265

parity-check matrix, 265, 266

t-error correcting code, 41

t-error detecting code, 268

test mode, 552

test pattern, 520, 521, 541

time redundancy, 12

timing failure, 6

TLB, see also translation lookasidebuffer, 119, 585

TMR, see also triple modular redundancy, 11,

13, 570

software, 14

with one spare, 14

toggle flip-flop, 542, 550, 552

totally self-checking circuit, see also TSC, 518

track error pointer, 479

transform function, 564, 565

transient

analysis, 355

behavior, 353, 354, 357, 358, 362

error, 7, 9, 284

fault, 4, 12, 517, 518

pair, 360, 362

pattern, 359, 360

weight, 359, 361

transition probability, 615, 616

translation lookaside buffer, see also TLB, 585

translation table, 450

INDEX 699



transmission function, 553

transmitted code vector, 67

transmitted codeword, 40, 47, 59

trench capacitor, 121

triangle inequality, 39, 40, 307, 325

triple-byte error correcting code, see also

TbEC code, 326

triple erasure correcting code, 670–672

triple-error detecting code, 546

triple modular redundancy, see also TMR, 6

triple m-spotty byte error correcting code, 323,

326

triplication, 570

truth table, 540, 542

TSC, see also totally self-checking, 518, 521,

525, 535

Berger code checker, 580

checker, 580

4-out-of-8 code checker, 571

system, 570

two-rail code checker, 580

two-dimensional array, 114, 508

two-dimensional burst error, see also

two-dimensional clustered error, 335

two-dimensional clustered error, see also

two-dimensional burst error, 635, 637,

640, 643

two-dimensional code, 632

clustered error correcting code, 637, 640,

643, 644

cross-parity code, 112, 113, 115, 116

interleaved RS code, 644

unidirectional clustered error correcting

code, see also 2D-Ulm�lnEC code, 599,

632, 637, 638

two-dimensional matrix symbol, 8, 599, 632,

637

two-dimensional recording medium, 8

two-dimensional storage media, 439

2D-U3� 3EC code, 641

2D-Ulm� ln
EC code, see also two-dimensional

unidirectional clustered error correcting

code, 637–644

two-level coding, 495, 497

2-level UEC code, 415, 416, 422, 427

2-modularized code, 163, 164, 202

odd-weight-column SEC-DED-S4ED code,

208, 209

S4EC-D4ED code, 163

SbEC-DbED code, 162, 163

SEC-DED-S4ED code, 215

2-out-of-4 code, 571

two-rail code , 580

checker, 536, 538, 539, 541

two-rail comparator, 543

2-redundant code, 139

S8EC code, 143

SbEC code, 139, 142, 143

two’s complement addition, 561

UEC, 10, 413

UEC code, see also unequal error control code,

10, 413, 416, 439

2-level, 416, 422

3-level, 458

burst error control, 427

fixed-byte error control, 417

L-level, 415

q-ary, 439, 440, 448, 450

UEP (Unequal Error Protection), 10, 413

UEP code, see also unequal error protection

code, 413, 414, 416, 431

burst error control, 431

byte error control, 431, 432

UEP scheme, 450, 453, 454, 457

uncorrectable error, 53, 105, 110, 210, 312, 343,

489, 505

undetectable, 521

error, 520

unequal error, 18

control code, see also UEC code, 10, 413, 439

protection code, see also UEP code,

10, 413

unidirectional error, 9, 18, 125, 534, 580, 583,

637

0-error, 642, 643

detecting code, 518, 529

unidirectional fault, 9, 520, 529, 580

unordered, 583

code, 580, 581

pair, 666

update penalty, 499, 500, 663, 650

upper bound, 68, 205, 281, 603, 604, 614

value failure, 6

Vandermonde matrix, 39, 59

Vandermonde’s determinant, 294, 310, 323

vector space, 34, 35

VERICODE, 632

vertex coloring function, 625

vertical parity, see also horizontal and vertical

parity, 113, 114, 116, 121, 476, 477

vertical redundancy check, see also VRC, 465

vertical syndrome, 477

700 INDEX



voter, 14

VRC, see also vertical redundancy check,

465

wafer scale integration, see also WSI, 119

watchdog

processor, 11

program, 11

timer, 11

weight, 137

white noise, 7

word line, 112, 114–118, 121–123, 575

write once read many optical disk, 505

WSI, see also wafer scale integration, 119

X-code, 649, 658, 659, 661

X decoder, 119

XOR tree, see also exclusive-OR tree, 336, 354

Y decoder, 119

yield, 119, 121, 122

degradation, 97, 110

improvement, 119, 120, 122

0-error, 9

zero modulation, 483

0-zone, 41

Ziv-Lempel coding, 450

ZM decoding, 483

INDEX 701






