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Preface

Before we explain our motivation for writing this book, let us place its subject in a more
general context. Shape optimization can be viewed as a part of the important branch of
computational mechanics called structural optimization. In structural optimization prob-
lems one tries to set up some data of the mathematical model that describe the behavior of a
structure in order to find a situation in which the structure exhibits a priori given properties.
In other words, some of the data are considered to be parameters (control variables) by
means of which one fine tunes the structure until optimal (desired) properties are achieved.
The nature of these parameters can vary. They may reflect material properties of the struc-
ture. In this case, the control variables enter into coefficients of differential equations. If one
optimizes a distribution of loads applied to the structure, then the control variables appear on
the right-hand side of equations. In shape optimization, as the term indicates, optimization
of the geometry is of primary interest.

From our daily experience we know that the efficiency and reliability of manufactured
products depend on geometrical aspects, among others. Therefore, it is not surprising that
optimal shape design problems have attracted the interest of many applied mathematicians
and engineers. Nowadays shape optimization represents a vast scientific discipline involving
all problems in which the geometry (in a broad sense) is subject to optimization. For a finer
classification, we distinguish the following three branches of shape optimization:

(i) sizing optimization: a typical size of a structure is optimized (for example, a thickness
distribution of a beam or a plate);

(ii) shape optimization itself: the shape of a structure is optimized without changing the
topology;

(iii) topology optimization: the topology of a structure, as well as the shape, is optimized
by, for example, creating holes.

To keep the book self-contained we focus on (i) and (ii). Topology optimization needs
deeper mathematical tools, which are beyond the scope of basic courses in mathematics, to
be presented rigorously.

One important feature of shape optimization is its interdisciplinary character. First,
the problem has to be well posed from the mechanical point of view, requiring a good
understanding of the physical background. Then one has to find an appropriate mathe-
matical model that can be used for the numerical realization. In this stage no less than
three mathematical disciplines interfere: the theory of partial differential equations (PDEs),
approximation of PDEs (usually by finite element methods), and the theory of nonlinear

ix



x Preface

mathematical programming. The complex character of optimal shape design problems
makes the presentation of the topic in some respects difficult.

Nowadays, there exist quite a lot of books of different levels on shape optimization.
But what is common to all of them is the fact that they are usually focused on some of
the above-mentioned aspects, while other aspects are completely omitted. Thus one can
find books dealing solely with sensitivity analysis (see [HCK86], [SZ92]) but omitting
approximation and computational aspects. We can find excellent textbooks for graduate
students ([Aro89], [HGK90], [HA79]) in which great attention is paid to the presentation of
basic numerical minimization methods and their applications to simple sizing problems for
trusses, for example. But, on the other hand, practically no problems from (ii) (as above)
are discussed there. Finally, one can find books devoted only to approximation theory in
optimal shape design problems [HN96].

This book is directed at students of applied mathematics, scientific computing, and
engineering (civil, structural, mechanical, aeronautical, and electrical). It was our aim to
write a self-contained book, including both mathematical and computational aspects of
sizing and shape optimization (SSO), enabling the reader to enter the field rapidly, giving
more complex information than can be found in other books on the subject. Part of the
material is suitable for senior undergraduate work, while most of it is intended to be used
in postgraduate work. It is assumed that the reader has some preliminary knowledge of
PDEs and their- numerical solution, although some review of these topics is provided in
Appendix A. Moreover, knowledge of modern programming languages, such as C++ or
Fortran 90,' is needed to understand some of the technical sections in Chapter 5.

The book has three parts. Part I presents an elementary mathematical introduction
to SSO problems. Topics such as the existence of solutions, appropriate discretizations of
problems, and convergence properties of discrete models are studied. Results are presented
in an abstract, unified way permitting their application not only in problems of solid me-
chanics (standard in existing books) but also in other areas of mathematical physics (fluid
mechanics, electromagnetism, etc.). Part II deals with modern computational aspects in
shape optimization. The reader can find results on sensitivity analysis and on gradient, evo-
lutionary, and stochastic type minimization methods, including methods of multiobjective
optimization. Special chapters are devoted to new trends, such as automatic differentiation
of computer programs and the use of fictitious domain techniques in shape optimization.
All these results are then used in Part III, where nontrivial applications in various areas
of industry, such as contact stress minimization for elasto-plastic bodies, multidisciplinary
optimization of an airfoil, and shape optimization of a dividing tube, are presented.

Acknowledgments. The authors wish to express then- gratitude to the following
people for their help during the writing of this book: Tomas Kozubek from the Technical
University of Ostrava, who computed some of examples in Chapters 1 and 6 and produced
most of the figures; Ladislav Luksan from the Czech Academy of Sciences in Prague and
Kaisa Miettinen from the University of Jyvaskyla for their valuable comments concerning
Chapter 4; and Jari Toivanen from the University of Jyvaskyla, who computed the numerical
example in Section 8.2.

The code in this book can be used with Fortran 90 and its later variants.l
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Notation

Banach and Hilbert spaces
Ck (A, B) functions defined in A, taking values in B, continuously differentiable

in the Frechet sense up to order k e {0} U N (Ck(A) := C*(A, R));
C*(£2) functions whose derivatives up to order k are continuous in £2, k e

{0} U N U {00} (C(£2) := C°(5));
Cg(£2) functions from C*(£2) vanishing in the vicinity of 9£2;
C0> 1 (£2) Lipschitz continuous functions in £2;
£^(£2) Lebesgue integrable functions in £2, p € [1, oo[;
L°°(£2) bounded, measurable functions in £2;
H*(£2) functions whose generalized derivatives up to order k e {0} U N are

square integrable in £2 (ff°(£2) := £2(S2));
HO (£2) functions from #*(£2), fc e N, whose derivatives up to order (k - 1)

in the sense of traces are equal to zero on 3 £2;
Hk'°°(Q) functions from Z,°°(£2) whose derivatives up to order k e {0} U N

belong to L°°(J2) (H0'°°(S2) := L°°(S2));
V(£2) subspaceof#*(£2);
V(S2) Cartesian product of V (S2);
ff-*(£2) dual space of #*(«), fc e N;
H^2(r) traces on T C 3S2 of functions from Hl (S2);
#-1/2<T) dual space of H1/2(r);

Convergences
-»• in X convergence in the norm of a normed space X (strong convergence);
-^ in X weak convergence in a normed space X;
=$ in g uniform convergence of a sequence of continuous functions in Q;

Differential calculus
/, /' material and shape derivatives, respectively, of /;

xiii



xiv Notation

first and second order generalized derivatives, respectively, of / :
R" -» R, n > 2;

ath generalized derivative of / : R" -> R, |a| = X)"=i«i. «< e

{0} U N;
/'(a; /J) directional derivative of / at a point a and in a direction j8;
V/ gradient of /;
V, / partial gradient of / with respect to x;
Df (also /) Jacobian of /;
A/ Laplacian of /;
3//3v, df/ds normal and tangential derivatives, respectively, of / on F c 3S2;
curl / rotation of a function / : R2 -» R;
div / divergence of /;

Domains and related notions
R set of all real numbers;
C set of all complex numbers;
R" Euclidean space of dimension n;
N set of all positive integers;
£2 bounded domain in R";
£2 closure of £2;
int £2, ext £2 interior and exterior of £2, respectively;
3 £2 boundary of £2;
F part of the boundary 3 £2;
BS(Q) S-neighborhood of a set Q c R";
conv Q closed convex hull of Q;

Finite elements
T triangle;
R convex quadrilateral;
Pk(T) polynomials of degree < k in T;
Q\(R) four-noded isoparametric element in R;
h norm of a partition of £2 into finite elements;

TA, 'Rh uniform triangulation and rectangulation of £2, respectively, whose
norm is h\

T(h, s^ triangulation of £2 (s*), s* 6 U^f, whose norm is h;
~R(h, SK) partition of £2(*„.), s* e U^f, into convex quadrilaterals whose norm

is h;
Slh(sx:) domain f2(j^) with a given partition T(h, s^), ~R.(h, s^), s^ e U^d;
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V/j (SK)  finite element space in fi/, (s*), s* e W£;
Vh (SK) Cartesian product of V/, (s^);
Mft  finite element solution;

Fluid mechanics
r stress tensor (components T,-J, i, j = 1,... , d\ d = 2, 3);
£ strain rate tensor (components e,j, i, j = 1,... , d; d = 2,3);
p static pressure;
fj, viscosity of a fluid;
Q density of a fluid;

Linear algebra
x, y, a column vectors in R";
*T transpose of x;
A, B matrices A, B\
A~l inverse of A;
AT transpose of A;
| A | determinant of A;
trA trace of A;
I identity matrix;

Linear elasticity
T stress tensor (components T^-, i,j = l,...,d;d = 2,3);
e linearized strain tensor (components e,-;-, i, j = 1,. . . , d', d = 2, 3);
cijki elasticity coefficients defining a Hooke's law;
K, ju bulk and shear moduli, respectively;
/ density of body forces;
P density of surface tractions;

Mappings
A : X -» Y A maps X into Y;
A~l inverse of A;
C(X, Y) space of all linear continuous mappings from X into Y;
fog (also /(#)) composite function;
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Miscellaneous

<5y Kronecker symbol;
v unit outward normal vector to 9 £2;
c generic positive constant;
X characteristic function of a set;

Norms and scalar products

|| • || (also || • ||x) norm in a normed space X;
| • | (also | • \x) seminorm in a normed space X;
(•, •) (also (-, •)*) scalar product in X;

Norms and scalar products in particular spaces

11*11, p-norm in R»; i.e., ||x||p := ^~iMp, P 6 [l,oo[, ||*||oo :=
max;=1,...,n|.x(-|;

x1y scalar product of x, y € W;
f • g scalar product of two vector-valued functions /, g : £2 -> R"; i.e.,

(/•*)to = EIU/«(*)**(*);
(/, g)k,a scalar product of /, g in Hk(Q.), k e {0} U N;
IMIt.n. \v\k,a norm and seminorm, respectively, of i; in the Sobolev space Hk(£l),

k 6 {0} U N;
II v ||t,oo,o, I v\k,oo,n norm amd seminorm, respectively, of v in the Sobolev space Hk'°°(Q),

k € {0} U N;
||v||ct(jj) norm of v in the space C*(£2), k e {0} U N.



Introduction

As we have already mentioned in the preface, this book consists of three parts and two
appendices.

Part I is devoted to mathematical aspects of sizing and shape optimization (SSO).
Our aim is to convince the reader that thorough mathematical analysis is an important part
of the solution process. In Chapter 1 we present simple optimization problems that at
first glance seem to be quite standard. A closer look, however, reveals defects such as the
nonexistence of solutions in the classical sense or the nondifferentiability of the solution to
a state problem with respect to design variables. These circumstances certainly affect the
numerical realization. Further, we present one simple example whose exact solution can be
found by hand. We shall see that this is an exceptional situation. Unfortunately, in real-life
problems, which are more complex, such a situation occurs very rarely and an appropriate
discretization is necessary. By a discretization we mean a transformation of the original
problem into a new one, characterized by a finite number of degrees of freedom, which
can be realized using tools of numerical mathematics. Then a natural question immediately
arises: Is the discretized problem a good approximation of the original one? If yes, in what
sense? And is it possible to establish some rules on how to define a good discretization?
All these questions are studied in the next chapters.

Chapter 2 starts with two simple SSO problems. We show in detail how to prove
the existence of solutions and analyze convergence properties of the discretized problems
(Sections 2.1,2.2). The reason we start with the particular problems is very simple: the main
ideas of the proofs remain the same in all SSO problems. This approach facilitates reading
the next two sections, in which the existence and convergence results are established in an
abstract framework. These results are then applied to particular shape optimization problems
governed by various state problems (Section 2.5) of solid and fluid mechanics. To keep
our presentation as elementary as possible we confine ourselves to 2D shape optimization
problems in which a part of the boundary to be determined is described by the graph of
a function. This certainly makes mathematical analysis and numerical realization much
easier. Let us mention, however, that the same ideas can be used in the existence analysis
of problems in 3D, but the proof will be more technical. Since most industrial applications
deal with domains with Lipschitz boundaries, we restrict ourselves to domains satisfying
the so-called uniform cone property. For readers who would like to be familiar with the
use of more general classes of domains we refer to the recent monograph by Delfour and
Zolesio [DZ01] published in the same SI AM series as our book.

Part n is devoted to computational aspects in SSO. Chapter 3 deals with sensitivity
analysis or how to differentiate functionals with respect to design variables. Sensitivity
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xviii Introduction

analysis is an integral part of any optimization process. Gradient information is important
from the theoretical as well as the practical point of view, especially when gradient type
minimization methods are used.

We start with sensitivity analysis in algebraic formulations of discretized problems,
which is based on the use of the classical implicit function theorem. Then the material
derivative approach, a very useful tool in shape derivative calculus, will be introduced. Spe-
cial attention is paid to sensitivity analysis in problems governed by variational inequalities.

In Chapter 4 we briefly recall both gradient type (local) and gradient free (global)
algorithms for the numerical minimization of functions. Gradient type methods include
Newton's method, the quasi-Newton method, and the sequential quadratic programming
method. Gradient free methods are represented by genetic and random search algorithms.
In addition, some methods of multiobjective optimization are presented.

In Chapter 5 we discuss a rather new technique for calculating derivatives, namely
automatic differentiation (AD) of computer programs. AD enables us to get accurate deriva-
tives up to the machine precision without any human intervention. We describe in detail
how to apply this technique in shape optimization.

Chapter 6 presents a new approach to the realization of optimal shape design problems,
based on the use of fictitious domain solvers at the inner optimization level. The classic
boundary variation technique requires a lot of computational effort: after any change in the
shape, one has to remesh the new configuration, then recompute all data, such as stiffness
matrices and load vectors. Fictitious domain methods make it possible to efficiently solve
state problems on a uniform grid that does not change during the optimization process. Just
this fact considerably increases the efficiency of the inner optimization level. This approach
is used for the numerical realization of a class of free boundary value problems.

Part III is devoted to industrial applications. In Chapter 7 we present two problems of
SSO of stressed structures, namely multiobjective optimal sizing of a beam under multiple
load cases and contact stress minimization of an elasto-plastic body in contact with a rigid
foundation. In Chapter 8 we first solve a problem arising in the paper machine industry: to
find the shape of the header of a paper machine in order to get an appropriate distribution
of a fiber suspension. Next a multidisciplinary and multiobjective problem is solved: we
want to optimize an airfoil taking into account aerodynamics and electromagnetics aspects.

For the convenience of the reader two appendices complete the text. In Appendix A
some elementary results of the theory of linear elliptic equations, Sobolev spaces, and
finite element approximations are collected. Appendix B deals with 2D parametrization of
shapes. A good shape parametrization is a key point in a successful and efficient optimization
process. Basic properties of Bezier curves are revisited.
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Chapter 1

Why the Mathematical
Analysis Is Important

In this chapter we illustrate by using simple model examples which types of problems are
solved in sizing and shape optimization (SSO). Further, we present some difficulties one may
meet in their practical realization. Finally we try to convince the reader of the helpfulness
of a thorough mathematical analysis of the problems to be solved.

We start this chapter with a simple sizing optimization problem whose exact solution
can be found by hand. Let us consider a simply supported beam of variable thickness e
represented by the interval 7 = [0,1]. The beam is under a uniform vertical load /Q. One
wants to find a thickness distribution to maximize the stiffness of the beam. The deflection
u :=u(e) of the beam solves the following fourth order boundary value problem:

where /3 is a given positive constant. The stiffness of the beam is characterized by the
compliance functional J defined by

where u(e) solves (P'(e)). The stiffer the construction is, the lower the value J attains.
Therefore the stiffness maximization is equivalent to the compliance minimization. We
formulate the following sizing optimization problem:

where Uad is the set of admissible thicknesses defined as follows:

The integral constraint appearing in the definition of Uad says that the volume of the beam
is preserved. Next we show how to find a solution to (Pi).

3



Chapter 1. Why the Mathematical Analysis Is Important

For the sake of simplicity we set /? = /o = 1 in [0, 1]. Instead of the classical
formulation (P'(e)} we use its weak form:

where

is the Sobolev space of functions vanishing at the endpoints of / (for the definition of
Sobolev spaces we refer to Appendix A). In order to release the constraints in (PO that are
represented by the state problem (P(e)) and the constant volume constraint we introduce
the following Lagrangian:

We now seek stationary points of £, i.e., all points (e, u, p, A) satisfying

where the symbol 8 stands for the variation of £ with respect to all mutually independent
variables without any subsidiary constraints. From the definition of £ it easily follows that

where Se, Su, Sp, and Sk denote the variation of the respective independent variable. From
(1.1) and (1.2) we obtain the following optimality conditions satisfied by any stationary
point (e, u, p , X ) of £:

Equation (1.4) is the classical form of the state equation while (1.5) represents the so-called
adjoint state equation. Comparing (1.4) with (1.5) we see that/? = -u so that (1.3) becomes

4



Chapter 1. Why the Mathematical Analysis Is Important

Figure 1.1. Optimal thickness distribution.

From this it follows that

CONVENTION: Here and in what follows the letter c stands for a generic positive constant
attaining different values at different places.

The bending moment M := M(x) — (e3u")(x) satisfies the following boundary value
problem:

whose solution is M(x) = \x(x — 1). Therefore

implying together with (1.8) that

The value of the constant c on the right side of (1.9) can be fixed from the volume constraint.
If y = 1, then e(x) = (8/;r)V*(l - *) (see Figure 1.1).

REMARK 1.1. It is worth noticing that the stiffest simply supported beam has zero thickness
at the endpoints x = 0,1 and, besides the constant volume constraint, no other assumptions
on admissible thicknesses are present. As we shall see later on this is an exceptional situation.
Usually some additional constraints are needed to get a physically relevant solution.

5



Chapter 1. Why the Mathematical Analysis Is Important

It is readily seen that ue(x) = (x — x2)/e and

6

The fact that we were able to find the exact solution of the previous optimization
problem is exceptional and due to the simplicity of the state problem and the particular
form of the cost functional (compliance). Unfortunately most optimization problems we
meet in practice are far from being so simple and an approximation is necessary. We
proceed as follows: first we decide on an appropriate discretization of the state prob-
lem (by using finite elements, for example) and of design parameters (instead of com-
plicated shapes we use spline approximations, for example). Computed solutions to the
discrete state problems are now considered to be a function of a finite number of dis-
crete design variables a — (a\,..., aj) fully characterizing discretized shapes or thick-
nesses. After being inserted into cost functionals, these become functions of a. In this
way we arrive at a constrained optimization problem in M.d whose solutions we shall
look for.

There are two ways to realize this step. The first is based on the numerical solu-
tion of the respective optimality conditions, as in the previous example. This approach,
however, has serious drawbacks. First of all one has to derive the optimality conditions.
This is usually a difficult task especially in problems whose state relations are given by
variational inequalities or even by more complicated mathematical objects. But even if the
optimality conditions are at our disposal they are usually so complex that their numerical
treatment is not easy at all. For this reason the structural optimization community prefers
a more universal approach based on the numerical minimization of functions by means of
mathematical programming methods. But also in this case one should pay attention to a
thorough mathematical analysis in order to obtain additional information on the problem
that can be useful in computations. A typical feature is that minimized functions are usually
nonconvex. This gives rise to some difficulties: nonconvex functions may have several local
minima; further, the minimization method used may be divergent or the result obtained may
depend on the choice of the initial guess. Below we present very simple SSO problems in
one dimension (i.e., d — 1) with states described by equations and inequalities involving
ordinary differential operators. The dependence of cost functions on the design parameter
will be illustrated by the graphs.

EXAMPLE i.i. Let

where 0 < e^^ < emax are given, and consider the optimal sizing problem

where ue solves the following boundary value problem:
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Figure 1.2. Graph of the cost functional.

The graph of J is plotted in Figure 1.2. We see that J is unimodal (i.e., for any choice
of emin, emax it has only one local minimum) but not convex. If one tries to minimize J
numerically using a simple quadratic approximation of /, the method will not converge
provided the initial guess e0 is large enough, say BQ > 1/2.

EXAMPLE 1.2. (See [CdaSl].) Let us consider the following simple prototype of the shape
optimization problem:

where

"mm < "max is given, and ua solves the boundary value problem

In contrast to the previous two sizing optimization problems the differential equation here
is posed on an unknown domain that is to be determined. The solution of this problem is
ua(x) = a2 — x2 and

The graph of J is shown in Figure 1.3. We see that J is nonconvex and it may have one or
two local minima depending on the choice of amin, a,,̂ .
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Figure 1.3. Graph of the cost functional.

In the previous two examples the resulting functions are continuously differentiable.
But this is not always so. With an inequality instead of a state equation the situation may
be completely different, as will be seen from the following example.

EXAMPLE 1.3. (State variational inequality.) Consider the optimal shape design problem
with the same J and Uad as in Example 1.2 but with ua solving the following variational
inequality:

where

It is well known that the solution ua to (1.12) exists and is unique as follows from Lemma A. 1
in Appendix A. Integrating by parts on the left-hand side of (1.12) it is easy to show that
ua satisfies the following set of conditions:

It is readily seen that the function

8
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Figure 1.4. Graph of the cost functional.

satisfies (1.13) and its substitution into J yields the following analytic expression of J as a
function of the design parameter a:

A direct computation shows that /i(l) = —1/3 and J|(l) = 0;i.e., J is notdifferentiable at
a — 1 (see Figure 1.4). Let us comment on this fact in more detail. The external functional

is continuously differentiable with respect to both variables, while the composite function

isnof. From this it immediately follows that the inner control state mapping a i-> ua cannot
be continuously differentiable. Indeed, ua being a solution to the variational inequality
(1.12) can be expressed as the projection of an appropriate function from H1QO, a[) onto
the convex set K(a). A well-known result (see [Ce'a?!]) says that the (nonlinear) projection
operator of a Hilbert space on its closed convex subset is Lipschitz continuous. This in short
explains the source of the possible nondifferentiability of the control state mappings in the
case of state variational inequalities (for more detail on this subject we refer to [SZ92]).

9
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Figure 1.5. Graph of the cost functional.

The fact that a minimized function is not differentiable at some points may have
practical consequences. A common way of minimizing J is to use classical gradient type
methods that require gradient information on the minimized function. The absence of
such information at some points may give unsatisfactory or unreliable numerical results.
Fortunately there is a class of generalized gradient methods for which the nondifferentiability
does not present a serious difficulty and that were developed just to treat this type of problem.
This is a nice illustration of how a thorough analysis and understanding of the problem may
help with the choice of an appropriate minimization algorithm.

The fact that the control state mapping is not differentiable, however, does not mean
that the composite function is automatically nondifferentiable as well. Indeed, let us choose
the new cost functional

(see Figure 1.5). One can easily check that J is a once (but not twice!) continuously differ-
entiable function in Uad. Therefore, for a special choice of cost functionals it may happen
that the composite function is continuously differentiable despite a possible nondifferentia-
bility of the inner mapping. We shall meet the same situation several times in this textbook
(see Chapters 2, 3, 7).

We end this chapter with one shape optimization problem that has no solution, showing
how this fact manifests itself during computations.

where ua e K(a) solves (1.12). Substituting (1.14) into (1.15) we obtain



(dx = dxidxi) and u(a) solves (1.18) in £2(a).
Problem (P2) was solved with the following values of the parameters: C = 2, a^n =

0.1, ttmax = 0.9, and y = 0.5. Shapes were discretized by piecewise quadratic Be'zier
functions. The number of segments is d = 10, 18. Computed results are shown in Figure 1.6.
We see that the designed part F(a) oscillates and the oscillation becomes faster and faster
for increasing values of d. Now a question arises: What does the optimal shape look like?
It is difficult to imagine such a domain on the basis of the obtained results since there is no
"understandable" domain from O that can be deduced from them. In fact the oscillatory
pattern is a consequence of the nonexistence of solutions to (Pa). The rigorous mathematical
analysis of this problem is far from easy and goes beyond the scope of this textbook. Let us
try, however, to give a naive "explanation." Boundary value problem (1.18) describes the
stationary temperature distribution in the body represented by £2 (a), which is isolated on
FI and cooled along F(a). The right-hand side C characterizes the heat source. Since the
area of all £2 (a) is the same, the only way to decrease the temperature in £2 (a) is to increase
the length of the cooling part F(a). This is just what the solution found mimics: F(a)
begins to oscillate. The constant volume constraint is added to avoid the trivial solution
(X* — CKmin.
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Let £2(a) = {(x\,xi) e E2 | 0 < jci < a(x2), x2 e]0,![} be a "curved rectangle"
(see Figure 2.2) with the curved side F(a) being the graph of a function a e Uad, where

with 0 < ttmin < otmax and y > 0 given. Further denote by O — {£2 (a) | a e Uad] the
set of all admissible domains; i.e., O is realized by domains whose curved part F(a) of the
boundary lies within the strip bounded by «„,„,, amax and have the same area equal to y. On
any ft (a), a e Uad, we shall consider the following Dirichlet-Neumann state problem:

where C > 0 is a given constant. We define the following optimal shape design problem:

where
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Figure 1.6. Oscillating boundaries.

A possible way to ensure the solvability of (P2) is to impose additional constraints,
keeping the length of F(a) bounded. Thus instead of (1.17) one can consider another
(narrower) system of admissible domains defined by

where LQ > 0 is given. As we shall see later on, problem (P2) with Uad denned by (1.20)
already has a solution.

Since shape optimization problems are generally nonconvex they may have more than
one solution (see Problem 1.2).

Problems

PROBLEM i.i. Prove that u(a) solves the variational inequality (1.12) iff it satisfies (1.13).

PROBLEM 1.2. [BG75] Consider the optimal shape design problem (Pa) with the state
problem (1.18) and the cost functional (1.19). Prove that if S2(a*) solving (P2) (a* e Uad

given by (1.17)) is not symmetric with respect to the line x2 = 1/2, then £2 (a**), where
a**(x2) := (composite function) a*(l - x2), x2 e]0,1[, is a solution of (P2), too.



Chapter 2

A Mathematical Introduction to
Sizing and Shape Optimization

The aim of this chapter is to present ideas that are used in existence and convergence analysis
in sizing and shape optimization (SSO). As we shall see, the basic ideas are more or less
the same: we first prove that solutions of state problems depend continuously on design
variables (and we shall specify in which sense). Then, imposing appropriate continuity (or
better lower semicontinuity) assumptions on a cost functional, we immediately arrive at an
existence result. The same scheme remains more or less true when doing the convergence
analysis. Before we give an abstract setting for optimal sizing and shape design problems
and prove abstract existence and convergence results, we show how to proceed in particular
model examples. The same ideas will be used later on in the abstract form.

2.1 Thickness optimization of an elastic beam:
Existence and convergence analysis

Let us consider a clamped elastic beam of variable thickness e subject to a vertical load /.
The beam is represented by an interval / = [0, t], t > 0. We want to find the thickness
distribution in 7 minimizing the compliance of the beam, given by the value J(u(e)), where

and u(e) is the solution of the following boundary value problem:

Here ft e L°°(I), ft > fi0 = const. > 0, is a function depending on material properties and
on the shape of the cross-sectional area of the beam. The solution of (2.2) is assumed to be
a function of e, playing the role of a control variable. To define an optimization problem,
one has to specify a class Uad of admissible thicknesses. As we already know, the result of
the optimization process depends on, among other factors, how large Uad is.

13
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Let Uad be given by

i.e., Uad consists of functions that are uniformly bounded and uniformly Lipschitz continuous
in / and preserve the beam volume. The positive constants e^D, em^, L0, and y are chosen
in such a way that Uad ^ 0.

REMARK 2.1. The uniform Lipschitz constraint

appearing in the definition of Uad prevents thickness oscillations and plays an important
role in the forthcoming mathematical analysis.

We are now ready to formulate the following thickness optimization problem:

where J is the cost functional (2.1) and u(e) is the displacement, solving (2.2). In what
follows we shall prove that (P) has at least one solution e*. The key point of the existence
analysis is to show that the solution u of (2.2) depends continuously on the control variable
e. But first we have to specify what the word continuous means. This notion differs for u
ande.

CONVENTION: For the sake of simplicity of our notation throughout the book we shall use
the same symbol for subsequences and the respective original sequences.

Our analysis starts with a weak formulation of (2.2). Let HQ (7) be the Sobolev space
of functions v whose derivatives up to the second order are square integrable in / and satisfy
the boundary conditions i>(0) = i/(0) = v(t) = v'(i) = 0 (see Appendix A). The weak
formulation of (2.2) reads as follows:

where e e Uad and / e L2(I) are given. We adopt the notation (P(e)), u(e),... to stress
the dependence on e € Uad. The continuous dependence of u on e mentioned above will
be understood in the sense of the following lemma.

LEMMA a.i. Let en, e e Uad, be such that en =$ e (uniformly) in I and let un := u(en) be
solutions to (P(en)), n = 1,2,... . Then

and u(e) is the solution of(P(e)).
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(2.4)

as follows from the definition of (P(en)), (P(e)), (2.6), and uniform convergence of {en}
to e in 7 proving strong convergence of {«„} to u(e) := u in the 770

2(7)-norm. D

Proof. Let un e H0
2(7) solve (P(en)); i.e.,

Inserting v := un into (2.4) and using the definition of Uad we obtain

From this and the Friedrichs inequality we see that the sequence {un} is bounded:

Thus one can pass to a subsequence such that

where u is an element of HQ (/). It remains to show that u solves (P(e)). But this follows
from (2.4) by letting n -»• oo. It is readily seen that

Indeed,

taking into account that en =$ e in 7 and (2.6). From (2.7) it follows that u solves (P(e)).
Since (P(e)) has a unique solution, not only this subsequence but the whole sequence {«„}
tends weakly to u in HQ (7). To prove strong convergence, it is sufficient to show that

where ||| • ]|| is a norm with respect to which HQ (7) is complete. Clearly the energy norm

with e being the limit of [en] possesses this property. Then
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Having this result at our disposal we easily arrive at the following existence result
for (P).

THEOREM 2.1. Let Uad be as in (2.3). Then (P) has a solution.

Proof. Denote

where [en], en e Uad, is a minimizing sequence. Since Uad is a compact subset of C ( I ) ,
as follows from the Arzela-Ascoli theorem, one can pass to a subsequence of {en} such that

for an element e* e Uad. At the same time

as follows from Lemma 2.1. From (2.10), (2.11), and continuity of J in H%(/) we see that

i.e., e* e Uad solves (P). D

DEFINITION 2.1. A pair (e*, u(e*)), where e* solves (P) and u(e*) is a solution of the
respective state problem (P(e*)), is called an optimal pair of (P).

CONVENTION: The wording "optimal pair" will be used in the same sense in all other
optimization problems.

COMMENTS 2.1.

(i) There are three substantial properties used in the previous existence proof: the contin-
uous dependence of u(e) on the control variable e; the compactness of Uad, enabling
us to pass to a convergent subsequence of any minimizing sequence; and continuity
of/.

(ii) Some extensions in the setting of (P) are possible: instead of the load / e L2(I) we
can take any / e H~2(I) (the dual of H%(I)), enabling us to consider concentrated
loads / = SXo, e.g., where the Dirac distribution &Xo at a point x0 e 7 is defined by

The functional / given by (2.1) depends on the state variable y e V (V = HQ(!)
in our example) but not explicitly on the control variable e e Uad. It becomes
a function of e only through the composition of / with the control state mapping
u : e i->- u(e). In many situations, however, cost functionals depend on both variables
of (e, v) e Uad x V. For this reason the abstract setting of these problems considers
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cost functionals defined on Uad x V, i.e., depending explicitly on both variables.
From the proof of Theorem 2.1 we see that, for a general / : Uad x #0

2(/) ->• K, the
existence of solutions to (P) is guaranteed provided that J is lower semicontinuous
in the following sense:

(iii) The admissible set Uad defined by (2.3) is quite narrow. It would be possible to extend
it by omitting the uniform Lipschitz constraint, i.e., to take Uad as

Unfortunately, Uad is not a compact subset of C(7). But one can still extend Uad as
follows:

(Z.14)

Then Uad is a compact subset of L°°(I) with respect to L°°* weak convergence. On
the other hand the mapping u : e !->• u(e), e €^ Uad, is not continuous with respect to
this convergence. More precisely, if en, e e Uad are such that

then the sequence {«(?„)} tends weakly to an element u in H^(7), but not necessarily
u = u(e); i.e., the limit element u is not a solution of (POO). In order to analyze
(P) with Uad defined by (2.14), deeper mathematical tools, going beyond the scope
of this book, have to be used.

(iv) Let us again consider (P) with the cost functional (2.1). Since (P(e)) is the problem
with a symmetric bilinear form, its solution can be equivalently characterized as a
minimizer of the total potential energy functional E,

where

It is easy to verify that

Consequently
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Thus the original, minimum compliance problem can be reformulated as a max-min
problem for the functional E : Uad x #0

2(/) ->• R. This form of (P) is closely related
to a saddle-point type problem for E on the Cartesian product Uad x HQ(!) enabling
us to extend Uad even more than has been done so far. Indeed, instead of Uad, Uad,
given by (2.3), (2.14), respectively, one can also consider

i.e., we allow zero thickness of the beam. Theproblemof finding a saddle point of E on
U#d x #o (/) still has good mathematical meaning, regardless of the fact that elements
ofU£d may vanish in subsets of/, implyingthe degeneracy of (P(e)). The explanation
is very simple: in the saddle-point formulation (P(e)) is not solved explicitly. This
approach is used in the so-called free topology optimization of structures, whose goal
is, roughly speaking, to find an optimal distribution of the material permitting the
presence of voids, i.e., the absence of any material in some parts of structures.

We now pass to a discretization of (P), i.e., to its transformation into a new problem,
defined by a finite number of parameters.

We start with a discretization of Uad. Let d e N be given and Aft : 0 = GO <
a\ < • • • < at — t be an equidistant partition of / with the step h — i/d, a, = ih, i =
0, . . . , d. Instead of general functions from Uad we shall consider only those that are
continuous andpiecewise linear on AA; i.e., we define

For a discretization of (P(e)) we use a finite element approach. Let Vj, be the finite dimen-
sional subspace of HQ(!) defined as follows:

i.e., VH contains all piecewise cubic polynomials that are continuous together with their first
derivatives in / and that satisfy the same boundary conditions as functions from HQ (I).

Let eh e U£d be given. Then the discretized state problem (Pf, (eh)) reads as follows:

We now define the discretization of (P) as follows:

where uh(eh) e Vh solves (Ph(eh))-
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It is left as an easy exercise to prove the following theorem.

THEOREM 2.2. Problem (PA) has a solution for any h > 0.

In what follows we shall show how problem (P/,), characterized by a finite number of
degrees of freedom, can be realized numerically. To this end we derive its algebraic form.

Let h > 0 be fixed. Any function eh 6 U£d can be identified with a vector e =
(eo,..., ed) € U whose components are the nodal values of e^, i.e., et = eh(at), i =
0,. . . , d. It is easy to see that

The discrete state problem (P^ (eh)) transforms into a system of linear algebraic equa-
tions,

where K(e) = (fcy(«))" =1 is the (symmetric) stiffness matrix, / = (/;)"=1 is the force
vector, q(e) e E." is the nodal vector representing the finite element solution Uh(eh) e V/,
of (Ph(eh)), and n := n(h) = dim V/,. Any function Vh e Vh is uniquely defined by the
vector v of nodal values Vh(at), v'h(ai), i = 1 d - 1, so thatn = 2(d - 1). Thus the
components of q (e) are the values of M/, and u'h at the nodal points a, e Aj,, i = 1,... ,d—1,
which will be arranged as follows:

The elements of K(e) and / are computed in the standard way:

where {<pj}"=i are the basis functions of V/,. The one-to-one correspondences eh *+ e and

v/, *+ v between elements of U%d and U and Vh and E", respectively, defines the following
isomorphisms TD and 7^:

enabling us to identify U£d with U and V/, with R". In a similar way one can identify the
cost functional J restricted to Vh with a function J : E" -> R:
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where T^1 denotes the inverse of Ts (if / : Uad x ff0
2(/) ->• R depends explicitly on both

variables, then J : U x R" ->• R, where J(e, w) := J(T^l(e), Ts~
l(v))). Therefore the

discrete thickness optimization problem (P/,) leads to the following nonlinear mathematical
programming problem:

where q(e) e R" solves (2.18). Problem (Pd) can be solved using nonlinear mathematical
programming methods. Some of them will be presented in brief in Chapter 4.

Until now, the mesh parameter h > 0 has been fixed. A natural question arises: What
happens if h —>• 0+, meaning that finer and finer meshes are used for the discretization of
Uad and (P(eW Is there any relation between solutions to (P) and (PA) as h -+ 0+? This
is what we shall study now.

Let {Aft}, h -»• 0+, be a family of equidistant partitions of / whose norms tend to
zero and consider the respective families {U£d}, {Vh}, h -> 0+. The next lemma, which is
a counterpart of Lemma 2.1 in the continuous setting, plays a major role in the convergence
analysis.

LEMMA 2.2. Let [eh], e/, e U£d, be such that ei, =3 e in I and let {uh(eh)} be the sequence
of solutions to (Th(eh), h ->• 0+). Then

and u(e) solves (P(e)).

Proof. As in Lemma 2.1 one can prove that {UA(^A)} is bounded:

Passing to a subsequence, there exists u € HQ(!) such that

Next, we show that u solves (P(e)). Let U € H$ (/) be arbitrary but fixed. Then there is a
sequence {TJ/,}, Vh e Vh, such that

From the definition of (Ph(eh)) it follows that

Passing to the limit with h -> 0+ in (2.25) we obtain
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Indeed,

making use of (2.23), (2.24), and uniform convergence of ej, to e in /. The limit passage
(2.27) is trivial. From (2.25), (2.26), and (2.27) it follows that

is satisfied for any v € #Q (/); i.e., u solves (P(e)). Due to its uniqueness, the whole
sequence {uh(en)} tends weakly to u(e) :— u in HQ(!). Strong convergence of {«/,(£/;)} to
u (e) can be established in the same way as was done in Lemma 2.1. D

A direct consequence of the previous lemma is the following convergence result.

THEOREM 2.3. Let {(e^, M/,(ep)} be a sequence of optimal pairs of(fh), h ->• 0+. Then
one can find a subsequence of{(e^,Uh(el))} such that

where (e*, u(e*)) is an optimal pair of (P). In addition, any accumulation point of
{(e%, Uh(e^))} in the sense of (2.28) possesses this property.

Proof. Let {e^} be a sequence of solutions to (PA), h ->• 0+ (if (PA) had more than one
solution, we would choose one of them). Since U£d c Uad Vh > 0 and Uad is compact in
C(7), one can pass to a subsequence of {e%} such that

At the same time

as follows from Lemma 2.2.
Let e e Uad be given. Then one can find a sequence [eh], eh e U£d, such that (see

Problem 2.2)

and
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using Lemma 2.2 once again. From the definition of (P/,) it follows that

Letting h ->• 0+ in this inequality, using continuity of /, (2.29), and (2.31), we arrive at

i.e., (e*, u(e*)) is an optimal pair of (P). From the proof we also see that any other accu-
mulation point of {(e%, ut,(e%))} is also an optimal pair of (P). D

COMMENTS 2.2.

(i) Theorem 2.3 says that (P;,), h ->• 0+, and (P) are close in the sense of subsequences
only. This is due to the fact that (P) may have more than one solution. This theorem,
however, ensures the existence of at least one subsequence of {(e%, Uh(e^))} tending
to an optimal pair of (P). In addition, any convergent subsequence of {(e*h, uh(e%))}
in the sense of (2.28) tends only to an optimal pair of (P).

(ii) Besides the continuous dependence (established in Lemma 2.2) and the compactness
of {U%d} in Uad, yet another property plays a role in the convergence analysis: one
needs the density of {U£d} and {Vh} in Uad, #0

2(7), respectively,

(iii) Since functions from U£d are continuous, their C(I)- and L°°(/)-norms coincide.
Nevertheless the assertion of Lemma 2.2 remains true even if U£d C L°°(7), but
uniform convergence of [eh] in / has to be replaced by convergence in the L°°(/)-
norm. This elementary result will be used below.

Besides the mathematical aspects, practical aspects should also be taken into account.
The set U%d denned by (2.15) is very simple from a mathematical point of view but usually
not acceptable for practical purposes. Rather than a piecewise linear thickness distribution,
engineers prefer stepped beams, which are characterized by a piecewise constant thickness
distribution. In what follows we shall consider this case by changing the definition of U£d.

Let A;, be the partition of / as before. The new set U£d of discrete thickness distri-
butions is defined as follows:

where ?A := eh]la._ltai] (see Figure 2.1).
This means that U£d consists of all piecewise constant functions on A^ satisfying the

same uniform boundedness and volume constraints as functions from the original set Uad.
The uniform Lipschitz constraint is satisfied by the discrete values ei

h, i = I,..., d(h).
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Figure 2.1. Piecewise constant approximation ofUad.

This time, however, U£d is not a subset of Uad since it contains discontinuous functions.
Next, we shall study the following discrete thickness optimization problem:

with uh(fh) € Vh being the solution to (7^(2*)), ?/, e £//**, and 7 given by (2.1).
It is not surprising that a convergence result similar to Theorem 2.3 also remains valid

for (PA) with a minor change concerning convergence of {e^} to e*.

THEOREM 2.4. Let {(?£, «;,(?£))} fee a sequence of optimal pairs o/(Pfc), /z -> 0+. TTzen
,/rom any sequence {(e^,Uf,(e^))} one can pass to its subsequence such that

where (e*, u(e*)) is an optimal pair of (P). In addition, any accumulation point of
{@h, MA(2J))} in the sense of (2.33) possesses this property.

Proof. In view of Comments 2.2(iii) we know that Lemma 2.2 remains true if we change
"eh =3 e in /" to "2* -> e in L°°(/)". We only have to verify the compactness of any
sequence {?;,}, ?/, e Ufi*, and the density type result for {U£d} (see Comments 2.2(ii)).

Let {?/,}, h -> 0+, 2* e f/^d, be an arbitrary sequence. With any ?/,, the following
continuous, piecewise linear function eh defined on the partition A/, : 0 = OQ < a\/2 <
03/2 < • • • < ad_i/2 < ad = I will be associated (see Figure 2.1):

where a,_i/2 denotes the midpoint of the interval [a,-_i, a,], i = \, ...,d. From the con-
struction of eh we see that

and
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Thus {&>,} is compact in C(I) so that there exists a subsequence of {?/,} and an element
e € C(7) such that

satisfying e^n <e< e^M in /, \e'\ < LO a.e. in /. The function ?/, can be viewed as the
piecewise constant interpolant of e/, e W1'00 (7) implying that

as follows from the well-known approximation properties and the fact that the sequence
{II?;, || wi,«>(/)} is bounded. This, (2.34), and the triangle inequality yield

as h -» 0+. At the same time ft edx = y so that e e Uad.
The density of {U%d} in Uad in the L°°(7)-norm is easy to prove. Indeed, let e e Uad

be given and define 2^ as follows:

where xt is the characteristic function of [a,_i, a,-], i = 1 , . . . , d. Clearly ~eh e U%d and
eh-+ einL°°(I), fc-»0+. D

2.2 A model optimal shape design problem
In this section we present the main ideas that will be used in the existence analysis of opti-
mal shape design problems. One of the main difficulties we face in any shape optimization
problem is that functions are defined in variable domains whose shapes are the object of
optimization. One of the possible ways to handle this difficulty is to extend functions from
their domain of definition to a larger (fixed) set containing all admissible domains. This ex-
tension is straightforward for homogeneous Dirichlet boundary value problems formulated
in HQ (£2), since any function from HQ (£2) can be extended by zero outside of Q, preserving
its norm. For this reason our analysis starts with just this type of state problem. For the sake
of simplicity we restrict ourselves to the case when only a part of the boundary is subject
to optimization and, in addition, this part is represented by the graph of a function.

Let

be a family of admissible domains, where
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Figure 2.2. Parameters characterizing admissible domains.

and

(see Figure 2.2). Here C0'1 ([0,1]) is the set of all Lipschitz continuous functions in [0,1]
and the parameters a^n, "max, L0, and y are such that Uad ^ 0.

The family O consists of all "curved rectangles" whose curved sides r(a), represented
by the graph of a e Uad, will be the object of optimization. Since the shape of any n (a) 6 O
is characterized solely by a e Uad, there exists a one-to-one correspondence between O and
Uad: £2 (a) e O •*> a e Uad. Elements of Uad will be called design variables, determining
the shape of £! e O in a unique way.

REMARK 2.2. From the definition of Uad it follows that all tt(a) & O are domains with
Lipschitz boundaries (see Appendix A), with the same area equal to y, and such that all
T(a) remain in the strip bounded by a™,,, amax (see Figure 2.2). In addition, the uniform
Lipschitz constraint prevents oscillations of r(a) (see also Remark 2.1).

REMARK 2.3. The admissible domains depicted in Figure 2.2 are parametrized in a very
simple way. In real-life problems, however, the parametrization of the geometry may
represent a difficult task.

On any £2 (a), a € Uad, we shall consider the following state problem:

where / € Lj^R2). To emphasize that u depends on £2 (a) (and hence on a), we shall
write a in the argument of u.
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Let D be a "target set" that is a part of any ft (a) e (9, say D — ]0, amin/2[x]0,1 [. We
want to find ft (a*) e 0 such that the respective solution u(a*) of CP(a*)) is "as close as
possible" to a given function Zd in D. Assuming Zd € L2(D), the problem can be formulated
as follows:

where u(a) e H^(Q.(ot)) solves CP(a)) and

REMARK 2.4. Since D is the same for all a 6 Uad, the cost functional J depends explicitly
only on the state variable y and becomes a function of a e Uad only through its composition
with the inner control state mapping u : a (->• u(a). Cost functionals, however, may depend
explicitly on both control and state variables. For this reason, the abstract formulation of
optimal shape design problems presented in Section 2.4 uses functionals depending on both
variables.

We start our analysis by introducing convergence in O.

DEFINITION 2.2. Let {ft («„)}, ft(an) e O, be a sequence of domains. We say that (ft(an)}
tends to ft (a) e O (and write ft(aB) -»• ft (a)) iff

/n of/ier words, taking an arbitrary &-neighborhood B^(T(a.)) ofY(a), there exists «o :=
n0(<5) e N such that F(an) C Bs(T(a)) Vn > n0.

From the definition of Uad we have the following result.

LEMMA 2.3. The family O is compact for the convergence of sets introduced in Definition 2.2.

Proof. The proof follows from the Ascoli-Arzela theorem. D

LEMMA 2.4. Let ft(an) ->• ft (a), n -> oo, ft(an), ft (a) e O, and Xn, X be the
characteristic functions of'ft(an), ft(a), respectively. Then

where ft is such that Q, ^ Q, (a) Va € f/arf. /n w/ia? follows we shall take ft =
]0,2amax[x]0,1[.

Another point has yet to be clarified, namely, how to define convergence of functions
belonging to /^(ftCa)) for different a € Uad. Let ft be the same as in Lemma 2.4.
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If v e H£ (£2 (a)) for some a e Uad, then the function v defined by

belongs to Hffi) and ||u|li,n = IMIi,a(0).

CONVENTION: In the rest of this section the symbol ~ above a function stands for its
extension by zero to £2.

DEFINITION 2.3. Let vn e //Q (£2 («„)), v € HQ(&(OI)), an,a e Uad, n -»• oo. We say
that

The symbols ->• and -*• on the right of (2.37) and (2.38) denote classical strong and weak
convergence, respectively, in HQ (£2).

As in the previous section, the following continuous dependence type result plays a
key role in the forthcoming analysis.

LEMMA 2.5. Let £2(an), £2(a) e O be such that fl(an) ->• £2(a) and let un := «(«„) foe
the respective solution to (P(an)), n -> oo. TTien

and u(a) := u\n(a) solves (P(a)).

Proof. The function un € H^(^i(an)) being the solution of (P(an)) satisfies

where S2n := £2(an) and dx := dx\dx2. Inserting <p := un into (2.39) and using (2.36) we
see that {«„} is bounded in HQ(Q). Indeed,

From this and the Friedrichs inequality in HQ (S2) the existence of a constant c > 0 such
that

follows. One can pass to a subsequence of {«„} such that

We first prove that M|jj\jj(S) = 0, implying that W|n(«) e HQ(&(OI)).
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Let x e £2 \ £2 (a) be arbitrary. Since £2 \ £2 (g) is open, there exists a ̂ -neighborhood
5sC*) of x such that fij(J) C B2s(x) C £2 \ £2 (a) and at the same time r(an) c Bs(r(a))
for n e N large enough, as follows from Definition 2.2. Therefore un = 0 in BS(X) so that
u = Oin BS(X), as follows from (2.41). Since x e Q \ £2(a) is arbitrary we have u = 0 in
n \ £2(a). To prove that u\a(a) solves (P(a)) we rewrite (2.39) as follows:

where x« is the characteristic function of £2(an). Let £ € C£°(£2(a)) be fixed. Then f
vanishes in a neighborhood of 3 Q (a) sothat£|n(0n) 6 C~(fi(an)) for« € N large enough
and £|n(a/i) can be used as a test function in (2.42):

Passing to the limit with n ->• oo, using (2.41) and Lemma 2.4, we easily obtain

where x is the characteristic function of £2 (a). This is equivalent to

From the density of Cg°(S2(a)) in H^(n(a)), it follows that (2.44) holds for any | €
Ho(S2(a)); i.e., H|n(a) solves (P(a)). Thus we proved that any accumulation point u of the
weakly convergent sequence {«„} is such that w^j^ = 0 and M|Q(O) solves (P(a)). Such
a function is unique so that not only a subsequence but the whole sequence tends weakly to
u in HQ (£2). Let us prove strong convergence. From the definition of (P(an)) and (2.41) it
follows that

Indeed,

The first and second integrals on the right of (2.45) tend to zero because of (2.41) implying
«„ ->• u in L2(J2) and the Lebesgue-dominated convergence theorem, respectively. D

REMARK 2.5. Since u = Oin £2 \ £2 (a) and M (a) := u\Q(a) solves (P(a)), we have u = u(ot)
in £2. Thus the statement of Lemma 2.5 can be written in the form
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From Lemma 2.5 the existence of a solution to problem (P) easily follows.

THEOREM 2.5. Problem (P) has a solution.

Proof. Denote

where {«„}, an e Uad, is a minimizing sequence. Since Uad is compact in C([0,1]), one
can pass to a subsequence such that

and a* € Uad. At the same time

as follows from Lemma 2.5. This and continuity of J yield

i.e., a* is a solution of (P). D

COMMENTS 2.3.

(i) The family O = (S2(a) | a e Uad] is a special case of domains satisfying the so-
called uniform cone property. This class of domains possesses a very important
uniform extension property (see Appendix A). Since most of the domains that we meet
in real-life problems belong to this class, we restrict ourselves to them throughout the
book.

(ii) The continuity assumption on / used in the proof of Theorem 2.5 is too strong and
can be weakened. Consider a cost functional J depending on both variables a and
y. The existence of solutions to (P) will be guaranteed provided that / is lower
semicontinuous as follows:

We now pass to an approximation of (P); i.e., we shall discretize both the admissible
family O and state problem (P(a)), a € Uad. We start with the former. The simplest
way would be to take piecewise linear approximations of searched boundaries. This type of
approximation has, however, serious drawbacks, as mentioned in Appendix B. Engineers
prefer to discretize admissible domains by domains that are smooth enough and at the same
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Figure 2.3. Approximation of the boundary.

time are defined by a finite number of parameters. For this reason piecewise spline approx-
imations of r(«) locally realized by quadratic Bezier functions will be used throughout this
book. For more detail we refer to Appendix B.

Let d e N be given; A^ : 0 = a$ < a\ < • • • < aj = 1 be an equidistant partition of
[0,1], a, = ix, x = l/d, i = Q,...,d; and a,-+i/2 be the midpoint of [a,-, a«+i]. Further
let A,- = (a,-,ix), a, eR, i = 0, . . . ,d, be design nodes and Ai+i/2 — 5(A,- + A;+i)bethe
midpoint of the segment A, A,+i, i = 0 , . . . , d — 1. In addition let a_i/2 = — y, 0^+1/2 =
1 + f, A_i/2 = (|a0 + |«i, 0-1/2), A</(X)+1/2 = (|ad-i + |ad, 0^+1/2) (see Figure 2.3).
Introduce the sets

REMARK 2.6. The triple {Aj_i/2, A,, A,-+i/2} is termed the control points of the Be"zier
function (see Appendix B).

In order to define a family of admissible shapes locally realized by B6zier functions, it
is necessary to specify a, e R defining the position of A/, i = 0 , . . . , d. With the partition
A;* we associate the set Q"^ c Uad of continuous, piecewise linear functions over A^:
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From the previous section we already know that Q"^ can be identified with the convex,
compact subset U C Rd+1:

where a,- = a^fa), i = 0 , . . . , d; a* € Q°^.
The family of admissible discretized design domains is now represented by

where

We now turn to an approximation of CP(a)). We use the finite element method with
continuous, piecewise linear polynomials over a triangulation of the so-called computational
domain, an appropriate approximation of ft (s*) € Ox. We now describe its construction.
To this end we introduce another family of regular partitions {A;,}, h -> 0+, of [0,1],
A/, : 0 = bo < b\ < • • • < bj(h) = 1 (not necessarily equidistant), whose norm will be
denoted by h. Next we shall suppose that h-^O+iffx^- 0+. Let rhs^ be the piecewise
linear Lagrange interpolant of s* on A&:

The computational domain related to ft (s^ will be represented by ft (o,s^); i.e., the
curved side r(s^), the graph of s* € U??, is replaced by its piecewise linear Lagrange
approximation r/,s^, on A/,. The system of all ft (r/,sx), SK € Uff, will be denoted by O^h
in what follows:

Since ft(r/,.sx) is already polygonal, one can construct its triangulation T(h, s^) with the
norm h > 0 (the same as above) and depending on sx e Uff.

CONVENTION: The domain ft(r/,.yx) with a given triangulation T(h, s^) will be denoted
by ft;, (SK) in what follows.

With any ft^Cs^) the space of continuous, piecewise linear functions over T(h, s*)
will be associated:
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The state problem is discretized in a standard way. For any s* 6 U^d fixed, we define
it as follows:

Finally, the discretization of (P) reads as follows:

where u/, (s*) is the solution of (Ph (s^)). The approximate optimal shape is given by £2 (s*^).

Next, we shall analyze

• the existence of solutions to (P/,^),

• the relation between solutions o/(P) and (P/,x) as h, tt -> 0+.

In order to establish these results, we have to impose additional assumptions on the family
of triangulations [T(h, s*)}, h,n -* 0+, which are listed below.

We shall suppose that, for any h, x > 0 fixed, the system {T(h, s^)}, s^ e U^d,
consists of topologically equivalent triangulations, meaning that

(Tl) the triangulation T(h, s*) has the same number of nodes and the nodes still have
the same neighbors for any s* e U^d,

(T2) the positions of the nodes of T(h, s*) depend solely and continuously on variations
of the design nodes {A, }f=0.

For h, K -»• 0+ we suppose that

(T3) the family [T(h, s^)} is uniformly regular with respect to h, x, and s* e U^d:
there is !?0 > 0 such that &(h, sx) > &0 VA, x > 0, Vs* e U^d, where &(h, s*) is
the minimal interior angle of all triangles from T(h, s*).

In general boundary value problems, boundaries of designed domains usually consist of
several nonoverlapping parts where different types of boundary conditions are prescribed.
In this case we suppose that

(T4) the family [T(h, s*)} is consistent with the respective decomposition of bound-
aries (see Appendix A) for any s* € U^d and for any K, h > 0.

CONVENTION: Throughout the book we shall consider only such families {T(h, s^)} that
satisfy (T1)-(T4).

As in the previous section one can show that (P;,^) leads to the following nonlinear
mathematical programming problem:
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where q(a) e W is the unique solution of a linear algebraic system

U is defined by (2.48), and J is the algebraic representation of J.

REMARK 2.7. From (Tl) it follows that n = dim Vf,(sx) does not depend on s* & Uff or
equivalently on a e U. The elements jfcy (a) and ft (a) of the stiffness matrix K(u) and the
force vector /(a), respectively, are given by

where { ,̂}"=1 is the Courant basis of Vh(ste).

A simple but important consequence of assumptions (Tl) and (T2) is the following.

LEMMA 2.6. Let (Tl) and (T2) be satisfied. Then the mapping

is continuous.

Proof. Let [Nj}"=l be the set of all the interior nodes of T(h, s*), Nj = (x\(j), X2(j))-
Then from (Tl) and (T2) it follows that

where <I>ji : U -> E2 are continuous functions. Let <pt e Vj, (s*) be the Courant basis
function associated with the node N{, i.e., <pi(Nj) = Stj, where 5y denotes the Kronecker
symbol. Finally, let T € T(h, s*) be a triangle sharing Nf as one of its vertices and let
NJ , Nk be the remaining vertices. It is known that

and

where the coefficients a,(a), &,(a), and ct(ci) are continuous functions of a in U. Thus
<PJ|J and Vx<pt\T are continuous functions of a e U. Since meas T depends continuously on
a, we easily deduce that

is a continuous mapping for any z, j = 1, . . . ,«. D

From this and (2.52) we see that
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^z:
Suppose now that the right-hand side / is continuous in £2. The elements of the force

vector / will be computed using the following simple quadrature formula:

where <2r is the center of gravity of T. Then one has the following result.

LEMMA 2.7. Let (Tl) and (T2) be satisfied, f e C(£2), and the force vector /(a) be
computed by means of (2.54). Then the mapping / : a !->• /(a), a e U, is continuous.

REMARK 2.8. If /(a) were computed exactly, i.e., no numerical integration were used, then

the assertion of Lemma 2.7 would be true even if / ^ C(S2). From the analysis presented
above we also see that if the mappings $,, i = l,...,n, from (2.52) belonged to the class
Cl for an integer i, then the respective coefficients a, (a), bf (a), and c, (a) in (2.53) would
share the same smoothness property and the mapping K : a t-> K(a) would preserve the
C1-regularity. The same holds for the mapping / : a i-» /(a) provided that / is smooth

^^
enough in £2.

From Lemmas 2.6 and 2.7 we easily get the following continuity type result.

LEMMA 2.8. Let all the assumptions of Lemmas 2.6 and 2.7 be satisfied. Then there exists
a constant c > 0 such that

holds for any a, ft &U, where q(ei), q(ft) are solutions of(P(a)), (P(ft)), respectively.

An easy consequence of Lemma 2.8 is the following.

THEOREM 2.6. Problem (Pd) has at least one solution.

Proof. Since the composite mapping a (-»• q(a) H> i7(<7(a)) is continuous in W, as follows
from (2.55) and continuity of J, and U is the compact subset of Rd+l, the existence of a
minimizer follows from the classical result of the calculus of variations. D

Next we shall pay attention to the convergence analysis. We start with two auxiliary
lemmas, which will be used in subsequent parts.

LEMMA 2.9. Let s* e Uff. Then s* e W2'°°([0,1]) and

(i) Wmin < S*(X2) < OW V*2 e [0, 1];

(ii) \s'K(x2)\ < LQ V*2 e [0,1];
(iii) the segment A,-A,-+i is tangent to the graph ofs* at A,-+i/2, i — 0,..., d — 1;
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(iv) the graph of s'x := Sx|[a,_1/2,aj+1/2] e conv{A,-_i/2, A,-, A,-+i/2} := the convex hull
o/{Aj_i/2, A,-, Aj+i/2) for i = \,...,d — \ with the following modifications for
i = 0, d:

Proof. The fact that s* e W2'°°([0,1]) is straightforward, as are (i)-(iv), which follow from
the basic properties of Be"zier functions (see Appendix B). The error estimate (v) follows
from (ii) and

It remains to prove (vi). Let a* e Q£ be the piecewise linear function determined by the
design nodes A,, i = 0, . . . , d. Then

as follows from (ii) and the fact that ax^aija/+l] is tangent to s* at A,-+i/2. From this, (vi)
easily follows. Indeed,

The next lemma collects the basic properties of the system {O*}, x -» 0+. Recall
tbatOx = {n(*x)|sxel7^}.

LEMMA 2.10. It holds that

(i) there exists a system O of domains, compact with respect to convergence, introduced
in Definition 2.2 such that

(v) there exists a constant c > 0 that does not depend on x, h, and s* € Uff such that

(vi) there exists a constant c > 0 that does not depend on x and s* € U^1 such that

where a^an, ama*, LQ, and y are the same as in the definition ofUad.
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(ii) for any sequence {^(s^)}, &(SH) e OK, tt ->• 0+, there exist its subsequence and
an element £2 (a) e O such that

(iii) for any £2(a) e O there exists a sequence (£l(Sx)}, ^2(sK) e O*, such that

(iv) z/nCsx) -»• £2(a), x -> 0+, tfien

Proof. Since the constant area constraint is slightly violated by functions s* e U^d, as
follows from Lemma 2.9(vi), we see that Ox <£_ O. On the other hand, omitting this
constraint in the definition of O and keeping all the remaining parameters unchanged,
we obtain a new family O possessing the compactness property as stated in (i). From
Lemma 2.9(i)-(ii) it follows that C^ c C> Vxr > 0.

Let [S2(Sx)}, £2(jx)^e Ox, be given. Then from (i) it follows that there exists its
subsequence and £2 (a) € O such that

From Lemma 2.9(vi) we see that /^ afe) dx2 — y, meaning that £2 (a) e O; i.e., (ii) holds.
Let a € C7ad be given. Then there exists a sequence {a^}, a* e Q^ (see Problem

2.2), such that

With any a „ we associate a unique s* e [/^defined by the design points A, = (ax(a,-), ix),
j = 0, . . . , d. Then

as follows from (2.56) and (2.57), proving (iii).
Finally, (iv) is a direct consequence of Lemma 2.9(v). D

The following continuity type result for approximate solutions is important in the
forthcoming convergence analysis.

LEMMA a.n. Lets* =3 a in [0, 1], xr -> 0+, sx e £/£*, a 6 £/""*, am/M/, := uh(sx) be
a solution to (Ph(s^)), h -> 0+. Then

andu(a) := u\Q(a) solves (P(a)).

Proof. Using the same approach as in Lemma 2.5 one can show that [\\uh \\^} is bounded
so that
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holds for an appropriate subsequence and u e HQ (ft). Since o,,sx =4 a in [0,1] as h, x ->
0+ we easily get that u = 0 in Q \ £2 (a) so that w(a) := «|jj(a) e HO (£2 (a)). This can be
proved just as in Lemma 2.5. We now show that u(a) solves (P(a)). Let § e Co°(£2(a))
be given and & be the piecewise linear Lagrange interpolant of £|n,,(jx) on T(h, jx). For
A, x > 0 small enough, the graph of r/,51* has an empty intersection with supp£. This
means that £A € VA(JX) and it can be used as a test function in (P>,0X)). In addition,

where c > 0 is a constant that does not depend on h, x, and jx, as follows from the well-
known approximation results and the uniform regularity assumption (T3) on {T(h, sx)}.
Finally,

where Xhx and x are the characteristic functions of Q(sx) and £2 (a), respectively. The
definition of CP/,0X)) yields

Passing here to the limit with x, h -»• 0+ and using (2.58), (2.59), and (2.60) we obtain

i.e., M|n(a) is the solution of CP(or)). Since (P(a)) has a unique solution, the whole sequence
{MA(JX)} tends weakly to u in HQ(&). Arguing as in Lemma 2.5, one can prove strong
convergence. D

On the basis of this lemma we have the following result.

THEOREM 2.7. Let {(s^, uh(s^))} be a sequence of optimal pairs of(Vh}t), h ->• 0+. Then
one can find a subsequence of{(s^, MA(*X))} such that

where (a*, M*|n(a*j) is an optimal pair of (P). In addition, any accumulation point of
{(s*x, MfcCO)} in the sense of (2.61), (2.62) possesses this property.

Proof. Let a e Uad be arbitrary. Then there exists a sequence {Jx}, Jx € Uff, such that
(see Lemma 2.10(iii))

and
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where u(a) :— u\n(a) solves (P(a)), as follows from Lemma 2.11. From Lemma 2.10(ii)
it follows that one can pass to a subsequence of {s^.} such that

and

where u(a*) := u*^(a') solves (P(a*)), applying Lemma 2.11 once again. Using the
definition of (P/^) we have

Letting h, x -> 0+, using (2.63), (2.64), and continuity of /, we arrive at

2.3 Abstract setting of sizing optimization problems:
Existence and convergence results

The arm of this section is to give an abstract formulation of a large class of sizing optimization
problems and their approximations. We present sufficient conditions under which they have
at least one solution and discretized problems are close in the sense of subsequences to the
respective continuous setting. We shall follow ideas used in the particular sizing optimization
problem studied in Section 2.1. However, in view of other possible applications, we shall
consider a more general class of state problems given by variational inequalities.

Let V be a real Hilbert space, || • || its norm, V' the dual space of V with the norm
|| • ||*, {•, •> the duality between V and V, and K c V a nonempty, closed, and convex set.
Let U be another Banach space and Uad C U be its compact subset, representing the set of
all admissible controls. With any e e Uad we associate a bilinear form ae : V x V -> R.
Next we shall suppose that the system {ae}, e e Uad, satisfies the following assumptions:

(.41) uniform boundedness with respect to Uad:

(A2) uniform V-ellipticity with respect to Uad:

(A3) symmetry condition:

For any e e Uad we shall consider the following state problem:
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where / e V is given. From (.41) and (.42) it follows that (P(e)) has a unique solution
u(e) for any e e Uad (see Appendix A). Finally, let / : Uad x V ->• R be a cost functional.

An abstract sizing optimization problem reads as follows:

where w(e) solves CP(e)).
In order to guarantee the existence of solutions to (P), we need additional continuity

assumptions on the mappings a : e i-> ae, J : (e, y) K> J(e, y), e e Uad, y e V. Next we
suppose that

REMARK 2.9. Assumption (.43) is not necessary but it simplifies our presentation. As-
sumption (.44) can be equivalently expressed in a more explicit form. Let A(e) e C(V, V)
be the mapping defined by

Then (.44) is equivalent to saying that

(.46) en^emU, en,ee Uad =» A(en) -» A(e) in £(V, V).

This form of the continuous dependence of ae on e will be used in what follows.

We start our analysis by proving that the mapping u : e h-> u(e), where e e Uad and
M(e) solves (P(e)), is continuous. As we akeady know, this property plays a major role in
the existence analysis.

LEMMA 2.12. Suppose that (.41)-(.44) are satisfied. Let en -> e in U, en,e e Uad, and
un := u(en) e K be a solution of(P(en)), n ->• oo. Then

andu(e) solves (P(e)).

Proof. Let us fix v e K. Then, from the definition of (P(en)), (Al), and (A2), it follows
that
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implying the boundedness of {«„}:

One can pass to a subsequence of {«„} such that

Let us show that u solves (P(e)). The convex set K, being closed, is weakly closed, so that
u € K, as follows from (2.66). From the definition of (P(en)) we have that

provided that both limits exist. From (2.66) we see that

The evaluation of the limit on the left of (2.67) is not so straightforward. We first prove that

holds for any v e K. Indeed,

making use of (A3), (A6), (2.65), and (2.66).
Next we show that

Inserting v := u into (P(en)) we obtain

On the other hand,

taking into account (A3), (A6), and (2.69). From this and (2.71) we arrive at (2.70). Using
(2.69) and (2.70) we see that
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From this, (2.67), (2.68), and (2.69) it follows that the limit element u € K satisfies

i.e., M solves (P(e)). Since u is unique, the whole sequence {«„} tends weakly to u in V.
Strong convergence of [un] to u(e) := u now easily follows:

taking into account (.46), (2.66), and (2.70). D

We are now ready to prove the following existence result.

THEOREM 2.8. Let Uad be a compact subset ofU and let (,4l)-(.45) be satisfied. Then
(P) has a solution.

Proof. Let [en], en 6 Uad, be a minimizing sequence of (P):

Since Uad is compact, one can find a subsequence of [en] and an element e* e Uad such
that

From the previous lemma we know that

where u(en), u(e*) are solutions of (P(en)), (P(e*)), respectively. This, (2.72), and lower
semicontinuity of J yield

i.e., e* is a solution of (P). D

We now pass to an approximation of (P). Let h > 0 be a discretization parameter
tending to zero (for example, a mesh norm in finite element methods). With any h > 0 finite
dimensional spaces Vh C V, [//, C U will be associated. The symbol U stands for another
Banach space such that U c U. The reason for introducing U is simple: sometimes it
is more convenient to work with approximations of Uad that do not belong to the original
space U (cf. U£d given by (2.32), which is a subset of U = L°°(I), but not of U = C(/)).
The nonempty, closed, convex set K will be approximated by nonempty, closed, convex
subsets Kh C V/,, not necessarily being a part of K, i.e., Kh <t K in general. Similarly,
the set of admissible controls Uad will be replaced by compact subsets U£d C U/,- Again,
we do not require that U%d C Uad\ Next we shall suppose that the bilinear forms ae are
also defined for any e € \Jh>0 U£d. The state problem will be approximated by means of
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a Galerkin type method on KH, using elements of U£d as controls. Thus, for any CH e U£d

we define the following problem:

The approximation of (P) is now stated as follows:

where Uh(eh) solves (Ph(eti))- In what follows we present an abstract convergence theory;
i.e., we shall study the mutual relation between solutions of (P) and (P/,) as h ->• 0+.

To this end we shall need the following additional assumptions:

COMMENTS 2.4.

(i) If U = U and Ugd j: Uad Vh > 0, then assumptions (Al)h-(A4)h follow
from (Al)-(A4) and M = M, a — a;

(ii) (A5)f, and (Al)h are standard density assumptions;

(iii) If Kh C K V/z ->• 0+, i.e., AT/, is the so-called inner approximation of K, then (A6)/,
is automatically satisfied;

(iv) (.A8)/, is a compactness type assumption.



2.3. Abstract setting of sizing optimization problems 43

The convergence analysis starts with the following auxiliary result.

LEMMA 2.13. Let (Al~)r,-(-A6)h be satisfied and {e/,}, eh e U%d, be a sequence such that
eh -> e € Uad, /i -» 0+, in U. Then

where Uh(eh), u(e) are the solutions 0/CP/,(e/,)), (P(e)), respectively.

Proof. We first prove that the sequence {«/,}, UH '.= uh(eh) e Kh, is bounded in V. Let
v € K be a fixed element. From (A5)/, the existence of {vi,}, Vf, e Kh, such that

follows. From the definition of (Phteh)), (Al)h, and (A2)h we have

implying the boundedness of {M/,}. Therefore one can pass to a subsequence of {M/,} such
that

From (A6)h it follows that u € K. Next we show that u solves the limit problem (P(e)).
LettJe K be an arbitrary element and {tJ^}, U/, e Kh, be a sequence satisfying (2.73).

Then from the definition of CP/,(e/i)) it follows that

Passing to the limit with h -> 0+ and using (2.73) and (2.74) we obtain

We now pass to the limit on the left of (2.75) by modifying the approach used in the proof
of Lemma 2.12. It is easy to show that

Indeed,

as follows from (A4)h, (2.73), and (2.74). Also the analogy with (2.70) remains true:
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holds for any sequence {w/,}, u/, e Kh, such that w), —> u, h —>• 0+, whose existence
follows from (.45);,, implying that

and consequently

From this and (2.76) we conclude that

i.e., u(e) := u solves (P(e)). Since u(e) is unique, the whole sequence {«/,} tends weakly
to u(e) in V. It remains to show strong convergence. Let {UH}, UH £ Kh, be a sequence
such that

Then

as follows from the definition of (Ph&h)), (2.74), (2.77), and (2.79). From this and the
triangle inequality we arrive at the assertion. D

On the basis of the previous lemma, we prove the following convergence result.

THEOREM 2.9. Let (Al)h-(-A.9)h be satisfied. Then for any sequence {(e*h, Uh(e^))} of
optimal pairs of(fh), h —>• 0+, there exists its subsequence such that

In addition, (e*, u(e*)) is an optimal pair o/(P). Furthermore, any accumulation point of
{(e%, Hfc(ep)} in the sense of (2.80) possesses this property.

Proof. Let e e Uad be an arbitrary element. From («47)/, the existence of a sequence
{eh}, eh e U£d, such that

follows. Using (.48);, one can find a subsequence {e*h } of {e*h} such that

At the same time
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where u(e*~), u(e) are solutions of (P(e*)), (P(e)), respectively, as follows from
Lemma 2.13. The definition of (¥hj) yields

Letting/^ -* 0+in (2.81), using previous convergences of {(e*h., uhj(e*hj))}, {(%, MA,. (%))},

and <y49)ft, we may conclude that J(e*, u(e*)) < J(e, u(e)) Ve e Uad. D

REMARK 2.10. It would be possible to consider more general approximations of (P) in
which the bilinear form a, the linear term /, and the cost functional / are replaced by
suitable approximations ah, f h , and ./„, respectively. Such approximations in practical
applications occur when a numerical integration is used for the evaluation of integrals
defining a, f, and J. In this case one can also formulate sufficient conditions on the
families {a/,}, {fh}, and {.//,} under which the continuous and discrete problems are close
in the sense of subsequences.

2.4 Abstract setting of optimal shape design problems
and their approximations

In contrast to sizing optimization, when control variables appear in coefficients of differential
operators, the situation in shape optimization is different and more involved: this time
domains themselves, in which state problems are solved, are the object of optimization.
Two basic questions immediately appear, namely how to define convergence of sets and
convergence of functions with variable domains of their definition. We have already met
and solved these problems for the particular example hi Section 2.2. Convergences of sets
and of functions defined in variable domains, however, can be introduced in many different
ways, depending on the type of state problems we consider. For this reason we shall not
specify any particular choice of these convergences in the abstract setting.

Any formulation of the problem starts with introducing a family O of admissible
domains; i.e., O contains all possible candidates among which an optimal one is sought.
The choice of O depends on the particular problems that we solve. It should reflect all
technological constraints characterizing the problem. Further, let O be a larger system
containing O. The reason for introducing O will be explained later on in this section.

Let {£2,,}, fin e O, be a sequence and £2 e O. We first define a rule that enables us
to say that {&„} tends to £2. This fact will be denoted by

o
Next we shall suppose that the convergence -> satisfies the following (very natural) as-
sumption:

For any subsequence {Qnk} of {fin} satisfying (2.82) it holds that

i.e., any subsequence of the convergent sequence tends to the same element as the original
one.
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With any ft e O we associate a function space V(ft) of real functions defined in ft.
Next we introduce convergence of functions belonging to V(ft) for different ft e 0. In
particular, if {yn}, yn e V(ftn), ftn € O, and y e V(ft), ft € O, we have to specify
convergence of {yn} to y:

We use the notation ~* in order to distinguish this convergence from standard ones in the
space V(ft) with ft e 0 being fixed. Again we suppose that abstract convergence (2.84)
satisfies an assumption similar to (2.83):

For any subsequence [ynt] of[yn] satisfying (2.84) it holds that

In any ft € O we solve a state problem. In this way we define a mapping u that with
any ft e O associates an element w(ft) e V (ft) that is the solution of a partial differential
equation (PDE), inequality, etc., describing the behavior of a physical system represented
by ft:

CONVENTION: Throughout this book we suppose that CP(ft)) has a unique solution for any
ft eO.

Let Q be the graph of the mapping (w(-)) restricted to O; i.e.,

Finally, let J : (ft, y) H» /(ft, y) e R, ft e O, y e V(ft), be a cost functional.
An abstract optimal shape design problem reads as follows:

where w(ft) e V(ft) solves CP(ft)).
The existence of solutions to (P) will be ensured by an appropriate compactness

property of Q and lower semicontinuity of J. Next we shall suppose that

(BY) (compactness ofQ)
for any sequence {(ftn, w(ftn))}, (ftn ,w(ftn)) e 0, ffoere exists its subsequence
{(ftnt, w(ftnj)} and an element (ft, w(ft)) e Q such that

(B2) (lower semicontinuity of J)
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REMARK 2.11. Convergences of sets and functions in (SI), (B2) are understood in the
sense introduced^bove. The usual way of verifying (Bl) is as follows: we first prove that
O is compact in O\ i.e., for any sequence {^ln}, £2« € O, there is a subsequence {&nk} and
an element £2 6 O such that

Next we show that solutions w(S2) of (P(&)) depend continuously on variations of fi e O:

This together with (2.86) implies (Bl).

We are now ready to prove the following result.

THEOREM 2.10. Let (Bl), (B2) be satisfied. Then (P) has at least one solution.

Proof. Denote

where {S2n}, £2n e O, is a minimizing sequence of (P). From (Bl) the existence of
{(nnt,u(nnt))} C {(nn, w(nn))} and (£2*, «(£2*)) e£ such that

follows. From this and (B2) we arrive at

i.e., (£2*, M(£2*)) is an optimal pair of (P). D

We now turn to an abstract formulation of approximations of (P). We shall follow
the same ideas used in Section 2.2 when approximating the particular problem. Two types
of discretized domains will be introduced: discrete design and computational domains.
The boundaries of discrete design domains are usually realized by smooth piecewise spline
functions (for example, Be"zier curves). The optimal discrete design domain is the main
output of the computational process on the basis of which a designer makes decisions.
On the other hand, computational domains represent an auxiliary tool that simplifies the
numerical realization of state problems. If, for example, standard straight finite elements for
the approximation of (P(£l)) are used, computational domains are represented by polygonal
approximations of discrete design domains where all computations will be performed.

Let x > 0 be a discretization parameter and n(x) be the number of parameters
denning the shape of discrete design domains Q^. For x > Q fixed, the set of all admissible
discrete design domains will be denoted by O*. We shall suppose that the number n(tt) is
the same for all £1* € O^, x > 0 fixed, and O^ C O for any x > 0 but not necessarily
0*CO.
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Figure 2.4. Design and computational domains with triangulation.

REMARK 2.12. Due to the presence of complicated constraints appearing in the definition
of O, it is sometimes difficult to construct 0X as a subset of O. Some constraints for x > 0
given might be violated. For this reason we introduced a larger system O. Any 0X, x > 0,
can be viewed as an external approximation of O. We shall formulate assumptions under
which the gap between O and 0X disappears when x -> 0+.

With any £2X e 0X we associate in a unique way a computational domain (fix)fc.
where h := h (x) > 0 is another discretization parameter such that there exists a one-to-one
relation between h and x such that

In other words, from the knowledge of ^LK one can construct (£2X)/, and vice versa. To
clarify—if computational domains (£2X)& are realized by polygonal approximations of £2X,
then h is related to the number of sides of the respective polygonal domain approximating
Six and also to the norm of a triangulation T(h, x) of (£2X)/, used for the construction of
finite element spaces (see Figure 2.4). Instead of (£2X)A we shall write £2x/! in brief. The
set of all computational domains corresponding to <9X will be denoted by O^H- In what
follows we shall also suppose that <9X/, C O for any x > 0, /z(x) > 0.

With any £2X/, € OXA a finite dimensional space Vft(£2Xft) C V(£2x/i) will be associ-
ated. We shall suppose that dim VyJ2x/,) « fAe same for all ftxA € OxA, A, x > 0 fixed.
Since both (9X and Ox/, belong to O, the same convergences of sets and functions as before
can be used. Finally we define a mapping

associating with any £2X>, e O^h a unique element uh (S2xA) from Vj, (£2X/,) and defining an
approximation of the state problem.

Thus, starting from £2X € Ox, we have the following chain of mappings:

The approximation of (P) reads as follows:
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The set £2^A will be called the optimal computational domain, while £2^, which can be
reconstructed from £2^, is termed the optimal discrete design domain.

Solutions to discrete state problems are available only on computational domains so
that only these can be used when evaluating /. From what has been said before, however, it
follows that not the optimal computational but the respective optimal discrete design domain
is of primary interest.

CONVENTION: By a solution o/(P/,x) we understand £2^. corresponding to £2£.ft. An optimal
pair o/CPfcx:) will be denoted by (£2^, M/,(£2^A)) in what follows.

Next we shall analyze convergence properties of (FW) as n, h ->• 0+. To this end
we introduce the following assumptions on approximated data:

(51)x V£2 6 O 3{£2*}, &„ € C>x, such that

(B2)^ for any sequence {£2^}, £2X e O*, there exists a subsequence {£2*,} and an
element £2 e O such that

COMMENTS 2.5.

(i) (Bl)x is the density type assumption for the systems {O*}, {O^} in O. In addition
it says that if {£2^} tends to £2 e O, then {£2^} tends to the same element,

(ii) (B2)x is the compactness type assumption saying that the limit pair (£2, w(£2)) e Q.

(iii) (B3)x is the continuity property of /.

We conclude this section with the following result.

THEOREM 2.11. Let (B\)^-(B3)X be satisfied. Then for any sequence {(£2^, wA(£2^.A))}
of optimal pairs o/CF/,^), h —> 0+, f/zere exists to subsequence such that

Inaddition, (£2*, w(£2*)) w an optimal pair of'(P). Any accumulation point of {(£2*^, M/,(£2^A))}
i« f/ze je«se o/ (2.87) possesses this property.
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Proof. From (B2)* it follows that there exists a subsequence {Q,*^ } of {£2 .̂} and an element
&* e O such that

Let £2 e 0 be arbitrary and {£2>J, Q.* e C?x, be a sequence such that

The existence of such a sequence follows from (Bl)^. Applying (B2)x once again to the
sequence {(£2**, M&(£2j^))} we have a similar result to (2.88) with £lx., &Xjhj instead of
^•*3f> &*x h > respectively. (Observe that due to (2.83) and (2.85) we can take the common
filter of indices {KJ , hj} for which all these convergences hold true.) The rest of the proof
now easily follows from the definition of (P/,; Xj.):

Passing to the limit with hj, jtj -*• 0+ and using (B3)x we arrive at

Since £2 e O is an arbitrary element we see that (£2*, M(£2*)) is an optimal pair of (P). From
the proof it is also readily seen that any accumulation point possesses such a property. D

REMARK 2.13. It would be possible to consider the case in which both the computational
and discrete design domains coincide.

2.5 Applications of the abstract results

2.5.1 Thickness optimization of an elastic unilaterally
supported beam

This section presents an example of sizing optimization with a state variational inequality.
We shall prove the existence of a solution to this problem and analyze its approximation by
using the abstract results of Section 2.3.

Let us consider the same elastic beam of variable thickness e, subject to a vertical
load /, as in Section 2.1, with the following minor change: the deflection u of the beam is
now restricted from below by a rigid obstacle described by a function <p e C(I) (we use the
notation of Section 2.1). We want again to find the thickness distribution e e Uad, with Uad

defined by (2.3), minimizing the compliance (2.1). The state problem is now represented
by the following elliptic inequality:
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where

Next we shall suppose that <p(0) < 0, <p(i) < 0, implying that K is nonempty. It is readily
seen that K is a closed, convex subset of HQ (/). Furthermore Uad is a compact subset of
U = C(I), as follows from the Ascoli-Arzela theorem.

The thickness optimization problem reads as follows:

where u(e) e K solves (P(e)).
We prove the following result.

THEOREM 2.12. Problem (P) has a solution.

Proof. We use Theorem 2.8. Clearly (.41), (.42), (.43), and (.45) are satisfied. Let us
check (.44):

as n -»• oo, provided en =t e in /, en, e e Uad. The existence of a solution to (P) now
follows from Theorem 2.8. D

Let us pass to the approximation of (P). The convex set K will be replaced by

with Vh as in (2.16); i.e., Kh contains all functions from Vj, satisfying the unilateral con-
straints at all the ulterior nodes of A/,. Observe that Kh is not a subset of K, in general. As
far as the approximation of Uad is concerned, we shall distinguish two cases:

(i) Ug1 given by (2.15). Then U = U - C(I).

(ii) U£d = U£dVh>0 defined by (2.32). In this case U = C(I), U = L°°(I).

For eh € U£d fixed, we define the following discrete state problem:

The approximation of (P) is given as follows:

with uh(eh) € Kh being the solution of (Ph(eh))-
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Next we shall prove that (P) and (P/,), h ->• 0+, are close in the sense of subsequences
as follows from Theorem 2.9. To this end we shall verify assumptions (Al)h-(A9)h of
Section 2.3. It is readily seen that (Al)h—(A4)h, (A9)h are satisfied as well as (A7)h and
(A%)h for Uf given by (2.15) (see Problem 2.2); for U£d = U£d denned by (2.32) we refer
to the proof of Theorem 2.4 and Problem 2.5. It remains to verify (A5)h and (A6)h- These
assumptions follow from a lemma.

LEMMA 2.14. Let v e K be given. Then there exists a sequence {vt,}, Vh € Kh, such that

If{vh}, Vh € Kh, is such that

then v e K.

Proof. We shall show that the set K D CQ°(/) is dense in K in the H$ (/)-norm. To simplify
our presentation we suppose that the function (p describing the obstacle is such that

The case for which the value of (p at one of the endpoints of / is equal to zero is left as an
exercise (see Problem 2.10).

Choose a function 4> 6 H$(I) such that <t>00 > 0 Vx e]0, t[. Let v e K. For any
e > 0 we define

It is easy to see that VB € HQ (/),

and

The last property is a consequence of (2.89). Fix e > 0. Since CQ°(/) is dense in HQ (I)
there exists a sequence {v£n}, ven e C£°(7), such that

and consequently

making use of the embedding of HQ (/) in C(7). From this and (2.91) we also have that
Wen > ^ in 7 for n sufficiently large; i.e., ven € K n Co°(7). Finally, the triangle inequality
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together with (2.90) and (2.92) proves the existence of a sequence {vm}, vm € K n Co°(7),
such that

Let r\ > 0 be an arbitrary number. From (2.93) it follows that there exists mo e N such that

Let rft : C0°(7) -» VH be the piecewise Hermite interpolation operator of functions by
means of piecewise cubic polynomials on A/,. Then

for h > 0 sufficiently small, as follows from the classical approximation theory. From the
definition of rh we see that rhvmo e Kh. From (2.94), (2.95), and the triangle inequality we
conclude that

meaning that any function v e K can be approximated by functions from [Kh], h -* 0+,
as indicated in the assertion of this lemma.

Let [VH], Vh e Kh, be such that Vh -*• v in H% (I). Then

by virtue of the compact embedding of HQ (I) into C(7). It is easy to show that v > <p in 7;
i.e., veK (see Problem 2.11). D

Since all the assumptions of Theorem 2.9 are satisfied we arrive at the following result.

THEOREM 2.13. Problems (P) and (PA), h -> 0+, are close in the sense of Theorem 2.9.

REMARK 2.14. The quality of convergence of {e%} to e* depends on the choice of U%d:

2.5.2 Shape optimization with Neumann boundary value
state problems

The next few sections will be devoted to shape optimization with state problems involving
other types of boundary conditions than the one studied in Section 2.2. The existence and
convergence analysis will be based on the abstract theory of Section 2.4.
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To simplify our presentation we restrict ourselves in all examples to a class of domains
whose shapes are as in Figure 2.2; i.e., the designed part r(a) of the boundary will be
parametrized by functions a : [0,1] -*• R. More precisely, we define

where a,™, amax, LO are given and

Ii, 2/2 are index sets (possibly empty) and g,-, i e Ii U X^, are given continuous functions
of a. With Uad and Uad two families of domains will be associated:

where

REMARK 2.15. The functions g,-, / 6 I\ UI2, define additional technological constraints in
O, such as meas & (a) = y or y < meas £2 (a) < 5, where y, 5 are given positive numbers.
The reason for introducing a larger family O has already been explained in Section 2.4.

Next we shall suppose that the data characterizing Uad and Uad are such that Uad ^
0, uad /: 0. Convergence of domains from O will be defined as in Section 2.2:

The definition of Uad contains the minimum of assumptions under which O is compact
with respect to the above-mentioned convergence of domains. Owing to the continuity of
the functions g,-, i € X\ U 2/2, the family O is closed in O and hence compact as well. Basic
assumptions, such as the continuous dependence of solutions on domain variations, will be
verified on O.

The convergence of a sequence {yn}, where yn e V(£ln) c Hl(Qn) (£2n :— £2 («„)),
will be defined as strong or weak convergence in V (£2) c Hl (£2) of appropriate extensions
of yn from fin to SI, where £2 D £2 (a) Va e f/ad. In our particular case we may take, for
example, £2 =]0, 2amax[x]0, 1[. Such an extension is straightforward for homogeneous
Dirichlet boundary value problems formulated in HQ(Q(U)): indeed, any function from
#o (£2 (a)) can be extended by zero outside of £2 (a) to a function from HQ (£2), preserving its
norm (see (2.36)). For other boundary conditions such a trivial approach is not possible and
one has to use more sophisticated extensions pn(a) € £(V(fi(a)), V($l)) whose operator
norm can be bounded independently of a € Uad. Since O consists of domains possessing the
uniform e-cone property for some E := e(Lo) > 0, such extensions exist (see Appendix A):
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Thus we define

CONVENTION: Ify e V(ot), then its extension pQ(a)yfrom£l(a) to fi with pn(a) satisfying
(2.98) will be denoted by y in what follows. Exceptions to this rule will be quoted explicitly.

This section deals with shape optimization involving Neumann state problems. On
any £2 (a), a € Uad, we consider the Neumann boundary value problem

or, in the weak form:

where / e L2(£2).
Let D c £2(a) Va e Uad be a target set (for example, D =]0,amin/2[x]0, 1[)

and id e L2(D) be a given function. We shall study the following optimal shape design
problem:

where

u(a) e Hl(to(a)) solves (P(a)), and Uad is given by (2.97).
To prove the existence of solutions to (P) we shall verify assumptions 081) and (62)

of Section 2.4.

LEMMA 2.15. (Verification of(Bl).) For any sequence {(«„, «„)}, where an e Uad and
un := u(an) € H1 (&(&„)) is a solution of(P(an)), n -»• oo, there exist its subsequence
and elements a € Uad, u e H'(S2) such that

In addition, u(ot) :— u\n(a) solves (P(ot)).
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Proof. One can pass to a subsequence of {«„} such that (2.100) holds for some a e Vad.
Inserting v := un into the definition of (P(an)) we obtain

implying the boundedness of {un}:

and also

for another positive constant c independent of n by virtue of (2.98).
Thus one can pass to a subsequence of {«„} such that (2.101) holds for an element

u e H'(fi). It remains to show that u(a) :— M|n(aj^solves (P(a)).
Let v e Hl(Q(a)) be given and i; e //'(SI) be its extension to £2. Since v\nn €

//'(fin) Vn € N, it can be used as a test function in (P(an)) written now in the following
form:

where Xn is the characteristic function of fin. Letting n ->• oo in (2.102) we arrive at

where x is the characteristic function of the limit domain £2 (a). To see that, let us compute
the limit of the first term in (2.102) (and similarly for the remaining ones). The triangle
inequality yields

since Vun — Vu -^ 0 and XnVv ->• x^v in (L2(fi))2. Because v e Hl(Q(a)) is an
arbitrary function, it follows from (2.103) that u(a) solves (P(a)). D

We leave as an easy exercise the proof of the following lemma.

LEMMA 2.16. (Verification of (132).) The cost functional J given by (2.99) is continuous in
the following sense:

From Theorem 2.10 and Lemmas 2.15 and 2.16 the existence of solutions to (P)
follows.
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The assertion of Lemma 2.15 can be written in the following form: for an appropriate
subsequence of {«„} it holds that

At the same time Xn ->• X m L2(£l) (see Lemma 2.4), implying that

Substitution of v := un into (P(an)) yields

Therefore weak convergence in (2.105) can be replaced by strong. Thus one can expect that
the assertion of Lemma 2.15 can be improved. Indeed, we have the following lemma.

LEMMA 2.17. Let {(«„, «„)}, a € Uad, and u e Hl(&) be the same as in Lemma 2.15.
Then

in any domain Q CC Q(a) (i.e., Q C £2(a)).

Proof. Let Q CC £2(a) be given. For any m e N we define

Let m e N be fixed and such that Gm(a) D Q (i.e., m is large enough). Then there exists
«o := n0(m) such that £2(an) D Gm(a) Vn > «o- Since un = un in Gm(a) for n > no we
have

using the definition of (P(an)). Therefore

holds for any m e N sufficiently large. Letting m ->• oo on the right-hand side of (2.108)
we arrive at (2.106). D
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REMARK 2.16. The statement of Lemma 2.17 can be equivalently expressed as follows:

REMARK 2.17. Let us now consider a nonhomogeneous Neumann boundary condition
du/dv = g on 9£2(a), where g e L2(3fi(a)) for any a e Uad. The weak formulation of
this problem reads as follows:

The presence of the curvilinear integral on the right-hand side of CP(a)) complicates the
existence analysis of the respective optimal shape design problem. Uniform convergence
of boundaries, ensured by the definition of O, is not sufficient to claim that /an(a , gv ds ->•
/ gv ds so that assumption (B\) may not be satisfied. To overcome this difficulty one
can either increase the regularity of a or reformulate the Neumann boundary condition
avoiding the integrals over 3£2 (a). We shall describe in brief the latter approach. Suppose
that the function g is of the form g = dG/ds, where G 6 #2(fi) is a given function and
d/ds stands for the derivative along 3&(a). From Green's formula it follows that

holds for any v e H'(£2 (a)), where curl G := (3G/dx2, -dG/dxi). Thus, the nonhomo-
geneous Neumann boundary value problem takes the following form:

Since this formulation contains only integrals over fi(a), assumption (fil) can be verified
without changing the system O.

We now pass to an approximation of (P). First we specify constraints, defining Uad

(see (2.97)).

CONVENTION: In all examples here and in the next subsections only the volume of £2 (a)
will be prescribed:

where y > 0 is a given constant.

The family O characterized by Uad will be approximated by the same discrete systems
[Ox] and [OXH] as in Section 2.2 (see (2.49), (2.51)). Also all the other symbols introduced
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there keep the same meaning with the following minor change concerning the definition of
Vh(sM), *x 6 V?:

where [T(h, s^)}, SK e £/£**, is a family of triangulations of £2 fas*) satisfying (T1)-(T3)
of Section 2.2. Recall that £2/,(sx) stands for £2 fasx) with the given triangulation T(h, sx).

For any s* € U^d we define the following:

For h, x > 0 fixed, the approximation of (P) reads as follows:

where w;, (.sx) e V/,(jx) solves (Ph(Sx)). Arguing just as in Theorem 2.6 of Section 2.2 one
can prove that (P/,x) has at least one solution s£ for any h, >c > 0.

The convergence analysis will be based again on the abstract convergence theory
presented in Section 2.4. As in Section 2.4 we shall consider the mesh parameter h to be a
function of x; i.e., /z := h(x) such that

We shall verify assumptions (Sl)x and (B2)x of Section 2.4. Assumption (Bl)x

follows from (iii) and (iv) of Lemma 2.10.

LEMMA 2.18. (Verification of(B2)^.) For any sequence {(ix, «/,(.?„))}, where SK € U^f
and MACS*) e VA(JX) *o/ve* (PA(SX)), /z ->• 0+, fAeT-e exist its subsequence and elements
a 6 Uad, ueH1 (to) such that

In addition, u(a) := u\n(a) solves (P(a)).

Proof. The existence of {$„}, {rhs^}, h, x-+ 0+, satisfying (2.109) for some a e Uad

follows from (ii) and (iv) of Lemma 2.10. Since the system [O^h], x,h > Q, possesses
the uniform e-cone property with the same e > 0 as O (i.e., independent of h, x > 0) we
know that

Therefore (2.110) holds for an appropriate subsequence of (uh(s)()} and for an element
u € Hl(Sl). Let us prove that u is such that «(a) := M|n(«) solves (T^a)).
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Let E(rhSx) = ̂ \^2(rf,sx) and construct another family {T(h, s^)} of triangulations
of S(rftsx) satisfying (T1)-(T3) of Section 2.2. The union of T(h, s*) and f(h, s*)

defines a regular triangulation of fi. Let t; e C°°(fi) be given and TT^U be the piecewise
linear Lagrange interpolant of v on T(h, s*) U T(h, s^). From the classical approximation
results and the regularity assumptions on {T(h, s^)} and {T(h, s^)} it follows that

with a constant c > 0 that does not depend on h, x > 0.
The definition of (Ph(sx)) yields

where /fcx is the characteristic function of Slh(sx). Letting h, H -> 0+ in (2.113) and
using (2.110), (2.112), and the fact that Xh* ->• X in £2W, *, h ->• 0+, where x is the
characteristic function of fi (a), we arrive at

Since C°°(fi) is dense in Hl(?l), (2.114) holds for any v € Hl(?l); i.e., M(«) solves

(?(«))• 0

REMARK 2.18. Using the same approach as in Lemma 2.17 one can show that

Since assumption (233)^ is also satisfied for / given by (2.99), Theorem 2.11 applies.
We obtain the following result.

THEOREM 2.14. For any sequence {(s^, Uh(s£))} ofoptimal pairs of'(P/,x), h ->• 0+, there
exists its subsequence such that

In addition, (a*, M*|n(«*)) is an optimal pair of (P). Any accumulation point of
{(s*, w/tCO)}'"tne sense of (2.115) possesses this property.

REMARK 2.19. We also have that

where u(a*) := u*\n(a») solves (P(a*)).
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2.5.3 Shape optimization for state problems involving mixed
boundary conditions

We have so far confined ourselves to state problems with boundary conditions of one type,
prescribed on the whole boundary. In this section we shall analyze a more general situation,
when different types of boundary conditions are considered on boundaries of designed
domains. In addition, differential operators, defining PDEs, will not contain an absolute
term. We pay special attention to this case because the proof of the uniform boundedness
of solutions with respect to domains, which is a key point of the existence analysis, is no
longer so straightforward.

Let Uad, Uad, O, and O be the same as in Subsection 2.5.2; i.e., the shape of any
£2 (a) € O, a € Uad, is illustrated in Figure 2.2. In any £2 (a) e O we shall consider the
following Dirichlet-Neumann boundary value problem:

where / e L2(n) and TI(Q;) = {(^i, 0) | x\ e]0, a(0)[} is the bottom of £2 (a).
The weak formulation of (P'(a)) is defined as follows:

where

Let the cost functional be given by (2.99) and consider the respective optimal shape
design problem (P) on O with the mixed Dirichlet-Neumann boundary value problem
(P(a)) as the state equation.

The first step of the existence analysis consists of proving that the solutions u(a) to
(P(a)) are bounded uniformly with respect to a € Uad:

Inserting v := u(a) into (P(a)) we obtain

From the generalized Friedrichs inequality in V (a) we have

where ft is a positive constant. From this, however, one cannot claim that {||H(a)||i,n(aj) is
bounded! The reason is very simple: the constant ft in (2.117) might depend on a e Uad.
Therefore we first prove the following lemma.
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LEMMA 2.19. There exists a constant ft > 0 such that

where Uad, V(a) are given by (2.96), (2.116), respectively.

Proof. (By contradiction.) Let, for any k € N, there exist vk e V(ak), ak e Uad, such that

We may assume that ||ut||i,n(at) = 1 Vfc e N and, in addition, passing to a subsequence of
{oik} if necessary, that

for some a e Uad. Let vk be the uniform extension of vk from Q(ak) to fi. Since the
sequence {v^ is bounded in Hl(Q) we may also assume that

Next we shall show that

Indeed, for any m e N we define the set Gm(a) by (2.107). From (2.121) we also have that

for any m e N fixed so that

making use of weak lower semicontinuity of the seminorm | • 11, om (a) • Letting m —>• oo in
(2.123) and using (2.119) we arrive at (2.122). From (2.122) it follows that v is constant in
£2 (a) and, since TJ = 0 on FI (a), we have tJ = 0 in £2 (a). On the other hand,

From (2.119) we see that for k0 e N large enough,

But at the same time

which contradicts v = 0 in £2(a).
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REMARK 2.20. A similar approach can be used to prove the uniform property of other
equivalent norms with respect to a class of domains satisfying the uniform e-cone property
(see [Has02]).

With this result at our disposal it is now easy to prove the following result.

LEMMA 2.20. (Verification of(Bl).) For any sequence {(«„, «„)}, where an e Uad and
un := u(an) € V(an) is a solution of(P(an)), n —»• oo, there exist its subsequence and
elements a e Uad, u 6 H1^) such that

In addition, u(a) := u\n(a) solves (P(a)).

Proof. We may assume that «„ =4 a in [0,1] and a e Uad. From Lemma 2.19 and (2.117)
it follows that {||Mn||i,n(an)} is bounded. Passing again to a new subsequence if necessary
we have that

Let us show that u(a) := u^n(a) solves (P(a)). It is readily seen that u = 0 on F^a) so
that u(a) € V(a). Let v € V(a) be given and iTbe its uniform extension to £2. Then one
can find a sequence {vj}, Vj e C°°(£2), such that

and

In other words, any function v e Hl(Sl) such that tJ|jj(a) e V(a) can be approximated by

functions from C°°(fi) vanishing in the vicinity of TI(a).
Let ;' e N be fixed. Since an =4 a in [0,1] we see that vy,n(a ) 6 V(an), provided

that n is large enough. This restriction can be used as a test function in (P(an)) written in
the form

where Xn is the characteristic function of £2(an). Passing to the limit first with n -» oo,
then with j -* oo, in (2.125) (using (2.124)), we obtain

where x is me characteristic function of the limit domain ft (a). Thus, u(a) solves
CP(<*)). n
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REMARK 2.21. Using the same approach as in Lemma 2.17 one can show that

where un, u(a) solve (P(an)), (P(a)), respectively.

Since the cost functional J is also continuous, as follows from Lemma 2.16, the
statement of Theorem 2.10 applies: problem (P) has a solution.

The discretization and convergence analysis for (P) follow the same steps as the
Neumann state problems in the last subsection with appropriate modifications reflecting
the mixed Dirichlet-Neumann boundary conditions prescribed on 3£2 (a). It is left as an
exercise to verify that assumptions (Bl)^-(B3)^ of Section 2.4 are satisfied. Therefore
solutions to discrete optimal shape design problems are close in the sense of subsequences
to solutions of the original, continuous setting in the sense of Theorem 2.11.

REMARK 2.22. If the boundary 9£2(a) were decomposed into FI(O!) and ̂ (a) in a more
general way than considered here, yet another assumption would be necessary: the de-
composition of 3S2(a) into PI (a) and I^Ca) has to depend continuously on a € Uad, and
the triangulations used for the construction of Vh(ste) have to satisfy assumption (T4) of
Section 2.2.

2.5.4 Shape optimization of systems governed by
variational inequalities

In the mechanics of solids we often meet problems whose mathematical models lead to
variational inequalities. Contact problems of deformable bodies are examples of this type.
Shape optimization of structures governed by variational inequalities is an important part
of the topic. It turns out that there is yet another feature making these problems more
involved: namely, the mapping that associates with any shape ft a solution of the respective
state inequality is not differentiable in general. This fact considerably restricts the use of
classical, gradient type minimization methods. This subsection treats the case of scalar
variational inequalities used as state problems. Shape optimization in contact problems will
be briefly mentioned in the next section.

Let Uad, Uad be defined by (2.96), (2.97), respectively, and the families O, O be the
same as before; i.e., shapes £2 (a) e O, a e Uad, are as in Figure 2.2. The boundary 9 £2 (a)
consists of two parts: P(a) is the graph of a function a e Uad and FI (a) = 9£2 (a) \ r(a).
In any £2(a), a e Uad, we define the following unilateral boundary value problem:

where / e L2(£2).
To give a weak form of (P(a)') we introduce the space
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and its closed, convex subset

The weak form of (P(a)') reads as follows:

It is well known that (P(a)) has a unique solution u(a) for any a e Uad (see Appendix A).

REMARK 2.23. Since the bilinear form a(u, v) = fQ. . VM • Vt> dx is symmetric, problem
(P(a)) can be equivalently formulated as the following minimization problem:

where

In other words, «(a) solves (P(a)) iff w(a) is a solution of (7>(a)). Formulation (P(a)) is
important from a computational point of view.

We shall analyze the following optimal shape design problem:

where J is given by (2.99) and u(a) solves (P(a)) (or (P(a))).
To prove the existence of solutions to (P) we need the following continuity type result

for the trace mapping.

LEMMA 2.21. Let {(«„, yn)}, an e Uad, yn e H1^), be such that

for some a e Uad andy & Hl(ti). Then

where zn := yn\r(an) ° «n and z := y\rw o a.

Proof. It holds that
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Since \a'\ < LQ a.e. in ]0,1[ for any a € Uad, the second integral on the right of (2.127)
can be bounded from above by the curvilinear integral over r(a):

making use of the compactness of the embedding of Hl(£l(a)) into L2(F(a)) (see Ap-
pendix A) and weak convergence of {yn} to y in #'(£2). Further,

Integrating this inequality over [0,1] we obtain

by virtue of our assumptions. From this and (2.128) we arrive at the assertion of the
lemma. 0

COROLLARY 2.1. Let {(«„, yn)} be a sequence from Lemma 2.21 and, in addition, let
yn\n(an) £ K(an). Then the limit y of {yn} is such that y^^ e K(a). Indeed, from (2.126)
it follows that there is a subsequence of{zn] tending to z a.e. in ]0,1[. Ifyn €. K(an), then
all zn are nonnegative in ]0,1[ and so is the limit z. Hence V|n(a) e K (a).

We shall now verify assumptions (61) and (B2) of Section 2.4, guaranteeing the
existence of solutions to (P).

LEMMA 2.22. (Verification o/(Bl).) For any sequence {(«„, «„)}, where an e Uad and
un := u(an) e K(an) is a solution of(P(an)), n -»• oo, there exist its subsequence and
elements a e Uad, uzHl(Q.) such that

In addition, u(a) := u\n(a) solves (P(a)).

Proof. As usual we may suppose that

and a e Uad. Inserting v := 0 € K(an) Vn e N into (P(an)) we obtain

This and the generalized Friedrichs inequality with a constant/! > 0 independent of a e Uad

(see(2.118))imply theboundednessof {||Mn||i!Q(an)} and hence also of {||Mn|li,n}- One can
pass to a subsequence of {«„} weakly converging to an element u & Hl(Q,):
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We want to prove that u(a) := u\n(a) solves (P(a)). First of all u(a) e K(a), as follows
from (2.129), (2.130), and Corollary 2.1.

Let v e K(a) be given. It is easy to show that there exists an extension v* of v from
fi(a) to £2 such that v* e flo(S2). Since the trace of u* on 3£2 U F(a) is nonnegative,
one can construct a nonnegative extension <p of v* from 9S2 U r(a) into £2; i.e., a function
^o € £?o(Q) exists such that ^ > 0 a.e. in £2 and ^|3nur(«) = v*\saur(a) (see [Nec67,
p. 103]). This makes it possible to express v* as the sum

where w e HQ(&) and w = 0 on r(a) or, equivalently, w\n(a) £ ^(£2(a)), W|s(«) £
HO (E (a)), where S(a) :=fi\S2(a). The function u; can be approximated by a sequence
[Wj], Wj e Cg°(n), such that

Let Uy := tp + Wj. Then

by virtue of (2.131). Let j e N be fixed. Then from (2.129), (2.132), and the definition of
Vj we see that

holds for any n large enough (say « > no := «oO)) meaning that VJ^Q(/U^ e K(an)Vn > «o-
This enables us to substitute Vj into (P(an)), n > rig:

where x« is the characteristic function of £2(an). Hence

It has already been proven that

where x stands for the characteristic function of fi(a) (for the proof of (2.137) see the
inequality in (2.122)). Using (2.135H2.137) in (2.134) we obtain that
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holds for any j e N. The limit passage for j -» oo gives

taking into account (2.133). Since v := i>*|n(a) e K(a) is arbitrary, we may conclude that
w(or) solves (P(a)). D

REMARK 2.24. Adapting the proof of Lemma 2.17 one can show that

Since the cost functional J satisfies (B2) we have proved the following result.

THEOREM 2.15. Problem (P) has a solution.

We now turn to an approximation of (P). As in the previous subsections we shall
consider the constant area constraint in the definition of O.

We first introduce two discrete systems {0*} and {0**}, x, h ->• 0+, by (2.49)
and (2.51), respectively, keeping the meaning of the other notation of Section 2.2. Let
{T(h, SK)}, s* e U%f, be a family of triangulations of fifos*) satisfying assumptions
(T1)-(T3) of Section 2.2. Recall that £2fc(sx) is a polygonal approximation of £2 (sx), SK e
Uff, with the given triangulation T(h, s^). The curved part r(sx) of the boundary of
ft (SH) is locally represented by piecewise quadratic B6zier functions, while the moving part
r(rfc.yx) of the boundary of S2ft(jx) is given by the graph of the piecewise linear Lagrange
interpolant rhSx of s^. On any £lh(s><) we define the following finite element space:

and its closed, convex subset

where Mh is the set of all vertices of T e T(h, s*) from the interior of r(rhs^).

REMARK 2.25. Since r^s* is piecewise linear in [0, 1], any vh e Kh(Sx) satisfies the
unilateral boundary condition not only at all A e A//, but also along the whole Y(rhsx),
meaning that Kh(s^ C K(rhs*).

On any fi/,(.Sx) e O^h we define the discretization of the state problem as follows:



2.5. Applications of the abstract results 69

Finally, the approximation of (P) reads as follows:

with uh(sx) e Kh(sK) solving (Ph(s*)).
By virtue of assumptions (T1)-(T3) it is easy to prove that (P^^) has a solution

for any h, x > 0. Next we show that solutions to (P/,x) and (P) are close in the sense of
subsequences in the sense of Theorem 2.11. To this end we shall verify assumptions (Bl)*-
(B3)x of Section 2.4. The validity of (#!)„ and (B3)* has been already established so that
it remains to prove a lemma.

LEMMA 2.23. (Verification of(B2)i(.) For any sequence {(s*, Uh(s^))}, where s^ € U^d

and Uh(Sx) e Kh^x) solves (Ph(sx)), h -»• 0+, there exist its subsequence and elements
a &Uad,u eHl(&) such that

In addition, u(cc) :— M|jj(«) solves (P(a)).

Proof. Equation (2.138) follows from (ii) and (iv) of Lemma 2.10. The boundedness of
{||«A(Sx)lli,a»(j«)} implying the boundedness of {||M/,(.Sx)lli,f2} can be proven just as in
Lemma 2.22. Thus^one can pass to a subsequence of {M/,0*)} such that (2.139) holds
for some u e Hl(&). From (2.138), (2.139), Corollary 2.1, and the fact that M^fe) €
Kh(Sx) C K(rhSx) we have that u(a) := «|n(0) e K(a). Next we show that u(a) solves
(^(«)).

Let v* e HQ (Q) be such that v := v*\n(a) 6 K(a). From the proof of Lemma 2.22
we know that v* can be approximated by a sequence {u,}, u/ e H(}(£2), of the form

where <p e //^(fl), <p > 0 a.e. in 0, and [wj] satisfies (2.131) and (2.132). The function <p
also can be approached by another sequence {q>j} such that <PJ e CQ°(S2), tpj• > 0 in S2, for
any j e N:

Define v^ := <pj + Wj. Then v*j € C^°(fi) for any j € N and

as follows from (2.131) and (2.140). 
Let E (r^x) := £2 \ £2 (r/,sx) and {T(h, s^)} be a family of triangulations of S (rhS*)

satisfying (T1)-(T3). The union of T(h, s*) and T(h, s^) defines a regular triangulation
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of £1. Since u* e C0°(fi), one can construct its piecewise linear Lagrange interpolant ir/,v*

on T(/z, SK) U T(/z, 5X). The classical approximation result says that

where c is a positive constant that does not depend on j and h.
Fix j e N. Then in view of (2.132), (2.138), and the nonnegativeness of <PJ in £2 we

see that v*,... . . € Kfas,,) and consequently 7T/X € A"/,(sx) provided that fc, x are
• /l"/i(^a<) • /["/iU«r)

small enough. Thus one can use nhV*t as a test function in (Ph(s*)):
J l«h(Sx)

holds for any h, x > 0 sufficiently small and any j e N. Here Xfcx stands for the char-
acteristic function of £2/,(.sx). We now proceed as hi the proof of Lemma 2.22. Applying
lim supA X_>.Q+ to both sides of (2.143) we arrive at

where x is the characteristic function of fi(a), taking into account (2.139) and (2.142).
Letting j ->• oo in (2.144) and using (2.141) we finally obtain

In other words, u(a) solves (P(a)). D

REMARK 2.26. It can be shown again that

Since (Bl)^-(B3)x of Section 2.4 are satisfied we arrive at the following.

THEOREM 2.16. For any sequence {($„, Uh(s^))} of optimal pairs o/(P/,x), h -> 0+, there
exists its subsequence such that

Inaddition, (a*, u*\n(a*))isanoptimalpairof(¥). Anyaccumulationpointof{(s^, WfcCO)}
in the sense of (2.145) possesses this property.

In the remainder of this subsection we present the algebraic form of (Phx) foth, n >
0 fixed. Let TD and 7s be the isomorphisms between Uff and U (the set of discrete
design variables defined by (2.48)) and Vh(sx) and E" (n = dim V/,(.sx)), respectively (see
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(2.21), (2.22)). As in Remark 2.23 the approximate solution uh(Sx) of (Ph(s>c)) can be
characterized as a minimizer of ErhSit over KH(SX):

where

The algebraic form of (Ph(Sx)) leads to the following quadratic programming prob-
lem:

where

is the quadratic function defined by the stiffness matrix K(a) and the force vector /(a)
both depending on the discrete design variable a e U and

It is readily seen that 1C is a closed, convex subset of K" defined by

where 1 contains the indices of the constrained components of* corresponding to the nodal
values of 11^(3*) at the points of A//,:

Observe that fC does not depend explicitly on a e U. Optimization problem (P/,x) leads to
the following nonlinear mathematical programming problem:

where q(ct) € K. solves (P(a)) and J is the algebraic representation of J. As we have
already mentioned at the beginning of this subsection, problem (P^) is more involved than
the ones analyzed up to now due to the fact that the state problem is given by the variational
inequality (P(a)).

2.5.5 Shape optimization in linear elasticity and contact problems

The previous subsections were devoted to shape optimization of structures governed by
scalar state problems. We saw that the way to prove the existence and convergence results
depends on the type of boundary conditions in the state problem. We discussed in detail
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four typical cases: the Dirichlet and Neumann boundary conditions prescribed on the whole
boundary, the mixed Dirichlet-Neumann boundary condition, and finally the unilateral
boundary conditions on the designed part of the boundary. These techniques can be used
(eventually and with minor modifications) in more general state problems.

This subsection deals with shape optimization in the mechanics of solids. We restrict
ourselves to the case of linearly elastic structures. Before we formulate the problem, recall
in brief the basic notions of linear elasticity that will be used (for details we refer to [NH81 ]).

CONVENTION: In what follows Einstein's summation convention is used: any term in which
the same index appears twice indicates summation with respect to this index over the range
from 1 to the spatial dimension (2 or 3). For example,

Let a body occupying a bounded domain £2 c R3 be loaded by body forces of density
/ = (/i, /2» /s) and surface tractions of density P — (Pi, PI, PS) on a portion I> of
the boundary of ft. On the remaining part Yu = 9ft \ 1>, the body is fixed. We want
to find an equilibrium state of ft. This state is characterized by a symmetric stress tensor
(ty)?j=1, TIJ = Tjt, defined in ft, in equilibrium with / and P, i.e., satisfying

The deformation of ft is characterized by a displacement vector u — (HI, «2> "3) and the re-
spective linearized strain tensor e(u) = (eij(w))f;=i> where Sjj(u) — ^ (dui/dxj + duj/dxt).

The stress-strain relation is given by a linear Hooke's law:

with Ciju £ L°°(ft) Vi, j, k, I satisfying the following symmetry and ellipticity conditions:

where (£y)f ,-=1 is an arbitrary 3 x 3 symmetric matrix.
We seek a displacement vector u such that (2.146) and (2.147) are satisfied with

r :— T(M), where T(M) is related to e(w) through (2.148). In addition, the displacement
vector M has to satisfy the homogeneous boundary condition on ru:

To derive the weak formulation of this problem we use the following Green's formula:

which is valid for any T and v smooth enough.
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Let V(ft) be the space of admissible displacements

From (2.146), (2.147), and the definition of V(ft) it is readily seen that a solution w (if any)
can be characterized as an element of V(ft) satisfying the following integral identity:

which will be used as a basis for the weak formulation of our problem.
Thus the weak formulation of the linear elasticity problem reads as follows:

where the bilinear form a and the linear form L are defined by the left and right sides of
(2.154), respectively.

Next we shall suppose that / € (L2(ft))3, P 6 (L2(r/>))3, and ru is nonempty and
open in 9ft. From (2.148) and (2.150) we see that

The most important assumption of the Lax-Milgram lemma, namely the V(ft)-ellipticity
of the bilinear form a, follows from Kom's inequality:

which holds for any v e V(ft). Therefore (P\) has a unique solution.
We now turn to shape optimization. To simplify our presentation we restrict ourselves

to plane elasticity problems in what follows (due to symmetry conditions that are frequently
present, such a dimensional reduction is possible).

Shapes of admissible domains will again be parametrized by means of Lipschitz
continuous functions from Uad, defined by (2.96) (see also Figure 2.2). On any ft (a), a e
Uad, we consider the following linear elasticity problem:

where

and V(ot) is the space of admissible displacements defined by (2.153) on ft (a). As in
Remark 2.22 we shall suppose that FH (a), !"/> (a) depend continuously on a e Uad and, in
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addition, there exists S > 0 such that the one-dimensional Lebesgue measure measiF^ (a) >
S > 0 for any a e Uad. Finally, let

and (2.149), (2.150) be satisfied in ft D £2 (a) Va € Uad.
One of the most typical problems we meet in shape optimization of deformable struc-

tures can be formulated as follows: Determine the shape of the structure of a prescribed
volume exhibiting the highest stiffness. The mathematical formulation of this problem is
as follows:

is the compliance functional, u(a) e V(a) solves (P\(a)), and Uad is defined by (2.97)
involving the constant volume constraint.

Before we prove the existence of solutions to (Pi) we shall specify the location of
ru (a) and I> (a). In what follows we shall suppose thatru(a) is represented by the graph
of a e Uad; i.e., Tu(a) — r(a) and r/>(a) = dti(a) \ F(a). We shall verify assumptions
(Bl) and (62) of Section 2.4.

LEMMA 2.24. (Verification of(Bl).) Let Yu(a), TP(a) be as above and {(«„, «„)} be an
arbitrary sequence, where an e Uad and un :— u(an)^€ ¥(«„) solves CPi («„)), n ->• oo.
Then one can find its subsequence and elements a e Uad, u e (Hl(£2))2 such that

where un denotes the extension of un from £2(an) to £1 by zero. In addition, u(a) := u^^
solves (P\(a)).

Proof. From the definition of (Pi («„)), (2.155), (2.159), and (2.160) we see that

holds for any n e N with a positive constant c that does not depend on a e Uad. Next
we use a nontrivial result saying that the constant ft of Korn's inequality (2.156) is uniform
with respect to a class of domains possessing the uniform e-cone property (see [NitSl]). In
particular, this constant can be chosen independently of a e Uad. From this and (2.163)
we see that there exists a positive constant c such that

where
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The rest of the proof is now obvious. Since un = 0 on T(an), one can use its zero extension
un from £2 («„) to £2, satisfying (2.164), as well. Thus there exists a subsequence of {(«„ ,Jin)}
satisfying (2.162)i for some a € Uad and converging weakly to an element u in (Hl(£i})2.
The fact that u = 0 in £2 \ £2(a), implying that u(a) := M|n(a) e V(a), can be verified just
as in Lemma 2.5. To show that u(a) solves (P\(oe)), fix u e V(a). Then one can find a
sequence {i>;} with Vj e (C°°(fi))2 vanishing in a vicinity of F(a) and such that

For j e N fixed, the function u;- |n(0(i) belongs to V(an) for n large enough. This means that
it can be used as a test function in (P\ («„))• Passing to the limit first with n -> oo, then
with _/ —>• oo, we obtain

making use of (2.162)i, (2.165), and weak convergence of {«„} to u. From this we conclude
that u(u) solves (P\(a)). Strong convergence in (2.162)2 can be shown in the standard
way. D

REMARK 2.27. The linear term La also involves the integral over FP(a). We have men-
tioned in Subsection 2.5.2 that uniform convergence of {«„} to a generally does not ensure
convergence of the respective sequence of the curvilinear integrals. In our particular case,
however, the situation is simpler, since the integration over Fp(a) is carried out on the
straight line segments and only the integrals along the top and bottom of Q (a) depend on
a. These integrals are of the form

and clearly uniform convergence of {«„} to a is more than enough to pass to the limit with
n -^ oo. If the surface tractions P were prescribed on a curved part, it would be possible
to proceed as in Remark 2.17, avoiding the use of more regular design variables a.

It is left as an easy exercise to show that / is continuous in the following sense:

From this and Lemma 2.24 we arrive at the following result.

THEOREM 2.17. Problem (Pi) has a solution.

We now describe very briefly the discretization of (Pi). The discrete families of
admissible domains G*, O^h will be defined as in Section 2.2. The space of admissible
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displacements will be discretized by continuous, piecewise linear vector functions on a
triangulation T(h, s*) of Slfasx), s* e Uff:

Recall that ru(rhs^) = r(r/,sx) is the graph of the piecewise linear interpolant of sx.
In any £2& (.?»,) e O*h we define the following discrete linear elasticity problem:

where

For h, x > 0 fixed, the discretization of (Pi) is as follows:

The convergence analysis for this problem can be done in a similar fashion as in the
previous parts of the book (see Problem 2.18).

We now turn to an important class of problems called contact shape optimization, i.e.,
optimization of structures assembling several deformable bodies in mutual contact. For the
sake of simplicity, we restrict ourselves to contact problems between one elastic body and
a rigid foundation—the case known in literature as the Signorini problem.

Consider a body Q loaded by body forces of density / and surface tractions of density
PonapartFp c 3^ and fixed along !"„, respectively. In addition, the body will be supported
along a portion Fc of the boundary by a rigid foundation S, limiting its deformation (see
Figure 2.5).

The body deforms in such a way that it still remains in the complement of S. Why
is this problem more complicated than the classical elasticity problem discussed above?
The deformation of £2 depends not only on the given forces but also on contact pressures
occurring on PC- Unfortunately, these pressures are not known a priori; they are unknowns
of the problem. To make the form of contact conditions simpler, we confine ourselves to
a two-dimensional case and, in addition, shapes of bodies will be as shown in Figure 2.6:
the rigid foundation supporting £2 (a) is represented by the half-plane S = {* = (xi, x-i) e
E2 | *2 < 0} and the contact part PC, usually the main object of optimization by the bottom
of £2 (a). We shall suppose that Fc is represented by the graph of functions a e Uad, where

where
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Figure 2.5. Deformable body on a rigid support.

Figure 2.6. Shape of admissible domains.

for some positive constants amax, LQ. The family O consists of domains

where a e Uad and amax < F/2-
The contact conditions on Fc := rc(a), a e Uad, are expressed as follows:

where Tt(x) = rtj(u(x))vj, x e 3S2(a), stands for the ith component (i = 1, 2) of the
stress vector T.

Condition (2.170) says that £2 (a) cannot penetrate into 5 and only pressures may
occur on Fc(a). If there is no contact at a point x e Fc(a), then ^OO = 0 (no pressure).
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This is expressed by (2.171). Assuming perfectly smooth surfaces of Q(a) and S, the
influence of friction can be neglected (see (2.172)).

By a classical solution of the Signorini problem we mean any displacement field
u — (MI , ui) satisfying the analogy of (2.146), (2.147) for plane problems with r := r(w),
where r (M) is related to the strain tensor e(u) by means of the linear Hooke's law, as well
as the homogeneous conditions on Pu(a) and the contact conditions (2.170)-(2.172) on
rc(a). As before we shall suppose that both r«(a) and F/>(a) depend continuously on
a e Uad and meas ira(a) > S > 0 for some S > 0 and all a e Uad.

The weak form of the Signorini problem in £2 (a) leads to an elliptic variational
inequality. We first introduce the closed, convex, and nonempty subset of V(a):

By a weak solution of the Signorini problem we mean any function u that is the solution of
the following:

where aa, La are defined by (2.157), (2.158), respectively. It is well known that CP2(a))
has a unique solution u(a) for any a e Uad (see [HHN96]). It is left as an exercise to show
that the weak and classical formulations are formally equivalent. Since the bilinear form aa

is symmetric, (7>2(oO) is equivalent to the following minimization problem:

where

is the total potential energy functional.
Next we shall analyze the following optimal shape design problem:

where

and

i.e., the value of the cost functional equals the value of the total potential energy in the
equilibrium state u(a) e K(a), the solution of (^(a))- As we shall see in Chapter 3, shape
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optimization with such a choice of J has an important feature: namely the resulting contact
stresses are evenly distributed along the optimal contact part.

The existence analysis for (P2) is based on the following auxiliary result, whose proof
can be found in [HN96] (see also Problem 2.19).

LEMMA 2.25. Let an =$ a in [0,1], an, a e Uad, and v e K(a) be given. Then there
exists a sequence {Vj}, Vj e (H1^))2, such that

where i; = pn(a)V is the uniform extension of v from £2 (a) to £2.

With this lemma in hand one can easily prove the following one.

LEMMA 2.26. (Verification of (SI).) For any sequence {(«„, «„)}, where an e Uad and
un :— u(an) e K(«n) is a solution o/CP2(an)). " -* oo, there exist its subsequence and
elements a € Uad, u € (Hl(Q,))2 such that

where un = p^(an)Un- In addition, u(a) := «|n(a) solves (TMa))-

Proof. (Sketch.) Inserting v := 0 into (7*2 (an))
 we obtain

making use of (2.159) and (2.160). Exactly as in the linear elasticity problem one obtains
the boundedness of {\\un ||i,n(a,)} and hence of [\\un HI,Q}.

We may assume that (2.177) holds for an appropriate subsequence and elements
a e Uad, u e (T?1^))2. Set M(«) := W|n(«). To prove that u(a) e K(a), it is sufficient
to verify that ui(x\,a(x\)) > —a(x\) a.e. in ]0,1[. Indeed, let zn '•= "«2 ° «„ + «„,
z := «2 o a + a be the functions belonging to L2(]0,1[). As in Lemma 2.21 one can show
that

Since zn are nonnegative for any n e N, so is the limit z, implying that u(a) e K(a). It
remains to prove that u(a) solves (T^O*))- Fix v € K(a). From Lemma 2.25 the existence
of [vj] satisfying (2.176) follows. In particular, for j e N fixed, vy-,O(a } can be used as a
test function in (772(a«)) provided that n > no(j):

It is now easy to show that the limit passage for n -> oo and then for j -»• oo in the previous
inequality yields

making use of (2.176) and (2.177). From this we conclude that u(oi) solves (^(a)). D
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We now prove the following.

LEMMA 2.27. (Verification of(BT>.) The cost functional J, defined by (2.175), is lower
semicontinuous in the following sense:

Proof. From the definition of J it follows that

Since the bilinear form aa is symmetric for any a e Uad, it holds that the mapping y H>
*Jaa(y, y), y e V(a), is a norm in V(a). Arguing as in the proof of Lemma 2.19 one can
show that

Since also

we arrive at the assertion. D

As a consequence of Lemmas 2.26 and 2.27 we obtain the following existence result.

THEOREM 2.18. Problem (Pa) has a solution.

In the remainder of this subsection we briefly describe the discretization of (Pa).
Recall that the geometry of admissible domains is now given by Figure 2.6. The only
difference in contact shape optimization is the fact that the state problem is given by a
variational inequality. Let A^ : 0 = i»o < b\ < • • • < bj^ = 1 be a partition of [0, 1]
and, as before, denote by r^s* the piecewise linear interpolant of s* e Uff (given by
(2.50)) on Aft defining the computational domain fi fas*). Let T(h, s*) be a triangulation
of ?2foj~) and Mh = M.-lflff, A,- = (bit rhs^(bi)) = (&,-, sx(fe,-)), be the system of all
nodes of T(h, s*) lying on PC fas*)- By A/A £ Mh we denote the system of all the contact
nodes; i.e., A,- e .A//, iff A, g rc(r/,sx) \ Tu(rhS^) (observe that M/, is a proper subset of
Mh provided rc(rAjx) n rM(rftjx) ^ 0). We set

where VA(sx) is defined by (2.167).

REMARK 2.28. As in Remark 2.25 one can show that KA(^X) c K(r^5'x); i.e., functions
from KA (stf) satisfy the unilateral condition not only at the contact nodes but also along the
whole piecewise linear contact boundary Tc(rhSx)-
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On any fth(s>() e O^h we define the discrete state inequality as follows:

REMARK 2.29. In analogy to the continuous setting the solution Uh(s^) of OP2fc (•?*)) can
be characterized as follows:

where

The discretization of (P2) is now obvious. For h, x > 0 fixed we define the following:

where Wfc(sx) e K/,^) solves CP2& fax)) and

To establish a relation between (¥2) and (P^) forh,>c-*- 0+ we have to verify the
assumptions of Theorem 2.11.

LEMMA 2.28. (Verification of(B2)^.) For any sequence {(s^, Uh(s>c))}, where s* e Uff
anduh(Sx) e K^s*.) solves (P2h(Sx)), h -»• 0+, there exist its subsequence and elements
a e Uad, u 6 (H\ft))2 such that

where Uh(sx) = Pn(rhs^)Uh(s>t) is the uniform extension ofu^s^from ft fasx) to ft. In
addition, u(a) := u\a(U) solves (Pzta)).

Proof. (Sketch.) The existence of a subsequence and of elements a e Uad, u e (Hl(ft))2

satisfying (2.180) is obvious. Also, the fact that u(a) ;= u\n(a) £ K(a) can be shown as
in Lemma 2.26. Next we prove that u(a) solves (p2(«))- From Lemma 2.25 we know
that any function v e K(a) can be approximated by a sequence {vj}, Vj € (Hl(ft))2,
satisfying (2.176) with {rfcsx} instead of {«„}. It is possible to show (see [HNT86]) that
the functions Vj can be chosen even more regular, namely Vj e (C°°(ft))2 Vy € N and
vJ\n(rhs*) e ^fasx) provided that h, x are small enough, still preserving (2.176)2- Let
[T(h, SK)} be a system of triangulations of ft \ftfas*) satisfying (T1)-(T3) and let JT^VJ
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be the piecewise linear Lagrange interpolant of Vj on T(h, s^) U T(h, s^). Fix j e N.
Then

and JTftW/iQ (j ) e KfcCsx) for h, x small enough. Therefore 7r/,i>j can be used as a test
function in (Putex))- The rest of the proof proceeds in the standard way: we pass to the
limit in OP2fc (•?*•)) first with h —> 0+, then with j —>• oo. D

LEMMA 2.29. (Verification of(B3)^.) Let {(s^, uh(s^))}, where s* e U^f and Uh(s^) 6
KH(SK) solves (P2h(s><)), h ->• 0+, be such that (2.180) holds for some a e Uad and
u € (tf1^))2. Then

Proof. From the proof of the previous lemma we know that any function from K(a), in
particular the solution u(a) of CPaC")), can be approximated by a sequence {iij}, HJ e

(C°°(f2))2, uj}n(rhS^ e K(rhs*), h, x small enough, such that (2.176)2 holds with v :=
u(a). L&tJthUj be the piecewise linear Lagrange interpolant of Uj constructed in the previous
lemma. We know that for any j e N fixed

for h, x small enough. From the definition of /, Remark 2.29, and (2.181) it follows that

From this and (2.181) we easily obtain

(for the sake of simplicity of notation we write TI^UJ instead of TI^UJ ,n,r s ,). On the other
hand, from Lemma 2.27, it follows that

Combining this and (2.182) we see that

Since all the convergence assumptions are satisfied, we have proved that (P2) and
(Pftx), h ->• 0+, are close in the sense of subsequences in the sense of Theorem 2.11.

The matrix formulation of CPa/iCsxO) for h, x > 0 fixed leads again to a quadratic
programming problem similar to the one presented in the previous subsection. However,
there is one distinction in comparison with the scalar case: the closed, convex subset of
R" (n = dimV/jfax)). which is isomorphic with KA(SX), now depends explicitly on the
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discrete design variable a e U. Indeed, the function s* e Uff defining the shape of £2 Ox)
is uniquely determined by a discrete design variable a e U (see (2.48) and (2.50)). To stress
this fact let us write s^(a) instead of s^. Then

where X is the set of indices of all (constrained) x% components of M/, (s^) at the nodes of A//,:

2.5.6 Shape optimization in fluid mechanics

In the third part of this book we shall present several examples of shape optimization in
the field of fluid mechanics with applications in practice. The aim of this subsection is to
show how the techniques developed so far can be used in such problems. For the sake of
simplicity we restrict ourselves to two-dimensional stationary problems governed by the
Stokes equations and to a cost functional J depending only on the velocity. For more details
on the formulation and the numerical realization of problems in fluid mechanics we refer to
[GR79].

We first introduce the state problem. Let an incompressible Newtonian fluid occupy
a domain £2 c M2. We want to find the velocity field u = (u \, wa) and the pressure p of the
fluid satisfying the Stokes equations

where /LI > 0 is a viscosity parameter and / e (L2
OC(K2))2 is the density of external forces.

For simplicity let (A = 1. To get a weak form of (2.184) we introduce the space

We start with the so-called velocity formulation. A velocity u is said to be a weak solution
of the Stokes problem iff

where VM : Vv := VM, • Vvt and / • v := ftvi using again the summation convention. The
pressure p disappears from this formulation owing to the definition of the space V(£2) in
which the incompressibility constraint div v = 0 in £2 is satisfied a priori. On the other hand
this condition can be viewed to be an additional constraint that can be released by means of
a Lagrange multiplier technique. In this way we arrive at the velocity-pressure formulation,
frequently used in computations.

A couple (M, p) e (H$ (£2))2 xL^(fi) is called aweak solution of'the velocity-pressure
formulation of the Stokes equations iff
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where L0(£2) is the subspace of functions from L2(£2) that are orthogonal to P0, i-e., to all
constants. The pressure p can be interpreted as the Lagrange multiplier associated with the
constraint div u = 0 in £2. It is well known that (P) and (P) are equivalent in the following
sense: if u e V(£2) solves (P), then there exists p e LQ(&) such that the pair (u, p) solves
(P). On the contrary, if (u, p) solves (P) then the first component u solves (P). In addition,
(P) and (P) have unique solutions u and (u, p), respectively.

In what follows we shall consider an optimal design problem with the Stokes equations
as the state problem. As before we restrict ourselves to domains depicted in Figure 2.2;
i.e., the designed part is again parametrized by functions a e Uad given by (2.96). On any
£2 (a), a e Uad, the Stokes problem will be denned. One of the typical shape optimization
problems in fluid mechanics consists of finding a profile of the structure that minimizes the
dissipated energy. The mathematical formulation of this problem is as follows:

where

u(a) solves the Stokes equations in Q(a); and Uad is defined by (2.97). Below we prove
the existence of a solution to (P). To this end we shall verify assumptions (61) and (62)
of Section 2.4. Since the cost functional J involves only the velocity field u, we shall use
the weak velocity formulation of the Stokes problem in £2 (a):

where V(a) is the space defined by (2.185) in £2 := fi (a), a € Uad.

CONVENTION: Throughout this subsection, the symbol ~ above the function stands for its
extension by zero outside of the domain of its definition.

LEMMA 2.30. (Verification of (B\).) For any sequence {(<*„, «„)}, where <xn e Uad and
un := u(an) e V(an) solves (P(ctn)), n —»• oo, there exist its subsequence and elements
aeUad, M S (^(fi))2 such that

In addition, u(a) := u\n(a) solves (P(a)).

Proof. The proof proceeds in the same way as the proof of Lemma 2.5 using that V(a) n
(C£°(n (a)))2 is dense in V(a) for any a e Uad (for the proof see [Tem77]) and the fact that
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if v 6 V(a), then its zero extension tf belongs to V(£2) = {(p e (Hj (fi))2 | div <p — 0 in Q}.
Only one more step has to be proven, namely that u(a) is divergence free in £2(a), or

Let (p e C0°(£2(a)) be fixed. Then 9\^(an)
 e Co°(£2(aB)) for any n > n0, where n0 € N is

large enough. Since un e V(an) we have that

Passing to the limit with n -> oo and using (2.187) we arrive at (2.188). D

It is readily seen that assumption (B2) is also satisfied for the cost functional / defined
by (2.186). Therefore from Theorem 2.10 we obtain the following.

THEOREM 2.19. Problem (P) has a solution.

Let us pass to an approximation of (P). As far as the approximation of the geometry
is concerned, we use the same systems €>„ and O^k as in Section 2.2. We will focus on the
discretization of the state problem. The incompressibility condition is the main difficulty
we face in the numerical realization of the Stokes equations. There are several ways to treat
this condition. Here we briefly mention three of them: (i) the stream function formulation,
(ii) mixed finite element formulations, and (iii) penalization techniques.

The stream function formulation relies on the fact that any function v e V(a) in
(simply connected) £2 (a) can be written in the form v — curli/r, where the so-called
stream/unction \[r belongs to H0(fi(a)). Inserting u :— curl<p, v :— curli/r into (P(a)),
<p, ty 6 HQ (£2 (a)), we derive the stream function formulation of the Stokes problem:

which will be the basis of a finite element approximation.

REMARK 2.30. In the derivation of CPstr(a)) we used the fact that

Let Wh(Sx) C H^&fasx)) be a finite element space constructed by means of C1-
finite elements over a triangulation T(h,s^) of Sl(rhSx), s* € U^ (we may use, for
example, polynomials of the fifth degree on triangles with 21 degrees of freedom; for
details we refer to [Cia02]).
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The discretization of the stream function formulation is now defined in the standard
way:

With <ph(s>c) at hand, the function U^SK) := curl<ph(s*) approximates the velocity field.
Observe that the incompressibility condition div uh(s>c) = 0 is satisfied exactly in fi^C^^)
in this case.

The discretization of (P) now reads as follows:

with (ph^x) e WfcO*:) being the solution of (Pstr,h(s*:)).
We want to prove that (P) and (P/,*) are close as h, H -*• 0+ in the sense of Theo-

rem 2.11. We first shall verify assumption (B2)* of Section 2.4.

LEMMA 2.31. (Verification of (82)^.) For any sequence {(s^, <ph(s*))}, where s* e U^
and (ph := <ph(s*) 6 ^h(s><) is the solution of CPstr,hC?^)), h ->• 0+, there exist its
subsequence and elements a € Uad, <p e HQ (SI) such that

In addition, <p(a) := <p\^(a) solves fPstr(a)).

Proof. Inserting ̂  := <Ph into (Psti,h(s>t)) we obtain (see Remark 2.30)

Since the extended function <ph belongs to HQ (S2), (2.190) and the Friedrichs inequality in
H0

2(f2) yield

where c > 0 does not depend on h, x > 0, implying the boundedness of {\\<j>h \\2 n)- Thus
one can pass to a subsequence of {(s*, <ph)} satisfying (2.189)i for some a e Uad and
converging weakly to an element <p e HQ (£2). To prove that <p(a) := <p\^(a) belongs to
HQ (£2 (a)) we have to show that <p(a) = d<p(a)/dv — 0 on r(a). But this follows from the
fact that <p — 0 in £2 \ S2 (or) (see the proof of Lemma 2.5). It remains to prove that <p(a)
solves CPstrja)). _

Let {T(h, SK)} be a regular family of triangulations of £2 \ S2 (rhs^) satisfying (Tl)-
(T3) of Section 2.2 and Wh(£Z) be the finite element space over T(h, s*) U T(h, s*) using
the same type of C'-finite elements as above. Let TJS € Co°(S2(a)) be given and denote by
717,VT e Wh(Q) the piecewise Hermite interpolant of \fr. Then
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In addition, the restriction TrftV^in^j,,) belongs to Wh(sx) as follows from (2.189)i fork, H >
0 small enough. Thus it can be used as a test function in CPstr,A fe)):

or, equivalently,

where Xhx is the characteristic function of £lh(s*)- Letting h, tt —> 0+ we arrive at

where x is the characteristic function of £2(a), making use of (2.189)i, (2.191), and weak
convergence of a subsequence of {^,(ix)} to <p. Since C^°(fi(a)) is dense in f/0(fi(a)),
(2.192) holds for any T/T e flo(£2(a)); i-e-> <°in(a) solves OPstr(a))- The proof of strong
convergence of {^(s^)} to <p in the //Q (S2)-norm is obvious:

Since assumption (B3)^ is also satisfied for the cost functional J, we arrive at the
following result.

THEOREM 2.20. Let {(s*^, ^A(^))} be a sequence of optimal pairs o/(P>,«), h -> 0+.
r/ien o«e can find its subsequence such that

In addition, (a*, <p*\a(a>)) is an optimal pair of (P). Any accumulation point of
{(s^, $>ft(.s£))} in fne sense of (2.193) possesses this property.

Due to their complexity, C1-finite elements used for the approximation of the stream
function formulation represent the main drawback of the previous approach. For this reason,
mixed finite element techniques based on the velocity-pressure formulation are nowadays
more popular. For more details on mixed variational formulations see also Chapter 6.

On any Q (a) e O we shall consider the velocity-pressure formulation of the Stokes
problem:
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As we have already mentioned we are not now restricted to divergence free velocities.
LetXfcCS;*) C (flo^COiSx))) , Mf,(Sx) c 1/0(^(^5^)) be finite element spaces

constructed by means of triangular elements in £2/, (s^). By a mixed finite element approx-
imation of the Stokes equations we mean a problem of finding a pair (uh(s>c), Ph(sx)) e
XA(JX) x Mh(sx') satisfying

The existence and uniqueness of a solution to (Ph (s^)) is ensured provided that the following
condition is satisfied:

This condition restricts the choice of X/, (s*) and Mh (s*) used in (Ph (s^)). For pairs satis-
fying (2.194) we refer to [GR79] and [BF91]. Contrary to the stream function formulation,
the divergence free constraint in (Ph(s^)) is satisfied only in the following approximate
sense:

On the other hand, mixed finite element methods enable us to approximate simultane-
ously and independently the velocity u and the pressure p. The convergence analysis for
(IPW), h, >c —> 0+, using mixed finite element formulations of the Stokes state equations
can again be carried out by adapting the abstract theory of Section 2.4.

A penalty technique is another way to treat the incompressibility condition. We shall
illustrate this approach in the continuous setting of the Stokes equations.

It is known that the velocity formulation (P(a)) is equivalent to the following mini-
mization problem:

where

The divergence free condition appearing in the definition of V(a) represents a constraint
that can be involved in the problem by means of a suitable penalty term.

Let e > 0 be a penalty parameter destined to tend to zero and define the augmented
functional Ea,£-
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The penalized form of the Stokes equations in fi(a) is defined as follows:

or, equivalently:

Notice that (P'e (a)) is already the unconstrained minimization problem, which approximates
CP(ot)) in the following sense (see [Lio69]):

For any e > 0 fixed, we shall define the following optimal shape design problem:

where ue(a) e (#Q(fi(a)))2 is the solution to (PE(a)) and /is defined by (2.186). Instead
of the original state problem (P(a)) we use its penalty approximation (Pe (a)) whose quality
depends on, among other factors, the magnitude of e. The optimal shape in (Pe) depends
on e. This is why we use the notation a*. A natural question arises: What happens when
e -> 0+? Are solutions to (P) and (Pe) close for e -»• 0+ and, if yes, in which sense? We
shall study this in more detail.

First of all, using the abstract theory of Section 2.4, one can easily show that (Pe) has
at least one solution a* for any e > 0.

The following lemma plays a crucial role in the convergence analysis.

LEMMA 2.32. Forany sequence {(a e, us(ae))}, where as e Uad andus(ae) e (/^(^(ae)))2

is the solution of CPe(ae)), e —>• 0+, there exist its subsequence and elements a 6 Uad,
u €(H<$(&))2 such that

In addition, u(a) :— u\^(a) solves (P(a)).

Proof. The definition of (Pe(ae)) yields

From this and the Friedrichs inequality in (//^(fi))2 it easily follows that {||M£||1?n} is
bounded. Therefore (2.196) holds for an appropriate subsequence of {(ae, u€(as))} and for
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some a e Uad and u e (H\ (£2))2. It is easy to prove that u = 0 in £2 \ £2 (a), meaning that
«(a):=M|n(«) £(#<}(« (a)))2.

Next we prove that w(a) is divergence free in £2(a); i.e., u(a) e V(a). To this end it
will be sufficient to show that

for a dense subset L(a) of LQ(^ (a)). Indeed, if (2.198) were satisfied for q € L(a), then
it also would be satisfied for any q belonging to the direct sum PQ ® L(a), which is dense
in L2(£2(a)), since

implying div u(a) = 0 in £2(a). Below we show that

possesses this property. We first prove that such an L(a) is dense in LQ(& (a)).
Let# e L0(£2(a))and?7 > 0 be given. Then there exists a function v e (/^(^(a!)))2

(see [GR79]) such that

From the density of (C£°(£2(a)))2 in (/^(a)))2, the existence of w € (C^(fi(a)))2

such that

follows. From this and (2.200) we see that

where q = div u; in £2 (a), proving the required density result.
Let w e (C£°(S2(a)))2 be given. Then «5|n(«t) 6 (C^°(J2(a£)))

2 for any e < e0

where EQ > 0 is small enough. The definition of CPs(ae)), £ < SQ, yields

Letting s -> 0+in (2.201) and using the boundedness of {||Ms||i,n(as)} we obtain

On the other hand it is easy to show that

proving (2.198) for any element q = div w e L(a) given by (2.199). It remains to show
that u(a) solves CP(a)).



2.5. Applications of the abstract results 91

Let w e (Cg°(n(a)))2, div w = 0 in n(or), be given. Then u5|n(«t) 6 V(ae) for any
£ < £o with SQ > 0 small enough. From the definition of (Pe(ae)) it follows that

holds for any e < SQ. The limit passage e -> 0+ in (2.203) yields

This equality holds for any w € V(a) n (C£°(n(a)))2 that is dense hi V(a). Therefore
(2.204) holds for any w e V(a); i.e., u(a) solves (P(a)). Let us show now that (ue(ae)}
tends strongly to u in (fl^SS))2. From the definition of (P£(ae)) it follows that

so that

making use of the fact that u(a) = «|jj(a) solves (P(a)). On the other hand,

as follows from the weak convergence of [us] to M. From this and (2.205) we see that

implying strong convergence, taking into account that | • 11 ̂  is a norm in H$ (S2). D

On the basis of the previous lemma we are ready to analyze the relation between
solutions to (P) and (Pe) as s -»• 0+.

THEOREM 2.21. Let {(a*, us(a*))} be a sequence of optimal pairs o/(Pe), e -> 0+. Then
one can find its subsequence such that

Inaddition, (a*, n*|n(a«)) is an optimal pair of (P). Furthermore, any accumulation point
of {(a*, us(a*))} in the sense of (2.206) possesses this property.

Proof. From Lemma 2.32 we already know that (2.206) holds for an appropriate subse-
quence of {(a*, ue(a*))} and that u(a*) := «*|Q(a«) solves (P(a*)). We shall show that a*
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solves (P). Let a e Uad be given and u(a) e V(a) be the respective solution to the Stokes
problem in £2 (a). From (2.195) we know that u(a) can be approximated by the solutions
of the penalized problems CPe(«)) (keeping a fixed):

From the definition of (P£),

Passing to the limit with e —>• 0+, using (2.206), (2.207), and continuity of J, we arrive at

Since a e Uad is arbitrary, a* solves (P). D

REMARK 2.31. Instead of the penalty functional je(v) = (1/e) /n(a)(div v)2 dx, which is
the simplest one, more sophisticated penalizations of the Stokes problem (see [GR79]) are
usually used.

We now briefly describe the discretization of (P) using the penalized form of the
Stokes equations. Let s^ e U^d be given and VfcCs^) be a finite element subspace of
(HO (& (r^5^)))2 made of continuous, piecewise linear vector functions over T(h, s*). Fi-
nally, let the penalty parameter s := e(h) be a function of h such that s(h) -»• 0+ iff
h -> 0+. We first discretize the penalized Stokes problem as follows:

and then we define the following discrete optimization problem:

where ueh(sx) solves CP^C?*-))- One can show again that problems (P) and (P^^) are
close in the sense of Theorem 2.11 as h, tt -»• 0+.

REMARK 2.32. The penalty technique can be used with success in any optimization prob-
lem involving constraints. In particular, it can be used in the optimization of structures
whose behavior is governed by variational inequalities. As we have already mentioned,
these problems are not generally differentiable due to the fact that the state is represented
by a variational inequality. An appropriate penalization of constraints makes it possible
to approximate state inequalities by a sequence of equations and therefore to replace an
originally nonsmooth problem with a sequence of smooth ones. This approach has been
used, for example, in contact shape optimization (see [HN96]).
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Problems

PROBLEM 2.1. Prove Theorem 2.2.

PROBLEM 2.2. [BG75] Prove that for any e e Uad there exists {eh}, eh e U%d, such that
eh =} e in /, h -> 0+, where Uad, U£d are defined by (2.3), (2.15), respectively.

Hint: For any h > 0 define the continuous, piecewise linear function eh on AA as
follows:

where ~e is the even extension of e from [0, t] to [-h/2, i + h/2] and a,+i/2 stands for the
midpoint of [a,-, a,+i] (a_i/2 = -A/2, 0^+1/2 = £ + h/2). Show that eft e Uf and {e,,}
has the required convergence property.

PROBLEM 2.3. Prove the formal equivalence between the classical formulation (2.2) of the
state problem and its weak formulation (P(e)).

PROBLEM 2.4. Prove that the cost functionals (e e Uad (see (2.3)), y e H$(I))

PROBLEM 2.5. Prove that the function 2^ defined by (2.35) belongs to U£d given by (2.32)
and

for any ee Uad.

PROBLEM 2.6. Prove Lemma 2.4. (Hint: use the Lebesgue-dominated convergence
theorem.)

PROBLEM 2.7. Prove Lemma 2.7.

PROBLEM 2.8. Prove Lemma 2.8.

PROBLEM 2.9. Prove that the following cost functionals satisfy (2.46) (a e Uad (see
Section 2.2), y e #,}(«)):

satisfy (2.12).
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PROBLEM 2.10. Prove Lemma 2.14 under the conditions that

where <p is the function appearing in the definition of K.

PROBLEM 2.11. Let Kh and K be the same as in Subsection 2.5.1. Let {vi,}, t>/, e A"/,, be
such that

where v e C(I). Prove that v 6 K.

PROBLEM 2.12. Prove that (P(e)) from Subsection 2.5.1 has a unique solution u. Using
integration by parts shows that u satisfies the following set of conditions:

where A(e)u := (fie^u")" provided u is smooth enough.

PROBLEM 2.13. Give the algebraic formulation of the discrete state inequality (Ph(eh))
from Subsection 2.5.1.

PROBLEM 2.14. Prove Lemma 2.16.

PROBLEM 2.15. Consider problem (P) with nonhomogeneous Neumann state problems
whose weak formulation is defined by (Po(oO) (see Remark 2.17) and with the cost func-
tional J:

where Uad is given by (2.97). Prove the existence of solutions to (P).

PROBLEM 2.16. Define the approximation of (P) with the Dirichlet-Neumann boundary
state problems and verify that assumptions (Bl)^-(B3)>c of Section 2.4 are satisfied.

PROBLEM 2.17. Prove (2.166).

PROBLEM 2.18. Complete the convergence analysis for optimal shape design problem (Pi)
from Subsection 2.5.5.

PROBLEM 2.19. Prove Lemma 2.25.
Hint: let v — (i>i,t>2) s K(a), v :— pn(a)V = ($1,1)2) be the extension of v

from £2(a) to £2. Define 1/^2(^1.^2) := maxft^xi,^2), — *2}> (*i,*2) e &, and set
iff = (vi, fa). Prove that ̂  |n («) € K(a). Decompose v : v = V^+O, where <1> = (4>!, <t>2)
is such that <J>i|r,,(a) = ®2\ra(a) — *2|rc(a) — 0. Approximate <I> by a sequence {$7-}, <I>; =
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($/i, <t>;2) e (C°°(?f))2,with<t>;-i, <t>;-2 vanishing in the vicinity of ra(a), rM(a)urc(QO,
respectively, and show that {v/}, where Vj := ^ + <J>;, satisfies (2.176) using the fact that
lh(*i,*2) > -x2inQ.

PROBLEM 2.20. Let Uad be given by^ (2.96) and consider the respective family O of
admissible domains. On any £2 (a) e O, a e Uad, we shall consider the linear elasticity
problem (P\ (a)) as in Subsection 2.5.5 with the following minor change: the surface traction
P is now applied on r>(a) = r(a), i.e., on the designed part of the structure, while the
zero displacements are prescribed on Tu(a) = 9£2(a) \ Tp(a). Formulate the traction
conditions on !>(<*) by using the technique of Remark 2.17.

PROBLEM 2.21. Prove the formal equivalence between the classical and weak formulations
of the Signorini problem without friction.

PROBLEM 2.22. Prove that optimal shape design problem (Pe) from Subsection 2.5.6 using
the penalized Stokes equations (Ps(a)) has a solution for any e > 0.

PROBLEM 2.23. Consider an approximation (P/,*) of (P) using a mixed finite element ap-
proximation (PH(SX)) of the Stokes problem with finite element spaces XA(SX) and Mh(s>c)
satisfying (2.194). Prove that (P) and (Pftx) are close in the sense of Theorem 2.11 for
h, x -> 0+ provided that the systems {X/,(,sx)}, {Mh(s^)} satisfy the following conditions:
Va e Uad V(w, p) e (H^(Q(a)))2 x !§(«(«)) 3{(sx> vh, ph)}, SK e U?, vh e XA(^),
ph e Mfc (•$•„),

PROBLEM 2.24. Consider the approximation (Pehx) of (P) defined in Subsection 2.5.6
using the discretization CP£/,(.sx)) of the penalized form of the Stokes problem. Let the
penalty parameter e := s(H) satisfy s(h) ->• 0+ iff h ->• 0+. Prove that (P) and (PSAX) are
close in the sense of Theorem 2.11 for h, K ->• 0+ provided the family [T(h, sx)} satisfies
assumptions (Tl)-(7"3) of Section 2.2.



This page intentionally left blank 



Part II

Computational Aspects of Sizing
and Shape Optimization



This page intentionally left blank 



Chapter 3

Sensitivity Analysis

From the previous chapter we already know that a continuous dependence of solutions
to state problems on design variations is a fundamental property ensuring the existence of
optimal solutions. Continuity is important but not enough. To better understand the problem,
other properties are needed. Differentiability is one of the most important of these. The
need to deal with such information gave rise to a special discipline in optimization called
sensitivity analysis. Sensitivity analysis develops appropriate tools and concepts enabling
us to analyze the differentiability of various objects, such as solutions to state problems,
cost and constraint functionals, etc., with respect to control variables, and in particular
with respect to design variables in sizing and shape optimization (SSO). On the basis of
these results one can derive necessary optimality conditions satisfied by solutions to optimal
control problems. The interpretation of optimality conditions reveals important properties of
optimal solutions that are not usually directly seen from the original setting of the problem.
Sensitivity analysis also plays an important role in computations: it provides us with gradient
information required by the gradient type methods most frequently used for the numerical
minimization of discretized problems.

This chapter deals with sensitivity analysis in SSO. The basic ideas are the same. Each
branch of structural optimization, however, develops its own techniques, taking into account
its features. This will be seen, in particular, in the case of shape optimization, for which
appropriate tools enabling us to describe the change in geometry have to be introduced.
This chapter starts with sensitivity analysis in the algebraic setting of problems because of
its simplicity. Here we explain common ideas. These results will then be adapted following
the specific needs of SSO.

3.1 Algebraic sensitivity analysis
Let us consider a system of linear algebraic equations depending on a parameter a:

in which A and / are matrix and vector functions, respectively, of a, which belongs to an
open set U c E.d. Further, let / : U x R" ->• R be a real function and define J : U -» R

99
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by

with x(a) € R" a solution of (P(a)).

REMARK 3.1. In the framework of SSO, CP(«)) represents a finite element approximation
of a linear elliptic equation, a is a vector of discrete design variables, U is isometrically
isomorphic with U%d, and / is an algebraic representation of a cost functional.

In what follows we shall analyze the differentiability of the mappings x : U ->• R"
and J : U -» R defined by CP(a)) and (3.1), respectively. To this end we shall suppose
that

(i) A (a) is regular for any a 6 U;
(ii) A, / are Cl-mappings inU: A e Cl(U; R"x"), / € C1^; R");

(iii) J e C ' t W x R " ) .

REMARK 3.2. From (ii) it follows that the directional derivatives of A and / exist at any
point a &U and in any direction ft e R^:

The elements of A'(a; /J) and /'(a; /J) can be computed in the standard way:

where Va is the gradient of a function with respect to a.

CONVENTION: To simplify notation we shall sometimes use the symbols A'(ar), /'(a), etc.,
instead of A'(a; ft), /'(a; ft), etc. The direction of differentiation will be seen from the
context.

From (i)-(iii) continuous differentiability of the mappings x and J in U easily follows.
Indeed, let a e U, ft e Rd be given and x(a + tft) e R" be a solution to (P(a + tft)):

The classical implicit function theorem ensures the existence of the directional derivative
*'(«) := *'(«; 0) for any ^ e Md:



3.1. Algebraic sensitivity analysis 101

REMARK 3.3. If A is symmetric for any a € U, then the directional derivative x'(a) can be
equivalently characterized as the solution of the following minimization problem:

where

By virtue of (ii) the mapping x' : a i-* x'(a; •) is also continuous in U so that
x € Cl(U, R"). From this and (iii) we may conclude that J e Cl(U) and, in addition,
the directional derivative J'(a; ft) can be computed by using the classical chain rule of
differentiation:

where V«, V* denote the partial gradients of / with respect to a e U, x e R", respectively.
To get full information on the gradient of J, d linearly independent directions ft e Rrf are
needed. If (3.4) were directly used for its computation, it would be necessary to solve (3.2)
d times for each direction separately to get Va* (a). Fortunately there is a way to overcome
this difficulty. We first introduce the so-called adjoint state system

The vector p(a) is termed the adjoint state. Multiplying (3.5) by x'(a) we obtain

making use of (3.2). From (3.4) and (3.6) we arrive at the final expression for J'(OL; ft):

The previous results are summarized below.

THEOREM 3.1. Let (i)-(iii) be satisfied. Then the solution of(P(a)) and the function J
defined by (3.1) are continuously differentiate in U with respect to a. The directional
derivatives x'(a; ft), and J'(a; ft) are given by (3.2) and (3.7), respectively. The adjoint
state p(a) appearing in (3.7) is defined by (3.5).

The same result can be achieved by using a duality approach: state equation (P(a))
will be treated as a constraint by means of a Lagrange multiplier technique. Indeed, it is
readily seen that the value J(a, x(a)), where x(a) e R" solves (^(a)), can be expressed
as follows:
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where £ : U x R" x R" -»• R is the Lagrangian defined by

Let (x, p) e R" x E" be such that

Then necessarily

and

i.e., x = x(a) solves CP(a)) and ~p — p(a) is the respective adjoint state. From this, (3.1),
and (3.9) we have

Assuming that the adjoint state is directionally differentiable in U, the classical chain rule
of differentiation applies to the right-hand side of the previous expression:

The third term on the right of (3.10) disappears since x(a) solves (P(a)). The second and
fourth terms can be rearranged as follows:

taking into account (3.5). We have recovered (3.7).

REMARK 3.4. It would be possible to consider nonlinear state equations of the form

where A e Cl(U x R",E"), / e Cl(U,R") are two vector functions. The previous
sensitivity analysis extends straightforwardly to this case (see Problem 3.1).

We shall now pay attention to the case when CP(a)) is given by the following algebraic
inequality, depending on a parameter a e U:
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where

and J is a set of indices of the constrained components of y e R". As we have already
mentioned, optimization of systems governed by variational inequalities deserves special
attention. In contrast to state equations, this time the control state mapping need not be
continuously differentiable. The remainder of this section will be devoted to the sensitivity
analysis of solutions to (P;n(«))-

In addition to (i)-(iii), two more assumptions are supposed to be satisfied:

(iv) A (a) is symmetric for any a € IA;
(v) 3m = const. > 0 : .yTA(a).y > m\\y\\2 Vy e M", Va e U.

REMARK 3.5. Assumption (iv) is not needed. It helps us to interpret the next results in a
variational way. Also (v) can be weakened. It is sufficient to assume that

(v') y^A(a)y > 0 VyeW, VaeU

(see Problem 3.2).

It is left as an exercise to show that the control state mapping defined by CPm(«)) is
Lipschitz continuous in U. This results from (ii) and the following.

LEMMA 3.1. Let (v) be satisfied. Then, for any two solutions x(a), x(ft) of (Pin(a)),
(Pin(ft)), respectively, where a, ft &U,

where c > 0 does not depend on a, ft &U.

Proof. See Problem 3.3. D

REMARK 3.6. If (v') were satisfied then the control state mapping would be only locally
Lipschitz continuous in U, having no influence on the sensitivity analysis.

From the previous lemma and the Rademacher theorem it follows that the mapping
x : a i-> or (a) e JC(a) is differentiable almost everywhere in U. Next we prove that x is
in fact directionally differentiable at any a e U and in any direction ft e E.d and we show
how to compute x'(a; ft).

We start with an equivalent formulation of (P(a)). It is well known that* (a) € K,(a)
solves CP(a)) iff there exists a vector
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such that the pair (x (a), X(a)) satisfies the following conditions (the summation convention
is used):

known as the Karush-Kuhn-Tucker (KKT) optimality conditions for CP,-«(a)) (see [Fle87]).
From Lemma 3.1 and (KKT(a)) we see that the mapping X : a i->- X(a) is Lipschitz
continuous in 14, as well.

Let (x(a + tft), X(a + tft)) be the solution of (KKT(a +f 0)), where a e U, ft e Rd,
and t > 0. In view of Lipschitz continuity, the difference quotients

are bounded for t > 0. Thus one can find a sequence {?„}, tn -» 0+, and vectors x :=
i({rn}),X:=X({U) such that

We do not yet know if x and X depend on a particular choice of {?„}. This is why we used
the symbol {?„} in the argument of the previous limits. From (ii) it follows that

and these limits are independent of {tn}, tn -> 0+. The operation " •" can be viewed as a
kind of "directional derivative" that coincides with the classical one for smooth functions.
Applying " •" to the first two equations in the KKT conditions we obtain

making use of (3.14). The constrained components of x(a) determine the following de-
composition of 1:1 = I+(a) U2b(a) U I-(a), where

(set ofnonactive constraints),

(set of semiactive constraints),

(set of strongly active constraints).

Next we shall analyze the behavior of the constrained components of x (a) and of the vector
X(a) for small parameter perturbations of the form a +1 ft, t ->• 0+.
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Let ji e X+(a). Then owing to the continuity of the mapping * : « ( - » • x(a) the
index jt belongs to J+(« + tft) for any \t\ < 8, where S > 0 is small enough. From the
last condition in the KKT system we have that A.; (a + tft) = 0 = A.,(a) for any \t\ < 8,
implying A.,- (a) = 0.

If ji € Z_(a), then A., (a) > 0 and also A.,-(a + tft) > 0 for |r| < 8 using the
continuity of the mapping X. : a !-»• X(a). The last condition in the KKT system yields
xjt (a + tft) = -a, - ?# so that xjt (a) = -#.

Finally, let jt e 2o(«). Then for all t > 0,

and consequently i, (a) > 0, */,.(«) > -$.
We now show that

This is certainly true for ji € I+(a) U J_(a) since either A.,-(a) = 0 or i;-,(a) = — $. Let
7, e Ib(a)- If A., («) = 0, then (3.15) holds true. On the other hand if A., (a) > 0, then
necessarily A., (a + ?/?) > 0 so that Xj, (a + tfi) = —a, — tfc for any t > 0 small enough.
Hence Xj, (a) = — /?,-, and we may conclude that (3.15) holds for any y,- e Z.

With the decomposition of I into 2o(«), X-(«), and X+(a) the following convex set
)C(a, ft) will be associated:

From the previous analysis it follows that x({tn}) belongs to K.(a, ft) and, in addition, the
pair (x({tn}), A.({?„})) satisfies the following KKT type system:

We are now able to formulate and prove the following theorem.

THEOREM 3.2. Let (i), (ii), (iv), and (v) be satisfied. Then the solution x(a) of(Pin(d))
is directionally differentiate at any a & U and in any direction ft e Mrf. In addition the
directional derivative x'(a) := x'(a; ft) can be equivalently characterized as the unique
solution of the following minimization problem:

where Ga,p, £(«, ft) are defined by (3.3), (3.16), respectively.
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Proof. We have already shown that x := x({tn}) belongs to /C(a, ft), and in view of (3.17)
the vector i minimizes G«,p on K,(a, ft). It is seen from the previous analysis that any
accumulation point of {t~l(x(a + tft) — x(a))}, t ->• 0+, possesses this property. But
Gatp being strictly convex admits a unique minimizer on K.(a, ft). Therefore the limit of
the previous difference quotient for t ->• 0+ exists and x({tn}) — x'(a; ft). D

Let us comment on the previous results. For the linear state problem (P(a)), sensi-
tivity analysis leads to a linear algebraic problem (3.2) or, equivalently, to an unconstrained
minimization problem for the quadratic function Ga<p provided that A (a) is symmetric for
any a € U (see Remark 3.3). In the case of a variational inequality (Pin(a)), the sensitivity
analysis is more involved. This time the directional derivative of x is obtained as the solution
of the constrained minimization problem. Despite the fact that the control state mapping
is directionally differentiable in any direction, it need not be continuously differentiable in
U. Indeed, the directional derivative x'(a; ft) being the solution of the quadratic program-
ming problem (3.18) does not satisfy x'(a; —ft) = —x'(a, ft) in general; i.e., approaching
a from the opposite direction, the respective directional derivative may have a jump. At
the same time, Theorem 3.2 indicates the source of possible nondifferentiability: it is due
to the presence of semiactive constraints or, equivalently, the nonemptiness of Io(a). If
IQ(O.) = 0, the respective control state mapping would be continuously differentiable (see
Problem 3.4).

Let J : U x R" ->• M be a function satisfying (iii) and J : U -* K be defined by
(3.1) with x(a) solving (Pin(a)). Then J as a composition of J and x is directionally
differentiable at any a 6 U and in any direction ft e Krf but generally not continuously
differentiable. For some special choices of J, however, it may happen that J is once
continuously differentiable. Take, for example,

Then

is a C1-function. To see that, we first compute the directional derivative J'(a; ft):

making use of (iv). From (KKT(a)) and the definition of K.(u, ft) we see that

and consequently

From (ii) and the continuity of A. : a i-> X(a) it follows that the mapping a i-»- J'(a, •) is
also continuous in U so that J e Cl(U).
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Directional derivatives of solutions x(a) to algebraic inequalities, which are a finite
element discretization of the scalar variational inequalities studied in Subsection 2.5.4, can
be computed directly from Theorem 3.2 by setting

where

Observe that K,(a, ft) does not depend on ft; information on ft is encoded in the func-
tional Qa.p- Sensitivity analysis in contact problems (see Subsection 2.5.5) is slightly more
complicated since the closed, convex set /C(a) is of the following type:

where <pt : U ->• R, i e I, are continuously differentiable functions in U (see (2.183) with
<pi(u) = —Sx(bi, a)). If its proof is adapted, Theorem 3.2 extends to this case, too. This is
left as an exercise.

3.2 Sensitivity analysis in thickness optimization
This section deals with sensitivity analysis in sizing optimization. We shall show how to
compute the derivatives of stiffness matrices and of right-hand sides with respect to discrete
sizing variables. Knowledge of these derivatives is indispensable to obtain sensitivities of
solutions and cost functionals.

To illustrate how to proceed let us consider thickness optimization of the elastic beam
studied in Section 2.1. Instead of the compliance of the beam, we take the following cost
functional (see Problem 2.4):

where yd € C([0, £]) is given such that yd(0) = yd(t) — 0. The set U£d and the space
Vh used for the discretization of (2.2) are denned by (2.15) and (2.16), respectively. The
discrete state problem leads to the following system of 2(d — 1) algebraic equations (see
(2.18)):

where e = (CQ, ..., ej) e Rd+1 is the discrete sizing variable. (To make the presentation
more general, we allow here the force vector to depend on e, too. One could consider the
loads caused by the weight of the beam, for example.) Recall that e f , i = 0 , . . . , d, are the
nodal values of e/, e U£d. Using a numerical integration formula for the evaluation of /
we obtain its algebraic representation in the form
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where {<«,- }f=0 are the weights of the selected numerical integration scheme and q (e) solves
(3.22) (the components of q(e) are arranged as in (2.19)).

Let e e U and ? e Rd+1. Then arguing as in Section 3.1 we obtain the following
expressions for the directional derivatives of q and J:

where p(e) e M2^"1' is the adjoint state:

making use of the symmetry of K(e). Choosing e as the fcth canonical basis vector in
E.d+1 we obtain the partial derivatives dq/dek, dj/dek from (3.24) and (3.25). The partial
gradients of J needed in (3.25) and (3.26) are easy to compute:

and

k = 1, . . . , d — 1. To determine

we use (see (2.20))

where eh e U%d and {^/}"=1 is the basis of V;,. Since U£d is realized by piecewise linear

functions, any e^ e U£d can be expressed in the form

where {̂  }f=o is me Courant basis associated with the equidistant partition A/, of [0, t]\ i.e.,
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k= I , ...,d — 1, with the appropriate modifications for k = 0, d. From this and (3.30),

i, 7 = 1,... , n and k = 1, ...,d — 1, again with the modifications for k — 0,d.
If / does not depend on the thickness, then

REMARK 3.7.

(i) Taking the compliance J(y) = f0 f y dx as the cost functional and using the same
integration formulas for the evaluation of both / and the right side of (2.2), we obtain

so that q(e) = p(e), as follows from (3.26), and no adjoint state is needed,
(ii) In multicriteria optimization or in problems involving a number of state constraints,

sensitivities for several functions Ji, i = 1,..., M, are needed. If the number M is
bigger than the number of design variables d, the adjoint equation technique is not
any more advantageous since M adjoint equations have to be solved. In this case we
compute the derivatives from (3.24) and substitute them directly into

where Ji(e) = Ji(e,q(e)).

3.3 Sensitivity analysis in shape optimization
Sensitivity analysis in shape optimization deals with computations of derivatives of solutions
to state problems as well as control and cost functionals with respect to shape variations.
But first, basic questions such as how to describe changes in the geometry and how to
differentiate functions with varying domain of their definition have to be clarified. We
present the approach based on the material derivative idea of continuum mechanics. This
presentation will be formal, meaning that it is correct provided that all data we need are
sufficiently smooth. For a rigorous mathematical treatment of this topic going beyond the
scope of this textbook we refer to [SZ92].

3.3.1 The material derivative approach in the continuous setting

A bounded domain £2 c M" with Lipschitz boundary 9S2 is thought to be a collection of
material particles changing their position in time. A space occupied by them at time t will
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determine a new configuration £1,. The change in the geometry of £2 will be given by an
evolutionary process deforming the initial configuration £2. To formalize this idea mathe-
matically, we introduce a one-parameter family of mappings {F,}, t e [0, to], F, : £2 —>• R",
defining the motion of each material particle x e £2 and such that FQ = identity (id). At
time t the particle x € £2 will occupy a new position x,:

The new configuration of £2 at time t is given by

i.e., £2, is the image of £2 with respect to F,. The set Q c R"+1, where Q = U,e[0,,0]{f} x £2,,
determines the evolution of £2 in space and time t e [0, to]. To keep the shape of all S2r

"reasonable," each Ft, t e [0, to], has to be a one-to-one transformation of £2 onto £2, such
that

In the rest of this textbook we shall consider a special class of mappings F, being a pertur-
bation of the identity, namely

where V € (Hl'°°(/n))n is the so-called velocity field. It can be shown that for to small
enough F, of the form (3.35) is a one-to-one mapping of £2 onto £2, satisfying (3.34) and
preserving the Lipschitz continuity of 9£2r.

REMARK 3.8. The form of the velocity field V realizing shape variations depends on
how shapes of admissible domains are parametrized. Consider, for example, the family of
domains shown in Figure 2.2, whose moving parts r(a) of the boundaries are parametrized
by functions a e Uad, Uad as in (2.96). Then it is natural to take V in the form

where a e Uad and \jr : [0,1] ->• R is a Lipschitz continuous function. It is readily seen
that for this choice of V we have

In computations we use shapes described by functions belonging to a finite dimensional
space Pj,, K > 0, spanned by functions £1 , , . . , tjd(x), d(x) = dimX>x. Then the coeffi-
cients of the linear combination of {£;-} -ij form a vector of the discrete design variables.

Let DFt be the Jacobian of F, and denote I, = detDF,. Important formulas con-
cerning their differentiation are listed in the next lemma.
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Proof. The proof is left as an easy exercise. D

Let us consider state problem (P) in a domain £2 c K". Let (Pt), t e]0, to], be
a family of problems related to (P) but solved in £2, = F,(£l) with F, given by (3.35).
Solutions of (Pt) will be denoted by u, : ft, -> Rm. The function M, can be viewed as the
restriction of another function u : Q -> Rm to {?} x £2,:

Suppose that u is smooth enough in a S-neighborhood Qs of Q. Then the classical chain
rule of differentiation applies:

CONVENTION: (Pt)for t = 0 coincides with (P), and UO(XQ) = u(0, x) := u(x), x e ft,
solves (P). The symbol u now has two meanings: it designates the function u defined by
(3.37) and designates u's restriction to the time level t = 0.

Using this convention, (3.38) can be written in the following abbreviated form:

The total derivative u is termed the pointwise material derivative of u. It characterizes
the behavior of « at x e Q in the velocity direction V(x). To be precise we should write
u(x, V(x)). The partial derivative du/dt will be denoted by u' in what follows and it will
be called the pointwise shape derivative of u. Under certain smoothness assumptions the
shape and spatial derivatives commute:

The material derivative concept can be extended to less regular functions belonging to
Sobolev spaces. For example, let ut o F, € Hk(&) for any t e [0, to]. Then the material
derivative u can be defined as an element of Hk(Q) that is the limit of the finite difference
quotient in the norm of H*(fi):

LEMMA 3.2.
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With u in hand one also can define the shape derivative u' for less regular functions by

which is inspired by (3.39).
Next we shall explain how to compute the shape and material derivatives of u. It is

clear that knowledge of only one of them is needed to determine the other one in view of
(3.41) (the term Vw • V results from u, a solution to (P)). Relations satisfied by u' and u
will be obtained by differentiating (P,) with respect to t at t = 0. Since state problems are
defined in a weak form, i.e., a form involving integrals, we first show how to compute the
derivative of integrals in which both the integrands and the domains of integration depend
on the parameter t > 0.

Let

where &r = F((£2) and 3£2t = F,(dQ), and let / : Qs -* R be a sufficiently smooth
function, where Qs is a 5-neighborhood of Q. Denote

These derivatives can be viewed as directional type derivatives characterizing the behavior
of J and C when £2 "moves" in the direction V defining F,. They can be computed as
follows.

LEMMA 3.3.

where f := f(Q,x)andf := f'(0,x) are the material and shape derivatives, respectively,
o f f a t t = 0 and H denotes the mean curvature ofdtl.

Proof. For the proof of (3.44), which is quite technical, we refer to [HCK86]. Expres-
sion (3.43) follows from (3.41), (3.42), and Green's formula. Thus it remains to prove
(3.42). Using the theorem of substitution for integrals and applying the classical result of
differentiation of integrals with respect to parameters, we obtain

From this and (vi) of Lemma 3.2 we arrive at (3.42). D
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We shall illustrate how to get sensitivities in particular boundary value problems.

EXAMPLE 3.1. (NonhomogeneousDirichlet boundary value problem.) Let/ e L*OC(W), g e
//^C(R") be given and consider

or, in the weak form:

Let v e HQ(&) be arbitrary and take v, in the form v, = v o F~l e HQ(Q,). Since v, is
constant along each streamline x + tV(x), x e fi, we have v — 0 in SI so that

From this, (3.40), and (3.43) it follows that

Applying Green's formula to the second integral on the right of (3.46), we obtain

making use of (3.45) again.
We now arrange the curvilinear integrals in (3.46) and (3.47). It holds that

since v e HQ(&), yielding dv/3s = 0 on 3fi, where d/ds stands for the derivative along
3£2. From this, (3.46), and (3.47) we obtain the following expression for the derivative of
the first integral in OP,):
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Differentiation of the second integral in (P,) is easy. Since / does not depend on t, we have
/' = 0 in £2 so that

as follows from (3.43) using also that v = 0 on 3£2. From (3.48), (3.49), and the fact that
—AM = / in £2, we finally obtain

i.e., u' is harmonic: AM' = 0 in £2. To specify the boundary condition satisfied by u' we
use (3.41):

since g' = 0 in £2 and g — u 6 HQ (£2). In summary, we proved that the shape derivative u'
satisfies the nonhomogeneous Dirichlet boundary value problem

EXAMPLE 3.2. (Nonhomogeneous Neumann boundary value problem.) Let / e Z^oc(R
n)

and g : W -»• R be such that g\9Qt e L2(9£2,) V? e [0, t0]. Consider the problem

or, in the weak form:

Since any function u, e H1 (f2,) can be obtained as the restriction of an appropriate function
v € Hl(M.n) to £2,, one can use t>|jj, as a test function in (P,). Differentiating both sides of
(P,) with respect to t at t = 0+, we obtain the following equation satisfied by the shape
derivative of u:
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making use of (3.43), (3.44), and the fact that v, f , and g do not depend on t, implying
v' = f' = g' = OmW. D

We now show how to differentiate functionals depending on solutions u, to state
problems (Pt). To this end let us consider two sufficiently smooth functions L : (t, y) i->-
L(t, y) e R, t e [0, to], y e W", and / : Qs ->• Em (recall that Qs is a 5-neighborhood
of Q and Q = U(£[o,to]{f} x £2,) and denote

Arguing as in the proof of (3.42) and (3.43), one can easily show that

and

where / := /(O, x) and / and /' stand for the material and shape derivatives, respectively,
of / at t = 0. If L does not depend on t explicitly, then

REMARK 3.9. From (3.53) and (3.54) we see that the same derivative E can be equivalently
expressed in two different ways.

EXAMPLE 3.3. Let L : R -»• Rbe a sufficiently smooth function and u, e HQ(&,) be the
solution of the homogeneous Dirichlet boundary value problem from Example 3.1 (g = 0).
Denote

Then (3.56) yields

To get rid of u' from (3.57) we use the adjoint state technique again. Let p be the solution
to the following adjoint state problem:
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Then Green's formula and (3.58) yield

The first integral in (3.59) vanishes since p e //J (£2) and M' & Hl(Q) satisfies (3.50). From
this, (3.57), (3.59), and (3.51)2 with g = 0 we obtain the final expression for E:

Take, for example, the compliance functional

where / is the right-hand side in (Pt). Then from (3.58) we see that p = u in £2 and, since
L(w) := fu = 0 on 3£2, expression (3.60) becomes

The same sensitivity results for functionals can be obtained by using a duality tech-
nique. To illustrate how one can proceed, consider Example 3.3. We have

where the Lagrangian Ct : HQ(£I,) x Hg^t) -> R is defined by

Let (TJr, qt) € HQ(&,) x HQ(&,) be such that Et = £t(vt><},)• Then necessarily vt = u,
solves (P,) and

where SVt stands for the partial variation of C, with respect to vt. From (3.62) we recover
the adjoint state (3.58) at time t so that (tJt, qt) = (u,, p,). Hence
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From this, (3.43), and (3.56),

using also that /' = 0 in £2 and p = 0 on 9£2. Green's formula, (3.58), and the definition
of (P) yield

and

Inserting these expressions into (3.63) we obtain

Finally using (3.51)2 for both u' and p' we find (3.60).
From the previous examples we see that only the normal component of V and the

normal derivatives of states and adjoint states on the boundaries appear in integrands defining
E. The fact that sensitivities depend only on boundary data is not accidental. This is
a general result that can be rigorously justified (see [SZ92]). In computations, however,
the boundary integral form of sensitivities turns out not to be convenient. Indeed, classical
variational formulations of state problems together with low order finite elements give a poor
approximation of the normal fluxes. To overcome this difficulty we may use the alternative
formula (3.53), which involves only volume integrals (see Problems 3.11 and 3.12).

On the basis of the previous results one can formulate necessary optimality conditions
satisfied by optimal solutions. Their interpretation may reveal some important properties
that are usually hidden in the original setting.

Consider, for example, a shape optimization problem with the homogeneous Dirichlet
boundary value state problem

with the compliance J(Q) = fn fu(Q) dx as the cost and

where c is a positive constant. To release the constant volume constraint, we introduce the
Lagrangian £ : O x R -»• R as follows:
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Suppose that £2* e O is an optimal shape and denote £2* = F,(Q,*). Then there exists
I € R such that

holds for any regular velocity field V. From the definition of £, (3.43), and (3.61) we see
that (3.64) is equivalent to

implying that the absolute value of the normal flux du(Q,*)/dv across the boundary of the
optimal domain £2* is constant.

The next example interprets the optimality conditions in the contact shape optimization
problem studied in Subsection 2.5.5, where we claimed that shape optimization with respect
to the cost functional / given by (2.175) results in an appropriate distribution of contact
stresses along the optimal contact part. In what follows we shall clarify the meaning of this
statement. 

Let£2(a) € Obe given. In view of the special parametrization of shapes of admissible
domains (see Figure 2.6), the velocity field V e (H 1>00(£2(a)))2 will be chosen as follows:

meaning that only the contact part Fc(a) varies. It can be shown (see [HN96, p. 153]) that

where u := u(a) e K(a) solves (P(a)). We now make several simplifications in (3.66).
The right-hand side of (3.66) contains one dominating term, namely the third one, while the
remaining ones represent lower order terms. This claim can be justified by using one of the
axioms of linear elasticity, which says that the deformation gradients are small compared to
unity. The same holds for the displacement field u since Fu (a) ^ 0. Neglecting the lower
order terms in (3.66) we have

The second simplification results from the fact that the contact surfaces can be identified
with the shape of a rigid support. Thus v & (0, — 1) in our particular case, implying

Suppose that domains belonging to O are subject only to the constant volume constraint and
no other constraints are present. As in the previous example, the volume constraint will be
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released by using the Lagrange multiplier technique. Let £2 (a*) 6 O be an optimal shape.
Then there exists A e R such that

for any V of the form (3.65). Further,

in consideration of v « (0, -1). Thus, from (3.68) and (3.69),

for any Vi satisfying (3.65). Therefore T-a(u(a*)) « \ =. const, on rc(a*). Since
*22("(<**)) represents the contact (normal) stress on TC(O!*) we may conclude that the
contact stress along the optimal contact part is almost constant. This is certainly a very im-
portant property from a practical point of view. Shape optimization with the cost functional
/ given by (2.175) avoids stress concentrations between bodies in contact.

REMARK 3.10. It is worth noticing that from (3.66) it follows that the cost functional J,
which is equal to the value of the total potential energy in the equilibrium state, is once
continuously differentiable. Compare with (3.19) where the same property has been proved
for solutions of (£*,•„(«)).

3.3.2 Isoparametric approach for discrete problems

This subsection deals with sensitivity analysis of discretized optimal shape design problems.
We describe how to differentiate stiffness and mass matrices and force vectors with respect
to discrete design variables. Our approach will be based on the isoparametric technique,
enabling us to compute these derivatives by using elementary matrix operations. We start
with a scalar elliptic problem in 2D. The reader will find that after minor modifications the
formulas are also valid in the three-dimensional case.

Consider the following state problem:

Using a finite element discretization of (P(a)) and an appropriate parametrization of £2 (a)
by a finite number of discrete design variables a\,..., 0.4 forming the vector a, we obtain
the following system of linear algebraic equations:

where K(a) and M(a) are the stiffness and mass matrices, respectively, and /(a) is the
force vector.
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Our aim is to find sensitivities of K(a), M(a), and /(a) with respect to the design
parameter «*,& = 1,... ,d, i.e., tofind3jRr(a)/3a^, 9M(a)/3ajt, and3/(a)/3af In what
follows we denote (•)' := d(-)/d<Xk. For the sake of simplicity of notation the argument a
will be omitted.

The global vector q of nodal values, arranged relative to the global numbering of
nodes, is related to the element (or local) nodal value vector qe by

where Pe are Boolean matrices whose elements are only ones and zeros. These matrices are
used only for notational convenience and are not explicitly formed in actual computations.

The global stiffness and mass matrices and the force vector can be assembled with
the aid of the local ones as follows:

where the summation is carried out over all elements of a given partition T of Q. The
elements of Ke', Me, and fe are given by

respectively. Here <pt, i = 1,. . . , p, are the shape functions associated with the element
Te e T. In practical computations the integrals in (3.72) are usually evaluated by using a
numerical integration formula. Therefore, the integrals are transformed to a fixed "parent
element" T. Let Fe : T -> Te be a one-to-one mapping of T onto Te. Further, let

be matrices whose elements are the shape functions and their derivatives associated with
the element Te. Then the local matrices and vectors can be written in a compact form as
follows:

where | J1 denotes the determinant of the (transposed) Jacobian J of the mapping Fe : T ->
Te. To simplify our notation, the superscript e by the matrices behind the sign of the integrals
here and in what follows will be omitted.

REMARK 3.11. To be more precise we should write

and similarly for the other integrals. However, the abbreviated form of (3.74) is commonly
accepted. For this reason we shall also omit letters denoting the arguments of functions.
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The derivatives of the global matrices K and M and the vector / now can be computed
element by element using (3.71) and (3.74). Since the domain of integration in (3.74) is
fixed, we obtain

Thus it suffices to find expressions for N', G', x', and |/|'. A naive way to do this would
be to express the integrands as explicit functions of the design variable a and to perform
the differentiation. This, however, will result in very specific expressions of daunting
complexity.

Instead we use the chain rule of differentiation. Let (X,i, X,2), i — 1,... , p, be the
nodal coordinates of Te = Fe(f). The integrands in (3.75)-(3.77) are completely defined
by the nodal points of Te. Thus,

In practical computations, elements are implemented by using the isoparametric tech-
nique. Let

be the matrices made of the shape functions and their derivatives for the standard p-noded
Lagrangian finite element of a chosen parent element T. The one-to-one mapping Fe

between T and Te is defined by means of the shape functions on T and the nodal coordinates
of Te as follows:

For a general element Te the shape functions are given by

so that



122 Chapter 3. Sensitivity analysis

From this we see that the matrices G and G are related by

and the (transposed) Jacobian of the mapping Fe is given by

where

is the matrix containing the nodal coordinates of Te. For curved elements, the shape functions
of a general element are usually represented by rational functions.

Before giving simple formulas for N', G', x', and | /1', we need the following classical
result.

LEMMA 3.4. (Jacobi's formula for the derivative of a determinant.) Let A be a nonsingular
m x m matrix function. Then

Proof. Let A* = («£)" =1 be the adjugate of A, i.e., a matrix with the elements

a*j = (—1)'~; det (A without its y'th row and i\h column).

With the aid of A* one can represent the determinant and the inverse of A as follows:

From this we get the desired result. Indeed,

THEOREM 3.3. For isoparametric finite elements,
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Figure 3.1. Partition into quadrilateral elements.

Proof. Since G does not depend on a we obtain, from (3.81),

so that

making use of (3.81) and (3.82). Let £ e f. From (3.79) it follows that ?>,• (*(£)) = %(£);
i.e., N is independent of the nodal coordinates of Te, and therefore of design, too. This
yields (3.85). _

Equation (3.86) now immediately follows from the relation x = XTN. Finally, ap-
plying Lemma 3.4 to |/| and using (3.81) and (3.82), we get the derivative of |/|:

EXAMPLE 3.4. Let us consider the very simple situation shown hi Figure 3.1. We have four
design variables a\,..., «4 and nine quadrilateral elements (each horizontal line is divided
into three segments of the same length). The nodal coordinate matrix corresponding to the
four-noded element TS is given by

The derivatives of the matrix AT(5) with respect to the design variables are readily obtained:
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The benefit of the chain rule technique is obvious: all we need are the derivatives of Xe.
The calculation of (Xe)' can be done completely independently. On the other hand, the
parametrization of the shape is not explicitly visible from formulas (3.84)-(3.87). This is
important in practical implementation: if one changes the parametrization of shapes, only
the "mesh module" that calculates X and X' needs modifications. On the other hand, the
same mesh module can be used without any modification for different state problems.

Consider now a plane linear elasticity problem:

We assume, for simplicity, that the elasticity coefficients cym and the body forces / =
(/i > /a) are constant.

Applying the isoparametric element technique in the same way as in the scalar case,
we get similar expressions for the local stiffness matrix Ke and the local force vector fe.
The matrix Ke can be written in the following compact form:

where

and <pi, i = 1 , . . . , p, are the shape functions of Te given by (3.79). The symmetric matrix
D contains the elasticity coefficients of the linear Hooke's law (3.90) expressed in matrix
form as follows:

The local force vector corresponding to the body force / = (/i, /2)
T is given by

where

Taking into account that £>' = /' = $' = 0, we obtain the following formulas for the
derivatives of the local stiffness matrix and the force vector:
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The nonzero elements of B can be assembled from those of the matrix G. Similarly, B' can
be obtained from G' using (3.84).

REMARK 3.12. Suppose now that boundary tractions P = (Pi, P2) act on a part I> (a) and
that the respective boundary conditions are of the form

Let Te c dTe be a side of Te placed on rP(a), Te = Fe(f'), where f' = {(xi,x2) I x\ e
(-1,1), x2 = 0}. Then the local contribution corresponding to (3.93) can be written in the
form (see [HO77])

where $ is as above and J,j denotes the elements of /. Assuming P to be constant on
rp(a), we easily obtain from (3.94)

Problems

PROBLEM 3.1. Perform sensitivity analysis for a nonlinear state equation from Remark 3.4.

PROBLEM 3.2. Suppose that the matrix function A : U ->• R"x" satisfies (iv) and (v') of
Remark 3.5. Prove that there exists a continuous function m := m(a) > 0 for any a e U
such that

PROBLEM 3.3. Prove Lemma 3.1.

PROBLEM 3.4. Prove that the mapping x : a H> x(a) e /C(a), where x(a) solves
(Pin (a)) from Section 3.1, is continuously differentiable provided that the set of semiactive
constraints 2b(a) is empty.

PROBLEM 3.5. Let A e Cl(U x R"; M"xn) be a generally nonlinear matrix function once
continuously differentiable with respect to both variables, / 6 C1 (U, R"), and consider the
following variational inequality:
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where /C(a) is as in (3.11). Suppose that A is strictly monotone uniformly with respect to
U; i.e., 3m = const. > 0 :

Then (3.96) has a unique solution* (a) for any a 6 U. Prove that the mapping x : a i-> *(a)
is Lipschitz continuous in U and directionally differentiable at any a € U and in any direction
ft. Prove the counterpart of Theorem 3.2.

PROBLEM 3.6. Let AT (a) be a solution of ("?><„(«)) with /C(a) defined by (3.20). Show that
Theorem 3.2 holds true with K.(a, ft) given by

where <?•(«, ft) is the directional derivative of (pi at a and in the direction ft and

PROBLEM 3.7. Consider the same thickness optimization problem as in Section 3.2 but with
the set U£d defined by (2.32). Calculate the derivatives of the respective stiffness matrix
K(e).

PROBLEM 3.8. Consider the thickness optimization problem for an elastic unilaterally
supported beam and its discretization studied in Subsection 2.5.1. Compute the directional
derivatives of q : e i-> q(e), where q(e) solves the algebraic inequality resulting from the
finite element approximation of (P(e)).

PROBLEM 3.9. Prove Lemma 3.2.

PROBLEM 3.10. Denote A, = (DF~l)rDF~lIt, where F, : R" -> E" is given by (3.35).
Compute A := j-t A, \t_Q by using Lemma 3.2.

PROBLEM 3.11. Let L : [0, t0] x Rm -*• R and / : Qs -* Km be two sufficiently smooth
functions, where Qs is a ̂ -neighborhood of Q and Q = Ut€[o,r0]{J} x £2,, £2, — Ft(£2), with
Ft given by (3.35). Compute

PROBLEM 3.12. Consider the homogeneous Dirichlet boundary value problem
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where / e L^C(R"). Prove that the material derivative u satisfies

where A is the same as in Problem 3.10.

PROBLEM 3.13. Consider the following optimization problems:

where u(Si) solves

Express /(ft; V) by using both the shape and material derivatives of u.

PROBLEM 3.14. Consider the following optimal shape design problem:

where w(£2) solves

/ e Lfoc(W), uad, g : R" -»• R are such that ua^an and g|8n belong to L2(3£2) for any
admissible ft. Compute J(9f2; V) by using both the adjoint state and duality techniques.
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Chapter 4

Numerical Minimization
Methods

Unlike authors of many other books on structural and shape optimization, we discuss basic
nonlinear programming algorithms only very briefly. Nonlinear programming is central to
operations research and a vast literature is available. The reader not familiar with the subject
should consult [DS96], [He87], [GMW81], and [BSS93], for example.

We will focus on methods that we will use for the numerical realization of the "upper"
optimization level in examples presented in Chapters 7 and 8. We do not consider methods,
such as preconditioned conjugate gradients, intended for solving very large and sparse
quadratic (or almost quadratic) programming problems with very simple constraints (or
without constraints) arising from the discretization of state problems.

As we have seen previously, the algebraic form of all discrete sizing and optimal shape
design problems leads to a minimization problem of the following type:

where / : U ->• R is a continuous function and U C R" is a nonempty set representing
constraints. In this chapter we briefly discuss typical gradient type and global optimization
methods based on function evaluations, which will be used for the realization of (P). In the
second part of this chapter we shall also mention methods of multiobjective optimization.

4.1 Gradient methods for unconstrained optimization
We start with gradient type methods for unconstrained optimization when U = R".
Suppose that / is once continuously differentiate in R". Then the necessary condition
for x* to solve (P) is to be a stationary point of f ; i.e., x* satisfies the system of n generally
nonlinear equations

Therefore any minimizer of / in R" is a stationary point at the same time. The opposite
is true for convex functions. Gradient-based methods realize a sequence {**}, or* 6 R",

129
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k = 0,1,..., starting from an initial point XQ following the formula

where Pk > 0 is a given number and dk e R" are chosen in such a way that f(Xk+\) <
f ( x k ) V k = 0,1, From the Taylor expansion of / around Xk it follows that a decrease
in / is locally achieved when dk is the so-called descent direction of / at Xk'.

The simplest and oldest method is steepest descent, in which dk = —V/(*t) Vfc =
0, 1,... and Pk is defined from the condition

The one-dimensional minimization of / in (4.4) is called a line search. The steepest descent
method corresponds to a linear approximation of /. Due to its simplicity it is not surprising
that the method is not too efficient. It can be shown that if / e C2(R") is convex, then
convergence is linear; i.e.,

where x > 0 is the spectral condition number of the Hessian of / at the minimum point x*.
A better result is obtained for conjugate gradient methods. In this case the descent direction
dk at Xk is computed by using the gradient of / at Xk and the previous descent direction
dt-i'.

where gk = V/(jtt) and a* — Il£ j t l l 2 / I lg j t_ i l l 2 - It is known that under appropriate assump-
tions on / and with an appropriate choice of Pk the ratio on the right-hand side of (4.5)
can be replaced by a much more favorable one, namely (Jte — l)/(^/x +1), where x
has the same meaning as in (4.5). Let us mention that this method with exact line searches
(4.4), when applied to a quadratic function, terminates at its stationary point Xk after k < n
iterations.

The speed of convergence can be improved by using methods based on quadratic
approximations of /. As a typical representative of such a class of methods we briefly discuss
the sequential quadratic programming (SQP) method. Before that, however, Newton's and
quasi-Newton methods are presented to help the reader understand the SQP algorithm. The
reasons for selecting the SQP method are the following:

• It is widely accepted that the SQP method is very efficient and reliable for general
nonlinear programming problems provided that accurate derivatives of objective and
constraint functions are available.

• Well-tested and reliable implementations of the SQP method are available either free
of charge or at nominal cost for academic research.*

*More information on nonlinear programming software packages (properties, commercial status, contact in-
formation, etc.) can be found at www-fp.mcs.anl.gov/otc/guide/softwareguide/ or www.ici.ro/camo. URLs were
current as of January 2003.

www-fp.mcs.anl.gov/otc/guide/softwareguide/
www.ici.ro/camo
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Comparison of several gradient-based methods in structural optimization problems
has been done in [SZZ94].

4.1.1 Newton's method

Let us consider an unconstrained nonlinear optimization problem (P) with / : R" -> R
that is at least twice continuously differentiable in R". Let XQ e R" be an initial guess for the
solution of (P). Then / can be approximated near XG by its second order Taylor expansion

where g(x) = Vf(x) andff(x) = {d2f(x)/dxidxj}n.j=1 are the gradient and the Hessian
matrix of / at x e R", respectively. If H(XQ) is positive definite, the (unique) minimum
of the quadratic approximation on the right of (4.6) with respect to d is obtained as the
solution of the linear system of equations H(xo)d = —g(xo)- A new approximation for
the minimum in (P) is obtained by setting x\ = xo + d.

Suppose that H (x) is regular for all x e R". Repeating the previous approach we
obtain the following algorithm.

ALGORITHM 4.1. (Basic Newton's method for unconstrained optimization.)

1. Choose an initial guess *o € R" and a tolerance parameter e > 0 for the stopping
criterion. Set k := 0.

2. Calculate the gradient g(xk) and the Hessian matrix H(Xk) of / at x^.

3. Calculate the search direction dk by solving the linear system of equations

4. Update the approximated minimum by

5. If \\g(Xk+i) II < s, then stop. Otherwise set k :— k + 1 and go to step 2.

Thus Newton's method corresponds to the choicest = — [H(xk)]~1g(Xk)sa^^pk = 1
for all k e N in (4.2) (notice that dk is a descent direction only if H(Xk) is positive definite).

It can be shown (see, e.g., Problem 4.1 and [GMSW89, p. 11]) that if XQ is sufficiently
close to x* and / satisfies certain (quite restrictive) assumptions, then the sequence [xk]
generated by Algorithm 4.1 converges quadratically to x*; i.e.,

4.1.2 Quasi-Newton methods

The calculation of the Hessian matrix requires the evaluation of n(n + l)/2 partial deriva-
tives. Hand coding of the second derivatives is very error prone and tedious. Therefore
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their computation is recommended only if automatic differentiation techniques described
in Chapter 5 are available. A finite difference approximation of the Hessian is usually very
expensive. If the gradient g := V/ is available analytically, a simple finite difference
approximation of the Hessian H(x) requires n additional evaluations of g(x). Another
serious drawback of the classical Newton method is that the Hessian H(xk) may not be
positive definite; i.e., dk — — [H(Xk)]~lg(Xk) is not generally a descent direction.

To overcome these disadvantages the so-called quasi-Newton methods have been
developed. Instead of the Hessian they use its approximation by a symmetric, positive
definite matrix. Let / be three times continuously differentiable in K". Using the Taylor
expansion for the gradient g(x + d) = g(x) + H(x)d + O(\\d\\2) one can obtain an
approximation of the second order derivative of / in the direction d without explicitly
forming approximations of the individual elements of the Hessian:

Therefore we replace the Hessians in Newton's method with a sequence {Bk} of symmetric
matrices satisfying the so-called quasi-Newton condition

If » = 1, then the numbers Bk are unique and the method is just the secant method for the
single nonlinear equation f'(x) — 0.

If n > 1, then relation (4.8) does not determine Bk in a unique way. The identity
matrix may be chosen as the initial guess BO- After that a new Hessian approximation
at JCi is formed by updating BO, taking into account the additional curvature information
obtained during the step x\ = XQ + d. It is believed that the most efficient update is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) rank-two update given by

Here we write in shorthand sk — Xk+i — Xk and yk = g(xk+i) — g(xk). If the natural step
length is used, i.e., xk+\ = xk + dk, then Sk = dk in (4.9).

It can be proved that if Bk is positive definite, then Bk+\ is also positive definite
provided that

Replacing the Hessian in Newton's method with the BFGS approximation, we obtain
the following algorithm.

ALGORITHM 4.2. (Quasi-Newton method with BFGS update.)

1. Choose an initial guess XQ e R" and a tolerance parameter e > 0 for the stopping
criterion. Set B0 := I and k := 0.

2. Calculate the search direction dk by solving the linear system of equations

3. Update the approximated minimum by
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4. If ||g(*jt+i)ll <e, then stop.
5. Update the Hessian approximation by

where sk = xk+i - xk, gk = V/(jrt), and yk = gk+l - gk.

REMARK 4.1. The solution of the linear system in step 2 requires O(n3) arithmetic op-
erations. It would be possible to formulate the BFGS quasi-Newton method yielding an
approximation to the inverse Hessian matrix. In that case, step 2 would be replaced by
a matrix-vector product requiring only O(n2) arithmetic operations. The preferred way
is to update the Cholesky factors LkDkl7k of Bk instead. The factors Lk+\ and Dk+\ of
the updated matrix Bk+\ can be formed using O(n2) operations. If the Cholesky factors
are available, then the linear system in step 2 can be solved using O(n2) operations. This
approach is more numerically stable and in addition allows one to estimate the condition
number of the Hessian matrix very easily. The latter is very useful in practice.

4.1.3 Ensuring convergence

From elementary numerical analysis it is well known that Newton's method for solving a
nonlinear equation converges to a single root only if an initial guess is sufficiently close
to the root. Unfortunately the same holds true in the case of Algorithms 4.1 and 4.2,
even if / is convex. One cannot, of course, tolerate this in practice. The methods should
be globally convergent, meaning that the sequence {**} generated by (4.2) is such that
liminf*_i.00 ||g(jCit)|| = 0 for any choice of XQ e R". One way to achieve this goal is to add
a line search technique and to ensure that dk, k = 0,1,. . . , are uniform descent directions:

meaning that the angle between dk and g (xk) is uniformly bounded away from orthogonality.
Assume that the search direction dk satisfies (4.11). Instead of (4.7) or (4.10), the

new approximation for solving (P) is calculated as

where pk is defined by (4.4).
In practice the exact minimization to determine pk is not usually used. Convergence

can be guaranteed if a sufficient decrease in / is obtained. Moreover, pk = 1 is used
whenever possible so that the good convergence rates of Newton's method or the quasi-
Newton method near the optimum can be exploited. A sufficient decrease in / can be
attained if pk satisfies the following Wolfe conditions:

where 0 < ft < \ and ft < y < 1. It can be shown that under (4.11), (4.13), and (4.14) the
descent direction method (4.2) is globally convergent provided / is bounded from below
and the gradient of / is Lipschitz continuous in R" (see [Fle87]).
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Unfortunately, the line search variant of Newton's method is globally convergent only
if the minimized function is uniformly convex in R"; i.e.,

To ensure global convergence for nonconvex functions, the so-called trust region concept
has to be used. Let us describe it in brief. Denote by

the quadratic approximation of the difference f(Xk + s) — f(xk) in a vicinity of Xk and let

be the ratio of the real and expected decreases in / at Xk- We realize the sequence {**} by

with 5* e Bk - {s e R" | ||s|| < A*} being the solution of

The sequence {A^} defining the radius of Bk is defined as follows:

where 0 < / 8 < / } < l < ) 7 and 0 < p < 1. It can be shown that, if / is bounded from
below, if it has a bounded Hessian in R", and if the level sets

are compact for any / e R, then for any XQ e R" there is an accumulation point x* of {Xk}
defined by (4.15) such that g(x*) = 0 and H(x*) is positive semidefinite. If, in addition,
H(x*) is positive definite, the whole sequence [xk] tends to #*, a local minimizer of /.

4.2 Methods for constrained optimization
The numerical realization of sizing or shape optimization problems usually leads to a non-
linear programming problem with constraints. Let us consider problem (P) with equality
constraints defining U:

where / : R" ->• R and c : R" -»• Rm are twice continuously differentiate functions in R".
In what follows we denote by A(x) e Rmx" the Jacobian of the vector-valued function c at
x eR".
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A nonlinear programming problem with U given by inequality constraints c, (x) < 0
for i = l,...,m can be converted to a problem with equality constraints by using an
active set strategy: if it is known a priori which constraints are active at the optimum (i.e.,
d (x*) = 0, i e I), the rest of the constraints can be removed from the problem and a new
one with only equality constraints is obtained. In practice the set I is not known a priori but
it can be treated as an additional unknown of the problem and adjusted iteratively during
the numerical optimization process. Next we shall consider problem (P) with the equality
constraints (4.16).

The basic principle invoked in solving a constrained optimization problem is that of
replacing the original problem with a sequence of simpler subproblems that are related in a
known way to the original problem (P).

The classical penalty method is an example of the above-mentioned principle. The
original constrained problem (P) is replaced with a sequence of unconstrained ones:

where e^ ->• 0+ as k -> oo. Then each convergent subsequence of {*£} of solutions to
(P£jb) tends to a solution of (P) (see Problem 4.2). Each problem (Pet) can now be solved by
using Newton's method or the quasi-Newton method, for example. Unfortunately, when «*
is very small, the Hessian Hk of /* becomes ill conditioned at the solution x* of (P) since

is dominated by the singular matrix A(x*)TA(x*). To avoid ill-conditioning of (Pet) caused
by small e* the so-called augmented Lagrangian methods have been developed (see [Fle87]).

The most efficient and numerically stable methods are based on seeking a point sat-
isfying the sufficient optimality conditions for constrained optimization that are mentioned
below. Before doing that let us recall the following basic notion: a point jc e U is said to
be regular if the gradient vectors of the constraint functions c,, i = 1,... , m, are linearly
independent at x; i.e., the Jacobian matrix A(x) has full rank equal to m.

Let £ : R" x W ->• R be the Lagrangian corresponding to (P):

THEOREM 4.1. (Karush-Kuhn-Tucker (KKT) first order necessary optimality condition.)
Let the objective and constraint functions of problem (P) be continuously differentiate at
a regular point x* € U. A necessary condition for x* to be a local minimizer in (P) is that
there exists a vector X* e W" such that

Since x* is regular, then X* (called the vector of Lagrange multipliers) is unique.

THEOREM 4.2. (KKT second order sufficient optimality conditions.) Let the objective
function and constraint functions of problem (P) be twice continuously differentiate at a
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regular point x* € U. A sufficient condition for x* to be a local minimizer in (P) is that
there exists a vector X* e Rm such that

(i) V/(**) - A(x*)TX* = 0;

(ii) dTV*£(x*, V)d > Ofor any d / 0 satisfying A(x*)d = 0, where V%£ stands for
the partial Hessian of C, with respect to x.

REMARK 4.2. Denote by Z(jc*) an n x (n — m) matrix whose columns form a basis of
the null space A/"(**) of A(x*). Then condition (ii) in Theorem 4.2 can be equivalently
expressed as follows:

(ii') The reduced Hessian Z(x*)JV^£(x*, X*)Z(**) is positive definite.

4.2.1 Sequential quadratic programming methods

Instead of quadratic approximations of /, we now use quadratic approximations of the
Lagrangian £. Since (x*, X*) is a saddle point of £ we have to add some constraints into the
quadratic programming subproblem to ensure its solvability. Condition (ii) in Theorem 4.2
suggests that a set of linear constraints might be appropriate.

Let (Xk, X*) € R" x Rm be a current approximation of (x*, X*). A point Xk + dk is
intended to be a better approximation for x*. Therefore Xk + dk should also be feasible;
i.e., c(xk + dk) « 0. Making use of the Taylor expansion of c at jct we get

Ignoring the higher order terms in (4.19), the search direction dk should satisfy

We are now able to formulate a quadratic programming subproblem with equality constraints
whose solution determines dk'-

where g(Xk) '= V/(*t) and the matrix Bk is the exact Hessian (or its approximation) with
respect to x of C at (Xk, X,t).

Let Z* e R"x("~m) and Yk e Rnxm denote matrices whose columns form the basis of
the null space Af(Xk) of A(Xk) and the range space ~R-(xk) of A(xk) , respectively. If the
reduced Hessian (Zk^BkZk is positive definite, subproblem (P*) has a unique solution d^.
Indeed, the vector dk can be decomposed as follows:

making use of the fact that R" = Af(xk) @ T^(Xk). The range space component of dy is
given by the unique solution of the linear system
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while the null space component d z solves

The Lagrange multiplier fik e W" corresponding to the set of linear constraints in
(Pi) satisfies the compatible overdetermined system

The reason for using g(xk) instead of VxC(xk, X*) in (Pt) is the following: First, the
solution dk of (Pt) is the same if g(xk) is replaced by Vx£(xk, XjO in (4.20) because

employing the fact that A(xk)Zk = 0. Second, when dk -* 0 then (4.21) leads to the
optimality condition for problem (P):

Therefore the vector of the Lagrange multipliers in (P*) can be taken as an approximation
of the Lagrange multipliers in the original problem (P).

ALGORITHM 4.3. (Simple SQP algorithm.)

1. Choose an initial guess (JCQ, XQ) e R" x Rm and a tolerance parameter e > 0 for the
stopping criterion. Set k := 0.

2. If \\g(xk) - A(*t)
TXtll < £ and ||c(*)|| < e, then stop.

3. Let (dk, iik) be the solution and the vector of Lagrange multipliers, respectively, of
the quadratic programming subproblem

4. Set

5. Calculate a new Hessian Bk+\ (exact or its BFGS approximation).
6. Set k :— k + 1 and go to step 2.

It can be shown (see [GMW81, p. 239]) that, if Bk is the exact Hessian (with respect
to Jt) of £ and the initial guess (*o, X.Q) is sufficiently close to (x*, X*), the sequences
{Xk}, {X*} defined by Algorithm 4.3 converge quadratically to x* and X*, respectively,
satisfying the first order KKT condition (4.18).

As in Newton's method, the convergence properties of Algorithm 4.3 will be improved
if a line search is added to step 4. In contrast to unconstrained optimization the decrease in
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/ itself is not a measure of progress in constrained nonlinear programming. Usually step 4
is replaced by the following step:

4'. Set

where p^ > 0 is chosen in such a way that a "sufficient decrease" in the augmented La-
grangian merit function

is achieved. Here r > 0 is a penalty parameter. It can be shown that under additional
assumptions the sequence {(*£, A.*;)} defined by (4.23) converges to (x*, X*) satisfying the
KKT first order necessary optimality conditions. Furthermore, there exists finite r0 such that
x* is the unconstrained minimizer of <tv(x, X*) Vr > ro. For details we refer to [Sch82].

4.2.2 Available sequential quadratic programming software

There are several SQP implementations available. Most of the implementations assume that
the size of the optimization problem is moderate because the matrices are stored as dense
ones. The following subroutines are widely used and easily accessible:

• NLPQL, by K. Schittkowski, University of Bayreuth, Germany. NLPQL solves the
following nonlinear programming problem:

For details on the availability of NLPQL contact the author at klaus.schittkowski®
uni-bayreuth.de. NLPQL is also included in the commercial IMSL subroutine library
[IMS94].

• DONLP2, by P. Spellucci, Technical University of Darmstad, Germany. DONLP2
solves the following nonlinear programming problem:

The code is available online free of charge for research purposes from ftp://plato.la.
asu.edu/pub/donlp2/.
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• E04UCF, included in the commercial NAG subroutine library [NAG97]. E04UCF
solves the following nonlinear programming problem:

In E04UCF the linear constraints, denned by a matrix A = (a,;) € Rm*x", and
general nonlinear constraints are described separately. All constraints have both lower and
upper bounds. If some bound is not present one can use ±M instead, where M > 0 is a
"large" number. Equality constraints are obtained if the upper and lower bounds coincide.

NLPQL allows the use of reverse communication; i.e., the values of objective and
constraint functions and their derivatives can be evaluated in the (sub)program from which
the optimizer is called. This is useful especially in sizing and shape optimization (SSO)
since the calculation of function values of /, c, and of their derivatives is difficult to separate
into different subroutines.

4.3 On optimization methods using function values only
In this section we shall present two types of optimization methods that do not use any
gradient information and have a potential to reveal global minima of functions with several
local minima. One of the main reasons for their popularity is that they are very simple
to implement. A structural analyst with some experience in finite element analysis but no
knowledge of nonlinear programming is able to implement these methods in a few hours.
Since they do not use gradients, one can use them for minimization of nondifferentiable
functions. However, they need considerable fine tuning to perform well. Moreover, they
should not be used when the problem is "too simple." In this case gradient-based methods
with a finite difference approximation of derivatives together with some global strategy
(several initial guesses, for example) are usually much more efficient than methods based
on function evaluations only.

Solutions of (P), i.e., global minimizers of / with respect to U, representing solutions
of discretized problems may hardly be detected by gradient methods. This happens, for
example, if the objective function / is multimodal; i.e., many local minima exist in the fea-
sible region. If a global minimizer x * of / is needed, global optimization methods represent
an appropriate tool to find it. Due to the limited accuracy of floating-point representations
of real numbers by computers, the global optimization problem is considered as solved if
an element of the level set

has been found by using an appropriate algorithm. Unfortunately, the theoretical results
indicate that, in general, the global optimization problem is NP-complete; i.e., there is no
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efficient (i.e., polynomial time) approximation algorithm capable of solving an arbitrary
global optimization problem. For details see, e.g., [Bac96, pp. 35-62].

In many applications the feasible region U is usually defined by simple box constraints;
i.e., U = U"=i\.x!°w'X"PP]' xlow,x"pp e R, i = 1,2, . . . ,« . Specialized stochastic
algorithms have been developed especially for such problems in the past decades. Some of
them imitate the evolutionary process in organic populations [BS93, Gol89, Mic92]; some
of them are based on the physical process of annealing [MRR+53, Ing93]. Empirical results
confirm that objective functions appearing in industrial applications are such that stochastic
algorithms yield a good approximation of global minima.

4.3.1 Modified controlled random search algorithm

Random search belongs to the class of stochastic algorithms of global optimization. Random
search algorithms are reviewed in [TZ89]. The controlled random search (CRS) algorithm
was proposed by Price [Pri76] in 1976. The CRS algorithm is based on ideas of the Nelder-
Mead simplex method [NM64]. It starts with a population P of N points (N » n) taken at
random in the feasible region U. A new trial point x is generated from a simplex S in R",
whose n + 1 vertices belong to the population P in U, using the relation

where z is one vertex of S, g the center of gravity of the face defined by the remaining
vertices of S, and Y a multiplicative factor. The point x may be considered as resulting
from the reflection of z with respect to g. Let xmax be the point with the largest objective
function value among N points currently stored. If f(x) < f(xmax), then xmax := x;
i.e., the worst point in P is replaced by the new trial point. The process continues until a
stopping condition is fulfilled.

The modified CRS (MCRS) algorithm is described in [KT95]. The principal modifi-
cation of the CRS algorithm consists of randomizing the factor Y when searching for a new
trial point. Consider the procedure Reflection formally written as follows.

procedure Reflection(in: P, out: x )
repeat

set S := set of (n + 1) points selected from P at random;
set jc :=g — 7(z —g);

until jc e It;

The multiplication factor Y is a random variable. Then the MCRS algorithm can be written
very simply.

ALGORITHM 4.4. (MCRS.)

P :— population of N points in U generated at random;
repeat

Reflection^, or);
if/(*) < f(xmax) thenxmax := x;

until stopping criterion is true;
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Several distributions of Y have been tested. It was found that good results are obtained
with Y distributed uniformly in [0, a[ with a ranging from 4 to 8 [KT95]. The MCRS
algorithm has been successfully applied to parameter estimation in nonlinear regression
models [KTKOO] and in shape optimization [HJKTOO] (see also Chapter 6).

No particular stopping criterion is defined. However, in most optimization problems
the stopping criterion is expressed as

where xmin is the point with the smallest value of the objective function among all the N
points of P held in the memory and s > 0 is an input parameter. The MCRS algorithm is
very easy to implement. It has three input tuning parameters:

• the number N of points in P,
• the value of a defining the range of Y,
• the value of s for the stopping condition.

A correct setup of the tuning parameters depends on the nature of the optimization
problem to be solved. The higher the values of N and a the more thorough the search
for global minima is. Empirical observations indicate that the values a = 8 and TV =
max(5n, n2) are acceptable in many applications.

Some other modifications of the CRS algorithms can be found in [ATV97] and in
several references therein.

4.3.2 Genetic algorithms

Genetic algorithms (GAs) are stochastic methods that can be used to solve problems ap-
proximately in search, optimization, and machine learning. GAs can be presented using the
concept of natural evolution: a randomly initialized population of individuals (approximate
solutions to a mathematical problem) evolves, mimicking Darwin's principle of survival of
the fittest. In a GA a new generation of individuals is produced using the simulated genetic
operations crossover and mutation. The probability of survival of the generated individuals
depends on their fitness: the best ones survive with a high probability, the worst die rapidly.
For more detailed treatment of the topic see [Hol75], [Gol89], for example.

In what follows we shall apply the general idea of GAs to the problem of finding
an approximate solution to a shape optimization problem, for example. Let us consider a
population of admissible shapes. Every shape is uniquely defined by a set of floating-point
numbers (design parameters), which can be represented as a single finite bit string ("digital
chromosome"). We assume that it is possible to evaluate the fitness of each shape, where
the fitness is a real number indicating how "good" a shape is compared with the others in
the population. To simulate the process of breeding a new generation of shapes from the
current one, the following steps are used:

• Reproduction according to fitness: the more fit the shape is, the more likely it is to be
chosen as a parent.

• Recombination: the bit strings of the parents are paired, crossed, and mutated to
produce offspring bit strings. Every new bit string uniquely determines a new shape.

• Replacement: the new population of shapes replaces the old one.



142 Chapter 4. Numerical Minimization Methods

Let us now consider a discrete shape optimization problem reduced to the solution
of the nonlinear programming problem (P) with U given by simple box constraints. In the
traditional GA the chromosome string is an array of bits (zeros and ones) and the genetic
operations are performed bitwise. Instead of this we use the so-called real coding. The real-
coded GA processes a population P of vectors {*(!)}, *(l) e K", i = l,...,N, where N is
the population size. The genetic operations to vectors are now performed componentwise
using standard arithmetic operations. Next we shall give a specific meaning to the general
concepts mentioned above in our specific context.

Genetic type algorithms are used for the maximization of a fitness function F char-
acterizing the state of a population. Therefore if one can use GAs in SSO formulated as
minimization problems for a cost functional /, one has to set F = — f, using the well-known
fact that max^(—/) = — min^ /• For multiobjective optimization problems, which will
be discussed later, a completely different choice is useful. Therefore we define the fitness
evaluation phase as the following procedure:

procedure Evaluate_fitness( in: N, P, f, out: f)
set f = {F l 5 . . . , FN} := {-/(x(1)),..., -/(*w)};

To select individuals to become a parent in breeding we can use, for example, the so-
called tournament selection rule. For each "tournament" a fixed number n T of individuals is
selected randomly from P. The individual with the highest fitness value wins the tournament,
i.e., is selected to be a parent. If there are several such individuals, then the first one to enter
the tournament wins. This selection rule is conveniently written as the following procedure:

procedure Choose_parent(in: P, T, N, nT, out: x )
select k e [I,..., N} at random;
do i = 2 , . . . , «7

select m e {1,..., N} at random;
if Fm > Fk then set k:=m;

end do
set x := x^k):

Figure 4.1. An example of one-site crossover.



4.3. On optimization methods using function values only 143

In the breeding process the offspring can be implemented by using, e.g., the following
one-site crossover. With a given probability Pco the components of xa, xb are crossed in
the following way:

where 1 < m < n are again randomly chosen. Otherwise, the values of the parents x", xb

are copied to y", yb. Figure 4.1 shows an example of this type of one-site crossover. The
crossover operation can be written as the following procedure:

procedure Crossover(in: Pco, x
a, xb, out: y",yb)

select r € [0,1] at random;
if r < Pco then

select m e {1,..., n} at random;

end if;

The mutation can be understood as a way to escape from local minima. Mating two
"locally" good parents may produce a better offspring but only locally. A random variation
of the properties of the offspring may produce a design that would be impossible to get
using just crossover operations to selected parents. The mutation of a single floating-point
string x can be done, e.g., in the following way, which uses a special distribution promoting
small mutations [MNP+97]. The components of the individual under consideration are gone
through one by one and mutated with a given probability Pm. We denote the component *,
after the mutation by x™. It is computed in three steps:

procedure Mutate(in: N, x'ow, x"Pp, p, Pm, in/out: P)
dok=l,...,N

set* :=*<*>;
do i = I , . . .,n

select r e [0, 1] at random;
if r < Pm then

end if
end do
replace *(*' by x in P;

end do;

else
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The input parameter p > 1 ("mutation exponent") defines the distribution of mutations and
xiow an(j xupp g jjjn are me vectors defining the lower and upper bounds for U, respectively.
If p — 1, then the mutation is uniform. The probability of small mutations grows if the
value of p grows.

Because we have already defined all of the necessary genetic operations, we can
present the following simple GA for solving the nonlinear programming problem (P) with
box constraints.

ALGORITHM 4.5. (Simple GA.)

procedure GA( in: N, nT, Pco, Pm, p, xlow, XUPP, f, out: P )
P := population of N points xlow < x(i) < xupp, i — I , ...,N, generated at random;
Evaluate_fitness( N, P, f, f);
repeat

setPnew :=0;
dofc= l , . . . , N / 2

Choose_parent( P, T, N, nT, x" );
Choose_parent( P, T, N, nT, xb );
Crossover( Pco, x

a, xb, ya, yb );
set Pnew := Pnew U {ya, yb};

end do
Mutate( N, xlow, xupp, p, Pm, Pnew );
setP:=Pnew;
Evaluate_fitness( N, P, f, f);

until stopping criterion is true;

There is no natural stopping criterion for Algorithm 4.5. Usually the iteration process
is terminated after a given number of generations has been produced or there is no improve-
ment in the fitness of the best individual in the population. As a result the algorithm gives
the final population, i.e., a set of approximate solutions to (P). Unlike in the optimization
methods discussed before, the best individual in the offspring population may be worse than
the best one in the parent population. This fact further complicates the choice of a stopping
criterion. A remedy to this is to add an elitism mechanism to Algorithm 4.5; i.e., a few best
parents are always copied into the new population. In this way the best individuals are not
lost in the reproduction and a decrease in the value of the objective function corresponding
to the best individual in each generation becomes monotonic.

In practical shape optimization applications GAs require quite a lot of cost function
evaluations. However, the inherent parallelism in GAs makes them attractive. In GAs,
the objective functions can be evaluated at each generation independently. In a parallel
implementation based on the master-slave prototype, the master process computes the ge-
netic operations and the slave processes compute the object function values. Therefore the
amount of communication between the master and the slave processes is rather small and a
network of low cost workstations can be used to execute the different processes.

4.4 On multiobjective optimization methods
In classical optimal shape design problems only one objective function based on one sci-
entific discipline is minimized. Real-life problems are rarely so simple. Often there exist
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Figure 4.2. Pareto and weakly Pareto optimal set.

several (conflicting) objective functions that should be simultaneously optimized. For ex-
ample, in aerospace engineering one wants to design the shape of an airfoil to minimize
its drag and at the same time maximize its lift. Such multiobjective optimization prob-
lems (also known in the literature as multicriteria or vector optimization problems) require
tools different from the standard optimization techniques for single (or scalar) objective
optimization; see, for example, [Mie99].

4.4.1 Setting of the problem

Consider a multiobjective optimization problem of the form

where ft : W -> E, i = 1,... , k, are objective functions and 0 ^ U C R" is a set of
feasible design variables. We do not specify constraint functions defining U. Let Z be the
image ofU under the mapping / = (f\,..., fa) : U -»• R*. The elements z of Z are called
criterion vectors.

The components of an ideal criterion vector z* = (z*, . . . , zp e R* are optima of the
individual objective functions; i.e., z* = min,^ f i ( x ) , i = 1, . . . , k. Unfortunately, z* is
usually infeasible; i.e., it is not possible to minimize all the objective functions at the same
point from U because of the conflicting character of //, i = l,...,k. Instead we introduce
the concept of (weak) Pareto optimality.

DEFINITION 4.1. A design variable x* e U and the corresponding criterion vector f(x*)
are Pareto optimal if there does not exist another design variable x e U such that /; (x) <
fi(x*) Vi = 1,. . . , k and fj(x) < fj(x*) for at least one objective function fj. Weak
Pareto optimality is defined by employing k strict inequalities.

We call the set of all Pareto optimal solutions the Pareto optimal set. This set can be
nonconvex and nonconnected. The geometrical interpretation of Pareto optimal and weakly
Pareto optimal points in f\ fi space is shown in Figure 4.2.

There are usually many Pareto optimal solutions. From a mathematical point of
view, every design in the Pareto optimal set would make an equally good solution of the
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multiobjective optimization problem. However, in practical design problems one has to
choose just one design as the solution. Selecting one design from the Pareto optimal set
requires extra information that is not contained in the objective functions. The selection is
done by a decision maker. A decision maker is a person who is supposed to have some extra
information on the optimization problem not contained in the mathematical formulation,
enabling the selection of a particular solution.

4.4.2 Solving multiobjective optimization problems by scalarization

In general, multiobjective optimization problems are solved by scalarization: converting
the problem into one or several scalar optimization problems with a real-valued objective
function depending possibly on some parameters. Thus standard methods of constrained
nonlinear optimization can be used.

One has to keep in mind that descent methods for scalar optimization may find only a
local minimizer. In addition, it is important to scale the problem properly; i.e., the values of
the cost functions have to be of the same order of magnitude. The following two methods are
examples of scalarizing functions. For more methods and further information see [Mie99].

Method of global criterion

In the method of global criterion, the decision maker is not involved. The distance between
some reference point in K* and the set Z is minimized. A natural choice for the reference
point is the ideal criterion vector z*. Thus the original vector optimization problem is
replaced by the following standard scalar nonlinear programming problem:

where \\-\\p denotes the norm in R* denned as follows: \\x \\p = (£f=1 \xt \
p)l/p if 1 < p <

oo and ||jc||<x> — rnax,=i,...,* I*/1, * = (*i, • • • > **)• It can be shown that any solution of
(4.27) is Pareto optimal if 1 < p < oo. If p = oo, the solution of (4.27) is weakly Pareto
optimal (see [Mie99] and also Problem 4.3 for 1 < p < oo).

COROLLARY 4.1. If U is a nonempty compact subset and all f{, i = 1,..., k, are
continuous in U, the problem (4.27) has a solution. Consequently, the Pareto optimal
set for problem (4.26) is nonempty.

Let p = oo, /(x) > 0, and z* = 0. Then (4.27) reduces to the following min-max
problem:

which can be transformed into a smooth one as follows:
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A weak point in the previous approach is that it requires the knowledge of an ideal
objective vector z*. In practical optimization problems it can be quite difficult to find global
minima of individual objective functions. To overcome this practical difficulty one may
use the so-called achievement scalarizing function approach (for further details we refer to
[Mie99] and references therein).

Weighting method

The idea of the weighting method is to associate with each objective function fj a weighting
factor Wj > 0 and to minimize the weighted sum of the objective functions. We further
suppose that the weights are normalized: £)i=i wi = 1. The multiobjective optimization
problem is then replaced by the following scalar nonlinear programming problem:

If wi > 0 Vi = 1,..., k, then any solution x* of (4.30) is Pareto optimal (see Problem 4.4).
Here either the decision maker specifies the weights or the weights are varied and the decision
maker must select the best of the solutions obtained.

4.4.3 On interactive methods for multiobjective optimization

In interactive methods the decision maker works with an interactive computer program.
The basic idea is that the computer program tries to determine the preference structure
of the decision maker iteratively in an interactive way. After each iteration the program
presents a new (weakly) Pareto optimal solution and the decision maker is asked to provide
some information. After a finite number of steps the method should give a solution that
the decision maker is satisfied with. For a survey on interactive multiobjective methods we
refer to [Mie99].

We will briefly discuss the NIMBUS method (Nondifferentiable Interactive Multiob-
jective BUndle-based optimization System) of Miettinen and Makela [MM95], [MMOO].
In this method the decision maker examines the values of the objective functions calculated
at a current point xc and divides the set I = {!,...,£} into up to five subsets denoted by
r, /-, /=, r, 7° as follows:

1. i e /•= 4=>- the value of / should be decreased;

2. i e I- «=>• the value of /J should be decreased to the given aspiration level Lt;

3. i e I= «=>• fi is satisfactory at the moment;

4. i e 7> <=>• fj is allowed to increase to a given upper bound £/, > fi (xc);

5. i e /° «=>. fj is allowed to change freely.

This means that the decision maker wishes to improve the values of the functions in 7< and
7- from their current level at the expense of the functions in 7> and 7°.
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According to this classification and to the values L,\, Ut given by the decision maker,
we form an auxiliary problem:

This is a scalar and nonsmooth problem regardless of the smoothness of the original problem.
It can be solved by a proximal bundle method designed for nondifferentiable optimization
[MN92]. It is known [MMOO] that if /< / 0, then the solution of problem (4.31) is a
weakly Pareto optimal solution of (4.26).

It is clear that the decision maker must be ready to allow the values of some objective
functions to increase in order to achieve improvement for some other objective functions
when moving around the weakly Pareto optimal set. The search procedure stops when the
decision maker does not want to improve the value of any objective function.

The NIMBUS method has been successfully applied to problems of optimal control
and design (see [Mie94], [MMM96], [MMM98]). Moreover, a Web-based implementation
of the method is available online at http://nimbus.mit.jyu.n7.

4.4.4 Genetic algorithms for multiobjective optimization problems

We could, of course, transform the multiobjective optimization problem into a scalar one
using the techniques presented in Subsection 4.4.2, and after that apply scalar GAs. One
approach in multiobjective problems is to give as many as possible of the Pareto optimal
solutions to the decision maker for the selection of the most suitable one. For this reason
we shall modify the basic GAs to handle multiple objective functions directly without any
scalarization and to let GAs generate a population whose individuals are all approximations
of different Pareto optimal points.

There are several variants of GAs for multiobjective optimization problems. In what
follows we describe a modification of the nondominated sorting GA (NSGA) of Srinivas
and Deb [SD95]. The NSGA differs from a scalar GA only in the way the fitness of an
individual is defined and the parents are chosen. The crossover and mutation operations
remain the same as in the scalar GA.

A point xm is said to dominate another point jc(2) if the following conditions hold:

• /,-(*(1)) < /y(*(2)) V/ = l,. . . ,*;

• ft(xm) < /£(*(2)) for at least one 1 <t<k.

Let P = {*(<)}£Li be a population of N points. A subset of all points in P that is not
dominated by any other point of P is called the set of nondominated points. If a point
x(t) &p js Pareto optimal, it is also a nondominated point.

If A:'1' and **2' are two Pareto optimal points, then they are considered to be equally
good and it is natural to assign the same fitness value to both of them. Therefore it is
natural to assign the largest fitness value to the nondominated points and smaller values to

http://nimbus.mit.jyu.fi/
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Figure 4.3. Fitness values <j> assigned to a population of 22 random pairs ( f \ , f i )
of objective function values.

the remaining ones. In an NSGA the fitness values of individuals are set using the following
nondominated sorting procedure:

procedure Evaluate_fitness( in: N, P, out: f)
set <j> := N;
repeat

Mark all individuals whose fitness value is not set as "nondominated";
do i = 1, . . . , N, fitness value of xw not set

do j = 1 , . . . , N; j ^ i, fitness value of ary) not set
if xW* dominates x^ then mark x^ as "dominated";

end do
end do
set the fitness f of all individuals not marked "dominated" equal to </>;
set$ :=</> — !;

until fitness value of all individuals is set;

An example of the fitness values obtained by using the previous procedure is shown in
Figure 4.3.

To select individuals becoming a parent in breeding we could again use the tourna-
ment selection rule. Unfortunately, if there are no modifications of the standard tournament
selection, the population may converge toward one point on the set of Pareto optimal solu-
tions. Since our aim is to obtain several points from the Pareto set a mechanism is needed
in order to maintain diversity in the population.

In [MTP99] the following tournament slot sharing approach was employed to preserve
the diversity of the population. A sharing function is defined by
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where dtj is the genotypic distance between the individuals *(l) and x^\ the Euclidean one
in our case. The parameter ds > 0 is the maximum sharing distance for a tournament slot.
The same sharing function Sh(Jy) is also used in the original NSGA. The probability of the
individual x^ entering a tournament is now computed using the formula

Each individual's probability of entering the tournament is proportional to the inverse of the
sum of all sharing functions associated with this individual. Therefore the probability of a
point located in a "cluster" of points becoming a parent is small.

The parent selection process can be summarized as the following procedure:

procedure Choose_parent( in: P, T, N, nT, out: x )
select k e {1,..., N}at random using probabilities in (4.32);
do i = 2,..., nT

select m e { I , . . . , N] at random using probabilities in (4.32);
if Fm > Fk then set k := m;

end do
set* :— Jtw;

A modification of the scalar GA to the multiobjective case now consists of replacing the
procedures Evaluate_fitness and Choose_parent in Algorithm 4.5 by the modified versions
presented above.

Again an elitism mechanism can be added to the algorithm. One possibility is to copy
from the old population to the new all individuals that would be nondominated in the new
population. In this way the number of copied individuals will vary from one generation to
another.

Problems

PROBLEM 4.1. Let x* e R" be a local minimizer of a function / e C2(R"). Further, let

(i) the Hessian H(x*) be positive definite;
(ii) H be Lipschitz continuous in a neighborhood of x*; i.e., 3 q > 0 :

Show that, if the &th iteration xk is sufficiently close to **, Newton's method is well defined
for any k and converges quadratically.

Hint: denote hk = xk — x*, g(x) = V f ( x ) . From the Taylor expansion

it follows that hk+i — O(\\hl\\) provided that xk is close enough to x*.

PROBLEM 4.2. Let x% be a solution to penalized problem (Pet), £* —> 0+ as k —> oo.
Show that any convergent subsequence of {*£} tends to a solution of (P).
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PROBLEM 4.3. Consider the minimization problem

where 1 < p < oo, f(x) = (fi(x),..., /*(*)), and z* e R* is an ideal criterion vector.
Prove (by contradiction) that every solution of (4.33) is Pareto optimal.

PROBLEM 4.4. Consider minimization of the weighted sum of k continuous objective
functions

Assume that wt > 0 Vz = 1,..., k. Show (by contradiction) that if x* is a solution of
(4.34), then x* is a Pareto optimal point of the corresponding multiobjective optimization
problem.
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Chapter 5

On Automatic Differentiation
of Computer Programs

Using the techniques presented in Chapter 3, one can program the algebraic sensitivity
analysis in optimal sizing and shape design problems with a reasonable amount of work. In
the papers [HM92], [MT94], and [TMH98], algebraic sensitivity analysis was performed
by hand for quite complicated shape optimization problems. However, full hand coding
of derivatives requires a lot of time. This is not acceptable when solving industrial design
problems.

Automatic differentiation (AD) is a technique for augmenting computer programs
with derivative computations [Gri89]. It exploits the fact that every computer program
executes a sequence of elementary arithmetic operations. By applying the chain rule of
differential calculus repeatedly to these operations, accurate derivatives of arbitrary order
can be computed automatically.

AD is now under active study and is used in many applications in engineering
[BCG+92], [MMRS96] and mathematical physics [KL91], [IGOO].

5.1 Introduction to automatic differentiation of programs
AD of computer programs is still sometimes confused with finite difference approxima-
tions of derivatives or symbolic differentiation of a single expression using packages like
Mathematica [Wol99].

It is always possible to approximate partial derivatives of a smooth function / :
R" -» R by using simple divided difference approximations such as the forward difference
approximation

Here e^ is the z'th unit vector and S > 0 is the step length. It is well known that this
approach leads to the first order approximation of the partial derivatives. Computation of
approximate derivatives in this way has the advantage that one needs / only as a "black
box." There are, however, two disadvantages to this approach: first, the accuracy of this
approximation is difficult to estimate. Second, difference approximations are expensive

153
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when the evaluation of / needs a solution of a (possibly nonlinear) state problem. A small
step size S is needed to minimize the truncation error due to neglect of higher order terms
in the Taylor expansion of / in (5.1). On the other hand, if S is too small, the subtraction of
nearly equal floating-point numbers may lead to a significant cancellation error. Therefore
very conservative (large) values of S have to be used. As a rule of thumb one can say that if
/ is calculated with d-digit precision, then the partial derivative calculated using (5.1) has
only d/2-digit precision. More accurate higher order approximations are practically useless
in sizing and shape optimization because they require too many function evaluations.

Symbolic manipulation packages are, in general, unable to deal with whole computer
programs containing subroutines, loops, and branches. It takes a lot of human effort to
differentiate a large computer program in small pieces using a symbolic manipulator and
to reassemble the resulting pieces of the derivative code into a new program. Because the
Fortran code generated by the manipulators is usually unreadable, the process is also very
error prone.

Most problems of numerical analysis (approximate solutions of a nonlinear system
of algebraic equations, numerical integration, etc.) can be viewed as the evaluation of a
nonlinear vector function O : R" ->• W". A computer program evaluating 4> at £ e W1 can
be viewed as a sequence of K scalar assignment statements:

The computer program has K variables x\, X 2 , . . . , XK • The first n of them are called input
or independent variables. The last m variables are output variables. The rest of the variables
are temporary variables. The elementary functions (pi may depend on all known variables
*i , . . . , jCj_i . If (piis a function of nt variables xit, k = 1, . . . , n,, only, then we define
TI = { / i , . . . , ini} and denote xz, = {xil,..., *,-„.}. In practice, each <p^ is a unary or binary
arithmetic operation (±, *, /) or a univariate transcendental function (sin, exp, etc). In this
case the length \If \ < 1.

The dependencies among variables in the computer program can be visualized using
a directed acyclic graph. The nodes of the graph represent the variables x\,... ,XK and
the edges represent the dependencies. An arc (jc/, *,) exists iff j e I,, i.e., the variable x,
depends directly on Xj. If a node corresponds to an independent variable, no arc enters it.
Similarly no arc leaves a node corresponding to an output variable.

EXAMPLE 5.1. Let us consider the evaluation of the simple function

at a point (£1, £2). In this case n = 2 and m = 1. The corresponding computer program and
the associated graph are shown in Figure 5.1. We have used several temporary variables to
make the right-hand side of each assignment statement contain a binary arithmetic operation
or evaluation of a univariate standard function.
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Figure 5.1. Computer program for the evaluation off and the associated acyclic
directed graph.

Our aim is to differentiate the output variables with respect to the independent ones.
A variable *,-, i > «, is said to become active when an independent or an active one is
assigned to it. Let <p\,...,<pn denote the functions corresponding to the first n assignment
statements in (5.2). Application of the chain rule to both sides of the composite functions
in (5.2) yields

Defining the matrices

(5.4) can be written in the compact matrix form

This can be further expressed in the form
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Using standard manipulations (5.5) can be expressed as follows:

From the lower triangular system (5.5), dxt/dxj, i ^ j, can be computed by using the
forward substitutions

Similarly the upper triangular system (5.6) can be solved by using the backward substitutions

Equations (5.5) and (5.6) represent the forward and reverse methods, respectively, of
AD. In practice, because K » n and \It | < 2, it follows that the matrix D<p is very sparse.
Therefore the practical implementation of AD is not based on the direct application of (5.5),
(5.6).

5.1.1 Evaluation of the gradient using the forward and
reverse methods

Consider now the program shown on the left in Figure 5.2 evaluating a real-valued function
/ : K" ->• Rat£ e R". Let us complete this program by gradient computations applying the
forward method (5.7). In this case we need to store only the partial derivatives of variables
xt with respect to the input variables. The augmented program is shown on the right in
Figure 5.2.

Following [Gri89] we briefly mention the complexity of the straightforward imple-
mentation of the forward and reverse modes in terms of arithmetic operations and memory
usage. For more detailed analysis and more sophisticated implementations we refer to
[GriOO]. Let work(/) and work(/, V/) denote the work (in terms of arithmetic operations)
done in the original and augmented codes (5.2), respectively. Similarly, let mem(/) and
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Figure 5.2. Original program (left) and augmented program using the forward
mode of AD (right).

mem(/, V/) denote the number of memory locations used in the original and augmented
programs, respectively.

Suppose that every function <pi is restricted to the elementary arithmetic operations
and standard univariate library functions. Moreover, suppose that every <pt requires at most
en, arithmetic operations, where c is a fixed positive constant and n, = |Zj-1. Then one can
show (see [Gri89]) that

i.e., the computational work and memory requirement both grow linearly in n.

EXAMPLE 5.2. Let us evaluate the gradient of the function / defined in (5.3) at a point
(£1. £2) using the forward method:



158 Chapter 5. On Automatic Differentiation of Computer Programs

Consider now the reverse method. Instead of (5.6) it is interesting to present an
alternative way of deriving the reverse method for calculating V/. One may interpret
the input variables x\,..., xn as "control variables" and xn+\,..., x% as "state variables"
and treat the assignment statements involving state variables on the left-hand side as state
constraints ("state equation"). Then the problem of adding gradient computations to the
program can be written in a form that is already familiar to us from Chapter 3, i.e., to evaluate
the gradient of the function

subject to the constraints

Here

is the Jacobian corresponding to the nonlinear system (5.10). As / is a lower triangular
matrix with ones at the diagonal, the upper diagonal system (5.12) is readily solved. Due
to this analogy with optimal control the reverse method is often termed the adjoint mode of
AD.

The previous calculations can be compactly augmented into the program shown on
the left of Figure 5.3, resulting in the program shown on the right of the same figure.

For the reverse mode one may derive a quite surprising result:

Because the program flow must be reversed in the reverse mode, one has to store the call
graph (the index sets lt in practice) and the partial derivatives dcpi/dxj, j e 2,, during the
execution of the program. This implies that the memory required in the worst case may be
equal to the number of assignment statements K in the program.

The partial derivatives of / with respect to the control variables x\,..., xn are given by

where p := (pn+\, • • • , PK)^ is the solution of the "adjoint equation"
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Figure 5.3. Original program (left) and augmented program using the reverse
mode of AD (right).

Although the reverse mode seems to be superior in terms of computational work, it
is more difficult to implement it efficiently. Moreover, storing and retrieving the call graph
take time that is not included in (5.13).

If one wishes to calculate the gradient of several dependent variables xK-m+\,
XK-m+2,... ,XK, then the forward mode is more efficient in terms of computational work
provided m > n.

EXAMPLE 5.3. Let us evaluate the gradient of the function / in (5.3) at a point (£1, £2) using
the reverse method:
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5.2 Implementation of automatic differentiation
In this section we describe very briefly the main steps needed to implement AD. The pieces
of computer code are in Fortran 90 with keywords typed in uppercase letters. A reader not
familiar with Fortran 90 should consult [MR96], for example.

In the forward method, the gradient V*, of each variable jc, with respect to the n
independent variables x\,..., xn is stored after being calculated. Therefore we may define
a new data type dvar_t for storing the pair (z, Vz) as follows:

INTEGER, PARAMETER:: nmax=10
INTEGER:: n

TYPE dvar_t
REAL:: val, der(nmax)

END type dvar_t

Here n and nmax are the actual number and maximum allowed number of independent
variables, respectively.

If z is the ith independent variable, then its gradient must be initialized by Vz = e<l).
Next we will implement simple routines to declare some variables to be independent and to
extract the value or the gradient as normal floating-point numbers:

i
! x will be the nth independent variable with an initial
! value x=val.
! grad(x) is set equal to the nth unit vector.
i

SUBROUTINE ad_declare_indep_var( x, val )
REAL, INTENT(IN):: val
TYPE(dvar_t):: x
IF ( n < nmax ) THEN

n = n + 1
ELSE

CALL error()
END IF
x%val = val
x%der(l:nmax) = 0.0
x%der(n) = 1.0

END SUBROUTINE ad_declare_indep_var

FUNCTION ad_value ( x ) RESULT ( v }
TYPE(dvar_t), INTENT(IN):: x
REAL:: V
v = x%val

END FUNCTION ad_value

FUNCTION ad_gradient( f ) RESULT ( df )
TYPE(dvar_t), INTENT(IN):: f
REAL:: df(n)
df = f%der(l:n)
n = 0

END FUNCTION ad_gradient
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Finally we must define the standard arithmetic operations and library functions for the
new data type dvar_t using the standard rules of differential calculus. For example, the
operators +, -, *, / and the library function sin for the new data type could be implemented
as the following Fortran 90 functions:

FUNCTION add_dvar( a, b ) RESULT( c )
TYPE(dvar_t) , INTENT (in):: a, To
TYPE(dvar_t):: c
c%val = a%val + b%val
c%der(l:n) = a%der(l:n) + b%der(l:n)

END FUNCTION add_dvar

FUNCTION sub_dvar( a, b ) RESULT( c )
TYPE(dvar_t), INTENT(in):: a, b
TYPE(dvar_t):: c
c%val = a%val - b%val
c%der(l:n) = a%der(l:n) - b%der(l:n)

END FUNCTION sub_dvar

FUNCTION mul_dvar( a, b ) RESULT( c )
TYPE(dvar_t), INTENT(in):: a, b
TYPE(dvar_t):: c
c%val = a%val * b%val
c%der(l:n) = a%der(l:n) * b%val + a%val * b%der(l:n)

END FUNCTION mul_dvar

FUNCTION div_dvar( a, b ) RESULT( c )
TYPE(dvar_t), INTENT(in):: a, b
TYPE(dvar_t):: c
c%val = a%val / b%val
c%der(l:n) = ( a%der(1:n)*b%val - a%val*b%der(l:n) ) /

(b%val*b%val)
END FUNCTION div_dvar

FUNCTION sin_dvar( a ) RESULT( c )
TYPE(dvar_t), INTENT(in):: a
TYPE(dvar_t):: C
c%val = SIN( a%val )
c%der(l:n) = COS( a%val ) * a%der(l:n)

END FUNCTION sin_dvar

Let us consider once again the evaluation of the simple function of Example 5.1. The
corresponding Fortran 90 subroutine is shown below:

SUBROUTINE myfunc( xi, f )
REAL xi(2), f
REAL xl, x2, x3, x4, x5, x6
xl = xi(l)
x2 = xi(2)
x3 = xl*x2
x4 = xl - x2
x5 = SIN(x4)
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x6 = x3 + x5
f = x6

END SUBROUTINE myfunc

Let us augment this code with the gradient computations. Now xl and x2 are the
independent variables and f is the output variable. We define all variables except xi and
f to be of type dvar_t. Then the arithmetic operations and the call to library function
sin must be replaced by calls to appropriate functions introduced above. In addition,
the values of the independent variables and their derivatives are initialized using subrou-
tine declare_indep_var. After computations, the values of / and V/ as ordinary
floating-point numbers are recovered by functions ad_value and ad_gradient. Let
the definitions of new AD-related data types and subroutines be encapsulated in a Fortran 90
module ad_m. Then the augmented subroutine reads as follows:

SUBROUTINE myfunc2( xi, f, df )
USE ad_m
REAL xi(2), f, df(2)
TYPE(dvar_t) xl, x2, x3, x4, x5, x6
CALL declare_indep_var( xl, xi(l) }
CALL declare_indep_var( x2, xi(2) )
x3 = mul_dvar( xl, x2 )
x4 = sub_dvar( xl, x2 )
x5 = sin_dvar( x4 )
x6 = add_dvar( x3, x5 )
f = ad_yalue( x6 )
df = ad_gradient( x6 )

END SUBROUTINE myfunc2

The transformation of the subroutine myfunc into myfunc 2 was done by hand. To
justify the term automatic differentiation, the transformation should be done by the computer
without any human intervention. This can be achieved in two different ways either by using
the source transformation (done by a preprocessor) or the operator overloading.

Automatic differentiation using a preprocessor

If a preprocessor like ADIFOR or Odyssee (see [RS93], [BCKM96]) is used, the source
transformation is usually done in three steps:

1. In the code canonicalization step long right-hand sides of assignment statements
are broken up into smaller pieces of code; expressions appearing as arguments of function
calls are written as separate assignment statements using temporary variables. For example,
the following piece of code:

y = SIN(a*b+c) + d*a

is transformed into, e.g., the following form:

tl = a*b
t2 = tl + c
t3 = SIN( t2)
t4 = d*a
y = t3 + t4
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2. In the variable nomination step a derivative object is associated with every active
variable whose value has an effect on the output variables. Savings in storage and computing
time can be achieved by identifying those active variables that have no effect on the output
variables.

3. After the code canonicalization and variable nomination steps the augmented
source code is generated by allocating storage for additional derivative information and
replacing the original assignment statements with the appropriate subroutine calls (or their
inline counterparts). The user then compiles the augmented code using a standard Fortran
or C compiler instead of the original one. We do not enter into further detail on the use of
precompilers in AD.

Automatic differentiation using operator overloading

Modem programming languages such as Fortran 90, C++, and Ada make it possible to
extend the meaning of an intrinsic operator or function to additional user-defined data types.

For each elementary operation and a standard function (+, *, sin ( ) , . . . ) we can
define the meaning of the operation for variables of the new data type dvar_t introduced
before. In Fortran 90 this requires special interface blocks to be added into the module
containing AD-related definitions and subroutines. The compiler then replaces the operator
by a call to a subroutine specified in the interface block. This step, however, is totally
invisible to the user.

Finally, we can encapsulate all previous declarations and subroutines needed to im-
plement AD into a single Fortran 90 module that can be used where needed:

MODULE ad_m
INTEGER, PRIVATE:: n
INTEGER, PRIVATE, PARAMETER: : nmax=10
! -- declaration of a new data type --
TYPE dvar_t
REAL:: val, der(nmax)

END TYPE dvar_t
! -- interface blocks for overloaded operators
INTERFACE OPERATOR(*)
MODULE PROCEDURE mult_dvar

END INTERFACE

INTERFACE sin
MODULE PROCEDURE sin_dvar

END INTERFACE

CONTAINS

! -- code of subroutines needed for declaring input and output
variables

SUBROUTINE ad_declare_indep_var( x, val )
. . . ( code not shown )
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FUNCTION ad_value( x ) RESULT ( v )
. . . ( code not shown )

FUNCTION ad_gradient( f ) RESULT ( df )
. . . ( code not shown )

! -- code implementing overloaded operators

FUNCTION tnul_dvar( a, b ) RESULT ( c )
. . . ( code not shown )

FUNCTION sin_dvar( a ) RESULT( c )
. . . ( code not shown )

END MODULE ad_m

The advantage of the operator overloading is that it almost completely hides the AD
tool from the user. The code used for the evaluation of / itself and the code used for
the evaluation of both / and V/ are identical except for the variable declaration and the
identification of input and output variables. If the implementation of the AD tool is changed,
the user-written source code needs no modifications.

EXAMPLE 5.4. Consider again the code we are familiar with:

SUBROUTINE myfunc( xi, f )
REAL xi(2), f
REAL xl, x2, x3, x4, x5, x6
xl = xi(l)
x2 = xi(2)
x3 = xl * x2
x4 = xl - x2
x5 = SIN(x4)
x6 = x3 + x5
f = x6

END SUBROUTINE myfunc

Let us assume that the module ad_m implementing AD using operator overloading
is available. Then the augmented code reads as follows:

SUBROUTINE myfunc2( xi, f, df )
USE ad_m
REAL xi(2), f, df (2)
TYPE(dvar_t) xl, x2, x3, x4, x5, x6
CALL declare_indep_var( xl, xi(l) )
CALL declare_indep_var( x2, xi(2) )
x3 = xl * x2
x4 = xl - x2
x5 = SIN( x4 )
x6 = x3 + x5
f = ad_value( x6 )
df = ad_gradient( x6 )

END SUBROUTINE myfunc2
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Of course, this simple example does not fully show the advantage of operator over-
loading. If, however, the body of the original code had, e.g., 100 lines of Fortran 90 code,
then there would still be only 5 additional lines and 1 modified line in the augmented code.

Note that there is no need to canonicalize the code by hand. The Fortran 90 compiler
will introduce additional temporary variables of type dvar_t corresponding, e.g., to the
statement x5 = sin( xl - x2 ) .

5.3 Application to sizing and shape optimization
In standard software used for numerical minimization the evaluation of an objective function
and its gradient is done in a separate program unit. Usually, the user of the minimization
software is responsible for writing a subroutine that evaluates the value of the objective
function J and its gradient VJ at a point a e M.d given by the (sub)program calling the
user-written subroutine.

Consider the numerical solution of a simple shape optimization problem. Let us first
assume that a computer program solves the direct problem on a domain described by the
discrete design vector a = («i , . . . , a^)- Moreover, the program also evaluates a cost
function (the compliance in our case) depending on the solution of the state problem. This
program can be written as a Fortran subroutine as follows:

subroutine costfun(a, J)
real a, J
Generate a finite element mesh corresponding to a.
Assemble the stiffness matrix K := K(a) and the force vector / :— /(a).
Solve the linear system Kg — f.

J = /V
end

This subroutine executes a finite sequence of basic arithmetic operations. Therefore
any of the AD techniques presented in the previous sections could be directly applied to add
gradient computations to this subroutine. However, the efficient use (in terms of memory
and computing time) of AD for large-scale industrial shape optimization problems is not
often so straightforward.

A direct application of AD can be too expensive due to the complexity of the state
equation. If the forward mode of AD is used, the required computing time and the memory
of one combined cost and gradient evaluation is approximately d times as expensive as
the evaluation of the cost function only. Note that in costf un all entries of the stiffness
matrix and all statements of the linear system solver are differentiated with respect to design
variables.

For AD to be useful it is important that the problem structure be understood and used.
In what follows we describe a "hybrid approach" in which both hand coding of derivatives
and AD are used to produce a subroutine augmented with gradient computations.

Let us consider a system of (non)linear algebraic equations depending on a parameter
a e U c E.d:
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in which K e Cl(U x R"; R"x") and / e C\U x R"; R") are a (non)linear matrix and a
vector function, respectively. Let J : U x R" ->• R be a real function and define J : U ->• R
by

with 0(a) e R" the solution of (5.15).
Equation (5.15) can be equivalently stated as

where r (a, q) is the residual vector. Following the steps of Section 3.1 (see also Problem 3.1)
we obtain

where r'(a, q; ft) denotes the (partial) directional derivative of r at (a, q) with respect to
a in the direction ft, J(a, q) is the (partial) Jacobian of r with respect to q at (a, q), and
q'(a; ft) is the directional derivative of q. Introducing the adjoint state system

one can express the directional derivative of J as follows:

making use of (5.18) and (5.19).
Assume now that the system (5.15) arises from a finite element discretization of a

quasi-linear partial differential equation. In addition to the previous application of the chain
rule of differential calculus we exploit the sparsity of the partial gradient and Jacobian
with respect to q. Let every finite element have p degrees of freedom. The residual vector
r(a, q) e R" is obtained by using the standard assembly process:

where

qe e Rp is the vector of element degrees of freedom, and Pe are Boolean matrices (see
(3.70)). Finally, let the objective function J be separable in the following sense:

This assumption is true for most cost functions of practical interest.
In many practical shape optimization problems the order of magnitude of d and p

is 10. On the other hand the number of global degrees of freedom n even in simple two-
dimensional state problems may be over 10,000.
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To obtain the partial derivatives needed in (5.19) and (5.20) we use AD. Taking
into account (5.21) and (5.22) it is obvious that one needs to apply AD only to the local
contributions re, Je in (5.21), (5.22), respectively, to get the partial derivatives with respect
to a and q. Thus, one has to differentiate only scalars Je and small vectors re with respect
to a small number of independent variables a\,..., aj, q\,..., qe

p. The global terms in
(5.19), (5.20) are then obtained using the standard assembly process, which involves no
differentiation.

In shape optimization, differentiation with respect to a requires differentiation of the
mesh produced by the mesh generator. This is not a time-consuming task if the topology of
the mesh is shape independent and the position of each node is given by a simple algebraic
formula. This was the case presented in Section 2.2. More complicated mesh generation
methods, such as advancing front and Voronoi methods (see [Geo91]), are iterative and the
dependence of the nodal positions on design variables is highly implicit. In this case the
differentiation of the mesh generation process can be the most time-consuming step.

The proposed hybrid method for shape design sensitivity analysis is both easy to
program and efficient in terms of computing time and memory. It is efficient because the
(non)linear state solver is not differentiated and thus the standard floating-point arithmetic
can be used in solving (5.15), (5.19). This makes it possible to use standard software
(LAPACK [ABB+99], for example) to solve the linear(ized) state problem. Computed sen-
sitivities are very accurate provided that the mesh topology remains fixed and the (non)linear
state equation is solved with sufficiently high accuracy. Our approach is general because it
can also be applied in multidisciplinary shape optimization problems and it is not restricted
to some specific type (such as linear triangular) of finite element.

Problems

PROBLEM 5.1. Consider the function / : R3 -> R,

(i) Write a subroutine for evaluating / using the elementary functions <pt of (5.2) and
draw the associated directed graph,

(ii) Count the number of arithmetic operations needed to evaluate V/ with the algorithms
that use the forward and reverse modes shown on the right of Figures 5.2 and 5.3.

PROBLEM 5.2. Complete the simple implementation of the forward mode discussed in Sec-
tion 5.2 to handle the basic arithmetic operations ±, •, / and the following library routines:
sin, cos, exp, sqrt. If it is more convenient, C++ may be used instead of Fortran 90.
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Chapter 6

Fictitious Domain Methods
in Shape Optimization

Sizing and shape optimization problems are typical bilevel problems. The upper level
consists of minimizing a cost functional by using appropriate mathematical programming
methods. Some of these have been presented in Chapter 4. The lower level provides
solutions of discretized state problems needed to evaluate cost and constraint functions and
their derivatives at the upper level. Typically, discrete state problems are given by large-scale
systems of algebraic equations arising from finite element approximations of state relations.
Usually the lower level is run many times. Thus it is not surprising that the efficiency of
solving discrete state problems is one of the decisive factors of the whole computational
process. This chapter deals with a type of method for the numerical realization of linear
elliptic state equations that is based on the so-called fictitious domain formulation. A
common feature of all these methods is that all computations are carried out in an auxiliary
simply shaped domain Q (called fictitious) in which the original domain fi representing the
shape of a structure is embedded. There are different ways to link the solution of the original
problem to the solution of the problem solved in the fictitious domain. Here we present a
class of methods based on the use of boundary Lagrange (BL) and distributed Lagrange (DL)
multipliers. Just the fact that the new problem is solved in a domain with a simple shape
(e.g., a rectangle) enables us to use uniform or "almost" uniform meshes for constructing
finite element spaces yielding a special structure of the resulting stiffness matrix. Systems
with such matrices can be solved by special fast algorithms and special preconditioning
techniques. In this chapter we confine ourselves to fictitious domain solvers that use the
so-called nonfitted meshes, i.e., meshes not respecting the geometry of £2. Besides the
advantages we have already mentioned there is yet another one, which makes this type
of state solver interesting: programming shape optimization problems is easier and "user
friendly." To see this let us recall the classical approach based on the so-called boundary
variation technique widely used in practice. Suppose that a gradient type minimization
method at the upper level and a classical finite element approach at the lower level are used.
The program realizes a minimizing sequence {£2(t)} of domains, i.e., a sequence decreasing
the value of a cost functional. Each new term £2(t+1) of this sequence is obtained from £2(t)

by an appropriate change in 3S2W. If the classical finite element method is used and the
state problem is linear we have to

169
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(i) remesh the new domain,

(ii) assemble the new stiffness matrix and the right-hand side of the system,
(iii) solve the new system of linear equations.

As we have already mentioned, all these steps are repeated many times. Fictitious domain
methods with nonfitted meshes completely avoid step (i) and partially avoid step (ii) since
the stiffness matrix remains the same for any admissible shape.

6.1 Fictitious domain formulations based on boundary
and distributed Lagrange multipliers

Let us consider a homogeneous Dirichlet boundary value problem in a bounded domain
& c R" with the Lipschitz boundary 3 £2:

or, in a weak form:

Let £2 c R" be another domain with a simple shape, containing £2 in its interior; see
Figure 6.1.

On £2 we shall formulate the following boundary value problem:

Figure 6.1. Fictitious domain method.
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where H$ (£1, 3 £2) is the subspace of HQ(^) containing all functions vanishing on 3 £2:

and / € L2(£2) is an extension of / from £2 to £2.
It is left as an easy exercise to show that (P) has a unique solution H" (see Problem 6.1).

In addition, u := ii\n solves the original problem (P). Next we reformulate problem (P)
by using a mixed variational formulation.

Before doing that we introduce more notation and recall well-known facts that will
be used later on. Denote by H* (3S2) the space of all traces on 3£2 of functions belonging
totf1^):

It can be shown (see [GR79]) that HJ (3 £2) endowed with the norm

is a Banach space. It is easy to show that the infimum in (6.2) is realized by a function
u(<p) e H!(£2) that is the unique solution of

i.e.,

Further, let H~i (3£2) be the dual of HJ (3£2) equipped with the standard dual norm

where (•, •) is the duality pairing between #~?(3£2) and #J(3£2). One can show again
that the previous supremum is attained at M(/Z) e Hl(£2) solving the nonhomogeneous
Neumann problem

i.e.,

(see [GR79]).
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The fact that a function v belongs to HQ(&, 3 £2) can be equivalently expressed as
follows:

For simplicity of notation we use the same symbol for functions and their traces.
Instead of (P) we shall consider the following problem also formulated in Q:

The relation between (P) and (M) is established in the following lemma.

LEMMA 6.1. Problem (M.) has a unique solution (w, X). Inaddition, (w, X) = (w", [3zT/3v]),
wherein solves (P); [d'u/dv] is the jump of the normal derivative of"u across 3Q; and v is
oriented as shown in Figure 6.1.

Proof. Suppose that the solution w" of (P) is sufficiently smooth (for a general case see
Remark 6.1). From Green's theorem it follows that

making use of the fact that —Aw" — / in ft. From this we see that (M)\ is satisfied with
w = M" and A = [d'u/dv]. Since u~ = 0 on 3ft, (M)2 is satisfied as well. Therefore
(u, [d'u/dv]) solves (M). On the contrary if (w, A) is a solution to (At), then using a
similar approach one can show that (w, A) = (u, [d'u/dv]) with w"the solution to (P). The
uniqueness of (w, A) follows from the uniqueness of 'if. D

REMARK 6.1. The proof of Lemma 6.1 can be done without any smoothness assumption
on u. We only need that / e L2(£l). Then the jump [du'/dv] has to be interpreted as an
element of H~^(dQ) and the integrals over 3£2 have to be replaced with the corresponding
duality pairing { - , • > .

CONVENTION: In view of Lemma 6.1, the solution to (M.) will be denoted by (u, A) in what
follows.

REMARK 6.2. The couple (u', A) being the solution to (M) can be equivalently characterized
as a unique saddle point of the Lagrange function C : HQ (£2) x H~z (3 £2) -»• E:
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where

The second component A. of the saddle point represents the Lagrange multiplier associated
with the constraint v = 0 on 3£2 satisfied by v e HQ(&, 3S2).

REMARK 6.3. (Very important.) The function / on the right-hand side of (P) and CM)_i_s
an arbitrary L2(0)-extension of /. It turns out that the zero extension of / to E := & \ £2,
i.e.,

is of particular importance. Indeed, for such a special extension it holds that w~ = 0 in S,
implying that A. = [3iT/3v] = 3tT/3v on 3£2. Since u := «~|n solves (P), the Lagrange
multiplier A. is equal to the normal derivative of u on 3fi.

Problem (M) is a fictitious domain formulation of (P) based on the BL multiplier
technique. As we have already mentioned, (M) is a particular example of a mixed variational
formulation. Since such formulations are frequently used for the numerical realization of
partial differential equations and will be employed for introducing another type of fictitious
domain method, let us recall their abstract setting and main existence, uniqueness, and
convergence results (for a detailed analysis we refer to [BF91]).

Let V, Q be two real Hilbert spaces equipped with norms denoted by || • ||v, II • I I g,
respectively; V, Q' be the corresponding dual spaces; and (•, -)vxv, [•, -le'xe be the
duality pairings on V x V, Q' x Q, respectively. Let a : V x V -»• R, b : V x Q -^ M.
be two bounded bilinear forms:

Finally, let / € V, g e Q' be given. By a mixed variational formulation determined by
{V, Q, a, b, f, g] we mean the following problem:

To guarantee the existence and uniqueness of (u, A.) solving (Pm) for any (/, g) e V x Q'
the following two assumptions are needed (in fact, (6.10) can be weakened):

Then we have the following result.
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THEOREM 6.1. Let (6.8H6.11) be satisfied. Then (Pm) has a unique solution (u, A.) for
any (/, g) e V x Q'.

Proof. See [BF91]. D

Our problem (M) is a special case of (Pm) with the following choice of data:

(recall that (-, •> stands for the duality pairing on #~5(d£2) x H2(9£2)). The existence
and uniqueness of a solution to (M) can be obtained directly from Theorem 6.1 (see Prob-
lem 6.3).

For a discretization of (Pm) we use a Galerkin type method. Let {Vf,} and {Qh},
h -> 0+, be two systems of finite dimensional subspaces of V and Q, respectively. The
discretization of (Pm) on Vj, x Qh reads as follows:

To ensure the existence and uniqueness of (UH, A.;,) solving (P%) the following assumption
will be needed:

From (6.12) we see that there is a constant kf, > 0, generally depending on the discretization
parameter h, such that

To get convergence of approximate solutions one needs a stronger assumption, namely the
so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition: there exists a positive constant
k such that

i.e., the constant &/, in (6.13) can be bounded from below by a positive constant k independent
of A.
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The convergence result follows from Theorem 6.2.

THEOREM 6.2. Let (6.8)-(6.11) and (6.14) be satisfied. In addition, suppose that systems
{Vh}, {Qh}, h ->• 0+, arejAense in V, Q, respectively. Then the sequence {(u^, Xh)} of
approximate solutions to (P^), h ->• 0+, tends to the unique solution (u, A.) of(Pm):

We now give an algebraic form of (7>£) for a fixed value of the discretization pa-
rameter h. We first choose bases of Vh and Qh'. Vh = { < p \ , . . . , y>n}, Qh = {^i, • • • , tym],
n — dun Vh, m = dim Qh- Then (T7*) leads to the following system of linear algebraic
equations:

where n , X are the coordinates of uh, Kh with respect to [<pt}"=l, {^JJLp respectively.
Furthermore A e R"x", B e Rmx" are matrices whose elements are given by

respectively, and / e R", g € Em are vectors with the coordinates

respectively.
After this short excursion to mixed variational formulations and their approximations

let us return to the homogeneous Dirichlet boundary value problem formulated at the begin-
ning of this section. We now present another fictitious domain formulation of this problem
using DL multipliers.

Denote by V(E) the space of restrictions to S := 0 \ fi of all functions belonging to
Ho1^):

Further, let V'(S) be the dual of V(S) with the duality pairing denoted by {(-, •)). Next we
shall consider the following mixed type variational formulation:

Again, / denotes an L2(£2)-extension of / to £2. Before proving the existence and unique-
ness of (u, A.) solving (A?*) let us show that u := «JQ solves (P). Indeed, from (N)2 it
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follows that 'u — 0 in S and, consequently, u e HQ (£2). Restricting to functions v s Hj (£2)
with supp 11 c fi in (AT) i we have

i.e., —Aw = / in £2, implying that u solves (P).
To prove the existence and uniqueness of a solution to (ft) we use Theorem 6.1.

LEMMA 6.2. Problem (ft) has a unique solution (u, A.).

Proof. Setting V = H^Q), Q = V'(3), b(v,g) = - ( { g , v } } in abstract formulation
(Pm) we see that (6.8)-(6.10) are satisfied. It remains to verify (6.11). Let w e V(E) be
arbitrary. Then the trace of w on 9£2 can be continuously extended from 9£2 into £2; i.e.,
one can construct a function w e HQ(&) such that w\s — w in S and

where ft does not depend on w. Denote by V(S) the subset of /^(fl!) whose elements
are the continuous extensions of all v e V(3) from E to £2 constructed above. Then from
(6.16) it follows that

where || • H, stands for the dual norm of /u e V'(3). D

REMARK 6.4. Denote

From Lemma 6.2 it follows that the first component 'u of the solution to (ft) belongs to
HQ(&, S). The second component A. is the Lagrange multiplier releasing the constraint
v = 0 in 3 satisfied by elements of //jj(S2, S).

Let us now pass to discretizations of both fictitious domain formulations of the homo-
geneous Dirichlet boundary value problem. For the sake of simplicity of our presentation
we shall consider S3 to be a plane, polygonal domain. We start with a discretization of the
BL multiplier approach.

Let fi be a rectangular domain containing £2 in its interior and [Th], h ->• 0+, be
a family of uniform triangulations of £2 constructed as follows: we first subdivide Q by a
uniform square mesh of size h and then divide each square into two triangles along the same
diagonal. With any such TH the following space of continuous piecewise linear functions
will be associated:
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Next we discretize the space H ~ J (9J2) of the Lagrange multipliers on 3S2. Let {7#}, ff ->
0+, be another regular system of partitions of 3£2 into a finite number m := m(H) of
straight segments 5 of length not exceeding H. On any TH we construct the space AH of
piecewise constant functions:

The discretization of (M) is as follows:

As we already know, the LBB condition (6.14) is the fundamental property in the conver-
gence analysis. In [GG95] it has been shown that the LBB condition is satisfied provided
the ratio H/h is sufficiently large, i.e., the partition TH is coarser than the triangulation Th-
More precisely Lemma 6.3 holds.

LEMMA 6.3. Let the ratio H/h satisfy

where L > 0 is a fixed positive number. Then there exists a positive constant k independent
ofh,H such that

With this result at hand and from abstract error estimates (see [BF91]) we arrive at
the following result.

THEOREM 6.3. Let the mesh sizes h, H satisfy the assumptions ofLemma_6.3 and let (u, A)
be a solution to (M.). Then there exists a unique solution (wj,, XH) to (.Mjf) and

holdsforanys > Q provided that the restrictions of *u to £2, S belong to H2(£2), H2(E),
respectively.

For the proof we refer to [GG95].

REMARK 6.5. We see that the error estimate (6.18) is not optimal in view of the fact that
the solution M" is not generally smooth in the whole domain £2. What one can expect is that
«" e H5~e(fl)foranye > 0, explaining the rate of convergence in (6.18). (For the definition
of Sobolev spaces with noninteger exponents we refer to [Nec67], [LM68].) The normal
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derivative of 'it may have a nonzero jump across d£2. From (6.18) we also see that both
components of (u, A.) are approximated. In particular if / = 0 in E, then XH approximates
9w/9von9£2, where u e HQ (£2) solves the homogeneous Dirichlet boundary value problem
CP) (see Remark 6.3).

Let h and H be fixed. Then (.Mjf) leads to a linear system of algebraic equations of
type (6.15) with A e R"x", B e Rmx" given by

where { ;̂}"=i are the Courant basis functions of V/,.

REMARK 6.6. From the second equation in (M%) it follows that the homogeneous Dirichlet
boundary condition on 3ft is satisfied by 'UH in an integral average sense:

Next we briefly describe how to discretize the second formulation based on the DL
multipliers. As before, we divide £2 into a square mesh of size h. Then each square will be
divided by its diagonals into four isoceles right triangles (for reasons see Remark 6.7). The
system of all such triangles creates a uniform "union jack" mesh of £2 denoted by Th • Let V/,
be defined by (6.17) using the triangulation Th- The space V'(E) of the DL multipliers will
be discretized by the finite dimensional space A/, realized by the restrictions of all D/, e V/,
to S;i.e.,

The discretization of (JV") now reads as follows:

It is readily seen that condition (6.12) is automatically satisfied in this case owing to the
definition of Ah; i.e.,

Therefore problem (JV/j) has a unique solution (w/,, A./,). From the last equation in (A/J,) we
also see thatTT/, — 0 in S. Since M), is piecewise linear on Th it vanishes not only in S but in
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Figure 6.2. Polygonal domain £2 and its inner approximation £4.

a larger set S/, D S that is the union of all triangles from TH having a nonempty intersection
with the interior of S (see Figure 6.2). This phenomenon is known as a locking effect.

Denote £2;, :— £2 \ S^- Then the restriction Uh '= ~Uh\ah belongs to HQ^A), and
from the first equation in (A//,) it follows that UH solves the following discrete homogeneous
Dirichlet boundary value problem in £2/,:

where

Unlike with the BL multiplier approach, this time the homogeneous Dirichlet boundary
condition is satisfied exactly on 9 £2.

REMARK 6.7. The assumption that Th is a uniform "union jack" mesh is needed in the error
analysis. In [HMT01] it has been shown that for such Th the following error estimate holds:

provided that £2 is convex; / e Lp(£2) with p > 2, where s > 0 is an arbitrary number; c
is a positive constant that does not depend on h; and « e HQ (£2) is the solution to (P).

REMARK 6.8. The space Ah defined by (6.21) uses the same triangulation Th as Vh. But this

is not necessary. Suppose that TH is another triangulation of £2 such that Th is its refinement;
i.e., each K e TH is a union of a finite number of triangles from Th. Denote by VH and AH
the following finite dimensional spaces:
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Since A# c V/,|S we see that condition (6.12) remains valid:

Therefore the following problem:

still has a unique solution (w),, AH). In this way one can reduce the dimension of the space
of Lagrange multipliers. On the other hand the homogeneous Dirichlet boundary condition
is satisfied only in the following integral sense:

From this it does not follow that tT^ = 0 in E and, consequently, by using a coarser partition
TH one can avoid the locking effect.

The algebraic form of (A/),) leads again to the linear system (6.15). This time the
elements of the matrix B are given by

where {<pi }"=1 are the Courant basis functions of Vj, and I is the set containing indices of all
<pt whose support has a nonempty intersection with the interior of E. Let us observe that the
system {<pi }iel forms a basis of A/,. If two different partitions TH , TH are used, appropriate
modifications are necessary.

In the next section we use the previous fictitious domain techniques for the numerical
realization of state problems in shape optimization. To this end let us check how data
of the linear system (6.15) depend on the geometry of the original domain £2. Since the
previous discretizations use the so-called nonfilled meshes, meaning lhal the partitions TH
of £2 are conslrucled independently of £2, the stiffness matrix A does not depend on £2.
The information on the geometry of & appears solely in matrix B (see (6.20), (6.24)) and
eventually in the right-hand side vectors / and g. The fact that A is independent of £2 is of
practical significance: it can be computed once and stored forever. In addition, due to the
particular construction of TH, the matrix A possesses a special structure enabling us to use
fast direct solvers for large and sparse systems of linear algebraic equations.

REMARK 6.9. There is another class of finite element discretizations of the fictitious domain
formulations using partitions TH that take into account the geometry of £2 (locally fitted
meshes) and at the same time still preserve the good properties of A. In this case the
stiffness matrix A depends on the shape of £2 so that the main advantage of the previous
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approach is lost. For this reason we shall confine ourselves to finite element discretizations
with nonfitted meshes in the rest of this chapter.

REMARK 6.10. Consider now a nonhomogeneous Dirichlet boundary condition u = g on
9fi, g e #s(9£2). Then the second equations in the mixed finite element formulation
(M%), (A/J,) have to be replaced by

respectively, where g is an extension of g from 9 £2 to E. Fictitious domain approaches can
be used not only for solving Dirichlet boundary value problems, but also for the case of
Neumann boundary conditions analyzed in [HMT01], [HKOO].

6.2 Fictitious domain formulations of state problems in
shape optimization

As we already know, a discretization of any shape optimization problem consists of two steps:
First, a family of admissible domains is replaced by another one containing domains whose
shapes are fully characterized by a finite number of parameters. Second, a state problem
is discretized by using an appropriate numerical method. We have used a classical finite
element method in all examples presented up to now. To overcome some of the drawbacks
of this approach, which have been mentioned hi the introduction to this chapter, we now use
fictitious domain methods for the numerical realization of state problems. Special attention
will be paid to sensitivity analysis. It turns out that fictitious domain solvers with nonfitted
meshes reduce the smoothness of the respective control state mapping and consequently
may lead to nondifferentiable optimization problems.

To illustrate the whole matter let us consider the optimal shape design problem with the
family O consisting of domains fi (a) whose shapes, captured in Figure 2.2, are described
by functions a from Uad defined by

where ami,,, amax, and LQ are given positive parameters (this time the constant volume
constraint hi the definition of Uad is omitted).

On any £1 (a), a € Uad, we consider the following homogeneous Dirichlet boundary
value state problem:
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Let the cost functional J be given by (2.99) and define the following problem:

where u(a) e #0'(£2(a)) is the weak solution of (P(a)).
To discretize O we use exactly the same approach as in Section 2.2: the moving part

of the boundary is shaped by piecewise quadratic Bezier functions s^. The set of all such sx

will be denoted by U^d. Let us observe that, because of the absence of the constant volume
constraint, Uf? is a subset of Uad. DenoteJ^ = (ftfe) \ sx e U°d}.

First we choose a fictitious domain £2 in which all computations will be performed
and such that £2 D £2 V£2 e O* (one may take £2 =]0, 2amax[x]0, 1[, for example). We
use the BL variant of the fictitious domain formulation of (P(a)). Let 7h be a uniform•̂ ^ -A.
triangulation of £2 and VA be the space of all continuous piecewise linear functions over TH
defined by (6.17). The space of the BL multipliers will be discretized by piecewise constant
functions. To this end let TH be a regular partition of the vertical side F^= {0} x ]0, 1 [ into
segments A,, i = 1,... ,m(H), of length not exceeding H. With any TH we associate the
space AH defined as follows:

The BL variant of the fictitious domain formulation of (P(a)) reads as follows:

where

and rns*, is the piecewise linear Lagrange interpolant of s* on TH (see Figure 6.3).

COMMENTS 6.1.

(i) In the original setting of the BL variant of the fictitious domain method the space
AH is defined on the variable part of the boundary. Therefore it depends on the
design variable, too. In addition the respective duality pairing is realized (for regular
functions) by the curvilinear integral on r(a):

Because of the special parametrization of shapes of £2 e O, the integral along F(a)
can be transformed into the integral on F in a standard way:



6.2. Fictitious domain formulations of state problems in shape optimization 183

Figure 6.3. Partitions defining V/, and AH.

(ii)

where F(a) is the graph of a e Uad; n o afe) := ^(afa), xi) and v o a is defined
similarly. Suppose now that a : F -> R is a continuous, piecewise linear function
over the partition TH of F and fj, : F(oO ->• R is a function that is constant on any
straight segment S of F(a). Then the function /x o a^/1 + (a')2 : F ->• R remains
piecewise constant on TH- This makes it possible to introduce AH as a space of
functions defined in F that does not depend on the design variable. In addition the
Riemann integral on F without the term ^/\ + [(rHSx)']2 can be used in place of the
duality term in (P"(s^)).
As before, the symbol / stands for an L2(£2)-extension of / from Q(rHSx) to £2.
Since / is denned in the whole plane, the simplest way of defining / is to take
/ = f^. This extension does not depend on the geometry of £2 e O*. On the
other hand, we know from Remark 6.3 that the zero extension of / is of particular
importance since the Lagrange multiplier A, is related to du/dv on the variable part of
the boundary of the original domain. In this case / depends on the shape of £i e O*.

(iu) Suppose now that the zero extension of / to £2 is used in CP^C?,,)). Then, in view of
the definition of the duality term {-, -)rH,s,«» me second component A// approximates
the product du/dv-^/l + [(/"H^)']2 on F(r//5^)! This form of the duality term makes
the forthcoming convergence analysis easier. In practical computations, however, the
original curvilinear integral /r(r s )^H^h ds may be used, in which case A.# directly
approximates du/dv on r(rHs^).

Three different discretization parameters appear in the definition of (P"(s^)): the
parameter % is related to the approximation of the geometry of admissible domains, while
h and H denote the norms of 7^ and TH used for constructing V/, and AH, respectively.
To ensure the existence and uniqueness of solutions to (P^s^)) we shall suppose that the
condition

is satisfied Vs^. e U%*. From the results of the previous section we know this is true
whenever the ratio H/h is sufficiently large. Let us observe that we do not require the
LBB condition to be satisfied. To keep the notation simple we shall suppose there is a
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one-to-one relation between h and H enabling us to label the discretized shape optimization
problem by only two parameters: h and tt. Finally we shall suppose that all three parameters
simultaneously tend to zero:

The discretized optimal shape design problem now reads as follows:

where HA(SX) e V/, is the first component of the solution to CP^(*^)) and J(y) = | \\y —
Zd\\l,D-

REMARK 6.11. In a classical finite element method, approximated solutions of state prob-
lems are computed in their own computational domain. On the contrary if fictitious domain
methods are used, then solutions are available on a larger domain £2 so that their appro-
priate restrictions have to be inserted into the cost functionals. In the previous example
the situation is simple: the target domain D is chosen in such a way that D C £2 for any
£2 e O, and thus one can always use the same restriction of ^(s^) to D. Consider now
the following cost functional: J(a, y) — \\\y — Zd\\\ n(a), Zd e L2C&.), which depends
explicitly on the design variable a. If fictitious domain methods were used, the discretized
shape optimization problem would be as follows:

This time the computed solution M), (s^) is restricted to the polygonal approximation £1 (THS*)
ofQ(Sx); i.e., £l(rHSx) plays the role of the computational domain.

It is left as an exercise to prove Theorem 6.4.

THEOREM 6.4. Problem (Pi,x) has a solution for any h and x > 0.

As usual we shall show that solutions to (P/,*) and (P) are close in the sense of
subsequences for h, x ->• 0+. But first we prove the following auxiliary statement.

LEMMA 6.4. Let ̂ (s^)} be a sequence of solutions to (P^ (s*)), h ->• 0+, wheres^ e U^d

are such that

Then

and u(a) := tt\n(a) is the solution of the homogeneous Dirichlet boundary value problem
in £2 (a).
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Proof. Inserting Vh '.— 'UH^K) into the first equation in (P^s*)) we have

making use of (^H,'Uh(Sx'))rHsx = 0. From (6.27) and the Friedrichs inequality in HQ(&)
we see that {«*(•$*)} is bounded: there exists a positive constant c such that

Thus one can pass to a subsequence of (M), (sx)} such that

From the second equation in (P^(s^)) we have

From Lemma 2.21, the definition of (-, •),-„.*„, (6.26), (6.28), (6.29), and (6.30) one has

proving that M"belongs to the space HQ(&, d&(oi)) defined by (6.1) and in particular w" = 0
on F (a). Next we show that ttsolves problem (P) formulated at the beginning of Section 6.1.

Denote

LetU e W(a) be given and [rhv], rhv e VA, be a sequence of the piecewise linear Lagrange
interpolants of v. Then

and, in addition, there exists a S-neighborhood Bs(r(a)) of F(a) such that suppr^iJ n
Bs(T(a)) = 0 for any h sufficiently small, as follows from the definition of W(a). From
(6.26) and the definition of £/£? it also follows that the sequence {rus*} tends to a uniformly
in [0,1], implying that the graph of rHsx has an empty intersection with suppr/,iJ for H
and x small enough, too. Therefore (A.#, rhv)rilsx = 0 and the first equation in (P"(s^)~)
takes the form

for some element M" e HQ(&). We now prove that M" = 0 on F(a). This is equivalent to
showing that

Let ju € L2(T) be given. Then there exists a sequence {fJ.H}, ^H € AH, such that
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Passing here to the limit with h, x -»• 0+ and using (6.28), (6.32) we obtain

Since W(a) is dense in HQ(&, dQ(a)) in the /^(QJ-norm we may conclude from (6.33)
that M" solves (P) and consequently «h(a) solves (P(a)). Problem (P) has a unique solution;
therefore the whole sequence {«*} tends weakly to 'u. Strong convergence of (w),} to M~in
the ffj (£2)-norm can be proved in a standard way. D

REMARK 6.12. Since the cost functional / contains only the primal variable M),, we did not
pay attention to the behavior of {A#}. This is why we did not require the LBB condition
to be satisfied. If on the other hand knowledge of the Lagrange multiplier A. were needed
in computations (as a part of a cost functional, for example; see the end of this chapter),
satisfaction of the LBB condition would be necessary. The mathematical analysis of this
case is rather technical and therefore is omitted.

On the basis of the previous lemma we are now able to prove the following convergence
result.

THEOREM 6.5. For any sequence {(s£, «*(«£))} of optimal pairs of (Ph)<), h -> 0+, there
exists its subsequence such that

In addition, (a *, u* \ Q („«>) is an optimal pair o/(P). Any accumulation point of{ (s £., w/, (.?£))}
in the sense of (6.34) possesses this characteristic.

Proof. Since Uad is compact, one can pass to a subsequence of {.?£.} such that (6.34) holds for
some elements a* € Uad and'u* e HQ(&). In addition u(ot*) := «<*|n(a*) solves (P(a*)),
as follows from Lemma 6.4. It remains to show that a* solves (P). Let a € Uad be given.
Then from (iii) of Lemma 2.10 we know that there exists a sequence {s^}, s* € U^d, such
that

and also

where w(a) := w"|Q(a) solves (P(a)), making use of Lemma 6.4 once again. Passing to the
limit with h, x ->• 0+ in

using (6.34)2, (6.36), and the continuity of J, we arrive at
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REMARK 6.13. The same convergence result can also be established for the DL variant
of the fictitious domain method, taking for example A/, = Vh\s(rilSit), where S(r//,yx) =
£2 \ fi (rnSx)\ i.e., both spaces use the same triangulation (see Problem 6.6).

The remainder of this section will be devoted to sensitivity analysis in discretized
optimal shape design problems using fictitious domain solvers with nonfitted meshes. As
stated in the previous section, the algebraic form based on the fictitious domain formulations
of the state problems leads to the following linear algebraic system:

where a e 11 C Kd is a discrete design variable characterizing the shape of fi e OK. Recall
once again that only the matrix B and the right-hand side of (6.37) depend on a. Let us
check the differentiability of the mapping $ : U ->• M" x Em, 4>(a) = («(«), X(a)) e
R" x Rm, a € U. A common way of proving this property is to apply the implicit function
theorem to the mapping * : U x R" x Rm ->• E" x W", where

As we shall see, one of the assumptions of this theorem, namely the differentiability of *
with respect to a, is not satisfied.

Let us start with the BL variant of the fictitious domain approach. For the simplicity
of our presentation we shall suppose that the variable part of the boundary of discrete design
domains is realized by continuous, piecewise linear functions a# over the partition TH of
F. If this is so then the discrete design variable a can be identified with the values of a# at
the nodes of TH (see Figure 6.4). Let us recall that the elements of B(a) are given by

where <p\ is the Ith Courant basis function of V/,. Denote by S^ the graph of a# over A.^ e TH •
Let PH be another continuous, piecewise linear function over TH and ft be the respec-

tive discrete design variable. Compute the directional derivative

The formal derivation under the sign of the integral yields

From this expression we see that if (d<pi/dxi) o aH were not defined in a subset of A* whose
one-dimensional Lebesgue measure is positive, then it could happen that
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Figure 6.4. Computation of b u(a).

Figure 6.5. Nondifferentiability ofbki(a).

i.e., bkl is not continuously differentiable as a function of a. To see this consider the segment
Sk having a nonempty intersection with an interelement boundary whose one-dimensional
Lebesgue measure is positive (see Figure 6.5, where the function <p{ is associated with the
node (0,0) of the unit square grid in E2). Denote by <$} the restriction of <pt to the triangle
Tt,i = 1,... , 4. It is readily seen that

Further, let the vertical interelement boundary separating T2, T3 from Tlt T4 be a part of
S*. We want to compute b'kl(uH; ftH), where 0H is such that its graph Sk over At passes
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through the point (0, 0) as shown in Figure 6.5. It is readily seen that the integral in (6.38) is
always equal to zero. On the other hand b'kl (aH: —fin) equals 2 f0 fiH dx2 (observe that the
direction — fin corresponds to the segment —5*). From this elementary example it follows
that the mapping B : a i-> B (a) cannot be differentiable in general. Since one of the basic
assumptions of the implicit function theorem is not fulfilled, there is no reason to expect that
the mapping <t> assigning to any a e Li the unique solution (w(a), X(a)) of (6.37) should
be continuously differentiable. On the other hand one can prove that <t> is continuous in U
(see Problem 6.7).

Let us now consider the DL variant of the fictitious domain method. In this case
the situation is even worse! Suppose that the space A/, uses the same partition 7~h as the
space Vh', i.e., A/, = Vf,\s(rHSx) (see Remark 6.13). Then owing to the locking effect the
fictitious domain solution 'Uh ($*) solves a discrete homogeneous Dirichlet boundary value
problem (6.22) in &t, and vanishes outside of £2/j, where £2;, is the approximation of the
polygonal domain £2 (r//^^) from inside made of all triangles of Th lying in the interior of
^(rHsK). From this it follows that any variation of the designed part r(rHs^), S* e Uff,
that does not change Q.^ still leads to the same solution of (6.22). Since there is only & finite
number of different £2/, for s* € Uff the same holds for the respective solutions ^(s1^),
h, x fixed. In other words, these solutions, after being substituted into a cost functional,
entail its discontinuity (see Figure 6.8). This phenomenon can be weakened by using a
coarser triangulation TH to construct the discrete space of the DL multipliers.

From all that has been said above we may conclude that fictitious domain solvers
used at the lower level of shape optimization problems reduce the smoothness of minimized
functions regardless of the fact that the original problem is smooth. This fact has a practical
consequence: gradient type methods may give unsatisfactory results, especially if too coarse
meshes are used. Global optimization methods based only on function evaluations represent
a possible way to overcome this difficulty. Some of these have been mentioned in Chapter 4.

We end this subsection by illustrating how the previous variants of the fictitious domain
methods can be used in shape optimization. We start with the DL variant.

Let the family O of admissible domains be of the form

where B is the unit open disk with center at the point C = (4,4) and O* is another system
of simply connected bounded domains Q C R2 with Lipschitz boundary, containing B in
their interior, and contained in the square ]0.5, 7.5[x]0.5,7.5[. In other words O consists
of double connected domains with fixed inner boundary dB and variable outer part given
by 92- Q e O*, which characterizes the shape of £2 e O (see Figure 6.6). On any £2 e O
we consider the following state problem:

with / = — Au,i in M2, where
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From (6.39) and (6.40) it follows that w(£2) = ud in ft so that J(Q,, «(fi)) = 0. Therefore
£2 is a solution to (6.41). We try to identify £2 by solving (6.41).

Any £2 € O will be embedded into the fictitious domain £2 —]0, 8[x]0, 8[. Denote
by V(B) — HQ(&),B and V(E) = HQ(&),S the spaces of restrictions to two components B

and E of £2 \ £2. Further let V'(B), V'(S) be the dual spaces with duality pairings denoted
by (;•)]>, (;-)s, respectively.

The fictitious domain formulation of (6.39) in £2 € O reads as follows:

Figure 6.6. Shape of admissible domains.

The optimal shape design problem is defined as follows:

where

w(£2) solves (639) in £2 e O, and Md is as in (6.40).
Denote by £2 e O the domain whose outer boundary is realized by the ellipse
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REMARK 6.14. Problem (6.43) and its solution depend on £2 e O through the duality term
( • • • > B .

It is left as an exercise to show that (6.43) has a unique solution and, in addition,
fT(f2)|j2 solves the original problem (6.39) in £2.

We now describe the approximation of (6.41). The outer part of the boundary of
any £2 e O will be approximated by piecewise quadratic Bezier curves. In our example
the number of Bezier segments is equal to eight. The set of all such domains will be
denoted by O*. The control points of Be'zier curves whose positions define the boundary
of airv £2*, 6 0^ are subject to constraints ensuring that O* C O. For discretizations of
//o(£2), V'(B), V'(E) we use piecewise bilinear functions over a uniform partition 7^ of
£2 into squares of size h. The use of bilinear functions over rectangles makes programming
easier and the locking effect more "visible." We define

where Q\(R) stands for the space of bilinear functions defined in R e "Rh and Sx is the
outer component of £2X e O* in £2. All these spaces use the same mesh 7£/,. With any
£2X e Ox we associate the following mixed finite element problem:

We already know that (6.44) has a unique solution. Let £2 .̂ be the union of all squares
R e T^h having an empty intersection with the interior of B and Sx; i.e., £2^ is the
"checkerboard" approximation of £2X from inside. Due to the locking effect the solution
MA (&x) vanishes outside of £2 .̂ and the function M/, (£2*.) := M^ (£2*)|n* solves the following
discrete homogeneous Dirichlet boundary value problem:

where Vh (£2^) = V^ n H^ (£2^) (see also (6.22) and (6.23)). The discretization of (6.41)
using (6.44) as a discrete state solver reads as follows:
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Figure 6.7. Found solution.

Figure 6.8. Graph of the cost functional.

where M"A(S2^) solves (6.44). From the definition of (6.45) we see that the cost functional J
is evaluated using the checkerboard approximation £2^. of S2^ and the restriction of ̂ (£2,,)
to £2^.. Due to the locking effect there is no reason to expect that the minimized function in
(6.45) is continuous. To illustrate its character let us fix all control points defining the shape
of QX e Ox except two of them, denoted by 1, 2 in Figure 6.6, which are allowed to move
along the marked directions. The graph of / as a function of these two design variables
is depicted in Figure 6.8. We see that / is stairwise; i.e., there is no hope that gradient
type minimization methods could be successful in this case. For this reason the modified
controlled random search (MCRS) method described in Chapter 4 was used. The final result
is shown in Figure 6.7. The dotted line denotes the exact shape defined by the ellipse (6.42);
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Figure 6.9. External Bernoulli problem.

the found shape after 2000 function evaluations of the MCRS method is represented by the
solid line. Problem (6.44) was solved for the mesh size h = 8/32.

In the remainder of this chapter we show how the BL variant of the fictitious domain
method combined with the shape optimization approach can be used for the numerical
realization of a class of free boundary value problems arising in optimal insulation and
electrochemistry modeling [AckSl], [Fas92]. These problems are known in the literature
as Bernoulli problems.

Let £2 c K2 be a double connected domain with the Lipschitz boundary d£2 =
Tfixed U rfree(9£2)» where I^xed is a given component and Fjree(9^) (exterior to Taxed) is a
searched part of 3 £2 (see Figure 6.9). The system of all such domains will be denoted by
O. We formulate the following problem:

where Q < 0 is a given constant.

REMARK 6.15. Problem (6.46) is the so-called external Bernoulli problem, unlike the
internal one, in which rfree(9£2) is interior to Fgxed-

First observe that fi* e O is one of the unknowns in (6.46). Indeed, for Q, e
O given a priori, problem (6.46) is not well posed owing to the fact that the boundary
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conditions to be satisfied on rfree(3fi) form an overdetermined system; i.e., they cannot
be satisfied simultaneously, in general. To overcome this difficulty we shall consider the
shape of rfree(3£2) to be a design variable in an appropriate shape optimization problem.
The redundant boundary condition in (6.46) will be included in a cost functional and will be
satisfied by its minimization over O, while the remaining one will be part of a (now well-
posed) boundary value problem. Thus instead of (6.46) we shall consider the following
optimal shape design problem:

where

is the cost functional and w(£2) solves the following nonhomogeneous Dirichlet boundary
value problem in £2:

The mutual relation between (6.46) and (6.47) is readily seen: £2* e O solves (6.46) iffQ*
solves (6.47) and J(&*) = 0.

REMARK 6.16. The system of admissible domains has to be sufficiently large to guarantee
that fi* (solution of (6.46)) belongs to O.

Let fi c K2 be a box such that ft c & Vfi e O. Further let A! = H-1/2(rfixed),
A2(3£2) = #~1/2(rfree(3fi)) be two spaces of the Lagrange multipliers defined on Fflxed,
rfree(3£2), respectively, and V — HQ(&). The fictitious domain formulation of (6.49) in £2
is as follows:

where {-, -}rflxed and {-, Orwan) stand for the duality pairings between AI and #1/2(rfixed)
and A2(3£2) and H 1/2(rfree(3&)), respectively. It is left as an easy exercise to show that
(6.50) has aunique solution, u := ii\n solves (6.49), A.I = [3iT/3v] is the jump of the normal
derivative of M" across Taxed, and A. 2 = du/dv is the normal derivative of u (the solution
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Figure 6.10. Partitions defining finite element spaces.

to (6.49)!) on 1^(9^) (see Problem 6.9). Therefore the cost functional (6.48) can be
equivalently expressed as

We shall now pass to a discretization and numerical realization of (6.47). The original
family of O will be replaced by G* made of all double connected domains Sl^, where both
parts of the boundaries, Taxed and rfree(3£2x), are realized by piecewise second degree
Bezier curves. The fictitious domain formulation (6.50) will now be discretized the way
we did in our model example at the beginning of this chapter: Vj, C HQ (£2) denotes

the space of continuous piecewise linear functions over a uniform triangulation Th of £2
and AH, , A#2(9£2X) are the spaces of piecewise constant functions defined on polygonal
approximations IVed, r'free(3f2^)of rflxed, Tfree(9£2>f), respectively (see Figure 6.10). With
any £1* 6 Ox we associate the following mixed finite element problem:
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The approximation of (6.47) using (6.51) as a state solver now reads as follows:

where

with A.#2 being the last component of the solution to (6.51).

REMARK 6.17. The mixed finite element formulation (6.51) yields the convergence of both
sequences of the Lagrange multipliers in the H~l/2-norm provided that the LBB condition
is satisfied. For this reason one should use (to be correct) the dual instead of the L2-norm
in (6.52). Since the evaluation of the H~l/2-norm is not so straightforward we decided on
the formal use of the L2-norm, which can be easily computed. On the other hand the use of
(6.52) is justified if the classical mixed finite element method is replaced by its regularized
form (see [IKPOO]). The modification consists of adding an appropriate regularizing term
to the mixed formulation, and it ensures the convergence of the Lagrange multipliers in the
norm of a more regular space.

To illustrate this approach we present numerical results of a model example. Let us
consider the external Bernoulli problem with r^Ked being L shaped. The fictitious domain
£2 =]0, 8[x]0, 8[ is divided into small squares of size h = 8/64 and then each square
is divided by its diagonal into two triangles. The designed part rfree(3£2x) is realized
by 10 Bezier segments of order 2. Let mi = dim A f f l, W2 = dim An2(9fix) be the

Figure 6.11. Found solutions.
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Figure 6.12. Minimization history.

number of constant Lagrange multipliers. In our case m\ = mi = 64. In order to define
AH I ; A#2(9£2X) we first construct the polygonal approximation FfreeCS^x) of rfree(9£2x)
as depicted in Figure 6.10: the vertices of rfree(9£2>e) are the intersections of F^ee^^) with
the interelement boundaries of Tj,. Taxed and rfree(dQ>() are then divided into connected
parts S by nodes placed on interelement boundaries in such a way that the norm H of the
respective partition 7# is such that the ratio H/h is as close as possible to 3. On each S,
functions from A/^, AH2(9£2x) are constant.

The matrix formulation of (6.51) leads to a system of algebraic equations of type
(6.15). Eliminating the primal variable u we obtain the dual system for the vector of
Lagrange multipliers. This system was solved by the classical conjugate gradient method.
The numerical minimization of the cost functional was performed again by the MCRS
algorithm. The stopping criterion was given by the maximal number of function evaluations.
This number was equal to 5000. In Figure 6.11 the free boundaries found after 2000 function
evaluations are shown for Q € {—2, —1, —0.5}. The behavior of the free boundary with
respect to Q confirms known theoretical results (see [FR97]). A typical minimization history
is shown in Figure 6.12.

Problems

PROBLEM 6.1. Prove that problem (P) from Section 6.1 has a unique solution w" e
fl^fi.aco.

PROBLEM 6.2. Show that

where u(<p), H(/U,) are unique solutions of (6.3), (6.5), respectively.
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PROBLEM 6.3. Prove that problem (M) from Section 6.1 has a unique solution by using
Theorem 6.1.

PROBLEM 6.4. Prove Theorem 6.4.

PROBLEM 6.5. Prove (6.31) provided that (6.26), (6.28), and (6.29) hold.

PROBLEM 6.6. Consider optimal shape design problem (P) using the DL variant of the
fictitious domain method. Prove the counterpart of Theorem 6.5 with Ah as in Remark 6.13.

PROBLEM 6.7. Prove that the mapping O : U -*• R" x Rm, where O(a) = (M(«), X(a)),
a e U, solves (6.37), is continuous in U.

PROBLEM 6.8. Prove that problem (6.43) has a unique solution 'u and zT|n solves (6.39)
on Si.

PROBLEM 6.9. Prove that problem (6.50) has a unique solution (u, A-i, A.2) and interpret
each component of it.
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Chapter 7

Applications in Elasticity

7.1 Multicriteria optimization of a beam
In Section 2.1 the thickness optimization of an elastic beam loaded by a vertical force was
analyzed. We looked for a thickness distribution minimizing the compliance of the beam.
In practice, however, it is usually important to optimize structures subject to different types
of loads. This section deals with a simple prototype of such problems. We shall study
multiobjective thickness optimization of an elastic beam. In addition to the compliance
cost functional we introduce another two functionals involving the smallest eigenvalues of
two generalized eigenvalue problems. Eigenvalues represent natural frequencies of free
oscillations and buckling loads of the beam and depend on the thickness distribution e. Our
goal is to find a thickness minimizing the compliance of the perpendicularly loaded beam,
maximizing the minimal natural frequency (i.e., the beam is stiffer under slowly varying
dynamic forces), and maximizing the minimal buckling load (i.e., the beam does not lose
its stability easily under the compressive load).

7.1.1 Setting of the problem

Let the beam of varying thickness e and represented by an interval / = [0, i\, t > 0,
be clamped at x = 0 and simply supported at x = I, yielding the following boundary
conditions (b.c.):

The deflection u of the beam under a vertical force / solves the following boundary value
problem:

The meaning of all symbols is the same as in Section 2.1 and e e Uad, where Uad is the
class of admissible thicknesses defined by (2.3).

201
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The equation of vibration is represented by the following generalized eigenvalue
problem:

where B(e)u :— peu and p € [po, pi\ is a mass density with p\ > p0 positive numbers.
Finally, the equation of buckling is given by another eigenvalue problem:

where Vu := —u". Buckling of the beam may occur when a compressive force is greater
than a critical load represented by the smallest eigenvalue of (7.4).

To give the variational formulation of the previous problems we introduce the space
V:

and the following bilinear forms denned on V x V:

related to the differential operators A(e), B(e), and T>, respectively.
The weak formulations of (7.2), (7.3), and (7.4) read as follows:

The thickness optimization of the beam mentioned in the introduction to this section can be
formulated as the following multicriteria optimization problem:
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The individual cost functional are defined by

where u(e) solves (P\(e)) andA.i(e), n,\(e) are the smallest eigenvalues in (Pi(e)), (P^(e)),
respectively. Before we prove that the set of Pareto optimal solutions is nonempty, we will
show that (P) is well posed. It is known (see Appendix A) that K\(e), ^i(e) are the
minimizers of the Rayleigh quotients:

It is easy to prove that k\(e), (M\(e) are bounded from above and below uniformly in Uad:
there exist positive constants m < M such that

Indeed,

Therefore,

where AI > 0 is the smallest eigenvalue of the auxiliary problem

Similar bounds hold for /zi(e). Thus the functionals J-i and ]->, are well defined for any
e e Uad.

The multicriteria optimization problem will be realized by the weighting method
described in Subsection 4.4.2. Problem (P) will be replaced as follows:

where Jo(e) — XlLi wt ̂  (£) an<^w' > 0. i = 1,2,3, are given positive weights. To prove
that (Pu,) has a solution we need the following lemma.

LEMMA 7.1. The functional JQ is continuous in Uad:

Proof. We already know that J\ is continuous in Uad. Let us prove the same for /2- Since
{^•i(^n)} is bounded, as follows from (7.8), one can pass to a convergent subsequence such
that
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for some A > 0. Let un := u(en) be an eigenfunction corresponding to Ai(e«):

We may assume that \\un \\2,i = 1 Vn e N so that there is a subsequence of {un} such that

Letting n -> oo in (7.11), using (7.10), (7.12), and uniform convergence of {en} to e in /
we arrive at

We now prove that {«„} tends strongly to u. We use the same approach as in Lemma 2.1.
Let I • I be the norm defined by (2.9). Then

Since ||| • ||| and || • ||2,/ are equivalent we see that \\u ||2,/ = 1, implying that A. is an eigenvalue
and M is an eigenfunction corresponding to X.

It remains to show that A := AI (e) is the smallest eigenvalue in (P2(e)). Since AI (en)
is the smallest eigenvalue in CPafe)) for any n e N it holds that

It is left as an easy exercise (see Problem 7.1) to show that the Rayleigh quotient is continuous
in Uad x V. Passing to the limit with n ->• oo in (7.13) we obtain

making use of (7.10) and strong convergence of (un} to u. From this it follows that X:=X\(e)
is the smallest eigenvalue in (P2(e)). Since any accumulation point of {^\(en)} has this
characterization the whole sequence (Ai(en)} tends to A.i(e). That J^ is continuous can be
proved in the same way. D

From Lemma 7.1 and the compactness of Uad we arrive at the following result.

THEOREM 7.1. Problem (Pw) has a solution.

7.1.2 Approximation and numerical realization of (Fw)

We proceed as in Section 2.1. The space V will be discretized by means of piecewise cubic
polynomials over an equidistant partition AA = {a,}f=0 of the interval /:
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while thicknesses are discretized by piecewise constant functions belonging to U£d given
by (2.32).

Let eh 6 U£d be fixed. The discrete state problems are denned as follows:

The discretization of (Vw) now reads as follows:

where J0(eh) = £f=i wtJi(eh), J\(eh) = f j f u h d x , J2(eh) = lAi/,, J3(eh) = 1/fJ-ih,
with uh := uh(eh) being the solution of (P\h(eh)) and A.I/, := Xihteh), /AU, := ^\h(eh)
being the smallest eigenvalues of CP2A («A))» C^s/i (^/i))» respectively. Using exactly the same
approach as in the continuous setting of the problem one can prove the following theorem.

THEOREM 7.2. For any h > 0 there exists a solution to (Pu,/,)-

Next we shall investigate the relation between (Pn,) and (Pu,*) for h -> 0+. To this
end we need the following lemma.

LEMMA 7.2. Let eh -> e in L°°(I), eh e Uff, e e Uad. Then

andK\(e), n\(e) are the smallest eigenvalues of Wide)), (P$(e)), respectively.

Proof. We first show that [k\h(eh)} is bounded. As in the previous subsection we obtain
that

holds for any Vh e Vh and h > 0, where ci, C2 > 0 are constants independent of Vh and h.
Therefore,
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where X\h is the smallest eigenvalue of the auxiliary problem

From the continuity of K and the density of {V/,}, h -> 0+, in V it follows that X/, ->• A,
h -»• 0+, where A is the smallest eigenvalue of (7.9). From this and (7.14) the boundedness
of {Aifc(efc)} immediately follows. We may assume again that the eigenfunctions «/, are
normalized: ||w/,||2,/ = 1 V7z > 0. The rest of the proof is straightforward: one can pass to
convergent subsequences such that

Letting h -» 0+ in (P2A (£&))> using (7.15) and the density of {V/,} in V, we obtain

Strong convergence in (7.15) can be shown using exactly the same approach as in the proof
of Lemma 7.1. Thus Ai is an eigenvalue and u ^ 0 is the corresponding eigenfunction in
OPz^))- The fact that k\ := AI (e) is the smallest eigenvalue in (p2(e)) follows again from
the continuity of the Rayleigh quotient and the density of {V/,} in V. This implies that not
only the subsequence, but also the whole sequence {Ai/,(e/,)}, tends to k\(e). 0

With this result in hand we arrive at the following convergence statement.

THEOREM 7.3. For any sequence {e^} of solutions to (Pwh), h -» 0+, there exists a
subsequence such that

ande* e Uad solves (Pw). In addition, any accumulation point of {e^} in the sense of (1.16)
possesses this characteristic.

Proof. The proof is left as an easy exercise. D

Because any function^ e f/^isconstantineachintervaltflMflj+i], i =0,...,d—l,
of length h, it is uniquely determined by a vector e = (e\,..., ei) e U, et = e/,|[a._lifl.],
where

The algebraic formulation of discrete state problems (P\h (^))-(^'3A (^H)) leads to one linear
algebraic system and two generalized algebraic eigenvalue problems:
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Here K(e), B(e), and D are the stiffness matrix, mass matrix, and geometric stiffness
matrix, respectively, and / is the force vector. The elements of K(e), B(e), D, and / are
evaluated as follows:

where {<pi}"i=l is a basis of V/, and n = dim V&.
Let Jt(e) := Ji(T^le), i = 1,2,3, where To is the isomorphism between U%d and

U (see also (2.21)). Then the algebraic form of <fwh) reads as follows:

where J0(e) = £?=1 u>, Jt(e).
Let us briefly comment on the numerical solution of the algebraic eigenvalue problem.

If we are only interested in the (simple) smallest eigenvalue and the respective eigenfunction
for problems (7.18), (7.19), we can use one of the simplest methods, namely the classical
inverse iteration method. The reduction of the generalized eigenproblem (7.18) to a standard
eigenproblem can be done implicitly (for simplicity of notation the argument e is omitted):
multiplying (7.18) by B~l from the left we obtain the standard eigenproblem

The matrix C = B 1K is neither symmetric nor sparse, but it is self-adjoint with respect
to the B inner product (x, y)s := x^By. Thus one can solve the eigenvalue problem

using inverse iterations in which the inner products are represented by the B inner products
(see [Par98]). If faster convergence is needed or one needs the k smallest eigenvalues
(k «; n), then the subspace iteration is an efficient method of calculating them. For more
details see [Par98]. For example, subroutine F02FJF in the NAG subroutine library [NAG97]
can be used in this way to solve problem (7.18).

The piecewise constant parametrization of the thickness will result in a large number
of optimization parameters. Therefore we prefer gradient type methods for the numerical
solution of (Pu,rf). Sensitivity analysis for the cost function J\ can be done hi the way
described in Section 3.2. The cost functions Ji and J$ involve the smallest eigenvalues
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of (7.18) and (7.19). Thus one needs a formula for the directional derivatives of eigenval-
ues with respect to design parameters. Consider next the following generalized algebraic
eigenvalue problem depending on a parameter e e U:

We assume that the eigenvectors are normalized in the following way:

THEOREM 7.4. Assume that A(e), M(e) are symmetric and positive definite for all e e U.
Let the kth eigenvalue kk(e) in (7.20), k — 1, . . . , n, be simple ate = e and let Zk(e) be the
corresponding eigenvector. If the matrix functions A : e *->• A(e) and M : e h* M(e) are
continuously differentiate in U, so is the function Xk '• e t-> ^k(e) at e = e. In addition,
the directional derivative ofk^ at e and in any direction e e Kd is given by

Proof. It is readily seen that if A.t(?) is a simple eigenvalue, then A^(«) remains simple
for any e belonging to a sufficiently small neighborhood of e and, in addition, the function
A* : e i-> A,*(e) is continuously differentiable in a vicinity of e (see Problem 7.2). Let
e e E.d be arbitrary and \t\ < 8, S small enough. Then differentiating the identity

with respect to t at t = 0 we obtain

using also that the mapping Zk '• e i-»- Zt(e) is continuously differentiable at e = e (see
Problem 7.2). Multiplying (7.24) from the left by z&(?)T and taking into account (7.20) and
(7.21) we arrive at (7.22). D

We use this theorem with A(e) := K(e) and M(e) := B(e) and D.
From the previous theorem we see that if we differentiate functionals depending on

eigenvalues only, no adjoint equation is needed. The computation of K' and B' is very
simple due to the piecewise constant discretization of the thickness e. In particular the
partial derivatives of their elements are given by

When a black box optimization routine using a gradient type method is used to mini-
mize Jo, the user must supply a subroutine that computes the gradients of the cost functionals
Ji, i = 1, 2, 3, at a given point e. This can be done in the following way:
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1. FormJf(e), B(e), D, and / corresponding to the current design e.
2. Triangularize K(e) = LL*.
3. Solve the triangular systems Ly = f and L?q = y.
4. Compute Ji(e) = fjq.
5. Find iteratively the smallest eigenvalues A-i, p,\ and the corresponding eigenvectors

z, w for the problems K(e)z = XB(e)z and K(e)w = fj,Dw using the factorization
of K(e).

6. Compute fr(e) = I/A.!, J3(e) = l/^i-
7. doJk = l , . . . , n .

(i) Compute the partial derivatives of K (e) and B (e) with respect to e^ using (7.25),
(7.26).

(ii) Compute the partial derivatives of Ji, i = 1,..., 3 by

end do

REMARK 7.1. Theorem 7.4 does not apply to the case of multiple eigenvalues. In fact it
can be shown that multiple eigenvalues are generally only directionally differentiable with
respect to e. For details, see [HCK86].

It has been shown in [OR77] that if n\ is maximized for a clamped-clamped beam
(i.e., u(x) = u'(x) = 0 at x = 0 and /) having a circular cross section, then the eigenvalue
fj,i (e*) is double at optimum e*. Then gradient type methods may give unsatisfactory results
and, e.g., methods of nonsmooth optimization should be used. Unfortunately, these methods
are not widely available in standard subroutine libraries.

If eigenvalues are optimized using gradient type methods for smooth functions, it is
necessary to monitor the multiplicity of the eigenvalues during the optimization process.
If the first and second eigenvalues A.i(em) and A.2(em) at all iterations em,m = l,2,...,
generated by gradient methods are clearly separated, then the results are trustworthy.

EXAMPLE 7.1. Let us consider a beam of unit length (t = 1). The load / and the parameters
related to the material properties and the cross-sectional shape of the beam have constant
values: f = —I, f} = p = 1. The set Uad is defined by the following parameters:
emin = 0.01, <?max = 0.1, L0 = 0.5, y = 0-05. The beam is discretized by using 32 cubic
Hermite elements; i.e., h = 1/32 and d = 32.

In optimization we used the sequential quadratic programming (SQP) algorithm
E04UCF from the NAG subroutine library [NAG97]. The state problems were solved
by the band Cholesky method. Instead of the simple inverse iteration method, the eigen-
value problems were solved using the subspace iteration algorithm F02FJF from the NAG
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Figure 7.1. A beam minimizing the cost functional J\. Compliance = 16.03,
A.I = 0.9202, AM = 0.02963.

Figure 7.2. A beam minimizing the cost functional Ji- Compliance = 20.67,
A! = 1.059,/zi =0.01572.

Figure 7.3. A beam minimizing the cost functional J$. Compliance — 18.23,
A.I = 0.7962, AM = 0.03530.

library. The two smallest eigenvalues and their corresponding eigenvectors were calculated
in order to check whether the smallest eigenvalue is simple or not and thus to ensure that the
assumptions ofTheorem 7.4 are satisfied. In all examples a constant thickness e/,(;t) = 0.05
was used as an initial guess. The number of SQP iterations in different examples varied
between 3 land 40.

We first minimize each of the cost functionals Ji, i = 1,2, 3, separately. In Fig-
ures 7.1, 7.2, and 7.3 the solutions of the individual optimization problems are shown. The
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Figure 7.4. A beam minimizing the cost functional Jo with u>i = w-} = 0.25, W2 =
0.5. Compliance = 16.26, A.t = 0.9489, m = 0.03131.

Figure 7.5. A beam minimizing the cost functional Jo with u>i = 0.1, wi =
0.4, w3 = 0.5. Compliance - 16.71, A.t = 0.8881, /^i = 0.03387.

maximum thickness and the position of the "hinge-like" section of the beam vary consider-
ably in the results of different optimization problems.

Let z* = mine€w Ji(e), i = 1,2, 3, denote the components of the ideal criterion
vector for the respective discrete multiobjective optimization problem. For proper scaling
of the functions in (Pwd) we set

where Jt(e) := Ji(e)/z*. Then each Ji has minimum value equal to one if optimized
separately.

Next^we compute two (locally) Pareto optimal solutions by using the scalarization
function JQ. The results are shown in Figures 7.4 and 7.5 for two different choices of the
weights wt, i = 1,2,3.

7.2 Shape optimization of elasto-plastic bodies in contact

7.2.1 Setting of the problem

This section deals with the realization of one contact shape optimization problem. The
setting will be exactly the same as in Subsection 2.5.5 except for one modification. Instead



212 Chapter 7. Applications in Elasticity

of a linearly elastic material, characterized by a linear Hooke's law (2.148), we shall now
consider a more general class of materials obeying the theory of small elasto-plastic defor-
mations. For the mechanical justification of such a model we refer to [Was74] and [NH81].
The respective stress-strain relation is now nonlinear and in the case of plane strain it reads
as follows:

where K and /u, stand for the bulk and shear modulus, respectively; &tj is the Kronecker
symbol; and e// is the trace of e (as in Subsection 2.5.5, the summation convention is used).
The shear modulus //, is assumed to be a function of the invariant i := i(stj) denned by

We shall suppose that the functions K := K(X), /j, := ^(t,x), x e &, t > 0, depend
continuously on their arguments and /A is continuously differentiable with respect to t. In
addition, the following assumptions on K, /x are made:

where KQ, K\, /^o, #o, and 6\ are given positive constants.
The shapes of admissible domains are the same as in Figure 2.6 with a e Uad defined

by (2.174). The boundary and unilateral conditions are expressed by (2.147), (2.151), and
(2.170)-(2.172). To give the variational formulation of this problem we introduce the total
potential energy <!>„ reflecting the nonlinear Hooke's law (7.28). It can be shown (see
[NH81]) that

where La is given by (2.158) and S2(t>) := W(v, v). The symbol * stands for the bilinear
form defined by

By a variational solution to the Signorini problem obeying (7.28) we mean any function
u(a) e K(a) such that

where K(a) is defined by (2.173). It can be shown that the functional <I>a is weakly lower
semicontinuous, strictly convex, and coercive in K(a) in view of the assumptions imposed
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on K and /u,. Therefore (P(a)) has a unique solution u(a) for any a € Uad (for details we
refer to [NH81]).

REMARK 7.2. It is easy to verify that 4>0 is also Fre"chet differentiable at any u e V(a) and
the Fr6chet derivative D4>a(i<) € V'(a) is given by

where aa is denned by (2.157) with r,7 expressed by (7.28) (see [NH81]). Problem CP(ex))
is equivalent to the following variational inequality:

As we have already mentioned, a typical goal in contact shape optimization is to avoid
stress concentrations on the contact part Fc(a). Motivated by the results presented at the
end of Subsection 3.3.1 it turns out that this ami can be achieved by choosing

as the cost; i.e., J is equal to the total potential energy evaluated at the equilibrium state u (a).
Let (7.30)-(7.32) be satisfied for any (t, x) e (0, oo) x to, where £2 (a) c £2 Va e Uad.
Using the abstract theory of Section 2.4 one can prove that the following optimal shape
design problem:

has at least one solution (see [HN96]).

7.2.2 Approximation and numerical realization of (P)

We shall proceed exactly as in Subsection 2.5.5 keeping the meaning of all notation in-
troduced there. Let SM e Uff be given and define VA(sx), K/,(JX) by (2.167), (2.179),
respectively. On any $lt,(Sx) the discretization of the state problem is defined as follows:

where 3?rhS>< denotes the total potential energy functional (7.33) evaluated over Qh(sK).

REMARK 7.3. The approximate solution M/, (*„) can again be equivalently characterized as
the unique solution to the following discrete inequality:
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The discretization of (P) is now stated as follows:

where u^s*) solves (Ph(s*:)) and

Applying the abstract convergence results of Section 2.4 we obtain the following results.

THEOREM 7.5. For any sequence {(s^, «/,(.?£.))} of optimal pairs o/(P^x), h -> 0+, there
exists its subsequence such that

where u^ (s*^) is the uniform extension ofuj, (s*^)from fi/, (s*^) to £2. In addition, (a*, u* \& («•))
is an optimal pair of (P). Furthermore, any accumulation point of {(s^, Uh(s*^))} in the
sense of (7.35) possesses this property.

We now turn to the numerical realization of (P^). Unlike the problem presented
in Subsection 2.5.5, the total potential energy to be minimized is not quadratic any more.
Therefore the algebraic form of (Ph(s>c)) leads to a general convex programming problem.
A possible way to realize this is to use the following SQP type approach known in the
literature as the secant modulus or Kachanov method:

Each iterative step in (7.36) is already a quadratic programming problem that can be realized
by standard methods. One can show (see [NH81]) that the previous algorithm converges for
any choice of u(°} e Kh(sx) provided that (7.30)-(7.32) hold; i.e., wf' -* uh as k -»• oo
and MA e K/,(•$•«) solves (Ph(s3<)).

Denote by #(a) = (^i(a),..., #„(«)), a e U, the nodal displacement vector corre-
sponding to the solution Uh(s>(). From Remark 7.3 it follows that q(a) solves the following
algebraic inequality:

where LThSi( is the linear term evaluated on £4 (s^) and
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where K,(a) is defined by (2.183), U is isometrically isomorphic with Uff, and K : U x
R" ->• R"x" is a nonlinear matrix function representing the inner energy arhSx- Next we
shall show how to construct K by using the isoparametric technique of Subsection 3.3.2.

Let a e U be given. To simplify notation a will be omitted in the arguments of
functions. We first express the stress-strain relation (7.28) in the following matrix form:

Here

S is a symmetric matrix realizing (7.29), and D(i) is a symmetric matrix whose elements
depend on t. The matrix D(i) will be split as follows:

where

Next we shall suppose that K and fj, do not depend on x. The matrix K(q) can be assembled
element by element from the local contributions on each Te e Th as we have done in
Subsection 3.3.2. Let T be a parent element and Fe : T ->• Te be a one-to-one mapping
constructed in (3.78). Then the local stiffness matrix Ke(qe) is given by

where <jre, B are defined by (3.70), (3.92), respectively; \J\ is the determinant of the Jacobian
of Fe; and

Here we used that i\re '.= i(qe) = (Bqe)TSBqe. In the rest of this subsection we shall
suppose that the mappings <J>; from (2.52) are continuously differentiable in U. Then by
virtue of (7.29) and (7.39) the mapping K : U x R" -»• R"xn is continuously differentiable
with respect to both parameters of (a, q) e U x R".

REMARK 7.4. From (7.30H7.32) we know that the mapping q H> K(-, q), q e R", is
strictly monotone in R" uniformly with respect to a € U. From Problem 3.5 it follows that
the mapping q : a (->• q(a), where q(a) solves (P(u)), is Lipschitz continuous hi U and
directionally differentiable at any point a € U and in any direction ft.
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Problem (P^) is equivalent to the following nonlinear programming problem:

where J(ct) := J(a,q(a)) and J is the algebraic form of the cost functional 3>r,,s^.
Observe that VqJ(a, q) = K(a, q)q - /(a) (see Remark 7.2).

We may assume that the function J : (a, q) !->• J(a, q), a e U, q e W, is
continuously differentiable in U x K". On the other hand, the mapping q : a t-> q(a) is
only directionally differentiable. Let us compute the directional derivative J'(a; ft):

where

Next we shall eliminate the directional derivative of q from (7.41). The xi components
of the residual vector r (a) := V?J"(a, q(a))ata e U associated with the contact nodes can
be interpreted as the discrete counterpart of the Jt2 component of the stress vector T(u) along
Fc (a). For the characterization of r (a) see Problem 7.11. Since q depends continuously on
a e U and J is continuously differentiable with respect to q, then r depends continuously
on a as well. Let I be the set containing indices of all constrained components of q € JC(a).
Then for any i g I it holds that r, (a) = 0 Va e U. On the other hand, if r/, (a) > 0 for
some ji e 1, then rj: (a + tfi) > 0 for any t > 0 sufficiently small. This means that the
corresponding contact node remains in contact regardless of small perturbations of S2/1(*^)
(see (2.183) and Problem 7.11):

Let us suppose that s* is a linear combination of (d + 1) linearly independent functions
{f/}?=0:

Then (7.42) reads as follows:

so that
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From (7.41) and (7.43) we see that the function J is once continuously differentiable in U
despite the fact that the inner mapping q is not. We summarize these results as follows.

THEOREM 7.6. The junction J is once continuously differentiable in 14. and

EXAMPLE 7.2. The family of admissible domains consists of £2 (a) defined by

where

We consider the following nonlinear Hooke's law:

where K = 0.83333 and

The partition of the boundary is done as follows: Fu(a) = {0}x]a(0), 1[, rc(q) =
{(Jti,je2) 6 R2 | jci 6]0,4[, x2 = «(*!)}, !>(«) = 8O(a) \ (rB(o)urc(«)). The
body force / is assumed to be equal to the zero vector and the external load P is of the form

The contact parts Fc(a), a e Uad, are approximated by Bezier functions of degree
d > 2. Thus the set Uff consists of BSzier functions of degree d defined by the control
points

where a,• e R, i = 1,... , d, are the discrete design variables belonging to the set

where r^s* is the Lagrange interpolant of s* at the contact nodes. The integral in (7.46)
is evaluated using the trapezoidal rule. As an initial guess, s^ = 0.05 was chosen. The
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Figure 7.6. Finite element mesh of the optimal structure.

Figure 7.7. Initial and final contact stress distributions.

number of design variables was d = 15 and the finite element mesh consisted of 840
four-noded isoparametric elements. The initial cost was equal to —0.1581 x 10~3. After
16 optimization iterations the cost was reduced to the value —0.3103 x 10~3. The finite
element mesh corresponding to the final (optimal) domain is shown in Figure 7.6. The initial
and final contact stress distributions are plotted in Figure 7.7. The convergence history is
shown in Figure 7.8.

In the optimization process the SQP subroutine E04UCF from the NAG library
[NAG97] was used. The quadratic programming subproblem (7.36) was solved by the
block successive overrelaxation (SOR) method with projection. The stopping criterion in
the Kachanov method was \\qk+i - qk\h < 10~10||0*+i \\2, where qk is the nodal displace-
ment vector corresponding to uf\ It was usually fullfilled after five iterations. Compu-
tations were done in 64-bit floating-point arithmetic using an HP9000/J5600 workstation.
The total CPU time needed was 42 s.

From the results of Subsection 3.3.1 it follows that the minimization of the total poten-
tial energy for a linear elastic body yields "almost" constant contact stress distributions along
the optimal contact part. Similar behavior can be observed in the nonlinear material case.
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Figure 7.8. Cost (multiplied by 103) vs. iteration.

Problems

PROBLEM 7.1. Prove that the Rayleigh quotient

where ae, be, and Uad are defined by (7.5), (7.6), and (2.3), respectively, is continuous in
Uad x V.

PROBLEM 7.2. Let X(e) be a simple eigenvalue of the generalized eigenvalue problem

at e — e, where A(e), B(e) are symmetric, positive definite matrices hi an open set U c lRd

containing e. Suppose that the mappings A : e i-»- A(e), B : e i->- B(e) are continuously
differentiable in U. Prove that

(i) X(e) is a simple eigenvalue for any e e Bs(e), S > 0, small enough;

(ii) the mappings A . : e i-»- k(e), z : e i-> z(e) are continuously differentiable in 2?a(?).

PROBLEM 7.3. Prove (7.27) by using Theorem 7.4.

PROBLEM 7.4. Show that the Fr6chet derivative of <$a defined by (7.33) is given by
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where

with TIJ(U) expressed by (7.28) and

PROBLEM 7.5. Prove that, for any u, v e (Hl(Q(a)))2,

where c\ > 0 is a constant depending solely on /J,Q, &o appearing in (7.31) and (7.32).
Hint:

(i) Express

where c\ :- ci(fi0,60) > 0.

PROBLEM 7.6. Show that

where c\ > 0 is the same as in Problem 7.5 and ci, cj, > 0 are constants depending on
11^llo,Q(o), \\P\\o,rPw, respectively.

PROBLEM 7.7. On the basis of the previous results show that (P(a)) from Subsection 7.2.1
has a unique solution u(a) such that

where c > 0 does not depend on a € Uad.

PROBLEM 7.8. Prove that (P) defined in Subsection 7.2.1 has a solution.

PROBLEM 7.9. Prove Theorem 7.5.

(ii) Show that
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PROBLEM 7.10. Prove that the function ^ defined by (7.45) satisfies (7.31) and (7.32) with
K = 0.83333.

PROBLEM 7.11. Let r(a) = K(a, q(a)) — /(a) be the residual vector in CP(a)), a € U.
Show that

(i) n(a) = 0 V« £ I, rj,(a) > 0 V/, 6 I;
(ii) r;v (a)(q}i (a) + sx(J,-, a)) = 0 V/,- e I (no sum),

where Z is the set containing indices of all constrained components of q € /C(a).
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Chapter 8

Fluid Mechanical and
Multidisciplinary Applications

Traditionally shape optimization has been restricted to one discipline, linear elasticity, only.
Recently, there has been much interest in shape optimization of systems governed by equa-
tions of both fluid mechanics and electromagnetics. In this chapter we shall consider shape
optimization with state problems related to fluid mechanics or combined fluid mechanics
and electromagnetics problems.

Finite element and nonlinear programming methods in shape optimization of com-
pressible subsonic flows have been used by Angrand [Ang83], and later by Beux and
Dervieux [BD92]. Angrand computed optimal shapes of a nozzle and a lifting airfoil
by using the full potential equation. Beux and Dervieux optimized the shape of a nozzle in
the case of subsonic Euler flow. A slightly different approach has been used by Jameson
[Jam88]. For further study on numerical methods in shape optimization problems governed
by fluid flow or in multidisciplinary problems we refer to [MP01].

8.1 Shape optimization of a dividing tube
This section deals with a shape optimization problem governed by the Navier-Stokes equa-
tions for viscous incompressible fluids.

8.1.1 Introduction

The quality of paper produced is largely determined by phenomena taking place in the
device of a paper machine called the "headbox." For example, the basis weight and the
fiber orientation variations depend on the fluid dynamics in the headbox. The first flow
passage in the headbox is a dividing tube (the "header"). It is designed to distribute a fiber
suspension (wood fibers, filler clays, and chemicals mixed in water) in such a way that the
paper produced will have a uniform thickness and an optimal fiber orientation across the
width of the paper machine.

The fluid flowing in the headbox is a mixture of water and wood fibers and, therefore,
a simulation of separation or mixing of different phases requires a multiphase model for

223



224 Chapter 8. Fluid Mechanical and Multidisciplinary Applications

Figure 8.1. Schematic picture of the header and the manifold tube bank.

the water-fiber suspension. For a simulation of large-scale phenomena, however, one-phase
modeling, where the fluid is pure water, is assumed to be sufficient. A typical Reynolds
number is of order 106, requiring turbulence to be taken into account.

The geometry of the header presents additional difficulties in modeling the fluid flow
because the fluid escapes from the header to the next chamber through a tube bank, which
consists of hundreds of small identical tubes (see Figure 8.1). Using a homogenization
approach the complicated geometry of this part will be replaced by a simple one represented
by a part rout but with a nonlinear boundary condition. A detailed description of the headbox
flow modeling and the derivation of the homogenized outflow boundary condition can be
found in [Ham93], [HT96].

We use a simplified flow model, namely the Reynolds-averaged Navier-Stokes (RANS)
equations with an algebraic mixing length turbulence model. For details on turbulence
modeling we refer to [Rod93]. The problem is also simplified by considering the two-
dimensional geometry.

A more realistic simulation of header flows is based on the so-called k-s turbulence
model [Ham93]. The use of the k-e model requires solving two additional nonlinear dif-
fusion equations. The simplified model used in this section represents essentially the same
aspects as the k-s model from the standpoint of optimal shape design methods. The physical
justification and mathematical analysis of different turbulence models go beyond the scope
of this textbook, however.

8.1.2 Setting of the problem

We consider a two-dimensional fluid flow in a header £2 (a) as given in Figure 8.2. The
fluid flows in through the part Fin of the boundary and flows out through the small tubes on
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Figure 8.2. Problem geometry.

the boundary rout- Also there is a small outflow on rrec. The parameters HI, HI, L\, LI,
and £3 defining the geometry aie fixed. Let the back wall F (a) of the tube (the only curved
part of 3fi (a)) be defined by a function a e Uad:

where

and amin, amax, LQ are given parameters. For an incompressible fluid, conservation laws
for momentum and mass in two dimensions read as follows (the summation convention is
used):

Here u = (MI, 1*2) is the velocity vector, r = (T,-;-)? ,=1 is the stress tensor, p is the static
pressure, and Q is the density of the fluid. The components of the stress tensor are related to
the components of the strain rate tensor e(w) and the pressure p by means of the constitutive
law T(j(u) = 2(j*(u)Sij(u) — pStj, i, j = 1, 2, where /Z(M) is the viscosity a»d e(u) =
(ey(«))?ij=1 with sy(n) = £ (8ui/dxj + Buj/dXi).

In addition, the following boundary conditions are prescribed (see Figure 8.2):
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The nonlinear boundary condition (8.7) corresponds to the homogenized outflow with a
given constant c depending on the geometry of the outflow tube bank.

For turbulent flows, (8.1)-(8.2) represent the RANS equations with u and p being the
averaged quantities. The viscosity for RANS equations is of the form ^(u) = HQ + /j,,(u),
that is, the sum of a constant laminar viscosity /uo > 0 and a turbulent viscosity ^,(u).

In order to solve the RANS equations for turbulent flows, one has to select a model
for the turbulent viscosity /u.;(w). Here, we use a simple algebraic model

with (| Sjj s(j )
1/2 being the second invariant of the strain rate tensor and lm : = lm (x) denoting

the mixing length defined by the so-called Nikuradse's formula [AB85], [Rod93]:

REMARK 8.1. The reason for introducing the space (W1'* (fi (a)))2 in CP(a)) is the presence
of the nonlinear term n(u). It is left as an exercise to show that for u e Vg(a), v e V(a)
all integrals in CP(a)) are finite.

where

and d(x) = distfcc, 3fl(o) \ (rin U rout U rrec)).
To give the weak formulation of (8.1)-(8.7) we introduce the following sets of func-

tions, defined in £2 (a), a e Uad:

where for brevity of notation g denotes the function defining the nonhomogeneous Dirichlet
boundary data on rin U rrec. The weak formulation of (8.1)-(8.7) reads as follows:
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For better performance of the header the outflow profile u^ on rout should be close to
a given target profile uad e L2(rout)- Therefore we formulate the following optimization
problem:

where

with u(a) being the solution to (P(a)) and f c rout given. We use F instead of rout

because in practice the velocity profile must be close to the target profile only in the middle
of the header. The edges are controlled by additional edge flow feeds.

To overcome difficulties arising from the incompressibility condition div u = 0 in
ft (a) we use a penalty approach (see also Subsection 2.5.6). The penalized form of (P(a))
is as follows:

where e > 0 is a penalty parameter destined to tend to zero.
For any s > 0 we define the new shape optimization problem using the penalized

form (Pe(a)) in place of the state problem:

where

andwe(a) solves (Pe(a)).

8.1.3 Approximation and numerical realization of (Pe)

Let U^f be a discretization of Uad by B6zier functions of a certain degree; i.e., the unknown
back wall will be represented by the graph F(i^) of $„ e U%*. The computational domain
will be realized by a polygonal approximation of ft (s^) determined by a piecewise linear
Lagrange interpolant rhs* of s* constructed on a partition A/, of [Li, L\ + L2] representing
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r0ut- Finally, the symbol £2A (s^) stands for the computational domain with a given partition
~R,(h, SK) made of quadrilaterals. On any £lh(s><) we define the following spaces:

where Q\(R) is a four-noded isoparametric element on R e 'R.Qi, s*), V(rhsx) is the space
defined by (8.11) on ^(r/,^^), and X\ contains all the nodes of Tl(h, s*) on Fin U rrec. In
addition, g is supposed to belong to (C(rin U rrec))

2.
The nonlinear penalized state problem in fi/, (s^) will be numerically realized by using

the following linearization approach (s* e U^ and e > 0 are fixed):

where

To avoid the locking effect the penalty term is evaluated by using the one-point numerical
integration formula with QR being the center of gravity of R e K(h, s^).

REMARK 8.2. Let us note that for the stationary Navier-Stokes equations with constant
viscosity the previous linearization method converges provided the right-hand side of the
system is small enough (see [GR79, p. 109]).

Let e, x > 0 be fixed. Then the discretization of (P£) reads as follows:

where

and uf\Sx) := («*(,**), "jj^C**)) is the solution of (8.17) for k e N large enough.
The back wall F(a) sought is represented by a Bezier function defined by the control

points z ( 0 ) , . . . , z(d+1) 6 R2 with z<0) and zw+1) being fixed: z(0) = (L1( HI), zw+1) =
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(Li + LI, #2)- The remaining control points are allowed to move in the X2 direction
between "move limits" determined by the parameters amin, a,̂  and satisfying the slope
condition \s'^\ < L0 in [Llf Lt + L2]. Let z

m = (zf.zf)- zf = LI + »x, zf =
(l-a;)amin + a;amax, tt = L2/(d + l),i = 1, ...,d, where a = (a1;..., ad) is the vector
of the discrete design variables belonging to the convex set U defined as follows:

The matrix formulation of (8.17) for fixed h, a leads to a sequence of linear algebraic
equations

where qk and qk+l contain the nodal values of the velocity corresponding to the previous and
current iterations, respectively, and K(a, qk) is the matrix representing the bilinear form
BrhSx (uf\ •, •). The algebraic form of (8.19) is then represented by the following nonlinear
programming problem:

where

The vector q(a) is the solution of (8.21) for k large enough, /o contains indices of the
7W

degrees of freedom corresponding to the nodal values of u^i on F, {«;} are weights of a
numerical integration formula used for the evaluation of the integral defining /, and M^,,

T*7 fS

are the values of uad at the nodes of "R.(h, s*) on F (we assume that uad € C(F)).
Assume now that the exact solution of the discrete state problem is at our disposal,

i.e., the vector q (a) that satisfies the equation

and denote r(a, y) := K(a, y)y — /(a). The directional derivative of J at a and in the
direction /J is given by (see (5.19), (5.20))

where p(a) solves the adjoint equation

and /(a, q(a)) denotes the partial Jacobian of r with respect to y at (a, q(a)).
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In the forthcoming numerical example we will use the automatic differentiation tech-
nique presented in Section 5.3 to calculate the partial derivatives of r with respect to a and
y only at the element level.

To apply (8.23) in computations, (8.22) should be solved almost up to floating-point
precision, i.e., nearly exactly in terms of the computer arithmetic. This is not an entirely
unrealistic requirement if we switch to the quadratically converging Newton method

after a reasonable approximation is computed using the simple iterations (8.21), which are
less sensitive to the choice of the initial guess q0.

8.1.4 Numerical example

We choose the following fixed-size parameters (in meters): H\ = 1.0, H2 = 0.1, L\ =
1.0, LI = 8.0, and £3 = 0.5. These parameters, however, do not correspond to any existing
headbox design. The parameters denning Uad and the cost function are «„„„ = HI, ow* =
#i,L0 = 2,andf =]1.5,8.5[.

The physical parameters are chosen as follows: the density Q = 1000, the viscosity
/z0 = 0.001, the coefficient of the outflow boundary condition (see (8.7)), c = 1000.0, and
the inflow and recirculation velocities (in meters per second) fixed to Mjn = (4(1 — (2x2 —
I)8), 0.0) and urec = (2(1 - (20x2 - I)8), 0), respectively. The target velocity uad was
chosen to be equal to the constant value —0.425 m/s.

The state problem is discretized by using 5104 four-noded isoparametric elements.
The number of degrees of freedom in the discrete state problem is then approximately
10,700 (including those having fixed values). The penalty parameter e is equal to 10~6.
The number of design variables d was chosen to be equal to 15. The discrete state problem
was solved using a combination of the simple iterations (8.21) and the Newton method
(8.25). The iteration process was stopped when \\qk+l — qk\\2 < 10~10||?t+1||2. The
linearized state problem and the adjoint equation were solved by a direct method based
on the LU factorization of the coefficient matrix. In optimization, the sequential quadratic
programming (SQP) algorithm E04UCF from the NAG subroutine library [NAG97] was
used. All computations were done in 64-bit floating-point arithmetic.

Optimization is started from the traditional design, i.e., the linearly tapering header.
The value of the objective function corresponding to this design is 7.474 x 10~2. After
17 SQP iterations requiring 22 function evaluations the value of the objective function was
reduced to 2.950 x 10~2. The total CPU time was 83 min on an HP9000/J5600 computer
(550 MHz, 4 GB RAM). The initial and optimized designs of the header are shown in
Figure 8.3. From Figure 8.4 one can see the distribution of the velocity profiles for the
initial and optimal designs. The convergence history is shown in Figure 8.5.

8.2 Multidisciplinary optimization of an airfoil profile
using genetic algorithms

In traditional optimal shape design problems in aerospace engineering only one objective
function of one scientific discipline is minimized. However, one discipline, such as aerody-
namics, electromagnetics, etc., is usually not enough to describe the essential properties of
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Figure 8.3. The back wall of the header corresponding to a traditional linearly
tapering design and the optimized design.

Figure 8.4. Outlet velocity profiles.

Figure 8.5. Cost vs. iteration.
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Figure 8.6. Problem geometry for the scattering problem.

the product to be optimized. Therefore it is necessary to consider multidisciplinary prob-
lems. For example, an airfoil should have certain aerodynamical properties while the radar
visibility, i.e., the electromagnetic backscatter, should be minimized. In multidisciplinary
optimization there are usually several conflicting criteria to be minimized.

8.2.1 Setting of the problem

Accurate numerical computation of a radar wave scattered by a flying obstacle (e.g., airfoil)
and aerodynamical properties of the obstacle is a challenging problem because the solu-
tions of the three-dimensional Maxwell and the compressible Navier-Stokes equations are
needed. To reduce the huge computational burden several simplifications in the modeling of
the physics are done. Assuming a two-dimensional design and the case of transverse mag-
netic polarization for the incoming wave the Maxwell equations reduce to the Helmholtz
equation. One can also simplify the flow model by neglecting the viscous effects and solve
the Euler equations instead of the Navier-Stokes equations. To simplify our presentation
we further assume that the flow is incompressible and irrotational. This model, of course,
is valid only for flows with very small Much numbers.

We start with the shape parametrization of an airfoil. The Cartesian coordinates of the
leading and trailing edges are (0,0) and (1,0), respectively. The profile is smooth except
at the trailing edge P. The upper and lower surfaces of the airfoil are represented by two
parametric curves a+ e U+d, a~ e U°d, where

and ?,„„ is the maximum thickness of the airfoil. In what follows we denote a = (a+, a").
The airfoil is then defined as a domain Q(a) surrounded by the curves a+ and at~ (see
Figure 8.6). Finally set Uad = U^d x WLd.
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Two-dimensional modeling of a transverse magnetic polarized electromagnetic wave
reflected by the obstacle Q(a) requires the solution of the wave equation

where U := U(t, x) is the XT, component of the electric field. Assuming the time harmonic
case the solution of (8.26) is of the form

where Re stands for the real part of complex numbers and w(x) is the amplitude of the wave
of frequency u> (we assume that the problem is rescaled so that the speed of light equals
one). Substitution of (8.27) into (8.26) will result in the Helmholtz equation

Aw + ft>2iy = 0 inR2 \n(a). (8.28)

The total wave w occupying R2 \ £2 (a) consists of the incident wave MOO and the scattered
wave M. We write w = «oo + u, where MOO is the plane wave propagating in the direction
(cos #00, sin#00), #00 €] — JT/2, jr/2[; i.e., MOO(JC) = exp(ia)(xi cos#00 + *2 sin #00)), x =
(x\, x2). The wave w vanishes on the conducting surface of the airfoil leading to the Dirichlet
condition u = —ux on 9£2(a). Since the incident wave MOO satisfies (8.28), the scattered
wave M : R2 \ £2 (a) ->• C satisfies the exterior Helmholtz equation

To obtain a unique solution, problem (8.29) is completed by the additional Sommerfeld
radiation condition

describing the behavior of M at infinity, where the radial derivative is defined by 9/3r :=
(xi/r)a/dx! + (x2/r)d/dx2.

One is usually interested in the asymptotic behavior of the solution u. It can be shown
(see [CK92]) that the scattered wave M (solving (8.29), (8.30)) has the following asymptotic
expansion:

where x — rew, r > 0, 9 e [0, 2jr[, andtTffi : [0, 2jr[-»- C is the so-called far field pattern.
For the numerical treatment of (8.29), (8.30) we truncate the unbounded exterior

domain by a rectangle n large enough to contain £2 (a) in its interior. The complement
of £2(a) in n will be denoted by 3 (a) (see Figure 8.6). On TOO :— 8H we pose a
"nonreflecting" boundary condition approximating (8.30). The simplest one is
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and it will be used in what follows. For other choices of nonreflecting boundary conditions
and for further details we refer to [BJR90], [EM79]. Thus we arrive at the following
boundary value problem:

where g = —u^ in R2.
In order to give a weak form of (8.32) we introduce the following spaces of complex-

valued functions in S(a), a e Uad:

HeretfCSCa)) = [v \ v = i>i +iv2 \ i>i, t>2 € H1(E(a))}. The variational formulation of
(8.32) involving the first order absorbing boundary condition reads as follows:

where v denotes the complex conjugate of v. We have [Hei97] the following result.

THEOREM 8.1. There exists a unique solution to (Pi(a)) for any a e Uad.

The fluid flow is modeled as a two-dimensional incompressible and inviscid flow. We
introduce the stream function <p such that the velocity field v is given by v = curl (p. On TOO
the velocity is assumed to have a constant value i>oo = (vooi, 1*002)- Inside the computational
domain S(a) the pressure is p = pKf — ̂ \v\2 = pref — jlcurl^l2, where pTef is a given
constant reference pressure. The stream function formulation of this problem reads as
follows (see [CO86]): Find a function <p := <p(a) and a constant ft := ft(a) satisfying the
boundary value problem

where p^ = 1*001*2 - Voo2*i-

REMARK 8.3. For any constant ft there exists a unique solution to the nonhomogeneous
Dirichlet boundary value problem (8.35)i_3. Since the angle between two tangents to the
profile at P is very sharp, the solution (p has a singularity at P for ft given a priori. On
the other hand it is known that there exists a (unique) particular value of ft ensuring the
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regularity of <p, namely <p e #2(S(a)) (see [Gri85]). Among solutions to (8.35) we look
for just the regular one. This is expressed by the last condition in (8.35). In computations
this condition will be realized by requiring continuity of the flow at the trailing edge P:

where

Condition (8.36) is known as the Kutta-Joukowski condition and it will be used to fix the
value of P in (8.35).

To give the weak form of (8.35) we need the spaces Vr(a), r e R, a € Uad:

The weak formulation of (8.35) reads as follows:

where @ is such that V<p is regular in the vicinity of P.
Our aim is to find the shape of the profile fi (a) such that the intensity of the reflected

electromagnetic wave into a given sector defined by two angles 0* < 9*, 9*, G* e]0,2n[,
is as small as possible while at the same time reasonable lift properties are maintained. To
satisfy the latter condition the computed pressure distributions p+,p~ on the upper and
lower surfaces of the profile described by a+, a~, respectively, should not be too far from
the given pressure distributions P j , p j e L°°([0,1]).

The choice of an appropriate single cost function is impossible and therefore the shape
optimization problem is formulated as the following multicriteria optimization problem:

The individual cost functions are defined by

Here 'uai(9) is the far field pattern corresponding to the solution u := u(a) of (P\(a))
(see (8.31)) and p±(a±)(xi) := p(xi,a±(xi)), xl e]0,1[. Recall that p(a) = pK{ -
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\ |curl<p(a)|2,where<p(a) solves CPafa))- For other formulations of the problem see [BP93],
[MTP99], and [MP01], for example.

REMARK 8.4. For the sake of simplicity, we use the same rectangle n in both problems
CPi(a)) and (T^CoO)- This, however, is neither necessary nor desired in computations. In
practice the size of Fl should be much larger for the flow problem than for the Helmholtz prob-
lem, especially if the second order absorbing boundary condition is used in the Helmholtz
problem.

8.2.2 Approximation and numerical realization

Denote U^d = U&. x U^, where U& is a subset of U^ realized by Bezier curves of
degree d. The upper and lower surfaces of airfoils £2 (a), a e Uad, will be approximated
by functions s^ = (s~£, s~) e U%f. Let f^Cr/,,?^) be a polygonal approximation of f2(i^).
Then 3 (s*) := FI \ fi (r/,,^) is the computational domain for both state problems. As usual
SfcOx;) stands for the computational domain 3(sx) with a given triangulation T(h, s^).
Further, let I be the set of all the nodes of T(h, s*) lying ondQ,(rhs>(). For the discretization
of state problems we use the following finite element spaces:

Since the function ^00 is linear and r is constant, the conditions on 3n and 3Q(r^jx) in the
definition of Vr/, (s^) can be realized exactly by piecewise linear functions.

The discrete state problems are defined as follows:

and

where Vbfc (s>c) is defined by (8.42) with ^TO = r = 0.
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Figure 8.7. (a) Triangles involved in the Kutta-Joukowski condition, (b) Shape
parametrization of the upper surface of the airfoil: control points marked • are fixed whereas
the ones marked o are allowed to move in the x^ direction.

Problem OP2fcC?x)) can be conveniently solved using the linearity in ft. Let <poh and
<p\h be the solutions to the following:

where V\h (•?*) is denned by (8.42) with r = 1. Then the function

where ft is computed from the continuity flow condition (8.36):

and

and where the approximate (constant) values of the normal derivatives on the upper and
lower surfaces of the airfoil are evaluated in the triangles T+ and T~, respectively (see
Figure 8.7(a)), solves (7>M (*«)).

The discretization of (P) is denned as follows:

where J\ and h denned by (8.38) and (8.39), respectively, are evaluated using the solutions
to (Pih(s*)) and (Pu(sx)), respectively.

Next we derive the algebraic form of (Pfc) for h > 0 fixed. The shape of the airfoil
is parametrized using one B6zier curve for the upper part of the airfoil and another one for
the lower part. The upper curve is defined by the control points
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and the lower one by

where 0 < s2 < $3 < • • • < Sd < 1 are given (see Figure 8.7(b)). The numbers a,, i =
I,..., Id, are the discrete design variables belonging to the set

REMARK 8.5. To satisfy the condition Cs*)'(0) = (0, ±1) we use two control points at the
leading edge for each of the curves j+, s~.

The matrix formulations of (Pih(Sx)), (8.43), and (8.44) for fixed h and a eU lead
to a complex system of linear algebraic equations

and two real systems

The vector u(a) contains the nodal values of the approximate scattered complex-valued
wave Uh(Sx) at the nodes ofT(h, s^) lying in ECs1,,) \ 3Q(r/,.sx), while <p0(a), $>i(a) are
the vectors of the nodal values of <poh(s>e), <P\h(s>c), respectively, at all the inner nodes of
T(Mx).

REMARK 8.6. The nonzero right-hand sides in (8.47)-(8.49) are due to the nonhomogeneous
Dirichlet boundary conditions in (Pin^*)), (8.43), and (8.44).

Extending the vectors §>0(
a)> 9i (°0 by me known values of <poh(sx), <Pih(s><)> respec-

tively, atthe nodes of T(h,s^) on F^ and d£2(rASx) we obtain the new vectors <p0(a~), <Pi(u).
Then <p(a) = ft<p\(a) + (1 - P)<pQ(u) with ft defined by (8.45) is the vector of the nodal
values of the approximate velocity stream function tph(s>e).

The integral defining J\ is evaluated by using the numerical integration

where c, and 0, are weights and integration points, respectively, of a quadrature formula;
iicah is an approximation of the far field pattern; and a is the vector of the control points of
S~ € U?.

Due to the piecewise linear approximation of the stream function <p there exists a
set {tf | i = 0,...,m}, 0 = to < t\ < • • • < tm = 1, such that the discrete pressure
distributions p^(x\) := Ph(x\,rhs^(xi)) on the surface d£2(rhs*) of the airfoil flfas^)
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are constant in each interval ]f,_i, f,-[, i = 1,... ,m. Recall that ph = pK( — ||curl^|2.
Thus we obtain the following algebraic expression of Ji\

where ?,•_ i = (f,-_i + tt)/2 (we assume that p* e C([0,1])).
The matrix form of (P/,) reads as follows:

8.2.3 Numerical example

To be able to capture the oscillating nature of solutions to the Helmholtz problem for large
a>, the mesh used for the discretization of (P\ (a)) has to be fine in the whole computational
domain Eh(sx). A traditional rule of thumb says that it should be at least 10 nodes per
wavelength. This means that the size of system (8.47) is very large, making its direct
solution infeasible. In the forthcoming numerical example the system is solved iteratively
using the generalized minimum residual (GMRES) method with a special preconditioning
technique using the so-called fast direct solvers. We briefly describe how to construct a good
preconditioner. Let us consider the Helmholtz equation posed in the whole rectangle FT:

Let Tn(h\,h2) be a uniform triangulation of n obtained by dividing n into rectangles of
lengths h\, hi in the x\, *2 directions, respectively. Problem (8.52) is now approximated by
piecewise linear functions over 7n(hi, h-i) resulting in the system of algebraic equations

Due to the uniformity of Tn(h\, h^) the matrix B has a special structure, and any linear
system of equations with B as a coefficient matrix can be solved very efficiently (i.e., the
number of arithmetic operations needed is proportional to N log N, where N is the number
of unknowns) using a fast direct solver (the cyclic reduction method [Dor70], for example).
Therefore the matrix B can be used as a preconditioner for solving (8.47). For this purpose
C(oQ should be "close" to B in some sense or, in other words, the triangulation T(h, s*)
of S(r^ix) should not differ too much from Tn(h\,h2)\S(rhs^)- To this end we use the
so-called locally fitted meshes when the mesh T(h, s*) coincides with Tu(hi,h2)\s^hsx)
except on a narrow strip around the profile (see Figure 8.8). System (8.53) has, however,
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Figure 8.8. A detail of the finite element mesh of(P\h(s^)~) near the trailing edge P.

more unknowns than (8.47) so that the latter has to be extended. The simplest way of doing
this is to use the zero extension

where

Then instead of the original system (8.47) we solve iteratively the following preconditioned
system:

Using more sophisticated extensions than (8.54), one can show that this type of precondi-
tioning technique is almost optimal; i.e., the number of iterations in the GMRES method is
almost independent of h. For details we refer to [Toi97], [Hei97]. The same preconditioning
techniques can be used to solve flow problems (8.48) and (8.49).

Locally fitted meshes that are needed for constructing good preconditioners are not
topologically equivalent in the sense of Section 2.2 (the number of triangles may vary after
any change in the airfoil profile), resulting in the possible loss of the differentiability of the
minimized functions. This and the desire to get several Pareto optimal solutions motivate us
to use the multiobjective variant of the genetic algorithm (GA) presented in Subsection 4.4.4.

The state problems were solved with the following data: n = [—\, f] x [—1, 1]
for the Helmholtz problem and n = [-4, 5] x [-5, 5] for the flow problem, u^ —
exp(i2Qn(xl cos45° + x2 sin45°)) (i.e., a> — 20n, 9X = 45°), (p^ = x2 cos 2° - x\ sin 2°,
ptef = 1. The cost functionals are specified as follows: 9* = n, 0* = 3n/2 in J\, and
the target pressure distributions p^ defining J2 are the computed pressure distributions on
an NACA0012 airfoil. The mesh Tn(hi,h2) is defined by a rectangular grid of 301 x 301
nodes. The far field pattern ^um needed for the evaluation of J\ is computed by using the
following approximate expression:

where bu are the nodal values of the so-called grid function b and h\, h2 are the parame-
ters characterizing Tn(hi, h2) (for details we refer to [Toi97]). Since the piecewise linear
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Table 8.1. The parameters in the multiobjective variant of the simple GA.

Population size
Number of generations
Tournament size
Sharing distance

64
100
3
0.25

Crossover probability
Mutation probability
Mutation exponent

0.8
0.2
4

Figure 8.9. Optimal airfoil profiles.

elements produce a poor approximation of curl <p on the boundary (needed to calculate the
pressure) a quite fine rectangular but not uniform grid with 361 x 401 nodes was used to
solve the flow problem.

The computations were done on an HP9000/J5600 computer. The parameters used
in the multiobjective variant of the simple GA are collected in Table 8.1. The total CPU
time needed was approximately 15 h. The nondominated points of the final population in
the /i-/2 space are shown in Figure 8.9. The airfoil profiles corresponding to the selected
points are shown in the same figure.

The electromagnetic and aerodynamic properties of two extreme profiles A and B
in Figure 8.9 are shown in Figures 8.10-8.12. Instead of \ua\ and p, engineers prefer to
illustrate the radar cross section

and the pressure coefficient
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Figure 8.11. Pressure coefficient on the upper and lower surfaces of airfoil A from
Figure 8.9.

where pK(, gref are reference values of the pressure and density in the undisturbed free stream
(here we used pref = QK{ = 1). The profile B with J2 « 0 is essentially the NACA0012
profile. On the other hand, the radar visibility into the sector [9*, 9*] of the profile A (which
has a peculiar shape) is very low.

Figure 8.10. Radar cross sections in the sector [180°, 270°] corresponding to
airfoils A and Bfrom Figure 8.9.
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Figure 8.12. Pressure coefficient on the upper and lower surfaces of airfoil Bfrom
Figure 8.9.

Problems

PROBLEM 8.1. Prove that for u, v € (Wl'3Cn(a)))2, a e Uad, all integrals in (P(aj) from
Subsection 8.1.2 are finite.

PROBLEM 8.2. Prove the formal equivalence between the classical formulation (8.1)-(8.7)
and CP(a)).

PROBLEM 8.3. Prove (8.23) and (8.24).

PROBLEM 8.4. Prove that (8.32) and (P\(ot)) are formally equivalent.

PROBLEM 8.5. Show that the solution y>h of (T^fax)) from Subsection 8.2.2 can be
written in the form <ph = f$(poh + (1 — p~)<pih, where <poh, <p\h are solutions to (8.43), (8.44),
respectively.
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Appendix A

Weak Formulations and
Approximations of Elliptic
Equations and Inequalities

We recall in brief basic results of the theory of linear elliptic equations and inequalities,
Sobolev spaces, and finite element approximations within the range needed in the previous
text. For more details on weak formulations of elliptic equations we refer to [Nec67]. Finite
element approximations of elliptic problems are discussed in [Cia02].

Let V be a real Hilbert space, K a nonempty, closed, and convex subset of V, and V
a dual of V. We denote by || • ||, || • ||* the norms in V, V, respectively. Further, let {•, •)
stand for a duality pairing between V and V and let a : V x V -»• R be a bilinear form
satisfying the following assumptions:

(boundedness)

(V-ellipticity)

DEFINITION A.i. A triple {K, a, i], where t e V is given, defines an abstract elliptic
inequality. An element u e K is said to be a solution of{K, a, 1} iff

The existence and uniqueness of a solution to {K, a, 1} follow from Lemma A.I.

LEMMA A.i. (Lax-Milgram.) Let (A.I) and (A.2) be satisfied. Then {K, a, t} has a
unique solution for any t e V and

where a is the constant from (A.2).

In addition, if a is symmetric in V, i.e.,

245
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then {K, a, 1} is equivalent to the following minimization problem:

where

If K = V, then (A.3) takes the form

In this case the respective triple defines an abstract elliptic equation.
Let H denote another Hilbert space with the scalar product (-, •) and || • ||# be the

corresponding norm. Let us suppose that V c H with continuous embedding and let V be
dense in H. An abstract elliptic spectral problem is defined as follows:

If u exists it is called an eigenfunction corresponding to the eigenvalue 1. The basic result
on the existence of solutions to (A.8) is given as follows.

THEOREM A.I. Let the embedding V into H be compact and a : V x V -* M be
bounded, V-elliptic, and symmetric in V. Then there exists an increasing sequence of
positive eigenvalues tending to oo:

and an orthonormal basis [wn] of H consisting of the normalized eigenfunctions corre-
sponding to Xn:

Denote by

the Rayleigh quotient. It is very easy to verify that

where u\ € V is an eigenfunction corresponding to A.I.
The approximation of {K, a, t] will be based on the classical Ritz-Galerkin method.

Let {Vh}, h —> 0+, be a system of finite dimensional subspaces of V and h be a discretization
parameter tending to zero and characterizing the dimension of V/,: dim Vh = n(h) —> oo as
h -*• 0+. Further, let KH be a nonempty, closed, and convex subset of V/, V7z > 0. The set
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Kh will be considered to be an approximation of K but not necessarily its subset. By the
Ritz-Galerkin approximation of [K, a, t] on Kh we mean any solution Uh of {Kh, a, i}:

If (A.4) is satisfied, then uh solving [Kh, a, 1} can be equivalently characterized by

where J is denned by (A.6). If K/, = Vh Vh > 0, then {V/,, a, 1} is an approximation of
{V, a, 1} and (A.9) becomes

The existence and uniqueness of a solution to {Kh, a, 1} and [Vh, a, i} follow again from
the Lax-Milgram lemma.

Denote by s(h) := \\u — Uf, \\ the error between the exact solution u of {K, a, /} and
its approximation «/,. We say that the Ritz-Galerkin method is convergent if sQi) ->• 0 as
h ->• 0+. To ensure this property we need the following assumptions on {Kh}, h -> 0+:

The following convergence result holds.

THEOREM A.2. Let (A.I), (A.2), (A.12), and (A.13) be satisfied. Then the Ritz-Galerkin
method for the approximation of{K, a, f ] is convergent.

REMARK A.i. Condition (A.12) is a density type assumption. If Kh c K Vh > 0, then
(A. 13) is automatically satisfied. In particular it is satisfied when K — V andKh = Vj,V/z >
0. Assumption (A.13) has to be verified if the so-called external approximations of K are
used, i.e., when Kh <t K.

Let the discretization parameter h > 0 be fixed, dim Vh = n, and {<p,}"=1 be a basis
of Vh. Then one can define the isomorphism T between Vh and R" by identifying Vh e Vh
with a unique vector x — (x\,...,xn)

T e W such that Vh = Z^= i x jV j - Denote by
1C a nonempty, closed, and convex subset of W: K. = [x e R" | T~lx e Kh}, where
T"1 : R" -> Vh is the inverse mapping to T. Then the algebraic form of {Kh, a, t} reads
as follows:

where A € R"x", I e R" are defined by
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If a is symmetric in V, then A is symmetric and (A. 14) is equivalent to the following
mathematical programming problem:

where

Observe that if Kh = V},, then K. = E" and (A. 14) leads to a linear system of algebraic
equations

In order to give a weak formulation of particular elliptic problems involving differential
operators one needs appropriate function spaces. In what follows we shall introduce Sobolev
spaces H*(fi), k > 0 integer, and summarize some of their basic properties. Before doing
that let us specify a class of domains in which function spaces will be defined.

DEFINITION A.2. Let £2 C M" be a domain. We say that £2 has a Lipschitz boundary 9 £2
if there exist positive numbers a, ft such that for each XQ e 9 £2 the Cartesian coordinate
system can be rotated and shifted to XQ in such a way that the following statement holds:
Let

be an (n — l)-dimensional open cube. Then there exists a Lipschitz function a : An_i —>• M
such that points (x', a(x')) e 9J2, x' e An_i. In addition, all the points (x', xn) such that
x' e An_i and a(x') < xn < a(x') + ft are supposed to lie inside £2 and all the points
(x',xn), x' 6 An_i, a(x')— ft < xn < a(x'), are supposed to lie outside £2 (see Figure AA).

The system of all domains in R" with the Lipschitz boundary will be denoted by
A/"0'l. Throughout the whole book we shall use domains £2 e Af°'1. We start with spaces of
continuous and continuously differentiate functions in £2 e A/*1'.

By Ck (£2), k > 0 integer, we denote the space of all functions whose partial derivatives
up to order k are continuous in £2 and are continuously extendible up to the boundary 3 £2.
The space C*(£2) endowed with the norm

is a Banach space. Here we use the standard multi-index notation for partial derivatives: If
a = («i,. . . , «„), a, > 0 integer, is a multi-index, then Dav(x) := dMv(x)/dx°l • • -x%",
where |a| = X)"=ia< is me length of a, with the following convention of notation:
D°v(x) := v(x) Vx, C(S2) := C°(fi). Further we define

By C0>1(J2) we denote the space of all Lipschitz continuous functions in £2.
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Next we introduce Sobolev spaces. Let L2(£2) stand for the Hilbert space of square
integrable (in the Lebesgue sense) real functions in £2 endowed with the norm

If F c 9Q is a nonempty open part in 9£2, the symbol L2(F) stands for the space of square
integrable functions (in the Lebesgue sense) on f equipped with the norm

The space of all measurable and bounded functions in £2 will be denoted by L°°(£2). It is a
Banach space with the norm

where inf is taken over all c > 0 satisfying \v(x)\ < c almost everywhere (a.e.) in £2.
Let / 6 L2(£2) and a = (a\,..., «„) be a multi-index, |a| > 1. A function ga :

£2 ->• R is said to be the ath generalized derivative of / iff the integral identity

holds for any <p e Co°(£2). From (A.20) it easily follows that if such a ga exists, then
it is unique. This makes it possible to use the same symbol for generalized and classical
derivatives, i.e., to write D" f instead of ga.

The Sobolev space Hk(Sl) of order k, k e N, is defined as follows:

i.e., H*(£2) contains all functions from L2(£2) whose generalized derivatives up to order
k are square integrable in £2. From the definition it easily follows that Hk(Q) is a Hilbert
space with the scalar product

and the norm

The expression

defines the seminorm in Hk(Q).
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By Hk'°°(C2), k e N, we denote the following subspace of L°°(£2):

equipped with the norm

and the seminorm

In what follows we collect basic properties of the Sobolev spaces.

THEOREM A.3. (Density result.) The space C°°(£2) is dense in Hk(&), k e N, £2 e M°'\
with respect to (A.23).

THEOREM A.4. (Trace theorem.) There exists a unique linear compact mapping T of
Hl(£l) into L2(3f2), £2 e A/"0'1, such that TV = v^ for any v e C°°(S2).

REMARK A.2. T is the trace mapping and its value TV at i; e Hl(£l) is called the trace of
v on 3 £2. The trace mapping is an extension of the classical restriction mapping from C(£2)
into C(3£2). Instead of TV we write simply v.

THEOREM A.S. (Rellich.) The embedding ofHk(&) into Hk-l(&), k e N, £2 e .A/"0'1, w
compact with the following convention of notation: H°(Q) := L2(£2).

COROLLARY A.I. From un -^ v (Vea£/y) in Hk(£i) it follows that vn -> v in H*"1^),
t € N, f2 e M°-\

To formulate elliptic problems with Dirichlet boundary data one needs appropriate
subspaces of Hk(Q), k € N. Let P C 3fi be a nonempty, open part in 3£2. We define

i.e., V is a subspace of Hk(Q) containing all functions whose derivatives up to order (k — 1)
vanish on f in the sense of traces. In particular if F = 3£2, then we use the symbol H^ (£2)
instead of V. The following density result holds for the space HQ (£2), k = 1,2.

THEOREM A.6. L*tf £2 e Jv'0'1. Then

where the closure is taken with respect to (A.23).

REMARK A.3. The same result holds for any k e N, k > 3, provided that £2 has a sufficiently
smooth boundary.
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Functions belonging to H*(ft), k e N, are more regular compared with those from
L2(ft). In particular one may ask whether for some k the space H*(ft) is embedded into a
class of continuously differentiable functions. The answer is given as follows.

THEOREM A.7. (Embedding theorem.) Let ft € AT0'1, ft C R". Then H*(ft) is compactly
embedded into C*(ft) provided that k — s > n/2, k, s e N. In addition, there exists a
constant c > 0 such that

In what follows we restrict ourselves to k = 1. Let v € H1^) and & e AT0'1 be
a domain containing ft e .A/"0'1. Then one can construct a function v e H'(ft) such that
v = v in ft and

with a constant c independent of v. A function v is called an extension of v to ft. We write
v = pnv, where pn denotes the //near extension mapping from H1^) into H'(ft) whose
norm is bounded by the constant c > 0 hi (A.29). This constant may, however, depend on a
particular choice of ft € A/"0' *. Below we define a class .M of bounded domains in R" such
that the norm of pn can be bounded independently of ft e M.

Let A > 0,6 e]0, f [, and § e R", ||£|| = 1, be given. The set

is called the cone of angle d, height h, and axis f.

DEFINITION A.3. A domain ft C M" w said to satisfy the cone property iff there exist
numbers 9 e]0, f [, /i > 0, r e]0, h/2[with the property thatVx € 3ft EC* :== C&, 0, fc)
SMC/I thatVy e Br(*) n ft the sety + Cx C ft (see Fz'gwre A.I).

It can be shown that ft possesses the cone property iff ft e Af0'1 (see [Che75]).

DEFINITION A.4. Let D c R" be a bounded domain and 6 e]0, n/2[, ~h > 0, r e]0, A/2[
i»e given. The set of all domains contained in D and satisfying the cone property with the
numbers 6, h, r will be denoted by M(Q,h,r). We say that the system M(0,h,r) contains
domains satisfying the uniform cone property.

Let ft e M°'1 be such that ft D ft Vft e M(0, h, r). The domains ft e M(0, h, r)
possess the uniform extension property as follows.

THEOREM A.8. There exists an extension operator pn : #m(ft) -> Hm(ft), m e N, and
a constant c > 0 such that
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Figure A.I. Cone property.

For the rather technical proof of this result we refer to [Che75].
Let F c 3ft be a nonempty, open set in 3ft and denote

It is readily seen that ||| • ||| j n defines a norm in Hl (£2). A less trivial result says that || • || i,n
and III • I l l i , n are equivalent.

THEOREM A.9. There exist constants c\,C2 > 0 such that

holds for any v e Hl(£l).

A direct consequence of (A.31) is as follows.

THEOREM A.io. (Generalized Friedrichs inequality.) Let V be defined by (A.27) with
k = 1. Then there is a constant c > 0 such that

REMARK A.4. If T = 3ft, then (A.32) is called the Friedrichs inequality, which is valid in
#o (ft) for any k e N: there exists a constant c > 0 such that

holds for any v e //Q (ft).

We now turn to weak formulations of linear elliptic equations in £2 e A/"0'1 involving
the second order elliptic operators. We use the summation convention again.
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Let

be such that the coefficients a,;, OQ of A satisfy the following assumptions:

With A we associate the bilinear form a : Hl(Q,) x Hl(£l) -> K defined by

From (A.33) it follows that a is bounded in Hl(tt). Let us check (A.2):

taking into account (A.34).
Let V be defined by (A.27) with k = 1. Then from the generalized Friedrichs

inequality and (A.36) we see that a is H'(^-elliptic in V. For the same property in the
whole space Hl (£2) one has to suppose that there is a positive constant a such that

If this is so, thena(v, u) > min(a, a)||u||j n Vv € Hl(£l).

Let T c 9£2 be a nonempty open part in 9£2; FI = 9£2 \ F; and / e L2(£2),
g e Z-2(Fi) be given functions. We set

(note that if F = 9£2, then the integral over FI is not present). From the trace theorem it
easily follows that i € V. We now define the linear elliptic problem [V, a, f.} with V, a,
and t defined by (A.27), (A.35), and (A.38), respectively.

If F = 9 £2, then V = HQ(&) and we obtain the homogeneous Dirichlet boundary
value problem in £2. If F C 9J2, F ^ 0, then [V, a, t} defines the mixed Dirichlet-
Neumann boundary value problem hi £2. Finally, if F = 0 then V — Hl (£2), corresponding
to the Neumann boundary condition prescribed on the whole boundary 9 £2. To ensure the
existence and uniqueness of a solution in the latter case we suppose that (A.37) is satisfied
(observe that this condition is not needed when F ̂  0).

In the remainder of this appendix we briefly describe the simplest finite element spaces,
which have been used throughout the book to approximate second order elliptic problems.
We restrict ourselves to a plane case.

Let £2 c E2 be & polygonal domain and Th be its triangulation; i.e., £2 is the union of a
finite number of closed triangles T with nonoverlapping interiors whose diameters are less
than or equal to h. If 7\, Ii e Th are two different triangles with a nonempty intersection
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T', then 7" is either a common vertex or a common edge. In addition Th has to be consistent
with the decomposition of 3S2 into F and FI = 3£2 \ F; i.e., the boundary nodes of F in 3£2
belong to Th- Let #o(/0 be the minimal inner angle of all triangles T e Th. We say that a
family of triangulations {Th}, h -+ 0+, is regular iff there exists a positive number #o such
that 00(/i) > <90 V/z > 0 (the so-called minimal angle condition for {Th}, h ->• 0+). With
any TA we associate the following space of continuous, piecewise linear functions over Th'.

It is easy to prove that Xh C Hl(Q). Denote by .A//, the system of all the nodes of Th in
£2. If v e C(Q), then there exists a unique function r/, v e X/, called the piecewise linear
Lagrange interpolant of t; such that

This function enjoys important approximation properties as follows.

THEOREM A.Ii. Let {Th}, h -> 0+, be a regular system of triangulations of ft. Then
there exists a constant c > 0 that does not depend on h such that

holds for any v e H2(f2). If v e Hl(Sl), then there exists a sequence [VH], f/, 6 X/,, *MC/Z
f/wf

Let V be a subspace of Hl(S2) denned by (A.27) with jfc = 1. Then

is a finite element space discretizing V. If u e H2(J2) n V and [Th},h ->• 0+, is a regular
system of triangulations consistent with the decomposition of 9£2 into F and FI = 3f2 \ F,
then rhV € V/, and the error estimate (A.39) holds true. Also (A.40) remains valid in
problems we meet in industrial applications.

As we reach the end of this appendix we briefly describe finite element spaces made
of quadrilateral elements used in our computations.

Let Kh be a partition of £2 into a finite number of closed convex quadrilaterals R
satisfying the same conditions on their mutual position as triangles of Th and such that
diam/? <hVR eUh. ^

Let K = [0, I]2 be the unit square and Q\(K) be the space of all bilinear functions
defined in K. Under appropriate assumptions on the geometry of R one can prove (see
[Cia02]) that R = Fg(K), where FR is a one-to-one mapping of K onto R and FR e
(Qi(K))2. This makes it possible to introduce the following set of functions defined in any
ReKh:
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where K = F^l(R) (observe that Q\(R) no longer contains bilinear functions unless R is
a rectangle). With any ??./, the following finite dimensional space Xf, will be associated:

Functions from X/, are uniquely defined by their values at the nodes of KH . Under appropriate
assumptions on the system {R-h}, h -* 0+, one can prove that the respective Lagrange Xf,
interpolant satisfies (A.39) (for details see [Cia02]).
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Appendix B

On Parametrizations of
Shapes and Mesh Generation

B.1 Parametrization of shapes
In order to realize numerically discrete shape and sizing optimization problems one has to
first find a suitable parametrization of admissible shapes using a finite number of parameters.
In shape optimization with a discretized state problem it would seem that the most obvious
choice is to use the positions of boundary nodes of a partition into finite elements as design
parameters. For linear triangular elements this would mean that the boundary is represented
by a piecewise linear curve. This choice, however, has many drawbacks, such as the large
number of design variables and the need for additional constraints to keep the boundary
regular enough.

Let the domain £2 (a) be as in Figure 2.2. The number of design variables can be
reduced by representing the unknown part of the boundary as the polynomial

The advantage of this parametrization is its simplicity and the smoothness of the resulting
curve. Unfortunately the coefficients in the power basis form (B.I) contain practically no
geometric insight into the shape of ft (a). In addition the implementation of constraints
such as anun < a < amax is very cumbersome. To overcome these difficulties we adopt a
technique used in computer graphics and computer-aided design for the parametrization of
shapes.

Bezier curves were introduced in the 1960s by P. de Casteljau and P. B6zier while
working in French automobile companies to design complicated curves and surfaces defining
car parts. In what follows we briefly present the properties of parametric Be"zier curves in R2.

Let Bf"\ i = 0, . . . ,«, denote the Bernstein polynomials in [0,1] defined by
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Figure B.I. A Bezier curve (solid) and its control polygon (dashed).

Bernstein polynomials enjoy the following useful properties:

Let bo, b\,..., bn 6 K2 be a set of given control points. The broken line denned by
the control points will be called a control polygon (see Figure B.I). We define ^parametric
Bezier curve b : [0,1] -> M2 of degree n as a linear combination

Due to (B.3)-(B.6) Bezier curves possess several interesting properties:

(i) b is axes independent; i.e., it is independent of the coordinate system defining the
location of the control points;

(ii) b interpolates the endpoints of the control polygon: &(0) = bo, b(l) = bn;
(iii) b has the convex hull property: b(t) e conv{^0, &i, . . . ,£„} W e [0, 1];
(iv) b is variation diminishing: the curve b has fewer intersections with any straight line

than the control polygon;
(v) derivatives of b at the endpoints are given by

i.e., the curve b is tangential to the vectors b\ — bo and bn — bn-\ at the initial and
endpoints of the curve, respectively.
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Figure B.2. Piecewise quadratic Bezier curve possessing Cl -continuity at the joint.

Let us consider the simplest case in which the curve is represented by the graph of a
function a : [0, 1] -»• R (see Figure 2.2), where a is a linear combination of the Bernstein
polynomials

Then a is termed a Bezier junction of degree n. In this case one can consider (a,-, j/n) e
R2, j = 0 , . . . ,« , as the control points of a, and {o/}"_0 as the discrete design variables
characterizing the shape of £2 (a).

From Chapter 2 we know that admissible functions a denning the part of the boundary
subject to optimization are supposed to satisfy at least the following constraints: a^n <
«(0 < "max Vf e [0,1] and \a'\ < L0 almost everywhere in ]0, 1[. Let us find out how
to restrict the coefficients a; in (B.9) in order to satisfy these constraints. If amin < «; <
aw. j = 0,.. . ,n, then the convex hull of the points (a;, j/n), j = 0 , . . . , n, is contained
in [ormin, amax] x [0,1] and thus (a(t), t) € [(*„&, ow*] x [0,1] for any t € [0,1]. From
(B.6) it follows that the derivative of a is given by

using (B.5). Thus in order to satisfy the previous two constraints with functions a for all
t e [0,1] it is sufficient to satisfy them with the discrete design variables {a,}"=0.

The degree of the polynomial defining a Bezier curve increases as the number of
control points increases. To avoid excessive high order polynomials one can piece together
several low order Bezier curves. Using simple geometric rules for the positions of control
points, continuity at joints can be guaranteed. To achieve C°-continuity at a joint, it is
sufficient that the endpoints of the control polygons of neighboring pieces coincide. For
curves defined by quadratic or higher order polynomials one can achieve C1-continuity by
requiring that the edges of two control polygons adjacent to the common endpoint lie on a
straight line (see Figure B.2).
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Piecewise fcth order Bezier curves with Ck~l-continuity, k e N, across joints are
called B-spline curves. For different ways of constructing them we refer to [Far88], [dB78].
B-spline curves share the good properties of single Bezier curves. In addition there is a very
important property called the local control. By changing the position of one control node of
a single Bezier curve we affect the whole curve. On the other hand by changing one control
point of, e.g., a quadratic B-spline curve, we affect at most three curve segments.

B.2 Mesh generation in shape optimization
A finite element mesh is called structured if all interior nodes of the mesh have the same
number of adjacent elements. In an unstructured mesh any number of elements may meet at
a single node. Triangular (tetrahedral in 3D) meshes are mostly thought of when referring to
unstructured meshes, although quadrilateral (hexahedral) meshes can also be unstructured.

Structured meshes are usually simpler and faster to generate than unstructured ones.
On the other hand, it can be very difficult to construct a structured mesh for a domain having
a complicated shape. Furthermore, a structured mesh may need many more elements than
an unstructured one for the same problem because the element size cannot vary very rapidly.
The advantage of structured meshes in the framework of optimal shape design consists of
the fact that the nodal positions are smooth functions of design parameters.

Unstructured meshes are usually produced using Delaneu, advancing front, or quadtree
techniques. Structured mesh generations are based either on algebraic (interpolation) or on
partial differential equation (PDE) methods. The PDE approach solves a set of PDEs in
order to map the domain £2 onto another domain with a simpler shape (such as a rectangle).
For further details on mesh generation, see [Geo91]. In what follows we shall describe very
briefly a simple way to generate two-dimensional structured meshes using the algebraic
approach.

Assume that the domain £2 (a) is given by

One can easily generate a structured mesh with 2mxmy triangular (or mxmy quadrilateral)
elements by denning the positions of the nodal points Xtj of the mesh by

If a is parametrized using (B.9), then Xjj is given as a function of the discrete design
variables as, s = 0 , . . . , n, by the following explicit formula:

Thus the calculation of the matrix X' needed in the sensitivity formulas (3.84)-(3.87) is
very simple:
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Figure B.3. Domain defined by four parametric curves and meshed using transfi-
nite interpolation.

The previous technique can be generalized to the case when Q, (a) is bounded by four
parametric curves a(() : [0,1] ->• E2, i = 1 4, with a(1)(0) = A, a(2)(0) = D,
a(3)(0) = A, a(4)(0) = B, as shown in Figure B.3. The positions of the nodes of the mesh
can now be computed using the transfinite interpolation:

where 0 = £o < £1 < • • • < %m, = 1, 0 = % < »n < • • • < r]my = 1 are given and
w\, W2 : [0,1] -> [0,1] are the so-called blending functions. A natural choice of blending
functions is to take w\(t-) = £, 102(17) = *?•

In practical shape optimization problems, however, it is not usually possible to repre-
sent admissible shapes by a simply connected domain bounded by a few parametric curves.
This difficulty can be circumvented by a sort of multiblock approach: the domain is di-
vided into a set of design elements bounded by, e.g., parametric B6zier curves. Some of
the control points defining the curves are allowed to move in order to deform the shape of
the domain. Each design element is meshed separately using the algebraic technique. It is
necessary to ensure that the meshes in neighboring design elements are compatible on the
common boundary; i.e., when the separate meshes are patched together an adequate mesh
of the whole structure is produced.
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curve, 30, 47, 228, 257, 258
function, 30, 68, 217, 259

bilinear form, 65
body force, 72, 76
boundary Lagrange (BL) multiplier,

173, 176
boundedness

uniform, 38
Broydon-Fletcher-Goldfarb-Shanno

(BFGS) update, 132
buckling, 202

chain rule, 101, 102, 111, 121
compliance, 3, 50, 74, 117, 201
computational domain, 31, 47, 48, 80
condition number, 130, 133
cone property, 251

uniform, 29, 54, 59, 63, 74, 251

conjugate gradient method, 130
constant volume constraint, 117, 118
constraint

nonactive, 104
semiactive, 104
strongly active, 104

contact node, 80
contact shape optimization, 76
contact stress, 118, 218
control point, 30
control state mapping, 16, 26, 103
control variable, 13
controlled random search (CRS)

algorithm, 140
modification, 140

cost functional, 46
Courant basis function, 33, 108, 178,

180, 187
criterion vector, 145
crossover, 141, 143

decision maker, 146-148
descent direction, 130, 131
design domain

discrete, 31, 47
design nodes, 30
design variable, 25

discrete, 6, 259
Dirac distribution, 16
directional derivative, 100, 187
Dirichlet-Neumann boundary value

problem, 61
displacement vector, 72
distributed Lagrange multipliers, 175
duality approach, 101

eigenfunction, 246

271
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eigenvalue, 246
elasto-plastic deformation, 212
elitism, 144, 150
elliptic equation, 246
elliptic inequality, 245
elliptic spectral problem, 246
extension mapping, 251
extension operator, 54
extension property

uniform, 29, 251

far field pattern, 233, 235
fictitious domain formulation, 169
force vector, 19, 33, 71, 119, 124
Fortran 90, 160
free topology optimization, 18

generalized derivative, 249
generalized minimal residual (GMRES),

239
genetic algorithm (GA), 141

for multiobjective optimization,
148, 240

real-coded, 142
simple, 144

geometric stiffness matrix, 207
global convergence, 133
global optimization method, 139
Green's formula, 58, 112, 113

for elasticity, 72

Helmholtz equation, 233
variational formulation, 234

Hessian, 130, 131
Hooke's law, 72, 124

nonlinear, 212

ideal criterion vector, 145, 211
incompressibility constraint, 83, 85
inequality

Friedrichs, 15, 27, 86, 89, 252
generalized Friedrichs, 66
Kom, 73, 74

inner approximation, 42
interpolant

Lagrange, 37, 68, 254

interpolation operator
Hermite, 53

inverse iteration method, 207
isoparametric element, 119, 121

Jacobian, 110, 134

Kachanov method, 214
Karush-Kuhn-Tucker (KKT) condition,

104, 135
Karush-Kuhn-Tucker condition, 135
Kutta-Joukowski condition, 235

Ladyzhenskaya-Babuska-Brezzi(LBB)
condition, 174

Lagrange multiplier, 84, 101, 135, 137,
173

Lagrangian, 4, 102, 172
LAPACK, 167
Lax-Milgram lemma, 73, 245
line search, 130
linear elasticity problem, 73
Lipschitz boundary, 248
Lipschitz constraint

uniform, 14, 17, 22, 25
locally fitted mesh, 239
locking effect, 179, 180, 189, 192
lower semicontinuity, 17, 29, 41, 46

mass matrix, 119, 207
material derivative, 109, 111, 115

pointwise, 111
mesh generation, 167, 260
minimal angle condition, 254
mixed finite element approximation, 88
mixed variational formulation, 87, 171,

173
multicriteria optimization, 202, 235
multiobjective optimization, 145
mutation, 141, 143
mutation exponent, 144

Navier-Stokes equations, 226
Neumann boundary value problem, 55
Newton's method

for nonlinear equations, 230
for nonlinear optimization, 131
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Nikuradse's formula, 226
nonlinear programming problem, 20, 71
nonreflecting boundary condition, 233

optimal pair, 16, 49
optimization method

global, 129
gradient type, 129

Pareto optimal, 145, 148, 203
partial gradient, 101
penalty method, 88, 135
population, 142
population size, 142
pressure, 83
pressure coefficient, 241

quadratic programming problem, 71, 82
quasi-Newton method, 132

radar cross section, 241
Rayleigh quotient, 203, 204, 246
Ritz-Galerkin method, 246

saddle point, 18, 136, 172
scalarization, 146
sequential quadratic programming

(SQP), 136, 230
shape derivative, 112, 115

pointwise, 111
shape function, 120
sharing function, 149
Signorini problem, 76, 212

classical formulation, 77
weak formulation, 78

Sobolev spaces, 249
Sommerfeld radiation condition, 233
state problem, 46
stationary point, 129
stiffness matrix, 19, 33, 71, 119, 124,

207
Stokes problem, 83

penalty formulation, 89
stream function formulation, 85
velocity-pressure formulation, 87

strain tensor, 72, 78
stream function, 85

stress tensor, 72
subspace iteration method, 207
summation convention, 72
surface traction, 72, 76
symmetry condition, 38

Taylor expansion, 131, 132
Theorem

Arzela-Ascoli, 16, 26, 51
embedding, 251
implicit function, 100, 187, 189
Lebesgue dominated convergence,

28, 93
Rellich, 250
trace, 250

total potential energy, 17, 212
tournament selection, 142
trace, 250
trace mapping, 250
triangulations

consistent, 32
topologically equivalent, 32
uniformly regular, 32

trust region, 134
turbulent viscosity, 226

unilateral condition, 80

V-ellipticity
uniform, 38

variational inequality, 64
beam problem, 50
elasticity problem, 78

velocity field, 110
vibration, 202
viscosity, 225

laminar, 226
turbulent, 226

viscosity parameter, 83

weighting method, 147
Wolfe conditions, 133
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