Software
Engineering
Design

Theory and Practlce

AAAAAAAAAAAAAA

Software
Engineering
Design

Theory and Practice

Titles in the
Auerbach Series on Applied Software Engineering

Phillip A. Laplante, Pennsylvania State University, Series Editor

Software Engineering Design: Theory and Practice
Carlos E. Otero
978-1-4398-5168-5

Ethics in IT Outsourcing
Tandy Gold
978-1-4398-5062-6

The ScrumMaster Study Guide
James Schiel
978-1-4398-5991-9

Antipatterns: Managing Software Organizations and People,
Second Edition
Colin J. Neill, Philip A. Laplante, and Joanna F. DeFranco
978-1-4398-6186-8

Enterprise-Scale Agile Software Development
James Schiel
978-1-4398-0321-9

Requirements Engineering for Software and Systems
Phillip A. Laplante
978-1-4200-6467-4

Building Software: A Practioner’s Guide
Nikhilesh Krishnamurthy and Amitabh Saran
978-0-8493-7303-9

Global Software Development Handbook
Raghvinder Sangwan, Matthew Bass, Neel Mullick, Daniel J. Paulish,
and Juergen Kazmeier
978-0-8493-9384-6

Software Engineering Quality Practices
Ronald Kirk Kandt
978-0-8493-4633-0

Software
Engineering
Design

Theory and Practice

Carlos E. Otero

CRC Press
Taylor & Francis Group
Boca Raton London New York

Taylor & Francis Group, an informa business

AAAAAAAAAAAAAA

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120511

International Standard Book Number-13: 978-1-4665-6586-9 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

This book is dedicated to my wife, Kelly,
children Allison, Amanda, Michael, and Ashley,

and parents Angel L. Otero and Lydia E. Rivera.

Contents

Preface ..o xvii
AcKNOWIEdGMENTSooviiiiiiiiiiiiii s xix
About the AUthOT ... xxi
Chapter 1 Introduction to Software Engineering Design..........ccccoceveninerinenienenne. 1
Chapter ODJECIVESvucuuiuieeiciiiiccie et 1

COoNCEPLUAl OVEIVIEWueeiiiriicieiririteieieistse ettt ettt ettt ettt 1
Engineering Design........ccccoiiiiiiiiiiiiiic s 2
Engineering Problem SOIVING..........ccccoouiiiiiiiiiiiiiiiiccccinan 3

Initial State.....c.ocviiviciiiic s 4

OPerational STALEc.cuvueueecuicieicieieicirece et neeae 4

Thinking about the Problemc..ccccveunieiveininicicininicinceccseeenes 5

Problem Solution.........ccvciiiciiiic s 6

GOAL STAL ..o s 6

Software Engineering Design ..o 9

Why Study Software Engineering Design?..........ccccceeeurieurineriinicinicrninceennenens 10

Reasons for Studying Software Design in Product Development 10

Reasons for Studying Software Design in Project Management 11

Software Design Challenges...........ccoceuieuriininicinicinicieceecisicieeeseennnes 11

Design Challenge 1: Requirements Volatility........c.ccococeveeineccrnencerncecnnences 12

Design Challenge 2: PIOCESScccovuiuiuiiciiieiciiiicinccecsesines 12

Design Challenge 3: Technologyc..ccceeeinieiniccinineniniciiceicieceeenens 12

Design Challenge 4: Ethical and Professional Practices.........ccococoeuveueunee. 13

Design Challenge 5: Managing Design Influences..........cccoccvvciinininnnce. 13
Stakeholders.........ccoiiiiiiiic s 14

Development Organization’s StrucCtUureceeeceeeceeerecerecererevenseennenee 14

Context of Software Designccccuvuiiiiiiiiiniciiisiccsss s 15

Software Design ProCess........occcuiuiieunieiniiiniieiieisieieeeseessssesesssessssesesaes 17

Software Architecture ..o 18

Detailed DeSign........ccovuiiiiriiiiiiiiicci s 19

Interface DeSIGNc.cccueuiueiiciriiiiiciicice e 19

Component Design........cccccceiiiiiiniiinnenreee e 20

Construction Design ..ot s 20
Human-Computer Interface Design.........ccccceuvievviccirineivinccinicinicieicenenens 21

Software Design Documentationcceeceeeernecenencreeneeenecrneceensesennenens 21

Software Design Management ..o 21

vii

viii e Contents

Chapter 2

Roles of the Software Designer..........ccvcvceieinicrnincieeeiciseeeeeeseeneeaes 22
Systems ENGINEETc.cciuiiiiiiiiiiiiiiiiiiiiii e 23
Software Architect ... 23
Component Designer ... 23

Software Design Fundamentals..........ccccccueueurinieinicinincnincciciniceceeennnes 24
General Software Design Principles ... 24

Modularization ... 25
ADSTIACTION ..o 25
Encapsulationoccceincnceieinincccieccecrecee e 26
COUPLING...eiiiiiii et 27
CONESION. ...t 28
Separation of Interface and Implementation.........ccccecuveevcuncrniercnnee 29
Completeness and SUffICIENCY ..o 30
Practical Software Design Considerations............ccccecvevcuveuvcincincisininninnns 30
Design for Minimizing Complexity........ccccuevieunerniuricinerninicineisieienns 31
Design for Change ... nens 31
Software Design Strategiescoevcurecurencueeneeceniciniereneeeseeseescse s 31
Structured DeSIGN.....c.cucucuicericeeieeiecieeciereiesee et seeae 31
Object-Oriented Design......c.cccuuueurueueiriecrricrneeieiecisecireesesesessesesseseseene 32

Chapter SUMMATYc.ovcueiieieeirecieieeeieieieeeee et sesesseese s eaessesesessesessesessenes 32

ReVIEW QUESTIONS ...cvviveeiieteerectecte ettt ettt ettt eeeese et e eseereeseeseenseens 33

REFEIEINCES ...t 34

Software Design with Unified Modeling Languagec..cccccevveveennnn. 35

Chapter ODJeCtiVesc.ccuiuiiiciiicic e 35

Conceptual OVeIVIEWcoucviiiiiciiiiicic e 35

WHhat Is UML ...ttt et seaens 36

Why Study UML? ... sssssnns 37

The UMPL's FUNdamentalsccocviurieiciniinicicinineenieneieiseenenseseseenennes 37

Structural Modeling..........cocciiiiiiiiiiice s 40

Component Diagramsccoocueiieiininicinicie e 40
Logical versus Physical Components............cccceueeeuveuneeincineeneennceneenienenn. 42

Class DIAGIammScuiueucuiuicieiiiieieieie ettt ssesaenan 43
CLASSES ..ot 43

Name COMPATTMENT «..cvvieeeeeieieeeieieieieeeeee e seseaenenes 44
Attribute COMPArtMENL......ccuveueveeereecieeceetreeerreereeesesseaessesessesesessesesseaes 44
Operation CompartmMent...........coceeveeeeeeueueueieieieieeeeeeeeeeeeeee s 45
ReJatiONSNIPS «.ecvuvuviecieieicieicic ettt eans 46
DEPENAENICY ...ttt ettt 47
ASSOCIATION. ...t 47
AGETEGALION ...t 48

COMPOSILION ..ttt ettt bene 48

Chapter 3

Contents « ix

Generalization ... 49
REAIIZAtION ... 50
Deployment DIagrams..........cccccuveeuemneueunicunieueriensiersiesessesesssesessesessesessssenssses 53
Behavioral MOdeling...........cccueuiuiciiiniiniciniinicicinisicieicisiescissiessenseseseesennes 55
Use Case DIagramscceuiuiiiiiiiiiiiiiiiiiiiiiiiiinssssssenssesese s 55
Interaction Diagrams.......cocccviiiininiiiininiiciicc s 57
Communication DIiagrams ... 58
Sequence DIagramscccceeeceeiieneeiiiererereeeeseeeeeeee e e enens 59
Concurrency in Interaction Diagrams........cccovvvvnnniniiiciiiicccccnen, 59
Chapter SUMMATY ..ottt ssesesseese s eaessescsessesessesessencs 63
ReVIEW QUESTIONS ...eeiuviieevieeeiiceieectec ettt ettt et eteeeaeeeeaeeebeeesseebeeereesseeenns 63
Chapter EXEICTISEScuvvueuiiueiieciiceeieieieeeteescieeeaessesesseese s eaessesesessssessseseacs 64
REfEIENCES ..o 65
Principles of Software Architecture........cocevirereriiieiieieieneresesesieeean 67
Chapter ODJECIVESc.cuiuiiiiiici s 67
Conceptual OVeIVIEW ..ot 67
What Is Software Architecture?coocvcviricincininicincinicce s 68
Why Study Software Architecture?..........ccocveveuneeriercunienicncineeeeeseeenenens 70
Key Tasks in Architectural DeSigncceevcuevreerricrrincueineeennecrneceeeeenneeenneaes 70
Identifying Stakeholders’ CONCEINS.........ccccuiuririnieiviiiiiiiiciscieiciiens 71
Identifying Appropriate Architectural VIEWSccccoveuevvieneccrnercrrnncecnnenens 71
Identifying Architectural Styles and Patterns..........c.cccoecvvvcivviccinicininnce. 71
Identifying System INterfacescccveeceinicinincinncenecneceeceeeenenes 72
Identifying Impact of Architectural Decisions in Organization............... 72
Impact on Customer Base......c.oeceevruereeinirieinneeiineeteneneceseneeeenene 73
Impact on Budget and Schedule............cccoeuviunieincininicincnincscriccnes 73
Impact from Resource Availabilitycccooccvvevneeiniccinincniccinicinicnens 74
Identifying the System’s Major Components and Interfaces....................... 74
Evaluating and Validating the Architecture............cccooecevveuiinccinicciniccinincnes 74
Introducing Policies for Design Synchronicitycocecvceveccenerceeencecenence 75
Problem Solving in Software Architecture.......c..cooeveucerieercineunieercnnernecnennes 76
INPULS ... 77
CONSIIAINTS ..ottt 77
OULPULS. ... 77
Software Architecture Process..........oviiiiiicicicininiicscecc s 78
Understand and Evaluate Requirements...........cccvecurencurenceeunecrneceeeneeenneennenes 79
ElCIAtION ..ottt 79
Requirement SOUTCES.......vvveerireeierenirieieenieeeentetei ettt nene 79
Elicitation TeChNIQUES.........ceurureueuieeiniiciricieireicirecieecieseaeeseetseesesseseseeaes 81

ANALYSIS oottt 82

x o Contents

Chapter 4

Specification and Validationcceceveeeennncceinncccececeeseeeees 84
SPECIIC e 85
COITECT ittt 86
COMPLELE ...ttt ettt 86
CONSISEENT ...ttt 87
AAINEADIE ...t 87
VErIfIablecoucuieiiiiiicicircc et 88

Designing the Architecture.......c.ococeceuicunicninecinecrcecececeecee e 88

The 4 + 1 View Model ..o 89
USET VIEW ..ottt 89
Process VIEW ...ttt 90
PRySICal VIEW ..ottt seae 90
Development VIEW.......c.cccuicuiiiiiicinieiicieicesieeieieseesssesssesesssessaes 91
LOGICAl VIEW ..ttt snae 91

Components and CONNECLOLSc.oweuerriuereerrerneieierresrienessessesesessesessesenns 92

Designing Logical Architectural Elements Using Data Flows................... 92

Designing Logical Architectural Elements Using Styles and Patterns..... 93

Designing the Process Architectureccoeveceuvevcivencreinecinecrneceennceennenens 93
PrOCESSES ..o 93
TRICAAS ..t 94

Evaluating the Architecture ..o 103
Chapter SUMMATYc.ccccuviiuriieiieiricieeeiteseeseie et ssesessesessssesenaes 104
ReVIEW QUESTIONS ..vecvviveirieeietecreceete ettt et ettt e re et e eaeeaeene 105
Chapter EXEICISES ..c.evruriiuiueieiririiieieisisisecieie ettt ettt senens 106
REFETEIICES ..uveiviieeiiieicie ittt 106
Patterns and Styles in Software Architectureccccecvevvevicviencncnennnn 107
Chapter ODJECtiVESccceveueiieiiciricicete et senaes 107
ConCeptual OVEIVIEWcucueuceirieciricieiceetneieisectseesesese e sese s sseaesenaes 107
Architectural Styles and Patterns.........ccoccveceinicinicininccinccicrceeeenens 108
History of Architectural Styles and Patterns...........cccoeeeeevevceeenecrnecurencnnn. 108
Architectural Pattern Classificationcococueucieinininincnescicicinen. 109
Data-Centered SYStEmMS.......c.cueucuricureeeeuneecunicieeeeetsesesnecseeeseasesessesessesesessesesens 111
Blackboard Pattern........cccocviiiciiiniiciccc s 111
Data FLOW SYSTEIMIS......c.vuiuiieiieciricirieieieiciecie e sseseseesese e ss e sseaenens 116
Pipe and Filter Patternc.coovvviiieirinineicieirincccicieiseccieiessseeeiesesseeenenes 116
Distributed SYStEMSc.evcueeieerriciricieicieirteiecteieeeseseseseseesese s seesesenne 120
Client—Server Pattern......c.ocveeeeeirieirieieireeineereieeeiseseesesetseeseesesesseseseseseene 120
BroKer Patternl......ccucueiicuriciiieiicieicieieieneceeeie sttt nseseseseseescsessesnns 122
Interactive SYStemS........cvviueviueiieiiiciece e 127

Model-View—Controller PatterN.......covvvieveeeeeiieeeeeeereeeeeeeereereereeeesvessesvessennes 127

Chapter 5

Contents « xi

Hierarchical SYStemS......c.oucueuiueiiciricieicieitciicrce et senaes 131
Main Program and Subroutine............ccoocceuveeurieueinicinicrneneeeesecnenennn. 131
Layered Pattern ..ottt saesenae 133

Chapter SUMMATYc.occcuviiiieiieiricieceteseesesesesese e ssesesssaessssesenaes 136

ReVIEW QUESTIONS ...eiivviieericetie ettt ettt ettt ceareete e e reeeaeeeaveeeaneeneeen 136

Chapter EXEICISES ...cueururiiuiueieiririiieieieirtnecieie ettt ettt sens 137

REfEIENCES ... 137

Principles of Detailed Design........ccccceciviiiiniiiiiiiniiiiiiiiicieccecs 139

Chapter ODJECTIVEScucuvcuriceeireicirecieiceeseietseereeseesese et aese e seeaesenae 139

ConCeptual OVEIVIEWcucuiuieciriecirecieiciettietseceseeseeseseaseseasesese s sseaesseaesennes 139

What Is Detailed Design?.......c.cccceueueuneueurecrnecininecineeieeeieiseeeesesessescseeesessesens 140

Key Tasks in Detailed Designcoucueueurureuerricirieenineeeineeineeeeieeeeseeensescneenes 142

Detailed Design ProcCess.....c.coceurecurecuricueinieinicirieeeineseasesessesesenesessesessescseenes 142

Understanding the Architecture and Requirements.........c.cccevveueunecrnecnnnce 143

Creating Detailed DeSignscoccureeurmcueineeinicirieeneieinecnseceeesesseeessesenennes 144
Interface DeSIGN.....c.ccuicuricueiiciicicieeece et 144

External Interface Designccooucueiiueinicinicininiciiciricieeeeienseenenaes 144
Internal Interface Design.........ccvueueiiueinicinicinineeieciicieceeiesseeenenaes 145
Graphical User Interface Designccoouceuvieurmneeinicrnincienenenneenneenennes 145
Designing Internal Structure of Components...........ceccvuveueuneernicurnnennnn. 145
CIASSES .o 146
Interfaces, Types, Subtypes, Dynamic Binding, and Polymorphism ... 147
ODJECES .ot 148
Design Principles for Internal Component Designc.ceveueuniuricncnnce 149
Open-—Closed Principle........ccoovevecuerrninencereininineeeieseneeeeeseeseeneenene 149
Liskov Substitution Principle ... 156
Interface Segregation Principle..........cccoviivciiiiininininciicncicicines 157
Programming Styles in Detailed Design..........cccocovivininiiincincincicininne. 159
Function Names.......ccociiiiii s 160
Variable NameSscoceuiurieieiniiicieiiicceie e 162
Modeling Internal Behavior of Components.............ccceveuricincrniuricuncnnee 164
Design Components Using Design Patterns ..., 166
Architectural versus Design Patternscoceveeeuneecerercenenceeeneeernecnnnnes 167
Classification of Design Patterns........ccoccvevcureneeeeneecenecesesceeeneennecnnnnes 167
Documenting Design Patterns..........cooviiniiiinniiiinniccce 168

Document the Software Designcceeueureerrecerineuneneeinecineceeeeeeeseeesneeneenes 169
Interface Control Document............ccccuvcueiciciniiicincininicescsiececnaes 171
Software Version DOCUMENLc.cccucuniuirieiiiiiciciiicicicesisieienens 172

Monitor and Control Implementationc.cocoeeeueereneeecirinercneeeesreeenens 173

Chapter SUMMATYc.occcuriiueiieiieirieieieeeeteseesseesessesessesessssesessesessesessescsesae 173

ReVIEW QUESTIONS ...evvireeeiietieteceeeeereet ettt ettt reereesbe e e be b e essenraennans 174

xii o Contents

Chapter 6

Chapter 7

Chapter EXEICISES ..ucueururiiiueiririritieieirestrccie ettt ettt ettt teesenees 175
REFEIEIICES ...ttt 175
Creational Design Patterns in Detailed Design........cccccceevveiiniincnennene. 177
Chapter ODJECtIVES ..o 177
Conceptual OVEIrVIEWc.ccueuuiuciieciricieicieintieisectseeseeseseasesessesese s ssesesseacsennes 177
Creational Design Patternsccveveueiiueinicinicinieieineeieeieiesenesessesessssenenaes 178
ADSEIACt FACLOTY ..ottt 178
ProbIemc.viuciiciiccireciriccc et 179
SEFUCTUTE 1t 179
IMPLeMENtAtION.....evuieiiieiiciricieicieteic ettt 181
BENEIES c.oveeieiiciei et 188
Factory Method ..ot 188
PrODIEm ..ottt 189
SEFUCTULE . 189
IMPlemMentation.....c.ceeuriiucieiriririeieieieere ettt eaens 191
BENEIIES 1.ttt 192
BUILACT ...ttt 193
Problem ... 195
SELUCTUTE .t e 195
IMPleMENtAtION ...ttt 197
BENETItS ... 197
ProOtOtYPe e 201
Problem ..ot 201
SELUCTUT® ettt e 204
IMPleMENtAtION....c.viuiieciricieieeict ettt 205
BENEIES ..ottt 207
SINGIELON ..o 207
Problemc.vieiiciiicirecirc ettt 208
SEFUCTUTE i 208
IMPlementation........ccceieueuiueiciniiiecieee et 209
BENEIES .ttt 211
Chapter SUMMATY ..ot sssseseee 211
ReVIEW QUESTIONS ..vovvieviieeiciectecteeteeete ettt ettt ettt eeereete et e seenseessenseensens 211
Chapter EXEICISES ..cueuuruiiueieieeririeeieerieiseeieie ettt e s sssesaesees 212
REfEIENCE.......oieiiieiicicic e 214
Structural and Behavioral Patterns in Detailed Design.........cccccc..c.... 215
Chapter ODJeCtiVes ..o s 215
ConCeptual OVEIVIEWcucuiucecireieirecieecieieieisectseeseeseseaseseseesese s sseaessesesenne 215

Structural Design Patterns........c.oceeeuiciniciernieinieiiceieeeeseesenesessesenene 216

Chapter 8

Contents o xiii

AQAPTET ..ttt 216
PrODBIEIM ...ttt ettt 217
SETUCTUTE .ttt ettt ettt ettt et et et et et et et essessansansansansan 219
IMPleMENtation.....c.cuevririiieieiririreceieirtr ettt 219
BENEMIES ..ttt bbb ae s enes 221

COMPOSIL...veieiiiieiiiriereiitrteettere ettt ettt et sn e et be et n s et snen 223
PrODIEM ..ottt 224
SEIUCTULE ..ttt ettt ettt ettt be e ene 225
IMPlementation.....c.coeeuririeeueuriririeieieirtreeeie ettt sees 227
BENEIES ..ottt ettt bbbttt 231

FACAAC ..ttt ettt ettt ese s er et nensenen 232
PIODBIEIM ...ttt ettt aeanarenen 234
SEIUCTUTE vttt ettt ettt e et et eb et et e b e b et et e b e b esbebesbessessensensesensan 235
IMPLeMENtAtION. c..evuriiieciriciieeircte ettt 237
BENEIIES ottt ettt ettt ettt seneanarenes 238

Behavioral Design Patterns.ccocuveuicucirieciciniinicieniiceecieiesseseseenens 238

S (0 SRS 238
PrODBIEIM ...ttt ettt n s enes 239
SEIUCTUTE vttt ettt ettt et e et s e b e b et e b ess e s et essessensensensensan 241
IMPleMENtAtiON....cucvuiuiiectricieiecec ettt 245
BENEMIES ..ttt ettt st ananenas 251

ODSEIVET ...ttt ettt ettt s et s et ettt se st et te s seteseasesesesnnsenas 252
PrODBIEIM ...ttt ettt a e enes 252
SEIUCKUTE 1.ttt ettt ettt et e st e e et et e b et et e s estessassansensansans 252
IMPleMENtAtiON...c.cuieieeiiiicieieiricieteee ettt eaes 254
BENEMIES ..ttt bttt eae s enes 254

Chapter SUMMATYc.occcuviiueiieiieiicieeete e ssesessesesesscsenses 256

ReVIEW QUESTIONS ...ccvieeeeiicieeiecteceeeeteeteee ettt e ee e et e e saeeaeenie 256

Chapter EXEICISES ...cueururiiuiueieiririiieieisirtsccieie ettt ettt aesens 257

RETEIEIICE.vveeiieteteiete ettt bbb st as s sesnan s 258

Principles of Construction Design.........cccceceviviiininiiiinineiiiiicieciens 259

Chapter ODJECTIVESvucuieueiceeireieirecieiceeteiciseetsees ettt esese s sseaeseeaesesae 259

Conceptual OVEIrVIEWc.ccuuucucirieciriciricieintieisectseeseesese et ssese s ssesesenaes 259

What Is Construction Design?c.coeeureeurecueineecirecenineeeeneeeeseessecseeesessesens 259

Why Study Construction Design?c.ccceevcueereeenercrninceeeneeerneceseceensesennenens 260

Behavioral Construction Design........c.evcueueuerrecerincureneecenicineereeeeeeneeesnescneenes 261
Flow-Based DeSigns........ccvueueueueuniciricieiieinecseecieseieesesesseesessesessescssssesenns 261
State-Based DesiGNs.......cccuvuueueueunicinieieiieiieieeeie et ssescsessesenne 262
Table-Based DeSIgNS........coueuuiueunicrniiieiieirieieeeie e ssescsessesenne 264

Limited-Entry Decision Table.........ccccceuvieurinerrmneeinicrnicieccnecnnecnnnnes 266

Extended-Entry Decision Table.......cc.cccoceurernienicincnccnicnicnes 268

xiv ¢ Contents

Chapter 9

Mixed-Entry Decision Tableccocceuvieunierrinieinicrniciecceennecnnnaes 270
Table-Based ConStructionccecueueicinciniinieineisiciecisieeiseesesenens 270
Programming Design Language ..o, 271
Software Construction Using Styles..........c.oeeuiuriernernienicinernieencinerneenenens 274
Formatting Conventions ... 275
INdentation ... 276
Brace Placement ... 278
Naming Conventions ..ot 279
Documentation CONVENtionS.........ceeuieueiereerinieieieicneeeecee e 282
Documenting Files..........cceuieinininiciniciniceeeecieecieneiesesessesenenaes 282
Documenting FUNCHONS ..o 282
Minimizing Complexity in Construction Design........c.ccccecvevrviivvinininnncn. 283
Quality Evaluation of Construction Design........cccccveuniuevcunerniuercrnerneeenennns 284
Peer REVIEWS ... 285
U TESTING cocvvvrieierereiriiecieietretcie ettt eeseaenens 286
Cyclomatic COMPIEXILYveveeeeuremciricieieieiricireeiereietrees e eeseseeeseene 286
Chapter SUMMATY ..o 290
ReVIEW QUESTIONS ettt ettt ettt eeareeteeesbeeeaeeeabeeeaneesee s 290
Chapter EXEICISES c.cueuuruiiueieiriririiieieieirenccieie ettt ettt ettt eeesesees 291
REFEIEINCES ... 292
Human-Computer Interface Designccccoverivininiiiiiiiicnicicnicnenn 293

Jacob Somervell

Chapter ODJECHIVESccuvviuriieeiiciriceeeite et ssesesenaes 293
ConCeptual OVEIVIEWc.vcuiuiuiiciriciriceeitietsectseese e aseaessesese s ssesessescsennes 293
What Is Human-Computer Interface Design?cccccveeeveuviivicincirernicunn. 294
Why Study Human-Computer Interface Design?ccooevevcivvicinininnes 294
General HCI Design Principles ..o 297
Human-Computer Interface Design Methods........ccocccvvcuvecirnccinicrnecunnncs 299
Getting Started.....coveueuecureceeieeiecieicie et 299
Fidelity in PrOtOtyPes......ccocvieiciniurieeieiiiieicieisieiesseiesesessseese s senens 300
MELAPROTS ...ttt 301
Gestalt Principles......coovieeiriririieieieercceieie et eeaees 303
Reusing Earlier Designs.......c.ccvueuecurinceeinieernicrnicieineeereesseeseeesessescssssesenne 305
Evaluation of HCI Qualitycccccoviiiiiiiiiiiiiciiicccccene 305
Usability TeStINgcccvveuiieiiiiciiciicccce e 305
ANALYtic TESTING....cucviiuriieeiicirieieieiecteee ettt nenaes 306
Empirical TeStINgG......cccvucurureuemniuerricieieieieeineeseiereseiesseseseeeseseseseescsessesenne 307
Chapter SUMMATYc.vcueicurieeeireeireeieeeeeeseaeseaesseese s ssesessesesessesessesessesesesaes 309
ReVIEW QUESTIONS ...cuviviiiieieieeteeteteeteetete ettt ettt st et besbe b e besaesbessesbebesans 309
Chapter EXEICISES ...c.eururiiuiieiriririiieieirirtrecieie ettt ettt ettt sens 309

RETETEIICES ..ttt ettt st et e st e et st et ese st estestsasensensensensensensensons 310

Contents o XV

Chapter 10 Software Design Management, Leadership, and Ethics.........c..c..c...... 311
Luis Daniel Otero
Chapter ODJECtIVESc.vcuviueiiciriciriceeciee ettt sseaeseae 311
ConCeptual OVEIVIEWvucueieciricirieieieicisecie ettt sseaeseae 311
What Is Software Design Management?ccceceeeuneuneuernernerneeeneurevensenenn. 312
Why Study Design Management?..........c..ccecueeneeenecrneneeemsesenseessmesensesessesens 312
The Concept of QUALILYcueeueuiuciriciricierccrcreee ettt 312
Design Management Framework..........ccccoocceuvieivineninicinicininceicenicneennes 313
Planning Design EfOrtscccccviiiiinicincinieeccececceeseeseseaenene 314
SCOPING ..ot s 315
Work Breakdown Structure ... 315
BUAGEHING ...ttt seee 316
Organizing.....cccociiiiiiciiiiiii e 317
Linear Responsibility Chartcccccocviiiinicinicniiiiicicrcccennee 318
Scheduling with Gantt Charts and Network Diagrams.........ccccccoeuuceee. 318
Probability of Time to COmMPIEtioncccveevrerceeuneecenecirieeeireecinecnnenes 322
Establish Change Control Policy.........cccocceviiuniiiinicinicinicciicsicicinnn, 324
Implementation PRasecccevriieeeiririniieieeereceie ettt 325
Earned Value Management...........cccccuveurieieiniunieincnneeeienessseeiessssseenennes 326
Termination Stage ... 329
Leading the Design EffOrtcccoucuvicuriceiniciniciriceecieciicieeeeneeensesenenaes 329
Personality Traits and Leadership.......cccocevecurincenecinecenincenccneceenene 329
Personality DIMensions..........ccccccvicuriiieinieinicinieieicieeceiee e 329
Traits of Effective Leadersccocueeeeinicinicrncieiecinicieeceeeeessecnenenenne 330
Ethical Leadershipcocccrveeiicinicinicieccncisciceicesecteeeseeese e 330
POWET oot 331
Key Leadership SKills.......cccoeuieiiciniciiiciccriceececieeceeeiesseeensescnennes 332
Communication SKillSceveueuriciriiieinienicecec e 332
Networking SKillS ..., 333
Motivation SKillS.......cccvvcuricuriiciriciricieeececeeceet e 333
Negotiation SKillS.......c.cceveuiuninieiniiiciccce s 334
Ethics in Software DesigIcvucueuriuricunierieicieirieicieieieenseeenessesesae s 335
Public and Product Principlesococeeeueurereneeeisinenecceiereeee s 335
Judgment Principle........ccociiiniinieinciniicesceeeeeeee e 336
Management Principle........ccocciniininicinicniiiciicceeecceene 336
Chapter SUMMATYc.occcuvieueiieiieiicieiceeeee et ssesessesesessesessesessesessescsenaes 336
ReVIEW QUESTIONS ..vecvviviirieeeetecteceete ettt ettt et ere et e s et s eaeeeaeeneene 338
Chapter EXEICISES c..cueururiieuiieiririiieieirirtsecieieietsees ettt teesenens 339

RETETEIICES .ttt ettt et et sressesse st essessessessessessessessessensessessensessens 340

Preface

This book is the result of an effort that I began in 2010 at the University of Virginia’s
College at Wise to create a course in software engineering design consistent with the 2004
IEEE/ACM curriculum guidelines for undergraduate programs in software engineering
(SE). In a broad context, the recommended topics for undergraduate SE programs include
design concepts, design strategies, architectural design, detailed design, human-computer
interface design, and design evaluation. As a former industry practitioner, I learned first-
hand the difference between hearing or “learning” about these topics and developing the
necessary skills to apply them in a way that adds value to some development team, pro-
gram, project, or business. With that in mind, I set out to compile material that I could
use (from previous industry experience) to help students become proficient in design-
ing software-intensive systems. Throughout the process, many of the original examples
considered dry or hard to follow by students were replaced with new problem domains
(e.g., gaming systems) that helped students assimilate the concepts better. Because of
the “hands-on” approach required to master these concepts, the teaching style evolved
to emphasize both theory and practice. The theory portion was used to present accept-
able general design principles or a body of design principles to explain successful software
systems’ designs. The practice portion provided the avenue for transforming design theory
into skills that can be employed directly to real-life industrial settings. The knowledge
and experience gained from these efforts have been captured in this textbook, which can
be useful for both industry practitioners and students in software engineering, computer
science, and information technology programs.

INTRODUCTION

This book provides an introduction to the essential concepts employed by software engi-
neers who design large-scale, software-intensive systems in a professional environment.
It bridges the gap between industry and academia by providing students with a comprehen-
sive view of software design using industry-proven concepts for designing complex software
systems. Its unique blend of theory and practice provides both students and industry prac-
titioners with key concepts that are immediately relevant to today’s software designers. The
book contains examples, review questions, and chapter exercises carefully selected to bring
real-world problems into a classroom environment. More importantly, it incorporates an
effective learn-by-doing approach that allows students to transform design theory into the
skills required to design complex software systems. The book starts by providing a general
overview of software design, including the fundamentals of software design, the importance
of studying software design, and different practical concepts used for designing software.

XVii

xviii ¢ Preface

As part of the introductory material, the software engineering process is covered briefly
to provide the context in which software design takes place and a formal top-down design
process is presented. The top-down approach consists of several design phases and activi-
ties that occur at varied levels of detail/abstraction, including the software architecture,
detailed design, and construction design. As part of the top-down approach, detailed
coverage of applied architectural, creational, structural, and behavioral design patterns is
provided and a collection of standards and guidelines for structuring high-quality code
is presented. The book also provides techniques for evaluating software design quality at
different stages and much needed coverage of management and engineering leadership
for software designers. This provides software engineers with the necessary management,
ethical, and leadership knowledge required to build products for the public domain. The
book also provides coverage of the software design document and other forms of documen-
tation important during the design of software systems. Collectively, the book comprehen-
sively introduces students and practitioners to software engineering design and provides
the knowledge required to emerge and succeed as tomorrow’s professional design leaders.

USE AS A TEXTBOOK

The textbook provides a comprehensive (sophomore-level) introduction to required con-
cepts in software design. When used as textbook, instructors are encouraged to visit the
textbook website to download slides, the solutions manual, and other exercises developed
as part of the ongoing effort to improve education in software engineering design. The
material presented in the book’s 10 chapters can be easily extended to 16 weeks, espe-
cially when covering the topics of design patterns. A recommended approach includes
conducting microdesign reviews, where students (or student groups) design, implement,
and present their work regularly, while other students evaluate, critique, and provide
peer-review comments. Because of the nature of the topics covered, students are expected
to meet the following prerequisites:

o Introduction to Programming (with object-oriented language)
« Data Structures and Algorithms
« Introduction to Software Engineering

Ultimately, the most important feature of software designs is their applicability to build
software; therefore, the course should require students to implement a large portion of
the designs created as part of the course. A recommended approach (when possible) is to
adopt a unified modeling language (UML) modeling tool capable of forward and reverse
engineering and use the textbook as a guide for creating and assigning design problems
centered around the topics discussed throughout the book, since they are essential to all
software engineering students from ABET-accredited programs.

Acknowledgments

Many people have contributed to this effort in one way or another. First, I would like to
thank Dr. Jacob Somervell from the University of Virginia’s College at Wise, and Dr. Luis
Daniel Otero from Florida Institute of Technology for providing the material for Chapters
9 and 10, respectively. Your work made the overall product complete, and many students
and practitioners will benefit from your contributions. I also thank Dr. Ira Weissberger
from Harris Corporation for his contribution on the section on software design docu-
mentation in Chapter 5 and Stefan Joe-Yen from Northrop Grumman Corporation for his
contribution to the architectural patterns chapter. I would also like to thank the reviewers
and staff at Taylor & Francis—in particular John Wyzalek—for their help throughout this
long process. Finally, and most importantly, I thank my wife, Kelly, and children Allison,
Amanda, Michael, and Ashley, for their sacrifices, patience, and support.

Xix

About the Author

Carlos E. Otero, PhD, is assistant professor in the College of Technology and Innovation
at the University of South Florida Polytechnic (USFP). Prior to joining USFP, Dr. Otero
worked as assistant professor of software engineering in the Department of Mathematics
and Computer Science at the University of Virginia’s College at Wise, where he created
the software engineering design course for Virginia’s first and (at the time of writing) only
ABET-accredited BS in software engineering.

Prior to his academic career, Dr. Otero spent 11 years in the private industry, where
he worked as design and development engineer in a wide variety of military computer
systems, including satellite communications systems, command and control systems,
wireless security systems, and unmanned aerial vehicle systems. Currently, he continues
to consult with industry in the areas of requirements engineering, software systems design
and development, quality assurance, and mobile systems engineering.

Dr. Otero received his BS in computer science, MS in software engineering, MS in systems
engineering, and PhD in computer engineering from Florida Institute of Technology in
Melbourne. He has published over 25 technical publications in scientific peer-reviewed
journals and conferences proceedings. He is a senior member of the IEEE, a science advisor
for the National Aeronautics and Space Administration (NASA) DEVELOP program, an
active professional member of the Association for Computing Machinery (ACM), and a
member of several journal editorial boards in technology and engineering.

XXi

1

Introduction to Software
Engineering Design

CHAPTER OBJECTIVES

« Understand software design from the engineering perspective

o Understand the importance of software design in developing com-
plex products

« Understand the issues that make software design challenging

o Understand the software design process and differentiate between
its activities

» Become familiar with software design principles, considerations, and
strategies

CONCEPTUAL OVERVIEW

Software design is an indispensable phase of the software engineering pro-
cess for creating and evaluating software models that guide the construc-
tion effort for developing high-quality software systems on time and within
budget. Conceptually, design is the process of transforming functional and
nonfunctional requirements into models that describe the technical solution
before construction begins. To achieve this, the concept of software design,
its activities, and tasks must be well understood so that a problem-solving
framework for designing quality into software products can be established.
In today’s modern software systems, there are numerous design principles,
processes, strategies, and other factors affecting how designers execute the
software design phase. When equipped with the proper design foundation
knowledge, an understanding of the designer’s roles and responsibilities

2 o Software Engineering Design

can be acquired, allowing designers to become effective in designing large-scale software
systems under a wide variety of challenging conditions. This chapter presents the funda-
mental concepts of software engineering design, within context, and provides the motiva-
tion for the rest of the book.

ENGINEERING DESIGN

Design is an integral part of every engineering discipline. Airplanes, bridges, buildings,
electronic devices, cars, and many other products of similar complexity are all designed.
In civil engineering, designs are used to specify detailed plans for developing physical and
naturally built environments, such as bridges, roads, canals, dams, and buildings. In elec-
trical engineering, designs are used to capture, evaluate, and specify the detailed qualita-
tive and quantitative description of solutions for telecommunication systems, electrical
systems, and electronic devices. In mechanical engineering, designs are used for analyzing,
evaluating, and specifying technical features required to construct machines and tools,
such as industrial equipment, heating and cooling systems, aircrafts, robots, and medical
devices. In all other engineering disciplines, design provides a systematic approach for
creating products that meet their intended functions and users’ expectations. Formally,
Dym and Little (2008, p. 6) define engineering design as

A systematic, intelligent process in which designers generate, evaluate and specify designs for
devices, systems or processes whose form(s) and function(s) achieve clients’ objectives and
users’ needs while satisfying a specified set of constraints.

Design is a lengthy and complex process requiring significant investments in time and
effort. So why conduct design in engineering disciplines? There are many possible answers
to this question, stemming from simple common sense to more complicated ones involv-
ing professional, ethical, social, and legal implications. From the commonsense perspec-
tive, products of such complexity are hard to create, are costly to change, and, when built
carelessly or incorrectly, can significantly impact human life. When working toward the
creation of complex products, teams must organize in a disciplined manner, and a sys-
tematic approach needs to be employed to carefully ensure that products are built to meet
their specifications. Consider the construction of a bridge that spans over a body of water
and is required to support a particular weight, to maintain access to watercrafts navigating
underneath, to withstand expected wind speeds, and to provide other features such as side-
walks—all while being bound by a schedule and budget. The successful construction of such
a bridge is a nontrivial task and requires years of experience, formal education, and large
teams collaborating together to achieve the construction goals. If constructed incorrectly,
reconstructing the bridge can skyrocket from its original construction cost; worse yet,
if defects are undetected, the bridge could collapse, resulting in the catastrophic loss of
human life. Similar to the construction of the bridge, teams engineering other products,

Introduction to Software Engineering Design « 3

such as airplanes, watercrafts, medical devices, and safety-critical software systems, share
comparable challenges, and failure of these products can also result in catastrophic events.
In an engineering environment, before product construction begins, the design of prod-
ucts needs to be carefully and extensively planned, evaluated, verified, and validated to
ensure the product’s success. This is mainly achieved through design.

ENGINEERING PROBLEM SOLVING

Throughout the design process, designers are constantly engaging in problem-solving activ-
ities that are fundamental to all modern engineering projects. In a broad sense, engineers
can be characterized as specialized problem solvers. Their work requires them to identify,
evaluate, and propose solutions to complex problems (in particular domains) under tight
project constraints. In some situations, engineers tackle problems that have never been
solved before, creating challenges to meet not only functional aspects of products but also
their established schedule and budget. Before engaging in more concrete design topics, a
formal discussion on problem solving is necessary to identify fundamental concepts that
are well understood by successful designers; these serve as basis for establishing a holistic
problem solving framework that can be employed any time during design.

To become a good designer, engineers must be good problem solvers. This may require
years of experience solving problems in a particular domain. In many cases, experience
allows engineers to reuse already proven solutions across separate but similar problems.
In other cases, where unsolved problems are encountered, designers are required to
“think out of the box” and carefully craft a systematic approach for solving the problem in
an acceptable manner, which may require problem classification, identification of the solu-
tion approach and type of adequate solution, and identifying the overall strategy for reach-
ing its solution. In a general sense, problem solving during design occurs in three different
states (Plotnik and Kouyoumdjian 2010):

o Initial state
o Operation state
o Goal state

Through these states, designers employ several techniques and strategies to create a
landscape suitable for problem solving. The initial state is where problems are formulated
and interpreted. In some cases, achieving full understanding of the problem is a problem
itself. Once problems are well understood, designers move to the operational state, where
thinking about the problem occurs and viable solutions come to light. Once an appropri-
ate solution is identified, evaluated, and validated, designers move to the goal state, where
a final solution to the problem is found, marking the end of the problem-solving process.

4 « Software Engineering Design

TABLE 1.1

Problem Classification

Problem Description

Well-defined Problem with clear goals and known constraints
Ill-defined Problem with undefined or ambiguous goals and unknown constraints
Wicked Problem with no definite solution; not understood until after the formulation of its solution

Initial State

Design problems are not all the same; they vary in size, complexity, and, based on these
characteristics, the amount of time and effort required for their solution. In some cases, it
quickly becomes evident that certain problems are harder to solve than others. When this
determination is made, the strategy for the solution approach is adjusted to account for
the additional complexity. Being able to differentiate between types of problem is crucial
in helping designers account for the amount of effort, time, and risk associated with the
solution approach. Therefore, an important problem-solving skill involves identifying and
classifying the type of problem encountered, which includes well-defined, ill-defined, and
wicked problems, as presented in Table 1.1 (Giachetti 2010).

Well-defined problems have clear defined goals and their constraints are well under-
stood. This makes scoping the problem, proposing a solution approach, and arriving at
the solution easier than with other types of problems, such as ill-defined and wicked
problems. Ill-defined problems are problems where the mere interpretation of the prob-
lem is a problem itself; they are ambiguous with undefined goals and require more time
and effort to clarify and interpret the problem to arrive at a solution. In some cases, with
additional effort, ill-defined problems can be transformed into well-defined problems.
Finally, wicked problems are problems where no single problem formulation exists. There
may be many acceptable formulations of the problem and no definite solutions, and solu-
tions are not deemed correct or incorrect but good or bad (Giachetti 2010). In many cases,
wicked problems can lead to contradictive goals that need additional resolution before the
problem solving can occur. When contradictive goals are present, providing a solution
to one part of the problem results in the inability of solving other parts of the problem.
In these types of problem, optimal solutions are hard to find, requiring additional strug-
gle and collaborative brainstorming. Also, evaluation of alternative designs may require
advanced techniques to determine the best course of action, which tends to require more
time. In many cases, the solution to wicked problems is not known until after the problem
is solved.

Operational State

The operational state of problem solving is where thinking about the problem solution
takes place. It requires employing multiple techniques for problem solving such as using
metaphors, decomposing problems into smaller, less complex problems (i.e., divide and
conquer), reusing solutions (e.g., patterns), and so forth. In all of the techniques, designers

Introduction to Software Engineering Design o 5

FIGURE 1.1
The nine-dot puzzle.

are expected to exhibit a “think outside the box” mentality to be able to solve complex
problems. This requires shifting the mental model from a conventional approach to uncon-
ventional methodology where solutions to complex problems may arise from thinking in
ways that deviate from conventional wisdom. For example, consider the popular nine-dot
puzzle illustrated in Figure 1.1 (Kershaw and Ohlsson 2004).

The requirements for solving the nine-dot puzzle problem are as follows:

1. Draw four straight lines to connect all dots.
2. The pencil cannot be lifted from the paper once the line-drawing process begins.
3. No lines can be retraced.

Before moving on, think about this problem and attempt to provide a solution. At first,
this may seem difficult because of the tendency of fixing the mental process to operate on
the assumption that lines should begin and end on a dot. This functional fixedness limits
the ability to find solutions based on objects having a different function from their usual
ones (Plotnik and Kouyoumdjian 2010). In the case of the nine-dot puzzle, for some, func-
tional fixedness makes it awkward or even impossible to propose solutions that involve lines
going past the dots, which is what is required to solve this problem. To increase the chance
of overcoming functional fixedness, problems need to be attempted several times and con-
sidered from many different viewpoints and unusual angles (Plotnik and Kouyoumdjian).
Overcoming functional fixedness is critical for designers attempting to provide solutions
at the operational state of problem solving.

Thinking about the Problem

Different types of thinking take place when finding solutions to problems. For example,
when learning about a problem for the first time, problem solvers may begin by asking
questions, which allows them to think about many different alternative solutions; as the
problem-solving process moves forward, problem solvers can begin narrowing down the
possibilities and think about the single best solution to the problem. These types of think-
ing are known as convergent thinking and divergent thinking (Table 1.2).

Both convergent and divergent thinking have significant roles in solving engineering
problems. In many cases, problem solvers begin using divergent thinking with different
levels of abstraction, and each level provides finer-grained solutions to the problem until
convergent thinking can be employed to solve it.

6 o Software Engineering Design

TABLE 1.2

Types of Thinking

Type Description

Convergent thinking Type of thinking that seeks to find one single solution to a problem
Divergent thinking Type of thinking that seeks to find multiple solutions to a problem
TABLE 1.3

Types of Problem Solution

Problem Description

Algorithm Fixed set of rules that lead to the solution of a problem
Heuristic ~ Rules of thumb (or procedure) that may or may not lead to the solution of a problem

Problem Solution

In many cases, determining the type of solution required for a given problem can reduce
wasted time and effort spent in attempting to find a single, optimal solution. In such cases,
designers can elect to seek approximate solutions—as opposed to optimal solutions—that
are appropriate and acceptable for meeting project constraints. Determining the type of
solution for a given problem can reduce time and budget required for building the system.
Two types of solutions are algorithms and heuristics, as presented in Table 1.3.

Algorithms are step-by-step procedures for finding the correct solution to given prob-
lems. Algorithms do not normally involve subjective decisions or rely on intuition or
creativity to find solutions (Brassard and Bratley 1995). For some types of problems, using
algorithms to find solutions can be unrealistic, especially in time-driven, practical engi-
neering problems. In these cases, heuristics provide a realistic approach for finding good
approximations of the solution. In some cases, heuristics can lead to optimal solutions; in
others, they can lead to solutions that are far from optimal or no solution at all (Brassard
and Bratley 1995). Algorithms and heuristics are both used heavily in the design of engi-
neering systems and determining their appropriateness for solving particular problems is
essential to meeting other project demands.

Goal State

The goal state represents the final state of problem solving. It is where adequate solutions
to given problems are determined. For many engineering problems, reaching the goal state
is a nontrivial task that requires careful attention to all important aspects of the problem.
The concepts of initial, operational, and goal state can be fused together to create a holistic
problem-solving framework adequate to solving engineering problems at all stages of the
development effort. The approach consists of the following tasks:

o Interpret problem
o Evaluate constraints
+ Collaborative brainstorming

Introduction to Software Engineering Design o 7

« Synthesize possibilities
« Evaluate solution
« Implement solution

The first task of the problem-solving approach involves interpreting the problem. This
is where problem information is received and processed; problem classification is identi-
fied (e.g., well-defined, ill-defined) and activities are performed to formulate the problem.
Interpreting the problem is a task performed during the initial state of problem solving.
During the initial state, identification of stakeholders—persons, groups, or organizations
that have direct or indirect stake in the problem and its solution—is essential. Once the
problem is formulated, the evaluate constraints task is used to identify external problem con-
straints, which are negotiated, integrated, and used to set the bounds on the solution land-
scape. Once the problem and constraints are well understood, collaborative brainstorming
can begin among problem solvers and stakeholders. During collaborative brainstorming,
problem solvers use mostly divergent thinking to come up with alternative solutions that
may bring to light new knowledge, which can trigger a transition back to the problem inter-
pretation task. Once a set of acceptable solutions is identified, problem solvers synthesize
possibilities to form the acceptable proposed solution to the problem. During this task, prob-
lem solvers shift from divergent thinking to convergent thinking to propose the best-known
solution to the problem. The solution is shared and evaluated by everyone involved in the
problem-solving process. Flaws in the solution may trigger a transition back to the collab-
orative brainstorming task; otherwise, implementation begins. Collaborative brainstorming,
synthesize possibilities, and evaluate solutions are all tasks performed as part of the opera-
tional state of problem solving. During implementation, the proposed solution is executed
until the problem is solved, which is a task performed during the goal state of problem solv-
ing. Together, these tasks are combined with other problem variables to provide a holistic
approach to problem solving (Harrell, Ghosh, and Bowden 2004), as presented in Figure 1.2.

As seen in the figure, inputs are items that require processing during problem solving.
Inputs come from many different sources and are interpreted and formulated for particu-
lar problems. They drive all activities by specifying the overarching need that promotes
the execution of the problem-solving tasks. Constraints are external properties that come
inherent with any problem and limit the solution approach. Outputs are the expected
outcome in problem solving. In many engineering projects, merely coming up with the
solution to a given problem is not enough, since the solution needs to be documented,
formatted, decorated, specified in graphical model format, or placed under configuration
management. Outputs coming out of the problem-solving process need to meet the appro-
priate standards as defined by the developing organization. The development organization
may also set standards for activities, controls, and resources, which all impact problem
solving. These variables are presented in Table 1.4.

Activities are internal tasks determined by the development organization that must be
followed when solving problems. These are intended to help manage the problem-solving
approach and may include review activities at different stages of problem solving, includ-
ing preliminary and detailed stages, status reports, and documentation, which all impact the

8 « Software Engineering Design

Generic Design Problem

Constraints
4 . 4
-
1
i
\
Evaluate Imol
Inputs Constramts mplement Outputs
LT
/ Interpret Collaborative Y
.- e S [—_—
ol [Problem Brainstorming Evaluate] >
0

Synthesize
Possibilities

Resources Activities Controls

FIGURE 1.2
Holistic approach to problem solving.

TABLE 1.4

Problem-Solving Process Variables

Phase Description

Activities ~ One or more tasks identified and required to solve the problem
Resources Means by which activities are performed

Controls Internal properties of the organization that place bounds on the solution, or the solution process,
for the problem

time required to solve the problem. Controls, on the other hand, are internal constraints set by
the development organization that limit the possible solutions so that they align well with the
organizational goals and current practices. These controls can dictate when and where prob-
lem solving takes place, selection of strategies, permitted tools, personnel allowed to engage in
problem solving, and measures for quality control. Finally, resources are the means by which
activities are performed, which include people, software, and hardware, and their availability,
which all impact problem solving. Together, all of these variables mix together to define the
problem-solving landscape, which must be considered when tackling engineering problems.

Skill Development 1.1: Using the Holistic Approach in Problem Solving

Use and document all the steps of the holistic problem-solving approach presented in
Figure 1.2 to solve the following problem. If possible, do this exercise as a team. The
problem specification is as follows: there are six equal matches; connect each match to
form four equilateral triangles. When done, explain how functional fixedness played a
role in preventing you from arriving at the solution to this problem.

Introduction to Software Engineering Design o 9

SOFTWARE ENGINEERING DESIGN

In the previous sections, design was introduced as a systematic and intelligent process for
generating, evaluating, and specifying designs for devices, systems, or processes. To support
this process, the problem-solving skill was identified as an essential ingredient for design-
ing complex products. These discussions provided a general perspective on the impor-
tance of these concepts in the engineering profession. As in other engineering disciplines,
design and problem-solving are crucial to the development of professional, large-scale,
software systems. Software systems are highly complex, difficult to create, costly to change,
and—depending on the software product—critical to human safety. Similarly to other
engineering disciplines, designs in software engineering are used to identify, evaluate, and
specify the structural and behavioral characteristics of software systems that adhere to
some specification. Software designs provide blueprints that capture how software systems
meet their required functions and how they are shaped to meet their intended quality.
Formally, software engineering design is defined as

(1) The process of identifying, evaluating, validating, and specifying the architectural, detailed,
and construction models required to build software that meets its intended functional and non-
functional requirements; and (2) the result of such process.

The term software design is used interchangeably in practice as a means to describe both
the process and product of software design. From a process perspective, software design is
used to identify the phase, activities, tasks, and interrelationship between them required
to model software’s structure and behavior before construction begins. From a product
development perspective, software design is used to identify the design artifacts that result
from the identified phase, activities, and tasks; therefore, these products by themselves, or
collectively, are referred to as software design. Design products vary according to several
factors, including design perspective, language, purpose, and their capabilities for evalu-
ation and analysis. For example, designs can be in architectural form, using architectural
notations targeted for specific stakeholders. These types of design can be presented using
block diagrams, Unified Modeling Language (UML) diagrams, or other descriptive form
of black-box design documentation. In other cases, design can be in detailed form, where
a more white-box representation of the system is used to model structural and behavioral
aspects. These can include software models that contain class diagrams, object diagrams,
sequence diagrams, or activity diagrams. Other design products include models that rep-
resent interfaces, data, or user interface designs. Due to the many ways software design is
used in practice, a common pitfall in software engineering projects is to associate design
with a particular type of design artifact, therefore neglecting other forms of design or the
activities required to create complete and correct software designs. Collectively, both pro-
cess and products, including all variety of design products, are considered software design
and are essential in most professional software projects.

10 « Software Engineering Design

WHY STUDY SOFTWARE ENGINEERING DESIGN?

On February 25, 1991, a software error on the Patriot missile defense system operating
during operation Desert Storm caused it to fail to track and intercept an incoming Scud,
which resulted in the death of 28 Americans (GAO, 1992). In 1996, a software error caused
the Ariane 501 satellite launch to fail catastrophically, resulting in a direct cost of approx-
imately $370 million (Dowson 1997). The software error that caused Ariane 501 to fail
could be attributed to its software design. Similarly, the literature is swamped with many
examples of disastrous results of software-based products. The reason for many of these
disasters is that developing high-quality software on time and within budget is a daunting
task. From the outset, the landscape for software development projects is plagued with a
variety of challenges that increase complexity in software projects. Software design plays
an integral part in managing the complexity and the challenges encountered in any soft-
ware development effort.

During the software design phase, the system is decomposed to allow optimum develop-
ment of the software; requirements are mapped to conceptual models of the operational
software; roles are assigned to software teams on the same or remote sites; well-known
interfaces for software components are created; quality attributes are addressed and
incorporated into the design of the system; the user interface is created; the software’s
capability is analyzed; function and variable names are identified; design documentation
goals are established; and the foundation for the rest of the software engineering life cycle
is established. Given its impact on the creation and management of software products,
mastering software design becomes essential to successfully engineer software products.
The reasons for studying software engineering design can be described using a product
development perspective and a project management perspective.

Reasons for Studying Software Design in Product Development

From the product development view, studying software design is important because
designs form the foundation for all other software construction activities. Software designs
allow software engineers to create models that represent the structure and behavior of
the software system. Through these models, the main components and their interconnec-
tion for the solution are identified. Characteristics of quality code, such as modularization,
cohesiveness, and coupling, are all born in the design phase. For complex tasks, abstrac-
tions and encapsulation are used in software design as means to provide a systematic
approach for problem solving. In addition, software designs are reusable; therefore, they
can be applied to different projects to provide ready-made solutions to common problems.
Software design also provides the means to evaluate and incorporate the quality attributes
necessary for software systems. Therefore, issues such as performance, usability, portabil-
ity, and security can all be addressed early on in the development project. These benefits
are carried over to all other subsequent phases of the software development life cycle and
have direct impact on the implementation, testing, and maintenance phase.

Introduction to Software Engineering Design « 11

Reasons for Studying Software Design in Project Management

Managing software projects characterized by changing requirements, tight schedules, cost
constraints, and high expectations for software quality is tough. Among these, require-
ment changes are common drivers for all other project characteristics. This means that,
as requirements change, projects should expect some impact in their cost, schedule, and
quality. In some cases, requirement changes can easily translate to extended schedules
and increased cost; in others, where schedules are not extended, requirement changes
translate to decreased software quality. Good software design can minimize (or counter)
the effects of requirements volatility in managing software projects. From the manage-
ment’s point of view, software design is important because it helps accommodate changes
to the requirements or system updates, therefore minimizing impact on schedule, cost,
and quality. In addition, good software design increases efficiency in human resource
allocation tasks. By decomposing the software into independent units, resources can be
assigned to software components so that they can be built in parallel in the same or dif-
ferent construction sites, therefore having significant impact on software schedules and
cost. By compartmentalizing the design, the effects of unwanted employment attrition
(i.e., employees leaving the company) can also be minimized, since new employees need
only to take on the individual design component assigned to that employee. Good soft-
ware designs provide an efficient mapping of customer requirements to software solu-
tions, therefore facilitating requirements tracing throughout the design. Having a strong
grasp on software design helps management abstract project tasks and acquire better
appreciation of the work to be done. Overall, having a strong grasp in software design
helps management improve the project planning, organization, staffing, and tracking and
provide overall guidance for the project.

SOFTWARE DESIGN CHALLENGES

Today, the software design phase has evolved from an ad hoc and sometimes overlooked
phase to an essential phase of the development life cycle. Furthermore, the increasing com-
plexity of today’s systems has created a set of particular challenges that makes it hard for soft-
ware engineers to meet the continuous customer demand for higher software quality. These
challenges have prompted software engineers to pay closer attention to the design process
to better understand, apply, and promulgate well known design principles, processes, and
professional practices to overcome these challenges. Some of the major challenges include
requirements volatility, design process, quality issues (e.g., performance, usability, secu-
rity), distributed software development, efficient allocation of human resources to devel-
opment tasks, limited budgets, unreasonable expectations and schedules, fast-changing
technology, and accurate transformation from software requirement to a software product.
A brief discussion of these challenges is presented next.

12 « Software Engineering Design

Design Challenge 1: Requirements Volatility

A major reason for the complexity of software projects is the constant change of require-
ments. When designed properly, software can be modified or extended easily; however, when
designed poorly, modifying software can become overwhelming and lead to all sorts of com-
plex problems. Unlike the development of computer hardware, bridges, houses, or mechanical
parts, software’s very own nature allows itself to change to provide different or new function-
ality to systems. This same trait that makes software so desirable is what makes it also so com-
plex. Although much effort is put into the requirements phase to ensure that requirements are
complete and consistent, that is rarely the case; leaving the software design phase as the most
influential one when it comes to minimizing the effects of new or changing requirements.
Requirements volatility is challenging because they impact future or current development
efforts. This forces designers to create designs that provide solutions to problems at a given
state while also anticipating changes and accommodating them with minimal effort. This
requires designers to have a strong understanding of the principles of software design and
develop skills to manage complexity and change in software development.

Design Challenge 2: Process

Software engineering is a process-oriented field. Software processes allow engineers to
organize the steps required to develop software solutions with schedule and cost constraints.
Therefore, at the core of every software development company, there should be a sound,
well-understood, and consistent process for software development. Processes can also be devel-
oped and customized for particular phases of the software engineering life cycle. In the design
phase, software processes involve a broad set of activities and tasks that bridge the gap between
requirements and construction while adhering to a set of project-specific (or company-specific)
constraints. These activities include common ones, such as architectural and detailed design,
as well as other supporting activities. These supporting activities include establishing a design
review process, defining design quality evaluation criteria, evaluating design reuse, estab-
lishing design change management and version control procedures, adopting design tools,
and allocating resources. In many cases, a company’s design process is not well established,
is poorly understood, or is approached with minimalistic expectations that ignore aspects
that are essential to executing a successful design phase. Focusing design efforts on creating
independent software products, such as a simple class diagram or user interface, while ignoring
other design activities may create complexities later on during system’s test and maintenance.
The design process is challenging because essential design process activities are often over-
looked, done in an ad hoc manner, or simply not done at all. In many cases, a well-established
and well carried out design process serves an indication of future project’s success.

Design Challenge 3: Technology

Software is meant to be everywhere. From health-care systems and education to defense
and everyday ubiquitous devices, software is required to operate on a massive and always

Introduction to Software Engineering Design « 13

evolving technology landscape. Besides the operating environment, the technology for
designing and implementing today’s software systems continues to evolve to provide
improved capabilities. Examples of these include modeling languages and tools, program-
ming languages, development environments, design patterns, and design strategies. As
new technologies emerge, software engineers are required to assimilate and employ them
all at the same time. In some cases, emerging technologies do not completely replace old
ones. Some software systems are required to interoperate with old legacy systems designed
with older design methodologies. This results in software designers employing different
design methodologies and technologies, all on the same software system. In other cases,
design models need to be derived from existing code, modified, and made interopera-
ble with newer technologies. This technology-driven aspect of the design phase creates a
demand for capable software designers that can assimilate new technology quickly and
effectively to succeed at designing software. The technology aspect of software design is
challenging because it is fast and ever-changing; therefore, designers must keep abreast of
the latest advances and become proficient in the application of these advancements while
maintaining rooted in legacy technology.

Design Challenge 4: Ethical and Professional Practices

Designers create blueprints that drive the construction of the software. During this cre-
ation process, designers are required to determine how design decisions affect the environ-
ment and the people that use the software. In many cases, the software development process
is traditionally carried out under tight schedule constraints. Inherently, all phases of the
development life cycle suffer from this, including the design phase. This creates external
pressures that can lead designers to deviate from the normal design approach to meet these
demands, which can have catastrophic consequences. No matter how tight deadlines are,
how much animosity exists within the design team, or how much other external/personal
factors are brought into the design phase, software designers must exhibit strong ethical
and professional practices to ensure that the systems they build are of highest quality and
that all design considerations are properly evaluated. In many cases, this requires design-
ers to exert strong leadership skills to influence and negotiate with stakeholders, motivate
the design team, and lead the design process to accomplish the project’s goals. Designers
are also responsible for enforcing ethical guidelines during the design process; evaluating
the social impacts of their designs in the public domain or in safety-critical systems; and
to follow the appropriate professional practices to ensure success in the overall system. The
ethical and professional practices aspect of software design are challenging because design-
ers are constantly faced with numerous pressures from stakeholders that influence designers’
decisions, most of which have consequences of social, ethical, or professional nature.

Design Challenge 5: Managing Design Influences

Designs are shaped by many different influences from stakeholders, the development orga-
nization, and other factors. These influences can have cyclical effects between the system

14 « Software Engineering Design

and its external influences, such that external factors affect the development of the system
and the system affects its external factors (Bass, Clements, and Kazman 2003). Managing
these influences is essential for maximizing the quality of systems and their related influ-
ence on future business opportunities. Of specific importance are design influences that
come from the system stakeholders and its developing organization.

Stakeholders

Designing software is a nondeterministic activity. If given the same task to different
designers, different solutions will be proposed, each of them being perfectly acceptable
(McConnell 2004). Now add to the mix the multitude of influences that come from dif-
ferent stakeholders, and you can easily get a variety of design alternatives for meeting a
variety of stakeholders’ concerns, all conflicting with each other. This creates a challenge
when trading off design alternatives that meet all stakeholders concerns. Making such
design trade-offs is difficult, especially on large-scale design efforts. Consider a project
with multiple customers, each with conflicting goals affecting design decisions. In such
projects, creating a design that sacrifices some desired customer capability but provides
other desired properties, such as quick time-to-market, reliability, or lower cost, can lead
to the development of a high-quality system that maintains acceptable levels of satisfaction
among stakeholders. This is an example of how stakeholders affect design decision, and the
design, in turn, influences the stakeholder goals (Bass et al. 2003). Managing stakeholders’
influences is challenging because it requires designers to exert a high-level of communica-
tion, negotiation, and technical skills to ensure that design decisions are made to accom-
modate all concerns without negatively affecting the project.

Development Organization’s Structure

The development organization’s structure influences the development of software prod-
ucts, in particular, the design of those products. As example, consider the case of distrib-
uted software engineering. In today’s global market, more and more cases of distributed
software development are taking place. A wide variety of reasons exist for developing soft-
ware at different sites. Consider companies that have sites in multiple states, where various
levels of domain expertise are found at different sites. Or consider the case of software
engineers resigning, creating a gap in the development team that is hard to fill with local
resources. Finally, consider companies that simply want to reduce cost by hiring software
engineers from different countries. These and many other reasons exist for having devel-
opment across site boundaries. In each of these cases, the structure of the development’s
organization makes it complicated to, for example, coordinate design efforts, evaluate and
discuss design alternatives, conduct peer reviews, and manage version control. In these
cases, designers need to consider not only technical aspects of the design but also the dis-
tribution of employees, organizational goals, resource availability, and so forth. Designs
that support integration of distributed expertise across sites can introduce capabilities for
building new software products that could not be engineered otherwise. This in turn can

Introduction to Software Engineering Design o 15

influence the developing organization to target new areas of businesses, therefore allowing
the software design to influence its business goals. Managing the influences of the develop-
ment organization is challenging because it requires designers to span out of the technical
domain to have a keen interest on the organization as a whole.

CONTEXT OF SOFTWARE DESIGN

In today’s modern software systems, software design plays a key role in the development of
software products; however, it is only one phase of the complete software engineering life
cycle. To understand how design fits within the whole software engineering process, it is
necessary to provide the appropriate context so that clear distinctions can be made between
the different life cycle phases and an appreciation of the importance of software design
activities and tasks can be acquired. For this reason, an overview of software engineering
and its life cycle is required. Software engineering is defined by the IEEE (1990, p. 67) as

(1) The application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software; that is, the application of engineering to software.
(2) The study of approaches as in (1).

The fundamental software engineering life cycle phases include requirements, design,
construction, test, and maintenance, as presented in Table 1.5.

The requirements phase is where stakeholders are identified and customer needs, wants,
and the (often overlooked) nonfunctional requirements are determined (Laplante 2009).
During this phase, requirements are analyzed in their raw form to address issues such as
requirements that don’t make sense, contradict each other, or are incomplete, vague, or
just wrong (Laplante 2009); requirements are classified and prioritized; and the specifica-
tion of the software system, which typically results in the production of a document, or
its electronic equivalent is reviewed and validated (Abran, Moore, Bourque, and Dupuis

TABLE 1.5

Fundamental Software Engineering Phases

Phase Description

Requirements Initial stage in the software development life cycle where requirements are elicited, analyzed,
specified, and validated

Design The requirements specification is used to create the software design, which includes its
architecture and detailed design

Construction Relies on the requirements’ specification, the software architecture, and detailed design to
implement the solution using a programming language; a great deal of design can also
occur at this phase

Test Ensures that the software behaves correctly and that it meets the specified requirements

Maintenance ~ Modifies software after delivery to correct faults, improve performance, or adapt it for a
different environment

16 « Software Engineering Design

2005). Once the requirements for the system are specified, designing the system takes
place, which is the main topic of this book.

The construction phase begins once the design phase has been executed and all require-
ments can be traced to a section of the software design models. The construction phase is
where designs are implemented using the programming language of choice. In this phase,
code is generated according to a style guide. In addition, the code is unit tested, debugged,
and peer-reviewed; programming errors are detected, tracked, and resolved; code is man-
aged by using change management and version control software; and, finally, code is pre-
pared for delivery using a predefined set of conventions for formatting. The construction
phase is tightly related to the design phase and in some cases (typically on smaller projects)
the line dividing both phases can be hard to identify. There are several reasons for this,
the main one being that detailed designs can be directly translated to code; therefore, soft-
ware engineers tend to design and code at the same time. In other cases, where design and
construction are clearly delineated by the process, it is common for some construction
tasks, such as identifying appropriate class, function, and variable names, to be performed
during detailed design. Finally, because many discoveries made well into the construction
phase give rise to functionality that requires design work, engineers must iterate back and
forth between construction and design activities. Once all the design artifacts are imple-
mented with programming and all assigned requirements can be validated through execu-
tion of code during unit testing, the construction phase is complete.

The testing phase is typically the final step before the software goes out the door. The main
purpose of the testing phase is to verify and validate the software to ensure that it meets
the predefined functions and level of quality defined in the software requirement’s phase.
Formally, the IEEE (1990, p. 76) defines testing as

(1) The process of operating a system or component under specified conditions, observing or
recording the results, and making an evaluation of some aspect of the system or component.
(2) The process of analyzing a software item to detect the differences between existing and
required conditions (that is, bugs) and to evaluate the features of the software item.

The software testing phase serves as a gateway between product development and product
release. Therefore, verification and validation efforts need to be made to ensure that the soft-
ware meets the specification and the integrity of the software can be assured under normal
and harsh conditions. It is important to note that no desired quality attribute can be verified
during testing if it hasn’t been designed into the product first. Therefore, even though test-
ing is typically credited for ensuring product quality, design is fundamental in supporting a
successful testing phase. Once software is delivered, the maintenance phase begins to imple-
ment corrections, adaptations, or improvements to the software. Corrections are typically
made on a smaller scale to rectify faulty behavior or output of the software. These typically
do not require design work. However, for adaptations or improvements, design work may
be required to accommodate the changes. Together, all phases of the software engineering
life cycle work together to define the functions that the software must provide, to transform
these functions into technical solutions, to implement those solutions, and to validate their
implementation and ensure the quality of the system throughout future versions.

Introduction to Software Engineering Design o 17

SOFTWARE DESIGN PROCESS

In the previous section, the design phase was briefly mentioned as a means for determin-
ing its place within the software engineering process. However, as it will be seen, the design
phase incorporates many activities and tasks conducted by different teams and typically
managed by personnel other than designers. This requires a formal process to ensure that the
design phase is conducted properly and that it addresses all the concerns identified for the
software system being built. Many processes exist to carry out phases, activities, and tasks
throughout the software engineering life cycle, including the unified process (UP), Scrum,
and the dynamic systems development method (DSDM) (Pressman 2010). What follows is
a discussion on the software design process in terms of the fundamental activities and tasks
required to build software products. These activities and tasks are essential and typically built
into other formal processes such as the ones already mentioned. The hope is that by plac-
ing more emphasis on the fundamental activities and tasks and less on particular process
approaches readers can obtain a more concise and understandable coverage of the topic.

In today’s professional software engineering landscape, software engineers are being
asked to build larger and more complex software systems in the same or different sites.
Therefore, both design processes and artifacts are increasing in complexity. This means that
it is not enough to know how to model structural and behavioral aspects of the system in
the design phase, but it is also essential that software designers know about the particular
process (e.g., UP, Scrum) required to manage, create, and control software design activities.
Sommerville (2010) defines a software process as a set of activities that lead to the production
of a software product. Similarly, a software design process is a set of activities and controls
that specify how resources work together for the production of software design artifacts.
The software engineering body of knowledge identifies two major activities for software
design: software architecture and detailed design (Abran et al. 2005). These are the essential
activities for managing the complexity involved in developing large-scale software systems.
However, numerous other important activities are required for supporting the creation of
architectural and detailed designs. Therefore, when planning and identifying an appropri-
ate software design process, the effort required for these activities needs to be considered.
In addition, because of the emphasis that some forms of design place on construction, the
detailed design activity process can be modified to explicitly present the construction design
activity that addresses design issues encountered during the construction phase. With this
in mind, a holistic approach to software design, which includes architecture, detailed and
construction design, management, and documentation, is presented in Figure 1.3.

As seen in the figure, software architecture is the first activity conducted in the design
process. Architectural designs are elaborated through detailed designs, which are further
elaborated through construction designs. All of these design activities need to be docu-
mented, and the process for design and documentation needs to be managed. Figure 1.3
also presents a necessary differentiation between the software design phase and the distri-
bution of its activities throughout the software engineering life cycle. In some cases, the
architectural design activities can begin during the analysis activity of the requirements

18 « Software Engineering Design

Software Design Process
Software Design
Management
Documentation
Software Software Architecture:
Requirements]~ = T T Architectural Views 1
Architectural Patterns
H
C
I I
Detailed Design: D
Interface Design E
Component Design S
I
G
v N
Construction Design: I Software
Flow-Based Design T >| Construction
Table-Based Design onstructio
Design Activities in Software
Engineering Process
Software Software Software
Requirements Design Construction
. > | Architectural > Detailed &
Archltgctur al & Detailed Construction
Design Design Design
FIGURE 1.3

The software design process and design activities during the SWE process.

phase and span through the design phase; in others, it begins after the requirements are
specified and validated. In a similar fashion, the detailed design activity can start at the
project’s design phase and span through the software construction phase. These scenarios
are highly project dependent; therefore, following to a strict waterfall-like process for soft-
ware development is impractical for all but the simplest software applications.

Software Architecture

The software architecture activity corresponds to a macrodesign approach for creating
models that depict the quality and function of the software system. It provides black-box
models used to evaluate the system’s projected capabilities as well as its expected quality,
all from multiple perspectives. Therefore, architectural designs allow different stakeholders,
with different backgrounds and expertise, to evaluate the design and ensure that the software

Introduction to Software Engineering Design o 19

architecture is addressing their concerns. For example, from the systems engineering per-
spective, architectural designs can provide information about the physical deployment of
the system, including subsystems located at different locations, the artifacts executing in
the subsystems, and how the system as a whole communicates. From the configuration
management perspective, architectural designs can provide information about the hier-
archy of files in the file system and how these files are interconnected to build and deploy
the software system. From the software engineering perspective, different architectural
designs can help decompose the software and define the major structural components of
the system, identify interfaces between the components, map the requirements to them,
evaluate concurrency issues, and provide overall insight into the design solution. A major
benefit of architectural designs is their capacity to evaluate high-level concerns from stake-
holders that deal mostly with nonfunctional requirements (e.g., performance, usability,
security). For these purposes, architectural designs serve as important communication,
reasoning, and analysis tools that support the development and growth of the systems
(Bass et al. 2003). Software architecture lays the foundation for all subsequent work in the
software engineering life cycle.

Detailed Design

The detailed design step begins after the software architecture is specified, reviewed, and
deemed sufficiently complete for detailed design to begin. The detailed design activity
builds on the software architecture to provide white-box design elements of the structure
and behavior of the software system and in many cases is the last major effort before
software construction begins. Detailed design is the activity that deals with refining the
software architecture to reach a point where the software design, including architecture
and detailed design, is deemed sufficiently complete for construction to begin. Whereas the
software architecture places a major emphasis on quality (nonfunctional requirements),
the detailed design activity places a major focus on addressing functional requirements of
the system. In object-oriented systems, the detailed design activity is where components
are refined into one or more classes, interfaces are realized, relationships between classes
are specified, class functions and variable names are created, design patterns are identified
and applied, and, if applicable, design tools are configured for code generation. Two major
tasks of the detailed design activity are interface design and component design.

Interface Design

Interface design refers to the design activity that deals with specification of interfaces
between components in the design (Sommerville 2010). Interface design can be focused
on specifying the interfaces used internally within software components or externally
across software components. In both cases, interfaces provide a standardized way for spec-
ifying how services are accessed and provided by software components. Interface design
allows subsystems to be designed independently and in parallel; therefore, it is typically
one of the first tasks performed as part of the detailed design. Other forms of interface

20 « Software Engineering Design

design specify communication between systems, for example, custom binary or Extensible
Markup Language (XML) messaging specifications used for communication between two
or more subsystems through the network.

Component Design

During architecture, the software system is decomposed into logical components that
abstract required system functions. During detailed design, these logical components are
refined and their interactions are modeled to verify the validity of their structural compo-
sition. The execution of the detailed design activity requires a shift from the macrodesign
approach to the microdesign approach to further decompose and refine system components
into one or more fine-grained elements, functions, and data variables required for support-
ing the internal structure and behavior of components that meet assigned roles during the
software architecture activity. Component design refers to modeling the internal structure
and behavior of components—which includes the internal structure of both logical and
physical components—identified during the software architecture phase. During this
activity, fine-grained components are derived from the architecture, and their internal
structure and behavior are designed. Components are not limited to object-oriented
systems; therefore, component designs can be realized in many ways. In object-oriented
systems, the internal structure of components is typically modeled using UML through
one or more diagrams, including class and sequence diagrams. When modeling the inter-
nal structure of components, several design principles, heuristics, and patterns are used to
create and evaluate component designs.

Construction Design

The idea of the detailed design activity is to get as close to the solution as possible without
beginning the construction phase. In many cases, in object-oriented systems, this amounts
to identifying classes, their attributes and functions, and interrelationships with other
classes. These tasks are done while abstracting and deferring details of implementation to
the construction phase. In some cases, however, implementing complex software functions
identified during the detailed design activity requires additional design work to ensure they
work properly and maintain the quality standards sought during the software architecture
activities. In these cases, construction design is necessary. Construction design is not a new
concept. Many other authors have proposed it as an important design activity. For example,
McConnell (2004) specifies five levels of software design; one of them, being at the lowest
level, deals with internal routine design. Similarly, Fox (2006) identifies a form of low-level
design that fills the gap between detailed design and programming and deals with issues
such as operation specification, including operation name, parameter types, and return
types among others. Other authors, such as Meyers (2005), have highlighted the impor-
tance of designing code at low levels, during construction. Construction design is the last
design activity—typically conducted during the construction phase—required to support
the system’s quality attributes, such as performance, maintainability, and testability.

Introduction to Software Engineering Design o 21

Human-Computer Interface Design

The human-computer Interface (HCI) design activity is where general principles are applied
to optimize the interface between humans and computers. Visual designs have a major role
on the success or failure of software systems. Systems that meet functional requirements
but that are not usable cannot succeed. The HCI design activity can be executed in paral-
lel to the software architecture or detailed design activities. In some cases, HCI design is
considered an architectural task, while in others it is considered a detailed design task.
Regardless of where HCI design fits within design processes adopted by specific organiza-
tions, it is @ major design activitiy that requires careful attention. The major concerns of
the HCI designs may include the evaluation and use of modes, navigation, visual designs,
response time and feedback, and design modalities, such as forms and menu-driven. HCI
designs directly influence the quality of any system and are essential to understanding and
addressing the factors that affect the overall usability of the system. Many design principles
and evaluation techniques exist to succesfully design user interfaces.

Software Design Documentation

Similar to the specification activity of the requirements phase, software design documen-
tation, also known as software design description (SDD), plays a big role in professional,
large-scale, or software-intensive systems. Its importance is specified by the IEEE (1998,
p. iii) as follows:

SDDs play a pivotal role in the development and maintenance of software systems. During
its lifetime, a given design description is used by project managers, quality assurance staff,
configuration managers, software designers, programmers, testers, and maintainers. Each
of these users has unique needs, both in terms of required design information and optimal
organization of that information. Hence, a design description must contain all the design
information needed by those users.

SDD should include the necessary information that properly captures the design of
the system. As part of this activity, other issues such as tools for generating design docu-
ments, validation, and configuration management must be addressed. The software design
documentation activity typically begins at the design phase and continues throughout the
lifetime of the software system.

Software Design Management

Management plays a big role in software engineering projects. Griffin (2010, p. 5) defines
management as

A set of activities (including planning and decision making, organizing, leading, and con-
trolling) directed at an organization’s resources (human, financial, physical, and informa-
tion), with the aim of achieving organizational goals in an efficient and effective manner.

22 « Software Engineering Design

In the design phase, management refers to the set of activities required to efficiently create
and implement quality design artifacts, within schedule and budget constraints. This definition
encompasses a broad set of activities that are particular to specific organizations. However, at
the core of every organization’s management activities, quality is a focal point. The quality of
software designs can be assessed in various ways. From the management’s perspective, quality
of software designs can be evaluated in terms of cost and scheduling. From the engineering
point of view, quality in designs can be evaluated using a set of well-known design principles
as well as modeling and evaluating the quality attributes that the software must exhibit, which
are specified via nonfunctional, quality requirements. From the configuration management’s
perspective, design quality can be achieved through change management processes that con-
trol how designs are created, modified, and improved. In large-scale software projects, soft-
ware design management is essential to plan, organize, staff, track, and lead the activities
required to carry out successfully the software architecture and detailed design steps.

ROLES OF THE SOFTWARE DESIGNER

From the discussions provided so far, it should be evident that designers are not all equal.
In many design efforts, designers have different roles, with different titles and responsibili-
ties that focus on specific design problems of the software system. There are many factors
in place that determine the designer’s role, including an engineer’s work preference, expe-
rience, and capabilities. When studying software design, it is important to understand
how these roles differ, the type of work performed, and capabilities required to perform
the activities required of each role. In some cases, software designers are heavily involved
in the requirements and construction phases; therefore, they must have expertise not
only in design but also in requirements engineering and software construction. In other
cases, a clear organizational delineation exists, allowing designers to focus on their area
of expertise. A list of typical designer roles is presented in Table 1.6 (Giachetti 2010).

TABLE 1.6

Typical Roles in Software Design

Designer Description

Enterprise architect Designs the enterprise’s strategy, processes, information, and organizational
structure

Software architect Designs software systems using a black-box modeling approach; concern is placed

on the external properties of software components that determine the system’s
quality and support the further design of functional requirements

Component designer Focuses on designing the internal structure of software components identified
during the software architecture phase; has strong programming skills

User Interface designer ~ Designs the software’s user interface; skilled in determining ways that increase
usability of the system

System engineer Designs systems using a holistic approach, which include designing how software
and hardware collaborate to achieve the system’s goals

Introduction to Software Engineering Design o 23

Systems Engineer

The systems engineer designs the overall development process of systems as a whole,
including processes for development of both the software and hardware that are part of the
system. As a specialization of system engineering, software systems engineers design soft-
ware at the system level; in many cases, the work performed by software systems engineers
is similar to that of a software architect. Systems engineers work closely with customers to
provide a holistic view of systems, their interfaces, and the distribution of requirements
to subsystems. Software systems engineers are typically experts in the problem domain,
and, depending on the type of system (e.g., embedded, web), they also develop expertise
on other nonsoftware-related parts, such as hardware, communications, and avionics. This
is essential at all phases of the software development process, since they must be able to
communicate with other engineering disciplines, such as electrical, mechanical, and civil.
In this role, designers have typically accumulated experience in other design roles, such as
software architecture, component design, and in some cases construction. In addition to
technical skills, systems engineers are required to have strong leadership skills to ensure
the successful system development.

Software Architect

The softwarearchitectisin charge of designing the software architecture. Software architects
can be found under a wide variety of titles, such as software lead, senior software engineer,
or principal software engineer. Regardless of the title, software architects have extensive
experience architecting systems that meet their intended requirements. Experience is typi-
cally acquired while moving up through the ranks, from software programmer all the way
up to software architect. Software architects have strong leadership skills and are required
to be skilled in initiation, communication, and negotiation. They also need to have a keen
understanding of the developing organization to determine ways software systems can
influence the organizational business goals and increase new business ventures leveraged
from existing architectures. Other skills beneficial to software architects include project
management skills.

Component Designer

Component designers are highly noticeable during detailed and construction designs,
since they are typically the ones constructing the software. Therefore, they have strong
programming skills and a strong foundation in design principles. For object-oriented com-
ponent designers, strong object-oriented skills including knowledge of design patterns are
essential. Component designers create both static and dynamic models of the software
system at levels appropriate to drive construction; these include (when applicable) UML
class diagrams and sequence diagrams. They have deep knowledge and understanding of
the software requirements assigned to them; they are knowledgeable about other tools that
support the design and development effort, such as modeling tools, integrated development

24 « Software Engineering Design

environments, forward and reverse engineering, and configuration management. When
designing at the component level, component designers have a full understanding of style
guides for the project, since they dictate naming, spacing, and commenting conventions
and other aspects that shape the structure of code. Component designers devise construc-
tion designs as needed and are proficient at creating effective unit tests that verify the
quality of their product developed. Finally, component designers need to be comfort-
able scheduling and conducting peer reviews and accepting feedback and evaluating it
objectively to improve their designs.

SOFTWARE DESIGN FUNDAMENTALS

Within the design process, many principles, considerations, and strategies help designers
execute the software design process in an effective and consistent manner. For the most
part, these help designers manage and simplify problems, consider the impacts of their
proposed solutions, and establish a foundation for decision making during design. In this
context, design principles refer to knowledge matter that has been found effective through-
out the years in multiple projects on different domains. Design principles are applicable on
most design projects; therefore, their use is expected to help achieve high-quality designs.
On the other hand, design considerations are recommendations that help designers in the
design process; they may or may not be followed. Finally, design strategies consist of tacti-
cal approaches in which design principles and considerations can be employed to drive the
design process. These concepts are further discussed in the next sections.

General Software Design Principles

Throughout the history of software engineering, many design principles have emerged
to become fundamental drivers for decision making during the software design process.
These design principles are used as a basis for reasoning and serve as justification for almost
all design decisions. They also provide designers with a foundation from which other more
sophisticated design methods can be applied (Pressman 2010). These principles are not
specific to any particular design strategy (e.g., object oriented) or process, so they are fun-
damental to all software design efforts and can be applied during architectural, detailed,
and construction designs. The principles include (Abran et al. 2005):

« Modularization

 Abstraction

« Encapsulation

+ Coupling and cohesion

o Separation of interface and implementation
« Sufficiency and completeness

Introduction to Software Engineering Design o 25

Modularization

Modularization is one of the most important (and perhaps oversimplified) design prin-
ciples in software design. Modularity allows software systems to be manageable at all levels
of the development life cycle. That is, the work products of the requirements, design, con-
struction, and testing efforts can all be modularized to efficiently carry out the operations.
In the design phase, modularization is the principle that drives the continuous decompo-
sition of the software system until fine-grained components are created. Modularization
plays a key role during all design activities, including software architecture and detailed
and construction design; when applied effectively, it provides a roadmap for software
development starting from coarse-grained components that are further modularized into
fine-grained components directly related to code. If applied properly, modularization can
lead to designs that are easier to understand, resulting in systems that are easier to develop
and maintain. Efficient modularization can be achieved by following and applying the
principles of abstraction and encapsulation. With proper modularization, software systems
can be decomposed into modules that allow the system’s complexity to be manageable and
allow the system to be efficiently built, maintained, and reused.

Abstraction

While the principle of modularization specifies what needs to be done, the principle of
abstraction provides the guidance as to how it should be done. Modularizing systems in
an ad hoc manner leads to designs that are incoherent, hard to understand, and hard to
maintain. To modularize intelligently, a thorough understanding of abstraction is required
(Liskov and Guttag 2010). Abstraction is the principle that deals with creating conceptual
entities required to facilitate problem solving by focusing on essential characteristics of
entities—in their active context—while deferring unnecessary details. When abstraction
is applied, the level of detail required to think about a problem is adjusted to productively
modularize a system; this allows for the creation of coherent entities that can be used to
represent their possible variations in the problem’s context and domain. The principle of
abstraction can be applied iteratively at multiple levels during the design phase. At the soft-
ware architecture level, abstraction helps during the identification of software components
and their interfaces. At the detailed design phase, abstraction helps identify the entities,
functions, and interfaces required to realize the component’s provided services. At the
construction level, abstraction helps in the further design of functions identified during
detailed design. In all of these, abstraction is used to facilitate problem-solving by defer-
ring details to later stages. The principle of abstraction can be classified as (Pressman 2010):

o Procedural abstraction
o Data abstraction

Procedural abstraction is a specific type of abstraction that simplifies behavioral
operations containing a sequence of steps or other procedural abstractions. For example,

26 « Software Engineering Design

consider a client-server application in which the client sends data to the server through
the Internet. In this case, the Send procedural abstraction can be used to denote a series
of operations, for example, retrieving the server’s information (e.g., Internet Protocol [IP]
address, port number), opening a connection, sending the message, and closing the con-
nection. On the other hand, data abstraction is used to simplify the structural composition
of data objects. Using the previous example, the Message data abstraction can be used to
represent various messages with different attributes, such as the message’s ID, content, and
format. The definition of all of these properties can be deferred to later stages. Abstraction
is fundamental for managing complexity in all activities of the software design phase.

Skill Development 1.2: The Abstraction Principle

The world is full of abstractions; without abstractions, communicating with our peers
would be much more difficult. As an exercise, look for the nearest rectangular object
that contains a knob and (maybe) a keyhole; if the object is blocking an entrance,
change the state of the object so that it no longer blocks the entrance. Summarize this
scenario by coming up with two abstractions: one data and the other procedural to
increase communication with peers. When done, create a list of four other abstractions
that surround you, and provide an abstraction as well as the detailed object description
that would be required if the abstraction is not used. Ensure that there are two data
abstractions and two procedural abstractions.

Encapsulation

In previous sections, modularization is presented as principle for decomposing mono-
lithic systems into manageable units. While abstraction provides the principle for guid-
ing the decomposition of the systems based on behavior and data, encapsulation provides
the principle for enhancing the efficiency of the collaboration among modularized units.
Encapsulation is the principle that deals with providing access to the services of concep-
tual entities (e.g., modules, components) by exposing only the information that is essential
to carry out such services while hiding details of how the services are carried out. While
abstraction is employed to find conceptual entities, encapsulation enforces that abstracted
entities communicate between each other using a “need to know only” basis. When evalu-
ated this way, the abstraction design principle helps create the modules and the encapsula-
tion design principle enforces efficient communication between them. These principles are
all essential in achieving efficient modularization. The relationship among modulariza-
tion, abstraction, and encapsulation is presented in Figure 1.4. As seen, after the principle
of abstraction is applied, the encapsulation principle is used to hide irrelevant details from
the abstraction. In Figure 1.4, the shaded region corresponds to information that is irrel-
evant to other modules, while the white region corresponds to access points that modules
can use to interoperate.

Introduction to Software Engineering Design o 27

-y

Monolithic

1
1
- ———=====-= |j——————===- I Modularized
System :
1
1
1

System

i
s

] [][]

FIGURE 1.4
The modularization, abstraction, and encapsulation principles.

Coupling

Similar to abstraction and encapsulation, coupling and cohesion are design principles that lead
to efficient module creation by emphasizing on the degree of dependency and belonging of
modules, respectively. Formally, the IEEE (1990, p. 22) defines coupling as

The manner and degree of interdependence between software modules.

Like all other design principles discussed so far, coupling can be applied during software
architecture, detailed design, and construction design to measure the degree of depen-
dency of design units, such as an architectural subsystem, a class in a detailed design’s
class diagram, or a function in code. In other words, the coupling principle can be used
to determine how much an architectural subsystem depends on other architectural sub-
systems, how much a class depends on other classes, and how much a function depends on
other functions. When measuring coupling, the number of dependencies between design
units does not tell the whole story, since the nature of the dependencies plays an impor-
tant role in decision making. For example, design units can depend on well-defined and
stable interfaces, common data structures, and internal structure of other design units.
It is not hard to support the idea that dependencies on well-defined and stable interfaces
are less troublesome than dependencies on the internal structure of other design units.
Three common types of coupling are

« Content coupling
« Common coupling
 Data coupling

Content coupling represents the most severe type of coupling, since it refers to modules that
modify and rely on the internal details of other modules. Common coupling refers to depen-
dencies based on a common access area, such as a global variable (IEEE 1990). When this
occurs, changes to the global data area causes changes in all dependent modules. This type
of coupling results in lesser severity than content coupling; however, it shares many of the
undesired effects as content coupling. Finally, data coupling refers to the type of dependency

28 « Software Engineering Design

in which design units communicate with each other only through a set of data parameters.
Unlike content coupling, data coupling does not depend on the internals of other design
units, and unlike common coupling it provides more control over the form of dependency.
When dependency between modules relies on data parameters that are globally inaccessible,
design units are shielded from undesired changes to the data by other design units. In all
cases, a high degree of coupling gives rise to negative side effects. For example, as coupling
increases, reusability and manageability of the design units decrease since errors or changes
to the independent unit propagate to all dependent units. In other cases, when coupling
increases, so does the complexity of managing and maintaining design units. Other types
of coupling include control coupling, hybrid coupling, and pathological coupling (IEEE 1990).

Cohesion

While coupling gives insight to a design unit’s degree of dependency, cohesion provides
insight into its strengths. The IEEE (1990, p. 17) defines cohesion as

The manner and degree to which the tasks performed by a single software module are related
to one another.

Cohesion measures how well design units are put together for achieving a particular
purpose and can be classified based on the measurement approach as

» Functional cohesion

o Procedural (or sequential) cohesion
o Temporal cohesion

o Communication cohesion

Functional cohesion measures a design unit’s strength by the degree to which its tasks,
operations, or subunits all contribute to perform a single function. When the function
to be performed has a single logical meaning, functional cohesion can be seen as a form
of logical cohesion. A highly functionally cohesive module is one whose internal details
work toward achieving the same function. Functional cohesion is the most typical type
of cohesion. Procedural cohesion measures the strength of a design unit by the degree to
which its tasks work procedurally (in steps) to achieve the unit’s purpose. Therefore, func-
tional and procedural cohesion are not mutually exclusive; that is, modules can exhibit
both high functional and procedural cohesion. Temporal cohesion measures strength by
the degree to which all tasks in a design unit are performed at specific times. Consider
a design unit responsible for carrying out the initialization of a system. This unit may
be responsible for performing a power-on self-test that may include memory tests, file
system checks, and communication checks. These are all different functions but need to be
executed at the same time during initialization; therefore, the unit is temporally cohesive.
Finally, communication cohesion measures a unit’s strength by the degree to which its tasks
produce or consume the same data.

Introduction to Software Engineering Design o 29

Module 1

| Task 1.1 || Task 1.2 || Task 1.3 |

[[
[\
| \
[

| |
: Module 1 ‘
| l
[\
| / |
: | Task 2.2 | | Task 2.3 | | Task 3.3 | | Task 3.2 | :
[

FIGURE 1.5
Example of principles of coupling and cohesion.

Cohesion provides an important principle that measures how much design units that are
grouped together actually belong together based on different criteria. Cohesion can also
be seen at different levels of the design process. During the software architecture activity,
logical and communication cohesive modules are typical, whereas, during the detailed
and construction design activities, functional, procedural, and temporal cohesiveness are
more expected. In all cases, highly cohesive modules increase reusability. An example of
the cohesion and coupling principles is presented in Figure 1.5. As seen in the top part
of the figure, Module 1 performs three unrelated different tasks (i.e., Task 1, Task 2, and
Task 3), each requiring three independent subtasks. For example, Task I requires three
different subtasks, denoted by the labels Task 1.1, Task 1.2, and Task 1.3. As seen, Module 1
has dependencies to nine different unrelated tasks, which can translate to a high degree
of coupling and low degree of cohesion. The bottom part of Figure 1.5 shows how the
system is decomposed into three more cohesive units, each with lower coupling than
the original approach. In this case, the system is transformed to a modular system with
higher cohesiveness and lower coupling. With this transformation, Module 1 now has five
dependencies and stronger functional cohesion. Modules 2 and 3 have lower coupling than
Module 1 (both in its original and improve form) and are highly cohesive.

Separation of Interface and Implementation

The principle of separation of interface and implementation deals with creating modules
in such way that a stable interface is identified and separated from its implementation.
This design principle should not be confused with encapsulation. During encapsulation,

30 « Software Engineering Design

Segregation of Interface
Encapsulation and Implementation

e

FIGURE 1.6
Principle of segregation of interface and implementation.

interfaces are created to provide public access to services provided by the design unit while
hiding unnecessary details, which include implementation. While encapsulation dictates
hiding the details of implementation, the principle of separation dictates their separation, so
that different implementation of the same interface can be swapped to provide modified or
new behavior. Figure 1.6 presents these concepts.

As seen, the bottom design units have separated interfaces; therefore, varied implemen-
tations can be employed without changes to a unit’s interface and, subsequently, to depen-
dent units. There are many benefits from this principle, including increased extensibility,
reusability, and maintainability. Since implementation is compartmentalized, new capa-
bilities can be added simply by including a new variation of the implementation without
changes to old implementations. Also, in this way specific implementations can be reused.

Completeness and Sufficiency

The principles of completeness and sufficiency deal with efficient module creation.
Completeness is a characteristic that measures how well design units provide the required
services to achieve their intent. For example, during the detailed design activity, a commu-
nication class can be considered complete for a particular application if it provides services
for establishing and terminating connections, sending and receiving messages. Missing
any of these services would render the class incomplete. On the other hand, sufficiency
measures how well design units are at providing only the services that are sufficient for
achieving their intent. Consider the same communication class, which can include services
for logging statistics, visualization of network activity, or any other capability applicable
to the communication task. Although these capabilities enhance the class’ service list, the
class is considered sufficient by providing the required services of opening/terminating
connections, sending, and receiving messages. That is, these sets of services are sufficient
to achieve the unit’s required functions, nothing more and nothing less.

Practical Software Design Considerations

Design principles are well-known throughout the software engineering community and
are applied in one way or another in most projects. However, other considerations need to

Introduction to Software Engineering Design o 31

be made to provide the appropriate context in which these principles can be successfully
applied for developing high-quality software systems. These considerations are discussed
in the next sections.

Design for Minimizing Complexity

Design is about minimizing complexity. Every decision that is made during the design phase
must take into account reducing complexity (McConnell 2004). In fact, the majority of design
principles (e.g., modularization, abstraction, encapsulation) are meant to reduce complexity
in one way or another. By doing this, details of the problem solution can be pushed further
down the process, where they can be appropriately handled. As another example, consider
HCI design: it is all about reducing complexity for the user. Finally, code design is about
reducing complexity for other developers maintaining the software. As rule of thumb, when
faced with competing design options, always choose the one that minimizes complexity.

Design for Change

As stated before, software will change; therefore, design with extension in mind. There are
numerous reasons for this; for example, customers who like the software may want to extend
its functionalities. On the other hand, customers who are discontent with the software may
want to replace or remove functionality. In other cases, hardware changes may trigger a
software change; advances in communications may cause software to change; or, simply,
newer, better software technology becomes available triggering a change of software that
introduces no new functionality but a more maintainable development technology that
is supported by current practices. In any case, software will change; therefore, its very
own nature requires software designers to plan for the future. A variety of techniques is
available during the detailed design phase to achieve this.

Software Design Strategies

Throughout the years, a wide variety of strategies for designing software has been proposed.
Some of these include structured design, object-oriented design, aspect-oriented design,
data component-based design, and data structure-based design. Two popular strategies are
discussed in the following sections.

Structured Design

In a broad context, structured design refers to any disciplined functional design approach
where software systems are decomposed into independent, single-purpose modules, using
an iterative top-down approach. The main focus of structured design is on the functions
that systems need to provide, the decomposition of these functions, and the creation of
modules that incorporate these functions. Structured design approaches are typically
employed after structured analysis, where the main purpose is to derive a structure chart

32 « Software Engineering Design

(i.e., software architecture) from data flow diagrams. Structured design introduced many
benefits; for instance, by decomposing the system into independent, single-purpose
modules, programs were simpler to understand, manage, code, debug, and reuse (Stevens
1981). However, structured design does not address the issues of data abstraction and infor-
mation hiding and “is largely inappropriate for use with object-based and object-oriented
programming languages” (Booch 1994, p. 22).

Object-Oriented Design

Unlike structured design, which focuses on functional decomposition of systems,
object-oriented design focuses on object decomposition. Formally, the IEEE (1990, p. 51)
defines object-oriented design as

A design strategy in which a system or component is expressed in terms of objects and
connections between those objects.

Objects provide numerous capabilities that make them desirable for efficiently designing
software systems. For example, objects are capable of maintaining state information and
provide services that can be used independently or relative to the object’s state. Therefore,
they are naturally good building blocks for creating good abstractions. Object-oriented
designs also provide capabilities for inheritance and polymorphism, which provide vari-
ous advantages when designing complex and large-scale software systems. Inheritance
allows designers to create families of objects capable of reusing each other’s interfaces or
interfaces with implementations. While inheritance allows objects to inherit interfaces
and implementations, polymorphism allows objects to change the behavior of inherited
interfaces. Numerous design methods based on objects have been proposed. Today, the UP
provides a popular framework for object-oriented software engineering using UML.

I ——
CHAPTER SUMMARY

Designs in software engineering are used to identify, evaluate, and specify the structural
and behavioral characteristics of software systems that adhere to some specification.
Software designs provide blueprints that capture how software systems meet their required
functions and how they are shaped to meet their intended quality. Formally, software engi-
neering design is defined as the process of identifying, evaluating, validating, and specify-
ing the architectural, detailed, and construction models required to build software that
meets its intended functional and nonfunctional requirements and the result of such a pro-
cess. The term software design is used interchangeably in practice as means to describe
both the process and product of software design. Throughout the design process, designers
are constantly engaging in problem-solving activities that are fundamental to all modern
engineering projects; therefore, they can be characterized as specialized problem solvers.

Introduction to Software Engineering Design « 33

To ensure that all problem considerations are incorporated when solving design problems,
a holistic problem-solving approach must be adopted, including all relevant concerns.
Software design provides numerous advantages from both product development and pro-
cess; however, many challenges must be considered and addressed before software designs
can lead to complete and sufficient software models. In today’s modern software systems,
numerous design principles, processes, strategies, and other factors affect how designers
execute the software design phase. When equipped with the proper design foundation
knowledge, an understanding of the designer’s roles and responsibilities can be acquired;
allowing designers to become effective in designing large-scale software systems under a
wide variety of challenging conditions.

REVIEW QUESTIONS

1. What is software engineering design, and why is it important?
2. What are the three states of problem solving? Describe each and explain how they
apply to design problems?
3. What are two types of thinking employed during problem solving? Provide an
example of how they are applied to design problems.
4. What is the difference between well-defined, ill-defined, and wicked problems and
how these problems can affect software design?
5. What is the difference between an algorithm and a heuristic? Give examples of how
both approaches can be applied during the design phase?
6. What is the holistic approach to problem solving? Explain.
7. How does design fits within the software engineering life cycle? Explain.
8. What are the major activities of the software design phase, and how do they differ
from one another?
9. List and explain the challenges faced in software design.
10. Why is important to emphasize on documentation and management activities
during design?
11. Compare and contrast the following: interface design, user interface design, and
construction design.
12. What are the different roles of software designers? How do they differ?
13. Explain the difference between procedural and data abstraction.
14. What is content coupling, and how does it differ from other forms of coupling?
15. Explain in detail the concept of cohesion.
16. What do completeness and sufficiency mean?
17. What is the difference among the principles of modularization, abstraction, encapsu-
lation, and separation of interface and implementation? Provide an example of each.
18. Compare and contrast the structured design strategy with the object-oriented design
strategy.

34 « Software Engineering Design

REFERENCES

Abran, Alain, James W. Moore, Pierre Bourque, and Robert Dupuis. Guide to the Software Engineering Body of
Knowledge—2004 Version—SWEBOK. Los Alamitos, CA: IEEE Computer Society Press, 2005.

Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in Practice, 2d ed. Boston: Addison-Wesley,
2003.

Booch, Grady. Object-Oriented Analysis and Design with Applications, 2d ed. Santa Clara, CA: Addison-Wesley,
1994.

Brassard, Gilles, and Paul Bratley. Fundamentals of Algorithmics. Upper Saddle River, NJ: Prentice Hall, 1995.

Dowson, Mark. “The Ariane 5 Software Failure” ACM SIGSOFT Software Engineering Notes, March 1997.

Dym, Clive L., and Patrick Little. Engineering Design: A Project-Based Introduction. Hoboken, NJ: Wiley, 2008.

Fox, Christopher. Introduction to Software Engineering Design: Processes, Principles, and Patterns with UML2.
Boston: Addison Wesley, 2006.

Giachetti, Ronald E. Design of Enterprise Systems: Theory, Architecture, and Methods. Boca Raton, FL; CRC Press,
2010.

Griffin, Ricky W. Management, 10th ed. Mayfield Hts, Ohio: South-Western College Pub, 2010.

Harrell, C., Biman K. Ghosh, and Royce O. Bowden. Simulation Using Promodel. New York: McGraw-Hill, 2004.

IEEE. “IEEE Recommended Practice for Software Design Descriptions” 1998. http://ieeexplore.ieee.org/xpl/
freeabs_all.jsp?arnumber=741934.

IEEE. “IEEE Standard Glossary of Software Engineering Terminology.” IEEE, 1990. http://ieeexplore.ieee.org/
xpl/freeabs_all.jsp?arnumber=159342.

IEEE/ACM. Software Engineering 2004. August 23, 2004. Available at: http://sites.computer.org/ccse/
SE2004Volume.pdf (accessed September 22, 2010).

Kershaw, T. C., and S. Ohlsson. “Multiple Causes of Difficulty in Insight: The Case of the Nine-Dot Problem””
Journal of Experimental Psychology: Learning, Memory, and Cognition 30:3-15, 2004.

Laplante, Phillip A. Requirements Engineering for Software and Systems. Boca Raton, FL: Auerbach Publications,
2009.

Liskov, Barbara, and John Guttag. Program Development in Java: Abstraction, Specification, and Object-Oriented
Design. Boston: Addison-Wesley, 2000.

McConnell, Steve. Code Complete, 2d ed. Redmond, WA: Microsoft Press, 2004.

Meyers, Scott. Effective C++: 55 Ways to Improve Your Programs and Designs, 3d ed. Boston: Addison-Wesley,
2005.

U.S. General Accounting Office. (GAO). Patriot Missile Defense: Software Problem Led to System Failure at
Dhahran, Saudi Arabia. Washington, DC: U.S. Government Accountability Office, 1992.

Plotnik, Rod, and Haig Kouyoumdjian. Introduction to Psychology, 9th ed. Wadsworth Publishing, 2010.

Pressman, Roger S. Software Engineering: A Practitioner’s Approach, 7th ed. Belmont, CA: McGraw-Hill, 2010.

Sommerville, Ian. Software Engineering, 9th ed. Boston: Addison Wesley, 2010.

Stevens, Wayne P. Using Structured Design: How to Make Programs Simple, Changeable, Flexible and Reusable.
Hoboken, NJ: John Wiley & Sons, 1981.

2

Software Design with
Unified Modeling Language

CHAPTER OBJECTIVES

o Understand the role and importance of Unified Modeling Language
(UML) in software design

o Become familiar with UMLs common structural and behavioral
diagrams

o Understand the relationship between structural UML models and code

 Understand how to model concurrency with UML

CONCEPTUAL OVERVIEW

Communication is an essential, critical skill for engineers. Throughout a
project’s life cycle, software engineers spend a great deal of time and effort
communicating with stakeholders, among themselves, and with the com-
puter via programming languages. By unifying the communication lan-
guage, so that it is appropriate for stakeholders, software engineers, and
translation to programming languages, a more efficient design process can
be executed and better framing of design problem and their solutions can be
achieved to account for all intricacies that are present throughout the design
process. Unified Modeling Language (UML) provides the mechanisms for
creating detailed models that portray a system’s design. By providing a visu-
alization method for complex design concepts, communication is enhanced
at all phases of the software development life cycle. This chapter presents the
fundamental concepts of UML to establish a common frame of reference for
discussing important design concepts throughout the rest of the book.

35

36 « Software Engineering Design

WHAT IS UML?

The Unified Modeling Language is a visual language with an extensive set of features
appropriate for designing software systems across a broad set of application domains. It is
the result of years of collaborative work spent in devising a unified approach for modeling
software systems. The first efforts focused on unifying three popular modeling methods:
the Booch method (devised by Grady Booch); the object-oriented software engineering
(OOSE) method (devised by Ivar Jacobson); and the object modeling technique (OMT)
method (devised by James Rumbaugh). The goals of this unification project were specified
by Booch, Rumbaugh, and Jacobson (2005, p. xvii) as follows:

1. To model systems, from concept to executable artifact, using object-oriented
techniques

2. To address the issues of scale inherent in complex, mission-critical systems

3. To create a modeling language usable by both humans and machines

The development of early UML versions generated interest among the software engi-
neering community, resulting in the creation of UML consortium supported by numerous
influential organizations, such as Microsoft, IBM, Oracle, and Rational. This collaboration
resulted in UML 1.0, which after revisions was adopted by the Object Management Group
(OMG) in 1997 as UML 1.1 (Booch et al. 2005). Since then, UML has evolved through
many versions that improve capabilities for efficient analysis, design, and implementation
of software systems of varying complexity. In 2005, a major revision of UML 1 was pro-
posed and adopted by the OMG as UML 2.0. At the time of writing, UML 2.3 provides
the latest specification (UML 2.3 Superstructure 2010). Formally, UML can be defined as a
visual language for specifying, analyzing, and documenting design elements essential for
modeling and building software system. To provide an organized methodology for creat-
ing models that address different stakeholders” concerns, UML defines different modeling
diagrams and provides a classification scheme that delineates clearly between the static
and dynamic nature of software systems, as seen in Table 2.1.

Every diagram in UML belongs to one of the classes presented in Table 2.1. Throughout
the rest of the chapter, UML diagrams fundamental for modeling systems from both struc-
tural and behavioral perspectives are presented, and their capabilities for addressing issues
of different concerns from different levels of abstractions are examined.

TABLE 2.1

Classification of UML Diagrams

Classification Description

Structural Concerned with capturing and specifying static elements and their interrelationships

required for supporting the solution to a given problem, within a given context
Behavioral Concerned with capturing and specifying the dynamic behavior and the inherent complexities
present in the behavioral aspects of software systems

Software Design with Unified Modeling Language o 37

WHY STUDY UML?

UML 2.3 provides 14 different types of diagrams that can be used for modeling structural
and behavioral aspects of software systems. Since software systems vary across a large set
of application domains, not all 14 diagrams are required or used in any given project. For
example, real-time systems may employ the use of UML timing, state, and communica-
tion diagrams to model behavior and real-time constraints related to real-time systems.
Distributed systems may employ sequence diagrams for modeling time-ordered sequence
of operations among components and deployment diagrams for modeling distributed
aspects of the systems. Finally, object-oriented systems—which can also be distributed or
real-time systems—may rely heavily on class and object diagrams to model class hierar-
chies and particular instances of their interaction. Even though not all diagrams are used
in system modeling efforts, it is important to identify a common set of diagrams that pro-
vide appropriate avenues for modeling essential activities during the software development
process. Therefore, the study of UML becomes important so that the modeling capabilities
of particular diagrams are well understood and applied in practical efforts. The two main
reasons for studying UML include

« The UML enhances system analysis and specification.
o The UML enhances communication.

Modeling software is essential to developing high-quality, large-scale, and software-
intensive systems. The UML is important because it provides well-known and widely
accepted means for modeling complex systems. Through UML, a common approach can
be used for analyzing, evaluating, and specifying systems at all levels of abstraction during
requirements, design, and construction. After systemsare specified at onelevel of abstraction
using UML, the models are transferred downstream for subsequent, finer-grained analy-
sis, evaluation, and specification. This process continues until the software is constructed
and ready for testing and verification. Throughout this process, UML is the main tool
for transferring knowledge and enhancing communication among stakeholders, including
customers, designers (i.e., architects, component, and construction), programmers, and
managers. By providing the means for visualizing complex system concepts, it becomes
easier to reason about the problem at hand, therefore increasing communication during
the problem-solving process. The UMLSs visualization capabilities enhance communica-
tion greatly throughout, especially when creating documentation deliverables, such as the
software design document, which lives long after the development effort is complete.

THE UML’'S FUNDAMENTALS

The UML is an extensible and flexible language that can be used to model almost any aspect
of today’s modern software systems. Given the rich set of modeling features provided by

38 « Software Engineering Design

TABLE 2.2

UML 2.3 Common Classifiers

Classifier Description

Use case Classifier used to model a single required system behavior; represented with icons of
elliptical shape

Component Represents a modular and replaceable part of the system; modeled using a box with the
keyword <<component>> and optional component icon on the top right corner

Class Classifier used to model a type in terms of operations, attributes, relationships, and other
semantics; modeled with a rectangular box

Active class Classifier used to model a class that owns an independent flow of execution and can initiate
control activity; modeled as a class with double lines on each side

Interface Classifier that models the set of operations that specify the services provided by a class or
component; represented as stereotyped classes or using the ball-and-socket notation

Node Classifier used to model a physical element (e.g., computer), its processing capabilities, and
other semantics; modeled using a cube

Artifact Classifier that models a physical deployable information element (e.g., .exe, .dll, script, etc.);
modeled using a rectangle with the keyword <<artifact>>

UML, its application can become confusing at times, resulting in model inconsistencies
that can hinder communication during the development effort. The built-in flexibility in
UML is essential for modeling systems with disparate capabilities; therefore, understand-
ing its fundamental building blocks is necessary for employing the built-in flexibility to
model a wide variety of software systems. The UML building blocks are grouped as follows:

o Classifiers
o Relationships
« Enhancing features

Classifiers are structural things that represent conceptual or physical elements of a model
(Booch et al. 2005). They are typically the main elements of UML models, and each type of
UML diagram has a specific type of classifiers so that not all classifiers are relevant to all
UML diagrams. A list of common UML classifiers is presented in Table 2.2.

Classifiers provide designers the capability of defining the structure for achieving some
desired system feature. This capability allows designers to visualize the structural design
of systems, provide analysis, and make design improvements, all at design time. Structural
designs are good for evaluating logical relationships in software design; however, they are
limited when it comes to evaluating the system’s behavioral aspects—that is, modeling
and evaluating the manifestation and behavioral aspects of classifiers once the system is
executed. For this purpose, UML provides techniques for representing almost all classi-
fiers as manifested entities. For example, structural classes can be modeled as behavioral
(executing) objects; the behavior of active classes can be modeled using active objects;
components can be modeled as component instances; use cases can be modeled as use
case executions; and nodes can be modeled as node instances (Booch et al. 2005). The

Software Design with Unified Modeling Language « 39

TABLE 2.3

Common Types of UML Relationships

Relationship Description

Dependency Dashed line (typically directed with a stick arrow) used to model the relationship between

two UML elements indicating that changes to one element affect the other

Association Line used to model the relationship between two UML elements indicating that a connection
exists between associated instances at run time; associations can be directed using a stick
arrow

Generalization ~ Line with a hollow arrowhead used to model the relationship between two UML elements
indicating that one element (i.e., the child) inherits features from another (i.e., the parent)

Realization Relationship between two UML elements indicating that one element realizes a specified
interface; modeled using a dashed line with hollow arrowhead

TABLE 2.4

Common UML Mechanisms for Enhancement

Mechanism Description

Notes Mechanism for adding descriptive information to UML elements and diagrams; modeled
using a rectangle with a dog-eared corner and can be connected to a design element using a
dashed line

Stereotypes Mechanism for extending UML by adding information that gives existing UML element a

different meaning, therefore creating a semantically different element for modeling
application-specific concepts; modeled as existing UML elements with the <<stereotype>>
mechanism (e.g., <<subsystem>>)
Tagged Values Mechanism for adding new properties to a stereotype; modeled by adding the tagged value in
the form of property = value to existing stereotyped UML elements (e.g., data rate = 5 Mbps)
Constraints Mechanism for specifying constraints to design elements; associated with specific design
elements in the form of {constraint description} (e.g., {secure line})

usefulness of modeling classifiers (and their behavioral counterparts) is maximized when
defining and visualizing the interconnections that exist among them. A list of UML com-
mon relationship types is presented in Table 2.3.

The UML is required to provide enough flexibility to allow designers to enhance and
evolve the fundamental building blocks so that they become appropriate for modeling par-
ticular systems. Therefore, it provides the means for enhancing and extending classifiers,
behavioral manifestations, and relationships through common extension mechanisms.
These extension mechanisms allow designers to redefine UML elements so that they can
represent domain-specific concepts. Also, extension mechanisms allow detailed design
information to be captured and specified in the models. The common mechanisms for
enhancing UML are presented in Table 2.4.

Together, classifiers, relationships, and enhancement mechanisms provide powerful
constructs for evaluating both structural and behavioral design elements that interact and
collaborate with each other, provide the means for evaluating design alternatives, and
provide the sufficient information to build the software system.

40 « Software Engineering Design

TABLE 2.5

UML 2.3 Structural Diagrams

Diagram Description

Component High-level; used to model the software as group of components connected to each other

through well-defined interfaces and thus said to be replaceable within its context

Class Used to model software as a set of classes, including their operations, attributes, and
their mutual relationships

Object Used to model an instant snapshot of the life of an object during execution, including
its state and attribute values

Deployment Used to model the physical realization of software systems, including physical nodes
where software is deployed, interfaces between nodes, software artifacts executing on
nodes, and the manifestation of software components within the software artifacts

Package Diagram Diagram used to model the division of software as a set of packages, including the
relationships between packages

STRUCTURAL MODELING

Structural modeling is concerned with capturing and specifying structural elements and
interrelationships required for supporting the solution to a given problem, within a given
context. Structural models are static in nature, since they model structure and not behav-
ior; therefore, they provide the main avenues for evaluating design decisions that directly
support functional requirements as well as desired quality attributes, such as modularity,
portability, and maintainability. A list of common UML structural diagrams is presented
in Table 2.5.

Other structural diagrams include composite structure and profile diagrams. As seen, each
structural diagram addresses a particular system concern; therefore, the set of classifiers
and relationship employed varies from diagram to diagram. Understanding the capabilities
and goals of each structural diagram is important for determining the selection of effective
constructs that are appropriate at particular levels of abstraction during system design.

COMPONENT DIAGRAMS

A component represents a modular part of a system that encapsulates its contents and
whose manifestation is replaceable within its environment (UML 2.3 Superstructure 2010).
For this reason, component diagrams can be used to decompose systems and represent
their structural architecture, from a logical perspective. Components can be modeled
using an external black-box view or internal white-box view. With the black-box view,
components encapsulate their internal structure; therefore, collaboration with other com-
ponents is achieved through well-defined interfaces. These interfaces can be classified as
provided or required interfaces. Provided interfaces are used by other external components
to interact with the component providing the interface. Required interfaces are those the

Software Design with Unified Modeling Language « 41

Component Relationships

<<component>> {l Provided Interface C
ComponentA
<<component>> {l Required Interface C
ComponentA
<<assembly>>
<<component>> 7 <<component>>
ComponentA {l @ ComponentB {l
<<component>> {l _____]? f’l_??{lflffl_c}’_ __ .| <<component>> {l
ComponentA ComponentB
<<component>> E _____ I??P?flfi_efl_c_y_ . <<interface>>
ComponentA InterfaceB
<<component>> {l ______ IE e_a_li_z_a_ti(zr} L <<interface>>
ComponentA InterfaceB
<<component>> Realization
ComponentA {l <t ClassA
Ports and Delegates
<<component>> {l
ComponentA
IRequired IRequired IProvided IProvided

N m) <<component>> 2]
- Port 1L|J <<delegate>> ComponentB <<delegate>> I:EP ort 2:

Sample Component Diagram

<<component>> {l
ClientCollectionSystem
IClientData IClientData ISchedule ISchedule

r <<component>>
O Port 1LJ<< delegate>>C>— ClientManager {l
0 o
| |

<<component>> {l <<component>> {l
SensorManager VideoManager

-

<<delegate>> Tp,.t 0

ISensorControl IVideoControl

FIGURE 2.1
Overview of UML component diagram.

components need to realize a component’s function. Modeling component interfaces in
UML can be achieved using two distinct notations: the ball-and-socket notation or the
dependency and realization relationships, as seen in Figure 2.1.

Figure 2.1 shows the basic component relationships and examples of component
diagrams. As seen, the basic notations for modeling components are components, assembly
connectors, and provided/required interfaces. The notations presented in Figure 2.1 are used
to model components using an external, black-box view; however, components can also
be designed using an internal, white-box view, not presented in Figure 2.1. When using

42 « Software Engineering Design

the black-box approach, components use the ports and delegates concepts to model how
components interact with other (external) components and how the responsibility for real-
izing external requests are delegated throughout parts of components. As seen, ports are
used to model access points for allowing the external environment to access the compo-
nents’ services and for allowing components to interact with their external environment.
Delegation connectors are used to model the link between the external provided inter-
faces of a component to the realization of those interfaces internally within the component
(UML 2.3 Superstructure 2010). Similarly, delegation connectors model the link between
internally required interfaces to ports requiring the interface from external components.

Figure 2.1 presents a design element for devising a logical representation for the software
architecture of a sensor collection system. The system includes a client collection node
that is decomposed into ClientManager, SensorManager, and VideoManager. The client
subsystem requires a collection schedule, which provides the information necessary for
activating sensor and video nodes to begin collection. The client subsystem makes this
information available to other nodes upon request. As seen, the ClientManager component
requires a collection schedule, which is delegated to Port 2; this interface requires external
components to provide the collection schedule using the ISchedule interface. In addition,
the ClientCollectionSystem component provides status information to external components
via Port 1 using the IClientData interface. The responsibility of realizing the IClientData
interface to provide status data is delegated to the ClientManager component so that all
requests received at Port 1 can be handled by the target component.

Logical versus Physical Components

The UML 2.3 Superstructure Specification supports the specification of both logical and
physical components and describes them as substitutable units that can be replaced at
design time or run time (UML 2.3 Superstructure 2010). This, combined with the previous
usage (in UML 1.x) of components, creates confusion among designers. Although UML 1.x
and UML 2.x components can look the same in UML, the context in which they are used
should make the distinction between physical and logical components evident. For this
reason, a thorough discussion is needed.

Logical components are used from a logical perspective, while physical components
are used from a deployment perspective, which in UML 2.0 can be modeled as artifacts.
Logical components are components that can be replaced at design time. For example,
the internal structure of a software system may be composed of three logical components:
the UI component, the business logic component, and the database component. Each
of these has well-known interfaces that allow them to be replaceable at design time. By
having well-known interfaces, the internal design of components (e.g., the UI component)
becomes irrelevant to other external components (e.g., the business logic component).
Logical components specify the decomposed structure of software; they exist in the context
of the logical design of the software system.

On the other hand, physical components are components that exist within the context
of deployment; they are distinctively different from logical components in that they are

Software Design with Unified Modeling Language « 43

independently deployable units that reside on their own and provide services to other
physical components or software applications. They provide stable interfaces that allows
them to be replaceable at run time, for example, JavaBean components, EJB components,
and .NET components, which can be deployed independently through a jar file, ear file,
and DLL file, respectively (Qian, Qian, Fu, Tao, Xu, and Diaz-Herrera 2009).

Using components to denote logical units (as opposed to physical units) is new to UML 2.0;
therefore, they provide modeling features that are specially fitting for designing logical ele-
ments of the software architecture. In previous versions of UML, components were reserved
exclusively for modeling physical entities deployable within a system and replaceable at run
time. Now, UML supports the specification of both logical and physical components, together
with the artifacts that implement them and the nodes on which they are executed (UML 2.3
Superstructure 2010). This new paradigm allows designers to model physical deployment
aspects of components using the artifact classifier deployed on a node (Booch et al. 2007).

CLASS DIAGRAMS

Class diagrams exist at a lower level of abstractions than component diagrams. That is, whereas
component diagrams serve well to modularize the system, they do not have a direct translation
from model to code. Class diagrams have direct translation to object-oriented programming
languages. In simple terms, class diagrams are models consisting of classes and relationships
between classes necessary to achieve a system’s functionality. Therefore, whether a detailed
class diagram is made or not, the resulting object-oriented code will always reflect some class
design. This characteristic of class designs results in a two-way relationship between class
diagrams and code, which allows designers to generate code from class diagrams (i.e., code
generation or forward engineering) or to generate class diagrams from code (i.e., reverse
engineering). This makes class diagrams the most powerful tool for component designers to
model the design characteristics of object-oriented software before the construction phase.

Class diagrams vary in complexity, ranging from diagrams with a few classes with
simple relationships to diagrams with many classes interconnected via elegant and effi-
cient relationships. Class diagrams are perhaps the most important UML diagrams for
object-oriented component designers. To effectively model object-oriented software,
designers need to have an understanding of the basic class constructs, relationships, and
the direct mapping that result from model to code.

Classes

A class is the specification of a type, nothing more, nothing less. For a class to be useful to
software programs, objects of that class need to be instantiated during the program’s execu-
tion. Instantiation is the process of manifesting a class in the computer’s memory. A single
class specification can be manifested in the computer’s memory during program execution
as multiple objects, their specific values for each having operations and relationships with

44 « Software Engineering Design

other objects. Classes are the building blocks of object-oriented systems; therefore, being
able to model classes in an efficient and reusable way is essential. In UML, a class is mod-
eled with a rectangular shape with three main compartments, namely, the name, attribute,
and operation compartments.

Name Compartment

The name compartment is reserved for the class name and its stereotype. A class name is
a string value that uniquely identifies a class from other classes in the system. Class names
can be qualified to show the package that they belong to in the form of Owner::ClassName,
where Owner refers to the package that owns the class and ClassName refers to the class
name. UML classes can be enhanced to convey more information by using stereotypes.
Stereotypes are displayed above the class name using the format <<stereotype>>. Commonly
used stereotypes for classes include the <<interface>> and <<utility>> stereotypes. The
<<interface>> stereotype is used to model interfaces, which specify the services of a class.
The <<utility>> stereotype is used to model a class that has no instances but instead repre-
sents a named collection of class-scoped (i.e., static) attributes and operations.

Attribute Compartment

Attributes are named properties used to specify the information required by objects to carry
out their intended function or to represent the object modeled by the class. The attribute
compartment is reserved for specifying the class attributes, including their name, type, and
other properties, such as visibility and scope. Attribute names, similar to class names, are
string values that uniquely identify one attribute from all other attributes. The attribute type
specifies the type of data appropriate for the attribute, for example, integer, string, or double.
Typically, the attribute compartment is used to specify primitive types, whereas attributes
that result as consequence of relationships with user-defined types are kept from the attri-
bute compartment; these are modeled using the appropriate UML relationship with a label
containing the attribute’s name. The attribute’s visibility specifies policies on how attributes
are accessed by clients. In UML, visibility can be set to the types represented in Table 2.6.

The scope of an attribute can be specified to be class-specific (i.e., static) or object-specific,
which allows each individual object to have individual copies that help keep track of attri-
bute values independently.

TABLE 2.6

Common Visibility Types in Class Diagrams

Visibility ~ Symbol Description

Public + Allows access to external clients

Private - Hides private members or operations from external clients
Protected # Allows access internally within the class and to derived classes

Package ~ Allows access to entities within the same package

Software Design with Unified Modeling Language « 45

<<Class Stereotype>> Class Structure

ClassName
+publicAttribute: int

—privateMethod(param: int): void
#protectedMethod(): int
+abstractMethod(): void
+publicStaticMethod(): void

Class Diagram
ClassA Dependency ClassB Relationships

ClassA Association ClassB

ClassA |Directed Association | ClassB

ClassA Aggregation ClassB

ClassA| _ Composition ClassB

-

ClassA| Generalization _ | ClassB
|

ClassA Realization ClassB

_______________ {>
Sample Class Diagram
<<interface>> IndependentClass
AbstractClass
+interfaceMethod(): void A
PartClassA A : E SampleClass
! Bas e(ljlass —attribute: int
; +operationl(): void
—pPartA ConcreteClass —operation2(): void
+interfaceMethod(): void %
WholeClass | DerivedClass PartClassD
—pConcrete -
—objectD

FIGURE 2.2
Overview of class diagram.

Operation Compartment

Operations are services provided by classes. The operation compartment is reserved for
specifying the class operations, including their name, return type, parameters, and other
properties, such as visibility, scope, type (e.g., abstract), and constraints, as seen in Figure 2.2.

The class concept is easier to understand for most programmers, since it directly maps
to code in object-oriented languages. An important aspect of modeling software with class
diagrams is the understanding of how classes modeled in the design translate to code.

46 « Software Engineering Design

Listing 2.1: C++ Code Generated from SampleClass Designed in Figure 2.2
class SampleClass {
public:

// Methods in this section are made public.
void operationl ()

// Code here.

}

private:

// Methods and attributes in this section are made private.
void operation2()

// Code here

}

// Private attribute.
int attribute;

bi

UML, as a universal language, provides the appropriate mechanisms to allow designers to
model almost any aspect of modern object-oriented programming languages. Therefore,
when modeling UML classes, it is important to understand what decisions made at design
time result in code. As an example, consider Listing 2.1, which presents C++ code for the
SampleClass designed in the Sample Class Diagram section of Figure 2.2.

As seen, generation of code from UML SampleClass results in the manifestation of UML
class as code; both versions (i.e., code and UML class drawing) of the SampleClass design
element convey identical information. The same UML class can be used to generate code in
other programming languages as well. For example, Listing 2.2 presents the manifestation
of UML SampleClass class design using the Java programming language.

Relationships

Classes that do not collaborate with each other may not accomplish much. Therefore,
depicting the relationships among classes is an essential part of class diagrams. UML rela-
tionships can be used to model the connection between UML classes in a class diagram.
The UML relationships identified in Table 2.3 can all be used in class diagrams to pro-
vide connections appropriate to model relationships found in object-oriented systems.
Similar to the modeling of classes, it is essential for designers to understand how UML
relationships translate to code. Since UML is programming language-agnostic, some of the
relationships that have different meanings in the modeling domain will translate with no
difference in the code domain.

Software Design with Unified Modeling Language « 47

Listing 2.2: Java Code Generated from SampleClass Designed in Figure 2.2
class SampleClass {

// Public method.
public void operationl() {

}

// Private method.
private void operation2() {

}

// Private attribute.
private int attribute;

Listing 2.3: C++ Code Generated for UML Dependency Relationship

// The dependency relationship can result in code as a #include.
#include “IndependentClass.h”

class DependentClass {

// Other attributes.
// Other operations.

Vi

Dependency

In a class diagram, the dependency relationship, rendered as a dashed line and stick arrow,
is used to model the relationship between two UML classes. Dependency models the rela-
tionship that indicates that changes to one class affect the other. In C++, dependency rela-
tionship may translate to a #include statement, as seen in Listing 2.3.

Association

Associations are structural relationships; that is, they affect the structure of UML classes.
In a class diagram, associations are modeled with solid lines connecting two classes, as seen
in Figure 2.2 from BaseClass to SampleClass. This structural relationship indicates
that a connection exists between associated instances at run time. Associations are bidirec-
tional by default. When using bidirectional associations, classes on each end of the associa-
tion are structurally modified to provide navigation to their associated classes, providing

48 o Software Engineering Design

Listing 2.4: C++ Code Generated for UML Association Relationship

#include “PartClassA.h”
#include “ConcreteClass.h”

class WholeClass {
// Code here...
private:

// Association relationship.
ConcreteClass* pConcrete;

// Aggregation relationship.
PartClassA* pParth;

Vi

objects of one type ability to navigate to objects of another type and vice versa. Navigation
can be limited to one-way by modeling the association relationship with a directional
arrow. When this is the case, only the structure of one class is modified to provide navi-
gational capabilities to the other. In C++, the structural modification resulting from using
associations is presented in Listing 2.4. As seen, the association from WholeClass and
ConcreteClass may translate to a pointer type.

Aggregation

Aggregation is a specialized form of association to denote a whole—part relationship. That is,
aggregation can be seen as association with special semantics for modeling that one object
is part of another. This added semantic is purely conceptual, and its use is constrained to
design time; that is, forward-engineered aggregation relationships may translate to code in
the same way that associations are translated. Therefore, aggregation is used to increase the
communication language at design time. Aggregation is modeled using an association line
with a hollow diamond at one end. Similar to association, aggregation can be made direc-
tional, as seen in Figure 2.2. When aggregation is used, the class connected to the diamond
part of the aggregation arrow is said to be the whole, and the one connected to the arrow is
the part. As seen in Listing 2.4, aggregation may not be differentiable from association in
code, since both associations and aggregation can translate the same way in code.

Composition

Object composition is a specialized form of aggregation used to model ownership rela-
tionship. Similar to aggregation, object composition models a whole-part relationship;

Software Design with Unified Modeling Language « 49

Listing 2.5: C++ Code Generated for UML Composition Relationship

// Object composition requires this dependency.
#include “File.h”

class EventLogger {
// Code here...
private:
//The Object Composition Relationship.

File file;

}i

however, unlike aggregation, composition provides deeper semantics to indicate that the
lifetime of the part is owned by the whole. Therefore, when the whole object goes out of
scope, so does the part. In UML, object composition is modeled similarly to aggregation,
but instead of using a hollow diamond a solid diamond is used. In code, object composition
can be manifested in different ways. For example, Listing 2.5 presents the forward engi-
neering (using C++) of some designed EventLogger class, which is used to log events
in a system.

As seen, the EventLogger will own at run time an instance of the File class; there-
fore, once the EventLogger goes out of scope, so will the instance of the File class.
This relationship can be translated differently in C++, via pointers. Listing 2.6 presents
the forward engineering of the EventLogger class with a different manifestation of the
object composition relationship.

As seen, object composition is achieved using a different approach that creates and
destroys the _file object. It is important to emphasize once again that UML is a flexible
language; therefore, forward engineering of UML models can be realized differently by dif-
ferent tools and different programming languages. For example, association, aggregation,
and object composition can all look different in other object-oriented languages, such as
Java and C#, which have no pointer notation.

Generalization

Generalization is a relationship that denotes inheritance; that is, one (child) class inher-
its the structure and behavior of another (parent) class. Child classes can reuse services
provided by parent classes, override these services, or add entirely new ones. In class
diagrams, generalization is modeled using a solid line with a hollow arrowhead connecting
two classes, as seen in Figure 2.2. Generalization always translates to code as inheritance,
as seen in Listing 2.7.

50 e« Software Engineering Design

Listing 2.6: C++ Code Generated for UML Composition Relationship
#include “File.h”
class EventLogger ({

// Constructor.
EventLogger () {

// Instantiate the message object during initialization.
_file = new File;

}

// Destructor.
~EventLogger () {

// Because of UML composition relationship, once the this object
// goes out of scope, so does the file object.
delete file;

}

private:

// Object composition via pointers.
File*x file;

Vi

Listing 2.7: C++ Implementation for UML Generalization Relationship
#include “BaseClass.h”

// Generalization results in inheritance.
class DerivedClass : public BaseClass ({

// Code here...

}i

Realization

Whereas generalization allows classes to inherit a parent’s class interface and behavior,
realization allows classes to inherit the interface. Realization is used to model a contract
relationship in which one class specifies an interface contract and another buys into that
contract. When realization is used, classes that realize interfaces are required by contract
to provide implementations for those interfaces before objects of those classes can be
instantiated. In UML, realization is modeled using a dashed line with a hollow arrowhead

Software Design with Unified Modeling Language « 51

Listing 2.8: C++ Code Generation for Interfaces
class Gps {
public:

// The interface method to obtain latitude information.
virtual double getLatitude() = 0;

// The start interface method.
virtual double getLongitude() = 0;

Listing 2.9: C++ Implementation for UML Realization Relationship
#include “Gps.h”

// SimulatedGps realizes the Gps interface.
class SimulatedGps : public Gps ({

public:

// The interface method to obtain latitude information.
double getLatitude() {

// Generate a sample latitude and return.

}

// The interface method to obtain longitude information.
double getLongitude ()

// Generate a sample longitude and return.

}
Vi

connecting two classes. In code, realization can translate in different ways depending on
the target programming language; however, the semantics remain the same. In the code
context, an interface is the collection of public methods that define the services provided
by class. In C++, interfaces are created using pure virtual methods as seen in Listing 2.8.
As seen, the Gps class is made up of two pure virtual methods, which means that objects
of the Gps class cannot be instantiated; the Gps class is typically referred to as an interface
to define a common set of services, in this case, global positioning system (GPS) services.
Similar to all other relationships discussed so far, the realization relationship trans-
lates different in different languages. In C++, the realization relationship translates iden-
tical to the generalization relationship. As seen in Listing 2.9, the forward engineering

52 « Software Engineering Design

Listing 2.10: Java Code Generated for Interfaces

interface Gps

// The interface method to obtain latitude information.
public double getLatitude() ;

// The interface method to obtain longitude information.
public double getLongitude() ;

Listing 2.11: Java Code Generated for UML Realization Relationship

class SimulatedGps implements Gps {

// The interface method to obtain latitude information.
public double getLatitude() {

// Generate a sample latitude and return.

}

// The start interface method.
public double getLongitude() {

// Generate a sample longitude and return.

}
}

of the SimulatedGps class results in inheritance with provided methods for both
interface methods.

Gps services can be realized by different Gps classes differently; for example, one
derived Gps class (e.g., HardwareGps) may realize the Gps interface by providing code
that interfaces with specific hardware to obtain actual readings for latitude and longi-
tude. Another derived Gps class (e.g., SimulatedGps) can realize the Gps interface by
providing code that simulates latitude and longitude readings in case the Gps hardware
is not available. By designing such framework (i.e., Gps interface, HardwareGps, and
SimulatedGps) clients can create their designs relying on using the Gps interface; by
relying on a well-defined interface, objects of type HardwareGps or SimulatedGps
can be swapped without ever having to change the client code.

Interfaces and the realization relationship are so essential to object-oriented systems that
modern languages include keywords to support this relationship. In Java, the forward engi-
neering of the Gps interface translates to an interface, as seen in Listing 2.10.

The forward engineering of the realization relationship in Java results in a class
that implements and interface. Listing 2.11 presents the forward engineering of the
realization relationship for the SimulatedGps class in Java.

Software Design with Unified Modeling Language « 53

Skill Development 2.1: Modeling Structure with Class Diagrams

Using pencil and paper, create the class diagram that models the following relation-
ships. Class B inherits from class A. Class B is directionally associated with class F and
has a special whole—part relationship with class C, so that when B goes out of scope,
so does C. Class B has another whole-part relationship with class D, which depends
on interface E. When class B goes out of scope, D remains active as an object during
run time. Both classes G and H realize the E interface. When done, replace the class
names A, B, C, D, E, F, G, and H with names that represent types appropriate for these
relationships. Discuss your results with your peers.

DEPLOYMENT DIAGRAMS

Deployment diagrams are structural diagrams used to model the physical realization
of software systems. They provide the means for visualizing the environment in which
software executes and how different entities communicate with each other to achieve the
systems’ functions. Deployment diagrams provide a static holistic view of the software
system, from the deployment perspective, by providing avenues for modeling and speci-
fication of the physical nodes, software artifacts, and the interrelationship among them.

A node is a computational resource that host software artifacts for execution (UML 2.3
Superstructure 2010). In UML, nodes are named classifiers modeled as a cube. Nodes can be
associated with other nodes to model the communication path between them; these com-
munication paths can be enhanced with stereotypes, multiplicity, and other adornments
to further specify their properties and constraints. For example, in Figure 2.3, communi-
cation paths are enhanced by specifying the communication protocol (e.g., Transmission
Control Protocol/Internet Protocol [TCP/IP], Universal Serial Bus [USB], and ZigBee).

In addition, multiplicity is used to model the number of elements connected to other
elements. As seen, there is a plurality of sensor nodes connected to the embedded client
computer via the ZigBee wireless protocol. This deployment diagram also models the
optional use of mobile devices in the system; that is, the embedded client computer may
or may not have mobile devices interfacing to it. Nodes can also be modeled as hosts by
including the components that execute in the node and their manifestation as artifacts.

Artifacts are used to model physical units of information that form part of the software
system, such as binary executable files, configuration files, and scripts. Artifacts are modeled
using the <<artifact>> keyword and can be related to nodes, components, and other arti-
facts using the dependency relationship, as seen in Figure 2.3. Artifacts that collaborate with
other artifacts can be modeled using the dependency relationship. To model the deployment
relationship, artifacts are connected to nodes using the dependency relationship with the
<<deploy>> stereotype. When connected this way, it is said that the artifact is deployed on
the node connected to the other end of the dependency relationship. When necessary, the

54 « Software Engineering Design

Deployment Diagram Relationships

Association
NodeA NodeB
<<artifact>> <<deploy>>
ArtifactA D ________________ ™| NodeB
<<artifact>> <<manifest>> |<<component>>
ArtifactA D ---------------- ™ ComponentA {l
<<artifact>> D Dependency <<artifact>>
ArtifactA ~ [Tt ™ ArtifactB

Sample Deployment Diagram

SensorNode VideoNode
. 1.% 1
<<ZigBee>>) <<TCP/IP>> 1
<<USB>> EmbeddedClientComputer
Wireless 3G Card 1 1
<<artifact>> D
ClientCollectionSystem.exe !
<<TCP/IP>> E <<manifest>> E
MobilePhone 0.% 1 Y |
<<component>> ,
ClientCollectionSystem {l E
|
<<TCP/IP>> :
¥
<<TCP/IP>> <<artifact>>
DatabaseServer 1 1 ApplicationServer MonitorSystem.exe D
f <<deploy>> E E <<manifest>>
A . v
<<component>>
ServerMonitorSystem $:|
FIGURE 2.3

Overview of UML deployment diagram.

manifestation of components (designed in component diagrams) on a target node can be
modeled using the dependency relationship from the artifact to the component with the
<<manifest>> stereotype.

Together, the concepts of nodes, relationships, and artifacts can be used to create deploy-
ment diagrams that include the physical nodes where software is deployed, communica-
tion paths between nodes, software artifacts executing on nodes, and the manifestation of
software components within the software artifacts, as seen in Figure 2.3.

Software Design with Unified Modeling Language « 55

TABLE 2.7

UML 2.3 Behavioral Diagrams

Diagram Description

Use case diagram Used to capture, specify, and visualize required system behavior (i.e., requirements)
Sequence diagram Used to capture, specify, and visualize system interactions with emphasis on the

time-order sequence of messages exchanged

Communication diagram Used to capture, specify, and visualize system interactions with emphasis on the
structural order of entities participating in the message exchange

State machine diagram Used to capture, specify, and visualize system behavior as a set of discrete states
and the transitions between them

Activity diagram Used to capture, specify, and visualize system behavior; provide mechanisms for
modeling that includes conditional statements, repetition, concurrency, and
parallel execution and thus can be used at many different levels of abstraction,
from modeling business work flows to code

BEHAVIORAL MODELING

Structural modeling is essential to evaluate, characterize, and visualize the structural
design of software systems from various perspectives. These static diagrams provide good
avenues for analyzing properties that are the direct result of structural designs, such as
their ability to meet functional requirements, reusability, and maintainability; however,
they are not adequate for modeling the inherent complexities present in the behavioral
aspects of software systems. For this reason, behavioral diagrams are necessary to models
and specify the dynamic aspects and evaluate the quality attributes related to the system
behavior. To this end, UML provides several diagrams that can be used to model impor-
tant behavioral aspects of software. These are presented in Table 2.7.

Table 2.7 does not present an exhaustive list of UML behavioral diagrams. However, these
diagrams can be used to model almost any behavioral aspect of modern software systems,
and their use is ubiquitous in practical development efforts. Therefore, their understanding
and applicability must be well understood. Other diagrams, such as timing and interaction
overview diagrams, are not covered here.

USE CASE DIAGRAMS

Use case diagrams are behavioral diagrams used to capture, specify, and visualize required
system behavior. The main elements of use case diagrams are actors, use cases, and the
relationships connecting them together. Actors are entities used to model users or other
systems that interact with the system being modeled (i.e., the subject); that is, operators
using the system, sensors providing information, and a client computer in a client-server
system can all be modeled as actors. Use cases are entities used in use case diagrams to

56 e Software Engineering Design

Common Use Case Diagram Relationships

Association
Use Case B

Actor

<<include>>
Use Case A F---mmmmoommommaoos Use Case B
<<extend>>
UseCase A)-----------------3 Use Case B
Generalization
Use Case A [>(Use Case B

Use Case Diagram

Client System

Search Product

Update Product

— Update Software —

Operator Server

Display Location

Receive Notification

FIGURE 2.4
Sample UML use case diagram and common relationships.

specify the required behavior of a system. Therefore, they provide the means necessary to
capture, model, and visualize the requirements of a system.

Use case modeling provides an avenue for presenting a holistic view of the system to
be designed and increasing communication among stakeholders before more detailed
approaches to design can begin. For example, Figure 2.4 presents a use case diagram
for a client-server system. The system interacts with both an operator and server and is
required to provide the operator with the capability for searching for a product, updating
the product, displaying the location of the product, and receiving notifications from the
server. In addition, the client system is required to check for software updates. Collectively,
these use cases, together with the actors and relationships, capture the requirements of the

Software Design with Unified Modeling Language « 57

system and provide a context for the development of the client system. In UML, use cases
are modeled using a named ellipsis and actors as stick figures, as seen in Figure 2.4.

As seen, the association relationship is used to model the link between actors and use
cases; however, other relationships, such as <<include>>, <<extend>>, and generalization,
can be used to include, extend, and generalize, respectively, other use cases. In addition,
a system boundary is used to delineate the boundaries of the client system within context
of other relevant actors. Use case diagrams provide a valuable means for establishing a
framework for eliciting requirements, identifying major system functions, and specifying
the context of the subject being modeled.

Skill Development 2.2: Modeling Behavior with Use Cases

Consider what you think the five most important functions that your home personal
computer system needs to provide. Using pencil and paper, create a use case diagram
that depicts the personal computer system, its five major functions, and the interaction
between you and the computing system. For one of the created use cases, create a list of
detailed steps that you think the computer needs to do internally to achieve the speci-
fied behavior.

INTERACTION DIAGRAMS

Interaction diagrams exist at lower levels of abstraction than use case diagrams and can
be used extensively during the complete life cycle of software projects. At the architectural
(system) level, interaction diagrams can be used for modeling interactions among software
components; during detailed design, they provide interaction modeling capabilities among
objects at run time; and at the construction level they can be used to model collaborative
algorithms that include conditional and repetition structures, such as loops. Interaction
diagrams are popular because they provide avenues for modeling complex interactions
among software units together with the messages exchanged and the type of the exchange.
By modeling the interactions required to realize a particular system function, designers
can determine if current structural diagrams are adequate to support the system; this gives
designers the ability to model interactions for which the capability of the structural design
to meet its functional and quality requirements may be in question. In these cases, inter-
action diagrams can serve as validation tool before construction can begin. In many situa-
tions, interaction diagrams can reveal many important issues related to the overall quality
of the system (e.g., performance). Two types of interaction diagrams are

« Communication diagrams
+ Sequence diagrams

58 « Software Engineering Design

Communication Modeling

synchronous message
—_—

: FileSystemMgr db : EventLogger

asynchonous message

: FileSystemMgr db : EventLogger

synchronous message

B ——

fs : FileSystemMgr el : EventLogger

asynchronous message

fs : FileSystemMgr el : EventLogger
Object-Based Communication
cm : CommMgr

1: put(msg) \

am : AppMgr
2: decodeMsg()[

\ 4 : format(fast)

3 : log(received, msgld)

—_—

el : EventLogger

5 : log(success)

fs : FileSystemMgr

FIGURE 2.5
Sample UML communication diagram.

Communication Diagrams

Communication diagrams are behavioral diagram used to capture, specify, evaluate, and
visualize system interactions with emphasis on the structural order of entities participating
in the message exchange. When using communication diagrams, entities can be modeled
as objects representing instances of classes or as roles representing prototypical instances of
other entities, such as classes and components (Booch et al. 2005). Both objects and roles
can be connected to model the exchange of messages using links or connectors, respectively.
As seen in Figure 2.5, a role is modeled using a named box (similar to a class) without under-
lining the role’s type. In addition, roles can be named or anonymous, as seen in Figure 2.5.
On the other hand, objects are modeled using similar notation, but the name of the object
is underlined. In many practical situations, designers are interested in modeling how roles
interact with each other to model a system behavior and not on how individual objects
interact. For these situations, roles provide the appropriate modeling entity. When using
roles for modeling behavior, they can be connected using a solid connector line to represent

Software Design with Unified Modeling Language « 59

a prototypical connection between roles. Similarly, when using objects, their connection
is made using links, which represent an instance of an association (Booch et al. 2005).
Connectors and links look exactly alike and differ only semantically.

To model the message exchanges in communication diagrams, messages in the form of
arrows are used. Two common types of messages include synchronous and asynchronous
messages. Synchronous messages—modeled using a solid arrowhead—are used to model
interactions in which both sender and receiver work in lock-step to achieve an operation.
Asynchronous messages—modeled using a stick arrow—model interactions that are car-
ried out by receivers independently from the sender. That is, upon sending an asynchro-
nous message, the sender continues working while the receiver carries out the message
request. The main elements present in communication diagrams, together with sample
object-based communication diagram design, are presented in Figure 2.5.

The communication diagram presented in Figure 2.5 models a system receiving a message
to initiate a file system format. As seen, the “cm” object sends a message to the application
manager object “am,” which decodes the message, logs the receipt of the message by sending
a message to the event logger object “el,” and initiates a format by sending a message to the
file system manager object “fs.” Once finished formatting the file system the “fs” object logs
an event. All messaging in the communication is done synchronously using links.

Sequence Diagrams

Sequence diagrams are behavioral diagrams used to capture, specify, and visualize system
interactions with emphasis on the time-order sequence of messages exchanged. Sequence
diagrams are closely related to communication diagrams. Therefore, many of the modeling
techniques are the same; that is, sequence diagrams include objects, roles, synchronous,
and asynchronous messages. Sequence diagrams put emphasis on the time order of mes-
sages by introducing a lifeline and activation bar. Lifelines are modeled with the object/role
connected to a vertical dashed line that represents the lifetime of the object/role. Typically,
objects/roles in a sequence diagram are aligned from left to right, depending on the order
in which messages are sent. Once a message is sent, the activation bar is rendered on
the object’s lifeline to model the relative processing time that results from the message
exchange. Asynchronous and synchronous messaging are modeled similar to communica-
tion diagrams, and return messages can be modeled using a dashed line with a stick arrow.
Figure 2.6 presents an equivalent sequence diagram for the formatting operation modeled
with a communication diagram in Figure 2.5.

Concurrency in Interaction Diagrams

In previous sections, the discussion on messaging in interaction diagrams eluded the topic
of concurrency. When using the synchronous mode of communication, an implication is
not made as to the presence of independent flows of execution; however, the same is not
true for asynchronous communications. As explained before, the asynchronous mode of
communication provides the ability to model independent flows of execution, since the

60 « Software Engineering Design

General Sequence Diagram

objectA : ClassA objectB : ClassB

: Operator
1:asyncMessage

E 2 : selfMessage()

3 : syncMessage() 4 syncMessage()

5 : returnMessage

Applied Sequence Diagram

cm : CommMgr am : AppMgr el : EventLogger fs: FileSystemMgr

i 1:put(msg) ' E E
i 2 : msgld := decodeMsg() i
E 3: log(received,msgld)i E
E 4 : format(fast) I.,_| E
. : 5 : log(success)
E 6 : return status I_I
! [mmmmm s R L e P e
I/ ireturnstatus : :
FIGURE 2.6
UML sequence diagram.

sender of an asynchronous message continues on executing while the receiver carries out
the work requested. Typically, independent flows of executions are manifested as multiple
processes or threads. When applications are multiprocessed or multithreaded, concurrency
issues arise when they execute in parallel (or pseudo-parallel) with each other. Therefore,
it is important to model concurrent design issues so that their impacts are well understood
before construction begins.

Concurrent designs require designers to decompose applications into multiple processes
or threads to meet performance (e.g., usability, throughput) requirements. Processes can
execute concurrently with other processes, while threads can execute concurrently with
other threads (within the same process). The importance of modeling concurrent designs up
front is often overlooked in many design efforts; that is, too much concurrency can end up
degrading the systems while insufficient concurrency results in decreased systems through-
put (Booch et al. 2005). Developing these systems requires skills typically acquired through

Software Design with Unified Modeling Language « 61

Active Object

<<stereotype>>
activeObject : ActiveClass

taggedValue = value

Interprocess Communication

<<process>>
systemMgr : SystemManager

location = client PC

6 : postResults() 1: SystemOn()

<<process>>
serverMgr : SystemManager

location = server

5 : forwardStatus() 2 : forwardCommand()

<<process>>
manager : SiteManager

location = client laptop

3: powerOV N:‘powerOn()

<<process>> <<process>>
nodeOne : SensorNode nodeTwo : SensorNode
location = sensor node location = sensor node

FIGURE 2.7
Sample UML interprocess communication.

experience; therefore, novice designers are encouraged to create concurrency models and
when possible to have more experienced personnel review them.

UML provides the necessary mechanisms to model independent flows of controls, such as
processes or threads, using the concept of an active object within sequence and communica-
tion diagrams. Active objects are represented in UML as an instance of an active class with
certain concurrency semantics to aid in the synchronization of interactions among inde-
pendent flows (Booch et al. 2005). Models that include active objects can be used to reason
about quality issues that deal with concurrency, communication, and synchronization. An
example of a concurrent system is presented in Figure 2.7 using a communication diagram.

In this diagram, objects are modeled as active objects by adding double lines to the left
and right side of the object’s rectangle. This denotes independent flows of execution and
ability to initiate control activity. The model is also enhanced by using the location tagged
value to specify the location of the running processes.

62 « Software Engineering Design

The model in Figure 2.7 relies on active objects, asynchronous and synchronous mes-
sages, to properly model the interprocess operations in a multiprocess distributed system.
As seen, the system is composed of five processes executing in different locations, namely,
the client PC, server, client laptop, and embedded sensor nodes. The model uses asynchro-
nous messages, from the client PC to the server and from the server to the client laptop, to
communicate to initiate a power on sequence of the embedded sensor nodes. This makes
sense because of the nature of a distributed system. Remember that asynchronous messages
allow the sender to continue operation (and not block) waiting for the message response.
In this case, the client PC will send a systemOn message to the distributed system and
continue serving operators without waiting for a response to come back. Communication
between server and client laptop is done in a similar fashion; however, communication
between the client laptop and embedded sensor nodes occurs in synchronous fashion. That
is, once a systemOn message is received, the client laptop will synchronously power up sen-
sor node one; control returns back once the power up operation is complete, at which point
it can initiate the power on message to sensor node two. When both sensor nodes are up,
status is returned asynchronously from the site manager to the system manager.

Concurrent designs that work on the same data are tougher to manage, since they can
lead to errors that are hard to find during construction. When this happens, access to
shared sections of data needs to be designed properly and carefully to ensure the integrity
of the data. To this end, UML provides synchronization properties that can be used to
constrain the model so that it supports concurrency by controlling the way multiple flows
of execution access critical sections of code. These are presented in Table 2.8.

The Sequential synchronization property specifies that no concurrency management
mechanism is associated with an operation. With sequential access, concurrency con-
flicts may occur, so clients that rely on the operation need to coordinate so that only one
invocation occurs at any given point. The Guarded property specifies that the operation
can be invoked from multiple independent flows simultaneously, but only one flow of
execution is allowed to commence; other independent flows are blocked until the execu-
tion of currently executing operation, under the currently executing thread, is complete.
When using the Guarded synchronization property, it is the responsibility of the designer
to ensure that concurrency issues, such as starvation and deadlocks, do not occur. Finally,

TABLE 2.8

UML Synchronization Properties

Synchronization Description

Sequential No concurrency management mechanism are associated with the operation.

Guarded Concurrency management mechanisms are in place so that operations can be invoked

from multiple independent flows simultaneously; each call waits for the previous one to
finish execution.

Concurrent Multiple invocations may occur simultaneously, and all of them may proceed
concurrently.

Software Design with Unified Modeling Language « 63

the Concurrent synchronization property specifies that multiple invocations may occur
simultaneously and that all of them may proceed concurrently. Concurrent synchroni-
zation is achieved in languages with built-in support for concurrency, such as Java with
the use of the synchronized property. All three of these properties can be modeled as
constraints to fully specify the behavior of concurrent systems.

I ——
CHAPTER SUMMARY

UML is a visual language with an extensive set of features appropriate for designing soft-
ware systems across a broad set of application domains. The current version of UML (2.3)
provides 14 diagrams for structural and behavioral modeling of software systems. These
diagrams support software design during architectural, detailed design, and construction
design activities. Since UML has been designed with flexibility in mind, it is important
to understand how the its fundamental building blocks (i.e., classifiers, relationships, and
enhancing features) can be used to model systems of disparate capabilities and domains.
While some UML diagrams provide modeling concepts that are too abstract for direct
translation to code, others are not. Therefore, it is essential that designers understand
how these models translate to code and how they are used to model quality attributes.
By providing a unified communication language for software design, UML is appropri-
ate and efficient for capturing and conveying information that can be evaluated by many
stakeholders including customers and software engineers alike, resulting in a more effi-
cient design process.

REVIEW QUESTIONS

1. What is UML, and why is it important in software design?
. What are the two main classifications for UML diagrams, and how do these differ
from one another?

[\

. List and explain two important reasons for software designers to study UML.
. In UML context, what are classifiers? Provide examples of classifiers.
. What are the main relationships used in UML diagrams? Provide examples of each.
. List and explain the main mechanisms for extending UML.
. What is structural modeling?
. Compare and contrasts the following:
a. Component diagram
b. Class diagram
c. Deployment diagram

g N U1 W

64 « Software Engineering Design

9.

10.
11.
12.

13.

14.

15.
16.

17.
18.
19.

Explain the following relationships, and show how they are modeled in component
diagrams:

a. Provided and required interfaces

b. Assembly connector

c. Delegates

What is a UML artifact? How are artifacts different from components?

List and explain the main compartments of UML class.

What are the possible types of visibility that can be used in items of class diagrams?
Explain.

In a class diagram, what is the difference between the following relationships:

a. Generalization vs. realization

b. Aggregation vs. object composition

c. Dependency vs. association

How can the manifestation of software components in a deployed environment be
modeled in UML? Explain.

In a UML deployment diagram, what is a node?

Compare and contrasts the following:

a. Use case diagram

b. Sequence diagram

c. Communication diagram

What is the difference between synchronous and asynchronous messages?

Explain how concurrency issues can be addressed using UML.

Compare and contrasts the following:

a. Sequential synchronization

b. Guarded synchronization

c. Concurrent synchronization

CHAPTER EXERCISES

1.

Consider the software design of a car in a racing game. Use a software modeling tool
to identify the major components of the car, define the component’s interfaces, and
connect all components the way you think provides the best design for developing the
car. Create a list of design factors that influenced the final car’s design and the benefits
provided by your approach. When done, ask a peer to do the same and compare your
approach and final results.

. Use the component design created in Exercise 1 to design the classes required to sup-

port the component’s interfaces and provided services. Create a list of design factors
that influenced the final car’s design and the benefits provided by your approach.
When done, ask a peer to do the same and compare your approach and final results.

Software Design with Unified Modeling Language « 65

3. Create a UML class diagram containing the following information.

Class Name

Operations

Attributes

Relationships

Name

Type

Return

Name

Visibility

Return

Name | Visibility

ClassA

Class

void

operationl

public

char*

X private

int

operation2

private

bool

y protected

Inherits from
ClassZ and
uses
aggregation
with ClassT

ClassB

Interface

void

operation3

public

void

operation4

public

None

Depends on
ClassA and is
associated with
ClassO using a
directional
association

ClassC

Class

none

None

Realizes ClassB
and is
composed of
ClassA

4. Matt and Alice are starting a bed-and-breakfast in a small Virginia town. They will
have three bedrooms for guests. They want a system to manage the reservations and

to monitor expenses and profits. When a potential customer calls for a reservation,

they will check the calendar, and if there is a vacancy they will enter the customer

name, address, phone number, dates, agreed upon price, credit card number, and

room number. To facilitate reservations, the system needs to print weekly schedules,

including available rooms, their locations, price, and special rates. Reservations must

be guaranteed by one day’s payment. Reservations will be held without guarantee for

an agreed upon time. If not guaranteed by that date, the reservation will be dropped.

Create a UML use case diagram using a system boundary for this system.

REFERENCES

Booch, Grady, Robert A. Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim Conallen, and Kelli A. Houston.
Object-Oriented Analysis and Design with Applications. Upper Saddle River, NJ: Addison-Wesley
Professional, 2007.

Booch, Grady, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language User Guide. Santa Clara,

CA: Addison-Wesley, 2005.

Qian, Kai, Xiang Fu, Lixin Tao, Chong-Wei Xu, and Jorge L. Diaz-Herrera. Software Architecture and Design
Illuminated. Sudbury, MA: Jones & Barlett, 2009.
“UML2.3 Superstructure.” Vers.2.3. Object Management Group. May 2010. Available from: http://www.omg.org.

3

Principles of Software Architecture

CHAPTER OBJECTIVES

o Understand the role of software architecture within the software
design phase

« Become familiar with architectural tasks and problem solving during
architecture

o Understand the importance and role of architectural views in software
architecture

o Become familiar with the software architecture process

o Become familiar with the concept of architecture evaluation

CONCEPTUAL OVERVIEW

The software architecture activity corresponds to a macrodesign approach
for transforming software requirements into design elements that support
quality and functions of software systems. During software architecture,
perspectives appropriate for modeling particular concerns are identified
and design elements created to address those concerns. These design ele-
ments present systems from different perspectives, thus providing stake-
holders, with different background and expertise, the means to evaluate the
appropriateness of architectural decisions for supporting the construction
of the desired system. The software architecture activity places emphasis
on systems’ quality and therefore provides the earliest means for ensur-
ing that identified quality goals are evaluated and incorporated into the
design before moving on to more detailed design and construction work.
The software architecture lays the foundation for all subsequent work in the
development process and serves as an important communication, reason-
ing, and analysis tool for developing and maintaining software systems.

67

68 « Software Engineering Design

WHAT IS SOFTWARE ARCHITECTURE?

In a broad context, software architecture refers to both the process and design products
required to systematically build software systems that meet their intended functions and
quality. Of course, such broad definition of software architecture leaves out many of the
details that make architecture essential in designing today’s complex software systems.
To understand the meaning and importance of software architecture, it helps to examine
how other engineering disciplines employ architectural designs to build complex systems
with demanding functional and quality requirements. Consider the role of architecture in
civil engineering, where designing and building structures such as houses, bridges, and
high-rises is a nontrivial task. In these cases, architectural designs are used to specify the
overall appearance of physical structures. When examined closer, it becomes evident that
this broad definition is insufficient to describe to actual role of architecture in the process of
building these systems, which involve far more than structural appearance. Architectural
designs must also specify a variety of quality properties that make structures functional,
safe, and economical. This requires architects to incorporate design alternatives that con-
sider a wide variety of factors (e.g., social, aesthetic, and cost) supporting the needs of
stakeholders, including the people who use these physical structures.

In software engineering, architects work to create the overall design elements appro-
priate for supporting efficient refinement and construction of software systems. However,
as in the previous discussion, architectural designs in software engineering involve far
more than structural composition. They must also address numerous quality properties
(e.g., performance, usability, and maintainability) that combine together to produce
software systems that meet the quality expected by their stakeholders. To address these
numerous concerns, software architects create different models of the software system,
each addressing the system design from different perspectives. From the structural, logical
perspective, the software architecture should address the needs of downstream designers
and developers by decomposing the software (in an efficient manner) and defining the
major components of the system, identifying their interfaces and interrelationships, and
providing support for both functional and quality attributes of the system. From the con-
figuration management perspective, the architecture should provide information about
the hierarchy of files in the file system, their interrelationships, and the process for building
one or more versions of the software system. From a systems engineering perspective, the
architecture provides information about the physical deployment of the system, including
the location of distributed subsystems, their interfaces and interrelationship, and specifi-
cation of communication protocols between them. Other architectural perspectives exist
for addressing various concerns that stakeholders may have and should be considered and
designed for during the software architecture activity. Since the nature of stakeholders
varies greatly in software systems, the perspective used to model the structure and behav-
ior of software systems varies as well. Therefore, it is almost never the case that a single
design element, from a single perspective, can represent the software architecture, espe-
cially for large-scale software intensive systems. In these cases, the collection of design

Principles of Software Architecture o 69

elements and their detailed descriptions help form the software architecture. Formally,
software architecture is defined as

The foundational software design activity that evaluates and translates software require-
ments (both functional and non-functional) into a collection of design elements that specify
structural and behavioral aspects of the major components of the system, together with their
provided quality, and interrelationships required to support the detailed design and con-
struction of software systems; and the product resulting from such activity.

From this definition, a few things are of interest and need further explanation. First, as
foundational design, software architecture provides the groundwork essential for meeting
functional and nonfunctional requirements. The architectural design foundation provides
the necessary structure for achieving quality throughout subsequent phases of the software
engineering life cycle. This suggests that architecture is not an optional design activity or
an activity performed as a means of documenting software systems long after they are
implemented. Although deriving and documenting a system’s software architecture from
its implementation in legacy systems provides an excellent avenue for capturing and trans-
ferring knowledge about the system’s design, new development efforts should approach
software architecture as a forward engineering activity that leads to the implementation of
systems and not as a reverse engineering mechanism for documentation. Second, software
architecture provides abstractions for software requirements in the design domain, so that
design elements, components, and alternatives all derive from requirements. This suggests
that as part of the architectural effort architects must be proficient in activities related to
requirements engineering. Third, by specifying that architecture is a collection of design
elements, it is implied that software architectures are composed of multiple structures and
that no one structure can fully describe the software architecture (Bass, Clements, and
Kazman 2003). Fourth, as a design activity that deals with the major system components,
it is suggested that software architecture works at a distinct level of abstraction that differs
from other forms of design, such as detailed design. This means that architectural work
focuses on the major components—which become the units of system composition—and
the properties and services that these components exhibit and provide to other compo-
nents. This clearly delineates architectural efforts from other detailed design efforts. Fifth,
a sometimes overlooked or underappreciated piece of the software architecture definition
is its support for detailed design and construction. Even though architects do not need to
be proficient with particular programming languages, they benefit greatly from having
proficiency with general programming design concepts, so that their architectural designs
provide sufficient avenues for efficient construction of the system. Finally, software archi-
tecture supports—as opposed to ensures—the achievement of quality goals; that is, soft-
ware architecture cannot single-handedly provide the work necessary for achieving the
desired quality properties of the system. Since work performed during subsequent activi-
ties and phases significantly shapes the system’s quality, software architecture can play
only the initial (indispensable) role of establishing the design quality framework for the
rest of the development process.

70 o Software Engineering Design

WHY STUDY SOFTWARE ARCHITECTURE?

Architectural designs identify the necessary elements—and attributes of those elements—
that support detailed design and construction efforts. These design elements are presented
in context for examining how well the system as a whole collaborates to meet its intended
functions. In many cases, this includes the modeling of other nonsoftware elements
(e.g., physical nodes) that play a key role in assessing the system’s capabilities for achieving
a desired quality goal. An understanding of architectural modeling capabilities is essential
in problem solving, since they provide the means to overcome functional fixedness early on
in the development process by allowing designers to model and evaluate the same problem
from different perspectives. Benefits from studying software architecture are also evident in
numerous aspects of both product development and management. From the product devel-
opment perspective, studying software architecture is important for creating an efficient
bridge between the software requirements phase and the detailed design phase. Having
extended knowledge of software architecture provides architects with a wider pool of design
alternatives, some of which have been proven successful in previously developed and similar
systems. In these cases, architects can reuse structural design elements and interconnec-
tions and their responsibilities and can gain insight into their quality properties, all based
on previously used architectures. This provides quick insight into the system’s or individ-
ual component’s ability to meet quality expectations. Besides aiding in product develop-
ment activities, studying software architecture also enhances project managers’ activities
because it helps dictate units of planning, scheduling, and budget; it helps establish inter-
team communication channels, configuration control, and file system organization; and it
helps manage the integration, test, and maintenance efforts (Bass et al. 2003).

I ——
KEY TASKS IN ARCHITECTURAL DESIGN

Defining the structure of software systems requires consideration of many project-specific
aspects and how those aspects relate to the organization’s goals. Therefore, examining the
business impact of architectural decisions in the organization is a major task of software
architects (Bass et al. 2003). This requires a holistic approach that considers all factors
that help shape the system in an efficient manner. Some of the key tasks that need to be
performed during the software architectural design effort include

« Identifying stakeholders concerns

« Identifying appropriate architectural views

o Identifying architectural styles and patterns

« Identifying influences of architectural decisions in organization
« Identifying the system’s major components and interfaces

« Evaluating and validating the architecture

« Establish policies for ensuring architectural design synchronicity

Principles of Software Architecture o 71

Identifying Stakeholders” Concerns

Stakeholders are persons, groups, or organizations that have a direct or indirect stake in the
system. They include systems engineers, software engineers, hardware engineers, project
management, customers and their representatives, testing teams, quality assurance teams,
and members of the configuration management team. The list of stakeholders and the abil-
ity to manage them from an architectural design’s perspective varies in magnitude and
complexity per project. An important job of the software architect is to ensure that the
software to be developed addresses stakeholders” concerns. Stakeholders’ concerns provide
high-level information about desired characteristics of the software system. Therefore, a key
factor in the architectural design activity is identifying and understanding the different
ways stakeholders influence the system and how they interact with each other. These con-
cerns need to be elicited and captured before any design effort can begin. Stakeholders’
concerns (e.g., requirements) are the driving force behind architectural decisions and can
influence both product and processes, may be functional or quality in nature, and may have
different levels of abstraction. During project inception, stakeholders’ concerns are cap-
tured and specified in a clear and consistent manner to define the expected functions and
quality of the software system. An essential characteristic of the specification of concerns
is their ability to provide verifiable specifications, which are used as evaluation criteria for
all architectural design activities. Therefore, when identifying stakeholders’ concerns, addi-
tional effort is required so that they are understandable, achievable, and consistent with all
other identified concerns from all other stakeholders.

Identifying Appropriate Architectural Views

Software architects work hard to create designs that achieve all functional and quality features
expected from stakeholders. In complex software systems, there can be a multitude of stake-
holders with myriad backgrounds, all shaping the way the system development is approached
based on their perception of what the final product should be. Different perceptions signifi-
cantly influence the way these stakeholders evaluate the system’s design and determine the
appropriateness of the design to meet their goals. For this reason, architectural designs must
support different architectural views used to evaluate the design from a particular stakeholder’s
perspective. By providing different architectural views of the system, communication among
stakeholders is enhanced during new or ongoing development or during a system’s mainte-
nance phase. These architectural views provide designers the ability to address concerns using
a perspective and design elements well suited for analyzing and evaluating the particular prob-
lem. By using appropriate views, architectural design can be placed in context to yield better
modeling and evaluation capabilities. Therefore, the result of any architectural effort must
contain design solutions that address one or more viewpoints specific to the problem at hand.

Identifying Architectural Styles and Patterns

The concepts of architectural styles and patterns are fundamental to the efficient creation
of software architectures. Architectural styles and patterns provide an overall strategy

72 o Software Engineering Design

for designing a family of software systems. They provide generic, reusable architectural
solutions, documented in a way that is easily understood and applied to new problems
requiring similar architectural features. For this reason, identifying architectural styles
and patterns is one of the first decisions that software architects make. This decision has
long-lasting effects on all subsequent design and construction efforts. Decisions based on
architectural styles and patterns benefit from years of documented experience that high-
light the solution approach to given problems, from the advantages of these approaches,
and from gaining understanding of the consequences of designing the system with a par-
ticular style. Today, numerous architectural styles and patterns have been documented,
so software architects need to identify and determine the appropriateness, benefits, and
consequences of choosing a particular style or pattern for their system’s design.

Identifying System Interfaces

Interface identification and definition compose another essential task of the software
architecture activity. Interfaces are defined for components residing within single physical
nodes within a single process space, for components residing within a single node in dif-
ferent process spaces, or for components residing in separate processes distributed across a
network. Interface definition may include the definition of stable interfaces such as abstract
classes in object-oriented environments. When using a structured design approach, identi-
fying internal interfaces can result in determining the set of services required by each archi-
tectural component to collaborate with all other architectural components. These identify
the major access points for architectural components together with the communication
rules that must be followed during the detailed design activity. Having well-defined inter-
faces allows the software system to evolve gracefully with time when existing capabilities
are modified or new capabilities are added to the system. Defining the interfaces between
components that reside in different nodes may include specifying messaging structures,
protocols, and other communication mechanisms for allowing communication across
distributed components. These can include identification of physical medium, data-link
protocols, network and transport protocols, messaging specification, and application-level
protocols. Identification of external interfaces can significantly impact a system’s ability to
support its identifying quality properties.

Identifying Impact of Architectural Decisions in Organization

During the architectural design activity, software architects are required to make decisions
that support the efficient development of the software system within bounds placed by
the organization mission and goals. These restrictions are company-specific and in many
cases appear outside the scope of architects’ work; nonetheless, these restrictions need to
be considered and are typically manifested in software architectures. For example, con-
sider the case of software system decomposition. From a pure logical standpoint, decom-
position is made to define units of manageable complexity that can be evaluated, built, and
maintained. These criteria are typically used as basis for system decomposition; however,

Principles of Software Architecture o 73

in practical applications, other key organizational issues need to be addressed to determine
the right granularity of components when decomposing a system. When approached this
way, architectural decisions are driven not only by common design principles discussed in
Chapter 1 but also by other organizational and project-specific factors, such as stakeholders’
concerns, resource availability, resource location, schedule, and budget. These factors drive
architectural decisions to create design solutions that are appropriate for meeting both
product and organizational requirements, therefore bridging the gap between the business
organization and its technical products.

Impact on Customer Base

Decisions made during the architectural activity affect not only subsequent activities in the
software life cycle but also stakeholders, especially customers. When faced with competing
alternatives, each benefiting one customer more than others, architects have to find ways to
make decisions that accommodate each customer and minimize overall customer dissatis-
faction. In these cases, software architects must be skilled at predicting, verifying, and vali-
dating the effects of their design decisions. This issue is further complicated by the presence
of quality requirements. The problem with quality attributes is that they typically contradict
each other. This property of quality attributes is described in detail by Gorton (2011, p. 37):

Quality attributes are not orthogonal. They interact in subtle ways, meaning a design that
satisfies one quality attribute requirement may have a detrimental effect on another. For exam-
ple, a highly secure system may be difficult or impossible to integrate in an open environment.

Software architects are constantly faced with the challenging task of determining the
effects of individual design alternatives, identifying conflicting design solutions, negotiat-
ing systems’ features among stakeholders, and verifying and documenting the final archi-
tectural solution, all of which impact the customer base.

Impact on Budget and Schedule

Architectural designs provide project management with more concrete representations of
the effort required to build the software system. Specifically, they provide the best source
of information for creating or reevaluating schedules and cost so that they reflect realistic
and achievable milestones. Once schedule and budget are established, other attributes of
the project can be fine-tuned to meet the established goals. For example, architectural
designs can highlight inadequacy in resources required for completing the system on time
and within budget. In these cases, architectural designs are used as concrete justifica-
tion for requesting more resources early on in the project life cycle. In cases where adding
resources is infeasible, architectural designs can help justify reevaluation of the strategy,
which requires decision making in all aspects of the project, such as schedule, budget,
or make versus buy decisions. These adjustments based on architectural designs impact

74 o Software Engineering Design

the development organization’s budget and schedule and are necessary to manage risks,
to maintain customer satisfaction, and to ensure the project’s success.

Impact from Resource Availability

The previous section introduced human resource availability as an impacting factor in the
development project. However, architectural decisions are also affected by other differ-
ent forms of resource availability. Resource availability, such as employees, software, and
hardware, can all prompt adjustments to the architecture. Architectural designs that take
into account human resources can maximize employee efficiency throughout the detailed
design and construction phase. By taking into account employee availability, location, and
team composition, work can be compartmentalized and developed in parallel. Employees
that are distributed across different sites can prompt the creation of components with
well-defined interfaces that can be developed independently and integrated into the sys-
tem with minimal effort. Hardware availability can also prompt adjustment in the software
architecture. In cases where hardware availability is essential to the development and test
of software, the architecture may be adjusted to provide simulation components that can be
used to move the development effort forward in case hardware is unavailable. In these cases,
construction and test can continue until the hardware becomes available. At any point, the
simulation component can be swapped easily for the real hardware component without
changes to the overall architecture or software. The same approach can be employed for
other software resources that are essential to the development of the system.

Identifying the System’s Major Components and Interfaces

A major task performed during the software architecture activity involves decomposing
systems into manageable component units. In doing so, it is important to identify the inter-
faces that these components use to collaborate with each other. Components and interfaces
are identified during system decomposition; however, the nature of these significant ele-
ments varies according to the perspective used for system decomposition. In the broad
context of system decomposition, identifying the major components and interfaces may
involve, for example, logical components, physical nodes, files, or directories, and physi-
cal or logical interfaces required for these components to interoperate with each other.
Examples of identifying logical and physical components and their interfaces are presented
in Chapter 4.

Evaluating and Validating the Architecture

Consider designing a large-scale, secure, high-performing, distributed system composed
of multiple nodes, each with usable interfaces, all while emphasizing the system’s testability
and maintainability. In addition, the system needs to be built using a joint approach among
three organizations in separate geographical locations. For such development efforts, an
unsuitable architecture is a recipe for disaster. Therefore, software architecture evaluation

Principles of Software Architecture « 75

and validation are essential tasks of the software architecture activity. In most cases, failure
to evaluate and validate the architecture significantly impacts the effort and cost incurred
to develop the system. Typically, defects found during earlier stages of the development life
cycle (e.g., architecture) take much less effort to correct than if found at later stages, such as
during the testing phase (Clements, Kazman, and Klein 2001). For this reason, it is essen-
tial to evaluate and validate the suitability of the architecture to meet its intended purpose
before attempting to construct the system. Evaluation and validation can focus on compo-
nents, subsystems, or the entire system, depending on how the architecture is structured
and the requirements placed on the system. In all of these cases, evaluation and validation
ensure that architectural components and the architecture itself are sufficiently complete
to support the expected services and quality of those services.

Introducing Policies for Design Synchronicity

A most often overlooked issue in software design efforts is the concept of design syn-
chronicity. Design synchronicity is a measurement of the degree of how well the software
system’s implementation reflects its software architecture and detailed design. In many
cases, design synchronicity reflects the quality of the software process in place; in others,
it reflects the organization’s capability for monitoring and controlling processes through-
out. The software architecture establishes the foundation required for subsequent design
and construction work to meet the system requirements (including quality requirements).
Therefore, unmanaged deviations from the software architecture during detailed design
and construction can reshape the properties of the system and affect its overall capability
to meet requirements. For any software architecture effort to result in successful imple-
mentation of a system, all subsequent phases and activities (i.e., detailed design and con-
struction) must be synchronized with the software architecture. Therefore, designers and
programmers need to work closely and communicate to ensure that the detailed design and
software implementation are consistent with architectural decisions. In addition, project
managers need to set processes in place to support design synchronicity throughout the
software development life cycle, which is difficult for large-scale multiyear efforts or for
projects entering the maintenance phase.

Skill Development 3.1: Key Tasks in Architectural Design

A building architect is hired to design an indoor sports complex with capacity of
3,000 people. The building will be used to host sports, concerts, and other major
activities. The initial design consists of a futuristic building with single door for both
entrance and exit. The building’s design is technically sound and can even withstand
major natural disasters common to the area. Create an exhaustive list of stakehold-
ers, and identify the concerns they may have and how they can be addressed in the
proposed building’s architectural design. Do any of the identified key tasks of software
architecture apply to this problem? Explain.

76 « Software Engineering Design

PROBLEM SOLVING IN SOFTWARE ARCHITECTURE

In Chapter 1, a generic model for problem solving was introduced based on inputs, constraints,
and outputs, where each input problem is interpreted and carefully formulated, is evaluated
against its external constraints, and is ultimately processed, evaluated, and documented.
Different instances of this problem-solving model can be created for particular activities in the
design process, such as the software architecture activity. During software architecture, the
problem-solving landscape can be characterized by a particular set of inputs, constraints, and
outputs common to architectural problems encountered during the design effort. These prop-
erties can be consistently defined for most architectural design efforts; therefore, it becomes
essential for software architects to understand the types of inputs, constraints, and outputs
expected during architectural problem solving. Using the holistic problem-solving approach
presented in Chapter 1, the generic problem-solving model is modified to account for common
properties present during the software architecture activity and is presented in Figure 3.1.

As seen in the figure, typical inputs present during the software architecture activity
include requirements, system goals, and scenarios. These are interpreted and carefully
formulated as part of the requirements engineering (RE) phase; however, it is not uncom-
mon for software architects to perform RE activities, since requirements may not be well
understood or defined or new requirements may be created as knowledge of the system is
acquired throughout the design phase. These inputs are interpreted and evaluated against
the architectural and project constraints, are transformed through collaborative work into
architectural design products, and are evaluated and documented—typically as part of the
software design document—as architectural design elements for future activities or phases
in the development life cycle.

Schedule Constraints,
Cost Constraints, Quality Constraints

®
!
1
. 1
Requlremenlts, v Architectural
System Goals i
' ’ Evaluate Designs,
Scenarios ’[Constraints] [Document] Documentation
| L1

o -—=d- Interpret Collaborative |
*)[Problem] Brainstorming Evaluate] >

Architectural
Design

Resources Activities Controls

FIGURE 3.1
Holistic architectural problem-solving model.

Principles of Software Architecture o 77

Inputs

The most typical inputs encountered in problem solving during the software architecture
activity are requirements and system goals, which both can be represented using scenarios.
These inputs are elicited from stakeholders and provide the driving forces behind all prob-
lems and solutions devised during the architectural design activity. Requirement inputs
must have certain characteristics so that they can be well understood by designers. Bad or
misunderstood requirements lead to problems that are hard to solve or solved incorrectly.
In some cases, requirement input can be incomplete, misleading, or inconsistent; in others,
they may specify unverifiable or unachievable capabilities, which makes problem solving
difficult or impossible at times. In these cases, requirement input results in ill-defined or
wicked problems, which are hard to solve. On the other hand, system goals, which estab-
lish a high-level desired capability, need to be transformed (when possible) into require-
ment form so that they are appropriate for problem solving. Before any problem solving
can occur during architecture, issues with requirements, system goals, and scenarios need
to be resolved so that the proper problem interpretation and formulation can be made.
Therefore, careful attention needs to be placed when interpreting inputs so that their cor-
rect solution can be integrated into the design and evaluated and validated appropriately.
These tasks belong mostly to the requirements phase; however, in many cases it is common
for software architects to iterate back and forth from requirements to design.

Constraints

Whereas inputs define the problems that need solutions during the architectural design
activity, constrains specify bounds identified for their proposed solutions. At the architec-
tural design level, typical constraints include schedule, budget, and process constraints.
Besides constraints derived from nonfunctional requirements, other constraints include
specific platform constraints (e.g., embedded, mobile, web), constraints from existing and
reused architectures, constraints on new technology (e.g., cloud-based solutions), incorpo-
rating commercial of-the-shelf (COTS) products, and numerous other constraints placed
on both product and processes. During architectural problem solving, architects must be
quick to learn technology aspects of product constraints and also must have a keen sense
of project management aspects to account for both schedule and budget constraints when
decomposing the major software components of the architectural design. Other character-
istics of the software project may give rise to constraints placed on the architectural design
process. For example, process constraints may dictate the type of architectural designs
required, the views supported by the architecture, and other supporting activities required
to meet constraints placed on the architectural design process.

Outputs

Problem solving during architectural design should lead to further understanding of the
major structure and behavior of software systems. Therefore, outputs consist of design

78 o Software Engineering Design

elements and descriptions that differ from other forms of design, such as detailed design.
Outputs during the architecture activity are in the form of black-box solutions, which
require refinement in subsequent design work. In many cases it is difficult to delineate
between where an architectural design solution ends and its respective detailed design
solution begins. From the logical perspective, architectural solutions need to account for
the necessary components and interfaces required to achieve functional requirements and
to support its quality requirements. Once architectural solutions can account for these
criteria, details of implementation can be deferred to detailed designs.

The output of problem solving during the architectural design activity is essential to
producing a high-quality software system. Problem solutions during software architec-
ture need to be evaluated and documented accordingly so that they can be used in future
design and construction work. The documentation format varies from project to project
and from organization to organization. Typically, solutions found during the architectural
design activity are documented in the form of diagrams, documents, or a combination
of the two. They can contain analysis and documentation for major design decisions, the
concerns and stakeholders related to the problem, design trade-ofts, identified conflicting
goals, prioritization schemes, design synchronization plans, and a mapping of require-
ments to the architectural solution. This information can be incorporated into an official
architectural design document that is maintained independently or incorporated into the
official software design document, which is completed, reviewed, and approved after com-
pletion of the design phase. Regardless of the documentation format, solutions to problems
during the architectural design activity must be understandable, complete, and sufficient
to support the detailed design phase.

SOFTWARE ARCHITECTURE PROCESS

The architectural design activity involves many problems that need to be solved before the
software architecture is created and the development effort can move forward. Each problem
solved during architecture helps address a particular concern and has an associated set of
inputs (e.g., requirements), constraints, and desired output. Outputs of the architectural prob-
lem-solving process produce design elements of the software architecture, and the collective
set of elements is combined to form the software architecture. Therefore, problem solving
during architecture forms part of a broader process for creating software architectures.
On a larger scale, the process for creating software architecture can be executed using the
following tasks:

« Understand and evaluate requirements
 Design the architecture

o Evaluate the architecture

« Document the architecture

o Monitor and control implementation

Principles of Software Architecture o 79

UNDERSTAND AND EVALUATE REQUIREMENTS

Software architects spend a great deal of time working with software requirements. Even
after requirements are specified, software architects find themselves going back and forth
between requirements and design to clarify them, correct them, or completely revise them.
In some cases, software architects are completely immersed in the requirements process,
playing a key role in specifying the requirements of the system. For this reason, software
architects need to understand RE, the discipline within software engineering that is con-
cerned with the systematic approach to requirements specification, mainly through the
following activities (Abran, Moore, Bourque, and Dupuis 2005):

Elicitation

o Analysis

Specification
o Validation

Together, these activities are performed to express the needs and constraints placed on the
software system, which provides the foundation for all architectural and subsequent design
and construction work. Understanding RE and how the fundamental activities relate to
designing software architectures provides architects with a different dimension for design-
ing successful systems by filling gaps or making appropriate corrections to the software
specification before committing to a particular design solution.

Elicitation

Elicitation is the requirement activity that deals with identifying stakeholders, with
uncovering what the customer needs and wants, and with determining the (often over-
looked) nonfunctional requirements (Laplante 2009). Elicitation begins by identifying all
sources of information that can be used to generate requirements. Sources of informa-
tion vary from project to project and can provide bias information to shape the system
in a way that addresses their particular needs. Sources of information also come from a
variety of backgrounds; therefore, the use of techniques that are effective in extracting
important information from a variety of sources with different expertise and background
is essential.

Requirement Sources

Software requirements originate from many different sources. In some cases, require-
ments may originate from one source with an overall strategy and consistent vision for
the system, which makes analyzing, specifying, and validating requirements more man-
ageable. In most large-scale software efforts, requirements originate from many different
sources with similar but inconsistent visions for the system. In these cases, identifying

80 « Software Engineering Design

and managing these sources becomes a nontrivial task that requires additional time and
effort. Some of the most common sources of requirements include (Abran et al. 2005):

Stakeholders
o Goals
o Domain knowledge

« Operational and organizational environment

Multiple stakeholders view the system differently and provide different input and con-
straints for the system. Having an increased number of stakeholders causes almost every
aspect of requirements elicitation to be more complex. Particularly, having a greater num-
ber of stakeholders increases the goals for the system. System goals can specify desirable
aspects of the business, process, or product and are typically referred to as quality attri-
butes. When goals are identified, they must be evaluated and (if possible) transformed into
nonfunctional (quality) requirements. Nonfunctional requirements can be used to place
constraints on the devised solutions so that they support acceptable levels of quality, as
defined by stakeholders (Abran et al. 2005). As mentioned before, an essential character-
istic of requirements (both functional and nonfunctional) is their ability to provide verifi-
able specifications. By transforming goals to nonfunctional requirements, they can be used
not only for decision making during architectural, detailed, and construction design but
also as evaluation criteria during system test, after the system is designed, constructed, and
unit tested. A list of common quality attributes with descriptions is presented in Table 3.1.

Domain knowledge provides an essential source for requirements since it provides
details of how the system should behave and help determine obscure functions that the

TABLE 3.1

Common Quality Attributes for Software Systems

Quality Description

Usability A goal that seeks to minimize the degree of complexity involved when learning or using the
system

Modifiability A goal that seeks to minimize the degree of complexity involved when changing the system
to fit current or future needs

Security A goal that seeks to maximize the system’s ability to protect and defend its information or
information system

Performance A goal that seeks to maximize the system’s capacity to accomplish useful work under time
and resource constraints

Reliability A goal that seeks to minimize the system’s failure rate

Portability A goal that seeks to minimize the degree of complexity involved when adapting the system

to other software or hardware environments

Testability A goal that seeks to minimize the degree of complexity involved when verifying and
validating the system’s required functions

Availability A goal that seeks to maximize the system’s uptime

Interoperability ~ A goal that seeks to maximize the system’s ability to collaborate with other software or
hardware systems

Principles of Software Architecture o 81

system needs to provide in special cases. This knowledge is obtained through the design
and development of similar systems or through involvement in the development effort
under different disciplines, such as hardware, test, and management. Finally, the opera-
tional and organizational environment can be used as a source for requirements common
to software product lines within the organization to maintain consistency among all prod-
ucts developed in the organization.

Elicitation Techniques

Different stakeholders view systems differently, based on their specific background and
specialization. When eliciting information from different stakeholders, it is sometimes
difficult to compile a consistent set of requirements, since needs from stakeholders may
contradict each other. Therefore, effective elicitation techniques are required to gather and
consolidate a consistent set of requirements for the system. Some of the most common
techniques for requirements elicitation include (Abran et al. 2005):

o Interviews
Facilitated meetings
o Observation

e Scenarios

Interviews and facilitated meetings are both common techniques for requirement elicita-
tion. During interviews, meetings are scheduled individually with different stakeholders
to bring forth their particular needs and gain understanding of their particular expecta-
tions for the system. On the other hand, facilitated meetings are performed with a group
of stakeholders to bring forth a collective vision and to gain more insight into the overall
expectations of the system. Typically, facilitated meetings include a moderator, the design
team, and peer reviewers (including stakeholders). By eliciting requirements in a collec-
tive fashion, details that affect different stakeholders can be identified, negotiations can be
made, and collective resolutions can be achieved. Information from both interviews and
facilitated meetings needs to be carefully documented, further elaborated, and iteratively
refined until a solid grasp of the system needs is acquired.

In many cases, stakeholders are unaware or cannot articulate desirable system features.
When this occurs, observations of similar systems can help capture desired functions of
the system behavior under particular (nonobvious) conditions. This information can be
learned to gain insight into a particular system behavior, quality, or interaction and used
to generate appropriate requirements for the system. When systems are hard to specity,
observation allows both engineers and stakeholders to effectively conceptualize and trans-
fer knowledge required to yield important system information; however, in some cases it
can be intrusive, expensive, or impossible.

Finally, a popular approach to eliciting requirements is through scenarios. Scenarios
are popular because they allow software architects to create and present to stakeholders
storylines about different behaviors that the system is expected to provide. These storylines

82 « Software Engineering Design

are born out of perceived expected behavior by the software architect and refined and vali-
dated through stakeholders’ reviews. Scenarios provide a valuable means for establishing
a framework for eliciting requirements, identifying major system functions and details of
the software, and providing initial insight in the required testing of the software. In Unified
Modeling Language (UML), scenarios can be grouped by use cases, as presented in Chapter
2. For each use case, one or more scenarios—one for the main flow of events and others for
alternate scenarios—are created to document the expected system behavior and deviations
from its main flow of events. Scenarios represent instances of use cases; therefore, there
exists a one-to-many relationship between use cases and scenarios. Since there are no uni-
versal methods accepted as standard for formatting and capturing scenarios, scenarios can
be created as paragraphs, numbered list, tabular or graphical form, or any other convenient
form that is appropriate for systems analysis and knowledge transfer. Table 3.2 contains a
sample scenario for the Search Product use case presented in Chapter 2.

Scenarios provide an effective method for eliciting the system’s functions and serve as
excellent communication avenue between stakeholders and engineers. They also provide
an effective method for identifying quality information that can lead to the creation of
nonfunctional requirements. By presenting a particular quality attribute within context,
stakeholders can get a better appreciation of how it relates and affects the system. For
example, as seen in step 3 of the search product’s main scenario, a statement of perfor-
mance is initially brought forth for evaluation and (if necessary) modification to specify
the actual expected performance of the system. In this example, the scenario helped iden-
tify an important quality of the system, and, if required, prototypes can be developed to
further evaluate the adequacy of the desired performance.

Skill Development 3.2: Eliciting Requirements Using Scenarios

Use any of the other remaining use cases presented in Figure 2.4, and create a detailed
scenario description including steps, operator actions, and system actions. After
completing the task, can you think of any quality requirements that can be derived from
the scenario? Explain. Lists the steps that would you consider taking after completion
of the scenario to ensure that requirements derived from the scenario are incorporated
into the system.

Analysis

In the analysis activity, requirements are analyzed in their raw form to address issues such
as requirements that are contradicting, incomplete, vague, or just wrong (Laplante 2009).
During analysis, software architects spend a great deal of time evaluating each require-
ment to determine its impact on the system design as well as its impact on all other identi-
fied requirements. Analysis allows architects to clear the air in regards to what needs to be

Principles of Software Architecture o 83

TABLE 3.2

Main Scenario for Search Product Use Case

UC-00-Search Product Main Scenario

Description: This scenario describes the main flow of operations for requesting a product search with the
server system.

Actors: Operator, Server System

Preconditions: The client and server system have been initialized.

Requirements: MCR-001, MCR-002

Alternate scenario: UC-10-Invalid Search, UC-11-Connection Failure, UC-12-Response Timeout

Revision History

Date Version Description Revised By
9/17/2010 1.0 Initial scenario creation John Doe
Description

Step Operator Action System Action

1 Operator enters valid product ID Validates the data. Retrieves server’s communication

and clicks on the search button. information from config file.
2 Establishes a connection with the server system and
sends product request data to the server.
3 Waits a maximum of 3 seconds for a server response.
5 Response received and product information is displayed.

Save response data in file system and ask user to search
for another product.
7 Operator clicks the cancel button
to finish searching for products.

Notes

For details of data validation and saving response data to file system see use cases UC-05 and UC-06
respectively.

Approval Signatures

Software engineer:
Stakeholder(s):
Quality auditor:

done before devising more detailed designs. Software architects may be required to carry
out important tasks, such as

+ Requirement classification
o Requirement prioritization
« Requirement negotiation

« Conceptual modeling

Requirement classification refers to the activity and process required for identifying
the nature of each requirement. Classification is important in determining the relative

84 « Software Engineering Design

TABLE 3.3

Common Criteria for Requirement Classification

Criteria Description

Functional vs. Classification that differentiates between requirements that specify the functional
nonfunctional aspects of the system versus the ones that place constraints on how the functional

aspects are achieved

Product vs. process ~ Requirement placed on the system product versus requirements placed on the process
employed to build the product

Imposed vs. derived ~ Requirements imposed by stakeholders versus requirements that are derived by the
development team

importance of each requirement and can serve as a driver for prioritization of work units
and negotiation and trade-off throughout. Common criteria for classifying requirements
are presented in Table 3.3.

Prioritization of requirements is done to help identify the most important functions of the
software system. When done properly, prioritization can help refine the projected schedule
by determining which requirements (or component carrying out these requirements) need
to be developed first or can help identify different builds of the software system, which
can be designed, developed, and deployed at different times. Prioritization also helps dur-
ing requirement negotiation when conflicts between requirements are identified during
analysis. When this occurs, negotiation takes place among stakeholders, and resolutions
to conflicts are made while taking into account requirement priorities. Finally, an integral
task of the analysis activity is conceptual modeling. Conceptual models are created to fur-
ther identify the requirements by understanding their context, discovering the bounds of
the software system, and conceptualizing how the system interacts with its environment.
In many projects, conceptual modeling is where architectural design begins, since system
decomposition is essential to developing effective conceptual models.

Specification and Validation

Specification is the activity of the requirements phase where the results of elicitation and
analysis are formally captured and documented in an appropriate format for the use and
review of all stakeholders. The format of the specification varies depending on the develop-
ing organization or project; however, it is typically produced as a document or its electronic
equivalent (Abran et al. 2005) and is referred to as the software requirements specifica-
tion (SRS). When specifying requirements, it is important that each requirement exhibit
certain characteristics desired for designing successful systems, including the following:

 Specific
e Correct
o Complete
o Consistent
o Attainable
o Verifiable

Principles of Software Architecture o 85

Once requirements are specified and the SRS is created, validation can occur.
Requirements validation is the process of ensuring (through well-known techniques) that
the SRS provides a complete and correct representation of what the stakeholders need
(Laplante 2009).

Specific

Requirements need to be specified in a clear, concise, and exclusive manner. Clear require-
ments are not open to interpretation; unclear or ambiguous requirements lead to incorrect
designs, incorrect implementations, and deceptive validation during test. Concise require-
ments are brief and to the point and are therefore easier to understand. Finally, exclusive
requirements specify one, and only one, thing, making them easier to verify. Consider the
following statements:

« The software needs to provide an easy-to-use interface; that is, it must be usable.

o Speed is a concern; therefore, the software should operate with high performance.

o Software evolution is a concern; therefore, the software shall be testable and
maintainable.

These statements provide important information to begin thinking about what the cus-
tomer wants and expects from the software system. However, in their current form, the
statements are too generic to use as a basis for design, construction, and verification of
software systems. For example, a console-based user interface may be highly visible for
the system’s developers but not its customers or intended users. Alternatively, the system’s
technical developers may interpret speed as the system responding to received mes-
sage within 5 milliseconds; anything above would be considered an infeasible solution.
Designing the system based on this interpretation may entail sacrificing other functions
that may be important to customers and users, when all the while customers and intended
users perceived speed as receiving responses within 2 seconds. When left unresolved, state-
ments like these become a major reason for the failure of the project. Examples of specific
requirements are presented in Table 3.4.

TABLE 3.4

Example of Specific and Nonspecific Requirements

Specific Requirement

No The software shall search the database.

Yes The software shall search for a product using the product ID.

No The software shall be secure.

Yes The software shall authenticate users with user ID and password.
No The software shall be secure and fast.

Yes The software shall authenticate users with user ID and password.

Server acknowledgment message shall be sent within 1/2 second from the time a request is received.

86 « Software Engineering Design

TABLE 3.5

Example of Correct and Incorrect Requirements

Correct Requirement

No The software shall require users to log on using a unique combination of user ID and password.
Yes The software shall require users to log on using a user ID and password.
The software shall require users to log on using a valid e-mail address.

Correct

Requirements need to be correct in the sense that they must accurately describe a desired
system function. Similar to ambiguous or unclear requirements, specifying incorrect system
functions leads to a chain of incorrect solutions in subsequent development phases. In some
cases, correctness of requirements is easily identified; in others, it is not. To illustrate this
problem, Laplante (2009) presents an example based on requirements for a computer secu-
rity system for which it requires users to log on using a unique combination of user ID and
password. In this case, when users attempt to log on using an already existing user name or
password, the system is required to reject the attempt, therefore giving insight into someone
else’s logon information. Incorrect requirements, when left unchecked, can lead to incor-
rect or undesired behavior, such as the vulnerability found in the computer security system
described above. Examples of correct and incorrect requirements are presented in Table 3.5.

Complete

Requirements should be complete both individually and as collective set. This means that
each requirement should be specified thoroughly so that it absolutely describes the func-
tions required to meet some need. Collectively, requirements need to provide complete
specification of the software’s required functionality in the SRS. Incomplete requirements
lead to incomplete designs, which in turn leads to incomplete construction of the software
system. Requirements that are complete help clarify questions during construction and
testing by providing the information necessary to disambiguate or prevent misinterpre-
tations of required functionality. Consider requirements for a software system that sup-
ports generation of product reports. An example of an incomplete requirement created for
this system is presented in Table 3.6. As seen, determining incomplete requirements is not
always an easy task.

As seen, the first requirement presented in Table 3.6 specifies the system’s function to
generate product reports; this is a good requirement in the sense that it specifies a function

TABLE 3.6

Example of Complete and Incomplete Requirements

Complete Requirement

No The software shall generate product reports.
Yes The software shall generate product reports consisting of product description, picture, and price.
Product reports shall be in PDF format.

Principles of Software Architecture o 87

that the system must perform. However, when additional information is available, this
requirement becomes incomplete when this information is not specified and is necessary
for providing the correct function that meets a particular stakeholder’s need. Consider the
case where products have vast amounts of information, such as color, dimensions, store
location, history, and other product information. Generating reports containing all prod-
uct information may be undesirable if the intended reporting function requires only the
product’s description, picture, and price. In this case, making requirements as complete
as possible improves the efficiency of the construction and verification phases. Consider
another case where there is a need for a client system to interoperate with two existing leg-
acy servers by sending and receiving messages back and forth using two different (already
existing) messaging specifications. A requirement that fails to specify a mandate to inter-
operate with both existing servers supporting both messaging specification may easily lead
to client systems that are unable to interoperate with one of the servers, therefore render-
ing the client unusable for the system in mind. Completeness is hard because it is not
always obvious or it is sometimes too difficult to determine when information is missing
(Laplante 2009).

Consistent

Requirements are consistent when they do not preclude the design or construction of
other requirements. When they do, individual requirements or the SRS as a whole are
referred to as inconsistent. Inconsistent requirements are hard to resolve, since they almost
always originate from different stakeholders’ needs. When this occurs, negotiation and
trade-offs need to occur to consolidate the requirements and provide a consistent specifica-
tion. Requirements can also be inconsistent due to incorrect requirements. In these cases,
requirements are made consistent easily by removing them from the SRS.

Attainable

Requirements that are unattainable serve no purpose. Attainability is a property that spans
many different characteristics of the software system, including product characteristics
such as functionality as well as project characteristics such as cost and schedule. When
specifying requirements, it is important to evaluate their attainability under both cost and
schedule constraints. Examples of attainable and unattainable requirements are presented
in Table 3.7. As seen, although it is nice to develop software without platform limitations
now or in the future, verifying this requirement is impossible since it is unattainable.

TABLE 3.7

Example of Attainable and Unattainable Requirements

Attainable Requirement

No The software shall execute on all future operating systems.
Yes The software shall execute on the Microsoft Windows 7 platform.

88 « Software Engineering Design

TABLE 3.8

Example of Verifiable and Unverifiable Requirements

Verifiable Requirement

No The system shall maximize communication speed.
Yes The system’s data rate shall be no less than 1 Mbps.

Verifiable

Perhaps the most obvious desirable characteristic of requirements in practical applications is
their verifiability. Requirements that cannot be verified cannot be claimed as met. Inability
to verify requirements points to a serious flaw early on in the development project, since
requirements are the driving force of all software development activities. In some cases, veri-
fying requirements can include a complex and costly task. Typically, requirements that are
unclear or ambiguous lead to unverifiable requirements. Before engaging in any design or
construction work, all requirements in the SRS must be evaluated and analyzed for their
verifiability. Examples of verifiable and unverifiable requirements are presented in Table 3.8.

Skill Development 3.3: Requirements Engineering

Consider the use case models created as part of Skill Development 2.2 that show the
five most important functions that your home personal computer system needs to pro-
vide. Create a list of requirements (three per characteristic) for the computer system
that meet the following characteristics: specific, correct, complete, consistent, attain-
able, and verifiable. Share the list of 18 requirements with a peer, and have him or her
explain to you what the requirements specify. Is your understanding of the require-
ments consistent with that of your peer?

I ——
DESIGNING THE ARCHITECTURE

In a typical waterfall model for software development, once the software specification
(ie., SRS) is validated, the architectural design effort can begin. In practical applications,
following a strict waterfall model is rarely productive, since new knowledge acquired dur-
ing the development process forces iterative approaches between requirements and archi-
tectural design. As discussed in previous sections, architectural designs can begin as early
as the analysis activity of the requirements phase, where conceptual models of the system
are devised. In either case, be it during requirements or design, designing architectures
require the selection of particular perspectives for design that are appropriate for describ-
ing the system to be developed. To this end, several models have been created that suggest
popular views that are useful in the design of most systems. These models propose address-
ing the system’s architectural design from perspectives that are common to most software

Principles of Software Architecture o 89

s N
Logical View 1 Development View

-7 ~
7 ~N
E User View —
—_—
~ e

-__

- -

Process View AI: Physical View

FIGURE 3.2
4+1 view model for software architecture.

systems and provide designers with a structured approach for modeling the architecture
of software-intensive systems. Two popular models are Kruchten’s (1995) 4 + 1 view model
and Siemens’ 4 views model (Hofmeister, Nord, and Soni 2000).

The 4 + 1 View Model

In 1995, Philippe Kruchten published an influential paper that proposed modeling software
architectures using different perspectives; each perspective provides avenues for address-
ing problems from different angles, and, when combined, the set of models created from
each perspective helps form the software architecture. Kruchten’s model concentrated
on four main views: logical, process, development, and physical. Modeling systems from
each view requires addressing design problems of different natures, such as problems that
deal with the logical system structure or problems that deal with dynamic, concurrency
system issues. To ensure consistency among all four views, the user’s perpective is captured
through several key use cases. Today, Kructhen’s 4+1 view model, presented in Figure 3.2,
is used as a basis for the rational unified process (Bass et al. 2003).

The 4+1 model provides an adequate framework for modeling the architecture of most
software systems. However, adoption of the model varies from organization to organiza-
tion, and from project to project. For example, when concurrency is not an issue, modeling
the system from a process view makes little to no sense. Similarly, for systems that reside
in one node and in which the physical properties of their deployment are not of concern,
modeling them using the physical view provides little to no benefit. Typically, all software
systems benefit from the logical view; therefore, designs elements from this view should be
incorporated into the software architecture.

User View

The user view of a software system represents the behavior that the system exhibits to its
users. Specifically, the user view depicts how users interact with the system and how the
specific sequences of inputs and outputs occur during software operation. Users represent
anyone who interacts with the software system, such as operators, software testers, analysts,
and quality. As part of this view, UML use case models can be used to drive scenarios that
provide storylines and to promote consistency among all other models. The scenarios cre-
ated can help capture important system functions and discover new knowledge that drives

90 « Software Engineering Design

architectural design decisions. The user view also provides an effective source of informa-
tion for verifying and validating system functions, after the system is built. In addition to
UML use cases, UML activity diagrams can be used to flush out important user interactions
that are important during architectural design (Pressman 2010).

Process View

The process view of a software system represents the dynamic or behavioral aspects of the
software system where the main units of analysis are processes and threads. Using this
view, software systems are decomposed into processes and threads to address design issues
that deal with the dynamic flow of control between architectural elements, such as concur-
rency, distribution, system’s integrity, fault tolerance, and other nonfunctional require-
ments (Kruchten 1995). Since analysis using the process view is behavioral in nature,
behavioral UML diagrams can be used efficiently to address issues pertinent to the process
views. Particularly, UML sequence and communication diagrams, together with the active
object notation (presented in Chapter 2), can be used to evaluate, analyze, and characterize
the system’s capabilities from the process perspective. This view is necessary for projects
that need to meet performance and availability requirements by modeling aspects of con-
currency, distribution, and fault tolerance.

Physical View

The physical view of a software system represents the deployment aspects of software systems
where the main elements of analysis are nodes, connections between nodes, and maps of
software artifacts to nodes. The physical view focuses on modeling of elements that directly
affect quality requirements, such as availability, performance, and scalability (Kruchten
1995). For example, consider a case where system quality is measured in part by the avail-
ability of the system. That is, systems are perceived as low quality when they fail to provide a
specified behavior. In this case, availability can be addressed via redundancy of processors or
complete nodes, which both can be depicted using UML deployment diagrams. The identifi-
cation of redundant nodes using the physical view requires downstream design and develop-
ment to think about techniques for identifying faults and swapping between primary and
redundant nodes when necessary to support the system’s availability. Similarly, aspects that
affect system performance must be addressed using the physical view. When performance
is measured with throughput, the physical view of systems must identify the elements that
directly impact this metric, such as required bandwidth between a client and server.

In some applications, modeling system deployment may require one or more UML
deployment diagrams. Different deployment diagrams may be necessary to model dif-
ferent deployment configurations of the same software system, for example, deployments
of software systems in testing environments or in different locations where deployment
configurations may differ. In each case, the physical view provides insight into necessary
elements that directly affect the perceived quality of the software system. An example of
the physical view of software systems is presented as a deployment diagram in Chapter 2.

Principles of Software Architecture o 91

Development View

The development view of software systems represents the software development configu-
ration aspects of the software system, where the main units of decomposition are actual
physical files and directories. The development view is used to analyze the system from the
perspective of how logical components map to physical files and directories. These analyses
can be employed to address concerns that deal with ease of development, reusability, con-
straints imposed by tool sets, allocation of work to teams, cost evaluation and planning,
monitoring the project’s progress, portability, and security (Kruchten 1995). In UML,
architectural elements resulting from analyzing systems from the development’s perspec-
tive can be documented using package diagrams in combination with components and
class diagrams as well as notes, tagged values, and constraints to enhance the meaning
of the diagrams. This way, components can be mapped to the hierarchy of files in the file
system, and their interrelationships and process for building one or more versions of the
software system can be carefully specified.

Logical View

The logical view of a software system is used to decompose systems into logical compo-
nents that represent the structural integrity that supports functional and nonfunctional
requirements. Examples of architectural design elements using the logical view are pre-
sented in Figure 2.1. Using this view, the static structure of the system can be modeled
using high-level diagrams to decompose, abstract, and encapsulate the services that the
system needs to provide to its users. By using these diagrams, the major components, their
interfaces, and their associations with all other components are identified. Architectural
logical designs exist at a higher level of abstraction than detailed designs and can be mod-
eled using box and line diagrams, UML component diagrams, package diagrams, or class
diagrams. Architectural logical designs provide the building blocks for detailed design;
therefore, they are indispensable in the architectural design of software systems.

Skill Development 3.4: Designing with Architectural Views

As seen, views are used to present the system from particular perspectives so that
design elements particular to that perspective can serve as tool for evaluating a desired
property of the system. Using the logical view, the system’s reusability can be evalu-
ated; through the physical view, the system’s availability can be examined; and the pro-
cess view can be used to evaluate the system’s performance. Consider the architectural
design of two systems: a banking information system and a safety-critical medical sys-
tem. For each system, come up with appropriate views—feel free to come up with ones
other than those presented in this chapter—and how they could help address particular
concerns in each. Discuss and justify your results with peers.

92 « Software Engineering Design

Components and Connectors

In Chapter 2, components were presented to depict units of the logical architecture.
Conceptually, a component is an entity that encapsulates some functionality and provides
services through well-known interfaces. By definition, then, components can be replace-
able by other components that provide equal interfaces. Components are building blocks
that exemplify the general design principles of abstraction, encapsulation, and modular-
ization presented in Chapter 1. Prior to UML 2.0, the concept of components was different
in that it denoted specifically a physically deployable unit, which limited the use of the
component entity in architectural diagrams. However, this is not the case in the current
version of the UML, so the component concept can be used to model logical, modular
parts of a system.

Components do not exist in isolation; they are part of a logical architecture that depicts
interactions with other components. In some applications, interactions between compo-
nents are far more complicated than what UML’ typical relationships (e.g., association,
dependency) can reflect. In these systems, the proper identification and description of
such interactions can have a profound impact on quality requirements. For this reason, the
concept of a connector is devised. A connector is an architectural entity that abstracts the
complexities of the interactions between components. Therefore, connectors can represent
interaction between components as simple procedure calls, shared data access, or more
advanced mechanisms such as remote procedure calls (Taylor, Medvidovic, and Dashofy
2009). Together, components and connectors can be used as fundamental building blocks
for large-scale software architectures.

Designing Logical Architectural Elements Using Data Flows

There are many approaches for designing logical architectures. These approaches are typi-
cally associated with the overall design strategy selected for a given product. For example,
when using the structured design strategy, a disciplined approach is employed to decom-
pose systems into independent, single-purpose modules, using an iterative top-down
approach. The main focus of structured design is on the functions that systems need to
provide, the decomposition of these functions, and the creation of modules that incorpo-
rate these functions. Structured design approaches are typically employed after structured
analysis, where the main purpose is to derive a structure chart (i.e., logical software archi-
tecture) from data flow diagrams (DFDs). A popular approach for creating structure charts
includes employing transform analysis (Pressman 2010). When using transform analysis,
the flow of data through the system is analyzed using DFDs to derive data transformations
(i.e., functions) required to generate the system’s outputs. Initially, a level 0 DFD is used to
represent the initial context of the system. As the DFD is refined, further levels of the DFD
are produced to expose further transformations of different scope. This refinement process
is iteratively done until all transformations are identified and grouped into components to
form the logical architecture of the system.

Principles of Software Architecture o 93

Designing Logical Architectural Elements Using Styles and Patterns

In the 1990s, the software engineering community began paying attention to recurring
architectural solutions in terms of specific elements and their relationships. These solu-
tions were known as architectural styles and patterns; these terms are used interchangeably
throughout (see Chapter 4). Architectural patterns provide the means for software architects
to reuse architectural design solutions in different projects. Buschmann, Meunier, Rohnert,
Sommerlad, and Stal (1996) introduced a catalog of architectural patterns that conveyed
fundamental structural organization for software systems, including predefined compo-
nents, their responsibility, and rules for specifying the relationship between them. Together,
these architectural patterns serve as a blueprint for designing elements of the logical archi-
tecture of particular groups of systems. The application of architectural patterns to the
development of software systems occurs at the highest level of abstraction in the design pro-
cess. Since they are used to create architectural elements, they do not describe the detailed
design of the system and therefore cannot be directly translated into code. Identifying pat-
terns at the architectural level (and designing around them) improves the quality of the final
system by reducing the design of logical architectural elements to a collection of interacting
components whose expected behavior is well understood. Examples of architectural design
elements using architectural patterns are presented in Chapter 4.

Designing the Process Architecture

Whereas logical elements of the software architecture model static, structural aspects of the
software system, process elements model how elements interact to evaluate certain aspects
of the software’s quality, such as concurrency. In software systems, concurrency is achieved
mainly though multithreading or multiprocessing the system. Multithreading or multi-
processing applications introduce concurrency issues that require careful analysis to ensure
that architectural designs account for effective synchronization techniques. Concurrent
designs that work on the same data are tougher to design and manage since they can lead to
software errors that are hard to find (e.g., race conditions) and increase the complexity of the
software development effort. To fully understand and model issues such as performance, one
must have some understanding of the universal mechanisms in place when software applica-
tions execute. Although code has no place during the software architecture activity, every soft-
ware architect must understand how the modeling of process elements affects the downstream
work performed during construction. For this reason, an unconventional learning approach
involving code in the study of software architecture to introduce important architectural
concepts and present the process view of software architecture is employed. This under-
standing is essential when modeling parts of the software that will affect its process quality.

Processes

Processes and threads are fundamental units of execution in today’s modern software
systems. They are created, managed, and terminated by the operating system. A process is

94 « Software Engineering Design

a unit of software execution, that is, a program in execution. When you execute software,
for example, an executable (.exe) file in Windows, a process is created by the Windows
operating system. This process has some unique characteristics that distinguish from other
processes. Whenever a process is created, the operating system creates a process control
block (PCB) with information required by the operating systems to schedule and manage
the process. This information can include the program counter, process state, registers, and
stack. In single-processor systems, the operating system uses this information to switch
between different processes while maintaining the integrity of all processes. This switch-
ing, known as a context switch, requires saving the information from a PCB of the active
process and loading a PCB of the new process into memory to continue execution. A con-
text switch is pure overhead, since the processor’s time is spent doing management tasks
rather than useful work for the software system; however, it enables concurrency. These
operations happen so quickly that programs executing are perceived as executing concur-
rently. In single-processor systems, this pseudo-concurrency allows designers to model the
system with concurrency in mind. In multiprocessor systems, processes are scheduled for
execution in more than one processor, so actual concurrency is achieved. In either case,
concurrency is used to increase the performance of the software system. Software systems,
especially distributed systems, can be designed as systems of multiple processes executing
on the same or different networked computing platforms. Multiple processes are used to
leverage off the operating system to achieve concurrency of operations and increase the
system’s performance. That is, modern operating systems provide scheduling mechanisms
that allow multiple processes to execute concurrently to maximize CPU usage.

Threads

Threads, sometimes called lightweight processes, are similar to processes in that they allow
code to be compartmentalized in a way that they are schedulable as independent flows
of control by the operating systems. In most modern operating systems, threads execute
within a single process in a one-to-many fashion—that is, one process can contain one or
more threads. Threads, therefore, can be thought of as small, schedulable, and sequential
program units executing (typically) within a process. Processes that execute with only one
thread can be described as sequential, or serial, which means that the commands in the
programs are executed in turn so that a specific command is executed only after the previ-
ous command is finished. In single-threaded applications, if one statement halts waiting
for some computer resource (e.g., input-output resource), the execution of the program
blocks until the resource becomes available and execution can continue. For example,
consider the code in Listing 3.1.

In the Windows operating system, when the code in Listing 3.1 is compiled and built,
a file with an .exe extension is created. When this file is executed, a process is created
with one thread, whose body of execution is defined by the main function. In this case,
the operations in the main thread will execute sequentially until the return operation is
encountered, at which point the operating system destroys both thread and process and the
program is finished. Since there is only one independent flow of execution (i.e., one thread),

Principles of Software Architecture o 95

Listing 3.1: C++ Code for Single-Threaded Application
#include <iostream>
using namespace std;
int main(int argc, char* argv([]) {

// A number to be guessed.
const int THE NUMBER = 10;

// User input.
int number;

// Display message to user.
cout<<”Guess a number from 0-100:\n”;

// Block waiting for user input.
cin>>number;

// Display results to user.
cout<<“Your guess is “<<number<<“, actual number is ”
<<THE NUMBER<<endl;

// End of program.
return 0O;

the program will halt at the cin>>number line until a number followed by the return
key is entered as input. This is true because the cin>> line results in a blocking call to the
operating system; that is, the main thread will block execution until input is provided.
While blocking, the program wastes execution time in the sense that it is not utilizing the
processor for achieving other necessary application-dependent tasks. When the thread is
blocked, the process can accomplish nothing else, since there is only one flow of execution.
When multiple threads execute, multiple independent flows of control exit, so that if one is
in a blocking state others can continue executing. To achieve this, the operating system needs
to execute context switches to manage the program execution among the different threads
in pseudo-concurrent fashion at the expense of causing similar but reduced overhead as the
ones described with processes. By allowing the executing software to perform other activi-
ties while waiting for some resource, its performance may be enhanced. Consider Listing 3.2
for a number-guessing game where the executing software counts until user input is received
and then determines if the input (i.e., guessed number) matches the counted number.
When this program executes, a single process is created, and its main thread is executed.
As the main thread executes sequentially, a counter object of ThreadCounter type
is created. The ThreadCounter type abstracts the creation of another thread that is
started by calling the object’s count () method, which results in an independent flow of

96 « Software Engineering Design

Listing 3.2: C++ Code for Concurrent Number-Guessing Game

#include <iostream>
#include “ThreadCounter.h”

using namespace std;
int main(int argc, char* argv|[]) {

// User input.
int number;

// Create the thread counter object.
ThreadCounter counter;

// Start the counter.
counter.count () ;

// Display message to user.
cout<<”Guess a number from 0-100:\n”;

// Block waiting for user input.
cin>>number;

// Stop the counter.
counter.stop () ;

// Display results to user.
cout<<“Your guess is ”“<<number<<“, actual number is ”
<<counter.current () <<endl;

// End of program.
return O0;

execution created tasked with counting. This allows the main thread to continue execut-
ing sequentially while the counter thread counts. The main thread will block waiting for
user input (via cin) while the counter thread continues to count, therefore introducing
concurrency into the software. Once user input is received, the main thread terminates
the counter thread and displays the results. This process is presented in Figure 3.3 using a
sequence diagram with active objects relying on synchronous and asynchronous messages.
Notice that once the counter threads calls its start () method, it counts and does nothing
else until it is finished counting, which is triggered by the stop () method. This is modeled
using the synchronous message to self.

The code presented in Listing 3.2 serves as a good example for introducing the concept
of concurrency in a simplified manner. Concurrency issues are always amplified when
data need to be shared among concurrent flows of executions. In these cases, correct

Principles of Software Architecture o 97

sd Concurrent Number Guessing Design)

main : MainThread counter : ThreadCounter
1: count()
2 : start()

counter = 1, wait 1 sec.
counter = 2, wait 1 sec.
counter = 3, wait 1 sec.
counter = 4, wait 1 sec.

3 :user input counter = 5, wait 1 sec.

counter = 6, wait 1 sec.
counter = 7, wait 1 sec.

4 : stop()

FIGURE 3.3
UML design for concurrent guessing game.

synchronization mechanisms need to be in place to ensure the proper execution of the soft-
ware system. Consider the case of a communication system receiving messages concurrently
through two different interfaces. Upon receiving messages, the system updates its message
count statistic and continues on to process each message. Listing 3.3 presents the code for
the MessageStatistics type used to abstract services for managing message statistics.

As seen, the MessageStatistics type has an interface method to increment the
number of received messages throughout the system. Since the system requires concur-
rency, each independent flow of message processing is carried out using two different
threads; therefore, it is assumed that a base Thread class exists that abstracts the creation
and management of threads, providing a simplified interface that contains start() and
stop() methods to execute and terminate the thread. In addition, the Thread base class
provides an abstract method run() used by derived classes to provide the implementation
of the thread’s main (entry) function and an isActive() method to determine if the
thread should continue executing or not. With such framework in place, the code for the
SerialReceiverThread class, used to receive messages through the serial communi-
cation interface, is presented in Listing 3.4.

As seen, the class is configured with a reference to an object of type Message-
Statistics,whichisused to update the message count once a serial message is received.
Similarly, the EthernetReceiverThread class is designed to be a thread that waits
for incoming messages via the Ethernet interface, as presented in Listing 3.5.

As seen, this class is also initialized using a reference to a MessageStatistics object,
so that both serial and Ethernet threads rely on the same data structure to update message
statistics. Consider what happens when objects of type SerialReceiverThread and

98 « Software Engineering Design

Listing 3.3: C++ Code for Specification of the MessageStatistics Type
class MessageStatistics {
public:
// Use constructor to set messageCount = 0;

// Method to increment number of received messages.
void increment () {

// A message has been received, increment the current count.
_messageCount++;

}

// Method to return the current number of messages received.
int count () {

// Return the number of messages received.
return _messageCount;

}

//

private:

// Variable used to keep track of the number of messages received.
int messageCount;
//

bi

EthernetReceiverThread are both initialized using the same object instance of the
MessageStatistics class, as illustrated in Listing 3.6. Once instantiated, both threads
start to receive messages via their respective interfaces. The main thread simply waits until
all expected messages are received.

The main problem with Listing 3.6 can be traced to the critical section of code inside the
increment () method of the MessageStatistics class. A critical section is a code segment
that makes changes to common variables, such as the messageCount. This makes software
more challenging to design and evaluate since the integrity of the data inside the critical section
needs to be preserved. Since there are no safeguards to ensure the proper synchronization of
multiple threads when updating the messageCount variable, both threads may attempt
to update the message count at the same time, therefore resulting in unpredictable results that
may hinder the system’s integrity. To illustrate this point, consider the assembly (lower-level)
code generated to increment the messageCount variable, as seen in Listing 3.7.

Using a disassembly tool, it can be seen that the messageCount++ written in C++
requires three assembly lines of code: one to move the current value of messageCount

Principles of Software Architecture o 99

Listing 3.4: C++ Code for the Serial Message Processor Thread Class
class SerialReceiverThread : public Thread ({

public:
// Constructor.
SerialReceiverThread (MessageStatistics& stats) {

// Save the statistics object for later use.
_stats = &stats;

}

protected:

// Thread’s main function.
virtual void run()

while (isActive()) {
// Wait for a message via the serial interface.
// Once a message is received, increment count in the stats
// object.
_stats->increment () ;

// Process received serial message.

} // end while loop.
} // end run() method.

private:

// The pointer to the stats object.
MessageStatistics* stats;

Vi

to the accumulator eax register; one to increment the value; and the last one to move the
results back from the eax register to the address referenced by the messageCount vari-
able in C++. When executed concurrently, both threads of execution will execute the opera-
tions. However the order in which they are executed cannot be guaranteed; that is, the order
can be interleaved in some arbitrary fashion. Consider the interleaved order of execution
among the two threads—each receiving messages at the same time—presented in Table 3.9.

After execution, the value of messageCount is incorrectly set to 1, when it should
be 2, since two messages were received. This phenomenon is known as a race condition
and occurs when two processes or threads operate concurrently on the same data and the
outcome of the execution depends on the particular order in which the access takes place.
This example shows the importance of designing and evaluating architectural elements
using the process view, which provides the appropriate perspective for detecting such

100 « Software Engineering Design

Listing 3.5: C++ Code for the Serial Message Processor Thread Class
class EthernetReceiverThread : public Thread ({
public:

// Constructor.
EthernetReceiverThread (MessageStatistics& stats) {

// Save the statistics object for later use.
_stats = &stats;

}

protected:

// Thread’s main function.
virtual void run()

while(isActive()) {
// Block waiting for a message via the serial interface.
// Once a message is received, increment count in the stats
// object.
_stats->increment () ;

// Process received Ethernet message.

} // end while loop.
} // end run() method.

private:

// The pointer to the stats object.
MessageStatistics* stats;

Vi

cases. When these cases are detected, guards in the design can be introduced to protect the
integrity of such critical sections of code. In UML, such design evaluations and decisions
can be captured using the synchronization properties such as Sequential, Guarded, and
Concurrent presented in Chapter 2. These properties place constraints in process models
to support concurrency by controlling the way multiple flows of execution access critical
sections of code. The Sequential synchronization property specifies that no concurrency
management mechanism is associated with an operation, such as in the case of the existing
increment method in Listing 3.3. With sequential access, concurrency conflicts may occur,
so clients that rely on the operation need to coordinate so that only one invocation occurs
at any given point. The Guarded property specifies that the operation can be invoked from

Principles of Software Architecture o 101

Listing 3.6: C++ Code for Concurrent Application

// Code to demonstrate the critical section concept in concurrent

programs.

#include
#include
#include
#include

<lostream>
“SerialReceiverThread.h”
“EthernetReceiverThread.h”
“MessageStatistics.h”

using namespace std;

int main(int argc, char* argv([]) {

// Number of messages received.
int messagesReceived = 0;

// Number of messages expected.
const int MESSAGES EXPECTED = 10;

// Create the object to keep track of message statistics.
MessageStatistics msgStats;

// Create the thread to receive messages via serial interface.
SerialReceiverThread serial (msgStats) ;

// Create the thread to receive messages via Ethernet interface.
EthernetReceiverThread ethernet (msgStats) ;

// Start receiving messages through both interfaces.
serial.start();
ethernet.start () ;

while (msgStats.count () < MESSAGES EXPECTED) {

cout<<“Messages received: "<<msgStats.count ()<<endl;

// if flag set, exit loop.

// Blocking call. Wait one second before checking again.
sleep (1000) ;

}

// Stop receiving through serial interface.
serial.stop() ;

// Stop receiving through Ethernet interface.
ethernet.stop () ;

// End of program.
return 0;

102 « Software Engineering Design

Listing 3.7: Sample Assembly Program to Increment _ messageCount

; Move contents of messageCount to eax register.
mov eax, dword ptr [messageCount (417140h)]

; Add one to the number in eax.
add eax, 1

; Copy the result from eax to messageCount.

mov dword ptr [messageCount (417140h)], eax

TABLE 3.9

Interleaved Execution in Concurrent Designs

Time Source Operation _messageCount
T, Thread 1 mov eax, dword ptr [_messageCount (417140h)] 0
T, Thread1 addeax, 1 0
T, Thread2 mov eax, dword ptr [_messageCount (417140h)] 0
T, Thread 2 add eax, 1 0
T, Thread 1 mov dword ptr [_messageCount (417140h)], eax 1
T, Thread2 mov dword ptr [_messageCount (417140h)], eax 1

multiple independent flows simultaneously, but only one flow of execution is allowed to
commence; other independent flows are blocked until the execution of a currently execut-
ing operation, under the currently executing thread, is complete. When using the Guarded
synchronization property, it is the responsibility of the designer to ensure that concurrency
issues, such as starvation and deadlocks, do not occur. Finally, the Concurrent synchroniza-
tion property specifies that multiple invocations may occur simultaneously and all of them
may proceed concurrently. Concurrency is achieved in languages with built-in support for
concurrency, such as Java, with the use of the synchronized property. To resolve the
issue of concurrency caused by the increment () method, the Guarded synchronization
concept can be modeled and manifested in code by ensuring that the critical section of code
that increments the messageCount is mutually exclusive to both threads of execution.
This can be achieved by employing a mutually exclusive (Mutex) object, typically provided
by the operating system. The code from Listing 3.3 is modified using pseudo-code to sup-
port concurrency, as seen in Listing 3.8.

The concepts presented in Listings 3.3, 3.4, 3.5, 3.6, and 3.8 can all be summarized using
two simple UML designs, as seen in Figure 3.4.

The concepts presented so far are essential for understanding how the process view of
software architecture is used to evaluate and design for performance in software systems.
These concepts play a key role in designing systems that meet performance and availability
requirements by modeling aspects of concurrency, distribution, and fault tolerance.

Principles of Software Architecture o 103

Listing 3.8: C++ Code for Guarded Implementation of the increment() method

// Method to increment number of received messages.
void increment () {

// Access Mutex. If unavailable, block until it becomes available.

// If you are here, it means that you have access to the Mutex. Once
// in possession, no other thread of execution can gain access to the
// Mutex, therefore this critical section of code is protected.

// Increment the message count.
_messageCount++;

// Release the Mutex. The next thread waiting for the Mutex will gain
// access to it, therefore gaining protected access to the critical
// section of code.

EVALUATING THE ARCHITECTURE

Architecture evaluation is the process of determining how well suited architecture is for
developing a system that meets both its intended functional and quality requirements.
From a functional perspective, architectures need to introduce the appropriate abstrac-
tions for the services that the system is required to provide. The functional properties of the
architecture can be evaluated using the identified logical components, assigning require-
ments to them and modeling the interactions required among components to support all
functional requirements. On the other hand, evaluating the architecture’s ability to sup-
port expected system quality requires more effort to ensure that the proposed architecture
provides a good approach for a system’s development. Evaluating architectures for their
provided quality requires the investigation and breakdown of quality goals to attributes
that are adequate for evaluation. The architectural evaluation determines the appropriate-
ness for supporting these quality features and can be used for determining their relative
importance and how they impact other quality attributes supported by the architecture.
This information, in turn, is used to evaluate different proposed architectures and to pri-
oritize quality goals so that design trade-off among stakeholders can occur. Ultimately, the
evaluation process is performed until a solution that is sufficiently complete and accept-
able for all stakeholders is found. Although there is no universally accepted methodol-
ogy for analyzing and evaluating software architectures, the architecture trade-oft analysis
method (ATAM) approach (Bass et al. 2003) provides a rigorous and proven methodology
for such endeavors.

104 « Software Engineering Design

Structural View

Thread

+start(): void
+stop(): void
+run(): void
#isActive() : bool

A A

EthernetReceiverThread SerialReceiverThread
#run(): void #run(): void
_stats E E _stats
v v
MessageStatistics

—messageCount: int

+increment(): void {Guarded}
+count(): int

Behavioral View

<<thread>>
serial : SerialReceiverThread

increment() {Guarded}

msqStats : MessageStatistics

increment() ‘ {Guarded}

<<thread>>
ethernet : EthernetReceiverThread

FIGURE 3.4
UML concurrent design for communication elements.

CHAPTER SUMMARY

The software architecture activity corresponds to a macrodesign approach for transform-
ing software requirements into design elements that support quality and functions of
software systems. Formally, software architecture is defined as the foundational software
design activity that evaluates and translates software requirements (both functional and
nonfunctional) into a collection of design elements that specify structural and behavioral
aspects of the major components of the system, together with their provided quality and

Principles of Software Architecture o 105

interrelationships required to support the detailed design and construction of software
systems and the product resulting from such activity. To accomplish all of this, software
architects must be familiar with activities from the requirements engineering discipline so
that inputs to the software architecture activity can be well understood and formulated in
such a way that supports the design and development of the software system. To address
the concerns from multiple stakeholders, architects model architectural elements using
different views, which may be prescribed by popular view models, such as the 4+1 view
model. All systems use the logical view to identify and structure the major components,
assign responsibility to them, and model their interactions. In some cases, architectural
styles and patterns can be used to provide architectural (logical) solutions to common
architectural problems. All architectural elements designed from all particular views form
the software architecture, which can be used to establish the initial framework for the
quality of the system. Since architecture alone cannot guarantee the quality of the system,
processes need to be in place to ensure that architectural decisions made to address quality
concerns are maintained throughout the development life cycle. The software architecture
lays the foundation for all subsequent work in the development process and serves as an
important communication, reasoning, and analysis tool for the development and mainte-
nance of software systems. Once complete, the detailed design activity can begin.

REVIEW QUESTIONS

1. What is software architecture, and how does it differ from other forms of design?
2. How can software architecture affect both product development and product man-
agement activities?
3. List and explain the common tasks performed during software architecture.
4. What are the common input, constraints, and outputs found during architectural
problem solving?
5. Why is it important for software architects to be familiar with the discipline of
requirements engineering?
6. Whatare the four main activities performed during requirements engineering? Explain.
7. List and explain four common quality attributes for software systems.
8. What are the essential characteristics that requirements must exhibit when specity-
ing requirements? Provide an example of each.
9. What are architectural views, and why are they important in software architecture?
10. Explain Kruchten’s (1995) 4+1 view model.
11. What are architectural styles and patterns, and why are they important in software
architecture?
12. What are the following concepts, and how do they relate to the process architecture
of software systems?
a. Process versus threads
b. Blocking calls

106 « Software Engineering Design

c. Race condition
d. Critical section

13. In UML, what synchronization properties are available to constraints process models
that support concurrency? Explain each.

CHAPTER EXERCISES

1. Select a problem of interest and write a statement of work that describes the over-
view of the problem. Use this statement of work to generate a list of requirements for
the system and to explain how each requirement meets the desired characteristics of
requirements. Once the list of requirements is defined, complete the following steps:
a. Determine at least two views appropriate for this problem.

b. Using a UML modeling tool, create design elements appropriate for each view.

c. For each design element, write a paragraph describing how the design element
help address particular concerns for the system.

d. Assume that portability and performance have been identified as new quality attri-
butes for the system. Integrate these into the design. Note that you will have to make
assumptions to complete this step. Make sure that you document all assumptions.

e. Evaluate how all assumptions, identified requirements, and quality attributes
are supported by the resulting architectural elements. Create a report that docu-
ments the result of the evaluation process.

REFERENCES

Abran, Alain, James W. Moore, Pierre Bourque, and Robert Dupuis. Guide to the Software Engineering Body of
Knowledge—2004 Version—SWEBOK. Los Alamitos, CA: IEEE Computer Society Press, 2005.

Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in Practice, 2d ed. Boston: Addison-Wesley,
2003.

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. Pattern-Oriented
Software Architecture: A System of Patterns. West Sussex, UK: Wiley, 1996.

Clements, Paul, Rick Kazman, and Mark Klein. Evaluating Software Architectures. Santa Clara, CA: Addison
Wesley, 2001.

Gorton, Ian. Essential Software Architecture. Heidelberg, Germany: Springer, 2011.

Hofmeister, C., R. Nord, and D. Soni. Applied Software Architecture. Boston: Addison-Wesley, 2000.

Kruchten, Philippe. “Architectural Blueprints—The “4+1” View Model of Software Architecture” IEEE Software 12,
no. 6 (1995): 42-50.

Laplante, Phillip A. Requirements Engineering for Software and Systems. Boca Raton, FL: Auerbach Publications,
2009.

Pressman, Roger S. Software Engineering: A Practitioner’s Approach, 7th ed. Chicago: McGraw-Hill, 2010.

Taylor, Richard N., Nenad Medvidovic, and Eric M. Dashofy. Software Architecture: Foundations, Theory, and
Practice. Hoboken, NJ: Wiley, 2009.

4

Patterns and Styles in
Software Architecture

CHAPTER OBJECTIVES

o Understand the concept of architectural styles and patterns

 Understand the importance and role of architectural patterns in archi-
tectural designs

o Identify, understand, and apply the major types of architectural patterns

 Understand the quality benefits associated with using different archi-
tectural patterns

CONCEPTUAL OVERVIEW

During software architecture, designers spend a great deal of time devising
architectural solutions that provide the necessary components and interfaces
to achieve system requirements. At the architectural level, common pat-
terns have emerged that describe elements of the system together with their
interrelationships and quality characteristics. These patterns allow designers
to quickly and systematically identify structural characteristics of systems
(or subsystems) and provide the means for examining interactions and the
proposed quality of the system. During the past decade, many styles and pat-
terns for software architecture have been researched and published. Many of
these patterns have been identified in pattern catalogue books; some of these
are common design patterns in enterprise-level systems, while others address
specific needs such as distributed systems. This chapter explores several
well-established architectural patterns and examines the problems they are
designed to address, together with their exhibited quality attributes. Identify-
ing and designing using architectural patterns can improve the efficiency of
the development process and the quality of the final system.

107

108 « Software Engineering Design

I ——
ARCHITECTURAL STYLES AND PATTERNS

As seen in Chapter 3, software systems need to be carefully architected and evaluated from
various perspectives to properly address multiple concerns that affect the quality of the
end product. Modeling systems from each view requires addressing design problems of
different natures, such as problems that deal with the logical system structure or problems
that deal with dynamic, concurrency system issues. In all cases, it is essential to identify
the necessary components and interfaces (at the right granularity) and the responsibility
of each component and to model behavioral interactions among them before moving on to
detailed design. Of particular interest is the logical architecture of software systems, since
it includes system decomposition into logical components that are refined throughout the
design phase and ultimately implemented during construction. From this perspective, it is
important to use past experience with logical decompositions together with their inter-
faces when designing today’s software systems. To this end, the concepts of architectural
styles and architectural patterns have emerged as mainstream approach for achieving
(mostly logical design) reuse at the architectural level. These concepts are fundamental to
the efficient creation of software architectures by providing an overall strategy for design-
ing families of software systems. They provide generic, reusable architectural solutions,
documented in a way that can be easily understood and applied to new problems requiring
similar architectural features. Decisions based on architectural styles and patterns benefit
from years of documented experience that highlights the solution approach to given prob-
lems, the benefits of these approaches, and the consequences of designing the system with
a particular style.

Today, the terms architectural styles and architectural patterns are used loosely to refer
to similar concept. The fuzzy line that may exist among them can be a source of confu-
sion, which shifts the focus away from the true importance and role of both concepts in
designing today’s complex software. Since numerous architectural styles and patterns are
documented today, a brief history of the concepts is required to consolidate the terms and
provide a consistent approach for applying them throughout the rest of the chapter.

History of Architectural Styles and Patterns

In 1977, Christopher Alexander presented a language intended to help individuals, or
teams of individuals, design quality structures of different sizes, shapes, and complexities
(Ishikawa, Silverstein, Jacobson, Fiksdahl-King, and Angel 1977, p. x). This language—born
out of experience—had at its core entities called patterns. According to Alexander et al.:

Each pattern describes a problem which occurs over and over again in our environment, and
then describes the core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way twice.

Alexander’s work resulted in a catalogue of 253 patterns, each describing in detail the
essential information required for documenting the patterns. Each pattern’s description

Patterns and Styles in Software Architecture « 109

included a picture of the pattern, the context of the pattern, the problem that it attempts
to solve, evidence for its validity, solution for the problem, and related patterns among
others (Alexander et al. 1977). Together, these patterns formed a language for use dur-
ing the design and construction process. Although Alexander’s work on patterns appears
relevant and appropriate for the software engineering profession, it actually referred to
patterns found in the design of buildings and towns.

Alexander’s work significantly impacted the field of software engineering. Even though
his patterns dealt with design quality in buildings and towns, it inspired computer scien-
tists to answer the same types of questions about quality in object-oriented designs. In the
early 1990s, the software engineering community began researching and finding recur-
ring high-level problem solutions in terms of specific elements and their relationships;
these were originally referred to as architectural styles (Clements, Kazman, and Klein
2001). Architectural styles provided the means for software architects to reuse architectural
design solutions in different projects. In 1995, Gamma, Helm, Johnson, and Vlissides—bet-
ter known as the Gang of Four (or GoF)—embarked on a similar quest to find and docu-
ment detailed object-oriented solutions successfully applied more than once in different
systems. Their influential work focused on a finer-grained set of detailed design patterns
and resulted in the creation of a catalogue of 23 patterns, commonly known as design pat-
terns. In 1996, the work of Buschmann, Meunier, Rohnert, Sommerland, and Stal (1996)
meshed the work of styles and patterns by providing a set of well-known architectural styles
documented using a pattern-like approach (Clements et al. 2001). In their original work,
Bushman and colleagues indicate that patterns and styles are essentially the same thing by
stating (Buschman et al. 1996, p. 395):

Every architectural style can be described as an architectural pattern.

Today, the terms architectural styles and architectural patterns are used to convey funda-
mental structural and architectural organization for software systems. Other authors, such
as Bass, Clements, and Kazman (2003) and Qian, Tao, Xu, and Diaz-Herrera (2009), con-
sider both concepts to be the same thing. Throughout this chapter (and the rest of the book),
the terms architectural patterns and architectural styles are used interchangeably to denote
architectural solutions for software systems that occur at the highest level of abstraction in the
design process. The concern of the work presented in this chapter is to understand not how
to document specific architectural solutions but how and when to apply a particular pattern
and the quality attributes these patterns provide. Architectural patterns do not describe the
detailed design of the system and therefore cannot be directly translated into code. However,
they are appropriately used as basis for system decomposition and for analyzing the structure
of systems in principled manner, which is essential to constructing high-quality systems.

Architectural Pattern Classification

The choice of applying architectural patterns for designing some architectural element
depends on the particular system type, requirements, and desired quality attributes. These

110 « Software Engineering Design

characteristics help guide the choice of selecting one particular pattern over another.
In some cases, several recognized patterns can all meet the identified characteristics of the
system, therefore leaving the design team with the decision of choosing the most appro-
priate pattern for the design. In other cases, various architectural patterns can be used in
combination to collectively provide the appropriate architectural solution that best fits the
identified system type, requirements, and quality attributes. Since architectural patterns are
found at the highest level of system decomposition, they are too abstract to yield a concrete
system design; therefore, they are not tied to a particular system implementation but can
be associated with types (or families) of systems so that their solution can be reused across
systems of the same type. For example, a data-centered type of system can employ architec-
tural patterns that provide the logical design that reflects various components interacting
with a main component where data are hosted. The architectural pattern for such a system
would include the structural entity that manages the data, components that perform work
on the data, their data-centered interrelationships, and the quality of those components
for providing the application-specific structure for the data-centered software system. As
another example, consider the design of a distributed software system with components
that communicate and collaborate across the network. In such cases, architectural patterns
that support these components and their interrelationships in a distributed manner can be
employed to define the overall strategy of the distributed systems. A list of common types of
systems appropriate for classifying architectural patterns is presented in Table 4.1.

For large-scale systems, a single architectural pattern is inadequate for describing all the
interactions of the complete system. In these cases, several patterns may be required to aid
in the composition of architectural designs of the system and subsystems. That is, at the
highest level, the logical design of a distributed system can incorporate an architectural
pattern fitting of such system; however, at finer levels of abstraction, the system can include
in its logical architecture other patterns that address other nondistributed system issues.
Consider, for example, both distributed and data-centered systems already discussed. The
overall architectural logical composition may include an architectural pattern that includes
client and server components collaborating in distributed fashion. When further refined,
the architectural design of the server’s logical composition may employ an architectural
pattern appropriate for data-centered systems, while the design of the client’s architectural

TABLE 4.1
Type of Software Systems for Classifying Architectural Patterns

Type Description

Data-centered ~ Systems that serve as a centralized repository for data, while allowing clients to access and
perform work on the data

Data flow Systems oriented around the transport and transformation of a stream of data

Distributed Systems that primarily involve interaction between several independent processing units
connected via a network

Interactive Systems that serve users or user-centric systems

Hierarchical Systems where components can be structured as a hierarchy (vertically and horizontally) to

reflect different levels of abstraction and responsibility

Patterns and Styles in Software Architecture o 111

composition may employ an architectural pattern appropriate for data-flow systems. All
of these issues are architectural, and different design elements addressing these concerns
throughout the system are required to form the software architecture. This way, architec-
tural patterns are combined to describe the complete layout of a system. In the rest of the
chapter, common architectural patterns for each of these major system types are presented
and examined. The central features of the pattern and the problems addressed are shown
along with a summary of the benefits and limitations of each pattern.

DATA-CENTERED SYSTEMS

Data-centered systems are systems primarily decomposed around a main central reposi-
tory of data. Therefore, typical responsibilities found in components of data-centered
system include a centralized data manager and various worker components. The data
manager component controls, provides, and manages access to system data, while worker
components execute operations and perform work based on the data. The communica-
tion in data-centered systems is characterized by a one-to-one bidirectional communica-
tion between workers and data manager components. That is, worker components do not
interact with each other directly; all communication goes through the data manager. Some
considerations for these systems are data manipulation, communications protocols, trans-
actions and recovery (also known as roll-back), and security. Examples of data-centered
systems include expert systems, which interact with a database management system for
storing and retrieving knowledge information. An example of an architectural pattern for
data-centered systems includes the blackboard architectural pattern.

Blackboard Pattern

The blackboard architectural pattern decomposes software systems into components that
work around a central data component to provide solutions to complex problems. These
components work independently of each other to provide partial solutions to problems
using an opportunistic problem-solving approach. That is, there are no predetermined,
or correct, sequences of operations for reaching the problem’s solution. Each component
provides solutions that build upon the problem’s current state, which is defined by the
collective set of solutions provided by the blackboard’s components. The access to the
central data component can be made through direct memory reference, procedure calls,
or database query (Taylor, Medvidovic, and Dashofy 2009). Other forms of access to the
data central store may require complex and distributed remote method invocations, which
may prompt designing blackboard systems as part of a broader architectural pattern.
Nevertheless, this data-driven and opportunistic problem-solving approach is typical in
the development of expert systems (Buschmann et al. 1996).

Using the blackboard architectural pattern, systems can be broken down to include
a common repository where data and solutions to particular problems reside (i.e., the

112 « Software Engineering Design

blackboard), a controller, and various agents that work to refine and further solutions
to arrive at an acceptable solution. The blackboard architectural pattern resembles the
approach a group of scientists would employ to solve a complex problem. Consider a group
of scientists at one location using a blackboard (chalkboard, whiteboard, or electronic
blackboard) to solve a complex problem. Assume that to manage the problem-solving pro-
cess among scientists, a mediator controls access to the blackboard. Once the controller
assigns control to the blackboard, a scientist evaluates the current problem’s state as pre-
sented in the blackboard and, if possible, advances its solution before releasing control of
the blackboard. With new knowledge obtained from the previous solution attempt, control
is assigned to the next scientist who can further improve the problem’s state. This pro-
cess continues until no more progress can be made, at which point the blackboard system
reaches a solution. Similar to this example, the blackboard architectural pattern identifies
specialized agents that independently contribute to a problem’s solution. Together, one or
more agent components, the controller component, the blackboard component, and their
interrelationships form the essence of the blackboard architectural pattern, as presented in
the box-and-line diagram in Figure 4.1.

Consider the application of the blackboard architectural pattern for the design of a
university software system that manages student registrations. Registrations are man-
aged based on course availability, students’ course history, and students’ work schedule.

Box-and-Line Diagram
Controller
Agent 1 Agent 2 Agent n
Blackboard
UML Component Diagram
<<component>>
ScheduleManager
ISchedule | IStudentHlstory | I\XforkSchedule | ICourseOfferings
<<component>> {l <<component>> {l <<component>> {l
ScheduleHistory WorkSchedule CourseOfferings
o o o
| ISchedule | ISchedule | ISchedule
<<component>> {l
ScheduleBlackboard

FIGURE 4.1
The blackboard architectural pattern.

Patterns and Styles in Software Architecture o 113

TABLE 4.2

Architectural Components for Students Scheduling System

Component Description

ScheduleManager Manages access to the ScheduleBlackboard and controls the problem-solving process
StudentHistory Knowledge source for students’ history, including course and other preferences
WorkSchedule Knowledge source for students’ work schedule

CourseOfferings Knowledge source for university’s course offerings

ScheduleBlackboard Central data store where elements of the solution space are stored

Acquiring each independent piece of information may require the system to interface with
other systems with, for example, particular messaging protocols and interfaces. The cur-
rent state of students’ schedule is managed in a central component, housed with a data-
base system containing the schedule details. To update schedules, the student scheduling
system needs to interface with these external systems to retrieve information pertinent to
create an optimized student schedule. In addition, future implementations of the schedul-
ing system may include other information pertinent to the problem; therefore, the logical
architecture needs to provide flexibility for incorporating new specialized agents capable
of further improving the scheduling generation capabilities. Using the blackboard archi-
tectural pattern, the following components are identified in Table 4.2 and presented in
Figure 4.1 using the Unified Modeling Language (UML) component diagram.

The ScheduleManager corresponds to the controller component of the blackboard
architectural pattern seen in the box-and-line diagram of Figure 4.1. The StudentHistory,
WorkSchedule, and CourseOfferings components correspond to the worker agents pre-
scribed in the blackboard architectural pattern, which work independently to contribute
to the problem solution by addressing a particular part of the problem and injecting their
results back into the main data repository component. Finally, the ScheduleBlackboard
corresponds to the prescribed blackboard component from the blackboard architectural
pattern, which manages and controls access to the current state of students’ schedules.

Assuming the design configuration presented in Figure 4.1, the solution approach to gen-
erate a schedule that maximizes both the number of courses taken and work hours (subject
to some constraints) can be devised as follows. First, the ScheduleManager component
initializes all other components, including agents and ScheduleBlackboard components.
Once components in the blackboard system are initialized, the StudentHistory component
is activated to search for a particular student’s course history and retrieves information
regarding courses left to complete a particular degree, the student’s preference between
day and night courses, and their preference between face-to-face and online courses. This
information is stored in the ScheduleBlackboard component and is used to generate the first
version of the student’s schedule. Next, the ScheduleManager activates the CourseOffering
component to search for the particular semester’s course offering, including courses offered
online, within the university system, from local and remote branch campuses. This may
require the CourseOfferings component to have the capability of interfacing with different
distributed information systems. The course offering information is used to modify the
original schedule to include a schedule that reflects the student’s preference fused with the

114 « Software Engineering Design

course offerings. That s, if the student prefers face-to-face night courses, the CourseOffering
component will combine this information to propose the schedule most appropriate for
meeting these preferences. After the CourseOfferings component releases control of the
ScheduleBlackboard component, the ScheduleManager activates the WorkScheduler com-
ponent to determine the student’s federal work-study schedule, which is accessible through
the university system. Assuming the student’s work schedule includes alternatives for var-
ious shifts, the WorkScheduler component evaluates the current state of the scheduling
problem stored in the ScheduleBlackboard and determines the best shift based on the cur-
rent schedule. When doing this, the WorkSchedule component may modify the schedule
by removing classes that conflict with the most desirable and proposed work schedule.
After releasing control of the ScheduleBlackboard, future iterations of the problem-solving
process may include the CourseOffering component filling the gaps in the master schedule
by selecting different classes that may or may not be of the student’s preference but result in
the schedule that maximizes both the number of courses taken and work hours. This pro-
cess, as presented in Figure 4.2, can be repeated many times until the process is complete

Client | [ScheduleManager| |StudentHistory| |CourseOfferings| | WorkSchedule | |ScheduleBlackboard

1:sch:= gener:fiteSchedule()

2 : nextScheduler()

T

3: workOnSchedt:lle() '

4:sch:= getSch'edule()
6 : <<return>> i 5 : setSchedule(sich)
<

7: nextScheduler:()

' 8 : workOnSchedule()

| 1 9: sch := getSchedule()

'| Modify ! |

"|Schedule [17[" """ " TTTTTTT T ! U
H 10 : setSchedule(sch)

12: nextSchedul:er() I_,J

| I:j 13 : workOnSchedule()

914 : sch := getS che(iule()

15 : setSchedule(sch

17 : sch := getSchedule()

18 <<return>>,
19 <<return>p | _ - _____ A ememmeoo -
r

_____________ i

A

T

FIGURE 4.2
Interactions among components in the blackboard architectural pattern.

Patterns and Styles in Software Architecture o 115

TABLE 4.3

Quality Properties of the Blackboard Architectural Pattern

Quality Description

Modifiability Agents are compartmentalized and independent from each other; therefore, it is easy to

add or remove agents to fit new systems.

Reusability Specialized components can be reused easily in other applications.

Maintainability ~ Allows for separation of concerns and independence of the knowledge-based agents;
therefore, maintaining existing components becomes easier.

and the schedule provides the best possible solution. Because the number of agents can
vary, the solutions provided by blackboard systems are (typically) nondeterministic and
vary depending on the number of agents and the available information.

As seen, each component in the system abstracts the process and capabilities for acquir-
ing information necessary for carrying out work to improve the solution from their
particular standpoint. By abstracting each agent’s work, the details employed inside the
component, such as interprocess communication with external or distributed sources of
data, protocols, messaging interfaces, and others, can be separated from the overall sys-
tem design. Also, as seen, interactions between workers and the blackboard are limited to
retrieving and injecting new knowledge to the blackboard. This way, changes to one agent
component do not affect other agents or the blackboard components.

The major benefits of using the blackboard architectural pattern include its modifiability,
reusability, and maintainability. These quality properties come as a result of compartmen-
talizing knowledge sources and establishing a standard method for using the blackboard.
Since each agent needs to know only how to communicate with the blackboard, new agents
can be introduced without much effort to improve the system’s capabilities. Also, by com-
partmentalizing knowledge sources, changes to the system are also compartmentalized;
therefore, changes to one agent do not affect other agents in the system. Finally, compart-
mentalization of agents supports easy reuse in future systems. The list of quality properties
associated with the blackboard architectural pattern is presented in Table 4.3.

An important element to consider when applying any architectural pattern, including
the blackboard, is their deployment aspect. Going back to the example with the scientists,
it was explicitly stated that they were located in the same room, in front of the blackboard.
However, scientists can be distributed all over the world, collaborating via electronic
avenues. Similarly, blackboard systems and other systems based on architectural patterns
discussed in this chapter may be distributed through the network, in which case describ-
ing the nature of their connectors becomes important. This would be presented using an
architectural design element from a deployment perspective.

Skill Development 4.1: The Blackboard Architectural Pattern

Consider the existence of the new HolidaySchedule software component that can
retrieve information regarding the university system’s holiday schedule. This includes
information regarding operation hours during, for example, holidays and spring break.

116 « Software Engineering Design

Using pencil and paper, redraw Figure 4.1 to include this component. How can such a
component be used in the student’s schedule blackboard system to further increase the
number of hours worked? Using Figure 4.2 as context, how much effort and how many
architectural changes would be required to add this new component to the system?
Discuss this problem with a peer.

DATA FLOW SYSTEMS

Data-flow systems are primarily decomposed around the central theme of transporting
data (or data streams) and transforming the data along the way to meet application-specific
requirements. Therefore, typical responsibilities found in components of data-flow systems
include worker components—those who perform work on data—and transport compo-
nents, which transmit data among worker components. The worker components abstract
data transformations that need to take place before passing data streams forward in the
system, such as encryption, decryption, compression, decompression, and changing data
format form binary to Extensible Markup Language (XML). The transport components
abstract the management and control of the data transport mechanisms, which could
include interprocess communication, socket-based communication, and serial interfaces.
Together, these components combine to form architectural elements of data-flow systems.
The data transformation and transport in data-flow systems can entail transporting and
transforming data among different components within a single node or between nodes
in distributed fashion. Data-flow systems provide the means for data transformation to
take place in series or in parallel fashion, which helps the system improve performance by
adding concurrency to the system. Other considerations for these system include modi-
fiability, security, and reusability of worker components capable of performing complex
operations. An example of an architectural pattern for data-flow systems is the pipe and
filter architectural pattern.

Pipe and Filter Pattern

The pipe and filter architectural pattern decomposes software systems into components
that carry out two major functions: processing and transforming data and transferring
data between components. Components responsible for processing and transforming data
are referred as filters, while components that transfer data between components are referred
as pipes. Together, these components are combined in various ways to create families of
related systems that process streams of data (Buschmann et al. 1996). The pipes and filters
architectural pattern is commonly seen in data-flow systems, where data inputs need to be
transformed into data output through a series of computational or manipulative compo-
nents (Pressman 2010). The structure of the pipe and filter architectural pattern is often
presented using a box-and-line diagram, such as the one in Figure 4.3. As seen, systems

Patterns and Styles in Software Architecture o 117

Box-and-Line Diagram
Co L Pipes I
, ;|—> Filter 2 _|_i E
Data : Filter 1 Filter 3 Filter 5 * »|Data Sink
Source
_|—— Filter 4 j
LocalPipe UML Component Diagram
<<component>> C <<component>>
DataSource {l O LocalPipe {l
/CJ)\ ISecurityFilter
I
<<component>> {l
SecurityFilter
/(J)\IDistributedPipe
|
<<component>> | j <<component>>
DistributedPipe {l Q DataSink {l
IDistributedPipe
UML Deployment Diagram
Node A Node B
<<artifact>> D <<artifact>> D
data_collector.exe data_processor.exe
i . . <<TCP/IP>> \ . .
' ' <<manifests>> ' ' <<manifests>>
E v E y
' [<<component>> : <<c0mponent>>{|
1| DataSource ' DataSink
T ; <<manifests>> Tt ; <<manifests>>
<<component>> {l <<component>> {l
DistributedPipe DistributedPipe

FIGURE 4.3
The pipe and filter architectural pattern.

based on the pipe and filter architectural pattern require a data source, one or more filter
components, and a data sink, all connected via filters.

Using the box-and-line diagram presented in Figure 4.3, the flow of operations of pipe
and filter systems can be described as follows. Initially, the DataSource component produces
data and sends it to the Filter 1 component through a Pipe, denoted by an arrow flowing out
of the DataSource component and into Filter 1. The Filter 1 component processes the data,
transforms it, and outputs the transformed data to three other filters for further processing.
At this point, three independent and concurrent data transformations occur and their results
sent to Filter 5. This process continues until the final formatted output is sent to the DataSink.

118 « Software Engineering Design

TABLE 4.4

Architectural Components for Distributed Signal Processing System

Component Description

Data source Produces real-time video or audio streams

Local pipe Mechanism for transferring video or audio data streams locally from data source to

security filter

Security filter Transforms data streams by encrypting flow of data

Distributed pipe =~ Mechanism for transferring encrypted data streams wirelessly (e.g., Satellite
Communications [SATCOM]) from local site to remote site; provides the logical
connection between data source and data sink

Data sink Destination component where data streams are stored for later review

When using the pipe and filter architectural pattern, the software system consumes and
processes input data incrementally, in separate filters, instead of consuming and process-
ing all of its input data at once. This allows the system to become more efficient, mainly
by achieving low latency, which can be achieved through parallel processing (Buschmann
etal. 1996). Also, by segregating the processing components and abstracting the data trans-
ferring process, processing and computations can be performed across process boundaries
or across node boundaries. In these cases, the pipe and filter architectural pattern can exist
within another architectural pattern for distributed systems. That is, several computers,
executing different processes, can work together to process input data, transform the data,
and generate the desired output data.

Consider the design of a signal processing system that operates on real-time video or
audio streams and is designed to collect data, encrypt it, and forward it for further process-
ing. This process can be repeated for various steps of data processing; however, for simplic-
ity, the number of pipes and filters is limited to present the concept in a concise manner.
Using the pipe and filter architectural pattern, the components in Table 4.4 are identified.

Together, these components work to collect video and audio data streams, to encrypt
them, and to transmit them to a remote location, where data can be further processed and
distributed. The pipe and filter logical architecture for the real-time collection system is
presented using the component notation in Figure 4.3. As seen, the component notation is
used to model and abstract the major functions identified for the system; however, it may
still be difficult to envision the actual system simply by viewing the logical distribution
of components. Consider the following flow of operations. Once data become available
at the DataSource component, they are transferred locally to the SecurityFilter compo-
nent using the LocalPipe component. At the SecurityFilter component, the data stream is
transformed using encryption and is transferred to the DataSink component using mecha-
nisms provided by the DistributedPipe component. In this case, the DistributedPipe com-
ponent abstracts the details of transferring data across the network, since the DataSource
and DataSink are hosted on different nodes; therefore, a deployment view is necessary to
properly characterize the system. As seen in the deployment diagram in Figure 4.3, the
DataSource and DistributedPipe components are manifested in Node A, while the DataSink
and (another) DistributedPipe components are manifested in Node B. The manifestation of

Patterns and Styles in Software Architecture o 119

TABLE 4.5

Qualities of the Pipes and Filter Architectural Pattern

Quality Description

Extensibility Processing filters can be added easily for more capabilities.

Efficiency By connecting filters in parallel, concurrency can be achieved to reduce latency in the
system.

Reusability By compartmentalizing pipes and filters, they can both be reused as is in other systems.

Modifiability Filters are compartmentalized and independent from each other; therefore, it is easy to add

or remove filters to enhance the system

Security At any point during data flow, security components can be injected to the work flow to
provide different types of security mechanisms to the data.

Maintainability ~ Allows for separation of concerns and independence of the filters and pipes; therefore,
maintaining existing components becomes easier.

the LocalPipe and SecurityFilter components is omitted for simplicity; however, they would
be presented in Node A. This example shows how using different architectural views can
enhance the understanding of the true architecture of a system.

The presentation of the pipe and filter system using component diagrams is appropriate
since the piping mechanisms entail more advanced mechanisms than a simple method
call to another component. However, the same knowledge can be conveyed using a
box-and-line diagram or other non-UML diagram approach. The problem with using a
simple box-and-line diagram is that it becomes difficult to capture or abstract the work
required to realize the work required by the pipe (or connector). When components are
identified during the software architecture activity, they are slated for refinement during
detailed design work, therefore providing an explicit and manageable unit of design work.
By modeling complex pipes as components, the details of their work are abstracted, and
future planned work for providing the details of such abstraction can be integrated into the
designs and construction schedule, similar to any other component in the system.

The pipe and filter architectural pattern can be applied to a problem of smaller scope
where both pipe and filter components reside within a single node and communicate using
simple method calls or using simple mechanisms provided by the operating systems, such
as message queues. In other cases, creating a customized pipe, such as the DistributedPipe
presented earlier, may require additional work. Filters can be designed as multiple com-
ponents manifested by as single process or by multiple independent processes executing
within a node and communicating through common inter-process pipe mechanisms.
Typically, once the pipe and filter framework is in place, numerous filters can be added
(serially or in parallel) to provide additional capabilities. The major quality properties
associated with pipes and filter systems are presented in Table 4.5.

Skill Development 4.2: Designing with the Pipes and Filter Architectural Pattern

Using pencil and paper, complete the design for Node B required to distribute the
audio and video feed. Once the data reach the data sink, all data need to be decrypted,

120 « Software Engineering Design

compressed, and stored in the file system—operations that can take a long time due to
the expected massive amounts of data. In addition, data need to be prepared for view-
ing in real-time using a web server and client PCs and provided to a client (non-web
page) application hosted on a mobile phone. In all of these, efficiency is the most impor-
tant characteristic of the system so that the quality of audio and video is appropriate.
Assuming that there are no resource constraints, also draw a deployment diagram to
helps support the required efficiency of the system. How does the pipe and filter pattern
help in meeting efficiency expectations?

DISTRIBUTED SYSTEMS

Distributed systems are commonly known as systems decomposed into multiple processes
that collaborate through the network. These systems are ubiquitous in today’s modern
systems thanks to wireless, mobile, and Internet technology. In some distributed systems,
one or more distributed processes perform work on behalf of client users and provide a
bridge to some server computer, typically located remotely and performing work delegated
to it by the client part of the system. Once complete, results are typically returned back to
clients for viewing and further processing. Other distributed systems may be composed of
peer nodes, each with similar capabilities and collaborating together to provide enhanced
services, such as music-sharing distributed applications. These forms of distributed systems
are well-known in the sense that their deployment architecture typically entails multiple
nodes. However, with the advent of multiple CPU architectures, distributed architectures
are also relevant to software that executes on a single node with multiprocessor capability.
The main concerns for distributed systems may include performance, reliability, availability,
security, and interoperability. Some examples are Internet systems with web services and
high-performance scientific computing projects such as the Search for Extraterrestrial
Intelligence (SETTI) program or the Large Hadron Collider (LHC) at CERN. In such systems,
multiple processors that may reside on different physical machines or in different concurrent
processes on a single machine cooperate to solve the tasks required of the system. Common
architectural patterns for these systems include

o Client-server
o Broker

Client-Server Pattern

The client-server architecture is a popular architectural pattern present in today’s modern
systems. It decomposes software systems into two main components: the client and the
server. These components are manifested as individual processes that can be distributed
over the network or within a single node. Client-server systems are not determined merely
by separating processes or by distributing processes across the network but by having one

Patterns and Styles in Software Architecture o 121

Box-and-LineDiagram
<<Request>>
Client Server
<<Response>>
UML Deployment Diagram
PCNode <<HTTP>>
<<artifact>> D Server Node
pe_browser.exe T T : <<artifact>> D
| pc_browser.exe
Mobile Phone Node i ,
<<HTTP>> A A]
<<artifact>> <<artifact>> D
mp_browser.exe D B o e P »| web_server.exe

FIGURE 4.4
The client-server architectural pattern.

process, the client, depend on the services provided by another process, the server. The
most pervasive example of a client-server system today includes the web browser client
and the web server. When searching for a particular site using the web browser client,
a connection is made to the server, a request is sent and received by the server, and the
server processes the requests and sends a response back to the client. Note that this is also
true regardless of the location—which can be on the same node as the server— of the web
client, as long as it can connect to the server. In addition, web browser clients are not very
useful without the services provided by the server; therefore, they are dependent on the
server. Figure 4.4 presents the client-server architectural pattern.

Client-server systems are particularly useful for distributed systems with a large client
base, since they provide localization of data in one central place. Therefore, making updates
or adding new information in once central place is all that it is needed for a multitude
of clients to receive this information. The quality attributes associated with client-server
systems are identified in Table 4.6.

TABLE 4.6

Qualities of the Client-Server Architectural Pattern

Quality Description

Interoperability ~ Allows clients on different platforms to interoperate with servers of different platforms
Modifiability Allows for centralized changes in the server and quick distribution among many clients
Availability By separating server data, multiple server nodes can be connected as backup to increase

the server data or services availability
Reusability By separating server from clients, services or data provided by the server can be reused in
different applications

122 « Software Engineering Design

Servers can abstract the services—and the details of providing those services—provided
by the host platform, therefore creating a window for clients to interoperate with the host
platform. When done properly, this allows interoperation between systems of different
platforms. Client-server systems can also lead to highly modifiable systems. Consider a
corporate web-based intranet system, where modifying or adding completely new system
capabilities may require creating the necessary server code, including a new hyperlink to
the existing corporate portal, and deploying the modified code to the production server.
Once deployed, everyone in the corporate network would have instant access to the modi-
fied system. Also, by separating the client application from the server data, client-server
systems allow designers to render multiple views of the same data; clients can be improved
or replaced independently of the resources needed to perform computations on the data;
multiple clients can share the resources of a server allowing for increased efficiency; or
the user interface can be replaced completely, allowing specialized clients to consume and
perform additional processing on the data for further processing.

Broker Pattern

The broker architectural pattern provides mechanisms for achieving better flexibil-
ity between clients and servers in a distributed environment. Consider the client-server
example presented in Figure 4.4. In the typical client-server architectural pattern, clients
directly access services of servers, which may require them to establish direct connection
(e.g., Transmission Control Protocol/Internet Protocol [TCP/IP]) or employ other inter-
process communication mechanisms for communicating with the server. This result in a
higher degree of coupling between clients and servers, which leads to complexity for systems
expected to evolve by providing services from different servers hosted at different locations.
In some cases, client terminals need to be able to access services from multiple servers with-
out knowing their actual locations or particular details of communication for accessing
those services. This leads to systems with increased interoperability and flexibility.

The broker architectural pattern decreases coupling between clients and servers by
mediating between them so that one client can transparently access the services of multiple
servers. Instead of accessing servers directly, clients access their functionality via a bro-
ker component, which locates appropriate servers, forwards requests, and relays responses
(including exceptions) back to clients (Buschmann et al. 1996). With this mechanism in
place, clients can request services as if they were provided locally on the same node as the
server, when they are in fact being provided in distributed fashion over the network by
different nodes. The main participants in the broker architectural pattern are presented
in Table 4.7, and examples of modeling broker systems are presented in Figure 4.5 using
box-and-line, UML components, and UML deployment diagrams.

In the box-and-line diagram presented in Figure 4.5, it can be seen that broker compo-
nents can interoperate with other brokers, so that if a service requested by a client is acces-
sible through a separate broker this communication can be established to provide clients
additional services. For example, Client 1 may forward a request to Broker 1 for a particular
service. Broker 1, after determining that Server 2 provides the service requested, forwards

Patterns and Styles in Software Architecture o 123

TABLE 4.7

Components of the Broker Architectural Pattern

Component Description

Client Applications that use the services provided by one or more servers

ClientProxy =~ Component that provides transparency (at client) between remote and local components so
that remote components appear as local ones

Broker Component that mediates between client and server components

ServerProxy =~ Component that provides transparency (at server) between remote and local components so
that remote components appear as local ones

Server Provide services to clients; may also act as client to the broker

Bridge Optional component for encapsulating interoperation among brokers

Box-and-Line Diagram
Broker 1 Server 1
Client l T
Broker 2 Server 2
"""""""""""""""""""""""""""""""""""" UML Component Diagram
<<component>>] <<component>>]
DvrClient DvrServer
<<component>>] <<component>>]
UserInterface UserlInterface
o O o o
IDvrStatus | | IDvrControl IDvrStatus | | IDvrControl
<<component>> {l <<component>> {l
DvrClientProxy DvrSystem
i]
IBrok O O Q
roker | IDvrStatus\r \|/IDvrControl
<<component>> $:| <<component>> $:|
DvrBroker DvrServerProxy
IDvrRemoteControl | IDvrRemoteControl IDvrRemoteControl
<<delegate>> | ~ L, <<delegate>>
o
UML Deployment Diagram
OfficePC FamilyRoomDvr BedroomDvr
<<artifact>> D <<artifact>> D <<artifact>> D
iexplore.exe <<HTTP>>| |dvr_server.exe dvr_server.exe
y <<manifests>> y <<manifests>> y <<manifests>>
<<component> >{| <<component>> {' <<component>> {'
DvrClient DvrServer DvrServer
<<HTTP>>

FIGURE 4.5
The broker architectural pattern.

124 « Software Engineering Design

the requests to Broker 2, which in turn forwards the requests to Server 2. Once the opera-
tions required for the particular service are executed, Server 2 establishes a connection
with Broker 2 and supplies it with a response, which is forwarded to Broker 1 and subse-
quently to the Client. This sequence highlights a major difference between client-server
and broker architectural patterns: in the broker architectural pattern servers may also act
as clients to the broker, whereas in client-server architectures roles are exclusive so that
servers are never clients (Buschmann et al. 1996).

Consider the architectural design of the distributed digital video recording (DVR) sys-
tem presented in the UML component diagram in Figure 4.5. In this example, two proxies
are created to provide transparency at both client and server side. The DvrClientProxy
component realizes the IDvrStatus and IDvrControl in a remote environment, while the
DvrServerProxy realizes these interfaces in a local environment providing direct connec-
tion to the DVR computer. Therefore, both user interfaces at the client and server locations
can be interchangeable, since they both interface with the DvrSystem component through
well-defined methods provided by these interfaces. With these mechanisms in place, the
broker system begins by initializing the DVR system to find appropriate servers and iden-
tify their provided services, as seen in Figure 4.6. Notice that in this example the optional
bridge component identified in Table 4.7 is not used.

UserInterface DvrClientProxy DvrBroker DvrServerProxy

1:int()

2 : aMsg := intBrokerMsg()

in

3 : forwardRequest(aMg)

4.: findServer()

T

) : callService(aMsg)
aResponse contains a
list of services supported [{=f~""~""-""-"""--""------ '

by the server.

\\ 7 : callService(aResponse)

8 : registerServices(aResponse)
At this point, the

borker has knowledge
of all services
supported by the
server.

FIGURE 4.6
The broker architectural pattern—initialization.

Patterns and Styles in Software Architecture o 125

UserlInterface | |DvrClientProxy DvrBroker DvrServerProxy

E aMsg contains information
1| about the server’s s

E destination (e.g., [P address)
and service requested.

1: getDiskSpace()E

2 : aMsg := pack()

3 : forwardRequest(aMsg)

4 : findServer()

At this point, the
Broker waits for a response.

Once received, aResponse 5 : callService(aMsg)
will contain the information L
requested. In this case, -1---6:recv()

the amount of disk |
space available. '

7 : callService(aRespons

8 <<return>>

9 : unpack(aResponse)

10 <<return>>
' m o eem Ll]

e .|

FIGURE 4.7
The broker architectural pattern—client operation.

As seen, once the system begins initialization an initialization message containing a
request for services and client information is created and forwarded to the DvrBroker
component, which finds appropriate servers and transmits the message for processing.
At this point, the DvrBroker waits for a response, which contains the services provided
by the particular server; these services are registered and become available to the client
during system operation. Once the system is initialized, services from remote severs can
be accessed through the broker, as seen in Figure 4.7. In this example, the client requests
information about the DVR’s available disk space. Notice that the client’s UserInterface
component, the getDiskSpace() interface method, can be called as if the DVR system were
local to the client.

An important architectural design element for this system involves the deployment
aspect of the DVR system. The logical view for architectural design does not convey enough
information to fully provide the context for the operations that take place in the DVR
system. Figure 4.5 provides a UML deployment diagram to add this context to the archi-
tectural effort. As seen, the system employs two DVR nodes, which manifest the DvrServer
component identified in the UML component diagram. This means that the getDiskSpace()
operation can be mapped to either FamilyroomDvr or BedroomDvr systems, all performed
transparently from clients. That is, the call made to the DvrServerProxy to get service
(i.e., callService(aMsg)) can be made to either node (i.e., FamilyroomDvr or BedroomDvr)

126 « Software Engineering Design

DvrBroker DvrServerProxy DvrSystem

E 1 : waitForRequests()

2 : callService(aMsg)

E 3 : unpack(aMsg)

At this point, a Broker has

been intialized on the client |:

side and a request to retrieve 4 : getDiskSpace()

the available disk space has

been sent. . Sssreturn>> H

6 : aResponse := pack()

7 : callService(aResponse)

FIGURE 4.8
The broker architectural pattern—server operation.

transparently from clients, and the response is processed identically by the client. In similar
fashion, many other nodes can be added to the system without affecting the client applica-
tion. This provides additional flexibility when modifying the system to add more nodes.
On the server side, messages received are processed as presented in Figure 4.8.

As seen, the DvrServerProxy interfaces directly with the DvrSystem to relay requests from
clients and prepare responses for transmission back to one or more clients. In this case,
once the DvrServerProxy receives a message, interprets it, and makes the getDiskSpace()
operation call to the DvrSystem component, the getDiskSpace() operation encapsulates the
details of the protocols required for the direct communication between the server compo-
nent and the actual DVR computer. Once a response is received from the DVR computer,
the getDiskSpace() returns with results from the disk space availability; these are packaged
into a message and sent back to the broker as response for the client’s requests. This process
is repeated for all other services requested by clients.

In practice, there are numerous variations of architectural designs based on the broker
architectural pattern. Some broker systems may have the broker component deployed
on separate nodes from the client; others allow clients to communicate directly with
servers in special cases; some rely on remote procedure calls (vs. the messaging approach
presented here); and others rely on reactive models, where callback methods from reg-
istered components are invoked by the broker whenever an event is triggered. However,
all broker systems typically benefit mainly from the flexibility provided by decoupling
clients and servers. The quality attributes associated with broker systems are identified
in Table 4.8.

Patterns and Styles in Software Architecture o 127

TABLE 4.8

Qualities of the Broker Architectural Pattern

Quality Description

Interoperability ~ Allows clients on different platforms to interoperate with servers of different platforms;
also allows clients to interoperate (transparently) with multiple servers

Modifiability Allows for centralized changes in the server and quick distribution among many clients

Portability By porting the broker to different platforms, services provided by the system can be easily
acquired by new clients in different platforms

Reusability Brokers abstract many system calls required for providing communication between nodes;
when using brokers, many complex services can be reused in other applications that
require similar distributed operations

INTERACTIVE SYSTEMS

Interactive systems are systems that support user interactions, typically through user
interfaces. When designing interactive systems, design alternatives concentrate on two
main quality attributes: usability and modifiability. As stated before, usability refers to
the quality goal that seeks to minimize the degree of complexity involved when learning
or using the system. Usable systems are designed in such way that operators can quickly
become proficient with the system; they also respond to user requests rapidly to support
high interactivity requirements. A large portion of usability design takes place during the
user interface design activity. Whereas usability is achieved mostly through user interface
design, modifiability and interactive performance are mainly functions of the architec-
tural logical design. To maximize modifiability and performance in interactive systems,
the graphic user interface that represents the system data needs to be efficiently decoupled
from the functional system core. By doing this, the functional core—which is typically
stable since it is largely based on functional requirements—is separated from user displays,
which are largely based on quality requirements. Since user interfaces are more likely to
change and adapted to future versions of software systems, segregating them from the sys-
tem core increases the modifiability of interactive systems. Examples of interactive systems
include gaming systems, simulations, and Internet applications, where such systems need
to respond to user requests rapidly and update the display so the user can interact appro-
priately. The mainstream architectural pattern employed in most interactive systems is the
model-view—controller MVC).

Model-View-Controller Pattern

The MVC architectural pattern is used in interactive applications that require flexible
incorporation of human-computer interfaces. With the MVC, systems are decomposed
into three main components that handle independently the system’s input, processing, and
output. By separating the system’s output from its core processing functions, different rep-
resentations of the system core can be easily supported. The main components present in
the MVC architectural pattern are presented in Table 4.9.

128 « Software Engineering Design

TABLE 4.9
Components of the MVC Architectural Pattern
Component Description
Model Component that represents the system’s core, including its major processing capabilities
and data
View Component that represents the output representation of the system (e.g., graphical output or

console based)
Controller Component (associated with a view) that handles user inputs

View and controller components work together as part of the user interface to accept
user input and transform this input into format compatible with the model component.
In some variants of the MVC, the responsibility of controllers and views are fused into
one component. The relationship among the model, view, and controller components can
vary depending on the application; however, at minimum, MVC designs provide relation-
ships that allow changes in the model to be propagated to its view and, when necessary, to
controllers. This way, MVC systems provide a systematic, flexible, and controlled approach
for accepting system inputs and providing system outputs.

As an architectural pattern, MVC defines the interfaces required for the change propa-
gation mechanisms among the model, view, and controller components. However, it does
not (and should not) specify the details of how the change propagation mechanism is actu-
ally implemented. Details of such mechanisms are left to the detailed design activity, which
can provide design patterns, such as the observer, to realize the intent of the MCV. As an
architectural pattern, MVC designs should specify the components, their interfaces, and
the nature of those interfaces to support system development. This fundamental difference
provides a clear delineation between MVC and other detailed design patterns. Figure 4.9
presents a generic box-and-line design of the MVC architectural pattern. This diagram
presents the MVC in its most connected form, in which bidirectional relationships exist
among all components. However, many variants exist that customize relationships among
components depending on the application.

Figure 4.9 also presents a UML component diagram for a hypothetical real estate hous-
ing market system that allows users to find properties for sale. The real estate system is
based on the MVC architectural pattern and is composed of two views, each with their
own controller and a model that contains all real estate information. The two views are
designed uniquely for usability on a standard PC and large SMART board environment.
Since the form factor of PC monitors and SMART Boards differ significantly, two differ-
ent views are created for the system. Since the PC monitor is significantly smaller than the
SMART board, the user interface created by the PCView component will cover the whole
monitor screen and rely on speech recognition technology for its input mechanism. Since
the SMART board provides larger space for viewing the software, the SmartboardView
component provides more informative buttons and menu options to use the software. The
SMART board version of the software relies on direct human touch interface or hand ges-
ture recognition. For this reason, two different controller components—one that performs
speech processing and the other for hand touch or hand gesture recognition—are designed.

Patterns and Styles in Software Architecture o 129

Box-and-Line Diagram
View 1 View 2 View n
Controller 1 Controller 2 Controller n
Model
UML Component Diagram
<<component>> {l <<component>> {l
SmartBoardView PCView
| S AN |
10bserver| <<compon|elx£):>n>c orroler ‘\‘ 'll <<|cifr11);(e):1};§t.;n>trouer E [Observer
O E SbController g] \\ ,l SpeechController 2] E@
E K]\ IObservexg) : 1 | IObserver K]\ E
(/0 O/ P O O =
| IModel \[J IObservable\[/ IModel |
<<component>> {l
RealEstateModel
FIGURE 4.9

The model-view-controller architectural pattern.

When using the system on a PC, users can command the system using speech, such as
“Find single family homes in Lakeland, Florida.” Once this input is received through the
PC’s microphone, the speech controller transforms it into a command that is passed on
the model using the provided IModel interface. Once the request is processed by the model
component, it uses the IObserver interface to employ the change propagation mechanisms
to let the PCView component—or any other view associated with the model—know that
the request has been processed. At this point, the PCView component retrieves the data
using the model’s IModel interface and displays them to users. A similar approach is con-
ducted in the SMART board version of the system. These sequences of operations for the
MVC system are presented in Figure 4.10.

From this trivial example, the major advantage in the flexibility that MVC systems
provide can be clearly examined. For example, consider the case where a more advanced
speech processor is created. In this case, neither view nor model components need to
be modified for this addition. This means that support for enhanced speech processing
or new languages can be added to the real estate system without much effort. Similarly,
other views for the same data can be incorporated easily to the system, for example, a view
providing graphical descriptive or inferential statistics for housing markets based on the
model’s data. Finally, advanced computational features can be added to the real estate sys-
tems by adding faster search algorithms to the model component independently from both
view and controller. This flexibility can be extended to distributed environments, such as

130 « Software Engineering Design

Application RealEstateModel PCView SpeechController

: User 11: aModel := new Madel()

2 :aView := new SpeechCustomizedView()

T 3 : aController := new VoiceController()
4 : attach(aView) i

Once the view is

5 : sh
show() displayed, it enables

6 : show() H
U _________ -1 the voice input mode

to receive voice input.

P

t(“find single family homes in Lakeland, FL”)

7 : onVoicelnp

1 8 : processSpeech()

10: processCommam‘i()

19 sendCommand(FIND_CMD,SFH,33803)

T 11 : update() i

12 : getResults()

FIGURE 4.10
The sequence for searching for single-family homes in Lakeland, Florida.

TABLE 4.10
Qualities of the MVC Architectural Pattern

Quality Description

Modifiability Easy to exchange, enhance, or add additional user interfaces

Usability By allowing easy exchangeability of user interfaces, systems can be configured with different
user interfaces to meet different usability needs of particular groups of customers

Reusability By separating the concerns of the model, view, and controller components, they can all be
reused in other systems

Internet systems, where MVC architectures are very popular. Systems based on the MVC
benefit from flexibility that allows them to evolve gracefully over time. The main quality
attributes associated with MVC systems are presented in Table 4.10.

There are some variations of the MVC architectural pattern. One popular variation of
designing MVC systems includes the fusion of views and controller components into one
component. This variant was very popular in the 1990s as part of Microsoft’s Document-
View architecture integrated in the Microsoft Foundation Classes (MFC) Visual C++ envi-
ronment. The Document-View architecture sacrificed exchangeability of the controller for
simplicity. Other, more extensive variations include the process—abstraction-controller
(PAC) architectural pattern (Qian et al. 2009). The PAC is an extension of the MVC, where
systems are decomposed into agents, each containing a process, abstraction, and controller
components arranged in hierarchical fashion.

Patterns and Styles in Software Architecture o 131

Skill Development 4.3: Distributed MVC Real Estate System

Consider a distributed, Internet version of the MVC real estate system. Using pencil
and paper, use UML ports and delegate relationships to modify the component dia-
gram of Figure 4.9 to support the development of this system under the new environ-
ment constraints. Draw also a deployment diagram that shows how the system can be
deployed on tablets and mobile phones. Feel free to modify the original MVC relation-
ships and diagram to account for this new problem.

HIERARCHICAL SYSTEMS

Hierarchical systems are systems in which components can be structured in hierarchical
fashion so that components exist at different levels of abstraction and each level addresses
a particular concern of the software system. For each level identified in the hierarchical
system, one or more components can be identified, each possibly branching downward
to other components necessary to carry out a particular operation. Conceptually, compo-
nents residing at higher levels of the hierarchy structure dispatch requests and rely on the
services of those in lower levels of the hierarchy. In some cases, access to the services pro-
vided at the different levels can be unified and strictly controlled, therefore compartmen-
talizing them and increasing the reusability of their services. In other cases, the hierarchy
structure is mapped conceptually to the processing of data, resulting in a set of functional
cohesive components at appropriate levels of abstraction for creating modular systems.
In any case, designing systems in hierarchical fashion typically leads to well-structured
and modular systems. Two common architectural patterns for hierarchical systems are

« Main program and subroutine
 Layered

Main Program and Subroutine

The main program and subroutine architectural pattern is popular in systems that are
designed using the structured (or functional) design strategy. In these systems, a main
component (or program) contains the main data for the program, which is shared among
components residing at lower levels of the hierarchy. Each level of the hierarchy represents
refinements of the system, so that level n provides the main level; level # + 1 provides further
refinements of services; n + 2 provides even further refinements, and so on. This process
continues until the system is decomposed into an appropriate set of finer-grained compo-
nents (or subroutines). To illustrate this concept, consider creating the logical architecture
for a printer system, based on its data-flow diagram (DFD). When using a DFD, inputs and
outputs are represented by boxes, data flowing through systems are represented by arrows,
and data transformations are represented by circles, as presented in Figure 4.11. As seen, a

132 « Software Engineering Design

Level 0 DFD
Keypad Input |- _ __»| Keypad Display
Computer Input |-~~~ ’ “>~a| Tray Output
System
Level 1 DED
Keypad Input f-._______ O ______________ +| Keypad Display
DT2
Computer Input f-------------- >© -------------- + Tray Output
DT1
Level 2 DFD
Keypad Input (... : ______ @ __________ 7 Keypad Display

Computer Input |---- 'OZ_‘_ o 'O - @ _»| Tray Output

,O N Structure Chart - Logical Architecture

. o

<<component>>
! /4/ Printer {l ———— @
o e »<
IComputer/ ITray (ID IKeypa d \
<<component>> <<component>> {l <<component>> {l
Computer IF Tray Output Keypad 10

£ RE

The main program and subroutine architectural pattern.

Level 0 DFD represents the initial context of the system. The input source 1 (IS1) represents a
keypad for configuration of the printer, and the input source 2 (IS2) represents input from the
computer that sends jobs to the printer. Two system outputs are presented: one to the printer’s
onboard display (OD1); and another for the paper printout (OD2). The initial context of the
system (i.e., Level 0) design indicates that the system transforms two inputs to generate two
different outputs. As the DFD is refined, a Level 1 DFD is produced to indicate that two

Patterns and Styles in Software Architecture o 133

TABLE 4.11

Quality Properties of the Main Program and Subroutine Pattern

Quality Description

Modifiability By decomposing the system into independent, single-purpose components, each component
becomes easier to understand and manage.
Reusability Independent, finer-grained components can be reused in other systems.

distinct transformations are required: one for transforming data from the keypad input to
the keypad display; and the other for transforming computer input into a printout. In the
Level 2 DFD, two distinct flows of data are identified: one to generate printouts in black and
white; and the other to generate printouts in color. In each flow, different transformations
are required. This refinement is iteratively done, and once all transformations are identified
they can be grouped into components to form the logical architecture of the system. In this
example, the print manager (PM), which is the main program, consists of three independent
components, which provide the subroutines identified based on the data transformations.
A more detailed coverage of this approach is represented by Pressman (2010, p. 265).

The main components identified for the main program and subroutine architectural
pattern include one main component, which stores all the data, and various, finer-grained,
subcomponents that carry out detailed system operations. Systems based on this archi-
tectural pattern benefit mainly from its structured decomposing, such that independent,
single-purpose components become easier to understand, manage, code, debug, and reuse.
The main quality properties associated with the main program and subroutine architec-
tural pattern are presented in Table 4.11.

Layered Pattern

The main program and subroutine architectural pattern leads to hierarchical structures that
expand vertically and horizontally, with each level of the hierarchy containing one or more
components that can interact with one or more components at lower-levels of the hierarchy.
A more constrained form of hierarchical structure involves each layer having one main
component—which can be composed internally of multiple components—that provides a
unified interface for communicating with components residing immediately below in the
hierarchy structure. This form of constrained collaboration of hierarchical architectures
is captured with the layered architectural pattern. With the layered architectural pattern,
the work performed to accomplish a system function is somewhat independent and more
compartmentalized than in the main program and subroutine. It is used when systems can
be decomposed into cohesive layers with a structured way of interfacing between layers.
The layered architecture is widely used in systems software, such as an operating system’s
communication stack, where each layer is an abstraction of a major function of communi-
cation systems. Each layer also relies on services from other layers directly below to create
communication packets and to provide quality of service, routing services, node-to-node
communication, and transmission using varied physical layers. This way, rules can be

134 « Software Engineering Design

imposed on the system’s logical architecture to restrict access among components, therefore
decreasing the system’s coupling and increasing its modifiability and portability. That is, by
compartmentalizing major system functions and controlling access to their services (via
well-defined and stable interfaces), system modifiability and portability can be increased.

Consider the logical architecture of an environmental embedded monitor and control
system capable of being remotely deployed to monitor and control other nodes in a sys-
tem that provides environmental information. The system works by receiving a collection
schedule that is used to activate and deactivate other nodes in the system, to control their
operations, and to retrieve their collected data. Since the system is deployed in environmen-
tal areas where communication infrastructure may not be present, it uses satellite commu-
nications to receive collection schedules and to provide environmental information back
to a central station, where it can be safely analyzed. Collection schedules are encrypted to
provide additional level of security, which means that upon receipt the remotely deployed
system needs to decrypt the messages and perform application-dependent logic to inter-
pret and execute them. Once a collection schedule for a particular node in the system is
executed, the system interfaces with the hardware to send appropriate commands to other
collection nodes. The logical architecture for this system is designed using the layered
architectural pattern, as seen in Figure 4.12.

The box-and-line design of Figure 4.12 presents a generic approach to designing
layered software. It shows each independent layer collaborating only with the services
of the layers immediately below. This way, replacing services at one layer does not affect
the whole system. When applied to the environmental monitor and control system,
the UML component diagram results in the one presented in Figure 4.12. As seen, the
SatcomLayer component abstracts the services required to receive a monitor plan, which
when received is passed down to the SecurityLayer component for decryption and further
passed down the layered hierarchy for processing in the ApplicationLayer. Once environ-
mental monitoring is activated, the ApplicationLayer component interfaces with the
HardwareComponent to initiate activation of the external nodes. As seen, UML ports are
used to show the boundaries of the remote monitor system, and the delegate label is used
to indicate that the responsibility for fulfilling the required services is delegated to one or
more components in the system. The main quality attributes associated with the layered
architectural pattern are presented in Table 4.12.

Skill Development 4.4: Layered Architectural Pattern

Conduct an online search for the Open Systems Interconnection (OSI) reference model
or TCP/IP model. Select one and explain how the layered architectural pattern applies
to the selected model. Clearly identify each layer, their services, and how they interact
with other layers in the system. Can you think of other system software that can be
designed using the layered architectural pattern? Come up with such examples and
then identify the layers that you would create and the services (and interaction with
other layers) within the system.

Patterns and Styles in Software Architecture o 135

Box-and-Line Diagram

Layer 1

Layer 3

UML Component Diagram
<<subsystem>> 2 |
RemoteMonitorSystem
IMonitorPlan IMonitorPlan
<<component>> {'
i SatcomLayer {J\ <<delegate>>

o ISatcom @)
\r | ISecure

<<component>> £]

SecurityLayer

o o
\[JISecure | IApplication

<<component>> £]

ApplicationLayer
O IApplication /CJ)\
\[/ | IHardware del

<<delegate>>
<<component>>
HardwareLayer $:| C] C
INodeMonitor INodeMonitor

FIGURE 4.12
The layered architectural pattern.

TABLE 4.12
Quality Attributes Associated with the Layered Architectural Pattern

Quality Description

Modifiability =~ Dependencies are kept local within layer components. Since components can access other
components only through a well-defined and unified interface, the system can be modified
easily by swapping layer components with other enhanced or new layer components.

Portability Services that deal directly with a platform’s application programming interface (API) can be
encapsulated using a system layer component. Higher-level layers rely on this component for
providing system services to the application; therefore, by porting the system’s API layer to
other platforms the systems become more portable.

Security The controlled hierarchical structure of layered systems allows for easy incorporation of
security components to encrypt or decrypt incoming or outgoing data.

Reusability By compartmentalizing each layer’s services, they become easier to reuse.

136 « Software Engineering Design

I ——
CHAPTER SUMMARY

During software architecture, designers spend a great deal of time devising architectural solu-
tions that provide the necessary components and interfaces to achieve systems’ requirements.
At the architectural level, common patterns have emerged that describe the elements of the
system and the quality characteristics of those elements. These patterns, also known as archi-
tectural styles, have emerged as the mainstream approach for achieving reuse of successful
design solutions at the architectural level and are fundamental to the efficient creation of soft-
ware architectures. Architectural patterns provide generic, reusable architectural solutions,
documented in a way that can be easily understood and applied to new problems requiring
similar architectural features. Decisions based on architectural patterns benefit from years of
documented experience that highlights the solution approach to given problems, the benefits
of these approaches, and the consequences of designing the system with a particular style.
Architectural patterns can be classified by the type of systems they support, such as
data-centered, data-flow, distributed, interactive, and hierarchical systems. Examples
of architectural patterns include blackboard, pipe and filter, client-server, broker,
model-view—-controller, main program and subroutine, and layered patterns. These patterns
allow designers to efficiently conduct principled analyses of the layout of subsystems and
components that need to communicate in the operational system. During the past decade,
many styles and patterns for software architecture have been researched and published.
Many of these patterns have been identified in pattern catalogue books; some of these are
common design patterns in enterprise-level systems, while others address specific needs
such as distributed systems. Identifying and designing using architectural patterns can
improve the efficiency of the development process and the quality of the final system.

REVIEW QUESTIONS

1. Whatis an architectural pattern, and how does it differ from detailed design patterns?

2. List and explain the different types of systems discussed for which architectural
patterns can be employed.

3. Are software architectures restricted to only one architectural pattern for its logical
design, or can they include more than one architectural pattern? Explain with examples.

4. Can architectural patterns lead to direct translation to code? Explain.

5. Explain the following architectural patterns, and provide an example of a system
(different from the one discussed in this chapter) appropriate for them. Explain how
these patterns support particular quality attributes.

a. Blackboard

b. Pipe and filter
c. MVC

d. Layered

Patterns and Styles in Software Architecture o 137

6. Compare and contrasts the following architectural patterns:
a. Client-server vs. broker
b. Layered vs. main program and subroutine
7. How can the pipe and filter architectural pattern enhance the performance of software
systems?
8. How can the MVC enhance a system’s modifiability, usability, and reusability?
9. How can the broker pattern enhance a system’s interoperability?
10. How can the layered pattern support a system’s security and portability?
11. Explain how using design elements from different architectural views can support
the use of architectural patterns for providing a complete picture of an architectural
design element.

CHAPTER EXERCISES

1. Find a computer using the Microsoft Windows operation systems and Microsoft Office
Word. Perform a Google search on how to split the window horizontally of the par-
ticular version of Word that you are executing so that you can split a document hori-
zontally into two windows that mirror each other. Position each window on the same
document location, and begin typing in the topmost window. As you type, you should
see the bottom window getting updated in real time to incorporate the newly entered
text. Explain how architectural patterns can help achieve this capability. Provide spe-
cific examples of architectural patterns that can be used for this capability.

2. Using the UML tool of choice, create the logical design using patterns for a portable,
interactive, and distributed software system. State your assumptions, and accompany
your design with a rationale of why the particular patterns were selected and how they
support the required quality attributes. Feel free to design around the patterns to pro-
vide other views and to present a whole picture of the system design.

REFERENCES

Alexander, Christopher, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid Fiksdahl-King, and Shlomo
Angel. A Pattern Language: Towns, Buildings, Construction. New York: Oxford University Press, 1977.

Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in Practice, 2d ed. Boston: Addison-Wesley, 2003.

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. Pattern-Oriented
Software Architecture: A System of Patterns. West Sussex, UK: Wiley, 1996.

Clements, Paul, Rick Kazman, and Mark Klein. Evaluating Software Architectures. Santa Clara, CA: Addison
Wesley, 2001.

Pressman, Roger S. Software Engineering: A Practitioner’s Approach, 7th ed. Belmont, CA: McGraw-Hill, 2010.

Qian, Kai, Xiang Fu, Lixin Tao, Chong-Wei Xu, and Jorge L. Diaz-Herrera. Software Architecture and Design
Illuminated. Sudbury, MA: Jones & Barlett, 2009.

Taylor, Richard N., Nenad Medvidovic, and Eric M. Dashofy. Software Architecture: Foundations, Theory, and
Practice. Hoboken, NJ: Wiley, 2009.

5

Principles of Detailed Design

CHAPTER OBJECTIVES

 Understand the role of detailed design within the software design phase

» Become familiar with detailed design tasks during software design

o Become familiar with the detailed design process

o Understand fundamental concepts of object-oriented concepts and
principles for component designs

« Understand the role of documentation in software design and how to
create a software design document

CONCEPTUAL OVERVIEW

The previous chapters presented the software architecture activity as a
macrodesign approach for transforming software requirements into design
elements that specify the main components and interfaces of software sys-
tems. This holistic black-box approach is essential for establishing the initial
design and a framework of quality that guides and supports the detailed
design and construction of software systems. During detailed design, the
design process continues where software architecture leaves oft for pro-
viding a white-box approach to design, where details left undefined and
deferred to downstream designers are created to define the necessary details
for fully specifying the internal structure and behavior of components iden-
tified during architecture. These detailed designs fill the gaps in the design
and provide a complete picture of how the system achieves its functional
requirements within the quality framework established by the software
architecture. Detailed design decisions can significantly shape the system’s
quality properties (e.g., portability, performance, usability); therefore, they

139

140 « Software Engineering Design

must exist within the bounds of the software architecture. In some cases, where modeling
tools are used to generate code, detailed designs can also significantly impact the quality
properties of the construction phase. Upon completion of the detailed design activity, the
system’s design is sufficiently complete so that it can be formally documented, reviewed,
and approved by the system’s stakeholders, which marks the end of the design phase.

WHAT IS DETAILED DESIGN?

The detailed design activity begins once the software architecture is specified, reviewed, and
approved by all stakeholders in the project. During detailed design, logical components are
refined and their interactions are modeled to verify the validity of their structural compo-
sition. The execution of the detailed design activity requires a shift from the macrodesign
approach to the microdesign approach to further decompose and refine system components
into one or more fine-grained elements, functions, and data variables required for support-
ing the internal structure and behavior of components that meet assigned roles during the
software architecture activity. IEEE (1990, p. 26) defines detailed design as

1. The process of refining and expanding the preliminary design phase of a system or
component to the extent that the design is sufficiently complete to be implemented.
2. The result of the process in 1.

Extending the IEEE definition, detailed design is both the process of refining the soft-
ware architecture to reach a point where construction can begin and the result of such
process. The detailed design activity is the last major design effort before the software con-
struction phase. A fundamental difference between architectural and detailed design is
that whereas the former is concerned mostly with defining the major components of the
system and their interfaces, the latter is concerned with how these components realize their
assigned responsibility. This suggests that architectural designs employ a holistic approach
to software system design, which emphasizes system quality, while detailed design focuses
on particular components within the system, which emphasizes the functional aspects of
a system. This fundamental difference is essential in determining what and how work is
performed during these activities. For example, whereas the component notation provides
an appropriate mechanism for designing logical architectures, their level of abstraction
is inappropriate for modeling detailed design elements. Therefore, in object-oriented sys-
tems, classes and interfaces become the major unit of design work. This, in turn, influences
the type of analyses performed during both activities. The modeling and analyses that
occur during architecture help answer the questions of what needs to be developed, and by
themselves these models and analyses cannot be used to build directly a working software
system. Detailed design goes deep into each component to define its internal structure and
behavioral capabilities, and the resulting design leads to natural and efficient construction
of software. Clements, Bachmann, Bass, Garlan, Ivers, Little, Nord, and Stafford (2002, p. 5)
differentiate between architectural and detailed design as follows:

Principles of Detailed Design « 141

Architecture is design, but not all design is architecture. That is, many design decisions are
left unbound by the architecture and are happily left to the discretion and good judgement of
downstream designers and implementers. The architecture establishes constraints on down-
stream activities, and those activities must produce artifacts—finer-grained design and code—
that are compliant with the archtiecture, but architecture does not define an implementation.

Detailed design is closely related to architecture and construction; therefore, successful
designers (during detailed design) are required to have a full understanding of the system’s
requirements and architecture, design strategy, programming language, and methods and

processes for software quality control. Detailed designers must also work closely with stake-
holders (e.g., hardware team, test team, quality team, management) to provide designs that
accommodate multiple concerns appropriate to the detailed design activity. This requires
a holistic vision—different from that of the software architecture designer—to envision
detailed designs and how they relate to requirements, architecture, and construction, as
presented in Figure 5.1.

The conceptual model presented in Figure 5.1 shows interrelationships that detailed
design elements have with other architectural or construction elements. In this context,

FIGURE 5.1

Designer’s Mental Model

Requirements,
Architecture

Detailed

‘ Design

>

Requirements, Detailed Design Code
Architecture

- ~ - AN
B D
a7~ gl
o o D3
LT D
Al
,
B8
£ DD
~
B
N N
5. n

AAO®

Context of detailed design activity.

142 « Software Engineering Design

detailed designs provide the essential structure that acts as bridge connecting the work
performed during architecture and construction. Detailed designs need to incorporate
design alternatives that support the requirements and quality attributes (e.g., testability,
maintainability, modifiability) identified in previous phases and activities of the software
engineering life cycle. When presented with requirements or concerns from other stake-
holders, detailed designers are able to visualize designs that provide the required struc-
tural and behavioral capabilities for achieving those needs. As they work to shape new
or existing designs, they are also capable of visualizing the executing code to help them
formalize the design. When given code, such as the case during the maintenance phase,
detailed designers are required to envision detailed designs or even reverse engineer the
code into designs and to understand how both code and designs relate to the original soft-
ware requirements. This mental model allows designers to understand the complex inter-
dependencies that exist among these different life cycle phases and how requirements and
quality attributes are achieved throughout the software project. Achieving such visions
from designers helps in all aspects of designing high-quality, large-scale software systems.

I ——
KEY TASKS IN DETAILED DESIGN

It can be argued that the detailed design phase is where most of the problem-solving activi-
ties occur in software projects. Consider the case where formal design processes are fol-
lowed so that the requirements phase is followed by the architectural design activity, which
is followed by detailed design. In many practical applications, the architectural design
activity defers complex problem solving to the detailed design activity mainly through
abstraction. In some cases, even defining the requirements is deferred to the detailed design
phase, leaving the detailed design activity as the gatekeeper for ensuring that the system’s
specification and design are sufficiently complete before construction begins. Deferring
such problems to the construction phase is a recipe for failure, since this typically results
in higher cost (Clements, Kazman, and Klein 2001). When done properly, detailed designs
should provide a ready-made solution that eases the construction process. To achieve this
during detailed design, designers must fully understand requirements assigned to com-
ponents and architectural decisions deriving detailed design; they must design complex
interfaces, identify design patterns, evaluate and validate detailed designs, generate code
from the models, and establish policies for ensuring design synchronicity throughout the
construction phase.

DETAILED DESIGN PROCESS

The detailed design process is carried out to identify how architectural components are
designed with enough detail so that their implementation using programming languages

Principles of Detailed Design « 143

can follow without much effort. Many process flows can be identified and used to carry
out and manage detailed design activity, including iterative, sequential, and spiral
(Pressman 2010). Regardless of the particular process flow selected for a given project,
carrying out the detailed design activity requires the following fundamental tasks:

 Understanding the architecture and requirements
o Creating detailed design

« Evaluating detailed design

« Documenting detailed design

« Monitoring and controlling implementation

UNDERSTANDING THE ARCHITECTURE AND REQUIREMENTS

Unlike the software architecture activity, where the complete set of system requirements
are evaluated and well understood, designers during the detailed design activity focus
on requirements allocated to their specific components. In some cases, requirements can
cross-cut several components; therefore, communication with other designers is essential
to coordinating the design solution without duplicating work. Besides addressing require-
ments passed on from the architectural activity, it is also common during detailed design
to derive new software requirements as knowledge of the system is enhanced throughout
the detailed design activity. Derived requirements are requirements based on higher-level
specifications created to address a finer-grained function or process during detailed design
and construction. These requirements can help standardize operations for higher-level
requirements identified in previous phases and activities of the project. Consider an
embedded real-time software system broken down into five different major subsystem
components, each executed on different target hardware and broken down further into
numerous other components. During requirements, the functional capability to log events
in the system is specified. To carry out this function of the system, a detailed design activ-
ity is done to create a common event logger so that all components in the systems rely on
a standardized way for logging events in the system. Because of the resource-constrained
environment of the particular embedded system, simply having one functional require-
ment to log events provides insufficient specification for the desired behavior. Consider the
case where the event logger is designed to log all events in the system to a file without limits
or policies to manage how events are stored, purged, and so forth. In such a resource-
constrained environment, enforcing and verifying policies for such behavior is essential,
since a large number of events, depending on the target resources, can slow or bring the
system down. In such cases, deriving requirements that specify these policies (e.g., maxi-
mum number of events logged, event purge policy such as first-in, first-out (FIFO), last-in,
last-out (LIFO)) provides essential items of verification for the system. These requirements
are imposed not by customers but by the design team to enforce a desired capability of the
software or process to develop the software. When conducting the detailed design activity,

144 « Software Engineering Design

assigned requirements for the components have to be well understood, and, when appro-
priate, derived requirements need to be specified before construction begins.

Besides understanding requirements during detailed design, understanding and adhering
to the software architecture are essential for building high-quality systems. The concept of
design synchronicity was presented in Chapter 3 as the degree to which the software imple-
mentation conforms to its design. To maintain synchronicity throughout the development
effort, all decisions made during detailed design must conform to the system’s identified
architecture. To achieve this, software processes must be in place for monitoring and con-
trolling detailed designs throughout. Unmanaged deviations from the software architec-
ture during detailed design and construction can reshape the properties of the system and
affect its overall capability to meet requirements. Therefore, detailed designers need to work
closely with each other and with software architects to ensure that their design choices are
consistent with the overall system plan. This is especially true during maintenance phases,
where deviations may occur long after the initial system design is devised.

I ——
CREATING DETAILED DESIGNS

After requirements and the software architecture are well understood, the detailed design
of software components can begin. The detailed design consists of structural and behav-
ioral designs required to specify components sufficiently so that they can be consistently
constructed by one or more programmers. This entails various design tasks, including
refining or creating components’ interface design internal structure, and behavioral
design; identifying design patterns; applying design principles; adopting naming conven-
tions; and evaluating and documenting detailed designs. These are discussed in more
detail throughout the following sections.

Interface Design

Interface design refers to the design activity that deals with specification of interfaces
between components in the design (Sommerville 2010). Interface design can be focused on
specifying the interfaces used internally within software components or externally across
software components. In both cases, interfaces provide a standardized way for specifying
how services are accessed and provided by software components. Interface design allows
subsystems to be designed independently and in parallel; therefore, it is typically done first
within the detailed design step.

External Interface Design

During the software architecture activity, externally visible interfaces are specified. The
realization of these interfaces may involve much detailed design work before they can
be used in construction. These may include a customized binary message definition,

Principles of Detailed Design « 145

Extensible Markup Language (XML) schemas and messages, or other interfaces required
for specifying how components interact with other external components. Depending on
the interface design effort, a formal interface document can be created and managed inde-
pendently, similar to the requirements specification or design document. This document,
known as the interface control document (ICD), is an important piece of documentation
that serves as a written contract between components of the software system to specify how
they will communicate. The ICD defines the important data and protocols used for com-
munication between components, therefore providing developers during construction the
required information needed to write the software.

Internal Interface Design

The Internal interface definition establishes policies for subsequent development in the
software design. It provides a way for abstracting common operations so that problems
during detailed design can be reasoned in terms of these interfaces, which provides a
higher level of abstraction for specifying rules that apply to a larger set of entities that
rely on them. In object-oriented systems, Unified Modeling Language (UML) can be used
to create interface designs using class diagrams that include the <<interface>> stereotype
in the name section of the class, as presented in Chapter 2. These help identify the major
classes and functions that allow intercomponent communication and provide the rules
of communication that must be followed by other classes that implement these interfaces
during the detailed design activity.

Graphical User Interface Design

Visual designs have a major role in the success or failure of software systems. Systems that
meet functional requirements but are not usable cannot succeed. During detailed-design,
the initial Human Computer Interface (HCI) design identified during the software archi-
tecture activity is refined and the appropriate design for interfacing the Graphical User
Interface (GUI) to the whole system is done. During detailed design, all aspects of the
GUI—such as modes, navigation, visual designs (e.g., color, icons, fonts), response time and
feedback, design modalities (e.g., forms, menu-driven), localization, internationalization,
and general human-computer design principles—are fine-tuned.

Designing Internal Structure of Components

Component design is not restricted to object-oriented systems; however, the discussion
and approach presented in this section and throughout the book focus on object-oriented
systems. Other forms of component design can be employed based on the design strategy,
such as the structured design strategy. In object-oriented systems, the internal structure
of components is typically modeled using UML through one or more class diagrams.
Component design refers to the detailed design task of defining the internallogical structure
of components. That is, the internal data structures, algorithms, interface characteristics,

146 « Software Engineering Design

and communication mechanisms of all components are all defined during component
design. For this reason, component design provides the most significant mechanism for
determining the functional correctness of the software system and allows for evaluating
alternative solutions before coding begins.

A multitude of principles, guidelines, and patterns exist for creating quality component-
level design. These principles guide engineers to make appropriate decisions when refining
components into other components and classes and defining the relationships between
them. The work produced during component design serves as strong indication of the
functional success of the software system. Before these concepts can be understood, it is
necessary to understand the basic concepts in component design of object-oriented systems.
These include (Gamma et al. 1995):

Classes and objects

« Interfaces, types, and subtypes
o Dynamic binding
Polymorphism

Classes

The main unit of composition in object-oriented component design is the class. Chapter 2
introduced classes as modeling entities in UML class diagrams. However, before becoming
efficient during component design, a clear distinction between classes and objects needs to
be made. A class is a specification that defines the data and services used and provided by
particular objects. There are two types of classes in object-oriented component designs, as
presented in Table 5.1.

Concrete classes specify the data, services, and implementation of those services required
for instantiating objects. Concrete classes provide complete information that supports
instantiation of objects at run time that have state and behavior. On the other hand, abstract
classes are special types of classes that contain one or more abstract methods, which have
no implementation. Because abstract methods contain no implementation, abstract classes
cannot be instantiated at run time. A special type of abstract class is one where all methods
are abstract. These are equivalent to Java interfaces and the pure virtual classes in C++.
As abstract classes, interfaces and pure virtual classes cannot be instantiated at run time.
At first glance, it seems logical to think that classes that cannot be instantiated serve little to
no purpose in software designs. However, these classes provide powerful mechanisms for
creating elegant and reusable designs that can lead to increased maintainability, reusability,

TABLE 5.1

Types of Classes in Component Designs

Type Description

Concrete Ordinary class for specifying object’s data and behavior
Abstract Special class that contains at least one abstract method

Principles of Detailed Design « 147

and eflicient software evolution. Abstract classes provide the means for designers to create
contracts that dictate the use of interfaces throughout software designs. These contracts are
enforced by compilers and are founded on the principles and concepts of interfaces, types,
subtypes, dynamic binding, and polymorphism.

Interfaces, Types, Subtypes, Dynamic Binding, and Polymorphism

In a broad sense, an interface is the set of functions that specify the services provided by
objects of a particular type. An interface method is simply one method that belongs to an
object’s interface. The concepts of types and interfaces are interrelated; that is, since an
interface specifies the services provided by a particular type, it follows that a particular
type refers to a particular interface. In popular object-oriented systems, the concept of
types is used interchangeably with classes. A subtype refers to an interface that includes
the interface of another type, referred to as its supertype (Gamma et al. 1995). This con-
cept is reflected in object-oriented languages as inheritance. At design time, the concepts
of interfaces, types, and subtypes are used to create software that is extensible at run time,
mainly through the techniques of dynamic binding and polymorphism. Consider the
specification of an interface using an abstract class, which, as discussed before, cannot
be instantiated. In such cases, abstract classes are useful for defining the common set of
services provided by a specific type. Through inheritance, one or more subtypes can be
specified at design time to provide implementations for the defined interfaces, therefore
creating concrete classes that share the same interface, as defined by the abstract class.
By designing classes this way, different objects can be instantiated at run time to share the
same interface but to provide completely different implementations (Gamma et al. 1995).
Consider the type Shape with a single interface method named draw(). Now consider
two other subtypes (inheriting from Shape), named Circle and Rectangle. By defi-
nition, since Circle and Rectangle are subtypes of Shape, then they share its inter-
face, which in this example includes the draw() interface method. This scenario is easily
designed in modern programming languages by specifying Shape as pure virtual class
in C++ or interface in Java. Both Circle and Rectangle would be designed using a
(UML) realization relationship with the Shape type. Since Circle and Rectangle are
meant to be concrete classes, they both must provide an implementation for the draw ()

interface method; otherwise, they would both be abstract classes that cannot be instanti-
ated. With this framework in place, portions of the software at design time can be specified
using the Shape interface, which both Circle and Rectangle support. At run time,
services specified by the Shape interface are carried out by the particular run-time object
attached to the request, which could be objects of either Circle or Rectangle sub-
types. This way, when calling upon the object’s draw interface method, the software can
behave differently at run time by drawing to the screen either a circle or a rectangle.

The mechanism for providing the run-time association between an object and an inter-
face method is known as dynamic binding (Gamma et al. 1995). This allows objects of the
same type hierarchy to behave differently at run time simply by associating the interface
method call to the appropriate run-time instance. This capability is known as polymorphism.

148 « Software Engineering Design

Interfaces, types, subtypes, dynamic binding, and polymorphisms are essential to achieving
efficient designs of components in object-oriented systems and are the fundamental mecha-
nisms for achieving most object-oriented design principles and patterns.

Objects

Whereas classes are design-time entities, objects are run-time entities; that is, objects are
the manifestation of classes and therefore occupy space and time during software exe-
cution. For classes to be of use in executing programs, objects have to be instantiated.
Instantiation is the process of manifesting a class in the computer’s memory; this manifes-
tation is referred to as an object of that class. Therefore, one class can be manifested in the
computer’s memory as multiple objects, since we can instantiate a class numerous times.
This concept is presented in the conceptual model presented in Figure 5.2.

As seen, the code in the main function of the ProgramDriver class instructs the
compiler to instantiate three different objects of type ListNode type. In this example,
the specification for objects of type ListNode is provided by the ListNode class and
instantiation of objects of that class is done by employing the new keyword. When the
compiled and built version of the code is executed, three different objects of the same
class—together with the object of type ProgramDriver—will occupy some space in the
computer’s memory. These three objects of type ListNode occupy specific locations in
memory and are addressable by their own memory address. This is possible because each
object has its own identity. Notice also in the figure that the ProgramDriver object has
links to the three different node objects, since it has variables holding the addresses to

// The one and only specification
// of the ListNode type.
class ListNode {

deO:
) ,? noaeOne
4
. . this = 0x00ffaabb
public class ProgramDriver { ,’ 15 X aa
1
public static void main(String[] args) { ,' L7 nodeTwo
1 7
. . | / this = 0x0fadcdbb
// Instantiate three objects of the vl
. \
// ListNode type. “ \
ListNode nodeOne = new ListNode(); [N R nodeThree
ListNode nodeTwo = new ListNode(); ‘\ \\ ' this = Oxdeabcdbb
1 \
} \ Vo
U
} ¢ o &
programDriver

this = 0x00ffaabb

@ Compile and Build into Executable \

|0100011010101010110 |

Memory for Executable

| |
! |
| |
! |
| |
| |
! |
| |
! |
| |
! |
! |
| |
! |
| |
I \ |
ListNode nodeThree = new ListNode(); I \ v |
| |
! |
| |
! |
| |
! |
! |
| |
! |
| |
! |
| |
| |
Execute in Computer : :

> Computer Memory

FIGURE 5.2
Conceptual model for classes and objects.

Principles of Detailed Design « 149

TABLE 5.2

Characteristics of Objects

Characteristic Description

Attributes The object’s data

Behavior The object’s designed behavior, as specified by its public functions
State The current state of the object, as defined by the values of its data
Identity Their own individual memory address

Responsibilities Two objects of the same class can be instantiated for specific purposes

these objects; therefore, programDriver can always access these objects through these
variables (i.e., nodeOne, nodeTwo, nodeThree). Unlike classes, objects exist at run time and
have specific characteristics such as the ones presented in Table 5.2 (Douglas 1999).

When designing at the component level, careful class specification is essential to allow
objects at run time to behave in such a way that flexibility and reusability are added to
the software. This in turn allows component designs to provide the means to allow the
software to evolve gracefully over time and to become more reusable. Designing efficient
component structures allows today’s software to adapt to future technology or new system
functionality. Therefore, when designing component-level software, careful attention has
to be paid in the application of fundamental detailed design principles.

Design Principles for Internal Component Design

Several principles have been identified throughout the literature that help in making
component-level design decisions, including

« The open-closed principle (OCP)
o The Liskov substitution principle (LSP)
o The interface segregation principle (ISP)

Open-Closed Principle

The OCP is an essential principle for creating reusable detailed designs. It promotes designs
that allow changes to be made by extension of designs rather than by modification of exist-
ing code. The main idea behind the OCP is that code that works should remain untouched
and that new additions incorporated to address new concerns should be extensions of the
original work. The OCP was originally coined by Bertrand Meyer (1997) and states that
software designs should be open to extension but closed for modification. At first glance,
the OCP sounds contradictory since it promotes designs that are closed to modification.
However, in the OCP context, being closed to modification does not mean that designs
cannot be modified; it means that modifications should be made as extensions to the
design, by adding new design and code instead of modifying existing working designs and
code (Marin 2003). This is possible in object-oriented systems through the use of abstract
classes and interfaces. Consider a gaming system that includes several types of terrestrial
characters, which can roam freely over land, as shown in Listing 5.1.

150 « Software Engineering Design

Listing 5.1: C++ Code for the Gaming System

// The terrestrial character.
class TerrestrialCharacter {

public:
// Draw the character on the screen.
virtual void draw() { /*Code to draw the terrestrial character.*/

}

// Make the character run!
virtual void run() { /* Code to make the character run.*/

Vi

// The game engine responsible for managing the game.
class GameEngine {

public:
// Add the character to the screen.
void add(TerrestrialCharacter* pCharacter) {

// Display the character.
pCharacter->draw() ;

// Make the character move!
pCharacter->run() ;

}
Vi

As seen, the GameEngine class is designed with an interface method that accepts
references (i.e., pointer) to objects that share the TerrestrialCharacter
interface. When an object of type TerrestrialCharacter is passed into the
addCharacter(...) method, the method draws it to the screen and calls the char-
acter’s run() method, which activates the character to move over land in a random
pattern. This design works fine for all kinds of terrestrial characters; however, it does
little to support efficient addition of other types of characters to the game. This is true
because the design of the GameEngine class relies on the interface of the concrete
TerrestrialCharacter class. Consider the case where characters that move dif-
ferently—for example, aerial characters or aquatic characters—are added to the gam-
ing system design. In such cases, the addCharacter method needs to be modified to
account for these new types of characters. Therefore, the design of the GameEngine
class is not closed for modification. That is, the code inside the GameEngine class
would have to change, which violates the OCP. To prevent this, the OCP promotes and
relies on an indispensable design principle in object-oriented systems, which states
that software designs should rely on interfaces and not on implementations (Gamma

Principles of Detailed Design « 151

Listing 5.2: C++ Code for the Character Interface

class Character ({

public:
// Get the type of character.
virtual string getType() = 0;

// Draw the character on the screen.
virtual void draw() = 0;

}i

etal. 1995). Consider the addition of the Character” interface to the gaming system’s
design, as presented in Listing 5.2.

As seen, the Character class is abstract, as specified by the two pure virtual methods
getType() and draw(). The character interface can be used to define interface methods
that are common to all characters in the gaming system. With this interface in place, the
aerial character is added to the design by implementing the Character interface, as
presented in Listing 5.3.

Listing 5.3: C++ Code for the AerialCharacter Class

class AerialCharacter : public Character {

public:
// Get the type of character.
virtual string getType ()

// Return the type of character.
return “aerial”;

}

// Draw the character on the screen.
virtual void draw()

// Code to draw the aerial character.
cout<<”drawing aerial character!\n”;

}

// Make the character fly!
virtual void fly() {

// Code to make the character fly.
cout<<”character flying!\n”;
}
bi

" For those of you interested in compiling the code, e.g., the Character code, you will need to include in your code appro-
priate libraries and namespace. In this case, to use the st ring type, you will need to include <st ring> and namespace
std to compile the Character class. This approach is generally followed throughout the rest of the book.

152 « Software Engineering Design

Listing 5.4: C++ Code for Redesigned TerrestrialCharacter Class
class TerrestrialCharacter : public Character ({

public:
// Get the type of character.
virtual string getType () ({

// Return the type of character.
return “terrestrial”;

}

// Draw the character on the screen.
virtual void draw()

// Code to draw the terrestrial character.
cout<<”drawing terrestrial character!\n”;

}

// Make the character run!
virtual void run()

// Code to make the character run.
cout<<”character running!\n”;

}
bi

As seen, the AerialCharacter class implements both getType() and draw() in
terms ofaerial characters. TheAerialCharacter classalso specifies the interface method
f1y () to make the character fly in random patterns during the character’s activation in the
game. With the Characterinterfaceadded tothedesign,the TerrestrialCharacter
is now modified to implement the newly added interface so that anywhere in the design
where objects sharing the Character interface are expected, both terrestrial- and
aerial-type objects can be used. The redesigned TerrestrialCharacter class, which
now implements the Character interface, is presented in Listing 5.4.

With this new framework in place, consider the redesign of the GameEngine from
Listing 5.1, presented in Listing 5.5. Two major modifications have been made to the
GameEngine design. First, the add() method is modified to rely on the Character
interface instead of on concrete classes; second, the code inside the add() method now
accounts for different types of characters. To support this new behavior, the getType()
method has been added to retrieve the type of the character at run time so that the code
inside the add() method can determine whether to make characters run or fly, depending
on their type. This fixes the problem of not being able to handle various types of characters
with different movements. This is an improvement from the first design version; however,
the design still violates the OCP. Anytime that a new character is added to the game, the

Principles of Detailed Design « 153

Listing 5.5: C++ Code for the GameEngine Class

class GameEngine {

public:
// Add a character to the game.
void add(Character* pCharacter) {

// Draw the character on the screen.
pCharacter->draw() ;

// If aerial, make it fly, otherwise, make it run.
if (pCharacter->getType() == “aerial”) {

// Downcast the pointer to an aerial character.
AerialCharacter* pAerial = dynamic cast<AerialCharacter*>
(pCharacter) ;

// Assume a valid pointer and make the character fly!
pAerial->fly () ;

}

else {

// Downcast the pointer to a terrestrial character.
TerrestrialCharacter* pTerrestrial =
dynamic cast<TerrestrialCharacter*s> (pCharacter) ;

// Make the character run!
pTerrestrial->run() ;

} // end if statement.
} // end add function.

Vi

add() method needs to be modified to add another conditional statement to test for
the new character and call the appropriate method to make the new character move. This
is a direct effect of designs that violate the OCP. The gaming system’s design is redesigned
one last time to make it conform to the OCP, as presented in Listing 5.6. As seen, to make
the design OCP-compliant, better abstractions are introduced to the Character interface,
which now includes the move() interface method.

A major design decision made in the redesign of the gaming system includes the addi-
tion of the move () interface method to the Character interface. This provides a higher
level of abstraction that allows the design to appropriately abstract moving behavior for all
characters in the system. By introducing a higher level of abstraction that is appropriate
for characterizing the behavior required by characters (e.g., walk, run, swim, or fly), the
design now allows the GameEngine class to rely on this abstraction to support multiple
existing and future characters in the game, as seen in Listing 5.7.

154 « Software Engineering Design

Listing 5.6: C++ Code for the OCP-Compliant Gaming System’s Design

class Character {

public:
// Draw the character on the screen.
virtual void draw() = 0;

// Make the character move.
virtual void move () = 0;

bi

// The aerial character.
class AerialCharacter : public Character {

public:
// Draw the character on the screen.
virtual void draw() { /* Code to draw the aerial character. */ }

// Make the character fly.
virtual void move() { /* Code to make the character fly! */ }

}i

// The terrestrial character.
class TerrestialCharacter : public Character ({

public:
// Draw the character on the screen.
virtual void draw() { /* Code to draw the terrestrial character. */ }

// Make the character run.
virtual void move() { /* Code to make the character run! */ }

}i

With the redesign in place, the GameEngine can be used throughout to draw and
activate all types of characters that share the Character interface, as seen in Listing 5.8.

Consider the addition of an aquatic character under this new gaming system’s design.
In the OCP-compliant case, the new character is added with new code, by implementing
the Character interface. At run time, objects that share the Character interface can
be passed into the GameEngine, which draws and activates the new character using the
interface methods specified by the Character interface. The OCP-compliant design of
the gaming system with all three supported characters is presented in Figure 5.3.

An important caveat to the OCP is that no design is 100% closed for modification. At
some point, some code has to be readily available for modifications. The main idea of the
OCP is to locate the areas of the software that are likely to vary and encapsulate them, so

Principles of Detailed Design « 155

Listing 5.7: C++ OCP-Compliant Design for the GameEngine Class

// The game engine responsible for managing the game.
class GameEngine {

public:
// Add the character to the screen.
void add(Character* pCharacter) {

// Display the character.
pCharacter->draw() ;

// Activate the character... make it move!
pCharacter->move () ;

} // end add function.

bi

Listing 5.8: C++ Client Code that Uses the GameEngine Class

// Create the main game engine.
GameEngine game;

// Create the aerial character object.
AerialCharacter aerialCharacter;

// Crete the terrestrial character object.
TerrestrialCharacter terrestrialCharacter;

// Add all characters to the game.
game.add (&aerialCharacter) ;
game.add (&terrestrialCharacter) ;

that variations required to account for particular behaviors can be compartmentalized and
made interchangeable through polymorphism.

Skill Development 5.1: Open-Closed Design Principle

Using the IDE of choice, implement the OCP-compliant design presented in Figure 5.4.
Create a test driver function that uses the GameEngine to add all three characters to
the game. Once the code compiles and executes, design a fourth character and add it
to the game. How do you think the OCP made the addition of the new character easy
or hard? Explain.

156 « Software Engineering Design

Violates OCP
GameEngine TerrestrialCharacter
+add(pCharacter : TerrestrialCharacter*): void +draw(): void
+run(): void
Adheres to OCP
<<interface>>
GameEngine Character
------ >|
+add(pCharacter : Character*): void +draw(): void
+move(): void
A A A
AerialCharacter TerrestrialCharacter AquaticCharacter
+draw(): void +draw(): void +draw(): void
+move(): void +move(): void +move(): void

FIGURE 5.3
UML class diagrams for the OCP examples of the gaming system’s design.

Liskov Substitution Principle

The OCP from the previous section provides guidance to design extensible systems by
making designs open to extension but closed to modification. In some cases, it can be seen
that adhering to the OCP alone does not guarantee correct designs or designs that lead to
reusability throughout the system. To maintain the integrity of designs that adhere to the
OCP, designs must honor any implied contract between base classes and the components
that use them (Pressman 2010). This concept is captured by the LSP, which was originally
proposed by Barbara Liskov. The LSP serves as basis for creating designs that allow clients
that use derived classes to behave just as they would if they used the corresponding base
classes (Liskov and Guttag 2000). The LSP requires not only that signatures between base
and derived classes are maintained but also that the subtype specification supports reason-
ing based on the supertype specification (Liskov and Guttag 2000).

Consider the followingimplementation foranew EntryLevelTerrestrialCharacter
in the gaming system. The new entry-level character inherits from the terrestrial character
class, which provides the interface method move () and information about the semantics
of the operation through pre- and postcondition specification, as presented in Listing 5.9.

As seen, EntryLevelTerrestrialCharacter implements the move method to
make terrestrial characters fly, therefore providing a design that can adhere to the OCP but
that violates the LSP, since the semantics of the TerrestrialCharacter are not main-
tained. Anywhere in the design where objects of type TerrestrialCharacter are
called upon to move, the postconditions defined for this type specify that terrestrial char-
acters will walk or run. Upon extending this design with its entry-level subtype, characters

Principles of Detailed Design « 157

sd Activate Sensors)

sm : ScheduleManager| |s:Schedule HeatSensor : Sensor | |VibrationSensor : Sensor

1: timer expires!
[

2 : getMsg()

'
'

'

'

. L
'

| <<return>>
R

'

'

'

' 4:msgld = interpreltMsg()

il

[msgld == HEATJ\:/[SGJD]

alt

' 5 : activate()

e e e e e — e — |

FIGURE 5.4
Sequence diagram during detailed design.

no longer walk but fly. When designing systems that adhere to the LSP, subtypes must
conform both syntactically and semantically to their base types, so they can be replaceable
at run time throughout the software execution.

Interface Segregation Principle

Well-designed classes should have one (and only one) reason to change. When this concept
is violated, there is a strong indication that the interfaces provided by these classes are pro-
viding more information than they should, which makes designs harder to maintain and
reuse. The SIP states that “clients should not be forced to depend on methods that they do
not use” (Marin 2003). As example, consider incorporating into the gaming system a set of
different types of enemy characters, each with specific capabilities for moving over land,
under water, or over the air. In addition, a fourth type of enemy character is added to the
system, which incorporates moving capabilities from all other enemy characters into the
system (e.g., run, swim, and fly). To allow characters to be interchangeable at run time, these
characters are designed initially with a common EnemyCharacter base class, as seen in

158 « Software Engineering Design

Violates ISP
EnemyCharacter
+fly(): void
+run(): void
+swim(): void
1
AerialCharacter| |TerrestrialCharacter AquaticCharacter | |SuperCharacter
Adheres to ISP

AerialCharacterClient

TerrestrialCharacterClient

AquaticCharacterClient

\' \ \
<<interface>> <<interface>> <<interface>>
AerialCharacter TerrestrialCharacter AgquaticCharacter
+y(): void +run(): void +swin(): void
& A A
<<interface>>
SuperCharacter
+y(): void
+run(): void
+swim(): void
A
SuperCharacterClient

FIGURE 5.5
The interface segregation principle for the enemy character design.

the top part of Figure 5.5. Notice that since the SuperCharacter class requires behavior
from all other enemy characters, the EnemyCharacter base class is designed to con-
tain the implementations for all enemy characters in the system. This way, through inheri-
tance, the SuperCharacter can reuse all behaviors. What is wrong with this design?
For starters, the design violates the LSP, since only the SuperCharacter conforms both
syntactically and semantically to the base type. However, of more interest is the fact that
the interface for all other characters in the system has now been polluted with unnecessary
methods. As enemy characters and capabilities continue to increase, so will the complexity
of the EnemyCharacter interface, which in turn passes this complexity on to its derived
types. Designs such as this, where clients or subtypes are forced to depend and maintain
methods that they do not use, leads to designs that are hard to reuse and maintain.

The SIP implies that many client-specific interfaces are better than one general purpose
interface. For example, consider the redesign presented in the lower part of Figure 5.5. As

Principles of Detailed Design « 159

Listing 5.9: C++ Implementation for EntryLevelTerrestrialCharacter
class TerrestrialCharacter : public Character ({

// Pre-Condition: Character is drawn on screen.

// Post-Condition: Character roams around randomly over land, either
// walking or running.

virtual void move ()

//code to make the character walk or run.

}

// code here to implement all other interfaces.

class EntryLevelTerrestrialCharacter : public TerrestrialCharacter {
public:

// Override move to make the character fly!
virtual void move() {

// code to make the character fly.

}

// Code here to implement all other interfaces.

Vi

seen, the bloated EnemyCharacter interface has been dissolved and many client-specific
interfaces have been created. These interfaces are easier to maintain and reuse and lead to
easier adherence to both OCP and LSP.

Programming Styles in Detailed Design

During detailed design, styles are used to provide a consistent approach for structuring code
by specifying a standard for code elements, such as code formatting, naming conventions,
documentation, and many other programming language-specific conventions. The appli-
cation of styles is typically an activity that is emphasized during construction; however,
due to the capabilities of today’s modeling tools the application of styles is prevalent during
the detailed design phase. For example, when modeling tools are used in software proj-
ects, the detailed design activity is where, for example, classes, variables, functions, func-
tion parameters, and return types are specified. When modeling tools are used to generate
code, other construction styles such as formatting styles (e.g., spaces, bracket positioning)
can also be specified. In all of these cases, styles are used to specify the way these elements
appear in code in such way that it is consistent, readable, and therefore more maintainable.
Programming styles provide the means for ensuring consistency in code when designs are
transformed to code by different engineers.

160 « Software Engineering Design

Since programming styles are mostly programming language-specific, styles for one
particular programming language may not apply to another programming language.
However, some styles can be applied in a general fashion to a wide variety of modern pro-
gramming languages, in particular those that share similar language characteristics, such
as C++, Java, and C#. When creating detailed designs, the focus of programming styles can
be placed on the following:

« Type names
« Function names
o Variable names

Type names are names selected for defining types in a programming language. Examples
include classes, interfaces, structs, and enumeration. Type names are commonly specified
using nouns and the PascalCase style. Type names that refer to collections can be pluralized
to explicitly convey this information. Styles for interface names vary from most other type
names. Popular styles for interface names include the use of nouns, adjectives, the letter “I”
before the interface name, and a combination of all of these. Both the Java language and C#
use nouns and adjectives when specifying interface names. In addition, the C# language
employs the style of applying “I” before interface names. For custom-defined interfaces,
Vermeulen, Ambler, Bumgardner, Metz, Misfeldt, Shur et al. (2000) recommend using
nouns for interfaces that act as service declarations (e.g., Java’s ActionListener) and adjec-
tives for interfaces that act as description of capabilities (e.g., Java’s Runnable). Examples of
type name conventions are presented in Listing 5.10.

Function Names

Whereas type names typically use the PascalCase style in the naming convention, func-
tion names vary significantly between PascalCase and lowerCamelCase styles. Naming
conventions for function names also vary among the software engineering community,
with camps strongly supporting each side. This is largely due to the way in which differ-
ent programming languages use styles for function names. For example, it is not uncom-
mon for C++ programmers to support lowerCamelCase style, since every function name
in the standard template library uses this style. The same is true about Java programmers.
However, the C# programming language employs the PascalCase style for function names;
therefore, programmers coming from Java or C++ background may tend to disagree with
the C# convention. Consider, for example, the function calls for displaying text to the con-
sole in both Java and C#, as seen in Listing 5.11.

Notice how pintnln and WriteLine use different styles built into the Java and .NET
frameworks, respectively. Ultimately, projects should adopt a style for the function naming
convention that fits the project team and target programming language to maintain con-
sistency. If in doubt, follow the convention provided by the target programming language.

Another characteristic of quality function names is how well they conform to all other
parts of a function’s signature. Function names should be chosen so that they relate

Principles of Detailed Design « 161

Listing 5.10: Example of Type Name Conventions

// Class name for a single node.
class MobileNode {

bi

// Class name for a collection of nodes, therefore name is
pluralized.
class MobileNodes ({
public:
void addNode (int nodeId) ;
void removeNode (int nodeId) ;
MobileNode* getNode(int nodeld) ;

}i

// Another example of a collection name in C++.
list<MobileNode*> mobileNodes;

// Custom-defined interface name in Java.
interface SampleInterface {

}

// Custom-defined interface name in C#.
interface ISampleInterface {

}

// Built-in interface name in Java
java.util.Observable

// Built-in interface name in C#
System.ICloneable;

accurately to the main intention of the function and its return type. Function names
that accurately describe the function’s intent can be referred as action-conforming func-
tions. Alternatively, function names that do not are referred as action-contradictive;
these are function names that do not accurately relate to the function’s main intent.
Examples of action-contradictive and action-conforming function names are presented
in Listing 5.12.

Listing 5.11: Example of Both PascalCase and
lowerCamelCase for Function Names

// Displaying text to the console in Java.
System.out.println(“console message...”);

// Displaying text to the console in C#.
System.Console.WritelLine (“console message...”);

162 « Software Engineering Design

Listing 5.12: Action-Conforming and Action-Contradictive Function Names

// Function 1 Purpose: Display validity to the console.
void isvalid() {

if(/*some condition*/) {
cout<<”X is valid”;
else {
cout<<”X is invalid”;

}

// Function 2 Purpose: Display validity to the console.
void displayValidity () {

if (/*some condition*/) ({
cout<<”X 1is wvalid”;
else {
cout<<”X is invalid”;

}

// Function 3 Purpose: Display element count number to the console.
void hasElements () {
cout<<”Element count: 0”;

// Function 4 Purpose: Display element count number to the console.
void displayElementCount () {
cout<<”Element count: 0”;

}

// Function 5 Purpose: Determine if a function has elements.
bool hasElements() {
return true;

As seen in Listing 5.13, the identified purpose for Function 1 is to display validity status
to the console; however, this is not evident by the choice of function name isvalid.
Furthermore, the use of “is” in front of function names typically implies the return of a
Boolean value; therefore, clients may be more inclined to expect the function isvalid()
to provide information regarding the validity of an object by returning a Boolean
value instead of displaying a message to the console. The function name of isvalid is
action-contradictive, since it does not accurately reflect the function’s main intent, which
is to display validity to the console. The function name is made action-conforming in

Principles of Detailed Design « 163

Listing 5.13: Type-Contradictive and Type-Conforming Function Names
class Message {
public:

// Function 5: Type-contradictive function!
bool toString()

// Convert this object to a string.
// return true if success, false otherwise.

}

// Function 6: Type-conforming function.
string toString() {

// Convert this object to a string.
// return the string to the calling function.
}

Function 2 by changing the name to more accurately reflect its purpose. Similarly, the
action-contradictive name of Function 3 can be changed to action-conforming by chang-
ing it as presented in Function 4. In Function 5, the same name as in Function 3 is used
with a different purpose. In this case, the name results in an action-conforming type, since
the name accurately relates to the main intent of the function.

Type-conforming function names are those in which the function name relates and
conform to the function return type. Function names that are inconsistent with the
return type used are referred as type-contradictive. Examples of type-contradictive and
type-conforming function names are presented in Listing 5.13.

In the case of Function 5, the name toString implies the return of a string value;
however, the return type of the function is set to bool to determine if the conversion was
successful. Users of this function may come to expect the function to return a string value;
therefore, this function is type-contradictive. The type-conforming version of the function
is presented in Function 6.

The last commonly accepted style for function names includes the use of verbs to prop-
erly describe actions in the code. In code, function names are abstractions of some action;
therefore, the use of verbs as function names can result in code that maps accurately to
mental models used to reason about the code, as seen in Listing 5.14.

Variable Names

The styles for variable names also include the use of CamelCase; however, unlike styles for
type names, which are typically PascalCase, and unlike styles for function names, which

164 « Software Engineering Design

Listing 5.14: Example of Function Names Using Verbs

class Door ({
public:

void open(/*...*/) {
// Open door.

}

void close(/*...*/) {
// Close door.
}
Vi

typically vary according to programming language, variable names (including parame-
ter names) typically use the lowerCamelCase style. Two main reasons exist for preferring
lowerCamelCase for variable names. First, the difference in styles can be used to differen-
tiate between variables and types. Second, the lowerCamelCase style in variables can be
used to differentiate between variables and constants, which typically use PascalCase or all
uppercase, as seen in Listing 5.15.

As seen, two different styles are used for the constant max value. When the uppercase
style is selected, compound words are separated using the underscore “_” character.

Listing 5.15: Example of Styles for Variable Names
class Receiver ({

public:

// The style use for case differentiates types from variables.
void receive (Message* message) {

// Prefix used to identify member variables.
_message = message;
private:
Message* message;

Vi

// Style 1 for a constant.
const int MaxValue = 10;

// Style 2 for a constant.
const int MAX VALUE = 10;

Principles of Detailed Design « 165

In addition, Listing 5.15 presents a common style for identifying member variables, such
asthe message variable. Identifying member variables can improve readability of code
where function parameters use the same name as member variables. In such cases, a pre-
fix or suffix can be used to clearly identify the member variable, especially in large mem-
ber functions.

Modeling Internal Behavior of Components

Modeling interactions among entities designed during component design provides an
efficient approach for visualizing complex interactions required for achieving a particu-
lar system function. This helps verify the component designs before construction begins.
Sequence or communication diagrams can be employed to model objects representing
instances of classes, or roles representing prototypical instances of other entities, such as
classes (Booch, Rumbaugh, and Jacobson 2005). Both objects and roles can be connected
to model the exchange of messages using links or connectors, respectively, to carry out a
particular function of the design, typically as part of the system’s functional requirements.
During detailed designs, the majority of behavioral models include objects, since analyses
are made with detailed information that is already been designed. In many cases, class dia-
grams are accompanied by one or more behavioral diagrams to provide a complete picture
of the detailed design; both of these are reviewed and documented as part of the software
design document. An example of a detailed sequence diagram is presented in Figure 5.5.
The sequence diagram from Figure 5.5 presents the behavioral modeling of objects
belonging to three classes, namely, the ScheduleManager, Schedule, and Sensor classes. The
sequence diagram—identified by the sd keyword and name Activate Sensors—uses the
Frame notation, which provides the means to model combined fragments of interactions
throughout sequence diagrams. Each interaction frame inside the sequence diagram can
be classified using the operators presented in Table 5.3 (UML 2.3 Superstructure 2010).
The alt operator is used to denote a conditional statement, where more than one case
is examined. The opt operator is employed when a single optional fragment exists in a
sequence. When this occurs, the operations inside the fragment are either executed or
not. This differs from the alt operator, which includes additional conditional statements.
The loop operator specifies a repetition structure. The format of the loop operator is as

TABLE 5.3

Common Interaction Operators Used in Sequence Diagrams

Operator Description

seq Default operator that specifies a weak sequencing between the behaviors of the operands
alt Specifies a choice of behavior where at most one of the operands will be chosen

opt Specifies a choice of behavior where either the (sole) operand happens or nothing happens
loop Specifies a repetition structure within the combined fragment

par Specifies parallel operations inside the combined fragment

critical Specifies a critical section within the combined fragment

166 « Software Engineering Design

follows: loop (min, max), where min specifies the minimum bound of the loop and
max represents the maximum bound of the loop. When these are omitted, then it implies
that min = 0 and max = infinity. In these cases, the loop typically includes a separate inter-
action constraint, called a Guard, which evaluates to true or false. The loop will continue
only if the guard evaluates to true during execution regardless of the minimum number
of iterations specified in the loop. The Guard interaction constraint is in the format of
[<<constraint>>]. Guards can also be used in other interactions throughout sequence dia-
grams. For example, in Figure 5.5, a Guard is used to explicitly specify the condition used
to determine alternate paths in the alt combined fragment.

Design Components Using Design Patterns

In Chapters 3 and 4, the concept of patterns was introduced with an emphasis on software
architecture. During detailed design, a wide variety of design patterns exists for providing
solutions to recurring problems in the form of structural designs for components. Design
patterns are recurring solutions to object-oriented design problems in a particular context.
When used effectively, they can help improve efficiency in the detailed design effort by pro-
viding high-quality reusable solutions that can be applied in many practical applications.
To properly and consistently capture design patterns, detailed descriptions are required to
identify the patterns, the problem that they solve, and their solution approach.

Designing high-quality object-oriented software is hard. Typically, designers of systems
that evolve gracefully have time to develop their skills through years of experience. This
experience gives designers the ability to identify classes with the right granularity, appro-
priate relationships among the classes, and inheritance hierarchies that are reusable and
maintainable. Experience also allows designers to evaluate the effects of their design deci-
sion in the overall development of a working software system. The more we experience
the design of systems, the more knowledge and skill we acquire to design better systems.
Unfortunately, for novice designers, this experience can take years to acquire. Because
detailed design entails a great deal of problem-solving skills, novice designers can spend
much time trying to determine how to efficiently structure their designs in a way that the
system can exhibit a certain level of quality. Fortunately, many of the common design prob-
lems—those recurring over and over in different systems—have been solved already and
captured as design patterns. Design patterns are experience captured in a well-structured
and consistent format; they provide blueprints that guide designers to solve specific prob-
lems by specifying important design characteristics, such as the classes that need to be
created, their level of granularity, their relationships, and how all these classes and rela-
tionships work together to solve a problem. They provide this information in a generic
sense, so that they can be reused many times over, in different software systems, without
ever doing it the same way twice.

There are many benefits from studying and applying design patterns. First, they can
help designers and programmers become more efficient. It is now common to find built-in
support for design patterns in today’s popular language frameworks, such as Java and the
NET framework. Therefore, knowing about design patterns can help programmers come

Principles of Detailed Design « 167

up to speed quicker in these environments and enable them to quickly apply them to par-
ticular problems. In the work reported by Walter Tichy (2010), strong empirical evidence
suggested that merely documenting design patterns can already lead to an increase in pro-
grammer productivity and reduce errors during maintenance tasks. Design patterns also
help enhance communication during the problem-solving process by providing abstractions
of problem-solving techniques. Tichy’s work also shows evidence of improvements in
communication when team members shared design patterns knowledge. In his work, it was
noticed that weaker designers catch up with more experienced ones when using patterns.
Design patterns also serve as starting point for the design (or redesign) effort of software
components; therefore, they help reduce the time to design new systems. Finally, design
patterns provide examples of the application of many object-oriented design principles;
therefore, they can serve as practical methods for learning object-oriented design techniques.

Architectural versus Design Pattern

Before diving deeply into the topic of design patterns in the next chapters, it is impor-
tant to make a clear distinction between (detailed) design patterns—the topic of the next
two chapters—and architectural (design) patterns, which were covered in Chapter 4.
As mentioned in Chapters 3 and 4, architectural patterns serve mostly at higher levels
of abstraction to identify the major components and interfaces of the software system.
Therefore, their application is too abstract to be translated directly to code. In contrast,
design patterns are detailed solutions to particular problems that can be directly trans-
lated to code. Architectural patterns have a direct effect on the architecture of a software
system and are associated to particular application domains (e.g., interactive systems),
whereas design patterns are independent of a particular application domain (Buschmann
et al. 1996). These differences should become evident in Chapters 6 and 7.

Classification of Design Patterns

When first studying design patterns, it is important to understand what each pattern
does and how it does it. In the influential work presented by Gamma, Helm, Johnson,
and Vlissides (1995), design patterns are classified based on purpose and scope. The pur-
pose of a design pattern identifies the functional essence of the pattern; therefore, it serves
as fundamental differentiation criteria between design patterns. Three different purposes
are identified by the Gang of Four (GoF), including creational, structural, and behavioral.
Creational design patterns are the ones that attempt to efficiently manage the creation
or creational process of objects in a software system. A common characteristic of cre-
ational pattern is the presence of creational classes and product classes. In some cases,
the creational and product classes are combined into one class. Creational patterns are
overall known for abstracting the instantiation process of one or more objects. Structural
design patterns are the ones that attempt to create larger structures from the composition
of existing classes, objects, or other structures. Finally, behavioral design patterns are con-
cerned with how classes and object interact, the variation of behavior, and the assignment

168 « Software Engineering Design

of responsibility between objects. The purpose criteria apply to a large number of patterns;
therefore, it serves well for classifying a large variety of design solutions.

While the purpose criteria of design patterns captures the overview of what the pattern
does, the scope of a design pattern captures whether the design pattern primarily applies
to classes or objects. Class patterns apply primarily to classes by defining the relationship
between classes and subclasses, at compile time, via inheritance. Object patterns apply
primarily to objects by defining the pattern’s relationship between objects, at run time,
via object composition. Since the relationships in object patterns are defined via object
composition, they result in more dynamic designs and flexible designs. Since the large
majority of design patterns rely on inheritance, it can be difficult to draw the line to dif-
ferentiate between class patterns and object patterns. Furthermore, some design patterns
can be applied in different ways, so that the same pattern can be classified as class pattern
or object pattern, depending on the design implementation. Typically, the distinction
between class patterns and object patterns becomes clearer after having experience with
patterns for some time. When it comes to scope classification, the most efficient differen-
tiation criteria lies in the focus that the design pattern puts on inheritance versus object
composition. Design patterns that place focus on inheritance as key relationship for the
pattern are classified as class patterns, whereas design patterns that place focus on object
composition are classified as object patterns.

Purpose and scope can be used in combination to fully classify design patterns. For
example, design patterns can be classified as class creational or object creational, class
structural or object structural, or class behavioral or object behavioral. In addition to
purpose, scope, and their combination, many other types of classification and domains
have been identified throughout the years. Example of these include design patterns
in real-time programming (Douglass 2002), patterns in web applications (Vora 2009),
and patterns for parallel software (Ortega-Arjona 2010).

Documenting Design Patterns

Documenting design patterns in a consistent format is important to the dissemination of
pattern knowledge. Although design patterns can be documented in many ways, the GoF
identified 13 categories that can be used as standard for fully documenting design pat-
terns. Together, these categories provide detailed information of existing design patterns
and provide direction for documenting future patterns. In practical applications, well-
documented patterns are important because they allow designers to quickly study a design
pattern to determine its applicability in a particular scenario. Well-documented patterns
also provide the means to compare patterns and evaluate important characteristics, such
as consequences, that can help designers in selecting the best pattern for the problem at
hand. The 13 categories for documenting patterns proposed by the GoF and their descrip-
tions are presented in Table 5.4.

Chapters 6 and 7 provide throughout coverage of common design patterns used during
the detailed design activity. For extensive coverage of design patterns, readers are encour-
aged to study the original design patterns book by the GoF (Gamma et al. 1995).

TABLE 5.4

Principles of Detailed Design « 169

Categories and Descriptions for Documenting Design Patterns

Category

Description

Name and classification

Intent

Also Known As

The unique pattern name that reflects the essence of the patterns and its classification

Describes the purpose of the pattern in such way that it is clear what types of design
problems the pattern solves, what the pattern does, its rationale and intent

A list of alternate well-known names for the pattern

Motivation An example scenario that serves as motivation for the application of the pattern
Applicability Describes the situations, or design problems, that lend themselves for the
application of the design pattern; provides examples of poor designs that can
benefit from the pattern and ways for identifying these situations
Structure Provides a structural (e.g., UML class diagram) view of the design pattern
Participants List the classes and objects required in the design pattern and their responsibilities
Collaborations Provides information about how the participants work together to carry out
their responsibilities
Consequences Describes the effects of the design pattern, good or bad, on the software solution
Implementation Provides information and techniques for successfully implementing the design pattern
Sample Code Provides sample code that demonstrates how to implement the design pattern in

Known Uses
Related Patterns

different programming languages
Provides examples of real systems that employ the design pattern

Provides information about other design patterns that are related or that can be

used in combination with the design pattern

DOCUMENT THE SOFTWARE DESIGN

Documentation of a project’s software design is captured in the software design docu-
ment (SDD), a document that contains the designs or plans of the software to be imple-
mented. From the time the SDD is written in the design phase, it may be used by various
stakeholders and until the end of the software life cycle. During the code and unit test
phase, it may be referred to in order to construct the software, to develop unit test plans,
or to write script files and driver code to automate the running of tests. System integrators
may use the SDD in the system integration test phase to better plan integration activities,
and maintainers will use and possibly have to update the SDD in the maintenance phase.
To provide relevant information to the stakeholders, the SDD must contain certain items
that document everything that goes into the design of the software. The proposed con-
tents of an SDD are as shown in Table 5.5 (IEEE 2009).

Providing this SDD information is important not only to communicate the design to
stakeholders but also to properly maintain the SDD to ensure the version stakeholders
receive is current and consistent. The body section of the SDD contains architectural and
detailed design elements, presented in a format specified by design viewpoints. Design
viewpoints dictate the way design views are presented within an SDD, and each design
view has exactly one design viewpoint to go along with it. The IEEE (2009) recommends
each design viewpoint specification to contain (among others) the following information:

170 « Software Engineering Design

TABLE 5.5

Sections of the Software Design Document

Section Description

Date of issue and status ~ Date of issue is the day on which the SDD has been formally released. Every time
the SDD is updated and formally released, there should be a new date of issue.
Scope Scope provides a high-level overview of the intended purpose of the software.
It sets a limit as to what the SDD will describe and defines the objectives of
the software.

Issuing organization Issuing organization is the company that produced the SDD.
Authorship Authorship pertains to who wrote the SDD and certain copyright information.
References References provide a list of all applicable documents that are referred to within the

SDD. If there is a certain technology that is used within the design, it is important
to refer to the corresponding documentation on that technology, so it may be
referenced. When reading the referenced documents, stakeholders may uncover
inconsistencies in how the technology should be used and how it is used in the
software design.

Context Description of the context of the SDD.

Body Body is the main section of the SDD where the design is documented.
This is where stakeholders look to understand the software and how it is to
be constructed.

Summary

Glossary A glossary provides definitions for all software-related terms and acronyms used in
the SDD.

Change history Change history is a brief description of the items added to, deleted from, or
changed within the SDD.

o Viewpoint name

+ Relevant design concerns

« Design elements (e.g., elements of design language)

 Analytical methods or other operations for supporting the view

« Viewpoint authorship or citation

« Patterns, heuristics, or other guidelines used in the creation of the viewpoint

The specification of design viewpoints can be done fully in the SDD or incorporated
by reference (IEEE 2009). Once specified, viewpoints can be used throughout the SDD
to document software designs. The SDD should also present the rationale for selecting
the specific design viewpoint. Long after the design phase is complete, the SDD will be
referred to several times during the software life cycle. Therefore, it is useful if the rationale
for making certain design decisions is included in the SDD so developers can gain addi-
tional insight into why decisions were made for certain parts of the software design. Design
rationale includes justification for choosing a particular design approach and can be found
in commentary throughout the SDD. Examples of design rationale include design issues
raised in response to design concerns of stakeholders, trade-offs evaluated, criteria used
to make decisions, and design options considered (IEEE 2009). With this information,
a sample table of contents for the SDD is provided in Table 5.6.

Principles of Detailed Design « 171

TABLE 5.6

Sample Table of Contents for the Software Design Document

1. Introduction
1.1 Date of Issue
1.2 Context
1.3 Scope
1.4 Authorship
1.5 Change history
1.6 Summary
2. Software Architecture
2.1 Overview
2.2 Stakeholders
2.3 System Design Concerns
2.4 Architectural Viewpoint 1
2.4.1 Design View 1
2.5 Architectural Viewpoint 2
2.5.1 Design View 2
2.6 Architectural Viewpoint n
2.6.1 Design View n
3. Detailed Design
3.1 Overview
3.2 Component Design Viewpoint 1
3.2.1 Design View 1
3.3 Component Design Viewpoint 2
3.3.1 Design View 2
3.4 Component Design Viewpoint n
3.4.1 Design View n
4. Glossary
5. References

Interface Control Document

The interface control document (ICD) is an important piece of documentation that serves as
a written contract between components of the system software as to how they communicate.
This document is usually intended to cover only the software components that are internal
to the software development effort. Many times in software engineering, there exists a sys-
tem in which two pieces of software need to communicate to share information or possibly
to invoke function calls. For developers to write software, they need to know what to expect
when asking for certain data or how to perform a particular action on another piece of soft-
ware. A classic example of this is a client-server based system. The server may contain and
manage certain data, or it may provide a set of actions that a client may invoke. An ICD is
much like documentation on how to speak a particular language. If two pieces of software
cannot speak the same language, they will not be able to communicate and a software sys-
tem will not be able to work. ICDs can also be an important part of communication within
a single component of a software system. For instance, the example in Figure 5.6 has two

172 « Software Engineering Design

Client <):(> A Server H

s

FIGURE 5.6
Conceptual model for system interfaces.

different kinds of interfaces. There is one interface between the client and server, and then
there are several interfaces that are just internal to the server.

The server may be running three different processes, but it could be thought of as one
cohesive component in the entire software system. These two different kinds of interfaces
do not have to use the same kind of technology either. The interfaces described in an ICD
can be either proprietary, such as a company-developed protocol using Extensible Markup
Language (XML), or something standard such as Simple Network Management Protocol
(SNMP) or Common Object Request Broker Architecture (CORBA). However, the descrip-
tions of the data contents or what actions to take will surely be proprietary. To make an
ICD effective, it must describe all the interfaces in as much detail as possible. ICDs can
detail, for example, which data item on a server corresponds with what screen element on a
GUI. Messages can also be formed in an ICD to detail all items coming back from a server
to a client. It is much of this content that makes the bulk of an ICD. However, other docu-
ments may be referenced so that developers can get a better understanding of the commu-
nication process. For example, if a system uses SNMP, the ICD may reference the Request
for Comments (RFCs) related to SNMP. This could further help a reader to understand
certain parts of the software as related to communications.

Software Version Document

The software version description (SVD) is a document containing information about
what is included in a software release, including different files, scripts, and executables.
It also contains information about how to build the code, how to set up a computer that
will host the software, and the software requirements for the host computer. The SVD is
also an important document that tracks what changes have been made between different
releases of software. It also details what problems might be encountered with a specific
release of software and what problems have been fixed. Not every release of software is
going to be perfect. Software can sometimes contain unfixed problems that go unidenti-
fied even after testing. These problems are then often noticed by the end users who report
them to the software developers. To keep the customers satisfied, the software developers
must fix the problems noted in the most recent release and issue a new release with the
fixes. In other cases, changes are made to the design and code to create different versions
of the software for different customers. When these modifications result in changes to

Principles of Detailed Design « 173

the design, the SVD must document the appropriate steps to build software versions,
which requires inclusion of the appropriate software design.

The SVD will often contain a section called the version description. It is in this section that
the bulk of the material concerning the new release of software is documented. Even though
this document may not be released to a customer, it could still prove to be very useful for
internal tracking of different releases of software. The first section of the version description
is the inventory of software contents. This part lists all the files, scripts, and executables that
have gone into making the software build or are an output of the build process.

The section after the inventories of the materials released and software contents is the list
of changes installed. As previously stated, these could either be fixes to problems identi-
fied in previous releases or entirely new capabilities. Installation instructions detail any
necessary steps it takes to install the software to properly run on the host computers. The
SVD also lists any potential problems that may be encountered when using the software or
known and verified errors for which developers have yet to find a solution.

MONITOR AND CONTROL IMPLEMENTATION

Detailed design synchronicity is concerned with the degree of how well detailed designs
adhere to the software architecture and how well software code adheres to the detailed
design. Detailed designs provide a design structure carefully crafted to ensure desired
characteristics of the software, such as reusability or maintainability. Typically, soft-
ware engineers are good at respecting detailed design decisions early on in a project life
cycle; however, as the development process continues, detailed designs are more prompt
to deviations during construction. For any software architecture and detailed design
to result in a successful system implementation, the construction phase must be syn-
chronized with the software products resulting from both efforts. Therefore, the engi-
neering team must ensure that detailed design decisions are enforced throughout the
construction phase. Particular attention needs to be paid to design synchronicity when
projects enter the maintenance phase or when new engineers are brought into the project.
Similarly to achieving architectural design synchronicity, processes must be in place and
enforced to ensure that overall design synchronicity is high.

CHAPTER SUMMARY

The detailed design activity begins after the software architecture is specified, reviewed,
and approved by all stakeholders in the project. The detailed design activity corresponds
to a microdesign view of the structure and behavior of the software system and is the
last major effort before software construction begins. IEEE (1990) defines detailed design
as “the process of refining and expanding the preliminary design phase of a system or

174 « Software Engineering Design

component to the extent that the design is sufficiently complete to be implemented.” That
is, the process of refining the software architecture to reach a point where construction can
begin. It is important to note that most of the detailed design activities deal directly with
addressing functional requirements of the system. The detailed design process requires
designers to understand the architecture and requirements before creation of detailed
designs. Detailed design decisions can significantly shape the system’s quality properties;
therefore, they must exist within the bounds of the software architecture. In some cases,
where modeling tools are used to generate code, detailed designs can also have significant
impact on the quality properties of the construction phase. Once created, detailed designs
can be documented together with architectural design to form the software design docu-
ment, which is reviewed and approved before construction begins. The design document
establishes the general framework of reference for all construction work; therefore, policies
must be in place to maintain synchronicity between the design document and construc-
tion work. Upon completion of the detailed design activity, the system’s design is suffi-
ciently complete so that it can be formally documented, reviewed, and approved by the
system’s stakeholders, which marks the end of the design phase.

REVIEW QUESTIONS

1. What is detailed design, and how does it differ from architectural design?

. Explain the relationship among requirements, architecture, detailed design, and
construction.

. What key tasks are performed during detailed design? Explain.

. What steps are involved in the detailed design process?

. What are derived requirements, and how do they play a role during detailed design?

. What is the role of software architecture during detailed design? Can detailed
design succeed without architecture? Explain.

7. Explain the concept of interface design during detailed design.

8. In object-oriented systems, what is the difference between a class and an object?

\S]

AN L A~ W

9. What is the difference between concrete and abstract classes?

10. Explain the following concepts:
a. Interfaces
b. Types and subtypes
¢. Dynamic binding
d. Polymorphism

11. Compare and contrast the OCP, LSP, and ISP.

12. Why are programming styles important during detailed design? Give examples of
some styles used during detailed design.

13. Explain the concepts of combined fragments, operators, and guards in interaction
diagrams. Give an example of each.

14. What is the difference between architectural patterns and detailed design patterns?

Principles of Detailed Design « 175

15. What are the sections of the software design document? Explain each.

16. What is the interface control document, and why is it necessary in practical develop-
ment efforts?

17. What is the version control document, and how does it relate to the software design?

CHAPTER EXERCISES

1. Create a class diagram and sequence diagram to design and validate the following
system. The system will consist of a traffic light object that communicates with three
light bulb objects. Each light bulb object cannot exist without the traffic light object.
All light bulb objects have capabilities to turn green, yellow, and red. In fact, all light
bulb objects are identical, except that they communicate with different light bulb
hardware controllers to turn specific light bulbs on and off. All light bulb objects
must support a turnOn(), turnOft(), and setColor(int color) method which will turn
the light bulb on, off, and set the color, respectively. The system will use a custom
timer object for managing the transition of the light bulbs and a sensor object to
detect when cars arrived at the traffic light system. Both timer and sensor are part of
the traffic light system but are also used in other sections of the system, so their life-
time is not controlled by the traffic light object. When the sensor object fires off, the
traffic light object will activate the green light and the timer. When the timer expires,
the traffic light object will deactivate the green light and activate the yellow light. It
will also activate the timer again. When the timer expires, the traffic light system will
deactivate the yellow light and activate the red light.

REFERENCES

Booch, Grady, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Langauge User Guide, 2d ed. Addison-
Wesley Professional, 2005.

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. Pattern-Oriented
Software Architecture: A System of Patterns. West Sussex, UK: Wiley, 1996.

Clements, Paul, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Robert Nord, and Judith Stafford.
Documenting Software Architectures. Boston, MA: Addison Wesley, 2002.

Clements, Paul, Rick Kazman, and Mark Klein. Evaluating Software Architectures. Addison Wesley, 2001.

Douglas, Bruce P. Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frameworks, and Patterns.
Addison-Wesley Professional, 1999.

Douglass, Bruce P. Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems. Addison-Wesley
Professional, 2002.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Boston: Addison-Wesley, 1995.

IEEE. “IEEE Standard for Information Technology-Systems Design-Software Design Descriptions.” 2009.
http://ieeexplore.iece.org/xpl/freeabs_all.jsp?arnumber=5167255.

IEEE. “IEEE Standard Glossary of Software Engineering Terminology.” IEEE, 1990, p. 34.

176 « Software Engineering Design

Liskov, Barbara, and John Guttag. Program Development in Java: Abstraction, Specification, and Object-Oriented
Design. Boston: Addison-Wesley, 2000.

Marin, Robert C. Agile Software Development: Principles, Patterns, and Practices. Upper Saddle River, NJ:
Prentice Hall, 2003.

Meyer, Bertrand. Object-Oriented Software Construction, 2d ed. Upper Saddle River, NJ: Prentice Hall, 1997.

Ortega-Arjona, Jorge L. Patterns for Parallel Software Design. West Sussex, UK: Wiley, 2010.

Pressman, Roger S. Software Engineering: A Practitioner’s Approach, 7th ed. Chicago: McGraw-Hill, 2010.

Sommerville, Ian. Software Engineering, 9th ed. Boston: Addison Wesley, 2010.

Tichy, Walter. Making Software: What Really Works, and Why We Believe It. Sebastopol, CA: O’Reilly Media,
2010.

“UML 2.3 Superstructure.” Vers. 2.3. Object Management Group. May 2010. Available at: http://www.omg.org

Vermeulen, Allan, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Robert Nord, and
Judith Stafford. The Elements of Java Styles. Cambridge, UK: Cambridge University Press, 2000.

Vora, Pawan. Web Application Design Patterns. Burlington, MA: Morgan Kaufmann, 2009.

6

Creational Design Patterns
in Detailed Design

CHAPTER OBJECTIVES

« Understand the importance and role of creational design patterns in
detailed design

o Identify, understand, and model common creational design patterns

« Become proficient in implementing models of creational design patterns

o Understand the benefits of creational patterns when implementing
software systems

CONCEPTUAL OVERVIEW

During detailed design, software engineers spend a great deal of time devis-
ing component design solutions that fill in the gaps in architectural designs
and provide the necessary internal design of components and their inter-
faces to achieve system functionality. At the detailed design level, common
patterns in object-oriented designs have emerged that provide detailed
design solutions to problems that recur many times over in different systems.
A particular problem in these systems involves the efficient creation of
objects so that concepts highlighted in previous chapters (i.e., interfaces,
types, dynamic binding, and polymorphism) can be used effectively to
generate reusable and maintainable software. Creational design patterns
help identify problems that deal with creating quality detailed designs
that are efficient in the creation of object in the system. They prescribe the
classes required for their design solution and interrelationships required
to support object creation. These patterns allow designers to quickly and

177

178 « Software Engineering Design

systematically identify structural layouts of systems (or subsystems) and provide avenues
for examining system interactions and quality evaluation within the operational system.
This chapter explores several well-established creational design patterns and examines the
problems they are designed to address, together with their exhibited quality attributes.
Identifying and designing using creational design patterns can improve the efficiency of
the development process and the quality of the final system.

CREATIONAL DESIGN PATTERNS

Creational design patterns are patterns for abstracting and controlling the way objects are
created in software applications. They play a key role in the design of systems by making
them independent of how objects in the system are created, composed, and represented
(Gamma, Helm, Johnson, and Vlissides 1995). Therefore, parts of the system responsible
for creating (or instantiating) objects do so through a common creational interface without
knowledge of how the actual object or group of objects are created. In addition, by control-
ling the creational process with a common interface, enforcing creational policies becomes
easier, therefore giving the system the ability to create product objects that share a com-
mon interface but vary widely in structure and behavior. Examples of creational patterns
include the abstract factory, factory method, builder, prototype, and singleton.

ABSTRACT FACTORY

The abstract factory is an object creational design pattern intended to manage and encap-
sulate the creation of a set of objects that conceptually belong together and that represent a
specific family of products. According to the Gang of Four (Gamma et al. 1995, p. 87), the
intent of the abstract factory is to

Provide an interface for creating families of related or dependent objects without specifying
their concrete classes.

In the abstract factory pattern, the terms family of products or family of objects are used
to denote a group of objects that belong together and therefore must be created together.
When designing software that uses a group of objects that need to be created and used
together, problems can arise when there is no consistent way for managing the creation
of these objects. For example, consider two distinct families of computers: one represent-
ing standard computers made up of standard computer parts; and another representing
advanced computers made up of advanced computer parts. Assume that the family of
standard computers can be composed only of standard computer parts, such as a stan-
dard monitor, standard keyboard, and standard CPU, and that the family of advanced

Creational Design Patterns in Detailed Design o 179

computers can consist only of advanced computer parts, such as an advanced monitor,
advanced keyboard, and advanced CPU. When left unmanaged, designing software that
instantiates both standard and advanced computers can be prone to various problems.
First, there is the possibility that advanced computer objects can be created using standard
products or vice versa, that is, standard computer objects created using advanced com-
puter parts products. Moreover, without a standardized common interface identified for
the different computer parts, the code inside the computer classes would be required to
know about the correct computer parts type to use; therefore, the addition of new prod-
ucts or new product types would require changing the code inside the computer classes, a
clear violation of the open-closed principle discussed in Chapter 5. These problems result
in code that is hard to maintain and reuse. The abstract factory design pattern addresses
these problems by encapsulating the creation of these families of products in such a way
that they can be interchangeable at run time and by ensuring that products that belong to
a specific group, or family, are instantiated together.

Problem

A computer store needs stand-alone software that keeps track of computer inventory, which
includes computers and different computer parts made by different hardware manufactur-
ers. The software for the computer store needs capabilities for displaying information about
computer parts, including information from the manufacturer’s site and various other sites
that contain customer satisfaction reviews and other relevant information. Therefore, each
computer part object needs to be capable of extracting information in real time from a list
of predefined remote locations, of aggregating the information, and of providing this infor-
mation upon request. Upon requesting the information for a particular computer, all com-
puter part objects communicate over the network and find out the latest comments and
statistics about a component from all predefined sources and make this information avail-
able to the requesting object. Initially, the store supports only two types of computers: stan-
dard computers and advanced computers, composed of standard and advanced computer
parts (i.e., CPU, monitor, and mouse), respectively. Due to store policy, standard computers
cannot be composed of advanced computer parts and advanced computers cannot be com-
posed of standard computer parts. The software solution needs to provide a maintainable
and modifiable design for creating these families of objects, to support easy addition of new
families of computers, and to promote consistency with computer products.

Structure

The general and applied structure for the abstract factory design pattern is presented in
Figure 6.1. As seen, the abstract factory is presented in general and applied form, and for
simplicity the details of both abstract and concrete computer part classes are omitted
in the applied form. The general structure of the abstract factory design pattern serves
as a blueprint that depicts the participants and relationships required to design abstract
factories; it presents the essence of the pattern, which needs to be fitted for the particular

180 « Software Engineering Design

General View

* Client
<<interface>> l l
AbstractFactory <<interface>> <<interface>>
AbstractProductA AbstractProductB
+createProductA()
+createProductB() ‘ A A A
A P Lt
1m---- . L mmemmemmmmmme-e rialalalaieleleiaiobek B
1 | ConcreteFactoryl ConcreteProductAl| |ConcreteProductBl |; |
E +createProductA() I ? i E
' +createProductB() v
ConcreteFactory2 ConcreteProductA2 | |ConcreteProductB2
+createProductA()
+createProductB() I | *
Applied Vie
Computer PP e
<<interface>> l * l
ComputerPartsFactory <<interface>> <<interface>> <<interface>>
cru Monitor Keyboard
+createMonitor(): Monitor*
+createCPU(): CPU*
+createKeyboard(): Keyboard* A A A A A A
A Do A E ey :
------------ ; R dielelelelete'alstststtinieiniptelotelatstisinisisietststoty
i | AdvancedComputerPartsFactory | |AdvancedCPU| | AdvancedMonitor| | AdvancedKeyboard E 0
: +createMonitor(): Monitor* i o
' +createCPU(): CPU* —’ ? e i
! | +createKeyboard(): Keyboard* o

StandardComputerPartsFactory StandardCPU || StandardMonitor | | StandardKeyboard

+createMonitor(): Monitor*

+createCPU(): CPU* } ?

+createKeyboard(): Keyboard*

FIGURE 6.1
Abstract factory design pattern.

problem at hand. The applied view of Figure 6.1 presents an instantiation of the general
structure for depicting the solution for the particular computer store problem, which
consists of abstract products (e.g., monitor), concrete products (e.g., standard monitor),
abstract creators (e.g., computer parts factory), and concrete creators (e.g., standard com-
puter parts factory). These participants are interrelated via realization and association rela-
tionships. From this example, it should be evident how a new family of computer parts can
be added to the design by adding the required pattern classes that make up the new family
of computers.

Implementing the abstract factory design pattern can be confusing because of the num-
ber of classes required. However, when looking closely at the Unified Modeling Language
(UML) diagram for the application view, it is evident that regardless of the number of
computer factories or computer products, the structural relationship among these classes

Creational Design Patterns in Detailed Design « 181

is always the same. This is true for all other patterns studied throughout this and other
chapters. Therefore, a step-by-step approach can be taken to design abstract factories:

1. Design the product interfaces (e.g., CPU, monitor, keyboard).

2. Identify the different families or groups required for the problem (e.g., standard and
advanced computers).

3. For each group identified, design concrete products that realize the respective prod-
uct interface (e.g., standard monitor vs. advanced monitor) identified in Step 1.

4. Create the factory interface (e.g., ComputerPartsFactory). The factory interface
contains n interface methods, where 7 is the number interfaces created in Step 1.

5. For each group identified in Step 2, create concrete factories that realize the factory
interface created in Step 4.

6. Create the factory client (e.g., Computer) which is associated with both products
and factory interfaces created in Steps 1 and 4, respectively.

Abstract factory designs contain two fundamental sets of class designs: products and
factories. Once both products and factories portions of the design are complete, dynamic
binding can be used at run time to allow the computer client to create different computer
objects (e.g., standard vs. advanced computers) and use them throughout programs without
actually knowing the specific type of the object. This way, adding other computer types to
the system can be done by extending the design and not by modifying already working code.

Implementation

When studying the abstract factory (and all other design patterns), it is important that
UML models are translated to code, compiled, and executed. When necessary, it is also
helpful to step through the code with a debugger to keep track of dynamic binding
throughout the software’s execution. This provides additional insight and helps further
the understanding of both concepts and benefits of using a particular design pattern. Once
the structural design of the abstract factory is created, its translation to code is straight-
forward. Listing 6.1 presents the C++ implementation for the ComputerPartsFactory class.

As seen, the ComputerPartsFactory abstract class simply defines interface methods
required for creating each computer part designed for the system. Therefore, there is a
one-to-one relationship between interface methods and product interfaces. Since the
code for the abstract factory interface is presented in C++, each interface method is
defined as pure virtual, which includes the virtual keyword and is set to 0. In the
Java programming language, the ComputerPartsFactory would be defined as a
Java interface, using the interface keyword. Once the interface for the computer
parts factory is established, all other concrete factories can be implemented to create
products of specific computer types upon request. Consider the implementation for
creating advanced computer parts, where the advanced computer part factory instan-
tiates advanced computer products. The header file for the advanced computer parts
computer factory is presented in Listing 6.2.

182 « Software Engineering Design

Listing 6.1: C++ Code for the Computer Parts Factory Interface

// Computer parts factory interface.
class ComputerPartsFactory {

public:

// Define the interface to create a monitor object.
virtual Monitor* createMonitor (void) = O0;

// Define the interface to create a keyboard object.
virtual Keyboard* createKeyboard = 0;

// Define the interface to create a CPU object.
virtual Cpu* createCpu = 0;

Listing 6.2: C++ Header File for the Advanced Computer Parts Concrete Factory

// Forward references
class Monitor;

class Keyboard;

class Cpu;

// Concrete advanced computer parts factory.
class AdvancedComputerPartsFactory : public ComputerPartsFactory {

public:

// Create and return an advanced monitor.
Monitor* createMonitor () ;

// Create and return an advanced keyboard.
Keyboard* createKeyboard() ;

// Create and return an advanced cpu.
Cpu* createCpul() ;

Vi

As seen, the AdvancedComputerPartsFactory realizes the ComputerParts-
Factory interface by inheriting from it and defining concrete methods for each of its
defined interface methods. Each interface method is implemented in terms of advanced
computer parts, such that the createMonitor() method returns an instance of
type AdvancedMonitor, the createKeyboard() returns an instance of type
AdvancedKeyboard, and so on. This behavior is presented in the source file for the
AdvancedComputerParts factory, as presented in Listing 6.3.

Creational Design Patterns in Detailed Design o 183

Listing 6.3: C++ Source File for the Advanced Computer Parts Concrete Factory

#include “AdvancedComputerPartsFactory.h”
#include “AdvancedMonitor.h”

#include “AdvancedKeyboard.h”

#include “AdvancedCpu.h”

// Create and return an advanced monitor.
Monitor* AdvancedComputerPartsFactory::createMonitor ()

// Caller is responsible for cleaning up the memory.
return new AdvancedMonitor;

// Create and return an advanced keyboard.
Keyboard* AdvancedComputerPartsFactory::createKeyboard() {

// Caller is responsible for cleaning up the memory.
return new AdvancedKeyboard;

}

// Create and return an advanced cpu.
Cpu* AdvancedComputerPartsFactory::createCpu() {

// Caller is responsible for cleaning up the memory.
return new AdvancedCpu;

}

In Listing 6.3, it is assumed that the concrete products for the advanced computer parts
factory have been defined. In fact, before any concrete computer parts factory code can
be compiled, its parts need to be defined. Using this pattern, the implementation for the
standard computer parts factory is similar to the advanced one, but instead of creating
advanced concrete products it implements the creational methods in terms of standard
computer parts products. Listings 6.4 and 6.5 present the generated code for the UML
model of the standard computer parts factory together with its implementation. In a simi-
lar fashion, the creation of all other required computer parts factories in the system can be
designed and implemented the same way.

The final piece of the abstract factory design pattern includes the factory client object.
In this example, the client is a computer object that is composed of different computer
part products. The concept employed in this example is that computers are composed of
different computer parts; therefore, by configuring computer objects with computer parts
factories they can delegate the creation of computer parts to run-time objects mapped
using dynamic binding. This allows the creational code for computer objects to be open to
extension but closed for modification. The header and source code for the Computer class
are presented in Listings 6.6 and 6.7.

184 « Software Engineering Design

Listing 6.4: C++ Header File for the Standard Computer Parts Concrete Factory

// Forward references
class Monitor;

class Keyboard;

class Cpu;

// Concrete standard computer parts factory.
class StandardComputerPartsFactory : public ComputerPartsFactory {

public:

// Create and return a standard monitor.
Monitor* createMonitor () ;

// Create and return a standard keyboard.
Keyboard* createKeyboard() ;

// Create and return a standard CPU.
Cpu* createCpul() ;

Listing 6.5: C++ Source File for the Standard Computer Parts Concrete Factory

#include “StandardComputerPartsFactory.h”
#include “StandardMonitor.h”

#include “StandardKeyboard.h”

#include “StandardCpu.h”

// Create and return a standard monitor.
Monitor* StandardComputerPartsFactory::createMonitor ()

// Caller is responsible for cleaning up the memory.
return new StandardMonitor;

}

// Create and return a standard keyboard.
Keyboard* StandardComputerPartsFactory::createKeyboard() {

// Caller is responsible for cleaning up the memory.
return new StandardKeyboard;

}

// Create and return a standard CPU.
Cpu* StandardComputerPartsFactory::createCpu() {

// Caller is responsible for cleaning up the memory.
return new StandardCpu;

Creational Design Patterns in Detailed Design o 185

Listing 6.6: C++ Header File for the Computer Client

// Forward references.
class ComputerPartsFactory;
class Monitor;

class Cpu;

class Keyboard;

class Computer {

public:
// Constructor parameterized with a computer parts factory.
Computer (ComputerPartsFactory* computerPartsFactory) ;

// Display detailed information about the monitor.
void displayMonitorInfo() ;

// Display detailed information about the CPU.
void displayCpulInfo() ;

// Display detailed information about the keyboard.
void displayKeyboardInfo() ;

// Display computer cost.
void displayCost () ;

// All other computer methods.
// Destructor needs to clean up memory.

private:
Monitor* monitor; // Pointer to the monitor interface.
Cpu* cpu; // Pointer to the Cpu interface.
Keyboard* keyboard; // Pointer to the Keyboard interface.

bi

The key concept presented in Listing 6.6 is the reliance of the Computer class on four
interfaces, namely, the ComputerPartsFactory, Monitor, Cpu, and Keyboard
interfaces. This highlights a desirable attribute of component designs, which is to rely
on interfaces instead of on concrete implementations. Together, these interface refer-
ences (i.e., pointers) will hold the addresses of run-time objects that adhere to the par-
ticular interface. Therefore, upon creation, objects of the computer type will use these
interface references to save the addresses of concrete products created by a particular
computer parts factory object. The implementation code for this behavior is presented
in Listing 6.7.

Once a concrete factory is passed into the constructor of the Computer class, the respon-
sibility for creating each product is delegated to the factory object. This way, a Computer
object can be created the same way for all computer types, simply by changing the factory

186 « Software Engineering Design

Listing 6.7: C++ Source File for the Computer Client

#include “Computer.h”

#include “ComputerPartsFactory.h”
#include “Monitor.h”

#include “Cpu.h”

#include “Keyboard.h”

// Constructor
Computer: :Computer (ComputerPartsFactory* computerPartsFactory) {

// Delegate the creation of the monitor object to the Factory.
_monitor = computerPartsFactory->createMonitor() ;

// Delegate the creation of the keyboard object to the Factory.
_keyboard = computerPartsFactory->createKeyboard() ;

// Delegate the creation of the Cpu object to the Factory.
_cpu = computerPartsFactory->createCpul() ;

}

// Display detailed information about the monitor.
void Computer::displayMonitorInfo() {

// Display monitor’s info.
_monitor->displayInformation() ;

}

// Display detailed information about the CPU.
void Computer::displayCpulnfo() {

// Display Cpu’s info.
_cpu->displayInformation() ;

}

// Display detailed information about the keyboard.
void Computer::displayKeyboardInfo() ({

// Display keyboard’s info.
_keyboard->displayInformation() ;

}

// Display computer cost.
void Computer::displayCost () ({

// Use all computer products to compute total cost and display it.

}

Creational Design Patterns in Detailed Design « 187

Listing 6.8: C++ Implementation of the Computer Store

// Assume that the ComputerStore class has been defined and contains
// the method displayComputer and the member attributes used below.

// Method to display a computer’s information.
void ComputerStore::displayComputer (string type) {

// Determine which computer needs to be created.
if (type.compare (“standard”) == 0)

// Create the standard computer factory object.
computerPartsFactory = new StandardComputerPartsFactory;

}

else {

// Create the advanced computer factory object.
computerPartsFactory = new AdvancedComputerPartsFactory;

}

// Create the computer object using the appropriate factory.
_computer = new Computer (computerPartsFactory) ;

// Display the computer information, including its cost. This

// information varies according to the factory object used to create
// the computer.

_computer->displayMonitorInfo() ;

_computer->displayCpulInfo() ;

_computer->displayKeyboardInfo() ;

__computer->displayCost () ;

// Do more stuff with the computer object here.
// Clean up the all memory allocated when done.

that creates the products. Consider the code the computer store software that provides
and manages inventory information using the ComputerStore class. Using the abstract
factory design pattern, the implementation code for displaying computer information is
presented in Listing 6.8. As seen, the display computer method is passed in a string to
determine the type of computer to be displayed. Once the type is identified, the appropri-
ate computer parts factory object is instantiated and passed into the constructor of the
computer object. From this point forward, all operations called on the computer object are
implemented in terms of the factory used to create its parts. Similarly, many different com-
puter types can be supported by creating additional factories to parameterize computer
objects with newly supported computer types.

188 « Software Engineering Design

When applying the abstract factory design pattern, depending on the problem, a large
number of classes may be required, causing confusion to those who are new to the pattern.
However, it is important to keep in mind that the core classes and relationships identified in
the general structure of the pattern remain the same, regardless of the problem. That is, an
abstract factory has one or more factory objects defined by an abstract factory interface and
one or more products defined by one or more product interfaces.

Benefits

« Isolates concrete product classes so that reusing them becomes easier
« Promotes consistency within specific product families
» Adding new families of products, which requires no modification of existing code

Skill Development 6.1: Abstract Factory Design Pattern

Using the UML tool of choice, replicate the UML model presented in Figure 6.1 and
generate code from the model. Using the Integrated Development Environment (IDE)
of choice, fill in the gaps in the code generated using Listings 6.1 through 6.8 and com-
pile and execute the software. Once the software executes, go back to the UML model
and add a third factory, named SpecialComputerFactory, together with special
computer products (e.g., SpecialMonitor, SpecialKeyboard, SpecialCpu).
Repeat the code generation process, fill in the gaps of the new generated code, compile,
and execute. When complete, explain the steps required to make this new modification
and how the abstract factory design pattern made this change easy or hard.

FACTORY METHOD

The factory method design pattern is a class creational pattern used to encapsulate and
defer object instantiation to derived classes. Structurally, the factory method can be mod-
eled as a simplified version of the abstract factory design pattern, since both patterns
require creator and product interfaces. However, unlike the abstract factory design pat-
tern, in which the creator objects (i.e., factories) are responsible for instantiating a plural-
ity of products that belong to a specific family type, creator objects in the factory method
design pattern are responsible for the creation of a single product of specific type. Therefore,
the creator interface for the factory method design pattern provides only one creational
method, whereas the creator interface for the abstract factory design pattern provides two
or more creational methods. In addition, unlike the abstract factory design pattern, the
factory method design pattern defers object creation to subtypes that realize the creational
interface; a relationship specified by inheritance, therefore, the factory method design pat-
tern is classified as a class creational design pattern as opposed to an object creational

Creational Design Patterns in Detailed Design o 189

design pattern. These fundamental differences are essential for understanding the differ-
ence between both patterns. According to the Gang of Four (Gamma et al. 1995, p. 107),
the intent of the factory method is to

Define an interface for creating an object, but let subclasses decide which class to instantiate.
Factory Method lets a class defer instantiation to subclasses.

The factory method design pattern provides the ability for designers to model and imple-
ment code in terms of the factory method and product interfaces. The factory method
design pattern is mainly characterized by one creational method, which is used to instan-
tiate and return objects of a specified product interface. This creational method is made
abstract at the factory base class so that objects of the factory base class cannot be directly
instantiated. This is done to create a framework that allows the factory base class to define
a series of operations that rely on the product interface; however, before executing opera-
tions, object creation is delegated to derived classes that are required to implement the
factory (creational) method. This way, new derived factories can override the method to
instantiate and return the appropriate product for the particular situation that is then used
to carry out the operations specified in the factory base class. This way, through inheri-
tance, new factories can be added to the design of the system to extend the factory base
class without modifying its code. With the factory method in place, reasoning about appli-
cation logic can be made in terms of the product interface and not on concrete products,
therefore resulting in code that can be extended easily.

Problem

The computer store from the previous example has expanded its operations to have three
different stores at different locations. Because of demographics at each location, particu-
lar types of computers are offered at specific locations. The computer store in Location 1
supports standard computers only, the computer store at Location 2 supports advanced
computers, and the computer store at Location 3 supports a new type of special computer.
The software system is now required to display information about computers carried at
specific stores. Therefore, the software design requires modification so that the display of
computer information is site-specific. A desired feature for the redesigned software is the
ability to keep the logic code separate from specific types of computer stores so that future
stores, carrying different computers, can be added to the system with minimal effort.

Structure

The generic and applied structure of the factory method design pattern is presented in
Figure 6.2. As seen, the pattern requires both creational and product classes, similar to
the abstract factory design pattern. However, unlike the abstract factory design pattern,
creator classes in the factory method design pattern require only one creational interface

190 « Software Engineering Design

General View

<interface>>
Creator Product
+createProduct() +productOperationl()
+someOperator() +createOperation2()
A 1
ConcreteCreator ConcreteProduct
+createProduct() +productOperation1()
+productOperation2()
Applied View
<<interface>>
Computer
ComputerStore
+displayMonitorInfo(): void
+createComputer(type: string): Computer* +displayCpulnfo(): void
+displayComputer(type: string): void +displayKeyboardlInfo(): void
1 7y +displayCost(): void
!
StandardComputer

StandardComputerStore +displayMonitorInfo(): void

- - +displayCpulnfo(): void
+createComputer(type: string): Computer™ +displayKeyboardInfo(): void

+displayCost(): void

AdvancedComputerStore AdvancedComputer

+createComputer(type: string): Computer* +displayMonitorInfo(): void
+displayCpulnfo(): void
+displayKeyboardInfo(): void
+displayCost(): void

NullComputer

+displayMonitorInfo(): void
+displayCpulnfo(): void
+displayKeyboardInfo(): void
+displayCost(): void

FIGURE 6.2
UML class diagram for the factory method design pattern.

method for creating products that share the same interface. Therefore, for each product in
the system, the design incorporates concrete product and concrete creator classes.

A step-by-step approach to designing the factory method design patterns includes
the following:

1. Identify and design the product interface (e.g., computer).
2. Identify and design the concrete products that realize the interface from Step 1
(e.g., StandardComputer, AdvancedComputer).

Creational Design Patterns in Detailed Design o 191

3. Design the factory base class (e.g., ComputerStore), which contains one abstract
factory interface method for delegating product creation to derived classes. Product
creation must conform to the interface defined in Step 1.

4. Design one or more concrete factories for each product identified in Step 2.

As seen in the applied version, a standard computer store capable of displaying computer
information is added to the design. Displaying computer information is performed with
the displayComputer() method that performs operations and requests services using the
computer interface. Two creator classes have been added to the design: one for the standard
computer store and another for the advanced computer store. As seen, each computer store
is associated with the specific product that it supports. In addition, a NullComputer class is
added to ensure that computer stores do not return null pointers to clients in the case that
a requested computer is not supported by a particular computer store.

Implementation

Once the structural design is complete, translating it to code is straightforward. Listings 6.9
and 6.10 present the C++ implementation for the ComputerStore class.

As seen in Listing 6.10, the computer store displays a computer’s information by relying
on the computer product interface; therefore, once derived computer stores override the
factory method to instantiate and return objects of the computer types supported in par-
ticular stores, the displayComputer () method will display the computer information
according to the object bound to it at run time. Listing 6.11 presents the factory method
code for a standard computer store.

Listing 6.9: Header File for the Computerstore Class
#include <string>

// Forward reference.
class Computer;

// The computer store creator class. This is an abstract class,
// therefore to instantiate computer stores, specific derived
// computer store classes are required.

class ComputerStore {

public:
// The standard factory method for creating computer products.
virtual Computer* createComputer (std::string type) = 0;

// Method to display a computer’s information.
void displayComputer (std::string type) ;

Vi

192 « Software Engineering Design

Listing 6.10: Source File for the Computerstore Class
#include “Computer.h”

// Method to display a computer’s information.
void ComputerStore::displayComputer (string type) {

// Delegate the responsibility of creating a computer object to
// derived classes using the factory method.
Computer* computer = createComputer (type) ;

// Display the computer information, including its cost. This

// information varies according to the factory object used to create
// the computer.

computer->displayMonitorInfo() ;

computer->displayCpuInfol() ;

computer->displayKeyboardInfo() ;

computer->displayCost () ;

// Do more stuff with the computer object here.
// Clean up the pComputer and pFactory objects when done.

As seen, the implementation for the factory method for standard computer stores
supports only standard computers. Internally, objects of type StandardComputer
can use the abstract factory design pattern from Listings 6.4 and 6.5 to create the stan-
dard computer, which is common in many practical applications. To remain concise,
this part of the problem is not presented in this example; however, to accomplish this,
the design of the StandardComputer class would require an association with the
StandardComputerPartsFactory from the previous section. With this association,
the standard computer parts factory is used inside the StandardComputer object to
create standard products, such as standard monitor, keyboard, and CPU. In many prac-
tical applications, both factory method and abstract factory design patterns are used in
conjunction for providing extensible and reusable code. To support new products at the
standard computer store, the factory method can be modified with different conditional
statements for creating the new product; therefore, changes to support new products at a
specific computer store are compartmentalized and do not affect all other computer stores.

Benefits

« Separates code from product-specific classes; therefore, the same code can work with
various existing or newly created product classes.

By separating the code, development becomes efficient, since different developers can
work on the different parts of the project at the same time.

« Byseparating the code, it becomes easier to reuse and maintain specific parts of the code.

Creational Design Patterns in Detailed Design « 193

Listing 6.11: Implementation of the Factory Method
for the Standard Computer Store

// Implement the factory method.
Computer* StandardComputerStore::createComputer (string type) {

// Pointer to a computer object.
Computer* computer;

// Determine which computer needs to be created.
if (type.compare (“standard”) == 0 {

// Create the StandardComputer. Clients are responsible for

// cleaning up the memory for the computer object. Internally,
// StandardComputer uses StandardComputerPartsFactory to create
// a standard computer.

computer = new StandardComputer;

}

else {

// Create and return a null computer.
computer = new NullComputer;

}

// Return the newly created computer object. Clients are responsible
// for cleaning up the computer object.
return computer;

Skill Development 6.2: Factory Method Design Pattern

Using the UML tool of choice, replicate the UML model presented in Figure 6.2
and generate code from the model. Using the IDE of choice, fill in the gaps in the
code generated using Listings 6.9 and 6.11 and compile and execute the software.
Once the software executes, go back to the UML model and add a third factory,
SpecialComputerStore, that carries SpecialComputers. Repeat the code
generation process, fill in the gaps of the new generated code, compile, and execute.
When complete, explain the steps required to make this new modification and how the
factory method design pattern made this change easy or hard.

I ——
BUILDER

The builder design pattern is an object creational pattern that encapsulates both the
creational process and the representation of product objects. Unlike the abstract factory

194 « Software Engineering Design

design pattern, in which various product objects are created all at once, the builder design
pattern allows clients to control the (multistep) creational process of a single product object,
allowing them to dictate the creation of individual parts of the object at discrete points
throughout software operations. To accomplish this, the builder design pattern introduces
a creator class (i.e., the builder) that species the (abstract) interface methods required to
build a particular product. These methods are used to build parts of a product, and once
all parts of the product are created (using the builder interface) clients can request the
builder to return the created object as a whole. Since the creation of the product object is
delegated to the concrete builder objects, the product’s representation can vary accord-
ing to the specific concrete builder creating the object. This provides added flexibility for
managing the creational process and representation of products that is not present in other
creational patterns. According to the Gang of Four (Gamma et al. 1995, p. 97), the intent
of the builder is to

Separate the construction of a complex object from its representation so that the same con-
struction process can create different representations.

The idea of separating the process of constructing objects from their representations
is essential when considering using the builder design pattern. Consider a client-server
system consisting of three clients that work in a distributed fashion and report to a central-
ized server. The server can request status from all three clients, compile the status received
into an object of the Message type, and forward it for further processing within the server
system. In this scenario, the creational process of the Message object depends on receiving
information from three different clients. Once information from the first client is received,
the part of the Message object that contains information about this client can be created.
Similarly, once information from the second and third clients is received, the parts of the
Message object that require this information can be built. Once all parts of the Message
object are built, the Message object can be forwarded to the rest of the system. In this
example, two important characteristics should be noted. First, the Message object cannot
be instantiated all at once; therefore, a finer-grained method of Message construction is
required so that events occurring at discrete points in time can be used to build individual
parts of the Message object. The second important, and perhaps more important, charac-
teristic is the fact that the multistep process that allows for the construction of the Message
object is the same, regardless of the representation of the Message object. In this exam-
ple, the Message object can be forwarded within the server system using a binary format,
Extensible Markup Language (XML), or any other custom-defined format. A major prac-
tical benefit can be gained by separating the construction process of objects from their
representation. Since objects using the builder design pattern can be constructed one step
at a time, complex algorithms necessary to create these objects can be separated from the
actual construction of objects so that the same algorithms can be used to build different
representations of an object. This results in code that can evolve to provide new representa-
tion of objects by adding new builder classes without modifying the code for the algorithm
used for creating objects.

Creational Design Patterns in Detailed Design 195

Problem

A company develops software to monitor and control custom-built hardware developed
by a separate vendor. The equipment supports 100 different messages, defined using a
custom-defined interface control document (ICD). Every time the messaging specifica-
tion changes, the code that represents all 100 messages has to be changed manually. The
company has decided to develop a message generator that reads the message specifica-
tion document, finds the appropriate information for each message, and generates code
to represent them. This way, once the ICD changes all the company has to do is regen-
erate the messages. Currently, the software for monitoring and control is developed
in C++ so the message generator generates C++ code. However, the need for creating
message libraries for both Java, C#, and other languages is being evaluated. This means
that changes to the ICD will require message regeneration for all supported languages.
The software company wants a design for the message generator that separates the algo-
rithm for parsing the messaging specification from the code that generates classes for
the messages in specific programming languages (e.g., C++, Java). This way, changes
to the messaging specification will not affect the code that generates the messages in
specific programming languages and vice versa; changes or addition to support new
programming language generation will not affect the code that parses the messaging
specification. To keep track of changes in the ICD and messaging libraries, the company
also wants to keep history and statistics of code generation, such as build number, build
date, number of methods generated, and number of classes generated.

Structure

The general and applied structural view of the builder design pattern for the message
builder problem is presented in Figure 6.3. In the general view of the pattern’s structure,
notice that the association with the Product class and the method for returning the
product are specified in the ConcreteBuilder class. In many practical situations, the
products being built can have dissimilar interfaces, therefore making it difficult to add
the interface method that returns the product in the AbstractBuilder base class and
reducing flexibility in code. In the message builder example, since the products gener-
ated can be represented using the same interface, the method that returns the product
(i.e., getGeneratedProduct ()) is moved to the base class so that client code can rea-
son about builders in terms of the AbstractBuilder interface and not based on con-
crete builders. The creational process is represented using the builder base class, which
delineates the creational process using abstract interface methods. For each identified rep-
resentation of the product, a class is created that inherits from the builder base class. These
classes provide the specific creational details for their particular representation. Finally,
builders are associated with the product class to generate the information required to build
the product as a whole.

There are two main driving forces behind the application of the builder design pattern
to the message builder problem. First, since messages are generated from a document, the

196 « Software Engineering Design

- General View
<<interface>>

Director AbstractBuilder

+construct() +buildProductPartA()
+buildProductPartB()
+buildProductPartC()

A

ConcreteBuilder

+buildProductPartA() Product
+buildProductPartB()
+buildProductPartC()
+getProduct()

Application View

MessageBuilder GeneratedProduct

CodeGenerator —stats: string

+buildNewClass(name: stiring): void
| +buildClassAttributes(attributes: string): void || +addC0de(c0d§ : string)
+buildClassOperations(operations: string): void +getCode(): str'mg
+closeClass(): void +getStats(): strlng
+getFileExtension(): string +getdate() string

c N +getBuild(): string
+getGeneratedProduct(): GeneratedProduct +getAttributes(): string

+generateCode(): void

A A +getClasses() : string
CppMessageBuilder JavaMessageBuilder
+buildNewClass(name: string): void +buildNewClass(name: string): void
+buildClassAttributes(attributes: string): void +buildClassAttributes(attributes: string): void
+buildClassOperations(operations: string): void +buildClassOperations(operations: string): void
+closeClass(): void +closeClass(): void
+getFileExtension(): string +getFileExtension(): string

FIGURE 6.3
UML class diagram for the builder design pattern.

sections in the document that specify the parts of a particular message may be scattered
throughout the document; therefore, the message object may not be able to be created all at
once. Second, the processing of the ICD file is the same, regardless of the target program-
ming language used for generating messaging code. This means that the same parsing
algorithm can be used to identify the key document elements used for code generation,
regardless of the target language. Once these characteristics are identified, a step-by-step
approach can be used to design the builder design pattern. The steps for applying the
builder design pattern are as follows:

1. Identify and design the product class (e.g., GeneratedProduct).

2. Identify the product’s creational process and algorithm, and design a class for its exe-
cution (e.g., CodeGenerator). Each creational step (when necessary) must be made in
terms of a standard product builder interface (instead of concrete product interface).

3. Using the knowledge acquired from Steps 1 and 2, design the builder interface, which
specifies the parts that need to be created for the whole object to exist. These are captured
as abstract interface methods that need to be implemented by derived concrete builders.

Creational Design Patterns in Detailed Design « 197

4. Identify and design classes for the different representations of the product
(e.g., CppMessageBuilder and JavaMessageBuilder). These classes realize the inter-
face from Step 3 in terms of the particular representations.

When using the builder design pattern, the representation of each object is encapsulated
in one or more concrete builder classes; therefore, adding new representation can be done
easily by extending the design and not modifying existing working code.

Implementation

Using the structural design from Figure 6.3, the implementation for the MesageBuilder
classis presented in Listing 6.12. As seen, the purpose of this class is to specify the creational
steps required for the generation of each message. Since messages in the ICD are generated
as classes, the MessageBuilder has methods for creating new classes, adding attributes,
adding methods, and generating code for closing classes (e.g., “};” in C++ and “}” in Java)
and retrieving the extension used for the generated file. These interface methods serve as
indication of the parts required to create a whole GeneratedProduct object. By sepa-
rating these parts into multiple interface methods, the creational process can call upon
them individually to create the product object at discrete points during software execution,
when information becomes available.

Once the creational parts are identified and incorporated into the MessageBuilder
base class, different derived classes can be implemented to provide the required object
representation. Since this behavior is incorporated into the design using inheritance,
the number of representations can be extended easily in future versions of the software.
Listing 6.13 presents the code for the concrete message builder that generates C++ code for
the messages.

For each creational method in the CppMessageBuilder class, the parameters passed
in are processed and transformed to C++ code before adding it to the product being gener-
ated. The same process is used for any other language that needs to be supported, such as
Java or C#. Finally, the algorithm for product creation is created and encapsulated using
the CodeGenerator class. As seen, by varying the builder object passed to the code
generator’s constructor, message generation can occur in different languages, as presented
in Listing 6.14.

Benefits

o The builder separates an object’s construction process with its representation;
therefore, future representations can be added easily to the software.

« Changes to the existing representation can be made without modifying the code for
the creational process.

o 'The builder provides finer control over the construction process so that objects can be
created at discrete points in time.

198 « Software Engineering Design

Listing 6.12: C++ Implementation of the MessageBuilder Class
#include <string>

// Forward reference.
class GeneratedProduct;

class MessageBuilder ({

public:
// The interface method for building a new class.
virtual void buildNewClass (string name) = 0;

// The interface method for building class attributes.
virtual void buildClassAttributes (string attributelist) = 0;

// The interface method for building class operations.
virtual void buildClassOperations (string operationList)

Il
o

// The interface method for closing a new class.
virtual void closeClass() = 0;

// The file extension for the target programming language.
virtual string getFileExtension() = 0;

// Return the generated product.
GeneratedProduct* getGeneratedProduct () {

return codeProduct;

}

private:
// The product containing generated code and stats about code
// generated.
GeneratedProduct* codeProduct;

Vi

Skill Development 6.3: Builder Design Pattern

Using pencil and paper, modify the UML class diagram for the message builder prob-
lem to include message generation using the C# programming language. Explain the
steps taken and how the addition of the new program feature impacts the existing
design. List the pros and cons of using the builder design pattern for this problem.

Creational Design Patterns in Detailed Design o 199

Listing 6.13: C++ Implementation for the Message Builder that Generates C++
class CppMessageBuilder : public MessageBuilder ({
public:

// The interface method for building a new class.
virtual void buildNewClass (string name) {

// Generate code for creating a class using CPP style and the
// name argument.

// Once code is generated, add it to the product.
getGeneratedProduct () ->addCode (/*new C++ class code*/) ;
// The interface method for building class attributes.

virtual void buildClassAttributes (string attributeList)

// For all items in attributelList, generate attributes using CPP
// style and add them to the generated code.

// Once code is generated, add it to the product.
getGeneratedProduct () ->addCode (/*C++ attributes*/) ;
// The interface method for building class operations.

virtual void buildClassOperations (string operationList)

// For all items in operationlList, generate operations using CPP
// style and add them to the generated code.

// Once code is generated, add it to the product.
getGeneratedProduct () ->addCode (/*C++ operations*/) ;
// The interface method for closing a new class.

virtual void closeClass() {

// Generate code to close a class in Cpp, and add it to the
// generated code.

// Once code is generated, add it to the product.
getGeneratedProduct () ->addCode (“"\n};\n\n") ;

200 « Software Engineering Design

Listing 6.14: C++ Implementation for the CodeGenerator

class CodeGenerator {
public:

// Constructor.

CodeGenerator (MessageBuilder* pBuilder) : m pBuilder (pBuilder) {
// Assume a valid builder pointer. Notice that m pBuilder is
// initialized in the constructor’s initialization list above.

}

// The interface method for building a new class.
virtual void generateCode (string fileName) {

// Open file for reading: fileName.
while (/* not end of file */) {

// read next token in file.
if (/*class name found*/) {

// Assume that variable className holds the name.
m_pBuilder->buildNewClass (className) ;

} else if(/*attribute list found*/) {

// Assume that attributelList contains the attributes
m_pBuilder->buildClassAttributes (attributelist) ;

} else if(/*operation list found*/) {

// Assume that operationList contains the operations.
m_pBuilder-s>buildClassOperations (operationList) ;

// Close the class.
m_pBuilder->closeClass() ;

}

} // end while(/* not end of file */)
// Close file: fileName.

// Create file using file extension from generated product object.
// write(m pBuilder->getGeneratedProduct () ->getCode()) ;

// Close file.

// logCodeGeneration (m pBuilder->getGeneratedProduct ()) ;

} // end generateCode(...)

private:
MessageBuilder* m_pBuilder;

Vi

Creational Design Patterns in Detailed Design « 201

PROTOTYPE

The prototype design pattern is a class creational design pattern that allows clients to create
duplicates of prototype objects at run time without knowing the objects’ specific type.
Previous creational design patterns, such as abstract factory and builder, required two
distinct set of classes: one or more creational classes and one or more product classes to
support the creational process. Unlike these, in which creator and product classes were
separate, prototype objects are both creators and products. This characteristic allows them
to support a generic interface for object creation while having the capability to access inter-
nal product data to create (deep) copies of prototypical objects. These copies are returned
to clients and used independently from the original prototype object. According to the
Gang of Four (Gamma et al. 1995, p. 117), the intent of the prototype design pattern is to

Specify the kinds of objects to create using a prototypical instance, and create new objects by
copying this prototype.

The prototype design pattern is typically used when clients need to duplicate products
at run time without regarding how products are created or their specific concrete types.
This allows copies from a variety of objects within the same class hierarchy to be created
uniformly, which simplifies client code and adds flexibility to designs.

Problem

Consider the enemy component created for a gaming system. The detailed design of the
enemy component includes a wide variety of enemy specifications defined for the game,
each including different profiles and weapons. The game designers have identified the
need to have each character provide a method for creating copies of themselves so that
at any given point during the game a character clone can be made including identical
energy level, weapons, and profiles. This functionality is required to develop an enemy
registry of different Character subtypes to create and add enemies at any point dur-
ing the game. Consider the initial proposed solution to the problem, as presented in
Listing 6.15.

As seen, both TerrestrialEnemyCharacter and AerialEnemyCharacter have been
designed to support an interface method for duplication of objects at run time. The prob-
lem with the code in Listing 6.15 is that clients are required to know about the specific
concrete class to create a copy of each different character. Therefore, it is inefficient to
design an enemy character registry that can be used throughout the game to create char-
acters uniformly, since the creational process requires knowledge about the particular
interface method for duplicating a run-time object. This decreases the design’s flexibility,
since it does not support object extension without code modification. That is, for every
new type of enemy character, the enemy registry code for creating and adding characters

202 « Software Engineering Design

Listing 6.15: C++ Implementation for the Terrestrial and Aerial Enemy Characters

// The character interface.
class Character ({

public:
virtual void attack() = 0;
// Other methods such as defend, move, etc.

class TerrestrialEnemyCharacter : public Character ({

public:
// Method definitions for terrestrial attack, defend, etc.

// Duplicate this object.
TerrestrialEnemyCharacter* duplicateTerrestrial() {

// Use the copy constructor to create a copy of this object and
// return it.
return new TerrestrialEnemyCharacter (*this);

}
Vi

class AerialEnemyCharacter : public Character ({

public:
// Method definitions for aerial attack, defend, etc.

// Duplicate this object.
AerialEnemyCharacter* duplicateBerial ()

// Use the copy constructor to create a copy of this object and
// return it.
return new AerialEnemyCharacter (*this) ;

to the game needs to be modified for including the new character. This problem is pre-

sented in Listing 6.16.

As seen, the code required to create copies of enemy characters using the enemy regis-

try with only two characters is quite large. Consider the case where 100 different enemy

characters are designed for the gaming system. In such a case, the size of the function

would increase significantly, since a conditional statement is required for each character.

This problem can be solved easily by using a prototypical interface for creating copies

that does not require clients—in this case, the function to create the enemy character—to

know which object they are creating.

Creational Design Patterns in Detailed Design « 203

Listing 6.16: C++ Implementation of the Client
that Creates New Enemy Character

// Pre-Condition: A registry of 2 Enemy Characters has been created.
Character* createNextEnemyCharacter()

// Randomly pick the location of the next enemy character to be
// created.
int nextEnemyLocation = rand() % MaxNumberOfEnemies;

// Make sure that nextEnemyLocation is within proper bounds.

// Retrieve the character at the nextEnemyLocation.
Character* pCharacter = enemyRegistry[nextEnemyLocation] ;

// The enemy character to be returned.
Character* pNewCharacter = 0;

// Determine if the character located at nextEnemyLocation is
// Terrestrial.
if (dynamic cast<TerrestrialEnemyCharacter*> (pCharacter) != 0) {

// Terrestrial Character, downcast it so that the

// duplicateTerrestrial method can be used to duplicate the

// terrestrial character.

TerrestrialEnemyCharacter* pTerrestrial =
dynamic_cast<TerrestrialEnemyCharacter*> (pCharacter) ;

// Create the copy. Clients are responsible for cleaning up memory
// allocated for the copy.
pNewCharacter = pTerrestrial->duplicateTerrestrial() ;
}
// Determine if the character located at nextEnemyLocation is Aerial.
else if(dynamic_cast<AerialEnemyCharacter*s(pCharacter) != 0) {

// Rerial Character, downcast it so that the duplicateRerial
// method can be used to duplicate the aerial character.
AerialEnemyCharacter* pAerial =

dynamic cast<AerialEnemyCharacter*s> (pCharacter) ;

// Create the copy. Clients are responsible for cleaning up memory
// allocated for the copy.
pNewCharacter = pAerial->duplicatelerial() ;
}
else {
// Invalid Character.
pNewCharacter = new InvalidEnemyCharacter;
}
// Return the newly created enemy character.
return pNewCharacter;

204 « Software Engineering Design

General View

Client <<interface>>
Prototype
+operation()
+clone(): Prototype*
A A
ConcretePrototypeA ConcretePrototypeB

+clone(): Prototype*

+clone(): Prototype*

Applied View
GemeEngine <<interface>>
Character
+createNextEnemyCharacter(): Character*

+clone(): Character*
+attack(): void

A A

TerrestrialEnemyCharacter AerialEnemyCharacter

+clone(): Character®
+attack(): void

+clone(): Character®
+attack(): void

FIGURE 6.4
UML class diagram for the prototype design pattern.

Structure

The general and applied structural view of the prototype design pattern for the gaming
system problem is presented in Figure 6.4. As seen, from the structural point of view the
only thing required to implement the prototype design pattern is the addition of the clone
interface method to the Character type. By adding the clone() method in the char-
acter interface, the behavior for creating character duplicates throughout the game is stan-
dardized and delegated to derived classes. Therefore, by deriving from this base class and
implementing the clone interface, derived classes can abstract the process of creating a
copy of themselves.

The driving forces behind this design are the ability of client objects to create duplicates
of character objects without knowing the object’s internal true composition and providing
clients the ability to reason about character objects using the character interface. Once these
characteristics are identified, applying the prototype design pattern is straightforward.

1. Identify and design the common interface that needs duplication. As part of the
interface, the clone interface method needs to be specified.

2. Identify and design concrete products, which realize the interface created in Step 1.

3. For each concrete product created in Step 2, implement the clone method in terms of
that particular concrete product.

Creational Design Patterns in Detailed Design o 205

Listing 6.17: C++ Implementation of the Terrestrial Character
and New Character Interface

// The character interface.
class Character ({

public:
// Interface method for initiating an attack.
virtual void attack() = 0;

// Interface method for duplicating objects at run-time.
virtual Character* clone() = 0;

// Other methods such as defend, move, etc.

class TerrestrialEnemyCharacter : public Character ({

public:
// Method definitions for terrestrial attack, defend, etc.
void attack()

// Display to the console the type of attack.
cout<<”TerrestrialEnemyCharacter: :attack () !\n”;

// Duplicate this object.
TerrestrialEnemyCharacter* duplicateTerrestrial() {

// Use the copy constructor to create a copy of this object and
// return it.
return new TerrestrialEnemyCharacter (*this);

}

// Implementation of the clone interface method to duplicate a
// terrestrial enemy character.
Character* clone (void) {

// Delegate duplication to existing method.
return duplicateTerrestrial () ;

}
Vi

Implementation

From the structural point of view, application of the prototype design pattern is straight-
forward. In Listing 6.17, the Character interface is specified, which includes the clone()

interface method. By specifying the clone method as a pure virtual method, derived classes
are forced to provide an implementation before they can be instantiated. For simplicity

206 « Software Engineering Design

(and to make the point clearer), the clone () method is implemented in terms of the pre-
viously existing duplicateTerrestrial() method from Listing 6.15. In a practical
development effort, such a method is removed so that the clone method can directly create
the object’s copy.

As seen, the prototype’s clone method results in a call to the copy constructor. In this
example, the C++ default copy constructor is called upon to create a copy of the specific
character object. However, careful attention must be in place when copying more complex
objects. In these cases, where the default copy constructor is insufficient to provide a deep
copy of the object, a specialized copy constructor must be provided. The same approach for
creating duplicates is repeated for the AerialEnemyCharacter, as seen in Listing 6.18.

Onceboth TerrestrialEnemyCharacter and AerialEnemyCharacter imple-
ment the clone interface, the client code presented in Listing 6.16 is modified to randomly
create enemy characters using prototypical instances that support the clone() method,
as seen in Listing 6.19. By using the prototype design pattern, the original client function is
reduced significantly. More importantly, the addition of new enemy characters or removal

Listing 6.18: C++ Implementation for the AerialEnemyCharacter

class AerialEnemyCharacter : public Character {
public:

// Implement the attack interface method for aerial characters.
void attack (void)

// Display to the console the type of attack.
cout<<”AerialEnemyCharacter: :attack () !\n”;

}

// Duplicate this object.
AerialEnemyCharacter* duplicatelAerial (void) {

// Use the copy constructor to create a copy of this object and
// return it.
return new AerialEnemyCharacter (*this) ;

}

// Implementation of the clone interface method to duplicate a
// aerial enemy character.
Character* clone (void) {

// Delegate duplication to existing method.
return duplicateRerial() ;

}
}i

Creational Design Patterns in Detailed Design « 207

Listing 6.19: C++ Code for the Client that Creates
New Characters Using the Prototype Interface

Character* createNextEnemyCharacter()

// Randomly pick the location of the next enemy character to be
// created.
int nextEnemyLocation = rand() % MaxNumberOfEnemies;

// Make sure that nextEnemyLocation is within proper bounds.

// Retrieve the character at the nextEnemyLocation.
return enemyRegistry [nextEnemyLocation]->clone() ;

of existing characters will not affect the client’s implementation. This provides added flex-
ibility to support change in future versions of the gaming system.

Benefits

« Clients are shielded from knowing the internal structure of objects; therefore, adding
products at run time is easier. This reduces the client’s complexity.

+ Reduced number of classes; instead of having two classes for object creation (i.e., creator
and product classes), the prototype is both, therefore eliminating the need for one class
for each product.

SINGLETON

The singleton design pattern is an object creational design pattern used to prevent objects
from being instantiated more than once in a running program. It is meant to provide a
design solution that enforces the conceptual representation of entities that must be sin-
gular within the problem domain. For example, consider the simulation of an operat-
ing system. In the operating systems domain, the simulation software may contain types
(i.e., classes) for processes, threads, and so forth that can be instantiated multiple times to
properly represent running programs within the simulation. In these cases, the multiple
instantiation of these types is conceptually consistent with the problem domain. However,
consider an entity type for singular items, such as the file system. In this case, for a typical
operating system, it would be conceptually incorrect to have multiple file system object
instances running within the simulation. Furthermore, if the simulation were to create
two file systems by mistake, the results would not be reliable. In cases such as this one, the
singleton design pattern can be used to enforce the policy that only one instance of the file

208 « Software Engineering Design

system object is running at all times. According to the Gang of Four (Gamma et al. 1995,
p. 127), the intent of the singleton is to

Ensure a class only has one instance, and provide a global point of access to it.

Since the singleton limits object creation to one instance, it is important that the one
instance can be accessible through a standard method. Therefore, the singleton design pat-
tern also provides a global point of access to it.

Problem

Consider an application that requires event-logging capabilities. The application consists of
many different objects that generate events to keep track of their actions, status of opera-
tions, errors, or any other information of interest. A decision is made to create an event
manager that can be accessed by all objects and used to manage all events in the system.
Upon instantiation, the event manager creates an event list that gets updated as events are
logged. At specific points during the software system’s operation, these events are written
to a file. To prevent conflicts, it is desirable that at any given time there is only one instance
of the event manager executing.

Structure

The general and applied structural view of the singleton design pattern for the event man-
ager is presented in Figure 6.5. As seen, from the structural point of view the singleton is
the simplest design pattern, since it requires only one class. The driving force behind this

General View

Singleton

—instance_: Singleton*

—Singleton()
+getInstance(): Singleton*

+operation()

Application View

EventManager

—instance : EventManager*

—EventManager()

+getlnstance(): EventManager*

+logEvent(eventDescription: string): void

FIGURE 6.5
UML class diagram for the singleton design pattern.

Creational Design Patterns in Detailed Design o 209

design is the ability for clients to have global access to the event manager and the assurance
that there is only one instance of the event manager at all times. Assuming a single-threaded
application, these characteristics are typically a good indication for applying the singleton
design pattern. To apply the singleton design pattern, a three-step approach is employed:

1. Set the visibility of the constructor to private.

2. Define a private static member attribute that can store a reference (or pointer) to the
one instance of the singleton.

3. Create a public static get Instance method that can access the private constructor
to instantiate objects of the singleton type and return it to clients.

When designing singletons, the class constructor needs to be specified as private to pre-
vent clients from instantiating objects of the singleton type via the direct access to the
constructor. Since access to the constructor is prohibited, the second step involves creating
a method that can access the private constructor to instantiate objects of the singleton’s
type. This method needs to be a class method (i.e., static) so that it can be called at the class
level without instantiating an object of the class. This is done by specifying the method as
static with public visibility. Finally, a private static member attribute that can store a refer-
ence or pointer to the running instance of the singleton needs to be created to keep track
of the one, and only one, instance of the singleton. This attribute is initially set to zero or
null, and once a call to the getInstance() method is made the attribute is checked to
determine if the instance of the singleton has been created. If it hasn’t, the method instanti-
ates it and returns it to the caller. After the first initialization process, further calls to the
getInstance() method will fail the condition that determines that the attribute is null,
therefore directly returning the existing singleton object.

Implementation

As specified before, the implementation of the singleton consists of three main steps. First,
the visibility of the constructor needs to be private to prevent direct instantiation from
clients. Next, a public class (static) member function must be created to provide clients
with a globally accessible function for the singleton. Finally, the globally accessible func-
tion must instantiate the singleton object while enforcing that only one instance is created
throughout program. The C++ implementation of the EventManager singleton class is
presented in Listings 6.19 and 6.20.

Once the singleton design pattern is applied to the EventManager, client objects can
use it easily via the standardized and globally accessible getInstance() method, as
presented in Listing 6.21.

The singleton design pattern has been known to fail in multithreaded applications, result-
ing in the creation of more than one instance of the singleton. Therefore, its usage in these
types of environments should be carefully evaluated before implementation.

210 « Software Engineering Design

Listing 6.19: C++ Header File for the EventManager Singleton

#include <string>
class EventManager ({

public:
// The global point of access to the EventManager.
static EventManager* getInstance() ;

// The method that logs events.
void logEvent (std::string eventDescription) ;

private:
// Private Constructor.
EventManager () ;

// The one and only instance of the EventManager.
static EventManager* _instance;

}i

Listing 6.20: C++ Source File for the EventManager Singleton

#include “EventManager.h”

// Initialize the instance_ static member attribute.
EventManager* EventManager:: instance = 0;

// The global point of access to the EventManager.
EventManager* EventManager::getInstance () {

// Determine if an instance of the EventManager has been created.
if(_instance == 0) {

// Create the one and only instance.
_instance = new EventManager;

}

return _instance;

}

// The method that logs events.
void EventManager::logEvent (std::string eventDescription) ({
// Code to log event.

}

// Private Constructor.
EventManager: : EventManager () {
// Intentionally left blank.

Creational Design Patterns in Detailed Design « 211

Listing 6.21: C++ Implementation for Client Objects
Using the EventManager Singleton

int main() {

// Log events using the singleton event manager.
EventManager: :getInstance () ->logEvent (*log some event here”);

// Or store the pointer to log events later.
EventManager* pEventManager = EventManager::getInstance();
pEventManager->logEvent (“*log some event here”) ;

Benefits

« The singleton provides controlled access to a single instance of a given type.
o It has reduced name space since it provides an alternative to global variables.
o It can be customized to permit variable number of instances.

CHAPTER SUMMARY

Creational design patterns are patterns for abstracting and controlling the way objects are
created in software applications. They play a key role in the design of systems by making them
independent of how objects in the system are created, composed, and represented. Therefore,
parts of the system responsible for creating (or instantiating) objects do so through a common
creational interface without knowledge of how the actual object or group of objects are created.
In addition, by controlling the creational process with a common interface, enforcing cre-
ational policies becomes easier, therefore giving the system the ability to create product objects
that share a common interface but that vary widely in structure and behavior. Examples
of creational patterns include the abstract factory, factory method, builder, prototype, and
singleton. This chapter explored several well-established creational design patterns and pre-
sented the problems they are designed to address, together with the benefits that each of the
discussed patterns provides. Identifying and designing using creational design patterns can
improve the efficiency of the development process and the quality of the final system.

REVIEW QUESTIONS

1. What are creational design patterns? What are they used for?
2. Compare and contrasts the following patterns:

a. Abstract factory

b. Factory method

212 « Software Engineering Design

c. Builder
d. Prototype

3. List and explain the benefits of applying the abstract factory design pattern.

4. What is the builder design pattern? List and explain the main features of the builder
design pattern.

5. What particular problems are addressed by the builder design pattern?

6. What is the essential structural element required in the prototype design pattern?

7. Explain the steps required to implement the singleton design pattern? Are there any
limitations to this pattern? Explain.

CHAPTER EXERCISES

1. A company is designing software for monitoring and controlling a custom-built
system consisting of multiple hardware components (i.e., Equipmentl, Equipment2,
and Equipment3). Each equipment component provides unique status, unique
commands, and specific interface for communicating, such as a Universal Serial
Bus (USB), Serial, and Transmission Control Protocol/Internet Protocol (TCP/IP).
Regardless of the communication type, each class representing an equipment must
provide functionality to get specific status (e.g., getEquipmentOneStatusl, getE-
quipmentTwoStatusl) and send specific commands to the device (e.g., sendEquip-
mentOneCmd], sendEquipmentTwoCmd1). The software provides a graphical user
interface (GUI) that polls each hardware component for its status data and also pro-
vides means for sending commands to the components. Since hardware development
is expected to take longer than the expected GUI development, management has
decided to simulate the components so that GUI development and testing can move
forward. That is, there are two streams of equipments: real equipment, composed of
Equipmentl, Equipment2, and Equipment3; and simulated equipments, composed
of SimEquipment], SimEquipment2, and SimEquipment3. Design this system using
the abstract factory design pattern so that the GUI software can work the same way
using real or simulated components, regardless of the type of component.

2. Your company develops software to monitor and control custom-built hardware devel-
oped by a separate vendor. The equipment supports 100 different messages, defined
with the format specified in the following box. Every time the messaging specifica-
tion changes, the code for all 100 messages has to change manually. To make things
worse, your company supports two versions of the software, one in Java and one in
C++, so these changes must be made to both versions. In addition, there are future
plans for providing a messaging library in C# as well, based on the messaging specifica-
tion. Clearly, there has to be a more efficient way to manage this process. Management
has asked you, the design team, to come up with a design that separates the algorithm
for parsing the messaging specification from the code that generates classes for the

Creational Design Patterns in Detailed Design o 213

messages in a specific programming language (e.g., Java or C++). This way, changes
to the messaging specification will not affect the code that generates the messages in
specific programming languages and vice versa; that is, changes or additions to support
new programming language generation will not affect the code that parses the messag-
ing specification. A sample of the messaging specification containing three messages is
given to you so that you can propose a design that can improve the code generation pro-
cess. Management would be thrilled if your design would support different generators
(at run time) capable of producing the messages in different programming languages.
That way, by swapping generators different programming languages can be supported.
The generated code should provide get() and set() methods for all attributes.

Messaging Specification Sample

Name : PowerOnCmd ;
Attributes:4;
byte:headerSize;
byte:msgId;
byte:sourceld;
byte:destinationId;
Operations:0;
Name:SelfTestCmd
Attributes:5;
byte:headerSize;
byte:msgIld;
byte:sourceld;
byte:destinationId;
byte:testId;
Operations:0;

Name : SetDataCmd;
Attributes:6;
byte:headerSize;
byte:msgIld;
byte:sourceld;
byte:destinationId;
byte:dataType;
byte:dataSize;
Operations:2;
byte*,getData,void;
void, setData,byte*;

3. Apply the builder design pattern to design this system.

4. Use the tool of your choice (e.g., rational rose, starUML, MS PowerPoint, Visio) to
create the UML class diagram for the problem

5. Write code in C++ to demonstrate the implementation of your design. Your pro-
gram must create files containing Java or C++ code for the generated messages,
depending on the builder used.

214 « Software Engineering Design

6. Prepare a 10- to 15-minute PowerPoint presentation consisting of the following:

a.

oo T

Introduction to the problem

Solution approach (UML class diagram)

Presentation of the builder code

Demo of the program

Be ready to state your assumptions and to justify and defend all of your design
decisions.

REFERENCE

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Boston: Addison-Wesley, 1995.

7

Structural and Behavioral Patterns
in Detailed Design

CHAPTER OBJECTIVES

o Understand the importance and role of structural and behavioral
design patterns in detailed design

o Identify, understand, and model common structural and behavioral
design patterns

o Become proficient in implementing models of both structural and
behavioral design patterns

 Understand the benefits of important structural and behavioral design
patterns

CONCEPTUAL OVERVIEW

As seen in the previous chapter, common patterns in object-oriented
designs exist to provide detailed design solutions to problems that recur
many times over in different systems. Beside the creational design patterns
studied so far, other common and popular design patterns have been iden-
tified to address structural and behavioral problems commonly encoun-
tered in software applications. Structural and behavioral designs patterns
help identify problems that deal with the structure and behavior of software
designs; they prescribe the classes required for their design solution and
interrelationships required to support object creation their behavior. These
patterns allow designers to quickly and systematically identify structural
layouts of systems (or subsystems) and provide avenues for examining the
system’s interactions and quality evaluation within the operational system.

215

216 « Software Engineering Design

This chapter explores several well-established structural and behavioral design patterns
and examines the problems they are designed to address, together with the benefits they
provide. Identifying and designing using these design patterns can improve the efficiency
of the development process and the quality of the final system.

I ——
STRUCTURAL DESIGN PATTERNS

Structural design patterns are patterns that deal with designing larger structures from
existing classes or objects at run time. They play a key role in the design and evolution of
systems by allowing integration of new designs with existing ones, via object composition
(i.e., object structural) or inheritance (i.e., class structural). Class structural design patterns
identify the inheritance relationship necessary to create new interfaces or implementa-
tions that may be compatible with the older design structure. Object structural patterns
provide the relationships required to create larger structures through object composition
at run time, therefore providing more flexibility to extend the system at run time, which
is impossible for class structural solutions. In both cases, by allowing designs to build on
other existing structures, systems can be made interoperable by designing compatible
interfaces for otherwise incompatible systems. Structural design patterns have also signifi-
cant impact on the reusability and modifiability of systems. Examples of structural design
patterns include the adapter, composite, and facade.

I ——
ADAPTER

The adapter design pattern is a class/object structural design pattern used to adapt an exist-
ing interface to another interface that is expected in a software system. It can be designed
as both class structural, in which the major composition relationships are defined at com-
pile time, and object structural, where structural object composition occurs at run time.
In either case, the adapter design pattern allows systems with incompatible interfaces
to work together, therefore increasing the reusability and evolution of software systems.
According to the Gang of Four (Gamma, Elm, Johnson, and Vlissides 1995, p. 139), the
intent of the adapter is to

Convert the interface of a class into another interface clients expect. Adapter lets classes work
together that couldn’t otherwise because of incompatible interfaces.

Conceptually, adapters are used everywhere. For example, electrical adapters can
be used to connect devices with incompatible interfaces, such as European plugs and
American sockets. In gardening, adapters are used to connect water hoses with

Structural and Behavioral Patterns in Detailed Design o 217

incompatible interfaces to extend their reach. In computer hardware, adapters are used
to covert between many different interfaces, such as serial to Universal Serial Bus (USB).
In software, the adapter concept is applied similar to adapters in the previous examples.
Consider the graphical user interface (GUI) for an application to monitor and control
a satellite communication system composed of several independent hardware devices.
For each hardware device, complex GUI screens are designed to monitor and con-
trol each device. All screens rely on a class, named HardwareDevice, that provides
methods (e.g., string getStatusA(), string getStatusB()) designed and developed assuming
that commands and status for each device use the string type (in C++). When receiv-
ing the hardware devices from their manufacturers and the binary compiled library
that provides monitor and control capabilities for each device, it is noticed that the class
ManufacturerHardwareDevice (provided by the manufacturer) provides all func-
tions for command and control using the char* type or other nonstring type, which
creates an incompatible interface between the existing GUI code and the library code.
Since the code inside the library cannot be changed and changing the code for all screens
(depending on the number of screens) may be impractical, the provided class in the binary
library can be adapted using the adapter design pattern to fit the expected interfaces in
the GUI software or vice versa.

Problem

Consider the completed gaming system discussed in Chapter 5, which includes the
design and development for all 10 levels of a gaming system, including the design and
implementation of all gaming characters. At each level, the core of the gaming system
(i.e., GameEngine) uses the Character interface to add enemy characters to the game,
making them move, defend, and attack using the move(), defend(), and attack()
interface methods, respectively. Each character in the game implements the Character
interface to provide specific behavior appropriate for the character and the level of the
game. That is, depending on the character and the game level, the behavior for moving,
defending, and attacking varies among characters. An online character developer has
created a special character that is compatible with the game development’s application
programming interface (API) but not with the particular Character interface; that is,
the special character designed by the online developer includes the following interface
methods: specialMove(), specialAttack(), and specialDefend(). The special
character is made available freely to the gaming community; however, the special charac-
ter code can be downloaded and incorporated into other gaming systems only as a binary
compiled library, which can be incorporated into the existing game. Since all levels of the
game are complete, it is impractical to change the code in all places to detect the new spe-
cial character and make different calls for moving, attacking, and defending; therefore,
the adapter design pattern is required to adapt the special character’s interface to the
current character interface.

218 « Software Engineering Design

General Class

Target Adaptee Structural View
Client
+request() +specificRequest()
.
Adapter
+request()
General Object
Client Target Structural View
+request()
A
Adapter Adaptee
+request() +specificRequest()
Applied Object
- <<interface>> Structural View
GameEngine Character

+attack(): void
+defend)() : void
+move(): void

A

<<interface>>
CharacterAdapter BorrowedCharacter
+attack(): VOi(,i | | +horrowedAttack(): void
+defeng(): szd +borrowedDefend)(): void
+move(): voi

+borrowedMove(): void

A

ConcreteBorrowedCharacter

+borrowedAttack(): void
+borrowedDefend(): void
+borrowedMove(): void

FIGURE 7.1

UML class diagram for the class/object structural adapter design pattern.

Structural and Behavioral Patterns in Detailed Design o 219

Structure

The general and applied structure of the adapter design pattern is presented in Figure 7.1.
As seen, the adapter can be designed using multiple inheritance or object composition.

In the multiple inheritance version, the pattern’s relationships between classes and sub-
classes are defined at compile time, via inheritance; therefore, this version is classified as
class structural. When the adapter design pattern is designed using object composition,
object relationships are defined at run time; therefore, the adapter design pattern in this
case is classified as object structural. The object structural version of the adapter design
pattern results in a more dynamic and flexible design; therefore, it is the recommended
and followed approach for the gaming system. The step-by-step approach for designing the
object structural adapter design pattern is presented as follows:

1. Identify the source and destination interfaces that need adapting in the new system
(e.g., target and adaptee or character and SpecialCharacter).

2. Add a new class (e.g., adapter or AdaptedCharacter) in the design that realizes the
target interface and implements it in terms of the adaptee’s implementation. This
requires a realization relationship between the adapter and target, and an association
between the adapter and the adaptee.

3. In the new system, whenever objects that share the target interface are expected,
it can now be possible to use the adapter objects created in Step 2.

The driving forces for applying the adapter design pattern are reusability and integration
of code between two mature software structures. Under these conditions, changing the
code to match either of the two software entities is impractical. Furthermore, access to the
code for either software entity may not be possible; therefore, to reuse and integrate code
from one entity to the other, the adapter is required. When this is the case, the adapter
design pattern is easily applied by creating an adapter class that inherits from the target
class. By incorporating new adapter objects that share the Target interface, clients can use
them the same way they used original Target objects; however, these new adapter objects
implement the Target functions in terms of the Adaptee, which is the object providing the
new functionality under a different, incompatible interface.

Implementation

The implementation of the object structural adapter design pattern simply requires the
creation of one class with two relationships—realization and association. In practical
applications, the Target and Adaptee classes are typically part of larger mature and sable
software structures. In this example, the Target and Adaptee classes are represented by the
Character and BorrowedCharacter classes, as seen in Listings 7.1 and 7.2.

220 « Software Engineering Design

Listing 7.1: C++ Code for the Character Interface

// The Target class.
class Character {

public:

// Interface method for attack functionality.
virtual void attack() = 0;

// Interface method for defend functionality.
virtual void defend() = 0;

// Interface method for moving functionality.
virtual void move() = 0;

Listing 7.2: C++ Code for the BorrowedCharacter
Interface and ConcreteBorrowedCharacter

// Interface for the borrowed character.
class BorrowedCharacter {

public:
// Interface methods for the borrowed character.
virtual void borrowedAttack() = 0;
virtual void borrowedDefend () 0;

virtual void borrowedMove () = 0;

Vi

// Concrete borrowed character.
class ConcreteBorrowedCharacter : public BorrowedCharacter {

public:
// Implementations for the BorrowedCharacter interface methods.
void borrowedAttack() { /* attack code here... */}
void borrowedDefend() { /* defense code here... */}
void borrowedMove () { /* code to move here... */}

}i

As seen, the interfaces for the Character and BorrowedCharacters are different;
therefore, client code that expects objects with the Character interface cannot accept
objects with the BorrowedCharacter interface even though conceptually, both objects do
the same operations. To allow the existing code to process objects of the borrowed charac-
ter type as if they were objects of the character type, a CharacterAdapter is required,
as seen in Listing 7.3.

Structural and Behavioral Patterns in Detailed Design o 221

Listing 7.3: C++ Header File for the CharacterAdapter Class

// Forward reference.
class BorrowedCharacter;

class CharacterAdapter : public Character ({
public:

// Constructor.

CharacterAdapter (BorrowedCharacter* pCharacter) ;

// Adapt the attack method.
void attack(void) ;

// Adapt the defend method.
void defend (void) ;

// Adapt the move method.
void move (void) ;

private:
// BorrowedCharacter that needs adapting to the Character interface.
BorrowedCharacter* borrowedCharacter;

}i

As seen, the CharacterAdapter inherits from the Character to implement the
realization relationship in C++. It is also associated with the BorrowedCharacter class
via member attribute. To finalize the object adaptation, the newly created character adapter
type is required to implement all interface methods defined by the character interface in
terms of the associated borrowed character, as seen in Listing 7.4.

Once the adapter design pattern is applied, it is easy to use borrowed characters in the
gaming system. Consider the method presented in Listing 7.5 for triggering character
behavior in the GameEngine class.

As seen, this and other methods defined in the GameEngine class can now employ the
adapter design pattern to accept character objects that comply with the character interface
but provide behavior from the borrowed character. An example of client code used to acti-
vate a borrowed character in the gaming system is presented in Listing 7.6. As seen, the
borrowed character is created and passed into the character adapter during its initialization
through the constructor. From this point forward, the adapted character is used instead of
the borrowed character to provide the new features to the game.

Benefits

o Allows classes with incompatible interfaces to work together, therefore increasing
reusability and ease of code integration
« Provides a standard way for integrating a plurality of different types to existing software

222 « Software Engineering Design

Listing 7.4: C++ Source File for the CharacterAdapter Class

#include “CharacterAdapter.h”
#include “BorrowedCharacter.h”

// Constructor.
CharacterAdapter: : CharacterAdapter (BorrowedCharacter* pCharacter) {

// For simplicity, assume a valid pointer.
_borrowedCharacter = pCharacter;

}

// Adapt the attack method.
void CharacterAdapter::attack() {

// Implement the attack functionality in terms of the
// BorrowedCharacter.
_borrowedCharacter->borrowedAttack () ;

}

// Adapt the defend method.
void CharacterAdapter::CharacterAdapter::defend()

// Implement the defend functionality in terms of the
// BorrowedCharacter.
_borrowedCharacter->borrowedDefend () ;

}

// Adapt the move method.
void CharacterAdapter: :move () {

// Implement the move functionality in terms of the
// BorrowedCharacter.
_borrowedCharacter->borrowedMove () ;

}

Skill Development 7.1: Adapter Design Pattern

Using the Unified Modeling Language (UML) tool of choice, replicate the UML
model presented in Figure 7.1 and generate code from the model. Using the Integrated
Development Environment (IDE) of choice, fill in the gaps in the code generated using
Listings 7.1 through 7.6, and compile and execute the software. Create two additional
classes: one that derives from the character class in which its methods are implemented
to simply display some output to the console; and another adapter class that adapts
another character with different interface methods for attacking, defending, and mov-
ing (e.g., slowAttack, slowDefend, and slowMove). Use the triggeredAction
method to pass in (one at a time) objects of all the types created. Observe how the trig-
gered Action method accepts both objects of the original character interface and the new
adapted objects (since they now all share the character interface). How does the adapter
design pattern increase reusability, maintainability, and modifiability in such system?

Structural and Behavioral Patterns in Detailed Design « 223

Listing 7.5: C++ Code for the GameEngine Method
to Trigger a Character’s Actions

class GameEngine {

public:
//
// Method to activate a character.
void GameEngine::triggeredAction (Character* pCharacter) {

// Activate the character and make it move randomly for a short
// time.
pCharacter->move () ;

// Once the character stops moving, if being attacked, defend!
pCharacter->defend() ;

// Once the characters stops defending, if others characters are
// detected, attack!
pCharacter->attack() ;

}
//

Listing 7.6: C++ Code for Client Code in the Gaming System
to Activate a Borrowed Character

// Instantiate the game engine.
GameEngine engine;

// Create the borrowed character that needs adapting.
ConcreteBorrowedCharacter borrowedCharacter;

// Create the character adapter and pass in the borrowed character.
// From this point on, the adapterCharacter object can be used

// throughout the game engine as if it were a Character!
CharacterAdapter adaptedCharacter (&borrowedCharacter) ;

// Move, attack, and defend with the borrowed character’s features!
engine.triggeredAction (&adaptedCharacter) ;

COMPOSITE

The composite design pattern is an object structural pattern that allows designers to
compose (large) tree-like design structures by strategically structuring objects that share
a whole-part relationship. Whole—part relationships are those in which a larger entity
(i.e., the whole) is created by the composition of smaller entities (i.e., the parts). The key

224 « Software Engineering Design

advantage of using the composite design pattern is that it provides a design structure that
allows both whole and part objects to be treated uniformly; therefore, operations that are
common to both type of objects can be applied the same way to both types of objects.
According to the Gang of Four (Gamma et al. 1995, p. 163), the intent of the composite is to

Compose objects into tree structures to represent part-whole hierarchies. Composite lets
clients treat individual objects and composites of objects uniformly.

Many situations exist that require objects to be composed of many parts. However, in
some specific instances, some problems require both objects and their parts to be treated
uniformly. In the software domain, perhaps the most common example is seen in modern
user interfaces, which contain both Menu and Menultem objects. A Menu, in the graphical
user interface context, is a mechanism of the software that allows users to select and activate
features of the system. A Menu can also provide access to other Menus or Menultems that
can be selected to trigger software execution. Both Menu and Menultemn may contain func-
tions to change their visible text, size, and background color or to handle events. Therefore,
both must be treated uniformly. In this case, the composite design pattern can be used to
create a flexible design structure that groups both Menu and Menultems, that provides easy
addition and removal of both Menu and Menultems to the design structure, and that pro-
vides a uniform interface so that operations common to both can be easily performed using
the composite interface. Although the composite design pattern is prevalent in examples
such as this, its application can be found in numerous practical applications.

Problem

A wireless sensor system is remotely deployed to collect environmental information. The
sensor system communicates via satellite to a central location, where a schedule of tasks
(i.e., a mission plan) is created and sent over satellite communications. A mission plan is a
composite message that contains one or more messages that command the sensor system
to perform particular tasks. These messages contain information on how and when to per-
form particular tasks. Mission plan messages can be created with many different com-
binations of messages. Upon creating the mission plan message, it is sent to the wireless
sensor system, which retrieves each message and message information from the mission
plan and executes them to collect environmental data, store it, and send it back to the
central location, as directed by the mission plan message. The sensor system is extensible
and contains many capabilities provided by numerous sensors (e.g., temperature, vibra-
tion), still-shot camera, and video recording. To operate the sensor system, the operators at
the central location are requesting a message generator capable of allowing them to easily
create a mission plan message. The mission plan message may contain both primitive and
composite messages. Numerous mission plan messages can be created to support different
“missions,” and it is expected that more sensing capabilities will be added in the future.
Therefore, the design of the message generator must provide easy addition and removal of

Structural and Behavioral Patterns in Detailed Design « 225

Composite
Message

! ' ! !
[Message] [Message] @pszzg] Message
Y

[Message][Message] [Message]

MessagesMenu Message 3 — Message 5
Message 1
Include Message
Message 2

Message 3 » Message 5 Param1: |:|
Messaged | Mesages O —
Message 7 Param3: I:l

FIGURE 7.2
Message generator graphical user interface concept.

both messages and composite messages to a mission plan. A graphical representation of the
message generator is presented in Figure 7.2.

As seen, the topmost composite message represents the mission plan message (or schedule).
The message generator provides a series of menu items that allows operators to select a par-
ticular message, to configure its parameters, and to add it to the mission plan message. In this
example, Message 3 is a composite message that can be configured to contain Messages 5, 6,
and 7. Message 3 can also be configured individually and added to the mission plan. Both
primitive and composite messages need to be treated uniformly, so that methods such as
getId(), setId(),and toXml() can be supported by both types of messages.

Structure

The general and applied structure of the composite design pattern is presented in Figure 7.3.
As seen, the general structure of the composite design pattern requires three main classes,
the Composite, Leaf, and Component classes. The Component class defines the operations
that are common to both Composite and Leaf objects, for example, print(), toXml(),
getId(), setId(), etc., as shown in the Applied View portion of Figure 7.3. The com-
ponent class also defines the methods specific to support the composite design pattern,
namely, the add() and remove() methods. The add and remove methods are intended
for use by composite objects and not by leaf objects; therefore, they must be specified as
overridable methods with default implementation that indicates an unsupported operation.

226 « Software Engineering Design

General View

Component
Client
+operation()
+add(param1 : Component)
+remove(param1: Component)
+getChild(int)
LF Composite
Leaf +operation()
+add(param1 : Component)
- +remove(param1l: Component)
ti
+operation() +getChild(int)
Applied Vi
Message pplied View
MessageGenerator —id_:int

—name_: string

+getld(: void): int
+getName(: void): string
+setld(id: int): void

D +setName(name: string): void

+add(message : Message*): void

+print(: void): void
+toXml(): string
+clone(): Message*

VideoControlMessage

+setFrameRate(framesPerSecond: int): void
+toXml(): string
+clone(): Message*

CompositeMessage

—messages_: list<Message*>

+CompositeMessage(other : const CompositeMessage&)
SelfTestMessage +CompositeMessage(name : string)

+add(message : Message*): void

+print(): void

+toXml(): string

+clone(): Message*

+toXml(): string
+clone(): Message*

FIGURE 7.3
UML class diagram for the composite design pattern.

This means that if at any point during run time a leaf object is called upon to add or remove
objects to the hierarchy, the default implementation for these methods is executed to reflect
the unsupported requests. In many cases, a good alternative for the default implementation
involves writing code that throws exceptions within the add and remove methods. On the
other hand, composite objects that derive from the component base class are required to
override the default implementation so that objects can be added and removed from the
hierarchy. This way, when composite objects are bound dynamically at run time to a ref-
erence of the component type, the appropriate code for adding and removing objects is
called, preventing the default implementation from being executed. The steps required to
apply the composite design pattern include

1. Identify, understand, and plan the tree-like structure required for the system.

2. With the knowledge from Step 1, identify and design the component base class,
which includes overridable methods common to both leaf and composite objects as
well as methods specific to composite objects, which provide capability for adding
and removing objects to the hierarchy.

Structural and Behavioral Patterns in Detailed Design o 227

3. For the methods specified in Step 2 for adding and removing objects to the hierarchy,
implement default behavior that if not overridden will result in an exception or error
message indicating an unsupported operation.

4. Identify and design the composite class, which overrides methods for adding and
removing objects to the hierarchy. The composite class requires an internal data
structure to store leaf nodes added to the hierarchy. In addition, the composite class is
required to override all other operational methods identified in Step 2 to implement
functionality in terms of the composite object and all of its contained leaf objects.

5. Identify and design the leaf class, which overrides operational methods specified in
Step 2 to implement behavior in terms of the leaf object. Leaf objects do not override
the add and remove methods identified in Step 2.

6. Identify and design the client that uses both composite and leaf objects.

In the message generator example, add () and remove() are used to add and remove
both CompositeMessage and all other derived messages to the design structure
(e.g., VideoControlMessage, SelfTestMessage). Therefore, to support the addi-
tion of new messages that provide control of future sensing capabilities, a new class that
derives from the Message base class needs to be added to the message generator design.
In addition, to support easy duplication of both types of messages, the prototype design
pattern is incorporated into the message generator design so that message copies can be
easily created throughout the application. This is reflected in the design with the addition
of the clone () method to the Message class.

The driving forces behind the design include the ability to treat both individual messages
and mission plan messages uniformly, so that the complexity of client code is minimized.
The composite design pattern is also chosen to achieve design flexibility so that new mes-
sages can be created easily to support future systems” demands. The most influential step
when applying the composite design pattern is the addition of the add() method in the
Component base class. Once this method is created, composite objects override it to store
the primitive objects contained by it.

Implementation

Most of the implementation work for the composite design pattern takes place in both
the component and composite classes, which are represented in the message generator by
the Message and CompositeMessage classes. Once these are created, other message
classes that share the same Message interface can be added easily by deriving from the
Message class. The implementation for the Message class is presented in Listing 7.7.

As seen, the toXml() and clone() methods are incorporated in the Message type
interface. These methods are application specific and are not related to the composite
design pattern. The toXml() method is added to enforce the policy that all messages in
the system are required to provide implementation appropriate to convert the particular
message data into Extensible Markup Language (XML) format. Other application-specific
methods include the getId(), setId(), getName(), and setName().

228 « Software Engineering Design

Listing 7.7: C++ Header File for the Message Class
class Message {
public:

// Method to retrieve the message’s id.
int getId() const;

// Method to retrieve the message’s name.
string getName () const;

// Method to set the message’s id.
void setId(int id);

// Method to set the message’s name.
void setName (string name) ;

// Method to add messages to a composite message.
virtual void add (Message* message) ;

// Method to display messages to the console.
virtual void print();

// Method to transform the contents of this message to XML format.
virtual string toXml() = 0;

// Duplicate Messages using the prototype design pattern.
virtual Message* clone() = 0;

private:
// The message’s id.
int id;
// The message’s name.
string name;

Vi

The add (Message*) method is specific to the composite design pattern. Specifically, it
gives composite classes the ability to add messages to their structure so that the whole-part
relationship can be realized. Because this method is intended specifically for composite
classes, it violates the Liskov substitution principle presented in Chapter 5. However, it pro-
vides the functionality necessary to support efficient solution to the problem; therefore, its
usage can be easily justified during design reviews. To minimize the effects of this viola-
tion, careful attention needs to be paid when implementing the default behavior of the
add(Message*) method in the Message base class. The easiest solution is to provide a base
implementation that notifies the operator stating that the operation is not supported. That
way, derived classes that do not support the add method would simply inherit the default

Structural and Behavioral Patterns in Detailed Design « 229

Listing 7.8: C++ Implementation for the Add() and
Print() Methods of the Message Class

#include “Message.h”
#include <strings>
#include <iostream>

// Method to add messages to a composite message.
void Message::add (Message* message) {

// The default implementation lets clients know that the operation
// is unsupported. This behavior is inherited by Leaf classes, but
// overridden by Composite classes.

std: :cout<<”Messages cannot be added to Leaf objects!\n”;

}

// Method to display messages to the console.
void Message: :print (void) {

// The default behavior for displaying a message’s information.
// This behavior is inherited by Leaf classes, but overridden by
// Composite classes.

std::cout<<”Message “<< name.c_str()<<”, Id: “<< id<<endl;

implementation. A more sophisticated approach includes writing code that throws an excep-
tion indicating that the operation is not supported. This way, calls to the add (Message*)

method from leaf classes will result in exceptions that can explicitly notify developers of
this unsupported operation. The default implementation for both the add () and print()

methods is presented in Listing 7.8. Notice that the print method can be defined in the
Message base class to display the message’s information. This implementation is appropri-
ate for leaf objects but not for composite objects; therefore, leaf objects can inherit this
implementation without further changes.

The main difference between the CompositeMessage class and all other messages in
the design is that the operations of the CompositeMessage need to support its contained
messages. For example, the print () method needs to display the information of the com-
posite message and all of its contained messages. Similarly, the CompositeMessage
class needs to override the add (), toXml(), and clone() methods to appropriately sup-
port all of its contained objects. The CompositeMessage class is specified in Listing 7.9.

To support the addition of primitive messages in the composite structure, a C++
template list is used, so the implementation of the add (Message*) method simply pushes
messages to the back of the list. By using a list, implementing the print () method is made
easy since all it has to do is iterate through the list and call each of the message object’s
print() methods, as displayed in Listing 7.10.

Primitive objects of the message type are created by deriving from the Message base class
and implementing all other application-specific required methods. For example, the video

230 « Software Engineering Design

Listing 7.9: C++ Header File for the CompositeMessage Class

#include <list>
#include “Message.h”

class CompositeMessage : public Message {
public:

// Copy constructor.
CompositeMessage (const CompositeMessage& other) ;

// Overloaded constructor to set the message’s name.
CompositeMessage (string name) ;

// Destructor to clean up memory for messages in _message.
virtual ~CompositeMessage () ;

// Method to add messages to this Composite Message.
void add (Message* message) ;

// Override the print method to display all messages in _message.
virtual void print();

// Method to transform the contents of this message to XML format.
string Message::toXml () ;

// Create a duplicate of the Composite Message using the prototype
// design pattern.
Message* clone () ;

private:

// The Messages that make up the Composite Message.
list<Message*> messages;

Vi

control message for the system is required to provide implementation for required foXml() and
clone() methods and all other methods required to execute video control messages, such as the
setFrameRate () method. An example of the VideoCont rolMessage implementation
is presented in Listing 7.11. In similar fashion, all other messages in the system are created.

Once the CompositeMessage and primitive messages are designed and implemented,
the client message generator can be implemented, as seen in Listing 7.12.

As seen, by using the composite design patterns message hierarchies containing both
primitive and composite objects can be created easily simply by adding objects to the com-
posite objects via the add() interface method. For example, the powerOnMessage,
selfTestMessage, and transmitStatusMessage, all sharing the Message
interface, are added to the composite message initializeTaskingMessage,

Structural and Behavioral Patterns in Detailed Design o 231

Listing 7.10: C++ Implementation of the Composite’s
Add() and Print() Methods

// Add a message to the collection of messages in the Composite
// Message.
void CompositeMessage::add (Message* message) {

// Add this message.
_messages.push back (message) ;

}

void CompositeMessage: :print () {

// Display the Composite Message'’s name and id.
cout<<”\nComposite Message: “<<getName().c str()
<<, Id: “<<getId()<<endl;

// Retrieve an iterator for the messages collection.
list<Message*>::iterator pIter = messages.begin();

// Iterate through the messages that make up this composite
// message and display their info.
for(unsigned int i = 0; i < messages.size(); i++) {

// Display the message’s information and move the iterator to
// the next position.
(*pIter++) ->print () ;

which in turn is added to the composite message missionPlanMessage. Similarly,
collectionMessage, which is a composite message, and shutdownMessage, which
is a primitive message, are both added to the missionPlanMessage to create a full
collection mission plan message. Once the whole message is created from its parts, the
mission plan message can be used to display its content and convert all messages contained
in the missionPlanMessage to XML before being sent out via the communication link.
The sample output for the code in Listing 7.12 is presented in Listing 7.13.

Benefits

« Provides a design structure that supports both composite and primitive objects

« Minimizes complexity on clients by shielding them from knowing the operational
differences between primitive and composite objects; clients that expect a primitive
object will also work with a composite object, since operations are called uniformly
on both primitive and composite objects

« Easy to create and add new component objects to applications

232 « Software Engineering Design

Listing 7.11: C++ Header File for the VideoControlMessage Leaf Class
#include “Message.h”

class VideoControlMessage : public Message

{

public:

// Constructor.
VideoControlMessage (void) ;

// Destructor.
~VideoControlMessage (void) ;

// TODO: Specific video control methods.
void setFrameRate (int framesPerSecond) ;
//
//
//

// Method to transform the contents of this message to XML format.
string toXml (void) ;

// Duplicate the VideoControlMessage using the prototype design
// pattern.
Message* clone (void) ;

}i

FACADE

The facade design pattern is an object structural pattern that provides a simplified inter-
face to complex subsystems. By providing a simplified interface, the facade design pattern
provides a higher level of abstraction that liberates clients from the responsibility of know-
ing the internal structure of various elements of the subsystem, which in turn reduces
coupling and simplifies client code. Facade also shields clients from changes that occur
in the subsystem; by having a standardized facade interface, the internal structure of the
subsystem can vary without affecting clients. According to the Gang of Four (Gamma
etal. 1995, p. 185), the intent of the facade design pattern is to

Provide a unified to a set of interfaces in a subsystem. Facade defines a higher-level interface
that makes the subsystem easier to use.

In most practical applications, components or subsystems are created to abstract a
complex behavior that the system must provide. In these cases, executing a complex

Structural and Behavioral Patterns in Detailed Design « 233

Listing 7.12: C++ Implementation for the Message Generator and Sample Usage

// Create the initialization primitive messages.
PowerOnMessage powerOnMessage;

SelfTestMessage selfTestMessage;
TransmitStatusMessage transmitStatusMessage;

// The message to task the system to initialize properly.
CompositeMessage initializeTaskingMessage (“Initialize System”);

// Add copies of the power on, self test, and transmit status messages
// to the initialize tasking composite message.
initializeTaskingMessage.add(powerOnMessage.clone()) ;
initializeTaskingMessage.add(selfTestMessage.clone());
initializeTaskingMessage.add(transmitStatusMessage.clone());

// Collection Control Messages.
TemperatureSensorControlMessage temperatureSensorControlMessage;
VideoControlMessage videoControlMessage;

// The message to task the system to collect information.
CompositeMessage collectionMessage (“Information Collection”) ;

// Add the temp. sensor and video control messages to the collection
// tasking composite message.

collectionMessage.add(temperatureSensorControlMessage.clone());
collectionMessage.add(videoControlMessage.clone());

// Shutdown Messages.
ShutdownMessage shutdownMessage;

// The message to task the system to complete Mission 1.
CompositeMessage missionPlanMessage (“Mission 1 - Temperature
and Video Collection”) ;

// Add the messages to the initialize, collection, and shutdown
// messages to the mission plan composite message.
missionPlanMessage.add(initializeTaskingMessage.clone());
missionPlanMessage.add(collectionMessage.clone());
missionPlanMessage.add(shutdownMessage.clone());

// Before sending message, verify its content.
missionPlanMessage.print () ;

// If content is valid, send the message through the system. Before
// being sent out through the communication link, a call to

// missionPlanMessage.toXml () is made to convert all of the

// message’s content to XML format.

234 « Software Engineering Design

Listing 7.13: Sample Output for the Message Generator Problem
Composite Message: Mission 1 - Temperature and Video Collection, Id: 20

Composite Message: Initialize System, Id: 20
Message Power On Message, Id: O

Message Self Test Message, Id: 1

Message Transmit Status Message, Id: 2

Composite Message: Information Collection, Id: 20
Message Temperature Sensor Control Message, Id: 3
Message Video Control Message, Id: 4

Message Shutdown Message, Id: 5

Press any key to continue

subsystem behavior may require the combination of multiple function calls from multi-
ple component and subsystem elements. For example, consider a software component
that provides various elements and functionality for assessing the integrity of a particu-
lar computer. This component may contain elements responsible for particular items of
interests, such as a file system element, memory element, and communication element.
In this case, the facade design pattern can be used to abstract all elements in the sub-
system by creating a method testSystem() that in turns calls upon the various elements of
the subsystem in the appropriate order to evaluate the integrity of the system. This allows
clients to be associated only with the facade and relieves them from knowing the internals
of the integrity assessment component.

Problem

Consider the sensor system described as part of the message generator in the previous
section. Upon field deployment, it is desirable to test the system’s capabilities to ensure
that the system works properly before engaging in autonomous operation. For this reason,
a graphical user interface is required to monitor and control the system in the field during
installation. A conceptual diagram of both subsystems and their interactions is presented
in Figure 7.4.

The sensor subsystem consists of the following elements: SystemManager, Serial Comm,
FileSystem, DataAnalyzer, and WirelessComm. A typical set of operations to assess the
integrity of the system would require clients to know about all subsystem elements—for
example, opening the serial port, sending a collection message to the system manager, and
opening the wireless communication link. This adds complexity to the developers of the UI
subsystem, since they are required to know the details of the sensor subsystem. In addition,
in many practical applications, the internals of subsystem are prone to change; therefore,

Structural and Behavioral Patterns in Detailed Design o 235

e o o User Interface Subsystem ®

Sensor Subsystem

4 System Manager N

e (T, Contigure
E Massages Out
! Serial *
E Comm. Decode
5 /

Wireless

Comm.
Execute
Configure N
. Read Data Out
feeeee- File System - Data Analyzer [<----- '
Write Data In

FIGURE 7.4
Conceptual diagram of wireless sensor system.

clients relying on the internal of subsystems must keep up with changes throughout devel-
opment and maintenance phases. The designers of the sensor system wants an easy solu-
tion to shield UI subsystem developers from changes in the sensor subsystem—one that
allows developers of the sensor subsystem to identify and set interfaces for the visible
aspects of the sensor subsystem so that clients can rely on this interface, giving develop-
ers of the sensor subsystem the ability to change the internals of the subsystem without
affecting clients.

Structure

The general and applied structure of the facade design pattern is presented in Figure 7.5.
As seen, the facade provides functionality in terms of existing classes through a sim-
plified interface. In most cases, a facade’s functions will be implemented in terms of
several functions from different subsystem classes. This prevents clients from depending
on these internal subsystems; therefore, both complexity and dependencies on the client
side are reduced.

Consider the set of operations required to retrieve sensor data, which may require open-
ing communication links, testing the connections, and scheduling a collection message.
These operations require interfacing with several components within the sensor subsystem.
In such cases, the UI subsystem is required to know the details required to carry out all of
these operations, which increases coupling and complexity of the UI. However, with the
facade design pattern, an interface method, named transmitSensorData(), can be
used to abstract all of the required operations to transmit sensor data, such as opening

236 « Software Engineering Design

General View

Client Facade

+simplifiedInterface()
I

SubsystemClassA SubsystemClassB SubsystemClassC
Applied View
SensorSystem

+enableSensor(sensorNum: int): void
+enableAllSensors(): void
+disableSensor(sensorNum: int): void
+disableAllSensor(): void
+transmitSensorData(sensorNum: int): void
+transmitAllSensorData(): void
+scheduleCollection(): void

l l l l

SerialComm | |SystemManager| | FileSystem DataAnalyzer | |WirelessComm

client

FIGURE 7.5
UML class diagram for the facade design pattern.

the serial connection, opening the wireless connection, testing both connections, and
scheduling a collection message. A step-by-step procedure for applying the facade design
pattern includes

1. Identify all components involved in carrying out a subsystem operation.

2. Create an ordered list of the operations required to execute the subsystem operation.

3. Design a facade class that includes an interface method to carry out the subsystem
operation. The facade class has dependencies to all other subsystem components
required to carry out the subsystem operation.

4. Implement the facade interface method by calling operations on one or more sub-
system components, in the order identified in Step 2.

5. Allow one or more clients to access the objects of the facade type so that they can gain
access to the subsystem operation. This creates a many-to-one relationship between
external subsystems and the facade interface instead of many-to-many relationships.

The driving forces behind the facade are simplicity of client code and lower coupling.
The facade design pattern can be simply applied by creating an additional facade class
that provides simple functions summarizing the major external functions expected and
required by clients.

Structural and Behavioral Patterns in Detailed Design o 237

Listing 7.14: C++ Implementation of One Method of the Sensorsystem Facade
void SensorSystem::transmitSensorData (int sensorNumber) {

// Create an object for serial communications parameters.
SerialParams params;

params.setCommPort (SerialParams::COM 1) ;
params.setBaudRate (SerialParams::BR 9600) ;
params.setParity(SerialParams::PARITY NO_PARITY);
params.setByteSize(SerialParams::BYTE SIZE 8);
params.setStopBits(SerialParams::STOP_BIT ONE) ;

// Retrieve pointer to the serial communication object.
SerialComm* pSerialComm = SerialComm::getInstance() ;

// Open the serial communication with the specified parameters.
if (serialComm->open (params)) {

// Ready to communicate with collection nodes, now get ready for
// transmitting the data via the wireless link.
TcpConnection* pConnection = TcpConnection::getInstance() ;

if (pConnection->open (TcpConnection: :PORT NUMBER,
TcpConnection: :IP_ADDRESS)) {

// Schedule a collection message.

SystemManager: :getInstance () ->scheduleMessage (/*...*/) ;
}
else {

// Log TCP error here.

// Close serial connection.

} // end if(pConnection-sopen(...)
}
else {
// Log serial connection error here.
} // end if(serialComm->open(...)
} // end transmitSensorData function.

Implementation

Implementing the facade design pattern is straightforward, since it simply provides behav-
ior in terms of other subsystems. An example facade method for transmitting sensor data
is presented in Listing 7.14. As seen, many of the complexities associated with using the
subsystem elements are hidden by the facade. By depending only on the facade, clients are
shielded from unnecessary details required to perform the operation.

238 « Software Engineering Design

Benefits

o Shields clients from knowing the internals of complex subsystem, therefore minimiz-
ing complexity in clients

« Since the internals of the subsystem are prone to change, provides a stable interface
that hides changes to internal subsystems, therefore making client code more stable

« Promotes weak coupling on clients; clients depend on only one interface instead of
multiple interfaces

BEHAVIORAL DESIGN PATTERNS

Behavioral design patterns deal with encapsulating behavior with objects, assigning
responsibility, and managing object cooperation when achieving common tasks (Gamma
et al. 1995). Behavioral design patterns include many of the mainstream design patterns
used in modern object-oriented frameworks and play a key role in the design of systems
by making them independent of specific behavior, which is made replaceable with objects
throughout these design patterns. Therefore, parts of the system responsible for perform-
ing some algorithm or behavior do so by relying on a common interface without knowl-
edge of how the actual behavior or algorithm is carried out. In addition, by controlling the
behavioral process with common interfaces, enforcing behavioral policies becomes easier,
therefore giving systems the ability to create algorithms that share a common interface
but that vary widely in behavior. Examples of behavioral patterns include the iterator and
the observer.

ITERATOR

The iterator design pattern is an object behavioral pattern that provides a standardized way
for accessing and traversing objects in a collection data structure. A collection data struc-
ture may consist of arrays, vectors, lists, or other custom-designed structures. The iterator
design pattern works by abstracting the way each specific collection structure operates on
the data so that clients are not required to have knowledge of the details of their internal
structure. According to the Gang of Four (Gamma et al. 1995, p. 257), the intent of the
iterator design pattern is to

Provide a way to access the elements of an aggregate object sequentially without exposing its
underlying representation.

By providing a standard interface and encapsulated methodology for accessing elements
of a collection structure, client code becomes more consistent and easier to maintain, since

Structural and Behavioral Patterns in Detailed Design o 239

changing the internal structure of the data collection structure does not affect the way
client code interacts with the structure. Iterators are prevalent in software engineering;
their presence can be found built-in in today’s most common programming languages and
frameworks, such as C++, Java, and the .NET framework.

Problem

A company’s software system manages inventory, financials, and all other information
available from its two store branches. Each store carries specific computer products appro-
priate for its location’s demographics. During design, the software system is decomposed
into several components, including two components for deferring and abstracting design
information relevant to requirements for each computer store branch. The detailed design
of each component is carried out separately by two different software engineers; this
results in two different versions of data structures for managing and providing store prod-
uct information. Now, anytime the software system is called upon to display information
about store products, it is required to identify between the two store branches so that the
correct implementation for accessing store information can be executed. This problem is
encountered every time a new computer store branch is added to the system; therefore,
a uniform and standardized method for accessing computer store products from different
collection data structures is highly desirable. Consider the existing ComputerProduct
code for the store’s software system, as presented in Listing 7.15. The ComputerProduct
is the product class for all products carried at all store branches, which includes simple or
advanced computer products.

Consider the case where the designer of one computer store branch uses a list data
structure to save computer products for the computer store branch carrying simple com-
puter products. To retrieve the products from the simple computer store, a method is

Listing 7.15: C++ Specification of the ComputerProduct Type
class ComputerProduct {
public:

// Return the product’s id.
int getProductId() ;

// Return the product’s price.
int getPrice () const;

// Return the product’s description.
string getDescription() const;

// Other methods here...

240 « Software Engineering Design

Listing 7.16: C++ Code for the SimpleComputersStore Class
#include “SimpleProductList.h”

// Simple Computer Store
class SimpleComputerStore {

public:
// Constructor.
SimpleComputerStore() { /*Connect to DB and initialize all
products.*/ }

// Computer store methods...

// Return the computer products carried by the simple computer store.
SimpleProductList* getProducts () {

// Return the simple product list.
return & products;

}

private:
// The list of simple computer products.
SimpleProductList _products;

Vi

provided, getProducts(), which returns a reference or pointer to the object of type
SimpleProductList, as seen in Listing 7.16.

The second computer store, which carries advanced computer products, is designed to
keep track of computer products using a custom-made list data structure for the advanced
computer products class. This list provides a method getProducts() that returns a
reference or pointer to a collection object of type AdvancedProductList, as seen in
Listing 7.17.

As trivial as this problem may seem, it highlights problems in code that occur typically
in software teams during practical applications. Different developers want to work with
their own code, they may want to showcase their skills by developing a better collection
data structure, or the lack of oversight in the design process results in work redundancy.
This example presents the problem using two different (but almost similar) lists; however,
in practical situations, the difference in design and implementation may involve signifi-
cantly different approaches like arrays versus custom-defined lists versus library-specific
lists, such as the C++ standard template library list. Lack of standardization in the way
that computer stores access and traverse through their products creates complexity for
clients. Consider the software system code for displaying computer product information
from both stores, as presented in Listing 7.18.

Structural and Behavioral Patterns in Detailed Design o 241

Listing 7.17: C++ Code for the AdvancedComputersStore Class

#include “AdvancedProductList.h”

// Advanced Computer Store
class AdvancedComputerStore {

public:
// Constructor.
AdvancedComputerStore () { /*Initialize all products.*/ }

// Computer store methods...

// Return a pointer to the advanced product list.
AdvancedProductList* getProducts () {

// Return the advanced product list.
return & products;

}

private:
// The computer products... in ProductList form.
AdvancedProductList products;

Vi

Notice that by having different methods to retrieve each product (i.e., getSimple-
Product and getAdvancedProduct), the client code now requires a conditional state-
ment to differentiate between the two store branches, which results in two versions of code
for displaying product information. For each store added to the system, a new conditional
statement is required to support the display of the new computer store branch.

Structure

The general and applied structure of the iterator design pattern is presented in Figure 7.6.
The key to designing the iterator design pattern lies in the Iterator interface. As seen in
the General View portion of Figure 7.6, the Iterator interface consists of the first(),
next(), isDone(), and currentItem() interface methods. These methods specify the
fundamental operations that need to be provided by iterator objects that implement the
interface. Regardless of the collection data structure employed to store products, these inter-
face methods can be used uniformly to traverse the items contained by the data structure.
The first () method is used to return the first item in the collection; the next () method
is used to move the current item to the next element of the list; the currentItem()
method is used to return the product stored at the current location of the iterator; and
the isDone() method is used to determine if there are more products to traverse in the
collection item.

242 « Software Engineering Design

Listing 7.18: C++ Code for the Centralized Server
Software to Display Computer Products

// Simple store.

SimpleComputerStore simpleStore;

ComputerProduct* pProduct = 0;

SimpleProductList* simpleStoreProducts = simpleStore.getProducts() ;

// Display simple store products.
for(int i = 0; i < simpleStoreProducts->size(); i++)

// Retrieve the product at index 1i.
pProduct = simpleStoreProducts->getSimpleProduct (i) ;

// Make sure pProduct is valid before using it!

// Display product’s information.
cout<<”Product id: “<<pProduct->getProductId()<<endl
<<"Product price: “<<pProduct->getPrice()<<endl
<<”Product Description: “<<pProduct->getDescription().c_str()<<endl;

//Advanced store.
AdvancedComputerStore advancedStore;
AdvancedProductList* advancedProducts = advancedStore.getProducts() ;

// Display advanced store products.
for(int i = 0; 1 < advancedProducts->length(); i++) {

// Retrieve the product at location 1i.
pProduct = advancedProducts->getAdvancedProduct (i) ;

// Make sure pProduct is valid before using it!
// Display product’s information.
cout<<”Product id: “<<pProduct->getProductId()<<endl

<<"Product price: “<<pProduct->getPrice()<<endl
<<”Product Description: “<<pProduct->getDescription().c_str()<<endl;

// Repeat here for all other types of lists!

Also, in the General View of the iterator design pattern, the Aggregate interface speci-
fies the method for instantiating and returning an iterator object. Clients use this object to
traverse the collection using the iterator interface instead of the concrete aggregate object.
This version of the iterator design pattern is the preferred version for new design efforts.
However, in practice, the iterator can be designed differently from project to project, espe-
cially when existing code is in place. For example, in the Applied View of Figure 7.6, some

Structural and Behavioral Patterns in Detailed Design « 243

General View
Iterator
Aggregate +first()
+next()
+createlterator() +isDone()
1 +currentltem()
: I
E Concretelterator
ConcreteAggregate| ________ >
+first()
+createlterator() +next()
+isDone()
+currentltem()
Applied View
<<interface>> <<interface>>
ComputerStore StoreProductlterator
+createlterator(): StoreProductlterator*® +hasNext(): bool
'y i +getNext(): ComputerProduct*
' ' +reset(): void
R : A
i AdvancedComl;uterStore SimpleStoreProductIterator
L N >
1 |+createlterator(): StoreProductlterator* +hasNext(): bool
: +getNext(): ComputerProduct*
E l +reset(): void
E SimpleProductList | i
AdvancedComputerStore AdvancedStoreProductlterator
- -
+createlterator(): StoreProductIterator® +hasNext(): bool
+getNext(): ComputerProduct*
l +reset(): void
AdvancedProductList

FIGURE 7.6
UML class diagram for the iterator design pattern.

of the iterator interface methods are omitted and the names are modified from the original
pattern. In addition, each concrete aggregate class is designed as of two independent and
existing classes in the system. This is necessary when code for the existing collection data
structures (e.g., SimpleProductList) cannot be modified. When examined closely,
the Applied View of Figure 7.6 consists of the same relationships and similar interface
methods but are structured differently to account for the existing code. Similar variations
of the iterator design pattern can be found in practice; therefore, modifying the iterator
relationships to fit a particular problem is common. Notice, however, that if code for both
SingleProductList and AdvancedProductList is available for modification, the

244 « Software Engineering Design

design of these classes would take the place of the simple and advanced computer store
from the Applied View of Figure 7.6 to match the general view of the design pattern.

In the applied version, the hasNext () method is specified to return true if the col-
lection data structure has more elements for traversal; the getNext () interface method
is used to move the iterator’s pointer to the next element in the collection and return the
product stored at that location; finally, the reset () interface method is designed to reset
the collection index to the first item in the collection. Similar to the applied design for the
computer store software, the iterator design pattern is applied in software systems with dif-
ferent interface methods to solve the original problem that the pattern describes.

Once the iterator is designed, the next key element of the design pattern involves design-
ing the concrete iterators that provide a uniform level of abstraction for each collection
structure (e.g., array, linked list) in the system. As seen in Figure 7.6, for each concrete
iterator designed an association is made to the appropriate collection structure. This means
that each iterator knows the specific interface methods provided by its associated collection
structure so that it can use them to traverse and access its products. This way, when clients
of the iterator call a method from the iterator interface (e.g., getNext()), the concrete
iterator can carry out the request internally in terms of the collection structure’s inter-
face method, hiding these details from its clients. Therefore, regardless of the collection
structure, clients of the iterator can always rely on the Iterator interface to traverse any
collection structure supported by concrete iterators. This property of the iterator design
patterns is desirable in many practical applications.

Finally, the iterator design pattern requires the design of the Aggregate interface which
is manifested in the computer store problem as the ComputerStore interface. The impor-
tance of this interface is that it allows clients of the computer store to create iterators for
traversing through the different store product items. As discussed earlier, the aggregate
interface can be directly implemented by the class representing the collection structure
or, if this code is unavailable, by another class that provides one more levels of abstrac-
tion, such as the ComputerStore in Figure 7.6. With this in place, clients rely on the
ComputerStore interface to create and return an iterator without needing to know the
particular type of store; once the iterator is returned, clients use the iterator interface to
traverse through the products, therefore providing a design that relies fully on interfaces
rather than concrete implementations. This results in flexible designs that can be modified
and adapted easily to future demands. The step-by-step approach for applying the iterator
design pattern is as follows:

1. Identify and design the Iterator interface.

2. For each class representing a collection data structure in the software system, design
a concrete iterator and associate it with it. Implement the concrete iterator’s methods
in terms of the collection data structure.

3. Create the aggregate interface, which includes the interface method to create iterators.

4. For each class representing a collection data structure, implement the aggregate
interface to instantiate and return a concrete iterator.

Structural and Behavioral Patterns in Detailed Design « 245

The driving forces behind the design are decreased complexity for clients and flexibility.
By applying the iterator design pattern, clients are shielded from the internals of the
collection data structure. This in turn provides flexibility by allowing new stores to be
added easily or different existing iterators to be swapped without changes to the client code.

Implementation

The implementation of the iterator design pattern for the computer store system
assumes that both collection data structures (i.e., simple and advanced lists) cannot be
modified. Therefore, the aggregate portion of the pattern is split, as seen in Figure 7.6.
The implementation of the iterator design pattern begins with the specification of the
StoreProductIterator interface, as seen in Listing 7.19. This interface is designed

Listing 7.19: C++ Specification of the StoreProductIterator Interface

// Forward reference.
class ComputerProduct;

// The base for all store product iterators.
class StoreProductIterator {

public:
// Constructor.
StoreProductIterator() : position(0) { /*Intentionally left
blank.*/}

// Interface method for determining if more products are available.
virtual bool hasNext () = 0;

// Interface method for retrieving the next available product.
virtual ComputerProduct* getNext () = 0;

protected:
// Give access to derived classes for setting the iterator’s

// position.
void setPosition(int position) { position = position; }

// Allow derived classes to retrieve the iterator’s position.
int getPosition(void) { return position; }

// Reset the iterator’s position.
void reset (void) { position = 0; }

private:
// The iterator’s current position.
int position;

Vi

246 « Software Engineering Design

Listing 7.20: C++ Specification of the SimpleStoreProductIterator

class SimpleStoreProductlterator : public StoreProductlIterator {

public:
// Constructor.
SimpleStoreProductIterator (SimpleProductList* products) ;

// Determine if more products are available.
bool hasNext () ;

// If more products are available, get the next one.
ComputerProduct* getNext () ;

private:
// Pointer to the simple computer product list.
SimpleProductList* products;

Vi

with simplicity in mind; therefore it contains two main methods for iteration, hasNext ()
and getNext (). There are many different ways iterators can be designed; in this case,
if the method hasNext () returns true, a subsequent call to getNext () can be made to
move the iterator to the next element and to retrieve the product stored at that location.

Once the StoreProductIterator interface is specified, each concrete iterator can be
created. Listing 7.20 presents the specification of the SimpleStoreProductIterator,
which is the iterator used for traversing through in the simple computer store, which stores
computer products in a simple product list. Since this iterator is designed to work with the
simple computer store, a SimpleProductList memory reference or pointer is passed
to it in the constructor.

As expected, the interface methods for the SimpleStoreProductIterator type
are implemented in terms of the SimpleProductList type, as seen in Listing 7.21.
Of particular interest is the getNext () method, which encapsulates the specific call to
getSimpleProduct() to retrieve a computer product.

The specification of the AdvancedStoreProductIterator is similar to the one
presented in Listing 7.21 but is specific to the AdvancedProductList collection data
structure. Therefore, implementation of the AdvancedStoreProductIterator is
made in terms of this data structure, as seen in Listing 7.22.

To enforce the policy that all computer stores must support the iterator design pattern, a
standard ComputerStore interface is specified, as seen in Listing 7.23.

Computer stores deriving from this interface must provide an implementation for the
createlIterator() method before they can be instantiated. This provides clients with
a standard method for retrieving iterators from all computer stores. Listings 7.24 and 7.25
present the C++ implementation for both simple and advanced computer stores, respectively.

Structural and Behavioral Patterns in Detailed Design « 247

Listing 7.21: C++ Implementation for the SimpleStoreProductIterator

#include “SimpleStoreProductIterator.h”
#include “SimpleProductList.h”

// Constructor.
SimpleStoreProductIterator: :
SimpleStoreProductlterator (SimpleProductList* products) {

// For simplicity, assume a valid pointer.
_products = products;

}

// Determine if more products are available.
bool SimpleStoreProductIterator::hasNext ()

// The return value.
bool isNextProductAvailable = false;

if (getPosition() < products-ssize())

isNextProductAvailable = true;

return isNextProductAvailable;

// If more products are available, get the next one.
ComputerProduct* SimpleStoreProductlterator::getNext () {

// Temporary pointer to computer product.
ComputerProduct* pProduct = 0;

// Get the iterator’s current position.
int nextItem = getPosition() ;

// Determine if there are more products.

if (hasNext ())
// Get the address of the next product and move the iterator’s
// position.
pProduct = products->getSimpleProduct (nextItem++) ;

// Set the new position of the Iterator.
setPosition (nextItem) ;

// Return the requested product.

return pProduct;

248 « Software Engineering Design

Listing 7.22: C++ Implementation for the AdvancedStoreProductIterator

#include “AdvancedStoreProductIterator.h”
#include “AdvancedProductList.h”

// Constructor.
AdvancedStoreProductIterator::
AdvancedStoreProductIterator (AdvancedProductList* products) {

// For simplicity, assume valid pointer.
_products = products;

}

// Determine if more products are available.
bool AdvancedStoreProductIterator::hasNext () {

// The return value.
bool nextProductAvailable = false;

if (getPosition() < _products-slength()) {
nextProductAvailable = true;

}

return nextProductAvailable;

// If more products are available, get the next one.
ComputerProduct* AdvancedStoreProductlterator::getNext () {

// Temporary pointer to computer product.
ComputerProduct* pProduct = 0;

// Get the iterator’s current position.
int nextItem = getPosition() ;

// Determine if there are more products.

if (hasNext ())
// Get the address of the next product and move the iterator’s
// position.
pProduct = products->getAdvancedProduct (nextItem++) ;

// Set the new position of the iterator.
setPosition (nextItem) ;

}

// Return the requested product.
return pProduct;

Structural and Behavioral Patterns in Detailed Design o 249

Listing 7.23: C++ Specification of the ComputersStore Interface

class StoreProductIterator; // Forward reference.

// The interface for all computer stores.
class ComputerStore {

public:
// The interface method to create an iterator.
virtual StoreProductlIterator* createlterator() = 0;

bi

Listing 7.24: C++ Implementation for the Simple Computer Store

#include “SimpleStoreProductIterator.h”
#include “SimpleProductList.h”

// Simple Computer Store
class SimpleComputerStore : public ComputerStore {

public:
// Override the createlterator interface method to create the
// appropriate iterator for simple computer stores.
StoreProductlIterator* createlterator() ({

// Create and return a simple store product iterator.
return new SimpleStoreProductIterator (& products) ;

}

// All other methods for simple computer stores.

private:
// The simple product list.
SimpleProductList _products;

Vi

With the iterator design pattern in place, the function to display computer products in
the software system can be modified to work in terms of the iterator interface, as seen in
Listing 7.26.

The software system can now display each store’s product using a unified interface, as
seen in Listing 7.27. This design supports adding new computer stores without much effort.

250 « Software Engineering Design

Listing 7.25: C++ Implementation for the Advanced Computer Store

// Advanced Computer Store
class AdvancedComputerStore : public ComputerStore {

public:
// Override the createlterator interface method to create the
// appropriate iterator for advanced computer stores.
StoreProductIterator* createlterator() ({

// Create and return an advanced store product iterator.
return new AdvancedStoreProductIterator (& products) ;

}

// All other methods for advanced computer stores.

private:
// The advanced product list.
AdvancedProductList products;

}i

Listing 7.26: C++ Implementation of the Display
Function in the Centralized Software

// Display the products using the iterator.
void displayProducts (StoreProductIterator* pIterator) {

// Temporary pointer to hold a computer product.
ComputerProduct* pProduct = 0;

// Determine if there are more products to browse.
while (pIterator->hasNext())

// Retrieve the next product.
pProduct = pIterator->getNext () ;

// Display the product’s information.

cout<<”\nProduct id: “<<pProduct->getProductId()<<endl
<<"Product price: “<<pProduct->getPrice()<<endl
<<"Product Description: “<<pProduct->getDescription().c _str();

Structural and Behavioral Patterns in Detailed Design o 251

Listing 7.27: C++ Code for the Centralized Software
to Create Iterators and Display Products

// Simple store.
SimpleComputerStore simpleStore;

// Iterator for the simple store.
StoreProductIterator* pIterator = simpleStore.createlterator() ;

// Display the products using the iterator.
displayProducts (pIterator) ;

// Cleanup the simple computer store iterator.
delete plIterator;

// Advanced store.
AdvancedComputerStore advancedStore;

// The advanced store iterator.
plterator = advancedStore.createlterator() ;

// Display the products using the iterator.
displayProducts (pIterator) ;

// Cleanup the advanced computer store iterator.
delete plterator;

Benefits

« Provides a consistent way for clients to iterate through the objects in a collection

 Abstracts the internals of the collection objects so that if they change, clients do not
have to change

 Allows client code to be extended easily; numerous iterators can be created to support
different traversals from the same or different collection structure

Skill Development 7.2: Iterator Design Pattern

Using the UML tool of choice, create the design presented in the Applied View Section
of Figure 7.6. Rename the aggregate interface method from ComputerStore to
create Product Iterator. Make the appropriate modifications to both simple and
advanced computer stores so that they work with the new interface method. Generate
code from the model, and create a test driver code to verify the design. Once the code
compiles and executes, describe how your design benefited from using the iterator
design pattern.

252 « Software Engineering Design

OBSERVER

The observer design pattern is an object behavioral pattern that standardizes the opera-
tions between objects that interoperate using a one-to-many relationship. According to the
Gang of Four (Gamma et al. 1995, p. 293), the intent of the observer is to

Define a one-to-many dependency between objects so that when one object changes state, all
its dependents are notified and updated automatically.

In many practical applications, a common design structure is required to support inter-
action between objects that monitor a common data source so that when changes occur in
the data source the objects react appropriately. Consider a detailed design that supports the
model-view-controller (MVC) architectural pattern from Chapter 4. In the MVC archi-
tectural pattern, once the data in the model component changes, all views must change as
well. In cases such as the MVC, the observer design pattern provides the necessary struc-
tural interfaces to allow one or more views to register with the model component. Once
registered, the observer design pattern provides the structural interfaces for executing a
uniform change propagation mechanism for the model to notify all registered views of the
recent changes. The observer design pattern is very popular and prevalent in today’s modern
languages and frameworks, such as Java (i.e., Observable and Observer interfaces) and .NET.

Problem

A local university is designing a system for weather-alert notification that allows students,
faculty, and staff to receive notifications of class cancellations (due to weather) via e-mail,
voice call, or SMS text messages. Other methods of notification may be added in the
future. The system is based on the weather data decision engine that interfaces with several
weather-related data sources, fuses the information, and automatically decides whether
class cancellations are in effect. The university is interested in integrating the existing com-
munication services (i.e., e-mail, SMS, and voice) with the decision engine so that these
services can be triggered to initiate notification via their respective communication types.
The design must be flexible so that other types of communication mechanisms can be
added to the system in the future.

Structure

The general and applied structure of the observer design pattern is presented in Figure 7.7.
The typical application of the observer design pattern includes one concrete subject and
one or more concrete observers, as seen in the Applied View of Figure 7.7.

Each concrete observer is required to implement the update () interface method spec-
ified by the Observer interface. Similar to other design patterns, implementation of the
observer design pattern varies depending on particular details of projects. Specifically,

Structural and Behavioral Patterns in Detailed Design « 253

General View

Subject <<interface>>
Observer
+attach(pObserver: Observer*): void
+dettach(pObserver: Observer*): void +update(): void
#notify(): void A
ConcreteSubject ConcreteObserver

+update(): void

Applied View
ServiceNotifier <<interface>>
Service
+attach(pService: Service*): void
+detach(pService: Service*): void +update(msg: string): void
#notify(): void A I A
A ; IR .
EmailService PhoneService SmsService
+update(msg: string): void| |+update(msg: string): void| [+update(msg: string): void

DecisionEngine 4—1

FIGURE 7.7
UML class diagram for the observer design pattern.

the implementation of the update method is typically seen in two common versions. One
version includes passing as parameter the details of the change notification. Using this
approach, concrete observers examine notification information using the update param-
eter and act accordingly. This is possible when the type of notification can be abstracted
so that it provides a common interface for all other concrete observers. Another popular
approach involves designing the update () method without parameters. Upon receiving
change notification, concrete objects call a method of the concrete subject to retrieve the
details of the notified change. Since the behavior for attaching, detaching, and notifying
observers is the same, the Subject base class can specify and implement these methods,
which are inherited by all other concrete subjects. The step-by-step approach for applying
the observer design pattern includes

1. Design the subject interface and implement code for attaching, detaching, and noti-
fying observer objects. The code for keeping track of observers can be done using
linked-lists data structures.

2. For classes that manage information of interest to observers, inherit from the subject
class created in Step 1.

3. Design the observer interface, which includes the abstract update interface method.

4. For all observers in the system, implement the observer interface, which requires
implementing the update method.

5. At run time, create each observer and attach it to the subject. When changes occur,
the subject iterates through its list of registered objects and calls its update method.

254 « Software Engineering Design

The driving force behind the application of the observer design pattern is flexibility.
By applying the observer design pattern, future additions of services can be done automati-
cally, therefore leading to software that is easy to maintain.

Implementation

Implenting the observer design pattern begins with the ServiceNotifier class, which
serves as base class for the subjects. As seen, the methods to provide registration and noti-
fication services are implemented in terms of a C++ STL list, as presented in Listing 7.28.

With the registration mechanism in place, all services realize the Service interface to
acquire notification capabilities. Listing 7.29 presents an example for the EmailService
observer.

An example of the registration and notification mechanism is presented in Listing 7.30.
As seen, many different observers can register with the DecisionEngine object to get
notifications of weather alerts.

Benefits

« Flexibility for adding new services to the system
« Maintaining and modifying existing system services become easier because specific
services are compartmentalized

Listing 7.28: C++ Code to Provide Registration and Notification to Observers

// Provide the registration mechanism for all observers.
void ServiceNotifier::attach(Service* pService) {

// Add this observer to the list of registered observers. Assume a
// valid pointer.
_services.push back (pService) ;

}i

// The trigger mechanism to notify all observers of class cancellation.
void ServiceNotifier::notify(string message)

// Get an Iterator that points to the beginning of the
// observers list.
list<Service*>::iterator pIter = services.begin();

// Iterate through the list of observers and notify them.
for(int 1 = 0; i < services.size(); i++) {

// Pass the message along to all registered observers.
(*pIter++) ->update (message) ;

Structural and Behavioral Patterns in Detailed Design o 255

Listing 7.29: C++ Code for the Update() Method
of the EmailService Observer

class EmailService : public Service {
public:
// Once the Observable object changes, it will call this method.
void update (string message) {
// Open file containing all users registered for email

// notification. Open connection to the Email server.
// For all registered clients, notify them via email.

//

Listing 7.30: C++ Registration and Notification Mechanism
of the WeatherDataObject

// Sends message as email.
EmailHandler emailHandler;

// Sends message as text message.
SmsHandler smsHandler;

// Translates message to speech and sends it via the voice interface.
VoiceHandler voiceHandler;

// Assume that the decision engine object is a singleton.

DecisionEngine: :getInstance () ->register (&emailHandler) ;
DecisionEngine: :getInstance () ->register (&smsHandler) ;
DecisionEngine: :getInstance () ->register (&voiceHandler) ;

Skill Development 7.3: Observer Design Pattern

Using the UML tool of choice, create the detailed component design of the MVC archi-
tectural design presented in Figure 4.9 using the observer design pattern. Generate
code from the model, and create a test driver method to validate the design. Explain
the differences between the MVC architectural pattern and the observer design pattern
in this example.

256 « Software Engineering Design

I ——
CHAPTER SUMMARY

Structural and behavioral designs patterns help identify problems that deal with the structure
and behavior of software designs; they prescribe the classes required for their design solu-
tion and interrelationships required to support object creation. These patterns allow design-
ers to quickly and systematically identify structural layouts of systems (or subsystems) and
provide avenues for examining the system’s interactions and quality evaluation within the
operational system. Structural design patterns are patterns that deal with designing larger
structures from existing classes or objects at run time. They play a key role in the design and
evolution of systems by allowing integration of new designs with existing ones, via object
composition (i.e., object structural) or inheritance (i.e., class structural). By allowing designs
to build on other existing structures, systems can be made interoperable by designing com-
patible interfaces for otherwise incompatible systems. Examples of structural design patterns
include adapter, composite, and facade design patterns. Behavioral design patterns deal with
encapsulating behavior with objects, assigning responsibility, and managing object coopera-
tion when achieving common tasks. Behavioral design patterns include many of the main-
stream design patterns used in modern object-oriented frameworks and play a key role in the
design of systems by making them independent of specific behavior, which is made replace-
able with objects throughout these design patterns. Therefore, parts of the system respon-
sible for performing some algorithm or behavior do so by relying on a common interface
without knowledge of how the actual behavior or algorithm is carried out. In addition, by
controlling the behavioral process with common interfaces, enforcing behavioral policies
becomes easier, therefore giving systems the ability to create algorithms that share a com-
mon interface but vary widely in behavior. Examples of behavioral patterns include the
iterator and the observer. This chapter explored each structural and behavioral design
pattern to present the problems they are designed to address together with the benefits
they provide. Identifying and designing using these design patterns can improve the effi-
ciency of the development process and the quality of the final system.

REVIEW QUESTIONS

1. What are structural design patterns? What are they used for?

2. Compare and contrasts the following patterns:
a. Adapter
b. Composite

3. What is the adapter design pattern? Explain its main benefits and features.

4. What is the composite design pattern? List and explain the main features of the
builder design pattern.

5. Give an example each of both adapter and composite design patterns. Do not use the
ones presented in the chapter.

Structural and Behavioral Patterns in Detailed Design o 257

6. Explain the steps required to implement the composite design pattern.
7. What is the facade design pattern? What does it do?
8. What are the essential structural elements required in the composite design pattern?
9. What are the main benefits of using the iterator design pattern?
10. What is the observer design pattern? Give one example of a particular software
feature that you think is appropriate for applying the observer.
11. What are the essential elements required in the observer design pattern?

CHAPTER EXERCISES

1. You have been hired to work on a car testing utility class. The car testing utility
class has one method with the following signature: void testCar(Car* pCar).
As seen, the testCar function is designed to test objects of the type Car. The
car interface supports the following methods: void enableCruise(), void
openWindow(), void closeWindow(), and void accelerate(int mph). The
test utility function is currently being used to test objects of type TypicalCar,
which support all interface methods. However, the test utility is now needed to test
objects of the new type RaceCar, however, the RaceCar type only supports the
accelerateReallyFast(int mph) method. Use an appropriate design pattern
to allow the RaceCar type to be used in the testCar utility function. Feel free to
make any assumptions necessary to complete the design. The usage and output are
presented below.

void testCar (Car* pCar)
{
pCar->enableCruise () ;
pCar->openWindow () ;
pCar->closeWindow () ;
pCar->accelerate (50) ;

}

// Sample output - if typical car passed in to the test utility
// function.

TypicalCar::enabling smart cruise control...
TypicalCar::opening 2 windows. ..

TypicalCar::closing 2 windows. ..

TypicalCar: :accelerating fast to 50 mph...

// Sample output - if race car passed in to the test utility
// function.

ConcreteRaceCar: :no cruise control available...
ConcreteRaceCar: :no window available...

ConcreteRaceCar: :no window available...

ConcreteRaceCar: :accelerating really fast to 50 mph...

258 « Software Engineering Design

REFERENCE

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Boston: Addison-Wesley, 1995.

8

Principles of Construction Design

CHAPTER OBJECTIVES

« Understand the importance and role of construction design

o Identify, understand, and apply table-based and state-based func-
tion design

o Identify, understand, and apply the general construction styles

« Understand how quality can be evaluated during construction design

CONCEPTUAL OVERVIEW

The transition from software design to construction should occur with
minimal effort. In some cases, component designs provide enough detail
to allow their transformation from design artifact into code easily; how-
ever, in other cases, a more fine-grained level of design detail is required.
Construction design provides a form of design that closely resembles code so
that complex operations can be planned and evaluated prior to implemen-
tation in code. Once the correctness of operations is verified, the construc-
tion design activity provides additional heuristics to enforce consistency
in the code. Construction design provides the last form of design to create
high-quality software operations that are correct, consistent, and efficient.

WHAT IS CONSTRUCTION DESIGN?

The idea of the detailed design phase is to manage complexity so that
design artifacts can be translated to code with minimal effort. Even though

259

260 « Software Engineering Design

significant attempts can be made during the detailed (component) design activity to create
extensive designs, in most practical applications transitioning from the component design
domain to code can still be daunting. Regardless of the amount of effort spent during
the design phase, additional design efforts may still be required during construction to
identify, plan, and manage the construction of complex operations. This form of con-
struction design extends the work performed during detailed design to provide essential
information that is used to generate correct, efficient, and consistent code. Construction
design is the lowest level of detailed design that addresses the modeling and specification
of function implementations. By designing complex operations, problem solutions can be
evaluated, analyzed, and verified for correctness and efficiency before construction using
programming languages. Construction design provides the means for evaluating problem
solutions using a form of design that closely relates to code—that is, a form of design that
models what the code does and how the code is specified.

Construction design can address problem solving from a dynamic (behavioral) perspec-
tive, which provides the description of operations (such as methods and functions) and the
internal details and logic of each design entity (IEEE 2009). This approach involves graph-
ical, tabular, or other methods to model and specify the internal structure of functions
(e.g., operations, routines) so that the algorithms or flows required to carry out a function’s
intent are evaluated and clearly specified. The algorithm approach minimizes complexity
during construction by providing a graphical method for specifying the details required
by programmers to implement the function’s code. A separate but closely related task per-
formed when evaluating the quality of software construction deals with enforcing styles for
establishing a consistent approach to structuring function implementations. These styles
play a significant role in shaping the system’s maintainability, complexity, and testability.
Therefore, they are included as part of the construction design activity.

Construction design is not a new concept. In fact, there are many books covering con-
struction design under different names. McConnell (2004) specifies five levels of software
design, the lowest two of which deal with division of data and routines within classes and
internal routine design. Similarly, Fox (2006) identifies a form of low-level design that fills
the gap between detailed design and programming and deals with issues such as opera-
tion specification, including operation name, parameter types, and return types. Similarly,
Meyer (1997) and Misfeldt, Bumgardner, Gray, and Xiaoping (2004) provide coverage of
construction design.

WHY STUDY CONSTRUCTION DESIGN?

Construction design is about developing abstract models of the structure and behavior of
the internal implementation of operations. From a behavioral perspective, construction
design is important because it provides the means for evaluating different implementations
for a particular function before committing to it. Behavioral designs at this level provide

Principles of Construction Design « 261

the means to evaluate a function’s completeness, complexity, testability, and maintainabil-
ity. They also provide the means for analysts to evaluate algorithms in regard to time-space
performance and processing logic prior to implementation (IEEE 2009). Finally, since they
provide a representation of the code through graphical and tabular ways, they increase
collaborative evaluation efforts, since other members without knowledge of the particu-
lar programming language in use can evaluate the design and contribute to the solution.
These collaboration efforts can lead to improvement in future phases, for example, the
testing phase, where construction designs can be used to generate unit test cases, or the
maintenance phase, where construction designs can be used to increase knowledge and
understanding of the software behavior.

From the structural perspective (i.e., construction styles), construction design is impor-
tant because it provides heuristics for establishing a common criterion for evaluating the
quality of the structure of code, which directly affects code readability and thus mainte-
nance. Code with low readability leads to higher maintenance costs, since it requires more
effort to understand (Collar 2005). Construction styles are important during the design
and construction phases so that code generation from design models can be done correctly.
From a construction phase perspective, construction styles serve as a blueprint that ensures
consistency among teams of developers. Finally, as mentioned before, during the testing
and maintenance phase construction styles increase code readability and understanding,
which can result in minimized cost during these phases.

BEHAVIORAL CONSTRUCTION DESIGN

Behavioral designs at the construction level are used to model complex logic that is
unknown or difficult to understand. This way, details required to describe an operation
can be discovered or evaluated without requiring code. The purpose of behavioral design
is to model the dynamic aspects of code that makes up a particular function. Behavioral
designs have been the topic of much research work in software engineering and are an
integral part of all major software design strategies (e.g., structured and object-oriented
designs). Behavioral designs provide the means for assessing the completeness, correct-
ness, and quality of functions before actual implementation occurs and therefore are an
essential activity for complex operations. Four major approaches to behavioral design at
the construction level are flow-based designs, state-based designs, table-based designs, and
programming design languages.

Flow-Based Designs

Flow-based designs provide a systematic methodology for specifying the logic of opera-
tions using a graphical approach. Two popular approaches for creating flow-based designs
include flowcharts and Unified Modeling Language (UML) activity diagrams. Both work

262 « Software Engineering Design

well for modeling the internal flow of routines because they can be defined using sequential
process flows, loops, conditional statements, and other useful mechanisms needed to model
complex business logic or complicated algorithms. UML activity diagrams provide power-
ful constructs for modeling complex logic at different stages of the software engineering
life cycle; however, when applied toward modeling logic, activity diagrams provide similar
features to flowcharts. Four important modeling constructs for flow-based designs are

o If statements

o Case statements
« Do while loop
« While loops

The common elements used to model flow-based designs using UML activity diagrams
are presented in Figure 8.1, together with examples of modeling conditional and repeti-
tion statements.

State-Based Designs

Flow-based designs can be used to model operational logic by identifying the transitions
from activity to activity required to perform an operation. However, in some cases the
operational logic of a function or system is dictated by the different states that the system
exhibits during its lifetime. That is, certain activities can be performed only when a system
is in a particular state. When this occurs, the operational logic of a system can be modeled
as a state machine using a (UML) state diagram. State diagrams are typically used to model
the behavior of complete system. However, in many practical applications, state diagrams
can be used to guide the logical design of one or more operations in the system. Consider
the state design presented in Figure 8.2.

Figure 8.2 depicts the design of a software system that receives messages and per-
forms operations based on the messages received and the system’s state. That is, during
the power-on initialization state, the system only reacts to the GetStatus, SelfTest, and the
SoftwareUpdate message. Once the SelfTest message is received, the system transitions
to the self-test state, where system capabilities are evaluated to determine the integrity
of the system. Once the self-test state is complete, two transitions can occur; if the tests
were successful then the system transitions to the operational state, and if any failures are
encountered then the system enters a fault state, in which no commands can be executed.
Once the fault state is complete, the system transitions to a power-down state, which allows
the system to save all pertinent information to the file system before transitioning to the
initialization (Power On) state.

Upon successfully execution of the self-test state, the system transitions to the operational
state, where all messages in the system can be processed, including the SelfTest message and
ShutDown message. As seen, the state diagram presents the state of the system, together
with the transitions and the events that trigger each transition. Unlike the flow-based design

Principles of Construction Design « 263

Elements in Activity Diagram

Initial State

@ Final State

Q Branch

—— Transition

Activity Diagram Examples

Activityl

Activity5
false

Activity6

false

If Statement Case Statement

false 1

true

(Activitys) (Activity?

Activity4

Do While Loop While Loop

FIGURE 8.1
Flow-based logic design using UML activity diagrams.

approach in the previous section, the system’s state-based designs show the flow of opera-
tions from state to state; it acts like a well-structured algorithm that is efficient, simple,
adaptable, and understandable (Booch, Rumbaugh, and Jacobson 2005). It also presents
the full operation of a complete system during its lifetime, which can be derived from the
design. Consider the implementation of Listing 8.1, which implements the state machine.

Initially, the system is set to the Power-OnState; therefore, upon executing the code the
executePowerOnState () method is called to process the received message and deter-
mines if a state change is required (or not), as seen in Listing 8.2. Listing 8.2 uses a message
queue for retrieving messages received in the system.

264 « Software Engineering Design

SelfTest]
Msg Received Tests did not pass
Self Test Fault
Self Test Msg Received Fault Processing
Complete
' — ™ Power On Test Passed ll’jower
Operational own
ShutDown
Msg Received
GetStatus Msg All Other
UpdateSoftware Ms .
’ / & Messages Received Power Down Process Complete
FIGURE 8.2

Example of a state design using UML state diagrams.

The source of the code presented in Listing 8.2 can be traced back to the state design
presented in Figure 8.2. As seen, once the EmbeddedComponent is in the power-on state,
it can execute the messages only for updating the software, retrieving the component’s
status, and executing a self-test. Messages containing different IDs cannot be executed in
this state; therefore, upon receiving any other message the system logs an event and waits
for the next message to be received. In a similar fashion, the code for all other states is
implemented according to the state design, as presented in Listings 8.3 and 8.4.

As seen, once the EmbeddedComponent enters the self-test state, it executes the appro-
priate tests, and based on the tests results it sets the new system state to the operational
or fault state, as defined in the state design. Assuming all tests are performed successfully,
the EmbeddedComponent transitions to the operational state, where all messages can be
received and processed by the EmbeddedComponent. The implementation for the opera-
tional sate is presented in Listing 8.4.

Table-Based Designs

Many times, the internal logic of routines is made up of complex conditional statements,
each statement evaluating a condition (i.e., a cause) and providing some action (i.e., an
effect) as a result. This can lead to an increasingly complex nesting structure that is
error-prone, hard to read, and hard to maintain. In these cases, the logic design can be
managed using a decision table (Hurley 1982). A decision table is a well-structured table
that provides the means to formulate, evaluate, and improve the design of complex prob-
lems that deal with cause and effect. The format of decision tables is presented in Table 8.1.

Table 8.1 has four different sections. The first section is the Condition section, which
contains a list of all of the conditions present in the decision problem. The second section
is the Action section, which contains a list of all possible outcomes that can result from one
or more conditions occurring. The third and fourth sections are found in matrix form,
adjacent to the Condition and Action sections. The matrix adjacent to the Condition section
indicates all possible combinations of conditions for the decision problem, while the
matrix adjacent to the Action section indicates the corresponding actions. Combined, the

Principles of Construction Design o 265

Listing 8.1: C++ Implementation of the State Design

// The state machine’s execute method.
void EmbeddedComponent: :execute () {

// Execute the state machine. compnentState is a member variable
// of the EmbeddedComponent class.
switch(componentState) {

case PowerOnState:
// Execute in the power on state. When finished, allow the
// executing function to determine if a state change is required
// (or not) and set the state appropriately. This capability is
// provided by executing functions in all other states.
executePowerOnState () ;
break;

case SelfTestState:
// Execute in the self test state.
executeSelfTestState() ;
break;

case OperationalState:
// Execute in the operational state.
executeOperationalState() ;
break;

case FaultState:
// Execute in the fault state.
executeFaultState () ;
break;

case PowerDownState:
// Execute in the power down state.
executePowerDownState () ;
break;

default:
// invalid state, log error.
break;

respective columns in both matrices provide a policy for decision making in the decision
problem. Four types of decision tables are as follows (Hurley 1982):

 Limited-entry decision table (LEDT)
« Extended-entry decision table (EEDT)
o Mixed-entry decision table (MEDT)
 Hybrid-entry decision table (HEDT)

266 o Software Engineering Design

Listing 8.2: C++ Implementation of the PowerOn State

void EmbeddedComponent: :executePowerOnState () {

// Assume messages are received and placed in a blocking message
// queue. Therefore, the messageQueue.read call is a blocking call.
Message* message = messageQueue.read (WAIT FOREVER) ;

// Retrieve the message’s id.
MessageIdType messageld = message->getId() ;

// This state only processes three messages according to the state
// diagram.
if (messageld == UpdateSoftwareMsgId)
// Cast message to an UpdateSoftwareMsg.
// Retrieve the software image from the message and update
// software.
}
else if(messageld == GetStatusMsglId) {
// Retrieve status from File System and return to client.
}
else if (messageld == SelfTestMsgId) {
// Cast message to a SelfTestMsg.
// Retrieve the type of self test and change state.
selfTestType = message->getTestType() ;
_componentState = SelfTestState;
}
else {
// Any other message received in this state results in an error.
// Log the specific error here and do not change state.

Limited-Entry Decision Table

The LEDT is the simplest type of decision table in which the condition section of the
LEDT presents Boolean conditional statements. That is, the condition section of the LEDT
presents features of the design problem that are either present or not, and their combined
presence (or absence) triggers specific actions. Therefore, the condition entry section of
the LEDT consists of Boolean values, such as true or false or yes or no, that can be used to
define different policies in the decision problem. For example, consider the LEDT design
for a function that computes discounts for the purchase of mobile phones. Two types of
discounts are available, a store discount of $15 and a manufacturer discount of $30, as
presented in Table 8.2.

Using the information specified in the LEDT from Table 8.2, the code for the function
used to compute phone discounts can be easily implemented, simply by translating the
information captured in the LEDT to code, as presented in Listing 8.5. The table name is

Principles of Construction Design « 267

Listing 8.3: C++ Implementation of the SelfTest State

void EmbeddedComponent: :executeSelfTestState()
// No messages are processed during self test.

// Perform either a simple, normal, or advanced test. Advanced tests
// perform a complete test of the system, therefore they take

// longer to complete.

if (performTest (_selfTestType)) {

// Software and hardware are working properly. Log results and
// change state to the operational state.
__componentState = OperationalState;

}

else {
// Faulty system software or hardware! Log results and change
// state to the Fault state.
_componentState = FaultState;

}

Listing 8.4: C++ Implementation of the Operational State

void EmbeddedComponent: :executeOperationalState () {

// Assume messages are received and placed in a blocking message
// queue. Therefore, the messageQueue.read call is a blocking call.
Message* message = messageQueue.read (WAIT FOREVER) ;

// Retrieve the message’s id.
MessageIdType messageld = message->getId() ;

// Process messages according to the state diagram.
if(/* messageld == x */) {
// Process message X.
}
else if(/* messageld ==y */) {
// Process message y.
}
else if (/* ... */ |
//
}

else {
// Invalid message. Log error.

268 « Software Engineering Design

TABLE 8.1
Fundamental Structure of Decision Tables
Condition Condition Entry
Action Action Entry
TABLE 8.2
Limited-Entry Decision Table for the Phone Discount Logic
Get Phone Discount P1 P2 P3 P4
Store Discount T T F
Manufacturer Discount T F
$15 Discount X X
$30 Manufacturer Discount | x b'e
No Discount ($0) X

used to name the function, and the two items in the conditional section of the table are
translated as conditional statements in the code. The action portion of the table is used
to determine the code executed when each of the conditional statements evaluate to true.
For example, Policy 1 (P1) states that the $15 and $30 discounts are applied when both store
and manufacturer discounts are active (as seen by the x’s in the table). This behavior is seen
in Listing 8.5.

Although such a simple problem hardly requires effort to design, it is valuable in point-
ing out several important characteristics of LEDTs. As seen, the condition section contains
features that are either present or not for each policy defined in the problem. These condi-
tions represent questions for determining the types of discounts (i.e., store or manufacturer
discounts) that are in effect and the types of polices required for each possible combination
of discounts. The condition entry section follows by providing answers to all possible com-
binations for the given problem. As seen, for an LEDT, the number of distinct elementary
policies is 2", where 7 is the number of conditions in the condition section. In this example,
where n = 2, there are four distinct policies. It is also evident that the fourth policy (P4) is
never applied to the implementation presented in Listing 8.5. Therefore, this policy could
have been left out of the decision table, since it represents not an action but the absence of
one. Such policies that are left out of the decision table are referred to as missing policies.
Finally, it can be seen that all policies result in a unique set of actions. When two or more
policies result in identical actions, the actions are considered redundant actions and can be
combined to simplify the decision table.

Extended-Entry Decision Table

Whereas the condition and action sections of LEDTs contain complete questions and
actions, the condition and action sections of the EEDT are extended into the entry sections
(i.e., upper-condition entry section and lower-action entry section) of the decision table.
That is, in LEDTs, the condition section contained information that can be used to ask a

Principles of Construction Design o 269

Listing 8.5: Implementation of the LEDT for the Phone Discount Function
int getPhoneDiscount () {

const int StoreDiscount = 15;
const int ManufacturerDiscount = 30;

// The total added phone discount.
int phoneDiscount = 0;

// Determine if the store discount applies.
if (isStoreDiscountActive)

// Apply the store’s discount.
phoneDiscount += StoreDiscount;

}

// Determine if the manufacturer discount applies.
if (isManufacturerDiscountActive)

// RApply the manufacturer’s discount.
phoneDiscount += ManufacturerDiscount;

}

// Return the total added phone discount.
return phoneDiscount;

complete questions, such as, “Is there a store discount in effect?” In EEDTs, the condition
and condition entry sections of the table are required to formulate a complete question,
such as, “Is the customer a regular, preferred, or VIP customer?” Similarly, the action
section must be combined with the action entry section of the decision table to formulate
a complete action, such as “add a free car kit to the purchase.” In addition, the number of
possible values for each condition and action in EEDTs is not bounded to two. An example
of the EEDT for the customer discount logic is presented in Table 8.3.

TABLE 8.3

Extended-Entry Decision Table for the Customer Discount Logic
Get Phone Discount P1 P2 P3 P4 P5 P6
Customer type is REG REG PRE PRE VIP VIP
Credit score is BAD GOOD BAD GOOD BAD GOOD
Discount $0 $15 $10 $25 $50 $100
Add howster | cuancer | PLUE | CAR | pama | carkire

270 « Software Engineering Design

As seen, customers can be of type regular (REG), preferred (PRE), or very important
(VIP); therefore, the number of possible values for the type of customer condition is three.
Also, actions can take on any form; the “X” used for denoting the presence or absence of
actions in LEDTs cannot be applied in EEDTs. In this example, the number of possible
values for the credit score condition is two, denoting good and bad credit scores. Finally,
the number of distinct elementary policies in EEDTs is the product of all maximum num-
bers of possible values for each condition. In this example, this result in 3 X 2 = 6 policies
(i.e., 3 for Condition 1 and 2 for Condition 2).

Mixed-Entry Decision Table

The MEDT combines features from both LEDTs and EEDTs. For example, consider a com-
pany that sells mobile phones of different kinds and with different promotional discounts
based on the type of mobile phone. The software used to manage inventory and discounts
uses a method to return the total discount that can be applied toward the purchase of a
phone. The company carries three types of phones: a simple second-generation (2G) phone;
an advanced third-generation phone (3G); and a special fourth-generation (4G) phone.
Depending on the type of phone, different store discounts are applied toward the total
purchase of the phone. For simple phones, when the manufacturer’s discount is in effect
a $30 discount can be applied, whereas when the store discount is in effect a $15 discount
can be applied. When both discounts are in effect, a $45 discount can be applied toward
the purchase of the phone. For advanced phones, a default store discount of $60 is always
applied. In addition, when the manufacturer’s discount is in effect an additional $50 is
applied; when the store discount is in effect an additional $60 can be applied, since a free
Bluetooth ear piece is included; and when all discounts are in effect all discounts can be
applied toward the price of the phone. Finally, for special phones, a default discount of
$120 is always applied. Additionally, discounts of $70, $180, or $370 (i.e., the sum of all dis-
counts) can be applied toward the purchase of a special phone. The problem is formulated
using the decision table presented in Table 8.4.

Using the information presented in Table 8.4, the construction of the function applying dis-
counts to phone products can take place. Listing 8.6 presents the code for the phone type used
in this problem. As seen, the phone type includes interface methods for returning a phone’s
type (i.e., simple, advanced, or special phone) and the particular discount that applies the
phone type.

Using the phone type created, the code for the (getPhoneDiscount) function is presented
in Listing 8.7. As seen, the code matches the table-based design presented in Table 8.4.

Table-Based Construction

Table-based construction is a technique for transforming table-based designs to code
that is easy to maintain, read, and so forth. As seen, the resulting code for implementing
the table-based design from Table 8.4 contains various conditional statements. Similarly,
table-based designs can result in complex code that is hard to read and maintain. When

Principles of Construction Design « 271

TABLE 8.4
Mixed-Entry Decision Table for the Phone Discount Logic
Simple Phone Advanced Phone Special Phone
Policies Policies Policies

Get Phone Discount P1 | P2 | P3| P4 |P5|P6|P7 | P8 | P9 |P10 | P11 | P12
Phone type is S S S S A A A A SP SP SP SP
Manufacturer discount F T F T F T T F T
Store discount F F T T F T T F F T T
$15 discount X X
$60 discount b'e b'e X X
$120 discount X X X X
$30 manufacturer discount X X
$50 manufacturer discount X X
$70 manufacturer discount X X
Bluetooth discount ($60) X X
6-month data discount ($180) X X

No discount ($0) X

this occurs, table-based construction can be used to shift the complexity of logic to the
problem’s data structure. Consider the data structures in Listing 8.8 designed for the
table-based design of Table 8.4.

As seen, the logic defined in Table 8.4 is now captured using data structures, through the
discounts array. The discounts array consists of 12 different elements of the Discount
type. Each index in the array represents one of the 12 policies defined during the table-based
design from Table 8.4. For example, the element at index 0 of the discounts array contains
the discounts defined by P1 of Table 8.4; the element at Index 1 contains the discounts
defined by P2, and so on. With this framework in place, the code from Listing 8.7 can be
reduced to the one presented in Listing 8.9, which drastically reduces the amount of code
required to achieve the same operation.

Programming Design Language

Programming design language (PDL) is a form of pseudo-code used widely for designing
internal function behavior. Its popularity stems from the use of natural languages—as
opposed to computer languages or graphical techniques—to define the required behav-
ior of functions. This results in detailed function designs that are easier to create, review,
and translate to code. In addition, the usage of a natural language in PDL provides a
“comments-firstapproach” to constructing code for any programming language. Therefore,
PDL should be written without concern given to the target programming language and
detailed enough that code can be generated with minimal effort.

PDL can be effectively employed using a top-down approach that first describes the gen-
eral work performed by the function and then more specific operations within the function
(McConnell 2004). The description of the general work performed by the function should

272 o Software Engineering Design

Listing 8.6: Implementation of the Phone Class to Support the Table-Based Design

// The different types of phones.
typedef enum{ SIMPLE PHONE = 0, ADVANCED PHONE = 1, SPECIAL PHONE = 2}
PhoneType;

// The different types of discounts options.

typedef enum{ NO DISCOUNT = O,
MANUFACTURER_DISCOUNT = 3,
STORE _DISCOUNT = 6,
COMBINED DISCOUNT = 9} DiscountType;

// The Phone class.
class Phone

public:
// Constructor.
Phone (PhoneType type, DiscountType discountType) {

_type = type;
_discountType = discountType;

}

// Return the type of phone.
PhoneType getType(){ return _type; }

// Return the discount type for this phone.
DiscountType getDiscountType () { return discountType; }

private:
PhoneType type;
DiscountType discountType;

Vi

include the function’s intent, inputs, and outputs. Once the general purpose of the function
is in PDL form, individual parts are elaborated in PDL form to provide complete design
details for the function. When finished, the function’s detailed PDL should result in the
identification of operations that support the general description of the function. Therefore,
PDL can be used as both design technique and effective documentation approach for func-
tions and code within functions. An example of a detailed function design using PDL is
presented in Listing 8.10.

There are many benefits of using PDL. First, PDL provides a programming language-
independent technique for creating detailed function designs; therefore, collaborative
efforts with all disciplines involved in the project can be achieved to provide complete
reviews for the design of a function. That is, members from the systems, hardware, quality,
and test groups can all chime in to help the function design meet the required capabilities

Principles of Construction Design « 273

Listing 8.7: Implementation for the Phone Discount Function

int getPhoneDiscount (const Phone& phone) {

int totalDiscount = 0; // The total computer discount.
if (phone.getType () == SIMPLE PHONE) ({
if (phone.getDiscountType () == MANUFACTURER DISCOUNT) {

// Add $30 manufacturer’s discount to totalDiscount.

}

else if (phone.getDiscountType() == STORE_DISCOUNT) {
// Add $15 store discount to totalDiscount.
} else if(phone.getDiscountType () == COMBINED DISCOUNT)

// Add $30 and $15 to totalDiscount.

}
else { // No discount.
}

}

else if (phone.getType() == ADVANCED PHONE) {
// Add $60 default advanced phone discount to totalDiscount.

if (phone.getDiscountType () == MANUFACTURER DISCOUNT) {
// Add additional $50 manufacturer’s discount to totalDiscount.
}
else if(phone.getDiscountType() == STORE_DISCOUNT) {
// Add additional Bluetooth ear piece discount ($60) to
// totalDiscount.
}
else if(phone.getDiscountType () == COMBINED DISCOUNT) {
// Add additional $50 and $60 to totalDiscount.
}

else { // No additional discount.

}
}

else if(phone.getType() == SPECIAL PHONE)
// Add $120 default special phone discount to totalDiscount.
if (phone.getDiscountType () == MANUFACTURER DISCOUNT) {

// Add additional $70 manufacturer’s discount to totalDiscount.

!

else if(phone.getDiscountType() == STORE_DISCOUNT) {
// Add additional 6 month data plan discount ($180).

!

else if(phone.getDiscountType() == COMBINED DISCOUNT) {
// A additional $70 and $180 to totalDiscount.

}

else { // No additional discount.

}

}

return totalDiscount; // Return the computed phone discount.

}

274 « Software Engineering Design

Listing 8.8: Table-Based Implementation for Computing Phone Discounts

struct Discounts

int smallStoreDiscount; // For this example, it should be $15.
int mediumStoreDiscount; // For this example, it should be $60.
int highStoreDiscount; // For this example, it should be $120.

int smallManufacturerDiscount; // For this example, it should be $30.
int mediumManufacturerDiscount; // For this example, it should be $50.

int highManufacturerDiscount; // For this example, it should be $70.
int bluetoothDiscount; // For this example, it should be $60.
int dataPlanDiscount; // For this example, it should be $180.

}i

// The discounts available for simple phones (SIM), advanced phones (ADV),
// and special phones (SPE), all accessible via discount keys (DK#) .
Discounts discounts[] = {

o, o, o, 0, 0, 0, 0, O
, 60, 0, 0, 0, 0, O, O
, 0, 120, 0, 0, 0, O, O

}, // DKO, SIM/ No discounts.

}, // DK1, ADV/ Store’s default discount.
}, // DK2, SPE/ Store’s default discount.
, 0, 0, 30, 0, 0, 0, O }, // DK3, SIM/ Manufacturer’s discount.

, 60, 0, 0, 50, 0, 0, O }, // DK4, ADV/ Manufacturer’s discount.

, 0, 120, 0, 0, 70, 0, O }, // DK5, SPE/ Manufacturer’s discount.
5, 0, 0, 0, O, 0, O, }, // DK6, SIM/ Special store discount.

, 60, 0, 0, 0, 0, 60, }, // DK7, BADV/ Default & spec. store disc.
, 0, 120, 0, 0, 0, O, 180 }, // DK8, SPE/ Default & spec. store disc.
15, 0, 0, 30, 0, O }, // DK9, SIM/ All applicable discounts.
0o, 60, 0, 0, 50, O }, // DK10, ADV/ All applicable discounts.
0o, 0, 120, 0, 0, 7 } // DK11, SPE/ All applicable disc.

e i e e e T T e]
O O B O O o O O

}i

from different viewpoints. Another important benefit from using PDL is the reduction of
commenting efforts. Since PDL is written at the construction design level, it provides full
documentation of what the function does and the meaning of actions within operations;
therefore, once code is generated PDL is turned into complete and meaningful program-
ming-language comments for the function (McConnell 2004). Finally, using the PDL
approach greatly benefits the documentation effort, especially when using documentation
techniques that allow for the creation of software documentation from the comments in
code (e.g., Javadoc). In these cases, PDL provides the process for creating, reviewing, and
evaluating the function documentation, therefore increasing its quality.

SOFTWARE CONSTRUCTION USING STYLES

Construction styles are not about programming but about defining the rules or guidelines
for everyone in the project for writing the source code for a computer program. Combined
with the logic design, styles provide the final piece to generate high-quality and consistent

Principles of Construction Design o 275

Listing 8.9: Table-Based Construction of the Phone Discount Function

// The table-based version for retrieving discounts.
int getPhoneDiscount (const Phone& phone) {

// Compute the key for accessing the corresponding table row.
int discountKey = phone.getType () + phone.getDiscountType () ;

// Add all discounts associated with the discount key.

int totalDiscount = discounts[discountKey] .smallStoreDiscount +
discounts [discountKey] .mediumStoreDiscount +
discounts [discountKey] .highStoreDiscount +
discounts [discountKey] .smallManufacturerDiscount +
discounts [discountKey] .mediumManufacturerDiscount +
discounts [discountKey] .highManufacturerDiscount +
discounts [discountKey] .bluetoothDiscount +
discounts [discountKey] .dataPlanDiscount;

// Return the total discount.
return totalDiscount;

// Create a simple phone with manufacturer’s discount.
Phone phone (SIMPLE PHONE, MANUFACTURER DISCOUNT) ;

// Display the phone’s discount.
cout<<”Total Phone Discount: “<<getPhoneDiscount (phone)<<endl;

implementations for programming problems. As a general principle, programming styles
must provide rules that ensure consistency, simplicity, and clarity of code. Numerous
styles have been proposed. Baldwin, Gray, and Misfeldt (2006) provide an extensive list of
guidelines for formatting code using the C# programming language. Similarly, Misfeldt,
Bumgardner, and Gray (2004) and Vermeulen, Ambler, Bumgardner, Metz, Misfeldt, and
Shur (2000) presented equivalent work for the C++ and Java language. Besides the styles
covered in Chapter 5, typical styles used during construction design include

o FPormatting conventions
» Naming conventions
o Documentation conventions

Formatting Conventions

Common styles for formatting code include the use of white spaces, indentation, and
bracket placement. White spaces can be used to separate keywords, parentheses, curly
braces, binary operators, and commas (Baldwin et al. 2006) in such a way that the resulting
code is consistent, easier to read, and easier to maintain. For example, consider the use of
white spaces to separate keywords, parentheses, and curly braces in control flow statements.

276 « Software Engineering Design

Listing 8.10: Example PDL for a System’s Event-Handling Capabilities

This function writes events occurring in the system to the event
console. Events are displayed together with their classification and
description, which are both provided by the client’s calling func-
tion. In addition, the number of events received for each type of
event is computed and displayed in the event console. Events are
required to have id and description. The function returns a value
indicating success/failure of the operation.

Set the value of the function status to “failure”
Determine if the event id is wvalid

If the event id is wvalid
Use the event id to determine the type of event

Increment by one the counter that keeps track of the number of
events logged of this type to reflect this newly received event.

Write the event id, description, and event counter to the event
console and set the return value to “succesg”

If the event id is not wvalid
Set the event id to “unknown”
Set the event description to “invalid event ...”
Write the event id and description to the event console

Return the value of the function status

Listing 8.11 presents three different ways white space can be used. Adopt a consistent style
for spacing elements, and follow it consistently in your organization. In the case of binary
operators, which require two operands, it is suggested that a single space be used on both sides
of the operator, when applicable, as seen in Listing 8.12. Another important place to apply
white spaces in common languages, such as C++, Java, and C#, is after commas and semi-
colons, which are delimiters, also demonstrated in Listing 8.12.

Indentation

Indentation is a simple way to improve program readability. Programs that do not apply
indentation consistently can be hard to read. Similarly, programs that do not apply appropri-
ate forms of indentation may result in inappropriately formatted text when viewing on dif-
ferent platforms. Indentation is typically employed by applying two white spaces—this varies
per project—in front of one or more related program statements that need to be differentiated
from other statements. However, the choice of number of white spaces must be defined by the
project policy. For example, one or more statements related in code can be grouped by the

Principles of Construction Design o 277

Listing 8.11: Styles for Whitespaces to Separate Keywords,
Parentheses, and Curly Braces

// Style #1: White space after keyword.
if- (%) - {

}

// Style #2: White space after parenthesis and parameter.
if(~x~)~{

}

// Style #3: White space after keyword, parenthesis and parameter.
if- (ox-) -

}

Listing 8.12: Styles for White Spaces in Binary Operators
and after Commas and Semicolons

// White before and after binary operators.
int x-='y-+-2;

// Using Style #2 of white spaces.
// White space after comma.
int x,-y, *2;

// White space after semicolon.
for(int i = 0;-1i < maxSize;-i++) {

}

number of white spaces used in indentation. Consider the example presented in Listing 8.13,
where conditional statements are indented consistently throughout the program.

An important thing to consider when applying indentation is the prevention of tab
characters, since they are interpreted differently in different development environments
(Misfeldt et al. 2004). This means that code that appears properly indented can look
drastically different when viewed by other developers reviewing the code in a different
environment. In today’s popular code editors (e.g., MS Visual Studio and Eclipse), this
problem can be easily solved by configuring the editor to replace tab characters with
white spaces automatically on new or existing code. Another important characteristic
highlighted by Listing 8.13 is the difficulty of matching opening and closing brackets in
nested statements. This can lead to complex code that is hard to maintain. When encoun-
tered with a highly nested code statement in programming languages that use brackets,
it is desirable to match closing brackets with opening ones, as seen in Listing 8.14.

278 o Software Engineering Design

Listing 8.13: Styles for White Spaces in Nested Statements

// Indentation of nested statements.
if(x ==y) {

-+// Code here is appropriately indented with 2 white spaces.
ceif(z == v) {

----// Code here is appropriately indented with 4 white spaces.
-cif(¢ == a) {

------ // Code here is appropriately indented with 6 white spaces.

Listing 8.14: Matching Closing and Opening Brackets in Nested Statements

void computeValue () {
while(/*some condition*/) {
for(/*some condition, iterate*/) {
if (/*some condition*/) {
switch(/*some condition*/) ({
//

} // end switch
} // end if
} // end for
} // end while

}

Brace Placement

Brace placement is another commonly used technique for formatting code. Styles for
brace placement are applied in many languages for class definitions, function defini-
tions, conditional and repetitive statements, and exception handlers. Two major styles
include the application of the opening brace in-line or the application of the opening
brace on a new line, aligned with the first character of the statement that controls the
statements inside the braces. Regardless of the style applied for the opening brace, the
closing brace is applied on a new line. Listings 8.15 and 8.16 present examples of both
in-line and new-line styles, respectively.

Principles of Construction Design o 279

Listing 8.15: In-line Bracket Placement Style

// Inline brace placement style in C++ class definition.
class List {

//
Vi

// Inline brace placement style in function definition.
void append() {

//
}

// Inline brace placement style in conditional statements.
if (condition == true) {
//

else {
//
}

// Inline brace placement style in loops.
while(condition == true) {

//
}

Naming Conventions

Naming conventions can help programmers develop models for differentiating different
aspects of software programs and maintain consistency through software items. This can
in turn result in code that is self-documented by the use of conventions applied consis-
tently in the code. Naming conventions can be used to differentiate all elements that com-
pose a software program; therefore, consistent use of naming style can help software teams
to better understand the work done by each other. When applied consistently, styles can
easily help software developers, testers, and maintainers understand the code and make
assumptions about it based on the programming style.

A general naming convention that applies to all elements in a software program is the
use of meaningful names. Meaningful names are ones that are complete and contextually
correct. Naming conventions should lead to names that unambiguously and completely
define the intent of the entity that they represent. Names should be chosen so that they
clearly define entities so that they quickly become familiar to those who read and maintain
the code. Failure to select meaningful names can result in code that is hard to understand,
follow, and maintain. Examples of bad and good examples of meaningful names are pre-
sented in Listing 8.17.

Listing 8.17 presents several cases of good and bad names. Example 1 presents the
choice of using rdol and rdo2 for names to describe two Radio objects. These names
are incomplete and as a consequence can make the code hard to understand, debug, and

280 « Software Engineering Design

Listing 8.16: New-Line Bracket Placement Style

// Newline brace placement style in C++ class definition.
class List
{
//
Vi

// Newline brace placement style in function definition.
void append ()
{
//
}

// Newline brace placement style in conditional statements.
if (condition == true)
{

//

// Newline brace placement style in loops.
while(condition == true)
{
//
}

maintain. Example 2 shows the usage of the name xmit to abstract the transmission func-
tion of a radio object. Developers who are not familiar with this abbreviation of the word
transmit may find it difficult to find the appropriate function call in the documentation
to transmit a message. In addition, consider the case where the integrated development
environment (IDE) supports the intellisense feature. In this case, developers would intui-
tively and without success type the letter ¢ in hopes that the IDE would reveal a function
name that somewhat relates to the transmission behavior required by the radio object.
Example 3 presents the case where the name chosen is both incomplete and inappropri-
ate for the program’s context. That is, it is hard to determine the correct meaning of the
code when using s and MaxAmount. This is mainly because s does not describe the entity
being evaluated and MaxAmount can refer to multiple limits that relate to different prop-
erties (e.g., max salary, max number of items). These names are improved by making them
complete and appropriate for the context. Finally, Example 4 presents an example of a
contextually inappropriate name for an object of type DirectoryManager. In this case,
objects of type DirectoryManager monitor a directory for cleanup. Once the directory
reaches a specified threshold, objects of the DirectoryManger type would begin delet-
ing files. The choice of name reaper and destroy are not appropriate for this context.
Reaper and destroy seem more appropriate for a gaming context; therefore, the names are
improved by replacing them to describe better the actions of these objects.

Principles of Construction Design « 281

Listing 8.17: Styles for Naming Conventions

// Example 1:

// Incomplete variable names.
Radio rdol;

Radio rdo2;

// Complete variable name.
Radio activeRadio;
Radio backupRadio;

// Example 2:
class Radio {
public:
// Incomplete function name.
void xmit (Message* message) ;

bi

class Radio f{
public:
// Complete function name.
void transmit (Message* message) ;

Vi

// Example 3:
// Incomplete and contextually inappropriate variable names.
if(s > MaxAmount)

// s is ambiguous!

// MaxAmount of what?

// MaxAmount does not reflect the appropriate context!

}

// Complete and contextually appropriate variable names.
if (salary > MaxSalaryAmount) {

//
}

// Example 4:

// Contextually inappropriate names.
DirectoryManager reaper;
reaper.destroy () ;

// Contextually appropriate names.
DirectoryManager directoryManager;
directoryManager.deleteFiles() ;

282 « Software Engineering Design

Documentation Conventions

Similar to formatting and naming conventions, documentation conventions can also
be (almost universally) applied to projects in different domains and with different pro-
gramming languages. Documentation conventions deal with styles and specifications for
what to document and how to document during construction. Generally, if the naming
conventions are followed, comments should provide information that describes why an
operation is written as opposed to what the operation is doing. In many cases, the actions
performed by operations (or blocks of codes) can be inferred from the naming conven-
tions or programming syntax; however, the reasons behind the choice of code cannot be
inferred as easily. Therefore, comments should provide the reasons why code was written
and, when necessary, what the code is doing.

Documenting Files

In software construction, files are units of cohesive work. In some architectural efforts,
using the development view discussed in Chapter 3, systems are decomposed using files
(and directories) as a main unit of system decomposition. Therefore, files should be well
documented in a clear and concise manner so that clients of the file can understand the
actions carried out by its contents. Depending on the language, files can contain one or
more classes, one or more functions, or one or more variable, constant, or type definitions.
In all cases, file documentation is necessary for managing the file throughout its lifetime.
File documentation can vary from company to company or even from project to proj-
ect within a same company. However, at a minimum, file documentation should contain
header information that identifies the contents of the file, description, and original author.
In addition, file documentation can include other important information, such as revision
information (e.g., bug fixes or enhancements), classification (mostly for companies that
write software for national security purposes) of the file’s content, and any restrictions asso-
ciated with the file’s content. An example of file documentation is presented in Listing 8.18.

Documenting Functions

Similar to files, functions are units of work; however, they operate on a smaller scale.
Therefore, their intent should be well documented in a clear and concise manner so that
their clients can understand the actions carried out by the function’s contents. Functions
operate on a finer-grained context than files; therefore, their documentation should be
specific to the work performed by the functions. Information such as classification and
history can be deferred to the file’s documentation. At a minimum, function docu-
mentation should contain information about its intent, parameters, and return values.
In addition, it can include any pre- and postconditions applicable. An example of func-
tion documentation header is presented in Listing 8.19. As seen, an important relation-
ship exists between PDL and function documentation. When using PDL, a comment’s first
approach is employed to designing code at the construction level. PDL generated as part of

Principles of Construction Design « 283

Listing 8.18: Style for File Documentation

//***

// FILE: MyFile.h

//

// DESCRIPTION: This file contains the definition of class x.

// Class x is used in the system for ... Clients of
// this class are required to ...

//

// REVISION: Revision 1.0

//

// CLASSIFICATION: Unclassified

//

// RESTRICTIONS: None

//

// AUTHOR: Joe Developer

//

// HISTORY:

// PROBLEM # INITIALS DATE DESCRIPTION

/] == e
// N/A JD 1/1/2011 1Initial Design and Code.

// 10 TAE 5/1/2011 Removed dead code.

//

/==
//

//***

a particular function’s behavior can be directly used to create the function’s documenta-
tion. In Listing 8.19, PDL generated and presented in Listing 8.10 is used word for word in
the function’s documentation.

MINIMIZING COMPLEXITY IN CONSTRUCTION DESIGN

Construction design is an activity directly related to the construction phase. In some cases,
construction design begins during the design phase and continues throughout the con-
struction phase. This activity is heavily collaborative, since construction design represents
parts of a whole system. Complexity encountered during construction design can be mini-
mized through making use of standards (Abran, Moore, Bourque, and Dupuis 2005). The
use of standards is an important part of the software development process. In the con-
struction design activity, standards can be used to define common processes and practices
for improving the efficiency of engineers. Standards can help designers become more effi-
cient by allowing them to quickly understand, for example, complex data structures, com-
plex messaging interfaces, and configuration management processes. They can also help
minimize complexity by defining the basis for implementing construction designs that are

284 « Software Engineering Design

Listing 8.19: Style for File Documentation

//***

// METHOD: EventLogger: :log (EventId id, string description)

//

// DESCRIPTION: This function writes events occurring in the system
// to the event console. Events are displayed together
// with their classification and description, which are
// both provided by the client’s calling function.

// In addition, the number of events received for each
// type of event is computed and displayed in the event
// console. Events are required to have id and

// description.

//

// RETURNS: The function returns a boolean value indicating

// success/failure of the operation.

//

// PRE-CONDITIONS:
// POST-CONDITIONS:
//

//***

simple and readable rather than clever (Abran et al. 2005). Some important standards that
can be created for software projects include the software development plan, the software
version document, the interface control document, and the programming style standard,
as presented in Chapter 5.

QUALITY EVALUATION OF CONSTRUCTION DESIGN

The construction design activity is the last major design step performed before construc-
tion. Therefore, it provides the last opportunity to evaluate the quality of the system
to be built. There are numerous project-specific quality characteristics (e.g., security,
usability) that can be identified and evaluated for construction designs. However, at
a minimum, the design’s completeness, correctness, testability, and maintainability
should be evaluated, since these generally apply to all software projects.

Completeness and correctness deal with the degree to which construction designs cor-
rectly meet the allocated requirements. Construction designs that are correct, but incom-
plete, complete but incorrect, or incomplete and incorrect—those that do not meet all
requirements, are incorrect, or both—need to be addressed and resolved to maintain the
envisioned software quality of the product. Completeness and correctness can both be
evaluated through peer reviews, unit testing, and audits. In all of these activities, the use of
checklists—one of the seven common tools of quality—is essential. In other cases, incom-
plete designs are the product of incomplete specifications. In these cases, construction

Principles of Construction Design o 285

designs can be further analyzed using prototypes for eliciting the required capabilities to
complete the specifications and therefore the construction design.

Testability quality (in construction design) deals with the amount of effort required to
test artifacts that are the result of construction design. On the other hand, a design’s main-
tainability deals with the amount of effort required to maintain a tested artifact that is the
result of construction design. Both testability and maintainability goals can be achieved
in many ways, as determined by nonfunctional requirements of the project. A common
approach for evaluating the testability and maintainability of construction designs includes
the measurement of the design’s cyclomatic complexity (McCabe 1976); therefore, testabil-
ity and maintainability goals can be transformed into requirements that are based on the
cyclomatic complexity. In addition, maintainability quality can also be evaluated by the
compliance of the resulting implementation of construction design to the programming
style defined for the project. Pressman (2010, p. 437) states that “source code and related
work products must conform to local coding standards and exhibit characteristics that will
facilitate maintainability.” Therefore, evaluation techniques that enforce 100% compliance
with local styles of programming must be in place.

Peer Reviews

Peer reviews are tasks that concentrate on verifying and validating designs and code
(i.e., design reviews and code reviews, respectively). Peer reviews must be planned, orga-
nized, and conducted in such a way that a collective approval among all members of the
project (with different disciplines) is reached. The main tasks are performed by techno-
logically savvy engineers and domain experts that can verify and validate the items of
review. In addition, the presence of an auditor (or software quality personnel) is required
to inspect both processes and products. Finally, members of the software testing and main-
tenance team can contribute highly to the review of items.

A great deal of time during code review is spent evaluating code. In many practical situ-
ations, where requirements have been established to meet a specific programming style, it
can be time-consuming to read code line by line to validate that the code meets the style’s
requirements. In these cases, the use of automated style checkers can provide significant
benefits. Automated style checkers are tools that can be configured to enforce a specific
style of programming. Some of the capabilities provided by automated style checkers
include checks for numerous conventions. For example, the open-source CheckStyle 5.3
(2010) is a Java code auditor that can be incorporated into the Eclipse integrated develop-
ment environment to enforce coding styles and identify areas of potential errors in code.
Some of the capabilities included by CheckStyle include the following:

« Naming conventions of attributes and methods

o Formatting conventions

o Limit of the number of function parameters, line lengths
o Comments (Javadoc) for classes, attributes, and methods
+ Presence of mandatory headers

286 « Software Engineering Design

Good practices for class design

Checks for duplicated code sections

Checks cyclomatic complexity against a specified threshold
Other multiple complexity measurements

Unit Testing

Ultimately, the quality of construction designs in terms of completeness and correctness
is evaluated through unit testing. Therefore, as construction designs are created, so are unit
tests. One or more unit test cases are essential for verifying and validating construction
designs. A sample unit test case is presented in Table 8.5.

Cyclomatic Complexity

Cyclomatic complexity is a technique developed by McCabe (1976) that can be used for
evaluating the quality of flow-based designs. It is a mathematical technique based on graph
theory that provides a quantitative justification for making design decisions that lead to
higher quality in terms of a design’s maintainability and testability. The cyclomatic com-
plexity computation allows designers to measure the complexity of flow-based operational
designs by determining the complexity of the decision structure of operations instead of
lines of code. In his original work, McCabe illustrated the correlation between intuitive
complexity and the graph-theoretic complexity of several programming operations and
showed that the complexity of an operation had less to do with physical size and more to
do with the decision structure of the operation. By using this approach, the cyclomatic
complexity provides not only a measurement of the complexity of flow-based designs but
also a measurement of the maximum number of independent paths required to fully test
the operation (Galin 2003). Therefore, cyclomatic complexity can be used to determine the
maintainability (i.e., understandability) and testability of flow-based designs.

The cyclomatic complexity technique works by computing the cyclomatic number v(G)
of a graph G with n vertices, e edges, and p connected components, as seen in Equation 8.1.

v(G)=e—n+2p (8.1

For a strongly connected graph G—in which there is a path connecting any pair of arbi-
trary distinct nodes—the cyclomatic number is equal to the maximum number of linearly
independent circuits (McCabe 1976). Therefore, flow-based designs can be associated with
directed, strongly connected graphs that have unique entry and exit points, where each node
can be reached from the entry node, and each node can reach the exit node. When this is
the case, the graph is referred as the program control graph, and Equation (8.1) can be used
to compute the cyclomatic complexity of the function, based on its flow-based design. For
example, consider a UML flow-based design (i.e., activity diagram) constructed as a directed,
strongly connected graph consisting of five activities (i.e., nodes) and six transitional arrows
(i.e., edges), each activity accessible from the starting node and capable of reaching the exit

Principles of Construction Design « 287

TABLE 8.5
Sample Unit Test Case Template
Unit Test Case
Unit test name:
Description:
Requirements:
Preconditions:
S Operator Action System Action P/F N
1 Operator enters invalid product data ~ Detects invalid data and displays error message to
and clicks on the send button. the operator
2 Operator enters valid product data Validates the data; retrieves server’s Internet
and clicks on the send button. Protocol (IP) address and port number
3 Opens a socket connection and send product

request data to the server

4 Waits a maximum of 3 seconds for a server response

5

6 Response received and product information is
displayed

7 Save response data in file system and ask user to

search for another product
8 Operator clicks the cancel button to
finish searching for products.

Test Result Notes

Approval Signatures
Software engineer:
Test engineer:
Quality auditor:

activity. In this case, the cyclomatic complexity of the design is v(G) = 6 - 5 + 2(1) = 3.
In most cases, the value of p = 1 is expected, since p is the number of connected components
in the graph. Given the characteristics specified for the program control graph (i.e., unique
entry and exit points, all nodes reachable from the entry, and all nodes capable of reaching
the exit node), all program control graphs will end up having only one connected compo-
nent (McCabe 1976). However, in some cases, complexity may be evaluated as the com-
bined complexity of several operations. Consider a parent operation that calls on several
child operations; in this case, the complexity of the operation is the combined complexity of
the parent’s operation complexity and the complexity of all other child operations that are
called within the parent. In these cases, p will equal the number of connected components

288 « Software Engineering Design

in the parent and child operations, which can be equal to the number of operations (parent
and child operations) being evaluated. It is important to note that when p # 1, the complex-
ity measure will be equal to the summation of the individual complexities of each connected
component, since complexity measures are additive.

Computing the cyclomatic complexity for large operations can be tedious; therefore,
two simplification methods are available for easily computing the cyclomatic complexity
of single-component graphs (i.e., p = 1). The first method allows for the computation of
complexity in terms of a program’s decision constructs, such as if statements, while loop, for
loop, and case statements. Mills (1972) proved that the cyclomatic complexity (C) of a struc-
tured program meeting the control graphs requirements previously mentioned is equal to
the number of conditions in the code () plus 1, as seen in Equation (8.2).

C=m+1 (8.2)

The number of conditions () can be easily measured as follows. Conditional statements,
such as if statements, while loop, and for loop, all count as one unit of complexity. Compound
conditional statements, such as if x and y then z, count as two complexity units, since with-
out the connective and the condition would have to be specified as if x then, if y then z
(McCabe 1976). Case statements, such as the switch statement in C++, Java, and C#, or other
conditional statements containing multiple # branching statements are counted as m=n - 1
unit of complexity.

The second simplification approach allows for the visual determination of complexity via
the program’s control graph (i.e., flow-based design). This approach is based on the work of
mathematician Leonhard Euler, who proved that for connected planar graphs—those with-
out intersecting edges—the regions (r) of a graph can be computed using Equation (8.3),
known as Euler’s formula.

2=n-e+r (8.3)

A region is an area enclosed by arcs; therefore, given the characteristics of the program
control chart, the number of regions enclosed by arcs, plus one that resides outside the
graph, is equal to the cyclomatic complexity of the graph. All three methods for computing
the cyclomatic complexity of a program control graph are presented in Figure 8.3.

The top-left corner of Figure 8.3 represents the program control graph designed using a
(flow-based) activity diagram. As seen, the program control graph represents a case state-
ment with five branches; therefore, the number of conditions (n) is equal to 5 - 1 = 4 and
the cyclomatic complexity, using Equation (8.2), is C =4 + 1 = 5. This can be easily verified
with Equations (8.1) and (8.3). For example, using Equation (8.1), the cyclomatic complex-
ity is v(G) =10 - 7 + 2(1) = 5.

The top-right corner presents the evaluation of complexity of a program control graph
using the regions visual inspection. As seen, the number of regions of the planar graph is
five; therefore, the cyclomatic complexity of the design is five. This can easily be verified
by rearranging Equation (8.3) to solve for r, which results in r = 9 - 6 + 2 = 5. Finally, the
bottom of Figure 8.3 presents a more complex program design, which includes 23 nodes

Principles of Construction Design o 289

FIGURE 8.3
Cyclomatic complexity for three flow-based designs.

and 31 edges. By using the regions visual inspection, the complexity of the design can be
evaluated quickly, which results in a complexity of 10. Since designs like this one involve a
relatively large number of nodes and edges, it is a good idea to verify the complexity mea-
surement using any of the other techniques presented. For example, using Equation (8.1),
the complexity results in v(G) = 31 - 23 + 2(1) = 10.

An important consideration when evaluating quality in terms of cyclomatic complexity
is the establishment of a threshold value for determining when the complexity of designs is
acceptable. This threshold value can be used to create quality requirements for the software
development process; for example, the cyclomatic complexity of functions shall not exceed 10.
Typically, a value of 10 is acceptable, based on McCabe’s (1976) work. Other studies have shown
results similar to McCabe; for example, Casper Jones (2008, p. 415) reports the following:

Empirical studies reveal that program with cyclomatic complexities of less than 5 are gener-
ally considered simple and easy to understand. Cyclomatic complexities of 10 or less are con-
sidered not too difficult. When the cyclomatic complexity is greater than 20, the complexity is
perceived as high. When the McCabe number exceeds 50, the software for practical purposes
becomes untestable.

290 « Software Engineering Design

Ultimately, a threshold value that makes sense for the project team (e.g., 10) should be
selected and enforced throughout the design and construction phase, metrics should be
collected and analyzed, and the threshold value should be reevaluated (for new projects)
according to the results.

CHAPTER SUMMARY

The transition from software design to construction should occur with minimal effort.
In some cases, component designs provide enough detail to allow their transformation from
design artifact into code easily; however, in other cases, a more fine-grained level of design
detail is required. Construction design provides a form of design that closely resembles code
so that complex operations can be planned and evaluated prior to implementation in code.
Once the correctness of operations is verified, the construction design activity provides
additional heuristics to enforce consistency in the code. Construction designs are typically
created using the following techniques: flow-based, state-based, table-based, and program-
ming design language. Each method provides its own benefits; therefore, careful attention
should be paid when selecting the appropriateness of construction designs in practical
applications. The benefits acquired from designing complex functions and enforcing styles
for consistency are essential to maintaining each system’s envisioned quality.

REVIEW QUESTIONS

1. What is construction design, and why is it important?

2. List and explain common quality attributes that can be addressed during construc-
tion design.

3. Why are styles important during construction?

4. What are flow-based designs, and how do they relate to UML activity diagrams?

5. Describe the following elements of an activity diagram:
a. Initial state

b. Final state
c. Action
d. Branch
e. Transition

. What are state-based designs, and why are they important for construction design?
. How are state-based designs typically translated to code?
. What are table-based designs, and why are they important for construction design?
. Compare and contrasts the following:

a. Limited-entry decision table

b. Extended-entry decision table

c. Mixed-entry decision table

O 0 g &

10.

11.

12.

13.

14.

15.

16.

17.

Principles of Construction Design o 291

How are table-based designs used to decrease code’s complexity and increase both
readability and maintainability?

In decision tables, what are missing policies and redundant actions? How does iden-
tifying these help make more efficient tables?

What is programming design language, and what is the main benefit that it provides
over other construction design methods?

How are construction styles used to decrease code’s complexity and increase both
readability and maintainability?

What are the main methods used for evaluating quality of construction designs?

List and explain an efficient method for enforcing styles during construction.

What is cyclomatic complexity? Name three different ways to compute the cyclo-
matic complexity of a function during construction design.

What is the relationship between cyclomatic complexity and software quality?
Explain.

CHAPTER EXERCISES

1.

2.

Select a project of choice, and identify three different functions that can be designed
using flow-based, table-based, and state-based design. Create the designs for these
functions, and prepare a 5- to 10-minute presentation including designs, code,
and justification.

Compute the cyclomatic complexity of the following code using all three methods:

switch(state) {
case ONE:

// Perform activity.

if(/*some conditionx*/) ({
// Perform activity.

}

else if(/*some condition*/) {
// Perform activity.

}

else {
// Perform activity.

}

break;
case TWO:

// Perform activity FIVE.
break;

292 « Software Engineering Design

case THREE:

// Perform activity FOUR.
break;
default:

// Intentionally left blank.
break;

REFERENCES

Abran, Alain, James W. Moore, Pierre Bourque, and Robert Dupuis. Guide to the Software Engineering Body of
Knowledge—2004 Version—SWEBOK. Los Angeles, CA: IEEE Computer Society Press, 2005.

Baldwin, Kenneth, Andrew Gray, and Trevor Misfeldt. The Elements of C# Style. Cambridge, UK: Cambridge
University Press, 2006.

Booch, Grady, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language User Guide, 2d ed.
Boston: Addison-Wesley, 2005.

Checkstyle 5.3. October 19, 2010. Available from: http://checkstyle.sourceforge.net/index.html (accessed March
11,2011).

Collar, Emilio Jr. “An Investigation of Programming Code Textbase Readability Based on a Cognitive Readability
Model” PhD thesis, University of Colorado at Boulder, 2005.

Fox, Christopher. Introduction to Software Engineering Design: Processes, Principles, and Patterns with UML2.
Boston: Addison Wesley, 2006.

Galin, Daniel. Software Quality Assurance: From Theory to Implementation. Harlow, UK: Pearson Addison Wesley,
2003.

Hurley, Richard B. Decision Tables in Software Engineering. New York: Van Nostrand Reinhold, 1982.

IEEE. “IEEE Standard for Information Technology-Systems Design-Software Design Descriptions” 2009,
p. 175.

Jones, Capers. Applied Software Measurement: Global Analysis of Productivity and Quality, 3d ed. New York:
McGraw-Hill Osborne Media, 2008.

McCabe, Thomas J. “A Complexity Measure.” IEEE Transactions on Software Engineering SE-2, no. 4 (1976):
308-320

McConnell, Steve. Code Complete, 2d ed. Redmond, WA: Microsoft Press, 2004.

Meyer, Bertrand. Object-Oriented Software Construction, 2d ed. Upper Saddle River, NJ: Prentice Hall, 1997.

Mills, Harlan D. Mathematical Foundations for Structured Programming. Gaithersburg, MD: IBM Federal
Systems Division, IBM Corporation, 1972.

Misfeldt, Trevor, Gregory Bumgardner, and Andrew Gray. The Elements of C++ Style. Cambridge, UK:
Cambridge University Press, 2004.

Pressman, Roger S. Software Engineering: A Practitioner’s Approach, 7th ed. Chicago: McGraw-Hill, 2010.

Vermeulen, Allan, Scott W. Ambler, Greg Bumgardner, Eldon Metz, Trevor Misfeldt, Jim Shur, and
Patrick Thompson. The Elements of Java Style. Cambridge, UK: Cambridge University Press, 2000.

9

Human-Computer Interface Design

Jacob Somervell
University of Virginia, College at Wise

CHAPTER OBJECTIVES

 Understand the role that the computer interface plays in high-quality
and successful software systems

o Describe how to address interface design and evaluation within the
software development life cycle

« Provide usable guidance for evaluating designs

CONCEPTUAL OVERVIEW

To end users, the interface is the system. Most end users do not know, nor
do they even need to know, about the underlying structure and implemen-
tation of the software system. They are concerned only with the interface
presented to them and the capabilities provided by that interface. Consider
the analogy of driving a car: the driver does not need to know anything
about how an internal combustion engine works and how it is connected
to the transmission to send power to the wheels, nor do they need to know
about hydraulics and fluid dynamics of the braking system to actually
drive a car. Indeed, mainly the driver needs to know that “D” means drive
(assuming an automatic transmission), press gas pedal to go, press brake
pedal to stop. The same concept applies to software systems. End users are
concerned only with what they can do with the system and how they do it,
not with how it works “under the hood.” Hence, it is of vital importance to
get the interface design sufficiently correct so that it serves users in an efficient
and usable manner. This chapter shifts the focus away from the detailed
under-the-hood approach to design to cover the essential human-computer
design activity. The chapter focuses on providing valuable information on
how to create effective and usable interfaces for software systems.

293

294 « Software Engineering Design

WHAT IS HUMAN-COMPUTER INTERFACE DESIGN?

Sowhatdoesitmean to “getitright?” As partofthe software design process, human-computer
interaction (HCI) design must account for the user of the software. While designing the
architecture and detailed design of software systems is essential for meeting most quality
attributes, designing an efficient user interface that is understandable by the end user is
paramount to the usability quality of all successful software systems. The most elegant,
efficient, and high-quality architectural and detailed designs can be felled by a poor inter-
face. In the context of HCI, interface design refers to the creation of the user interface.
IEEE (1990, p. 80) defines the user interface as follows:

An interface that enables information to be passed between a human user and hardware or
software components of a computer systems.

For most software, this entails designing the graphical user interface (GUI). This involves
selecting appropriate information presentation and interaction techniques for the various
end-user classes (Rosson and Carroll 2002). More specifically this entails selecting appro-
priate information layouts, correct language, appropriate interface controls (e.g., radio but-
tons versus check boxes), and tying the detailed design to the various input mechanisms
provided in the interface.

An essential task of the HCI design activity involves making sure that the interface provides
appropriate means for using the system in an efficient manner. The best way to ensure an inter-
face is sufficiently good is to iteratively improve the design through user testing. The implication
is that there will be multiple iterations of a process that includes the following HCI design tasks:

« Creating a prototype of the system

« Having end users use that prototype in realistic ways
Gathering data from these tests

+ Redesigning the interface to address discovered problems

All of this work (choosing appropriate information representation and interaction methods)
hinges on a thorough understanding of the users of the system. It is paramount to learn
how the users typically perform similar actions and what their expectations of the new
system may be. This information is gleaned through detailed requirements gathering and
analysis and through significant user testing.

WHY STUDY HUMAN-COMPUTER INTERFACE DESIGN?

The HCI design activity is where general principles are applied to optimize the interface
between humans and computers. Visual designs have a major role in the success or failure

Human-Computer Interface Design « 295

of software systems. Systems that meet functional requirements but are not usable cannot
succeed. The major concerns of the HCI designs may include the evaluation and use of
modes, navigation, visual designs, response time and feedback, and design modalities,
such as forms and menu-driven. HCI designs directly influence the quality of any system
and are essential to understanding and addressing the factors that affect the overall usabil-
ity of the system. Many design principles and evaluation techniques exist to successfully
design user interfaces. Therefore, understanding the techniques and tools for designing
interfaces allows designers to become proficient in creating efficient interfaces. Providing
an interface that allow users to accomplish their goals with the software, without unneces-
sary effort, is the ultimate goal of the user interface designer.

The “without unnecessary effort” clause is important. Consider a system that requires a
date from the user, as presented on Iteration 1 of Figure 9.1.

The user interface could ask the user to type in the date in a text box. Without any extra
information a user could type any of the following:

e Jan 1, 2011

e 1/1/11

e 1-1-11

e 1January 2011

Which format was expected by the software? If the information typed by the user doesn’t
match the format, what happens? An error message? Program crash? The most flexible
option involves allowing all of these and others as valid input and then correctly parsing the
input to find the appropriate fields for month, day, and year from that input string. This is a
nontrivial solution and does not help the user form a basis or understanding of the desired
input. A simpler solution involves adding a label to the input box specifying the appropriate
format (i.e., MM/DD/YYYY), as presented on Iteration 2 of Figure 9.1. This option works

Iteration 1
Date:

Iteration 3

Date: (MM/DD/YYYY)

Invalid Date

FIGURE 9.1
Simple data entry user interface.

296 « Software Engineering Design

fine and helps the user understand the expected formats for date objects, knowledge that
can be leveraged in other software systems with similar requirements. Finally, to address
input errors, error indicators in the interface are introduced to help guide the user to the
correct input format, as presented on Iteration 3 of Figure 9.1. Typically, a red error indica-
tor (e.g., as a background color on input boxes) is a passive way of accomplishing this.

Many other options for date input could be used instead, including drop-down lists, graph-
ical mini-calendars for selecting the date, and spinners. Each of these options has been used
with varying levels of success in various applications. Learning which method works for
a specific software system requires end-user testing: create prototype systems or mock-ups
with each design choice, have users complete realistic tasks using these systems, record infor-
mation about the users’ performance (e.g., speed, accuracy), and empirically determine the
best design. This effort is significant and requires time and resources to accomplish correctly.

The point of this discussion is that the interface (the presented information to the user)
plays a significant role in the utility of the software and the experience of the user. Carefully
considering the user and the user’s abilities when designing the interface can only increase
the usability of the software system. Thorough testing of the design, with end users, is
paramount to designing successful software systems.

So how do we go about involving the user in the process? One must spend time early in
the software development life cycle identifying the user classes for the software. A user class
is a set of users who share common tasks with the software. Consider a student information
system that may be used by a university. Clearly, one class of user would be the students.
Another obvious class would be the faculty. Other classes that might not be immediately
obvious could include department chairs, registrar, advisors, enrollment management staff,
and financial aid staff. There could be others. Furthermore, a single person could take on the
characteristics of multiple classes. For example, a faculty member could also be an advisor
and a department chair. Each of the user classes to which a user belongs contributes to the
type of work that that user should be able to perform with the software.

After identifying the user classes, it is then necessary to hold requirements meetings with
representatives of each user class. These meetings should elicit the tasks that the target user
class should be able to do with the software as well as tasks that would be “nice” to have.
Recall that these meetings would normally occur as part of the requirements gathering
process in the overall software development life cycle, not as a separate activity, although it
could be separate if needed. Similar to software architects, it is common for user interface
designers to go back and forth between requirements and design, until the interface is
sufficiently appropriate to accommodate the needs of users of each class.

Skill Development 9.1: Eliciting Needs from Different User Classes

Create a list of 10 questions you would ask a group of students about their expectations
for a new student information system. Create a list of 10 questions you would ask a
group of faculty about their expectations for the same system.

Human-Computer Interface Design o 297

After learning about the typical interactions your user classes will have with the system,
one can begin designing the user interface to meet those needs. One of the most challenging
things for software engineers is to disconnect from the system they are designing and try to
see the world through the eyes of the end user. It is tempting to simply design an interface
that meets the needs of the engineer or developer (e.g., for testing, verification) instead of
designing an interface that meets the needs of the end user. It is up to software developers to
maintain a clear focus on the end user while developing the user interface for a system. The
following sections provide specific information to aid the designer in focusing on the user.

GENERAL HCI DESIGN PRINCIPLES

Several design principles and heuristics exist for guiding user interface designers. Accord-
ing to Nielsen and Mack (1994), there are 10 major heuristics to follow when creating a user
interface:

1. Visibility of system status: The interface should have some mechanism for showing
where users are in their task.

2. Match between system and the real world: The interface should provide interaction
techniques that mimic or model what is expected in the real world.

3. User control and freedom: The interface should support user exploration without fear
of breaking anything. Undo and redo should be supported.

4. Consistency and standards: The interface should use, for example, language or wording
that is consistent with users’ expectations. Follow style guides and platform standards.

5. Error prevention: The interface should help users avoid mistakes. Always ask them
when they initiate a destructive command.

6. Recognition rather than recall: The interface should support rapid and easy learning
of the system and support recognizing features and their associated actions rather
than relying on memorization of unique interface widgets.

7. Flexibility and efficiency of use: The interface should provide users with shortcuts or
other accelerators. This helps the interface get out of the way of expert users while
allowing novice users the opportunity to become more efficient.

8. Aesthetic and minimalist design: The interface should present only the necessary infor-
mation and no more. Extra visual elements can distract from the important information.

9. Help users recognize, diagnose, and recover from errors: Error messages should be
expressed in plain language (no codes), precisely indicate the problem, and con-
structively suggest a solution.

10. Help and documentation: Make sure the help and documentation is clearly available
in the interface.

These 10 guidelines or heuristics are generic and open. This is intentional so that they can
be applied across a large cross section of software systems. This generality can sometimes

298 « Software Engineering Design

Mall Calendar Documents Photos Reader Web more- jpsSa@uvawise.edu - 4§

vidl

C()\ 131C calendar Search my calendars | show|

Create event [\Quick add ~ Today EN K3 suiy 2011
Loy Print Refresh Day Week 7 Days Agenda

July 2011 Sun Mon Tue Wed Thu Fru_. . Sal

S MT WT F 8

3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30 I}

31

Other calendars

US Holidays

FIGURE 9.2
Example calendar user interface.

lead to ambiguity and confusion on the part of the developer. More specific, heuristics
can be useful when developing software for specific platforms or systems (Somervell and
McCrickard 2005). However, the point is that there are some simple, straightforward things
to consider when designing any user interface. More importantly, these 10 guidelines are
focused on users and strive to keep them in control of the system: the system serves the
user. Applying these rules in a specific application can help create an interface that users
will find both useful and usable. Consider a popular online calendar application as pre-
sented in Figure 9.2.

In this particular calendar application, creating an appointment relies mostly on direct
manipulation—directly clicking on the desired day, typing in a description, including
time, and hitting the return key. This action is analogous to writing that information on
a desk calendar or other paper calendar. It is exactly what users expect to be able to do
with a calendar. In addition, there is a button (“Create event”) that allows users to add
appointments by filling in a form: some users may prefer this method of entry, especially
for events that occur in the future, which would require navigation within the calendar to
enter through the direct manipulation route. A new appointment is shown immediately in
the day for which it is assigned.

Now consider the 10 guidelines in relation to this interface. In terms of system status this
interface shows an entire month (or week or day) of appointments in the expected monthly
format. A newly created appointment appears immediately within the day for which it

Human-Computer Interface Design « 299

occurs. Error conditions are displayed prominently in the top center of the display in red
text. In terms of matching the real world, it clearly mimics the desktop calendar and heavily
utilizes that metaphor. The form and layout closely resembles other calendar applications
so consistency and standards are followed. Users can really commit no errors in the soft-
ware, and any mistakes are easily corrected through undo or deletion capabilities. As a
GUI application, there are no commands to learn and remember from usage to usage, and
help is available through pop-up labels on hover. The design is minimal in that only the
necessary information is shown with extra functionality available in submenus. Overall,
this particular interface performs well with respect to Nielsen and Mack’s (1994) heuristics.

This high-level analysis of the calendar application serves to illustrate a good interface
and how a good interface will typically meet most of the general heuristics. Improvements
to an interface will often revolve around one of the 10 areas described by these guidelines.
However, these guidelines are just that: guidance. How does one go about starting the inter-
face design process? How do we get a prototype of the system?

HUMAN-COMPUTER INTERFACE DESIGN METHODS

HCI sits at the intersection of design, science, and engineering (McCrickard, Chewar, and
Somervell 2004). To create an effective interface, the designer must rely on information from
psychology, sociology, graphic design, human factors and ergonomics, computer science,
and mathematics (among a plethora of other specialty areas). This implies that designers
work on or with a multidisciplinary team. Each of the aforementioned areas contributes to
the design of the interface in some specific way—whether it be in leveraging the intricacies
of the human information systems (e.g., visual, audible, haptic) through color choice, font
choice, line width, and so forth or in leveraging the societal norms or customs of the target
user class through, for example, wording, ordering of information, or icon design.

Getting Started

Almost all design activities, regardless of discipline, start with some form of brainstorm-
ing activity. There is no specific structure required or followed; the designer simply starts
thinking about ways to solve a problem and then drawing or writing out descriptions of
that solution. Often at this stage in design, the only technologies needed are kindergarten
tools: pencils, paper, crayons, markers, scissors, tape. Some people prefer to work on a
chalkboard or whiteboard and take pictures of the drawings for record keeping. In any
case, the point is to capture ideas and thoughts on “paper” for later access.

It is interesting (but not surprising) to note that the majority of interfaces (electronic)
are rectangular. We use rectangular paper, rectangular calendars, rectangular screens, and
rectangular books. Humans like rectangles. Most of the interfaces you will design will be
contained in rectangles. This fact can be leveraged when creating an interface. Furthermore,
at least in North America, people read from left to right and from top to bottom. This is

300 « Software Engineering Design

taught from early childhood when parents read to their children and trace their finger
along with the words. Certainly by kindergarten, even before they know how to read, most
children are trained to look at “readable” objects and materials at the top left and proceed to
the right and down. This knowledge is used in interface design by placing prominent infor-
mation in the upper left corner of the interface. Take a moment to examine your favorite
program. Check out the interface and identify the type of information placed in the upper
left quadrant. Most programs will have some important functionality located in that area
of the interface. One notable exception is the Start menu in Windows operating systems
(but it is still on the left). This type of understanding of the human element can help the
interface designer create effective and usable interfaces.

Fidelity in Prototypes

Early design efforts generate low-fidelity prototypes of the system interface. Fidelity in this
sense means the level of sophistication or realism in the interface (Virzi, Sokolov, and Karis
1996). Certainly a drawing of an interface on paper, done in pencil, would require lots of
imagination on the part of end users or clients if they were to get a feel for the intent of
the interface. More realism is needed when communicating design ideas to customers;
perhaps screen shots or a simple presentation. Mostly working, high-fidelity prototypes
are required for summative evaluations (Hix and Hartson 1993). The idea is that there is
a spectrum of fidelity when it comes to designing prototypes. Low-fidelity prototypes are
useful in early design for communicating and eliciting requirements from the client and
end users. Medium-fidelity prototypes are useful for illustrating interaction sequences and
specific design choices. High-fidelity prototypes are required for effective end-user testing.
Each level of fidelity is useful to the designer and will likely be utilized during the interface
creation process.

Skill Development 9.2: Low-Fidelity User Interface Design

Using only paper and pencil, draw an interface for a ticket purchasing kiosk. The hard-
ware supports touch-screen interaction.

Low-fidelity prototypes are useful to the designer in the early stages for several reasons.
They cost very little. Pencil and paper and other similar materials are cheap. The time and
energy required to create a simple sketch of an interface are also negligible. Often, if the
ideas come during the initial requirements gathering meetings, designers can create mock-
ups on the spot to clarify ideas and get a better grasp of the customer’s wants and needs.
Low-fidelity prototypes can also be “thrown away” easily. Often designers simply crum-
ple up a piece of paper and “start over” with the design. This is much more difficult and
time-consuming when using higher-fidelity tools (e.g., commercial tools, integrated devel-
opment environments, presentation software). Figure 9.3 presents an example of a low-

Human-Computer Interface Design « 301

-

5,1;\.._| _]1._

|

|I ,.P"“'j
_l'?. i

-4

FIGURE 9.3
Low-fidelity prototype of a fictional document editor.

fidelity prototype of a fictional document editor, in which the major interface components
are illustrated without any real details.

After identifying requirements and getting initial feedback from customers on early pro-
totypes, designers must then work toward creating a more realistic prototype that can be
used for specific testing. Interface design tools with drag-and-drop support for widgets
like text boxes, labels, buttons, and other controls are highly useful for this phase. Most
popular programming languages have graphical development environments with support
for interface design. One popular example is Visual Studio, which has excellent support
for C# and Visual Basic. Using these types of tools, and others, the designer then creates a
more realistic prototype of the system, with either stubbed functionality or some “Wizard
of Oz”" approach (Carroll and Aaronson 1998). In the high-fidelity prototype of the system
all controls are functional and do what is expected of them so that it can be used for more
extensive testing purposes. It is during this phase of creation that guidelines like the afore-
mentioned heuristics can aid the designer in creating an interface that will be useful and
usable. Style guides, system compatibility issues, and other external constraints must be
followed and can impact the flexibility of the designer. Considerations such as these serve
as input to the design process, and the resulting interface should meet as many of these
constraints as possible.

Metaphors

Helping the end user learn and use a new interface requires thought and effort on the part
of the interface designer. One highly used technique is the incorporation of metaphors in

* The Wonderful Wizard of Oz is a children’s story by L. Frank Baum. In this story an all-powerful wizard turns out to be a
normal man operating some sophisticated machinery behind a curtain. The relevance here is that the designers or testers
“fake” the functionality for testing purposes.

302 « Software Engineering Design

the design. A metaphor is the application of a known, often real-world, object and its char-
acteristics to an electronic interface. A classic example is the desktop metaphor used in all
major operating system graphical shells (GUIs). Before computers became ubiquitous in
the workplace, people sat at desks where all of the tools needed in their work were available
within arm’s reach. This work environment and management style was “copied” in the cre-
ation of the virtual desktop. People now rely on their graphical user interface to access all
of the tools they need to get their work done. Learning this environment is straightforward
and relatively simple for those familiar with a physical desk.

Other similar metaphors abound in electronic interfaces. Consider e-mail, which consists
of a blend of two physical objects that are heavily used in interoffice communications: letters
and memos. Most e-mail composition programs provide an interface that includes text entry
areas for the recipient, copies, and subject—all requirements for most interoffice memos.
E-mail also supports both formal and informal letter writing and copies the idea of sending
a letter to someone. The e-mail-memo metaphor is readily understood by newcomers and
easily mastered by those who have never dealt with the real-world counterparts: an all-around
excellent use of a metaphor to aid the end user in learning and using a software system.

One must be mindful of overusing metaphors. While the benefits include ease of learn-
ing and ease of use, overapplication or too literal an application of a metaphor can limit
the designer and prevent improvements. Take the classic calculator. A handheld calculator
with basic functionality is simple and easy to use. Creating a calculator for use within an
operating system is a normal thing, and many users employ the software calculator for
various tasks. Figure 9.4 presents a simple software calculator interface.

i Calculator (=)

Calculator Edit View Help

Bksp CE Clr =
7 8 o +
4 3 6 X
1 2 3 -
0 = +

FIGURE 9.4
Simple software calculator.

Human-Computer Interface Design « 303

Notice that the software version looks much like a handheld calculator. This is good for
learning how the interface works and what is possible. A novice user can easily use the inter-
face to perform simple calculations. However, the interface is a literal copy of the real-world
interface and as such does not provide any extra features that might be expected in soft-
ware, including selectable history, multiple storage areas (variables), and visualizations
(like graphing or showing the equation that yielded the answer). In this case, the designers
took the metaphor too far and restricted the utility of the program. Unfortunately, there are
no hard-and-fast rules to tell when a designer has taken a metaphor “too far.” The only way
to discern this information is through beta testing or actual use. People will use a product
and indicate functionality they would like to see in the product. Good designers try their
best to anticipate that functionality, but that ability comes with experience.

Skill Development 9.3: Metaphors in User Interface Design

Describe three metaphors used on the popular social website Facebook (http:/www.
facebook.com).

Gestalt Principles

Another set of useful design guidance comes from perceptual psychology. Knowing how
the human brain processes information should be high on the list of things with which an
interface designer should be familiar. German psychologists described several principles
of perception in the 1920s. They used the term gestalt, which means “whole,” to illustrate
how the human brain recognizes and organizes information. Take a moment to examine
Figure 9.5. What do you see in the image on the left? Most people would describe it as a plus
sign. Very few, if any, would describe it as two symmetric right angles sharing a common
point. The image on the right shows the two right angles slightly separated for emphasis.
There are six major gestalt principles: proximity, similarity, closure, area, symmetry, and
continuity (Rosson and Carroll 2002). Proximity relies on the fact that objects arranged
close together are considered grouped together. Similarity simply means that objects that

FIGURE 9.5
Ilustration of continuity.

304 « Software Engineering Design

Printer
Name Deskjet-6500 - Properties...
Status Default printer
Type CUPS:Deskjet-6500
Location hilbert
Comment HP Deskjet 6500
Print to file
Print range Copies
* All pages Number of copies 1 :
Pages
o P 4 e 3 i Collate
Options... OK Cancel L\S Help

FIGURE 9.6
Common user interface for printer systems.

share visual characteristics (e.g., color, shape) will be considered as a group or as similar
in functionality. Closure is the idea that humans try to organize things into closed figures.
Area is similar to closure but with the extra emphasis on the fact that humans try to create
the figure with the smallest area. Symmetry refers to the fact that humans often treat sym-
metric elements as part of the same figure or group. Finally, continuity refers to the human
predisposition to see continuous contours or patterns.

Skill Development 9.4: Gestalt Principles in User Interface Design

Identify instances of the six gestalt principles in the interface presented in Figure 9.6.

Knowledge of the gestalt principles is useful in and of itself, but knowing how to utilize
and capitalize on them for effective interface design requires extensive practice. In addition
to the gestalt principles, there are some other useful design guidelines to consider. Consider
white space in interface designs. White space is the area in a graphical display with no
visual elements. White space becomes very important for helping the end user understand
the graphical elements in a display. For example, tabs are often used for alignment pur-
poses, and it is the extra white space between the columns in a tabbed display that allows
users to perceive the data as columns, thus allowing them to more readily understand the
presented information. Be generous with white space as it directly reinforces several of
the gestalt principles. Simultaneously, be very careful about superfluous design elements.
Anything extra in an interface that does not provide useful information has the potential
to detract from the utility of the interface (Carroll 1990). Consider the interface in the pre-
vious skill development. All of the vertical and horizontal lines can be removed from the
interface without detracting the utility or communication provided. Be careful about any

Human-Computer Interface Design « 305

graphical element. Whenever a graphical element is added to an interface, always ask the
question, “Is this necessary?”

Reusing Earlier Designs

Sometimes interface designers do not need to start from scratch. Instead, they have access
to similar products or have rough designs given to them. In these types of situations, inter-
face designers are likely to work with designs that do need heavy modification to meet the
unique needs of the new system. In such situations, designers need to rely on field studies
and other empirical testing to identify areas for improvement. In other words, reusing
an existing interface can sometimes reduce the design effort but will usually increase the
testing effort.

EVALUATION OF HCI QUALITY

Before systems are deployed, significant efforts must be made to ensure that user interfaces
are sufficiently complete, understandable, and efficient for providing users with systems
that exhibit high quality in terms of usability. IEEE (1990, p. 80) defines usability as

The ease with which a user can learn to operate, prepare inputs for, and interpret outputs of
a system or component.

Therefore, evaluation of the HCI quality is essential during the design process. Several
approaches can be taken when evaluating and minimizing the degree of complexity
involved when learning or using the system, including usability testing, analytic testing,
and empirical testing.

Usability Testing

At this point during the interface design process there should be some usable prototype of
the interface that can be used for testing purposes. It is beneficial to understand testing and
how to go about doing it. First, it should be noted that there are two classes of evaluation
(Scriven 1967):

o Formative
¢ Summative

Formative evaluation occurs within the design process and focuses on alternatives
and clarification. Summative evaluation occurs “after” the design process and focuses on
assessing the result. Formative evaluation should be heavily utilized throughout the inter-
face design process, iteratively improving the design. Summative evaluation should be

306 « Software Engineering Design

utilized when a solid version of the interface is completed. (Note: this does not mean after
the design is complete but rather when a version of the interface is considered ready for
testing.) An easy way to distinguish between formative and summative evaluation is that
formative evaluation is like the cook tasting the soup and summative evaluation is like the
customer tasting the soup.

There are two main methods of user interface testing: analytic and empiric (Scriven
1967). Each can be used for both formative and summative evaluations. Analytic testing
involves domain or usability experts analyzing an interface for design issues. Empirical
testing (also known as user testing) involves representative end users performing realistic
tasks with the interface. Each type of test reveals different information to the interface
designer, and ideally both should be utilized in a mediated evaluation (Scriven 1967).

Analytic Testing

Analytic testing is often used earlier in the development process than empirical testing.
The reason for this is that early in the interface design process there is usually no working
system with which to test end users. Instead there are low- or high-fidelity prototypes. These
prototypes can be examined by knowledgeable experts for compliance with, for example,
design guidelines, style guides, and compatibility guides. The key result of an analytic eval-
uation is a subjective opinion about the interface. Multiple specific tests fall under the ana-
lytic umbrella: usability inspections, heuristic evaluations, and cognitive walkthroughs.
Usability inspections are simply experts using the prototype in intended ways while ensur-
ing usability guidelines are followed. Often these types of inspections have checklists or
other guidelines (e.g., style guides) that are noted by evaluators. The end result is often a
list of usability issues identified and sometimes rated by severity (how much an impact the
issue might have on end users’ ability to complete their task). Cognitive walkthroughs are
an example of a usability inspection. In this specific type of inspection, experts are given
a script to work through in an interface while looking for violations of usability guidelines
and standards while assessing the interface for visual cues (Lewis, Polson, Wharton, and
Rieman 1990). The goal is to identify aspects of the interface that detract from users’ ability
to complete their tasks with the system and to identify missing information that could be
useful. The result of a cognitive walkthrough is a detailed listing of good and bad aspects
of interfaces with respect to specific tasks.

Heuristic evaluation is similar to usability inspection whereas it involves multiple experts
reviewing an interface with respect to a list of heuristics (see Nielsen’s heuristics described
earlier; Nielsen and Mack 1994). The difference is that the evaluator may be a representa-
tive stakeholder (e.g., developer, end user). Again, the result is a list of problems identified
in the interface. These can be rated by severity. The interesting thing to note about this
approach is the utility it brings. A few (3-5) experts can find about 80% of the usability
issues in an interface with this method (Nielsen and Molich 1990). However, heuristic
evaluation and all analytic methods suffer a major weakness: the results are mainly the
opinion (albeit educated) of evaluators. Whether an identified issue will negatively impact

Human-Computer Interface Design « 307

real users of the system is unknown without further testing. This type of data is subjective
and often holds less weight than objective data.

Empirical Testing

The opposite of subjective data is objective data, or empirical data. This type of data is
highly respected because it is hard to argue about—it is factual data about the system
of interest. Empirical testing provides this type of data to the designers. Unfortunately,
empirical testing is difficult and expensive. Why? It costs time and money to set up and
execute a good empirical study. Costs revolve around securing space, development time
(of the tests), hiring participants, data collection, analysis, and reporting. Nonetheless,
empirical testing is highly respected and should be utilized in the interface design process.

Many types of empirical testing can be used for interface evaluation: field studies, lab
based experiments, and user surveys. The recorded data can vary from observations of use
to survey responses to measured data from lab-based experiments. This data is objective,
and the data itself is unquestionable. The issue with empirical data is the interpretation of
the data and the validity of the setting from which the data came.

Field studies involve designers or design teams going into the field and observing the end
users in their current work environment. Observations of work practices, data flow, and
communication channels can provide insight for what to include in user interfaces. The
raw data from a field study is typically not as useful as the analysis of the data through cate-
gorization or content classification (higher-level issues that caused the observed behavior).
A major drawback of field studies is the cost involved. Significant time (and thus money)
would need to be invested to fully understand the existing work environment. On projects
with tight schedules, this type of evaluation may not be feasible. It is useful to note that
field studies are highly useful for formative evaluations.

Lab-based studies are highly useful in usability evaluation (whether formative or sum-
mative). Often the prohibitive cost of doing field work implies testing should be done in
a computer lab. In this situation the designers work with testers to create a testing envi-
ronment with which to isolate and study specific aspects of an interface. Participants are
brought into the lab environment and asked to perform the required tasks. In these settings,
excellent data on usage can be collected. The major issue with lab-based studies comes from
validity. Validity refers to how realistic the experiment happens to be—how well does the
testing situation model the real-world situation? Are the participants representative of the
real end users? Did the participants used in the test have more knowledge of this type of
system than the average user? Would the participants be more distracted in their normal
work environment? All of these questions and others take away from the utility of the data
that comes from a lab-based study. Controlling for validity is difficult and time-consuming.
Results should always be considered in light of any validity issues.

A specific type of lab-based study is the controlled experiment. If a specific design choice
needs to be validated through experimental means, one can design an experiment to objec-
tively determine the performance of competing options. Suppose a design team wants to
determine which color scheme to use for a system display. The choices have been narrowed

308 « Software Engineering Design

to black text on a white background or white text on a black background. Before determin-
ing the best approach, a criteria for evaluation needs to be in place. In other words, what
does “best approach” mean? Does it mean faster reading times, higher reading comprehen-
sion, or less eye strain? We could actually study all three with a single experiment. In this
situation, the read time, reading comprehension, and eye strain would be the dependent
variables. The values obtained from the test participants are dependent upon the color
scheme. This means that the color scheme is the independent variable, in this case with two
levels: black on white and white on black.

There are many ways to design the actual experimental setting for this test. We could use
a between-subjects design and have two separate sets of participants work with each level
of the independent variable. Or we could use a within-subjects design and have the same
groups of people read text with both color schemes. The latter choice would imply the need
for two different sets of text, so that a person who reads a passage in white on black would
not read the same passage in black on white but a different passage. We would need to
account for the passage used in a within-subjects test because reading one passage before
the other might influence the speed of reading or comprehension. We would also need to
vary the order of the presentation of the white-on-black, black-on-white conditions: half
of the participants would start with white on black first; the other half would start with
black on white first. In all cases, we need to be concerned with the number of participants
for our test. A good rule-of-thumb is 10 participants per condition (Scriven 1967). For
our experimental setup (two levels of the independent variable and two passages to read)
we would need 2 X 2 x 10 = 40 participants. It should be clear that a within-subjects test
requires more participants (if there are more conditions). Within-subjects tests are often
more highly regarded with respect to the findings. The reason is that individual variability
in the participants can be controlled for in a within-subjects test.

Skill Development 9.5: Designing Experiments for Empirical Testing

Design a between-subjects and a within-subjects experimental setup for determining
whether direct entry or a drop-down list would provide faster input times for dates
in a database form. In the direct-entry condition, invalid date formats are errors and
cost an extra 3 seconds to correct. Identify the dependent and independent variables.
Determine the number of participants required for each type of test (assume a minimal
of 10 participants per condition).

Another way to gather empirical data is through user surveys. These can be stand-alone
surveys or part of a lab-based experiment. The goal is to have end users comment on the
system and their experiences. This type of data can be useful in identifying high-level
usability issues as well as provide insight into how users will perform with the system.
Depending on the type of data, it can be analyzed using statistical methods for concrete

Human-Computer Interface Design o 309

evidence for specific design choices. Often, survey results are used for categorization of the
participants and aid in interpreting results.

CHAPTER SUMMARY

This chapter has provided high-level guidance for completing the human-computer
interface design phase within system design. The main focus is users. It is the duty of the
designer to keep users and their interests as the focus of the interface. The application
of design guidelines, perceptual psychology, and sound scientific method are all used to
provide and justify concrete interface designs that meet the needs of the users. It is on
the shoulders of the designer to make sure the system is going to be easy to use, easy to
learn, and enjoyable for the end user. Balancing these fundamental requirements with
the various system requirements and functional constraints is the core of the interface
designer’s challenge.

REVIEW QUESTIONS

. What is human-computer interface design?

. What are the steps in the HCI design phase?

. Why is the focus on the user so important to successful interface design?

. What is a metaphor with regards to interface design?

. What are the gestalt principles?

. Why is white space so important?

. What are the two major types of evaluations?

. What are the two major evaluation methods?

. Why are analytic methods typically cheaper and faster and empirical methods?

. What is the difference between a between-subjects design and a within-subjects design?

O 00 g O Ul B W N~

—
=]

CHAPTER EXERCISES

1. Using presentation software (e.g., PowerPoint, Impress), create a high-fidelity pro-
totype of the ticket purchasing kiosk described in Skill Development 7.2. Fake the
functionality by linking to different slides in your prototype.

2. Repeat Exercise 1 using a high-level graphical language (e.g., Visual Basic, Visual C#).

3. Analyze your favorite e-mail client with regards to Nielsen’s 10 heuristics. Create a
list of usability issues and rank them by severity.

310 « Software Engineering Design

4. Walk through the process of creating and sending an e-mail in your favorite e-mail
client. Identify gestalt principles that are in use in the system. Identify improvements
that could be made through the application of gestalt principles.

5. A common metaphor used for online shopping is the idea of a shopping cart. Thor-
oughly discuss the usage of this metaphor for your favorite online shopping system.
Focus on how the similarities to the real world enhance the experience and how the
differences detract from the experience.

6. Look up discount usability evaluation. Describe the process and identify whether it is
more useful for formative or summative evaluation.

REFERENCES

Carroll, J. M. The Nurnberg Funnell: Designing Minimalist Instruction for Practical Computer Skill. Cambridge,
MA: MIT Press, 1990.

Carroll, J. M., and P. Aaronson. “Learning by Doing with Simulated Intelligent Help.” Communications of the
Association for Computing Machinery, 1998: 1064-1079.

Hix, D., and H. R. Hartson. Developing User Interfaces: Ensuring Usability Through Product ¢ Process.
New York: John Wiley & Sons, 1993.

IEEE. “IEEE Standard Glossary of Software Engineering Terminology.” 1990. http://ieeexplore.icee.org/xpl/
freeabs_all.jsp?arnumber=159342.

Lewis, C., P. Polson, C. Wharton, and J. Rieman. “Testing a Walkthrough Methodology for Theory-Based Design
of Walk-Up-and-Use Interfaces.” Chi *90 Proceedings, 1990, 235-242.

McCrickard, D. S., C. M. Chewar, and J. Somervell. “Design, Science, and Engineering Topics? Teaching HCI
with a Unified Method.” Technical Symposium on Computer Science Education (SigCSE’04). Norfolk, VA,
2004, 31-35.

Nielsen, J., and R. L. Mack. Usability Inspection Methods. New York: John Wiley & Sons, 1994.

Nielsen, J., and R. Molich. “Heuristic Evaluation of User Interfaces” Proc. ACM CHI’90 Conference, Seattle,
1990, 249-256.

Rosson, M. B, and J. M. Carroll. Usability Engineering: Scenario-Based Development of Human-Computer
Interaction. San Franciso: Morgan Kaufmann, 2002.

Scriven, M. The Methodology of Evaluation in Perspectives of Curriculum Evaluation. Chicago, IL: Rand McNally,
1967.

Somervell, ., and D. S. McCrickard. “Better Discount Evaluation: Illustrating How Critical Parameters Support
Heuristic Creation.” Interacting with Computers: Special Issue on Social Impact of Emerging Technologies
17, no. 5 (September 2005): 592-612.

Virzi, R. A., J. L. Sokolov, and D. Karis. “Usability Problem Identification Using both Low- and High-Fidelity
Prototypes.” Proceedings of ACM CHI ’96, British Columbia, Canada, 1996, 236-243.

10

Software Design Management,
Leadership, and Ethics

Luis Daniel Otero
Florida Institute of Technology

CHAPTER OBJECTIVES

« Understand the definition and importance of software design man-
agement

o Describe various techniques to manage the software design phase

« Describe leadership in the context of design management

« Describe relevant ethics items from the software engineering code of
ethics

CONCEPTUAL OVERVIEW

Software design is an essential phase of the software engineering life cycle.
Conceptually, design is the process of transforming functional and non-
functional requirements into models that describe a technical solution. This
transformation process can be viewed as a complex decision problem that
must be managed to ensure an effective use of resources to deliver quality
products that meet requirements. It is regarded as a decision problem since
there are many ways to design a software system, and software engineers
must make design decisions to achieve the required goals of the software
system in the most effective manner. Obviously, quality must be considered
at every step of the design phase. The idea is that proper design efforts are
expected to minimize the complexity of subsequent phases in the life cycle as
well as the impact of requirements changes on the overall cost and schedule.

The objective of this chapter is to describe three major elements that are
critical for the success of any major design project: management, leadership,
and ethics. It is not intended to be a complete tutorial on any of these three

311

312 « Software Engineering Design

elements. Instead, the chapter develops a design management framework that describes
important concepts related to each element with the hope of facilitating the successful man-
agement of this complex phase. For this purpose, the chapter begins by describing the soft-
ware design phase as a complex task that must be managed to achieve acceptable quality
levels. Various project management techniques to monitor and control the resources that are
responsible for the completion of design tasks are presented. The chapter then describes the
relationship between management and leadership and highlights several leadership traits
that are important for successful results. Finally, the chapter presents various ethic items
from the Software Engineering Code of Ethics that are relevant to software design projects.

WHAT IS SOFTWARE DESIGN MANAGEMENT?

Griffin (2010, p. 5) defines management as “a set of activities—including planning and deci-
sion making, organizing, leading, and controlling—directed at an organization’s resources
(i.e. human, financial, physical, and information), with the aim of achieving organizational
goals in an efficient and effective manner.” Management plays a big role in software engi-
neering projects. In the design phase, management refers to a set of activities required to
efficiently create quality design artifacts, within schedule and budget constraints. This def-
inition encompasses a broad set of activities that are particular to specific organizations.
However, at the core of every organization’s management activities, quality is a focal point.

WHY STUDY DESIGN MANAGEMENT?

In large-scale software projects, software design management is essential to plan, organize,
staff, track, and lead the activities required to carry out successfully the software architecture
and detailed design steps. Key to the success of software design management is an effective
use of resources to achieve the various goals set forth for each main component in the design
phase (i.e., software architecture, detailed design, and documentation). Therefore, software
design management is needed to control/monitor the processes and resources necessary for
completing quality design artifacts according to organizational goals.

THE CONCEPT OF QUALITY

Quality is a term that can be loosely defined as a performance measure for a service pro-
vided or a product produced, and it is relative to a particular stakeholder. For example,
a personal website can be classified as high quality by the programmer that developed it
and as low quality by user clients. That is, two stakeholders of the software system have

Software Design Management, Leadership, and Ethics « 313

different opinions regarding the quality of the product produced. Why? Because both of
these stakeholders have different parameters by which they measure quality. For example,
the programmer may perceive quality in terms of being able to use appropriate colors and
organize the website to run on a particular web browser. On the other hand, a client using
a different web browser may not see the website’s organization and colors as intended, thus
perceiving the website’s quality as poor. Similarly, the quality of a software design can
be assessed in various ways. However, from a management perspective, quality of soft-
ware design tends to be evaluated in terms of cost and scheduling. Therefore, this chapter
focuses on various project management techniques that can be used to keep the design
artifacts within cost and schedule thresholds.

DESIGN MANAGEMENT FRAMEWORK

To efficiently and effectively manage the software design activities of a project, it is beneficial
to view the design phase as a project itself. The managerial benefit of this approach is that
project management techniques can be directly applied to the design phase. For example, the
life cycle of the design phase can be represented with three stages similar to Figure 10.1. This
life cycle represents a typical project pattern where contributions to a project’s completion
are relatively small during the initial and termination phases and significantly high during
the implementation phase. Defining a life cycle structure for a project helps to decompose
the project into its appropriate stages, where each stage can be managed individually.

There are two main objectives associated with the initial stage. The first objective is to
achieve a clear understanding of the tasks to be accomplished and the resources that are nec-
essary to successfully complete the tasks. The second main objective is to develop a plan to
complete the project’s tasks within schedule and budget constraints. Thus, the initial phase is

NS
S
N /

\‘9 /

—_
(=
(=)

Project Completion (%)

A
]
I
I
1
]
I
I
1
I
I
1
I
I
1
1
'
1
1
'
1
]
1
I
)

Time

FIGURE 10.1
Project life cycle.

314 « Software Engineering Design

characterized by planning activities. Although some of the artifacts resulting from this phase
(e.g., schedule) may be deliverables to clients, this phase is not viewed as contributing signifi-
cantly to the percentage project completion. The implementation stage, on the other hand,
is where most of the effort is employed and where most of the design project deliverables
are achieved, including completed design documents. Therefore, the percent project comple-
tion is the highest during this stage. In the termination stage, key activities involve verifica-
tion that everything is in place for a smooth transition into the code construction phase.
Activities include, for example, making sure that the latest versions of the design documents
are securely stored according to configuration management procedures, updating schedule
and cost current values, reevaluating schedule and budget plans based on the resulting per-
formance measures of the design phase, and communicating results to upper management.
The design documents generated in this stage are critical for the robustness and maintain-
ability of the software designed. However, the relative impact of this stage to project comple-
tion is not viewed as significant as that of the implementation phase. The key is that each of
these phases must be individually managed to ensure that all phases meet acceptable levels of
quality and performance measures. For example, an important outcome of the planning stage
is a clear understanding of the tasks to be accomplished and the resources that are neces-
sary to successfully complete the tasks. Various project management techniques exist to help
achieve this outcome. Therefore, it is important to know how to apply these project manage-
ment techniques to your particular design project, and go through a peer-review process” to
ensure that the objectives of the planning stage are achieved. Performance measures in the
planning stage are thoroughness (everything is considered), completeness (complete defini-
tion of plans), and accuracy of estimates. In the execution/implementation stage, quality is a
function of a series of technical attributes of software designs. Managing during this stage is
mainly a monitoring approach to make sure that the plan is being followed and to take cor-
rective actions if necessary. Important factors that affect the effectiveness of managing these
phases are leadership and good ethical conduct. Therefore, a design management framework
composed of the following four main areas is proposed:

 Planning
 Execution/implementation
o Termination

o Leadership and ethics

PLANNING DESIGN EFFORTS

The planning stage is critical to the success of any major project. In a holistic view, plan-
ning exists to lay out a strong foundation for a successful project by clearly specifying the

* Peer reviews must be conducted throughout these stages to minimize the propagation of errors to subsequent stages and
apply corrective actions.

Software Design Management, Leadership, and Ethics « 315

tasks that must be completed, resources in terms of personnel skills required to complete
each task and any hardware and software required, the durations of tasks, and the specific
points within the project’s life cycle phases where resources will be needed. Basically, plan-
ning establishes the directions to follow to complete the project and improve its probability
of success. It is intended to facilitate future project accomplishments. The key functions in
the project planning stage are scoping and organizing.

Scoping

Project scoping is the first key function of the planning stage. It involves two main activities:
identify the tasks and develop the budget. The idea is to follow the divide and conquer para-
digm to utilize a mechanism for identifying lower-level assignable activities that need to be
completed. Then, expected costs for each activity are estimated to develop the budget. Two
commonly used techniques for project scoping are the work breakdown function (WBS)
and budgeting.

Work Breakdown Structure

In the project management point of view, a project begins as a statement of work (SOW),
which mainly consists as the set of main objectives to be achieved. The SOW is decomposed
into tasks where these tasks are decomposed into subtasks and subtasks into work packages.
A management technique to represent, either graphically or in list format, a project modu-
larized into task activities is called WBS. Also known as hierarchical planning, the WBS is
a simple but powerful technique that helps to plan, clearly define, and organize the activi-
ties related to reach specific milestones and complete a project. Milestones are defined
as specific events to be reached at specific points in time. For example, obtaining budget
and schedule approvals for a project are typically considered important project milestones.
Given that the major artifacts in the design phase are the main components of the design
process, these are considered the main milestones. That is, the completion of the architec-
ture design, detailed design, and documentation constitute the main project milestones of
a design project. Therefore, the objective of a WBS in the design phase is to establish the
work elements for each of these major milestones.

Table 10.1 shows an example of a WBS for the design of a software application. This
figure shows the managerial levels for each component. The top level is the design project
itself. This level represents the overall objective to be achieved, which is to successfully
complete the design phase. Then, this top level is decomposed into the three main mile-
stones of the design phase, which are the development of architectural and detailed
designs, and the completion of the design document. These tasks are direct sublevels of the
design project; therefore they are labeled 1.1, 1.2, and 1.3. Each task is then decomposed
into appropriate subtasks. For the architectural design task, two subtasks were identified:
evaluation of alternative designs and selection of the final architectural design. Since these
are sublevels of the architectural design task, they are labeled 1.1.1 and 1.1.2. Each of these
subtasks is decomposed into appropriate work packages. For example, the evaluation of

316 « Software Engineering Design

TABLE 10.1

Example of a WBS for a Design Project

Outline Number Task Name

1 Design project

1.1 Architectural design

1.1.1 Evaluate alternative designs

1.1.1.1 Prioritize objectives

1.1.1.2 Formal review of evaluations

1.1.2 Select architectural design

1.1.2.1 Make initial selection

1.1.2.2 Formal review to select final design
1.2 Detailed design

1.2.1 Evaluate alternatives

1.2.2 Select among alternatives

1.3 Documentation

1.3.1 Write architectural design documentation
1.3.2 Formal review (architecture design)
1.3.3 Final architectural design document
1.34 Write detailed design documentation
1.3.5 Formal review (detailed design)
1.3.6 Final architectural design document

alternative architecture designs was decomposed into prioritizing objectives and conduct-
ing formal evaluation peer reviews. Consequently, these two work packages were labeled as
the four-level activities 1.1.1.1 and 1.1.1.2.

Evaluating the usefulness of a WBS is often more a matter of subjective assessments
than not. We can define three criteria for this evaluation. The first criterion is called
scope accuracy. That is, we need to agree that the WBS serves its overall objective of being
a breakdown of the project into tasks, and nothing else. A WBS does not contain informa-
tion regarding tasks’ relationships such as task precedence or task durations, and it does
not include personnel skills required for the completion of tasks. Instead, each element of
a WBS represents an activity that consumes resources’ time and effort. This brings us to
the second criteria, completeness. The purpose of this evaluation criterion is to ensure that
the WBS includes the complete set of tasks necessary to complete the project. The third
criterion is level of detail. This criterion evaluates if the WBS breaks down the project’s
tasks into appropriate levels such that it facilitates the estimation of effort for each task.

Budgeting

Budgeting is the process of estimating the cost of a project. It is basically a forecasting
problem, since cost is a function of various parameters that are uncertain, such as the
number of resources required throughout the project, their cost, hardware and software
equipment, inflation changes, and requirement changes. The accuracy of a budget is a
function of the uncertainty of these individual cost parameters. For example, a budget for

Software Design Management, Leadership, and Ethics « 317

the construction of a house is expected to be more accurate than the budget for develop-
ing a complex software application. For the project of constructing a house, planners often
have a very good idea of the resources that are needed, cost of permits, and so forth. For
the software project, it becomes a more challenging task due to the level of uncertainty in
key elements such as the number of software lines of code that it would take to develop the
application, the number of software engineers required, and unknown learning curves for
newer technology, to name a few. Compared with the house construction project, the typi-
cal error size for the estimation of cost parameters in software projects is much higher. Due
to these uncertainties, monitoring and controlling activities must be enforced throughout
the course of the project to determine any deviations from the plan (i.e., budget), and study
the causes of these deviations (monitoring and control mechanisms will be discussed later
in the chapter). As such, the budget serves as a baseline to compare differences between
actual and estimated costs at any point in the life of a project.

Conceptually, a common strategy to develop a budget is to simply cost each element in
the WBS. To accomplish this, elements are associated with direct and indirect costs. Direct
costs are those that can be directly tied to the development of the design. The most often
used direct costs are labor and equipment (i.e., hardware and software equipment). Indirect
costs, on the other hand, include costs such as fringe benefits and administrative expenses.

One of the most significant and hard-to-estimate direct costs for each task is the cost of
the staff that will be directly working on the completion of the task. The level of difficulty
in developing accurate cost estimates related to task durations is a function of the complex-
ity of the design project itself. Given that software projects are typically custom-made solu-
tions to particular problems, tasks are considered nonrepetitive and often involve learning
rates. This is particularly true for tasks that involve new technologies or the use of skills
that the staff is unfamiliar with. Therefore, it is important to account for learning rates in
the budgeting process.

It is important to understand that developing accurate budgets for design projects is often
very difficult due to the complexity of the projects. Data from previous similar projects, as
well as input from experienced personnel, are used as resources to prepare budgets. After the
budget for a project is created and approved, it becomes more of a control mechanism for man-
agers because it establishes the cost threshold for the entire project.

Organizing

Organizing is the second key function of the planning stage. It involves two main activi-
ties: responsibility assignments and scheduling. That is, after identifying and organizing
the tasks in the scoping function with the WBS, the organizing function conducts task
assignments, establishes task durations, and identifies any predecessors” for each task. Task
durations are critical because they are an integral part of the monitoring and controlling
mechanisms in the implementation stage. The next subsections describe various project
management tools that are applicable for the organizing function.

* A predecessor is a task that must be completed before another task can begin.

318 « Software Engineering Design

Linear Responsibility Chart

An important outcome of the planning stage is to have a clear understanding of the roles
that each staff member plays in the process of completing each element of the WBS. This can
be viewed as a plan for task assignments. The goal here is to clearly identify the staff mem-
bers that will be mainly responsible for each task and those that will serve as reviewers or
support the task in any way. A project management tool that allows such outcome is called
a linear responsibility chart (LRC), which is a tabular representation of task assignments.

Table 10.2 shows an example of an LRC for a particular design project. This table clearly
shows the staff members that are mainly responsible for each of the tasks and those that
will be supporting the tasks in any way or acting as reviewers. Other than clearly establish-
ing the responsibilities of each team member, having a clear understanding of task assign-
ments is important for scheduling purposes. For example, finding skilled personnel to act
as reviewers for a particular artifact (e.g., detailed design) later in the project’s life cycle
can become a challenging task because employees get regularly reassigned to new tasks.
Therefore, it is beneficial to establish their roles with the design project early in the plan-
ning stage to minimize the probability of not having adequate reviewers and the chance of
overrunning the schedule or compromising quality standards.

Scheduling with Gantt Charts and Network Diagrams

After task assignments, a key activity in the planning stage is scheduling. A basic function of
the scheduling process is to determine task relationships in order to convert the WBS into an
operating timetable. Scheduling helps to identify the critical project activities that cannot be
delayed without delaying the overall project duration as well as those that will not affect the
overall project duration if delayed. Furthermore, scheduling allows tasks to be ordered so
that, for each task, preceding and subsequent tasks are easily identified.

Various project management techniques are used in scheduling. Two of the most common
ones are Gantt charts and network diagrams. They are basically graphical representations of
the logical flow between tasks (i.e., activities) and their durations. The Gantt chart technique is
very simple to follow. Because of its simplicity, this approach is often used to show schedule and
progress as well as to serve as a control and monitoring mechanism. The three basic param-
eters needed for a Gantt chart are tasks, their durations, and their predecessors and successors.
These parameters are used to develop a graph that depicts the durations of tasks and their rela-
tionship. For example, consider a snapshot of a Gantt chart presented in Figure 10.2 from the
Microsoft Project software package. The left-hand side of this figure shows the list of tasks from
a WBS with expected duration, start date, and finish date. It also shows any predecessor for
each task. For example, the predecessor to evaluate detailed design alternatives (WBS #1.2.1)
is to have selected a final architectural design (WBS #1.1.2.2). On the right-hand side, we can
see the actual Gantt chart showing predecessors of tasks and their durations. We can see, for
example, that the documentation for the architectural design can be started as soon as the
architectural design passes a formal review and the detailed design is ready to begin.

Software Design Management, Leadership, and Ethics « 319

TABLE 10.2
Example of a Linear Responsibility Chart
Outline # Task Name Staff 1 Staff 2 Staff 3 Staff 4 Staff 5
1 Design project
1.1 Architectural design 1 2 3
1.1.1 Evaluate alternative designs 1 2
1.1.1.1 Prioritize objectives 1 2
1.1.1.2 Formal review of evaluations 1 3 3
1.1.2 Select architectural design 1
1.1.2.1 Make initial selection 1
1.1.2.2 Formal review to select final design 1 2 3
1.2 Detailed design 1
1.2.1 Evaluate alternatives 1
11.2.2 Select among alternatives 1 3
1.3 Documentation
1.3.1 Write architectural design documentation 1 2
1.3.2 Formal review (architecture design) 1 3 3
1.33 Final architectural design document 1 3
1.34 Write detailed design documentation 2 1
1.3.5 Formal review (detailed design) 2 1
1.3.6 Final detailed design document 3 1
Legend:
1 = Primary responsibility
2 = Support development role
3 = Review role
Outing # ,, | Task Name - Duraton | Stat . Fish " [September 2011 [Octaber 2011
7 [0 [13][16[19[22[25[28[31[3 [6 [9 [12]15 18|21 [24[27[30]3 [6 [9 [12]15
11 - Design Project 50 days? Mon 8811 Fri 1011411 = =
z 11 = Architectural Design 7days? Mon 8811 Tue 81611 P—
ERRAR R - Evaluate Alternative Designs 5days Mon 8811 Fri 8211 p—
RN prorzz Opectres s umsmAl Weasion
1112 Formal Review of Evaluations 2days Thusnui Frignzit
6 112 - Select Architectural Design 2days? Mon 8/1511
71121 Selection 1day? Mon8M1511 M 5
& 1122 Formal Review to Select Final Design 1 ja:’ Tue 8/18/11 7 u%-
3 12 - Detailed Design 25 days Wed B17H1 =]
10 121 Evaluate Alternatives 15days Wed 8/1711 8 N
1M1 Select Among Allernatives 10 jn:s Wed 9711 10 m
2 = Documentation 43 days Wed 8/17/11 .
Write Architectural Design Documentation 10 days. 1 8 [\.é
Formal Review {Architecture Design 2 days 1 13
Final Architectural Design Dm:um:gm 5 jn:s 1 1 h
Write Detailed Design Documentation 10 days. 1 m"
Formal Review (Detailed Design} 3days. 1 18
18 1 Final Architectural Design Document Sdays Mon 10/10/11 Fri10M14/11 7 e |

FIGURE 10.2
Snapshot of Gantt chart from Microsoft project.

Similar to Gantt charts, network diagrams are also graphical representations of logi-
cal flow among tasks, describe task durations, and need the same three basic parameters:
tasks, their durations, and their predecessors and successors. Moreover, network diagrams
are used to show additional important information such as critical paths, earliest and latest
completion times, and slack times. We will use information from the WBS from Table 10.1 to
explain the activity-on-node (AON) network diagram technique. First, we need estimates
for task durations. Estimating accurate task durations is often a very complex endeavor.
One common approach is to estimate minimum, maximum, and most likely duration

320 o Software Engineering Design

TABLE 10.3
Task Durations for the Three-Level Tasks Described in the WBS
Time (Days)
Minimum Most Likely Maximum Immediate Expected Variance

Outline # (a) (m) (b) Predecessors Time (ET) (0?)
1.1.1 3 5 13 — 6 2.78
1.1.2 1 2 9 1.1.1 3 1.78
1.2.1 8 15 22 1.1.2 15 5.44
1.2.2 5 10 21 1.2.1 11 7.11
1.3.1 5 10 21 1.1.2 11 7.11
1.3.2 1 9 1.3.1 3 1.78
1.3.3 3 13 1.3.2 6 2.78
1.3.4 5 10 21 1.2.2;1.3.3 11 7.11
1.3.5 1 9 1.34 3 1.78
1.3.6 3 5 13 1.3.5 6 2.78

times. Table 10.3 gives an example of task durations for the three-level tasks described in
the WBS. For each task, this table shows an estimated minimum duration, a, a most likely
duration, m, and a maximum duration, b. These three parameters are used to calculate
the expected time, ET, of each task. ET durations are calculated using the beta distribu-
tion” with Equation (10.1) because of its simplicity and flexibility. A key benefit for having
three estimates for task durations is that we can use them to develop variance calculations,
which can then be used to estimate the probability of completing the project within a spe-
cific time. The variance of the duration of a task is calculated using Equation (10.2).

Expected Time = a+46m+b (10.1)

, b-a ’
Variance = o (10.2)

Figure 10.3a shows the resulting network diagram from the information described in
Table 10.3. Notice the inclusion of start and end nodes. These two extra nodes are included
to make the network easier to follow. The network diagram clearly shows the predecessors
for each.

After estimating task durations and variances, the next step is to calculate the critical
path. A path is any combination of nodes from the start node to the last node. For example,
our network diagram shows the following two paths:

o Path 1: (1.1.1) - (1.1.2) - (1.2.1) - (1.2.2) - (1.3.4) - (1.3.5) - (1.3.6)
o Path2:(1.1.1) - (1.1.2) - (1.3.1) - (1.3.2) - (1.3.3) - (1.3.4) - (1.3.5) - (1.3.6)

Using the expected times from Table 10.3, the expected duration of the first path is
55 days. The expected duration of the second path is 46 days. The critical path is the one with

* For a refresher on elementary statistics, please refer to books such as Pelosi and Sandifer (2003).

Software Design Management, Leadership, and Ethics « 321

Start 111 112 1.2.1 1.2.2
A A 4
131 | > 132 || 133 |»{ 1.34 |-»| 1.35 |-»| 1.3.6 |—»| End
(@)
0 0 6 6 9 9 2424 35 ES EF
Start 111 112 1.2.1 1.2.2
0 0 6 6 9 9 2424 35 LS LF
9 20 20 2323 2935 W46 46 49 49 5555 55
131 [132 |>{ 1.33 —>{ 1.34 {=»{ 1.35 {=p| 1.3.6 | End
15 2623 2929 3535 46 46 49 49 5555 55
(b)
FIGURE 10.3
AON network diagram.

the longest duration; hence, the critical path for this problem is Path 1. The critical path is
shown in Figure 10.3b with heavy lines. Identifying the critical path of a project is important
because it pinpoints the activities that cannot be delayed without delaying the entire project.
That is, if any of the activities along the critical path get delayed, the entire project will be
delayed. Identifying the critical path also marks the activities that can be delayed without
affecting the project duration. These activities are the ones outside of the critical path.

After calculating the critical path, the next step is to calculate earliest and latest times
for activities to start and finish. That is, we need to calculate the earliest time that we can
begin each activity and the earliest time that the activity can be completed. We denote
these terms as earliest start (ES) and earliest finish (EF) times. Similarly, we calculate the
latest time that we can begin each activity and the latest time that the activity can be com-
pleted. We denote these terms as latest start (LS) and latest finish (LF) times. The difference
between the LS and ES of an activity is called the slack time for the activity. Because activi-
ties along the critical path cannot be delayed without delaying the entire project’s duration,
only noncritical path activities can have slack times.

To calculate earliest times, we move from the start node to the other nodes. Logically,
the first activity (i.e., node 1.1.1) begins at time 0. Therefore, the ES for activity 1.1.1 is 0,
and its EF time is its expected time duration (6 days). Any immediate subsequent activity
can start as early as activity 1.1.1 ends. Therefore, the ES of activity 1.1.2 is 6 days, and its
EF is 9 days, which is the sum of its ES and expected time duration. Similarly, the ES of
activity 1.3.1 is 9 days, and its EF is 20 days. In cases where an activity has more than one
predecessor, the largest EF time of the predecessors becomes the ES time of the activity.
For example, activity 1.3.4 has two predecessors: 1.2.2 (with an EF time of 35 days) and
1.3.3 (with an EF time of 29 days). Since activity 1.3.4 can be started only when both of its
predecessors are complete, its earliest possible start time is 35 days.

322 « Software Engineering Design

To calculate latest times, we move from the last node to the start node. The LF time for
activities in the critical path is the same as their EF times. Similarly, the LS time for critical
activities is the same as their ES. For noncritical activities such as 1.3.3, this is not the case.
If this activity finishes at its EF time of 29 days, activity 1.3.4 (i.e., its successor) will still
be unable to start because it needs to wait for activity 1.2.2 to finish at day 35. Therefore,
activity 1.3.3 can actually finish as late as day 35 and not affect the critical path duration
of the project. Consequently, the LF time for activity 1.3.3 is 35 days, and its LS time is
29 days, which is its LF minus its expected time duration of 6 days. Activity 1.3.2 can finish
as late as the LF time of its successor 1.3.3. Therefore, its LF time is 29 days, and its LS time
is 26 days. When the earliest and latest times for each activity are completed, it can be
easily seen that only the noncritical activities (i.e., 1.3.1, 1.3.2, and 1.3.3) have slack times.
The total allowable slack time for these activities is 6 days. This means that, for example,
if a slack time of 5 days is used in activity 1.3.1, then only one of the remaining noncritical
activities can be delayed by 1 day. If, for example, a slack time of 6 days is used in activity
1.3.1, then the network will have two critical paths. This means that in this case noncritical
activities 1.3.2 and 1.3.3 will become critical activities (i.e., no slack times).

Probability of Time to Completion

In our network diagram example from the previous section, expected task durations were
calculated based on estimates of minimum, average, and maximum durations using the
beta distribution. The other obvious option is to overlook these three parameters and esti-
mate a single average task duration instead. This option tends to be troublesome for decision
makers since it does not explicitly consider a range of possibilities (e.g., max/min values), and
accurate estimates of task durations with a single parameter seem unlikely. Consequently,
setting values for these three parameters—instead of one estimate—alleviates the estima-
tion process for decision makers. Another benefit from using these three parameters is that
we can use them to develop variance calculations and then use the variances to estimate the
probability of completing the project within a specific time.

To estimate the probability of completing a project by a particular time period, we use
the cumulative standard normal distribution to obtain Z-values.” The standard normal dis-
tribution is a normal distribution with a mean equal to zero and a standard deviation equal
to one. A Z-value represents the number of standard deviations from the mean (either to
the right or to the left of the mean) of the standard normal distribution.

The critical path contains the activities that establish the duration of a project. We basi-
cally use the expected completion times of the critical activities and their variances to
determine the probability of completing the critical path activities by a deadline. Before
we continue, it is worth mentioning that there is an assumption that must be made when
using the standard normal distribution to make our probability estimates. The assump-
tion is that the durations of each activity in the critical path are statistically independent
of each other. In other words, they must be independent random variables. This allows us

* Again, for a refresher on elementary statistics, please refer to books such as Pelosi and Sandifer (2003).

Software Design Management, Leadership, and Ethics « 323

to invoke the central limit theorem (CLT) to find the mean and standard deviation of the
project duration, which is basically the sum of each activity in the critical path. The CLT
says that the sum of independent and identically distributed (iid) random variables forms a
normal distribution as the number of random variables increases. In our case, we treat the
project duration as the sum of the critical path activities (i.e., iid random variables); there-
fore, by virtue of the CLT, we can assume that the project duration is normally distributed.
Armed with the CLT, we can use the standard normal distribution to make estimates about
the probability of completing the project by a certain time.

First, we need to transform (sometimes called “normalize”) the estimated project dura-
tion time into a Z-value using Equation 10.3

z- D-EPT (10.3)
\ G%PT
where
Z = the number of standard deviations of a standard normal distribution
D = the desired completion time (usually in days) of a project

EPT = expected project completion time (this is the critical path duration)
the variance of the critical path

2
Okpr

Regarding the variance parameter (and refreshing some statistics concepts), if the
random variables in a set are independent of each other, then the sum of the variances
of the individual random variables equals the variance of the entire set. Since we assume
that the critical path activities are independent of each other, the sum of their variances
corresponds to the variance of the expected project duration.

After calculating the Z-value, we find the probability of completing the project by a certain
time using a cumulative normal distribution table similar to the one found in Table 10.4.
In this table we can find the probability associated with a Z-value. For example, assume
that a design project has an expected critical path duration of 75 days, with a critical path
variance of 36 days. We would like to know the probability of completing the project in
85 days. Using Equation (10.3), we calculate a Z-value of 1.67. Then, we go to Table 10.4 and
find the probability to be 0.9525 (go down the left column until 1.6, then across to the right
until column 0.07). This means that there is a 95.25 percent probability of finishing the
design project in 85 days, given the variance in the expected project duration time.

Skill Development 10.1: Negative Z-Value

Assume that a design project has an expected critical path duration of 75 days, with a
critical path variance of 36 days. We would like to know the probability of completing
the project in 65 days. As you will see, the resulting Z-value will be a negative number.
How do you get its associated probability from Table 10.4, which gives you only positive
Z-values? Hint: Remember that the standard normal distribution has a symmetrical
shape around the mean and that its area under the entire bell-shape curve equals 1.

324 « Software Engineering Design

TABLE 10.4

Probabilities of the Cumulative Standard Normal Distribution

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5754
0.2 05793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7258 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7518 0.7549
0.7 0.7580 0.7612 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7996 0.8023 0.8051 0.8079 0.8106 0.8133
09 08159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 09066 09082 09099 09115 09131 0.9147 09162 09177
1.4 09192 0.9207 09222 09236 09251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 09332 09345 0.9357 09370 09382 09394 0.9406 0.9418 0.9430 0.9441
1.6 09452 09463 09474 09485 09495 09505 0.9515 0.9525 0.9535 0.9545
1.7 09554 0.9564 09573 09582 09591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 09641 0.9649 0.9656 09664 0.9671 0.9678 0.9686 0.9693 0.9700 0.9706
1.9 09713 09719 09726 09732 09738 09744 09750 0.9756 0.9762 0.9767
20 09773 09778 09783 09788 09793 09798 0.9803 0.9808 0.9812 0.9817
2.1 09821 09826 0.9830 09834 09838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 09861 09865 09868 09871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 09893 09896 09898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 09918 09920 09922 09925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
25 09938 09940 09941 09943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 09953 09955 09956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 09965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 09974 09975 09976 09977 0.9977 0.9978 0.9979 0.9980 0.9980 0.9981
29 09981 09982 09983 09983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 09987 09987 09987 09988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 09990 09991 09991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
32 09993 09993 09994 09994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
33 09995 09995 09996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
34 09997 09997 09997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 0.9998
3.5 09998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

Establish Change Control Policy

Managing the design of software systems is often a very complex endeavor, especially when
changes to the design occur after the design has successfully gone through peer reviews.
Even a small design change can result in system failures if not managed appropriately. To
avoid major problems later in the project, it is critical that a formal change control process
gets adopted early in the planning phase. A change control process also serves to ensure the

Software Design Management, Leadership, and Ethics « 325

Internal Analysis | Assess Complexity
and Evaluation "] of Integration
v v
Cu§tomer e Hequest > Priori‘ty Update Docgments
Requirements Evaluations (e.g., design)
A ¢
. Update Budget &
Higher Level Schedule, and Staff
Management .
Requirements
\ 4
Get Customer
Approval of Updates
FIGURE 10.4

Example of a change control process.

technical integrity of the design in the presence of changes. Figure 10.4 shows an example
of a change control process. Here, a change request is submitted to the change control
authority, which in many cases corresponds to the project manager, the design lead, or
the group that makes the final decision on the status and priority of a change. The request
is then evaluated based on technical merit, complexity of integration, and potential side
effects. From these assessments, the request is assigned a change priority. Developers then
take their initial design documents through another round of formal reviews to obtain
updated estimates for the budget, schedule, and staffing. Finally, updated design docu-
ments and schedule estimates must then be approved by the customer since they represent
changes to the original estimates.

IMPLEMENTATION PHASE

During the implementation stage, the main managerial activities are monitoring and con-
trolling that the design project activities are being accomplished according to the plan
(i.e., schedule and budget). Monitoring and controlling mechanisms exist to identify any
deviations from the plan and to ensure that these deviations get corrected in a timely
manner in order to avoid major future problems. Appropriate project management tools
for this phase are Gantt charts and earned value management (EVM). Recall that in our
earlier discussion on Gantt charts, we mentioned that they are a useful mechanism to
manage progress within the design phase. Since we have already covered Gantt charts in
the previous section, we will limit our discussion only to earned value management.

326 « Software Engineering Design

Earned Value Management

Earned value management (EVM) is an important project management technique to
determine the progress of tasks based on the value of the work currently completed versus
the work that was expected to be completed at that particular time. The term used to define
the dollar amount of the work currently completed is called earned value (EV), which is
calculated by multiplying the percentage work completed times the planned total cost of
the work when completed. Therefore, a key factor is to accurately estimate the percentage
of work completed, which can be hard to do because of the complexity of tasks and the
high degree of subjectivity that is typically involved. Furthermore, workers tend to inflate
the percentage of work completed to give the perception that work is progressing smoothly
for the completion of the task. Portraying a false sense of work completion is very danger-
ous for a project and can result in significant schedule and budget overruns. Knowing
that the percent completion of a task at a particular point in time is lower than expected
provides managers the opportunity to implement corrective actions to mitigate the risks of
not completing the task within established cost and schedule constraints. There are various
ways to estimate percentage completion. Meredith and Mantel (2009) provide a rough set
of guidelines that can be used to help in the estimation process, which are briefly described
in Table 10.5.

Armed with EV calculations for each task (i.e., each element in the WBS), we can exam-
ine deviations to cost and schedule and then establish a dollar amount to these devia-
tions. The terms used to define current deviations to schedule and cost are called schedule
variance (SV) and cost variance (CV). SV is calculated as the difference between the EV
and the planned value (PV), which is the cost/value of the work that was expected to be
completed at that point in time of the schedule. CV is the difference between the EV and
the actual cost (AC), which is the amount of money that was spent on the work currently
completed. Two other important measures are the cost performance index (CPI) and the
schedule performance index (SPI). The CPI value is calculated as the ratio of EV to AC. This
measure can be used to estimate the projected cost to complete some work. The SPI value is
calculated as the ratio of EV to PV. This measure can be used to estimate the projected time
to complete some work. Table 10.6 provides a brief description of the EVM parameters
defined so far as well as budget at completion (BAC), estimate cost to complete (ETC), and
estimate at completion (EAC). Table 10.7 shows the equations for the parameters. Notice

TABLE 10.5

Some Guidelines for Estimating Percentage Completion of a Task

Approach Name Brief Description

50-50 Assumes 50% task completion as soon as the task begins, and 100% completion when

the task is completed

0-100 percent Assumes 0% until the task gets fully completed

Critical input use ~ Percent completion is a function of how much of a critical input is used versus its overall
expected total to be used

Proportionality Assumes work completion as the proportion of actual time (or cost) spent over the total
time (or cost) planned for the task to be completed

Software Design Management, Leadership, and Ethics « 327

TABLE 10.6
EVM Definition of Parameters
Parameter Description
EV Also called budgeted cost of work performed (BCWP), it is the dollar amount of the work
currently completed
AC Also called actual cost of work performed (ACWP), it represents the amount of money that was
spent on the work currently completed
PV Also called budgeted cost of work scheduled (BCWS), it represents the value of the work that was
expected to be completed at that point in time of the schedule
Cv Describes the difference between the value of work completed and the actual cost spent to
complete it
NY Describes the difference between the value of work currently completed and the cost of the
work that was expected to be completed
CPI Describes the current cost efficiency of the work (CPI < 1 means over budget; CPI > 1 means
under budget; CPI = 1 means right on budget)
SPI Describes the current schedule efficiency of the work (SPI < 1 means behind schedule; SPT > 1
means ahead of schedule; SPI = 1 means right on schedule)
BAC Total budget for the project
ETC Represents the estimated cost remaining to complete the project
EAC Represents the total cost of the entire project
TABLE 10.7
Equations for EVM parameters
Parameter Equation
EV EV = (% work completed) * planned cost for the work
Ccv CV=EV-AC
Y% SV=EV -PV
CPI CPI =EV/AC
SPI SPI =EV/PV
ETC ETC = (BAC - EV)/CPI
EAC EAC=ETC+ AC

that the EV parameter is present in all of these calculations. This highlights the importance
of establishing accurate estimations of percent work completion, which is the key factor
used to define EV.

Let’s show the implementation of the EVM equations discussed so far through an
example. Assume the following scenario:

Sara is managing a software design project composed of 10 tasks. Each task was estimated to
cost $1,000; therefore, BAC = $10,000. Each task was estimated to be completed in a month;
therefore, the total planned duration for the project was estimated to be 10 months. Since
each task is expected to have the same cost and duration, the completion of an individual task
represents 10% completion of the design project. In the current fifth month, only three tasks
have been fully completed at a cost of $4,000. Sara needs to provide upper management with
current progress status.

328 « Software Engineering Design

TABLE 10.8

Example EVM Parameters

Parameter Calculation

EV 0.3 * $10,000 = $3,000

()% $3,000 - $4,000 = -$1,000

NY% $3,000 - $5,000 = -$2,000

CPI $3,000/$4,000 = 0.75

SPI $3,000/$5,000 = 0.6000

ETC ($10,000 - $3,000)/0.75 = $9,333
EAC $9,333 + $7,000 = $16,333

In this scenario, Sara can use the set of equations from Table 10.7 to present upper man-
agement with a complete progress status of the project. EV is calculated to be $3,000 given
that the three tasks completed represent 30% of the project, and the budget for the entire
project is $10,000. To calculate SV, we use a PV of $5,000 because each task was budgeted at
$1,000 and five tasks should have been completed in the fifth month. Table 10.8 shows the
calculations for the rest of the EVM parameters. These results clearly show that the project is
over both budget and schedule estimates. The CPI index, for example, shows that only $0.75
of earned value was received for every dollar actually spent. The EAC shows an estimated
$6,333 over budget amount. These alarming values give Sara and upper management the
opportunity to implement risk mitigation policies to either get the project to its budgeted
path or at least attempt to minimize losses.

Skill Development 10.2: Estimating Project Completion via Simple Simulation

Estimating the percent completion of tasks is not an exact science. In fact, we can say
that estimated values of percentage completion are uncertain and therefore can be
treated as random variables from assumed probabilistic distributions. An example of
a probabilistic distribution is the uniform distribution, which is a continuous distri-
bution where possible events (within a lower and upper bound) have the same prob-
ability of occurrence. This distribution is expressed as U(a, b), where a and b denote
lower and upper limits, respectively. In the example related to Table 10.8, assume that
the costs for the tasks are considered random variables. More specifically, assume
that the estimated costs for Tasks 1, 3, 5, 7, and 9 can be modeled with the following
distribution: U($700, $1,300). Similarly, assume that the estimated costs for Tasks 2,
4, 6, 8, and 10 can be modeled with the following distribution: U($800, $1,200). In a
spreadsheet (e.g., Microsoft Excel), simulate 10 values for the cost of each task. What
is the average cost of the project using simulation? Are there any benefits from using
simulation modeling for project cost estimation? Note: In Excel, to model a U(a, b)
random variable, type the following function in an empty cell: = a + (b — a)* RAND().

«_»

Remember that it is critical to begin with the “=" sign.

Software Design Management, Leadership, and Ethics « 329

TERMINATION STAGE

During the termination stage, key activities involve verification that everything is in place
for a smooth transition into the code construction phase. Activities include, for example,
making sure that the latest versions of the design documents are securely stored based
on configuration management procedures, updating schedule and cost current values,
reevaluating schedule and budget plans based on the resulting performance measures of
the design phase, and communicating results to upper management.

LEADING THE DESIGN EFFORT

Without a doubt, leadership plays a key role in the success or failure of complex projects.
As such, it is necessary to cover important concepts related to leadership in the design
effort. It is important to mention that the field of leadership is one that has been researched
by academicians and practitioners for many years. Therefore, there is an extensive body
of knowledge and literature related to this field. The purpose of this section is to high-
light some key leadership concepts that are relevant to our study of software designs.
A significant part of the material covered in this section was gathered from Lussier and
Achua (2010); therefore, readers are referred to this work for more detailed explanations of
leadership concepts.

Personality Traits and Leadership

Traits are personal characteristics that help to describe a person. For example, someone
who has the ability to communicate well with others and start friendly conversations with
unknown people can be said to have a highly sociable trait. Someone who works hard and
tends to go the extra mile to complete assigned tasks can be said to possess an achieve-
ment trait. The combination of traits that a person has defines that person’s personality,
and personality significantly affects our decisions. For example, a highly sociable person
with an achievement trait is expected to make decisions such as volunteering to make
presentations to clients. Given that a good decision-making ability is a major part of being
an effective leader, it is important to understand the relationship among traits, personality,
decision making, and leadership.

Personality Dimensions

Researchers have identified five personality dimensions to categorize groups of traits. The
idea behind this is to be able to classify someone’s personality into one of these dimen-
sions. The five dimensions are agreeableness, surgency, adjustment, conscientiousness, and

330 « Software Engineering Design

openness to experience. Although called by different names by various researchers, we will
refer to Lussier and Achua (2010) and call them the Big Five Model of Personality.

The agreeableness dimension contains traits that are related to getting along with people.
Individuals who are strong in agreeableness are friendly, sociable, and compassionate. The
surgency dimension, on the other hand, corresponds to personalities that are dominant
(i.e., want to be in control), enjoy competition, and are willing to confront others, among
other things. Individuals who are weak in surgency are typically followers. The adjust-
ment dimension is related to emotional stability. Individuals who are strong in this dimen-
sion are considered stable people who are in control of themselves, are positive minded,
and react well under pressure. Those who are weak in adjustment are considered unstable
and typically are characterized by being negative and performing poorly under pressure.
The conscientiousness dimension contains traits related to achievement. Basically, indi-
viduals who are strong in this dimension are those who are willing to work extra hours and
make sacrifices to reach the assigned objectives. Last but not least, the openness to experi-
ence dimension is related to individuals who are flexible to change, are open-minded, and
attempt enjoy trying new things. Understanding these dimensions is important because
researchers have found varying degrees of correlations between leadership and each of the
five personality dimensions. For example, Judge, Ilies, Bono, and Gerhardt (2007) analyzed
over 70 prior studies to determine correlations among the five personality dimensions and
leadership. The results of this study showed that the surgency dimension was the highest
with a 0.31 correlation. This means that traits corresponding to surgency can be used, to
some extent, to describe leadership. The second highest was conscientiousness with a 0.28
correlation, followed by openness to experience with 0.24 and agreeableness with 0.08.

Traits of Effective Leaders

As already stated, personality dimensions are defined by groups of traits and can provide
an understanding of leadership in individuals. A different approach to studying personal-
ity dimensions is to investigate common individual traits that effective leaders possess,
without grouping traits into personality dimensions. Some of the most important traits
are presented in Table 10.9.

Ethical Leadership

Ethics can be defined as a set of moral principles that facilitates the process to distinguish
between right and wrong behavior. Research has shown that ethical behavior positively
correlates with leadership effectiveness (Veiga 2004). Furthermore, it is well-known that
one of the best ways to lead is by example. Therefore, an ethical leader sets the tone for
employees to conduct themselves in an ethical manner. However, being an ethical leader
can be very challenging because of the risk of rejection or loss associated with ethical deci-
sions. A few things can be done to overcome this challenge, one of which is to focus on a
higher purpose while going through the decision process that involves moral behavior. For
example, assume that the design lead of a major top secret software project is approached

Software Design Management, Leadership, and Ethics « 331

TABLE 10.9

Traits of Effective Leaders

Principle Description (Trait’s Characteristics in a Person)

Dominance This trait describes a person who wants to be a manager and takes control. Successful
leaders with this trait are not overly bossy and avoid the bullying style.

High energy This trait describes a positive-minded person who works hard to achieve objectives and
is good at taking initiative.

Integrity This trait describes a person who is highly ethical and trustworthy.

Flexibility This trait describes a person who can adapt well to new and different situations.

Self-confidence This trait describes a person who trusts his or her judgment, initiatives, intelligence,
and ideas. This is not to be confused with arrogance.

Stability This trait describes a person who is able to control emotions and act well under pressure.

Intelligence This trait describes a person who possesses a high cognitive ability to solve problems

and make decisions.
Sensitivity to others This trait describes a person who focuses on the feelings of others and strongly
considers them.

by a foreign citizen with a proposition to sell the software design and other important
documents to an enemy country. If focused on the safety of the people (i.e., the higher
purpose), then ethical values will provide the answer of not accepting the offer and report-
ing the foreign person to the authorities. Another approach that can be taken to over-
come the challenges associated with ethical decisions is to find support from other ethical
people (e.g., friends, family, coworkers). To help employees distinguish between ethical and
unethical activities, most companies have their own internal documents that describe the
expected ethical behavior from employees. It is very important for leaders to conform to
these guidelines and discuss them with employees.

Power

Leading is about influencing others. The potential influence that leaders have over others
is called power. The word potential means that it is actually the perception of power, and
not the power itself, that influences followers. The two main sources of power are position
power and personal power. Position power is related to hierarchical position levels. More
specifically, higher hierarchical levels mean higher potential power. Therefore, the presi-
dent of a software company has more potential power than any other employee in the com-
pany because of position power. Position power is important because it allows managers
to influence employees to reach planned objectives. There are various types of position
power. An example of one is called the reward power. This type of power gives managers
the ability to influence employees with something of value to them, namely, performance
evaluations. Employees will be influenced to complete their corresponding assignments
because of their manager’s reward power to provide good performance evaluations.
Another type of position power—related to reward power—is called coercive power. The
coercive power basically says that managers have the ability to influence others by the idea
of punishment and withholding of rewards. Following the same example, employees can

332 « Software Engineering Design

be influenced to complete their corresponding assignments because of their manager’s
coercive power to provide bad performance evaluations and withhold salary increases.
Personal power relates to the potential influence that a person’s behavior has to influ-
ence others. Being positive, assertive, and hard-working are some of the characteristics that
increase personal power. As with position power, there are also various types of personal
power. One example is the expert power. This type of power is based on the ability to influ-
ence others based on a leader’s skill and knowledge. For example, being an expert in devel-
oping architectural designs will influence others to follow the expert. The expert power of
an individual gets stronger as people with similar expertise levels become fewer. Another
type of personal power is called connection power. Connection power refers to the ability
of a person to influence others because of the person’s relationships with influential people.

I ——
KEY LEADERSHIP SKILLS

Various skills are important to leadership. Some of these skills include communication,
networking, motivation, and negotiation. These are described in the following subsections.

Communication Skills

Good communication skills are essential for effective leadership. Various researchers
(see, e.g., Li and Liu 2010; Simkin 1996) have mentioned that a high percent of a managers’
time is spent in communications. As already mentioned, leadership is about influencing
others. Leaders can influence and establish productive relationships with others through
communication. Truly effective communication occurs when the information passed is
equally and fully understood by all parties. One way to achieve effective communication is
to plan in advance the message that needs to be conveyed. To achieve this, the goal of the
message needs to be clearly understood. Also, it is important to think about the best timing
to convey the message, how the message will be delivered (e.g., oral, written), and where
(e.g., company’s auditorium, employee’s office).

One type of communication is oral communication. To become an effective oral commu-
nicator can be challenging and often takes much practice. One way to become effective is to
have a process in place so that focus can be placed in the individual elements of the process.
Lussier and Achua (2010) describe a five-step process for effectively sending oral messages.
The first step is to develop a rapport. This means to try establishing a good relationship with
the receiving party and begin small conversations related to the message. The second step is
to clearly state the objective of the message. This is crucial as it helps the receiver to under-
stand what the message is expected to accomplish before the details of the message are trans-
mitted. This will engage the receiver’s mind to focus on the message to be received. The third
step is to actually transmit the message. The fourth step is to perceive the receiver’s under-
standing of the message. It is important that the message was well understood; otherwise, its
objectives were not achieved. This can be accomplished by asking direct questions or reading

Software Design Management, Leadership, and Ethics « 333

the receiver’s expressions. When convinced that the message was understood, the final step
of the process is to get a commitment from the receiver. This is unnecessary if the goal of the
message is to merely inform. However, if the goal is to influence the receiver to accomplish
a task (e.g., design document), then a commitment from the receiver to complete the task is
necessary. For this, the leader must be convinced that the receiver is capable of completing
the task by its deadline. When a commitment from the receiver is received, the leader must
follow up to make sure that the task is being accomplished. If not, the leader can make use of
the power concept to persuade the receiver to complete the task.

Another type of communication is written communication. This type of communication
is now more important than ever, and it is mainly attributed to e-mail technology. Today,
people around the world communicate with each other via e-mails, and e-mailing between
managers and employees is almost always the preferred type of written communication.

The key elements for effective written communication are content and structure. That is,
the message must be structured in such a way that the information it intends to transmit
(i.e., content) is clearly described and the flow of information is smooth and easy to follow.
As with oral communication, it is critical for the communicator to clearly understand
the intended objective of the message before writing it. One way to do this is to make an
outline with the main points that need to be transmitted. Making an outline also helps to
establish an appropriate flow for the message, which is necessary for a clear understanding
of it. Another way to improve message flow is to avoid including unnecessary information.
Messages must be kept short, simple, and to the point.

A final point on written communication is that we must understand that writing is
a skill. As such, it takes effort (e.g., reading books on proper grammar) and practice to
become good at it. One way to improve this skill is to have others review your work so
that you can learn from their feedback. It is important to keep in mind that editing and
rewriting are often necessary actions to ensure the quality of messages. With continued
advances in technology, the value of becoming an effective writer is becoming more and
more important to leadership. Consider, for example, the relatively recent technology of
social networking and electronic chatting rooms, which allow real-time written commu-
nication between parties around the world.

Networking Skills

Networking can be defined as a skill that focuses on building relationships with others
through effective communications. Thus, communications and networking skills are closely
related to each other. Networking is particularly important for leadership because it facilitates
the process of meeting objectives. As with any skill, networking can be improved with practice.

Motivation Skills

It can be safe to say that there exists a positive correlation between employees’ motivation
levels and their productivity. Therefore, the ability to motivate others to work hard to achieve
particular project goals is a major part of being a leader. For various decades now, motivation

334 « Software Engineering Design

TABLE 10.10
Types of Needs and Activities to Meet Them

Type of Need Activities to Meet the Needs

Physiological Adequate salaries
Allowance of breaks
Adequate working conditions

Safety Safe working conditions
Salary increases (considering inflation)
Fringe benefits
Social Social activities that conform to individual behavior

Team-building retreats

Team sports

Lunch gatherings
Esteem Raises based on performance

Awards

Public recognition

Participation in decision making
Self-actualization Skill development activities

Promotions

Increase control of an employee’s task

has been an area of investigation to many researchers. Various theories have been developed
to describe a set of motivational factors that significantly affect individuals’ behavior. The
general benefit sought from these research studies was that identifying and understand-
ing these factors would provide leaders with necessary resources to positively influence and
inspire employees to successfully complete their tasks.

One of the motivational theories developed is called the hierarchy of needs theory (Lussier
and Achua 2010). This theory describes five types of needs through which employees are
motivated. Table 10.10 shows the five types and provides some of the activities that can
help meet the particular needs associated with each type.

Negotiation Skills

Negotiation skills are an important part of any management job. Good negotiators are
capable of leading by looking out for the best interests of the people that they are leading.
There are many research studies related to negotiations, some of which have resulted in
guidelines that can help to improve a person’s negotiation skills. One such set of guidelines,
called principled negotiation, was developed by Fisher and Ury (1991). Principled negotia-
tion is composed of four guidelines. The first one is to separate the people from the problem.
This principle helps to keep the focus on the problem at hand rather than on interpersonal
issues. The second guideline is to focus on interests rather than positions. This principle helps
to keep the focus of the negotiation on the interests of people rather than their positions.
The third guideline is to generate options before trying to reach an agreement. This principle
promotes creativity and reminds the negotiating parties to brainstorm to find potential

Software Design Management, Leadership, and Ethics « 335

solutions that can be brought to the negotiation. The fourth guideline is to insist on using
objective criteria. This principle promotes decision making based on reasonable standards
rather than on subjective ones.

ETHICS IN SOFTWARE DESIGN

Software engineers must abide to the highest possible standards when developing soft-
ware systems to make the software engineering profession beneficial and highly respected.
Engineers have the responsibility to public welfare, including health and safety. The
IEEE-CS/ACM organizations developed a Software Engineering Code of Ethics (SECE)
(IEEE 2010) as the standard set of ethical guidelines that engineers must adhere to.
This code contains the principles shown in Table 10.11.

As seen, these principles collectively ensure that professionals in the software engineer-
ing field adhere to high levels of ethical conduct. In one way or another, all of these prin-
ciples can be directly related with the design of software systems. The SECE provides a very
clear set of guidelines for each principle. Following is a brief description of some of these
principles, as well as their specific guidelines from the SECE.

Public and Product Principles

The public principle is the first principle included in the SECE (Table 10.12). Basically, this
principle states that professionals in the software engineering field must take responsibil-
ity for their own work and must ensure that their work positively affects the public good.
The product principle (Table 10.13) states, among other things, that professionals must
strive for high quality within acceptable cost and schedule thresholds.

TABLE 10.11

Principles of Ethics in Software Engineering

Principle Description

Public Software engineers shall act consistently with the public interest.
Client and Employer ~ Software engineers shall act in a manner that is in the best interests of their client and
employer consistent with the public interest.

Product Software engineers shall ensure that their products and related modifications meet
the highest professional standards possible.

Judgment Software engineers shall maintain integrity and independence in their
professional judgment.

Management Software engineering managers and leaders shall subscribe to and promote an ethical
approach to the management of software development and maintenance.

Profession Software engineers shall advance the integrity and reputation of the profession
consistent with the public interest.

Colleagues Software engineers shall be fair to and supportive of their colleagues.

Self Software engineers shall participate in lifelong learning regarding the practice of their

profession and shall promote an ethical approach to the practice of the profession.

Source: IEEE Computer Society, Software Engineering Code of Ethics and Professional Practice. 2010.

336 « Software Engineering Design

TABLE 10.12

Guidelines Concerning the Public Principle

No. Guideline Description

1.01 Engineers must accept full responsibility for their own work.

1.02 Moderate the interests of the software engineer, the employer, the client and the users with the
public good.

1.03 Approve software only if they have a well-founded belief that it is safe, meets specifications, passes tests,
and does not diminish quality of life, diminish privacy or harm the environment. The ultimate effect of
the work should be to the public good.

1.04 Disclose to appropriate persons or authorities any actual or potential danger to the user, the public, or
the environment, that they reasonably believe to be associated with software or related documents.

1.05 Cooperate in efforts to address matters of grave public concern caused by software, its installation,
maintenance, support or documentation.

1.06 Be fair and avoid deception in all statements, particularly public ones, concerning software or related
documents, methods and tools.

1.07 Consider issues of physical disabilities, allocation of resources, economic disadvantage and other
factors that can diminish access to the benefits of software.

1.08 Be encouraged to volunteer professional skills to good causes and contribute to public education
concerning the discipline.

Source: IEEE Computer Society, Software Engineering Code of Ethics and Professional Practice. 2010.

Judgment Principle

Although maintaining integrity in professional judgment should be implicitly under-
stood for every principle in the SECE, a high level of individual integrity is so impor-
tant that the code explicitly included it into a single principle, the judgment principle
(Table 10.14). Making decisions that conform to the highest ethical levels can be very
challenging at times; therefore, the integrity and moral values of a person play a major
role when making judgment calls.

Management Principle

The management principle is of particular relevance to this chapter. Therefore, Table 10.15
outlines the guidelines included for software engineering managers in the code of ethics.

I ——
CHAPTER SUMMARY

This chapter presented an introduction to software design management. In particular, this
chapter focused on describing three major elements that are critical for the success of any
major design project: management, leadership, and ethics. In doing so, the chapter developed
a design management framework that describes important concepts related to each element
with the hope of facilitating the successful management of this complex phase.

Software Design Management, Leadership, and Ethics « 337

TABLE 10.13

Guidelines Concerning the Product Principle

No. Guideline Description

3.01 Strive for high quality, acceptable cost and a reasonable schedule, ensuring significant tradeoffs are
clear to and accepted by the employer and the client, and are available for consideration by the user
and the public.

3.02 Ensure proper and achievable goals and objectives for any project on which they work or propose.

3.03 Identify, define and address ethical, economic, cultural, legal and environmental issues related to
work projects.

3.04 Ensure that they are qualified for any project on which they work or propose to work by an
appropriate combination of education and training, and experience.

3.05 Ensure an appropriate method is used for any project on which they work or propose to work.

3.06 Work to follow professional standards, when available, that are most appropriate for the task at hand,
departing from these only when ethically or technically justified.

3.07 Strive to fully understand the specifications for software on which they work.

3.08 Ensure that specifications for software on which they work have been well documented, satisfy the users
requirements and have the appropriate approvals.

3.09 Ensure realistic quantitative estimates of cost, scheduling, personnel, quality and outcomes on
any project on which they work or propose to work and provide an uncertainty assessment of
these estimates.

3.10 Ensure adequate testing, debugging, and review of software and related documents on which they work.

3.11 Ensure adequate documentation, including significant problems discovered and solutions adopted,
for any project on which they work.

3.12 Work to develop software and related documents that respect the privacy of those who will be affected
by that software.

3.13 Be careful to use only accurate data derived by ethical and lawful means, and use it only in ways
properly authorized.

3.14 Maintain the integrity of data, being sensitive to outdated or flawed occurrences.

3.15 Treat all forms of software maintenance with the same professionalism as new development.

Source: IEEE Computer Society, Software Engineering Code of Ethics and Professional Practice. 2010.

TABLE 10.14

Guidelines Concerning the Judgment Principle

No. Guideline Description

4.01 Temper all technical judgments by the need to support and maintain human values.

4.02 Only endorse documents either prepared under their supervision or within their areas of competence
and with which they are in agreement.

4.03 Maintain professional objectivity with respect to any software or related documents they are asked
to evaluate.

4.04 Not engage in deceptive financial practices such as bribery, double billing, or other improper
financial practices.

4.05 Disclose to all concerned parties those conflicts of interest that cannot reasonably be avoided or escaped.

4.06 Refuse to participate, as members or advisors, in a private, governmental or professional body
concerned with software related issues, in which they, their employers or their clients have
undisclosed potential conflicts of interest.

Source: IEEE Computer Society, Software Engineering Code of Ethics and Professional Practice. 2010.

338 « Software Engineering Design

TABLE 10.15

Guidelines Concerning the Management Principle

No. Guideline Description

5.01 Ensure good management for any project on which they work, including effective procedures for
promotion of quality and reduction of risk.

5.02 Ensure that software engineers are informed of standards before being held to them.

5.03 Ensure that software engineers know the employer’s policies and procedures for protecting passwords,
files and information that is confidential to the employer or confidential to others.

5.04 Assign work only after taking into account appropriate contributions of education and experience
tempered with a desire to further that education and experience.

5.05 Ensure realistic quantitative estimates of cost, scheduling, personnel, quality and outcomes on any project
on which they work or propose to work, and provide an uncertainty assessment of these estimates.

5.06 Attract potential software engineers only by full and accurate description of the conditions
of employment.

5.07 Offer fair and just remuneration.

5.08 Not unjustly prevent someone from taking a position for which that person is suitably qualified.

5.09 Ensure that there is a fair agreement concerning ownership of any software, processes, research,
writing, or other intellectual property to which a software engineer has contributed.

5.10 Provide for due process in hearing charges of violation of an employer’s policy or of this Code.

5.11 Not ask a software engineer to do anything inconsistent with this Code.

5.12 Not punish anyone for expressing ethical concerns about a project.

Source: IEEE Computer Society, Software Engineering Code of Ethics and Professional Practice. 2010.

The chapter described the software design phase as a complex task that must be man-
aged in order to achieve acceptable quality levels. Various project management techniques
were presented. These included techniques for planning such as work breakdown struc-
tures, linear responsibility charts, and network diagrams for scheduling. It also included
a description of earned value management as a tool for determining the progress of tasks
based on the value of the work currently completed versus the work that was expected to
be completed at that particular time. The chapter also described the relationship between
management and leadership, highlighted several leadership traits that are important for
successful results, and presented various ethic items from the Software Engineering Code
of Ethics that are relevant to software design projects.

REVIEW QUESTIONS

. What is software design management, and why is it important?

. Why is it important to view the software design phase as a project?

. What are the phases of the software design phase?

. What are the managerial objectives of the planning stage?

. What project management tools can be used to manage the planning phase of a soft-
ware design project? Briefly explain them.

6. What project management tools can be used to manage the implementation phase of

a software design project? Briefly explain them.

G W N =

7. What is the importance of a change control process?
8.

10.
11.
12.
13.
14.

Software Design Management, Leadership, and Ethics « 339

Why is estimating the percent completion of a task so important in earned value

management?
. What are the four guidelines described in the chapter to estimate percent work

completion?
What are some of the traits of effective leaders?
How do management and leadership relate to each other?
Explain the concept of power and how it can influence others.
What are the key leadership skills described in the chapter?

How do ethics and leadership relate to each other?

CHAPTER EXERCISES

1. The following table contains task durations for a project.

TaskID Minimum (a)

Maximum (b)

Immediate Predecessors

A

T OmmgOow

10
3
11
11
4
2
4
11

Time (Days)
Most Likely (m)

22 38

7 12

25 44

24 42

17

9

14

24 43

A
B
B
B,C
D,E
F
G

a. Construct an AON network diagram and identify the critical path. What is the
duration of the critical path?
b. What is the probability that the project gets completed by 85% of the critical path

duration?

2. The following table contains expected duration times and expected cost for the set of
tasks corresponding to a major design project that Dr. Christian Daniel is managing.

Expected Duration
Task ID (Months) Expected Cost ($) Task Predecessor

1 1 1,500 —
2 2 3,000 1

3 1 1,500 2

4 2 3,000 3
5 1 1,500 4
6 2 3,000 5
7 1 1,500 6
8 2 3,000 7

340 « Software Engineering Design

a. Assume a scenario where at the end of the seventh month five tasks have been
completed at a cost of $11,500. Use the EVM equations to understand and show the
current status of the project. Also, based on this scenario, what is the EAC value?

b. Assume a scenario where at the end of the sixth month two tasks have been com-
pleted at a cost of $8,500. Use the EVM equations to understand and show the
current status of the project. Also, based on this scenario, what is the EAC value?

c. Assume a scenario where at the end of the tenth month seven tasks have been
completed at a cost of $14,500. Use the EVM equations to understand and show the
current status of the project. Also, based on this scenario, what is the EAC value?

REFERENCES

Fisher, R., and W. Ury. Getting to Yes, 2d ed. New York: Penguin Books, 1991.

Griffin, Ricky W. Management, 10th ed. Mason, OH: South-Western Publications, 2010.

IEEE Computer Society. “Software Engineering Code of Ethics and Professional Practice” 2010. Available at
http://www.computer.org/portal/web/certification/resources/code_of_ethics.

Judge, T. A, R. Ilies, . E. Bono, and M. W. Gerhardt. “Personality and Leadership: A Qualitative and Quantitative
Review.” Journal of Applied Psychology 87, no. 4 (2002): 765-768.

Li, Mei Yan, and Ying Zong Liu. “Study on Line Managers’ Competence-Based Abilities of Performance
Management.” Applied Mechanics and Materials 40-41 (2010): 820-824.

Lussier, Robert, and Christopher Achua. Leadership: Theory, Application, & Skill Development, 4th ed. Florence,
KY: Cengage Learning, 2010.

Meredith, Jack, and Samuel Mantel. Project Management: A Managerial Approach, 7th ed. Hoboken, NJ:
John Wiley & Sons, 2009.

Nebus, J. “Building Collegial Information Networks: A Theory of Advice Network Generation.” Academy of
Management Review 31, no. 3 (2006): 615-637.

Pelosi, Marilyn K., and Theresa M. Sandifer. Elementary Statistics: From Discovery to Decision. Hoboken, NJ:
John Wiley & Sons, 2003.

Simkin, Mark. “The Importance of Good Communication Skills on ‘IS’ Career Paths.” Journal of Technical
Writing and Communication 26, no. 1 (1996): 69-78.

Veiga, J. E. “Special Topic Ethical Behavior in Management, Bringing Ethics into the Mainstream: An Introduction
to the Special Topic.” Academy of Management Executive 18, no. 2 (2004): 37-38.

Software Engineering & Systems Development

Taking a learn-by-doing approach, Software Engineering Design: Theory and
Practice uses examples, review questions, chapter exercises, and case study assign-
ments to provide students and practitioners with the understanding required to de-
sign complex software systems. Explaining the concepts that are immediately rele-
vant to software designers, it begins with a review of software design fundamentals.

The text presents a formal top-down design process that consists of several design
activities with varied levels of detail, including the macro-, micro-, and construction-
design levels. As part of the top-down approach, it provides in-depth coverage of
applied architectural, creational, structural, and behavioral design patterns. For
each design issue covered, it includes a step-by-step breakdown of the execution of
the design solution, along with an evaluation, discussion, and justification for using
that particular solution.

The book outlines industry-proven software design practices for leading large-scale
software design efforts, developing reusable and high-quality software systems,
and producing technical and customer-driven design documentation. It also:

¢ Offers one-stop guidance for mastering the Software Design
& Construction sections of the official Sofitware Engineering
Body of Knowledge (SWEBOK®)

* Details a collection of standards and guidelines for structuring
high-quality code

* Describes techniques for analyzing and evaluating the quality
of software designs

Collectively, the text supplies comprehensive coverage of the software design
concepts students will need to succeed as professional design leaders. The section
on engineering leadership for software designers covers the necessary ethical and
leadership skills required of software developers in the public domain. The section on
creating software design documents (SDD) familiarizes students with the software
design notations, structural descriptions, and behavioral models required for SDDs.

Course notes, exercises with answers, online resources, and an instructor’s

manual are available upon qualified course adoption.

K12371

CRC P 6000 Broken Sound Parkway, NW
@ ress Suite 300, Boca Raton, FL 33487 ISBN: 978-1-4398-51LLA8-5
Taylor & Francis Group | 711 Third Avenue 90000
an informa business New York, NY 10017 ‘ “ ‘ “ ‘
b

www.crcpress.com | 2 Park Square, Milton Park | ‘ m |‘

Abingdon, Oxon OX14 4RN, UK
www.auerbach-publications.com

97?81439"851L45

	Front Cover
	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 1 - Introduction to Software Engineering Design
	Chapter 2 - Software Design with Unified Modeling Language
	Chapter 3 - Principles of Software Architecture
	Chapter 4 - Patterns and Styles in Software Architecture
	Chapter 5 - Principles of Detailed Design
	Chapter 6 - Creational Design Patterns in Detailed Design
	Chapter 7 - Structural and Behavioral Patterns in Detailed Design
	Chapter 8 - Principles of Construction Design
	Chapter 9 - Human–Computer Interface Design
	Chapter 10 - Software Design Management, Leadership, and Ethics
	Back Cover

