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DYNAMICS OF THE ATMOSPHERE: A COURSE IN
THEORETICAL METEOROLOGY

Dynamics of the Atmosphere is a textbook with numerous exercises and solutions,
written for senior undergraduate and graduate students of meteorology and related
sciences. It may also be used as a reference source by professional meteorologists
and researchers in atmospheric science. In order to encourage the reader to follow
the mathematical developments in detail, the derivations are complete and leave
out only the most elementary steps.
The book consists of two parts, the first presenting themathematical tools needed

for a thorough understanding of the second part. Mathematical topics include a
summary of the methods of vector and tensor analysis in generalized coordinates;
an accessible presentation of the method of covariant differentiation; and a brief
introduction to nonlinear dynamics. These mathematical tools are used later in the
book to tackle such problems as the fields of motion over different types of terrain,
and problems of predictability.
The second part of the book begins with the derivation of the equation describ-

ing the atmospheric motion on the rotating earth, followed by several chapters that
consider the kinematics of the atmosphere and introduce vorticity and circulation
theorems. Weather patterns can be considered as superpositions of waves of many
wavelengths, and the authors therefore present a discussion of wave motion in the
atmosphere, including the barotropicmodel and someRossby physics. A chapter on
inertial and dynamic stability is presented and the component form of the equation
of motion is derived in the general covariant, contravariant, and physical coordinate
forms. The subsequent three chapters are devoted to turbulent systems in the atmo-
sphere and their implications for weather-prediction equations. At the end of the
book newer methods of weather prediction, such as the spectral technique and the
stochastic dynamic method, are introduced in order to demonstrate their potential
for extending the forecasting range as computers become increasingly powerful.

Wilford Zdunkowski received B.S. and M.S. degrees from the University of
Utah and was awarded a Ph.D. in meteorology from the University of Munich in
1962. He then returned to the Department ofMeteorology at the University of Utah,
where he was later made Professor of Meteorology. In 1977, he took up a profes-
sorship, at the Universität Mainz, where for twenty years he taught courses related
to the topics presented in this book. Professor Zdunkowski has been the recipient
of numerous awards from various research agencies in the USA and in Germany,
and has travelled extensively to report his findings to colleagues around the world.



Andreas Bott received a Diploma in Meteorology from the Universität Mainz
in 1982, and subsequently worked as a research associate under Professor Paul
Crutzen at the Max-Planck-Institut für Chemie in Mainz, where he was awarded a
Ph.D. in Meteorology in 1986. He held a variety of positions at the Institute for At-
mospheric Physics in theUniversitätMainz between 1986 and 1999, and during this
time he also spent periods as a guest scientist at institutions in the USA, Norway,
and Japan. Since 2000, Dr Bott has been a University Professor for Theoretical
Meteorology at the Rheinische Friedrich-Wilhelms-Universität, in Bonn. Profes-
sor Bott teaches courses in theoretical meteorology, atmospheric thermodynamics,
atmospheric dynamics, cloud microphysics, atmospheric chemistry, and numerical
modeling.



DYNAMICS OF THE ATMOSPHERE:
A COURSE IN THEORETICAL

METEOROLOGY

WILFORD ZDUNKOWSKI
and

ANDREAS BOTT



  
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge  , United Kingdom

First published in print format 

-    ----

-    ----

-    ----

© Cambridge University Press 2003

2003

Information on this title: www.cambridge.org/9780521809498

This book is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

-    ---

-    ---

-    ---

Cambridge University Press has no responsibility for the persistence or accuracy of
s for external or third-party internet websites referred to in this book, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

paperback
paperback

eBook (EBL)
eBook (EBL)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521809498


This book is dedicated to the memory of
Professor K. H. Hinkelmann (1915–1989)

and Dr J. G. Korb (1928–1991)
who excelled as theoretical meteorologists and as

teachers of meteorology at the University of Mainz, Germany.





Contents

Preface page xv
Part 1 Mathematical tools 1

M1 Algebra of vectors 3
M1.1 Basic concepts and definitions 3
M1.2 Reference frames 6
M1.3 Vector multiplication 7
M1.4 Reciprocal coordinate systems 15
M1.5 Vector representations 19
M1.6 Products of vectors in general coordinate systems 22
M1.7 Problems 23

M2 Vector functions 25
M2.1 Basic definitions and operations 25
M2.2 Special dyadics 28
M2.3 Principal-axis transformation of symmetric tensors 32
M2.4 Invariants of a dyadic 34
M2.5 Tensor algebra 40
M2.6 Problems 42

M3 Differential relations 43
M3.1 Differentiation of extensive functions 43
M3.2 The Hamilton operator in generalized coordinate

systems 48
M3.3 The spatial derivative of the basis vectors 51
M3.4 Differential invariants in generalized coordinate systems 53
M3.5 Additional applications 56
M3.6 Problems 60

M4 Coordinate transformations 62
M4.1 Transformation relations of time-independent

coordinate systems 62

vii



viii Contents

M4.2 Transformation relations of time-dependent
coordinate systems 67

M4.3 Problems 73
M5 The method of covariant differentiation 75

M5.1 Spatial differentiation of vectors and dyadics 75
M5.2 Time differentiation of vectors and dyadics 79
M5.3 The local dyadic of vP 82
M5.4 Problems 83

M6 Integral operations 84
M6.1 Curves, surfaces, and volumes in the general qi system 84
M6.2 Line integrals, surface integrals, and volume integrals 87
M6.3 Integral theorems 90
M6.4 Fluid lines, surfaces, and volumes 94
M6.5 Time differentiation of fluid integrals 96
M6.6 The general form of the budget equation 101
M6.7 Gauss’ theorem and the Dirac delta function 104
M6.8 Solution of Poisson’s differential equation 106
M6.9 Appendix: Remarks on Euclidian and Riemannian

spaces 107
M6.10 Problems 110

M7 Introduction to the concepts of nonlinear dynamics 111
M7.1 One-dimensional flow 111
M7.2 Two-dimensional flow 116

Part 2 Dynamics of the atmosphere 131
1 The laws of atmospheric motion 133

1.1 The equation of absolute motion 133
1.2 The energy budget in the absolute reference system 136
1.3 The geographical coordinate system 137
1.4 The equation of relative motion 146
1.5 The energy budget of the general relative system 147
1.6 The decomposition of the equation of motion 150
1.7 Problems 154

2 Scale analysis 157
2.1 An outline of the method 157
2.2 Practical formulation of the dimensionless flow

numbers 159
2.3 Scale analysis of large-scale frictionless motion 161
2.4 The geostrophic wind and the Euler wind 167
2.5 The equation of motion on a tangential plane 169
2.6 Problems 169



Contents ix

3 The material and the local description of flow 171
3.1 The description of Lagrange 171
3.2 Lagrange’s version of the continuity equation 173
3.3 An example of the use of Lagrangian coordinates 175
3.4 The local description of Euler 182
3.5 Transformation from the Eulerian to the Lagrangian

system 186
3.6 Problems 187

4 Atmospheric flow fields 189
4.1 The velocity dyadic 189
4.2 The deformation of the continuum 193
4.3 Individual changes with time of geometric fluid

configurations 199
4.4 Problems 205

5 The Navier–Stokes stress tensor 206
5.1 The general stress tensor 206
5.2 Equilibrium conditions in the stress field 208
5.3 Symmetry of the stress tensor 209
5.4 The frictional stress tensor and the deformation

dyadic 210
5.5 Problems 212

6 The Helmholtz theorem 214
6.1 The three-dimensional Helmholtz theorem 214
6.2 The two-dimensional Helmholtz theorem 216
6.3 Problems 217

7 Kinematics of two-dimensional flow 218
7.1 Atmospheric flow fields 218
7.2 Two-dimensional streamlines and normals 222
7.3 Streamlines in a drifting coordinate system 225
7.4 Problems 228

8 Natural coordinates 230
8.1 Introduction 230
8.2 Differential definitions of the coordinate lines 232
8.3 Metric relationships 235
8.4 Blaton’s equation 236
8.5 Individual and local time derivatives of the velocity 238
8.6 Differential invariants 239
8.7 The equation of motion for frictionless horizontal flow 242
8.8 The gradient wind relation 243
8.9 Problems 244



x Contents

9 Boundary surfaces and boundary conditions 246
9.1 Introduction 246
9.2 Differential operations at discontinuity surfaces 247
9.3 Particle invariance at boundary surfaces, displacement

velocities 251
9.4 The kinematic boundary-surface condition 253
9.5 The dynamic boundary-surface condition 258
9.6 The zeroth-order discontinuity surface 259
9.7 An example of a first-order discontinuity surface 265
9.8 Problems 267

10 Circulation and vorticity theorems 268
10.1 Ertel’s form of the continuity equation 268
10.2 The baroclinic Weber transformation 271
10.3 The baroclinic Ertel–Rossby invariant 275
10.4 Circulation and vorticity theorems for frictionless

baroclinic flow 276
10.5 Circulation and vorticity theorems for frictionless

barotropic flow 293
10.6 Problems 301

11 Turbulent systems 302
11.1 Simple averages and fluctuations 302
11.2 Weighted averages and fluctuations 304
11.3 Averaging the individual time derivative and the

budget operator 306
11.4 Integral means 307
11.5 Budget equations of the turbulent system 310
11.6 The energy budget of the turbulent system 313
11.7 Diagnostic and prognostic equations of turbulent

systems 315
11.8 Production of entropy in the microturbulent system 319
11.9 Problems 324

12 An excursion into spectral turbulence theory 326
12.1 Fourier Representation of the continuity equation and

the equation of motion 326
12.2 The budget equation for the amplitude of the

kinetic energy 331
12.3 Isotropic conditions, the transition to the continuous

wavenumber space 333
12.4 The Heisenberg spectrum 336
12.5 Relations for the Heisenberg exchange coefficient 340
12.6 A prognostic equation for the exchange coefficient 341



Contents xi

12.7 Concluding remarks on closure procedures 346
12.8 Problems 348

13 The atmospheric boundary layer 349
13.1 Introduction 349
13.2 Prandtl-layer theory 350
13.3 The Monin–Obukhov similarity theory of the neutral

Prandtl layer 358
13.4 The Monin–Obukhov similarity theory of the diabatic

Prandtl layer 362
13.5 Application of the Prandtl-layer theory in numerical

prognostic models 369
13.6 The fluxes, the dissipation of energy, and the exchange

coefficients 371
13.7 The interface condition at the earth’s surface 372
13.8 The Ekman layer – the classical approach 375
13.9 The composite Ekman layer 381
13.10 Ekman pumping 388
13.11 Appendix A: Dimensional analysis 391
13.12 Appendix B: The mixing length 394
13.13 Problems 396

14 Wave motion in the atmosphere 398
14.1 The representation of waves 398
14.2 The group velocity 401
14.3 Perturbation theory 403
14.4 Pure sound waves 407
14.5 Sound waves and gravity waves 410
14.6 Lamb waves 418
14.7 Lee waves 418
14.8 Propagation of energy 418
14.9 External gravity waves 422
14.10 Internal gravity waves 426
14.11 Nonlinear waves in the atmosphere 431
14.12 Problems 434

15 The barotropic model 435
15.1 The basic assumptions of the barotropic model 435
15.2 The unfiltered barotropic prediction model 437
15.3 The filtered barotropic model 450
15.4 Barotropic instability 452
15.5 The mechanism of barotropic development 463
15.6 Appendix 468
15.7 Problems 470



xii Contents

16 Rossby waves 471
16.1 One- and two-dimensional Rossby waves 471
16.2 Three-dimensional Rossby waves 476
16.3 Normal-mode considerations 479
16.4 Energy transport by Rossby waves 482
16.5 The influence of friction on the stationary Rossby wave 483
16.6 Barotropic equatorial waves 484
16.7 The principle of geostrophic adjustment 487
16.8 Appendix 493
16.9 Problems 494

17 Inertial and dynamic stability 495
17.1 Inertial motion in a horizontally homogeneous

pressure field 495
17.2 Inertial motion in a homogeneous geostrophic wind field 497
17.3 Inertial motion in a geostrophic shear wind field 498
17.4 Derivation of the stability criteria in the geostrophic

wind field 501
17.5 Sectorial stability and instability 504
17.6 Sectorial stability for normal atmospheric conditions 509
17.7 Sectorial stability and instability with permanent

adaptation 510
17.8 Problems 512

18 The equation of motion in general coordinate systems 513
18.1 Introduction 513
18.2 The covariant equation of motion in general coordinate

systems 514
18.3 The contravariant equation of motion in general

coordinate systems 518
18.4 The equation of motion in orthogonal coordinate systems 520
18.5 Lagrange’s equation of motion 523
18.6 Hamilton’s equation of motion 527
18.7 Appendix 530
18.8 Problems 531

19 The geographical coordinate system 532
19.1 The equation of motion 532
19.2 Application of Lagrange’s equation of motion 536
19.3 The first metric simplification 538
19.4 The coordinate simplification 539
19.5 The continuity equation 540
19.6 Problems 541



Contents xiii

20 The stereographic coordinate system 542
20.1 The stereographic projection 542
20.2 Metric forms in stereographic coordinates 546
20.3 The absolute kinetic energy in stereographic coordinates 549
20.4 The equation of motion in the stereographic

Cartesian coordinates 550
20.5 The equation of motion in stereographic

cylindrical coordinates 554
20.6 The continuity equation 556
20.7 The equation of motion on the tangential plane 558
20.8 The equation of motion in Lagrangian enumereation

coordinates 559
20.9 Problems 564

21 Orography-following coordinate systems 565
21.1 The metric of the η system 565
21.2 The equation of motion in the η system 568
21.3 The continuity equation in the η system 571
21.4 Problems 571

22 The stereographic system with a generalized vertical coordinate 572
22.1 The ξ transformation and resulting equations 573
22.2 The pressure system 577
22.3 The solution scheme using the pressure system 579
22.4 The solution to a simplified prediction problem 582
22.5 The solution scheme with a normalized pressure

coordinate 584
22.6 The solution scheme with potential temperature as

vertical coordinate 587
22.7 Problems 589

23 A quasi-geostrophic baroclinic model 591
23.1 Introduction 591
23.2 The first law of thermodynamics in various forms 592
23.4 The vorticity and the divergence equation 593
23.5 The first and second filter conditions 595
23.6 The geostrophic approximation of the heat equation 597
23.7 The geostrophic approximation of the vorticity equation 603
23.8 The ω equation 605
23.9 The Philipps approximation of the ageostrophic

component of the horizontal wind 609
23.10 Applications of the Philipps wind 614
23.11 Problems 617



xiv Contents

24 A two-level prognostic model, baroclinic instability 619
24.1 Introduction 619
24.2 The mathematical development of the two-level model 619
24.3 The Phillips quasi-geostrophic two-level circulation model 623
24.4 Baroclinic instability 624
24.5 Problems 633

25 An excursion concerning numerical procedures 634
25.1 Numerical stability of the one-dimensional

advection equation 634
25.2 Application of forward-in-time and central-in-space

difference quotients 640
25.3 A practical method for the elimination of the weak

instability 642
25.4 The implicit method 642
25.5 The aliasing error and nonlinear instability 645
25.6 Problems 648

26 Modeling of atmospheric flow by spectral techniques 649
26.1 Introduction 649
26.2 The basic equations 650
26.3 Horizontal discretization 655
26.4 Problems 667

27 Predictability 669
27.1 Derivation and discussion of the Lorenz equations 669
27.2 The effect of uncertainties in the initial conditions 681
27.3 Limitations of deterministic predictability of the

atmosphere 683
27.4 Basic equations of the approximate stochastic

dynamic method 689
27.5 Problems 692
Answers to Problems 693
List of frequently used symbols 702
References and bibliography 706



Preface

This book has been written for students of meteorology and of related sciences at
the senior and graduate level. The goal of the book is to provide the background
for graduate studies and individual research. The second part, Thermodynamics of
the Atmosphere, will appear shortly. To a considerable degree we have based our
book on the excellent lecture notes of Professor Karl Hinkelmann on various topics
in dynamic meteorology, including Prandtl-layer theory and turbulence. Moreover,
we were fortunate to have Dr Korb’s outstanding lecture notes on kinematics of the
atmosphere and on mathematical tools for the meteorologist at our disposal.
Quite early on during the writing of this book, it became apparent that we had

to replace various topics treated in their notes by more modern material in order to
give a reasonably up-to-date account of theoretical meteorology. We were guided
by the idea that any topic we have selected for presentation should be treated in
some depth in order for it to be of real value to the reader. Insofar as space would
permit, all but the most trivial steps have been included in every development. This
is the reason why our book is somewhat more bulky than some other books on
theoretical meteorology. The student may judge for himself whether our approach
is profitable.
The reader will soon recognize that various interesting and important topics

have been omitted from this textbook. Including these and still keeping the book
of the same length would result in the loss of numerous mathematical details. This,
however, might discourage some students from following the discussion in depth.
We believe that the approach we have chosen is correct and smoothes the path to
additional and more advanced studies.
This book consists of two separate parts. In the first part we present the mathe-

matical techniques needed to handle the various topics of dynamic meteorology
which are presented in the second part of the book. The modern student of meteo-
rology and of related sciences at the senior and the graduate level has accumulated a
sufficient working knowledge of vector calculus applied to the Cartesian coordinate

xv



xvi Preface

system. We are safe to assume that the student has also encountered the important
integral theorems which play a dominant role in many branches of physics and
engineering. The required extension to more general coordinate systems is not dif-
ficult. Nevertheless, the reader may have to deal with some unfamiliar topics. He
should not be discouraged since often unfamiliarity is mistaken for inherent dif-
ficulty. The unavoidable formality presented in the introductory chapters on first
reading looks worse than it really is. After overcoming some initial difficulties,
the student will soon gain confidence in his ability to handle the new techniques.
The authors came to the conclusion, as the result of many years of learning and
teaching, that a mastery of the mathematical introduction is surely worth what it
costs in effort.
All mathematical operations have been restricted to three dimensions in space.

However, many important formulas can be easily extended to higher-order spaces.
Some knowledge of tensor analysis is required for our studies. Since three-
dimensional tensor analysis in generalized coordinates can be handled very ef-
fectively with the help of dyadics, we have introduced the necessary operations.
Only as the last step do we write down the tensor components. By proceeding in
this manner, we are likely to avoid errors that may occur quite easily with use of the
index notation throughout. We admit that dyadics are quite dispensable when one
is working with Cartesian tensors, but they are of great help when one is working
with generalized coordinate systems.
The second part of the book treats some of the major topics of dynamic meteo-

rology. As is customary in many textbooks, the introductory chapters discuss some
basic topics of thermodynamics. We will depart from this much-trodden path. The
reason for this departure is that modern thermodynamics cannot be adequately dealt
with in this manner. If formulas from thermodynamics are required, they will be
carefully stated. Detailed derivations, however, will be omitted since these will be
presented in part II of A Course in Theoretical Meteorology. When reference to
this book on thermodynamics is made we will use the abbreviation TH.
We will now give a brief description of the various chapters of the dynamics

part of the book. Chapter 1 presents the laws of atmospheric motion. The method
of scale analysis is introduced in Chapter 2 in order to show which terms in the
component form of the equation of motion may be safely neglected in large-scale
flow fields. Chapters 3–10 discuss some topics that traditionally belong to the kine-
matics part of theoretical meteorology. Included are discussions on the material
and the local description of flow, the Navier–Stokes stress tensor, the Helmholtz
theorem, boundary surfaces, circulation, and vorticity theorems. Since atmospheric
flow, particularly in the air layers near the ground, is always turbulent, in Chapters
11 and 12 we present a short introduction to turbulence theory. Some important
aspects of boundary-layer theory will be given in Chapter 13. Wave motion in the
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atmosphere, some stability theory, and early weather-prediction models are intro-
duced in Chapters 14–17. Lagrange’s and Hamilton’s treatments of the equation of
motion are discussed in Chapter 18.
The following chapters consider flow fields in various coordinate systems. In

Chapters 19 and 20 we give a fairly detailed account of the air motion described
with the help of the geographic and the stereographic coordinate systems. This de-
scription and the following topics are of great importance for numericalweather pre-
diction. In order to study the airflow over irregular terrain, the orography-following
coordinate system is introduced in Chapter 21. The air motion in stereographic co-
ordinate systems with a generalized vertical coordinate is discussed in Chapter 22.
Some earlier baroclinicweather-predictionmodels employed the so-called quasi-

geostrophic theorywhich is discussed in some detail in Chapters 23 and 24.Modern
numerical weather prediction, however, is based on the numerical solutions of the
primitive equations, i.e. the scale-analyzed original equations describing the flow
field. Nevertheless, the quasi-geostrophic theory is still of great value in discussing
somemajor features of atmosphericmotion.Wewill employ this theory to construct
weather-prediction models and we show the operational principle.
A brief and very incomplete introduction of numerical methods is given in Chap-

ter 25 to motivate the modeling of atmospheric flow by spectral techniques. Some
basic theory of the spectral method is given in Chapter 26. The final chapter of
this book, Chapter 27, introduces the problems associated with atmospheric pre-
dictability. The famous Lorenz equations and the strange attractor are discussed.
The method of stochastic dynamic prediction is introduced briefly.
Problemsof various degrees of difficulty are given at the endofmost chapters. The

almost trivial problems were included to provide the opportunity for the student to
become familiarwith the newmaterial before he is confrontedwithmore demanding
problems. Some answers to these problems are provided at the end of the book. To a
large extent these problemswere given to themeteorology students of theUniversity
of Mainz in their excercise classes. We were very fortunate to be assisted by very
able instructors, who conducted these classes independently. We wish to express
our sincere gratitude to them. These include Drs G. Korb, R. Schrodin, J. Siebert,
and T. Trautmann. It would be impossible to name all contributors to the excercise
classes. Our special gratitude goes toDrW.-G. Panhans for his splendid cooperation
with the authors in organizing and conducting these classes. Whenever asked, he
also taught some courses to lighten the burden.
It seems to be one of the unfortunate facts of life that no book as technical as this

one can be published free of error. However, we take some comfort in the thought
that any errors appearing in this book were made by the co-author. To remove these,
we would be grateful to anyone pointing out to us misprints and other mistakes they
have discovered.
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In writing this book we have greatly profited from Professor H. Fortak, whose
lecture notes were used by K. Hinkelmann and G. Korb as a guide to organize
their manuscripts. We are also indebted to the late Professor G. Hollmann and to
Professor F. Wippermann. Parts of their lecture notes were at our disposal.
We also wish to thank our families for their constant support and encouragement.
Finally, we express our gratitude to Cambridge University Press for their

effective cooperation in preparing the publication of this book.

W. Zdunkowski
A. Bott
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Mathematical tools





M1

Algebra of vectors

M1.1 Basic concepts and definitions

A scalar is a quantity that is specified by its sign and by its magnitude. Examples
are temperature, the specific volume, and the humidity of the air. Scalars will
be written using Latin or Greek letters such as a, b, . . ., A,B, . . ., α, β, . . .. A
vector requires for its complete characterization the specification of magnitude and
direction. Examples are the velocity vector and the force vector. A vector will be
represented by a boldfaced letter such as a,b, . . ., A,B, . . .. A unit vector is a
vector of prescribed direction and of magnitude 1. Employing the unit vector eA,
the arbitrary vector A can be written as

A = |A| eA = AeA =⇒ eA = A
|A| (M1.1)

Two vectors A and B are equal if they have the same magnitude and direction
regardless of the position of their initial points,

that is |A| = |B| and eA = eB . Two vectors are collinear if they are parallel
or antiparallel. Three vectors that lie in the same plane are called coplanar. Two
vectors always lie in the same plane since they define the plane. The following
rules are valid:

the commutative law : A± B = B± A, Aα = αA

the associative law : A+ (B+ C) = (A+ B) +C, α(βA) = (αβ)A

the distributive law : (α + β)A = αA+ βA
(M1.2)

The concept of linear dependence of a set of vectors a1, a2, . . ., aN is closely
connected with the dimensionality of space. The following definition applies: A
set of N vectors a1, a2, . . ., aN of the same dimension is linearly dependent if there
exists a set of numbers α1, α2, . . ., αN , not all of which are zero, such that

α1a1 + α2a2 + · · · + αNaN = 0 (M1.3)

3



4 Algebra of vectors

Fig. M1.1 Linear vector spaces: (a) one-dimensional, (b) two-dimensional, and (c) three-
dimensional.

If no such numbers exist, the vectors a1, a2, . . ., aN are said to be linearly inde-
pendent. To get the geometric meaning of this definition, we consider the vectors
a and b as shown in Figure M1.1(a). We can find a number k �= 0 such that

b = ka (M1.4a)

By setting k = −α/β we obtain the symmetrized form

αa+ βb = 0 (M1.4b)

Assuming that neither α nor β is equal to zero then it follows from the above
definition that two collinear vectors are linearly dependent. They define the one-
dimensional linear vector space. Consider two noncollinear vectors a and b as
shown in Figure M1.1(b). Every vector c in their plane can be represented by

c = k1a+ k2b or αa+ βb+ γ c = 0 (M1.5)

with a suitable choice of the constants k1 and k2. Equation (M1.5) defines a two-
dimensional linear vector space. Since not all constants α, β, γ are zero, this
formula insures that the three vectors in the two-dimensional space are linearly
dependent. Taking three noncoplanar vectors a,b, and c, we can represent every
vector d in the form

d = k1a+ k2b+ k3c (M1.6)

in a three-dimensional linear vector space, see Figure M1.1(c). This can be gener-
alized by stating that, in anN -dimensional linear vector space, every vector can be
represented in the form

x = k1a1 + k2a2 + · · · + kNaN (M1.7)

where the a1, a2, . . ., aN are linearly independent vectors. Any set of vectors con-
taining more than N vectors in this space is linearly dependent.
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Table M1.1. Extensive quantities of different degrees for the
N-dimensional linear vector space

Extensive Number of Number of
quantity Degree v Symbol vectors components

Scalar 0 B 0 N0 = 1
Vector 1 B 1 N1

Dyadic 2 B 2 N2

Fig. M1.2 Projection of a vector B onto a vector A.

We call the set ofN linearly independent vectors a1, a2, . . ., aN the basis vectors
of the N -dimensional linear vector space. The numbers k1, k2, . . ., kN appearing in
(M1.7) are the measure numbers associated with the basis vectors. The term kiai
of the vector x in (M1.7) is the component of this vector in the direction ai .

A vector B may be projected onto the vector A parallel to the direction of a
straight line k as shown in Figure M1.2(a). If the direction of the straight line k is
not given, we perform an orthogonal projection as shown in part (b) of this figure.
A projection in three-dimensional space requires a plane F parallel to which the
projection of the vectorB onto the vectorA can be carried out; see Figure M1.2(c).

In vector analysis an extensive quantity of degree ν is defined as a homogeneous
sum of general products of vectors (with no dot or cross between the vectors). The
number of vectors in a product determines the degree of the extensive quantity.
This definition may seem strange to begin with, but it will be familiar soon. Thus, a
scalar is an extensive quantity of degree zero, and a vector is an extensivequantity of
degree one. An extensive quantity of degree two is called a dyadic. Every dyadic B

may be represented as the sum of three or more dyads.B = p1P1 + p2P2 + p3P3 +
· · ·. Either the antecedents pi or the consequents Pi may be arbitrarily assigned
as long as they are linearly independent. Our practical work will be restricted to
extensive quantities of degree two or less. Extensive quantities of degree three and
four also appear in the highly specialized literature. Table M1.1 gives a list of
extensive quantities used in our work. Thus, in the three-dimensional linear vector
space with N = 3, a vector consists of three and a dyadic of nine components.
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Fig. M1.3 The general vector basis q1,q2,q3 of the three-dimensional space.

M1.2 Reference frames

The representation of a vector in component form depends on the choice of a
particular coordinate system. A general vector basis at a given point in three-
dimensional space is defined by three arbitrary linearly independent basis vectors
q1,q2,q3 spanning the space. In general, the basis vectors are neither orthogonal
nor unit vectors; they may also vary in space and in time.

Consider a position vector r extending from an arbitrary origin to a point P in
space. An arbitrary vectorA extending from P is defined by the three basis vectors
qi , i = 1, 2, 3, existing at P at time t , as shown in Figure M1.3 for an oblique
coordinate system. Hence, the vector A may be written as

A = A1q1 + A2q2 +A3q3 =
3∑
k=1

Akqk (M1.8)

where it should be observed that the so-called affine measure numbers A1, A2, A3

carry superscripts, and the basis vectors q1,q2,q3 carry subscripts. This type of no-
tation is used in the Ricci calculus, which is the tensor calculus for nonorthonormal
coordinate systems. Furthermore, it should be noted that there must be an equal
number of upper and lower indices.

Formula (M1.8) can be written more briefly with the help of the familiar Einstein
summation convention which omits the summation sign:

A = A1q1 +A2q2 +A3q3 = Anqn (M1.9)

We will agree on the following notation: Whenever an index (subscript or super-
script)m,n, p, q, r, s, t , is repeated in a term, we are to sum over that index from 1
to 3, or more generally toN . In contrast to the summation indicesm,n, p, q, r, s, t,
the letters i, j, k, l are considered to be “free” indices that are used to enumerate
equations. Note that summation is not implied even if the free indices occur twice
in a term or even more often.
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A special case of the general vector basis is theCartesian vector basis represented
by the three orthogonal unit vectors i, j,k, or, more conveniently, i1, i2, i3. Each of
these three unit vectors has the same direction at all points of space. However, in
rotating coordinate systems these unit vectors also depend on time. The arbitrary
vector A may be represented by

A = Ax i+ Ayj+Azk = Anin = Anin
with Ax = A1 = A1, Ay = A2 = A2, Az = A3 = A3

(M1.10)

In the Cartesian coordinate space there is no need to distinguish between upper and
lower indices so that (M1.10) may be written in different ways. We will return to
this point later.

Finally, we wish to define the position vector r. In a Cartesian coordinate system
we may simply write

r = xi+ yj+ zk = xnin = xnin (M1.11)

In an oblique coordinate system, provided that the same basis exists everywhere in
space, we may write the general form

r = q1q1 + q2q2 + q3q3 = qnqn (M1.12)

where the qi are the measure numbers corresponding to the basis vectors qi . The
form (M1.12) is also valid along the radius in a spherical coordinate system since
the basis vectors do not change along this direction.

A different situation arises in case of curvilinear coordinate lines since the
orientations of the basis vectors change with position. This is evident, for example,
on considering the coordinate lines (lines of equal latitude and longitude) on the
surface of a nonrotating sphere. In case of curvilinear coordinate lines the position
vector r has to be replaced by the differential expression dr = dqn qn. Later we
will discuss this topic in the required detail.

M1.3 Vector multiplication

M1.3.1 The scalar product of two vectors

By definition, the coordinate-free form of the scalar product is given by

A · B = |A| |B| cos(A,B) (M1.13)
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Fig. M1.4 Geometric interpretation of the scalar product.

If the vectors A and B are orthogonal the expression cos(A,B) = 0 so that the
scalar product vanishes. The following rules involving the scalar product are valid:

the commutative law : A · B = B · A
the associative law : (kA) · B = k(A · B) = kA · B
the distributive law : A · (B+ C) = A · B+ A · C

(M1.14)

Moreover, we recognize that the scalar product, also known as the dot product or
inner product, may be represented by the orthogonal projections

A · B = |A′||B|, A · B = |A||B′| (M1.15)

whereby the vector A′ is the projection of A on B, and B′ is the projection of B on
A; see Figure M1.4.

The component notation of the scalar product yields

A · B = A1B1q1 · q1 + A1B2q1 · q2 +A1B3q1 · q3
+A2B1q2 · q1 +A2B2q2 · q2 +A2B3q2 · q3
+A3B1q3 · q1 +A3B2q3 · q2 +A3B3q3 · q3

(M1.16)

Thus, in general the scalar product results in nine terms. Utilizing the Einstein
summation convention we obtain the compact notation

A · B = Amqm · Bnqn = AmBnqm · qn = AmBngmn (M1.17)

The quantity gij is known as the covariantmetric fundamental quantity representing
an element of a covariant tensor of rank two or order two. This tensor is called
the metric tensor or the fundamental tensor. The expression “covariant” will be
described later. Since qi ·qj = qj ·qi we have the identity

gij = gji (M1.18)
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On substituting for A,B the unit vectors of the Cartesian coordinate system, we
find the well-known orthogonality conditions for the Cartesian unit vectors

i · j = 0, i · k = 0, j · k = 0 (M1.19)

or the normalization conditions

i · i = 1, j · j = 1, k · k = 1 (M1.20)

For the special case of Cartesian coordinates, from (M1.16) we, therefore, obtain
for the scalar product

A · B = AxBx +AyBy +AzBz (M1.21)

When the basis vectors i, j,k are oriented along the (x, y, z)-axes, the coordinates
of their terminal points are given by

i : (1, 0, 0), j : (0, 1, 0), k : (0, 0, 1) (M1.22)

This expression is the Euclidian three-dimensional space or the space of ordinary
human life. On generalizing to the N -dimensional space we obtain

e1: (1, 0, . . ., 0), e2: (0, 1, . . ., 0), . . . eN: (0, 0, . . ., 1)

(M1.23)

This equation is known as the Cartesian reference frame of the N -dimensional
Euclidian space. In this space the generalized form of the position vector r is given
by

r = x1e1 + x2e2 + · · · + xNeN (M1.24)

The length or the magnitude of the vector r is also known as the Euclidian norm

|r| = √
r·r =

√
(x1)2 + (x2)2 + · · · + (xN )2 (M1.25)

M1.3.2 The vector product of two vectors

In coordinate-free or invariant notation the vector product of two vectors is defined
by

A× B = C = |A| |B| sin(A,B) eC (M1.26)

The unit vector eC is perpendicular to the plane defined by the vectors A and B.
The direction of the vector C is defined in such a way that the vectors A, B, and C
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Fig. M1.5 Geometric interpretation of the vector or cross product.

form a right-handed system. Themagnitude ofC is equal to the areaF of a parallel-
ogram defined by the vectors A and B as shown in Figure M1.5. Interchanging the
vectors A and B gives A× B = −B×A. This follows immediately from (M1.26)
since the unit vector eC now points in the opposite direction.

The following vector statements are valid:

A× (B+ C) = A× B+A× C

(kA) × B = A× (kB) = kA× B

A× B = −B× A

(M1.27)

The component representation of the vector product yields

A× B = Amqm × Bnqn =

∣∣∣∣∣∣∣∣∣

q2 × q3 q3 × q1 q1 × q2
A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣∣∣∣
(M1.28)

By utilizing Cartesian coordinates we obtain the well-known relation

A× B =

∣∣∣∣∣∣∣∣∣

i j k

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣∣∣∣
(M1.29)

M1.3.3 The dyadic representation, the general product of two vectors

The general or dyadic product of two vectors A and B is given by

! = AB = (A1q1 + A2q2 +A3q3)(B1q1 + B2q2 + B3q3) (M1.30)

It is seen that the vectors are not separated by a dot or a cross. At first glance this
type of vector product seems strange. However, the advantage of this notation will
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Fig. M1.6 Geometric representation of the scalar triple product.

become apparent later. On performing the dyadic multiplication we obtain

! = AB = A1B1q1q1 + A1B2q1q2 +A1B3q1q3
+ A2B1q2q1 +A2B2q2q2 +A2B3q2q3
+ A3B1q3q1 +A3B2q3q2 +A3B3q3q3

(M1.31)

In carrying out the general multiplication, we must be careful not to change the
position of the basis vectors. The following statements are valid:

(A+ B)C = AC+ BC, AB �= BA (M1.32)

M1.3.4 The scalar triple product

The scalar triple product, sometimes also called the box product, is defined by

A · (B × C) = [A,B,C] (M1.33)

The absolute value of the scalar triple product measures the volume of the paral-
lelepiped having the three vectorsA, B, C as adjacent edges, see Figure M1.6. The
height h of the parallelepiped is found by projecting the vector A onto the cross
product B × C. If the volume vanishes then the three vectors are coplanar. This
situation will occur whenever a vector appears twice in the scalar triple product. It
is apparent that, in the scalar triple product, any cyclic permutation of the factors
leaves the value of the scalar triple product unchanged. A permutation that reverses
the original cyclic order changes the sign of the product:

[A,B,C] = [B,C,A] = [C,A,B]

[A,B,C] = −[B,A,C] = −[A,C,B]
(M1.34)
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From these observations we may conclude that, in any scalar triple product, the
dot and the cross can be interchanged without changing the magnitude and the sign
of the scalar triple product

A · (B × C) = (A× B) ·C (M1.35)

For the general vector basis the coordinate representation of the scalar triple
product yields

A· (B×C) = (A1q1+A2q2+A3q3) ·

∣∣∣∣∣∣∣∣∣

q2 × q3 q3 × q1 q1 × q2
B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣∣∣
(M1.36)

It is customary to assign the symbol
√
g to the scalar triple product of the basis

vectors: √
g = q1 · q2 × q3 (M1.37)

It is regrettable that the symbol g is also assigned to the acceleration due to gravity,
but confusion is unlikely to occur. By combining equations (M1.36) and (M1.37)
we obtain the following important form of the scalar triple product:

[A,B,C] = √
g

∣∣∣∣∣∣∣∣∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣∣∣
(M1.38)

For the basis vectors of the Cartesian system we obtain from (M1.37)

√
g = i · (j × k) = 1 (M1.39)

so that in the Cartesian coordinate system (M1.38) reduces to

[A,B,C] =

∣∣∣∣∣∣∣∣∣

Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣∣∣∣
(M1.40)

In this expression, according to equation (M1.10), the components A1, A2, A3,

etc. have been written as Ax,Ay,Az.
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Without proof we accept the formula

[A,B,C]2 =

∣∣∣∣∣∣∣∣∣

A · A A · B A ·C
B · A B · B B · C
C · A C · B C ·C

∣∣∣∣∣∣∣∣∣
(M1.41)

which is known as the Gram determinant. The proof, however, will be given later.
Application of this important formula gives

[q1,q2,q3]2 = (√
g
)2 =

∣∣∣∣∣∣∣∣∣

q1 · q1 q1 · q2 q1 · q3
q2 · q1 q2 · q2 q2 · q3
q3 · q1 q3 · q2 q3 · q3

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

g11 g12 g13

g21 g22 g23

g31 g32 g33

∣∣∣∣∣∣∣∣∣
= |gij |

(M1.42)

which involves all elements gij of the metric tensor. Comparison of (M1.37) and
(M1.42) yields the important statement

q1 · (q2 × q3) = √
g = √|gij | (M1.43)

so that the scalar triple product involving the general basis vectors q1,q2,q3 can
easily be evaluated. This will be done in some detail when we consider various
coordinate systems. Owing to (M1.43),

√
g is called the functional determinant of

the system.

M1.3.5 The vectorial triple product

At this point it will be sufficient to state the extremely important formula

A× (B× C) = (A · C)B− (A · B)C (M1.44)

which is also known as the Grassmann rule. It should be noted that, without the
parentheses, the meaning of (M1.44) is not unique. The proof of this equation will
be given later with the help of the so-called reciprocal coordinate system.
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M1.3.6 The scalar product of a vector with a dyadic

On performing the scalar product of a vector with a dyadic we see that the com-
mutative law is not valid:

D = A · (BC) = (A · B)C, E = (BC) · A = B(C · A) (M1.45)

Whereas in the first expression the vectors D and C are collinear, in the second
expression the direction of E is along the vector B so that D �= E.

M1.3.7 Products involving four vectors

Let us consider the expression (A× B) · (C× D). Defining the vector F = C×D
we obtain the scalar triple product

(A× B) · (C× D) = (A× B) · F = A · (B× F) = A · [B× (C× D)] (M1.46)

This equation results from interchanging the dot and the cross and by replacing the
vector F by its definition. Application of the Grassmann rule (M1.44) yields

(A× B) · (C×D) = A · [(B ·D)C− (B · C)D] = (A · C)(B ·D) − (A ·D)(B ·C)
(M1.47)

so that equation (M1.46) can be written as

(A× B) · (C× D) =
∣∣∣∣∣∣
A · C A ·D
B · C B · D

∣∣∣∣∣∣ (M1.48)

The vector product of four vectors may be evaluated with the help of the Grass-
mann rule:

(A× B) × (C× D) = (F ·D)C− (F · C)D with F = A× B (M1.49)

On replacing F by its definition and using the rules of the scalar triple product, we
find the following useful expression:

(A× B) × (C× D) = [A,B,D]C − [A,B,C]D (M1.50)
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M1.4 Reciprocal coordinate systems

As will be seen shortly, operations with the so-called reciprocal basis systems
result in particularly convenient mathematical expressions. Let us consider two
basis systems. One of these is defined by the three linearly independent basis
vectors qi , i = 1, 2, 3, and the other one by the linearly independent basis vectors
qi , i = 1, 2, 3. To have reciprocality for the basis vectors the following relation
must be valid:

qi · qk = qk · qi = δki with δki =
{
0 i �= k
1 i = k

(M1.51)

where δki is the Kronecker-delta symbol. Reciprocal systems are also called con-
tragredient systems. As is customary, the system represented by basis vectors with
the lower index is called covariant while the system employing basis vectors with
an upper index is called contravariant. Therefore, qi and qi are called covariant
and contravariant basis vectors, respectively.

Consider for example in (M1.51) the case i = k = 1. While the scalar product
q1 · q1 = 1 may be viewed as a normalization condition for the two systems, the
scalar products q1· q2 = 0 and q1· q3 = 0 are conditions of orthogonality. Thus, q1
is perpendicular to q2 and to q3 so that we may write

q1 = C(q2 × q3) (M1.52a)

where C is a factor of proportionality. On substituting this expression into the
normalization condition we obtain for C

q1 · q1 = Cq1 · (q2 × q3) = 1 =⇒ C = 1

q1 · (q2 × q3)
(M1.52b)

so that (M1.52a) yields

q1 = q2 × q3

[q1,q2,q3]
(M1.52c)

We may repeat this exercise with q2 and q3 and find the general expression

qi = qj × qk

[q1,q2,q3]
(M1.53)

with i, j, k in cyclic order. Similarly we may write for q1, with D as the propor-
tionality constant,

q1 = D(q2×q3), q1·q1 = Dq1· (q2×q3) = 1 =⇒ q1 = q2 × q3
[q1,q2,q3]

(M1.54)
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Thus, the general expression is

qi = qj × qk
[q1,q2,q3]

(M1.55)

with i, j, k in cyclic order. Equations (M1.53) and (M1.55) give the explicit ex-
pressions relating the basis vectors of the two reciprocal systems.

Let us consider the special case of the Cartesian coordinate system with basis
vectors i1, i2, i3. Application of (M1.55) shows that ij = ij since [i1, i2, i3] = 1, so
that in the Cartesian coordinate system there is no difference between covariant and
contravariant basis vectors. This is the reason why we have written Ai = Ai, i =
1, 2, 3 in (M1.10).

Now we return to equation (M1.43). By replacing the covariant basis vector q1
with the help of (M1.52c) and utilizing (M1.48) we find

q1 · (q2 × q3) = (q2 × q3) · (q2 × q3)
[q1,q2,q3]

= 1

[q1,q2,q3]

∣∣∣∣∣∣
q2 · q2 q2 · q3
q3 · q2 q3 · q3

∣∣∣∣∣∣ = 1

[q1,q2,q3]

(M1.56)

From (M1.51) it follows that the value of the determinant in (M1.56) is equal to 1.
Since q1 · (q2 × q3) = √

g we immediately find

[q1,q2,q3] = 1√
g

(M1.57)

Thus, the introduction of the contravariant basis vectors shows that (M1.43) and
(M1.57) are inverse relations.

Often it is desirable to work with unit vectors having the same directions as the
selected three linearly independent basis vectors. The desired relationships are

ei = qi
|qi| = qi√

qi · qi = qi√
gii
, ei = qi

|qi| = qi√
qi · qi = qi√

gii
(M1.58)

While the scalar product of the covariant basis vectors qi · qj = gij defines the
elements of the covariant metric tensor, the contravariant metric tensor is defined
by the elements qi · qj = gij , and we have

qi · qj = qj · qi = gij = gji (M1.59)
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Owing to the symmetry relations gij = gji and gij = gji each metric tensor is
completely specified by six elements.

Some special cases follow directly from the definition (M1.13) of the scalar
product. In case of an orthonormal system, such as the Cartesian coordinate system,
we have

gij = gji = gij = gji = δ
j

i (M1.60)

As will be shown later, for any orthogonal system the following equation applies:

giig
ii = 1 (M1.61)

While in the Cartesian coordinate system the metric fundamental quantities are
either 0 or 1, we cannot give any information about the gij or gij unless the
coordinate system is specified. This will be done later when we consider various
physical situations.

In the following we will give examples of the efficient use of reciprocal systems.
Work is defined by the scalar product dA = K · dr, whereK is the force and dr is
the path increment. In the Cartesian system we obtain a particularly simple result:

K ·dr = (Kxi + Kyj + Kzk) · (dx i + dy j + dz k) = Kx dx + Ky dy + Kz dz

(M1.62)

consisting of three work contributions in the directions of the three coordinate axes.
For specific applications it may be necessary, however, to employ more general
coordinate systems. Let us consider, for example, an oblique coordinate system
with contravariant components and covariant basis vectors of K and dr. In this
case work will be expressed by

K · dr = (K1q1 +K2q2 +K3q3) · (dq1q1 + dq2q2 + dq3q3)

= Km dqn qm · qn = Km dqn gmn
(M1.63)

Expansion of this expression results in nine components in contrast to only three
components of the Cartesian coordinate system. A great deal of simplification is
achieved by employing reciprocal systems for the force and the path increment.
As in the case of the Cartesian system, work can then be expressed by using only
three terms:

K · dr = (K1q1 +K2q2 +K3q3) · (dq1 q1 + dq2 q2 + dq3 q3)

= Km dq
n qm · qn = Km dq

n δmn = K1 dq
1 +K2 dq

2 +K3 dq
3

(M1.64a)
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or

K · dr = (K1q1 +K2q2 +K3q3) · (dq1 q1 + dq2 q2 + dq3 q3)

= Km dqn qm · qn = Km dqn δ
n
m = K1 dq1 +K2 dq2 +K3 dq3

(M1.64b)

Finally, utilizing reciprocal coordinate systems, it is easy to give the proof of
the Grassmann rule (M1.44). Let us consider the expression D = A × (B × C).
According to the definition (M1.26) of the vector product, D is perpendicular to A
and to (B× C). Therefore, D must lie in the plane defined by the vectors B and C
so that we may write

A× (B×C) = λB+ µC (M1.65)

where λ andµ are unknown scalars to be determined. Tomake use of the properties
of the reciprocal system,we first setB = q1 andC = q2. These two vectors define a
plane oblique coordinate system. To complete the systemwe assume that the vector
q3 is a unit vector orthogonal to the plane spanned by q1 and q2. Thus, we have

B = q1, C = q2, e3 = q1 × q2
|q1 × q2| (M1.66)

and

q1 · (q2 × e3) = e3 · (q1 × q2) = e3 · e3 |q1 × q2| = |q1 × q2| (M1.67)

According to (M1.55), the coordinate system which is reciprocal to the (q1,q2,q3)
system is given by

q1 = q2 × e3
|q1 × q2| , q2 = e3 × q1

|q1 × q2| , e3 = q1 × q2
|q1 × q2| = e3 (M1.68)

The determination of λ andµ follows from scalar multiplication ofA× (B×C) =
A× (q1 × q2) = λq1 + µq2 by the reciprocal basis vectors q1 and q2:

λ = [
A× (q1 × q2)

] · q1 = A× (q1 × q2) · (q2 × e3)
|q1 × q2|

= (A× e3) · (q2 × e3) = A· q2 = A· C
(M1.69a)

Analogously we obtain

µ = [
A× (q1 × q2)

] · q2 = (A× e3) · (e3 × q1) = −A · q1 = −A ·B (M1.69b)

Substitution of λ and µ into (M1.65) gives the final result

A× (B× C) = (A · C)B− (A · B)C (M1.70)
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M1.5 Vector representations

The vector A may be represented with the help of the covariant basis vectors qi or
ei and the contravariant basis vectors qi or ei as

A = Amqm = Amqm = A
*mem = A

*

mem (M1.71)

The invariant character ofA is recognized by virtue of the fact thatwe have the same
number of upper and lower indices. In addition to the contravariant and covariant
measure numbers Ai and Ai of the basis vectors qi and qi we have also introduced
the physical measure numbers A

*
i and A

*

i of the unit vectors ei and ei . In general
the contravariant and covariant measure numbers do not have uniform dimensions.
This becomes obvious on considering, for example, the spherical coordinate system
which is defined by two angles, which are measured in degrees, and the radius of the
sphere, which is measured in units of length. Physical measure numbers, however,
are uniformly dimensioned. They represent the lengths of the components of a
vector in the directions of the basis vectors. The formal definitions of the physical
measure numbers are

A
* i = Ai |qi| = Ai√gii, A

*

i = Ai |qi| = Ai

√
gii (M1.72)

Nowwewill showwhat consequences arise by interpreting the measure numbers
vectorially. Scalar multiplication of A = Anqn by the reciprocal basis vector qi

yields for Ai

A · qi = Amqm · qi = Amδim = Ai (M1.73)

so that
A = Amqm = A · qmqm (M1.74)

This expression leads to the introduction to the unit dyadic E,

E = qmqm (M1.75a)

This very special dyadic or unit tensor of rank two has the same degree of im-
portance in tensor analysis as the unit vector in vector analysis. The unit dyadic
E is indispensable and will accompany our work from now on. In the Cartesian
coordinate system the unit dyadic is given by

E = ii+ jj+ kk = i1i1 + i2i2 + i3i3 (M1.75b)

We repeat the above procedure by representing the vector A as A = Amqm.
Scalar multiplication by qi results in

A · qi = Amqm · qi = Ai (M1.76)
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and the equivalent definition of the unit dyadic E

A = Amqm = A · qmqm =⇒ E = qmqm (M1.77)

Of particular interest is the scalar product of two unit dyadics:

E · E = qmqm · qnqn = qmδnmqn = qmqm = E

E · E = qmqm · qnqn = qmδmn q
n = qmqm = E

(M1.78)

From these expressions we obtain additional representations of the unit dyadic that
involve the metric fundamental quantities gij and gij :

E · E = qmqm · qnqn = gmnqmqn = qmqm · qnqn = gmnqmqn (M1.79)

Again it should be carefully observed that each expression contains an equal number
of subscripts and superscripts to stress the invariant character of the unit dyadic.
We collect the important results involving the unit dyadic as

E = qmqm = δnmq
mqn = qmqm = δmn qmq

n = gmnqmqn = gmnqmqn (M1.80)

Scalar multiplication of E in two of the forms of (M1.80) with qi results in

E · qi = (qmqm) · qi = qmδmi = qi
= (gmnqmqn) · qi = gmnqmδni = gimqm

(M1.81)

Hence, we see immediately that

qi = gimqm (M1.82)

This very useful expression is known as the raising rule for the index of the basis
vector qi . Analogously we multiply the unit dyadic by qi to obtain

E · qi = (qmqm) · qi = qi = (gmnqmqn) · qi = gimqm (M1.83)

and thus
qi = gimqm (M1.84)

which is known as the lowering rule for the index of the contravariant basis
vector qi .

With the help of the unit dyadic we are in a position to find additional important
rules of tensor analysis. In order to avoid confusion, it is often necessary to replace a
letter representing a summation index by another letter so that the letter representing
a summation does not occur more often than twice. If the replacement is done



M1.5 Vector representations 21

properly, the meaning of any mathematical expression will not change. Let us
consider the expression

E = qrqr = grmg
rnqmqn = δnmq

mqn (M1.85)

Application of (M1.82) and (M1.84) gives the expression to the right of the second
equality sign. For comparison purposes we have also added one of the forms of
(M1.80) as the final expression in (M1.85). It should be carefully observed that the
summation indices m,n, r occur twice only.

To take full advantage of the reciprocal systems we perform a scalar multiplica-
tion first by the contravariant basis vector qi and then by the covariant basis vector
qj , yielding

(E · qi) · qj = grmg
rnδinδ

m
j = δnmδ

i
nδ
m
j (M1.86)

from which it follows immediately that

grjg
ri = δij (M1.87a)

By interchanging i and j , observing the symmetry of the fundamental quantities,
we find

girg
rj = δ

j

i or (gij )(g
ij ) =




1 0 0

0 1 0

0 0 1


 =⇒ (gij ) = (gij )−1 (M1.87b)

Hence, the matrices (gij ) and (gij ) are inverse to each other. Owing to the symmetry
properties of the metric fundamental quantities, i.e. gij = gji and gij = gji , we
need six elements only to specify either metric tensor. In case of an orthogonal
system gij = 0, gij = 0 for i �= j so that (M1.87a) reduces to

giig
ii = 1 (M1.88)

thus verifying equation (M1.61). At this point we must recall the rule that we do
not sum over repeated free indices i, j, k, l.

Next we wish to show that, in an orthonormal system, there is no difference
between contravariant and covariant basis vectors. The proof is very simple:

ei = qi√
gii

= gin√
gii
qn = √

giiqi = qi√
gii

= ei (M1.89)

Here use of the raising rule has been made. With the help of (M1.89) it is easy
to show that there is no difference between contravariant and covariant physical
measure numbers. Utilizing (M1.71) we find

A · ei = A · ei =⇒ A
* nen · ei = A

*

nen · ei =⇒ A
* i = A

*

i (M1.90)
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M1.6 Products of vectors in general coordinate systems

There are various ways to express the dyadic product of vector A with vector B by
employing covariant and contravariant basis vectors:

AB = AmBnqmqn = AmBnqmqn = AmB
nqmqn = AmBnqmqn (M1.91)

This yields four possibilities for formulating the scalar productA · B:
A · B = AmBnqm · qn = AmBngmn = AmBnqm · qn = AmBng

mn

= AmB
nqm · qn = AmB

m = AmBnqm · qn = AmBm
(M1.92)

1 The last two forms with mixed basis vectors (covariant and contravariant) are
more convenient since the sums involve the evaluation of only three terms. In
contrast, nine terms are required for the first two forms since they involve the
metric fundamental quantities.

There are two useful forms in which to express the vector product A× B. From
the basic definition (M1.28) and the properties of the reciprocal systems (M1.55)
we obtain

A× B = Amqm × Bnqn = √
g

∣∣∣∣∣∣∣∣∣

q1 q2 q3

A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣∣∣∣
(M1.93)

where all measure numbers are of the contravariant type. If it is desirable to
express the vector product in terms of covariant measure numbers we use (M1.53)
and (M1.57). Thus, we find

A× B = Amqm × Bnqn = 1√
g

∣∣∣∣∣∣∣∣∣

q1 q2 q3
A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣∣∣∣
(M1.94)

The two forms involving mixed basis vectors are not used, in general.
On performing the scalar triple product operation (M1.33) we find

[A,B,C] = Amqm · (Bnqn × Crqr)

= Am√
gqm ·

∣∣∣∣∣∣∣∣∣

q1 q2 q3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣∣∣
= √

g

∣∣∣∣∣∣∣∣∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣∣∣
(M1.95)

1 For the scalar product A ·A we usually write A2.
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which is in agreement with (M1.38). All measure numbers are of the contravari-
ant type. If covariant measure numbers of the three vectors are desired, utilizing
(M1.94) we obtain

[A,B,C] = Amqm · (Bnqn × Crqr ) = 1√
g

∣∣∣∣∣∣∣∣∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣∣∣
(M1.96)

In this expression the covariant measure numbers may be replaced with the help of
(M1.76) by Ai = A · qi , Bi = B · qi , Ci = C · qi , yielding

[A,B,C][q1,q2,q3] =

∣∣∣∣∣∣∣∣∣

A · q1 A · q2 A · q3
B · q1 B · q2 B · q3
C · q1 C · q2 C · q3

∣∣∣∣∣∣∣∣∣
(M1.97)

Finally, if in this equation we replace the basis vectors q1,q2,q3 by the arbitrary
vectors D,F,G, we obtain

[A,B,C][D,F,G] =

∣∣∣∣∣∣∣∣∣

A ·D A · F A ·G
B · D B · F B ·G
C ·D C · F C ·G

∣∣∣∣∣∣∣∣∣
(M1.98)

On setting in this expression D = A, F = B, and G = C we obtain the Gram
determinant, which was already stated without proof as equation (M1.41).

M1.7 Problems

M1.1: Are the three vectors A = 2q1 + 6q2 − 2q3, B = 3q1 + q2 + 2q3, and
C = 8q1 + 16q2 − 3q3 linearly dependent?

M1.2:
(a) Are the three vectors A = 4q1 − q2 + 5q3, B = −2q1 + 3q2 + q3, and
C = −2q1 − 2q2 − 6q3 linearly dependent?
(b) Use Cartesian basis vectors to show that the vectors F = A× B, G = B× C,
and H = C× A are collinear.
(c) The vectors A and B are the same as before but now C = 8q1 + 7q2 − 5q3.
Is the new set of vectors linearly dependent? Show that now F is orthogonal to G
and H.
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M1.3: Decompose the vector A = A1q1 + A2q2 into the two components A1 =
A1q1 and A2 = A2q2 by assuming that (i) A1 deviates from A by 15◦ and (ii) the
length |A1| = 1

3
|A|. Determine the length |A2| and the angle between A2 and A.

M1.4: The vector A = 3i1 + 2i2 + 4i3 is given.
(a) Find the measure numbers Ai of A = A1q1 +A2q2 +A3q3 if the basis vectors
are given by q1 = i1 + 2i2, q2 = 2i2 + i3, and q3 = 2i3.
(b) By employing the reciprocal basis vectors qi find the measure numbersAi ofA.

M1.5: By direct transformation of the contravariant measure numbers in (M1.38),
show that

[A,B,C] = 1√
g

∣∣∣∣∣∣∣∣∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣∣∣
M1.6: Show that the lowering and raising rules do not apply to physical measure
numbers.

M1.7: Show that

(A× B) · (B× C) × (C×A) = (A · B× C)2

M1.8: The vectors

Ã = B× C
[A,B,C]

, B̃ = C×A
[A,B,C]

, C̃ = A× B
[A,B,C]

with [A,B,C] �= 0 are given. Find [Ã, B̃, C̃].

M1.9: The unit vector e is perpendicular to the plane defined by the vectors B and
C. Show that [e,B,C] = |B× C|.



M2

Vector functions

M2.1 Basic definitions and operations

In general scalars and vectors depend on the position coordinates qi or qi and on
the time t . Therefore, we have to deal with expressions of the type

B = Bn(q1, q2, q3, t)qn(q
1, q2, q3, t) = Bn(q1, q2, q3, t)qn(q1, q2, q3, t) (M2.1)

While in stationary Cartesian coordinates the basis vectors are independent of
position, in the general case qi and qi are functions of the corresponding position
coordinates. In rotating coordinate systems they are functions of time also.
Of particular interest to our studies are linear vector functions defined by

B(r(1) + r(2)) = B(r(1))+ B(r(2)), B(λr) = λB(r) (M2.2)

where λ is a scalar and r(1) and r(2) are position vectors. An example of a linear
vector function is given by

B(r) = B(qnqn) = B(qn)q
n = Bnq

n with Bi = B(qi) (M2.3)

Since r = qnqn we have qi = qi ·r and therefore
B(r) = Bnq

n = Bnqn ·r = B·r (M2.4)

This is the defining equation for the complete dyadic B = Bnqn. In our studies the
sum will always be restricted to three terms. By expressing the position vector in
B(r) as r = qnqn, we obtain analogously

B(r) = B(qnqn) = B(qn)qn = Bnqn = Bnqn ·r = B·r (M2.5)

with qi = qi ·r. Hence, the complete dyadic B may be written as

B = Bnqn = Bnqn (M2.6)

25
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Scalar multiplication of a vector by a dyadic yields a vector. In special but
very important cases the summation is terminated after two terms. The resulting
planar dyadic will be of great interest in the following work. Dyadics consisting
of only one term are called dyads; those consisting of two terms only are known as
singular dyadics. Whenever two vectors of a dyadic, such as Bi or qi (i = 1, 2, 3),
are linearly dependent then the complete dyadic transforms to a singular dyadic.
As we know already, the nine components of a three-term dyadic can be arranged
as a square matrix. Therefore, the rules of matrix algebra can be applied to perform
operations with second-order dyadics. Unless specifically stated otherwise, we will
be dealing with complete dyadics.
Let us now think of the dyadicBas representing an operator. Scalarmultiplication

of the dyadic by the original vector r results in a new vector r′, which is called the
image vector:

r′ = B·r = (Bmqm)·(qnqn) = Bmqnδm
n = Bmqm

= (Bmqm)·(qnqn) = Bmqnδ
n
m = Bmqm

(M2.7)

There are several ways to represent a complete dyadic. Some important results
are given below.As will be seen, various dyadicmeasure numbers occur, whichwill
now be discussed. Let us first consider the form in which the dyadic B is expressed
with the help of the covariant vectorial measure numbersBn and contravariant basis
vectors qn, i.e. B = Bnqn. Scalar multiplication of B by qi gives

B·qi = Bnqn ·qi = Bnδ
n
i = Bi (M2.8)

The vector Bi may be represented in the two equivalent forms

Bi = Bn
i qn = Bniqn (M2.9)

Repeating this procedure by expressingB in the form B = Bnqn yields analogously

B·qi = Bnδi
n = Bi , Bi = Bniqn = B i

n q
n (M2.10)

From (M2.9) and (M2.10) we obtain four possibilities for representing the dyadic
B:

B = Bm
n qmqn = Bmnqmqn = Bmnqmqn = B n

m qmqn (M2.11)

While Bi
j and B

j

i are called the mixed measure numbers of B, the terms Bij and
Bij are the covariant and contravariant measure numbers of B, respectively. At
each measure number the positions of the subscripts and superscripts indicate not
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only the kind of the corresponding basis vectors (covariant or contravariant) of the
dyadic but also the order in which they appear.
By utilizing the property (M1.51) of reciprocal systems as well as the lower-

ing and raising rules for the basis vectors, it is a simple task to obtain relations
between the different types of measure numbers of a dyadic. This will be clar-
ified by the following two examples. Application of the raising rule (M1.82)
to the first expression of (M2.11) yields, together with the second expression
of (M2.11),

B = Br
nqrqn = Br

ngrmqmqn = Bmnqmqn (M2.12)

Scalar multiplication of (M2.12) first by the covariant basis vector qj and then by
qi results in

(B·qj )·qi = Br
ngrmδn

j δ
m
i = Bmnδ

n
j δ

m
i (M2.13a)

Applying the lowering rule (M1.84) to the basis vector qr of the dyadic B =
B n

r qrqn and multiplying the result from the right-hand side first by qj and then by
qi yields

(B·qj )·qi = B n
r grmδj

nδ
i
m = Bmnδj

nδ
i
m (M2.13b)

The final evaluation of the expressions of (M2.13a) and (M2.13b) gives the raising
rule and the lowering rule for the measure numbers of a dyadic:

Bij = griB
r
j , Bij = griB j

r (M2.14)

Since in Cartesian coordinate systems there is no difference between covariant
and contravariant basis vectors, from (M2.11) it may easily be seen that, in these
systems, the different measure numbers of a dyadic are identical:

B = Bm
n imi

n = Bmnimin = Bmnimin = B n
m imin

with Bi
j = Bij = Bij = B

j

i

(M2.15)

In the following sections, for the sake of brevity, we will not list all possible
representations of the dyadic, but will usually limit ourselves to the form

� = Bnqn = Bm
n qmqn (M2.16)

This does not imply that a preference should be given to this particular form.
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M2.2 Special dyadics

Whenever the antecedents and the consequents of the dyadic � = Bmqm form
linearly independent systems, then� is called a complete dyadic. If the antecedents
or the consequents are coplanar then the complete dyadic reduces to a planar dyadic
of only two terms.

M2.2.1 The conjugate dyadic

A special but very important dyadic known as the conjugate dyadic is obtained by
interchanging the positions of the first vector (antecedent) and the second vector
(consequent) of the dyadic B = Bmqm:

B̃ = qmBm (M2.17)

Thus, the original antecedent becomes the consequent. The conjugate dyadic will
be identified bymeans of the tilde. An important relationship involving the original
and the conjugate dyadic is

D·B = D·Bmqm = qmD·Bm = qmBm ·D = B̃·D (M2.18)

M2.2.2 The symmetric dyadic

A dyadic �′ is called symmetric if interchanging the positions of the two vectors
does not change the dyadic:

�̃′ = �′ (M2.19)

An important consequence is

�′ ·D = D·�̃′ = D·�′ (M2.20)

It is easy to show that the sum of an arbitrary dyadic B and the corresponding
conjugate dyadic B̃ is symmetric:

� = B + B̃ = Bmqm + qmBm, �̃ = qmBm + Bmqm = � = �′ (M2.21)

For the Cartesian coordinate system the explicit form of a symmetric dyadic is
given by

�′ = B11i1i1 + B12i1i2 + B13i1i3
+ B12i2i1 + B22i2i2 + B23i2i3
+ B13i3i1 + B23i3i2 + B33i3i3

(M2.22)

since Bij = Bji , which is the condition characterizing symmetric matrices. Since
gij = gji the unit dyadic is also symmetric:

E = gmnqmqn, Ẽ = gmnqnqm = gnmqnqm = E (M2.23)
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M2.2.3 The antisymmetric or skew-symmetric dyadic

A dyadic �′′ is called antisymmetric if interchanging the positions of the two
vectors results in a change of sign of the dyadic:

�̃′′ = −�′′ (M2.24)

From this definition we immediately see that

�′′ ·D = D·�̃′′ = −D·�′′ (M2.25)

The difference between a dyadic B and the conjugate dyadic B̃ is always antisym-
metric:

� = B − B̃ = Bmqm − qmBm, �̃ = qmBm − Bmqm = −� (M2.26)

From (M2.21) and (M2.26) we conclude that any dyadic may be expressed as the
sum of a symmetric and an antisymmetric dyadic:

� = 1
2 (B + B̃)+ 1

2 (B − B̃) = �′ + �′′ (M2.27)

The representation of an antisymmetric dyadic in the Cartesian coordinate system
is given by

�′′ = 0+ B12i1i2 + B13i1i3
− B12i2i1 + 0+ B23i2i3
− B13i3i1 − B23i3i2 + 0

(M2.28)

The elements on the main diagonal must be zero to satisfy the condition of anti-
symmetry Bij = −Bji which characterizes every antisymmetric matrix.
In order to discover another property of an antisymmetric dyadic, we wish to

reconsider the vectorial triple product. Using the Grassmann rule (M1.44) we find

D × (A × B) = D·(BA − AB) (M2.29)

which is the scalar product of a vector D with an antisymmetric dyadic.
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M2.2.4 The adjoint dyadic

The adjoint dyadic of � = Bsqs is defined by

�a = (Bsqs)a = 1
2 (q

m × qn)(Bm × Bn) (M2.30)

On expanding and rearranging the sums we obtain for the adjoint dyadic the useful
form

�a = (q1 × q2)(B1 × B2)+ (q2 × q3)(B2 × B3)+ (q3 × q1)(B3 × B1) (M2.31)

According to (M2.17) the conjugate of the adjoint dyadic may be written as

�̃a = 1
2 (Bm × Bn)(qm × qn) (M2.32)

A little reflection shows that
�̃a = (

�̃
)
a

(M2.33)

We will now give the component form of the adjoint dyadic whose original defini-
tion (M2.30) involves the vector products qj × qk and Bj × Bk. With the help of
(M1.53) and (M1.93) we find

Bi × Bj = Bm
i qm × Bn

jqn = [q1,q2,q3]

∣∣∣∣∣∣∣∣∣

q1 q2 q3

B1i B2i B3i

B1j B2j B3j

∣∣∣∣∣∣∣∣∣
= [q1,q2,q3]Dij

(M2.34)
and

(q1 × q2)(B1 × B2) = q3[q1,q2,q3][q1,q2,q3]D12 = q3D12
(q3 × q1)(B3 × B1) = q2D31
(q2 × q3)(B2 × B3) = q1D23

(M2.35)

By adding the three terms, as required by (M2.31), we obtain the desired result

�a = q1D23 + q2D31 + q3D12 = Mm
nqmqn (M2.36)

TheMi
j are elements of the adjoint matrix (M

i
j ) corresponding to the coefficient

matrix (Bi
j ) of the dyadic � = Bm

nqmqn. Thus, we obtain the adjoint dyadic by
replacing the elements Bi

j by the corresponding elements of the adjoint matrix
which is obtained by transposing the cofactor matrix of (Bi

j ).
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M2.2.5 The reciprocal dyadic

The unit dyadic E may be expressed with the help of any three noncoplanar
reciprocal basis vectors. Thus, we may choose the form

E = BmBm (M2.37)

The reciprocal dyadic�−1 of � is defined by

�·�−1 = E (M2.38)

If � is given in the form � = Bmqm then the reciprocal dyadic �−1 must be

�−1 = qmBm (M2.39)

since

�·�−1 = Bmqm ·qnBn = Bmδn
mB

n = BmBm = E (M2.40)

In analogy to (M1.55) we may express Bi as

Bi = Bj × Bk

[B1,B2,B3]
(M2.41)

On substituting (M1.53) and (M2.41) into (M2.39) we immediately recognize that
the reciprocal dyadic �−1 may be formulated in terms of the adjoint dyadic:

�−1 = 1
2

(qm × qn)(Bm × Bn)

[q1,q2,q3][B1,B2,B3]
= �a

[q1,q2,q3][B1,B2,B3]
(M2.42)

Without proof we give the following expressions:

(B·D·F)−1 = F
−1 ·D−1 ·B−1(

B
−1)α = B

−α

B
α ·Bβ = B

α+β

B
0 = E

(M2.43)

which may be generalized to include additional factors. Since dyadics are tensors
of rank two, they can be treated as squarematrices, for which the inversion formulas
are derived in any textbook on the subject.
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Fig. M2.1 The tensor ellipsoid r·�′ ·r = 1. r′ = �′ ·r is perpendicular to the tangential
plane at P .

M2.3 Principal-axis transformation of symmetric tensors

Premultiplication and postmultiplication of the general dyadic by the position
vector r = xmim yields

r·�·r = r·�′ ·r + r·�′′ ·r = r·�′ ·r (M2.44)

The term r·�′′ ·r of this expression vanishes since the scalar premultiplication and
postmultiplication of an antisymmetric dyadic by an arbitrary vector must vanish
in order to avoid the following contradiction:

A·�′′ ·A = (A·�′′)·A = A·(A·�′′) = A·(�̃′′ ·A) = −A·�′′ ·A = 0 (M2.45)

On substituting (M2.22) into (M2.44) we obtain the quadratic form

F = r·�′ ·r = xr ir ·Bmnimin ·xsis = xrxsBmnδ
m
r δn

s = xmxnBmn

= B11x
2
1 + B22x

2
2 + B33x

2
3 + 2B12x1x2 + 2B23x2x3 + 2B13x1x3

(M2.46)
It can be seen that the constant coefficients Bij of the symmetric dyadic determine
the type of the quadratic surface. The tensor surface F may be an ellipsoid, a
hyperboloid, or a paraboloid. Most applications from physics deal with ellipsoids
so that collectively we speak of tensor ellipsoids of the symmetric tensor. As
a representative of the tensor ellipsoid we select F = 1. The position vector r
extends from the origin of the ellipsoid to some point P on the ellipsoidal surface;
see Figure M2.1. Since the point−r is also located on the tensor surface, we speak
of a midpoint surface.
Let us now investigate the transformation r′ = �′·r. There exist special directions

of r for which r and r′ are parallel vectors. These directions are known as the
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principal-axis directions. The corresponding mathematical statement is given by

r′ = �′ · r = λr or (�′ − λE)·r = 0 (M2.47)

where the scalar λ is the eigenvalue of the operator�′. An equation of this form is
known as an eigenvalue equation or characteristic equation. In coordinate notation
this eigenvalue equation can be written as

(Bmn − λδmn)xn = 0 (M2.48)

For the variables xj this is a linear homogeneous system that has nontrivial solutions
only if the determinant of the system vanishes, namely∣∣∣∣∣∣∣∣∣

B11 − λ B12 B13

B21 B22 − λ B23

B13 B23 B33 − λ

∣∣∣∣∣∣∣∣∣
= 0 (M2.49)

This results in an eigenvalue equation of third order, where the λi are the eigenvalues
of the operator�′. Every solution vector ri of

(�′ − λiE)·ri = 0 (M2.50)

that differs from the zero vector is an eigenvector corresponding to the eigenvalue
λi . From linear algebra we know that the eigenvalues of a symmetric matrix are
real and that the eigenvectors of such a matrix can always be chosen to be real.
Furthermore, a real symmetric matrix is diagonalizable. Moreover, eigenvectors of
such a matrix corresponding to distinct eigenvalues are orthogonal.
Let us now briefly consider the principal-axis directions. The symmetric dyadic

�′ = Bmnimin can be reduced to the simple form

�′ = λ1e1e1 + λ2e2e2 + λ3e3e3 (M2.51)

since symmetric matrices can be diagonalized. The basis vectors ei appearing in
(M2.51) are directed along the principal axes of the tensor ellipsoid as shown in
Figure M2.2. By expressing the position vector r as

r = e1ξ1 + e2ξ2 + e3ξ3 (M2.52)

we obtain the principal-axes form of the tensor ellipsoid

F = r·�′ ·r = λ1ξ
2
1 + λ2ξ

2
2 + λ3ξ

2
3 = 1 (M2.53)

The particular tensor ellipsoid of interest to our future studies is the stress tensor or
the stress dyadic. We will return to this section later when we discuss the viscous
forces acting on a surface element.
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Fig. M2.2 Eigenvectors ei of the tensor ellipsoid r ·�′ · r = 1 corresponding to the
eigenvalues λi .

M2.4 Invariants of a dyadic

Dyadics are extensive quantities that are independent of a coordinate system. If
the general multiplication is changed to scalar or vectorial multiplication, we find
expressions that again are independent of the coordinate system. Such coordinate-
independent expressions are called invariants of a dyadic. The starting point of our
discussion is the complete dyadic

� = Bnqn = Bm
nqmqn with Bi = �·qi = Bm

i qm (M2.54)

M2.4.1 The first scalar of a dyadic

On taking the scalar product of the vectors appearing in the dyadic we obtain the
first scalar�I of the dyadic,

�I = Bn ·qn = Bm
nqm ·qn = Bm

nδ
n
m = B11 + B22 + B33 (M2.55)

This is the trace of the coefficient matrix (Bi
j ). Owing to the validity of the

commutative law for the scalar product (M1.14), we obtain

�I = Bn ·qn = qn ·Bn = �̃I (M2.56)

Application of (M2.55) to the unit dyadic yields the interesting result

EI = qn ·qn = q1 ·q1 + q2 ·q2 + q3 ·q3 = 3 (M2.57)

According to (M2.28) the diagonal elements of an antisymmetric dyadic vanish so
that

�′′
I = 0 =⇒ �I = �′

I (M2.58)
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In thermodynamics and elsewhere it is customary to decompose the symmetric
dyadic �′ into an isotropic symmetric part �′

iso and an anisotropic symmetric part
�′
aniso:

�′ = �′
iso + �′

aniso requiring that (�′
iso)I = �′

I =⇒ (�′
aniso)I = 0 (M2.59)

We now rewrite �′ in the form

�′ = αE + (�′ − αE) (M2.60)

where α is a scalar that needs to be determined. The first term on the right-hand side
of (M2.60) represents the isotropic part while the second term is the anisotropic
part. Hence, α is found from

(�′ − αE)I = �′
I − 3α = 0 =⇒ α = �′

I/3 (M2.61)

and the isotropic and anisotropic parts of �′ are given by

�′
iso = �′

I

3
E, �′

aniso = �′ − �′
I

3
E (M2.62)

Utilizing (M2.27), (M2.59), and (M2.62) we may express any complete dyadic in
the form

� = �′ + �′′ = �′
iso + �′

aniso + �′′ = �′
I

3
E +

(
�′ − �′

I

3
E

)
+ �′′ (M2.63)

M2.4.2 The vector of a dyadic

The vector of a dyadic is defined by placing the cross, denoting vectorial multipli-
cation, between the members of each pair of vectors. Application of (M1.53) and
observing (M1.57) results in

�× = Bn × qn = Bmnqm × qn

= 1√
g

[
(B23 − B32)q1 + (B31 − B13)q2 + (B12 − B21)q3

] (M2.64)

It is immediately obvious that

�× = Bn × qn = −qn × Bn = −�̃× (M2.65)
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From (M2.64) it follows immediately that the vector of a symmetric dyadic must
vanish:

�′
× = 0 =⇒ �× = �′′

× (M2.66)

Of particular interest is the following equation:

E × B = B × E (M2.67)

indicating that vectorial multiplication of the unit dyadic E by an arbitrary vector
B is commutative. In order to give a very brief proof, we assume that B = q1,
yielding

E × q1 = qnqn × q1 = q2(q2 × q1)+ q3(q3 × q1) = −q2q3
√

g + q3q2
√

g

q1 × E = q1 × qnqn = (q1 × q2)q2 + (q1 × q3)q3 = q3q2
√

g − q2q3
√

g

=⇒ E × q1 = q1 × E

(M2.68)
In the general case the vector B consists of three components so that the proof is
more lengthy but not more difficult.
Of some interest to our future studies is the cross product of the unit dyadic with

the vector of the dyadic �. By employing the Grassmann rule (M1.44) we can
easily carry out the operations

E × �× = E × (Bn × qn) = qm
[
qm × (Bn × qn)

]
= qm(qm ·qn)Bn − qm(qm ·Bn)qn

= qnBn − E·Bnqn = qnBn − Bnqn = −2�′′
(M2.69)

This provides a new way to express an antisymmetric dyadic in the form

�′′ = − 12E × �× = − 1
2�× × E (M2.70)

Taking the scalar product of an antisymmetric dyadic with a vector B gives an
interesting and useful relation that may be helpful if complicated expressions have
to be manipulated:

�′′ ·B = − 12 (�× × E)·B = − 1
2�× × B = 1

2B × �× (M2.71)

M2.4.3 The second scalar of a dyadic

Another invariant is the second scalar of a dyadic, which by definition is the first
scalar of the adjoint dyadic. By employing equation (M2.31) we find

�II = (�a)I = (q1 × q2) · (B1 × B2)+ (q2 × q3) · (B2 × B3)

+ (q3 × q1) · (B3 × B1)
(M2.72)
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The cross products of the contravariant basis vectors appearing in this equation can
be removed with the help of equation (M1.53). By obvious steps we obtain

�II = 1

[q1,q2,q3]

[
q3 ·(B1 × B2)+ q1 ·(B2 × B3)+ q2 ·(B3 × B1)

]

= 1

[q1,q2,q3]
([q1,B2,B3]+ [B1,q2,B3]+ [B1,B2,q3])

(M2.73)

where the rules associated with the scalar triple product have been applied to
obtain the second equation. Since according to (M2.9) Bi = Bn

iqn, with the help
of (M1.38) we find for the first scalar triple product of (M2.73)

[q1,B2,B3] = [q1,q2,q3]

∣∣∣∣∣∣∣∣∣

1 0 0

B12 B22 B32

B13 B23 B33

∣∣∣∣∣∣∣∣∣
= [q1,q2,q3]

∣∣∣∣∣∣
B22 B32

B23 B33

∣∣∣∣∣∣
(M2.74)

Expressing the remaining terms in (M2.73) in the same way yields

�II =
∣∣∣∣∣∣

B11 B21

B12 B22

∣∣∣∣∣∣ +
∣∣∣∣∣∣

B11 B31

B13 B33

∣∣∣∣∣∣ +
∣∣∣∣∣∣

B22 B32

B23 B33

∣∣∣∣∣∣ (M2.75)

showing that the second scalar of the dyadic � is the sum of three second-order
determinants.
Let us now consider the determinant of the matrix (Bi

j ). From (M2.75) we easily
recognize that the second scalar of the dyadic � is the sum of the cofactors of the
elements forming the main diagonal of B:

�II = M3
3 + M2

2 + M1
1 (M2.76)

Since the reversal of factors in (M2.72) cannot yield a different result, we recognize
that the second scalar of the conjugate dyadic is identical with the second scalar of
the dyadic� itself:

�̃II = �II (M2.77)

Without verification we accept

�II = �′
II + �′′

II (M2.78)

The proof is somewhat lengthy but not particularly instructive.
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Before continuing with additional operations involving the second scalar, it will
be profitable to introduce the so-called double scalar product, which is also known
as the double-dot product. To begin with, consider the scalarmultiplicationsA·�·B.
Since the scalar product of a vectorwith a dyadic results in a new vector, the product
can be formed in two ways:

A·�·B = A·(�·B) = (�·B)·A
A·�·B = (A·�)·B = B·(A·�) (M2.79)

Obviously, the scalar product of vectors A and B is meaningless in these two
expressions. Thus, it is customary to introduce the double-dot or double scalar
product

(�·B)·A = �··BA, B·(A·�) = BA··� (M2.80)

On combining (M2.79) and (M2.80) we obtain the defining equation of the double
scalar product:

A·�·B = BA··� = �··BA (M2.81)

Some authors place the two dots vertically so that the double-dot product looks
like a ratio symbol.
Of considerable interest to our studies is the second scalar of an antisymmetric

dyadic. From (M2.8) we have Bi = �·qi . If � = �′′ we find from (M2.66) and
(M2.71) the relations

�′′ ·qi = Bi = 1
2qi × �′′

× = 1
2qi × �× (M2.82)

Substituting this expression into (M2.73) yields

�′′
II =

1

4[q1,q2,q3]
{q3 ·[(q1 × �×)× (q2 × �×)]+ q2 ·[(q3 × �×)× (q1 × �×)]

+ q1 ·[(q2 × �×)× (q3 × �×)]}
(M2.83)

Application of (M1.50) to each term within the braces of (M2.83) results in a total
of six terms. Three terms vanish since in these terms the same vector appears twice
in the scalar triple product. For the first term, this is explicitly shown in

(q1 × �×)× (q2 × �×) = [q1,�×,�×]q2 − [q1,�×,q2]�× = −[q1,�×,q2]�×
(M2.84)

Performing the same operation with the other two terms in (M2.83) and using the
rules of the scalar triple product, we find

�′′
II =

1

4[q1,q2,q3]
(q3 ·[q1,q2,�×]�×+ q2 ·[q3,q1,�×]�×+ q1 ·[q2,q3,�×]�×)

(M2.85)
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Utilizing the defining relation (M1.55) for the contravariant basis vectors results in

�′′
II = 1

4

[
q3 ·(q3 ·�×)�× + q2 ·(q2 ·�×)�× + q1 ·(q1 ·�×)�×

]
(M2.86)

In this equation we introduce the double scalar product according to (M2.81) as
well as the definition of the unit dyadic (M1.80), thus obtaining the final result

�′′
II = 1

4

[
(q1q1 + q2q2 + q3q3)··�×�×

] = 1
4E··�×�×

= 1
4�×·E·�× = 1

4
�×·�×

(M2.87)

M2.4.4 The third scalar of a dyadic

By introducing the reciprocal systems (M1.53) and (M2.41) into the definition of
the adjoint dyadic (M2.31), we obtain

�a = q3B3[q1,q2,q3][B1,B2,B3]+ q1B1[q1,q2,q3][B1,B2,B3]

+ q2B2[q1,q2,q3][B1,B2,B3]

= [q1,q2,q3][B1,B2,B3]qnBn = [q1,q2,q3][B1,B2,B3]�−1
(M2.88)

where the reciprocal dyadic has been used according to (M2.39). Scalar multipli-
cation of this expression by the dyadic � yields

�·�a = [q1,q2,q3][B1,B2,B3]E (M2.89)

This is the defining equation for the third scalar of the dyadic �, which may be
written as

�III = [q1,q2,q3][B1,B2,B3] = [B1,B2,B3]
[q1,q2,q3]

=

∣∣∣∣∣∣∣∣∣

B11 B12 B13

B21 B22 B23

B31 B32 B33

∣∣∣∣∣∣∣∣∣
(M2.90)

Hence, the third scalar of the dyadic� is the determinant of the coefficient matrix
(Bi

j ).
We conclude this section by stating two important special cases. From equation

(M2.26) for the antisymmetric dyadic we immediately see that

�′′
III = 0 (M2.91)

since the determinants of qnBn and Bnqn are equal. Finally, owing to the fact that
Det(Bi

j ) = Det(Bj

i ), we obtain

(�̃)III = �III (M2.92)
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M2.5 Tensor algebra

We conclude this chapter by presenting some interesting and useful tensor opera-
tions. Let us consider a dyadic in the form � = Bnqn. The double scalar product
involving the same dyadic twice is of some interest to our studies. By connecting
the exterior and interior vectors by the dots representing the scalar multiplication
we find

�··� = Brqr ··Bnqn = (qn ·Br )(qr ·Bn) (M2.93)

Using this result together with the first scalar�I = Bn ·qn = qn ·Bn we may easily
obtain the following determinant:

�··�−�I�I = (qn·Br )(qr·Bn)− (qn·Bn)(qr ·Br ) =
∣∣∣∣∣∣
qn ·Br qn ·Bn

qr ·Br qr ·Bn

∣∣∣∣∣∣ (M2.94)

Applying equation (M1.48) and utilizing the definitions of the adjoint dyadic
(M2.30) and of the second scalar (M2.72) yields

�··� − �I�I = (qn × qr)·(Br × Bn)

= −(qn × qr)·(Bn × Br ) = −2(�a)I = −2�II
(M2.95)

so that
�··� = �I�I − 2�II (M2.96)

Recall that the first scalar of an antisymmetric dyadic is zero; see (M2.58). Hence,
we find

�′′ ··�′′ = −2�′′
II, �′ ··�′ = �′

I�
′
I − 2�′

II (M2.97)

Next let us consider the vector product of the dyadic� with the vector (C×D).
By applying the Grassmann rule we find

� × (C × D) = Bn[qn × (C × D)] = Bn[(qn ·D)C − (qn ·C)D]
= (�·D)C − (�·C)D (M2.98)

Changing the position of the parentheses will also change the result.
Operations involving dyadics require some care, as the following examples show.

While the scalar product of two vectors is commutative, the scalar product of a
vector and a dyadic is not commutative:

C·� = C·(Bnqn) = (C·Bn)qn, �·C= (Bnqn)·C = (qn ·C)Bn (M2.99)

Moreover, the scalar product of two dyadics is not commutative either:

�·� = (AB)·(CD) = (B·C)AD, � ·�= (CD)·(AB) = (D·A)CB
(M2.100)
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Often it may be desirable to involve the scalar measure numbers in the scalar
product of two dyadics. Usually it is of advantage to use the reciprocal system of
basis vectors:

�·� = Am
nqmqn ·qpqrBp

r = Am
nB

n
rqmqr = Cm

r qmqr (M2.101)

The two scalar quantities are summed over n to give Ci
j = Ai

nB
n
j . This result

corresponds to the rules of matrix multiplication. The elements of the ith row are
multiplied by the elements of the j th column.
Next we wish to point out that the conjugate of the scalar product of two dyadics

is equal to the scalar product of the individual conjugate dyadics:

�̃·� = �̃·�̃ (M2.102)

Of great importance is the following equation:

E·� = �·E = � (M2.103)

showing that the scalar product of a dyadicwith the unit dyadic results in the dyadic
itself. Therefore, taking the scalar product of an abitrary dyadicwith the unit dyadic
is commutative. The proofs of (M2.102) and (M2.103) are straightforward and are,
therefore, omitted.
Consider the double-dot product of � = Bnqn and � = Drqr . The double-dot

product of the two dyadics involves the scalar product of reciprocal basis vectors:

�··� = Bnqn ··Drqr = Bm
nqmqn ··Dp

r qpqr

= Bm
nD

p
r (q

n ·qp)(qm ·qr ) = Bm
nD

n
m = Cm

m

(M2.104)

Hence, it can be seen that the double-dot product simply gives the trace of the
matrix (Ci

j ). From (M2.81) and (M2.104) we see that

�··� = � ··� = (�·�)I = Cm
m (M2.105)

On substituting into this expression� = E we obtain the important result

�··E = E··� = (�·E)I = �I (M2.106)

The validity of
�̃··�̃ = �··� (M2.107)

may easily be verified and is left as a simple excercise.
Of particular interest, as we shall see in our study of thermodynamics, is the

double scalar product of a symmetric and an antisymmetric dyadic. Using equation
(M2.107) and applying the definitions of the symmetric and antisymmetric dyadics
leads us to conclude that the double scalar product must vanish for consistency, as
shown in

�′ ··� ′′ = �̃′ ··�̃ ′′ = −�′ ··� ′′ = 0 (M2.108)
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M2.6 Problems

M2.1: Show that
A × r = r·�′′

where �′′ is an antisymmetric dyadic. Find �′′.

M2.2: By utilizing (M2.97) show that �′ ··�′ is positive definite.

M2.3: Show the validity of the following expressions:

(a) �×·� = �·�×, (b) (̃�a)× = �×·�
M2.4: Find the eigenvalues and eigenvectors of the eigenvalue problem

(� − λE)·r = 0, (�ij ) =



2 −1 0

−1 2 −1
0 −1 2




where
(
�ij

)
is the matrix corresponding to �. Hint: One eigenvalue is λ1 = 2.



M3

Differential relations

Manymathematical statements of the laws of physics involve differential or integral
expressions. Therefore, we must be able to differentiate and integrate expressions
involving vectors and dyadics. While in the Cartesian nonrotating coordinate sys-
tem the basis vectors i, j, and k may be treated as constants, basis vectors in
generalized coordinate systems depend on spatial coordinates and may depend on
time.

M3.1 Differentiation of extensive functions

Let us consider a curve k in space as shown in Figure M3.1. From some origin
we draw the position vector r(s) to the point s on the curve. Upon advancing the
arclength�s along the curve, the new position vector will be r(s +�s). Applying
the definition of the derivative

dr
ds

= lim
�s→0

|�r| e�r
�s

= lim
�s→0

�s e�r
�s

= e�r = eT (M3.1)

we obtain the unit tangent vector eT on the curve at point s.
When we are differentiating products involving vectors and dyadics we must

observe the sequence of the factors. An example is given by

d

ds
(A·�·B) = dA

ds
·�·B + A· d�

ds
·B +A·�· dB

ds
(M3.2)

Suppose that we wish to differentiate the vector A with respect to the parameter s.
In this case we must differentiate not only the scalar measure number Ai but also
the basis vector qi, since this vector varies in space:

dA
ds

= d

ds
(Anqn) = dAn

ds
qn +An

dqn
ds

(M3.3)

43
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T

)(
( )

r(s+∆s)

s+∆s

Fig. M3.1 The unit tangent vector eT along a curve k in space.

Fig. M3.2 A volume element of the generalized qi system.

An important example is the scalar product of the unit vectors, eA·eA. Differentiation
of this expressionwith respect to s shows that the derivative deA/ds is perpendicular
to eA

eA ·eA = 1 =⇒ d(eA ·eA)
ds

= eA · deA
ds

+ deA
ds

·eA = 2eA · deA
ds

= 0 (M3.4)

Let us now consider a volume element defined by sections of the contravariant
curvilinear coordinate lines qi as shown in Figure M3.2. Note that the coordinate
line q1 is formed by the intersection of the coordinate surfaces q2 = constant
and q3 = constant in the same way as that in which the x-axis of the orthogonal
Cartesian system is formed by the intersection of the surfaces y = constant and
z = constant. Analogously, the coordinate lines q2 and q3 are formed by the in-
tersection of the two other coordinate surfaces. The covariant basis vectors qi are
tangent vectors along the respective coordinate lines. The orientation of the basis
vectors qi at a given point P differs from the orientation of the basis vectors at
another point P ′. All vectors existing at point P have to be defined with respect
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to the basis existing at that point. In general, every point P ′ that is separated by a
finite distance from point P has a different basis so that all vectors defined at point
P ′ must be expressed in terms of the basis existing at P ′.
In the general qi-coordinate system all quantities depend on the spatial coordi-

nates qi (i = 1, 2, 3) and on time t . Hence, we write

ψ = ψ(q1, q2, q3, t) = ψ(qi, t)

A = Anqn = An(qi, t)qn(qi, t)

� = φmn(q
i, t)qm(qi, t)qn(qi, t)

(M3.5)

showing the explicit dependency of ψ , Ai , φij and of the basis vectors qi,q
j on

qi (i = 1, 2, 3) and t .
According to the rules of differential calculus, we may write the individual total

differentials of ψ,A,� in the forms

dψ = ∂ψ

∂t
dt + ∂ψ

∂qn
dqn

dA = ∂A
∂t
dt + ∂A

∂qn
dqn

d� = ∂�

∂t
dt + ∂�

∂qn
dqn

(M3.6)

We often call these expressions the total differentials or sometimes the individual
differentials of the corresponding variables. It can be seen that the total differential
consists of two parts. The first term represents the change with time of the variable
at a fixed point in space. Usually the partial derivative with respect to time ∂/∂t
is called the local time derivative. The second terms on the right-hand sides of
(M3.6) are the so-called geometric differentials of the variables, which are usually
abbreviated as follows:

dgψ = ∂ψ

∂qn
dqn

dgA = ∂A
∂qn

dqn

dg� = ∂�

∂qn
dqn

(M3.7)

Now we wish to investigate the relationship between the position vector r and
the basis vectors. Let us begin with the simple orthogonal Cartesian coordinate
system. For a fixed time the differential dr of the position vector r = r(x1, x2, x3)
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can be written as

dr = in dxn = i1 dx1 + i2 dx2 + i3 dx3

= ∂r
∂xn

dxn = ∂r
∂x1

dx1 + ∂r
∂x2

dx2 + ∂r
∂x3

dx3
(M3.8)

By comparing the differentials dxi of this equation we obtain the basic definition
of the unit vectors in the Cartesian system:

i1 = ∂r
∂x1

, i2 = ∂r
∂x2

, i3 = ∂r
∂x3

(M3.9)

Similarly, by expressing the position vector in the general curvilinear coordinate
system, we find for a fixed time t

dr = qn dqn = ∂r
∂qn

dqn (M3.10)

and the basic definition of the covariant basis vector qi

qi = ∂r
∂qi

(M3.11)

The unit vector ei is given as

ei = qi
|qi | = qi√

gii
= 1√

gii

∂r
∂qi

(M3.12)

Using the definition (M3.11), the scalar triple product formed by the covariant basis
vectors may be written as1

√
g
q

= [q1,q2,q3] =
[
∂r
∂q1

,
∂r
∂q2

,
∂r
∂q3

]
(M3.13)

and, by means of equation (M1.40), in the explicit form

√
g
q

= √
g
x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂q1

∂x2

∂q1

∂x3

∂q1

∂x1

∂q2

∂x2

∂q2

∂x3

∂q2

∂x1

∂q3

∂x2

∂q3

∂x3

∂q3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∣∣∣∣∂(x

1, x2, x3)

∂(q1, q2, q3)

∣∣∣∣ (M3.14)

1 Here and in the following, subscripts q or x (or others) denote the particular coordinate system in which the
corresponding variable has to be evaluated. They will, however, be used only if confusion is likely.
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The determinant of this expression is known as the functional determinant of the
transformation from the initial Cartesian xi-coordinate system to the general qi

system. The term
√
g
x
is the functional determinant of the Cartesian system with√

g
x

= [i1, i2, i3] = 1. The gij
q
of the square of the functional determinant are

gij
q

= qi ·qj = ∂r
∂qi

· ∂r
∂qj

= ∂in xn

∂qi
· ∂im x

m

∂qj
= ∂xn

∂qi

∂xn

∂qj
(M3.15)

Whenever the relationship between the Cartesian xi-coordinate system and the qi

system is given, it is a simple matter to evaluate this equation.
In analogy to the definition of the covariant basis vector qi we define the con-

travariant basis vector qi . From the basic definition

dr = ∂r
∂qn

dqn = qn dqn (M3.16)

and comparing the coefficients of the differential dqi , we easily find

qi = ∂r
∂qi

= gin
q
qn (M3.17)

where the second equality is the lowering rule according to (M1.84). If the three
covariant basis vectorsqi are known aswell as the contravariantmetric fundamental
quantities gij

q
, then the basis vectors qi may be computed.

There is a very important point that needs to be mentioned. The contravariant
coordinate lines of the curvilinear system are continuous coordinate lines so that

∂2

∂qi ∂qj
= ∂2

∂qj ∂qi
(M3.18)

applies. In this case the order of the partial derivatives is immaterial. Owing to the
properties of the reciprocal coordinate systems, the covariant coordinate lines can
be defined only piecewise. Therefore, as is shown in textbooks on analysis, the
order of the differentiation cannot be interchanged:

∂2

∂qi ∂qj
	= ∂2

∂qj ∂qi
(M3.19)

For this reason we prefer partial derivatives with respect to the contravariant co-
ordinates qi . In a later chapter we will encounter this situation involving (M3.19)
when we are dealing with natural coordinates.
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Fig. M3.3 The geometric meaning of the gradient operator.

M3.2 The Hamilton operator in generalized coordinate systems

Let us reconsider the geometric differential of a scalar field function as given in
(M3.7). By inserting the scalar product qi ·qi , which does not change the meaning
of dgψ , we obtain

dgψ = ∂ψ

∂qn
dqn =

3∑
i=1

∂ψ

∂qi
dqi =

3∑
i=1

(
∂ψ

∂qi
qi

)
·(qi dqi) = ∇ψ ·dr (M3.20)

Here we have introduced the Hamilton operator ∇, which is also known as the
gradient operator, the del operator, and the nabla operator. Thus, in general
coordinates we define ∇ by

∇ = qn
∂

∂qn
= qn∇n, ∇i = ∂

∂qi
(M3.21)

where we have also introduced the symbol ∇i to remind the reader that the partial
derivative ∂/∂qi is a covariant expression while qi itself is a contravariant coordi-
nate. The meaning of the nabla operator is twofold: First, it is a vector; and second,
it is a differential operator.
Now we consider the two scalar surfaces shown in Figure M3.3. At the point P

we construct the displacement vector dr = er dr as well as the unit normal vector
eN and a unit tangent vector eT along the surface ψ1 = constant. These two unit
vectors are perpendicular to each other.
We slightly rewrite equation (M3.20) in the form

dgψ = dr·∇ψ = er dr ·∇ψ (M3.22)

so that the geometric change dgψ/dr is expressed by

dgψ

dr
= er ·∇ψ (M3.23)
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If we select the displacement vector dr at P along the surface ψ1 = constant, i.e.
er = eT, then the geometric change vanishes:

eT ·∇ψ = 0 (M3.24)

Therefore, the vectors∇ψ and eT are perpendicular to each other and∇ψ is parallel
to the unit normal vector eN:

∇ψ = eN|∇ψ | (M3.25)

that is ∇ψ is perpendicular to the surface ψ = constant. Moreover, choosing
dr = eN drN means that the magnitude of∇ψ corresponds to the geometric change
dgψ along eN:

dgψ

drN
= eN ·∇ψ = |∇ψ | (M3.26)

If the ψ-surfaces are closely spaced, then the ψ-gradient is strong and vice versa.
Let us return to the contravariant basis vectors qi , whose directions are known if

the directions of the covariant basis vectors qi are known, as follows from (M1.55)
for the reciprocal systems. By utilizing the definition of the nabla operator we
have another way to obtain the direction of the contravariant basis vectors. From
(M3.21) it follows immediately that

∇qi = qn
∂qi

∂qn
= qi (M3.27)

Often it is desirable to express the gradient operator in terms of the unit vectors
ei instead of employing the general basis vectors qi . By obvious steps we introduce
the unit vector ei , which automatically leads to the introduction of the covariant
physical measure numbers ∇* i of the Hamilton operator:

qi ∇i = qi√
gii

√
gii ∇i = ei ∇* i = ei

∂

∂q
* i

with ∇* i =
√
gii ∇i (M3.28)

Whenever we are dealing with orthogonal systems, it is advantageous to employ
the gradient operator in the form

∇ = en
∂

∂q
* n = en ∇* n (M3.29)

Application of the gradient operator to the position vector r yields the unit
dyadic E:

∇r = qn
∂r
∂qn

= qnqn = E (M3.30)
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where use of (M3.11) has beenmade. In the special case of the orthogonalCartesian
system we obtain

∇r =
(
i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
(ix + jy + kz) = ii + jj + kk = E (M3.31)

Let us now return to the total derivatives (M3.6). Introducing the velocity
vector v,

v = dr
dt

= dqn

dt
qn = q̇nqn (M3.32)

we may write
dqn

dt

∂ψ

∂qn
=

(
dqn

dt
qn

)
·
(
qn
∂ψ

∂qn

)
= v·∇ψ (M3.33)

The scalar product v·∇ψ is known as the advection term. Substituting (M3.33) and
corresponding expressions for A and � into (M3.6) yields

dψ

dt
= ∂ψ

∂t
+ v·∇ψ

dA
dt

= ∂A
∂t

+ v·∇A
d�

dt
= ∂�

∂t
+ v·∇�

(M3.34)

These equations are known as theEuler developmentof the corresponding variables.
The Euler development applies not only to scalar field functions, vectors, and
dyadics, but also to higher-order tensors.
Before concluding this section let us briefly apply Euler’s development to the

vector A:

dA
dt

=
(
∂A
∂t

)
qi

+ q̇n
∂A
∂qn

=
(
∂Am qm
∂t

)
qi

+ q̇n
∂Am qm
∂qn

(M3.35)

As will be realized by now, in contrast to the Cartesian coordinate system, the basis
vectors qi of the general qi system are functions of the spatial coordinates qi and
of time. Thus, in the general case the gradient of the vectorA, which is also known
as the local dyadic of A, must be written as

∇A = ∇(Anqn) = (∇An)qn + An(∇qn)
= qm

∂An qn
∂qm

= qmqn
∂An

∂qm
+ Anqm

∂qn
∂qm

(M3.36)
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M3.3 The spatial derivative of the basis vectors

To begin with, we perform the partial differentiation of the covariant basis
vector qi with respect to the contravariant measure number qj . Since the order
of the differentiation may be interchanged, see (M3.18), we obtain the important
identity

∂qi
∂qj

= ∂

∂qj

(
∂r
∂qi

)
= ∂2r
∂qj ∂qi

= ∂2r
∂qi ∂qj

= ∂

∂qi

(
∂r
∂qj

)
= ∂qj
∂qi

(M3.37)

Differentiation of the covariant metric fundamental quantity gij , using (M3.37),
yields

∂gij

∂qk
= ∂

∂qk
(qi ·qj ) = ∂qi

∂qk
·qj + qi · ∂qj

∂qk
= ∂qk
∂qi

·qj + qi · ∂qk
∂qj

(M3.38)

By obvious steps this equation can be rewritten in the form

∂gij

∂qk
= ∂

∂qi
(qj ·qk)− qk · ∂qj

∂qi
+ ∂

∂qj
(qi ·qk)− qk · ∂qi

∂qj

= ∂gjk

∂qi
+ ∂gik

∂qj
− 2qk · ∂qi

∂qj

(M3.39)

In order to obtain compact and concise differentiation formulas we will introduce
the so-calledChristoffel symbols. The Christoffel symbol of the first kind is denoted
by �ijk and is defined by

�ijk = qk · ∂qi
∂qj

= 1

2

(
∂gjk

∂qi
+ ∂gik

∂qj
− ∂gij

∂qk

)
(M3.40)

From this expression it is easily seen that the indices i and j of the Christoffel
symbol may be interchanged, that is �ijk = �jik .
Next we perform a dyadic multiplication of (M3.40) with the contravariant basis

vector ql, yielding

qlqk · ∂qi
∂qj

= �ijkql (M3.41)

It is now possible to introduce the unit dyadic by a very useful mathematical
manipulation called contraction. First we set the covariant index k equal to the
contravariant index l and then we sum over k. However, according to the Einstein
summation convention, we introduce the summation index n by setting k = l = n

and obtain

qnqn · ∂qi
∂qj

= E· ∂qi
∂qj

= �ijnqn (M3.42)
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Often it is convenient to use the Christoffel symbol of the second kind, �kij . This
symbol is obtained from the Christoffel symbol of the first kind by lowering the
index of the contravariant basis vectors. Observing (M2.103), we find

∂qi
∂qj

= �ijnqn = �ijng
nmqm = �mijqm =⇒ �kij = �ijng

nk (M3.43)

From (M3.42) and (M3.43) we obtain the desired expression for the spatial deriva-
tive of the covariant basis vector qi:

∂qi
∂qj

= ∂qj
∂qi

= �ijnqn = �nijqn (M3.44)

With the help of this equation, the gradient of the covariant basis vector qi can be
written in the following concise form:

∇qi = qs
∂qi
∂qs

= qsqm�mis (M3.45)

At first glance, the Christoffel symbols have the appearance of tensors. However,
they are not tensors since they do not transform according to the tensor transfor-
mation laws which will be discussed later.
Using equations (M3.36) and (M3.45), the gradient of the vector A, expressed

with the help of the contravariant measure numbers Ai , can now be written in the
form

∇A = qmqn

(
∂An

∂qm
+ As�nms

)
(M3.46)

which required the renaming of the indices in order to extract the dyadic factor
qmqn.
If we wish to express the gradient of the vector A with the help of covariant

measure numbers Ai , we must proceed similarly. Differentiation of the scalar
product of the reciprocal basis vectors with respect to qj yields, together with
(M3.44),

∂

∂qj
(qi ·qk) = 0 =⇒ qk · ∂q

i

∂qj
= −qi · ∂qk

∂qj
= −�ijk (M3.47)

Dyadic multiplication of the latter equation by the contravariant basis vector ql and
contraction of the mixed tensor (setting k = l and summing, i.e. setting k = l = n)
gives

qnqn · ∂q
i

∂qj
= ∂qi

∂qj
= ∂qj

∂qi
= −�ijnqn (M3.48)
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Utilizing this expression, it is a simple matter to find the gradient of qi:

∇qi = qn
∂qi

∂qn
= −qnqs�ins (M3.49)

Finally, we wish to find the gradient of the vectorA if this vector is expressed in
terms of covariant measure numbers Ai . This leads to

∇A = ∇(Anqn) = qsqn
∂An

∂qs
−Anqsqm�nsm (M3.50)

Again, by interchanging the summation indices we can extract the factor qmqn to
obtain the more compact form

∇A = qmqn
(
∂An

∂qm
− As�

s
mn

)
(M3.51)

which should be compared with (M3.46).

M3.4 Differential invariants in generalized coordinate systems

In order to obtain the required invariants, we expand the general form of the local
dyadic ∇A and replace the contravariant basis vectors qi of the gradient operator
by means of formula (M1.55). The result is

∇A = qs
∂A
∂qs

= q1
∂A
∂q1

+ q2
∂A
∂q2

+ q3
∂A
∂q3

= 1√
g

(
(q2 × q3)

∂A
∂q1

+ (q3 × q1)
∂A
∂q2

+ (q1 × q2)
∂A
∂q3

)

= 1√
g

(
∂

∂q1
(q2 × q3A)+ ∂

∂q2
(q3 × q1A)+ ∂

∂q3
(q1 × q2A)

)

− 1√
g

(
∂

∂q1
(q2 × q3)+ ∂

∂q2
(q3 × q1)+ ∂

∂q3
(q1 × q2)

)
A

(M3.52)

It is a little tedious to show that the sum of the three terms within the last set of
large parentheses vanishes. Thus, equation (M3.52) reduces to

∇A = 1√
g

(
∂

∂q1
(q2 × q3A)+ ∂

∂q2
(q3 × q1A)+ ∂

∂q3
(q1 × q2A)

)
(M3.53)

This is the form which will be used to obtain the invariants.
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M3.4.1 The first scalar or the divergence of the local dyadic ∇A
By expressing the vector A with the help of the covariant basis vectors qi and then
taking the scalar product, we find

∇ · A = 1√
g

(
∂

∂q1
[(q2 × q3)·Anqn]+ ∂

∂q2
[(q3 × q1)·Anqn]

+ ∂

∂q3
[(q1 × q2)·Anqn]

) (M3.54)

Let us consider the first term in expanded form. Only the term involving q1 makes a
contribution; the remaining terms involving q2 and q3 must vanish since the scalar
triple products are zero. The same arguments hold for the remaining two terms in
(M3.54), so that

∇ · A = 1√
g

(
∂

∂q1
[(q2 × q3)·A1q1]+ ∂

∂q2
[(q3 × q1)·A2q2]

+ ∂

∂q3
[(q1 × q2)·A3q3]

) (M3.55)

By observing the definition of
√
g and the rules of the scalar triple product we find

the desired relation:

∇·A = 1√
g

(
∂

∂qn
(An√g )

)
= 1√

g

∂

∂qn
(qn ·A√

g ) (M3.56)

with Ai = qi ·A. In the orthogonal Cartesian system, the divergence expression is
particularly simple since

√
g = 1 so that (M3.56) reduces to

∇·A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
(M3.57)

The first scalar of the dyadic ∇B has the same form as (M3.56). In this case,
however, we have to watch the position of the dyadic as stated in

∇·B = 1√
g

∂

∂qn
(qn ·B√

g ) (M3.58)

The reader is invited to verify this formula. This is an easy but somewhat tedious
task since it involves the spatial differentiation of the basis vectors.
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M3.4.2 The Laplacian of a scalar field function

Defining the vector A = ∇ψ, we find with the help of (M3.56) the desired
expression

∇·∇ψ = ∇2ψ = 1√
g

∂

∂qn

(√
gqn ·qm ∂ψ

∂qm

)

= 1√
g

∂

∂qn

(√
g gnm

∂ψ

∂qm

) (M3.59)

where ∇2 is the so-called Laplace operator. Some authors denote the Laplacian
operator by the symbol �. We shall reserve the symbol � for representing the
difference operator. Only in the Cartesian system does (M3.59) reduce to the
following very simple form:

∇·∇ψ = ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
(M3.60)

M3.4.3 The vector of the local dyadic ∇A
Taking the cross product of the gradient operator with the vector A in equation
(M3.53), we first obtain three vectorial triple cross products:

∇ × A = 1√
g

(
∂

∂q1
[(q2 × q3)×A]+ ∂

∂q2
[(q3 × q1)×A]

+ ∂

∂q3
[(q1 × q2)× A]

) (M3.61)

Application of the Grassmann rule (M1.44) immediately results in

∇ × A = 1√
g

(
∂

∂q1
[(A·q2)q3 − (A·q3)q2]+ ∂

∂q2
[(A·q3)q1 − (A·q1)q3]

+ ∂

∂q3
[(A·q1)q2 − (A·q2)q1]

)

= 1√
g

(
∂

∂q1
(A2q3 − A3q2)+ ∂

∂q2
(A3q1 − A1q3)+ ∂

∂q3
(A1q2 − A2q1)

)

(M3.62)



56 Differential relations

which can be written in the convenient determinant form

∇ × A = 1√
g

∣∣∣∣∣∣∣∣∣∣∣∣

q1 q2 q3

∂

∂q1

∂

∂q2

∂

∂q3

A1 A2 A3

∣∣∣∣∣∣∣∣∣∣∣∣
(M3.63)

Since in the Cartesian system
√
g = 1, in this special casewe obtain thewell-known

formula

∇ × A =

∣∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

Ax Ay Az

∣∣∣∣∣∣∣∣∣∣∣∣∣
(M3.64)

The vector ∇ × A is commonly known as the curl of A or rot A.

M3.5 Additional applications

Of particular interest are the invariants of the unit dyadic and of the gradient of
the position vector. Utilizing the expressions (M3.44) and (M3.48) for the spatial
derivatives of the covariant and the contravariant basis vectors, respectively, we
may write

∇E = qn
∂

∂qn
(qmqm) = qn

(
∂ qm

∂qn
qm + qm

∂qm
∂qn

)

= qn
(−qr�mrnqm + qm�rmnqr

) = 0
(M3.65)

The two terms involving the Christoffel symbols are identical since in the last term
the summation indices m and r may be interchanged without changing the value
of this term. Thus, the gradient of the unit dyadic vanishes and we have

∇·E = 0, ∇ × E = 0 (M3.66)

Recalling that according to (M3.30) the gradient of the position vector r is the unit
dyadic, that is ∇r = E = qnqn, we immediately obtain

∇·r = qn ·qn = 3, ∇ × r = qn × qn = 0 (M3.67)
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It will very often be necessary to apply the Hamilton operator to products of
various types of extensive functions. Sometimes this can be very complex. To avoid
errors we must apply the following rules:

(I) As the first step we must apply the well-known product rules of differential calculus.
(II) As the second step we must apply the rules of vector algebra with the goal in mind to

obtain a unique and an unmistakeable arrangement of operations.

The following rule helps us to accomplish this task: An arrow placed above any
vector in a product implies that only this vector need be differentiated while the
remaining vectors in the product are treated as constants. As an example consider
the operation

∇(A·
↓
B) = ∇(

↓
B·A) = (∇B)·A (M3.68)

The arrow placed above the vector B indicates that the gradient operator is applied
to this vector only. Since we are dealing with a scalar product, the operation is very
simple. When the proper order of the operations is clear we omit the arrow. The
following example implies that only vector A ahead of the gradient symbol is to
be differentiated:

↓
A(∇·B) = (B·∇)

↓
A = B·∇A (M3.69)

We must be careful that the dot between the gradient operator and the vector B
does not change its position, otherwise the value of the entire expression will be
changed. When the operation is finished, the arrow is no longer needed and may
be omitted.
A somewhat more complex example is given by

∇·(A·�) = ∇·(
↓
A·�)+ ∇·(A·

↓
�)

= ∇A··� + (A·�)·�∇ = ∇A··� + A·(∇·�̃)
(M3.70)

Note that the term A·
↓
� is a vector so that ∇·(A·

↓
�) is a scalar product. Thus we

may rewrite this expression by interchanging the positions of the two vectors ∇
and (A ·

↓
�). The curved backward arrow occurring in (M3.70) indicates that the

gradient operates on � only. Finally, in order to obtain the usual notation without
the backward arrow, in the last expressionof (M3.70)we have used the rule (M2.18)
for the multiplication of a vector by a dyadic. Later it will become apparent that
this equation is particularly interesting if A is identified as the velocity vector v
and the dyadic � as ∇v. This results in

∇·(v·∇v) = ∇v··∇v + v·[∇·(v�∇)] = ∇v··∇v + v·∇(∇ · v) (M3.71)
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Now consider the expressionA× (∇ ×B). First of all it should be observed that
the differentiation refers to the vector B. By using Grassmann’s rule (M1.44) we
find

A× (∇ × B) = (A·B)�∇ −A·∇B = (∇B)·A −A·∇B (M3.72)

Replacing A in this equation by the nabla operator yields

∇ × (∇ × B) = ∇(B·�∇) − ∇·∇B = ∇(∇·B) − ∇2B (M3.73)

This particular form is often needed.
Equation (M3.72) may be rearranged as

A·∇B = (∇B)·A + (∇ × B)× A (M3.74)

Replacing now A and B by v, we find the so-called Lamb transformation

v·∇v = (∇v)·v + (∇ × v)× v = ∇
(
v2

2

)
+ (∇ × v)× v (M3.75)

which is of great importance in dynamic meteorology.
Now we will derive another important formula that will be used in dynamic

meteorology. We start by rearranging (M3.71) into the form

∇v··∇v = ∇·(v·∇v) − v·∇(∇ · v) (M3.76)

Utilizing (M3.75), the first term on the right-hand side may be rewritten as

∇·(v·∇v) = ∇2

(
v2

2

)
− ∇·[v × (∇ × v)] (M3.77)

In this equation the last term on the right-hand side will be evaluated:

∇·[v × (∇ × v)] = ∇·[↓
v × (∇ × v)]− ∇·[

↓
(∇ × v)× v]

= (∇ × v)·(∇ × v)− [∇ × (∇ × v)]·v
= (∇ × v)2 − v·[∇ × (∇ × v)]

= (∇ × v)2 − v·[∇(∇ · v)− ∇2v]

(M3.78)

The last equation has been obtained by making use of (M3.73) with B = v. Hence,
(M3.77) may be written as

∇·(v·∇v) = ∇2

(
v2

2

)
− (∇ × v)2 + v·[∇(∇ · v)]− v·∇2v (M3.79)
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Substituting this expression into (M3.76) yields the final result

∇v··∇v = ∇2

(
v2

2

)
− (∇ × v)2 − v·∇2v (M3.80)

Finally, we consider an arbitrary field vector A, which is assumed to depend on
some scalar functions ψ and χ , whereby these functions depend on the position
and on time, as shown in

A = A[ψ(q1, q2, q3, t), χ (q1, q2, q3, t)] (M3.81)

Now the gradient of A is given by

∇A = qn
∂A
∂qn

= qn
(
∂A
∂ψ

∂ψ

∂qn
+ ∂A
∂χ

∂χ

∂qn

)
= ∇ψ ∂A

∂ψ
+ ∇χ ∂A

∂χ
(M3.82)

It is important to observe the positions of the vectors forming the dyadics.
In the simple case thatA = A[ψ(q1, q2, q3, t)], the gradient ofA, the first scalar,

and the vector of ∇A are given by

∇A = ∇ψ dA
dψ

, ∇·A = ∇ψ · dA
dψ

, ∇ ×A = ∇ψ × dA
dψ

(M3.83)

The Laplacian of A is obtained from

∇2A = ∇·
(

∇ψ dA
dψ

)
= ∇2ψ

dA
dψ

+ ∇ψ ·∇
(
dA
dψ

)

= ∇2ψ
dA
dψ

+ ∇ψ ·
(

∇ψ d2A
dψ2

)
= ∇2ψ

dA
dψ

+ (∇ψ)2 d
2A
dψ2

(M3.84)

In the final step use of the first equation of (M3.83) has been made by replacing A
there by the derivative dA/dψ .
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M3.6 Problems

M3.1: Use generalized coordinates to show that

∇r = E, ∇(r·r) = 2r, ∇r = er , ∇
(
1

r

)
= − r

r3

∇ · r = 3, ∇ × r = 0, ∇ · er = 2

r
, ∇ ·

(er
r2

)
= 0, ∇2

(
1
|r|

)
= 0

M3.2: The potential temperature of dry air is given by θ = T/� where � =
(p/p0)R0/cp,0 is the so-called Exner function. p is the pressure, p0 = 1000 hPa, T
the temperature,R0 the individual gas constant, and cp,0 the specific heat at constant
pressure. Find the gradient of the potential temperature.

M3.3: Assume that a vector W is given by W = r2Ω, where Ω is a constant
rotational vector. Use generalized coordinates to find expressions for

(a) ∇ · W, (b) ∇ × W, (c) ∇2W, (d) v·∇W

M3.4: According to a theorem of potential theory, the velocity vector can be split
according to v = −∇ × Ψ + ∇χ with the additional condition ∇ · Ψ = 0. Here
Ψ is a vector (the stream-function vector) and χ is a scalar function (the velocity
potential). You do not need to know the meaning of Ψ and χ to perform the
following differential operations:

(a) ∇ · v, (b) ∇ × v, (c) ∇2v

(d) ∇(∇ · v), (e) ∇ · [ 12 (∇v + v
�∇ − 1

3∇ · vE]

Hint: The Laplace operator and the gradient operator can be interchanged. In
generalized coordinates the validity of this operation is difficult to show, so the
proof will be omitted.

M3.5: Use generalized coordinates to show that ∇ · E = 0.

M3.6: The frictional stress tensor can be written in the form

J = η

2

(
∇v + v

�∇ − 2

3
∇ · vE

)

where η is a scalar coefficient. Use Cartesian coordinates to solve the following
problems.
(a) Show that the trace of J is zero.
(b) By assuming that w = 0, ∂u/∂x = 0, ∂u/∂y = 0, ∂v/∂x = 0, ∂v/∂y = 0,
write J in matrix form.
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(c) By using the simplifications stated in (b), find the eigenvalues of J.
(d) Show that the eigenvectors corresponding to (c) form an orthogonal system.
(e) In this orthogonal system J can be written in the form J = ∑3

i=1 λiΨ
iΨi ,

where Ψi are the eigenvectors corresponding to the eigenvalues λi . By assuming
additionally that ∂v/∂z = 0, show that the tensor ellipsoid is a hyperbola.

M3.7: By evaluating the expression ∂gij/∂qk show the validity of the relation

∂qi
∂qj

= �mijqm

M3.8: Show that the following relations are valid:

(a) �nin = 1√
g

∂
√
g

∂qi
, (b) gmn

∂gmn

∂qi
= − 2√

g

∂
√
g

∂qi

M3.9: Show that, in generalized coordinates, the following expression is valid:

∇ · J = 1√
g

∂

∂qn
(
√
gJmnqm) with J = Jmnqmqn

Hint: Start with equation (M3.53). The properties of the vector A have not been
used in the derivation. Can A be replaced by a dyadic?

M3.10: Suppose that the vectorsM and N satisfy the expressions

∇2M+ M = 0, ∇2N+ N = 0 with ∇ · M = 0, ∇ · N = 0

Show that a consequence of these relations is that

M = ∇ × N, N = ∇ × M
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Coordinate transformations

M4.1 Transformation relations of time-independent coordinate systems

M4.1.1 Introduction

As mentioned earlier, all physically relevant quantities such as mass, time, force,
and work are defined without reference to any coordinate system. This implies that
they are invariant with regard to coordinate transformations. On the other hand,
there are other quantities such as the components of vectors and of tensors and par-
ticularly the basis vectors qi,qi that strongly depend on the choice of a coordinate
system. The question of the way in which these quantities are changed by changing
the coordinate system arises quite naturally. In order to derive the desired trans-
formation relations we will consider two time-independent but otherwise arbitrary
coordinate systems qi and ai as stated in

qi = qi(a1, a2, a3), ai = ai(q1, q2, q3) (M4.1)

In general, these relations are nonlinear. Extensive quantities that are invariant with
regard to coordinate transformations may be expressed in either coordinate system.
For instance we may write

qi system ai system

(a) ψ = ψ(qi, t) ψ = ψ(ai, t)

(b) A = A
q

n(qi, t)qn = A
q n(q

i, t)qn A = A
a

n(ai, t)an = A
a n(a

i, t)an

(c) dr = qn dq
n = qn dqn dr = an da

n = an dan

(d)
√
g
q

= [q1,q2,q3]
√
g
a

= [a1, a2, a3]

(e)
1√
g
q

= [q1,q2,q3]
1√
g
a

= [a1, a2, a3]

(f) ∇ = qn ∇
qn = qn

∂

∂qn
∇ = an ∇

an = an
∂

∂an

(M4.2)

62
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While the coordinate systems are assumed to be independent of time, the scalar
ψ and the vector components A

q

i, A
a

i in general are time-dependent. The time
dependency is evident on considering such scalar quantities as temperature and the
components of the velocity vector.

We will always assume that the relations (M4.1) are uniquely invertible, which
is guaranteed if the functional determinant is nonzero, that is

∣∣∣∣ ∂(a1, a2, a3)

∂(q1, q2, q3)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂a1

∂q1

∂a1

∂q2

∂a1

∂q3

∂a2

∂q1

∂a2

∂q2

∂a2

∂q3

∂a3

∂q1

∂a3

∂q2

∂a3

∂q3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= √
g
q
[qn ∇

q na
1,qm ∇

qma
2,qr ∇

q ra
3]

= √
g
q
Jq(a

1, a2, a3) �= 0

(M4.3)
The form stated to the right of the second equality sign is easily established by
substituting A = qn ∇

q na
1,B = qm ∇

qma
2,C = qr ∇

q ra
3 into equation (M1.96).

The symbol Jq(a1, a2, a3) is known as the Jacoby operator of the qi system. By
interchanging the symbols qi and ai we immediately find the inverse relation

∣∣∣∣∂(q1, q2, q3)

∂(a1, a2, a3)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂q1

∂a1

∂q1

∂a2

∂q1

∂a3

∂q2

∂a1

∂q2

∂a2

∂q2

∂a3

∂q3

∂a1

∂q3

∂a2

∂q3

∂a3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= √
g
a
[an ∇

anq
1, am ∇

a mq
2, ar∇

a rq
3]

= √
g
a
Ja(q

1, q2, q3) �= 0

(M4.4)
The relation between the two functional determinants is given by∣∣∣∣ ∂(a1, a2, a3)

∂(q1, q2, q3)

∣∣∣∣
∣∣∣∣∂(q1, q2, q3)

∂(a1, a2, a3)

∣∣∣∣ = 1 (M4.5)

This formula, which is derived in many textbooks on analysis, will be verified later.

M4.1.2 Transformation of basis vectors and coordinate differentials

Let us now consider the following equations:

dr(q1, q2, q3) = dr[a1(q1, q2, q3), a2(q1, q2, q3), a3(q1, q2, q3)]

dr(a1, a2, a3) = dr[q1(a1, a2, a3), q2(a1, a2, a3), q3(a1, a2, a3)]
(M4.6)
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where we have used the functional relations (M4.1). After taking the total differ-
entials of both sides of these expressions, we compare the coefficients of dqi and
dai . This leads to

∂r
∂qi

= ∂r
∂an

∂an

∂qi
,

∂r
∂ai

= ∂r
∂qn

∂qn

∂ai
(M4.7)

By employing the definition (M3.11), we immediately obtain the important trans-
formation rules

qi = ∂an

∂qi
an, ai = ∂qn

∂ai
qn (M4.8)

for the covariant basis vectors. Using the definition (M3.27), we find from (M4.2f)
the transformation rules for the contravariant basis vectors

qi = ∇qi = ∂qi

∂an
an, ai = ∇ai = ∂ai

∂qn
qn (M4.9)

Now we will discuss the relations among the differentials dai, da
i, dqi, and dqi .

Owing to (M4.2c) and (M4.9) we may first write

(a) dr = qn dqn = an dan = qm
∂an

∂qm
dan

(b) dr = an dan = qn dqn = am
∂qn

∂am
dqn

(M4.10)

Scalar multiplication of (M4.10a) by the basis vector qi and scalar multiplication
of (M4.10b) by the basis vector ai immediately gives the transformations

dqi = ∂an

∂qi
dan, dai = ∂qn

∂ai
dqn (M4.11)

Comparison of (M4.11) with (M4.8) shows that the differentials dai and dqi trans-
form in exactly the same way as the covariant basis vectors ai and qi .

We proceed analogously to find the relations for the differentials of the con-
travariant quantities dai and dqi . Starting with

(a) dr = qn dq
n = an da

n = qm

∂qm

∂an
dan

(b) dr = an da
n = qn dq

n = am

∂am

∂qn
dqn

(M4.12)

and multiplying (M4.12a) by qi and (M4.12b) by ai yields the transformations

dqi = ∂qi

∂an
dan, dai = ∂ai

∂qn
dqn (M4.13)

Comparison of (M4.13) with (M4.9) shows that the contravariant differentials are
transformed in the same way as the corresponding contravariant basis vectors.
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M4.1.3 Transformation of vectors and dyadics

The transformation relations for the covariant and the contravariant measure num-
bers of the vector A are found in the same way as for the various differentials of
the previous section. First we write A in the four different forms

(a) A = qnA
q n = anA

a n = qm
∂an

∂qm
A
a n

(b) A = anA
a n = qnA

q n = am
∂qn

∂am
A
q n

(c) A = qnAq
n = anAa

n = qm

∂qm

∂an
A
a

n

(d) A = anAa
n = qnAq

n = am

∂am

∂qn
A
q

n

(M4.14)

Scalar multiplication of (M4.14a) by qi , (M4.14b) by ai , (M4.14c) by qi , and
(M4.14d) by ai yields the desired results

A
q i = ∂an

∂qi
A
a n, A

a i = ∂qn

∂ai
A
q n

A
q

i = ∂qi

∂an
A
a

n, A
a

i = ∂ai

∂qn
A
q

n

(M4.15)

Again, as expected, the covariant and the contravariant measure numbers of A
transform in the same way as the corresponding basis vectors in (M4.8) and (M4.9).

The transformation of the measure numbers of B is a little more complex. We
will derive in detail the transformation rules for the contravariant measure numbers.
In the two coordinate systems B may be written as

B = B
a

mnaman = B
q

rsqrqs = B
q

rs ∂au

∂qr

∂av

∂qs
auav (M4.16)

Scalar multiplication of this expression from the right first by aj and then by ai

gives

B
a

mnδi
mδ

j
n = B

q

rs ∂au

∂qr

∂av

∂qs
δi
uδ

j
v (M4.17)

which may be further evaluated, yielding

B
a

ij = B
q

rs ∂ai

∂qr

∂aj

∂qs
(M4.18)
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The transformation of the covariant and the mixed measure numbers proceeds
analogously. All results are summarized in

B
q

ij = B
a

mn
∂qi

∂am

∂qj

∂an
, B

a

ij = B
q

mn
∂ai

∂qm

∂aj

∂qn

B
q ij

= B
a mn

∂am

∂qi

∂an

∂qj
, B

a ij = B
qmn

∂qm

∂ai

∂qn

∂aj

B
q

i
j = B

a

m
n

∂qi

∂am

∂an

∂qj
, B

a

i
j= B

q

m
n

∂ai

∂qm

∂qn

∂aj

B
q i

j = B
a m

n
∂am

∂qi

∂qj

∂an
, B

a i
j= B

q m
n
∂qm

∂ai

∂aj

∂qn

(M4.19)

Utilizing the transformation rules for the covariant basis vectors (M4.8), it is
easy to find the transformation relations for the functional determinants of the qi

system and the ai system. According to (M1.37) and (M4.8) we may write

√
g
q

= [q1,q2,q3] =
[
∂an

∂q1
an,

∂am

∂q2
am,

∂ar

∂q3
ar

]

= [a1, a2, a3]

∣∣∣∣ ∂(a1, a2, a3)

∂(q1, q2, q3)

∣∣∣∣ = √
g
a

∣∣∣∣ ∂a
i

∂qj

∣∣∣∣
(M4.20)

The inverse relation can be found in the same way or by simply interchanging the
symbols q and a so that

√
g
q

= √
g
a

∣∣∣∣ ∂a
i

∂qj

∣∣∣∣, √
g
a

= √
g
q

∣∣∣∣ ∂q
i

∂aj

∣∣∣∣ (M4.21)

Occasionally the chain rule for the functional determinant is of great usefulness.
With the help of (M4.21) this rule can be derived very easily by recalling that, for
the Cartesian system, the functional determinant

√
g
x

= 1. Setting in the first and

the second equation of (M4.21) ai = xi and qi = xi , respectively, we obtain

√
g
q

=
∣∣∣∣ ∂x

i

∂qj

∣∣∣∣, √
g
a

=
∣∣∣∣ ∂x

i

∂aj

∣∣∣∣ (M4.22)

Substitution of these expressions into (M4.21) gives

√
g
q

=
∣∣∣∣ ∂x

i

∂aj

∣∣∣∣
∣∣∣∣∂a

k

∂ql

∣∣∣∣, √
g
a

=
∣∣∣∣ ∂x

i

∂qj

∣∣∣∣
∣∣∣∣∂q

k

∂al

∣∣∣∣ (M4.23)
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The interpretation of the chain rule is quite simple. The functional determinant
√
g
q

corresponds to an initial transformation from the Cartesian xi system into the ai

system followed by the transformation into the qi system. For
√
g
a
the interpretation

is analogous.
We conclude this section by presenting the transformation rule for the measure

numbers of the nabla operatorwhich, according to (M4.2f), may be stated in various
ways. Application of (M4.15) immediately yields the transformation rules

∂

∂qi
= ∇

q i = ∂an

∂qi
∇
a n = ∂an

∂qi

∂

∂an
,

∂

∂ai
= ∇

a i = ∂qn

∂ai
∇
q n = ∂qn

∂ai

∂

∂qn

(M4.24)
which are quite useful for handling various problems.

M4.2 Transformation relations of time-dependent coordinate systems

M4.2.1 The addition theorem of the velocities

In order to derive the equations of air motion relative to the rotating earth, we
must consider two coordinate systems. The first system is a time-independent
absolute coordinate system or inertial system, which is assumed to be at rest with
respect to the fixed stars.1 This coordinate system will be described in terms of
the Cartesian coordinates xi . The second coordinate system, also known as the
relative coordinate system, is time-dependent and is moving with respect to the
absolute system. Motion in the relative system will be described with the help
of the qi-coordinates, which may be curvilinear and oblique. The transformation
relation for the two coordinate systems is given by

xi = xi(q1, q2, q3, t), i = 1, 2, 3 (M4.25)

In contrast to the transformation relation (M4.1), we have now admitted an explicit
time dependency.

Physical quantities (scalars, vectors, etc.) are invariant with respect to coordinate
transformations and may be expressed either in the xi system or in the qi system.
Two examples are

ψ = ψ(x1, x2, x3, t) = ψ(q1, q2, q3, t)

A = A
x

n(x1, x2, x3, t)in = A
q

n(q1, q2, q3, t)qn(q
1, q2, q3, t)

(M4.26)

The reader should note that, in the qi system, the basis vectors qi depend not only
on the coordinates qi but also explicitly on time t .

1 The system may also move with a constant velocity with respect to the fixed stars.
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Let us consider the scalar quantity ψ which may be expressed by the functional
relation

ψ = ψ(q1, q2, q3, t) = ψ[x1(q1, q2, q3, t), x2(q1, q2, q3, t), x3(q1, q2, q3, t), t]
(M4.27)

Forming the partial derivative of this expression with respect to time, we obtain
the local change with time of ψ which differs by one term in the two coordinate
systems, (

∂ψ

∂t

)
qi

=
(
∂ψ

∂t

)
xi

+ ∂ψ

∂xn

(
∂xn

∂t

)
qi

(M4.28)

The total derivative of ψ with respect to time yields the two equations

dψ

dt
=

(
∂ψ

∂t

)
xi

+ ∂ψ

∂xn
ẋn with ẋn = dxn

dt

dψ

dt
=

(
∂ψ

∂t

)
qi

+ ∂ψ

∂qn
q̇n with q̇n = dqn

dt

(M4.29)

Analogous expressions are also obtained for vectors and higher-degree extensive
functions. The total time derivative d/dt is an invariant operator, i.e. it is inde-
pendent of any particular coordinate system. Thus, d/dt expresses the individual
changes with time of physical quantities such as temperature, density and velocity.

We now form the individual change with time of the position vector r expressed
in the absolute system

dr
dt

= in
dxn

dt
= in

(
∂xn

∂t

)
xi

+ in
∂xn

∂xm
ẋm = 0 + inẋn = vA (M4.30)

First we observe that the partial derivativewith respect to time vanishes since the xi-
coordinates are held constant. The second part of (M4.30) leads to the introduction
of the velocity in the absolute coordinate system vA which is also called the absolute
velocity.

In the qi-coordinate system the individual changewith time of the position vector
r is given by

dr
dt

=
(
∂r
∂t

)
qi

+ q̇n
∂r
∂qn

=
(
∂r
∂t

)
qi

+ q̇nqn = vP + v (M4.31)

where use of (M3.11) has been made. Now the local change with time of r does
not vanish since the qi system is time-dependent. Instead, the first term of (M4.31)
expresses the motion of a fixed point in the qi system moving with velocity vP

relative to the Cartesian system. The second part of (M4.31) represents the velocity
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v of a fluid particle relative to the qi system,which is known as the relative velocity.
Combining (M4.30) and (M4.31) yields

vA = vP + v (M4.32)

which is known as the addition theorem of the velocities.
The relative coordinate system in our case is attached to the solid earth sur-

rounded by the atmosphere.A point fixed in this systemwill experience the velocity
vP which consists of three parts

vP = vT + v� + vD (M4.33)

The first part is the translatory velocity vT representing the motion of the earth
around the sun. In general, for atmospheric systems the acceleration of this part
of the total motion is ignored. Therefore, vT will be omitted from now on. The
second part of vP is the rotational velocity v� due to the rotation of the earth
about its axis. Finally, in arbitrary time-dependent coordinate systems a point fixed
on a coordinate surface qi = constant may perform motions with respect to the
corresponding xi-coordinate of the inertial system. This may be easily recognized
if the vertical coordinate q3 is given by the pressure p. A point fixed on a pressure
surface q3 = p = constant will perform vertical motions since usually pressure
surfaces are not stationary. This velocity is known as the deformation velocity vD

due to the deformation of the coordinate surfaces qi = constant. A more detailed
discussion of the velocity vP will be given later.

We will conclude this section by considering the divergence of vP . Moreover,
we will also show that vP can be found with the help of the absolute kinetic energy
of an atmospheric mass particle. According to equation (M3.11) we may first write

(
∂qi

∂t

)
qi

=
[
∂

∂t

(
∂r
∂qi

)]
qi

=
[

∂

∂qi

(
∂r
∂t

)
qi

]
= ∂vP

∂qi
(M4.34)

With the help of (M4.2f) and (M4.34) we find for the divergence of vP

∇·vP = qn · ∂vP

∂qn
= qn ·

(
∂qn

∂t

)
qi

= q2 × q3√
g
q

·
(
∂q1

∂t

)
qi

+ q3 × q1√
g
q

·
(
∂q2

∂t

)
qi

+ q1 × q2√
g
q

·
(
∂q3

∂t

)
qi

= 1√
g
q

(
∂

∂t
[q1 ·(q2 × q3)]

)
qi

= 1√
g
q


∂

√
g
q

∂t




qi

(M4.35)



70 Coordinate transformations

where use of the basic definition of the reciprocal systems (M1.55) has been made.
As will be shown later, the divergence of v� is zero so that the divergence of vP is
given by

∇·vP = 1√
g
q


∂

√
g
q

∂t




qi

= ∇·vD (M4.36)

From physical reasoning this result is also obvious since the angular velocity of
the earth is a constant vector.

We will now show how vP can be found from the absolute kinetic energy per
unit mass

KA = v2
A

2
= (v + vP )·(v + vP )

2
= v2

2
+ v·vP + v2

P

2

= q̇mq̇n

2
qm ·qn + q̇mqm ·W

q n
qn + v2

P

2

(M4.37)

where Wi
q

are the covariant measure numbers of vP , i.e. vP = Wm
q

qm. By raising

the index, Wi
q

can also be found very easily, as will be demonstrated later. More

briefly, we may write for KA

KA = K + KP with K = q̇mq̇n

2
gmn
q

, KP = q̇nW
q n

+ v2
P

2
(M4.38)

which is composed of the two partsK andKP . Thus,K is the relative kinetic energy,
that is the part of the absolute kinetic energy which is quadratically homogeneous
in the relative velocity q̇ i and does not contain any part of vP . The expression for
KP is linear in q̇ i .

Inspection of (M4.38) shows that the metric fundamental quantities and, hence,
the functional determinant

√
g
q

can be easily found from the kinetic energy K of

the relative motion

gij
q

= ∂2K

∂q̇i ∂q̇j
=⇒ √

g
q

=
√∣∣∣∣gij

q

∣∣∣∣ =
√∣∣∣∣ ∂2K

∂q̇i ∂q̇j

∣∣∣∣ (M4.39)

where the notation |· · ·| denotes the determinant. Similarly, it is possible to find the
covariant measure numbers of vP from KP :

W
q i

= ∂KP

∂q̇i
(M4.40)

From (M4.39) and (M4.40) we conclude that the metric fundamental quantities
and the velocity vP of an arbitrary qi-coordinate system are known if knowledge
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of the absolute kinetic energy in this system is available. In later chapters these
expressions will be very useful for us.

M4.2.2 Orthogonal qi systems

We recall from Section M1.5 that, in the case of orthogonal qi systems, there exist
some important simplifications, that is gij = 0 for i �= j , giig

ii = 1, and ei = ei .
Furthermore, if orthogonal systems are employed, it is advantageous to use unit
vectors instead of basis vectors. Whenever the time derivative of a unit or basis
vector is taken, we should expect some relationship involving the velocity vP .

The local time derivative of the unit vector ei follows from the local time deriva-
tive of the basis vector,

(
∂qi

∂t

)
qi

=
(
∂
√

giiei

∂t

)
qi

=
(
∂
√
gii

∂t

)
qi

ei + √
gii

(
∂ei

∂t

)
qi

= ∂vP

∂qi
(M4.41)

Thus, we have

(
∂ei

∂t

)
qi

= 1√
gii

∂vP

∂qi
− 1√

gii

(
∂
√

gii

∂t

)
qi

ei (M4.42)

In order to find the spatial derivatives of ei , we return to equation (M3.44) and
introduce the condition of orthogonality. This results in

∂qi

∂qj
= �m

ij qm = gmn

2

(
∂gjn

∂qi
+ ∂gin

∂qj
− ∂gij

∂qn

)
qm

= gnn

2

(
∂gjn

∂qi
+ ∂gin

∂qj
− ∂gij
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∂
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∂
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∂
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(M4.43)

Observing the identity

∂qi

∂qj
= ∂

√
giiei

∂qj
= ei

∂
√
gii

∂qj
+ √

gii

∂ei

∂qj
(M4.44)
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after some slight rearrangements we obtain from (M4.43)

∂ei

∂qj
= ej√

gii

∂
√

gjj

∂qi
− δ

j

i

en√
gnn

∂
√
gii

∂qn
= ej ∇*

i

√
gjj − δ

j

i en ∇*

n

√
gii (M4.45)

In the last step we have also introduced the physical measure numbers of the nabla
operator ∇* i = (1/

√
gii)(∂/∂qi).

Applications often require knowledge of the gradient of the unit vectors. With
the help of (M4.45) we most easily find the required result as

∇ei = qm ∇mei = em√
gmm

∂ei

∂qm
= em√

gmm

(
em ∇*

i

√
gmm − δm

i en ∇*

n

√
gii

)

(M4.46)

M4.2.3 The generalized vertical coordinate

Often it is of advantage to meteorological analysis to replace the vertical coordinate
q3 in the dynamic equations by the generalized coordinate ξ . According to the
specific problem which might be considered, this coordinate will be specified as
pressure, potential temperature, density, or some other suitable scalar function. A
necessary condition for the use of the generalized vertical coordinate is the existence
of a strictly monotonic relationship between q3 and ξ . Usually the generalized
coordinate depends on the horizontal and the vertical coordinates as well as on
time. This becomes obvious on considering, for example, ξ = p. In general the
pressure varies in the horizontal direction, with height, and with time.

For a scalar quantityψ the transformation relation for going from the (q1, q2, q3)
system to the (q1, q2, ξ ) system is given by

ψ(q1, q2, q3, t) = ψ[q1, q2, ξ (q1, q2, q3, t), t] (M4.47)

From this equation we directly obtain the transformation equations for the partial
derivatives (
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)
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∂ψ
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)
ξ

+ ∂ψ

∂ξ

(
∂ξ

∂q1

)
q3(

∂ψ

∂q2

)
q3

=
(

∂ψ

∂q2

)
ξ

+ ∂ψ

∂ξ

(
∂ξ

∂q2

)
q3

∂ψ

∂q3
= ∂ψ

∂ξ

∂ξ

∂q3

(M4.48)
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It is customary to state the transformation equations in the form

(
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)
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)
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(M4.49)

We may also write the transformation relation for ψ as

ψ(q1, q2, ξ, t) = ψ[q1, q2, q3(q1, q2, ξ, t), t] (M4.50)

Now the independent variables are q1, q2, ξ , and t . We obtain analogously
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(
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(M4.51)

The terms (∂q3/∂qi)ξ are the inclinations of the ξ -surface along the qi-directions.

M4.3 Problems

M4.1: Identify the a system in (M4.19) as the Cartesian system. The transforma-
tion relations between the Cartesian system and the rotating geographical system
of the earth (q1 = λ – longitude, q2 = ϕ – latitude, q3 = r – radial distance) are
given by

x1 = r cosϕ cos(λ + �t), x2 = r cosϕ sin(λ + �t), x3 = r sinϕ

where � is the rotational speed of the earth.
(a) Find the covariant metric fundamental quantities gij of the geographical system
and

√
g

q
.

(b) Find the contravariant quantities gij .
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M4.2: In the geographical system the absolute kinetic energy per unit mass is
given by

KA = 1
2

{
r2 cos2 ϕ (λ̇ + �)2 + r2ϕ̇2 + ṙ2

}
(a) By utilizing this equation, verify the results of problem M4.1.
(b) Find the contravariant measure numbers of vp = v�.

M4.3: Find an expression for the functional determinant
√
g

ξ

in the (q1, q2, ξ )

system, where ξ is the generalized vertical coordinate.
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The method of covariant differentiation

The numerical investigation of specificmeteorological problems requires the selec-
tion of a suitable coordinate system. In many cases the best choice is quite obvious.
Attempts to use the same coordinate system for entirely different geometries usu-
ally introduce additional mathematical complexities, which should be avoided. For
example, it is immediately apparent that the rectangular Cartesian system is not
well suited for the treatment of problems with spherical symmetry. The inspection
of the metric fundamental quantities gij or gij and their derivatives helps to decide
which coordinate system is best suited for the solution of a particular problem. The
study of the motion in irregular terrain may require a terrain-following coordinate
system. However, it is not clear from the beginning whether the motion is best
described in terms of covariant or contravariant measure numbers.
From the thermo-hydrodynamic system of equations, consisting of the dynamic

equations, the continuity equation, the heat equation, and the equation of state,
we will direct our attention mostly to the equation of motion using covariant and
contravariant measure numbers. We will also briefly derive the continuity equation
in general coordinates. In addition we will derive the equation of motion using
physical measure numbers of the velocity components if the curvilinear coordinate
lines are orthogonal.
In order to proceed efficiently, it is best to extend the tensor-analytical treatment

presented in the previous chapters by introducing the method of covariant differ-
entiation. What may seem strange and difficult to begin with is, in fact, a very
easy and efficient mathematical treatment that requires no additional theory. Our
discussion in this section will necessarily be quite formal.

M5.1 Spatial differentiation of vectors and dyadics

The situation is particularly simple if we consider the differentiation of a vector A
in a rectangular Cartesian coordinate system:

75
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∇i
x

A = ∇i
x
(Amim) = im ∇i

x
Am, ∇i

x
= ∂

∂xi
(M5.1)

In this case the unit vector ij is independent of position on a particular coordinate
line or axis and thus may be extracted and placed in front of the differentiation
operator. Suppose that we express the same vector A in terms of contravariant
measure numbers and covariant basis vectors whose directions changewith position
on a coordinate line. In this casewe cannot simply extract the basis vector qiwithout
making a serious mistake. Nevertheless, guided by (M5.1), we still go ahead and
extract the basis vector and correct the error we have made by formally changing
the ordinary differential operator∇i to the so-called covariant differential operator
∇ i:

∇iA = ∇i(A
mqm) = qm ∇ iA

m, ∇i = ∂

∂qi
(M5.2)

This operation is of course formal and of no help unless we find a relation between
the two types of differential operators ∇i and ∇ i . To establish the relation between
the two types of partial derivatives, we first carry out the ordinary differentiation,
using (M3.43), and then introduce the covariant derivative as

∇i(A
mqm) = qm ∇iA

m + Am ∇iqm = qm ∇iA
m + Am�n

miqn

= qn

(∇iA
n + Am�n

mi

) = qn∇ iA
n

(M5.3)

Scalar multiplication by the vector qk gives the required relationship between the
two differential operators operating on the contravariant measure number Ak:

∇ iA
k = ∇iA

k + Am�k
mi

(M5.4)

The result is that the covariant differential operator ∇ i applied to Ak is equal
to the ordinary differential operator applied toAk plus an additional term involving
the Christoffel symbol. The covariant derivative is of tensorial character whereas
the ordinary spatial derivatives are not tensorial expressions.
We may proceed in the same way ifA is expressed in terms of covariant measure

numbers. Employing (M3.48) we find

∇i(Amqm) = qm ∇iAm + Am ∇iqm = qm ∇iAm − Am�m
inqn

= qn
(∇iAn − Am�m

in

) = qm ∇ iAm

(M5.5)

Scalar multiplication by the covariant basis vector qk leads to the desired relation

∇ iAk = ∇iAk − Am�m
ik (M5.6)
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Thus, the covariant operator is defined in different ways depending on the co-
ordinate definition of the vector A. If we choose contravariant measure numbers
to represent A, then we must apply (M5.4). Expressing A in terms of covariant
measure numbers requires the use of (M5.6).
So far we have considered only individual components or measure numbers of

A. Next we consider the local dyadic ∇A:

∇A = qn ∇n(A
mqm) = qn ∇n(Amqm) (M5.7)

wherewemay select either covariant or contravariantmeasure numbers to represent
A. Application of the covariant differential operator leads to

∇A = qnqm ∇nA
m = qnqm ∇nAm (M5.8)

where ∇ iA
k or ∇ iAk are measure numbers of the local dyadic ∇A.

Finally we wish to remark that, for the covariant and contravariant (not yet
defined) derivatives, the sum and the product rules of ordinary differential calculus
are valid for tensors of any rank that are free from basis vectors

∇ i(XY ) = X ∇ iY + (∇ iX)Y (M5.9)

whereX,Y are tensors of arbitrary rank. Recall that the rank of a tensor is fixed by
the numbers of indices attached to the measure number.
Now we are going to discuss the covariant differentiation of the local triadic

which in our case is the gradient of a dyadic. What at first glance looks involved
and difficult is, in fact, a very easy operation. The formal covariant differentiation
is introduced in

∇B = qs ∇s(Bmnqmqn) = qsqmqn ∇sBmn (M5.10)

No further comment is needed. The ordinary differentiation is carried out in

qs ∇sB = qsqmqn ∇sBmn + Bmnqs ∇s(qm)qn + Bmnqsqm ∇s(qn) (M5.11)

making sure that the sequence of the basis vectors qi is not changed. The second
and the third term are rewritten yielding

qs ∇sB = qsqmqn ∇sBmn + Bmnqs
(−qr�m

sr

)
qn + Bmnqsqm

(−qr�n
sr

)
= qsqmqn

(∇sBmn − Brn�
r
sm − Bmr�

r
sn

) (M5.12)

In the last expression of (M5.12) some indices have been rewritten with the goal
of extracting the common factor qsqmqn. This operation is quite valid since the
summation indices may be given any name without changing the meaning of the
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expression. According to (M5.10) the left-hand side of (M5.12) can be written as
qsqmqn ∇sBmn so that the sequence of contravariant basis vectors appears on both
sides of this equation. Scalar multiplication from the right with qj , qi , qk then leads
to

∇kBij = ∇kBij − Bnj�
n
ki − Bin�

n
kj (M5.13)

In the same way we find the covariant derivatives of the contravariant and mixed
measure numbers so that we have

∇kBij = ∇kBij − Bnj�
n
ki − Bin�

n
kj , ∇kB

ij = ∇kB
ij + Bnj�i

kn + Bin�
j

kn

∇kB
j

i = ∇kB
j

i − B j
n �n

ki + B n
i �

j

kn, ∇kB
i
j = ∇kB

i
j + Bn

j �
i
kn − Bi

n�
n
kj

(M5.14)

Let us now direct our attention to some operations involving the unit dyadic E,
which is an invariant operator in space and time. Therefore we may write for the
gradient of E

∇E = qs ∇sE = 0, E = gmnqmqn = gmnqmqn = δ n
m qmqn = δm

nqmqn

(M5.15)

The various representations of E are reviewed in this equation. We now wish to
find out how the metric fundamental quantities gij and gij are affected by covari-
ant differentiation. By simply introducing the covariant derivative analogously to
(M5.10),

qs ∇s(gmnqmqn) = qsqmqn ∇sgmn = 0, qs ∇s(g
mnqmqn) = qsqmqn ∇ sg

mn = 0

qs ∇s

(
δ n

m qmqn

) = qsqmqn ∇sδ
n

m = 0, qs ∇s

(
δm

nqmqn
) = qsqmqn ∇sδ

m
n = 0

(M5.16)

we find that themetric fundamental quantities gij and gij may be treated as constants
in covariant differentiation. The results, summarized in

∇kgij = 0, ∇kg
ij = 0, ∇kδ

j

i = 0, ∇kδ
i
j = 0 (M5.17)

will be very helpful and important in our studies. For instance, often it is necessary
to raise or lower the indices of measure numbers. Utilizing (M5.17) we find

∇ iAk = ∇ i(gknA
n) = gkn ∇ iA

n

∇ iA
k = ∇ i(g

knAn) = gkn ∇ iAn

(M5.18)

We are now ready to consider the gradient of the dyadic B and the divergence
of B in terms of the covariant derivatives. It is sometimes advantageous, though
not necessary, to involve themixedmeasure numbers in order to apply the properties
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of the reciprocal basis vectors. The covariant derivative is introduced in

∇B = qs ∇s

(
Bm

nqmqn
) = qsqmqn ∇ sB

m
n (M5.19)

so that the divergence of the dyadic B is given by

∇·B = qs ·qmqn ∇sB
m
n = qn ∇mBm

n (M5.20)

which is a rather simple expression.
We conclude this section by applying (M5.13) to a situation of considerable

importance. For the special case Bij = gij , recalling that the metric fundamental
quantity is a constant in covariant differentiation, we obtain

∇kgij = ∇kgij − gnj�
n
ki − gin�

n
kj = 0

=⇒ ∇kgij = �kij + �kji

(M5.21)

Finally we make use of the tensor properties of the covariant derivative to
introduce contravariant differentiation. By raising or by lowering the index we find

∇k = gkn ∇n, ∇k = gkn ∇n (M5.22)

It may be appropriate to give an example employing the contravariant derivative
for two representations of the vector A. With the help of (M5.22) we may replace
the contravariant derivative by the more common covariant derivative:

∇A = qn ∇n(Amqm) = qnqm ∇nAm = qnqmgns ∇sAm

∇A = qn ∇n(Amqm) = qnqm ∇nAm = qnqmgns ∇sA
m

(M5.23)

M5.2 Time differentiation of vectors and dyadics

Let us consider the velocity of a point relative to the absolute system as defined
by (M4.33) with vT = 0. If the point is fixed somewhere in the atmosphere it
participates in the rotation of the earth so that vP = v�. If, for example, the
vertical coordinate of this point is located on a pressure surface, then this point
also participates in the vertical motion of the material surface as described by the
deformation velocity vD. If themeasure numbers of the rotational and deformational
velocities are given by Wi

�
and Wi

D
then the change with time of the basis vector is

given by(
∂qi

∂t

)
qk

= ∂

∂t

(
∂r
∂qi

)
qk

= ∇ivP = ∇i(Wn
�

qn+Wn
D

qn) = qn ∇ i(Wn
�

+Wn
D
) (M5.24)

where we have also applied the definition (M5.2) of the covariant differentiation.
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For simplicity the notation ( )qi denoting that the local time derivative is taken at
constant coordinates qi will henceforth be omitted, except where confusion may
occur. Next we consider some relationships involving the time differentiation of
the reciprocal basis vectors. From the definition

qi · qj = 0 for i �= j (M5.25)

we obtain

qi · ∂qj

∂t
+ qj · ∂qi

∂t
= 0 (M5.26)

Dyadic multiplication with qj and then summing over j , i.e. replacing j by n,
results in the introduction of the unit dyadic E

qnqi · ∂qn

∂t
+ E· ∂qi

∂t
= 0 (M5.27)

Since E is invariant in space and time, we may place E inside of the differential
operator and perform the scalar multiplication, yielding

∂qi

∂t
= −qnqi · ∂qn

∂t
= −qnqi ·∇nvP = −qnqi ·qm ∇nW

m

= −qn ∇nW
i = −qn ∇n(W

i

�
+ Wi

D
) = −qn ∇n(Wi

�
+ Wi

D
)

with qn ∇n = gnmqm ∇n = qm ∇m

(M5.28)

We will now summarize some important results. From (M5.24) we find

qj · ∂qi

∂t
= ∇ i(Wj

�

+ Wj
D
), qj · ∂qi

∂t
= ∇ i(W

j

�
+ Wj

D
) (M5.29)

and from (M5.28) we obtain

qj · ∂qi

∂t
= −∇j (W

i

�
+ Wi

D
), qj · ∂qi

∂t
= −∇j (Wi

�
+ Wi

D
) (M5.30)

Let us now perform the local time differentiation of an arbitrary vector A.
Extracting the basis vector in analogy to the covariant nabla operator

∂A
∂t

= ∂

∂t
(Anqn) = qn

∂An

∂t
(M5.31)

leads to the introduction of the covariant time operator ∂/∂t which must now be
related to the ordinary local time derivative. This is most easily done by carrying
out the differentiation in (M5.31) and replacing ∂qn/∂t by (M5.28), yielding

qn
∂An

∂t
= qn

∂An

∂t
+ An

[
−qm ∇m(W

n

�
+ Wn

D
)
]

(M5.32)
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The covariant spatial operators appearing in this equation have previously been
defined by using the ordinary spatial derivatives so that (M5.32) can be evaluated
entirely in terms of ordinary derivatives. Scalar multiplication of both sides by
qi results in the definition of the covariant time differentiation of the covariant
measure number Ai:

∂Ai

∂t
= ∂Ai

∂t
− An ∇ i(W

n

�
+ Wn

D
) (M5.33)

By precisely the same procedure we find

∂Ai

∂t
= ∂Ai

∂t
+ An ∇n(W

i

�
+ Wi

D
) (M5.34)

giving the equation for the covariant time differentiation of the contravariant mea-
sure number Ai .
Of particular importance is the covariant time differentiation of the metric fun-

damental quantities gij and gij . The starting point of the analysis, as might be
expected by now, is the time-invariant unit dyadic E. The mathematical operation
is given by

∂E

∂t
= 0 =⇒ ∂

∂t
(qnqn) = ∂

∂t
(gnrqrqn) = qrqn

∂gnr

∂t
= 0 (M5.35)

showing that the metric fundamental quantity gij is a constant in covariant time
differentiation. Proceeding analogously we find the same result for gij so that

∂gij

∂t
= 0,

∂gij

∂t
= 0 (M5.36)

From these expressions follow the important relations

∂Ai

∂t
= ∂

∂t
(ginA

n) = gin

∂An

∂t

∂Ai

∂t
= ∂

∂t
(ginAn) = gin

∂An

∂t

(M5.37)

By now it should be apparent that operations with covariant derivatives are easy and
very convenient. Otherwise, the many differential relations involving basis vectors
would be very tedious to apply.
Now we need to introduce an expression for the individual covariant differential

time operator. This expression is very simply obtained since we have already
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provided the necessary ingredients. In analogy to the definition of the individual
time derivative

d

dt
= ∂

∂t
+ q̇n

∂

∂qn
= ∂

∂t
+ vn

∂

∂qn
= ∂

∂t
+ vn ∇n (M5.38)

we may define the individual covariant time derivative by

d

dt
= ∂

∂t
+ vn ∇n (M5.39)

Using (M5.6) and (M5.33) we immediately obtain

dAk

dt
= ∂Ak

∂t
+ vn ∇nAk = ∂Ak

∂t
− An ∇k(W

n

�
+ Wn

D
) + vn

(∇nAk − Am�m
nk

)
(M5.40)

which is the desired expression. Finally, replacing the covariant spatial derivative,
using (M5.4), gives

dAk

dt
= ∂Ak

∂t
− An

[
∇k(W

n

�
+ Wn

D
)+ (Wm

�
+ Wm

D
)�n

mk

]
+ vn

(∇nAk − Am�m
nk

)
(M5.41)

The involvement of the measure numbers of vP should not be surprising in view of
(M5.33). Similarly, the application of (M5.39) to the contravariantmeasure number
Ak leads to

dAk

dt
= ∂Ak

∂t
+ An

[
∇n(W

k

�
+ Wk

D
)+ (Wm

�
+ Wm

D
)�k

nm

]
+ vn

(∇nA
k + Am�k

nm

)
(M5.42)

M5.3 The local dyadic of vP

The representation of the motion in general coordinate systems requires a suitable
description of the local dyadic of vP = v� + vD. First, we split the local dyadic
of vP into its symmetric and antisymmetric parts. Utilizing the conjugated dyadic
∇̃vP of ∇vP , we may write according to (M2.27)

∇vP = 1
2 (∇vP + ∇̃vP )+ 1

2 (∇vP − ∇̃vP ) = DP + �P (M5.43)
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The symmetric part DP of (M5.43) is given by

DP = 1
2 (∇v� + ∇̃v�)+ 1

2 (∇vD + ∇̃vD) = 1
2 (∇vD + ∇̃vD)

= 1
2qm ∇m(Wn

D
qn)+ 1

2qn ∇n(Wm
D

qm) = 1
2 (q

mqn ∇mWn
D

+ q̃nqm ∇nWm
D
)

= 1
2 (q

mqn ∇mWn
D

+ qmqn ∇nWm
D
) = 1

2qmqn(∇mWn
D

+ ∇nWm
D
) = dmnqmqn

(M5.44)

The term ∇v� + ∇̃v� vanishes because ∇v� is an antisymmetric tensor. The
measure number dij is best obtained from (M5.44) by scalar multiplication first by
qi and then by qj . The result is

dij = 1
2
(∇ iWj

D
+ ∇jWi

D
) (M5.45)

Using scalarmultiplication to obtain dij insures against errors, while by comparison
the suffices i and j might easily be misplaced.
The antisymmetric dyadic �P is given by

�P = 1
2
(∇v� − ∇̃v�)+ 1

2
(∇vD − ∇̃vD) = ωmnqmqn (M5.46)

Analogously to dij we find the measure numbers ωij :

ωij = 1
2 (∇ iWj

�

− ∇jWi
�
)+ 1

2 (∇ iWj
D

− ∇jWi
D
)

= 1
2 (∇iWj

�

− ∇jWi
�
)+ 1

2 (∇iWj
D

− ∇jWi
D
) = ωij

�
+ ωij

D

(M5.47)

The covariant derivatives in (M5.47) have been replaced with the help of (M5.6).
The abbreviations ωij

�
and ωij

D
, which have been introduced in (M5.47), are given

by

ωij
�

= 1
2
(∇ iWj

�

− ∇jWi
�
) = 1

2
(∇iWj

�

− ∇jWi
�
)

ωij
D

= 1
2 (∇ iWj

D
− ∇jWi

D
) = 1

2 (∇iWj
D

− ∇jWi
D
)

(M5.48)

Furthermore, from (M5.47) we obtain the useful relations

∇ iWj
�

= 2ωij
�

+ ∇jWi
�

or ∇iWj
�

= 2ωij
�

+ ∇jWi
�

∇ iWj
D

= 2ωij
D

+ ∇jWi
D

or ∇iWj
D

= 2ωij
D

+ ∇jWi
D

(M5.49)

M5.4 Problems

M5.1: In (M5.14) only the first expression has been derived. Verify the remaining
expressions.



M6

Integral operations

M6.1 Curves, surfaces, and volumes in the general qi system

An arbitrary curve in space may be viewed as a coordinate line q1 of a curvilinear
coordinate system. Therefore, the differential increment dr along this curve can be
written in the form

dr = dq1 q1 = dq1 √
g11e1 = dq

* 1 e1 = dr e1 (M6.1)

where the basis vector q1 is tangential to the coordinate line q1 at a given point P
as shown in Figure M6.1. Instead of using the arbitrary basis vector q1, we may
also employ the unit vector e1 which is identical to the unit tangent vector at P .
This leads to the introduction of the physical measure number dq* 1 of the vector dr
which is equivalent to the differential arclength dr .

Now we wish to discuss very briefly the geometrical meaning of a coordinate line.
For simplicity let us first consider the Cartesian coordinate system. It is immediately
apparent that the intersection of the surfaces y = constant and z = constant
produces a straight line that may be chosen as the x-axis. The y- and z-axes
are found by intersecting the surfaces x = constant, z = constant and x =
constant, y = constant, respectively. Analogously, in the curvilinear coordinate
system the intersection of two surfaces qi = constant, qj = constant yields the
coordinate line of the corresponding third coordinate qk.

An arbitrary surface in three-dimensional space may be defined by two coor-
dinate lines q1 and q2 with q3 = constant; see Figure M6.2. Since q1 and q2 are
tangent vectors to the coordinate lines q1 and q2, they span a tangential plane to
the surface q3 = constant. The vector q3 is a tangent vector to the q3-coordinate
line and e3 = q3/

√
g33 is the corresponding unit vector. In our investigation we

set the unit vector e3 equal to the unit normal eN of the surface q3 = constant.
Hence, we are dealing with a semi-orthogonal coordinate system. In this system
e3 is perpendicular to the basis vectors q1 and q2 so that e3 is also parallel to the

84
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-coordinate line1

Fig. M6.1 The q1-coordinate line in space, corresponding basis vector q1, and position
vector dr.

Fig. M6.2 The coordinate surface q3 = constant in three-dimensional space. The coor-
dinate lines drawn on the surface are q1 and q2. The corresponding basis vectors are q1
and q2, respectively. The unit vector of the q3-coordinate line e3 is the normal vector to
the surface.

direction defined by the cross product q1 × q2. In summary, we may write the unit
normal vector e3 in the following forms:

e3 = q3√
g33

= q3

|q3| = q1 × q2

|q1 × q2| = q3√g∣∣q3√g∣∣ = q3

|q3| = q3√
g33

= e3 (M6.2)

where we have used the properties of the reciprocal systems (M1.55). Hence,
in the semi-orthogonal system we have e3 = e3 and g33g

33 = 1. It should not
be concluded, however, that giigii = 1, i = 1, 2, since we are dealing with
a semi-orthogonal coordinate system only, so that the general formula (M1.88)
for orthogonal systems does not apply. Moreover, from the general expressions
(M1.37) and (M1.57) of the scalar triple product we obtain for the semi-orthogonal
system

[q1,q2,q3][q1,q2,q3] =
[
q1,q2,

q3√
g33

] [
q1,q2,

q3√
g33

]

= [q1,q2, e3][q1,q2, e3] = 1

(M6.3)

We will now consider a directed surface area element dS that is spanned by the
two vectors q1 dq

1 and q2 dq
2 having the direction q1 × q2. Utilizing (M6.2) we
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may write

dS = q1 × q2 dq
1 dq2 = q3√g dq1 dq2 = e3

√
g33

√
g dq1 dq2 = |dS| e3

with |dS| =
√
g33

√
g dq1 dq2 =

[
q1,q2,

q3√
g33

]
dq1 dq2 = [q1,q2, e3] dq1 dq2

(M6.4)

Of some importance is the metric fundamental form for the given surface q3 =
constant. Since an arbitrary line element on this surface is defined by dr = q1 dq

1+
q2 dq

2, the metric fundamental form in the two-dimensional case is given by

dr · dr = (q1 dq
1 + q2 dq

2) · (q1 dq
1 + q2 dq

2)

= g11(dq1)2 + 2g12 dq
1 dq2 + g22(dq2)2

(M6.5)

If the coordinate lines on the surface are orthogonal, the quantity g12 vanishes.
In general, the metric fundamental form is given by

dr · dr = gmn dq
m dqn with dr = qn dqn (M6.6)

In the Cartesian system this form reduces to

dr · dr = dxm dxm (M6.7)

At this point it is opportune to present a few remarks on the Riemannian space
and the Euclidian space. In order not to disrupt our train of thought, we present
some basic ideas to the interested reader in the appendix to this chapter. On the
surface q3 = constant the two-dimensional Hamilton operator may be written as

∇2 = q1 ∂

∂q1
+ q2 ∂

∂q2
(M6.8)

The contravariant and the covariant basis vectors are related in the following forms:

q1 = q2 × e3

[q1,q2, e3]
, q2 = e3 × q1

[q1,q2, e3]

q1 = q2 × e3

[q1,q2, e3]
, q2 = e3 × q1

[q1,q2, e3]

(M6.9)

with e3 = e3. Finally, the relationship between the three- and the two-dimensional
Hamilton operators is given by

∇ = ∇2 + q3 ∂

∂q3
(M6.10)
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Fig. M6.3 A volume element dτ in the general curvilinear nonorthogonal coordinate
system defined by the three coordinate surfaces qi = constant.

Now we consider an arbitrary surface area element dS in the qi-space, which
may be decomposed as

dS = q2 × q3 dq
2 dq3 + q3 × q1 dq

3 dq1 + q1 × q2 dq
1 dq2

= q1√g dq2 dq3 + q2√g dq3 dq1 + q3√g dq1 dq2

= q1 dS1 + q2 dS2 + q3 dS3 = (dS)1 + (dS)2 + (dS)3

(M6.11)

Reference to (M6.4) shows that this expression is a special case of (M6.11). Clearly,
the surface area elements qi dSi are projections of dS in the directions qi parallel
to the planes spanned by (qj × qk).

In order to define a volume element in the generalized qi-coordinate system we
draw three coordinate surfaces as shown in Figure M6.3. The intersection of these
surfaces results in the three coordinate lines. The differential volume element dτ
is now given by

dτ = [q1 dq
1,q2 dq

2,q3 dq
3] = q1 dq

1 · (q2 dq
2 × q3 dq

3) = √
g dq1 dq2 dq3

(M6.12)

M6.2 Line integrals, surface integrals, and volume integrals

As before we consider a curve k in space, which is formed by the coordinate line
q1. Along this curve a field vector A may be written as A(q1) while a vectorial line
element dr is given by (M6.1). The line integral of A along the curve k between
the points (q1)1 and (q1)2 is defined by

L =
∫ (q1)2

(q1)1

drA =
∫ (q1)2

(q1)1

dq1 (q1A) (M6.13)
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Fig. M6.4 An illustration of the curve k in space, showing the parameters used in the
definition of the line integral (M6.13).

This situation is illustrated in Figure M6.4. In general A is a three-dimensional
field vector and the line integral a dyadic.

The line integral over the tangential component AT = A1 of A along k is given
by the first scalar of the dyadic L:

LI =
∫ (q1)2

(q1)1

dr ·A =
∫ (q1)2

(q1)1

dq1 (q1 · A) =
∫ (q1)2

(q1)1

dq1 (
√
g11e1 ·A) =

∫ (q1)2

(q1)1

dr A1

(M6.14)

This integral is known as the flow integral whenever the field vector A represents
the velocity vector v of the flow field along the curve k. If the curve k is closed
then we speak of the circulation integral. This important concept will be discussed
in some detail later.

If it is required to compute the normal component of the vector A along k then
we have to take the vector of L, which is easily obtained from (M6.13) as

L× =
∫ (q1)2

(q1)1

dr × A =
∫ (q1)2

(q1)1

dq1 (
√
g11e1 × A) =

∫ (q1)2

(q1)1

dr (e1 × A) (M6.15)

Let us reconsider a surface in space such as the surface q3 = constant. The vec-
torial surface element (dS)3 was defined previously by equation (M6.4). According
to (M6.11) we have added the number 3 to indicate the direction of the surface
normal vector. On this surface we draw the coordinate lines q1 and q2 as depicted
in Figure M6.5. We assume that a field vector A(q1, q2) is defined at every point
on the surface. The surface integral which is a dyadic is defined by

S =
∫
S

(dS)3A =
∫ (q1)2

(q1)1

dq1

∫ (q2)2

(q2)1

dq2 √
g
√
g33e3A(q1, q2) (M6.16)

While (q1)1 and (q1)2 are fixed boundary coordinates, the boundary coordinates
(q2)1 and (q2)2 of the second integral are functions of q1; see Figure M6.5.
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Fig. M6.5 An illustration of a surface S in space, showing the basic parameters needed
to define the surface integral (M6.16).

The surface integral over the normal component of A is found by taking the first
scalar of the dyadic S:

SI =
∫ (q1)2

(q1)1

dq1

∫ (q2)2

(q2)1

dq2 √
g
√
g33A3 (M6.17)

where A3 = e3 ·A is the normal component of the vector A with respect to the
surface element. The integral over the tangential component ofA is found by taking
the vector of the dyadic S

S× =
∫ (q1)2

(q1)1

dq1

∫ (q2)2

(q2)1

dq2 √
g
√
g33e3 × A (M6.18)

Let us consider a surface in space that is enclosing the volume V . By assuming
that the field vectorA is known everywhere within the entire domain of integration,
with the help of (M6.12) we obtain the volume integral as

V =
∫
V

dτ A =
∫ (q1)2

(q1)1

dq1

∫ (q2)2

(q2)1

dq2

∫ (q3)2

(q3)1

dq3 √
gA (M6.19)

As before, the boundary coordinates (q1)1, (q1)2 are fixed. The boundary coordi-
nates (q3)1, (q3)2 must be given functions of q1 and q2 and the boundary coordinates
(q2)1, (q2)2 must be given functions of q1. The integration proceeds analogously to
the volume integration in the Cartesian coordinate system.
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Fig. M6.6 Explanation of the terms occurring in equation (M6.20). dS is a directed
surface element on the spatial surface S which is bordered by the line �; dr is a line
element on �.

M6.3 Integral theorems

M6.3.1 Stokes’ integral theorem

The Stokes integral theorem relating a surface and a line integral is based on the
following general expression:

∫
S

dS × ∇(· · ·) =
∮
�

dr(· · ·) (M6.20)

where the term (· · ·) indicates that this formula may be applied to tensors of arbitrary
rank, that is scalars, vectors, dyadics etc. The derivation of this important equation
will be omitted here since it is given in many mathematical textbooks on vector
analysis. Figure M6.6 depicts the parameters occurring in (M6.20). If the surface
S is closed then the border line vanishes and the right hand side of (M6.20) is zero.

Of great importance are the first scalar and the vector of (M6.20). The first scalar
results in the Stokes integral theorem

∫
S

dS × ∇ · A =
∫
S

∇ × A · dS =
∮
�

dr · A =
∮
�

AT dr (M6.21)

where AT is the tangential component of A along the border line �. (M6.21) is a
fundamental formula not only in fluid dynamics but also in many other branches
of science. Using Grassmann’s rule (M1.44), we find for the vector of the dyadic

∫
S

(dS × ∇) × A =
∫
S

[∇A − (∇ · A)E] · dS =
∮
�

dr × A (M6.22)

where we have used the property of the conjugate dyadics.
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In the following we present some important applications of the Stokes integral
theorem. In the first example we apply (M6.21) to a very small surface element
�S = �S e3 so that ∇ × A may be viewed as a constant vector and the integral
on the left-hand side of (M6.21) may be replaced by ∇ ×A·e3 �S. This yields the
coordinate-free definition of the rotation,

∇ × A · e3 = 1

�S

∮
�

dr · A (M6.23)

In the next application we consider the horizontal flow in the Cartesian coordinate
system. In this case we write the differentials dS = k dx dy and dr = i dx + j dy.
Replacing the vector A in (M6.21) by the horizontal velocity vh = iu+ jv yields∫

S

∇h × vh · k dx dy =
∮
�

vh · dr (M6.24)

or ∫
S

(
∂v

∂x
− ∂u

∂y

)
dx dy =

∫
S

ζ dx dy =
∮
�

(u dx + v dy) (M6.25)

The term ζ is known as the vorticity, which turns out to be a very useful quantity in
dynamic meteorology. Equation (M6.25) relates an integral over the vorticity with
the circulation integral.

Let us close this section by giving another important example involving the
Stokes theorem. Setting in (M6.21) A = λ∇µ, where λ and µ are scalar field
variables such as pressure and density, the left-hand side of this equation can be
written as∫

S

dS × ∇ · (λ∇µ) =
∫
S

dS · ∇ × (λ∇µ) =
∫
S

dS · ∇λ× ∇µ (M6.26)

Next we replace the directed surface element dS by means of (M6.4). By interpret-
ing the functions λ and µ as the coordinate lines on the surface S, surrounded by
the line �, we obtain∫

S

dS · ∇λ× ∇µ =
∫
S

√
gq3 · ∇λ× ∇µdλ dµ

=
∫
S

√
g[q3,q1,q2] dλ dµ =

∫
S

dλ dµ

(M6.27)

with ∇λ = q1, ∇µ = q2. The right-hand side of (M6.21) may now be written as∮
�

dr · λ∇µ =
∮
�

λ dgµ or

∮
�

dr · λ∇µ =
∮
�

dr · [∇(λµ) − µ∇λ] =
∮
�

dg(λµ) −
∮
�

µ dgλ = −
∮
�

µ dgλ

(M6.28)
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Since in general λ andµ are time-dependent functions, we have employed the geo-
metric differential dg defined in (M3.7), indicating that the operations are performed
at t = constant. From (M6.27) and (M6.28) we obtain the final result

∫
S

dλ dµ =
∮
�

λ dgµ = −
∮
�

µ dgλ (M6.29)

M6.3.2 Gauss’ divergence theorem

Let us consider a closed surface S enclosing a volume V . Without proof we accept
the general integral theorem

∫
V

dτ ∇(· · ·) =
∮
S

dS (· · ·) (M6.30)

relating a volume integral and an integral over a closed surface. In the following
we will consider various applications of equation (M6.30).

The divergence theorem due to Gauss is derived in many textbooks by employing
the Cartesian coordinate system. It is of great importance in fluid dynamics and in
many other branches of physics. The theorem is obtained by applying (M6.30) to
the field vector A and by taking the first scalar

∫
V

dτ ∇ · A =
∮
S

dS · A =
∮
S

AN dS (M6.31)

whereAN is the projection of A in the direction of dS. The vector of (M6.30) yields

∫
V

dτ ∇ × A =
∮
S

dS × A (M6.32)

Let us briefly consider some important examples. On shrinking the volume V
in (M6.31) to the differential volume element �V in which ∇ ·A is considered
constant, this equation reduces to the coordinate-free definition of the divergence
of the vector A,

∇ · A = 1

�V

∮
S

dS · A (M6.33)

In our later studies we will often investigate two-dimensional flow fields in the
Cartesian coordinate system. In these studies we will require the application of the
two-dimensional version of the Gauss divergence theorem. Instead of deriving this
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Table M6.1. From the three-dimensional divergence theorem of Gauss to the
two-dimensional version in Cartesian coordinates

Volume V =⇒ area S∗ within �
Volume element dτ =⇒ area element dx dy
Closed surface S =⇒ closed line �
Surface element dS =⇒ line element drN perpendicular to �

Fig. M6.7 Explanation of the variables of the two-dimensional Gauss divergence theorem
(M6.34). drN is a directed line element perpendicular to the curve �.

theorem we simply employ the replacements summarized in Table M6.1. With the
help of this table we recognize that equation (M6.31) reduces to

∫
S∗

∇h · Ah dx dy =
∮
�

drN · A (M6.34)

which is the two-dimensional divergence theorem of Gauss. The terms appearing
in this equation are displayed in Figure M6.7.

In a simple but important application of (M6.34) we replace the horizontal field
vector Ah by the horizontal velocity vh. We immediately obtain with drN = dr× k

∫
S∗

∇h · vh dx dy =
∮
�

(iu+ jv) · (i dy − j dx) (M6.35a)

or ∫
S∗

(
∂u

∂x
+ ∂v

∂y

)
dx dy =

∮
�

(u dy − v dx) (M6.35b)
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M6.4 Fluid lines, surfaces, and volumes

Let us consider a fluid in three-dimensional space whose motion is controlled by the
velocity field v(r, t)1. A volume V (t) is called a fluid volume if all surface elements
dS of the surface S enclosing V (t) are moving with the momentary velocity v(r, t)
existing at dS. Since the velocity depends on the position r and on time t , the
volume is bound to deform, thus changing size and shape.

In a first application of the concept of fluid volumes let us replace the field vector
A in (M6.31) by the velocity vector v so that this equation now reads

∫
V

∇ · v(r, t) dτ =
∮
S

dS · v(r, t) (M6.36)

During the time increment �t each surface element dS(r, t) of the volume is
covering the distance �r = v(r, t)�t . Thus the volume element of the difference
volume is given by

�V = V (t +�t) − V (t) =
∮
S

dS · �r (M6.37)

Using the mean-value theorem for integrals, (M6.36) can now be written as

∇ · v = 1

V
lim
�t→0

1

�t

∮
S

dS ·�r = 1

V
lim
�t→0

�V

�t
= 1

V

dV

dt
(M6.38a)

If the volume is small enough that ∇ · v is constant within V we obtain

∇ · v = 1

V

dV

dt
(M6.38b)

This important expression will be applied soon.
Now we assume that V (t) consists of particles that are also moving with v(r, t).

Obviously, at all times all particles that are located on the surface of the volume
remain on the surface because their velocity and the velocity of the corresponding
surface element dS are identical. Thus no particle can leave the surface of the
volume, so the number of particles within V (t) remains constant.

Suppose that it would be possible to dye a small volume of a moving fluid
without changing its density. As we follow the motion of the dyed fluid we observe
a change of the colored part of the medium. While the original volume has changed
its shape, it is always made up of the same particles. Therefore, a fluid volume is
also called a material volume.

1 Here and in the following the velocity refers to the absolute system, that is v= vA. For simplicity the suffix A
has been omitted.
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In analogy to the fluid or material volume we define the fluid or material surface
and the fluid or material line. As in the case of the material volume, a material
surface and a material line always consist of the same particles.

In order to efficiently describe the properties of a fluid system, we distinguish
between intensive and extensive variables. An intensive variable is a quantity
whose value is independent of the mass of the system. Examples are pressure and
temperature. The volume, on the other hand, is proportional to its mass M and is,
therefore, an example of an extensive variable. Additional examples are the kinetic
and the internal energy of the system. External variables will be denoted by�. The
density of � is defined by ψ̂ = �/V . The specific value of � is ψ = �/M so
that ψ̂ = ρψ , where ρ = M/V is the mass density of the fluid.

Of particular interest is not the property � itself but rather the change with time
of this quantity, which will now be considered. In general, any extended part of
the atmospheric continuum will be inhomogeneous so that the property � of a
sizable volume V (t) must be expressed by an integral over the density ψ̂ = ρψ .
Since the total mass of the fluid volume is constant, the change with time of� may
be easily calculated as

d�

dt
= d

dt

∫
V (t)

ρψ dτ = d

dt

∫
M=constant

ψ dM

=
∫
M=constant

dψ

dt
dM =

∫
V (t)
ρ
dψ

dt
dτ

(M6.39)

Let us now consider a multicomponent system in which the component k has
mass Mk and is moving with the velocity vk(r, t). Hence the total mass of the
system is given by

M =
N∑
k=0

Mk (M6.40)

where N is the number of components. Each volume element is assumed to move
with the momentary barycentric velocity v(r, t) existing at its position r. If ρk =
Mk/V is the density of the particle group k and ρ(r, t) is the total density, the
barycentric velocity is defined by

ρ(r, t)v(r, t) =
N∑
k=0

ρk(r, t)vk(r, t) with ρ(r, t) =
N∑
k=0

ρk(r, t) (M6.41)

Since each surface element dS of the volume is moving with the barycentric
velocity v(r, t), for the particle group k we observe a mass flux Jk through dS,
which is known as the diffusion flux:

Jk = ρk(vk − v) (M6.42)
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The difference between the partial velocity vk and the barycentric velocity v is
known as the diffusion velocity vk,dif = vk − v.

From (M6.41) and (M6.42) it is easily seen that the total mass flux through dS,
that is the sum of all diffusion fluxes, vanishes since

N∑
k=0

Jk = 0 (M6.43)

We conclude that the diffusion of the partial massesMk through the surface of the
fluid volume may change the mass composition. However, due to (M6.43), at all
times the volume conserves the total massM .

M6.5 Time differentiation of fluid integrals

Often the analytic treatment of fluid-dynamic problems requires the time differen-
tiation of so-called fluid integrals. A fluid integral is expressed as an integral over
a fluid line, surface, or volume.

M6.5.1 Time differentiation of fluid line integrals

First we derive a formula for the total time differentiation of the fluid line integral:

d

dt

(∫
L(t)

dr · A
)

=
∫
L(t)

dr · ∂A
∂t

+ d

dt

∫
L(t)

dr · A (M6.44)

According to the general differentiation rules for products, the total change of the
expression within the parentheses is composed of two terms. The first integral on
the right-hand side refers to the change with time of the field vector A for a line
fixed in space at time t while the second integral refers to the displacement and the
deformation of the line during the time increment�t while the vector field A itself
is considered fixed in time.

In order to evaluate the latter integral, let us consider the section (1, 2) of a line of
fluid particles at time t as shown in Figure M6.8. After the small time increment�t
the particle at position 1 will have moved to 1′ while the particle at position 2 has
moved to 2′. During the time increment each particle on the line increment (1, 2)
is moving the distance v�t . Now we apply Stokes’ integral theorem (M6.21) to
the second integral on the right-hand side of (M6.44). According to Figure M6.8
we integrate over the area dS = dr × v�t which is surrounded by the closed
curve� connecting the points (1, 2, 2′, 1′, 1). Substitution of these expressions into
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Fig. M6.8 Description of the time differentiation of a fluid line integral using Stokes’
integral theorem.

(M6.21) yields

�t

∫ 2

1

(dr × v) · ∇ × A =
∫ 2

1

dr · A +�t (v · A)2 −
∫ 2′

1′
dr′ · A −�t (v · A)1

=
∫ 2

1
dr · A −

∫ 2′

1′
dr′ · A +�t

∫ 2

1
dg(v · A)

=
∫ 2

1
dr · A −

∫ 2′

1′
dr′ · A +�t

∫ 2

1
dr · ∇(v · A)

(M6.45)
where dg is defined by (M3.22). On dividing this equation by �t and rearranging
terms, we find in the limit �t → 0

lim
�t→0

∫ 2′
1′ dr′ · A − ∫ 2

1 dr · A
�t

= d

dt

∫
L(t)

dr ·A =
∫ 2

1

dr · [(∇ × A) × v + ∇(v · A)]

(M6.46)
where we have employed the rules associated with the scalar triple product. Sub-
stituting this result into (M6.44) yields for the total change with time of the fluid
line integral

d

dt

(∫
L(t)

dr · A
)

=
∫
L(t)

dr ·
[
∂A
∂t

+ (∇ × A) × v + ∇(v · A)

]
=

∫
L(t)

dr · D1A
Dt

(M6.47)
Here we have introduced the following differential operator for the time differen-
tiation of fluid line integrals:

D1A
Dt

= ∂A
∂t

+ (∇ × A) × v + ∇(v · A) = dA
dt

+ (∇v) · A (M6.48)

A special situation occurs for a closed path L(t). In this case the geometric
differential dg(v · A) vanishes upon integration so that (M6.47) reduces to

d

dt

(∮
L(t)

dr · A
)

=
∮
L(t)

dr ·
(
dA
dt

− ∇A · v
)

(M6.49)
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Fig. M6.9 Time differentiation of a fluid surface integral by applying the divergence
theorem of Gauss.

M6.5.2 Time differentiation of fluid surface integrals

As in the case of the line integral, the total change of the surface integral consists
of two parts,

d

dt

(∫
S(t)

dS · A
)

=
∫
S(t)

dS · ∂A
∂t

+ d

dt

∫
S(t)

dS · A (M6.50)

The first integral on the right-hand side describes the change with time of the field
vector A if the surface remains fixed in space at time t while the second integral
describes the displacement and the deformation of the surface while the vector field
A remains fixed in time.

In order to evaluate the latter integral we consider Figure M6.9. We first evaluate
the integral over the closed surface of the small volume and then apply the Gauss
divergence theorem (M6.31). The surface integral consists of three terms. The first
two terms are the contributions of the upper and lower surfaces while the third part
is the integration over the side surface element which is directed towards�t dr×v.
Thus, we obtain

∫
S′
dS′ · A −

∫
S

dS · A +�t

∮
�

(dr × v) · A =
∫
V

∇ · A dτ = �t

∫
S

(∇ · A)v · dS
(M6.51)

The integration over the surface requires that all surface-element vectors must
point to the outside of the volume, which explains the negative sign of the integral
over S. The closed line integral on the left-hand side gives the contribution of
the complete side surface. This integral will be evaluated by applying the Stokes
integral theorem. On the right-hand side of (M6.51) we have replaced the volume
element dτ by �t v · dS.
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Dividing (M6.51) by �t and rearranging terms, in the limit �t → 0 we readily
find

lim
�t→0

∫
S′ dS′ · A − ∫

S
dS · A

�t
= d

dt

∫
S(t)

dS ·A =
∫
S

dS · [∇ × (A × v) + v(∇ · A)]

(M6.52)
Hence, equation (M6.50) may be written as

d

dt

(∫
S(t)

dS · A
)

=
∫
S(t)

dS ·
[
∂A
∂t

+ ∇ × (A × v) + v(∇ · A)

]

=
∫
S(t)
dS ·

(
dA
dt

+ A∇ · v − v
�∇ · A

)
=

∫
S(t)
dS · D2A

Dt
(M6.53)

Some care must be taken to evaluate the term ∇×(A×v). First we must differentiate
this expression and then we apply Grassmann’s rule. In (M6.53) we have introduced
the differential operator for the time differentiation of a fluid surface,

D2A
Dt

= ∂A
∂t

+ ∇ × (A × v) + v(∇ · A) = dA
dt

+ A∇ · v − v
�∇ · A (M6.54)

It should be noted that (M6.48) and (M6.54) may be applied to all extensive
quantities of degree 1 and more. The last term of (M6.54) may also be written as
A · ∇v. However, for extensive functions of degree 2 and higher the corresponding
replacement is not possible since for the scalar product the commutative law is no
longer valid.

M6.5.3 Time differentiation of fluid volume integrals

Finally we consider the volume integral over the scalar field function ψ :

d

dt

(∫
V (t)
ψ dτ

)
=

∫
V (t)

∂ψ

∂t
dτ + d

dt

∫
V (t)
ψ dτ (M6.55)

As in the previous two situations we obtain two integrals due to the differentiation
of a product. The second integral on the right-hand side will now be evaluated
according to

d

dt

∫
V (t)
ψ dτ = lim

�t→0

∫
V ′ ψ dτ − ∫

V
ψ dτ

�t

= lim
�t→0

1

�t

∫
�V

ψ dτ = lim
�t→0

1

�t

∮
S(t)
dS·v�t ψ

=
∮
S(t)

dS · (vψ) =
∫
V (t)

∇ · (vψ) dτ

(M6.56)
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Fig. M6.10 Time differentiation of a fluid volume integral.

where �V is equal to the difference volume V ′ − V = V (t +�t) − V (t). Some
details pertaining to these formulas are shown in Figure M6.10. Inspection of this
figure shows that the volume element dτ can be replaced by dS · v�t . The final
step in the derivation makes use of the Gauss divergence theorem. Thus, the total
change with time of the fluid volume integral is given by

d

dt

(∫
V (t)

ψ dτ

)
=

∫
V (t)

[
∂ψ

∂t
dτ + ∇ · (vψ)

]
dτ =

∫
V (t)

D3ψ

Dt
dτ (M6.57)

Whenever a fluid volume integral needs to be differentiated with respect to time,
we must apply the operator

D3ψ

Dt
= ∂ψ

∂t
+ ∇ · (vψ) = dψ

dt
+ ψ ∇ · v (M6.58)

This operator will be used numerous times in our studies. For reasons of simplicity
most of the time we omit the suffix 3. Similarly to the operatorsD1/Dt andD2/Dt ,
the operatorD3/Dt may be applied to extensive functions of any degree.

There is a shorter way to obtain equation (M6.58), which is attributed to
Lagrange:

d

dt

(∫
V (t)
ψ dτ

)
=

∫
V (t)

dψ

dt
dτ +

∫
V (t)
ψ

(
1

dτ

d

dt
(dτ )

)
dτ

=
∫
V (t)

dψ

dt
dτ +

∫
V (t)

ψ ∇ · v dτ
(M6.59)

where use has been made of (M6.38b) by setting V = dτ .



M6.6 The general form of the budget equation 101

M6.6 The general form of the budget equation

Theoretical considerations often require the use of budget equations to study the
behavior of certain physical quantities such as mass, momentum, and energy in its
various forms. The purpose of this section is to derive the general form of a balance
or budget equation for these quantities.

Usually any extended part of the atmospheric continuum will be inhomogeneous.
To handle an inhomogeneous section of the atmosphere we mentally isolate a
sizable fluid volume V that is surrounded by an imaginary surface S. Anything
within S belongs to the system; the surroundings or the outside world is found
exterior to S. Processes taking place at the surface S itself represent the exchange
of the system with the surroundings. These processes are

(i) mass fluxes penetrating the surface,
(ii) work contributions by or on the system resulting from surface forces, and
(iii) heat and radiative fluxes through the surface.

The amount of � contained in the volume V is given by

�(r, t) =
∫
V

ψ̂(r, r′, t) dτ =
∫
V

ρ(r, r′, t)ψ(r, r′, t) dτ (M6.60)

where r is the position vector from a suitable reference point to the volume V . The
vector r′ is directed from the endpoint of r to the volume element dτ . Changes in�
caused by the interaction of the system with the exterior will be denoted by de�/dt

while interior changes of � will be written as di�/dt . The budget equation for �
is then given by

d�

dt
= de�

dt
+ di�

dt
(M6.61)

The change with time de�/dt may be expressed by an integral over the surface S
bounding V :

de�

dt
= −

∮
S

Fψ(r, r′, t) · dS = −
∫
V

∇ · Fψ(r, r′, t) dτ (M6.62)

Fψ is a flux vector giving the amount of � per unit surface area and unit time
streaming into V or out of it. The negative sign is chosen so that de�/dt is positive
when Fψ is directed into V . The conversion from the surface to the volume integral
is done with the help of the divergence theorem.

IfQψ represents the production of� per unit volume and time within V , which
is also known as the source strength, then we may write

di�

dt
=

∫
V

Qψ dτ (M6.63)
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Qψ is positive in cases of production of � (sources) and negative in cases of
destruction (sinks).

Utilizing the budget operator (M6.57), the time differentiation of (M6.60) yields

d�

dt
= d

dt

(∫
V

ρψ dτ

)
=

∫
V

D3

Dt
(ρψ) dτ (M6.64)

Combination of (M6.61)–(M6.64) then results in the integral form of the budget
equation∫

V

D3

Dt
(ρψ) dτ =

∫
V

[
∂

∂t
(ρψ) + ∇ · (ρψv)

]
dτ =

∫
V

[−∇ · Fψ +Qψ

]
dτ

(M6.65)
This expression describes the following physical processes.

(i) Local time change of �:
∫
V

∂

∂t
(ρψ) dτ

(ii) Convective flux of � through S:
∫
V

∇ · (ρψv) dτ =
∮
S

ρψv · dS

(iii) Nonconvective flux of � through S: −
∫
V

∇ · Fψ dτ = −
∮
S

Fψ · dS

(iv) Production or destruction of �:
∫
V

Qψ dτ

Since equation (M6.65) is valid for an arbitrary volume V , we immediately obtain
the general differential form of the budget equation as

D3

Dt
(ρψ) = ∂

∂t
(ρψ) + ∇ · (ρψv) = −∇ · Fψ +Qψ (M6.66)

A very simple but extremely important example of a budget equation is the
continuity equation describing the conservation of mass of the material volume.
Identifying � = M = constant in (M6.60), we have ψ = 1 and Qψ = 0 since
mass cannot be created or destroyed. Furthermore, according to (M6.43) the total
mass flux through each surface element dS vanishes so that (M6.66) reduces to

D3ρ

Dt
= ∂ρ

∂t
+ ∇ · (ρv) = dρ

dt
+ ρ ∇ · v = 0 (M6.67)

The continuity equation is a fundamental part of all prognostic meteorological
systems.

By expanding the budget operator and utilizing the continuity equation, we
obtain

D3

Dt
(ρψ) = ψ

(
∂ρ

∂t
+ ∇ · (ρv)

)
+ ρ

(
∂ψ

∂t
+ v · ∇ψ

)
= ρ

dψ

dt
(M6.68)
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This identity is called the interchange rule. Thus, the budget equation (M6.66) may
be written in the form

D3

Dt
(ρψ) = ρ

dψ

dt
= −∇ · Fψ +Qψ (M6.69)

Division of (M6.61) by the constant total mass M gives
dψ

dt
= deψ

dt
+ diψ

dt
(M6.70)

Substitution of this equation into (M6.69) yields expressions for the external and
internal changes of ψ :

ρ
deψ

dt
= −∇ · Fψ, ρ

diψ

dt
= Qψ (M6.71)

These two equations are of great importance in thermodynamics.
It is worthwhile to reconsider equation (M6.69) using an argument due to Van

Mieghem (1973). Suppose we add the arbitrary vector X to Fψ so that ∇ · X = β

and add β to the production term Qψ on the right-hand side of this equation.
This mathematical operation does not change the budget equation in any way.
Consequently, there is no unique definition of either Fψ or Qψ .

Finally we wish to give two applications of (M6.69) from thermodynamics that
will also be useful in our studies.

M6.6.1 The budget equation for the partial masses of atmospheric air

For meteorological applications discussed in this book we denote the partial masses
Mk of atmospheric air in the following way: k = 0: dry air, k = 1: water vapor, k =
2: liquid water, and k = 3: ice. Hence the summation indexN occurring in equations
(M6.40)–(M6.43) is restricted to N = 3. The index k appears sometimes as a
subscript and sometimes as a superscript. Liquid water and ice are treated as bulk
water phases; microphysical drop or ice-particle distributions are not considered in
this context.

Let ψ represent the mass concentration mk = Mk/M . In this case the term Fψ
represents the diffusion flux Jk while the source term Qψ is realized by the phase-
transition rate I k describing condensation and evaporation processes of liquid water
and ice. Thus (M6.69) assumes the form

D3

Dt
(ρmk) = ρ

dmk

dt
= −∇ · Jk + I k (M6.72)

This is the budget equation for the mass concentrations. For dry air no phase
transitions are possible, so I 0 = 0. Moreover, since

∑3
k=0 m

k = 1, it can be shown
that

∑3
k=0 I

k = 0.
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M6.6.2 The first law of thermodynamics

If ψ stands for the internal energy e, then equation (M6.69) represents a form of
the first law of thermodynamics. In this case we have Fψ = Jh + FR, where Jh is
the heat flux (enthalpy flux) and FR is the radiative flux. The source term is given
by Qψ = −p∇ · v + ε, where ε = J··∇v is the energy dissipation and J is the
viscous stress tensor. Hence we may write

D3

Dt
(ρe) = ρ

de

dt
= −∇ · (Jh + FR) − p∇ · v + ε (M6.73)

M6.7 Gauss’ theorem and the Dirac delta function

Let r, as usual, represent the position vector and apply the Gauss divergence
theorem to the function

r
r3

= −∇ 1

r
with r =

√
x2 + y2 + z2 = |r| (M6.74)

The result is ∫
V

∇ ·
( r
r3

)
dτ =

∫
S

r
r3

· dS = 0

since ∇ ·
( r
r3

)
= 3

r3
+ r · er ∂

∂r

(
1

r3

)
= 0

(M6.75)

provided that r differs from zero at all points on and within the surface S. This
means that (M6.75) is valid only if the origin from which r is drawn does not lie
within the volume V or on its boundary. Since the divergence theorem requires
that the functions to which it is applied have continuous first partial derivatives
throughout the volume of integration, it cannot be applied to r/r3 if the origin
of r is within S. To handle this situation, we modify the region of integration by
constructing a sphere of radius ε having the origin as its center; see Figure M6.11.

Within the region V ′ between S and S ′ the function r/r3 satisfies the condition
of the divergence theorem so that (M6.75) is valid, so that

∫
S

r
r3

· dS +
∫
S′

r
r3

· dS = 0 (M6.76)

According to Figure M6.11, in the last integral of (M6.76) we may make the
replacements r = ε, r = −εn so that r · dS = −εn · n dS ′′ = −ε dS ′′ and we
obtain ∫

S

r
r3

· dS = 1

ε2

∫
S′
dS ′′ = 4π (M6.77)
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Fig. M6.11 Exclusion of a singular point from a three-dimensional region by an auxiliary
spherical surface S′.

If S is a closed regular two-sided surface, then combining (M6.75) and (M6.77)
yields ∫

S

r
r3

· dS =
{

4π if O is inside S
0 if O is outside S

(M6.78)

This is known as Gauss’ theorem. We refer to Wylie (1966), where further details
may be found.

The one-dimensional Dirac delta function has the properties that

δ(x − a) = 0 for x = a∫
�x

δ(x − a) dx =
{

1 if a ∈ �x
0 if a /∈ �x∫

�x

f (x)δ(x − a) dx = f (a)

(M6.79)

where f (x) is any well-behaved function and a is included in the region of inte-
gration. Generalizing, we have

δ(r − r′) = 0 if r = r′

δ(r − r′) = δ(r′ − r) = δ(x − x ′)δ(y − y ′)δ(z − z′)∫
V

δ(r − r′) dτ =
{

1 if r′ ∈ V
0 if r′ /∈ V∫

V

f (r)δ(r − r′) dτ =
{
f (r′) if r′ ∈ V
0 if r′ /∈ V

(M6.80)

An excellent reference, for example, is Arfken (1970).
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M6.8 Solution of Poisson’s differential equation

One of the most important differential equations in mathematical physics is Pois-
son’s equation,

∇2φ = Cf (r) (M6.81)

with C = constant and where f (r) is some function to be specified later. We will
show that this equation is satisfied by the integral

φ(r) = − C

4π

∫
V ′

f (r′)
|r − r′| dτ

′ (M6.82)

To verify the validity of this integral we substitute (M6.82) into (M6.81) and carry
out the differentiation with respect to r. Formally we may write

∇2φ(r) = − C

4π

∫
V ′
f (r′) ∇2

(
1

|r − r′|
)
dτ ′ (M6.83)

It is convenient and permissible to translate the origin to r′ and consider
∇2 |1/r| = ∇2(1/r). Now we have exactly the situation leading to the devel-
opment of Gauss’ theorem (M6.78). Using this theorem together with (M6.74) and
(M6.75), we obtain

−
∫
V

∇2

(
1

r

)
dτ =

∫
V

∇ ·
( r
r3

)
dτ =

{ 4π if the origin of r ∈ V
0 if the origin of r /∈ V (M6.84)

This may be conveniently expressed by means of the Dirac delta function as

∇2

(
1

r

)
= −4πδ(r − 0) (M6.85)

We must modify (M6.85) since we have displaced the origin to r′. The term 4π in
Gauss’ theorem appears if and only if the volume includes the point r′. Therefore,
we replace (M6.85) by

∇2

(
1

|r − r′|
)

= −4πδ(r − r′) with r′ = 0 (M6.86)

Substitution of (M6.86) into (M6.83) leads to the original differential equation
(M6.81)

∇2φ(r) = − C

4π

∫
V ′
f (r′)

[−4πδ(r − r′)
]
dτ ′ = Cf (r) (M6.87)
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M6.9 Appendix: Remarks on Euclidian and Riemannian spaces

A point in a generalized n-dimensional space is specified by the coordinates
q1, q2, . . ., qn. The coordinates of any two neighboring points in this space differ
by the differentials dq1, dq2, . . ., dqn. One speaks of a Riemannian space if the
distance between these two points is defined by the metric fundamental form

dr2 = gmn dq
m dqn (M6.88)

If it is possible to transform the entire space so that dr2 can be expressed by the
Cartesian coordinates x1, x2, . . ., xn with

dr2 = δmn dx
m dxn (M6.89)

then the space is called a Euclidian space. For the common three-dimensional
Euclidian space we may write

dr2 = dx2 + dy2 + dz2 (M6.90)

The basic difference between the Riemannian and the Euclidian space is that
the Euclidian space is considered flat whereas the Riemannian space is curved.
A curved surface embedded in a three-dimensional Euclidian space is the only
Riemannian space which is perceptible to us. In general, the transformation from
(M6.88) to the form (M6.89) is not possible.

The metric fundamental quantities of a certain space contain all the required
information that is necessary in order to find out whether we are dealing with a
flat or a curved space. If it turns out that the gij are constant then the space is
flat. Necessarily, in a curved space the gij are not constants, but depend on the
coordinates qi . However, from the simple fact that the gij are functions of the
coordinates qi it cannot be concluded that the space is curved. For example, let us
consider polar coordinates, in which the distance in space is defined by the metric
fundamental form

dr2 = dr2 + r2 dα2 with g11 = 1, g22 = r2 (M6.91)

so that one of the gij is a function of the generalized coordinate q2 = r . We leave
it to the reader to show that (M6.91) can be transformed into the Cartesian form
(M6.89). In this particular case it is quite obvious that the space is flat. Another
example is provided by constructing on a plane sheet of paper a Cartesian grid.
Rolling the paper to form a cylinder of radius R does not change the distances on
the surface, showing that it is possible to transform the fundamental form

dr2 = dR2 + R2 dα2 + dz2 with g11 = 1, g22 = R2, g33 = 1 (M6.92)
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into the Cartesian form (M6.89). A very inportant curved space is the surface of a
sphere, which is characterized by the radius r , the latitude ϕ, the longitude λ, and
the metric fundamental form

dr2 = r2 cos2 ϕ dλ2 + r2 dϕ2 + dr2

with g11 = r2 cos2 ϕ, g22 = r2, g33 = 1
(M6.93)

By inspection or trial-and-error analysis it is very difficult to determine whether
a given coordinate-dependent metric tensor gij (qk) can be transformed into Carte-
sian coordinates. Fortunately, there is a systematic method to determine whether
the space is flat or curved by calculating the Riemann–Christoffel tensor or the
curvature tensor.

Let us consider the expression (∇ i ∇j − ∇j ∇ i)Ak, where ∇ i is the covariant
derivative. By using the methods we have studied previously, omitting details, we
can show that

∇ i(∇jAk) − ∇j (∇ iAk) = AnR
n
kij

with Rl
kij = �mki�

l
mj − ∂

∂qi
�lkj − �mkj�

l
mi +

∂

∂qj
�lki

(M6.94)

If the curvature tensor Rl
kij = 0 then the space is flat or uncurved. If Rl

kij = 0 then
the space is curved as in the case of a spherical surface. This fact shows that no
Cartesian coordinates exist for the sphere.

In atmospheric dynamics we often simplify the metric tensor by assuming that
the radius extending from the center of the earth does not change with height
throughout the meteorologically relevant part of the atmosphere. The simplification
applies only to those terms of dr2 for which the radius appears in undifferentiated
form. This type of Riemannian space is no longer perceptible to us.

Let us briefly consider the parallel transport of a vector since this concept can
be used to determine the curvature tensor. By definition, a vector is transported
parallelly if its direction and length do not change. Thus in the plane or, more
generally, in the Euclidian space the parallel transport does not change the vector.
The reason for this is that the basis vectors of the Euclidian space are constant and
do not have to be differentiated whenever the vector is differentiated. The parallel
displacement of a vector can be used to define the Euclidian space. For such a space
the pararallel displacement along an arbitrary closed curve transports the vector to
its original position without changing its length and direction.

As an illustration we consider polar coordinates as shown in Figure M6.12. In
this two-dimensional space we transport the vector parallelly from point P to Q.
While the vector itself remains constant the components (x = r cosα, y = r sinα)
of the vector change. If we transport the vector around the circle back to P we
obtain the original vector.
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Fig. M6.12 Parallel transport of a vector in the two-dimensional Euclidian space.

Fig. M6.13 The path dependence of surface parallelism.

A different situation occurs if the vector is transported along a curved surface
since surface parallelism depends on the path. The definition “parallel transport
of the surface vectors” implies two operations, namely a parallel shift in space,
followed by a projection onto the tangent plane. We will demonstrate this situation
in Figure M6.13 for a sphere. Let us transport the vectorA along a great circle from
point P to Q. Both points are located on the equator. From point Q the vector is
displaced to the pole, point R, and then back to point P . During the transport the
angle between the vector and the great circles (geodesic circles) remains constant.
The displacement of the vector along the closed path results in a vector B, which
is perpendicular to the original vector A. Thus surface parallelism depends on the
path. Had we transported A from P to Q and then back to P , of course, we would
have obtained the original vector.
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M6.10 Problems

M6.1: Show that the integral
∮
S
dS = 0.

M6.2: In equation (M6.49) set A = (1/ρ) ∇p to verify the following statement:

d

dt

[∮
L(t)

dr·
(

1

ρ
∇p

)]
=

∮
L(t)

[
(dgp)

d

dt

(
1

ρ

)
− (dgρ)

dp

dt

]

where ρ and p are scalar field functions.

M6.3: Use the integral theorems to verify the following statements:

∇ × dv
dt

= d

dt
(∇ × v) + (∇ × v) ∇ · v − (∇ × v) · ∇v

∇ · dv
dt

= d

dt
(∇ · v) + ∇v ·· ∇v

M6.4: Consider the vector field A = Ax(x, y)i + Ay(x, y)j in the (x, y)-plane.
(a) Find the closed line integral

∮
�
dr×A. The closed line � is a rectangle defined

by the corner points (0, 0), (L, 0), (L,M), (0,M).
(b) Apply the result of (a) to the following situation:

Ax(x = 0, y) = cos y, Ax(x = L, y) = sin y

Ay(x, y = 0) = x, Ay(x, y = M) = −1/L

M6.5: The vector field A = Cr/r, with C = constant and r = |r|, is given.
(a) Calculate the line integral

∫ (2)

(1) dr · A for an arbitrary path from (1) → (2).
(b) Calculate the surface integral

∮
S
dS ·A for a spherical surface of radius a about

the origin.

M6.6: For the vector field v6 = Ω × r,Ω = constant, calculate the line integral∮
v6 · dr

(a) for a circle of radius a about the axis of rotation, and
(b) for an arbitrary closed curve.
Use Stokes’ integral theorem.

M6.7: Show that ∫
V

∇ψ · ∇ × (A · ∇A) dτ = 0

On the surface of the volume the vector A is of the form A = B × n, where n is
the unit vector normal to the surface. In addition to this, assume that A · ∇ψ = 0,
where ψ is a scalar field function. Hint: Use Lamb’s transformation (M3.75).



M7

Introduction to the concepts of nonlinear dynamics

By necessity, this introduction is brief and far from complete and may, therefore,
be reviewed in a relatively short time.

M7.1 One-dimensional flow

M7.1.1 Fixed points and stability

It is very instructive to discuss a one-dimensional or first-order dynamic system
described by the equation ẋ = f (x). Since x(t) is a real-valued function of time
t , we may consider ẋ to be a velocity repesenting the flow along the x-axis. The
function f (x) is assumed to be smooth and real-valued. A plot of f (x) may look as
shown in FigureM7.1.We imagine a fluid flowing along the x-axis. This imaginary
fluid is called the phase fluidwhile the x-axis represents the one-dimensional phase
space.
The sign of f (x) determines the sign of the one-dimensional velocity ẋ. The

flow is to the right where f (x) > 0 and to the left where f (x) < 0. The solution
of ẋ = f (x) is found by considering an imaginary fluid particle, the phase
point, whose initial position is at x(t0) = x0. We now observe how this particle is
carried along by the flow. As time increases, the phase point moves along the x-axis
according to some function x(t), which is called the trajectory of the fluid particle.
The phase portrait is controlled by the fixed points x∗, also known as equilibrium
or critical points, which are found from f (x∗) = 0. Fixed points correspond to
stagnation points of the flow.
In Figure M7.1 the point Ps is a stable fixed point since the local flow is directed

from two sides toward this point. The point Pu is an unstable fixed point since the
flow is away from it. Interpreting the original differential equation, fixed points
are equilibrium solutions. Sometimes they are also called steady, constant, or rest
solutions (the fluid is stagnant or at rest). The reason for this terminology is that, if
x = x∗ initially, then x(t) = x∗ for all times. The definition of stable equilibrium
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Fig. M7.1 A phase portrait of one-dimensional flow along the x-axis.

is based on considering small perturbations. In Figure M7.1 all small disturbances
to Ps will decay. Large disturbances that send the phase point x to the right of Pu

will not decay but will be repelled out to +∞. Thus, we say that the fixed point Ps

is locally stable only. The concept of global stability will be discussed later.
It should be noted that f does not explicitly depend on time. In this case one

speaks of an autonomous system. If f depends explicitly on t then the equation is
nonautonomous and usually much more difficult to handle.
Now we practice this way of geometric thinking with a simple example: Find

the fixed points for ẋ = x2 − 4 and classify their stability. Solution: In this case
f (x) = x2 − 4. Setting f (x∗) = 0 and solving for x∗ yields x∗

1 = 2, x∗
2 = −2. To

determine the stability we plot f (x) similarly to FigureM7.1 and obtain a parabola.
Thus, we easily see that x∗ = 2 is unstable whereas x∗ = −2 is stable.
Now we discuss the concept of linear stability. Let η(t) represent a small per-

turbation away from the fixed point x∗,

η(t) = x(t) − x∗ (M7.1)

To recognizewhether a disturbance grows or decayswe need to derive a differential
equation for η(t). Differentiation of η with respect to time results in

η̇ = ẋ = f (x) = f (x∗ + η) (M7.2)

Now we carry out a Taylor expansion of f (x) and discontinue the series after the
linear term since only small perturbations are admitted:

f (x∗ + η) = f (x∗)+ ηf ′(x∗) + O(η2) (M7.3)

Suppose that f ′(x∗) �= 0, then the O(η2) terms may be ignored. Since f (x∗) = 0
we obtain

η̇ = ηf ′(x∗) (M7.4)
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Fig. M7.2 Saddle-node bifurcation. Curve (1): r < 0, stable fixed point Ps, unstable fixed
point Pu. Curve (2): r = 0, half-stable fixed point Ps,u. Curve (3): r > 0, no fixed point.

The linearization about x∗ shows that η(t) grows exponentially in time if
f ′(x∗) > 0 and decays if f ′(x∗) < 0. If f ′(x∗) = 0, the O(η2) terms cannot
be neglected and a nonlinear analysis is needed in order to determine the stability.
In the previous example f ′(x∗ = 2) = 4 so that the fixed point x∗ = 2 is unstable.
Since f ′(x∗ = −2) = −4, the fixed point x∗ = −2 is stable.
Consider now the problem ẋ = x3. The fixed point is x∗ = 0. In this example

the linear stability analysis fails since f ′(x∗ = 0) = 0. A plot of f (x) = x3 shows,
however, that the origin is an unstable fixed point.

M7.1.2 Bifurcation

More instructive than the above examples is the dependence of x on a parameter
since now qualitative changes in the dynamics of systems may occur as the param-
eter is varied.Whenever this change occurs we speak of bifurcation. The parameter
values at which bifurcations occur are called bifurcation points.Wewill now briefly
discuss various types of bifurcations.

M7.1.2.1 Saddle-node bifurcation

A saddle-node bifurcation is the basicmechanism bywhich fixed points are created
or destroyed. Consider the equation ẋ = r + x2, where r is a parameter. Examples
of this type may be found in various textbooks or may be constructed. The result of
the analysis is shown in Figure M7.2. If r < 0 we have one stable and one unstable
fixed point (curve 1). As the parameter r approaches 0 from below, the parabola
moves up and the two fixed points move toward each other until they collide into a
half-stable fixed point Ps,u at x∗ = 0 (curve 2). The half-stable fixed point vanishes
with r > 0 as shown by curve 3.
There are other possibilities for depicting bifurcations. A popular way is to select

r as the abscissa and x as the ordinate. Setting ẋ = 0, the curve r = −x2 consists
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Fig. M7.3 An alternate bifurcation diagram for the saddle-node bifurcation.

of all fixed points of the system; see Figure M7.3. In agreement with Figure M7.2,
there is no fixed point for r > 0. The arrows in Figure M7.3 indicate the direction
of movement toward the fixed-point curve or away from it, thus describing regions
of stability and instability, respectively. The origin itself is called a turning point.

M7.1.2.2 Transcritical bifurcation

There are situations in which a fixed point must exist for all parameter values of
r and cannot be destroyed. However, such a fixed point may change its stability
characteristics as r is varied. The transcritical bifurcation provides the standard
example. The normal form of this type of bifurcation is ẋ = x(r − x). There
exists a fixed point x∗ = 0 that is independent of r . Various situations are shown
in Figure M7.4. For r < 0, x∗ = r is an unstable fixed point Pu whereas x∗ = 0 is
a stable fixed point Ps. As r → 0, the unstable fixed point approaches the origin,
colliding with it when r = 0. Now x∗ = 0 is a half-stable fixed point Ps,u. Finally,
for r > 0 the origin becomes unstable whereas x∗ = r is a stable fixed point.
In this case of transcritical bifurcation the two fixed points have not disappeared

after the collision with the origin. In fact, an exchange of stability has taken place
between the two fixed points. This kind of behavior is in contrast to the saddle-node
bifurcation, whereby fixed points are created and destroyed.

M7.1.2.3 Pitchfork bifurcation

This type of bifurcation results from physical problems having symmetry proper-
ties. There are two types of pitchfork bifurcations.

M7.1.2.3.1. Supercritical pitchfork bifurcation The normal form is given by ẋ =
rx − x3. This equation is invariant if the variables x and −x are interchanged. The
plot of this function is shown in Figure M7.5. If r ≤ 0 the origin is the only fixed
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Fig. M7.4 Transcritical bifurcation.

Fig. M7.5 Supercritical pitchfork bifurcation for ẋ = rx − x3.

point which is stable. The two curves are quite similar, so only one curve is shown.
The stability decreases as r approaches zero. For r = 0 the origin is still stable but
more weakly so. If r > 0 there are three fixed points. The fixed point at the origin
is unstable; the remaining two fixed points are stable.
The curious name pitchfork derives from the bifurcation diagram shown in

Figure M7.6. We set ẋ = 0 and plot x2 = r , yielding a parabola for r > 0. From
the corresponding curve of Figure M7.5 we recognize that the upper and lower
branches refer to stability. If x = 0 but r > 0, we find instability along the positive
part of the abscissa. For x = 0 but r < 0, from curve 1 of Figure M7.5 we find
stability along the negative part of the abscissa.

M7.1.2.3.2 Subcritical pitchfork bifurcation Asimple example is given by ẋ = rx+x3,
see Figure M7.7. For r ≥ 0 the origin is the only fixed point and it is unstable.
Nonzero fixed points exist only for r < 0, which are unstable while now the
origin is stable. The corresponding bifurcation diagram is depicted in Figure M7.8.
Comparisonwith FigureM7.6 shows that the bifurcation diagrams of the subcritical
and supercritical pitchforks are inverted with respect to each other.
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Fig. M7.6 A bifurcation diagram for ẋ = rx − x3.

Fig. M7.7 Subcritical pitchfork bifurcation ẋ = rx + x3.

M7.2 Two-dimensional flow

M7.2.1 Linear stability analysis

Let us consider the two-dimensional linear system

ẋ = ax + by

ẏ = cx + dy
or ẋ = Ax with x =


 x

y


, A =


 a b

c d



(M7.5)

where a, b, c, d are constants. The solutions to (M7.5) can be viewed as trajectories
moving on the (x, y)-phase plane.Much can be learned from a very simple example,

ẋ = ax, ẏ = −y (M7.6)
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Fig. M7.8 A bifurcation diagram for ẋ = rx + x3.

Here the system is uncoupled so that the solution can be found separately for each
equation:

x(t) = x0 exp(at), y(t) = y0 exp(−t) (M7.7)

The initial values are (x0, y0). The sign of the constant a determines the type of
flow, which in this case can easily be depicted; see Figure M7.9. For a < 0 every
point (x0, y0) approaches the origin as t → ∞. The direction of approach depends
on the size of a relative to−1. Figure M7.9(a) shows the situation for a < −1. The
fixed point (x∗ = 0, y∗ = 0) is known as a stable node. If a = −1 the approaches
on the abscissa and the ordinate are equally fast so that all trajectories are straight
lines through the origin as shown in part (b) of the figure. This also follows from
(M7.7), which in this case may be written as y(t)/x(t) = y0/x0 = constant. This
arrangement is called a symmetric node or a star.
When a = 0 a dramatic change in the flow pattern takes place. Now x(t) = x0

so that there is an infinite line of fixed points (x∗, y∗ = 0) along the x-axis
(Figure M7.9(c)). These stable fixed points are approached from above and below
by vertical trajectories depending on the sign of y0. Finally, for a > 0, we obtain
a situation in which (x∗, y∗) = (0, 0). This is known as a saddle point. With the
exception of the trajectories on the y-axis all trajectories are heading out for +∞
or −∞ along the x-axis. In forward time, these trajectories are asymptotic to the
x-axis; in backward time (t → −∞) they are asymptotic to the y-axis. The y-axis
is known as the stable manifold of the saddle point. More precisely, this is the set of
initial conditions (x0, y0) such that [x(t), y(t)] → (0, 0) as t → ∞. Analogously,
the unstable manifold of the saddle point is the set of initial conditions (x0, y0) such
that [x(t), y(t)] → (0, 0) as t → −∞. In this example the unstable manifold is
the x-axis. It is seen that a typical trajectory approaches the unstable manifold for
t → ∞ and the stable manifold for t → −∞.
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Fig. M7.9 Flow patterns of the differential-equation system (M7.7) for various values of
the parameter a.

At this point it is opportune to introduce some important terminologies. Referring
to FiguresM7.9(a) and (b), (x∗, y∗) = (0, 0) is classified as an attracting fixed point
since all trajectories starting near this point approach the origin, i.e. [x(t), y(t)] →
(0, 0) as t → ∞. If all path directions are reversed this point is known as a repellor.
If all trajectories that start sufficiently close to (0, 0) remain close to it for all time,
not just as t → ∞, then the fixed point is called Liapunov stable. In parts (a),
(b), and (c) of Figure M7.9 the origin is Liapunov stable. From Figure M7.9(c) it
can be seen that a fixed point can be Liapunov stable but not attracting. Here the
fixed point is called neutrally stable. In Figure M7.9(d) the fixed point is neither
attracting nor Liapunov stable, so (x∗, y∗) = (0, 0) is unstable.

M7.2.2 Classification of linear systems

We will now consider the general solution to the linear system by seeking trajecto-
ries of the form

x(t) = exp(λt)b (M7.8)

where the time-independent vector b �= 0 must be determined. Substitution of
(M7.8) into (M7.5) yields

Ab = λb or (A − Eλ)b = 0 (M7.9)

Here matrix notation has been utilized and E is the identity matrix. As usual, the
eigenvalues λ1,2 can be found by solving the equation for the determinant of the
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matrix (A − λE):∣∣∣∣∣∣
a − λ b

c d − λ

∣∣∣∣∣∣ = 0 =⇒ λ1,2 = 1
2

(
τ ±

√
τ 2 − 4�

)
(M7.10)

where τ = a+d is the trace and� = ad−bc is the determinant ofA. The solution
to (M7.5) may now be written as

x(t) = C1 exp(λ1t)b1 + C2 exp(λ2t)b2 (M7.11)

In general, the constantsC1, C2 and the eigenvectorsb1,b2 of the eigenvaluesλ1, λ2
are complex quantities.
As an example, let us consider the phase-plane analysis of the simple harmonic

oscillator
mẍ + kx = 0 (M7.12)

where m is the mass and k is Hooke’s constant. By setting ẋ = y, this second-
order differential equation may be written as a system of two first-order differential
equations:

ẋ = y, ẏ = −ω2x with ω2 = k/m (M7.13)

From this system we immediately recognize that the fixed point is located at
(x∗, y∗) = (0, 0). On dividing ẏ by ẋ, we find the equation of the trajectory which
upon integration gives the equation of an ellipse:

dy

dx
= −ω2 x

y
=⇒ y2 + ω2x2 = C (M7.14)

The situation is depicted in FigureM7.10. The trajectories form closed lines around
the origin, which is therefore known as a center. The direction of flow around
the center is best recognized by placing an imaginary particle or phase point at a
convenient point such as (x = 0, y > 0). Thus, from (M7.13) it follows that ẋ > 0,
so the flow is clockwise. Finally, with the help of (M7.5), the eigenvalues of the
system may be easily found as λ1,2 = ±iω, showing that a center is characterized
by purely imaginary eigenvalues.

Fig. M7.10 The center for the simple harmonic oscillator.
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Fig. M7.11 A phase portrait of slow and fast eigendirections.

Before we summarize all important results, let us consider two more simple but
important examples. Suppose that, for a given problem, the two eigenvalues are
negative, say λ1 < λ2 < 0. Thus, both eigensolutions decrease exponentially so
that the fixed point is a stable node. The eigenvector resulting from the smaller
eigenvalue |λ2| is known as the slow eigendirection, while the eigenvector due to
the larger value |λ1| is called the fast eigendirection. Trajectories typically approach
the origin tangentially to the slow eigendirection for t → ∞. In backward time,
t → −∞, the trajectories become parallel to the fast eigendirection. The phase
portrait may have the appearance of Figure M7.11 representing a stable node.
Reversing the directions of the trajectories results in a typical portrait of an unstable
node.
Let us briefly return to the phase portrait of the harmonic oscillator; see

Figure M7.10. Since nearby trajectories are neither attracted to nor repelled from
the fixed point, the center is classified as neutrally stable. If the harmonic oscillator
were slightly damped, the equation of motion (M7.12) would be modified to read

mẍ + dm ẋ + kx = 0 (M7.15)

where d > 0 is the damping constant. Now the trajectories cannot close because the
oscillator loses some energy during each cycle. Weak damping is characterized by
τ 2 − 4� < 0. The resulting phase portrait is a stable spiral. Since τ = −d < 0 the
eigenvalues are complex conjugates with a negative real part τ/2 = −d/2. Owing
to Euler’s formula the solution contains the term exp(−τ t/2) yielding exponentially
decaying oscillations. Thus the fixed point is a stable spiral. If d < 0 in (M7.15),
the fixed point is an unstable spiral; see Figure M7.12.
It may happen that the eigenvalues of thematrixA are degenerate, i.e. λ1 = λ2. In

this case there exist two possibilities: Either there are two independent eigenvectors
spanning the two-dimensional phase plane or only one eigenvector exists, so that
the eigenspace is one-dimensional, and the fixed point is a degenerate node.
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Fig. M7.12 Phase portraits for the stable and the unstable spiral.

From the previous examples we recognize that the type of the eigenvalue de-
termines the stabililty behavior of the fixed point. The essential information is
collected in the table of Figure M7.13. This table can be used to construct the
stability diagram shown in the figure. In this diagram the ordinate is the trace τ
and the abscissa is the determinant � of the matrix A of the two-dimensional
linear system. Saddle points, nodes, and spirals occur in the large open regions
of the (�, τ )-plane. They are the most important fixed points. Inspection of
Figure M7.13 shows that centers, stars, and degenerate nodes are borderline cases.
Of these special cases, centers are by far the most important since they occur in
energy-conserving frictionless mechanical systems.

M7.2.3 Two-dimensional nonlinear systems

Before proceedingwe state without proof that different trajectories do not intersect.
This information may be extracted from the existence and uniqueness theorem of
differential equations. If trajectories were to intersect, then there would be two
solutions starting from the same point, the crossing point. This would violate the
uniqueness part of the theorem. Because of the fact that trajectories do not intersect,
we may expect that phase portraits have a “well-groomed” look to them.
By linearizing two-dimensional systems, it is often possible to obtain an approx-

imate phase portrait near the fixed points. The general form of the nonlinear system
is given by

ẋ = f1(x, y), ẏ = f2(x, y) or ẋ = f(x) (M7.16)

We assume the existence of a fixed point (x∗, y∗) so that f1(x∗, y∗) = 0 and
f2(x∗, y∗) = 0. Let u = x − x∗ and v = y − y∗ represent the components of a
small perturbation from the fixed point. To see whether the perturbation grows or
is damped out, we need to obtain differential equations for u̇ = ẋ and v̇ = ẏ.
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centerssaddle

points

stable spirals

stars, degenerate nodes

unstable spirals

stable nodes

unstable nodesτ τ − 4∆ = 02

∆

λ1,2 � τ τ 2 − 4� Fixed points

Real, distinct, opposite signs <0 0 >0 (Unstable) saddle points
Real, distinct,>0 >0 >0 >0 Unstable nodes
Real, distinct,<0 >0 <0 >0 Stable nodes
Complex conjugate,
real parts<0

>0 <0 <0 Stable spirals

Complex conjugate,
real parts>0

>0 >0 <0 Unstable spirals

Purely imaginary >0 0 <0 (Stable) centers
Real, λ1 = λ2 < 0 >0 <0 0 Stable nodes, star-shaped
Real, λ1 = λ2 > 0 >0 >0 0 Unstable nodes, star-shaped

Fig. M7.13 General classification of fixed points of the two-dimensional linear system
� = λ1λ2, τ = λ1 + λ2.

Expanding f1 and f2 in a two-dimensional Taylor series we find

fi(x
∗ + u, y∗ + v) = fi(x

∗, y∗)+ u
∂fi

∂x

∣∣∣
x∗,y∗

+ v
∂fi

∂y

∣∣∣
x∗,y∗

+O(u2, v2, uv),
i = 1, 2

(M7.17)
The series will be discontinued after the linear terms since the quadratic terms
O(u2, v2, uv) are very small and will be ignored. Because f1(x∗, y∗) and f2(x∗, y∗)
are zero, the linearized system may be written as


 u̇

v̇


 = A


 u

v


, A =




∂f1

∂x

∂f1

∂y
∂f2

∂x

∂f2

∂y



x∗,y∗

(M7.18)

where A is the Jacobian matrix at the fixed point. The dynamics can now be
analyzed by means of the procedures discussed above.
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The question of whether the linearization of the nonlinear system gives the
correct qualitative picture of the phase portrait near the fixed point (x∗, y∗) arises.
This is indeed the case as long as the fixed point is not located on one of the border
lines shown in Figure M7.13.
We will demonstrate the linearization procedure by finding and classifying the

fixed points of the following example

ẋ = −x + x3, ẏ = −2y (M7.19)

The fixed points occur where ẋ = 0, ẏ = 0 simultaneously. The system is
uncoupled so that the fixedpoints are easily found: (x∗, y∗) = (0, 0), (1, 0), (−1, 0).
The Jacobian matrix is given by

A =

 − 1+ 3x2 0

0 − 2



x∗,y∗

(M7.20)

Thus, for the three fixed points we find

(x∗ = 0, y∗ = 0): A =

 − 1 0

0 − 2


, τ = −3, � = 2

(x∗ = ±1, y∗ = 0): A =

 2 0

0 − 2


, τ = 0, � = −4

(M7.21)
They are shown in Figure M7.14. On consulting the stability diagram of
Figure M7.13 we may conclude that the fixed points represent the stable node
Ps at the origin and two unstable saddle points Pu. Since we are not treating
borderline cases we can be sure that our result is correct.

Fig. M7.14 The stability diagram for the fixed points of the example (M7.19).
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Fig. M7.15 Stable, unstable, and semi-stable limit cycle.

M7.2.4 Limit cycles

Let us now consider a limit cycle, which is a different type of a fixed point. By
definition, a limit cycle is an isolated closed trajectory. In this context isolated
implies that neighboring trajectories are not closed. They spiral either toward or
away from the limit cycle, as shown in Figure M7.15. In the stable case the
limit cycle is approached by all neighboring trajectories. Thus, the limit cycle is
attracting. In the unstable situation the neighboring trajectories are repelled by the
limit cycle. Finally, the rare case of a semi-stable limit cycle is a combination of
the first two possibilities.
Let us consider the simple example

ṙ = r(1 − r2), θ̇ = 1 (M7.22)

where the dynamic system refers to polar coordinates (r, θ) with r > 0. The radial
and angular equations are uncoupled so they may be handled independently. We
treat the flow as a vector field on the line r . The fixed points are r∗ = 0 and
r∗ = 1. They are, respectively, unstable and stable. We observe that the equation of
a unit circle r2 = x2 + y2 = 1 represents a closed trajectory in the phase plane; see
FigureM7.16. Sincewe are dealingwith constant angularmotion, we should expect
that all trajectories spiral toward the limit cycle r = 1. We will soon return to this
problem.

M7.2.5 Hopf bifurcation

Some bifurcations generate limit cycles or other periodic solutions. One such type
is known as the Hopf bifurcation. Let us assume that a two-dimensional system has
a stable fixed point. Now the question of in which ways the fixed point could lose
stability if the stability parameterµ is varied arises. The position of the eigenvalues
of the Jacobianmatrix in the complex plane will provide the answer. Since the fixed
point is stable by assumption, the two eigenvalues λ1,2 = λr ± iλi have negative
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Fig. M7.16 The limit cycle corresponding to equation (M7.22).

Fig. M7.17 Stability behaviors of the eigenvalues λ1,2 as functions of the stability param-
eter µ.

real parts and must therefore lie in the left-hand half of the complex plane. In order
to destabilize the fixed point, one or both of the eigenvalues must move into the
right-hand half of the complex plane as µ varies; see Figure M7.17.
As an example let us consider the second-order nonlinear system

dx

dt
= −ωy + (µ − x2 − y2)x,

dy

dt
= ωx + (µ − x2 − y2)y (M7.23)

where µ and ω are real constants. The only fixed point is (x∗, y∗) = (0, 0) so that
the Jacobian matrix at the fixed point is expressed by

A =

 − 3x2 + µ − y2 − ω − 2xy

ω − 2xy − 3y2 + µ



x∗=0, y∗=0

=

 µ − ω

ω µ


 (M7.24)

The eigenvalues to this matrix are complex:

λ1,2 = µ ± iω (M7.25)
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Thus we find

τ = λ1 + λ2 = 2µ, � = λ1λ2 = µ2 + ω2 > 0, τ 2 − 4� < 0 (M7.26)

From the stability diagram of Figure M7.13 we recognize that the fixed points are
spirals. If µ < 0 the spiral (often also called a focus) is stable, whereas for µ > 0
the spiral is unstable.
We are going to confirm this conclusion since the system (M7.23) can be solved

analytically by employing polar coordinates

x = r cos θ, y = r sin θ =⇒ x + iy = r exp(iθ) (M7.27)

from which it follows that

d

dt

[
r exp(iθ)

] = dx

dt
+ i

dy

dt
=

(
dr

dt
+ ir

dθ

dt

)
exp(iθ)

= [
ωri + (µ − r2)r

]
exp(iθ)

(M7.28)

Here use of (M7.23) and (M7.27) has been made. On separating the real and
imaginary parts we find

dr

dt
= r(µ − r2),

dθ

dt
= ω (M7.29)

where ω is the frequency of the infinitesimal oscillations. By setting ω = 1 and
µ = 1 we revert to the problem (M7.22) of the previous section which led to the
introduction of the limit cycle.
The system (M7.29) is decoupled so that it is not so difficult to obtain an

analytic solution. In general, it is impossible to find analytic solutions to nonlinear
differential equations. Dividing (M7.29) by r3 and setting n = r−2 yields

dn

dt
+ 2µn = 2 (M7.30)

Multiplication of this equation by the integrating factor exp(2µt) and integration
gives ∫ t

0

d

dt

[
exp(2µt)n(t)

]
dt = 2

∫ t

0

exp(2µt) dt (M7.31)

from which it follows that

n(t) = 1

µ
+ C exp(−2µt) with C = n(0) − 1

µ
, n(0) = 1

r20
(M7.32)
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Fig. M7.18 Hopf bifurcation. (a) For µ ≤ 0 the origin is a stable spiral. (b) For µ > 0
the origin is an unstable spiral. The circular limit cycle at r2 = µ is stable.

Replacing n by r−2 and n(0) by r−2
0 gives the solution of the differential system

(M7.29):

r2(t) =




µr20

r20 + (µ − r20 ) exp(−2µt)
µ �= 0

r20

1 + 2r20 t
µ = 0

θ(t) = ωt + θ0

(M7.33)

We will now present the phase portrait in the (x, y)-plane. As t increases from
zero to infinity, we find that, for µ ≤ 0, a stable spiral is generated, as shown in
Figure M7.18(a). This verifies our previous conclusion, which was derived from
the linear stability analysis. In other words, all solutions x = [x(t), y(t)] tend to
zero as t approaches infinity. Thus, each trajectory or orbit spirals into the origin.
The sense of the rotation depends on the sign of ω. We observe that, for µ = 0, the
linear stability analysis wrongly predicts a center at the origin.
For µ > 0 the origin becomes an unstable focus, see Figure M7.18(b). A new

stable periodic solution arises as µ increases through zero and becomes positive.
This is the limit cycle r2 = µ. Two trajectories starting inside and outside of the
limit cycle are shown in Figure M7.18(b). Since x2 + y2 = µ, the solution is given
by

x2 + y2 = µ or x = √
µ cos(t + θ0), y = √

µ sin(t + θ0) (M7.34)

This is an example of a Hopf bifurcation. Hopf (1942) showed that this type of
bifurcation occurs quite generally for systems (n > 2) of nonlinear differential
equations. For further details see, for example, Drazin (1992). In the previous
idealized example the limit cycle turned out to be circular. Hopf bifurcations
encountered in practice usually result in limit cycles of elliptic shape.
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In this example, a stable spiral has changed into an unstable spiral, which is
surrounded by a limit cycle since the real part µ of the eigenvalue has crossed the
imaginary axis from left to right as µ increased from negative to positive values.
This particular type of bifurcation is called the supercritical Hopf bifurcation.
The so-called subcritical Hopf bifurcation has an entirely different character.

After the bifurcation has occurred, the trajectories must jump to a distant attractor,
which may be a fixed point, a limit cycle, infinity, or a chaotic attractor if three and
higher dimensions are considered. We will study this situation in connection with
the Lorenz equations.

M7.2.6 The Liapunov function

Let us consider a system ẋ = f(x) having a fixed point at x∗. Suppose that we
can find a continuously differentiable real-valued function V (x) with the following
properties:

V (x) > 0, V̇ (x) < 0 ∀ x �= x∗, V (x∗) = 0 (M7.35)

This positive definite function is known as the Liapunov function. If this function
exists, then the system does not admit closed orbits. The condition V̇ (x) < 0
implies that all trajectories flow “downhill” toward x∗. Unfortunately, there is no
systematic way to construct such functions.

M7.2.7 Fractal dimensions

Fractal dimensions are characteristic of strange attractors. Therefore, it will be
necessary to briefly introduce this concept. A one-dimensional figure, such as a
straight line or a curve, can be covered by N one-dimensional boxes of side length
ε. If L is the length of the line then Nε = L, so we may write

N (ε) =
(
L

ε

)1
(M7.36)

Similarly, a square and a three-dimensional cube of side lengths L can be covered
by

N (ε) =
(
L

ε

)2
, N (ε) =

(
L

ε

)3
(M7.37)

Generalizing, for a d-dimensional box we obtain

N (ε) =
(
L

ε

)d
(M7.38)
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On taking logarithms we find

d = ln[N (ε)]

lnL− ln ε
(M7.39)

In the limit of small ε, the term ln L can be ignored in comparison with the
second term in the denominator of (M7.39). This results in the so-called capacity
dimension dc, which is given by

dc = − lim
ε→0

ln[N (ε)]

ln ε
(M7.40)

It is easy to see that the capacity dimension of a point is zero.
There are other definitions of fractional dimensions. The most important of these

is the Hausdorff dimension HD, which permits the d-dimensional boxes to vary
in size. Thus, the capacity dimension is a special case of the Hausdorff dimension.
The inequality

HD ≤ dc (M7.41)

is valid.
In large parts this chapter follows the excellent textbook on nonlinear dynamics

and chaos by Strogatz (1994).





Part 2

Dynamics of the atmosphere





1

The laws of atmospheric motion

1.1 The equation of absolute motion

The foundation to all of atmospheric dynamics is the description of motion in the
absolute reference frame. This is a Cartesian coordinate system that is fixed with
respect to the “fixed” stars. For all practical purposes we may regard this system as
an inertial coordinate system for an earthbound observer. In this reference frame
we may apply Newton’s second law of motion stating that the change of momentum
M with time of an arbitrary body equals the sum of the real forces acting on the
body. Real forces must be distinguished from fictitious forces, which are not due
to interactions of a particle with other bodies. Fictitious forces result from the
particular type of the coordinate system which is used to describe the motion of
the particle.

For a volume V (t) in the absolute frame we may then write

dM
dt

= d

dt

∫
V (t)

ρvA dτ =
∑

i

Fi +
∑

i

Pi (1.1)

where dτ is a volume element, ρ is the density of the medium, and vA is the absolute
velocity. The forces appearing on the right-hand side of this equation include mass
or volume forces Fi and surface forces Pi of the system. We do not need to include
molecular-type forces between mass elements occurring in the interior part of the
system since their net effect adds up to zero. If the fi represent the forces per unit
mass and pi the surface forces per unit surface area, we may write∑

i

Fi =
∫
V (t)

∑
i

ρfi dτ,
∑

i

Pi =
∮
S(t)

∑
i

pi dS (1.2)

Here, S(t) is the surface enclosing the volume V (t) and dS is a surface element.
Combination of these two formulas gives

d

dt

∫
V (t)

ρvA dτ =
∫
V (t)

D3

Dt
(ρvA) dτ =

∫
V (t)

∑
i

ρfi dτ +
∮
S(t)

∑
i

pi dS (1.3)
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The left-hand side of this equation refers to the rate of change with time of a fluid
volume whose surface elements move with the respective absolute velocity vA. The
budget operator D3/Dt is given by (M6.58). In the following the index 3 will be
omitted for brevity.

The only mass force we need to consider is the gravitational attraction of the
earth. We are not going to deal with tidal forces so that we are justified in ignoring
the gravitational pull resulting from celestial bodies. To keep things simple, we
consider the entire mass of the earth ME to be concentrated at its center. According
to Newton’s law of attraction, the gravitational force f1 = fa acting on unit mass is
given by

fa = −γME

r2
r0 = −γME

r3
r (1.4)

where γ is the gravitational constant and r = rr0 the position vector extending
from the center of the earth to the fluid volume element of unit mass. The force fa
may also be expressed in terms of a potential. To recognize this, we take the curl
of fa and obtain

∇ × fa = −γME

(
1

r3
∇ × r − 3

r4
r0 × r

)
= 0 (1.5)

By the rules of vector analysis, fa may now be replaced by the gradient of a scalar
function,

fa = −∇φa, φa = −γME

r
+ constant (1.6)

The minus sign is conventional. The term φa is called the gravitational potential.
We will subsequently assume that φa depends on position only and not on time so
that

φa = φa(r),
(
∂φa

∂t

)
xi

= 0 (1.7)

Next, we consider the surface forces acting on a surface element. These result
from the pressure force p1 = −pn acting in the opposite direction −n of dS, and
from the normal and tangential viscous forces p2 = n · J which depend on the state
of motion of the medium. The quantity J is known as the viscous stress tensor,
which is assumed to be symmetric. At this point the stress tensor is introduced only
formally, but it will be discussed in more detail in Chapter 5. The surface forces
are then given by

∑
i

pi dS = n dS · (−pE + J) = dS · (−pE + J) (1.8)

where E is the unit dyadic.
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Substituting (1.8) and (1.6) into (1.3) we obtain

∫
V (t)

(
D

Dt
(ρvA) + ρ ∇φa

)
dτ +

∮
S(t)

dS · (pE − J) = 0 (1.9)

Application of Gauss’ divergence theorem (M6.31) and use of the interchange rule
(M6.68) gives

∫
V (t)

(
ρ

dvA

dt
+ ρ ∇φa + ∇p − ∇ · J

)
dτ = 0 (1.10)

Since the volume of integration is completely arbitrary, we obtain the differential
form

ρ
dvA

dt
= −ρ ∇φa − ∇p + ∇ · J (1.11)

This important equation is known as the equation of absolute motion. It is funda-
mental to all of atmospheric dynamics.

In order to formulate the last term of (1.11) we use the following analytic
expression for the stress tensor J:

J = µ(∇vA + vA

�∇) − λ∇ · vAE, λ = 2
3µ − l11 (1.12)

A detailed derivation of this equation may be found, for example, in TH. In (1.12)
we have neglected the effects of transitions between the different phases of water
on the stress tensor. We have also used Lamé’s coefficients of viscosity λ and µ,
which will be treated as constants. Substitution of (1.12) into (1.11) results in the
famous Navier–Stokes equation

ρ
dvA

dt
= −ρ ∇φa − ∇p + µ∇2vA + (µ − λ) ∇(∇ · vA) (1.13)

If we ignore the last two terms involving Lamé’s viscosity coefficients then we
obtain the Euler equation

ρ
dvA

dt
= −ρ ∇φa − ∇p (1.14)
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1.2 The energy budget in the absolute reference system

In the absolute reference system the attractive potential represents the potential
energy of unit mass. Application of the budget operator yields

D

Dt
(ρφa) = ρ

dφa

dt
= ρ

∂φa

∂t
+ ρvA · ∇φa (1.15)

Owing to the condition of stationarity (1.7) the budget equation for the gravitational
attraction reduces to

D

Dt
(ρφa) = ρvA · ∇φa (1.16)

Next we need to derive the budget equation for the kinetic energyKA = ρv2
A/2 in

the absolute reference frame. Scalar multiplication of (1.11) by vA and application
of the identities

∇ · (vA · J) = J··∇vA + vA · (∇ · J)

∇ · (pvA) = p ∇ · vA + vA · ∇p = ∇ · (pvA · E)
(1.17)

yields the desired budget equation

D

Dt

(
ρ
v2

A

2

)
+ ∇ · [vA · (pE − J)] = −ρvA · ∇φa + p ∇ · vA − J··∇vA (1.18)

Equations (1.16) and (1.18), together with the budget equation for the internal
energy e (M6.73), constitute the energy budget for the absolute system:

D

Dt
(ρφa) = ρvA · ∇φa

D

Dt

(
ρ
vA

2

2

)
+ ∇ · [vA · (pE − J)] = −ρvA · ∇φa + p ∇ · vA − J··∇vA

D

Dt
(ρe) + ∇ · (Jh + FR) = −p ∇ · vA + J··∇vA

(1.19)
The term Jh occurring in the budget equation for e describes the sensible heat
flux and FR is the radiative flux. This equation is derived in various textbook on
thermodynamics; see for example TH.

It can be seen that the sum of the source terms on the right-hand side of (1.19)
of the entire system vanishes. This simply means that energy is transformed and
exchanged between various parts of the system, but it is neither created nor de-
stroyed. In other words, each source occurring in one equation is compensated by
a sink (minus sign) in one of the other equations.
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Fig. 1.1 The energy-flux diagram in the absolute reference frame.

For visual purposes it is customary to arrange the energy fluxes (1.19) in the
form of a circuit diagram as shown in Figure 1.1. The expressions above the arrows
between the three energy boxes describe the energy transitions. These transitions
may have either a positive or a negative sign with the exception of the positive
definite energy dissipation J · ·∇vA which flows in one direction only. This term
is also known as the Rayleigh dissipation function. The arrows connecting the
system with its surroundings are the divergence terms of the budget equations. If
the system is closed energetically then all divergence terms vanish. In this case the
total energy εt = (�a + v2

A/2 + e) is conserved.

1.3 The geographical coordinate system

All meteorological observations are performed on the rotating earth. Therefore, our
goal must be to describe the motion of the air from the point of view of an observer
participating in the rotational motion. Any motion viewed from a station on the
rotating earth is known as relative motion. Since the equation of absolute motion
(1.13) refers to an inertial system, we must find a relation between the accelerations
of absolute and relative motion.

Let us consider a rotating coordinate system whose origin is placed at the earth’s
center. The vertical axis of this system coincides with the earth’s axis so that the
coordinate system is rotating with the constant angular velocity Ω of the earth
from west to east. Moreover, we assume that the center of the earth and the center
of the inertial coordinate system coincide and that the vertical axis of the inertial
system is also along the rotational axis of the earth and is pointing to the pole-star.
If a point P in this rotating coordinate system remains fixed in the sense that its
longitude λ, latitude ϕ, and the distance r extending from the center of the earth to
the point do not change with time, we speak of rigid rotation and a rigidly rotating
coordinate system. This situation is depicted in Figure 1.2.
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Fig. 1.2 The geographical coordinate system with generalized coordinates qi = λ, ϕ, r
representing the longitude λ, the latitude ϕ, and the distance r of a point P . Also shown
are the corresponding basis vectors qλ,qϕ,qr . The axes x1 and x2 of the inertial system
lie in the equatorial plane of the earth.

We can see immediately that the rotational velocity v� of this point is directed
along the basis vector qλ and is given by

v� = Ω × r (1.20)

The formal derivation of (1.20) will be given later. The angular velocity Ω is
determined by the period of rotation of the earth with respect to the fixed stars.
This period of rotation is called the sidereal day (sidereal is an adjective derived
from the Latin word for star). Since the earth moves around the sun, the sidereal
day differs in length from the solar day which is the period of rotation with respect
to the sun. In one year the earth rotates 365 1

4
times with respect to the sun, but 366 1

4

times with respect to the stars so that one year = 365 1
4 solar days = 366 1

4 sidereal
days. Therefore, we have

|Ω| = � = 2π

sidereal day
= 366.25

365.25

2π

solar day
= 7.292 × 10−5 s−1 (1.21)

In our later studies it will be of advantage to introduce pressure or some other
suitable variable of state as the vertical coordinate instead of height in order to
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effectively describe the motion of the air. Let us consider, for example, a point
of fixed longitude and latitude on a pressure surface. Owing to heating processes,
pressure surfaces will deform so that this point will experience a change in height
with respect to the ground and, therefore, with respect to the center of the absolute
coordinate system. Of course, this displacement is extremely small relative to the
total distance from the center of the earth to the point. The vertical motion of the
point, however, cannot be ignored in all situations. Summing it up, this point is not
only moving with the rotational velocity of the earth, but also participating in the
deformational motion of the pressure surface. This deformation velocity vD must be
added to v� to give the velocity of the point vP with respect to the absolute system,

vP = v� + vD (1.22)

As the next step in our investigation it will be necessary to represent the individual
time derivative both in the absolute and in the relative coordinate systems. The
individual time derivative itself describes the change of an air parcel in such a way
that it is independent of any coordinate system. Therefore, the individual derivative
d/dt is called an invariant operator. However, the constituent parts of this operator
depend on the coordinate system used to describe the motion and, therefore, they
are not invariants. A detailed derivation of the individual time derivative is given
in Section M4.2.

It will be recalled that, in general curvilinear coordinates, the position vector is
defined only infinitesimally. Exceptions are curvilinear systems for which ∂ei/∂r =
0. An example of this exception is the geographical coordinate system. It should
be recalled that, in rotating coordinate systems, the basis vectors are functions of
time also. The position vector r in the Cartesian system may also be expressed in
terms of the generalized coordinates qj using the transformation xi = xi(qj , t).
Thus, we may write

r = xnin, r = r(qj , t) (1.23)

In the absolute system we use Cartesian coordinates to represent dr/dt , whereas
for the relative system we are going to employ contravariant measure numbers.
Application of the invariant operator d/dt to the position vector in the two coordi-
nate systems then gives

xi system:
dr
dt

=
(
∂r
∂t

)
xi

+ ∂r
∂xn

dxn

dt
=

(
∂xn

∂t

)
xi

in + ẋnin = ẋnin = vA

qi system:
dr
dt

=
(
∂r
∂t

)
qi

+ ∂r
∂qn

dqn

dt
=

(
∂r
∂t

)
qi

+ q̇nqn

with
∂r
∂xi

= ii ,
∂r
∂qj

= qj

(1.24)



140 The laws of atmospheric motion

In the absolute or the Cartesian system the individual derivative of the position
vector is equivalent to the absolute velocity. The local time derivative vanishes
since xi is held constant. In the relative system the partial derivative of r with
respect to time, holding qi constant, describes the velocity vP of the point P as
registered in the absolute system. The components of vP in the absolute or inertial
system are denoted by W

x

i . The vector v describes the velocity of a parcel of air
relative to the earth. Therefore, we have

v = q̇nqn, vP =
(
∂r
∂t

)
qi

=
(
∂xn

∂t

)
qi

in = W
x

nin (1.25)

From (1.24) and (1.25) we now obtain

vA = vP + v (1.26)

which is known as the addition theorem of the velocities, see also Section M4.2.
Hence, the absolute velocity vA of a parcel of air is the sum of the velocity vP of
the point relative to the absolute system plus the relative velocity of the parcel at
the point as registered in the moving system. Taking the individual time derivative
of (1.26) results in the relation between the accelerations of absolute and relative
motion, as was mentioned at the beginning of this section.

1.3.1 Operations involving the rotational velocity v�

In this section we will present some important relations that will be useful for our
later studies.

1.3.1.1 The divergence of v� in the geographical coordinate system

We will now introduce the coordinates of the geographical system spoken of with
the help of Figure 1.2. This system is performing a rigid rotation so that vD = 0.
The system is rotating with constant angular velocity about the x3-axis so that

Ω = i3� (1.27)

We wish to specify the coordinates of the point P whose projection onto the
equatorial plane is denoted by P ′. During time t , the longitude λ = 0 passing
through Greenwich moves the angular distance �t as measured from the x1-axis of
the absolute system. The angular distance of the point P ′ then is given by �t + λ

so that the coordinates of the point P in the absolute system may be expressed in



1.3 The geographical coordinate system 141

terms of the geographical coordinates (λ, ϕ, r) by means of

x1 = r cosϕ cos(λ + �t)

x2 = r cosϕ sin(λ + �t)

x3 = r sinϕ

(1.28)

We now apply (1.25) to find the rotational velocity v�. In the present situation
vD = 0 so that

vP = v� =
(
∂r
∂t

)
qi

= in

(
∂xn

∂t

)
qi

= W
x

nin = −�x2i1 + �x1i2 = Ω × r

with W
x

1 = W
x 1

= −�x2, W
x

2 = W
x 2

= �x1

(1.29)

This verifies the validity of (1.20). Recall that in the Cartesian system there is no
difference between covariant and contravariant coordinates.

We now wish to find the metric fundamental quantities gij of the orthogonal
geographical coordinate system. For such a system we may apply the relation
(M3.15):

gij = ∂xn

∂qi

∂xn

∂qj
(1.30)

On substituting (1.28) into this expression, after a few easy steps we find

g11 = r2 cos2 ϕ, g22 = r2, g33 = 1, gij = 0 for i 	= j =⇒
√
g

q
=

√∣∣gij

∣∣ = r2 cosϕ

(1.31)
The divergence of the velocity of the point vP = v� is expressed by the general
relation (M4.36)

∇·vP = 1√
g
q


∂

√
g
q

∂t



qi

= 1

r2 cosϕ

∂

∂t

(
r2 cosϕ

)
λ,ϕ,r

= 0 (1.32)

Since the coordinates ϕ and r are held constant in the time differentiation, it is
found that the divergence of v� in the rigidly rotating geographical system is
zero, as expected. If the deformation velocity differs from zero, we find that the
divergence of vD does not vanish. This situation will be treated later. The validity
of (1.32) can also be verified by using the definition (1.20), i.e.

∇ · v� = ∇ · (Ω × r) = −Ω · (∇ × r) = 0 (1.33)
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1.3.1.2 Rotation and the vector gradient of v�
Using the Grassmann rule (M1.44) we find immediately

∇ × v� = ∇ × (Ω × r) = (∇ · r)Ω − Ω · (∇r) = 3Ω − Ω · E = 2Ω (1.34)

showing that the rotation of v� is a constant vector whose direction is parallel to
the rotational axis of the earth.

We will now take the gradient of v�. Recalling that ∇r = E is a symmetric

tensor, that is ∇r = r
�∇, we find immediately

∇v� = ∇(Ω × r) = −∇(r× Ω) = −E × Ω = −Ω × E

v�
�∇ = (Ω × r)

�∇ = Ω × E = −∇v�
(1.35)

where use of (M2.67) has been made. Therefore, the gradient of v� is an anti-
symmetric tensor. By taking the scalar product of an arbitrary vector A with the
gradient of v�, we obtain the very useful expressions

A · ∇v� = −A · (E × Ω) = Ω × A

∇v� · A = −(Ω × E) ·A = A× Ω
(1.36)

If A represents the velocities v� and v we find

(a) v� · ∇v� = Ω × v� = Ω × (Ω × r)

(b) v · ∇v� = Ω × v
(1.37)

These expressions will be needed later.

1.3.2 The centrifugal potential

For meteorological purposes the rotational vector of the earth may be treated as a
constant vector. On applying the Grassmann rule to the curl of the vector product
Ω × v� we find with the help of (1.33) and (1.36)

∇ × (Ω × v�) = (∇ · v�)Ω − Ω · ∇v� = 0 (1.38)

From vector analysis we know that an arbitrary vector whose curl is vanishing can
be replaced by the gradient of a scalar field function. Therefore, we may write

∇φz = Ω × v� (1.39)

Since we are dealing with a rotating coordinate system, it is customary to call the
scalar field function φz the centrifugal potential, which will be determined soon.
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By taking the scalar product of v� and ∇φz we find that the angle between these
two vectors is 90◦:

v� · ∇φz = v� · (Ω × v�) = 0 (1.40)

Owing to the gravitational attraction, equipotential surfaces φa = constant are of
spherical shape. Therefore, we must also have

v� · ∇φa = 0 (1.41)

showing that v� and ∇φa are also orthogonal to each other. This may also be easily
verified with the help of (1.20).

In order to find the centrifugal potential itself, we apply (1.37) to (1.39) and
utilize the fact that the tensor ∇v� is antisymmetric. Thus we obtain

∇φz = Ω × v� = v� · ∇v� = −v� · v�
�∇ = −∇

(
v2
�

2

)
(1.42)

By comparison we find, to within an abitrary additive constant, which we set equal
to zero, the required expression for the centrifugal potential:

φz = −v
2
�

2
= − (Ω × r)2

2
= −�2R2

2
(1.43)

R is the distance from the point under consideration to the earth’s axis; see
Figure 1.2.

Finally, the invariant individual time derivative of v� can be written either in the
absolute or in the relative system:

dv�
dt

=
(
∂v�
∂t

)
xi

+ vA · ∇v� =
(
∂v�
∂t

)
qi

+ v · ∇v� (1.44)

In the Cartesian system the local time derivative of v� vanishes because(
∂v�
∂t

)
xi

= Ω ×
(
∂r
∂t

)
xi

= Ω × in

(
∂xn

∂t

)
xi

= 0 (1.45)

In the general qi system we obain(
∂v�
∂t

)
qi

= Ω ×
(
∂r
∂t

)
qi

= Ω × (v� + vD) = ∇φz + Ω × vD (1.46)

where we have used (1.25) and (1.39). For the rigidly rotating coordinate system
with vD = 0 this expression reduces to

(
∂v�
∂t

)
qi

= ∇φz (1.47)
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1.3.3 The budget operator

Before we apply the budget operator to the velocity v of the rigidly rotating system,
we will give a general expression for an abitrary system including deformation. We
refer to Section M6.5. According to (M6.66), omitting the index 3 for brevity, the
budget operator is given by

D

Dt
(ρψ) = ∂

∂t
(ρψ)xi + ∇ · (ρψ vA)

= ∂

∂t
(ρψ)xi + vA · ∇(ρψ) + ρψ ∇ · vA

= d

dt
(ρψ) + ρψ ∇ · v+ ρψ ∇ · vD

(1.48)

since vA = v+ v� + vD and ∇ · v� = 0. Now we write the total time derivative in
the qi-coordinate system and find

D

Dt
(ρψ) = ∂

∂t
(ρψ)qi + ∇ · (ρvψ) + ρψ ∇ · vD (1.49)

Setting in (1.48) ψ = 1 yields the general form of the continuity equation:

dρ

dt
+ ρ ∇ · v+ ρ ∇ · vD = 0 (1.50)

If the deformation velocity vD is zero, (1.50) reduces to the continuity equation for
the rigidly rotating coordinate system.

Before we derive the equation of motion for the relative system, we will intro-
duce a special notation to avoid notational ambiguities. Suppose that we wish to
differentiate locally the vector A = Anqn with respect to time, yielding(

∂A
∂t

)
qi

=
(
∂An

∂t

)
qi

qn + An

(
∂qn

∂t

)
qi

(1.51)

The first part of the product differentiation on the right-hand side of (1.51) describes
the differentiation of the measure numbersAk with the basis vectorqk held constant.
It might be more convenient to put the vector A itself into the first operator on the
right-hand side instead of its measure numbers. This can be done quite validly
since qi is held constant. However, in order to avoid an ambiguity in our notation,

we place a vertical line
∣∣∣
qi

on the local time-derivative operator to indicate that

qi is not to be differentiated with respect to time. Thus, the following notation is
introduced:

∂A
∂t

∣∣∣
qi

=
(
∂An

∂t

)
qi

qn (1.52)
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The second part of the time differentiation in (1.51) involves the basis vector itself:

(
∂qk

∂t

)
qi

= ∂

∂t

(
∂r
∂qk

)
qi

= ∂

∂qk

(
∂r
∂t

)
qi

= ∂vP
∂qk

(1.53)

where we have substituted the velocity vP as defined in (1.25). The local time
derivative of A is then given by

(
∂A
∂t

)
qi

= ∂A
∂t

∣∣∣
qi

+An
∂vP
∂qn

= ∂A
∂t

∣∣∣
qi

+Anqn ·qm
∂vP
∂qm

= ∂A
∂t

∣∣∣
qi

+A ·∇vP (1.54)

With this expression we obtain for the individual time derivative of A

dA
dt

= dA
dt

∣∣∣
qi

+A · ∇vP

with
dA
dt

∣∣∣
qi

= ∂A
∂t

∣∣∣
qi

+ v · ∇A
(1.55)

While the vertical line excludes the differentiation of the basis vector qi with
respect to time, it does not exclude the differentiation with respect to the spatial
coordinates. Moreover, it should be clearly recognized that the time dependency of
the basis vectors is not lost by any means since it is included in the gradient of vP .

We proceed similarly with the budget operator. Application of (1.48) to the
vector A results in

D

Dt
(ρA) = D

Dt
(ρA)

∣∣∣
qi

+ ρA · ∇vP

with
D

Dt
(ρA)

∣∣∣
qi

= ρ
dA
dt

∣∣∣
qi

= ∂

∂t
(ρA)

∣∣∣
qi

+ ∇ · (ρvA) + ρA∇ · vD

(1.56)

We would like to point out that equations (1.54)–(1.56) are general and include the
deformation velocity.

In the special case of rigid rotation, the deformation velocity is zero so that (1.36)
may be applied. Whenever the expressionA · ∇vP appears it may then be replaced
by

A · ∇vP = A · ∇v� = Ω × A for vD = 0 (1.57)
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1.4 The equation of relative motion

The starting point of the derivation is the equation of absolute motion (1.13).
Introducing the addition theorem (1.26), (1.13) may be written as

ρ
dv
dt

= −ρ
dv�
dt

−ρ
dvD

dt
−ρ ∇φa −∇p +µ∇2vA + (µ−λ) ∇(∇ ·vA) (1.58)

We now replace two of the individual derivatives. Application of (1.46) to (1.44)
and using (1.37b) gives

dv�
dt

= ∇φz + Ω × vD + Ω × v (1.59a)

With the help of (1.55) and (1.37b) we obtain

dv
dt

= dv
dt

∣∣∣
qi

+ Ω × v+ v · ∇vD (1.59b)

Substitution of (1.59a) and (1.59b) into (1.58) gives the equation of relativemotion:

ρ
dv
dt

∣∣∣
qi

= − 2ρΩ × v− ρΩ × vD − ρv · ∇vD − ρ
dvD

dt
− ρ ∇φ − ∇p + µ∇2vA + (µ − λ) ∇(∇ · vA)

(1.60)

where the centrifugal and the attractive potential have been combined to give the
geopotential, that is

φ = φa + φz (1.61)

From (1.6) we know that surfaces of constant gravitational potential are spherical
surfaces. The gravitational potential increases with increasing distance from the
center of the earth so that −∇φa is pointing toward the center of the earth. According
to (1.43) the centrifugal potential φz = constant is represented by cylindrical
surfaces whose negative gradient −∇ φz is pointing away from the earth’s axis.
Owing to the rotational symmetry, the two surfaces may be easily added graphically
in a cross-section containing the earth’s axis. The resulting surfaces of geopotential
φ = constant are shown in Figure 1.3.

Near the earth’s surface, i.e. in the part of the atmosphere relevant to weather,
surfaces of constant geopotential may be viewed as rotational ellipsoids. In most
of our studies we will even assume that the ellipsoidal surfaces may be replaced
by spherical surfaces. Moreover, we assume that the geopotential is a function of
position only and set ∂φ/∂t = 0.
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φ =
constant

φ

φ a

φ

φ =
constant

(b)(a)

ψ ϕ

z

Fig. 1.3 (a) A cross-section of geopotential surfaces. (b) Directions of the negative gradi-
ents −∇φa and −∇φz. The angles ϕ and ψ represent the geographical and the geocentric
latitudes.

Equation (1.60) is the general form of the equation of motion in the rotating
geographical coordinate system. If the deformation velocity is zero we obtain

ρ
dv
dt

∣∣∣
qi

= −2ρΩ × v− ρ ∇φ − ∇p + µ∇2v+ (µ − λ) ∇(∇ · v) (1.62)

since ∇2v� = 0. Equation (1.62) applies to the rigidly rotating geographical
coordinate system. This is the form of the equation of motion given in most
textbooks. It should be clearly understood that the left-hand side of (1.60) represents
an artificial acceleration. The vertical line, as discussed, implies that the basis
vectors in v are not to be differentiated with respect to time.

The term −2ρΩ × v is the Coriolis force, which is a fictitious force resulting
from the rotation of the coordinate system. An air parcel moving with the relative
velocity vwill be deflected to the right in the northern hemisphere and to the left in
the southern hemisphere. Of course, the Coriolis force does not perform any work.

1.5 The energy budget of the general relative system

At the end of Section 1.2 we considered the energy budget with reference to the
absolute system. Now we wish to derive the energy budget for the general relative
system which includes not only the effects of rotation but also that of deformation.
As stated before, the total energy is given as the sum of the potential energy due to
gravitational attraction, the kinetic energy, and the internal energy. In the relative
system the relevant variables will be the geopotential instead of the gravitational
potential and the relative velocity instead of the absolute velocity. The budget
equation for the internal energy e will be included again, with a minor change in
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the mathematical form that does not change its physical content. With vA = v+vP
and vP = v� + vD we may write for the total energy

εt = φa + v2
A

2
+ e = φ + v2

2
+ e +

(
v2

A

2
− v2

2
− φz

)
= φ + v2

2
+ e + χ (1.63)

where we have introduced the centrifugal potential according to (1.61). The
expression in parentheses is abbreviated by χ and may be rewritten as

χ = 1

2
(v+ vP )2 − v2

2
+ v2

�

2
= v · vP + v2

P

2
+ v2

�

2
(1.64)

where we have replaced φz by means of (1.43). To describe the energy budget
we must obtain budget equations for each term in (1.63). We begin by adding the
budget equation of the gravitational attraction

ρ
dφa

dt
= ρvA · ∇φa = ρ(v+ vD) · ∇φa since v� · ∇φa = 0 (1.65a)

to the budget equation of the centrifugal potential

ρ
dφz

dt
= ρvA · ∇φz = ρ(v + vD) · ∇φz since v� · ∇φz = 0 (1.65b)

which must have the same mathematical structure as (1.65a). This gives the budget
equation for the geopotential:

ρ
dφ

dt
= ρ(v+ vD) · ∇φ (1.66)

The next step is the derivation of the budget equation for the kinetic energy of
the relative system. On substituting (1.59a) into (1.58) we first obtain

ρ
dv
dt

= −ρ ∇φ − ρΩ × (v + vD) − ρ
dvD

dt
− ∇ · (pE − J) (1.67)

where we have used the definition of the viscous stress tensor J according to (1.12)
to simplify the notation. Scalar multiplication of (1.67) by v gives the required
budget equation for the kinetic energy:

D

Dt

(
ρ
v2

2

)
+∇·[v·(pE − J)] = −ρv·∇φ−ρv·

(
Ω × vD + dvD

dt

)
+ (pE − J)··∇v

(1.68)

The budget equation for χ is simply found by subtracting equations (1.65b) and
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(1.68) from the second equation of (1.19). The complete energy budget for the
general relative system is listed as

(a)
D

Dt
(ρφ) = ρ(v+ vD) · ∇φ

(b)
D

Dt

(
ρ
v2

2

)
+ ∇ · [

v · (pE − J)
] = −ρv · ∇φ + (pE − J)··∇v

− ρv ·
(
Ω × vD + dvD

dt

)

(c)
D

Dt
(ρe) + ∇ · (Jh + FR) = −(pE − J)··∇(v + vD)

(d)
D

Dt
(ρχ ) + ∇ · [(v� + vD) · (pE − J)] = −ρvD · ∇φ + (pE − J)··∇vD

+ ρv ·
(
Ω × vD + dvD

dt

)

(1.69)

In obtaining (1.69c) and (1.69d) we have used the rule that the double scalar product
of the symmetric dyadic (pE − J) and the antisymmetric dyadic ∇v� vanishes.

Inspection of (1.69) shows that the sum of source terms on the right-hand
sides vanishes as required. Had we considered the budget of the geopotential
together with the budget equations of the kinetic energy and the internal energy
by themselves, then the sum of the source terms would not have vanished. To
correct this deficiency the budget equation of the quantity χ had to be introduced.
If desired, an energy flux diagram for the budget (1.69) in the form of Figure 1.1
could be constructed.

Finally, it is also noteworthy that, in the absence of deformational effects (vD =
0), the budget (1.69) assumes a simplified form describing energetic processes in
the relative frame of the rigidly rotating coordinate system. Moreover, the right-
hand side of (1.69d) vanishes completely so that the budget of χ is free from
sources. Therefore, (1.69d) is no longer a part of the budget system, and we obtain
the simplified version of (1.69):

(a)
D

Dt
(ρφ) = ρv · ∇φ

(b)
D

Dt

(
ρ
v2

2

)
+ ∇ · [v · (pE − J)

] = −ρv · ∇φ + (pE − J)··∇v

(c)
D

Dt
(ρe) + ∇ · (Jh + FR) = −(pE − J)··∇v

(1.70)

By comparing (1.70) with the energy budget of the absolute system (1.19), the
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similarity of the expressions becomes apparent. In (1.70) the attractive potential φa

has been replaced by the geopotential φ and the absolute velocity vA by the relative
velocity v. In passing we would like to remark that the complete system (1.69) is
needed in order to describe the energetic processes of the general circulation.

1.6 The decomposition of the equation of motion

Let us consider the equation of motion (1.62), which is repeated for convenience
using the expansion (1.55). For reasons of brevity the final two terms in (1.62) have
been rewritten as the divergence of the stress dyadic:

∂v
∂t

∣∣∣
qi

+ v · ∇v+ 1

ρ
∇p + ∇φ + 2Ω × v− 1

ρ
∇ · J = 0

1 2 3 4 5 6
(1.71)

The physical meaning of each term will now briefly be explained. Term 1 describes
the local change of the velocity whereas the nonlinear term 2 represents the advec-
tion of the velocity. Term 3 is most easily comprehended and is usually called the
pressure gradient force. Term 4 combines the absolute gravitational force and the
centrifugal force into a single force often called the apparent or relative gravity. It
is this gravity which is actually observed on the earth. Any surface on which φ is
constant is called a level surface or equipotential surface. There is no component
of the apparent gravity along such surfaces. Motion along level surfaces is usually
referred to as horizontal motion. Multiplying term 5 in (1.71) by −1 results in
the Coriolis force, which has already been discussed, whereas term 6 represents
frictional effects.

For prognostic purposes it is necessary to decompose the vector equation (1.71)
into three equations for the components of the wind field in each direction. There
are various ways to obtain the component equations. In order to resolve (1.71)
we assume that surfaces of constant geopotential are spherical. The first step is to
obtain the metric fundamental quantities gij . It is best to employ the basic definition

(a) dr · dr = dqm qm · dqn qn = gmn dq
m dqn

(b) dr = r cosϕ dλ eλ + r dϕ eϕ + dr er , qi = ei
√
gii , ei = ei

(1.72)
The increment dr stated in (1.72b) can be easily found from inspection of
Figure 1.2. The orthogonal system of the spherical earth is completely described
by only three fundamental quantities:

g11 = r2 cos2 ϕ, g22 = r2, g33 = 1, gij = 0 for i 	= j (1.73)

in agreement with (1.31).
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Next we need to specifiy the general gradient operator:

∇ = qn
∂

∂qn
= e1

√
g11

∂

∂q1
+ e2

√
g22

∂

∂q2
+ e3

√
g33

∂

∂q3
(1.74)

which, in the coordinate system being considered, is easily converted to the form

∇ = eλ
1

r cosϕ

∂

∂λ
+ eϕ

1

r

∂

∂ϕ
+ er

∂

∂r
= eλ

∂

∂λ
* + eϕ

∂

∂ϕ*
+ er

∂

∂z

with
∂

∂λ
* = 1

r cosϕ

∂

∂λ
,

∂

∂ϕ*
= 1

r

∂

∂ϕ
,

∂

∂z
= ∂

∂r

(1.75)

The relative velocity is simply found by dividing (1.72b) by dt , which results in

v = dr
dt

= r cosϕ λ̇eλ + rϕ̇eϕ + ṙer = ueλ + veϕ + wer

with u
* i = √

gii q̇
i , u

* 1 = u, u
* 2 = v, u

* 3 = w

(1.76)

In (1.76) the contravariant velocities λ̇, ϕ̇, ṙ have been converted into physical
measure numbers u

* i . The local velocity dyadic is then given by

∇v =
(
eλ

1

r cosϕ

∂

∂λ
+ eϕ

1

r

∂

∂ϕ
+ er

∂

∂r

)
(ueλ + veϕ + wer) (1.77)

By employing the formulas (M4.45) for the partial derivatives of the unit vectors
in the spherical system, we find the following relationships:

∂v
∂λ

= ∂u

∂λ
eλ + u(sinϕ eϕ − cosϕ er) + ∂v

∂λ
eϕ − v sinϕ eλ + ∂w

∂λ
er + w cosϕ eλ

∂v
∂ϕ

= ∂u

∂ϕ
eλ + ∂v

∂ϕ
eϕ − ver + ∂w

∂ϕ
er + weϕ

∂v
∂r

= ∂u

∂r
eλ + ∂v

∂r
eϕ + ∂w

∂r
er

(1.78)
Using the above formulas it is almost trivial to find the three components of the
advection term. The results are

eλ · (v · ∇v) = u

r cosϕ

∂u

∂λ
+ v

r

∂u

∂ϕ
+ w

∂u

∂r
+ uw

r
− uv

r
tanϕ

eϕ · (v · ∇v) = u

r cosϕ

∂v

∂λ
+ v

r

∂v

∂ϕ
+ w

∂v

∂r
+ vw

r
+ u2

r
tanϕ

er · (v · ∇v) = u

r cosϕ

∂w

∂λ
+ v

r

∂w

∂ϕ
+ w

∂w

∂r
− 1

r
(u2 + v2)

(1.79)
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Fig. 1.4 Decomposition of the angular velocity vector.

In order to find the components of the Coriolis force, we need to decompose
the angular velocity vector which is oriented perpendicular to the equatorial plane;
see Figure 1.2. Therefore, the angular velocity has no component parallel to the
equatorial plane, as is shown in Figure 1.4. The result is

Ω = � cosϕ eϕ + � sinϕ er = l

2
eϕ + f

2
er (1.80)

with

l = 2� cosϕ, f = 2� sinϕ (1.81)

so that

2Ω × v = (lw − f v)eλ + f ueϕ − luer (1.82)

The terms f and l are the so-called Coriolis parameters.
According to our previous discussion, the relation between the acceleration of

gravity and the geopotential is given by

g = −∇φ = −∇(φa + φz) (1.83a)

Approximating surfaces of φ = constant by spherical surfaces, this equation
reduces to

∇φ = erg (1.83b)

According to (1.43) the centrifugal potential depends on the distance R from the
earth’s axis. Therefore, g depends on the geographical latitude as well as on the
vertical distance from the earth’s surface; see Figure 1.2. For most meteorological
purposes the height dependence of g may be safely ignored so that g = g(ϕ).
However, the latitudinal dependence of g is also relatively weak, yielding values
in the range of 9.780 m s−2 ≤ g ≤ 9.832 m s−2 at the equator and the North pole,
respectively. Therefore, the ϕ-dependence of g is usually not explicitly consid-
ered in the equation of motion. Instead of this, g is assigned a constant value of
9.81 m s−2. A more complete discussion of this subject may be found, for example,
in TH.
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Above the planetary boundary layer, which extends to about 1 km in height,
frictional effects may often be ignored. For this situation the component form of
the equation of motion in spherical coordinates is easily obtained from (1.71) by
utilizing (1.79), (1.82), and (1.83) and is given by

∂u

∂t
+

(
u
∂u

∂λ
* + v

∂u

∂ϕ*

)
+ w

∂u

∂z
+ uw

r
− uv

r
tanϕ + lw − f v + 1

ρ

∂p

∂λ
* = 0

1 2 3 4 5 6 7 8

∂v

∂t
+

(
u
∂v

∂λ
* + v

∂v

∂ϕ*

)
+ w

∂v

∂z
+ vw

r
+ u2

r
tanϕ + f u + 1

ρ

∂p

∂ϕ*
= 0

1 2 3 4 5 7 8

∂w

∂t
+

(
u
∂w

∂λ
* + v

∂w

∂ϕ*

)
+ w

∂w

∂z
− 1

r
(u2 + v2) − lu + 1

ρ

∂p

∂z
+ g = 0

1 2 3 4 6 8 9

(1.84)
Let us briefly discuss the various terms appearing in (1.84), which are numbered
for ease of reference. These terms represent either real or fictitious forces. In each
equation term 1 is the local rate of change with time of the velocity component.
Terms 2 and 3 denote horizontal and vertical advection, respectively. Fictitious or
apparent forces do not result from the interaction of an air parcel with other bodies,
but stem from the choice of the rotating coordinate system. Terms 4 and 5 are such
apparent forces per unit mass. They are also known as metric accelerations, which
result from the curvature of the coordinate lines. The metric acceleration or metric
force per unit mass is perpendicular to the relative velocity as follows from

[(uw

r
− uv

r
tanϕ

)
eλ +

(
vw

r
+ u2

r
tanϕ

)
eϕ − u2 + v2

r
er

]
· (ueλ +veϕ +wer) = 0

(1.85)
so these forces do not perform any work. Terms 6 and 7 are the Coriolis terms
which result from the rotation of the coordinate system. By proceeding as in (1.85)
we can again verify that the Coriolis force does not perform any work either.
Term 8 is the pressure-gradient force and term 9 denotes the acceleration due to
gravity.

Equations (1.84) are so general that they describe all scales of motion including
local circulations as well as large-scale synoptic systems. For the present, let us
consider the motion of dry air only for simplicity. Whenever we introduce moisture
with associated phase changes, the situation becomes very involved.
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Let us now count the number of dependent variables of the atmospheric system.
These are the three velocity components u, v,w, the temperature T , the air density
ρ, and pressure p. In order to evaluate these, we must have six equations at our
disposal. These are the three component equations of motion for u, v,w, the first
law of thermodynamics for T , the continuity equation for ρ, and the ideal-gas law
for p. We have just as many equations as unknowns, so we say that this system
is closed. We call this system the molecular system or the nonturbulent system. In
contrast, the so-called microturbulent system, which we have not yet discussed, is
not closed, so there are more unknown quantities than equations. This necessitates
the introduction of closure assumptions.

If we compare the numerical values of the various terms appearing in the system
(1.84), we find that they may differ by various orders of magnitude. For a particular
situation to be studied, it seems reasonable to omit the insignificant terms. There
exists a systematic method for deciding how to eliminate these. This method is
known as scale analysis and will be described in the next chapter.

1.7 Problems

1.1: Show that
D

Dt
(ρv�) = ρΩ × v− ρ ∇

(
v2
�

2

)

d

dt
(∇ψ) = ∇ dψ

dt
− ∇v·∇ψ

where ψ is an arbitrary scalar field function.

1.2:
(a) Show that ∮

dr·(Ω × v) = d

dt

∫
S

dS·Ω

(b) By utilizing this equation, show that, for frictionless motion, equation (1.62)
can be written in the form

dC

dt
= −2�

dS ′

dt
−

∮
1

ρ
dgp with C =

∮
dr·v

where S ′ is the projection of the material surface S(t) on the equatorial plane.

1.3: In the absolute system the frictional tensor J(vA) is given by (1.12).
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(a) Show in a coordinate-free manner that, for the rigidly rotating earth, we may
write

∇·J(vA) = ∇·J(v)

(b) Calculate the influence of the frictional force on the velocity profiles

v1(z) = C1 ln

(
z

z0

)
i and v2(z) = C2zi

where C1, C2, and z0 are constants.

1.4: An incompressible fluid is streaming through a pipe of arbitrary but constant
cross-section. Along the axis of the cylinder which is pointing in the x-direction,
the fluid velocity is u = |v| everywhere so that u depends on the coordinates y and
z only.
(a) Show that the continuity equation is satisfied.
(b) Find the Navier–Stokes equation for u. Ignore gravity and any convective
motion.
(c) Find a solution for u if the pipe is a circular cylinder of radius R0. The boundary
condition is u = 0 at R = R0. Use cylindrical coordinates.
(d) Find the amount Q of fluid streaming through the cross-section of the cylinder
per unit time.

1.5: The continuity equation for relative motion can be written in the form

d

dt

(
ρ
√
g

q

)
+ ρ

√
g

q

∂q̇n

∂qn
= 0

Show that this equation is identical with (1.50).

1.6: Draw and discuss the energy-transformation diagram corresponding to (1.69).

1.7: Show the validity of the following equation:

D

Dt
(ρφ) =

(
∂ρφ

∂t

)
xi

+ ∇ · (ρvAφ) = 1√
g

q

{[
∂

∂t

(√
g

q
ρφ

)]
qi

+ ∂

∂qn

(√
g

q
ρφq̇n

)}
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1.8: Use equations (M4.42) and (M4.45) to verify the following relations for the
unit vectors (eλ, eϕ, er ) of the geographical coordinate system:

∂eλ
∂λ

= eϕ sinϕ − er cosϕ,
∂eλ
∂ϕ

= 0,
∂eλ
∂r

= 0

∂eϕ
∂λ

= −eλ sinϕ,
∂eϕ
∂ϕ

= −er , ∂eϕ
∂r

= 0

∂er
∂λ

= eλ cosϕ,
∂er
∂ϕ

= eϕ,
∂er
∂r

= 0

∂eλ
∂t

= Ω × eλ = �
∂eλ
∂λ

,
∂eϕ
∂t

= Ω × eϕ = �
∂eϕ
∂λ

,
∂er
∂t

= Ω × er = �
∂er
∂λ

where Ω = �(cos ϕ eϕ + sinϕ er).



2

Scale analysis

Scale analysis is a systematic method of comparing the magnitudes of the various
terms in the hydrodynamical equations describing the atmospheric motion. This
theory is instrumental in the design of consistent dynamic–mathematical models
for dynamic analysis and numerical weather prediction. Charney (1948) introduced
this technique to large-scale dynamics and showed that it is not necessary to
use the complete scalar set of Navier–Stokes equations to describe the synoptic
and planetary-scale motion. Among others, mainly Burger (1958) and Phillips
(1963) used and extended this method. For additional details and a more complete
bibliography see Haltiner and Williams (1980). In this chapter we follow Pichler’s
(1997) excellent introduction to scale analysis.

2.1 An outline of the method

Scale analysis makes it possible to objectively estimate the magnitudes of the
various terms in an equation describing a physical system. The basic idea is to
formulate a simplified equation by ignoring certain terms in a consistent manner
without changing the basic physics. Let us consider an equation of the form

ψ1 + ψ2 + · · · + ψi + · · · + ψn = 0 (2.1)

which may be a part of a more general system. The task ahead is to estimate the
magnitudes of the individual terms in (2.1). Let us define the magnitude of each
term by the symbol [

ψi
]

m
= magnitude of ψi (2.2)

From (2.1) and (2.2) we form a dimensionless expression

〈ψi 〉 = ψi[
ψi

]
m

(2.3)
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which by necessity is of magnitude 1. In order to avoid confusion in the notation
we have added the suffix m within the bracket in (2.2) to remind the reader that
this bracket refers to the magnitude of the term. With (2.3) equation (2.1) can be
written as

[
ψ1

]
m

〈ψ1 〉 + [
ψ2

]
m

〈ψ2 〉 + · · · + [
ψi

]
m

〈ψi 〉 + · · · + [
ψn

]
m

〈ψn 〉 = 0 (2.4)

In order to consistently compare the magnitude of the various terms we introduce
dimensionless characteristic numbers defined by

ψr,i = [
ψr

]
m

/[
ψi

]
m

(2.5)

The importance of one particular term, say term i in (2.1), will now be investigated.
We divide equation (2.4) by the magnitude of term i and find, using the definition
of the characteristic numbers, the expression

ψ1,i〈ψ1 〉 + ψ2,i〈ψ2 〉 + · · · +〈ψi 〉 · · · + ψn,i〈ψn 〉 = 0 (2.6)

If, for example, all characteristic numbers are much larger than 1, which is the
number multiplying term i, then term i has no significance in relation to the
remaining terms and may be ignored. If, on the other hand, all characteristic
numbers are much smaller than 1, then term i plays a dominant role and must be
considered in the physical treatment under all circumstances.

We will now apply this method to the Navier–Stokes equation (1.71) which
excludes the deformational velocity vD. In the form (2.4) the Navier–Stokes equa-
tion can then be written as

[
∂v
∂t

∣∣∣
qi

]
m

〈
∂v
∂t

∣∣∣
qi

〉
+ [ v · ∇v ]

m
〈 v · ∇v 〉 +

[
1

ρ
∇p

]
m

〈
1

ρ
∇p

〉

+ [∇φ ]
m

〈 ∇φ 〉 + 2[Ω × v ]
m

〈Ω × v 〉 −
[
1

ρ
∇ · J

]
m

〈
1

ρ
∇ · J

〉
= 0

(2.7)

This is a very convenient form in which to introduce various characteristic numbers
that have proven to be very useful in the study of fluids and gases. Of particular
interest is the relation of the magnitude of the individual terms to the inertial force
per unit mass [ v · ∇v ]

m
.We proceed by dividing the inertial force by themagnitudes
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of each of the remaining terms. Thus, we obtain five dimensionless numbers:

the Strouhal number: St =
[ v · ∇v ]

m[
∂v
∂t

∣∣∣
qi

]
m

the Euler number: Eu =
[ v · ∇v ]

m[
1

ρ
∇p

]
m

the Froude number: Fr =
[ v · ∇v ]

m

[∇φ ]
m

the Rossby number: Ro =
[ v · ∇v ]

m

2[Ω × v ]
m

the Reynolds number: Re =
[ v · ∇v ]

m[
1

ρ
∇ · J

]
m

(2.8)

Each of these numbers expresses the ratio of the magnitude of the inertial force
to one of the remaining forces appearing in the Navier–Stokes equation. These
numbers are the reciprocals of the characteristic numbers defined by (2.5). By
inserting the numbers in (2.8) into (2.7) we obtain the dimensionless form of the
Navier–Stokes equation:

1

St

〈
∂v
∂t

∣∣∣
qi

〉
+〈 v · ∇v 〉 + 1

Eu

〈
1

ρ
∇p

〉
+ 1

Fr
〈 ∇φ 〉

+ 1

Ro
〈Ω × v 〉 − 1

Re

〈
1

ρ
∇ · J

〉
= 0

(2.9)

The characteristic number of the second term in (2.9) equals 1. If, for example,
the remaining characteristic numbers are much larger than 1, then the inertial force
may be ignored in comparison with the other forces appearing in (2.9). This means
that the nonlinear equation (2.9) in this special case reduces to a linear partial
differential equation. Inspection of (2.9) shows that the frictional term is important
only if the Reynolds number is very small.

2.2 Practical formulation of the dimensionless flow numbers

Equation (2.8) is a collection of various important flow numbers. For practical
applications these flow numbers must be expressed in terms of easily accessible
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variables characterizing the flow field. The basic variables required are time, the
wind speed, the angular velocity of the earth, the acceleration due to gravity,
pressure, density, and temperature. The scale of motion is characterized by the
horizontal (L1, L2) and vertical (L3) length scales of the phenomena to be
investigated. The synoptic scale of motion refers to long waves, low- and high-
pressure systems so that L1, L2 ≥ 106 m. The vertical scale L3 includes the
weather-effective part of the atmosphere and may be approximated byL3 ≈ 104 m.

According to equation (2.3) we introduce the length scale x by means of

x = [ x ]
m

〈 x 〉 = S〈 x 〉 (2.10)

Utilizing this expression, the nabla operator may be written as

∇ = [∇ ]
m

〈 ∇ 〉 = 1

S
〈 ∇ 〉 (2.11)

The time scale will be expressed in terms of the local characteristic time interval Tl
describing the nonstationary motion. If the magnitude of the phase velocity of the
wave (pressure system) is denoted by C, then we replace the time t by means of

t = [ t ]
m

〈 t 〉 = Tl〈 t 〉 = S

C
〈 t 〉 (2.12)

Likewise, we write for the remaining variables

1

ρ
=

[
1

ρ

]
m

〈
1

ρ

〉
= A

〈
1

ρ

〉
, p = [

p
]

m
〈p 〉 = P 〈p 〉, T = [ T ]

m
〈 T 〉 = T0〈T 〉

v = [ v ]
m

〈 v 〉 = V〈 v 〉, Ω = �〈Ω 〉, ∇φ = G〈∇φ 〉, [ J ]
m

= µ0V

S
(2.13)

The characteristic magnitudes of pressure, density, and temperature are related by
the ideal-gas law

AP = R0T0 (2.14)

where R0 is the gas constant of dry air. Effects of moisture on temperature are
considered unimportant and are omitted. With the help of the definitions (2.13)
the magnitudes of all terms occurring in the Navier–Stokes equation (2.7) can now
be written as[

∂v
∂t

∣∣∣
qi

]
m

= V

Tl
, [ v · ∇v ]

m
= V 2

S
,

[
1

ρ
∇p

]
m

= AP

S
= R0T0

S

[∇φ ]
m

= G, [ 2Ω × v ]
m

= 2�V,

[
1

ρ
∇ · J

]
m

= Aµ0V

S2

(2.15)
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The dimensionless flow numbers (2.8) assume the practical forms

St = V Tl

S
= V

C
, Ro = V

2�S
, Eu = V 2

R0T0

Fr = V 2

GS
, Re = V S

Aµ0
= V S

ν0

(2.16)

The equation of motion (1.71) in scale-analytic form can now be written as

V

Tl

〈
∂v
∂t

∣∣∣
qi

〉
+ V 2

S
〈 v · ∇v 〉 + AP

S

〈
1

ρ
∇p

〉

− G〈∇φ 〉 + 2�V〈Ω × v 〉 − Aµ0V

S2

〈
1

ρ
∇ · J

〉
= 0

(2.17)

Dividing this equation by the magnitude of the inertial force and using the practical
forms of the flow numbers (2.16) again yields (2.9).

The scale-analytic form of the Navier–Stokes equation may be used to estimate
the relative importance of each term. For many applications, however, it is of
advantage not to subject the vector equation (2.9) directly to a scale analysis but
to use the equivalent scalar equations. How to proceed for large-scale frictionless
flow will be explained in the next section. The effect of friction will be treated in
a later chapter when we have acquired the necessary background. In passing, we
would like to remark that the method of scale analysis is quite general and may be
applied not only to the equation of motion but also to other equations.

2.3 Scale analysis of large-scale frictionless motion

As stated before, we wish to apply the method of scale analysis to the scalar form
of the equation of motion. We describe the motion in spherical coordinates in the
form (1.84). In order to proceed efficiently, we apply equation (2.3) to the latitude
and longitude, height, time, and other pertinent variables, yielding

(a) λ
* = L

〈
λ
*
〉
, ϕ* = L 〈

ϕ*
〉
, z = D〈 z 〉

(b) u = U〈u 〉, v = U〈 v 〉, w = W〈w 〉
(c) t = Tl〈 t 〉 = L

C
〈 t 〉

(d) g = G〈 g 〉, p = P 〈p 〉
(e) Hp = H0

〈
Hp

〉
, R0T = gHp = GH0

〈
gHp

〉
(f) f = f0〈f 〉, l = l0〈 l 〉
(g) r = a

(2.18)
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The stars labeling latitude and longitude, as defined by (1.75), are to remind us that
we are using physical measure numbers. From observations it is known that the
large scales ofmotion in longitudinal and latitudinal directions are of the same order
of magnitude L whereas the vertical scale D is quite different, see (2.18a). The
same is true for the magnitudes of the horizontal (U ) and vertical (W ) components
of the wind velocity. Equations (2.18c) and (2.18d) give the scaled forms of time,
of the acceleration due to gravity, and of the pressure p. It is also customary to
introduce the pressure scale heightHp as given by (2.18e). The Coriolis parameters
f and l are scaled in (2.18f) whereby the suffix 0 refers to the mean latitude of a
geographical latitude belt for which the motion is considered. Finally, the radius r
may be replaced by the mean radius a of the earth.

According to observations in the atmosphere the following typical numerical
values are used for the quantities occurring in (2.18)1

U ∼ 10 m s−1, W ≤ 0.1 m s−1, C ≤ U
L ∼ 106 m, D = H0 ∼ 104 m

G ∼ 10 m s−2, a ∼ 107 m

l0 ∼ 10−4 s−1, f0 ∼
{
10−4 s−1 for 25◦ ≤ ϕ0 ≤ 80◦

10−5 s−1 for ϕ0 < 25◦

(2.19)

It is seen that the characteristic vertical velocity is much smaller than the
characteristic horizontal velocity so thatW � U . Furthermore, the phase velocity
C of synoptic systems such as ridges and troughs satisfies the inequality C ≤ U

so that, according to (2.16), the Strouhal number is St ≥ 1. Therefore, the local
time scale Tl = S/C is larger than or equal to the so-called convective time scale
Tc = S/U , i.e. Tl ≥ Tc. The latitudinal dependence of the Coriolis parameter f0
is accounted for by using different values for the two geographical latitude bands
25◦ ≤ ϕ0 ≤ 80◦ representing the broad range of mid- and high latitudes and
ϕ0 < 25◦ for the low latitudes.

Using (2.18) the pressure-gradient force terms appearing in (1.84)may bewritten
as

1

ρ

∂p

∂λ
* = gHp

p

∂p

∂λ
* = GH0

L

,ph

P

〈
gHp

p

∂p

∂λ
*

〉

1

ρ

∂p

∂ϕ*
= gHp

p

∂p

∂ϕ*
= GH0

L

,ph

P

〈
gHp

p

∂p

∂ϕ*

〉

1

ρ

∂p

∂z
= gHp

p

∂p

∂z
= GH0

D

,pv

P

〈
gHp

p

∂p

∂z

〉
(2.20)

1 If dynamic processes of the boundary layer, where friction cannot be ignored, are being investigated, then we
must use D = 103 m.
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In these expressions the magnitudes of the spatial pressure changes ,ph,v have
been introduced, whereby the subscripts h and v have been added in order to
distinguish between horizontal and vertical pressure changes. However, as the
expressions suggest, it is profitable to approximate the magnitudes of the rela-
tive pressure changes ,ph,v/P . From observations we find the following typical
values:

,ph

P
∼

{
10−2 for 25◦ ≤ ϕ0 ≤ 80◦

10−3 for ϕ0 < 25◦ ,
,pv

P
∼ 1 (2.21)

The vertical pressure change refers to the entire vertical extentH0 of the atmosphere.
Observations indicate that the magnitudes of the changes in velocity along the

horizontal and vertical length scales are similar and equal to the order of magnitude
of the velocity:

,uh ∼ U, ,uv ∼ U, ,vh ∼ U, ,vv ∼ U (2.22)

Now we have finished all preparatory work for the scale analysis of the equation
of motion in the scalar form. By substituting (2.20) for the pressure-gradient terms
into (1.84) and using the scale-analytic expressions given in the previous equations,
we obtain without difficulty

CU

L

〈
∂u

∂t

〉
+ U

2

L

(〈
u
∂u

∂λ
*

〉
+

〈
v
∂u

∂ϕ*

〉)
+ UW
H0

〈
w
∂u

∂z

〉
+ UW

a
〈uw 〉

(i) ∼10−4 ∼10−4 ∼10−4 ∼10−7

(ii) ∼10−4 ∼10−4 ∼10−4 ∼10−7

1 2 3 4

− U
2

a
tanϕ〈 uv 〉 + l0W〈 lw 〉 − f0U〈 f v 〉+ GH0

L

,ph

P

〈
gHp

p

∂p

∂λ
*

〉
= 0

(i) ∼10−5 ∼10−5 ∼10−3 ∼10−3

(ii) ∼10−5 ∼10−5 ∼10−4 ∼10−4

5 6 7 8

(2.23a)
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CU

L

〈
∂v

∂t

〉
+ U 2

L

(〈
u
∂v

∂λ
*

〉
+

〈
v
∂v

∂ϕ*

〉)
+ UW
H0

〈
w
∂v

∂z

〉
+ UW

a
〈 vw 〉

(i) ∼10−4 ∼10−4 ∼10−4 ∼10−7

(ii) ∼10−4 ∼10−4 ∼10−4 ∼10−7

1 2 3 4

+ U
2

a

〈
u2

〉
tanϕ+ f0U 〈 f u 〉 + GH0

L

,ph

P

〈
gHp

p

∂p

∂ϕ*

〉
= 0

(i) ∼10−5 ∼10−3 ∼10−3

(ii) ∼10−5 ∼10−4 ∼10−4

5 7 8

(2.23b)

CW

L

〈
∂w

∂t

〉
+ UW

L

(〈
u
∂w

∂λ
*

〉
+

〈
v
∂w

∂ϕ*

〉)
+ W

2

H0

〈
w
∂w

∂z

〉

(i) ∼10−6 ∼10−6 ∼10−6

(ii) ∼10−6 ∼10−6 ∼10−6

1 2 3

− U
2

a

(〈
u2

〉 +〈
v2

〉)− l0U〈 lu 〉 + G,pv

P

〈
gHp

p

∂p

∂z

〉
+ G〈 g 〉 = 0

(i) ∼10−5 ∼10−3 ∼101 ∼101

(ii) ∼10−5 ∼10−3 ∼101 ∼101

4 6 8 9

(2.23c)
Below each term we have written the approximate magnitudes for the two latitude
bands (i) 25◦ ≤ ϕ0 ≤ 80◦ and (ii) ϕ0 < 25◦. For ease of identification the
terms have also been numbered. Each term is the product of a dimensional factor
representing force per unit mass and of dimensionless quantities 〈 · · · 〉 of
magnitude 1. Comparison of individual terms then shows which terms may be
safely omitted in large-scale frictionless motion.

Let us first consider the prognostic equation (2.23a) for the u-component of the
wind field. Term 1 representing the local rate of change with time of the velocity
and terms 2 and 3 denoting horizontal and vertical advection are all of the same
order of magnitude 10−4. Terms 4 and 5 both involve the radius a of the earth.
Since term 4 is at least two orders of magnitude smaller than the remaining terms,
it may be safely ignored. Terms 6 and 7 are due to the earth’s rotation and represent
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the Coriolis force. The main effect of the Coriolis force is included in term 7, so
term 6 may be omitted. One might be tempted to also ignore term 5, which is
of the same magnitude as term 6, but these two terms represent entirely different
forces. Term 5 is a metric acceleration and should be retained in comparison with
the metric acceleration term 4. Metric accelerations are apparent accelerations
resulting from the particular shape of the coordinate system being considered.
They do not perform any work. The estimated magnitude of the pressure-gradient
term shows that this term must be retained under all circumstances. The same type
of argument may be applied to equation (2.23b) describing the equation for the
v-component of the wind field. Only the metric term 4 will be ignored due to its
small magnitude.

A somewhat different situation arises in (2.23c). Inspection shows that the
vertical pressure gradient and the gravitational effect represented by terms 8 and 9
are of the same order of magnitude and seven orders of magnitude larger than the
individual acceleration represented by the terms 1–3. Moreover, terms 4 and 6 may
also be ignored in comparison with terms 8 and 9, so this equation degenerates to
two terms only. Nevertheless, we will momentarily retain terms 1–3 adding up to
the individual vertical acceleration. The analysis of some small-scale circulations
can be carried out only if the vertical acceleration is accounted for.

The information gained by the above scale analysis may now be utilized to
obtain the approximate form of the equation of motion (1.84) for the components
u, v,w of the wind field in the geographical coordinate system for the description
of large-scale frictionless flow fields

∂u

∂t
+ u

a cosϕ

∂u

∂λ
+ v

a

∂u

∂ϕ
+ w ∂u

∂z
− uv

a
tanϕ − f v = − 1

ρa cosϕ

∂p

∂λ

∂v

∂t
+ u

a cosϕ

∂v

∂λ
+ v

a

∂v

∂ϕ
+ w ∂v

∂z
+ u2

a
tanϕ + f u = − 1

ρa

∂p

∂ϕ

∂w

∂t
+ u

a cosϕ

∂w

∂λ
+ v

a

∂w

∂ϕ
+ w ∂w

∂z
= − 1

ρ

∂p

∂z
− g

(2.24)

Recalling the definition of the individual derivative

d

dt
= ∂

∂t
+ u

a cosϕ

∂

∂λ
+ v

a

∂

∂ϕ
+ w ∂

∂z

with u = a cosϕ λ̇, v = aϕ̇, w = ṙ
(2.25)

the three components of the equation of motion in their approximate form may be
rewritten as
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(a)
du

dt
− uv

a
tanϕ − f v = − 1

ρa cosϕ

∂p

∂λ

(b)
dv

dt
+ u2

a
tanϕ + f u = − 1

ρa

∂p

∂ϕ

(c)
dw

dt
= − 1

ρ

∂p

∂z
− g

(2.26)

Owing to the small magnitudes of terms 1 to 3 in (2.23c) for large-scale motion,
which combine to give the vertical acceleration, we need to retain only terms 8 and
9. For this reason (2.26c) degenerates to

1

ρ

∂p

∂z
= −g (2.27)

This equation is known as the hydrostatic approximation. The large-scale or the
synoptic-scale motion is quasistatic even in the presence of horizontal gradients of
the thermodynamic variables (p, T , ρ). Wemust clearly understand that quasistatic
motion does not imply that there is no vertical motion since w is still contained in
the advection term of (2.24). In fact, we have not set dw/dt = 0 but used scale
analysis to show that the absolute value of dw/dt is much smaller than the absolute
values of the vertical pressure gradient and the acceleration due to gravity. If the
third equation of motion (2.26c) is replaced by (2.27) it is no longer available for
the prognostic determination ofw, which must be obtained in some other way. The
large-scale motion is then characterized by equations (2.26a) and (2.26b) together
with equation (2.27).

We will now multiply (2.26a) and (2.26b) by the unit vectors eλ and eϕ,
respectively, and then add these two equations representing the horizontal
motion. The two terms containing tan ϕ may be combined to give a vector
expression representing the metric acceleration. For brevity, we also combine the
two acceleration terms (du/dt, dv/dt) with the metric acceleration, yielding(

dvh
dt

∣∣∣
ei

)
h

= eλ
du

dt
+ eϕ

dv

dt
+ u

a
tanϕ (er × vh) (2.28a)

with vh = eλu + eϕv. This is the horizontal part of the total acceleration of the
horizontal wind given by

dvh
dt

∣∣∣
ei

=
(
dvh
dt

∣∣∣
ei

)
h

− u2 + v2
a

er (2.28b)

The last term of this equation appears in (2.23c). Recall that the vertical line in
the differential operator on the left-hand side symbolizes that the unit vectors are



2.4 The geostrophic wind and the Euler wind 167

not to be differentiated with respect to time. Likewise, the two terms containing
the Coriolis parameter may be combined to give Ch, which is an approximate
expression for the Coriolis force. Therefore, the equation of horizontal motion may
be written in simplified form as

(
dvh
dt

∣∣∣
ei

)
h

− Ch = − 1

ρ
∇hp with Ch = −f er × vh (2.29)

From (2.29) it can be seen that the Coriolis force Ch is oriented normal to vh. In the
northern (southern) hemisphere the Coriolis force is pointing to the right (left) if
the observer is looking in the direction of the horizontal wind. This approximation
is also valid at low latitudes with the exception of the equatorial belt. Even at the
latitude of ϕ = ±5◦ the term lw appearing in (2.23a) is one order of magnitude
smaller than f v.

2.4 The geostrophic wind and the Euler wind

We wish to consider the magnitudes of the various terms of (2.29). Inspection of
(2.23a) and (2.23b) shows that, at mid- and high latitudes, the individual derivatives
du/dt, dv/dt and the metric acceleration are at least one order of magnitude
smaller than the components of Ch and the horizontal pressure gradient. This is
also apparent from the scaling of (2.29):

U 2

L

〈 (
dvh
dt

∣∣∣
ei

)
h

〉
+ f0U〈f er × vh 〉 = −GH0

L

,ph

P

〈
gHp

p
∇hp

〉
(2.30)

where the upper limit C = U has been used. By utilizing in (2.16) the magnitudes
listed in (2.19) we obtain for the Rossby and Froude numbers

Ro = U

f0L
, F r = U 2

GH0
(2.31)

Substitution of these expressions into (2.30) yields

Ro

〈(
dvh
dt

∣∣∣
ei

)
h

〉
+〈 f er × vh 〉 = −Ro

Fr

,ph

P

〈
gHp

p
∇hp

〉
(2.32)

For the large-scale synoptic flow regimes at the mid- and high latitudes we obtain
from (2.19) and (2.21)

25◦ ≤ ϕ0 ≤ 80◦ : Ro ∼ 10−1,
Ro

F r

,ph

P
∼ 1 (2.33)
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p − ∆ p

Fig. 2.1 The geostrophic wind in the northern hemisphere.

In the limiting case (L very large so that Ro → 0, but (u, v) �= 0), we find from
(2.32) an exact balance between the Coriolis force and the pressure-gradient force.
The wind resulting from this balance is known as the geostrophic wind vg and may
be easily obtained from (2.29), which reduces to

f er × vg = − 1

ρ
∇hp (2.34)

On solving for vg we find

vg = 1

ρf
er × ∇hp (2.35)

The isobars run parallel to the geostrophic wind vector so that vg is normal to
the pressure-gradient force. According to (2.34) the directions of the Coriolis
force and the pressure-gradient force are opposite, as shown in Figure 2.1 for
the northern hemisphere. Above the atmospheric boundary layer where frictional
effects are very small, the geostrophic wind deviates very little from the actu-
ally observed wind. However, this small deviation is very important since it is
responsible for atmospheric developments. Owing to its smallness, the geostrophic
deviation in the free atmosphere can hardly be determined from routine measure-
ments.

Let us briefly consider the tropical latitudes. In this situation we obtain from
(2.19) and (2.21) (see also Charney (1963))

ϕ0 < 25◦: Ro ∼ 1,
Ro

F r

,ph

P
∼ 1 (2.36)

Approaching the equator either from the south or from the north, the Rossby number
becomes very large so that the Coriolis term in (2.32) may be ignored. This reduces
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(2.29) to the horizontal form of the Euler equation:

(
dvh
dt

∣∣∣
ei

)
h

= − 1

ρ
∇hp (2.37)

which is the equilibrium condition at ϕ = 0◦ and very near to the equator.

2.5 The equation of motion on a tangential plane

Let us briefly review the scale-analyzed equation of motion (2.26) of the rotating
spherical-coordinate system. The singularites at the poles (ϕ = ±90◦) arising
from cosϕ and tanφ are troublesome. Later, when we introduce the so-called
stereographic coordinate system, these singularities disappear. At this point it will
be very convenient for us to introduce a rotating rectangular coordinate system
in which the x-axis is pointing toward the east, the y-axis toward the north, and
the z-axis toward the local zenith. This type of coordinate system is sufficient for
the study of various meteorological problems. We will reduce equation (2.26) by
“brute strength” to obtain the desired result.

We imagine a plane that is tangential to the spherical earth at a selected point.
The rotational speed of the plane is � sinϕ = f/2, as follows from inspection of
Figure 1.4. By omitting from (2.26) the two terms containing tanϕ and by replacing
the increments of the physical coordinates (see equation (1.75)) δλ∗ = a cos ϕ δλ
and δϕ∗ = a δϕ in the pressure-gradient force by δx and δy, respectively, we obtain
the equation of motion for the tangential plane:

du

dt
− f v = − 1

ρ

∂p

∂x

dv

dt
+ f u = − 1

ρ

∂p

∂y

dw

dt
= − 1

ρ

∂p

∂z
− g

(2.38)

We shall use this form of the equation of motion from time to time.

2.6 Problems

2.1: Check whether the magnitudes in (2.23) are correct. Use the numerical values
stated in the text.
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2.2: Verify equation (2.28b).

2.3: LetMλ,Mϕ , andMr represent the metric accelerations.
(a) With the help of (2.23) write down proper expressions forMλ,Mϕ, andMr .
(b) Show that the metric acceleration does not perform any work.

2.4: The equation of motion can be written as

∂ρv
∂t

∣∣∣
qi

= −∇·(ρvv) − ∇·(pE − J) − ρ ∇φ + 2ρv×�

with J = µ(∇v+ v
�∇ − 2

3∇ · vE)
2Ω = 2� cosϕ i2 + 2� sinϕ i3 = f2i2 + f3i3

Show that the component form of this equation in Cartesian coordinates is given
by

∂ρ ui

∂t
= − ∂

∂xn
(ρunui) + εimnfnρum − ∂p

∂xi
− δi3ρg

+ ∂

∂xn

[
µ

(
∂ui

∂xn
+ ∂un

∂xi

)
− 2

3
δin
∂um

∂xm

]

with i1 ·A× B = εimnAmBn

εijk =


1 for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)
−1 for (i, j, k) = (3, 2, 1), (2, 1, 3), (1, 3, 2)
0 else
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The material and the local description of flow

The kinematics of the atmosphere is the mathematical description of atmospheric
flow fields without regarding the cause of the motion. Therefore, kinematics stands
in contrast to dynamics, in which the governing equations are derived from consid-
erations of forces acting on the fluid particles. There exist two methods describing
the atmospheric motion. These are the methods of Lagrange and Euler. We shall
begin our discussion with the so-called material description of Lagrange, in which
the velocity field is represented as a function of time at the position of the moving
particle.

3.1 The description of Lagrange

Suppose that x1
0, x

2
0 , x

3
0 are the initial coordinates of a fluid particle at time t0 and

x1, x2, x3 the coordinates at some later time t . If xi, i = 1, 2, 3, can be expressed
as a function of the initial coordinates and the time, we know the history or the
trajectory of the particle. Formally, this can be stated as

xi = xi
(
x1

0, x
2
0 , x

3
0 , t

)
, i = 1, 2, 3 (3.1)

so that, in the Lagrangian system, xi0 and t are the independent and xi the dependent
variables. Equation (3.1) is the formal parameter representation of the trajectory of
a particle whose initial position is xi0. Changing the initial coordinates simply means
that we have selected a different fluid particle. It is evident that (3.1) is the solution
of a system of prognostic equations for the trajectory of a particle as given by

dxi

dt
= fi(x

1, x2, x3, t), i = 1, 2, 3 (3.2)

A very simple example is dx1/dt = u = constant =⇒ x1(x1
0 , t) = x1

0 +u(t − t0).
Lagrange’s method is characterized by the introduction of the so-called enumer-

ation coordinates ai, i = 1, 2, 3, which are simply the coordinates of the particle
at the initial time t = t0, i.e. ai = xi0, as depicted in Figure 3.1.

171
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r(a
, t)

Fig. 3.1 The position vector r of the trajectory of a particle. Initially the particle is at
position a.

For simplicity the selected initial coordinates are assumed to be Cartesian, but,
in general, any coordinate system could be used. The formal representation of the
trajectory may then be written as

xi = xi(a1, a2, a3, t) or r = r(a, t) (3.3)

This representation also serves as the transformation equation between the coordi-
nates xi and ai ,

ai = ai(x1, x2, x3, t) or a = a(r, t) (3.4)

A unique transformation is possible only if the functional determinant of the
transformation differs from zero, i.e.

∣∣∣∣∂(x1, x2, x3)

∂(a1, a2, a3)

∣∣∣∣ �= 0 (3.5)

In general, the ai-coordinate system, as stated in (3.4), is curvilinear, nonortho-
gonal, and time-dependent, as displayed in Figure 3.2, where the initial coordinate
system is assumed to be the rectangular Cartesian system. For t > t0 the original
orthogonal unit vectors will transform into nonorthogonal non-normalized basis
vectors.

It should be kept in mind that, in general, the displacement of individual particles
along their trajectories results in a deformation of the surfaces ai = constant.
Whereas in the original coordinate system the distance between any two particles,
for example two particles on the x1-axis with the distance δx1 between them,
changes continually with time, the increment δa1 between two arbitrary particles
remains unchanged since the enumeration coordinates of the particles are fixed at
all times.
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Fig. 3.2 Conceptional displacement of a material volume.

Fig. 3.3 Displacement of three particles aligned on the x1-axis at t = t0.

To clarify the idea, consider the following simplified two-dimensional coordinate
system of Figure 3.3, where three particles in their original positions are shown.
At time t = t0 the coordinate axes x1 and a1 are identical and the distance between
the particles is δa1 = 1. The distance δx1 of the three particles moving along their
individual trajectories changes with time. Since the particles have fixed enumeration
coordinates they remain neighboring particles on the a1-axis at all times so that the
a1-coordinate line must be drawn as shown.

3.2 Lagrange’s version of the continuity equation

3.2.1 Preliminaries

Consider an increment dsi along the coordinate line ai as given by

dsi = ∂r
∂ai

dai = ai dai (3.6)



174 The material and the local description of flow

r(a
, t 2

)

r(a, t1 )

δσ

δr

Fig. 3.4 The tangential unit vector along the trajectory.

where the basis vector ai is shown in Figure 3.2. If the unit tangential vector
eT = ai/

√
gii to the coordinate line ai is introduced as well as the physical

coordinate a* i by
dsi = eT

√
gii da

i = eT da
* i (3.7)

then dsi = ∣∣dsi∣∣ becomes the arclength which is identical to an increment on the
physical coordinate line a* i . The unit vector along the trajectory of a particular
particle is given by

t =
(
∂r
∂σ

)
ai

(3.8)

where δσ represents the arclength. On the trajectory the enumeration coordinates
ai, i = 1, 2, 3, are constant; see Figure 3.3.

For the velocity vector of the particle we may write

v = |v| t, |v| = dσ

dt
(3.9)

The acceleration of an individual particle in the ai-coordinate system can be ob-
tained from the Eulerian development

dv
dt

=
(
∂v
∂t

)
ai

+ ȧn
∂v
∂an

(3.10)

The important point is that the enumeration coordinates do not change with time,
so dai/dt = 0. Therefore, the acceleration in the Lagrangian system is given by

dv
dt

=
(
∂v
∂t

)
ai

(3.11)

Since the Euler expansion is valid for any field function ψ,Ψ,� , we have, in
general, for the Lagrangian system

d

dt

(
ψ
Ψ
�

)
= ∂

∂t

(
ψ
Ψ
�

)
ai

(3.12)
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3.2.2 The mass-conservation equation in the Lagrangian form

We are now ready to formulate the mass-conservation or the continuity equation
in the Lagrangian form. Starting with the general coordinate-free form of the
continuity equation (M6.67) it is easy to show that, in the qi system, this equation
may be written as

d

dt

(
ρ
√
g
q

)
+ ρ

√
g
q

∂q̇n

∂qn
= 0 (3.13)

Setting here qi = ai , we obtain

d

dt

(
ρ
√
g
a

)
=

[
∂

∂t

(
ρ
√
g
a

)]
ai

= 0 (3.14)

since dai/dt = ȧi = 0. This conservative condition is analogous, for example, to
isentropic motion dθ/dt = 0, where θ is constant along the trajectory. Integration
of (3.14) yields the Lagrangian form of the continuity equation

(
ρ
√
g
a

)
t
=

(
ρ
√
g
a

)
t=t0

= constant (3.15)

This equation can be easily interpreted by realizing that the density ρ and
√
g
a

generally change with time. The quantity
√
g
a

corresponds to the scalar triple

product [a1, a2, a3] which represents the volume of a parallelepiped. If the volume
expands (contracts) the density must decrease (increase), which is the principle of
conservation of mass.

Finally, we consider the special but interesting case that, at t = t0, the Lagrangian
and the Cartesian system are identical so that

√
g
x

= √
g
a

∣∣
t0

= 1. In this case (3.15)

reduces to (
ρ
√
g
a

)
t
= ρ(t = t0) = constant (3.16)

In case of incompressibility we have ρ = ρ(t = t0) and we obtain
√
g
a

= 1.

3.3 An example of the use of Lagrangian coordinates

3.3.1 General remarks

In order to appreciate more fully the method of Lagrangian coordinates, we will
work out an example and show how to find the approximate numerical solution to a



176 The material and the local description of flow

one-dimensional hyperbolic system involving the thermo-hydrodynamic differen-
tial equations. We refer to Chapter 12 of Richtmeyer and Morton (1967). The fluid
system is assumed to be frictionless, and Coriolis effects are ignored. For simplic-
ity we disregard any subgrid heat and mass fluxes as well as heat sources and the
gravitational force. The thermodynamic properties of the fluid will be expressed in
the form

p = p(e, α) (3.17)

where p is the air pressure, e the specific internal energy, and α = 1/ρ the specific
volume.

If we consider an ideal gas, for which the internal energy depends on temperature
only, then (3.17) reduces to the ideal-gas law. Later the Courant–Friedrichs–Lewy
stability criterion of the numerical solution, which involves the isentropic speed of
sound c, will be discussed briefly. This quantity is defined by

c2 = dp

dρ
or c = α

√
−dp
dα

(3.18)

On expanding (3.17) and replacing de with the help of the first law of thermody-
namics, we obtain

dp =
(
∂p

∂e

)
α

de +
(
∂p

∂α

)
e

dα, de = −p dα (3.19)

and
dp

dα
= −p

(
∂p

∂e

)
α

+
(
∂p

∂α

)
e

(3.20)

Therefore, the speed of sound is

c = α

√
p

(
∂p

∂e

)
α

−
(
∂p

∂α

)
e

(3.21)

We use the following notation for the finite-difference equations of the numer-
ical scheme. Let ψ(x, t) represent an arbitrary function of the spatial variable x
and time t , then ψn

j stands for the finite-difference approximation ψ(j �x, n�t)
with �x,�t the discrete distances in the space-time grid. Since central-difference
approximations will be used, j and n will assume integer as well as half-integer
values.



3.3 An example of the use of Lagrangian coordinates 177

3.3.2 The thermo-hydrodynamic equations

In our flow problem the Lagrangian coordinates ai of a fluid particle will be
represented by the Cartesian coordinates xi at time t = t0. In the one-dimensional
case, which is considered here, we have

a = x(t0) (3.22)

Therefore, the transformation equation between the Cartesian and the Lagrangian
coordinates at the arbitrary time t is given by

x = x(a, t) (3.23)

This is the formal one-dimensional parameter representation of the trajectory where
the value of a, i.e. the Cartesian coordinate at t = t0, is constant along the trajec-
tory. Using the assumptions stated above, we obtain in Cartesian coordinates the
following thermo-hydrodynamic system:

Equation of motion:
du

dt
= −α ∂p

∂x

Trajectory:
dx

dt
= u

Continuity equation:
dα

dt
= α

∂u

∂x

Energy equation:
de

dt
= −p dα

dt

Equation of state: p = p(e, α)

(3.24)

The first equation is identical with (2.38a) if we set f = 0. Therefore, the equation
of motion refers to the absolute coordinate system.

The equations (3.24) must now be transformed into the Lagrangian coordinates.
First of all we adapt (3.15) to the present problem. From the general definition (see
(M4.21))

√
g
a

= √
g
x

∣∣∣∣∂(x1, x2, x3)

∂(a1, a2, a3)

∣∣∣∣ (3.25a)

we find
√
g
a

= ∂x1

∂a1
= ∂x

∂a
with

√
g
x

= 1 (3.25b)

Using (3.11) and multiplying both sides of the equation of motion by ∂x/∂a, we
obtain first

∂x

∂a

(
∂u

∂t

)
a

= −α ∂p
∂a

(3.26)
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From (3.12) we find the equation of the trajectory as(
∂x

∂t

)
a

= u (3.27)

The continuity equation is given by (3.16), which in our case simplifies to

α = α0
∂x

∂a
(3.28)

With the help of the continuity equation in Lagrangian coordinates, (3.26) may be
written in the form (

∂u

∂t

)
a

= −α0
∂p

∂a
(3.29)

The quantity α0 = α(a, t0) represents the specific volume at time t = t0 of the
medium being considered. In this example we take α0 = constant, for simplicity.

The energy equation transforms likewise. With the help of (3.12) we get from
the fourth equation of (3.24) (

∂e

∂t

)
a

= −p
(
∂α

∂t

)
a

(3.30)

For ease of reference the system of equations to be solved will be collected in
(3.31):

Equation of motion:

(
∂u

∂t

)
a

= −α0
∂p

∂a

Trajectory:

(
∂x

∂t

)
a

= u

Continuity equation: α = α0
∂x

∂a

Energy equation:

(
∂e

∂t

)
a

= −p
(
∂α

∂t

)
a

Equation of state: p = p(e, α)

(3.31)

3.3.3 Difference approximations

The central-difference scheme that we wish to use for the numerical approximation
of equation (3.31) is shown in Figure 3.5 together with the various quantities to be
calculated.

The arrows show the time step. If we succeed in calculating the various state
quantities at times (n+ 1

2
)�t and (n+ 1)�t from (n − 1

2
)�t and n�t , then the

method can be used for an arbitrary time integration using Lagrangian coordinates.
We will now discretize the equations (3.31).
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n + 1

j − 1 j + 1

n + 12

n − 12
j − 1

2 j + 1
2

α, e, pα, e, p

α, e, p α, e, p

∆t

Fig. 3.5 The rectangular network of grid points and discretization scheme.

Equation of motion:

u
n+1/2
j = u

n−1/2
j − α0

�t

�a

(
pnj+1/2 − pnj−1/2

)
(3.32a)

Equation (3.32a) is of the explicit form. The quantity un+1/2
j = u(aj , (n+ 1

2
)�t) is

the velocity at time t = (n+ 1
2
)�t of the trajectory Tj .

Trajectory:

xn+1
j = xnj +�t un+1/2

j (3.32b)

Since un+1/2
j is known from (3.32a), this equation is explicit also. The calculated

quantity xn+1
j represents the moving fluid particle at time t = (n + 1)�t of the

trajectory Tj .
Continuity equation:

αn+1
j+1/2 = α0

�a

(
xn+1
j+1 − xn+1

j

)
(3.32c)

The values of xn+1
j and xn+1

j+1 are considered known so that (3.32c) is explicit also.
The quantity αn+1

j+1/2 is the specific volume at time t = (n+ 1)�t of the trajectory
Tj+1/2.

Energy equation:

en+1
j+1/2 = enj+1/2 − 1

2

(
pnj+1/2 + pn+1

j+1/2

)(
αn+1
j+1/2 − αnj+1/2

)
(3.32d)
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Using the equation of state

pn+1
j+1/2 = p

(
en+1
j+1/2, α

n+1
j+1/2

)
(3.32e)

and replacing the term pn+1
j+1/2 results in the only implicit difference equation

en+1
j+1/2 = enj+1/2 − 1

2

[
pnj+1/2 + p

(
en+1
j+1/2, α

n+1
j+1/2

)](
αn+1
j+1/2 − αnj+1/2

)
(3.32f )

Since αn+1
j+1/2 is known from (3.32c), only en+1

j+1/2 needs to be determined, but it
also occurs on the right-hand side of the equation. Therefore, we must proceed
iteratively to find en+1

j+1/2, which is the specific internal energy at time t = (n+1)�t
of the trajectory Tj+1/2.

It should be noted that the difference equations must be solved in the given
order. The required state quantities can be determined explicitly, except for the
specific internal energy, which must be found iteratively for each n�t and at
each grid point (j + 1

2 ). Instead of (3.32f) we could also use a simpler explicit
version of the difference equation, but this would decrease the numerical reliability
of the scheme. In the finite-difference scheme adopted all other finite-difference
equations use central differences so that, for each point in the (a, t)-plane, the partial
derivatives are approximated to second-order accuracy O(�t2) and O(�a2).

Some schematic model results are shown in Figure 3.6 for a section of the space-
time grid beginning with time t = t0. The trajectories of the various particles are
labelled according to their positions at time t = t0. Therefore, the trajectory Tj
traces the path of the particle whose Lagrangian coordinate is aj as described by
xj = x(aj , t), where aj is the value xj of the trajectory at time t = t0.

3.3.4 Initial values and boundary conditions

The initial time t = t0 is taken at n = 0. At this time, at all gridpoints j the
initial values of the trajectories xj = aj must be known according to (3.22).
At all points between j − 1, j, j + 1, i.e. at j − 1

2
, j + 1

2
etc., initial values of

α, e, p must be available also. Additionally, for time t = −�t/2 all velocities
u(xj ,−�t/2), j = 0, 1, . . ., J must be given.

An interpolation scheme can be used to find the still-missing initial values
u

−1/2
j = u(aj ,−�t/2) �= u(xj ,−�t/2) on the trajectoryTj to start the calculations.

3.3.4.1 Approximate determination of ũ1/2
j and x̃1

j

Using (3.32a) and (3.32b) and the given gridpoint value u(xj ,−�t/2) we initially
estimate the values (indicated by the tilde)

ũ
1/2
j = u(xj ,−�t/2) − α0

�t

�a

(
p0
j+1/2 − p0

j−1/2

)
x̃1
j = x0

j +�t ũ1/2
j

(3.33)
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Fig. 3.6 Schematic results for the state variables u, α, e, p, and x(a, t). Tj and Tj±1 are the
calculated trajectories of particles aj , aj±1 while Tj±1/2 are the interpolated trajectories
of particles aj±1/2.

3.3.4.2 The interpolated velocity u−1/2
j on the trajectory

By means of a straight-line interpolation in the backward direction the trajectory
point Tj at time −�t/2 is approximated as

x̃
−1/2
j = x(aj ,−�t/2) = x0

j − 1
2

(̃
x1
j − x0

j

)
(3.34)

Now the required starting value u−1/2
j can be found from interpolation so that

u
−1/2
j = u(̃x−1/2

j ,−�t/2) (3.35)

Now the so-far-missing values of the velocity u are known and the procedure
(3.32a)–(3.32f) can be used to find the solution, provided that the boundary condi-
tions are known.
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Table 3.1. Arrangements of variables for Euler and Lagrange schemes

Scheme Independent variables Dependent variables Examples

a1 = a1(x1, x2, x3, t) v(xi, t)

Euler x1, x2, x3, t a2 = a2(x1, x2, x3, t)
d

dt
[v(xi, t)]

a3 = a3(x1, x2, x3, t)

x1 = x1(a1, a2, a3, t) v(ai, t)

Lagrange a1, a2, a3, t x2 = x2(a1, a2, a3, t)
∂

∂t
[v(ai, t)]

x3 = x3(a1, a2, a3, t)

Typical boundary conditions at j = J may be specified as follows:
rigid wall: u

n±1/2
J = 0 for all n,

free surface: pnJ+1/2 = −pnJ−1/2 for all n.
The latter boundary condition has the effect that the interpolated value ofp vanishes
at j = J .

3.3.5 The numerical stability condition

The numerical solution of the present problem requires that the Courant–Friedrichs–
Lewy stability criterion be obeyed. The Cartesian form of this criterion is given
by

c
�t

�x
≤ 1 (3.36)

Using (3.28) we find

�t ≤ α �a

α0c
(3.37)

where the isentropic velocity of sound c is determined by (3.21).

3.4 The local description of Euler

The description of fluid motion according to Euler requires knowledge of the
velocity field at fixed points within the fluid. If measurements of the velocity are
carried out simultaneously at many points then we obtain a spatial picture of the
flow.

The descriptions of the fluid according to the methods of Lagrange and Eu-
ler require different variables. The reciprocal arrangement of the dependent and
independent variables is listed in Table 3.1.
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Fig. 3.7 A two-dimensional flow field and representative streamlines, t = t0.

Figure 3.7, as an example of the Eulerian method, shows a two-dimensional
velocity vector field for a fixed time t = t0. This snapshot of the flow field will
be used to introduce the important concept of the streamline. A vector line that
is tangential everywhere to the instantaneous wind vector is called a streamline.
The direction of the wind vector is fixed by the unit tangential vector t which is
tangential to the streamline as well as to the trajectory, as stated by the following
equation:

t =
(
∂r
∂s

)
t

=
(
∂r
∂σ

)
ai

Euler Lagrange
(3.38)

It should be noted that different arclengths are used for the Euler (streamline) and
the Lagrange (trajectory) representations.

By definition, for fixed t = t0, the velocity vector is tangential to every increment
�r → 0 of the streamline, so that

dr × v = 0 with dr = in dxn, v = i1u+ i2v + i3w (3.39)

From this condition the component forms can be written down immediately,

(a)
dx3

dx2
= w(xi, t0)

v(xi, t0)

(b)
dx3

dx1
= w(xi, t0)

u(xi, t0)

(c)
dx2

dx1
= v(xi, t0)

u(xi, t0)

(3.40)
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Only two of these are independent since, for example, division of (3.40b) by
(3.40a) gives (3.40c). The integration of two of these differential equations gives
the parameter represention of the streamline,

Fi(x
j , t0) = Ci, i = 1, 2, j = 1, 2, 3 (3.41)

A simple example will clarify the idea for the case of a horizontal streamline.
We have

dx2

dx1
= dy

dx
= v

u
= A cos[k(x − ct0)] (3.42)

where k is the wavenumber and c the phase velocity. Integration of (3.42) results
in

y − A

k
sin[k(x − ct0)] = C (3.43)

Another example will be given shortly.
In contrast to the streamline which refers to the fixed time t = t0, the trajectory,

according to Euler, exhibits an explicit time dependency. The differential equations
specifying the velocity vector v of the trajectory are given by

dxi

dt
= vi(xj , t), v1 = u, v2 = v, v3 = w (3.44)

The solution is formally given by

xi = xi(xj0 , t) (3.45)

where the integration constants xj0 are the initial coordinates of the particle of
concern at time t = t0.

In general, the streamlines and trajectories are different; only for the steady state
do they coincide. The following simple example will demonstrate this. Consider
the motion of a fluid in a vertical plane with

u = dx

dt
= x + t, w = dz

dt
= −z+ t (3.46)

where we have used the more familiar coordinates (x, z) instead of (x1, x3). Now
find

(a) the family of streamlines and the particular streamline passing through the point
P (x, z) = (−1,−1) at t = t0 = 0, and

(b) the trajectory of the particle passing through the same point at t = t0.
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s(t1)

v(t1)
s(t2)

v(t2)

s(t3)

v(t3)

Fig. 3.8 The envelope of a system of successive streamlines.

Solution:
(i) The flow is two-dimensional and nonstationary since u and w contain t ex-
plicitly. From (3.46) we obtain

dx

x + t = dz

−z+ t (3.47)

The integration is carried out for t = t0 = constant, giving

ln(x + t) = − ln(−z + t) + lnC =⇒ (x + t)(−z + t) = C (3.48)

which is a family of hyperbolas. For t = t0 at (x, z) = (−1,−1) we have C = −1
so that the particular streamline passing through the given point is given by

xz = 1 (3.49)

(ii) First of all we note that the differential equations are decoupled. The solution
is easily carried out by standard methods, with the result

x = C1 exp t − t − 1, z = C2 exp(−t) + t − 1 (3.50)

from which it follows that C1 = C2 = 0. Elimination of t gives

x + z = −2 (3.51)

which is the equation of a straight line, showing that the trajectory and the stream-
lines do not coincide.

Finally, Figure 3.8 shows that the trajectory of a particle is the envelope of a
system of successive streamlines.

Occasionally, the concept of a streak line, which is a line connecting all the
particles that have passed a given geometric point, is used. A plume of smoke from
a chimney may be viewed as a streak line.
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3.5 Transformation from the Eulerian to the Lagrangian system

We consider an arbitrary field function ψ in the Cartesian Eulerian xi system and
the Lagrangian ai system, i.e.

Euler: ψ = ψ(xi, t)

Lagrange: ψ = ψ(ai, t)
(3.52)

The gradient operator in these systems is given by

Euler: ∇ψ = in
∂ψ

∂xn

Lagrange: ∇ψ = an
∂ψ

∂an

(3.53)

The transformation rules of the partial derivatives as derived in (M4.24) may be
written as

∂ψ

∂ai
= ∇

a i
ψ = ∂xn

∂ai

∂ψ

∂xn
= ∂xn

∂ai
∇
x n
ψ

∂ψ

∂xi
= ∇

x i
ψ = ∂an

∂xi

∂ψ

∂an
= ∂an

∂xi
∇
a n
ψ

(3.54)

It may be helpful to rewrite the transformation relations by using matrix notation.
If T̃ i..j represents the transpose of the transformation matrix T i..j = (∂xi/∂aj ), where
i labels the row and j the column, we may write instead of (3.54)



∂

∂a1

∂

∂a2

∂

∂a3




=
(
∂xj

∂ai

)



∂

∂x1

∂

∂x2

∂

∂x3




= T̃ i..j




∂

∂x1

∂

∂x2

∂

∂x3




(3.55)

The inverse relation of (3.55), denoted by the overbar, is given by


∂

∂x1

∂

∂x2

∂

∂x3




=
(
∂aj

∂xi

)



∂

∂a1

∂

∂a2

∂

∂a3




= T̃ i..j




∂

∂a1

∂

∂a2

∂

∂a3




(3.56)

Since (3.55) and (3.56) are inverse relations, we must have

(
T̃ i..j

)(
T̃ i..j

)
=

(
∂xj

∂ai

)(
∂aj

∂xi

)
=

(
∂xn

∂ai

∂aj

∂xn

)
=

(
δ
j

i

)
(
T i..j

)(
T i..j

) =
(
∂xi

∂aj

)(
∂ai

∂xj

)
=

(
∂xi

∂an

∂an

∂xj

)
= (
δij

) (3.57)



3.6 Problems 187

For completeness we state the individual time derivatives in both systems:

Euler:
dψ

dt
=

(
∂ψ

∂t

)
xi

+ ẋn ∂ψ
∂xn

Lagrange:
dψ

dt
=

(
∂ψ

∂t

)
ai

since ȧi = 0
(3.58)

The individual or material derivative represents the total change of ψ as viewed by
an observer following the fluid particle. The first expression of (3.58) is sometimes
called the Lagrangian derivative as expressed in terms of the Eulerian coordinates.
The local derivative (∂ψ/∂t)xi is occasionally called the Eulerian derivative ex-
pressing the change of ψ at any point fixed in space. The term ẋn ∂ψ/∂xn has the
meaning that, in time-independent flows, the fluid properties of ψ depend on the
spatial coordinates only. For further details see, for example, Currie (1974).

We conclude this section by restating the transformation relations for the basis
vectors. These are given by the rules derived in (M4.8) as

ai = ∂xn

∂ai
in, ii = ∂an

∂xi
an

ai = ∂ai

∂xn
in, ii = ∂xi

∂an
an

ik = ik, xk = xk

(3.59)

since in the orthogonal Cartesian system there is no difference between covariant
and contravariant basis vectors and measure numbers.

The equation of relative motion expressed in terms of the Lagrangian enumera-
tion coordinates will be presented later when the necessary background is available.

3.6 Problems

3.1: Starting with the continuity equation in the general coordinate-free form

Dρ

Dt
= dρ

dt
+ ρ ∇ · vA = 0 with vA = v + vP

prove the validity of equation (3.13).

3.2: Consider a two-dimensional flow field described by

u = x(1 + 2t), v = y

(a) Find the equation of the streamline passing through the point (x, y) = (1, 1)
at time t = 0.
(b) Find the equation of the trajectory.
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3.3: A particular two-dimensional flow is defined by the velocity components
u = A+ Bt , v = C. A,B, and C are constants.
(a) Show that the streamlines are straight lines.
(b) Show that the trajectories are parabolas.
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Atmospheric flow fields

4.1 The velocity dyadic

In this chapterwewill recognize that the velocity dyadic is of great importance in the
kinematics of atmospheric motion. First of all we will discuss some general proper-
ties in three dimensions. This will be followed by two-dimensional considerations
since the large-scale atmospheric motion may be considered quasi-horizontal. We
will restrict the discussion to Cartesian coordinates.

4.1.1 The three-dimensional velocity dyadic

As is well known from tensor analysis (see ChapterM2), any dyadicmay be written
as the sum of the symmetric and antisymmetric parts

∇v = V
s + V

a = ∇v + v
�∇

2
+ ∇v − v

�∇
2

with V
s = D = ∇v + v

�∇
2

deformation dyadic

V
a = � = ∇v − v

�∇
2

rotation dyadic

(4.1)

The definitions are general and may be applied to any vector A. Therefore, at this
point it is not necessary to specify whether v refers to relative or absolute motion.
The reason why the symmetric and antisymmetric parts are given the designations
deformation dyadic and rotation dyadicwill become obvious shortly.As has already
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been practiced in Section M2.4.1, we will decompose the symmetric deformation
dyadic and find

D = Dai + Di

with Dai = ∇v + v
�∇

2
− ∇ · v

3
E

Di = ∇ · v
3

E

(4.2)

where the suffices ai and i stand for anisotropic and isotropic. Splitting the defor-
mation dyadic is mainly for mathematical convenience since certain operations to
be applied to this dyadic cause some parts to vanish.

The reason why the antisymmetric part of the local velocity dyadic is associated
with the rotational part of the flow field can best be demonstrated by recalling the
vector identity (M2.98), which is restated here for a special case

E × (B × C) = E · (CB − BC) (4.3)

On replacing the unspecified vectors B and C by the gradient operator and the
velocity v, respectively, we obtain

1

2
E × (∇ × v) = −E ·

(
∇v − v

�∇
2

)
= −E ·� = −� (4.4)

thus justifying the name rotation dyadic. Using the above definitions, the velocity
dyadic can now be written as

∇v =




∂u

∂x
ii +∂v

∂x
ij +∂w

∂x
ik

+∂u
∂y

ji +∂v
∂y

jj +∂w
∂y

jk

+∂u
∂z

ki +∂v
∂z

kj +∂w
∂z

kk




= ∇ · v
3

E +
(

∇v + v
�∇

2
− ∇ · v

3
E

)
− 1

2
E × (∇ × v) = Di + Dai +�
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Di = 1

3




(
∂u

∂x
+ ∂v
∂y

+ ∂w
∂z

)
ii +0 +0

+0 +
(
∂u

∂x
+ ∂v
∂y

+ ∂w
∂z

)
jj +0

+0 +0 +
(
∂u

∂x
+ ∂v
∂y

+ ∂w
∂z

)
kk




Dai =


1

3

(
2
∂u

∂x
− ∂v

∂y
− ∂w

∂z

)
ii +1

2

(
∂v

∂x
+ ∂u

∂y

)
ij +1

2

(
∂w

∂x
+ ∂u

∂z

)
ik

+1

2

(
∂v

∂x
+ ∂u

∂y

)
ji +1

3

(
2
∂v

∂y
− ∂u

∂x
− ∂w

∂z

)
jj +1

2

(
∂w

∂y
+ ∂v

∂z

)
jk

+1

2

(
∂w

∂x
+ ∂u

∂z

)
ki +1

2

(
∂w

∂y
+ ∂v

∂z

)
kj +1

3

(
2
∂w

∂z
− ∂u

∂x
− ∂v

∂y

)
kk




� = 1

2




0 +
(
∂v

∂x
− ∂u

∂y

)
ij +

(
∂w

∂x
− ∂u

∂z

)
ik

−
(
∂v

∂x
− ∂u

∂y

)
ji +0 +

(
∂w

∂y
− ∂v

∂z

)
jk

−
(
∂w

∂x
− ∂u

∂z

)
ki −

(
∂w

∂y
− ∂v

∂z

)
kj +0




(4.5)
For ease of reference we have explicitly stated all parts.

Before we reduce the previous formulas to the two-dimensional case, we wish
to introduce an important definition known as the kinematic vorticity, ζkin,

ζkin =
√
�··�̃√
D··̃D

=
√

1
2�× ·�×√

D··D = |∇ × v|√
2D··D

(4.6)

with � = −�̃,D = D̃ and � ··�̃ = �× · �×/2 = (∇ × v)2/2. ζkin is a measure
of the rigidity of the motion since it involves the deformation dyadic D. Obviously
we may define three limiting cases, given by

ζkin =
{ 0 |∇ × v| = 0 vortex-free deformation flow
1 |∇ × v| = √

2D··D rotation equals deformation
∞ √

2D··D = 0 vortex flow without deformation
(4.7)

which characterize the flow field.
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4.1.2 The two-dimensional velocity dyadic

Inspection of equation (4.5) shows that the horizontal velocity dyadic simplifies to

∇hvh =




∂u

∂x
ii +∂v

∂x
ij

+∂u
∂y

ji +∂v
∂y

jj


 = Di + Dai +�

with vh = ui + vj, ∇h = i
∂

∂x
+ j

∂

∂y

Di = 1

2




(
∂u

∂x
+ ∂v

∂y

)
ii +0

+0 +
(
∂u

∂x
+ ∂v

∂y

)
jj




Dai = 1

2




(
∂u

∂x
− ∂v

∂y

)
ii +

(
∂u

∂y
+ ∂v

∂x

)
ij

+
(
∂u

∂y
+ ∂v

∂x

)
ji −

(
∂u

∂x
− ∂v

∂y

)
jj




� = 1

2




0 +
(
∂v

∂x
− ∂u

∂y

)
ij

−
(
∂v

∂x
− ∂u

∂y

)
ji +0




(4.8)

Note that the factor 1
2 instead of 1

3 appears in the deformation dyadic Di since the
first scalar of the two-dimensional unit dyadic is 2. Various combinations of partial
derivatives appear, which will be abbreviated as

(a) D = ∇h · vh = ∂u

∂x
+ ∂v

∂y

(b) ζ = k · ∇h × vh = ∂v

∂x
− ∂u

∂y
=⇒ ∇h × vh= kζ

(c) A = ∂u

∂x
− ∂v

∂y
, B = ∂u

∂y
+ ∂v

∂x

(d) def =
√
A2 + B2 =

√
2Dai ··Dai

(e) Def =
√
A2 + B2 +D2 =

√
2D··D

(4.9)

The symbols D and ζ denote the two-dimensional divergences of the horizontal
velocity field and the vorticity, respectively. The quantities A and B of (4.9c) are
known as the principal parts of the deformation field. Some geometric interpreta-
tions will be given at the end of this chapter. It should be noted that the quantities
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D, ζ , etc. were introduced without reference to the rotating earth. If the rotation
of the earth needs to be accounted for, we would have to allow for certain modifi-
cations. For example, the vorticity ζ would have to be replaced by ζ + f . Details
will be given in a later chapter.

Recall that any dyadic is an extensive quantity that is independent of a particular
coordinate system. If the generalmultiplication in dyadic products is replaced by the
vectorial or the scalar multiplication new quantities are produced, which are again
independent of the coordinate system. Such quantities are known as invariants. D
and ζ are invariants whereasA andB are not. Furthermore, the velocity deformation
fields def and Def , given in (4.9d) and (4.9e), are also invariants because of the
double scalar products involved in these terms. The various invariants of the local
two-dimensional velocity dyadic are listed next:

First scalar: (∇hvh)I = ∇h · vh = D

Vector: (∇hvh)× = ∇h × vh = kζ

Second scalar: (∇hvh)II = J (u, v) = D2

4
+ ζ 2

4
− def 2

4
Third scalar: (∇hvh)III = J (u, v)

(4.10)

Note that, in the two-dimensional case, the second and the third scalar are identical.
In analogy to the three-dimensional case (4.6) we define the two-dimensional

kinematic vorticity

ζkin =
√
�··�̃√
D··D = ζ

Def
(4.11)

Thus, ζkin is the ratio of two invariants. We shall not discuss this concept in more
detail.

4.2 The deformation of the continuum

4.2.1 The representation of the wind field

We consider the structure of the wind field at a fixed time in the infinitesimal
surroundings of a point P as shown in Figure 4.1. In the immediate neighborhood
at point P ′ we may write

v(P ′) = v(P ) + δr · ∇v(P )

= v(P ) + δr · Di + δr · Dai + δr ·�
with δr ·� = 1

2 (∇ × v) × δr = Ω × δr

(4.12)

where we have discontinued the Taylor expansion after the linear term. In (4.12)
we have introduced the local velocity dyadic ∇v which is considered a constant
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Fig. 4.1 A representation of the wind field.

quantity in the immediate neighborhood of P . The velocity v(P ′) consists of two
parts. v(P ) represents the joint translation of the two points while δr · ∇v(P ) is the
velocity of point P ′ relative to P . The vector Ω represents the angular velocity of
a rigid rotation of P ′ about an axis through P .

By carrying out the scalar multiplication in (4.12) and using the definitions (4.9),
we immediately find the component form of the two-dimensional wind field:

u = u0 + A+D

2
x + B − ζ

2
y

v = v0 + B + ζ

2
x + D −A

2
y

(4.13)

where the suffix 0 represents the velocity components at point P . Moreover, we
have replaced δx and δy by x and y.

We have previously stated that A2 + B2 is an invariant. By axis rotation this
allows us to take A > 0 and B = 0 so that ∂u/∂y = −∂v/∂x. Thus (4.13) reduces
to

u = u0 + 1
2 (Ax +Dx − ζy) = u0 + u1 + u2 + u3

v = v0 + 1
2 (−Ay +Dy + ζx) = v0 + v1 + v2 + v3

(4.14)

The various velocity components appearing in this equation denote the following
types of linear flow field near the point P : (u0, v0): translation, (u1, v1): defor-
mation, (u2, v2): divergence, (u3, v3): rotation. These flow types are taken from
Petterssen (1956) or Panchev (1985) and are depicted in Figure 4.2.

The x- and y-components of the deformation field are known as dilatation and
contraction, respectively. We will now determine the coordinates (xc, yc) of the
so-called kinematic center, which is a point where the velocity vanishes. By setting
u = v = 0 in (4.14) and then solving for the coordinates x = xc and y = yc of the
system we find

xc = −2
u0(D − A) + v0ζ

D2 −A2 + ζ 2
, yc = −2

v0(D + A) − u0ζ

D2 − A2 + ζ 2
(4.15)
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(a) (b) (c) (d)

(e) (f )

(h)(g)

Fig. 4.2 Component motions of the linear flow field: (a) uniform translation, (b) and (c)
deformation, (d) total deformation, (e) divergence, (f ) convergence, (g) positive rotation–
idealized northern-hemispheric low-pressure system, and (h) negative rotation–idealized
northern-hemispheric high-pressure system.

The condition for the existence of a kinematic center may therefore be written as

D2 − A2 + ζ 2 �= 0 (4.16)

On translating the origin of the coordinate system to the kinematic center,
equation (4.14) reduces to

u = D +A

2
x − ζ

2
y, v = ζ

2
x + D − A

2
y (4.17)

The question ofwhether there are straight streamlines through the center arises quite
naturally. If the streamlines are to be straight, then the equation of the streamline
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(a) (b)

Fig. 4.3 Hyperbolic streamline patterns describing deformation: (a) pure deformation, and
(b) with added rotation.

can be written as
dy

dx
= v

u
= y

x
= tanϑ (4.18)

where ϑ is the angle between the x-axis and the streamline.
On substituting from (4.17) we obtain

tanϑ = A±
√
A2 − ζ 2

ζ
(4.19)

First of all we note that the angle is independent of the divergence D. Analyzing
equation (4.19) leads to the following conclusions.

(i) If A = ζ = 0 we have pure divergence. In this unrealistic case an infinite number of
straight streamlines will pass through the center, see Figures 4.2(e) and 4.2(f ).

(ii) If A > ζ then the deformative component exceeds the rotational part. In this case
there are two roots so that two streamlines pass through the center dividing the plane
into four sectors. In each sector the streamlines are of the hyperbolic type, as shown
in Figure 4.3, where two idealized cases are presented.

(iii) IfA2 < ζ 2 then there are no real solutions for β. Consequently, therewill be no straight
streamlines passing through the center. Typical situations for this case are shown in
Figure 4.4.

4.2.2 Flow patterns and stability

We conclude this section by looking at the flow pattern from the modern point of
view involving elementary stability theory. For more details see also SectionM7.2.
We proceed by writing equation (4.17) in the form

ẋ = ax + by = X(x, y), ẏ = cx + dy = Y (x, y) (4.20)

The parameters a, b, c, and d can be identified by comparison with (4.17). Be-
ginning at an arbitrary initial point, the solution x(t), y(t) of (4.20) traces out a
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(a)

(d)(c)

(b)

Fig. 4.4 Flow patterns without straight streamlines: (a) pure rotation, (b) rotation and
deformation, (c) convergence superimposed on (b), and (d) divergence superimposed on
(b); (a) and (b) are also called centers whereas (c) and (d) are known as spirals.

directed curve in the (x, y)-plane which is known as the phase path. From (4.20)
we may easily form the streamline equation, which can always be solved:

dy

dx
= cx + dy

ax + by
(4.21)

Let us consider the fixed point (x∗, y∗) satisfying the relations

X(x∗, y∗) = 0, Y (x∗, y∗) = 0 (4.22)

This point determines the qualitative behavior of the solution. It is convenient to
write (4.20) in matrix form:

ẋ = Fx, x =
(
x
y

)
, F =

(
a b
c d

)
(4.23)

According to (M7.11), the general solution to (4.20) is given by

x(t) = C1x1 exp(λ1t) + C2x2 exp(λ2t) (4.24)

where the λi are the eigenvalues or the characteristic values of the matrix F and
the xi are the corresponding eigenvectors. The eigenvalues are found from the
characteristic equation ∣∣∣ a − λ b

c d − λ

∣∣∣ = 0 (4.25)
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The expanded form can be written as

λ2 − τλ+$ = 0

with τ = trace(F ) = a + d = λ1 + λ2

$ = |F | = ad − bc = λ1λ2

λ1,2 = τ ± √
τ 2 − 4$

2

(4.26)

Let us consider one more example. For the matrix

F =
( 1 1
4 −2

)
(4.27a)

we find the eigenvalues and eigenvectors

λ1 = 2, x1 =
(
x1
y1

)
=

( 1
1

)

λ2 = −3, x2 =
(
x2
y2

)
=

(
1

−4

) (4.27b)

so that the formal solution (4.24) is given by

x = C1

( 1
1

)
exp(2t) + C2

( 1
−4

)
exp(−3t) (4.28)

The eigenvectors may also be multiplied by a constant factor, which could be ab-
sorbed by the integration constants. The eigensolution corresponding to λ1 grows
exponentially while the second eigensolution decays, meaning that the origin is a
saddle point. The stable manifold is the line spanned by the eigenvector multiply-
ing exp(−3t) while the unstable manifold is the line spanned by the eigenvector
multiplying exp(2t). To get a better impression of the flow field we have included
additional trajectories by continuity, as is qualitatively shown in Figure 4.5. The
similarity to Figure 4.3(b) is apparent.

The fixed points may be classified according to the simple scheme shown in
Figure M7.13. Since $ = −6 the solution is a saddle point.

Fig. 4.5 Trajectories of the example given by equation (4.28).
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It may be recognized that the information content of equation (4.19) and the
information expressed by the two-dimensional eigenvectors are equivalent. To
show this, we identify the parameters a, b, c, and d by comparison of (4.17) and
(4.20). The result is

a = D + A

2
, b = −ζ

2
, c = ζ

2
, d = D − A

2
(4.29)

With this identification we easily find the eigenvalues and the eigenvectors of the
flow system (4.17) as

λ1,2 = D ±
√
A2 − ζ 2

2
, x1,2 =

(
1

λ1,2 − a

b

)
(4.30)

On taking the ratio of the components of the eigenvectors we again obtain (4.19),

y1

x1
= λ1 − a

b
= A− √

A2 − ζ 2

ζ
= tanϑ1

y2

x2
= λ2 − a

b
= A+ √

A2 − ζ 2

ζ
= tanϑ2

(4.31)

We should not have expected anything else since the two ways of characterizing
the flow are equivalent.

4.3 Individual changes with time of geometric fluid configurations

We will now derive expressions for time changes of fluid elements (moving lines,
surfaces, volumes). Let us consider a small line element δr. Replacing in (M6.47)
the vector A by the unit dyadic E we find immediately

d

dt

(∫
L(t)
dr · E

)
= d

dt

(∫
L(t)
dr

)
= d

dt
(δr) =

∫
L(t)
dr · (∇v · E)

=
∫
L(t)

dr · ∇v = δr · ∇v with
∫
L(t)

dr = δr
(4.32)

Similarly we proceed in case of a surface and a volume. The corresponding ex-
pressions are obtained by replacing A in (M6.53) by E and by setting ψ = 1 in
(M6.57). The results are collected in

(a)
d

dt
(δr) = δr · ∇v,

∫
L(t)

dr = δr

(b)
d

dt
(δS) = δS∇ · v − ∇v·δS,

∫
$S(t)

dS = δS

(c)
d

dt
(δτ ) = δτ ∇ · v,

∫
$V (t)

dτ = δτ

(4.33)
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Here the terms ∇v and ∇ · v have been treated as constants. We should keep in
mind that these expressions are only approximate. However, for most practical
purposes they are sufficiently accurate. If the initial configurations of δr, δS, and
δτ are known, then the deformations of the fluid elements can be calculated by
means of time integration.

In the next section we discuss various geometric properties resulting from the
application of the local dyadic. Using as an example the liquid or material line
element in the flow field, we find from (4.33a) and (4.5)

d

dt
(δr) = δr · ∇v = δr ·D − 1

2
δr ·E× (∇ × v) = δr ·Di + δr ·Dai + 1

2
(∇ × v)× δr

(4.34)
where δr = δr e and e is a unit vector in the direction of δr. Several special cases
that can easily be comprehended arise.

4.3.1 The relative change of the material line element

The following manipulation of the relative change δr is obvious:

1

δr

d

dt
(δr) = 1

(δr)2
d

dt

(δr)2

2
= 1

(δr)2
d

dt

(δr)2

2
= 1

(δr)2

(
δr · d

dt
(δr)

)
(4.35)

On substituting from (4.33a) we obtain immediately for the relative change

1

δr
d

dt
(δr) = 1

(δr)2
(δr · ∇v · δr) = e · ∇v · e (4.36)

or
1

δr
d

dt
(δr) = e · D · e since e · (∇ × v)

2
× e = 0 (4.37)

Therefore, the relative change with time of the material line element depends only
on the symmetric part of the local dyadic, which is equivalent to the deformation
dyadic. This means that the antisymmetric part of the local velocity dyadic does
not contribute to the relative change.

4.3.2 The directional change of the material line element

If we wish to determine the directional change of the line element we must also
consider the change with time of the unit vector, or

d

dt
(δr) = δr

de
dt

+ e
d

dt
(δr) (4.38)
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γ + δγ

γ

e
1(t0)

e2(t0)

e1(t0 + δt)

e 2
(t 0

+ δt)

Fig. 4.6 The change in direction between two material fluid elements.

so that
de
dt

= 1

δr
d

dt
(δr) − e

δr
d

dt
(δr) (4.39)

By use of equations (4.34) and (4.37) we find without difficulty

de
dt

= e · (Di + Dai) + 1

2
(∇ × v) × e − e(e · Di · e + e · Dai · e) (4.40)

The manipulations with the isotropic part of the deformation dyadic Di

e · Di = e · ∇ · v
3

ee = ∇ · v
3

e, e · Di · e = ∇ · v
3

(4.41)

lead to the desired result
de
dt

= e · Dai − e(e · Dai · e) + 1

2
(∇ × v) × e (4.42)

giving the change with time of the direction of the material fluid element. Recall
that de/dt is perpendicular to the unit vector e itself. Equation (4.42) shows that
the change in direction with time depends only on the anisotropic part of the
deformation dyadic and on the rotation vector.

An immediate application of (4.42) lies in the possibility of calculating the
change of the angle γ between two line elements, see Figure 4.6. On applying
(4.42) to the two directions we find at once

(a)
de1
dt

= e1 · Dai − e1(e1 · Dai · e1) + 1

2
(∇ × v) × e1

(b)
de2
dt

= e2 · Dai − e2(e2 · Dai · e2) + 1

2
(∇ × v) × e2

(4.43)

Scalar multiplication of parts (a) and (b) by e2 and e1, and then adding the results,
gives

d

dt
(e1 · e2) = d

dt
(cos γ ) = − sin γ

dγ

dt

= 2e1 · Dai · e2 − (e1 · Dai · e1 + e2 · Dai · e2) cos γ
(4.44)



202 Atmospheric flow fields

Fig. 4.7 A three-dimensional box with sides δx, δy, and δz.

since the rotational parts cancel out. Inspection of this equation shows that the
angular change is caused solely by the anisotropic part of the deformation tensor.

4.3.3 The change in volume of a rectangular fluid box

In this case the application of equation (4.37) is particularly simple due to the
rectangular system. We consider the relative changes of the three sides of the
rectangular box shown in Figure 4.7.

On splitting the deformational dyadic into the isotropic and anisotropic parts we
find from (4.36)

1

δx
d

dt
(δx) = i · Di · i + i · Dai · i = ∇ · v

3
+ (Dai)11

1

δy
d

dt
(δy) = ∇ · v

3
+ (Dai)22

1

δz
d

dt
(δz) = ∇ · v

3
+ (Dai)33

(4.45)

where we have used the explicit representations of Di and Dai listed in (4.5). The
Dai are the measure numbers of the dyadic Dai. On forming the trace of the matrix
of Dai, which is the same as summing the diagonal elements, we find immediately

(Dai)11 + (Dai)22 + (Dai)33 = (Dai)I = 0 (4.46)

so that the total deformation amounts to the three-dimensional velocity divergence
or

1

δx
d

dt
(δx) + 1

δy

d

dt
(δy) + 1

δz
d

dt
(δz) = 1

δτ
d

dt
(δτ ) = ∇ · v = (Di)I (4.47)



4.3 Individual changes with time of geometric fluid configurations 203

For the special case that the divergence vanisheswe find from (4.45) that the relative
change in volume is zero:

1

δτ
d

dt
(δτ ) = (Dai)11 + (Dai)22 + (Dai)33 = 0 (4.48)

Therefore, a volume-true deformation (the relative change vanishes) of the three-
dimensional box is described by three measure numbers, which are located on the
diagonal of the dyadic Dai. We consider the brief example

(Dai)11 = 0 =⇒ (Dai)22 = −(Dai)33 or
1

δx
d

dt
(δx) = 0

if (Dai)22 < 0 =⇒ (Dai)33 > 0
(4.49)

This means that a decrease in length in the y-direction is accompanied by an
increase in length in the z-direction. These changes take place in such a way that the
total volume remains constant, which is called a volume-true change. Moreover,
the volume remains rectangular.

Let us now briefly discuss the situation in which the form of the box changes.
Since the box originally was rectangular, equation (4.44) simplifies because the
cosine term vanishes. For the angular changes we find from (4.44) using (4.5) the
simple relations

d

dt
(γxy) = −2i · Dai · j = −2(Dai)12

d

dt
(γxz) = −2i · Dai · k = −2(Dai)13

d

dt
(γyz) = −2j · Dai · k = −2(Dai)23

(4.50)

We recognize that the off-diagonal elements of the coefficient matrix of Dai are
responsible for the volume-true changes of the three angles.

Many additional examples could be given, such as the relative change in volume
of a fluid sphere. As should be expected, the change in volume is again equal to
the divergence.

A brief summary of our results may be helpful. With reference to (4.12) we
observe

v(P ′) = v(P ) + δr · Di + δr · Dai + 1
2 (∇ × v) × δr (4.51)

so that the general motion of a fluid element consists of

(1) Rigid translation: v(P ).
(2) Dilatation: vDIL = δr · Di = δr · 1

3 ∇ · vE, form-invariant change in volume.
(3) Distortion: vDIS = δr · Dai.

(a) Owing to the (Dai)ii elements a deformation whereby angles and volume do not
change occurs.
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Fig. 4.8(a) Length changes of the sides of a rectangle.

Fig. 4.8(b) A change in area of a rectangle.

Fig. 4.8(c) Rigid rotation of a rectangle, D = 0.

(b) Owing to the (Dai)ij (i �= j ) elements a distortion occurs but the volume remains
unchanged.

(4) Rotation: vROT = 1
2 (∇ × v) × δr, rigid rotation.

4.3.4 Two-dimensional examples

In order to demonstrate more completely the geometric meaning of the principal
deformation quantities A and B, see equation (4.9), we consider several special
areal expansions. The results are collected in Figures 4.8(a)–(e). Part (a) follows
directly from (4.37) on identifying the unit vector ewith the Cartesian unit vectors.
Verification is easily accomplished by expanding the two-dimensional deformation
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Fig. 4.8(d) A change in angle between two sides of a rectangle without a change in area,
D = 0.

Fig. 4.8(e) A change in form of a rectangle, with no change in angle and area, D = 0.

dyadic according to (4.8). Part (b) is verified with the help of (4.47) by omitting the
height term. Part (c) shows a rigid rotation with the angular velocity Ω due to the
antisymmetric dyadic �, see (4.12). Part (d) follows from (4.44) since the cosine
term vanishes. Part (e) results from (4.48) on specializing to two dimensions.

4.4 Problems

4.1: Show that �··� = (∇ × v)2/2

4.2: Verify equations (4.9d) and (4.9e).

4.3: Consider the initial (x, y)-coordinate system. Rotate this system by a fixed
angle θ to obtain the rotated (x ′, y ′)-coordinate system. Differentiation of (x, y)
and (x ′, y ′) with respect to time gives a relation between the velocity components
(u, v) and (u′, v′). Show that the divergence and the vorticity are invariant under
the rotation, i.e. D = D′, ζ = ζ ′.

4.4: Derive (4.33b) and (4.33c).

4.5: Assume (a) a line element in the (x, y)-plane, (b) a surface element in the
(x, y)-plane, and (c) a volume element in (x, y, z)-space. Verify equation (4.33).
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The Navier–Stokes stress tensor

In this chapter we are going to derive the connection between the Navier–Stokes
stress tensor J and the deformation dyadic (tensor) D. Once more, the paramount
importance of the local velocity dyadic becomes apparent. First of all, it will be
necessary to introduce the general stress tensor T which includes J.

5.1 The general stress tensor

The description of deformable media requires the definition of internal and
external forces. Internal forces are molecular-type forces between mass elements,
which may be excluded from our considerations. Owing to Newton’s principle
actio = reactio the net effect of these forces adds up to zero when we integrate
over a specified volume of the continuum. There exist two types of external
forces.

5.1.1 Volume forces

These forces are proportional to the mass. As is customary, we define these with
respect to the unit mass and denote them by the symbol fi . In general, we distinguish
between attractive and inertial forces.

(a) Attractive forces due to the presence of the earth and other celestial bodies. The
gravitational pulls due to the sun and the moon are accounted for only if tidal effects
are considered. These are real forces since they are caused by the interaction of an
atmospheric particle with other bodies.

(b) Inertial forces such as the Coriolis force and the centrifugal force. These are fictitious
forces and stem from the rotating coordinate system used to describe the motion of the
particle.

206



5.1 The general stress tensor 207

5.1.2 Surface forces

These forces act in directions normal and tangential to a surface. They will be
defined with respect to unit area and denoted by pi . In the atmosphere we have to
deal with two types of surface forces.

(a) The pressure force p1(p) results from the action of the all-directional atmospheric
pressure. It is always acting in the direction opposite to the normal of a surface element
of the fluid volume to which it is applied. If n is the unit normal defining the direction
of the surface, then we must have

p1 = −pn (5.1)

On identifying n in succession by the Cartesian unit vectors i, j, and k we recognize
the local isotropy of the pressure field since in each case we find |p1(p)| = p.

(b) The frictional stress force p2(vA) is a type of surface force that depends on the motion
of the fluid (gas) and on the orientation of the surface to which it is applied. In contrast
to p1(p) the frictional stress is not limited to the perpendicular direction, but acts also
tangentially to the surface of the fluid volume. p2(vA) may be represented by the linear
vector function

p2 = n · J (5.2)

where J is the viscous stress tensor or dyadic which was introduced previously. Sum-
ming up, we find for the surface force

p1 + p2 = −pn · E + n · J = n · T

with T = −pE + J = −pinin + τmnimin
(5.3)

where T is the general stress tensor which also includes the effect of pressure. The
nine possible elements of J acting on the fluid volume element are illustrated in
Figure 5.1.

The row subscript i in the matrix (τij ) refers to the surface element on which
the stress is acting. The column index j refers to the direction of the stress. If
i = j then we are dealing with normal stresses; otherwise (i �= j ) with tangential
stresses. The viscous stress vector Ji for surfaces i = 1, 2, 3 is given by

Ji = ii · J = τi1i1 + τi2i2 + τi3i3 (5.4)

Before we focus our attention on equilibrium conditions in the stress field, we need
to restate the integral form of the equation of absolute motion,

d

dt

(∫
V (t)

ρvA dτ

)
=

∫
V (t)

ρ
dvA

dt
dτ =

∫
V (t)

ρfa dτ +
∮

S(t)

dS · T

with
∮

S(t)

dS · T =
∫

V (t)

∇ · T dτ =
∫

V (t)

(−∇p + ∇ · J) dτ

(5.5)

This form of the equation of motion will now be used to show that the general and
the viscous stress tensors T and J are symmetric.
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Fig. 5.1 Illustration of the viscous stresses acting on a volume element.

5.2 Equilibrium conditions in the stress field

We wish to prove the following statement:
Stresses on infinitesimally small fluid volumes must be in equilibrium.

The proof is very brief. We divide (5.5) by the surface S enclosing V and then
implement the following limiting process:

lim
S→0

[
1

S

(
−

∫
V

ρ
dvA

dt
dτ +

∫
V

ρfa dτ +
∮

S

dS · T

)]
= 0 (5.6)

For easier understanding of the limiting process, let us momentarily think of the
volume as a small cube whose sides have length �l. The volume integrals extend
over the volume (�l)3 while the surface S is proportional to (�l)2. By choosing
�l arbitrarily small, we find that, in the limit �l → 0, the numerators of the first
two terms go to zero faster than do the denominators. The same type of argument
holds for volumes of any shape, which can always be decomposed into numerous
elementary cubes. Since the first two integrals go to zero, we can argue that the
third integral must go to zero also. Therefore, using (5.3), we may also write

lim
S→0

∮
S

p dS = 0, lim
S→0

∮
S

dS · J = 0 (5.7)

from which we conclude that the total force resulting from all surface forces acting
on the small fluid volume must vanish.
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5.3 Symmetry of the stress tensor

The proof follows from a law of mechanics stating that the individual time derivative
of the angular momentum of the system equals the sum of the moments of the
external forces. First, we observe that

d

dt

(∫
V (t)

r × ρvA dτ

)
=

∫
V (t)

r× ρ
dvA

dt
dτ (5.8)

where we have used the differentiation rule for fluid volumes. On performing the
vectorial multiplication with the position vector under the integral sign, we find
from (5.5)

∫
V (t)

r × ρ
dvA

dt
dτ −

∫
V (t)

r × ρfa dτ −
∮

S(t)
r× (dS · T) = 0 (5.9)

Next we use Gauss’ divergence theorem, which is also applicable to dyadics. The
third term can then be written as

−
∮

S(t)

r × (dS · T) =
∫

V (t)

∇ · (T × r) dτ =
∫

V (t)

(
∇ ·

↓
T × r + ∇ · T × ↓

r
)

dτ

=
∫

V (t)

(−r × ∇ · T − T×) dτ

since ∇ · T × ↓
r = (̃T · ∇) × r = [

(̃T · ∇)r
]
× = (̃T · E)× = −T×

(5.10)
where T× is the vector of the dyadic T (see also Section M2.4.2). Substitution of
(5.10) into (5.9) yields

∫
V (t)

r ×
(

ρ
dvA

dt
− ρfa − ∇ · T

)
dτ −

∫
V (t)

T× dτ = 0 (5.11)

The expression in parentheses is actually the equation of absolute motion and must
vanish. Therefore

T× = 0 (5.12)

We already know that the vector of a symmetric dyadic is zero, whereas the vector of
an antisymmetric dyadic differs from zero (see Section M2.4.2). Thus, we conclude
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that the general stress tensor T is symmetric so that the viscous stress tensor J must
also be symmetric:

J = J̃ =⇒ n · J = J̃ · n = J · n (5.13)

This justifies all previous mathematical operations with the stress tensor whenever
we assumed that J is symmetric.

5.4 The frictional stress tensor and the deformation dyadic

It stands to reason that the motion-dependent frictional force p2(vA) at an
arbitrary point P within the fluid medium cannot result from rigid rotation or from
translation of an entire region surrounding P . The frictional stress is caused only
by deformative velocities in the immediate surrounding of P . Therefore, we should
expect a relation between J and the deformation dyadic D defined in the previous
chapter. Since the atmosphere may be considered an isotropic medium, we may
deduce that the principal axes of the tensors J and D coincide. By means of a
suitable rotation of the coordinate system, the so-called principal-axis transforma-
tion (see also Section M2.3), it is possible to reduce the dyadics J and D to the
simple normal forms

J = τ1e1e1 + τ2e2e2 + τ3e3e3

D = d1e1e1 + d2e2e2 + d3e3e3

(5.14)

The quantities τi and di represent the principal stresses and the relative changes in
length along the orthogonal unit vectors ei defining the directions of the principal
axes. Moreover, the τi and di are the eigenvalues of the matrices representing J and
D. Since the matrices are symmetric, the resulting eigenvalues must be real. Next
we need to applyHooke’s law in the generalized form stating that changes in length
and cross-contractions are proportional to the stresses. Owing to the isotropy of the
medium we may write

(a) τ1 = νd1 − λ(d2 + d3) = 2µd1 − λ(d1 + d2 + d3)

(b) τ2 = νd2 − λ(d1 + d3) = 2µd2 − λ(d1 + d2 + d3)

(c) τ3 = νd3 − λ(d1 + d2) = 2µd3 − λ(d1 + d2 + d3)

(5.15)

where µ = (ν + λ)/2 is known as the molecular coefficient of the deformation
viscosity. The quantities λ and µ are known as Lamé’s coefficients, and will be
treated here as constants. On multiplying (5.15a) by e1e1, (5.15b) by e2e2, and
(5.15c) by e3e3, and adding the resulting equations, we find

J = 2µD − λDIE (5.16)
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On splitting D into its isotropic and anisotropic parts and reverting to the general
form (4.2), we find

J = 2µDai +
(

2µ

3
− λ

)
∇ · vAE (5.17)

We assume that λ and µ do not explicitly depend on the spatial coordinates, i.e.

∇µ = 0, ∇λ = 0 (5.18)

However, µ exhibits some dependency on the temperature. Values of µ can be
found in various handbooks. The coefficient (2µ/3 − λ) is known as the co-
efficient of volume viscosity since it multiplies the divergence term in (5.17)
describing the relative changes in volume. In atmospheric systems this coeffi-
cient may be neglected. This statement can be motivated with the help of statistical
thermodynamics. There it is shown that this coefficient is zero for monatomic
molecules so that, to an acceptable approximation, we may write

J = 2µDai (5.19)

We conclude this chapter with a simple example. Consider the symmetric stress
tensor J defined by (5.19):

J = µ

(
∇vA + vA

�∇
2

)
− 2

3
µ ∇ · vAE (5.20)

We recognize that J is known at a certain point P if ∇vA is known there. Assuming
that the absolute velocity vA is given by

vA = u(z)i + v(x)j + w(y)k (5.21)

we find ∇ · vA = 0 so that

J = µ

(
∂u

∂z
(ki + ik) + ∂v

∂x
(ij + ji) + ∂w

∂y
(jk + kj)

)
(5.22)

For the viscous surface force p2(vA) defined by (5.2), we find for different
orientations of the surface unit normal

n = i : p2(vA) = i · J = µ

(
∂u

∂z
k+ ∂v

∂x
j
)

n = j : p2(vA) = j · J = µ

(
∂v

∂x
i+ ∂w

∂y
k
)

n = k : p2(vA) = k · J = µ

(
∂u

∂z
i + ∂w

∂y
j
)

(5.23)

For n = i the surface force at P has the orientation shown in Figure 5.2.
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Fig. 5.2 The viscous force for n = i. p2(vA) at point P results from the addition of the
two vectors in the j- and k-directions.

5.5 Problems

5.1: Assuming the validity of (5.19) and µ = constant, find an expression for the
term ∇ · J.

5.2: Show that

vA · ∇ · J = ∇ · (vA · J) − ∇vA ··J
with (a) vA · J = µ[∇v2

A + (∇ × vA) × vA − 2
3 (∇ · vA)vA]

(b) ∇vA ··J = 2µDai ··Dai = ρε

The quantity ε is the Rayleigh dissipation function, which is a source term for the
internal energy and a sink term for the kinetic energy.

5.3: Assume that we have incompressible two-dimensional and steady flow on an
inclined plane of infinite extent. The x-axis lies in the plane and the z-direction is
perpendicular to it. Thus, we have v = 0, w = 0, ∂/∂y = 0, ∂/∂t = 0.

(a) Find an expression for the profile of the velocity u in the x-direction using the boundary
conditions u(z = 0) = 0 and (∂u/∂z)z=H = 0. Ignore Coriolis effects. Hint: Return to
equation (1.60) with vD = 0.

(b) What is the orientation of the isobars?
(c) Find the amount of fluid q per unit time and unit width flowing between z = 0 and

z = H .
(d) Find the energy dissipation ρε within the channel.

5.4: Assume that we have incompressible two-dimensional and steady flow
between two parallel plates. The lower plate is at rest. Ignore Coriolis effects.

(a) Suppose that the upper plate at z = H is moving with the velocity u(z = H ) in the
x-direction. Starting with equation (1.60), show that a linear velocity profile will form.
This flow is known as the Couette flow. The lower boundary condition is u(z = 0) = 0.
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(b) In contrast to part (a), assume now that both plates are at rest, but a
pressure gradient −(1/ρ)(∂p/∂x) is admitted. This is known as Poiseuille flow. The
boundary conditions are u(z = 0) = 0, u(z = H ) = 0.

5.5: Assume that the flow field is proportional to the position vector, that is vA =
Cr. The constant of proportionality C carries the units per second. Find the stress
tensor J, the force due to viscous stress p2(vA), and the tensor ellipsoid.



6

The Helmholtz theorem

6.1 The three-dimensional Helmholtz theorem

If within a region of interest the divergence ∇ · v and the rotation ∇ × v of the
velocity vector v are given and if these vanish sufficiently fast on approaching
infinity, then v is uniquely specified. More generally we may state:

Every vector field v whose divergence and rotation possess potentials
can be written as the sum of a divergence-free vector field plus another
vector field that is irrotational.

We will now proceed with the proof by assuming that the vector v can be written
as the sum of two vectors such that the rotational part is divergence-free and the
divergent part is irrotational, or

v = vROT + vDIV

with ∇ · vROT = 0, ∇ × vROT �= 0

∇ · vDIV �= 0, ∇ × vDIV = 0

(6.1)

From the rules of vector analysis we recognize that (6.1) is satisfied if

vROT = ∇ × A, vDIV = −∇χ (6.2)

where A and χ are known as the vector potential and the scalar potential of v,
respectively. The minus sign in the second equation is conventional. Often the
scalar velocity potential is simply called the velocity potential.

The potentials A and χ are unknown quantities. For (6.2) to hold it is also
necessary that the divergence of the vector potential vanishes. The proof will be
given later. As a consequence of (6.2) we may write

v = ∇ × A − ∇χ (6.3)
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To show that it is possible to split the vector v in this manner we take the divergence
and then the curl of (6.3) and find

∇2χ = −∇ · v, ∇2A = −∇ × v (6.4)

where we have made use of the assumption ∇ · A = 0. According to (M6.82) the
formal solutions of these two Poisson equations are given by

χ (r) = 1

4π

∫
V ′

∇ · v′

|r − r′| dτ ′, A(r) = 1

4π

∫
V ′

∇ × v′

|r − r′| dτ ′ (6.5)

where we have replaced the unspecified function f (r′). With the help of (6.5),
provided that the divergence and the curl of the vector v are known, we may
calculate A and χ and then the vector v itself. The proof will be complete if we
can show that the divergence of the vector potential ∇ · A vanishes.

It is immediately obvious that

∇

 1∣∣∣↓

r − r′
∣∣∣

 = −∇


 1∣∣∣∣r −

↓
r′
∣∣∣∣


 (6.6)

so that

∇ · A(r) = − 1

4π

∫
V ′

∇ × v′ · ∇


 1∣∣∣∣r −

↓
r′

∣∣∣∣


 dτ ′ (6.7)

Applying the vector rule B ·∇C = ∇ · (BC)− (∇ ·B)C, setting in (6.7) B = ∇ ×v′

and C = 1/

∣∣∣∣r −
↓
r′

∣∣∣∣, we obtain

∇ · A(r) = − 1

4π

∫
V ′

∇ ·
( ∇ × v′

|r − r′|
)

dτ ′ + 1

4π

∫
V ′

1

|r − r′|∇ · ∇ × v′ dτ ′

= − 1

4π

∮
S∞

( ∇ × v′

|r − r′|
)

· dS = 0
(6.8)

since ∇ ·∇ × v′ vanishes. As the last step we have applied the divergence theorem.
We have introduced a sufficiently large surface S∞ since it was assumed that∇ ×v′

vanishes on approaching infinity.
From these results we conclude that, for irrotational stationary potential flow

∇ × v = 0, the velocity is given by

v = −∇χ =⇒ ∇ · v = −∇2χ (6.9)



216 The Helmholtz theorem

Fig. 6.1 The stream function ψ and velocity potential χ .

As we have seen, if the divergence of the flow field is known, the velocity potential
can be calculated with the help of (6.5) if the region of integration is infinitely
large. In this case the boundary is undefined. In practical meteorology, in general,
the region has a finite boundary and equation (6.9) must be treated as an elliptic
boundary-value problem by specifying the velocity potential (the Dirichlet prob-
lem) or its normal gradient (the Neumann problem) on the boundary. The solution
is usually found by numerical methods. It is also possible in the case of a finite
boundary to proceed analytically. This leads to the introduction ofGreen’s function,
which often is difficult or even impossible to obtain since it depends on the shape
of the boundary. We will not broaden this topic since potential flow does not occur
in large-scale dynamics.

6.2 The two-dimensional Helmholtz theorem

The three-dimensional Helmholtz theorem has its two-dimensional counterpart.
Since the large-scale motion can often be approximated as two-dimensional flow
it is useful to consider the consequences of Helmholtz’s theorem. Instead of (6.1)
we now have

vh = vh,ROT + vh,DIV

∇h · vh,ROT = 0, k · ∇h × vh,ROT �= 0

∇h · vh,DIV �= 0, k · ∇h × vh,DIV = 0

(6.10)

From the rules of vector analysis we immediately recognize that

∇h · vh,ROT = 0 if vh,ROT = k × ∇hψ

k · ∇h × vh,DIV = 0 if vh,DIV = ∇hχ
(6.11)

This leads to the definition of the stream function ψ and the two-dimensional
velocity potential χ ; see Figure 6.1.

The stream function should not be confused with the streamline, which can be
constructed for any type of flow, whereas the stream function results from the first
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condition of (6.11). Using the relations (6.11) involving the stream function and
the velocity potential we may rewrite (6.10) as

vh = k × ∇hψ + ∇hχ (6.12a)

or in components

u = −∂ψ

∂y
+ ∂χ

∂x
, v = ∂ψ

∂x
+ ∂χ

∂y
(6.12b)

Taking the vertical component of the curl and the divergence of vh, observing that
the curl of the gradient of the velocity potential vanishes, we obtain

k · ∇h × vh = ∇2
hψ = ζ = ∂v

∂x
− ∂u

∂y

∇h · vh = ∇2
hχ = D = ∂u

∂x
+ ∂v

∂y

(6.13)

By providing proper boundary conditions the Poisson equations for ψ and χ can
be solved. Moreover, solutions analogous to (6.5) can be written down. By suitable
differentiation of ζ andD in (6.13) with respect to x and y and adding (subtracting)
the resulting equations, we immediately find two additional Poisson equations for
the horizontal velocity components u and v:

∇2
hu = −∂ζ

∂y
+ ∂D

∂x
, ∇2

hv = ∂ζ

∂x
+ ∂D

∂y
(6.14)

Equations (6.12)–(6.14) show the inter-relations among the horizontal velocity
components u, v, the stream function ψ , the velocity potential χ , the vorticity
ζ , and the divergence D. Finally, we would like to remark that it is possible to
generalize the stream-function method to three dimensions; see Sievers (1995).

6.3 Problems

6.1: Consider the three-dimensional velocity field defined by

v = −∇ × Ψ + ∇φ

Apply the condition ∇ · Ψ = 0.
(a) Find the relations of (∇v)I, (∇v)×, and (∇v)′′.
(b) Express the vortex equation

d

dt
∇ × v = −(∇ × v)(∇ · v) + (∇ × v) · ∇v − ∇

(
1

ρ

)
× ∇p

in terms of Ψ and φ.
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Kinematics of two-dimensional flow

7.1 Atmospheric flow fields

In the previous chapter we have shown that the horizontal wind vector may be
decomposed into one part vh,ROT, which is divergence-free, and a second part
vh,DIV, which is irrotational. On the basis of this decomposition we will briefly
discuss various combinations of the flow field associated either with ∇h · vh = 0
and k · ∇h × vh �= 0 or with the case in which the signs= and �= are interchanged.
First of all, we consider the more general situation:

(i) ∇h · vh �= 0 and k · ∇h × vh �= 0

In an atmospheric flow field whose characteristic length varies from roughly 50
to 2000 km, both parts, vh,ROT and vh,DIV, must be accounted for. In order to gain
qualitative insight into the structure of the fields of the stream function ψ and the
velocity potential χ , we assume a normal mode solution of the form

(
ψ
χ

)
∝ exp[i(kx + ky + ωt)] with kx,y = 2π

Lx,y

, ω = c

√
k2x + k2y (7.1)

The quantity c is the phase velocity of the wave and kx and ky are the wavenumbers
corresponding to wavelengths Lx and Ly as shown in Figure 7.1.
We substitute (7.1) into the Poisson equations (6.13). Because of

∇2
h

(
ψ
χ

)
∝ −(

k2x + k2y
)(ψ
χ

)
(7.2)

we obtain the qualitative statement

−(
k2x + k2y

)(ψ
χ

)
∝

(
ζ
D

)
(7.3)

showing that the field of the stream function is characterized by the vorticity field
whereas the field of the velocity potential has the structure of the divergence field.
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Fig. 7.1 Propagation of a plane wave.

(ii) ∇h · vh = 0 and k · ∇h × vh �= 0

Now we will discuss some special situations. If the horizontal flow field is free
from divergence, Poisson’s equation for χ reduces to

∇2
hχ = 0 (7.4)

which is Laplace’s equation for the velocity potential. A function with continuous
second derivatives satisfying Laplace’s equation is known as a harmonic function.
We may easily prove that a harmonic function within the region being considered
is zero if it is zero on its boundary. On multiplying (7.4) by χ and integrating over
the surface of interest, we find

∫
S

χ∇2
hχ dS ′ =

∫
S

∇h · (χ∇hχ ) dS
′ −

∫
S

(∇hχ )
2 dS ′ = 0 (7.5)

Application of Gauss’ two-dimensional integration theorem (M6.34) to the first
term on the right-hand side of (7.5) shows that this term is zero if we assume that
χ = 0 on the boundary � of the region, or

∫
S

∇h · (χ ∇hχ ) dS
′ =

∮
L

χ ∇hχ · ds⊥ = 0 (7.6)

where ds⊥ takes the places of drN. The second term of (7.5) is positive definite
so that ∇hχ = 0 or χ = constant within the entire region of integration. Since
χ is zero on the boundary, the constant must be zero also. Therefore, the general
statement (6.12) reduces to

vh = k × ∇hψ or u = −∂ψ

∂y
, v = ∂ψ

∂x
(7.7)
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so that the velocity may be described solely in terms of the stream function ψ . For
large-scale atmospheric flow fields exceeding a characteristic length scale of about
2000 km, the divergent part of the velocity may often be disregarded. The flow
then follows the lines representing the constant stream function.

(iii) ∇h · vh �= 0 and k · ∇h × vh = 0

In the case that the rotation vanishes, we find from (6.13) the Laplace equation

∇2
hψ = 0 (7.8)

Repeating the argument of case (ii), we may conclude that ψ = 0. This is the
situation of purely potential flow as expressed by

vh = ∇hχ, ∇2
hχ = D (7.9)

This type of flow is applicable to small-scale atmosphericmotion such asmountain-
valley winds and land–sea breezes whose characteristic length scale is usually less
than 50 km. The essential difference from large-scale motion is that the Coriolis
effect is ofminor importance. In the absence of centripetal forces themotion follows
the negative pressure gradient from high to low pressure but along the positive
gradient of the velocity potential. In the so-called fine structure of the pressure field
a minimum value of p is associated with a maximum of χ and vice versa.

(iv) ∇h · vh = 0 and k · ∇h × vh = 0

In this case it is possible to equate the horizontal velocities according to (7.7) and
(7.9) to give

∇hχ = k × ∇hψ (7.10)

or, in component form,

u = ∂χ

∂x
= −∂ψ

∂y
, v = ∂χ

∂y
= ∂ψ

∂x
(7.11)

These are the famous Cauchy–Riemann equations from complex-variable theory,
which are rarely satisfied for atmospheric conditions.Nevertheless, these conditions
provide a perfect example of purely deformational flow.
As an exercise we will obtain the distributions of the stream function and the

velocity potential for the simple flow field described by

u = λx, v = −λy (7.12)
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Fig. 7.2 Representative lines of the stream function ψ and lines of constant velocity
potential χ .

Application of the Cauchy–Riemann equations and integration immediately results
in

∂ψ

∂y
= −λx =⇒ ψ = −λxy + f (x)

∂ψ

∂x
= −λy =⇒ ψ = −λyx + f (y)

ψ = −λxy + C1

(7.13)

Since we are dealing with partial differential equations, integration yields the
functions f (x) and f (y) instead of integration constants. However, comparison of
the first two equations of (7.13) shows that f (x) = f (y) so that both functions
must be equal to a constant. Analogously to ψ , the velocity potential χ is obtained
by using the remaining pair of Cauchy–Riemann equations:

∂χ

∂x
= λx =⇒ χ = λx2

2
+ f (y)

∂χ

∂y
= −λy = df

dy
=⇒ f (y) = −λy2

2
+ C2

χ = λ

2
(x2 − y2)+ C2

(7.14)

We will now show that, in this situation, the isolines of the stream function and
the velocity potential are orthogonal since the scalar product of the gradients of
∇hψ and ∇hχ is zero,

∇hψ · ∇hχ = ∇hψ · k × ∇hψ = 0 (7.15)

A sketch of the flow field is given in Figure 7.2.



222 Kinematics of two-dimensional flow

ψ
∗  = 
co
ns
ta
nt

υ

Fig. 7.3 The horizontal streamline ψ∗ = constant.

From the definitions stated in (4.9) one obtains

ζ = 0, D = 0, def =
√
A2 + B2 = 2λ (7.16)

This verifies the statement that we are dealing with a purely deformational flow
field.

7.2 Two-dimensional streamlines and normals

7.2.1 Two-dimensional streamlines

For the horizontal flow the equation of streamlines (3.39) reduces to

vh × drs = 0 =⇒ dy

dx
= v(x, y, t0)

u(x, y, t0)
or − u dy + v dx = 0 (7.17)

where drs is a line element along the streamline. From analysis we know that (7.17)
is an exact differential equation if there exists a function ψ∗(x, y) such that

dψ∗ = ∂ψ∗

∂y
dy + ∂ψ∗

∂x
dx = −u dy + v dx = 0 =⇒ ψ∗(x, y) = constant

(7.18)
See Figure 7.3. The condition of exactness, also known as the integrability
condition, is given by

∂2ψ∗

∂x ∂y
= ∂2ψ∗

∂y ∂x
=⇒ ∂u

∂x
+ ∂v

∂y
= ∇h · vh = 0 (7.19)

showing that the divergence of the flow field is zero.
From (7.18) we have

u = −∂ψ∗

∂y
, v = ∂ψ∗

∂x
or vh = k × ∇hψ

∗ (7.20)
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Since the divergenceD = 0, the streamline is identical to the stream function, see
(6.11), which is defined by

vh,ROT = k × ∇hψ (7.21)

If the divergence differs from zero, the integrability condition (7.19) is not satisfied,
that is

∂u

∂x
+ ∂v

∂y
�= 0 (7.22)

Now the streamlines and lines of the constant stream functions are no longer
identical. In order to find ψ∗, we multiply (7.17) by a suitable integrating factor
µ(x, y), causing this equation to become exact,

−uµ dy + vµ dx = 0 (7.23)

In this case the integrability condition is given by

− ∂

∂x
(uµ) = ∂

∂y
(vµ) (7.24)

It may be very difficult to find such an integrating factor. If it has been found, we
have to solve

uµ = −∂ψ∗

∂y
, vµ = ∂ψ∗

∂x
(7.25)

to find the streamline ψ∗, which is no longer identical to the stream function ψ .
We will now consider a very simple example satisfying condition (7.19) so that

D = 0. If the velocity components are given by

u = U = constant > 0, v = −kA sin(kx) (7.26)

then the equation of the streamline reads

−U dy − kA sin(kx) dx = 0 (7.27)

Application of (7.18) results in

(a)
∂ψ∗

∂y
= −U =⇒ ψ∗ = −Uy + f (x)

(b)
∂ψ∗

∂x
= −kA sin(kx) = df

dx
=⇒ f (x) = A cos(kx)+ constant

(c) ψ∗ = A cos(kx)− Uy + ψ∗
0 =⇒ y = 1

U

[
ψ∗
0 − ψ∗ +A cos(kx)

]
(7.28)

where the integration constant has been denoted by ψ∗
0 . The solution is a flow field

representing a stationary Rossby wave; see Figure 7.4.
If the wave is displaced with the phase velocity c in the eastward direction then

the last equation of (7.28) must be modified to read

y = constant+ A

U
cos[k(x − ct)] (7.29)
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Fig. 7.4 Streamlines representing the stationary flow field.

Fig. 7.5 Normals χ∗ to the streamlines ψ∗.

7.2.2 Construction of normals

At every point of the horizontal flow field at t = constant streamlines ψ∗ and
normals χ ∗ form an orthogonal system. Since the instantaneous velocity vector is
tangential to the streamlines, the differential equation of the normals must be given
by

vh · drN = 0 or u dx + v dy = 0 (7.30)

where drN is a line element along the normal; see Figure 7.5.
Equation (7.30) is a total differential of the normalχ ∗ if the integrability condition

∂v

∂x
= ∂u

∂y
(7.31)

is satisfied or if the vorticity ζ is zero. In this case we may write

dχ ∗ = ∂χ ∗

∂x
dx + ∂χ ∗

∂y
dy = u dx + v dy = 0 (7.32)
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Fig. 7.6 The drifting coordinate system.

from which it follows that

u = ∂χ ∗

∂x
, v = ∂χ ∗

∂y
or vh = ∇hχ

∗ (7.33)

From this equation we may find analytic expressions for the normals in the same
way as that in which we have found stream functions. A comparison with (7.9)
shows that χ ∗ is identical with the velocity potential. If the integrability condition
(7.31) is not satisfied we may introduce an integrating factor and proceed analo-
gously to finding streamlines; see equations (7.22)–(7.25). In this case the normal
χ ∗ will not coincide with the velocity potential χ .

7.3 Streamlines in a drifting coordinate system

We consider a horizontal pressure disturbance φ, which is displaced with phase
velocity c in the eastward direction. The air particles themselves move with the
horizontal velocities vh and v′

h with respect to the stationary (x, y)- and the moving
(x ′, y ′)-coordinate system, see Figure 7.6.
On replacing in the addition theorem of the velocities (M4.32) the velocity vP

of the moving system by c and the relative velocity v by v′
h, we find

vh = v′
h + c (7.34)

Application of Euler’s development gives for the resting system the local change
with time of the field function(

∂φ

∂t

)
x,y

= dφ

dt
− vh · ∇hφ (7.35)

In the moving (x ′, y ′) system we find(
∂φ

∂t

)
x′,y′

= dφ

dt
− v′

h · ∇hφ (7.36)
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Since the individual change with time dφ/dt is independent of the coordinate
system, it may be eliminated by subtracting (7.35) from (7.36), yielding

(
∂φ

∂t

)
x,y

=
(
∂φ

∂t

)
x′y′

− c · ∇hφ (7.37)

This relation expresses the local changewith time of the function φ in both systems,
which involves, as should be expected, the displacement velocity c. The local
change with time (∂φ/∂t)x′,y′ in the moving system represents the development
of the pressure system. In case of stationarity in the moving system, there is no
development and (∂φ/∂t)x′,y′ = 0.
Next we consider a system of streamlines moving with the phase velocity c in

the direction of the positive x-axis. We assume that the velocity components are
given by

u = U = constant, v = −kA sin[k(x − ct)] (7.38)

Substitution of (7.38) into the streamline equation (7.17), integrating for fixed time
t = t0, gives the streamline representation

y = A

U
cos[k(x − ct0)]+ constant (7.39)

The question of the shape of the streamlines in the moving system now arises.
The coordinate relation between the two systems is taken from Figure 7.6 but now
we assume that the y- and the y ′-axis coincide, or

x ′ = x − ct, y ′ = y (7.40)

From this it follows immediately that

u′ = dx ′

dt
= dx

dt
− c = U − c, v′= dy ′

dt
= v = −kA sin(kx ′) (7.41)

Inspection of (7.41) shows that the velocity field (u′, v′) in the (x ′, y ′) system is
time-independent or stationary. The differential equation of the streamline in the
moving system is then given by

dy ′

dx ′ = v′

u′ = v

U − c
= −kA sin(kx ′)

U − c
(7.42)

Integration of (7.42) gives the equation of the streamline of the moving system:

y ′ = A

U − c
cos[k(x − ct)]+ constant (7.43)
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Fig. 7.7 Eastward and westward displacement of the streamline system.

From (7.39) and (7.43) we find the relationship between the amplitudes of the
system at rest (Ar = A/U ) and the moving system [Ac = A/(U − c)],

Ac = Ar
U

U − c
(7.44)

Since the wavelength is the same for the streamlines of both systems, we may
arrange the streamlines as shown in Figure 7.7.
On solving (7.44) for the phase velocity c we, find

c = U

(
1− Ar

Ac

)
(7.45)

In case of an eastward displacement of the streamline system we have Ac > Ar,
and Ac < Ar for the displacement in the opposite direction.
We conclude this section by giving an example pertaining to the moving co-

ordinate system. We shall assume that the potential temperature is a conservative
quantity during the motion so that $̇ = 0. Furthermore, we shall assume stationar-
ity in the moving system. Therefore, the development term (∂$/∂t)x′ ,y′ = 0 and,
analogously to (7.36), we find

v′
h · ∇hθ = 0 (7.46)
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Fig. 7.8 Interpretation of relative streamlines, ψ∗
2 > ψ∗

1 .

This means that lines of constant potential temperature are arranged parallel to the
horizontal velocity v′

h that is parallel to the streamlines (ψ
∗)′ of the moving system.

In the system at rest, assuming geostrophic conditions, the streamlines ψ∗ = φ/f

correspond to lines of constant geopotential on an isobaric surface p = constant.
In the tropospheric westward drift most frequentlyU > c > 0. According to (7.44)
the amplitudes of the streamlines in the moving system exceed the amplitudes in
the system at rest so that Ac > Ar, as shown in Figure 7.8.
By relabeling the relative streamlines (ψ∗)′ as lines of constant potential tem-

perature we find that moving troughs are colder than moving ridges.

7.4 Problems

7.1: Consider two-dimensional potential flow in a polar coordinate system.
(a) Find the components vr and vt where r and t refer to the radial and the tangential
direction.
(b) Find the continuity equation for incompressible flow in the polar coordinate
system.

7.2: The circulation is defined by

C =
∮
L

v · dr
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where L is the length of an arbitrary arc. Find the circulation in terms of potential
flow.

7.3: Suppose that the potential flow is expressed by χ = θ , where θ is the angle
shown in the figure.

(a) Calculate the circulation along the circle C1.
(b) Calculate the circulation along the circleC2 defined by (x−a)2+y2 = R2, a >

R.

7.4: The velocity potential is assumed to be given by χ = ax + by, where a and
b are real numbers.
(a) Find the total velocity of the flow field.
(b) Find the stream function of the flow field.

7.5: Assuming that the velocity potential is in the form χ = ln
(√

x2 + y2
)
, show

that the stream function is given by ψ = −arctan(x/y) if we ignore an arbitrary
constant.
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Natural coordinates

8.1 Introduction

In this chapterwe consider horizontal and frictionless flow in a Cartesian coordinate
system on a plane tangential to the earth’s surface as explained in Section 2.5. For
convenience we repeat the equations required for the horizontal wind field:

du

dt
= f v − 1

ρ

∂p

∂x
,

dv

dt
= −f u− 1

ρ

∂p

∂y
(8.1)

The Cartesian system will then be transformed into the natural coordinate system.
The orientation of this system is described by the unit vector es defining the direction
of the horizontal wind vector vh = |vh| es and the orthogonal unit vector en in the
direction of lines normal to the streamline (normals). To complete the coordinate
system we define the unit vector ez in the direction normal to the tangent plane.

Figure 8.1 refers to a section of the horizontal flow field and shows the trajectory
T of a particle at the positions PT (t0) and PT (t1) at times t0 and t1. At these locations
the horizontal velocity is given by vh(t0) and vh(t1). As described in Section 3.4, the
velocity vector is jointly tangential to the streamline and to the trajectory. While
the trajectory defines a sequence of particle positions, both streamlines and their
normals refer to fixed time. The infinitesimal arclengths �sT , �s and �n of the
trajectory T , the streamline S, and the normal N together with the contingency
angle α between es and the x-axis define the corresponding radii of curvature as
given by

RT = dsT

dα
, Rs =

(
∂s

∂α

)
t

, Rn =
(
∂n

∂α

)
t

(8.2)

Inspection of Figure 8.1 also shows that dRs = −dn and dRn = ds as�n and�s
shrink to zero. Since the flow is assumed to be horizontal, the natural coordinate
system is particularly simple and the contingency angles play the dominating
role. Since the coordinate lines s = constant and n = constant are defined only
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Fig. 8.1 The trajectory T , streamlines S1(t0), S2(t0), and normal line N(t0).

Fig. 8.2 Sign conventions for the radius of curvature of the trajectory, for the northern
hemisphere.

piecewise, the intregability condition is not satisfied, so the order of the partial
derivatives with respect to the independent coordinates cannot be interchanged. In
the next section we will demonstrate this in detail.

Since the curvature may assume either sign, we introduce the generally accepted
convention shown in Figure 8.2. If es is pointing in the counterclockwise direction
(rotation in the positive sense) the radius of curvature of the trajectory RT is taken
as positive. If the motion is in the clockwise direction RT is negative.
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8.2 Differential definitions of the coordinate lines

The natural coordinate system is defined by the orthogonal vector basis (es , en, ez),
where es defines the direction of motion of a particle so that es×en = ez. Therefore,
the horizontal velocity is given by

vh = iu+ jv = i |vh| cosα + j |vh| sinα = es |vh| = esv
*
h (8.3)

where v* h is the physical measure number of the horizontal velocity. Differentials
of the coordinate lines are defined by

dq
* 1 = ds = Rs dα, dq

* 2 = dn = Rn dα, dq
* 3 = dz (8.4)

Here dq* 1 and dq* 2 are the elements of arclength of the streamline and of the normal,
while dq* 3 is the line element along ez.

Before proceeding, we need to state the transformation relationships between
the Cartesian and the natural coordinate system. At time t = constant these simply
correspond to the rotation of the Cartesian system about the vertical axis by the
angle α counterclockwise. Let the orthogonal transformation matrix be denoted by

(
Tij

) =




cosα −sinα 0

sinα cosα 0

0 0 1


 (8.5)

Then 


i

j

k


 = (

Tij
)


es
en
ez


,



es
en
ez


 = (̃

Tij
)


i

j

k


 (8.6)

1The variation of the second expression of (8.6) is given by

δ



es
en
ez


 = (

δT̃ij
)(
Tij

)


es
en
ez


 =




0 δα 0

−δα 0 0

0 0 0






es
en
ez


= δα




en
−es
0



(8.7)

or, in component form, by

δes = en δα, δen = −es δα, δez = 0 (8.8)

1 The tilde denotes the transpose of (Tij ).
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The operator δ takes the place of all differential operators such as d/dt, ∂/∂t, d/ds,
and ∂/∂s. However, the budget operator D/Dt is not included in this group.
Therefore, we may write

(a)
des
dt

= en
dα

dt
,

den
dt

= −es dα
dt

(b)
des
dsT

= en
dα

dsT
= en

RT

,
den
dsT

= −es dα
dsT

= − es
RT

(c)

(
∂es
∂t

)
s,n,z

= en

(
∂α

∂t

)
s,n,z

,

(
∂en
∂t

)
s,n,z

= −es
(
∂α

∂t

)
s,n,z

(d)
∂es
∂n

= en
∂α

∂n
= en

Rn

,
∂en
∂n

= −es ∂α
∂n

= − es
Rn

(e)
∂es
∂s

= en
∂α

∂s
= en

Rs

,
∂en
∂s

= −es ∂α
∂s

= − es
Rs

(8.9)

For convenience, in parts (d) and (e) we have not explicitly stated the variables
to be held constant. These are the famous Frenet–Serret formulas for the two-
dimensional situation. A detailed discussion of the three-dimensional case, for
example, may be found in Lass (1950). We conclude this section by stating the
gradient operator in the natural coordinate system:

∇ψ = qn
∂ψ

∂qn
= es

∂ψ

∂s
+ en

∂ψ

∂n
+ ez

∂ψ

∂z
(8.10)

where ψ is some arbitrary but well-defined field function. Application of (8.3) to
(8.10) results in the advection term

vh · ∇ψ = v* h
∂ψ

∂s
(8.11)

which will be needed later.
As we have stated above, the order of the partial derivatives with respect to the

independent variables s and n cannot be interchanged. We will prove this now.
Since the partial derivatives transform in the same way as the corresponding unit
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vectors, we may write from (8.6)

(a)




∂

∂s
∂

∂n
∂

∂z




= (̃
Tij

)




∂

∂x
∂

∂y
∂

∂z




(b)




∂

∂x

∂

∂y

∂

∂z




= (
Tij

)




∂

∂s
∂

∂n
∂

∂z




(8.12)

Application of (8.12a) to the arbitrary field function ψ yields

∂ψ

∂s
= cosα

∂ψ

∂x
+ sinα

∂ψ

∂y
(8.13)

Taking the partial derivative with respect to time, we obtain

∂2ψ

∂t ∂s
= −sinα

∂α

∂t

∂ψ

∂x
+ cosα

∂2ψ

∂t ∂x
+ cosα

∂α

∂t

∂ψ

∂y
+ sinα

∂2ψ

∂t ∂y
(8.14a)

The order of partial differentiation with respect to (t, x) and (t, y) may be inter-
changed so that

∂2ψ

∂t ∂s
= −sinα

∂α

∂t

∂ψ

∂x
+ cosα

∂2ψ

∂x ∂t
+ cosα

∂α

∂t

∂ψ

∂y
+ sinα

∂2ψ

∂y ∂t
(8.14b)

Using the above transformation rule (8.12b), we find from (8.14b)

∂2ψ

∂t ∂s
= ∂α

∂t

∂ψ

∂n
+ ∂2ψ

∂s ∂t
(8.14c)

which is clearly showing that the mixed partial derivatives are not identical. For
the remaining partial derivatives of the natural coordinates analogous expressions
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may be derived. All transformation rules are summarized in

∂2ψ

∂t ∂s
= ∂α

∂t

∂ψ

∂n
+ ∂2ψ

∂s ∂t

∂2ψ

∂z ∂s
= ∂α

∂z

∂ψ

∂n
+ ∂2ψ

∂s ∂z

∂2ψ

∂t ∂n
= −∂α

∂t

∂ψ

∂s
+ ∂2ψ

∂n ∂t

∂2ψ

∂z ∂n
= −∂α

∂z

∂ψ

∂s
+ ∂2ψ

∂n ∂z

∂2ψ

∂n ∂s
= ∂α

∂s

∂ψ

∂s
+ ∂α

∂n

∂ψ

∂n
+ ∂2ψ

∂s ∂n

∂2ψ

∂z ∂t
= ∂2ψ

∂t ∂z

(8.15)

The derivation of the second from last expression is a little tricky. We take the
partial derivative of the field function ψ first with respect to s and then with respect
to n. Next we reverse the order of differentiation and then combine the resulting
equations.

8.3 Metric relationships

The metric coefficients of the orthogonal natural coordinate system are obtained
from the fundamental metric form

(dr)2 = gnn(dq
n)2 = (ds)2 + (dn)2 + (dz)2

= R2
s (dα)

2 + R2
n(dα)

2 + (dz)2
(8.16)

Comparison of coefficients gives immediately

g11 = R2
s , g22 = R2

n, g33 = 1 (8.17)

The functional determinant then follows directly as

√
g =

√∣∣gij ∣∣ = RsRn (8.18)

We know from Chapter M1 that, in orthonormal systems such as the natural co-
ordinate system of the tangential plane, there is no difference between covariant
and contravariant unit vectors and the corresponding physical measure numbers.
The covariant and contravariant basis vectors, however, differ and can be easily
formulated with the help of (8.17).
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Fig. 8.3 Definitions of angles appearing in equation (8.23).

8.4 Blaton’s equation

Blaton’s equation gives a relation between the radii of curvature of the streamline
and the trajectory. The Euler development of the contingency angle α gives

dα

dt
=

(
∂α

∂t

)
n,s,z

+ vh · ∇α

=
(
∂α

∂t

)
n,s,z

+ v* h
∂α

∂s
=

(
∂α

∂t

)
n,s,z

+ v* h

Rs

(8.19)

where use has been made of equations (8.2) and (8.11). By writing dα/dt as

dα

dt
= dα

dsT

dsT

dt
= v* h

RT

(8.20)

we find the desired result

(
∂α

∂t

)
n,s,z

= v
*
h(KT − Ks) (8.21)

The quantities KT = 1/RT andKs = 1/Rs are the curvatures of the trajectory and
the streamline. In case of directional stationarity Blaton’s equation (8.21) reduces
to KT = Ks .

It might be instructive to apply (8.21) to the case of a nondevelopingfieldmoving
with the phase speed c. From (7.37) and with reference to Figure 8.3 we obtain

(
∂α

∂t

)
x,y

=
(
∂α

∂t

)
x′,y′

− c · ∇α= −c cosβ ∂α

∂x
− c sinβ

∂α

∂y
(8.22a)
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Fig. 8.4 Curvatures of the trajectory at various points within a speedily moving circular
cyclone.

The local time derivative at constant x ′, y ′ vanishes due to the assumed stationarity.
Using (8.12b) to replace ∂α/∂x and ∂α/∂y in terms of ∂α/∂s = Ks and ∂α/∂n =
Kn we obtain (

∂α

∂t

)
n,s

= −c(Ks cos γ +Kn sin γ ) (8.22b)

where Kn = 1/Rn is the curvature of the normal. The relation between α, β and
the angle γ , as defined in Figure 8.3. is found from the addition theorems of the
trigonometric functions. Combining (8.21) and (8.22b) finally gives

KT = Ks − c

v* h
(Ks cos γ +Kn sin γ ) (8.23)

We will conclude this section by applying (8.23) to the situation of a speedily
moving cyclone for which c/v* h > 1. Figure 8.4 demonstrates the situation.

Obviously, the curvature Kn of the normal is zero. The curvature Ks of the
low-pressure system L is positive by convention. The curvature of the trajectory
KT and its sign may then be easily found from (8.23). At points 1 (γ = 90◦)
and 3 (γ = 270◦) the curvatures of the trajectory and the streamline coincide,
i.e.KT = Ks. At point 2 (γ = 180◦) the curvature of the trajectoryKT exceeds the
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Fig. 8.5 Tangential and centripetal acceleration.

cyclonic curvature of the streamline Ks , whereas at point 4 (γ = 0◦) the curvature
of the trajectory is anticyclonic, that isKT < 0. For an additional discussion of this
topic see, for example, Petterssen (1956).

8.5 Individual and local time derivatives of the velocity

The individual derivative of (8.3) gives

dvh
dt

= es
dv

*
h

dt
+ des

dt
v
*
h (8.24)

From (8.9) and (8.2) we find

des
dt

= en
dα

dsT

dsT

dt
= en

v* h

RT

(8.25)

Substitution of (8.25) into (8.24) results in

dvh
dt

= es
dv

*
h

dt
+ en

v
* 2
h

RT

(8.26)

The first term on the right-hand side of (8.26) has the direction of vh and is known
as the tangential acceleration. The second term has a direction perpendicular to
vh and represents the centripetal acceleration ce which is acting on an air particle
whenever the trajectory is not straight-line flow; see Figure 8.5.

We proceed similarly with the partial time derivative of the velocity. From (8.9c)
and with the help of Blaton’s equation (8.21) we first obtain

(
∂es
∂t

)
n,s,z

= en

(
∂α

∂t

)
n,s,z

= env
*
h(KT − Ks) (8.27)
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Fig. 8.6 Regions of (a) diffluence and (b) confluence.

Using this equation, we find from (8.3) for the local time change in the natural
coordinate system the expression(

∂vh
∂t

)
n,s,z

= es

(
∂v* h

∂t

)
n,s,z

+ env
* 2
h(KT − Ks) (8.28)

which is needed whenever the Euler expansion is required.

8.6 Differential invariants

8.6.1 The horizontal divergence of the velocity

The starting point of the derivation is the development of ∇ · vh in the natural
coordinate system:

∇ · vh =
(
es

∂

∂s
+ en

∂

∂n

)
· (esv* h) (8.29)

Since this system is orthonormal, one immediately obtains

∇ · vh = en · ∂es
∂n

v* h + ∂v* h

∂s
= v* h

Rn

+ ∂v* h

∂s
(8.30)

where (8.9d) and (8.9e) have been used to evaluate the partial derivatives. The
following abbreviations are introduced:

Dd = v
*
h

Rn

, Dv = ∂v
*
h

∂s
=⇒ ∇ · vh = Dd +Dv (8.31)

The part Dd is known as the divergence due to directional change while Dv refers
to the velocity divergence. The physical interpretation of (8.31) follows from
Figure 8.6 showing regions of diffluence and confluence as well as the sign
convention for the radius of curvature of the normal. In the region of diffluence
the curvature is positive in the mathematical sense so that Rn > 0, whereas in the
region of confluence the curvature of the normal is negative or Rn < 0.
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Fig. 8.7 A region of diffluence in the atmosphere, showing both parts of the divergence
with Dd > 0 and Dv < 0.

In large-scale atmospheric motion the horizontal divergence is very small and
of the order of |∇ · vh| = 10−5–10−6 s−1. This results from the fact that |∇ · vh|, in
general, is composed of the two parts Dd and Dv which nearly compensate each
other. Therefore, it is very difficult to measure the horizontal velocity divergence.
The idea is demonstrated in Figure 8.7.

8.6.2 Vorticity or the vertical component of ∇ × vh

The concept of vorticity is very important in meteorology since the vorticity is a
measure of rotation. Here we will only briefly dwell on this subject, but in later
chapters we will exploit it fully since it is closely related to atmospheric circulation.
In the natural coordinate system the components of ∇ × vh are given by

∇ × vh =
(
es

∂

∂s
+ en

∂

∂n

)
× (esv

*
h) = es × ∂es

∂s
v* h + en × es

∂v* h

∂n
(8.32)

where use has been made of equations (8.9d) and (8.9e). The vertical component
of this expression is then

ζ = ez · ∇ × vh = v* h

Rs

− ∂v* h

∂n
(8.33)

where again (8.9d) has been utilized. The vorticity ζ consists of two parts, caused
by the curvature of the streamlines ζc and the velocity shear ζs.

ζ = ζc + ζs = v* h

Rs

− ∂v* h

∂n
(8.34)

As has already been mentioned, in the northern hemisphere the radius of curvature
of the streamlines Rs is defined to be positive for cyclonic flow so that Rs > 0,
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h h

Fig. 8.8 The sign convention for the shear vorticity in northern-hemispheric flow:
(a) cyclonic wind shear, and (b) anticyclonic wind shear.

Fig. 8.9 The vorticity of rigid rotation of a disk.

whereas for anticyclonic flow Rs < 0; see Figure 8.2. The physical meaning and
the sign convention for the shear vorticity are shown in Figure 8.8.

Finally, we give a very brief example relating to the vorticity of rigid rotation of
a circular disk with v* h = ωRs; see Figure 8.9. The simple calculation is outlined
in equation (8.35), which does not require any additional comment:

ζc = ωRs

Rs

= ω, ζs = −∂v
*
h

∂n
= ∂v

*
h

∂Rs

= ω =⇒ ζ = 2ω (8.35)

In large-scale atmospheric motion the order of magnitude of the vorticity |ζ | is
≈10−4–10−5 s−1.
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8.6.3 The Jacobian operator and the Laplacian

Since we are not going to use these operators, we will not derive them; but we
will state them for reference. They can be derived from the general formulas which
were given previously. Checking the validity of the formulas

J (u, v) = ∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
= DvDd + ζcζs

∇2ψ = ∂2ψ

∂s2
+ ∂2ψ

∂n2
+ 1

Rn

∂ψ

∂s
− 1

Rs

∂ψ

∂n

(8.36)

will be left for the exercises.

8.7 The equation of motion for frictionless horizontal flow

After having taken some interesting but necessary detours, we are now ready to
find the equation of motion for frictionless horizontal flow in the natural coordinate
system. We proceed by transforming each term of the equation of motion (2.38) in
the Cartesian system

dvh
dt

= − 1

ρ
∇p − ∇φ − f ez × vh

= es
dv* h

dt
+ en

v*
2
h

RT

(8.37)

The last equation follows from (8.26). The individual derivative of the first term on
the right-hand side can be expanded with the help of (8.11) to give

dv
*
h

dt
=

(
∂v

*
h

∂t

)
n,s,z

+ v
*
h
∂v

*
h

∂s
=

(
∂v

*
h

∂t

)
n,s,z

+ ∂

∂s

(
v
* 2
h

2

)
n,z,t

(8.38)

The local derivative is explicitly given by (8.28).
The gradient of an arbitrary field function ψ is specified by (8.10) and can be

directly applied to the pressure term and to the geopotential. Assuming that the
geopotential is approximated by φ = gz, we find

∇φ = gez (8.39)

The Coriolis term can be written as

−f ez × vh = −f ez × v* hes = −enf v* h (8.40)
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Using these transformations, we find the desired equation of motion in the natural
coordinate system:

es
dv* h

dt
+ en

v*
2
h

RT

= − 1

ρ
∇p − gez − enf v

*
h (8.41)

The s-component of this equation yields a prognostic equation for the magnitude
of the velocity: (

∂v* h

∂t

)
n,s,z

+ ∂

∂s

(
v*
2
h

2

)
n,z,t

= − 1

ρ

(
∂p

∂s

)
n,z,t

(8.42)

The n-component of (8.41) results in a diagnostic relation involving the balance of
the centripetal force, the pressure gradient force, and the Coriolis force:

v*
2
h

RT

= − 1

ρ

∂p

∂n
− f v* h (8.43)

while the vertical component of (8.41) is the hydrostatic equation

0 = − 1

ρ

∂p

∂z
− g (8.44)

8.8 The gradient wind relation

If the flow is solely governed by (8.43), we obtain the gradient wind relations. With
the abbreviation vh = v* h > 0 equation (8.43) changes into

v2h

RT

+ f vh + 1

ρ

∂p

∂n
= 0 (8.45)

Note that ∂p/∂n < 0. First of all, we observe that, if RT −→ ∞, then we obtain
the geostrophic flow, which has already been discussed in an earlier chapter:

vg = − 1

ρf

∂p

∂n
> 0, RT −→ ∞ (8.46)

Solving the quadratic equation (8.43) results in the gradient wind equations for
curved cyclonic or anticyclonic flow:

cyclonic flow: vh = −fRT

2
+

√
f 2R2

T

4
− RT

ρ

∂p

∂n
, RT > 0

anticyclonic flow: vh = −fRT

2
−

√
f 2R2

T

4
− RT

ρ

∂p

∂n
, RT < 0

(8.47)
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Note that vh is always positive in the natural coordinate system. The type of flow is
determined by the sign convention which we introduced previously. To prevent the
wind speed from assuming complex values, we must assure that the argument of
the root does not become negative for RT < 0. Therefore, the wind speed around
the high-pressure system is limited to the maximum value

vh(max) = −fRT

2
, RT < 0 (8.48)

If the pressure gradient force approximately balances the centripetal force then we
obtain the so-called cyclostrophic wind given by

vcycl =
√

−RT

ρ

∂p

∂n
, RT > 0 (8.49)

This type of flow is important near the centers of tropical cyclones at low latitudes,
where the centripetal force may outweigh the Coriolis force by as much as 25 to
1 as remarked by Byers (1959), so that the term f vh in (8.45) may be neglected.
Similar discussions on gradient flow may be found in various textbooks, e.g. Hess
(1959).

8.9 Problems

8.1: Let α represent the angle between the x-axis and the horizontal wind vector
vh. Curves along which α = constant and |vh| = constant are called isogons and
isotachs, respectively. Consider the auxiliary vectorsG andH shown in the figure.

h h

h h

Use natural coordinates to show that
(a) the divergence is given by D = G · es ,
(b) the vorticity is given by ζ = −G · en,
(c) D2 + ζ 2 = G2.
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(d) Let A = ∂u/∂x − ∂v/∂y and B = ∂u/∂y + ∂v/∂x. Show that

A = H · [(cos(2α) es − sin(2α) en)]

B = H · [(sin(2α) es + cos(2α) en)]

H2 = H ·H = A2 + B2 = def 2

(e) Show that

G = Des − ζen
H = [A cos(2α) + B sin(2α)]es + [−A sin(2α) + B cos(2α)]en

(f) Use the answer to part (e) to demonstrate that the horizontal wind vector vh can
be expressed in terms of the kinematic fields.

Hint: Consider the arbitrary vector A = Ases + Anen. Show that es = (AnA ×
k+ AsA)/(A2

n + A2
s ). Replace A by G to show that

vh = |vh|
D2 + ζ 2

[D(∇h |vh| − |vh| k× ∇hα) + ζ (k× ∇h |vh| + |vh| ∇hα)]

8.2: Suppose that vh · ∇hvh = 0. Show that this statement is equivalent to

D∇h |vh| = −|vh| ζ ∇hα

Hint: Find two expressions for vh · ∇hvh. Obtain one of them with the help of
Lamb’s development, which is also valid for the two-dimensional case.

8.3: Verify equation (8.36).
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Boundary surfaces and boundary conditions

9.1 Introduction

The continuity equation and the equation of motion are applicable only to fluid
regions in which the physical variables change in a continuous fashion. Only in
these regions is it possible to form the required derivatives of the variables as they
appear in the various terms of the prognostic and diagnostic equations. However,
there exist external boundary surfaces at which the fluid is constrained by a wall or
bounded by a vacuum, where the field functions or their nth derivative experience
discontinuous changes. Such surfaces are called discontinuity surfaces (DSs). At
external as well as internal boundary surfaces the continuity equation and the
equation of motion must be replaced by the so-called kinematic and dynamic
boundary-surface conditions.
It is customary to classify the DS according to its order. A boundary surface is

said to be of nth order if the lowest discontinuous derivative of the field function
being considered is of nth order. Let the symbol {ψ} represent the jump experienced
by the field function ψ at the DS as shown in Figure 9.1, so that

ψ (2) − ψ (1) = {ψ} (9.1)

A boundary surface of nth-order discontinuity is then defined by

{ψ} = 0,

{
∂ψ

∂s

}
= 0,

{
∂2ψ

∂s2

}
= 0, · · ·,

{
∂nψ

∂sn

}
�= 0 (9.2)

Actual discontinuities do not form in the atmosphere but there are narrow zones
of transition between two air masses, which, in large-scale motion, may be viewed
as discontinuities. Consider, for example, an idealized warm front or a cold front
that is a DS of order zero in terms of temperature, density, and wind, that is
{T } �= 0, {ρ} �= 0, {v} �= 0; see Figure 9.2.

246
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Fig. 9.1 A jump of the field function at a discontinuity surface.

Fig. 9.2 A discontinuity surface DS of order zero.

Fig. 9.3 A first-order DS relative to pressure.

A discontinuity surface of order one is defined by the condition that the first
spatial derivative experiences a jump. The tropopause, for example, is a first-order
DS relative to temperature, that is {T } = 0 and {∂T /∂z} �= 0. Frontal surfaces are
DSs of first order relative to pressure with {p} = 0 and {∇hp} �= 0; see Figure 9.3.
Before we proceedwith our discussion, it is imperative to define various differential
operators applicable to the DS.

9.2 Differential operations at discontinuity surfaces

We consider an arbitrary extensive field function ψ , which is assumed to be dis-
continuous at the DS so that we are dealing with a zeroth-order DS. Utilizing the
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Fig. 9.4 The definition of the surface gradient.

general integral theorem (M6.30), in a region where ψ changes in a continuous
fashion, the gradient of ψ may be written as

∇ψ = lim
�τ→0

1

�τ

∮
S

ψ dS (9.3)

where�τ is an infinitesimally small volume with surface S. In order to account for
the discontinuity of the field function at the DS, we introduce the surface gradient
in analogy to (9.3) by means of

‖ ψ = lim
�S→0

1

�S

∮
S

ψ dS (9.4)

where the surface integral is taken over the upper and lower surfaces of the small
cylindrical volume of infinitesimal thickness�h; see Figure 9.4.
The contributions by the sides�h → 0 of the pillbox to the surface integral are

considered negligible. Integration of (9.4) results in

‖ ψ = en(ψ (2) − ψ (1)) = en{ψ} (9.5)

It should be noted that the superscripts (1) and (2) simply mean that the function ψ
is taken directly at the corresponding sides of the DS. The operator ‖ ψ at the DS
replaces Hamilton’s nabla operator, which is valid only in the continuous region of
the fluid. Therefore, (9.5) is often called the surface Hamilton operator.
For the arbitrary vector Ψ we formally define the surface divergence for the

zeroth-order DS by

‖ ·Ψ = en · {Ψ} (9.6)
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Fig. 9.5 Surface Hamilton operators for (a) the scalar field function ψ and (b) the vectorial
field function v.

The surface rotation may be written as

‖ × Ψ = en × {Ψ} (9.7)

Some brief examples will clarify the concept. Figure 9.5(a) shows the gradient
of the scalar field function ψ . If ψ represents the velocity vector v then the surface
gradient, the divergence, and the rotation are defined by

‖ v = en{v}, ‖ · v = en · {v}, ‖ × v = en × {v} (9.8)

We will now consider the following situations.

(i) v is source-free on the DS

Then we have
‖ · v = en · {v} = 0 (9.9)

Since by assumption {v} �= 0, we must conclude that en is perpendicular to {v},
meaning that the velocity jump is located in the plane tangential to the DS; see
Figure 9.5(b). We may also write

en · v(1) = en · v(2) (9.10)

showing that the normal components of the velocity vector v are continuous on the
DS.

(ii) v is irrotational on the DS

Then we have
‖ × v = en × {v} = 0 (9.11)

From this it follows that {v} is parallel or antiparallel to en, that is perpendicular to
the DS. By writing (9.11) in the form

en × v(1) = en × v(2) (9.12)
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Fig. 9.6 Relevant quantities for the proof of (9.14).

we find that the tangential components of the velocity vector are continuous on the
DS.

(iii) ‖ · v = 0 and ‖ × v = 0.

The conditions ‖ · v = 0 and ‖ × v = 0 cannot be satisfied simultaneously
on a zeroth-order DS since this would require {v} = 0, which contradicts our
assumption.
This section will be concluded by proving that, on a first-order DS, as defined

by
{ψ} = 0, {∇ψ} �= 0 (9.13)

the surface rotation of the gradient must vanish:

‖ × ∇ψ = en × {∇ψ} = 0 (9.14)

For the proof consider Figure 9.6, where the relevant quantities are shown. The
geometric change dgψ on both sides of the DS can be represented with the help of
the displacement vector dr which is located along the DS. The gradients of the
field function on both sides of the DS are also shown in Figure 9.6, as is the jump
of the gradient {∇ψ}. The geometric changes are given by

dgψ
(i) = dr · ∇ψ (i), i = 1, 2 (9.15)

Since the field function ψ is continuous on the DS, the geometric changes are the
same on both sides, so we obtain

{
dgψ

} = dr · {∇ψ} = 0 or en × {∇ψ} = 0, {∇ψ} �= 0 (9.16)

Therefore, the jump {∇ψ} is orthogonal to the DS as shown in Figure 9.6. This
completes the proof.
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9.3 Particle invariance at boundary surfaces, displacement velocities

The assumption of particle invariance at a boundary surface implies that the DS
is composed of the same group of particles for as long as it exists. If a particle is
a part of the DS it has to remain in the DS; it cannot penetrate the surface. Thus,
the DS is a material or fluid surface: see also Section M6.4. Otherwise the particle
would experience an infinitely large variation of its scalar value, say �T > 0, so
that �T/�h → ∞. In order to realize the assumption of particle invariance, the
normal velocity on both sides of the DS must be the same, i.e. v(1) · en = v(2) · en.
Let us consider a DS defined by

z = zDS(x, y, t) (9.17)

The function
F (x, y, z, t) = z− zDS(x, y, t) = 0 (9.18)

may be considered to be the defining equation of the DS. Since all particles of the
DS must remain within the DS, we may write the condition of particle invariance
as

F = 0,
dF

dt
= 0 =⇒

(
dF

dt

)(i)
= ∂F

∂t
+ v(i) · ∇F = ∂F

∂t
+ v(i) · en |∇F | = 0, i = 1, 2

(9.19)

The last expression follows from the fact that ∇F is perpendicular to the DS. By
evaluating (9.19) for i = 1 and i = 2 and subtracting one of the results from the
other we again obtain (9.10).
The displacement velocity c of the DS and the unit normal en to the DS are

considered positive if they are pointing from side (1) to (2); see Figure 9.7. In
order to keep the mathematical analysis as simple as possible, we have arranged
the coordinate system in such a way that the trace of the DS (front) is parallel to the
y-axis. The unit vector i which is perpendicular to the trace of the DS is pointing
in the direction of the rising boundary surface. The angle α defines the inclination
of the DS.
The relation between the unit vector en and the Cartesian vectors i and k is easily

found from

en = en · E = en · ii + en · jj + en · kk = − sinα i + cosα k (9.20)

Owing to the particle invariance, the displacement velocity c = cen of the DS must
be equal to the normal component of the wind velocity

c = (v(i) · en)en = (−u(i) sinα + w(i) cosα)en = cen, i = 1, 2 (9.21)
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Fig. 9.7 The orientation of the discontinuity surface.

Moreover, the displacement velocity c can also be expressed by means of the
particle invariance. From (9.19) we find

v(i) · en = −∂F
∂t

|∇F |−1, i = 1, 2 (9.22)

so that the displacement velocity is also given by

c = −∂F
∂t

|∇F |−1en = −∂F
∂t

(en · ∇F )−1en (9.23)

Of greater interest than the displacement velocity c itself is the horizontal dis-
placement velocity ch shown in Figure 9.8. From the figure and from (9.23) we find
for the horizontal displacement the relation

ch = chi = − c

sinα
i = c

i · en
i = −∂F

∂t
(i · ∇F )−1i (9.24)

Fig. 9.8 The horizontal displacement velocity.
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where the measure number ch can have either sign. Owing to the special orientation
of the coordinate system, the same result also follows on expanding the equation
of particle invariance:

F = 0, dF = 0 = ∂F

∂t
dt + ∂F

∂x
dx + ∂F

∂z
dz (9.25)

Application of this equation for z = constant yields the horizontal displacement
velocity

F = 0, z = constant:

(
dx

dt

)
DS

= ch = −∂F
∂t

(
∂F

∂x

)−1
= −∂F

∂t

1

(i · ∇F )
(9.26)

which is identical with (9.24). From (9.25) we also find the inclination of the DS:

F = 0, t = constant:

(
dz

dx

)
DS

= −∂F
∂x

(
∂F

∂z

)−1
= − i · ∇F

k · ∇F = tanα

(9.27)
On substituting (9.21) into (9.24) we find the useful expression

ch = − c

sinα
i = u(i) sinα −w(i) cosα

sinα
i = (u(i) −w(i) cotα)i, i = 1, 2 (9.28)

This equation states that, for equal conditions regarding u andw, a steep DS (cotα
is small) moves faster than does a DS with a shallow inclination. A slope of a
frontal surface of 1 :50 is considered steep whereas 1 :300 is regarded as slight. By
expressing (9.28) for i = 1 and i = 2, upon subtraction of one equation from the
other we find another expression for the inclination of the DS:

tanα = {w}
{u} = w(2) − w(1)

u(2) − u(1) (9.29)

involving the discontinuity jump of the velocity components.

9.4 The kinematic boundary-surface condition

There are various types of boundary surface. It is necessary to make a distinction
between outer or external and internal boundary surfaces. An external boundary
surface, for example, is the surface of the earth for which a lower boundary condi-
tion must be formulated. An internal boundary surface is an imagined separation
boundary between two fluids of differing densities.
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Fig. 9.9 External boundary surfaces.

9.4.1 External boundary surfaces

Let us consider an ideal frictionless fluid whose so-called free surface zf is separat-
ing the fluid from a vacuum or a gas-filled space. To a good approximation this is
realized by the boundary separating the ocean and the atmosphere. While the free
surface is time-dependent, a time-independent surface such as the surface of the
earth is considered to be a rigid wall zs, see Figure 9.9. Therefore, the boundary
equations may be written as

F (x, y, z, t) = z− zf(x, y, t) = 0, F (x, y, z) = z− zs(x, y) = 0 (9.30)

As has already been mentioned, any boundary surface, as long as it exists, is
considered to be particle-invariant, meaning that the boundary surface is always
made up of the same group of particles. From (9.30) follows the so-called kinematic
boundary-surface condition. For the nonstationary free surface we may write

Free surface: F = 0,
∂F

∂t
�= 0,

dF

dt
= ∂F

∂t
+v ·en|∇F | = 0 (9.31)

where the velocity refers to the fluid medium. With the help of (9.23) this formula
can be rewritten as

F = 0,
∂F

∂t
|∇F |−1 + v · en = −c + en · v = −en · enc + en · v = 0 (9.32)

or by means of
F = 0, en · (v − c) = 0 (9.33)

Since the unit vector en is oriented normal to the DS, the vector v − c, representing
the velocity difference, must lie in the DS.
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For a rigid surface we find analogously

Rigid surface: F = 0.
∂F

∂t
= 0,

dF

dt
= 0, v · en = 0 (9.34)

so that the velocity vector itself lies in the DS.
In a viscous fluid not only does the normal component of the velocity vanish at

a rigid wall as implied by (9.34) but also the tangential component must vanish. In
this more realistic case the kinematic boundary-surface condition must be written
as

F = 0, v = 0 (9.35)

9.4.2 Internal boundary surfaces

Let us consider an internal DS between two frictionless fluids such as a tempera-
ture DS of order zero. We again start our analysis from the condition of particle
invariance (9.19) which may also be written as

∂F

∂t
|∇F |−1en · en + v(i) · en = 0, i = 1, 2 (9.36a)

Scalar multiplication of (9.23) by en and substitution of the result into (9.36a) gives

en · (v(i) − c) = (−u(i) sinα +w(i) cosα)− c = 0, i = 1, 2 (9.36b)

where we have used the orientation of the coordinate system shown in Figure 9.7.
Setting in succession in (9.36a) i = 1, 2 and subtracting one of the results from the
other yields the kinematic boundary-surface condition for the internal DS:

F = 0,
∂F

∂t
�= 0:

(a) {v} · ∇F = 0

(b) {v} · en =‖ · v = 0

(c) w(2) − w(1) = (u(2) − u(1)) tanα or {w}/{u} = tanα

(9.37)

Equations (9.37b) and (9.37c) follow directly from (9.37a) since |∇F | �= 0.
In (9.37b) we have also used the definition (9.8) for the surface divergence.
Again, we have obtained equation (9.29) giving the inclination of the discontinuity
surface.
Equations (9.37a) and (9.37b) require that the velocity-jump vector {v} at the

zeroth-order DS must be tangential to the DS while the normal component of v
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Fig. 9.10 The generalized height of a discontinuity surface.

must be identical on both sides of the DS. The component form (9.37c) of the
kinematic boundary-surface condition gives a relation between the slope tanα and
the velocity jumps of the components of the wind velocity.
Equation (9.37) is valid for a nonstationary (∂F/∂t �= 0) internal boundary

surface. For a stationary boundary surface (∂F/∂t = 0) the kinematic boundary-
surface condition reduces to

F = 0,
∂F

∂t
= 0:

v(i) · ∇F = 0, v(i) · en = 0, tanα = w(i)/u(i), i = 1, 2
(9.38)

9.4.3 The generalized vertical velocity at boundary surfaces

The condition of particle invariance can be used to derive the vertical velocity
at outer and internal boundary surfaces. We will first introduce the generalized
vertical coordinate which will also be of importance in our future work when we
consider the atmospheric motion in arbitrary coordinate systems; see Figure 9.10.
As specific examples of the generalized vertical coordinates we consider the

atmospheric pressure p and the height z of a pressure surface which generally
depend on the horizontal coordinates x and y. Therefore, we may write

p = pf(x, y, t) =⇒ p − pf (x, y, t) = F1(x, y, p, t) = 0

z = zf(x, y, t) =⇒ z− zf(x, y, t) = F2(x, y, z, t) = 0
(9.39)

or, in general,

F = ξ − ξf(x, y, t) = 0,
dF

dt
= 0 (9.40)

Individual differentiation with respect to time gives

F = 0, ξ̇ (i) = ∂ξf

∂t
+ v(i)h · ∇hξf, i = 1, 2 (9.41)
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which is the generalized velocity at the boundary surface. If we are dealing with an
outer stationary or nonstationary boundary surface then (9.41) refers to the interior
fluid. Writing (9.41) down for both sides of the DS (i = 1, 2) and subtraction of
one of the results from the other gives

F = 0, {ξ̇ } = {vh} · ∇hξf (9.42)

This equation is equivalent to the kinematic boundary-surface condition since it
reduces to (9.37a) if the y-axis is taken along the trace of the discontinuity surface.
Let us now consider various cases of (9.41) and (9.42), which are collected in the
following equations.

(I) ξ = z, ξ̇ = w

The horizontal surface of the earth: zs = constant

∂zs

∂t
= 0, ∇hzs = 0, ws = 0 (9.43a)

Earth’s surface with topography: zs = zs(x, y)

∂zs

∂t
= 0, ∇hzs �= 0, ws = vs · ∇hzs (9.43b)

A free nonstationary surface: ξf = H

wH = ∂H

∂t
+ vh · ∇hH (9.43c)

A nonstationary internal DS:

w
(2)
f − w(1)

f = (v(2)h − v(1)h ) · ∇hzf (9.43d)

A stationary internal DS:

w
(i)
f = v(i)h · ∇hzf, i = 1, 2 (9.43e)

(II) ξ = −p, ξ̇ = −ṗ = −ω
A nonstationary internal DS:

ω
(2)
f − ω(1)

f = (v(2) − v(1)) · ∇hpf (9.43f)

A stationary internal DS:

ω
(i)
f = v(i)h · ∇hpf, i = 1, 2 (9.43g)

These expressions do not require additional explanations.
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Fig. 9.11 The pressure-gradient jump at a vertical (left) and a horizontal (right) cross-
section of a pressure-discontinuity surface. ∇v = i ∂/∂x + k ∂/∂z.

9.5 The dynamic boundary-surface condition

At a boundary surface the stress tensor T as defined in (5.3) must be continuous,
otherwise infinitely large pressure gradients would result. This physical condition
is known as the dynamic boundary-surface condition, which can be written as

(a) {T} = 0

(b) {p} = 0

(c) p = 0,
dp

dt
= 0

(9.44)

Equation (9.44a) is the general condition for viscous fluids whereas (9.44b) refers
to frictionless fluids. This condition states that the pressure boundary surface must
be a DS of first order at least. If we consider the upper boundary of the atmosphere
as a free material surface then condition (9.44c) must apply. With reference to
equations (9.14) and (9.16) we may write

‖ × ∇p = en × {∇p} = 0, dr · {∇p} = 0 (9.45)

where dr lies in the DS. Equation (9.45) shows that, in a frictionless fluid, the jump
of the pressure gradient at a first-order DS relative to pmust be perpendicular to the
DS. The pressure itself, however, is continuous as stated by (9.44b). The situation
is demonstrated in Figure 9.11.
Finally, we may combine the kinematic and the dynamic boundary-surface con-

ditions to give the so-called mixed boundary-surface condition for frictionless
fluids by setting in (9.30)

F (x, y, z, t) = p(2)(x, y, z, t) − p(1)(x, y, z, t) = {p} = 0 (9.46)

The result is {
∂p

∂t

}
+ v(i) · {∇p} = 0, i = 1, 2 (9.47)



9.6 The zeroth-order discontinuity surface 259

On writing this expression down for both sides of the boundary surface and sub-
tracting one of the results from the other we obtain

{v} · {∇p} = 0 (9.48)

Since {∇p} �= 0 by assumption, we find that, in a frictionless fluid, the velocity
jump must be perpendicular to the jump of the pressure gradient.

9.6 The zeroth-order discontinuity surface

9.6.1 The inclination of the zeroth-order DS

We wish to treat briefly the inclination of a zeroth-order DS in a frictionless fluid
for various conditions. In our example we consider a boundary surface separating
two air masses of different densities. Using the ideal-gas law and recalling that
{p} = 0 at the DS, it is easy to show that this corresponds to a zeroth-order DS of
the virtual temperature Tv or

{ρ} = −{Tv}p/(R0T
(1)
v T

(2)
v ) (9.49)

It stands to reason that, for air masses at rest, the DS must be horizontal, with
the warmer lighter air on top of the colder denser air. There can be no equilibrium
between two air masses of different densities seperated by a vertical DS. If the air
masses are in motion the colder air will form a wedge under the warmer air. It
is important to realize that both the kinematic and the dynamic boundary-surface
conditions must be satisfied at the DS. We repeat the dynamic boundary condition
(9.45) and write

{∇p} · dr = {∇vp} · dr = {∇vp} · i dx +
{
∂p

∂z

}
dz = 0

with ∇v = i
∂

∂x
+ k

∂

∂z

(9.50)

Again we have used the special arrangement of the coordinate system. From this
equation we obtain the inclination of the DS, which is given by

tanα =
(
dz

dx

)
DS

= i · ∇vzDS = −i · {∇vp}
{
∂p

∂z

}−1
(9.51a)

or by

∇vzDS = (∇vp
(1) − ∇vp

(2)
)(∂p(2)

∂z
− ∂p(1)

∂z

)−1
(9.51b)
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Assuming the validity of the hydrostastic equation for the present situation, we
may rewrite (9.51b) and obtain an equivalent expression for the slope of the DS:

∇vzDS = {∇vp}
g{ρ} = ∇vp

(2) − ∇vp
(1)

g(ρ(2) − ρ(1)) or tanα = i · {∇vp}
g{ρ} (9.52)

Owing to the choice of the coordinate system, see Figure 9.7, the slope is always
greater than zero, or tanα>0. Furthermore, we assume that we have stable atmos-
pheric conditions in the sense that the denser colder air is located below the lighter
warmer air. We note that the denominator in (9.52) is smaller than zero, so the
numerator must be negative in order to make the fraction positive. We will use this
information by considering the surface divergence of ∇p:

‖ · ∇p = en · {∇p} = (− sin α i + cosα k) ·
{
∇hp + k

∂p

∂z

}
(9.53)

where we have replaced the unit normal en by means of (9.20). On carrying out the
scalar multiplication, we obtain the equivalent expression

‖ · ∇p = −i · {∇hp} sinα+
{
∂p

∂z

}
cosα > 0

since i · {∇vp} = i · {∇hp} < 0 and

{
∂p

∂z

}
= g(ρ(1) − ρ(2)) > 0

(9.54)

See Figure 9.11. Since both the horizontal and the vertical parts of (9.54) are larger
than zero, we find for reasons of stability that the total surface divergence of the
pressure gradient must also be larger than zero. As shown in the left-hand panel of
Figure 9.12, in general this is possible only in case of a cyclonic pressure-gradient
jump (cyclonic air motion). Otherwise the horizontal part of the surface divergence
would not be positive. The anticyclonic pressure-gradient jump would violate the
requirement that the first term of (9.54)must be greater than zero; see the right-hand
panel of Figure 9.12.
We are now ready to find an expression for the inclination of the DS in the

presence of a geostrophic wind field.

9.6.2 A discontinuity surface of zeroth-order in the geostrophic wind field

This type of discontinuity surface is also known as theMargules boundary surface.
To obtain a suitable expression for the pressure-gradient jump at the DS, we use
the approximate form of the equation of motion

ρ
dvh
dt

+ ρfk × vh + ρgk = −∇hp − ∂p

∂z
k = −∇p (9.55)
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h

h h

Fig. 9.12 Allowed (left) and forbidden (right) pressure-gradient jumps.

For simplicity we have omitted the vertical bar on the individual time derivative
of vh expressing that the basis vectors are not to be differentiated with respect to
time. This equation may be easily obtained by combining the horizontal equation
of motion (2.29) with the hydrostatic approximation (2.27). From (9.55) we obtain
for the jump of the pressure gradient

{∇p} = −gk{ρ} + f {ρv}i − f {ρu}j −
{
ρ
dvh

dt

}
(9.56)

The inclination of the DS according to (9.51a) or (9.52) can then be expressed by

tanα = i · ∇vzDS = i · {∇vp}
g{ρ} = −{ρ du/dt} + f {ρv}

g{ρ}
since i · {∇p} = i · {∇vp}

(9.57a)

Owing to the special orientation of the coordinate system (∂/∂y = 0) we also
obtain

j · {∇p} = j · {∇vp} = −
{
ρ
dv

dt

}
− f {ρu} = 0 (9.57b)

Now we assume that the acceleration is zero so that du/dt and dv/dt vanish.
Since we also ignore viscosity effects, the flow is geostrophic. Therefore, we may
write

(a) tanα = i · ∇vzDS = i · {∇vp}
g{ρ} = −f i · k × {ρvg}

g{ρ} = f {ρvg}
g{ρ}

(b) j · {∇vp} = −f j · k × {ρvg} = −f {ρug} = 0 =⇒ i · {ρvg} = 0
(9.58)

Equation (9.58b) leads to the conclusion that
{
ρvg

}
lies along the surface of

discontinuity. Moreover, it follows that the geostrophic momentum perpendicular
to the trace of the DS is equal on both sides of the boundary surface. A slope of the
DS of 1:50 is considered steep whereas 1:300 is regarded as shallow.
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For purely horizontal geostrophic motion we find from (9.28) and (9.58b)

ch = u(1)g = u(2)g = ug

{ρug} = {ρ} ug = {ρ} ch = 0

{ρ} �= 0 =⇒ ch = 0 but v(i)g �= 0

(9.59)

Since the density jump across the DS is assumed to differ from zero, we find that,
for the geostrophic case, the displacement along the x-axis cx = ch must vanish.
However, in case of accelerated horizontal flow, we find from (9.57b) together with
(9.28) the following relation:

−f {ρ}ch −
{
ρ
dv

dt

}
= 0 (9.60)

or

ch = cx = −{ρ dv/dt}
f {ρ} (9.61)

Therefore, for purely horizontal flow a displacement of the front in the x-direction
is possible only if the flow is accelerated in the y-direction.
For the geostrophic flow the wind direction must be parallel to the isobars. Since

the pressure-gradient jump is cyclonic, the horizontal wind shear along the DSmust
be cyclonic also. According to the kinematic boundary condition, the velocity jump
is located along the DS. From Figure 9.13 it can be seen that {vg} is directed along
the negative y-axis. The direction of {vg} can also be found from the condition
tanα > 0. This will be shown shortly. For reference see also Figure 9.8.

Fig. 9.13 Cyclonic (allowed) and anticyclonic (forbidden) wind shear in geostrophic flow
at a discontinuity surface.
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Let us briefly return to equation (9.58a) and consider three special cases. (i) If
{ρ} = 0 then α = 90◦ and no boundary surface exists. (ii) If

{
ρvg

} = 0 but
{ρ} �= 0, then α = 0 and the boundary surface is horizontal. (iii) If v(1)g = v(2)g = vg
is assumed then the inclination of the boundary surface DS equals the inclination
of an isobaric surface. From (9.58a) it follows that

tanα = i · ∇vzDS = f vg

g
= 1

ρg

∂p

∂x
= tanαp (9.62)

Let us rewrite (9.58a) with the help of the ideal-gas law and express the density
in terms of the virtual temperature. Since the pressure at the boundary surface is
continuous, we obtain immediately

∇vzDS = −fk × {
ρvg

}
g{ρ} = fk × (

T (1)
v v(2)g − T (2)

v v(1)g
)

g
(
T

(2)
v − T (1)

v

) (9.63)

Expressing the geostrophic wind and the virtual temperature in the two different
air masses separated by the DS in terms of their mean values

vg = u(1)g + u(2)g
2

i + v(1)g + v(2)g

2
j, T v = T (1)

v + T (2)
v

2
(9.64)

and jumps, we find

v(2)g = vg +
{
vg

}
2
, v(1)g = vg −

{
vg

}
2

T (2)
v = T v + {Tv}

2
, T (1)

v = T v − {Tv}
2

(9.65)

On substituting (9.65) into (9.63) we obtain

∇vzDS = f

g
k ×

({
vg

} T v

{Tv} − vg

)
(9.66)

As follows from comparison with (9.62), the second term on the right-hand side
represents the inclination of an isobaric surface whose average midlatitude incli-
nation is approximately ±10−4. For average atmospheric conditions the first term
in (9.66) is approximately 30 times larger than the second term. If we ignore the
second term we obtain with acceptable accuracy for the inclination of the boundary
surface

tanα = i · ∇vzDS ≈ f T v

g{Tv}
(
i · k × {

vg
})
> 0 (9.67)
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Fig. 9.14 The positions of the warm and the cold air relative to the jump of the geostrophic
wind.

This expression admits an important interpretation. According to the kinematic
boundary-surface condition the jump

{
vg

}
must lie in the DS and can be interpreted

as a horizontal as well as a vertical jump. Since the warm air overlies the wedge
of cold air, the temperature jump {Tv} must be positive. A consequence of the
condition tanα > 0 is that

{
vg

}
must have the direction shown in Figure 9.14.

Thus, looking in the direction of
{
vg

}
, the warm air must always be situated to

the right of the jump
{
vg

}
, as shown in the figure. This result is in agreement with

Figure 9.13.
The behavior of

{
vg

}
with respect to the positions of the warm and the cold air

corresponds exactly to the behavior of the thermal wind vT in the continuous field.
The thermalwind is defined as the variation of the geostrophicwindwith height. For
convenience, we will consider geostrophic motion on an isobaric surface. Thus we
have to transform the equation for the geostrophic wind from the (x, y, z)-system
to the (x, y, p)-system. This is easily accomplished with the help of (M4.51) by
setting there q3 = z, ξ = p, andψ = p. Utilizing the hydrostatic equation together
with φ = gz, we obtain ∇h,zp = ρ ∇h,pφ so that the equation for the geostrophic
wind in the p system is given by

vg = 1

f
k × ∇h,pφ (9.68)

On differentiating this equation with respect to pressure we obtain the differential
form of the thermal wind in the p system:

∂vg
∂p

= 1

f
k × ∇h,p

∂φ

∂p
= − 1

f
k × ∇h,p

1

ρ
= −R0

fp
k × ∇h,pTv (9.69)

A slight rearrangement of this formula gives

vT = �vg = ∂vg
∂φ
�φ = ∂vg

∂p

∂p

∂φ
�φ = �φ

f Tv
k × ∇h,pTv (9.70)
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Fig. 9.15 The positions of the warm and cold air relative to the thermal wind, subscripts
l and u refer to lower and upper layers.

showing that the warm air is always located to the right of the thermal wind; see
Figure 9.15.
It can be recognized from Figure 9.15 that clockwise turning of the geostrophic

wind with height (veering) is associated with warm-air advection whereas anti-
clockwise turning (backing) with height causes cold-air advection. The rule is
reversed in the southern hemisphere.
At the conclusion of this section we wish to point out that mathematical expres-

sions for obtaining general equations for the slope of discontinuity surfaces for
accelerated frictionless flow have been worked out. These expressions are not very
important for our work and will be omitted.

9.7 An example of a first-order discontinuity surface

An important example of a first-order discontinuity surface is the tropopause,
where the temperature is continuous while the vertical temperature gradient is
discontinuous; see Figure 9.16. We will only briefly consider this subject and
calculate the midlatitude slope of the tropopause. More detailed information is
given, for example, by Lowell (1951); see also Haltiner and Martin (1957).
Let us consider two points along the tropopause. The temperature variation along

the tropopause is approximately given by

dgT
(i) =

(
∂T

∂x

)(i)
dx +

(
∂T

∂z

)(i)
dz, i = 1, 2 (9.71)

with dgT (1) = dgT
(2). Since the geometric variation is the same on both sides of

the DS, we find upon subtraction{
∂T

∂x

}
dx +

{
∂T

∂z

}
dz = 0 (9.72)
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Fig. 9.16 The temperature distribution and the geostrophic wind shear at the tropopause.
The x-axis is pointing toward the equator.

The slope of the tropopause is then given by

tanαT = dz

dx
=

{
∂T

∂x

}
z{

γg
} (9.73)

where
{
γg

}
represents the jump of the lapse rate. We now transform from the

z-system to the pressure system by using the transformation rule
(
∂T

∂x

)
z

=
(
∂T

∂x

)
p

− ∂T

∂z

(
∂z

∂x

)
p

(9.74)

This expression is obtained from (M4.51) by setting there q1 = x, q3 = z, and
ζ = p. Thus we find

tanαT =

{
∂T

∂x

}
p{

γg
} +

(
∂z

∂x

)
p

(9.75)

where the second term represents the slope of the pressure surface in the x-direction.
Using the definition of the geostrophic wind in the pressure system (9.68) and
rewriting the thermal-wind equation (9.69)with the help of the hydrostatic equation,
we find with T ≈ Tv

tanαT = f vg

g
+ Tvf

g

{vT }{
γg

}

with {vT } =
{
∂vg

∂z

}
= g

f Tv

{(
∂Tv

∂x

)
p

} (9.76)

Here vT is the differential form of the thermal wind. From the temperature distri-
bution in the vicinity of the tropopause we find the direction of the geostrophic



9.8 Problems 267

wind shear along the trace of the tropopause. Assuming that v(1)T = 4 m s−1 km−1,
v
(2)
T = −6 m s−1 km−1, vg = 30 m s−1, T = 240 K at the tropopause, and{
γg

} = 6 K km−1, we find from (9.76) tanαT = 43 m (10 km)−1. This means that,
in the midlatitudes, the tropopause rises by about 43 m if we move a distance of
10 km toward the equator.
It should be observed that there exists no entirely satisfactory theory for the

formation and the existence of the tropoause, which is not a continuous band rising
from about 9 km at the North pole to 18 km at the equator. The tropopause is often
fractured in the region of strong jet streams, permitting the exchange of air between
the troposphere and the stratosphere.

9.8 Problems

9.1: Let ξ = p. With the help of the proper transformation equations and the
kinematic boundary-surface condition, find an expression for the generalized ver-
tical velocity ωs = ṗs for the earth’s surface. This expression should involve the
geopotential.

9.2: With the help of (9.63), find an expression for the slope of the discontinuity
surface.

9.3: Sketch three figures of the type shown in Figure 9.13. Show the distribution
of the isobars, the direction and roughly the magnitude of the geostrophic wind,
and the jump of vg for the following three situations:
(a) cold high, warm high,
(b) cold high, warm low,
(c) warm low, warm high.
Place the pressure systems on the appropriate side of the discontinuity surface.
Check your figures by applying the conditions that tanα > 0 and

{
vg

}
is cyclonic.
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Circulation and vorticity theorems

In this chapter a number of very important circulation and vorticity theorems
will be introduced. Instead of following the historical development, they will be
deduced from a general baroclinic vortex law in order to demonstrate the close
relationships among the various theorems. This particular way of presentation is
chosen in order to better appreciate the great beauty of the underlying theory.
Of course, the vorticity equation in Cartesian coordinates, for example, could be
easily derived from the horizontal equations of motion by differentiating these with
respect to the horizontal coordinates and subtracting the resulting formulas from
each other. This operational process is easily understood and carried out, but the
reader probably fails to appreciate the fairly general character of the entire theory.
A basic tool needed in the following derivations is Ertel’s form of the continuity
equation, which will be presented in the next section. Another important tool in
our work is the Weber transformation, which will be discussed in Section 10.2.

10.1 Ertel’s form of the continuity equation

The derivation rests on the general formulation of the continuity equation. Using
(M3.56) and (M4.36), equation (1.50) can be written in the following form:

d

dt

(
ρ
√
g
q

)
+ ρ

√
g
q

∂q̇n

∂qn
= 0

with
√
g
q

= √
g
x

∣∣∣∣∣
∂(x1, x2, x3)

∂(q1, q2, q3)

∣∣∣∣∣ = 1

Jx(q1, q2, q3)

(10.1)

This equation involves a transformation from the Cartesian to the general coor-
dinates as discussed in Section M4.1.3. Replacing the density ρ by the specific

268
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volume α and carrying out the differentiation gives

d

dt

[
αJx(q

1, q2, q3)
] = αJx(q

1, q2, q3)
∂q̇n

∂qn
(10.2)

In
√
g
q
the partial derivatives with respect to qk will now be replaced by using the

proper transformation rules (M4.24):

∂

∂xi
= ∂qn

∂xi

∂

∂qn
or




∂

∂x1

∂

∂x2

∂

∂x3




=
(
∂qj

∂xi

)



∂

∂q1

∂

∂q2

∂

∂q3




(10.3)

By inversion of (10.3) we find the expression


∂

∂q1

∂

∂q2

∂

∂q3




=
(
∂xj

∂qi

)



∂

∂x1

∂

∂x2

∂

∂x3




=
(
M

·j
i·
)

Jx(q1, q2, q3)




∂

∂x1

∂

∂x2

∂

∂x3




(10.4)

where Jx(q1, q2, q3) = Det(∂qj/∂xi) and M ·j
i· are the adjoints of the matrix

(∂qj/∂xi). It should be kept in mind that the value of a determinant is not changed
by transposition of rows and columns. The reader may easily convince himself that



M ·1
1· M ·2

1· M ·3
1·

M ·1
2· M ·2

2· M ·3
2·

M ·1
3· M ·2

3· M ·3
3·







∂

∂x1

∂

∂x2

∂

∂x3




=




Jx
(
, q2, q3

)

Jx
(
q1, , q3

)

Jx
(
q1, q2,

)




(10.5)

where, for example,

Jx( , q2, q3) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂

∂x1

∂

∂x2

∂

∂x3

∂q2

∂x1

∂q2

∂x2

∂q2

∂x3

∂q3

∂x1

∂q3

∂x2

∂q3

∂x3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(10.6)
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By application of (10.4) and using (10.5), we find directly




∂q̇1

∂q1

∂q̇2

∂q2

∂q̇3

∂q3




= 1

Jx(q1, q2, q3)




Jx(q̇
1, q2, q3)

Jx(q
1, q̇2, q3)

Jx(q
1, q2, q̇3)




(10.7)

Substitution of this expression into (10.2) gives

d

dt

[
αJx(q

1, q2, q3)
] = α

[
Jx(q̇

1, q2, q3)+ Jx(q
1, q̇2, q3)+ Jx(q

1, q2, q̇3)
]
(10.8)

where all spatial derivatives are takenwith respect to the Cartesian coordinates. This
version of the continuity equation is due to Ertel (1960), and is of great advantage
whenever conservative quantities, i.e. invariant field functions, are involved. These
are always characterized by the conservation equation

dψi

dt
= ψ̇ i = 0 (10.9)

Two brief examples will demonstrate this.

Example 1 Suppose that the qk are the Lagrangian enumeration coordinates ak

which are characterized by ȧk = 0. Then it is easily seen that the right-hand side
of (10.8) vanishes so that

d

dt

[
αJx(a

1, a2, a3)
] = d

dt

[
α∇xa

1 · ∇xa
2 × ∇xa

3
] = 0 (10.10)

Thus [α∇xa
1 · ∇xa

2 × ∇xa
3] is an invariant. From (10.1) follows immediately the

continuity equation in Lagrangian enumeration coordinates which was discussed
previously:

d

dt

(
α√
g
a

)
= ∂

∂t

(
α√
g
a

)
ai

= 0 or
d

dt

(
ρ
√
g
a

)
= ∂

∂t

(
ρ
√
g
a

)
ai

= 0 (10.11)

with (d/dt)(· · ·) = (∂/∂t)(· · ·)ai since ȧk = 0. Integration yields

ρ
√
g
a

= constant =
(
ρ
√
g
a

)
t=t0

(10.12)
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Example 2 Since the qk may be expressed as functions of the Cartesian coordinates,
we may consider these as independent field functions of xi . Let ψ be an arbitrary
field function, s the specific entropy (ṡ = 0 for isentropic processes), and P the
potential vorticity, which has not yet been discussed. P turns out to be an invariant
quantity if certain conditions are met. Substitution of these assignments into (10.8)
gives

d

dt
(α∇xψ · ∇xs × ∇xP ) = α

[
∇x

(
dψ

dt

)
· ∇xs × ∇xP + ∇xψ · ∇x

(
ds

dt

)
× ∇xP

+ ∇xψ · ∇xs × ∇x

(
dP

dt

)]
(10.13)

For isentropic motion (ṡ = 0), with, as will be shown later, Ṗ = 0 also, we find

d

dt
(α∇ψ · ∇s × ∇P ) = α∇ dψ

dt
· ∇s × ∇P (10.14)

where we have omitted the reference to Cartesian coordinates. This equation has
the form of an interchange relation of operators, which we recognize by setting

δ1 = d( )

dt
, δ2 = α∇s × ∇P · ∇( ) (10.15)

so that
δ1δ2ψ = δ2δ1ψ (10.16)

10.2 The baroclinic Weber transformation

The Weber transformation is an essential tool in the derivation of circulation the-
orems and hydrodynamic invariants. We begin the somewhat lengthy but straight-
forward derivation by restating equation (3.54), which gives the transformation
between the Lagrangian and the Cartesian coordinates:

∂ψ

∂ai
= ∂xn

∂ai

∂ψ

∂xn
,

∂ψ

∂xi
= ∂an

∂xi

∂ψ

∂an
(10.17)

Next we introduce the specific entropy s of dry air into the equation of absolute
motion for frictionless flowby eliminating the pressure-gradient term.UsingGibbs’
fundamental equation in the form for the enthalpy h (see TH or any other textbook
on thermodynamics)

dgh = T dgs + α dgp with h = e + pα (10.18)
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and recalling that dgψ = dr · ∇ψ , we may immediately deduce that

∇h = T ∇s + α∇p (10.19)

On substituting this equation into the equation of motion

dvA
dt

= d2r
dt2

= −∇φa − α∇p (10.20)

we obtain
d2r
dt2

= −∇(φa + h)+ T ∇s (10.21)

In component form, using Cartesian coordinates, (10.21) reads

d2xk

dt2
= − ∂

∂xk
(φa + h)+ T

∂s

∂xk
, k = 1, 2, 3 (10.22)

This equation may also be written in Lagrangian coordinates by simply replac-
ing d2/dt2 by (∂2/∂t2)L, see Section 3.2.1, where the subscript L denotes the
Lagrangian system. Multiplying (10.22) on both sides by ∂xk/∂ai and then sum-
ming over k, we have

∂xn

∂ai

(
∂2xn

∂t2

)
L

= −∂x
n

∂ai

∂

∂xn
(φa + h)+ T

∂s

∂xn

∂xn

∂ai
(10.23)

Using (10.17) in (10.23), we obtain

∂xn

∂ai

(
∂2xn

∂t2

)
L

= − ∂

∂ai
(φa + h)+ T

∂s

∂ai
(10.24)

We will now integrate this equation assuming isentropic flow (ṡ = 0). First the
left-hand side of (10.24) will be rewritten as

∂xn

∂ai

(
∂2xn

∂t2

)
L

=
[
∂

∂t

(
∂xn

∂ai

∂xn

∂t

)]
L

−
(
∂xn

∂t

)
L

∂

∂ai

(
∂xn

∂t

)
L

(10.25)

The second term on the right-hand side is equal to

∂

∂ai

(
1

2

∂xn

∂t

∂xn

∂t

)
L

= ∂

∂ai

(
vA2

2

)
(10.26)

so that (10.24) assumes the form
[
∂

∂t

(
∂xn

∂ai

∂xn

∂t

)]
L

= ∂LA

∂ai
+ T

∂s

∂ai
(10.27)
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with

LA = vA2

2
− φa − h (10.28)

The symbolLA is the Lagrangian function in the absolute system. This functionwill
be treated in great detail in later chapters. Since we assumed isentropic conditions,
we have

ds

dt
=

(
∂s

∂t

)
L

= 0 (10.29)

so that s is constant on the fluid-particle trajectory. Next we introduce the action
integral of the absolute system:

WA =
∫ t

0
LA dt (10.30)

and similarly

β =
∫ t

0
T dt or

dβ

dt
= β̇ = T (10.31)

where T is the absolute temperature. Using this notation, we carry out the time
integration of (10.27) and find

(
∂xn

∂ai

∂xn

∂t

)
L,t

=
(
∂xn

∂ai

∂xn

∂t

)
t=0

+ ∂WA

∂ai
+ β

∂s

∂ai
(10.32)

since the enumeration coordinates do not changewith time. It should be recognized
that the first term on the right-hand side is invariant in time. In the Eulerian system
this invariance may be stated as

d

dt

(
∂xn

∂ai

∂xn

∂t

)
t=0

= 0 (10.33)

At time t = 0, as before, we require that the Lagrangian and the Eulerian systems
coincide so that

(
∂xn

∂ai

∂xn

∂t

)
t=0

=
(
∂xn

∂xi

∂xn

∂t

)
t=0

=
(
δni
∂xn

∂t

)
t=0

=
(
∂xi

∂t

)
t=0

= (
uiA

)
t=0 (10.34)

Using this identity, we finally get from (10.32) the expression

(
∂xn

∂ai

∂xn

∂t

)
L,t

=
(
∂xi

∂t

)
t=0

+ ∂WA

∂ai
+ β

∂s

∂ai
(10.35)
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It is desirable to return to the xi system. This is accomplished by setting i = r in
(10.35),multiplying both sides by (∂ar/∂xk), and then summing over r . The result is(

∂ar

∂xk

∂xn

∂ar

∂xn

∂t

)
L,t

= ∂ar

∂xk

(
∂xr

∂t

)
t=0

+ ∂ar

∂xk

∂WA

∂ar
+ β

∂ar

∂xk

∂s

∂ar
(10.36)

We now recall (10.17), where we put i = k and n = r for conformity of notation
with (10.36), yielding

∂ψ

∂xk
= ∂ar

∂xk

∂ψ

∂ar
(10.37)

Now we identify ψ = xn,WA, and s in succession, and find

∂xn

∂xk
= ∂ar

∂xk

∂xn

∂ar
= δnk ,

∂WA

∂xk
= ∂ar

∂xk

∂WA

∂ar
,

∂s

∂xk
= ∂ar

∂xk

∂s

∂ar
(10.38)

Using these expressions in (10.36) we obtain(
∂xk

∂t

)
L

= ∂an

∂xk

(
∂xn

∂t

)
t=0

+ ∂WA

∂xk
+ β

∂s

∂xk
, k = 1, 2, 3 (10.39)

Next we write (10.39) down for k = 1, 2, 3 and multiply each equation by the unit
vectors i, j,k, respectively. By adding the results and using the definitions

∇ak = i
∂ak

∂x1
+ j

∂ak

∂x2
+ k

∂ak

∂x3
and vA = iuA + jvA + kwA

with

(
∂x1

∂t

)
L

= uA,

(
∂x2

∂t

)
L

= vA,

(
∂x3

∂t

)
L

= wA

(10.40)

we obtain the absolute velocity

vA = uA0 ∇a1 + vA0 ∇a2 +wA0∇a3 + ∇WA + β ∇s (10.41)

This equation is the general Weber transformation. The suffix 0 refers to t = 0. We
observe that

u̇A0 = 0, v̇A0 = 0, ẇA0 = 0, ȧ1 = 0, ȧ2 = 0, ȧ3 = 0 (10.42)

Now we define the relation

(a) BA = vA − ∇WA − β ∇s =⇒
(b) ∇ × BA = ∇ × vA − ∇β × ∇s (10.43)

With (10.43a) the Weber transformation can be written more briefly as

BA = uA0 ∇a1 + vA0 ∇a2 + wA0 ∇a3 (10.44)

As stated at the beginning of this chapter, the Weber transformation serves as an
important tool in some parts of the following sections.
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10.3 The baroclinic Ertel–Rossby invariant

A first application of the Weber transformation (10.41) in combination with Ertel’s
version of the continuity equation (10.8) will now be given. Here we replace the
coordinates qk(xi) by the conservative field functions ψi, i = 1, 2, 3. In this case
the continuity equation becomes

d

dt

[
αJx(ψ

1, ψ2, ψ3)
] = d

dt

(
α∇ψ1 · ∇ψ2 × ∇ψ3

) = 0 (10.45)

The next step is to take the curl of BA, yielding

∇ × BA = ∇uA0 × ∇a1 + ∇vA0 × ∇a2 + ∇wA0 × ∇a3 (10.46)

Scalar multiplication of this expression by αBA yields for the right-hand side

αBA · ∇ × BA = α(vA0 ∇a2 · ∇uA0 × ∇a1 +wA0 ∇a3 · ∇uA0 × ∇a1
+ uA0 ∇a1 · ∇vA0 × ∇a2 +wA0 ∇a3 · ∇vA0 × ∇a2
+ uA0 ∇a1 · ∇wA0 × ∇a3 + vA0 ∇a2 · ∇wA0 × ∇a3)

(10.47)

In view of (10.42) and (10.45) we find that d/dt of each term is zero. Thus, for the
absolute system, we find

d

dt
(αBA · ∇ × BA) = 0 (10.48)

The invariant field function

ψER = αBA · ∇ × BA (10.49)

is called the baroclinic Ertel–Rossby invariant. For additional details see Ertel and
Rossby (1949). For relative motion on the rotating earth we replace vA by v + v$
with v$ = $× r and obtain with (10.43b)

d

dt
{α(v + v$ − ∇WA − β ∇s) · [∇ × (v + v$)− ∇β × ∇s]} = 0 (10.50)

where the action integral (10.28) is now given by

WA =
∫ t

0

(
(v + v$)2

2
− φ − h

)
dt (10.51)
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Fig. 10.1 A flow chart for the derivation of vortex and circulation theorems.

10.4 Circulation and vorticity theorems for frictionless baroclinic flow

In the previous sectionwe have given a first example of an invariant. Other invariants
will be derived in the next section, together with the equations describing the
circulation and vorticity in baroclinic media. There are various ways of obtaining
the desired results irrespective of the historic development. At the beginning of
our analysis we derive a very general baroclinic vortex law from which all other
considerations follow as shown in Figure 10.1.

10.4.1 A general baroclinic vortex theorem

The first step in the derivation of the general baroclinic vortex theorem is taken
by performing scalar multiplication of (10.46) by α∇ψ , where ψ is an arbitrary
scalar field function that is not necessarily invariant. We simply obtain

α∇×BA ·∇ψ = α∇uA0 ×∇a1 ·∇ψ+α∇vA0 ×∇a2 ·∇ψ+α ∇wA0 ×∇a3 · ∇ψ
= αJ (uA0, a

1, ψ) + αJ (vA0 , a
2, ψ)+ αJ (wA0 , a

3, ψ)
(10.52)
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Consider, for example, the first term on the right-hand side of this equation. Since
uA0 and a

1 are invariants, we find from Ertel’s version of the continuity equation
that

d

dt

[
αJ (uA0, a

1, ψ)
] = αJ (uA0, a

1, ψ̇) (10.53)

For convenience we have omitted the suffix x on the Jacobian J . Corresponding
equations can be written for the second and third terms on the right-hand side of
(10.52). Therefore, taking the individual time derivative of (10.52), we find

ṡ = 0:
d

dt
(α∇ × BA · ∇ψ) = αJ (uA0, a

1, ψ̇)+ αJ (vA0 , a
2, ψ̇)+ αJ (wA0, a

3, ψ̇)

= α∇ × BA · ∇ψ̇
(10.54)

This is the desired general vortex law for the absolute system where the arbitrary
field function ψ is at our disposal and may be assigned to various variables. Since
the Weber transformation was obtained for the case of isentropic motion, we must
not ignore the condition ṡ = 0 as expressed in (10.54). If additionally the arbitrary
field function ψ is invariant, i.e. ψ̇ = 0, then (10.54) reduces to Hollmann’s
conservation law

ṡ = 0, ψ̇ = 0:
d

dt
(α∇ × BA · ∇ψ) = 0

(10.55)

The paper by Hollmann (1965) should be consulted for further details. In contrast
to (10.48), now we have a one-parametric conservation law since the arbitrary
field function ψ is still at our disposal. The only restriction on ψ is that it must
be invariant. Transformation of (10.54) and (10.55) into the relative system of the
rotating earth gives

ṡ = 0:
d

dt
{α[∇ × (v + v$)− ∇β × ∇s] · ∇ψ} = α

[∇ × (v + v$)− ∇β × ∇s] · ∇ψ̇
ṡ = 0, ψ̇ = 0:

d

dt
{α[∇ × (v + v$)− ∇β × ∇s] · ∇ψ} = 0

(10.56)
where we have replaced BA by means of (10.43a).
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10.4.2 Ertel’s vortex theorem

The general baroclinic vortex theorem contains Ertel’s vortex theorem (Ertel, 1942)
as a special case. We show this by introducing (10.43b) into (10.54). This results
in the following equation:

d

dt
(α ∇ × vA · ∇ψ)− d

dt

[
αJ (β, s, ψ)

] = α∇ × vA · ∇ψ̇ − αJ (β, s, ψ̇) (10.57)

Since ṡ = 0 by assumption, we find from Ertel’s form of the continuity
equation (10.8) for the second term on the left of (10.57) with β̇ = T (see (10.31))
the expression

d

dt

[
αJ (β, s, ψ)

] = αJ (T, s, ψ) + αJ (β, s, ψ̇) (10.58)

The first term on the right-hand side can be reformulated with the help of Gibbs’
fundamental equation for frictionless dry air in the form (10.19). Taking the curl
of this expression, we find

∇T × ∇s = −∇α × ∇p (10.59)

Using the definition of the Jacobian J (T, s, ψ), we find from (10.59)
J (T, s, ψ) = ∇p × ∇α · ∇ψ (10.60)

so that (10.57) can finally be written as

d

dt
(α∇ × vA · ∇ψ)− α∇ × vA · ∇ψ̇ = α∇p × ∇α · ∇ψ = αJ (p, α,ψ)

(10.61)
This is Ertel’s celebrated vortex theorem fromwhich various other theorems follow,
as shown in Figure 10.1. If this theorem is required for the system of the rotating
earth, then the velocity vA must be replaced by v + v$. The interested reader may
wish to read a paper by Ertel (1954). Moreover, Fortak (1956) has addressed the
question of general hydrodynamic vortex laws.

10.4.3 Ertel’s conservation theorem, potential vorticity

First of all we observe that the right-hand side of (10.61) vanishes not only when
the barotropic condition (∇p × ∇α = 0) applies but also if the arbitrary function
ψ depends on α and p so that ψ = ψ(α, p). The specific entropy possesses this
property, so we may write

∇s =
(
∂s

∂p

)
α

∇p +
(
∂s

∂α

)
p

∇α (10.62)
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For isentropic state changes we find from (10.61) the important conservation law

d

dt
(α ∇ × vA · ∇s) = 0 (10.63)

The expression

PE = α∇ × vA · ∇s (10.64)

is known as the potential vorticity or Ertel’s vortex invariant. This conservation law
is valid for isentropic motion. There exists another conservation law leading to the
formulation of the potential vorticity according to Rossby (1940). This formulation
will be discussed in a later section.
It is interesting to remark that Ertel’s conservation theorem could have been

obtained directly from the general vortex theorem (10.54) by setting ψ = s.

10.4.4 The general vorticity theorem

There are various ways to derive the general vorticity theorem. A very elegant
way is based on Ertel’s vortex theorem which we will use to derive the general
vorticity equation in geographical coordinates. Owing to the rigid rotation of the
geographical coordinate system with v$ = Ω × r we have

∇ · v$ = 0, ∇ × v$ = 2Ω = 2$ sinϕ er + 2$ cosϕ eϕ = f er + leϕ (10.65)

Now we define the relative vorticity ζ and the absolute vorticity, η by means of

ζ = er · ∇ × v, η = er · ∇ × vA = ζ + f (10.66)

On setting ψ = r in Ertel’s vortex theorem (10.61) and using the definition of the
absolute vorticity, we obtain with ṙ = w and ∇r = er

dη

dt
= ∇ × vA · ∇w + ∇p × ∇α · er − η∇ · vA (10.67)

where use of the continuity equation has been made. We now introduce the ge-
ographical coordinates and describe the relative velocity by means of physical
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measure numbers (u, v,w). This requires several manipulations, which are listed
next:

∇ · vA = ∇ · vh,A + ∇ · (erw) = ∇h · vh + 2w

r
+ ∂w

∂r

∇ × vA = ∇ × v + 2Ω

= (∇ × v)λeλ + (∇ × v)ϕeϕ + (∇ × v)rer + leϕ + f er
= (∇ × v)λeλ + [

(∇ × v)ϕ + l
]
eϕ + ηer

∇ × vA · ∇w = {(∇ × v)λeλ + [
(∇ × v)ϕ + l

]
eϕ} · ∇hw + η

∂w

∂r

= − 1

r cosϕ

∂w

∂λ

(
∂v

∂r
+ v

r

)
+ 1

r

∂w

∂ϕ

(
∂u

∂r
+ u

r
+ l

)
+ η

∂w

∂r

∇p × ∇α · er =
(

∇hp + er
∂p

∂r

)
×

(
∇hα + er

∂α

∂r

)
· er = ∇hp × ∇hα · er

(10.68)

Here we have identified the horizontal part of the gradient operator by the suffix
h. Substitution of these expressions into (10.67) gives the vorticity equation in
geographical coordinates:

dη

dt
= −η

(
∇h · vh + 2w

r

)
− 1

r cosϕ

∂w

∂λ

(
∂v

∂r
+ v

r

)

+ 1

r

∂w

∂ϕ

(
∂u

∂r
+ u

r
+ l

)
+ ∇hp × ∇hα · er

(10.69)

A scale analysis of the vorticity equationwould show that the underlined terms may
be omitted. If this is done we obtain the simplified form of the vorticity equation

dη

dt
= −η∇h · vh + ∇hw · er × ∂vh

∂r
+ ∇hp × ∇hα · er (10.70)

where we have made use of

er × ∂vh
∂r

= −eλ
∂v

∂r
+ eϕ

∂u

∂r
(10.71)

According to (10.70) the change of the absolute vorticity with time is due to
three effects.

(i) The divergence effect describing the horizontal divergence of the two-
dimensional flow (the first term on the right-hand side).

(ii) Production of vorticity due to the interaction of the vertical gradient of the horizontal
velocity with the horizontal gradient of the vertical velocity. This tipping-term effect
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will be discussed in some detail in connection with the so-called quasi-geostrophic
theory (the second term on the right-hand side).

(iii) The solenoidal effect, i.e. the number of solenoids per unit area (the last term on the
right-hand side).

It is of some advantage to express the vorticity equation in the p system, in
which pressure is the vertical coordinate. In this system the solenoidal term does
not appear explicitly. Again, the starting point is Ertel’s vortex theorem (10.61), to
which we apply the following simplifications.

(i) We omit the vertical componentw of the relative velocity from the term ∇ × vA.
(ii) We omit the horizontal component l in 2Ω.
(iii) We apply the metric simplification u/r = v/r = 0 as in (10.69).
(iv) We apply the hydrostatic approximation.

These simplifications are summarized next, together with the resulting approx-
imation of the curl of the absolute velocity in the geographical coordinate system
(λ, ϕ, r). The deformation velocity is approximated as a one-component vector. It
is also assumed thatW 3

D depends only on p so that the curl of vD vanishes:

vA = v + v$ + vD = vh + Ω × r + q3W 3
D

∇ × v$ = 2Ω = f er , ∇ × vD = 0,
u

r
= v

r
= 0

∇ × vA = ∇ × vh + f er = −eλ
∂v

∂r
+ eϕ

∂u

∂r
+ er(ζ + f )

= er × ∂vh
∂r

+ erη = −gρer × ∂vh
∂p

+ erη

where ζ = 1

r2 cosϕ

(
∂

∂λ
(rv)− ∂

∂ϕ
(ru cosϕ)

)
(10.72)

The hydrostatic approximation was introduced as the last step. Next the general
field function ψ will be replaced in (10.61) by the pressure coordinate p. By
splitting the gradient of p into its horizontal (∇hp) and vertical (er ∂p/∂r) parts,
observing (10.72) and the hydrostatic relation, we easily find from vector-analytic
operations the expression

α∇p · ∇ × vA = −g ∇hp · er × ∂vh
∂p

− gη (10.73)

Therefore, Ertel’s theorem can be written as

d

dt

(
η + ∇hp · er × ∂vh

∂p

)
= ∇hṗ · er × ∂vh

∂p
+ η

∂ṗ

∂p
(10.74)
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To complete the transformation to the (λ, ϕ, p) system we replace the horizontal
gradient by the horizontal gradient in the p system:

∇h = ∇h,p + ρ(∇h,pφ)
∂

∂p
(10.75)

The proof of this equation is left as an exercise. Now we use (10.75) to establish
a relation between the absolute vorticities in these two systems. On applying the
operators in the form er · ∇ × vh, we find by splitting v and ∇ into their horizontal
and vertical parts, for ζ

ζ = er · ∇ × v = er · ∇h × vh = er · ∇h,p × vh + ρer · ∇h,pφ × ∂vh
∂p

= ζp − ρ ∇h,pφ ·
(
er × ∂vh

∂p

)

or η = ηp − ρ ∇h,pφ ·
(
er × ∂vh

∂p

)

with ζp = er · ∇h,p × vh

(10.76)

On replacing ∇h(· · ·) in (10.74) by (10.75) and recognizing that the horizontal
pressure gradient in the p system vanishes, we find

dηp

dt
=

(
er × ∂vh

∂p

)
· ∇h,pω + ηp

∂ω

∂p
(10.77)

The change in pressure dp/dt = ṗ has been replaced by the vertical velocity ω
in the p system and in the absolute vorticity ηp . This very useful equation and
its application will be discussed in some detail in conjunction with the quasi-
geostrophic theory. Once again it is pointed out that the solenoidal term does
not appear explicitly since we have replaced ψ by p in (10.61). Since a coordinate
transformation cannot change the physical content of the vorticity equation (10.70),
the solenoidal effect must then be hidden in the remaining terms.

10.4.5 Rossby’s formulation of the potential vorticity

Originally Rossby (1940) used the metrically simplified horizontal equations of
motion in the θ system to obtain a very useful conservative quantity known as the
Rossby potential vorticity. To demonstrate once again the central role of Ertel’s
vortex theorem we will not follow the original derivation but proceed differently.
Since Rossby assumed frictionless isentropic dry air motion (θ̇ = 0), we putψ = θ
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in (10.61). As a first step in the derivation we combine the equation of potential
temperature with the ideal-gas law and find

∇θ
θ

= ∇α
α

+ cv

cp

∇p
p

(10.78)

where cp and cv are the specific heats at constant pressure and volume, respectively.
In view of (10.78) we recognize that the entire right-hand side of (10.61) vanishes.
The resulting conservation law

d

dt
(α∇ × vA · ∇θ) = 0 (10.79)

will now be rewritten in the form proposed by Rossby. As before, we decompose
the gradient operator of the scalar function into its horizontal and vertical parts.
The conserved quantity, using (10.72), assumes the form

(α∇ × vA · ∇θ) = α

(
er × ∂vh

∂r
+ erη

)
·
(

∇hθ + er
∂θ

∂r

)

= −g
(

∇hθ · er × ∂vh
∂p

+ η
∂θ

∂p

) (10.80)

where, once again, we have used the hydrostatic approximation.
Next, we wish to introduce pressure as the vertical coordinate. Using the trans-

formation rules of partial derivatives as discussed in Section M4.2, we readily
find

∇h,q3 = ∇h,ξ − (∇h,ξ q
3)
∂

∂q3
(10.81)

When we apply this equation to the potential temperature we obtain the relation
of the horizontal gradients in the two systems using r = q3 and p = ξ as vertical
coordinates:

∇h,r θ = ∇h,pθ + ρ
∂θ

∂p
∇h,pφ (10.82)

Now we replace the horizontal gradients in (10.79) by means of (10.82), using
(10.76), and find

d

dt

[
∇h,pθ ·

(
er × ∂vh

∂p

)
+ ηp

∂θ

∂p

]
= 0 (10.83)

Here the conserved quantity PR,

PR = ∇h,pθ ·
(
er × ∂vh

∂p

)
+ ηp

∂θ

∂p
(10.84)

is Rossby’s formulation of the potential vorticity in the p system.
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Before we discuss this very useful concept in some detail, we wish to transform
(10.83) so that the potential temperature rather than the pressure appears as the
vertical coordinate. We accomplish this by first setting q3 = θ and ξ = p in
(10.81). With the help of the hydrostatic equation we find

∇h,θ = ∇h,p − ∂p

∂θ
∇h,pθ

∂

∂p
(10.85)

In order to introduce the vorticity with respect to an isentropic surface, we take the
vector product of the operators appearing in (10.85) with the horizontal velocity
and then use scalar multiplication by the vertical unit vector of the geographical
coordinates. The result is

er · ∇h,θ × vh = ζθ = er · ∇h,p × vh − ∂p

∂θ
er · ∇h,pθ × ∂vh

∂p
(10.86)

or

ζθ = ζp − ∂p

∂θ
er · ∇h,pθ × ∂vh

∂p

ηθ = ηp − ∂p

∂θ
er · ∇h,pθ × ∂vh

∂p

(10.87)

The equation for the absolute vorticity has been found by adding f to both sides of
the first equation. Equation (10.87) relates the two systems with potential temper-
ature and pressure as vertical coordinates. As the final step we eliminate ηp from
(10.83) with the help of (10.87) and find the desired expression

dPR

dt
= d

dt

(
ηθ
∂θ

∂p

)
= 0 (10.88)

If the assumptions leading to this equation are satisfied then the potential vorticity
is invariant or a conservative quantity along the trajectory of an air parcel. The term
∂θ/∂p is a measure of hydrostatc stability.
Before applying this conservation rule to a problem of large-scale motion we

will obtain from (10.88) an approximate but useful formula. From thermodynamics
and atmospheric statics the following expression can be easily derived:

∂θ

∂p
= − θ

T

γa − γg

gρ
(10.89)

where γa = g/cp,0 and γg represent the dry adiabatic and the observed lapse rates.
Next, we approximate the actual wind shear by the thermal wind in the (x, y, p)-
coordinates, see (9.69),

∂vh
∂p

≈ −R0

pf
er × ∇h,pT (10.90)
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Logarithmic differentiation of the defining relation for the potential temperature
on isobaric surfaces yields

∇h,pθ = θ

T
∇h,pT (10.91)

With these relations (10.84) can be written as

PR = −(ζp + f )
θ

T

γa − γg

g

R0T

p
+ θ

T

R0

pf
(∇h,pT )

2 (10.92)

In a last step, expressing the velocity gradients in the Cartesian system on a
constant-pressure surface, we finally get

PR =
(
p0

p

)R0/cp,0 R0

p

{
−

[(
∂v

∂x

)
p

−
(
∂u

∂y

)
p

+ f

]
(γa − γg)T

g

+ 1

f

[(
∂T

∂x

)2
p

+
(
∂T

∂y

)2
p

]} (10.93)

All quantities apprearing in this approximate relation can now be obtained from a
single map, provided that γg is known.
Equation (10.88) is a powerful constraint on the large-scale motion of the atmo-

sphere, as will be illustrated by considering air flow over a symmetric mountain
barrier oriented south–north; see Figure 10.2. Since the flow is assumed to be isen-
tropic some distance above the ground where frictional effects are small, the air is
constrained to move between two isentropic surfaces that more or less follow the
contour of the ground. On writing (10.88) in finite differences for a fixed value of
2θ , we find (

ζθ + f

2p

)
A

=
(
ζθ + f

2p

)
B

=
(
ζθ + f

2p

)
C

(10.94)

Fig. 10.2 Westerly flow over a south–north mountain barrier.
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since the potential vorticity is conserved. From this relation we my explain qual-
itatively the behavior of the trajectory of an air parcel as it crosses the mountain
barrier. Suppose that at position A there is straight-line flow in the eastward di-
rection without any shear of the horizontal wind vector. We write the potential
vorticity in Cartesian coordinates

ζθ =
(
∂v

∂x

)
θ

−
(
∂u

∂y

)
θ

(10.95)

where the partial derivatives are evaluated along the θ-surface. Thus we immedi-
ately recognize that ζθ (A) = 0. When the air parcel begins to cross the mountain
range, the difference in pressure between the isentropic surfaces decreases so that
the relative vorticity over the mountain range must be negative in order to conserve
absolute vorticity; see part (b) of Figure 10.2. This results in anticyclonic curva-
ture of the trajectory in the northern hemisphere. After the air parcel has crossed
the mountain the difference in pressure between the two isentropic surfaces has
returned to its original value.Without the effect of the changing Coriolis parameter
the air parcel would have reached the position C, where straight line flow would
result due to the assumed symmetry of the mountain barrier. This means that the
straight westerly flow has changed to a flow from the north-west. So far we have
assumed that the Coriolis parameter f remains constant. However, as the air parcel
is moving south, the Coriolis parameter is decreasing, thus causing the relative
vorticity to become positive so that the resulting trajectory would have a positive
curvature at C due to the conservation principle. The formation of the lee-side
trough is observed quite regularly to the east of the Rocky Mountains; see Bolin
(1950). Further details are given, for example, by Holton (1972) and Pichler (1997).

10.4.6 Helmholtz’s baroclinic vortex theorem

The general vortex theorem in the absolute system (10.54) can be used to deduce
Helmholtz’s famous vortex theorem, which is the starting point for the derivation
of some circulation laws to be discussed in detail. On replacing ψ by (x, y, z)
successively in (10.54) with (∇x = i,∇y = j,∇z = k) and (ẋ = uA, ẏ = vA, ż =
wA) we obtain

d

dt
(α∇ × BA · i)− α∇ × BA · ∇uA = 0

d

dt
(α∇ × BA · j)− α∇ × BA · ∇vA = 0

d

dt
(α∇ × BA · k)− α∇ × BA · ∇wA = 0

(10.96)
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On performing dyadic multiplication of these equations by the unit vectors i, j, k
and adding the resulting equations the vector α∇ × BA is obtained since scalar
multiplication of a vector by the unit dyadic gives the vector itself. Hence we obtain

d

dt
(α∇ × BA)− α∇ × BA · ∇vA = 0 (10.97)

Carrying out the differentiation and using the continuity equation immediately
leads to the baroclinic version of the Helmholtz vortex theorem:

d

dt
(∇ × BA) = ∇ × BA · ∇vA − ∇ · vA(∇ × BA) (10.98)

This theorem states, for example, that ∇ × BA remains zero at all times if it is
zero at time t = 0. This statement is not immediately obvious but requires a brief
mathematical discussion.
First of all we expand ∇ × BA in a Taylor series about the time t = 0:

∇ × BA = (∇ × BA)t=0 + t

[
d

dt
(∇ × BA)

]
t=0

+ t2

2!

[
d2

dt2
(∇ × BA)

]
t=0

+ · · ·
(10.99)

If ∇ × BA = 0 at t = 0 then (10.98) shows that[
d

dt
(∇ × BA)

]
t=0

= 0 (10.100)

On differentiating (10.98) with respect to time we find without difficulty, using
(10.100), that [

d2

dt2
(∇ × BA)

]
t=0

= 0 (10.101)

Continuing this procedure verifies the assertion that, if ∇ × BA = 0 at t = 0, it
remains zero at all times, as now follows from (10.99).
Finally, we wish to state the Helmholtz theorem in a more practical form for the

rotating earth. This is accomplished by substituting (10.43b) into (10.98) in order
to replace the Weber transformation. The result is

d

dt

[∇ × (v + vP )− ∇β × ∇s] = [∇ × (v + vP )− ∇β × ∇s] · ∇(v + vP )

− [∇ × (v + vP )− ∇β × ∇s] ∇ · (v + vP )
(10.102)

For the relative system with rigid rotation we may use the following identities:

vP = Ω × r, ∇ × vP = 2Ω, ∇vP = −E × Ω, ∇ · vP = 0
d

dt
(∇ × BA) = d

dt
(∇ × BA)

∣∣∣
qi �=qi (t)

+ ∇ × BA · ∇vP

∇ × BA · ∇vP = −(∇ × BA)× Ω
(10.103)
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By substituting (10.103) into (10.102) we finally find

d

dt
(∇ × v + 2Ω − ∇β × ∇s)

∣∣∣
qi �=qi (t)

= (∇ × v + 2Ω − ∇β × ∇s) · (∇v − ∇ · vE)
(10.104)

In this form Helmholtz’s theorem is not so easily interpreted in meteorological
terms. However, this theorem is the starting point for the derivation of circulation
theorems that give much physical insight.

10.4.7 Thomson’s and Bjerkness’ baroclinic circulation theorems

Helmholtz’s baroclinic vortex law (10.98) can be transformed into an integral state-
ment by using a theorem for the motion of material surfaces S, see SectionM6.5.2:

d

dt

(∫
S

A · dS
)

=
∫
S

(
dA
dt

+ A∇ · vA − A · ∇vA

)
·dS =

∫
S

D2A
Dt

·dS (10.105)

First we set A = ∇ × BA in (10.105). Next we integrate (10.98) over the surface
S. Comparison of these two equations gives

d

dt

(∫
S

∇ × BA · dS
)

=
∫
S

(
d

dt
(∇ × BA)+ (∇ × BA)∇ · vA

)
· dS

−
∫
S

(∇ × BA) · ∇vA · dS = 0
(10.106)

Application of Stokes’ integral theorem results in the so-called baroclinic version
of Thomson’s circulation theorem in the absolute system,

d

dt

(∫
S

∇ × BA · dS
)

= d

dt

(∮
6

BA · dr
)

= 0 (10.107)

This is not a very explicit form. Therefore, we replace the Weber transformation
(10.43a) in this equation and find

d

dt

(∮
6

BA · dr
)

= d

dt

(∮
6

vA · dr
)

− d

dt

(∮
6

dgWA

)
− d

dt

(∮
6

β ∇s · dr
)

= d

dt

(∮
6

vA · dr
)

− d

dt

(∮
6

β ∇s · dr
)

= 0

(10.108)
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since the closed line integral of dgWA vanishes. Next we define the absolute and
the relative circulation:

CA =
∮
6

vA · dr, C =
∮
6

v · dr (10.109)

Using the definition of the absolute circulation gives a secondversion of Thomson’s
circulation theorem:

dCA

dt
= d

dt

(∮
6

β ∇s · dr
)

= d

dt

(∮
6

β dgs

)
(10.110)

On replacing the absolute velocity in (10.108), assuming rigid rotation of the
coordinate system, we obtain Bjerkness’ circulation theorem,

d

dt

(∮
6

(v + v$ − β ∇s) · dr
)

= 0 or
dC

dt
= d

dt

(∮
6

(−v$ + β ∇s) · dr
)

(10.111)

This very useful version of the circulation theorem is easily interpreted and will be
discussed in detail in the next section.

10.4.8 Interpretation of Bjerkness’ circulation theorem

The interpretation of this theorem is facilitated by rewriting (10.111).With the help
of (10.65) we find

d

dt

(∮
6

v$ · dr
)

= d

dt

(∫
S

∇ × v$ · dS
)

= 2Ω · dS
dt

(10.112)

where use of the Stokes integration theorem has been made. We recognize from
Figure 10.3 that

SE = S · Ω
|Ω| (10.113)

is the projection of the integration surface onto the equatorial plane. By using the
differentiation rule for the closed line integral we find (see problem 10.5)

d

dt

(∮
6

β ∇s · dr
)

=
∮
6

(
dβ

dt
dgs − ds

dt
dgβ

)
(10.114)
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Fig. 10.3 Projection of the surface of integration S onto the equatorial plane.

Since isentropic processes were assumed in all derivations leading to the circu-
lation laws, we have to set ds/dt = 0. Furthermore, recalling that dβ/dt = T , we
find from (10.111)

dC

dt
+ 2$

dSE

dt
=

∮
6

T dgs (10.115)

By integrating equation (10.18) over the closed curve 6 we find∮
6

T dgs =
∮
6

dgh−
∮
6

α dgp = −
∮
6

dg(αp) +
∮
6

p dgα =
∮
6

p dgα (10.116)

since closed line integrals of the exact differentials must vanish. With the help of
Stokes’ integral theorem we finally find the following three versions of Bjerkness’
circulation theorem:

dC

dt
+ 2$

dSE

dt
=

∮
6

T dgs =
∮
6

T ∇s · dr =
∫
S

∇T × ∇s · dS

= −
∮
6

α dgp = −
∮
6

α∇p · dr = −
∫
S

∇α × ∇p · dS

=
∮
6

p dgα =
∮
6

p∇α · dr =
∫
S

∇p × ∇α · dS

(10.117)

Whenever the acceleration of the circulation dC/dt > 0 we speak of the direct
circulation; when dC/dt < 0 it is called the indirect circulation. The vector
∇α × ∇p describing the baroclinicity of the system is called the baroclinicity
vector N. As can be seen from Figure 10.4, two sets of intersecting surfaces
α = constant and p = constant divide a particular volume into a continuous
family of isosteric–isobaric tubes. These tubes are called solenoids. In the vertical
cross-section depicted in Figure 10.4 they appear as parallelogram-type figures.
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Fig. 10.4 The solenoidal effect.

In (M6.27) the validity of the following equation was shown:

∫
S

∇p × ∇α · dS =
∫
S

dp dα (10.118)

The right-hand side of this equation represents the numberN (α,−p) of solenoids
contained within the integration surface S. In the term N (α,−p) pressure is given
a negative sign since p decreases but α increases with height. Comparison of
(10.118) with (10.117) shows that the number of solenoids may also be expressed
in a temperature and entropy coordinate system.
In the absence of friction we may now write the Bjerkness circulation theorem

in the form

dC

dt
= −2$ dSE

dt
+ N (α,−p) (10.119)

The solenoidal term produces a direct circulation, as will be recognized from
Figure 10.4.
We will now explain the meaning of the first term on the right-hand side of

(10.119). This term results from the Coriolis effect. If a material surface expands
in time its projection onto the equatorial plane increases. As a consequence an
existing cyclonic circulation (C > 0) weakens whereas an anticyclonic circulation
(C < 0) intensifies. If the material surface contracts the opposite effects take place.
Let us consider a closed material curve along a latitude circle that is displaced
toward the north pole. This results in an intensification of the westerlies, whereas
a displacement toward the equator has the opposite effect.
Next we consider the displacement of a material surface not enclosing the ro-

tational axis of the earth; see Figure 10.5. This surface is oriented nearly parallel
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Fig. 10.5 The latitudinal effect.

to the earth’s surface. A poleward displacement increases the projection onto the
equatorial plane so that a cyclonic circulation along the enclosed surface is weak-
ened whereas an existing anticyclonic circulation is intensified. A displacement
toward the equator has the opposite effect. The change of the circulation due to
a latitudinal displacement is known as the latitudinal effect. The convergence or
divergence of the flow field resulting in an contraction or expansion of the material
surfaces is known as the divergence effect. In summary, expansion (contraction)
of the material surface and poleward (southward) motion work in the same di-
rection. The combination of displacement with contraction or expansion may also
occur.
On the small spatial scales of land–sea breezes and mountain–valley winds the

rotational effect of the earth may be disregarded. The observed circulation pat-
tern is then solely due to the solenoidal effect. On this small scale the isobaric
surfaces may be considered horizontal, see Figure 10.6, in which the circulation
patterns for the land-and-sea breeze are shown for a calm and cloudless summer
situation. During the day the land is heated while the water surface remains rel-
atively cool. The isosteric surfaces then assume the orientation depicted, causing
the wind to blow from the sea toward the land. This is shown by the direction
of the solenoidal vector. During the night the opposite situation occurs. The land
surface cools off and the water remains relatively warm so that the wind blows
from the land toward the sea. This type of circulation takes place on a relatively
small scale. Even in well developed situations the scales of the motion hardly
exceed a few hundred meters in the vertical direction and about 80 km in the hori-
zontal direction if large bodies of water are involved. A similar situation develops
for mountain and valley breezes, for which the slopes are heated more rapidly
than the air during daytime and cooled more strongly than the air during the
night.
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Fig. 10.6 Representation of a land-and-sea breeze circulation.

10.5 Circulation and vorticity theorems for frictionless barotropic flow

10.5.1 The barotropic Ertel–Rossby invariant

Abarotropic fluid is characterized by the conditionN = 0. This implies that isobaric
and isosteric surfaces are parallel so that solenoids cannot form. Whenever we deal
with a barotropic fluid we effectively ignore the laws of thermodynamics since the
specific volume is a function of pressure only. Therefore, we cannot proceed as
before to eliminate the pressure gradient in terms of enthalpy, temperature, and
entropy. Instead of this, we leave the equation of absolute motion in the original
form, but we replace the pressure gradient force by

α∇p = ∇
(∫

α dp

)
(10.120)

The proof of this formula is left as an exercise. Now the equation of motion of the
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absolute system reduces to

dvA
dt

= −∇
(
φa +

∫
α dp

)
(10.121)

By comparison of (10.121) with the baroclinic form of the equation of motion
(10.21) and retracing the steps leading to (10.24), we find the barotropic form of
the equation of motion in Lagrangian coordinates:

∂xn

∂ai

(
∂2xn

∂t2

)
L

= − ∂

∂ai

(
φa +

∫
α dp

)
(10.122)

Inspection of the mathematical steps involved in going from (10.24) to (10.28)
reveals that, in the barotropic case, the Lagrangian function is given by

LA = vA2

2
− φa −

∫
α dp (10.123)

so that the action integralWA now reads

W ∗
A =

∫ (
vA2

2
− φa −

∫
α dp

)
dt (10.124)

The star denotes the barotropic system. Instead of (10.43), theWeber transformation
is now given by

B∗
A = vA − ∇W ∗

A, ∇ × B∗
A = ∇ × vA (10.125)

The transition from the baroclinic to the barotropic vortex laws may be accom-
plished by replacing BA by B∗

A.
In the barotropic atmosphere the baroclinic Ertel–Rossby conservation law

(10.48) of the absolute system reduces to

d

dt

[
α(vA − ∇W ∗

A) · ∇ × vA
] = 0 (10.126)

where

ψ∗
ER = α(vA − ∇W ∗

A) · ∇ × vA (10.127)

is the barotropic Ertel–Rossby invariant. If vA is replaced by v + v$ then the
theorem refers to relative motion.
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10.5.2 Barotropic vortex theorems of Ertel, Helmholtz, and Thomson

Owing to the condition of barotropy ∇α × ∇p = 0, the right-hand side of (10.61)
vanishes. If the arbitrary field function ψ = s and we assume that changes of state
are isentropic (ds/dt = 0), Ertel’s vortex theorem reduces to

d

dt
(α∇ × vA · ∇s) = 0 (10.128)

This expression is formally identical to the corresponding conservation law (10.63)
of the baroclinic system.
In order to obtain the Helmholtz vortex theorem for the absolute system in a

barotropic atmosphere we again replace BA by B∗
A. Instead of (10.98) we obtain

for frictionless motion

d

dt
(∇ × vA) = ∇ × vA · ∇vA − ∇ · vA(∇ × vA) (10.129)

On repeating the arguments of Section 10.4.6 we see that ∇ × vA remains zero if
it is zero at time t = 0. The transition to the relative system is accomplished by
replacing vA by v + v$.
Thomson’s barotropic circulation theorem is an integral statement of the

Helmholtz barotropic vortex theorem and can be derived in the same manner
as its baroclinic counterpart. More easily we find it from Thomson’s baroclinic
circulation theorem if BA is replaced by B∗

A in (10.108). This yields

d

dt

(∮
6

B∗
A · dr

)
= d

dt

(∮
6

vA · dr
)

− d

dt

(∮
6

dgW
∗
A

)
= 0 (10.130)

The closed line integral of an exact differential is zero, so the last term vanishes. On
substituting the definition of the absolute circulation from (10.109) and applying
Stokes’ integral theorem, we find

dCA

dt
= d

dt

(∫
S

∇ × vA · dS
)

= d

dt

(∮
6

vA · dr
)

= 0 (10.131)

The physical content of this equation is that the absolute circulation along the
closed material curve 6 is a constant. This theorem has a number of important
consequences, which will now be discussed in some detail.
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10.5.3 Vortex lines and vortex tubes

Vortex lines may be introduced analogously to streamlines, which are defined by
the differential equation (3.39). Thus vortex lines are defined by

dr × (∇ × vA) = 0 (10.132)

representing curves whose tangents are parallel to the vorticity vector ∇ × vA.
Before we introduce the idea of a vortex tube we consider the concept of a stream
tube. The definition of a streamline may be extended to a stream tube whose side
walls are composed of streamlines. For any closed contour in a flow field each
point on the contour will have a streamline passing through it. By considering
all points on the contour an infinite number of streamlines is obtained, forming a
surface known as a stream tube. Figure 10.7(a) shows a section of a stream tube
defined by a contour enclosing the surface S1. The corresponding contour a small
distance away encloses the surface S2. If the cross-section of the stream tube is
infinitesimally small it is called a stream filament.
The definition of a vortex tube is analogous to that of a stream tube. Any point

on a closed contour in the flow field will have a vortex line passing through it,
thus forming a vortex tube. If the contour encloses the surface area S we obtain
the configuration as shown in Figure 10.7(b). A vortex tube whose cross-section is
infinitesimally small is known as a vortex filament.

(∇ � vA)1 (∇ � vA)2

A,2

A,1

1

1 2

2

(b)

(a)

Fig. 10.7 Stream tubes and vortex tubes.
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Some very interesting properties of the flow field can be derived from the fact
that the divergence of the curl of any vector vanishes. Applying this to the vector
field vA, we have

∇ · (∇ × vA) = 0 (10.133)

Since the vorticity vector is divergence-free there can be no sources and sinks of
the vorticity in the fluid itself. This means that vortex lines either form closed
loops or must terminate on the boundary of the fluid, which may either be a solid
surface or a free surface. Because the vorticity vector is divergence-free, we have
an analogy with the flow of an incompressible fluid whose continuity equation is
∇ · vA = 0, showing that the velocity vector vA is divergence-free. Integration of
this expression over the closed surface of the stream tube Vt or stream filament
gives ∫

Vt

∇ · vA dτ =
∫
St

vA · dS = 0 (10.134)

The surface-element vector dS is orthogonal to the side walls of the stream tube or
to vA, so the sidewalls cannotmake a contribution to the surface integral. Therefore,
(10.134) reduces to ∫

S1

vA · dS +
∫
S2

vA · dS = 0 (10.135)

Since dS, by definition, is always pointing in the direction of the outward normal,
we may define the flow rate with respect to surfaces S1 and S2 by means of

∫
S1

vA · dS = −F1,
∫
S2

vA · dS = F2 (10.136)

or

F1 = F2 (10.137)

as follows from (10.135). Divergence-free flow of the velocity vector results in
equal flow rates for the fluid crossing S1 and S2.
We now integrate (10.133) over the volume and obtain in complete analogy to

(10.134) the expression

∫
Vt

∇ · ∇ × vA dτ =
∫
Ft

∇ × vA · dS = 0 (10.138)

Since ∇ × vA · dS = 0 on the walls of the vortex tube, we have

∫
S1

∇ × vA · dS +
∫
S2

∇ × vA · dS = 0 (10.139)
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Application of Stokes’ integral theorem gives
∫
S1

∇ × vA · dS =
∮
61

vA · dr = −CS1∫
S2

∇ × vA · dS =
∮
62

vA · dr = CS2

(10.140)

or, from (10.139),
CS1 = CS2 (10.141)

This simple statement shows that the absolute circulations around the limiting
contours of surfaces S1 and S2 are identical. Alternately we may say that the
circulation through each cross-sectional area is the same. Comparison of (10.137)
and (10.141) shows that, in case of the stream tube, the flow rates at S1 and S2 are
equal while the absolute circulation along the vortex tube is the same.
Equation (10.139) can also be interpreted in a different manner. If the cross-

sectional area S of the vortex tube is sufficiently small, we may define a meaningful
average vorticity by means of

∫
S

∇ × vA · dS′ = ∇ × vA ·
∫
S

dS′ = ∣∣∇ × vA
∣∣S (10.142)

This expression is known as the vortex strength. With reference to (10.139) and
(10.140) we find for the flow through cross-sections S1 and S2 the expression

∣∣∇ × vA
∣∣S1 = ∣∣∇ × vA

∣∣S2 (10.143)

stating that the vortex strength is constant along the vortex tube. From the fact
that the vorticity vector is divergence-free it follows that vortex tubes must be
closed, terminate on a solid boundary, or terminate on a free surface. Observational
evidence for closed vortex tubes is provided by smoke rings, whereas a vortex tube
at a free surface flow may have one end at the free surface and the other end at the
solid boundary of the fluid.
Additional information on the kinematics of vortex tubes may be obtained by

considering a closed curve 6 located entirely on the side wall of the vortex tube
which does not enclose the axis of the vortex tube; see Figure 10.8.
Since ∇ × vA is perpendicular to dS we find for the absolute circulation

CA =
∮
6

vA · dr =
∫
S6

∇ × vA · dS = 0 (10.144)

According to Thomson’s theorem (10.131) CA is independent of time so that 6
remains on the side walls. We may now think of the entire surface area of the vortex
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(∇ � vA)2

(∇ � vA)1

2

1

Fig. 10.8 Flow contours on a vortex tube.

tube’s side wall as being composed of a number of subsections, each bounded by a
certain 6 not enclosing the axis of the vortex. On each one of these boundaries the
circulation vanishes, which means that the vortex tube always consists of the same
particles.
One more important conclusionmay be drawn by considering the curveK of the

same figure enclosing the vortex tube. From (10.143) it follows that the circulation
alongK equals the vortex strength of the tube. The circulation alongK is constant
in time so that the vortex strength is constant in time also. From this we derive the
important statement that, in case of an ideal barotropic medium, vortices cannot be
created or destroyed. With this statement we close the train of thought beginning
with the Helmholtz vortex theorem from which we derived that ∇ × vA remains
zero if it was zero to begin with. A nice and consistent treatment of flow kinematics
is given in Currie (1974).
A barotropic fluid is characterized by a lack of solenoids so that the solenoidal

vector vanishes. Therefore, the Bjerkness circulation theorem (10.119) reduces to

dC

dt
+ 2$

dSE

dt
= 0 (10.145)

For the physical interpretation of the remaining terms we refer to Section 10.4.8.
Without any problems equation (10.145) could also have been derived from
Thomson’s theorem (10.111) for a baroclinic fluid.

10.5.4 The vorticity theorem for the barotropic atmosphere

The baroclinic vorticity theorem (10.70) simplifies to its barotropic counterpart on
considering the following points.

(i) The barotropic condition requires ∇α × ∇p = 0.
(ii) There is no twisting or tilting term since the vertical derivatives of the horizontalmotion

vanish in the barotropic model atmosphere.
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Condition (ii) is satisfied if the following prerequisites are valid: (a) barotropy, i.e.
α = α(p), (b) the hydrostatic approximation is valid, and (c) ∂vh/∂p = 0 for any t .
Therefore, equation (10.70) reduces to the barotropic vorticity theorem

dη

dt
= −η∇h · vh (10.146)

We will discuss this equation in some detail when we deal with the barotropic forecast
model. One more simplification is possible by dropping the divergence term in (10.146):

dη

dt
= 0, η = constant (10.147)

In this case the absolute vorticity is conserved. From this conservation theorem we can
predict changes of the relative vorticity if low- or high-pressure systems are displaced in
the northward or southward direction due to the accompanying changes of the Coriolis
parameter. Consider as an example the southward displacement of a low-pressure system in
the northern hemisphere. Since f is decreasing the relative vorticity is increasing, implying
a strengthening of the system. Equation (10.147) does not, however, give any information
about the trajectory of a displaced system, so the conservation of absolute vorticity is merely
a qualitative tool.

As a final point of this section we derive Rossby’s potential vorticity theorem in
the manner suggested by Rossby. In order to do so we need to have recourse to the
continuity equation for a barotropic fluid, which will be derived in a later chapter.
It is given by

d

dt
(φ − φs) = −(φ − φs)∇h · vh (10.148)

where φs is the geopotential of the earth’s surface. On eliminating the divergence
term in (10.146) by (10.148) we obtain the conservation equation

d

dt

(
η

φ − φs

)
= 0,

η

φ − φs
= PR,b (10.149)

where PR,b is known as Rossby’s potential vorticity for a barotropic fluid. We shall
refrain from discussing it at this point.
Our discussion on vortex theorems is far from complete. In an early paper,

Fortak (1956) already addressed the question of the general formalism of vortex
theorems. As a final remark in this chapter, we would like to point out that research
on the existence of conservation laws for special conditions has not ceased. Two
examples are papers by Herbert and Pichler (1994) and Egger and Schär (1994),
which deserve serious study.
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10.6 Problems

10.1: Find equation (10.63) from equation (10.55).

10.2: Verify all parts of equation (10.69).

10.3: Verify all parts of equation (10.72) by using the approximations which were
introduced just before this equation.

10.4: By utilizing the proper transformation rules given in Chapter M4 together
with the hydrostatic approximation, prove the validity of (10.75).

10.5: Start with equation (10.84) to verify the mathematical steps leading to
equation (10.93).

10.6: Verify equation (10.114).
Hint: Rewrite the right-hand side of equation (M6.49) in the form

∮
L(t)
dr ·

(
∂A
∂t

− v × ∇ × A
)

10.7: Apply the barotropic condition to show that

α∇p = ∇P ∗ with P ∗ =
∫ p

p0

α dp

P ∗ is a scalar field function with P ∗ = 0 at p = p0.

10.8: Derive equation (10.145) from equation (10.111).
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Turbulent systems

The basic equations of motion and the budget equations presented so far refer to
the molecular system implying laminar flow. The atmosphere, however, does not
behave like a laminar fluid since it is turbulent everywhere and at all times. There-
fore, the pertinent equations have to be modified in order to handle turbulent flow.
Since most meteorological observations represent average values over some time
interval and spatial region it will be necessary to average the governing equations of
the molecular system. In the next few sections some averaging procedures will be
discussed and averaging operators will be introduced. This leads to the introduction
of the so-called microturbulent system.

11.1 Simple averages and fluctuations

There are several types of averages. Perhaps the best known average is the so-called
ensemble average, also known as the simple mean value or the expectation value.
For the arbitrary variable f the ensemble average is defined by

f = 1

N

N∑
i=1

fi (11.1)

where the simple averaging operator is denoted by the overbar. Each of the fi
represents one of N data points. We think of the ensemble as a large number of
realizations of a physical experiment carried out under identical external condi-
tions. The essential idea involved in the definition of the ensemble average is that
each individual realization fi is influenced by random errors that cannot be con-
trolled externally. In general, individual measurements will differ due to stochastic
disturbances.

We will now give some rules pertaining to the simple mean value. We define an
α quantity as a quantity that is the same for each member of the ensemble, meaning

302
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Fig. 11.1 A schematic representation of the fluctuations and the mean value.

that α is independent of the subscript i, so that αi = α. Obviously, the α quantity
includes all constants. Moreover, explicit functions of space and time, such as the
metric fundamental quantities, will not be averaged in the sense of (11.1). This
yields the following averaging rules:

α = α, αf = αf , f = f , f g = f g

f + g = f + g, α1f + α2g = α1f + α2g
(11.2)

In the expressionfg the average valuef is common to allmembers of the ensemble.
Therefore, it is an α quantity and may be factored out of the sum. Repeated
averaging of a quantity that has already been averaged does not change its value.
This is known as the idempotent rule. The sum rules given in (11.2) demonstrate
that ( ) is a linear operator.

The value fi of an ensemble will now be split into two parts. The deviation f ′
i

from the mean value f is known as the simple fluctuation, as indicated in

fi = f + f ′
i or f ′

i = fi − f (11.3)

and depicted in Figure 11.1. From this expression it is easily seen that the average
value of the fluctuations of the ensemble is zero:

f ′ = 1

N

N∑
i=1

f ′
i = 1

N

N∑
i=1

(fi − f ) = f − f = f − f = 0 (11.4)

Of particular interest is the average of the product of two variables f and g:

fg = 1

N

N∑
i=1

figi = 1

N

N∑
i=1

(f + f ′
i )(g + g′

i) = f g + f ′g′ (11.5)
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since f g′ = f g′ = 0 and f ′g = f ′g = 0. In this expression the so-called
correlation product f ′g′ has been introduced according to

f ′g′ = 1

N

N∑
i=1

f ′
i g

′
i (11.6)

By utilizing the averaging rules (11.2) and (11.4) it is easily seen that the correlation
product can be written in various ways:

f ′g′ = f ′g = fg′ (11.7)

Let δ represent a differential operator that is required to be the same for all
members of the ensemble so that δ is independent of the subscript i. Let the
differential operator be applied to the variable f . Then the mean or average value
of this expression is given by

δf = 1

N

N∑
i=1

(δf )i = 1

N
δ

N∑
i=1

fi = δf (11.8)

Since δ is free from the subscript i we find the interesting rule that the differ-
ential operator can be separated from the averaging operator ( ). Examples are
δ = ∂/∂x, ∂/∂t,∇, etc. However, the budget operator δ = D/Dt as well as the
individual time derivative δ = d/dt do not follow this rule. Explicit expressions
for the budget operator and the total time derivative will be worked out later.

11.2 Weighted averages and fluctuations

An important generalization of the simple mean value is the weighted mean value
or weighted expectation value defined by

f̂ =
1

N

∑N

i=1
ρifi

1

N

∑N

i=1
ρi

(11.9)

The symbol ̂ defines the weighted-averaging operator. The various ρi are the
weights. From (11.1) and (11.9) it follows that

f̂ = ρf

ρ
=⇒ ρf = ρf̂ (11.10)
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which is also known as the Hesselberg average. Equations (11.9) and (11.10) will
be used many times in the following sections.

Some of the rules given for the simple average are of general character and,
therefore, may also be applied to the weighted average. In analogy to (11.2) the
weighted average is independent of the subscript i so that it can be handled as an α
quantity. Furthermore, the sum rules also apply to the weighted average, yielding

α̂ = α, α̂f = αf̂ , ̂̂f = f̂ , ̂̂f g = f̂ ĝ

(f + g) = f̂ + ĝ, (α1f + α2g) = α1f̂ + α2ĝ
(11.11)

Thus, the weighted average also has the properties of a linear operator. Additional
rules are given in

f̂ g = f ĝ, f̂ = f , f̂ = f̂ (11.12)

These are largely self-explanatory.
Let us again consider the differential operator δ applied to the variable f . The

weighted average of this expression is given in

δ̂f =
∑N

i=1 ρi(δf )i∑N

i=1 ρi
�= δf̂ since δf̂ = δ

(∑N

i=1(ρifi)∑N

i=1 ρi

)
(11.13)

Thus, in contrast to (11.8), which refers to the simple mean, it is not possible to
separate δ from the weighted average.

In analogy to (11.3) we now split the variable f into its weighted mean f̂ and
fluctuation f ′′

i :
fi = f̂ + f ′′

i or f ′′
i = fi − f̂ (11.14)

whereby the mean or average value of the weighted fluctuation also vanishes:

f̂ ′′ =
1

N

∑N

i=1
ρif

′′
i

1

N

∑N

i=1
ρi

=
1

N

∑N

i=1
ρi(fi − f̂ )

1

N

∑N

i=1
ρi

= f̂ − ̂̂f = 0 (11.15)

In order to get a clearer picture of the meaning of the weighted average, let us
consider Figure 11.2.We observe that eachmember of the ensemble is characterized
by a rectangular area of height fi and width ρi . The rectangular area on the right-
hand side of Figure 11.2 represents the average area F = ρf = ρf̂ . The height of
this rectangular area is the weighted value f̂ while the width is given by ρ.

Mean values of fluctuations vanish only if fluctuations and the type of the average
correspond, as demonstrated in

f ′′ = f − f̂ = f − f̂ �= 0, f̂ ′= f̂ − f̂ = f̂ − f �= 0 (11.16)
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Fig. 11.2 A representation of the weighted average and the weights.

The product rule
f̂g = f̂ ĝ + f̂ ′′g′′ (11.17)

corresponds fully to (11.5). The correlation f̂ ′′g′′ may be written in various ways
as shown in

f̂ ′′g′′ = f̂ ′′g = f̂g′′ (11.18)

This property turns out to be very helpful, as will become apparent in later sections.
Other important relations following from (11.10) and (11.18) are

ρf ′′ = ρf̂ ′′ = 0, ρf ′′g′′ = ρf ′′g = ρfg′′ (11.19)

11.3 Averaging the individual time derivative and the budget operator

As has already been mentioned, great care must be taken when one is averaging
the individual time derivative d/dt and the budget operator D/Dt . We will now
show how to proceed. The first step for the individual time derivative is given by

dψ

dt
= ∂ψ

∂t
+ vA · ∇ψ = ∂ψ

∂t
+ v̂A · ∇ψ + v′′

A · ∇ψ (11.20)

Here the velocity vector vA has been split into its weighted average v̂A, which
is treated as an α quantity, and the fluctuation v′′

A. Utilizing a rigidly rotating
coordinate system with vD = 0, we have vA = v + v� and v′′

A = v′′ since v� is
an explicit function of space. Recall that, according to (11.8), ∂/∂t and ∇ may
be separated from the simple average operator. By defining the individual time
derivative of the averaged system by means of

d̂ . . .

dt
= ∂ . . .

∂t
+ v̂A · ∇ . . . (11.21)

we finally obtain for the averaged individual time derivative

dψ

dt
= d̂ ψ

dt
+ v′′ · ∇ψ (11.22)
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In complete analogy we proceed with the budget operator and obtain

D

Dt
(ρψ) = ∂

∂t
(ρψ) + ∇ · (̂vAρψ) + ∇ · (v′′ρψ)

= D̂

Dt
(ρψ ) + ∇ · v′′ρψ

with
D̂ . . .

Dt
= ∂ . . .

∂t
+ ∇ · (̂vA . . .)

(11.23)

Averaging the molecular form of the continuity equation yields the expression

∂ρ

∂t
+ ∇ · (ρvA) = ∂ρ

∂t
+ ∇ · (̂vAρ) = D̂

Dt
ρ = 0 (11.24)

where we have used the Hesselberg averaging procedure. Here the advantage of
the Hesselberg mean becomes clearly apparent since the averaged form of the
continuity equation (11.24) is completely analogous to the molecular form. Had
we used the Reynolds mean then the additional term ∇ · v′

Aρ
′, which is not easily

accessible, would have appeared in the averaged continuity equation.
In the exercises we will show that the interchange rule (M6.68) of the molecular

system also holds for the averaged system

D̂

Dt
(ρψ) = ρ

d̂ ψ

dt
(11.25)

11.4 Integral means

Obviously, we are unable to control the atmosphere so that it is impossible to
produce and observe identical weather systems. Therefore, the ensemble average is
of doubtful practical use. For this reason we direct our attention to time and space
averages. The time average at a fixed point is defined by means of

ψ
t
(r, t) = 1

�t

∫ t+�t/2

t−�t/2
ψ(r, t, t ′) dt ′ (11.26)

where �t is a suitable averaging interval about t and ψ is the quantity to be
averaged over time at the fixed position r. The integral mean can be obtained for
the Cartesian system as well as for the general qi system by using the proper metric
fundamental quantities. To give a specific example, let us consider the hypothetical
velocity spectrum shown in Figure 11.3. For turbulent steady flow the average
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Fig. 11.3 (a) Turbulent steady flow. (b) Turbulent unsteady flow.

is time-independent; see Figure 11.3(a). For extended time intervals the average
itself may become a function of time, as shown in part (b) of Figure 11.3. The
time-dependent mean is often called the gliding mean or the moving mean.

According to the choice of the averaging interval, the gliding mean has the
tendency to suppress a part of the high-frequency fluctuations. For this reason the
gliding mean acts as a low-pass filter. In the same sense most measuring devices
act as low-pass filters since they are incapable of recording rapid oscillations.

Next we define the spatial mean for fixed time by

ψ
s
(r, t) = 1

V (r)

∫
V (r)

ψ(r, r′, t) dV ′ (11.27)

There is a problem with this type of mean since we generally cannot expect that
the value measured at a certain point is representative of a larger surrounding area.
Since the observational grid is rarely dense enough to evaluate (11.27), we are
hardly able to use this equation. For our purposes, however, it seems convenient to
think of the average as a space-time average defined either by

ψ(r, t) = ψ(rst) = 1

G(rst)

∫
G(rst)

ψ(rst, r′
st) dG

′ (11.28)

or by

ψ̂(r, t) = ψ̂(rst) =
1

G(rst)

∫
G(rst)

ρ(rst, r′
st)ψ(rst, r′

st) dG
′

1

G(rst)

∫
G(rst)

ρ(rst, r′
st) dG

′
(11.29)

representing the simple andweightedmeans. Here we have formally introduced the
space-time vectors rst and r′

st as shown in Figure 11.4. Actually space-time vectors
cannot be made visible, but this figure is a good tool for demonstration purposes. rst
is the space-time vector of the original systemwhereas r′

st is the space-time vector of
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Fig. 11.4 Averaging for fixed r and t (i.e. rst = constant) over the space-time ‘volume’ G.

the averaging space-time ‘volume’Gwhose origin is taken at the endpoint of rst. For
the Cartesian systemwe have dG′ = dG

x

′ = dx ′ dy ′ dz′ dt ′ whereas for the general
qi system dG′ = dG

q

′ = √
g

′
q
dq1′

dq2′
dq3′

dt ′. During the averaging process the

space-time volumeG and rst are fixed while the averaging itself is carried out with
the help of r′

st so that the coordinates of rst and r
′
st are entirely independent.

Let us now consider the special situation that the statistical parameters charac-
terizing the turbulence are independent of space and statistically not changing with
time. In this case we speak of homogeneous and stationary turbulence. Now the
ensemble, time, and space averages yield the same results. This is known as the
ergodic condition. To make the turbulence problem more tractable, in our studies
we will assume that the ergodic condition applies. Thus, all results obtained with
the help of the ensemble average will be considered valid for the other averages as
well.

To get a better understanding of the concept of averaging, we will show how
the one-dimensional ensemble average can be transformed into the corresponding
integral average if the number of realizations N becomes very large. Moreover,
we will demonstrate with the help of Figure 11.5 how to usefully interpret the
average and what is meant by holding x constant and by the integration over x ′. Let
us consider the hypothetical spectrum depicted in Figure 11.5(a). First we select
the averaging interval �x which is centered at xi . Then we rotate the averaging
interval by 90◦ at the point xi and introduce the x ′-axis as shown in part (b) of
Figure 11.5. At the point xi one now has a collection ofN realizations x ′

j , implying
N fluctuations.

On integrating over this newly formed collection ofN realizations we find at the
point xi the ensemble average, which transforms to the integral average:

ψ
x
(xi) = lim

N→∞

(
1

N

N∑
j=1

ψ(xi, x
′
j )

)
= 1

�x

∫ xi+�x/2

xi−�x/2
ψ(xi, x

′) dx ′ (11.30)

ifN becomes very large. The rotation is then carried out at each point of the x-axis
so that for each x value one has a mean value ψ(x) representing N fluctuations.
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Fig. 11.5 A schematic representation of the averaging procedure for a one-dimensional
spectrum.

In another example we are going to show that the derivative of the time average
as found from the definition of the ensemble average may also be found from the
integral definition. By observing that the average quantity ψ depends only on rst
and not on r′

st and that the boundaries of the averaging domain G are held fixed,
we obtain according to the Leibniz rule

∂

∂t
ψ(rst) = 1

G

∫
G

∂

∂t
ψ(rst, r′

st) dG
′

= 1

G

∫
G

∂

∂t

[
ψ(rst) + ψ ′(rst, r′

st)
]
dG′

= ∂

∂t

(
1

G

∫
G

[
ψ(rst) + ψ ′(rst, r′

st)
]
dG′

)

= ∂ψ(rst)
∂t

+ ∂

∂t

(
1

G

∫
G

ψ ′(rst, r′
st) dG

′
)

= ∂ψ(rst)
∂t

+ ∂ψ ′(rst)
∂t

= ∂ψ(rst)
∂t

(11.31)

The last integral in (11.31) represents the mean value of the fluctuations and must
vanish. Analogous arguments hold for the space derivatives.

11.5 Budget equations of the turbulent system

As we have pointed out several times, each of the important atmospheric prog-
nostic equations of the molecular system can be written in the form of the
budget equation. We will now proceed and derive the general form of the bud-
get equation for the microturbulent system, which for simplicity will henceforth
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be called the turbulent system. This is done by averaging the molecular form
(M6.66) of the budget equation. By steps that are now well known we find

∂

∂t
(ρψ̂) + ∇ · (̂vAρψ̂) + ∇ · (v′′ρψ ′′) + ∇ · Fψ = Qψ (11.32)

since vAρψ = v̂Aρψ̂ + v′′ρψ ′′. Instead of one term describing the molecu-
lar convective flux or molecular transport term, we have two terms, i.e. v̂Aρψ̂
representing the mean convective flux in the turbulent system plus the turbulent
flux Fψ,t = v′′ρψ ′′. Using the operator (11.23) we obtain the budget equation of the
turbulent system in the form

D̂

Dt
(ρψ̂) + ∇ · (Fψ + Fψ,t) = Qψ (11.33)

Next we are going to apply this equation to various state variables. For reasons
of clarity we first collect the prognostic equations of the molecular system. These
are the continuity equation for the total mass (M6.67), the continuity for the partial
masses or concentrations (M6.72), the first law of thermodynamics (M6.73), and
the equation of motion (1.71):

Dρ

Dt
= 0

D

Dt
(ρmk) = −∇ · Jk + I k

D

Dt
(ρe) = −∇ · (Jh + FR) − p∇ · vA + ε

D

Dt
(ρv) = −∇p − ρ ∇φ − 2ρΩ × v + ∇ · J

(11.34)

where ε = J · ·∇vA is the dissipation of energy. These equations will then be
averaged using the averaging procedures we have discussed so thoroughly above.
The results are

(a)
D̂ρ

Dt
= 0

(b)
D̂

Dt

(
ρ m̂k

) = − ∇ · Jk − ∇ · Jkt + I
k

(c)
D̂

Dt
(ρ ê ) = − ∇ · Jh − ∇ · FR − ∇ · Jht

− p∇ · v̂A + v′′ · ∇p + ε

(d)
D̂

Dt
(ρ v̂ ) = − ∇p + ∇ · J − ∇ · Jt − ρ ∇φ + 2ρ�× v̂

(11.35)
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One essential part, in contrast to the molecular system, is the appearance of the
turbulent flux terms Fψ,t. These are given by

Jkt = v′′ρmk, Jht = v′′ρh, Jt = v′′ρvA (11.36)

where h = e + pα is the enthalpy. The reason why the term Jet = v′′ρe does
not appear is left as a problem. For the turbulent diffusion flux Jkt and the mean

molecular phase transitions I
k
the following summation conditions hold:

3∑
k=0

Jkt = v′′ρ
3∑

k=0

mk = ρv′′ = ρv̂′′ = 0

I
0 = 0,

3∑
k=1

I
k = 0

(11.37)

The turbulent momentum flux tensor Jt and the Reynolds tensor R, which is fre-
quently used in the literature, are related by

R = −v′′ρvA = −v′′ρv′′ = −Jt (11.38)

A few remarks about themeaning of the turbulent fluxesmay be helpful. Consider
a test volume V moving approximately with the average velocity v̂A so that during
time step�t the volume is displaced the distance v̂A�t . Fluid elements, however,
are moving with the velocity v̂A+v′′. During this time step the velocity fluctuations
cause some fluid to enter the test volume at some parts of the imagined volume
boundary while at other sections of the boundary some fluid leaves the test volume.
While the total mass is conserved on average, as is guaranteed by the continuity
equation, there is no reason to believe that the quantity #V = ∫

V
ρψ dV ′ is

conserved also. In fact #V may be viewed as the total content of the property ψ
within the volume V at a particular time. Since #V changes with time, there must
exist a flux that is penetrating the volume surface of the fluid volume. It now stands
to reason that Fψ,t = v′′ρψ , as listed in (11.36), may be interpreted as the turbulent
flux which is the mean ψ stream through the surface of V which is moving with
the velocity v̂A. In a later chapter it will be shown that, within the framework of
this discussion, the turbulent flux is directed from regions of higher to lower ψ
values so that this flux causes an equalization of theψ field. Occasionally, there are
situations in which the transport appears to flow against the gradient. This is known
as the counter-gradient flow, which is really not well understood at this time and
will be left out of our discussion.

We close this section with a remark on the Hesselberg average. Only specific val-
ues of extensive variables (̂v, ê, ĥ, α̂) and their derivatives with respect to intensive
coordinates p and T carry the roof symbol ̂ .
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11.6 The energy budget of the turbulent system

Our next step is to show that the total energy budget of the turbulent system is
balanced or source-free. In order to proceed efficiently, we again take the energy
budget of the molecular system in the absence of deformational effects (vD = 0).
The system consists of the budget equation for the potential energy as expressed
by the geopotential, the budget equation for the kinetic energy, and the first law of
thermodynamics:

(a)
D

Dt
(ρφ) = ρv · ∇φ

(b)
D

Dt

(
ρv2

2

)
+ ∇ · [v · (pE − J)

] = −ρv · ∇φ + p∇ · v− ε

(c)
D

Dt
(ρe) + ∇ · (Jh + FR) = −p∇ · v + ε

(11.39)

For later convenience we add the enthalpy equation

D

Dt
(ρh) + ∇ · (Jh + FR) = dp

dt
+ ε (11.40)

This equation may be easily obtained by substituting into (11.39c) e = h−pα and
∇ · v = ρ dα/dt with α = 1/ρ. We recall that quantities depending explicitly on
r and t are not averaged in the microphysical sense. This includes the geopotential
φ = gz.

First of all we direct our attention to averaging (11.39b) by using (11.23). The
result is

D̂

Dt

(
ρv̂2

2

)
+∇ ·

(
v · (pE − J) + v′′ρv

2

2

)
= −ρ v̂ ·∇φ+p∇ · v − ε (11.41)

By using the expressions

v′′ρv
2

2
= kt − v̂ · R, kt = v′′ρv

′′2

2
p∇ · v = p∇ · v̂ + ∇ · (v′′p) − v′′ · ∇p

v · (pE − J) = v̂ · (pE − J) + v′′p − v′′ · J

(11.42)

we obtain for (11.41) the budget equation for the total kinetic energy:

D̂

Dt

(
ρv̂2

2

)
+ ∇ · [̂

v · (pE − J − R) − v′′ · J + kt

]

= −ρ v̂ · ∇φ + p∇ · v̂ − v′′ · ∇p − ε

(11.43)
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The vector kt describes the turbulent flux of turbulent kinetic energy. Note that the
effect of the earth’s rotation does not appear in the equation of the kinetic energy
(molecular or turbulent) since the Coriolis force does not perform any work.

Our next goal is to find an expression for the turbulent kinetic energy k̂ which is
defined by means of

k̂ = v̂′′2

2
= v̂2

2
− v̂2

2
(11.44)

In order to proceed we must derive an expression for the kinetic energy v̂2/2 of the
mean motion. Scalar multiplication of the equation of mean motion (11.35d) by v̂
yields

D̂

Dt

(
ρ v̂2

2

)
+ ∇ · [̂

v · (pE − J − R)
] = −ρ v̂ · ∇φ + p∇ · v̂ − ∇v̂··(J + R)

(11.45)
Now we subtract this expression from (11.43) and obtain the prognostic equation
for the turbulent kinetic energy:

D̂

Dt
(ρk̂) + ∇ · (kt − v′′ · J) = ∇ v̂··(J + R) − ε − v′′ · ∇p (11.46)

The turbulent budget system is completed by stating the prognostic equations for
the potential energy,

D̂

Dt
(ρφ) = ρ v̂ · ∇φ (11.47)

and the internal energy,

D̂

Dt
(ρ ê ) + ∇ · (Jh + FR + Jht ) = −p∇ · v̂ + v′′ · ∇p + ε (11.48)

The fact that we have introduced Jht instead of J
e
t is responsible for the appearance

of the term v′′ · ∇p. By adding equations (11.45)–(11.48) we find that the sum
of all source terms vanishes. Thus, we conclude that the energy budget of the
turbulent system is balanced. The reader may wish to display graphically the
energy transformations by repeating the procedure used for the molecular system.

Of special interest in the energy transformations is the interaction of the turbulent
kinetic energy and the internal energy bymeans of the advection-type term v′′ · ∇p.
If this term is positive a loss of turbulent kinetic energy occurs in favor of the internal
energy. A loss of turbulent kinetic energy represents a damping effect that occurs
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for stable atmospheric stratification. If this source term is negative, turbulence will
increase, which is indicative of unstable atmospheric stratification. It should be
noted that the representation (11.45)–(11.48) is not unique. By some mathematical
manipulations it is possible to separate the source terms in a different way but the
sum of the sources still adds up to zero.

For later convenience we will also average the enthalpy equation (11.40) of the
molecular system, resulting in

D̂

Dt
(ρĥ) + ∇ · (Jh + Jht + FR) = d̂ p

dt
+ v′′ · ∇p + ε (11.49)

11.7 Diagnostic and prognostic equations of turbulent systems

We begin with a simple example by considering the ideal-gas law of the molecular
system as given by

p = R0ρTv (11.50)

where Tv is the virtual temperature and R0 the gas constant of dry air. Taking the
Reynolds average to simulate a turbulent system, we find

p

R0
= ρTv + ρ ′T ′

v (11.51)

The final term of this equation containing the fluctuations is usually much smaller
in magnitude than the remaining terms. Ignoring the fluctuation term, the ideal-gas
law in the mean retains the molecular form (11.50),

p = R0ρTv (11.52)

Another approach is to postulate a general diagnostic formula in order to avoid
the appearance of correlations to begin with. Proceeding in this manner, a par-
ticular diagnostic equation of the turbulent system is identical in form with the
corresponding molecular equation. To set the pattern, we make use of the general
diagnostic equation which is discussed more thoroughly in TH:

(a) ψ = ψnm
n, ψk = ψk(p, T ,m

0,m1,m2,m3)

(b) dψ =
(
∂ψ

∂p

)
T ,mk

dp +
(
∂ψ

∂T

)
p,mk

dT + ψn dm
n (11.53)

Here we make use of the Einstein summation convention which omits the summa-
tion sign in the expression ψnm

n. The term ψ represents various thermodynamic
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functions, such as internal energy, enthalpy, entropy, specific volume, and others.
ψk is known as the specific partial quantity of #. Next we define the function

ψ̂ = ψ̃nm̂
n, ψ̃k = ψk(p, T , m̂

0, m̂1, m̂2, m̂3) (11.54)

which applies to the turbulent system. The tilde above ψk does not represent an
average value itself but rather represents a function depending on the average state
variables. Analogously to (11.53) we obtain for the turbulent system

d̂ ψ̂ =
(
∂ψ̂

∂p

)
T ,m̂k

d̂p +
(
∂ψ̂

∂T

)
p,m̂k

d̂ T + ψ̃n d̂m̂
n (11.55)

The operator d̂ is defined in (11.21). A few examples will clarify the meaning of
(11.55).

Example 1 In the first example we give the equation of state consisting of dry air,
water vapor, liquid water, and ice

α = 1

ρ
= αnm

n =
(
R0T

p

)
m0 +

(
R1T

p

)
m1 + α2m

2 + α3m
3 (11.56)

The corresponding statement for the turbulent system is

α̂ = 1

ρ
= α̃nm̂

n =
(
R0T

p

)
m̂0 +

(
R1T

p

)
m̂1 + α2m̂

2 + α3m̂
3 (11.57)

since α2, α3 = constant.

Example 2 The differential of the enthalpy of the turbulent system is obtained by
setting ψ = h in (11.55) so that

d̂ ĥ = ĉp d̂ T + h̃n d̂m̂
n

with ĉp =
(
∂ĥ

∂T

)
m̂k,p

= cp,nm̂
n, cp,k = constant

h̃k = h̃k(T = T0) + cp,k(T − T0)

(11.58)

Here we have assumed that the pressure dependencyof the enthalpy can be ignored.
This assumption is rigorously true for any ideal gas.

Equation (11.58) can be used to obtain the prognostic equation for the temper-
ature of the turbulent system. First we multiply (11.58) by the density and then
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divide the result by dt . Next we eliminate d̂m̂k/dt with the help of (11.35b), to find

ρ
d̂ ĥ

dt
= ρ ĉp

d̂ T

dt
+ ρh̃n

d̂ m̂n

dt
=⇒

D̂

Dt

(
ρĥ

) = ĉp
D̂

Dt

(
ρT

) + h̃n
D̂

Dt
(ρm̂n)

= ĉp
D̂

Dt

(
ρT

) + h̃n

[
−∇ · (Jn + Jnt ) + I

n
]

= ĉp
D̂

Dt

(
ρT

) − ∇ ·
[̃
hn(J

n + Jnt )
]

+ h̃nI
n + (J

n + Jnt ) · ∇h̃n

(11.59)

By substituting this equation into (11.49) we obtain the prognostic equation for the
temperature:

ĉp
D̂

Dt

(
ρT

) + ∇ · (Jhs + Jhs,t + FR) = d̂ p

dt
+ v′′ · ∇p + ε − h̃nI

n

− (J
n + Jnt ) · ∇h̃n

(11.60)

In this equation the following fluxes appear:

the mean molecular sensible enthalpy flux: J
h

s = J
h − J

n
h̃n

the turbulent sensible enthalpy flux: Jhs,t = Jht − Jnt h̃n
the turbulent latent enthalpy flux: Jhl,t = Jnt h̃n

(11.61)

In several equations, e.g. (11.35), (11.43), and (11.60), the term v′′ · ∇p, which
is very awkward to handle, appears. Since there is no reason to ignore this term, we
will try to replace it by a reasonable approximation. To simplify the mathematical
treatment we begin with the molecular system of dry air which is described by

p = R0ρT, ( =
(
p

p0

)k0
, θ = T

(
(11.62)

where ( is the Exner function, k0 = R0/cp,0, and θ is the potential temperature.
With the help of these expressions we easily obtain

v′′ · ∇p = ρcp,0θv′′ · ∇( (11.63)

We decompose the Exner function as shown in

( = (̃+(′ with (̃ =
(
p

p0

)k0
(11.64)
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Substituting (11.64) into (11.63) gives

v′′ · ∇p = (̃ρcp,0θv′′ · ∇ ln (̃+ (̃ρcp,0θv′′ · ∇(′

(̃
(11.65)

Before proceeding we wish to remark that, with the help of the entropy-production
equation and the so-called linear Onsager theory, it is possible to obtain proper
parameterized expressions for various fluxes. This subject is thoroughly discussed
in various textbooks on thermodynamics. Often one speaks of the phenomenolog-
ical theory. We refer to TH.

The first term on the right-hand side of (11.65) has the desired form required by
the linear Onsager theory which will be used later to find proper expressions for
various turbulent fluxes. The first factor in each of the expressions on the right-hand
side is a flux while the second factor is the thermodynamic force. For reasons that
will become apparent later we split the flux:

(̃ρcp,0θv′′ = ρcp,0θ(v′′ − ρcp,0θ(′v′′ = ρcp,0T ′v′′ − ρcp,0θ(′v′′ (11.66)

since ρcp,0T v′′ = ρcp,0T
′v′′. In a simplified manner we now extrapolate from the

system of dry air to the general multicomponent system by replacing cp,0 in (11.66)
by cp = cp,nm

n. We proceed analogously with (11.65). The result is

v′′ · ∇p = (̃ρcpθv′′ · ∇ ln (̃+ (̃ρcpθv′′ · ∇(′

(̃

(̃ρcpθv′′ = ρcpθ(v′′ − ρcpθ(
′v′′ = ρcpT

′v′′ − ρcpθ(
′v′′

(11.67)

The heat fluxes appearing in the above equations are given the following names:

the turbulent heat flux: Jθt = (̃ρcpθv′′

the turbulent Exner flux: J(t = ρcpθ(′v′′

the turbulent sensible enthalpy flux: Jhs,t = ρcpT ′v′′

(11.68)
They are related by

Jθt = Jhs,t − J(t (11.69)

Note that neglecting the pressure fluctuation term (′ results in an identity of
the heat flux Jθt and the sensible enthalpy flux J

h
s,t. Very often we do not distinguish

between these two fluxes since
∣∣J(t ∣∣ is usually very small in comparison with

∣∣Jθt ∣∣.
Utilizing the expressions derived above, equation (11.65) can finally be written

as

v′′ · ∇p = Jθt · ∇ ln (̃+ Jθt · A with A = ∇(′

(̃
(11.70)



11.8 Production of entropy in the microturbulent system 319

It should be noted that the second term on the right-hand side of (11.70) cannot be
evaluated in terms of the phenomenological equations by using the theory in the
form presented here. The same is also true for the energy dissipation ε.

In this section we have obtained an approximate parameterization of the term
v′′ · ∇p, but we have failed to derive an expression for the dissipation of energy. A
different approach in the treatment of the thermodynamics of turbulent systems is to
avoid the appearance of v′′ · ∇p altogether. This can be done by identifying some of
the variables of the turbulent system with average values of the molecular system.
The remaining variables must be defined in a suitable manner. One possible way to
proceed is described by the so-called exclusive system. The curious name derives
from the treatment of the internal energy of the system which excludes, or, which
amounts to the same thing, does not include, the turbulent kinetic energy. While
this system offers various advantages, it does not provide a method by which one
can find the Reynolds tensor R and the dissipation of energy ε without additional
assumptions. The least desirable property of the exclusive system is that energy is
not strictly conserved. In the more refined inclusive system the turbulent kinetic
energy is included as part of the internal energy. In this system it is still not possible
to obtain ε but the system does provide access to R. The theory is difficult and not
yet complete. For more details see the papers by Sievers (1982, 1984).

11.8 Production of entropy in the microturbulent system

In order to derive the proper forms of the various turbulent fluxes we employ the
entropy-production equation. This equationwill now be derived for themicroturbu-
lent system. The starting point in the derivation isGibbs’ fundamental equation for
the molecular system. Again we refer to TH. If s is the entropy and µk = hk − T sk

the chemical potential, then we have

T
ds

dt
= de

dt
+ p

dα

dt
− µn

dmn

dt
(11.71)

We assume that the Gibbs equation is also valid for the microturbulent system.
We proceed by introducing the proper variables and differential operators of the
microturbulent system in the form

T
d̂ ŝ

dt
= d̂ ê

dt
+ p

d̂ α̂

dt
− µ̃n

d̂ m̂n

dt
(11.72)

We want to point out that this equation does not arise simply from averaging
(11.71), but rather must be introduced in the sense of an axiomatic statement. The
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quantitities ŝ and µ̃k are functions of the averaged state variables (p, T , m̂k). First
we introduce into (11.72) the continuity equation

d̂ α̂

dt
= α̂∇ · v̂A (11.73)

which follows from (11.35a). On multiplying (11.72) by the air density we find

T
D̂

Dt
(ρ ŝ) = D̂

Dt
(ρ ê) + p∇ · v̂A − µ̃n

D̂

Dt
(ρm̂n) (11.74)

Inspection of this equation shows that there are three derivative expressions. Two
of these will be eliminated by substituting the budget equations for the partial
concentrations (11.35b) and for the internal energy (11.35c) into (11.74), yielding,
after some slight rearrangements,

T
D̂

Dt
(ρ ŝ) = −∇ · (Jh+Jht )+ Jθt · ∇ ln (̃+ ε−µ̃n

[
I
n − ∇ · (Jn + Jnt )

]
(11.75)

We have omitted the radiative flux, which is obtained by solving the radiative-
transfer equation. Moreover, we have used (11.70) to replace v′′ · ∇p, assuming
that the second term on the right-hand side of this equation may be ignored. Now
we divide (11.75) by T and write the resulting expression in budget form. We thus
obtain

D̂

Dt
(ρ ŝ) + ∇ ·

(
1

T

[
J
h + Jht − µ̃n(J

n + Jnt )
])

= Qŝ (11.76)

with

Qŝ = − µ̃nI
n

T
+ Jθt
T

· ∇ ln (̃+ ε

T
− (J

h + Jht ) · ∇T
T

2

− (J
n + Jnt ) · ∇

(
µ̃n

T

)
≥ 0

(11.77)

The inequality results from the fact that, according to the second law of thermody-
namics, the entropy production is positive definite.

To obtain convenient flux representationswe are going to rewrite the entropy pro-
ductionQŝ by using a well-known thermodynamic relation. For the microturbulent
system this identity may be written as

∇
(
µ̃k

T

)
= 1

T
(∇µ̃k)T − h̃k

T
2 ∇T (11.78)

For the molecular system the averaging symbols must be omitted. The subscript T
indicates that the derivative is taken at constant T . Substitution of this expression
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into (11.77) results in the entropy-production equation

T Qŝ = − µ̃nI
n −

[
(J

h + Jht ) − h̃n(J
n + Jnt )

]
· ∇T
T

− (J
n + Jnt ) · (∇µ̃n)T + Jθt · ∇ ln (̃+ ε ≥ 0

(11.79)

with ε = J··∇v̂A + J··∇v′′. By introducing the sensible enthalpy fluxes we obtain
the final form of the entropy production:

T Qŝ = − µ̃nI
n − (J

h

s + Jhs,t) · ∇ ln T

− (J
n + Jnt ) · (∇µ̃n)T + Jθt · ∇ ln (̃+ ε ≥ 0

(11.80)

We assume thatCurie’s principle, as explained in TH and elsewhere, also applies
to turbulent systems. This permits us to split the total entropy production into parts.
Each part belongs to a certain tensorial class (scalar, vectorial, and dyadic) and
is required to be positive definite. Thus, the scalar part of the entropy production
containing the phase-transition fluxes and the energy dissipation is given by

−µ̃nI
n + ε ≥ 0 (11.81)

For the vectorial part we may write

−(J
h

s + Jhs,t) · ∇ ln T − (J
n + Jnt ) · (∇µ̃n)T + Jθt · ∇ ln (̃ ≥ 0 (11.82)

We will now attempt to parameterize the various fluxes. The parameterization
of the mean energy dissipation ε is best left to the statistical theory of turbulence.
Review of (11.35d) and of (11.45) shows that the equation of motion and the
equation of the kinetic energy of the mean flow contain the sum of the mean
molecular and turbulent momentum fluxes. These fluxes cannot be found with the
help (11.80) since they do not appear in this particular version of the entropy-
production equation. The treatment of these fluxes would require an entropy-
production equation in a different but equivalent form. It turns out, however, that
the determination of the dyadic fluxes would be a rather involved mathematical
process. For this reason we will treat the dyadic fluxes in an approximate manner,
which will be sufficient for our purposes.

In order to determine the fluxes we should involve the full linear Onsager theory.
However, the numerical evaluation of the resulting fluxes as part of prognostic
models would be prohibitively expensive in computer expenditure now and for
some time to come. Therefore, we will make some simplifying assumptions.
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11.8.1 Scalar fluxes

Every scalar flux is driven only by its conjugated thermodynamic force, thus
ignoring all superpositions. The thermodynamic force for the phase-transitions
is the so-called chemical affinity ãk1 = µ̃k − µ̃1. To obtain the phase-transition
rate, the ãk1 must be multiplied by the phenomenological coefficients l(k). The
phase-transition fluxes are then given by

I
0 = 0, I

1 = −I 2 − I
3
, I

2 = −l(2)ã21, I
3 = −l(3)ã31

l(2) ≥ 0, l(3) ≥ 0, ã21 = (µ̃2 − µ̃1), ã31 = (µ̃3 − µ̃1)
(11.83)

The chemical affinities ã21 and ã31 refer to the phase transitions between liquid
water and water vapor and between ice and water vapor, respectively. The phe-
nomenological coefficients should be evaluated in terms of average values of the
state variables.

11.8.2 Vectorial fluxes

Again we assume that superpositions are excluded. First we rewrite the inequality
(11.82). This treatment is motivated by the fact that the potential temperature is
nearly conserved in many atmospheric processes so that the turbulent flux Jθt is
expected to be driven by the gradient of the potential temperature. We replace Jhs,t
according to (11.69), thus obtaining a different arrangement of fluxes and their
thermodynamic forces:

−(J
h

s + J(t ) · ∇ ln T − (J
n + Jnt ) · (∇µ̃n)T − Jθt · ∇ ln θ̃ ≥ 0 (11.84)

Now the flux Jθt is driven by the gradient of the potential temperature as desired.
In order to guarantee that this inequality is satisfied, each flux must be propor-

tional to the thermodynamic force driving the flux. To make sure that each mea-
sure number of the flux depends on each measure number of the thermodynamic
forces, we introduce dyadic phenomenological coefficients. The coefficient matrix
representing the dyadic coefficient, according to the linear Onsager theory, must be
symmetric. The vectorial fluxes are then given by the following set of equations:

(a) Jθt = −B
θ · ∇ ln θ̃ = −ρ ĉpK

θ · ∇ θ̃ , B
θ = ρ ĉpθ̃K

θ

(b) J
h

s + J(t = −B
T · ∇ ln T = −ρ ĉpK

T · ∇T , B
T = −ρ ĉpTK

T

(c) J
k + Jkt = −B

k · ∇(µ̃k − µ̃0)T , k = 1, 2, 3
(11.85)

In order to evaluate (11.85c) we use the identity

∇(µ̃k − µ̃0)T = ∂

∂p
(µ̃k − µ̃0)∇p + ∂

∂m̂n
(µ̃k − µ̃0)∇m̂n (11.86)
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The various K appearing in (11.85) are known as the exchange dyadics. It is very
difficult to evaluate the turbulent flux J(t in (11.85b), which is often considered to
be negligibly small. Since the mean molecular sensible heat flux is also of a very
small magnitude in comparison with Jθt , equation (11.85b) is often totally ignored.

It should be clearly understood that the fluxes appearing in (11.85) cannot be
considered as fully parameterized since we did not show how the elements of the
matrices representing the various B can be calculated. In fact, the determination
of these elements is very difficult and we will have to be satisfied with several
approximations.

Finally, we are going to assume that the tensor ellipsoids characterizing the state
of atmospheric turbulence are rotational ellipsoids about the z-axis. In this case
each symmetric dyadic in the x, y, z system is described by only two measure
numbers. In the general case we need nine coefficients. With the assumption of
rotational symmetry, the phenomenological equations assume a simplified form.
Since we are going to use the Cartesian system, wemust also use the corresponding
unit vectors (i1, i2, i3).

11.8.3 The scalar phenomenological equations

The scalar phase-transition fluxes given by equation (11.83) are not affected by the
above assumption and retain their validity.

11.8.4 The vectorial phenomenological equations

The symmetric coefficient dyadicsB are represented by twomeasure numbers only.
Omitting any superscripts, we may write this dyadic as

B = Bh(i1i1 + i2i2) + Bvi3i3 (11.87)

where Bh and Bv represent the horizontal and vertical measure numbers. With this
simplified representation of the exchange dyadic the vectorial fluxes assume the
simplified forms

(a) Jθt = −ρ ĉp
[
Kθ

h (i1i1 + i2i2) +Kθ
v i3i3

] · ∇ θ̃
(b) J

h

s + J(t = −ρ ĉp
[
KT

h (i1i1 + i2i2) +KT
v i3i3

] · ∇T
(c) J

k + Jkt = −ρ[
Kk

h (i1i1 + i2i2) +Kk
v i3i3

] · ∇(µ̃k − µ̃0)T

(11.88)

The factors Kh and Kv are known as exchange coefficients.
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11.8.5 The dyadic fluxes

As has previously been stated, the sum of the fluxes J + R cannot be dealt with in
terms of the entropy production (11.80) since they do not appear in this equation.We
will now give a form for these dyadic fluxes that is acceptable for many situations
by assuming that the molecular and turbulent fluxes can be stated in analogous
forms. For the molecular system we have

J = µ(∇vA + vA
�∇) − (

2
3µ− l11

)∇ · vAE (11.89)

In the following we will assume that the divergence term may be neglected. It
seems logical to parameterize the fluxes for the turbulent system by replacing the
velocity vA by the average v̂A. In this case we may first write

∇v̂A + v̂A
�∇ =

(
∇h + i3

∂

∂z

)
(̂vA,h + i3ŵA) + (̂vA,h + i3ŵA)

(
∇h + i3

∂

∂z

)

(11.90)
Assuming additionaly that ŵA = 0, we find

∇v̂A + v̂A
�∇ = ∇ĥvA,h + v̂A,h

�∇h + i3
∂ v̂A,h
∂z

+ ∂ v̂A,h
∂z

i3 (11.91)

By using only two turbulence coefficients, Kv
h ≥ 0 and Kv

v ≥ 0, we find the
approximate expression

J + R = ρKv
h (∇ĥvA,h + v̂A,h

�∇h) + ρKv
v

(
i3
∂ v̂A,h
∂z

+ ∂ v̂A,h
∂z

i3

)
(11.92)

It should be clearly understood that the steps leading to (11.91) are not part of a
rigorous derivation. The equations obtained in this section will be used in a later
chapter when we are dealing with the physics of the atmospheric boundary layer.

11.9 Problems

11.1: Verify the validity of equations (11.7), (11.18), and (11.19).

11.2: Show that the interchange rule (11.25) applies to the microturbulent system.

11.3: Verify the validity of

−p∇ · vA = −p∇ · v̂A − ∇ · (pv′′) + v′′ · ∇p
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11.4: Verify the first and the last equation of (11.42).

11.5: Perform the necessary operations to obtain equation (11.45) from (11.35d).

11.6: Show that
3∑

k=0

I
k = 0

11.7: Show that

D̂

Dt
(ρk̂) = −∇ · kt + ρv′′ ·

[
dv′′

dt
+ ∇

(
v′′2

2

)]

with k̂ = v̂′′2

2
and kt = ρv′′ v

′′2

2

11.8: Inspection of equation (11.33) seems to indicate that the divergence of the
term Jet = ρev′′ should appear in (11.48) instead of the turbulent enthalpy flux Jht .
By developing the expression −p∇ · vA show that the appearence of the turbulent
enthalpy flux is correct.
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An excursion into spectral turbulence theory

The phenomenological theory discussed in the previous chapter did not permit
the parameterization of the energy dissipation. In this chapter spectral turbulence
theory will be presented to the extent that we appreciate the connections among
the turbulent exchange coefficient, the energy dissipation, and the turbulent kinetic
energy. In the spectral representation we think of the longer waves as the averaged
quantities and the short waves as the turbulent fluctuations. Since the system of
atmospheric prediction equations is very complicated we will be compelled to
apply some simplifications.

12.1 Fourier representation of the continuity equation
and the equation of motion

Before we begin with the actual transformation it may be useful to briefly review
some basic concepts. For this reason let us consider the function a(x) which has
been defined on the interval L only. In order to represent the function by a Fourier
series, we extend it by assuming spatial periodicity. Using Cartesian coordinates
we obtain a plot as exemplified in Figure 12.1. The period L is taken to be large
enough that averaged quantities within L may vary, i.e. the averaging interval
�x � L.
Certain conditions must be imposed on a(x) in order to make the expansion

valid. The function a(x) must be a bounded periodic function that in any one
period has at most a finite number of local maxima and minima and a finite number
of points of discontinuity. If these conditions are met then the Fourier expansion of
a(x) converges to the function a(x) at all points where the function is continuous
and to the average of the right-hand and left-hand limits at each point where a(x)
is discontinuous. These are the Dirichlet conditions which are usually met in

326
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L

x
x

a(x)

Fig. 12.1 The function a(x) and its periodic extension. L is the period and �x the
averaging interval.

meteorological analysis. The Fourier expansion of a(x) is given by

a(x) =
∞∑

l=−∞
A(l) exp

(
i
2π

L
lx

)
, l = . . .,−2,−1, 0, 1, 2, . . . (12.1)

or, using the summation convention, by

a(x) = A(n) exp

(
i
2π

L
nx

)
, n = . . .,−2,−1, 0, 1, 2, . . . (12.2)

In order to obtain the amplitude A(k), we multiply (12.2) by the factor
exp[−i(2π/L)kx] and integrate the resulting expression over the expansion in-
terval L. This results in∫ L

0
a(x) exp

(
−i

2π

L
kx

)
dx = A(n)

∫ L

0
exp

(
i
2π

L
(n − k)x

)
dx = δk

nLA(n)

(12.3)
so that the amplitude and its conjugate are given by

A(k)= 1

L

∫ L

0
a(x) exp

(
−i

2π

L
kx

)
dx,

Ã(k) = 1

L

∫ L

0

a(x) exp

(
i
2π

L
kx

)
dx=A(−k)

(12.4)

A schematic representation of the first three waves is shown in Figure 12.2, together
with the corresponding amplitudes. It will be recognized that a large value of l refers
to short waves whereas a small value signifies longer waves.
We will now obtain a useful mathematical expression that will be helpful in our

work. We first multiply the functions a(x) and b(x) and their expansions, yielding

a(x)b(x) = A(n) exp

(
i
2π

L
nx

)
B(m) exp

(
i
2π

L
mx

)

= A(n)B(m) exp

(
i
2π

L
(n + m)x

) (12.5a)
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Fig. 12.2 A schematic representation of the first three waves in the interval L and the
corresponding amplitudes.

On integrating this expression over the expansion interval we immediately find

∫ L

0

a(x)b(x) dx = A(n)B(m)
∫ L

0

exp

(
i
2π

L
(n + m)x

)
dx = A(n)B(m)δ0n+mL

(12.5b)
From the Kronecker symbol it follows that m = −n, so that

A(n)B(−n) = 1

L

∫ L

0

a(x)b(x) dx (12.5c)

For the special case A = B we obtain

A(n)A(−n) = 1

L

∫ L

0
a2(x) dx (12.6)

which is known as Parseval’s identity for Fourier series; summation over n is
implied. Obviously this expression is real. For example, let the function a(x)
represent the velocity component u(x). In this case we obtain

1

L

∫ L

0

u2(x)

2
dx = u2

2
= U (n)U (−n)

2
= Eu (12.7)

representing the average value of the kinetic energy per unit mass.
We will now generalize the previous treatment to three dimensions and formally

admit the time dependencyof the function a. Now the interval of expansion changes
to the volume of expansion as shown in Figure 12.3. In analogy to the one-
dimensional case, periodicity is now required for the volume.
The formal expansion is then given by

a(x1, x2, x3, t) =
∞∑

l1=−∞

∞∑
l2=−∞

∞∑
l3=−∞

A(l1, l2, l3, t) exp

[
i2π

(
l1

L1
x1 + l2

L2
x2 + l3

L3
x3

)]

(12.8)
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Fig. 12.3 The expansion volume V = L1L2L3 for the function a(x1, x2, x3, t).

Fig. 12.4 A schematic representation of the wavenumber vector in the plane.

We now introduce the abbreviations

ki = 2πli

Li

, r = i1x1 + i2x2 + i3x3, k = i1k1 + i2k2 + i3k3 (12.9a)

where the third equation represents the wavenumber vector. The exponent in (12.8)
can then be written as the scalar product:

2π

(
l1

L1
x1 + l2

L2
x2 + l3

L3
x3

)
= k1x

1 + k2x
2 + k3x

3 = k · r (12.9b)

To simplify the notation we formally introduce the summation wavenumber
vector k ∑

k

=
∞∑

l1=−∞

∞∑
l2=−∞

∞∑
l3=−∞

(12.9c)

and obtain the representation

a(r, t) =
∑

k

A(k, t) exp(ik · r) = A(n, t) exp(in · r) (12.9d)

Figure 12.4 shows a schematic representation of the wavenumber vector in the
plane.
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As stated at the beginning of this chapter, we need to simplify the physical–
mathematical system in order to make the analysis more tractable. First of all we
postulate a dry constant-density atmosphere, that is α = 1/ρ = constant, resulting
in a simplified continuity equation. Expanding the velocity vector according to
(12.9d) we may write

v(r, t) = V(n, t) exp(in · r) (12.10)

so that the continuity equation can be expressed as

∇ · v = V(n, t) · ∇ exp(in · r) = 0 (12.11)

The gradient operator acting on the exponential part with wavenumber vector k
results in

∇ exp(ik · r) = exp(ik · r)∇(ik · r) = i exp(ik · r)∇r · k = ik exp(ik · r) (12.12)

It is now convenient to write the Laplacian of the exponential part as

∇2 exp(ik · r) = ∇ · ∇ exp(ik · r) = −k2 exp(ik · r) (12.13)

since this expression will be needed soon. Using (12.12), the continuity equation
assumes the form

V(n, t) · ni exp(in · r) = 0 (12.14)

Since this expression must hold for every wavenumber vector k, the expression

V(k, t) · k = 0, k ⊥ V(k, t) (12.15)

is also true, thus proving that the velocity amplitude V(k, t) is perpendicular to the
wavenumber vector k.
Our next task is to write the equation of motion in the spectral form. By ignoring

the Coriolis force the equation of motion may be written as

∂v
∂t

+ ∇ · (vv) = −∇� + 1

ρ
∇ · J (12.16)

Here the abbreviation� = αp + φ has been used. Previously the same symbol re-
presented the Exner function, but confusion is unlikely to arise. Since the divergence
of the velocity is zero the stress tensor J reduces to the simplified form

J = µ(∇v + v
�∇) =⇒ 1

ρ
∇ · J = ν ∇2v, ν = µ

ρ
(12.17)
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On substituting (12.10) into the equation of motion and the analogous expression
for �, we obtain

∂V(n, t)

∂t
exp(in · r)+ ∇ · [V(m, t)V(q, t) exp(i(m + q) · r)

]
= −∇�(n, t) exp(in · r)+ ν ∇2

[
V(n, t) exp(in · r)

]
(12.18a)

By carrying out the differential operations involving the gradient operator and the
Laplacian, using (12.12) and (12.13), we find without difficulty the expression

∂V(n, t)

∂t
exp(in · r)+ i(m + q) · V(m, t)V(q, t) exp[i(m + q) · r]

= −i�(n, t)n exp(in · r)− νn2V(n, t) exp(in · r)
(12.18b)

where m, n, and q are summation vectors.
The differential equation (12.18b)must be valid for the entire range ofn including

the term k. From the double sum over m and q we factor out the terms with

m + q = k or q = k − m (12.19)

The double sum over m and q now becomes a simple sum over m for each k. The
result is given by

∂V(k, t)

∂t
+ ik · V(m, t)V(k − m, t) = −i�(k, t)k − νk2V(k, t) (12.20)

By slightly rewriting this formula we obtain
(

∂

∂t
+ νk2

)
V(k, t) = −i�(k, t)k − ik · V(m, t)V(k − m, t) (12.21)

which is the more common spectral form of the equation of motion for the complex
amplitude vectorV(k, t). Summation over allm is implied. The nonlinear advection
term in the original equation of motion is the reason for the appearance of the
product of the two amplitude vectors.

12.2 The budget equation for the amplitude of the kinetic energy

First of all we generalize the expression (12.7) which is the u-component of the
kinetic energy. The average value of the total kinetic energy is then given by

1

V

∫ V

0

v2

2
dV ′ = v2

2
= V(n, t) · V(−n, t)

2
= E(t) (12.22)
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where the summation over all amplitude vectors must be carried out. For each
individual component k we may write

E(k, t) = V(k, t) · V(−k, t)

2
(12.23)

As before, the conjugated velocity amplitude vector is obtained by formally replac-
ing k by −k, that is Ṽ(k, t) = V(−k, t). Summing over all k gives the total kinetic
energy

E(t) =
∞∑

k=−∞
E(k, t) (12.24)

thus repeating (12.22). In order to find a prognostic equation for E(k, t), we first
replace the wavenumber vector k in (12.21) by −k to give(

∂

∂t
+ νk2

)
V(−k, t) = −i�(−k, t)(−k) + ik · V(m, t)V(−k − m, t) (12.25)

Next we carry out two scalar multiplications by multiplying (12.21) by V(−k, t)
and (12.25) by V(k, t). By observing the orthogonality relation stated in (12.15),
the terms multiplying the function � disappear. The result is shown in

V(−k, t) · ∂V(k, t)

∂t
+ νk2V(−k, t) · V(k, t)

= −ik · V(m, t)V(k − m, t) · V(−k, t)

V(k, t) · ∂V(−k, t)

∂t
+ νk2V(k, t) · V(−k, t)

= ik · V(m, t)V(−k − m, t) · V(k, t)

(12.26)

Adding these two equations and using the definition (12.23) gives the budget
equation for the amplitude of the kinetic energy per unit mass

∂E(k, t)

∂t
+ 2νk2E(k, t) = − i

2
k · V(m, t)V(k − m, t) · V(−k, t)

+ i

2
k · V(n, t)V(−k − n, t) · V(k, t)

(12.27a)

Summation over m and n is implied. From (12.24) it follows that E(t) is a real
number. At first glance the right-hand side, however, appears to be a complex
quantity, but all imaginary terms will cancel out in the summation over m and n
from minus to plus infinity. In order to get a more concise form of (12.27a), we
substitute into the first term on the right-hand side k′ = k − m and in the last term
we use −k′ = −k − n. Thus, we obtain

∂E(k, t)

∂t
+ 2νk2E(k, t) = −

∑
k′

i

2
k · V(k − k′, t)V(k′, t) · V(−k, t)

+
∑

k′

i

2
k · V(k′ − k, t)V(−k′, t) · V(k, t)

(12.27b)
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where now, in contrast to (12.27a), the summation over k′ has been written down
explicitly. Introducing the abbreviation

∑
k′

W (k, k′, t) = −
∑

k′

i

2
k · V(k − k′, t)V(k′, t) · V(−k, t)

+
∑

k′

i

2
k · V(k′ − k, t)V(−k′, t) · V(k, t)

(12.28)

leads to the final form of the budget equation for the spectral kinetic energy:

∂E(k, t)

∂t
+ 2νk2E(k, t) =

∑
k′

W (k, k′, t) (12.29)

Often the expressionW (k, k′, t) is called the energy-transfer function. This function
is antisymmetric, that is W (k, k′, t) = −W (k′, k, t), as follows very easily from
inspection of (12.28). The interpretation of (12.29) is not difficult. The first term
represents the tendency of E to either increase or descrease in time. The second
term on the left-hand side describes the energy dissipation giving that part of the
kinetic energy which is transformed into internal energy. It should be recalled that
the dissipation of short waves greatly exceeds the dissipation of long waves. The
term on the right-hand side of (12.29) represents the exchange of energy of cell
k with neighboring and also with more distant cells. It will be recognized that
the antisymmetric property of the energy-transfer function is closely related to the
principle of conservation of energy. Whatever cell k gains from cell k′ is a loss
for cell k′ in favor of cell k. Moreover, the right-hand side of (12.29) reflects the
nonlinearity of the equation of motion.

12.3 Isotropic conditions, the transition to the continuous wavenumber space

The solution of (12.29) is very complicated because of the dependencyof the trans-
fer function on the entire velocity spectrum V(k, t). Therefore, it seems necessary
to introduce simplifying assumptions. A great deal of simplification is obtained by
introducing the so-called isotropic condition so that the directional dependencies
of V and E on the wavenumber vector k are suppressed, that is

V(k, t) −→ V(k, t), E(k, t) −→ E(k, t), |k| = k (12.30)

The velocity vector and the kinetic energy now depend only on the scalar
wavenumber k and on the time t . In order to simplify the notation the time
dependencies of all variables will henceforth be omitted, e.g. E(k, t) will simply
be written as E(k).
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Certainly, the assumption (12.30) results in the desired analytic simplification,
but much of the physical significance is lost since turbulent processes generally
depend on direction. For the isotropic case the spectral energy-budget equation
assumes the form

∂E(k)

∂t
+ 2νk2E(k) =

∑
k′

W (k, k′) (12.31)

We think of the discrete amplitudes E(k) of the energy spectrum as representing a
certain volume element in k-space. If we divideE(k) by a sufficiently small volume
element �Vk in this space, we obtain a continuous function ρ(k) that is known as
the spectral energy density,

ρ(k) = E(k)

�Vk

(12.32a)

The energy contained within a thin spherical shell of radius k and thickness�k is
then given by

ρ(k)�Vk = 4πk2ρ(k)�k = E(k) = ε(k)�k (12.32b)

with �Vk = 4πk2 �k. Here we have also introduced the energy ε(k) per unit
wavenumber, given by ε(k) = 4πk2ρ(k). On dividing (12.31) by �Vk we obtain
the budget equation for the energy density:

∂ρ(k)

∂t
+ 2νk2ρ(k) = 1

�Vk

∑
k′

W (k, k′) (12.33)

Multiplication of (12.33) by 4πk2 results in a budget equation for the energy per
unit wavenumber:

∂ε(k)

∂t
+ 2νk2ε(k) = 4πk2

�Vk

∑
k′

W (k, k′) (12.34)

In order to treat the interaction of wavenumber k with all other wavenumbers k′ we
replace the summation over k′ by an integral over the volume dV ′

k = 4π (k′)2 dk′.
By introducing the function

T (k, k′) = 4πk2

�Vk

W (k, k′)
4π (k′)2

�V ′
k

(12.35)

into (12.34), we finally obtain the compact form of the budget equation for the
spectral energy per unit wavenumber:

∂ε(k)

∂t
+ 2νk2ε(k) =

∫ ∞

0

T (k, k′) dk′ (12.36)
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It will be observed that T (k, k′) is also antisymmetric since W (k, k′) has this
property. In this prognostic equation the function T (k, k′) describes the exchange
of energy in k-space between shell k and all other shells since the integration ranges
from k′ = 0 to k′ = ∞.
Our goal is to get some information about the properties of T (k, k′). This infor-

mation could be obtained by solving the spectral equation of motion (12.25) for
each amplitudeV(k) to compute T (k, k′). In order to avoid such complex numerical
calculations, various closure hypotheses have been introduced in order to obtain
T (k, k′) alone from knowledge of the energy spectrum ε(k). For a detailed discus-
sion see, for example, Hinze (1959) and Rotta (1972), where an extensive literature
on isotropic turbulence can be found. In the following brief description we shall
only introduce the approach of Heisenberg, who considers the case of stationary
or at least quasi-stationary turbulence. He assumed that the spectrum ε(k) can be
divided into two regions that are separated by the wavenumber k = k∗.
In the region of small wavenumbers (large wavelengths, region I) where k < k∗,

turbulence is strongly influenced by external parameters. Examples would be the
geometric characteristics of the flow domain and the type of turbulence generation.
For this region it is not possible to draw general conclusions about the energy
spectrum and the direction of the energy transport.
In the region of large wavenumbers (small wavelengths, region II) where k > k∗,

external influences are not important or do not exist. In this wavenumber range the
spectrum should be characterized by universal laws. In this universality region, the
energy transfer is always directed from smaller to larger wavenumbers. This means
that an energy cascade is taking place, whereby turbulent energy is directed from
smaller to larger wavenumbers, and from these to still larger wavenumbers, until
the energy is finally dissipated at the largest wavenumbers.
Heisenberg postulated that, in this energy transfer, the action of large-

wavenumber eddies upon small-wavenumber eddies is much like the appearance
of an additional viscosity. For this turbulence viscosity within the fluid, in analogy
to the frictional term 2νk2ρ(k), he assumed the relationship

T (k, k′) = −2κHk2ε(k)g(k′, ε(k′)) (12.37)

The function g(k′, ε(k′)) is thought to be a universal function. The constant of
proportionality κH is known as Heisenberg’s constant, which is a pure number,
κH = 0.5 ± 0.03.
The form of the universal function g follows from a dimensional analysis that is

carried out next. In the mks system the units of energy density per unit mass and
unit wavenumber are [ε(k)] = m3 s−2, the units of the time derivative are therefore[
∂ε(k)/∂t

] = m3 s−3. From (12.36) we find the units of T (k, k′) as
[
T (k, k′)

] =
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Fig. 12.5 A schematic view of energy transfer in region II.

m4 s−3 so that the units of g follow immediately from (12.37),
[
g(k′, ε(k′))

] =
m3 s−1. Since g depends only on k′ and ε(k′), we may write

g(k′, ε(k′)) = (k′)αε(k′)β (12.38a)

where the exponents α and β must be determined. By comparison with the dimen-
sion of g we find

[
(k′)αε(k′)β

] = m3 s−1. This leads to the values α = − 3
2
and

β = 1
2
. Utilizing these values, for g we finally get the form

g(k′) = (k′)−3/2ε(k′)1/2 =
√

ε(k′)

(k′)3
(12.38b)

Therefore, according to (12.37), the transfer function T (k, k′) is given by

T (k, k′) = −2κHk2ε(k)
√

ε(k′)

(k′)3
(12.39)

We will now briefly discuss the transfer function T (k, k′) by considering the
energy cascade shown schematically in Figure 12.5. The outflow from cell k to
cell k′ > k is directly given by (12.39). Using the fact that the transfer function is
antisymmetric, i.e. T (k, k′) = −T (k′, k), the flow from cell k′ to cell k > k′ can be
written down directly. This results in

T (k, k′) =




−2κHk2ε(k)
√

ε(k′)

(k′)3
k′ > k: outflow

2κH(k′)2ε(k′)

√
ε(k)

(k)3
k′ < k: inflow

(12.40)

12.4 The Heisenberg spectrum

The task ahead is to calculate the energy spectrum for the region k > k∗ by assuming
stationary conditions. For such conditions it will be necessary to compensate for
the steady loss of turbulence energy by dissipation by gaining an equal amount
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of energy in order to maintain stationarity. Therefore, it will be assumed that
production of energy σ (k) takes place in the region k < k∗. Eventually, the energy
produced in the production region is transported to the short waves where it will
be dissipated. Instead of equation (12.36) we now write the energy budget as(

∂

∂t
+ 2νk2

)
ε(k) =

∫ ∞

0
T (k, k′) dk′ + σ (k) (12.41)

with σ (k) = 0 for k > k∗. This is the spectral energy-balance equation with
production, keeping in mind that no production is allowed to take place in the
universality range. In order to obtain the budget equation for an entire spectral
interval, we integrate (12.41) over a wavenumber range to the wavenumber k > k∗

as indicated by

∂

∂t

∫ k

0
ε(k′) dk′ + 2ν

∫ k

0
(k′)2ε(k′) dk′ =

∫ k

0
dk′

∫ ∞

0
T (k′, k′′) dk′′ +

∫ k

0
σ (k′) dk′

(12.42)
For stationary conditions the production anddissipation of energymust be balanced:∫ k

0

σ (k′) dk′ = 2ν
∫ ∞

0

(k′)2ε(k′) dk′ = εM

with
∫ k

0
σ (k′) dk′ =

∫ ∞

0
σ (k′) dk′

(12.43)

since σ (k′) = 0 for k′ > k∗. Here εM is the dissipation of energy per unit mass.
Setting the tendency term in (12.42) equal to zero and using (12.43), we may write

2ν
∫ k

0
(k′)2ε(k′) dk′ =

∫ k

0
dk′

∫ ∞

0
T (k′, k′′) dk′′ + εM

=
∫ k

0

dk′
∫ ∞

k

T (k′, k′′) dk′′ + εM

since T (k′, k′′) = −T (k′′, k′) =⇒
∫ k

0
dk′

∫ k

0
T (k′, k′′) dk′′ = 0

(12.44)

On substituting the transfer function T (k, k′) according to (12.39) into this equation,
the spectral energy equation for stationary conditions can be written as(

ν + κH

∫ ∞

k

√
ε(k′′)

(k′′)3
dk′′

)
2

∫ k

0

(k′)2ε(k′) dk′ = εM (12.45a)

The integral expression within the large parentheses,

K = κH

∫ ∞

k

√
ε(k′′)

(k′′)3
dk′′ (12.45b)
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is known as the Heisenberg exchange coefficient K , which depends on ε and
on the wavenumber k. We observe that, for large k (small wavelengths), the
exchange coefficient is small, tending to zero as k tends to infinity. In this case
the entire energy loss is then due to molecular dissipation. If ε(k′′) is zero, then
the exchange coefficient is zero as well. In order to give a quantitative treatment
of the exchange coefficient, we must have information on ε. Later we will try to
express ε(k) as a function of K .
We are now going to calculate the energy spectrum from equation (12.45). For

this we define the integral multiplying the bracket in (12.45) by

y(k) = 2
∫ k

0

(k′)2ε(k′) dk′ (12.46a)

so that (12.45) can be written as

ν + κH

∫ ∞

k

√
y ′(k′)

2(k′)5
dk′ = εM

y(k)
(12.46b)

Here y ′ = dy/dk = 2k2ε(k), which follows from the differentiation of (12.46a)
with respect to the variable upper integration limit k. Differentiating (12.46b) with
respect to k and squaring the result gives

κ2
H

2k5
= ε2M

y4(k)
y ′ (12.46c)

This expression is integrated by separating the variables, yielding

κ2
H

8k4
+ C = ε2M

3y3(k)
(12.46d)

The constant of integration C is found from the definition of εM given by (12.43):

εM = 2ν
∫ ∞

0
(k′)2ε(k′) dk′ = ν lim

k→∞
y(k) =⇒ y(∞) = εM

ν
(12.46e)

where (12.46a) has been used. Therefore, for k → ∞ we obtain from (12.46d)
C = εM/[3y(∞)] = ν3/(3εM). Substituting this expression into (12.46d) and
solving for y gives

y(k) = ε
2/3
M

31/3

(
κ2
H

8k4
+ ν3

3εM

)−1/3
(12.46f)

Differentiating this equation with respect to k with dy/dk = y ′ = 2k2ε(k) and
then solving for ε(k) gives

ε(k) = ε
2/3
M

31/3

(
2

3

)(
κ2
H

8k4
+ ν3

3εM

)−4/3
κ2
H

8k7
, k > k′ (12.46g)
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This can be rewritten in the form

ε(k) =
(

8

9κH

)2/3
ε
2/3
M k−5/3

(
1 + 8ν3k4

3εMκ2
H

)−4/3
(12.47)

First of all we observe from (12.47) that the spectrum may be separated into two
wavenumber regions by the wavenumber kc, given by

kc =
(
εM

ν3

)1/4
(12.48)

since for k > kc the second expressionwithin the second set of parentheses exceeds
the number 1 by at least one order of magnitude. Ignoring the number 1 within the
parantheses, we obtain the section of the spectrum to the far right. This wing is
known as the dissipation range, where the energy spectrum decays with the minus
seventh power of k:

k > kc: ε(k) =
(

κHεM

2ν2

)2
k−7 =⇒ ε(k) ∼ k−7 (12.49)

Now we consider the region defined by k∗ < k � kc. By omitting now from
(12.47) the second expression within the parentheses we obtain

k∗ < k � kc: ε(k) =
(

8

9κ2
H

)2/3
ε
2/3
M k−5/3 =⇒ ε(k) ∼ k−5/3 (12.50)

Hence, it is seen that, in the long-wave spectral range, ε(k) is proportional to k−5/3.
This phenomenon is called the k−5/3 law. The spectral range for which the k−5/3

law is valid is known as the transfer region or the inertial subrange since in this
region the viscosity may be neglected. The physical picture is that production
and dissipation occur in different spectral regions so that the eddies in the inertial
subrange receive their energy initially from the larger eddies and transfer their
energy to the smaller eddies. The transfer takes place at such a rate that production
is exactly balanced by dissipation. Observations show that, in the production range
(k < k∗), the left wing of the energy spectrum falls off to the fourth power. For the
whole spectrum the distribution of ε(k) is schematically shown in Figure 12.6.
Often equation (12.47) is written in a somewhat different way by introducing the

Kolmogorov constant κK, the characteristic length lc, and the characteristic time tc

defined by

κK =
(

8

9κH

)2/3
= 1.44, lc =

(
ν3

εM

)1/4
, tc =

(
ν

εM

)1/2
(12.51)
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Fig. 12.6 The Heisenberg spectrum.

with κH = 0.51. The Kolmogorov constant is named after the scientist who
pioneered research into turbulence spectra. Substituting κK and lc into (12.47),
the energy spectrum may be written as

ε(k) = κKε
2/3
M k−5/3

(
1 + 8(klc)4

3κ2
H

)−4/3
, k > k∗ (12.52)

This new notation, of course, does not change the physical content of the energy
spectrum. Now the long-wave range is isolated by means of klc � 1 and the short
-wave range by klc � 1.

12.5 Relations for the Heisenberg exchange coefficient

The task ahead is to evaluate the integral (12.45b) defining theHeisenberg exchange
coefficient. This will be accomplished by first substituting the energy expression for
the long-wave approximation (12.50) for the stationary case into (12.45b), yielding

K = κH

∫ ∞

k

√
ε(k′)

(k′)3
dk′ = κH

∫ ∞

k

(
κKε

2/3
M (k′)−5/3

(k′)3

)1/2
dk′ = 3

4
κ
1/2
K κHε

1/3
M k−4/3

(12.53)
We now assume that the wavenumber k separates the short-wave region from the
long-wave region. Then we can express the average kinetic energy v̂ 2/2 of the
longer waves by

v̂ 2

2
=

∫ k

0
ε(k′) dk′ (12.54a)

and the turbulent kinetic energy k̂ of the shorter waves by

k̂ =
∫ ∞

k

ε(k′) dk′ (12.54b)

We substitute the spectral energy approximation for the inertial subrange (12.50)
into (12.54b) and obtain

k̂ = κK

∫ ∞

k

ε
2/3
M (k′)−5/3 dk′ = 3

2
κKε

2/3
M k−2/3 (12.55)
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We have implicitly assumed that the k−5/3 law holds for the entire range k′ ≥ k;
the error we make thereby is likely to be small. Now we solve (12.55) for εM and
obtain

εM = ak̂k 3/2 with a =
(
3κK
2

)−3/2
(12.56)

Substituting this expression into (12.53) gives

K = bk−1̂k 1/2 with b = 3

4

(
2

3

)−1/2
κH (12.57)

Now we have obtained the desired relations among εM, k̂, and K . Finally, the
wavenumber k will be replaced by a characteristic length l by means of

k = 2π

L
= 1

l
(12.58)

From (12.57), using the definition (12.58), it follows that

k̂ =
(
K

bl

)2
(12.59a)

so that (12.56) can be written as

εM = a

l

(
K

bl

)3
= aK3

b3l4
(12.59b)

By combining (12.59b) with (12.56) and (12.57), we obtain

K = ab
k̂ 2

εM
(12.60)

Hence, it is seen that the exchange coefficient itself is proportional to the square of
the turbulent kinetic energy and inversely proportional to the dissipation of energy
εM. We are going to consider the Heisenberg exchange coefficient as a typical
exchange coefficient that is valid not only for the turbulent momentum flux but
also for the transport of other turbulent fluxes. In the next chapter we will refine
this concept.

12.6 A prognostic equation for the exchange coefficient

Before continuing our discussion, we wish to briefly elucidate the action of the
turbulent flux v′′ρψ . As an example, let us consider a simple one-dimensional
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Fig. 12.7 A schematic view of the action of a turbulent flux.

numerical grid as it may be used for the evaluation of the atmospheric equations.
The process of turbulent mixing is shown schematically in Figure 12.7. At each
central grid point xi the value of a physical quantity ψ̂i represents an average for the
entire grid cell. These central values are thought to be known without discussing
how they are obtained. Within each of these cells we expect irregular turbulent
motion to take place. In order to obtain information about the turbulent flux at
point A between two grid cells xi and xi+1, we do not need (and usually cannot
obtain) information about each individual eddy or fluctuation. It is sufficient to
know the average value v′′ρψ . For definiteness let us assume that the value of ψ̂
increases from left to right so that ψ̂ i+1 > ψ̂i . The turbulent eddies perform a
completely disordered or stochastic motion, but each of these will be associated
with a particular value of ψ . From experience we know that, on average, a directed
transport of the quantity ψ will take place from higher toward lower ψ values. For
the turbulent flux we may therefore write

v′′ρψ ∼ −∇ψ̂, v′′ρψ = −ρK ∇ψ̂ (12.61)

The proportionality factor is the exchange coefficient K , which depends on the
turbulent kinetic energy of the system.
With these ideas in mind, we are ready to obtain a prognostic equation for the ex-

change coefficientK . The starting point for the derivation is the prognostic equation
(11.46) for the turbulent kinetic energy, which is repeated here for convenience:

D̂

Dt
(ρk̂) + ∇ · (kt − v′′ · J) = ∇ v̂··(J + R) − ε − v′′ · ∇p (12.62)

In this equation we replace v′′ · ∇p by a simplified form of (11.70):

v′′ · ∇p = Jθ
t · ∇ ln �̃, kt = 1

2v′′ρ(v′′)2 (12.63)

For reference the definition of the turbulent kinetic energy flux kt, see
equation (11.42), is included as part of this equation. By replacing the turbu-
lent kinetic energy k̂ in terms of the exchange coefficientK according to (12.59a)
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and ε by (12.59b), we obtain a prognostic equation for the exchange coefficient:

D̂

Dt

[
ρ

(
K

bl

)2]
+ ∇ · (kt − v′′ · J) = ∇ v̂··(J + R) − Jθ

t · ln �̃ − ρa

b3l4
K3 (12.64)

In the final term the air density ρ has been inserted since we divided (12.16)
by the density. In this equation v̂, ρ, and �̃ are considered to be known quanti-
ties. The remaining variables are still unknown and must be replaced by suitable
parameterizations.
The entire analysis of this chapter is based on the assumption that the atmosphere

is characterized by ρ = constant so that the velocity divergence is zero. In this case
the averaged molecular stress tensor J can be written as

J = µ(∇ v̂ + v̂
�∇) (12.65)

In analogy to this, assuming isotropic conditions, we may write for the Reynolds
stress tensor

R = ρK(∇ v̂ + v̂
�∇) (12.66)

where K is the turbulent exchange coefficient. Since the turbulent exchange coef-
ficient K is much larger than the dynamic viscosity multiplied by the air density,
we may ignore the contribution of the mean molecular stress. Therefore, we pa-
rameterize the first term on the right-hand side of (12.64) as

∇ v̂··(J + R) = ∇ v̂··ρK(∇ v̂ + v̂
�∇) (12.67)

We now consider the vectorial expression in the divergence term of equation
(12.64). Assuming that the second term may be ignored, we may write in analogy
to (12.61) the parameterized form

(kt − v′′ · J) = −ρK ∇
(

v̂′′2

2

)
= −ρK ∇k̂ = −ρK ∇

(
K

bl

)2
(12.68)

The negative sign shows that the flow is from larger to smaller values of the
transported quantity. Finally, we need to parameterize the turbulent heat flux which
was defined by equation (11.88). For the isotropic case the exchange tensor may be
replaced by the scalar exchange coefficient. On the basis of the brief discussion we
have given above and from dimensional requirements, we find the parameterized
form

Jθ
t = −ρĉpK ∇θ̃ (12.69)

While in (11.88) the two scalar coefficientsKθ
h andKθ

v are used to parameterize Jθ
t ,

this simplified treatment admits only the exchange coefficient K . On substituting
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(12.67)–(12.69) into (12.64), the prognostic equation for the exchange coefficient
will be written as

D̂

Dt

[
ρ

(
K

bl

)2]
− ∇ ·

[
ρK ∇

(
K

bl

)2]
=∇ v̂··ρK(∇ v̂ + v̂

�∇)

+ ρĉpK ∇θ̃ · ∇ ln �̃ − ρa

b3l4
K3

(12.70)
Equation (12.70) is rather complex and its evaluation requires a great deal of

numerical effort. From this equation, however,wemay derive an entire hierarchy of
simplifications, which were often applied when computer capabilities were insuffi-
cient. Numerical investigations of (12.70) have shown that, for many situations, the
tendency term may be neglected. For this case, after expanding the budget operator
and disregarding the local time derivative, we obtain

∇ ·
[
ρ v̂

(
K

bl

)2]
− ∇ ·

[
ρK ∇

(
K

bl

)2]
=∇ v̂··ρK(∇ v̂ + v̂

�∇)

+ ρ ĉpK ∇θ̃ · ∇ ln �̃ − ρa

b3l4
K3

(12.71)
This is a partial differential equation of the elliptic type representing a boundary
value problem. We select a rectangular parallelepiped as the integration domain,
for which it is customary to set K = 0 at the upper boundary z = H . At the lower
boundary, assuming neutral conditions, we set K proportional to the frictional
velocity u∗, K = κz0u

∗. The constant κ = 0.4 is known as the Von Karman
constant and z0 is the roughness height. The precise definition of u∗ and the
justification of this form of the exchange coefficient at the surface will be offered
in the following chapter.
The next simplification is to assume that we have horizontal homogeneity, so

that the gradient operator reduces to

∇h . . . = 0, ∇ . . . = k
∂ . . .

∂z
(12.72a)

By assuming additionally that ŵ = 0 we obtain v̂ = v̂h, from which it follows that

k · v̂h = 0, ∇ v̂··(∇ v̂ + v̂
�∇) =

(
∂û

∂z

)2
+

(
∂v̂

∂z

)2
=

(
∂ v̂h

∂z

)2
(12.72b)
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For these conditions the stationary K equation is expressed by

∂

∂z

[
ρK

∂

∂z

(
K

bl

)]
+ρK

(
∂ v̂h
∂z

)2
+ ρcp,0K

∂θ̃

∂z

∂ ln �̃

∂z
− ρ

a

b3l4
K3 = 0 (12.73)

where we have made the highly satisfactory assumption that ĉp = cp,0. We will
now eliminate the Exner function �̃ as shown next:

ln �̃ = R0

cp,0
lnp + constant =⇒ ∂ ln �̃

∂z
= R0

cp,0p

∂p

∂z
= − g

cp,0T̃
(12.74)

This results in the desired form

∂

∂z

[
ρK

∂

∂z

(
K

bl

)]
+ ρK

(
∂ v̂h
∂z

)2
− ρgK

T̃

∂θ̃

∂z
− ρ

a

b3l4
K3 = 0 (12.75)

The final step in the hierarchy of approximations is to ignore the divergence term.
Solving for K2 results in

K2 = b3l4

a

(
∂ v̂h

∂z

)2[
1 − g

T̃

∂θ̃

∂z

(
∂ v̂h

∂z

)−2]
(12.76)

The fraction in the square bracket is known as the Richardson number Ri,

Ri = g

T̃

∂θ̃

∂z

(
∂ v̂h

∂z

)−2
(12.77)

Ri is a measure of the atmospheric stability. A detailed discussion follows in the
next chapter. Inserting Ri into (28.76) gives

K =
√

b3

a
l2
∣∣∣∣∂ v̂
∂z

∣∣∣∣√1 − Ri = (l′)2
∣∣∣∣∂ v̂
∂z

∣∣∣∣√1 − Ri, Ri ≤ 1 (12.78)

showing that the exchange coefficient is a function of the wind shear and the
thermal stability of the atmosphere. We have also combined the product of the
constant

√
(b3/a) with the square of the characteristic length l2 to give a new

characteristic length (l′)2. The quantity l′ is some sort of mixing length, which will
be discussed more fully in the following chapter.1 The resulting formula (12.78)
is often used as the definition of the exchange coefficient or Austausch coefficient
(the German word Austauschmeans exchange). The concept of the mixing length
will be discussed more fully in the following chapter.

1 For neutral conditions Blackadar postulated the following form of the mixing length: l′ = kz/(1+ kz/λ), where
k = 0.4 is the Von Karman constant and λ an asymptotic value for l′ that is reached at great heights.
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12.7 Concluding remarks on closure procedures

There are several excellent books on boundary-layer theory dealing in great detail
with various closure schemes. A very illuminating account is given, for example,
by Stull (1989), where the reader can find an extensive bibliography on this subject
as well as many observational results. Here we can give only a few brief statements
on this topic.
There are local closure schemes and nonlocal closure schemes. The closure tech-

nique described in Section 12.6 is based on the turbulent-kinetic-energy equation.
This type of closure technique belongs to the group of local closure schemes. They
are called local since an unknown quantity at a point in space is parameterized
by values and gradients of known quantities at or near the same point. If nonlocal
closure techniques are used, the unknown quantity at one point in space is param-
eterized by using values of known quantities at many points. The idea behind this
concept is that larger eddies transport fluid over larger distances before the smaller
eddies have a chance to cause mixing. This is the so-called transilient turbulence
theory described in some detail by Stull (1989). There is a second nonlocal scheme
called spectral diffusivity theory. This theory has its origin in the spectral theory
which we have previously discussed.
Furthermore, it is customary to distinguish between first- and higher-order

closure schemes. To convey the idea of higher-order closure let us consider the
prognostic equation for the mean velocity v̂; see equation (11.35d). This equation
includes the divergence of the Reynolds tensor which is essentially the double cor-
relation v′′v′′ of the velocity fluctuations. The idea behind this closure principle
is to derive a differential equation for v′′v′′. The mathematical steps involved
are not particularly difficult but rather lengthy so we will restrict ourselves to
a brief verbal description to demonstrate the principle. For simplicity, we assume
that the density ρ is a constant. By subtracting the equation of mean motion
from the molecular form of the Navier–Stokes equation, we obtain a differential
equation for the velocity fluctuation dv′′/dt . On the right-hand side of this
equation, among other terms, there still appears the divergence of the Reynolds
tensor. Dyadic multiplication of dv′′/dt first from the right and then from the
left gives two differential equations, i.e. (dv′′/dt)v′′ = · · · and v′′ dv′′/dt = · · ·.
Averaging these two equations and adding the results gives the desired
differential equation for the Reynolds tensor d(v′′v′′)/dt . Having derived this dif-
ferential equation does not complete the closure problem by any means since this
rather complex differential equation now contains the divergence of the unknown
triple correlation v′′v′′v′′. If we try to derive a differential equation for the triple
correlation, we end up with the appearence of a still higher unknown correlation
v′′v′′v′′v′′. In order to avoid the escalation of this problem, it is customary to
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introduce closure assumptions. An extensive literature is available on this topic.
We refer to Mellor and Yamada (1974), who propose a second-order closure pa-
rameterization for v′′v′′v′′.
Even second-order closure schemes are rather complicated. In order to avoid

such complications, quite early in the development of the boundary-layer theory,
the first-order closure scheme orK theorywas introduced to handle the turbulence
problem. Suppose that we decompose the Reynolds tensor in a suitable manner.
Among other components we would obtain the correlation

v′′w′′ = −K
∂ v̂h

∂z
(12.79)

The first-order closure scheme simply requires that the mean value of the double
correlation is proportional to the vertical gradient of the horizontal mean veloc-
ity. The coefficient of proportionality is the exchange coefficient which must be
specified or predicted in some manner. The form of equation (12.79) explains why
the K theory is also called the gradient transport theory. Let us briefly return to
Section 12.6, where a differential equation for the turbulent exchange coefficient
was derived. This type of approach is more realistic than the first-order closure
scheme, in which the exchange coefficient is usually specified, but it is not as
refined as the second-order closure scheme. For this reason the approach presented
in Section 12.6 is called a 1.5-order closure scheme, of which many variants are
described in the literature.
Among other approaches to solving the turbulence problems, so-called

large-eddy simulation (LES) is becoming more prominent as electronic computers
become increasingly more powerful. The concept of LES is based on the idea
that some filter operation, for example averaging, is applied to the equations
of the turbulent atmosphere to separate the large and small scales of turbulent
flow. The form of the atmospheric equations modeling the flow remains
unchanged, with the turbulent-stress term replacing the molecular-viscosity term.
For this method the numerical grid is chosen fine enough to resolve the larger
eddies containing the bulk of the turbulent energy. All the information regarding
the small unresolved scales is extracted from a subgrid model. The larger
resolved eddies are sensitive to the geometry of the flow and the thermal
stratification. The much-less-sensitive unresolved small-scale eddies can be
efficiently parameterized by a relatively simple first-order closure scheme. This type
of approach has successfully been applied to a variety of turbulent-flow problems.
Comprehensive reviews have been given by Rodi (1993) and by Mason (1999),
for example.
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12.8 Problems

12.1: In order to better understand the transition from (12.18b) to (12.20), perform
simplified summations. Consider the special case that the vectors m and q are
scalars. Perform the summation (m + q)V (m)V (q) exp(m + q) with m, q =
1, 2, . . ., 5 and factor out the sum multiplying exp(6). Compare your result with
the sum 6V (m)V (6 − m).

12.2: Show explicitly that the transfer function W (k, k′, t) is antisymmetric.

12.3: Verify that α and β of equation (12.38a) are given by α = − 3
2
and β = 1

2
.



13

The atmospheric boundary layer

13.1 Introduction

The vertical structure of the atmospheric boundary layer is depicted in Figure 13.1.
The lowest atmospheric layer is known as the laminar sublayer and has a thickness
of only a few millimeters. It is difficult to verify the existence of this layer because
of its small vertical extent. Within the laminar sublayer all physical processes such
as the transport of momentum and heat are regulated by molecular motion. In
most boundary layer models the existence of this layer is not explicitly treated. It
stands to reason that there also exists some type of a transitional layer between
the laminar sublayer and the so-called Prandtl layer where turbulence is fully
developed.

The lower boundary of the Prandtl or surface layer is the roughness height z0

where the mean wind is assumed to vanish. The vertical extent of the Prandtl layer
is regulated by the thermal stratification of the air and may vary from about 20 to
100 m. In this layer all turbulent fluxes are approximately constant with height. The
influence of the Coriolis force may be ignored this close to the earth’s surface, so
the turning of the wind within the Prandtl layer may be ignored. The wind speed,
however, increases very strongly in this layer, reaching a value of more than half
the wind speed at the top of the boundary layer.

Above the Prandtl layer we find the so-called Ekman layer, reaching a height
exceeding 1000 m depending on the stability of the air. Turbulent fluxes in this
layer decrease to zero at the top of the Ekman layer. Above the Ekman layer the
air flow is more or less nonturbulent. The influence of the Coriolis force in this
layer causes the turning of the wind vector. For this reason the Ekman layer is often
called the spiral layer since the nomogram of the wind vector is a spiral. The entire
region from the earth’s surface to the top of the Ekman layer is called the planetary
boundary layer.

349
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Fig. 13.1 Subdivision of the planetary boundary layer, showing the vertical distribution
of the horizontal wind v̂h and the stress τ within the boundary layer.

13.2 Prandtl-layer theory

It is customary to use the Cartesian coordinate system to discuss the Prandtl-layer
theory. To begin with we will summarize the hypothetical Prandtl-layer conditions:

(a) v̂(z = z0) = 0, v̂h(z = z0) = 0, ŵ(z = z0) = 0

(b) Ω = 0

(c) m̂2 = 0, m̂3 = 0, I
2 = 0, I

3 = 0

(d) ∇ · FR = 0

(e) J θ
t = i3 · Jθt = constant

(f)
∂ . . .

∂t
= 0, ∇h . . . = 0, ∇ = i3

∂

∂z

(13.1)

The lower boundary of this layer is the roughness height z0 where the wind speed
vanishes, (13.1a). This condition implies a flat surface of the earth. Since the
Coriolis force is of negligible importance, we ignore this force by formally setting
the angular velocity of the earth equal to zero in the equation of motion, (13.1b).
Condensation of water vapor is not allowed to take place in the Prandtl-layer
theory, so fog does not form. This means that only dry air and water vapor are
admitted. Therefore, phase transition fluxes I k do not appear in the Prandtl-layer
equations, (13.1c). The divergence of the radiative flux is ignored, (13.1d). The
vertical component of the turbulent heat flux J θ

t does not vary with height, (13.1e).
The most essential part of the Prandtl-layer theory is the hypothesis of stationarity
and of horizontal homogeneity of all averaged variables of state, (13.1f). In order
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to investigate the formation and dissipation of ground fog, the Prandtl-layer theory
must be relaxed and radiative processes are then of paramount importance.

13.2.1 The modified budget equations

We are now ready to state the budget equations in their modified forms as they
apply to the Prandtl layer.

13.2.1.1 The continuity equation

Owing to stationarity and horizontal homogeneity, the continuity equation (11.35a)
reduces to

D̂ρ

Dt
= ∂

∂z
(ρŵ) = 0 or ρŵ = constant (13.2)

It is customary to treat ρ as a constant. Since ŵ(z0) = 0 we find within the Prandtl
layer

ŵ(z) = 0 (13.3)

so that the velocity divergence vanishes:

∇ · (ρ v̂) = i3 · ∂

∂z
(ρ v̂h) = 0, ∇ · v̂ = 0 (13.4)

As a consequenceof these equations and due to the stationarity, the averagedbudget
operator and the individual time derivative also vanish:

D̂

Dt
(ρψ) = 0,

d̂ ψ

dt
= 0 (13.5)

13.2.1.2 The continuity equation for the concentrations

The continuity equation for the concentration of water vapor (11.35b) reduces to
the divergence expression

∇ · (J1 + J1
t

) = ∂

∂z
i3 · (J1 + J1

t

) = 0 =⇒ i3 · (J1 + J1
t

) = J
1 +J 1

t = constant

(13.6)
From the requirement of horizontal homogeneity it follows immediately that the
sum of the vertical components of the diffusive water-vapor fluxes is constant with
height. The diffusion fluxes for dry air can be directly obtained from

J
0 + J 0

t = −(J 1 + J 1
t

)
(13.7)
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13.2.1.3 The equation of motion

From (11.35d), together with the various hypothetical Prandtl-layer statements, we
immediately obtain

i3
∂p

∂z
− i3 · ∂

∂z
(J + R) = −i3ρg (13.8)

since ∇hφ = 0 and i3 ∂φ/∂z = i3g. We will now define the stress vector of the
boundary layer as

T = i3 · (J + R) (13.9)

Next, we require some information on the turbulence state of the Prandtl layer. We
assume that we have horizontal isotropy of turbulence as discussed in Section 11.8.
From (11.92) it follows that

T = ρKv
v

∂ v̂h

∂z
(13.10)

This is a horizontally directed vector that is parallel to ∂ v̂h/∂z. Equation (13.8)
now splits into a horizontal and a vertical part:

∂p

∂z
= −ρg,

∂T
∂z

= 0 =⇒ T = constant (13.11)

The first equation is the hydrostatic equation for the averaged pressure and den-
sity. From the second equation it follows that the stress vector is constant with
height within the Prandtl layer. Direct application of the hypothetical Prandtl-
layer conditions to the kinetic-energy equation of mean motion (11.45) also yields
T = constant.

Since the horizontal velocity vanishes at z0, the stress vector must also be
parallel to the velocity vector itself. This is most easily seen by writing the vertical
derivative as a finite difference. Since T, ∂ v̂h/∂z, and v̂h all have the same direction,
it is of advantage to rotate the coordinate system about the z-axis so that one of the
horizontal axes is pointing in the direction of the three vectors. It is customary to
select the x-axis so that we may write

|̂vh| = û, v̂ = 0, |T| = τ = ρKv
v

∂û

∂z
,

∂τ

∂z
= 0, T · ∂ v̂h

∂z
= τ

∂û

∂z

(13.12)
The vertical distribution of τ is shown in Figure 13.1.
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13.2.1.4 The budget equation of the turbulent kinetic energy

We will now direct our attention to the budget of the turbulent kinetic energy
as stated in (11.46). The budget operator vanishes according to (13.5). Owing to
horizontal homogeneity the divergence part degenerates to

∇ · (kt − v′′ · J
) = ∂E

∂z
with E = i3 · (kt − v′′ · J

)
, kt = ρv′′ v

′′2

2
(13.13)

The double scalar product on the right-hand side of (11.46) may be rewritten as

∇v̂··(J + R
) = i3

∂ v̂h

∂z
··(J + R

) = i3 · (J + R
) · ∂ v̂h

∂z
= T · ∂ v̂h

∂z
(13.14)

since J and R are symmetric tensors. The power term v′′ · ∇p appearing in (11.46)
will be replaced by (11.70) with the approximation Jθ · A = 0. Utilizing R0ρ/p =
1/T , the term multiplying the heat flux Jθt in (11.70) is approximated as

∇ ln �̃ = ∂ ln �̃

∂z
i3 = − g

cp,0T
i3 (13.15)

Here and in the following ĉp will be approximated by cp,0. With these approxima-
tions the budget of the turbulent kinetic energy can finally be written as

∂E

∂z
= T · ∂ v̂h

∂z
− ε − Jθt · ∇ ln �̃ = τ

∂û

∂z
− ε + J θ

t

g

cp,0T
(13.16)

with ε = J··∇v ≥ 0

13.2.1.5 The budget equation of the internal energy

Application of the hypothetical Prandtl-layer conditions to (11.48) gives the first
version of the budget equation for the internal energy

∂

∂z

(
J
h + J h

t

)
= −J θ

t

g

cp,0T
+ ε (13.17)

Next we introduce the sensible enthalpy fluxes

J
h

s = J
h − J

n
h̃n, J h

s,t = J h
t − J n

t h̃n (13.18)

Utilizing the latter equation, the vertical component of the vector relation (11.69)
can be written as

J h
t = J θ

t + J�
t + J n

t h̃n (13.19)
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In the absence of ice we may write for the atmospheric system J n
t h̃n = J 0

t h̃0 +
J 1

t h̃1 + J 2
t h̃2. An analogous expression holds also for J

n
h̃n. The enthalpies h̃k

depend on temperature, and, for the condensed phase, even on pressure. As we
have seen, the Prandtl-layer theory is based on numerous hypothetical conditions.
Thus we feel justified in applying the additional assumption that the h̃k may be
treated as constants. Since the definition of any thermodynamic potential includes
an arbitrary constant that is at our disposal, we set h̃0 = 0 and h̃2 = 0. Thus the
latent heat l21 = h̃1 − h̃2 = h̃1 is a constant also and we may write

J
n
h̃n = l21J

1
, J n

t h̃n = l21J
1
t (13.20)

Instead of (13.17) we obtain for the budget equation for the internal energy

∂

∂z

(
J
h + J h

t

)
= ∂

∂z

[
J
h

s + J θ
t + J�

t + (J n + J n
t

)̃
hn

]
= −J θ

t

g

cp,0T
+ ε (13.21)

Owing to (13.6) and (13.20) we may write

(J
n + J n

t )̃hn =
(
J

1 + J 1
t

)
l21,

∂

∂z

[(
J

1 + J 1
t

)
l21

]
= 0 (13.22)

According to (13.1e) the heat flux J θ
t is constant with height so that (13.21) finally

reduces to
∂

∂z

(
J
h

s + J�
t

)
= −J θ

t

g

cp,0T
+ ε (13.23)

It is customary to introduce the following abbreviating symbols:

W = J
h

s + J�
t

Heat flux: H = J θ
t with

∂H

∂z
= 0

Moisture flux: Q = J
1 + J 1

t with
∂Q

∂z
= 0

(13.24)

No special name is given to W . Utilizing these definitions the energy budget of the
Prandtl layer is summarized as

Kinetic energy
v̂2

2
: − ∂

∂z
(τ û) =−τ

∂û

∂z

Turbulent kinetic energy k̂:
∂E

∂z
= τ

∂û

∂z
− ε + gH

cp,0T

Internal energy ê:
∂W

∂z
= ε − gH

cp,0T

(13.25)
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Fig. 13.2 The energy balance within the Prandtl layer.

The budget equation of the kinetic energy of mean motion follows directly from
(13.11) where we have shown that T = constant. As required, the sum of the
sources, i.e. the sum of all right-hand-side terms, equals zero. The energy budget
can be usefully displayed graphically as shown in Figure 13.2. We think of a
spatially fixed unit volume V . The three boxes within V represent changes with
time per unit volume of the mean values of the internal energy, the turbulent kinetic
energy, and the kinetic energy of the mean motion. The mean change in total energy
contained in V is given by the sum of the three boxes. The arrows piercing the outer
line marking V denote the interaction with the outside world, i.e. with neighboring
boxes. The arrows connecting the energy boxes represent energy transformations
within V . With one exception all internal transformations may go in two directions.
Only the dissipation of energy is positive definite and can go in one direction only,
from the turbulent kinetic energy to the internal energy.

Nowwe are going to give explicit expressions forH andQ. Scalar multiplication
of (11.88a) by i3 gives the desired relation for H . We assume that Q may be
expressed analogously. Together with the corresponding equation (13.12) for τ , we
obtain the phenomenological equations of the Prandtl layer as

τ = ρKv
∂û

∂z
, H = −cp,0ρK

θ
∂θ̃

∂z
, Q = −ρKq

∂q̂

∂z
(13.26)

where we have suppressed the subscript v in the exchange coefficients since in
the Prandtl layer only vertical fluxes exist. Furthermore, we have introduced the
variable q̂ = m̂1 usually denoting the specific humidity in the system of moist air.
While H directly follows from (11.88a), the quantity Q is only an approximation,
as can be seen from (11.88c) and (11.86).

It is a well-known fact that the turbulent fluxes exceed the corresponding molec-
ular fluxes by several orders of magnitude. Therefore, it is customary to ignore
the molecular fluxes since these are always added to the corresponding turbulent
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fluxes. Ignoring the molecular fluxes, however, is not a necessity. If the molecular
fluxes are totally ignored the turbulent fluxes are given by

T = i3 · R = −i3 · ρv′′v′′ = −ρw′′v′′

H = i3 · Jθt = �̃ρcp,0θw′′

W = i3 · J�t = ρcp,0w
′′θ�′ ≈ 0

Q = i3 · J1
t = ρw′′q

(13.27)

as follows from (11.36), (11.38), and (11.65).
In boundary-layer theory it is customary to introduce the scaling variables u∗,

T∗, and q∗ by means of the defining equations

τ = ρu2
∗, H = −ρcp,0u∗T∗, Q = −ρu∗q∗ (13.28)

The quantity u∗ has the dimension of a velocity and is therefore known as the
frictional velocity. The variable T∗ has the dimension of temperature while q∗ is
dimensionless. If these scaling variables are known then τ , H , and Q may be
determined since the density of the Prandtl layer is considered known also.

13.2.2 The Richardson number

Let us rewrite the complete budget equation for the turbulent kinetic energy (11.46)
without using the specific Prandtl-layer conditions. Substituting from (11.70) for
v′′ · ∇p and ignoring the term involving the pressure fluctuations, we find

D̂

Dt

(
ρk̂
)+ ∇ · (kt − v′′ · J) = ∇v̂·· (J + R) − ε − Jθt · ∇ ln �̃ (13.29)

The right-hand side then represents the source for the turbulent kinetic energy,
which can be written in the form

Qk̂ = ∇v̂·· (J + R)

(
1 − Jθt · ∇ ln �̃

∇v̂·· (J + R)

)
− ε (13.30)

Without proof we accept that the frictional term ∇v̂ · · (J + R) is positive definite
so that it permanently produces kinetic energy. While the energy dissipation ε ≥ 0
permanently transforms k̂ into internal energy, see Figure 13.2, the third term on
the right-hand side of (13.29) can have either sign, thus producing or destroying
turbulent kinetic energy.We will investigate the situation more closely. The fraction
on the right-hand side of (13.30) is called the flux Richardson number:

Rif = Jθt · ∇ ln �̃

∇v̂ ·· (J + R)
=
{
<1 production of k̂
>1 destruction of k̂

(13.31)



13.2 Prandtl-layer theory 357

Ignoring for the moment the contribution of ε in (13.30), we see that turbulent
kinetic energy is produced if Rif < 1; otherwise dissipation takes place.

Let us now employ the Prandtl-layer assumptions. According to (13.12) and
(13.14) the denominator of (13.31) reduces to

∇v̂·· (J + R) = τ
∂û

∂z
(13.32)

Observing that the exchange coefficient is a positive quantity, we easily recognize
with the help of (13.12) that the denominator of the flux Richardson number cannot
be negative. From (13.15) we obtain for the numerator of (13.31)

Jθt · ∇ ln �̃ = − gH

cp,0T
(13.33)

Therefore, applying (13.26) and (13.28), the flux Richardson number may be
expressed as

Rif = − g

T

H

cp,0τ
∂û

∂z

= g

T

T∗

u∗
∂û

∂z

= g

T

Kθ

Kv

∂θ̃

∂z(
∂û

∂z

)2 (13.34)

In the Prandtl layer T may also be replaced by θ̃ . It is customary to introduce the
turbulent Prandtl number as the ratio of the two exchange coefficients:

P r = Kv

Kθ
(13.35)

so that the flux Richardson number can also be written as

Rif = Ri

P r
with Ri = g

T

∂θ̃

∂z(
∂û

∂z

)2 (13.36)

The variableRi is knownas the gradientRichardsonnumber or simply theRichard-
son number, which was introduced in the previous chapter, see equation (12.77).
Inspection of (13.34) clearly indicates that the numerator is a measure for the pro-
duction or suppression of buoyancy energy. The denominator represents the part of
the turbulence that is mechanically induced by shear forces of the basic air current.
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For statically unstable air the gradient of the potential temperature is negative, so
Rif < 0. This causes an increase of turbulence. In a statically stable atmosphere the
gradient of the potential temperature is positive so that Rif > 0. If ∂θ̃/∂z is large
enough this results in a sizable reduction of turbulent kinetic energy. If the flux
Richardson number becomes larger than one, the first term on the right-hand side
of (13.30) changes sign. The flux Richardson number Rif = 1 is considered to be
an upper limit of the so-called critical flux Richardson numberRif,c. Some modern
theoretical work on the basis of detailed observations indicates that the critical flux
Richardson number should be close to 0.25. However, this value is still uncertain.
For flux Richardson numbers larger than this value the transition from turbulent to
laminar flow takes place. The flux Richardson number will be fundamental to the
discussion of stability in the next few sections.

13.3 The Monin–Obukhov similarity theory of the neutral Prandtl layer

Before deriving various relationships for the non-neutral or diabatic Prandtl layer
we will summarize some conditions and relations pertaining to neutral stratifi-
cation. The relationships for the neutral Prandtl layer will then be generalized to
accommodate arbitrary stratifications. In case that the Prandtl layer is characterized
by static neutral stratification we may write

∂θ̃

∂z
= 0, T∗ = 0, J θ

t = H = 0 =⇒ Rif = Ri = 0 (13.37)

As stated in equations (13.12) and (13.24) the stress τ , the heat flux H , and the
moisture flux Q do not change with height within the Prandtl layer. For reasons
of symmetry we will also assume that the quantity E as defined in (13.13) will be
constant with height so that we have

∂E

∂z
= 0,

∂H

∂z
= 0,

∂Q

∂z
= 0,

∂τ

∂z
= 0 (13.38)

Using the conditions stated in (13.37) and (13.38), the budget equations for the
turbulent kinetic and internal energy (13.25) reduce to

τ
∂û

∂z
= ε,

∂W

∂z
= ε =⇒ ∂W

∂z
= τ

∂û

∂z
= ρu2

∗
∂û

∂z
(13.39)



13.3 The Monin–Obukhov similarity theory of the neutral Prandtl layer 359

On multiplying this equation by the factor z/(ρu3
∗) we obtain

z

ρu3
∗

∂W

∂z
= zε

ρu3
∗

= z

u∗

∂û

∂z
= z

∂

∂z

(
û

u∗

)
(13.40)

This equation will be the starting point for some of the analysis to follow.
The reader unfamiliar with the fundamental ideas of similarity theory is invited to

consultAppendixA to this chapter. There theBuckingham� theorem is introduced,
where � is a dimensionless number. This theory is a useful tool in many branches
of science.The Monin–Obukhov (MO) similarity hypothesis (Monin and Obukhov,
1954) consists of two essential parts.

(i) In the neutral Prandtl layer there exists a unique relation among the height z, the
frictional velocity u∗, and the vertical velocity gradient ∂û/∂z:

F1

(
z, u∗,

∂û

∂z

)
= 0 (13.41)

From dimensional analysis it can be shown that there exists a dimensionless number
� so that we have

� = z

u∗

∂û

∂z
= 1

k
or

kz

u∗

∂û

∂z
= 1 (13.42)

The universal constant k = 0.4 is the Von Karman constant. Details are given in
Appendix A, Example 1.

(ii) In analogy to (13.41) we assume that corresponding statements are true for the temper-
ature distribution:

F2

(
z, T∗,

∂θ̃

∂z

)
= 0,

kz

T∗

∂θ̃

∂z
= 1 (13.43)

and for the moisture distribution:

F3

(
z, q∗,

∂q̂

∂z

)
= 0,

kz

q∗

∂q̂

∂z
= 1 (13.44)

Equation (13.43) must be viewed as a limit statement since both T∗ and ∂θ̃/∂z are zero
in the neutral Prandtl layer. Equations (13.43) and (13.44) will not be needed at present
but will be used later.

A number of interesting and important conclusions may be drawn from the MO
similarity theory.
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13.3.1 The functions û, ε, andW

From (13.40) and (13.42) it follows immediately that

kz

ρu3
∗

∂W

∂z
= kz

u∗

∂û

∂z
= kz

∂

∂z

(
û

u∗

)
= 1 (13.45)

Integration of the last equation of (13.45) gives the well-known logarithmic wind
profile:

û(z) = u∗
k

ln

(
z

z0

)
, û(z = z0) = 0, z ≥ z0 (13.46)

At the roughness height z0 the wind speed vanishes. There exist extensive tables in
which values of the estimated roughness height are given. For example, for short
grass z0 is in the range 0.01–0.04 m, whereas for long grass z0 = 0.10 m might be
an acceptable value.

Similarly we find expressions for W :

W (z) −W (z0) = ρu3
∗

k
ln

(
z

z0

)
, z ≥ z0 (13.47)

so that the dissipation of energy ε from (13.39) is given by

ε(z) = ρu3
∗

kz
, z ≥ z0 (13.48)

We need to point out that the Prandtl-layer theory does not permit the evaluation
of W (z0).

13.3.2 The phenomenological coefficientKv

We are now ready to obtain an expression for the exchange coefficient Kv for the
neutral Prandtl layer. From (13.26) and (13.28) we obtain

Kv = u2
∗

∂û/∂z
, z ≥ z0 (13.49)

which is valid for the diabatic and for the neutral Prandtl layer. Utilizing (13.45)
we immediately find for the neutral Prandtl layer

Kv = kzu∗, z ≥ z0 (13.50)

showing that, within the neutral Prandtl layer, the exchange coefficient increases
linearly with height. This is the assumption we have made in Section 12.6.
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13.3.3 The characteristic length or the mixing length

The ratio formed by the frictional velocity and the vertical gradient of the horizontal
velocity has the dimension of a length. We use this ratio to define the mixing length
l for neutral conditions:

l = u∗
∂û/∂z

=⇒ l = kz (13.51)

The last expression follows immediately from (13.45). Later we will assume that
the first expression is also valid in the diabatic Prandtl layer. The physical meaning
of the mixing length will be briefly illuminated in Appendix B of this chapter. From
(13.28) and (13.51) we find

τ = ρu2
∗ = ρl2

(
∂û

∂z

)2
(13.52)

Using the definition of the mixing length, equations (13.48) and (13.50) can be
rewritten as

ε = ρu3
∗

l
, u∗ = Kv

l
=⇒ ε = ρ (Kv)3

l4
(13.53)

showing the relation among the dissipation of energy, the exchange coefficient, and
the mixing length. Finally, we can rewrite (13.53) to obtain

(Kv)2 = ε

ρ

l4

Kv
(13.54)

In (12.59b) we have derived the Heisenberg relation for the exchange coefficient
from spectral analysis using the conditions of isotropic turbulence. This relation
may be written as

(Kv)2 = εM
b3l4

aKv
= εM

(l′)4

Kv
(13.55)

For ease of comparison we have introduced the mixing length (l′)2 = l2
√
b3/a into

this equation.Apart froma constant that includes the density, these two formulations
obtained in entirely different ways are identical. Therefore, equation (13.54) is also
known as Heisenberg’s relation. This leads us to assume that (13.54) is valid also
for non-neutral conditions.

Finally, we will derive another formula for the mixing length, which is attributed
to Von Karman. We proceed as follows. We differentiate (13.45) with respect to z

and recall that the frictional velocity is a constant. This yields

∂2û

∂z2
= −k

l

∂û

∂z
(13.56)
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From (13.45), (13.50), and (13.54) we obtain

∂û

∂z
= Kv

l2
=
√

ε

ρKv
(13.57)

The latter two equations lead directly to the Von Karman relation of the mixing
length:

l = −k

∂û

∂z

∂2û

∂z2

= − k

∂

∂z

[
ln

(
∂û

∂z

)] = − 2k
∂

∂z

[
ln

(
ε

ρKv

)] (13.58)

We should realize that the two definitions of the mixing length (13.51) and (13.58)
are not independent of each other. If we try to extrapolate the mixing-length
formulas of the neutral Prandtl layer to the non-neutral or diabatic Prandtl layer we
must select one of these formulations.

13.4 The Monin–Obukhov similarity theory of the diabatic Prandtl layer

We will now consider the diabatic or non-neutral Prandtl layer. The starting point
of the analysis is the general Prandtl-layer energy budget. Addition of the last two
equations of (13.25) and utilizing (13.51) and (13.52) results in

∂E

∂z
+ ∂W

∂z
= ∂E

∂z
+ ε + ρgu∗T∗

T
= ρu2

∗
∂û

∂z
(13.59)

where we have expressed the heat flux according to (13.28). We consider not
only the density to be independent of height but also the average temperature T

whenever it appears in undifferentiated form. We multiply all terms of this equation
by kz/
(
ρu3

∗
)
and find the relations

kz

ρu3
∗

∂E

∂z
+ kz

ρu3
∗

∂W

∂z
= kz

ρu3
∗

∂E

∂z
+ kzε

ρu3
∗

+ kzgT∗
u2

∗T
= kz

u∗

∂û

∂z
(13.60)

Each term of this equation now is dimensionless, which is most easily verified by
inspecting the last term on the right-hand side. The last term on the left-hand side
can be written as z/L∗, where L∗ has the dimension of a length with

L∗ = u2
∗T

gkT∗
= −ρcp,0u

3
∗T

gkH
(13.61)
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This length is known as the Monin–Obukhov length and is of special significance
in the work to follow. Within the Prandtl layer L∗ is a height-independent quantity.
Inserting L∗ into (13.60) gives

kz

ρu3
∗

∂E

∂z
+ kz

ρu3
∗

∂W

∂z
= kz

ρu3
∗

∂E

∂z
+ kzε

ρu3
∗

+ z

L∗
= kz

u∗

∂û

∂z
(13.62)

We introduce the dimensionless vertical coordinate

ξ = z/L∗ (13.63)

Any function S depending solely on ξ and possibly on universal numbers is called
a Monin–Obukhov function:

S(ξ ) = S

(
z

L∗

)
(13.64)

The basic idea of the similarity theory of the diabatic Prandtl layer is that the
relationship (13.41) pertaining to the neutral atmosphere may be extended to the
non-neutral atmosphere by including the variableL∗ in the wind-profile analysis. In
otherwords, it is assumed that there exists a unique relationship among the variables
z, u∗, ∂û/∂z, and L∗. The functional relation describing this is expressed by

F

(
z, u∗,

∂û

∂z
, L∗

)
= 0 (13.65)

Using dimensionless analysis, we show in Appendix A, Example 2, that the last
expression of (13.62) is a MO function. Furthermore, the MO theory also assumes
that not only the last term of (13.62) but also every other term occurring in this
equation is a MO function so that we may write

kz

u∗

∂û

∂z
= Su(ξ ),

kz

ρu3
∗

∂E

∂z
= SE(ξ )

kz

ρu3
∗

∂W

∂z
= SW (ξ ),

kzε

ρu3
∗

= Sε(ξ )
(13.66)

By integrating the first of these equations we obtain the vertical wind profile of the
diabatic Prandtl layer. This topic will be discussed later. Using these definitions
equation (13.62) can now be rewritten in the form of two independent equations:

SE(ξ ) + SW (ξ ) = SE(ξ ) + Sε(ξ ) + ξ = Su(ξ ) (13.67)

In order to obtain information on the temperature profile and on the specific hu-
midity profile we additionally assume relations anlogous to (13.66):
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Table 13.1. Sign conventions for various quantities as functions of the
atmospheric stratification

Stratification ∂θ̃/∂z H T∗, ξ, Rif L∗

Stable >0 <0 >0 >0
Neutral 0 0 0 ±∞
Unstable <0 >0 <0 <0

kz

T∗

∂θ̃

∂z
= ST (ξ ),

kz

q∗

∂q̂

∂z
= Sq(ξ ) (13.68)

We close this section by summarizing in Table 13.1 the sign conventions for
various important quantities. It will be seen, for example, that, for stable and
unstable stratifications, the heat flux H and the MO length L∗ have opposite signs.
For neutral conditions the heat flux is zero and L∗ is ±∞. An important reference
is Obukhov (1971), who reviews the basic concepts of the similarity theory.

13.4.1 The determination of the Monin–Obukhov functions

We recall that there exist only two independent equations (13.67) to determine the
fourMO functionsSE(ξ ), Sε(ξ ), Su(ξ ), andSW (ξ ). Therefore, itwill be necessary to
make additional assumptions. Since L∗ approaches ±∞ for neutral conditions, the
dimensionless height ξ approaches zero and the MO functions (with the exception
of SE(ξ )) must be equal to unity so that they reduce to the corresponding relations
of the neutral Prandtl layer. In summary, we have for ξ = 0

kz

u∗

∂û

∂z
= 1 =⇒ Su(ξ = 0) = 1

kz

ρu3
∗

∂W

∂z
= 1 =⇒ SW (ξ = 0) = 1

kzε

ρu3
∗

= 1 =⇒ Sε(ξ = 0) = 1

kz

ρu3
∗

∂E

∂z
= 0 =⇒ SE(ξ = 0) = 0

kz

T∗

∂θ̃

∂z
= 1 =⇒ ST (ξ = 0) = 1

kz

q∗

∂q̂

∂z
= 1 =⇒ Sq(ξ = 0) = 1

(13.69)
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Next we will introduce the definition of the MO length L∗ into the flux Richardson
number (13.34). This results in

Rif = ξ

kz

u∗

∂û

∂z

= ξ

Su(ξ )
(13.70)

showing that the MO function Su(ξ ) for the velocity may be expressed in terms of
the dimensionless number Rif .

On the basis of observational data various empirical relations have been proposed
for the various MO functions. For Su(ξ ) we use

Su(ξ ) = (1 − 2αRif)
−1/4 ≈ 1 + α

2
Rif ≈ 1 + α

2
ξ with α = 7 (13.71)

which is due to Ellison (1957). Utilizing only the first two terms of the expansion
of the fourth root we obtain an expression attributed to Monin and Obukhov
(1954). This approximation will now be used to generalize the logarithmic wind
law (13.46). From (13.66) we find immediately

kz

u∗

∂û

∂z
= Su(ξ ) = 1 + α

2
ξ (13.72)

Integration with respect to height gives

û = u∗
k

[
ln

(
z

z0

)
+ α(z − z0)

2L∗

]
(13.73)

which is known as the log–linear wind profile. Since the expansion of the MO
function Su(ξ ) was discontinued after the linear term, we may expect reasonable
accuracy in the reproduction of the wind field only for conditions not too far
removed from neutral stratification. Figure 13.3 shows qualitatively the vertical
wind profile in the Prandtl layer for stable, neutral, and unstable stratification. For
unstable stratification with L∗ < 0 the wind speed for a given height is less than
that for neutral conditions. For stable stratification with L∗ > 0 the wind speed for
a given height is larger than that for neutral conditions.

13.4.2 The KEYPS and the extended KEYPS formula

There exists a semi-empirical equation for the determination of Su, which is known
as the KEYPS formula. This curious name is the contraction of the names of the
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Fig. 13.3 Logarithmic and log–linear wind profiles for different stratifications.

five scientists Kondo, Ellison, Yamamoto, Panowski, and Sellers who derived this
formula independently. Since this equation is used frequently for Prandtl-layer
investigations it will be derived next. All that needs to be done is to take the fourth
power of (13.71), yielding

S4
u − 2αξS3

u = 1 (13.74)

Solutions to this equation give information on the MO function Su. Some remarks
on this formula may be helpful. There should be agreement between the KEYPS
formula and the more general equation (13.67). On multiplying this equation by
S3
u we obtain

S4
u − ξS3

u

(
1 + SE

ξ

)
= SεS

3
u (13.75)

Agreement with the KEYPS formula requires the validity of

SεS
3
u = 1, 1 + SE

ξ
= 2α (13.76)

as follows from comparison with (13.74). Replacing both MO functions in the first
equation of (13.76) with the help of (13.66) yields

kzε

ρu3
∗

=


 u∗

kz
∂û

∂z




3

=
(

Kv

kzu∗

)3
(13.77)

where (13.49) has also been used to eliminate ∂û/∂z. We now compare (13.77)
with (13.54), which is considered a valid statement since it can also be derived
from spectral theory without using Prandtl-layer assumptions. We find agreement
only if the mixing length in the diabatic Prandtl layer is also given by l = kz. This
result, however, is in conflict with equation (13.51) due to (13.66). Therefore, some
criticism of the KEYPS equation or of Ellison’s formula (13.71) is justified.
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Finally, let us consider (13.67) showing the expected relation between SE(ξ ) and
the other MO functions. Measurements indicate that, at least in the unstable Prandtl
layer, the MO function SE does not linearly depend on ξ as required by (13.76).

In the following we will attempt to eliminate the defect in the KEYPS equation.
The starting point of the analysis is (13.53). A relationship of this form was also
derived from spectral analysis (see also (13.55)) for the special case of isotropic
turbulence but independent of Prandtl-layer assumptions. Therefore, we have rea-
son to believe that (13.53) can be generalized. On combining this equation with
(13.49), which is valid for the diabatic as well as for the neutral Prandtl layer, we
obtain

ε

ρ
= u6

∗

l4

(
∂û

∂z

)3 =⇒ kzε

ρu3
∗

(
l

kz

)4
=
[
kz

u∗

(
∂û

∂z

)]−3

(13.78)

In this equation the characteristic or mixing length l is still undetermined. In fact,
all we know about the mixing length is that l = kz in the neutral Prandtl layer. By
introducing into (13.78) the MO relations (13.66) we obtain

Sε

(
l

kz

)4
= 1

S3
u

or

(
l

kz

)4
= 1

SεS3
u

(13.79)

Since Sε(ξ ) and Su(ξ ) depend only on the dimensionless height, we consider the
expression l/(kz) as the definition of another MO function, that is

Sl(ξ ) = l

kz
, Sl(ξ = 0) = 1 (13.80)

We also require that Sl(ξ = 0) = 1 since in the neutral case l/(kz) = 1. Thus,
we have introduced an additional MO function that is related to Sε and Su. From
(13.79) we find

SεS
3
uS

4
l = 1 (13.81)

which should also be valid in the diabatic Prandtl layer. This relation makes it
possible to eliminate Sε(ξ ) from the budget equation (13.67). Substitution of Sε(ξ )
then gives

SE + Sε + ξ = SE + 1

S4
l S

3
u

+ ξ = Su (13.82)

Rewriting the latter expression results in the extended KEYPS equation:

S4
u − ξS3

u

(
1 + SE

ξ

)
= 1

S4
l

(13.83)
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This equation is considered to be rigorously correct within the framework of
the Prandtl-layer theory. Unless we are able to determine Sl as a function of
the dimensionless height we have not gained anything. There exists an empirical
relation for Sl due to Takeuchi and Yokoyama (1963), which reduces to Sl(ξ =
0) = 1 as it should. However, in some parts of the unstable Prandtl layer problems
arise with that empirical formula. In the following we are not going to discuss this
formula, but we will try to find an analytic relation between Sl and Su(ξ ).

13.4.3 An analytic relation between the MO Functions Sl and Su

In order to find an analytic relation between Sl and Su we must first derive a relation
for the mixing length that is valid also in the diabatic atmosphere. We may select
either the Prandtl relation (13.51) or the Von Karman relation (13.58). These two
equations are not independent in the neutral Prandtl layer. First we use the Prandtl
relation. Dividing (13.51) by kz and utilizing (13.66) and (13.80) gives

l

kz
= 1

kz

u∗

∂û

∂z

= 1

Su
=⇒ l = kz

Su
, Sl = 1

Su
(13.84)

It is more difficult but also straightforward to apply the Von Karman relation
(13.58). On rewriting the logarithm in (13.58) by means of (13.49), (13.66), and
(13.81) as

ε

ρKv
= SεSuu

2
∗

(kz)2
= u2

∗(
kzS2

l Su
)2 (13.85)

we obtain from the Von Karman relation (13.58)

l = − 2k
∂

∂z

[
ln

(
ε

ρKv

)] = k

∂

∂z

[
ln
(
zS2

l Su
)] =⇒

Sl = l

kz
= 1

z
∂

∂z

[
ln
(
zS2

l Su
)] = 1

ξ
d

dξ

[
ln
(
ξS2

l Su
)] = 1

1 + 2ξ

Sl

dSl

dξ
+ ξ

Su

dSu

dξ

(13.86)
since ξ = z/L∗ and L∗ = constant. The last equation may be rewritten as

2ξ
dSl

dξ
+ Sl

(
1 + ξ

Su

dSu

dξ

)
= 1 (13.87)

This ordinary linear differential equation can be solved without difficulty by stan-
dard methods. The solution is

Sl(ξ ) = 1

2
√
ξSu(ξ )

∫ ξ

0

√
Su(ξ ′)

ξ ′ dξ ′ (13.88)
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We will now summarize how we find the various MO functions. Suppose that
the function Su is known. An empirical formula for Su will be given soon. Then Sl
can be found either from (13.84) or from (13.88). Sε then follows from (13.81) and
SE and SW from (13.67). The MO functions ST and Sq (13.68) cannot be found in
this manner, but must be obtained in some other way.

From numerous measurements various empirical formulas have been derived for
the MO functions. Frequently the so-called Dyer–Businger equations are used to
state Su for stable, neutral, and unstable stratification. These are

Su = 1 + 5ξ ξ ≥ 0, stable stratification

Su = (1 − 15ξ )−1/4 ξ ≤ 0, unstable stratification
(13.89)

The MO function ST for the transport of sensible heat is usually given in the form

ST = (1 + 5ξ ) ξ ≥ 0, stable stratification

ST = (1 − 15ξ )−1/2 ξ ≤ 0, unstable stratification
(13.90)

Moreover, often it is assumed that Sq = ST .
A search of the literature shows that not all authors use identical empirical

equations for the MO functions but mostly something similar to them. Let us
now turn to the defining equation (13.35) of the Prandtl number. Measurements
show that, for neutral conditions, this number should be close to 1.35. Sometimes
the right-hand sides of (13.90) are multiplied by the factor 1/1.35 = 0.74. This,
however, would violate the requirement ST (ξ = 0) = 1.

13.5 Application of the Prandtl-layer theory in numerical prognostic models

A brief outline of how the Prandtl-layer theory can be applied to numerical weather
prediction andmesoscale analysiswill be given. The lowest surface of the numerical
grid within the atmosphere is selected to coincide with the roughness height z0,
which is assumed to be known. A neighboring surface is fixed somewhere within
the Prandtl layer, for example, at the height h. We assume that the numerical model
is capable of calculating mean values of the horizontal velocity, the temperature (or
potential temperature), the density, the pressure, and the specific humidity at these
two surfaces. These mean variables are called the external parameters whereas L∗
is known as an internal parameter. By the methods of the previous section we are
in a position to calculate all required MO functions. Let us assume that all of these
are at our disposal when needed. On integrating the relations (13.66) and (13.68)
between the roughness height z0 and h we find
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û(h) = u∗
k

∫ h

z0

Su(ξ )
dz

z
, û(z0) = 0

θ̃(h) − θ̃(z0) = T∗
k

∫ h

z0

ST (ξ )
dz

z
with ξ = z

L∗

(13.91)

The left-hand sides are the external parameters which are considered known. The
scaling parameters, the undifferentiated temperature, and the density are treated
as constants in the height integrations within the Prandtl layer. With (13.61) and
(13.91) we have three equations for the determination of u∗, T∗, and L∗. The
solution of this system is best carried out by an iterative procedure. Momentarily
let us assume that the MO functions Su and ST can be expressed as linear functions
of ξ , which is the case for the stable Prandtl layer as expressed by (13.89) and
(13.90). For the unstable case the expansion of the MO functions would have to
be discontinued after the linear term. Therefore, we may write for the two MO
functions the following two expressions:

Su ≈ 1 + αuξ, ST ≈ 1 + αT ξ (13.92)

The quantities αu and αT are the expansion coefficients.
By substituting (13.92) into (13.91) we may carry out the integration. The result

is

û(h) = u(n)
∗
k

[
ln

(
h

z0

)
+ αu(h − z0)

L
(n−1)
∗

]

θ̃(h) − θ̃(z0) = T (n)
∗
k

[
ln

(
h

z0

)
+ αT (h − z0)

L
(n−1)
∗

]

L(n−1)
∗ = T

gk

(
u2

∗
T∗

)n−1

, L(0)
∗ = ∞

(13.93)

The first equation of (13.93) was already stated earlier in (13.73) and describes the
log–linear wind profile. Since the system (13.93) must be solved iteratively for u∗
and T∗, we have added the iteration index as the superscript n. With the exception
of u∗ and T∗ all remaining quantities are known. The heights z0 and h are specified.
The scaling height L∗ is evaluated at the previous time step. To get the iteration
started, we assume that we have neutral conditions so that L(0)

∗ = ∞. Equations
(13.93) can be easily solved for u(n)

∗ and T (n)
∗ . Let us now assume that u∗, T∗, and

L∗ have been found by iterating sufficiently many times that u∗ and T∗ no longer
change within a prescribed tolerance. This is sufficient to calculate the stress τ and
the heat flux H from equation (13.28).

If the linear expansions of theMO functionsSu andST are considered insufficient,
for unstable stratification the full expressions must be used. Equation (13.91) can
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still be solved by the same iterative procedure, but the integrals must be solved
numerically. The remaining undetermined quantities will be discussed in the next
section.

13.6 The fluxes, the dissipation of energy, and the exchange coefficients

The MO function SW can be computed as described in Section 13.4.3 and is
considered known. The height integration of (13.66) results in

W (h) −W (z0) = ρu3
∗

k

∫ h

z0

SW
dz

z
(13.94)

The definition of this heat flux is given by (13.24). Owing to the pressure fluctuation
�′, W is expected to be very small and often may be neglected altogether. W (z0)
is unknown and cannot be determined from Prandtl-layer theory. We assume that
the turbulent part of W (z0) vanishes and approximate W (z0) by the molecular
conduction of heat as

W (z0) = −lc

(
∂T

∂z

)
z0

≈ −lc
T (h) − T (z0)

h − z0
(13.95)

where lc is the heat-conduction coefficient.
The quantityE appearing in the budget equation (13.25) for the turbulent kinetic

energy cannot be calculated from the differential equation (13.66) since an integra-
tion constant for some point in the Prandtl layer is not available. The calculation of
E, however, is not at all necessary since it does not appear in the prognostic system.
It does, however, appear in the prognostic equation for the turbulent kinetic energy
k̂, which is a subgrid quantity; see (11.46) and (13.13).

The dissipation of energy ε given in (13.66) can be determined for all heights in
the Prandtl layer since the MO function Sε is considered known.

The flux of water vapor Q can be found from (13.28). q∗ is obtained by solving
the corresponding differential equation (13.68). Integration gives

q̂(h) − q̂(z0) = q∗
k

∫ h

z0

Sq
dz

z
(13.96)

Since q(h) and q(z0) are known external parameters and the MO function Sq = ST

is known also, the height-constant scaling parameter q∗ can be calculated and then
be substituted into (13.28) to find the moisture flux.

Most mesoscale models resolve the Prandtl layer by including additional grid
surfaces. The phenomenological coefficients, i.e. the exchange coefficients, may
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Fig. 13.4 Height profiles of the exchange coefficient.

be determined easily for these grid surfaces. There exist two formulas from which
each exchange coefficient can be found. Kv is obtained from (13.49) and (13.66);
Kθ and Kq follow from combining the relations listed in (13.26), (13.28), and
(13.68). In summary we have

Kv = u2
∗

∂û

∂z

= kzu∗
Su(ξ )

, Kθ = u∗T∗
∂θ̃

∂z

= kzu∗
ST (ξ )

, Kq = u∗q∗
∂q̂

∂z

= kzu∗
Sq(ξ )

(13.97)
The vertical distribution of the exchange coefficient Kv is shown qualitatively

in Figure 13.4. For a given height Kv is smaller for stable than it is for neutral and
unstable stratification.

13.7 The interface condition at the earth’s surface

The starting point in the derivation is the prognostic equation (11.49) for the
enthalpy. Owing to the Prandtl-layer condition (13.5) the budget operator vanishes.
We make the addtional assumption that only isobaric processes are admitted and
that transitions between the turbulent kinetic energy and the internal energy do not
take place. In view of Figure 13.2 and equation (12.63) we may summarize the
situation by writing

D̂

Dt

(
ρĥ
) = 0,

d̂ p

dt
= 0, v′′ · ∇p + ε = Jθt · ∇ ln �̃ + ε = 0 (13.98)

where H = J θ
t . With these assumptions equation (11.49) reduces to the following

divergence expression:

∇ ·
[
Jhs,t + J

h

s +
(
Jnt + J

n
)̃
hn + FR

]
= 0 (13.99)

where the sensible enthalpy fluxes defined in (11.61) have been used. According to
equation (9.6) we must replace the regular divergence by the surface divergence,
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which is repeated for convenience:

∇ · Ψ −→ i3 · (Ψa − Ψg) (13.100)

The subscripts a and g stand for atmosphere and ground. By ignoring within

the atmosphere the mean molecular sensible enthalpy flux J
h

s and replacing the
turbulent sensible enthalpy flux Jhs,t by means of (11.69) we find

i3 ·
(
Jhs,t + J

h

s

)
a
= i3 · (Jθt + J�t

) = J θ
t (13.101)

The turbulent Exner flux J�t vanishes since only isobaric processes are admitted.
Assuming that fog does not form, we use the Prandtl-layer formulation (13.20)
together with (13.24) to obtain for the enthalpy term

i3 ·
[(

Jnt + J
n
)̃
hn

]
a
= l21Q (13.102)

Turbulent and latent heat fluxes within the ground are ignored so that

i3 ·
[
Jhs,t + J

h

s +
(
Jnt + J

n
)̃
hn

]
g
= i3 · Jhs,g = −ρgcgKgi3 · ∇Tg = −ρgcgKg

∂Tg

∂z

(13.103)

The terms ρg and cg are the density and specific heat of the ground while Kg is the
thermal diffusivity coefficient. The radiative net flux is given by

i3 · FR = σT 4
S − Fs − Fl (13.104)

where TS in the Stefan–Boltzmann law refers to the surface temperature of the
earth. Fs is the short-wave global net flux (accounting for the albedo of the ground)
and Fl is the long-wave downward flux. The heat balance at the earth’s surface is
then given by

σT 4
S − Fs − Fl + J θ

t − l21Q+ ρgcgKg
∂Tg

∂z
= 0 (13.105)

In this equation all energy fluxes directed from the surface into the atmosphere or
into the ground are counted as positive.

A more complete formulation of the heat balance at the earth’s surface and the
moisture balance within the soil is given by Panhans (1976), for example. All
modern investigations include the treatment of a vegetation–soil model; see for
example Deardorff (1978), Pielke (1984), Sellers et al. (1986), and Siebert et al.
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(1992). Owing to the complexity of such models, we refrain from discussing this
subject.

We will give a simple example of a heat-transport problem to which the surface-
balance equation (13.105) can be applied. We assume nocturnal conditions and
ignore latent-heat effects. Often the wind profile in the surface layer may be ex-
pressed by the power law

û = û1

(
z

z1

)m
with m =

{
0.3 strong stable stratification
0.14 neutral stratification
0.05 strong unstable stratification

(13.106)

where the stability exponents have been obtained from observations. z1 is the
anemometer height at which the wind velocity is measured. We wish to find the
corresponding vertical profile of the exchange coefficient. Assuming constant val-
ues of τ and ρ, we obtain from (13.26) and (13.106)

τ

ρ
= Kv

∂û

∂z
,

1

û

∂û

∂z
= m

z
=⇒ Kv = az1−m, a = τzm1

ρ û1m
= constant

(13.107)

The heat equation (11.60) will be strongly simplified by assuming that we have a

dry-air atmosphere and by ignoring the molecular heat flux J
h

s . Furthermore, let us
disregard the transformation between the turbulent kinetic and the internal energy
so that the heat equation reduces to the simple form

ρcp,0
T

θ̃

d̂ θ̃

dt
+ ∇ · Jhs,t = 0 (13.108)

In this simple case we assume that Jhs,t may be parameterized analogously to
equation (13.26). Ignoring the advection of the potential temperature θ̃ , we find
with T ≈ θ̃

∂θ̃

∂t
= ∂

∂z

(
az1−m

∂θ̃

∂z

)
(13.109)

For the soil a similar equation is valid:

∂Tg

∂t
= Kg

∂2Tg

∂z2
(13.110)

These two equations have been the starting point of many investigations of the
calm nocturnal boundary layer. These two one-dimensional equations are coupled
by means of the interface condition

−ρgcgKg
∂Tg

∂z
= −aρcp,0z

1−m
∂θ̃

∂z
+ RN, z = 0, t > 0 (13.111)
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with RN = σT 4
S −Fl, a = 0.07 andm = 1

3 . In this equation vertical gradients must
be understood as limit statements. The radiative net flux at the ground is computed
with the help of some radiative-transfer model fully accounting for the presence of
absorbing and emitting gases. The reader will notice the internal inconsistency in
the system (13.111) since the derivation of (13.109) assumed that we have a dry
atmosphere that does not absorb and emit any infrared radiation. This imperfection
must be accepted if we wish to tackle the problem analytically. The solution of
this problem is not trivial by any means, but may be obtained with the help of
Laplace transforms. Omitting details, which may be found in Zdunkowski and
Kandelbinder (1997), here we just present the solution as

θ̃(z, t) = θ̃ 0 −
RN(n)m/n exp

(
− zn

2an2t

)

ρcp,05

(
1

n

)
a1/(2n)z1/2

∞∑
l=0

(−1)lδ−(1+l)tαW−α,β

(
zn

n2at

)

with α = m + 2 + l(1 − m)

2n
, β = m

2n
, n = m+ 1

δ =
ρgcg

√
Kg5
(m
n

)

ρcp,05

(
1

n

)
a1/nn(1−m)/n

(13.112)
The potential temperature θ̃0 is the constant-height initial potential temperature.
The function Wα,β(z) is the Whitaker function, which can be computed directly or
evaluated with the help of tables given in theHandbook of Mathematical Functions
by Abramowitz and Segun (1968). The change of the potential temperature with
time after sunset is shown in Figure 13.5. A numerical model (discussed in the
original paper) is also used to show the influence of the radiative heating of the air,
which is very small. This justifies to some extent the dry-air assumption leading to
(13.109). Figure 13.5 shows that the cooling of the air is strongest near the earth’s
surface.

13.8 The Ekman layer – the classical approach

The major characteristics of the Ekman layer were listed in the introduction to
this chapter. Many successful numerical studies, too numerous to list here, were
performed in order to simulate the temperature and the wind fields of the entire
boundary layer. These studies were based on the use of different types of closure
assumptions to simulate the eddy exchange coefficient. Figure 13.6 shows a typical
height distribution of the exchange coefficientK after O’Brien (1970). In the lower
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Fig. 13.5 Changes of the potential temperature with time counted from sunset at various
heights with (dashed lines) and without (solid lines) radiative heating.

part of the boundary layer K increases more or less linearly with height until it
reaches a maximum valueKmax at h1. Above h2 the exchange coefficient decreases
with height.

There is a region between the linear increase and the linear decrease where K
is approximately constant with height. The linear approximation of K shown in
Figure 13.6 will be used below to obtain an analytic solution of the wind field.
First we will present Taylor’s (1915) very simple analytic solution, which is based
on the assumption that the exchange coefficient is constant with height throughout
the entire boundary layer. The Taylor solution is already capable of capturing the
gross features of the wind profile in the Ekman layer.

The starting point of the analysis is the averaged equation of motion (11.35d):

D̂

Dt
(ρ v̂) + ∇ · (pE − J − R) = −ρ(∇φ + 2Ω × v̂) (13.113)

The theory considers only the mean horizontal motion, which is subjected to vari-
ous constraints in order to obtain a simple solution of the verticalwind profile. These
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Fig. 13.6 Typical height variation of the exchange coefficient in the boundary layer (full
line) and the linear approximation (dashed line). At the top of the boundary layer a
residual value is expected.

constraints are

d̂ . . .

dt
= 0, ρ = constant, Kv

v = K = constant, v̂ = v̂h(z), ŵ = 0

(13.114)

Thus the acceleration of the mean horizontal wind is zero while the density and
the exchange coefficient are independent of spatial coordinates. Moreover, it is
assumed that the geostrophic wind is independent of height and that the actual
wind becomes geostrophic as z approaches infinity. These assumptions imply that
the horizontal pressure gradient is constant with height also. Application of (11.92)
results in

∇ · (J + R) = i3 · ∂

∂z

[
ρK

(
i3
∂ v̂h

∂z
+ ∂ v̂h

∂z
i3

)]
= ρK

∂ 2̂vh

∂z2
(13.115)

where v̂h = ûi + v̂j.
The equation of motion for the tangential plane (2.38) will now be modified

by including the conditions (13.114) and by adding frictional effects according to
(13.115). On replacing (u, v) by the average values (̂u, v̂) we find

−f v̂ = − 1

ρ

∂p

∂x
+K

∂2û

∂z2

f û = − 1

ρ

∂p

∂y
+K

∂2v̂

∂z2

(13.116)
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As the next step we replace the components of the pressure-gradient force by the
corresponding components of the geostrophic wind:

ug = − 1

ρf

∂p

∂y
, vg = 1

ρf

∂p

∂x
,

since vg = 1

ρf
er × ∇hp

(13.117)

We choose our coordinate system in such a way that the pressure does not vary in
the x-direction so that vg vanishes. Substituting (13.117) into (13.116) gives the
following coupled system of second-order linear differential equations:

K
d2û

dz2
= −f v̂, K

d2v̂

dz2
= f (̂u − ug) (13.118)

Since z is the only independent variable, we have replaced the partial by the
total derivative. These two equations can be combined to give a single equation by
multiplying the second equation of (13.118) by

√−1 = i and then adding the result
to the first equation. This gives the following second-order differential equation:

d2

dz2
(̂u + iv̂ − ug) − if

K
(̂u + iv̂ − ug) = 0 (13.119)

since the geostrophic wind was assumed to be height-independent. The general
solution of (13.119) is easily found by standard methods and is given by

û + iv̂ − ug = C1 exp

(√
if

K
z

)
+ C2 exp

(
−
√
if

K
z

)

= C1 exp

(√
f

2K
z

)
exp

(
i

√
f

2K
z

)

+ C2 exp

(
−
√

f

2K
z

)
exp

(
−i

√
f

2K
z

)
(13.120)

since
√
i = (1+ i)/

√
2. Application of the boundary conditions at z = 0, û+ iv̂ =

0, and at z −→ ∞, û + iv̂ = ug, gives the required integration constants C1 = 0
and C2 = −ug, and (13.120) results in

û + iv̂ = ug{1 − exp(−Az) [cos(Az) − i sin(Az)]} with A =
√

f

2K
(13.121)
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Fig. 13.7 The Ekman spiral, showing turning of the wind vector with height.

The solution may be separated by comparing the real and imaginary parts:

û = ug

[
1 − exp(−Az) cos(Az)

]
, v̂ = ug exp(−Az) sin(Az) (13.122)

Taking v̂ as the ordinate and û as the abscissa we obtain a nomogram, which is
displayed in Figure 13.7. This nomogram is the celebrated Ekman spiral showing
that the wind vector is turning clockwise in the northern hemisphere. For various
heights the horizontal wind vector is shown, indicating that, with increasing height,
the horizontal wind approaches the geostrophic wind. The largest cross-isobar
angle α0 is found at the earth’s surface. α0 can be found from the ratio of the
wind-vector components. For z = 0 this gives an indeterminant form 0/0. By
using (13.122) and applying L’Hospital’s rule we find

tanα0 = lim
z→0

(
v̂

û

)
= lim

z→0

(
ug exp(−Az) sin(Az)

ug

[
1 − exp(−Az) cos(Az)

]
)

= 1 =⇒ α0 = 45◦

(13.123)
This value is too large and does not agree with observations. The height at which
the actual wind coincides for the first time with the direction of the geostrophic
wind is known as the geostrophic wind height zg. There the wind speed exceeds
the geostrophic wind by a few percent. The height of the planetary boundary layer
is often defined by zg. From the condition v̂(zg) = 0, implying that Azg = π , we
find the height of the boundary layer as

zg = π/A (13.124)

Assuming that K = 5 m2 s−1, which is a reasonable midlatitude value, and f =
10−4 s−1 we find that zg = 1000 m. For different values of K this height may be
twice as large or just half as large.

We will now investigate the influence of the turbulent viscosity, represented by
the eddy exchange coefficientK , on the Ekman profile more closely. Applying the
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general definition (13.9) of the stress vector to equation (11.92), assuming that the
exchange coefficient is constant with height, we find

T = i3 · (J + R) = ρK
∂ v̂h

∂z
=⇒ 1

ρ

∂T
∂z

= K
∂ 2̂vh

∂z2
(13.125)

The second equation follows immediately since the density was assumed to be
constant with height. This expression is the frictional force per unit mass due to the
eddy viscosity of the air. Equation (13.116) can be written in the following form:

−ρK
∂ 2̂vh

∂z2
= −∇hp − ρf i3 × v̂h (13.126)

To eliminate the pressure gradient we use the definition of the geostrophic wind
(13.117). Taking the cross product i3 × vg and applying the Grassmann rule, we
obtain immediately

i3 × vg = 1

ρf
i3 × (i3 × ∇hp) = − 1

ρf
∇hp (13.127)

Substitution of this expression into (13.126) yields

K
∂ 2̂vh

∂z2
= f i3 × (̂vh − vg) (13.128)

which can be easily interpretedwith the help of Figure 13.8. The vectorial difference
=̂vh = v̂h − vg between the horizontal and the geostrophic wind vectors is known
as the geostrophic wind deviation. The Coriolis force is perpendicular to the actual
wind vector and the pressure gradient force is perpendicular to the geostrophic
wind vector. By adding the frictional force we obtain the balance of forces. The
frictional force is perpendicular to the geostrophic deviation. The magnitude of the
geostrophic deviation decreases with height and is zero at the top of the boundary
layer since the frictional force vanishes at the level zg.

Fig. 13.8 The balance of forces for unaccelerated flow in the Ekman layer.
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A few critical remarks on the solution (13.122) will be helpful. As stated above,
the cross-isobar angle α = 45◦ is too large to be in reasonable agreement with
observations, for which α generally varies from 15◦ to 25◦. The reason for this
is that the exchange coefficient was assumed to be constant with height whereas
in reality it varies rapidly with height in the lower 10–20 m, as we know from
Prandtl-layer theory and from Figure 13.6. Therefore, the solution (13.122) should
not be extended to the ground but only to some height above the ground that is often
taken as the height of the anemometer level. We know from Prandtl-layer theory
that, in the surface layer, the wind shear is along the wind vector itself. Using this
as a lower boundary condition, and if z = 0 denotes the height of a well-exposed
anemometer, we obtain a more realistic solution for the Ekman spiral. The cross-
isobar angle then is not fixed at the unrealistically high value of 45◦ but is smaller.
The solution to the problem is given, for example, in Petterssen (1956). We will not
discuss this situation, but we present another solution that is based on the piecewise
linear distribution of the exchange coefficient as shown in Figure 13.6. The price
we have to pay for the more realistic approximation of the exchange coefficient is
a more complicated analytic solution.

13.9 The composite Ekman layer

As stated above, there are many numerical solutions with which to model the
atmospheric boundary layer. We will now show that it is also possible to obtain an
analytic solution for the wind profile by subdividing the Ekman layer into different
sections, in each of which sections K varies linearly with height. This treatment
allows the exchange coefficient to vary with height in a reasonable manner. The
right-hand side of equation (13.115) is now given by

∇ · (J + R) = ρ
∂

∂z

(
K

∂ v̂h

∂z

)
(13.129)

Instead of (13.118) we have to solve the system

d

(
K

dû

dz

)

dz
= −f v̂,

d

(
K

dv̂

dz

)

dz
= f (̂u − ug) (13.130)

Proceeding as before, these differential equations will be combined to give a single
equation:

K
d2

dz2
(̂u + iv̂ − ug) + dK

dz

d

dz
(̂u + iv̂ − ug) − if (̂u + iv̂ − ug) = 0 (13.131)
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Introducing the abbreviation g = û + iv̂ − ug we may also write

K
d2g

dz2
+ dK

dz

dg

dz
− ifg = 0 (13.132)

Comparison with (13.119) shows that now an additional term appears.
In the following we will derive the solution for the case that the Ekman layer is

subdivided into three parts as shown in Figure 13.6. In the central section of the
vertical profile of the exchange coefficient the classical Ekman solution applies.
For the upper section z > h2 and the lower section zPr < z < h1 the linear
approximations of the exchange coefficient K are given by

zPr ≤ z ≤ h1: K1 = b1 + a1(z − zPr) > 0 with a1 = Kmax − b1

h1 − zPr

h2 ≤ z ≤ Ĥ: K2 = b2 + a2(Ĥ − z) > 0 with a2 = Kmax − b2

Ĥ − h2

(13.133)

where we have admitted a residual value b2 at the top of the boundary layer.
In order to transform (13.132) into a Bessel-type differential equation for which

the solution is known,we have to introduce suitable transformation variables. Let us
first direct our attention to the lower section, transforming the exchange coefficient
K1 as √

K1 =
√
b1 + a1(z − zPr) = ξ > 0 (13.134)

The transformations

dξ

dz
= a1

2ξ
,

d2ξ

dz2
= − a2

1

4ξ 3

dg

dz
= dg

dξ

dξ

dz
,

d2g

dz2
= d2ξ

dz2

dg

dξ
+
(
dξ

dz

)2
d2g

dξ 2

(13.135)

follow from the differentiation rules, so (13.132) may be written as

d2g

dξ 2
+ 1

ξ

dg

dξ
− 4ifg

a2
1

= 0 (13.136)

The solution to this equation is given in various textbooks on differential equations.
We refer toMagnus andOberhettinger (1948),where a very general formofBessel’s
equation and its solution are given. These two equations are

d2u

dz2
+ (2α − 2νβ + 1)

1

z

du

dz
+
(
β2γ 2z2β−2 + α(α − 2βν)

z2

)
u = 0

u = zβν−αZν

(
γ zβ
) (13.137)
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The symbolZ stands for the cylinder function. In our situation we haveα = 0, β =
1, ν = 0, and γ 2 = −4if/a2

1, so the solution function is of zeroth order and is
given by

gl = Z0

(
lli

3/2ξ
)

with ll = 2
√
f

a1
(13.138)

where ll is a constant applying to the lower section. The complete solution can be
constructed from any pair of independent particular solutions. The form

gl = clJ0

(
lli

3/2ξ
)+ dlK0

(
lli

1/2ξ
)

(13.139)

where J0 is a Bessel function of the first kind and K0 a modified Bessel function
of the second kind is suitable for our purposes. As before, the subscript l on the
integration constants c and d refers to the lower section. Since the argument of the
Bessel functions is complex, it is customary to introduce the form

gl = cl[ber0(llξ ) + i bei0(llξ )] + dl[ker0(llξ ) + i kei0(llξ )] (13.140)

where ber0(x), bei0(x), ker0(x), and kei0(x) are the Kelvin functions referring to
the real and imaginary parts of the Bessel functions J0 and K0, respectively.1 The
function ber0(x)+ i bei0(x) is finite at the origin but becomes infinite as x becomes
infinite. ker0(x)+i kei0(x) is infinite at the origin but approaches zero as x becomes
infinite. An excellent introductory discussion on Bessel functions is given in Wylie
(1966).

We now turn to the transformation and the solution of (13.132) in the upper
section. We apply the transformation

√
K2 =
√
b2 + a2(Ĥ − z) = η > 0 (13.141)

From the differentiations

dη

dz
= − a2

2η
,

d2η

dz2
= − a2

2

4η3
(13.142)

there follows the differential equation

d2g

dη2
+ 1

η

dg

dη
− 4ifg

a2
2

= 0 (13.143)

From (13.137) with α = 0, β = 1, ν = 0, and γ 2 = −4if/a2
2 we find the solution

gu = Z0

(
lui

3/2η
)

with lu = 2
√
f

a2
(13.144)

1 Many textbooks omit the suffix 0 from the functions ber0(x), bei0(x), ker0(x), and kei0(x).
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which is a cylinder function of zeroth order. The subscript u on the constant lu
refers to the upper section. The general solution is given by

gu = cuJ0

(
lui

3/2η
)+ du

[
K0

(
lui

1/2η
)]

(13.145)

Analogously to (13.140) we may also write

gu = cu[ber0(luη) + i bei0(luη)] + du[ker0(luη) + i kei0(luη)] (13.146)

Now we have three solutions for the composite boundary layer. For the lower
section we have the solution (13.140). For themiddle layerwith a constant exchange
coefficientKmax the solution (13.120) applies. It is restated in a convenient form as

gm = cm exp(Az) [cos(Az) + i sin(Az)] + dm exp(−Az) [cos(Az) − i sin(Az)]

(13.147)

with A = √
f/(2Kmax). For the upper section we have the solution (13.146). The

gl, gm, and gu occurring in (13.140), (13.146), and (13.147) are complex numbers,
so

u(z) = �[g(z) + ug], v(z) = �[g(z)] (13.148)

There are six constants in the composite solution to be evaluated, so six boundary
statements must be at our disposal. These will be stated next:

(i) The log–linear wind profile (13.73) must hold within the Prandtl layer. We require
that, at the top of the Prandtl layer zPr, the derivatives of the log–linear wind profile
and of the solution for the lower section coincide.

(ii) At the top of the Ekman layer the wind becomes geostrophic.
(iii) The wind components at the interfaces h1 and h2 are continuous.
(iv) The derivatives of the wind components are continuous at these interfaces.

The continuity of the derivatives of wind components eliminates kinks in the
wind profile. This is the same thing as requiring that the stresses are continuous at
the interfaces. The composite-boundary-layer problem has the undesirable feature
that the derivatives dK/dz are discontinuous at the interfaces.

The derivatives of the solution functions appearing in (13.140) and (13.146) are

d ber0(x)

dx
= 1√

2
[ber1(x) + bei1(x)],

d bei0(x)

dx
= 1√

2
[−ber1(x) + bei1(x)]

d ker0(x)

dx
= 1√

2
[ker1(x) + kei1(x)],

d kei0(x)

dx
= 1√

2
[−ker1(x) + kei1(x)]

(13.149)
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Application of these equations to the lower and upper sections leads to

x = llξ = ll
√
b1 + a1(z − zPr),

dx

dz
= lla1

2ξ
,

d

dz
= dx

dz

d

dx

d

dz




ber0(x)

bei0(x)

ker0(x)

kei0(x)



l

= lla1

2
√

2ξ




ber1(x) + bei1(x)

− ber1(x) + bei1(x)

ker1(x) + kei1(x)

− ker1(x) + kei1(x)




(13.150a)

and

x = luη = lu

√
b2 + a2(Ĥ − z),

dx

dz
= − lua2

2η
,

d

dz
= dx

dz

d

dx

d

dz




ber0(x)

bei0(x)

ker0(x)

kei0(x)




u

= − lua2

2
√

2η




ber1(x) + bei1(x)

− ber1(x) + bei1(x)

ker1(x) + kei1(x)

− ker1(x) + kei1(x)




(13.150b)

The functions ber0(x), bei0(x), ker0(x), kei0(x), ber1(x), bei1(x), kei1(x), and
ker1(x) are tabulated, for example, in the Handbook of Mathematical Functions by
Abramowitz and Segun (1968).

In order to evaluate the six integration constants it is best to introduce a compact
notation. All parts appearing in (13.140), (13.146), and (13.147) are abbreviated as

Az = ber0[llξ (z)], Bz = bei0[llξ (z)], Cz = ker0[llξ (z)]

Dz = kei0[llξ (z)], Ez = ber0[luη(z)], Fz = bei0[luη(z)]

Gz = ker0[luη(z)], Hz = kei0[luη(z)], Iz = exp(Az) cos(Az)

Jz = exp(Az) sin(Az), Kz = exp(−Az) cos(Az), Lz = − exp(−Az) sin(Az)

(13.151)
By using this compact notation it is a simple matter to write down the six boundary
statements:

At z = zPr – continuity of stresses:

u∗
k

(
1

zPr
+ α

2L∗

)
= cl

d

dz
(Az + iBz)zPr

+ dl
d

dz
(Cz + iDz)zPr

(13.152)

At z = h1 – continuity of velocities:

cl(Az + iBz)h1 + dl(Cz + iDz)h1 = cm(Iz + iJz)h1 + dm(Kz + iLz)h1 (13.153)
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At z = h2 – continuity of velocities:

ug + cu(Ez + iFz)h2 + du(Gz + iHz)h2 = ug + cm(Iz + iJz)h2 + dm(Kz + iLz)h2

(13.154)

At z = Ĥ – continuity of velocities:

0 = cu(Ez + iFz)Ĥ + du(Gz + iHz)Ĥ (13.155)

At z = h1 – continuity of stresses:

cl
d

dz
(Az + iBz)h1

+ dl
d

dz
(Cz + iDz)h1

= cm
d

dz
(Iz + iJz)h1

+ dm
d

dz
(Kz + iLz)h1

(13.156)

At z = h2 – continuity of stresses:

cu
d

dz
(Ez + iFz)h2

+ du
d

dz
(Gz + iHz)h2

= cm
d

dz
(Iz + iJz)h2

+ dm
d

dz
(Kz + iLz)h2

(13.157)
These equations are sufficient to evaluate the real and imaginary parts of the
constants. Once the constants for a given distribution of the exchange coefficient
are known, we can use the various solutions to construct the wind profile.

In principle it is possible to extend the solution method by representing the
vertical profiles of the exchange coefficients by more than three linear parts. For
each additional part one obtains two more integration constants that have to be
determined by formulating additional boundary conditions analogously to those
stated above.

In order to investigate the quality of the solution for the composite Ekman layer,
numerous case studies aiming to obtain an optimal choice of the subdivision of
the exchange coefficient profile have been performed. Some examples will now
be presented. Figure 13.9 depicts the wind profiles for the classical approach
(curve 2) and three different solutions of the composite Ekman layer (curves
3–5) corresponding to an approximation of the exchange-coefficient profile by
three, four, and five linear sections. Moreover, the results are compared with a
numerical solution resulting from the O’Brien exchange coefficient (curve 1) which
is treated here as the reference case. The upper left-hand panel shows the vertical
distributions of the exchange coefficient. The vertical profiles of the horizontal
wind components are depicted in the other two panels. The geostrophic wind was
chosen as (ug, vg) = (10, 0) m s−1.

From all case studies the following conclusions are drawn.

(i) The composite solutions yield a distinct improvement over the classical Ekman solu-
tion. The three-section solution is already sufficient to obtain a substantial improve-
ment. An additional refinement of the exchange-coefficient profile to four or five
sublayers has no great effect.
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Fig. 13.9 Vertical profiles of the exchange coefficient and of the components of the
horizontal wind. Curve 1: the profile according to O’Brien (1970); curve 2: the classical
solution; curves 3, 4, and 5: composite solutions with three, four, and five linear sections.

(ii) Increasing the resolution of the composite profiles in the middle region of the boundary
layer has only a minor influence on the results.

(iii) A rough estimate of the maximum value of the exchange coefficient is sufficient to
construct the composite profiles since the results are barely affected by the particular
choice of this value.

(iv) The undershooting of the v-component at the top of the boundary layer is obtained
only if the resolution of the exchange-coefficient profile is fine enough there.

(v) The cross-isobar angle assumes reasonable values.
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The analytic solution can also be used to check the accuracy of other approx-
imate methods for obtaining the vertical wind profile in the boundary layer. The
mathematical development of this section is based on our own unpublished lecture
notes.

13.10 Ekman pumping

We conclude this chapter by studying in a very approximate manner the interaction
of the atmospheric boundary layer with the free atmosphere; see Figure 13.1. From
Figure 13.7 we recognize that the horizontal wind vector below the geostrophic-
wind height has a component pointing from high to low pressure. This deviation is
responsible for a mass transport perpendicular to the isobars, resulting in an equal-
ization of the large-scale pressure field. It is well known from synoptic observations
that the large-scale geostrophic wind is horizontally not uniform. The task ahead is
to investigate the influence of the horizontal variation of the geostrophic wind on
the Ekman layer. As before, to keep things simple, we assume that the geostrophic
wind is directed to the east so that vg = 0. The geostrophic-wind component ug,
however, varies in the northerly direction so that ug = ug(y). Furthermore, we
assume that the exchange coefficient K and the Coriolis parameter f do not vary
in space. From the classical Ekman solution (13.122) we find the wind variation in
the northerly direction to be given by

∂û

∂y
= ∂ug

∂y

[
1 − exp(−Az) cos(Az)

]
,

∂v̂

∂y
= ∂ug

∂y
exp(−Az) sin(Az)

(13.158)
Since û does not vary in the easterly direction the continuity equation for an
incompressible fluid reduces to

∂v̂

∂y
+ ∂ŵ

∂z
= 0 (13.159)

Height integration gives the vertical wind component at the geostrophic-wind
height:

ŵ(zg) = −
∫ zg

0

∂ug

∂y
exp(−Az) sin(Az) dz (13.160)

with ŵ(z = 0) = 0. Hence, the variation of the wind component v in the northerly
direction induces a vertical wind. Assuming barotropic conditions so that the
geostrophic wind ug is height-independent,we can carry out the integration without
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difficulty. The result is

ŵ(zg) = −∂ug

∂y

1 + exp(−π )

2A
= ζg

√
K ′

with ζg = −∂ug

∂y
,

√
K ′ = 1 + exp(−π )

2A
≈
√

K

2f

(13.161)

where use of (13.121) was made. In this equation the geostrophic vorticity ζg has
been introduced. The sign of ŵ(zg) is controlled by the sign of the geostrophic
vorticity. For cyclonic circulations ζg > 0 so that ŵ(zg) > 0; for anticyclonic cir-
culations ζg < 0 so that ŵ(zg) < 0. For typical large-scale systems the geostrophic
vorticity is about 10−5 s−1. Assuming a value of K = 5−10 m2 s−1 and a midlat-
itude Coriolis parameter f = 10−4 s−1, we find that the vertical velocity amounts
to a few tenths of a centimeter per second. Certainly, such small vertical veloc-
ities cannot be measured. Nevertheless, these small values of ŵ are sufficient to
influence significantly the life times of synoptic systems.

According to (13.161) the vertical motion induced by boundary-layer friction
causes a large-scale vertical motion leading to the breakdown of high-pressure
systems while low-pressure systems are filling up. Thus the large-scale pressure
gradient becomes very small so that the geostrophic wind and the geostrophic vor-
ticity cease to exist. It takes large-scale processes to create new pressure gradients.

Let us estimate how long it takes, for example, to fill up a cyclonic system.
Instead of computing the change in pressure we may just as well compute the
change with time of the geostrophic vorticity. We start with a simplified form of
the barotropic vorticity equation (10.146):

dηg

dt
= d

dt
(ζg + f ) = −ηg ∇h · v̂h = ηg

∂ŵ

∂z
≈ f

∂ŵ

∂z
(13.162)

since usually ζg � f . Ignoring the spatial variation of the Coriolis parameter, we
find

dζg

dt
= f

∂ŵ

∂z
(13.163)

This expression will be integrated with respect to height from the top of the
boundary layer zg to the top of the atmosphere zT, yielding∫ zT

zg

dζg

dt
dz = f

[
ŵ(zT) − ŵ(zg)

]
(13.164)

Assuming that the geostrophic wind is independent of height even above zg, the
geostrophic vorticity is height-independent also, so (13.164) can be integrated
directly, yielding

(zT − zg)
dζg

dt
= f
[
ŵ(zT) − ŵ(zg)

]
(13.165)
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The vertical velocity vanishes at the top of the atmosphere and zT − zg is about zT.
Therefore, we find

dζg

dt
= − ζg

zT

√
Kf

2
(13.166)

where we have replacedw(zg) with the help of (13.161). This differential equation
can be solved immediately to give

ζg(t) = ζg(0) exp

(
−
√
Kf

2z2
T

t

)
(13.167)

showing that the vorticity is decreasing exponentially in time. The reason for this is
the existence of the ageostrophic wind componentwhich resulted from the turbulent
viscosity of the air. This behavior of the atmosphere is called Ekman pumping.

Let us estimate the time it takes for the vorticity to decrease to 1/e of its original
value. Obviously this relaxation time te can be estimated from

te =
√

2z2
T

Kf
(13.168)

Using zT = 104 m, K = 10 m2 s−1, and f = 10−4 s−1 we find that te amounts
to about four days. It takes about nine days for the geostrophic vorticity to decay
to 10% of its original value, which is in rough agreement with the life time of a
low-pressure system.

Finally, let us recall that no frictional effects were included in the simplified
vorticity equation (13.162). Therefore, the frictional effect observed within the
Ekman layer on low- and high-pressure systems is indirect. On retracing the steps
leading to (13.161) we find that a vertical circulation above the Ekman layer was
induced due to the divergence of the ageostrophic wind component. By means
of the divergence term on the right-hand side of the vorticity equation we finally
obtained (13.166), showing that the vorticity is decreasing with time due to the
turbulent viscosity of the air. This indirect frictional effect on the synoptic systems
is known as the spin down and te is the spin-down time.

Etling (1996) continued this discussion by posing the question of whether the
residual turbulent viscosity existing in the free atmosphere is sufficient to stop the
circulation in low- and high-pressure systems.He drew the conclusion that the effect
of the turbulent viscosity in the free atmosphere plays an unimportant role in the
dynamics of synoptic systems. The 10% of the entire atmospheric mass contained
in the atmospheric boundary layer is mainly responsible for the destruction of the
atmospheric pressure systems.
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13.11 Appendix A: Dimensional analysis

By necessity our discussion must be brief. There exist many excellent books on
dimensional analysis. We refer to Dimensionless Analysis and Theory of Models
by Langhaar (1967), where numerous practical examples are given.

13.11.1 The dimensional matrix

Let us consider a fluid problem involving the variables velocity V , length L, force
F , density ρ, dynamic molecular viscosity µ, and acceleration due to gravity g.
These variables can be expressed in terms of the fundamental variables mass M ,
length L, and time T as expressed by the following array of numbers, which is
called the dimensional matrix:

V L F ρ µ g

M 0 0 1 1 1 0
L 1 1 1 −3 −1 1
T −1 0 −2 0 −1 −2

(13.169)

Consider, for example, the forceF . The dimension of force is M1 L1 T−2, explaining
the entries in the force column. The dimensions of the remaining columns can be
written down analogously.

Any product � of the variables V,L,F, . . ., g has the form

� = V k1Lk2F k3ρk4µk5gk6 (13.170)

Whatever the values of the k’s may be, the corresponding dimension of � is given
by

[�] = [L1T −1
]k1[

L1
]k2[

M1L1T −2
]k3[

M1L−3
]k4[

M1L−1T −1
]k5[

L1T −2
]k6

= [Mk3+k4+k5
][
Lk1+k2+k3−3k4−k5+k6

][
T −k1−2k3−k5−2k6

]
(13.171)

If the product� is required to be dimensionlesswe must demand that the exponents
of the various basic variables add up to zero:

k3 + k4 + k5 = 0, k1 + k2 + k3 − 3k4 − k5 + k6 = 0, −k1 − 2k3 − k5 − 2k6 = 0
(13.172)

Note that the coefficients multiplying the ki , including the zeros, in each equation
are a row of numbers in the dimensional matrix (13.169). Therefore, the equations
for the exponents of a dimensionless product can be written down directly from the
dimensionalmatrix. This set of three equations in six unknowns is underdetermined,
possessing an infinite number of solutions. In this case we may arbitrarily assign
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values to three of the k’s, say (k1, k2, k3), and then solve the system of equations
for the remaining ki . The solution is given by

k4 = 1
3
(k1+2k2+3k3), k5 = 1

3
(−k1−2k2−6k3), k6 = 1

3
(−k1+k2) (13.173)

We choose (k1, k2, k3) values such that fractions will be avoided. Three choices of
numbers for (k1, k2, k3) together with the resulting values for (k4, k5, k6) are

k1 = 1, k2 = 1, k3 = 0 =⇒ k4 = 1, k5 = −1, k6 = 0

k1 = −2, k2 = −2, k3 = 1 =⇒ k4 = −1, k5 = 0, k6 = 0

k1 = 2, k2 = −1, k3 = 0 =⇒ k4 = 0, k5 = 0, k6 = −1

(13.174)

All six ki are then substituted into (13.170). For each choice of (k1, k2, k3) with
the resulting (k4, k5, k6) we obtain a dimensionless universal �-number. These
numbers are known as the Reynolds number Re, the pressure number P , and the
Froude number Fr:

�1 = Re = VLρ

µ
, �2 = P = F

V 2L2ρ
= p

V 2ρ
, �3 = Fr = V 2

Lg

(13.175)

The procedure is quite arbitrary; any valuesmight be chosen for (k1, k2, k3). Suppose
that we choose k1 = 10, k2 = −5, and k3 = 8. Then we get k4 = 8, k5 = −16,
and k6 = −5. The resulting dimensionless number is given as

� = V 10L−5F 8ρ8µ−16g−5 (13.176)

This product looks very complicated but it does not really give new information
since we can write this expression as the product

� = P 8Re16Fr5 (13.177)

Regardless of the values we assign to (k1, k2, k3), the resulting dimensionless prod-
uct can be expressed as a product of powers of P, Re, and Fr . This fact and the
condition that P, Re, and Fr are independent of each other characterize them as
a complete set or group of dimensionless products. We may define a complete set
as follows.

Definition: A set of dimensionless products of given variables is complete, if each
product in the set is independent of the others and every other dimensionless product
of the variables is the product of powers of dimensionless products in the set.

Application of linear algebra to the theory of dimensional analysis resulted in
the following theorem.
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Theorem: The number of dimensionless products in a complete set is equal to the
total number n of variables minus the rank r of the dimensional matrix.

This theorem does not tell us the exact form of the dimensional products but it
does tell us the number of universal products we should be looking for. The theorem
is of great help. For the present casewe haven = 6 variables. The rank of a matrix is
defined as the order of the largest nonzero determinant that can be obtained from the
elements of the matrix. In case of the dimensionalmatrix (13.169) the rank is r = 3,
so the complete set consists of three independent dimensionless numbers. These
are the products Re, P , and Fr which are considered to be universal numbers.

13.11.2 The Buckingham�-theorem

Much of the theory of dimensional analysis is contained in this celebrated the-
orem which applies to dimensionally homogeneous equations. In simple words,
an equation is dimensionally homogeneous if each term in the equation has the
same dimension. Empirical equations are not necessarily dimensionally homo-
geneous.

Theorem: If an equation is dimensionally homogeneous, it can be reduced to a
relationship among members of a complete set of dimensionless products.

If n variables are connected by an unknown dimensionally homogeneous equa-
tion Buckingham’s �-theorem allows us to conclude that the equation can be
expressed in the form of a relationship among n− r dimensionless products, where
n− r is the number of products in the complete set. It turns out that, in many cases,
r is the number of fundamental dimensions in a problem. This was also the case
above.

13.11.3 Examples from boundary-layer theory

Example 1: Observational data show that the wind profile in the neutral Prandtl
layer is determined by z, u∗, and dû/dz. Our task is to find the functional relation
among these three quantities. The dimensional matrix

z u∗ dû/dz

L 1 1 0
T 0 −1 −1

(13.178)

allows us to write down two linear equations from which the ki may be determined:

k1 + k2 = 0, −k2 − k3 = 0 (13.179)
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The number of variables is n = 3 and the rank is r = 2. The rank and the number
of fundamental variables coincides. With n − r = 1 we expect one dimensionless
universal �-number. Choosing k1 = 1, we obtain k2 = −1 and k3 = 1. The
universal number is taken as 1/k, where k is the Von Karman constant. The result
is the logarithmic wind profile

� = z

u∗

dû

dz
= 1

k
(13.180)

Example 2: For the non-neutral Prandtl layer an additonal variable is needed,
which is the MO stability length L∗. Now the dimensional matrix must be found
from the four variables z, u∗, dû/dz, and L∗:

z u∗ dû/dz L∗

L 1 1 0 1
T 0 −1 −1 0

(13.181)

Since the rank is r = 2, we expect two universal�-numbers.We have two equations
in four unknowns:

k1 + k2 + k4 = 0, −k2 − k3 = 0 (13.182)

We specify (k1, k2) and obtain (k3, k4):

k1 = 1, k2 = 0 =⇒ k3 = 0, k4 = −1, �1 = z

L∗

k1 = 1, k2 = −1 =⇒ k3 = 1, k4 = 0, �2 = kz

u∗

dû

dz

(13.183)

For convenience we have included the constant k in �2. Formal application of the
Buckingham �-theorem gives

f1(�1,�2) = 0 or �2 = S(�1) =⇒ kz

u∗

dû

dz
= S

(
z

L∗

)
(13.184)

From boundary-layer theory we know that, for the present problem, the MO func-
tion S(z/L∗) is a universal number.

13.12 Appendix B: The mixing length

The mixing length was introduced by equation (13.51) on purely dimensional
grounds. Prandtl (1925) introduced this concept in analogy to the mean free path
of the kinetic gas theory. For a given density of molecules (number of molecules
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per unit volume) there exists an average distance that a molecule may traverse
before it collides with another molecule. This is the mean free path, which is about
10−7 m for standard atmospheric conditions. During each collision momentum will
be exchanged. Moreover, molecular collisions cause the molecular viscosity or
internal friction.

Prandtl introduced a mixing length l for turbulent motion, analogous to the
free path on the molecular scale, by assuming that a portion of fluid or an eddy
originally at a certain level in the fluid suddenly breaks away and then travels a
certain distance. While the eddy is traveling it conserves most of its momentum
until it mixes with the mean flow at some other level. Let us assume that we have
an average horizontal velocity at level z. An eddy originating at this level carries
the horizontal momentum of this level. After traversing the mixing length l′ at the
level z + l′ it will cause the turbulent fluctuation

v′′
h = v̂h(z) − v̂h(z + l′) = −l′

∂ v̂h

∂z
(13.185)

if the Taylor expansion is discontinued after the linear term. According to (13.9)
and (11.36) the stress vector of the eddy is defined by

T = i3 · R = −ρw′′v′′ = −ρw′′v′′
h (13.186)

We have ignored the molecular contribution and the density fluctuations and have
retained only the horizontal part of the fluctuation vector. On substituting the
fluctuation v′′

h into (13.186) we find that the stress vector of the eddy may be
expressed in terms of the vertical gradient of the mean velocity:

T = ρl′w′′ ∂ v̂h

∂z
(13.187)

For continuity of mass we require
∣∣v′′

h

∣∣ = ∣∣w′′∣∣ (13.188)

For the upward and downward eddies we must have

w′′ > 0, l′ > 0 or w′′ < 0, l′ < 0 (13.189)

so that the product of the velocity fluctuation w′′ and the mixing length l′ is always
a positive quantity and the signs of the correspondingw′′and l′ are always identical.
From (13.185) it follows that the fluctuation may be expressed as

w′′ = l′
∣∣∣∣∂ v̂h

∂z

∣∣∣∣ (13.190)



396 The atmospheric boundary layer

Thus the stress vector of the eddy may be written as

T = ρl′l′
∣∣∣∣∂ v̂h

∂z

∣∣∣∣ ∂ v̂h

∂z
= ρl2
∣∣∣∣∂ v̂h

∂z

∣∣∣∣ ∂ v̂h

∂z
with l2 = l′l′ (13.191)

where l is the mean mixing length. Taking the scalar product i1 · T and assuming
that the mean flow is along the x-axis only, we obtain

i1 · T = τ = ρl2
(
∂û

∂z

)2
= Av

∂û

∂z
with Av = pl2

∂û

∂z
= ρKv (13.192)

This expression is the definition (13.52). Av is known as the Austauschkoeffizient.
The similarity to the molecular situation becomes even more apparent on com-
parison with (1.12) defining the molecular stress tensor. On choosing the velocity
vector va = û(z)i1 we find for the molecular stress the expression

τmol = i1 · (i3 · J) = µ
∂û

∂z
(13.193)

which is identical in form with (13.192).
Our faith in Prandtl’s formulation of l should not be unlimited since the stress

vector depends only on the local vertical gradient, which is not always the case, as
follows from the transilient-mixing formulation mentioned briefly in Chapter 11.
This appendix follows Pichler (1997) to some extent. Similar treatments may be
found in many other textbooks.

13.13 Problems

13.1: Apply the Prandtl layer conditions to equation (11.45) for the mean motion.
Show that this results in the condition τ = constant.

13.2: In case of thermal turbulence for windless conditions (local free convection)
the dimensional matrix may be constructed from the variables ∂θ̃/∂z,H/(ρcp,0),
g/T , and z. Find the �-number.

13.3: Let us return to the previous chapter. In the inertial subrange ε can be
expressed as ε(k) = f1(k, εM).
(a) Use Buckingham’s �-theorem to find the �-number and then set � = κK to
obain ε.
(b) Now include the dissipation range so that ε(k) = f2(k, εM, ν). Find the �-
numbers.



13.13 Problems 397

13.4:
(a) Show that (13.88) satisfies the differential equation (13.87).
(b) Suppose that ξ → 0. Is Sl(0) defined and what is its value? Use
equation (13.88) to prove your result.

13.5: Find Sl from (13.84) and (13.88) for L∗ = 8 m representing a stable at-
mosphere. Choose z = 10 m. Discuss your results by comparing them with the
empirical value Sl = 0.872.

13.6: It has been postulated that, within the Prandtl layer,

û′′w′′ = −k2

(
∂û

∂z

)4
(
∂2û

∂z2

)2

Assume that −ρû′′w′′ = τ . Integrate this expression to find the logarithmic wind
profile for neutral conditions.

13.7: Solve the Ekman-spiral problemwith the conditions stated in the text. Instead
of û(z = 0) = 0, v̂(z = 0) = 0 use the lower boundary condition

z → 0: û + iv̂ = C
∂

∂z
(̂u + iv̂)

whereC is a real constant. The cross-isobar angleα0 at the groundmay be specified.
Find the height of the geostrophic wind level. Hint: Observe that the integration
constants in equation (13.120) in general are complex numbers.
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Wave motion in the atmosphere

14.1 The representation of waves

It is well known that the nonlinear system of the atmospheric equations includes
a great number of very complex wave motions occurring on various spatial and
time scales. In this chapter we wish to treat some simple types of wave motion that
can be isolated from the linearized system of atmospheric equations. This system
is obtained with the help of perturbation theory. Before introducing this theory
we will briefly discuss the wave concept. For simplicity we are going to employ
rectangular coordinates.
A periodic process occurring in time or in space is called an oscillation. If both

time and space are involved we speak of wave motion. Let us consider the scalar
wave equation

∇2U = 1

c2

∂2U

∂t2
(14.1a)

where U describes some atmospheric field or a component of a vector field and
c the speed of propagation of the wave. For simplicity let us consider only the
z-direction of propagation so that (14.1a) reduces to

∂2U

∂z2
= 1

c2

∂2U

∂t2
(14.1b)

A solution to this equation is given by

U (z, t) = U0 cos(kz − ωt) with ω/k = c (14.2)

provided that the ratio of the constants ω and k is equal to the constant c. The
particular solution (14.2) is known as a plane harmonic wave whose amplitude
is U0.
A graph of the function U (z, t) is shown in Figure 14.1. For a given value of

the spatial coordinate z the wave function U (z, t) varies harmonically in time. The

398
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Fig. 14.1 A graph of U versus z at times t and t + �t .

angular frequency of the variation with time is the constantω. At a given instant of
time the wave varies sinusoidally with z. Since the argument of the trigonometric
function must be dimensionless, the constant k, known as the wavenumber, must
have the dimension of an inverse length. Thus, k is the number of complete wave
cycles in a distance of 2π units. From a study of the graph of U (z, t) we see that,
at a certain instant in time, the curve is a certain cosine function whereas at t +�t

the entire curve is displaced by the distance �z = c �t in the z-direction. �z is
the distance between any two points of equal phase, as shown in Figure 14.1. For
this reason c is called the phase speed.
Let us now return to the three-dimensional scalar wave equation (14.1) which is

satisfied by the three-dimensional plane harmonic wave function

U (x, y, z, t) = U0 cos(k · r − ωt) with k = i1kx + i2ky + i3kz (14.3)

Here r is the position vector and k the propagation vector or wave vector. Often
the solution is written in the following equivalent form

U = U0 cosω

(
k · r
kc

− t

)
= U0 cosω

(n · r
c

− t
)

(14.4)

where n = k/k is the unit normal.
In order to interpret equation (14.3) let us consider constant values of the argu-

ment of the cosine function

k · r − ωt = kxx + kyy + kzz − ωt = constant (14.5)

which describes a set of planes called surfaces of constant phase. Consider the
plane shown in Figure 14.2, where the vector r points to a general point on
the plane while k is a vector that is perpendicular to the plane. The vector u in the
plane is perpendicular to k so that their scalar product vanishes:

k · u = k · (r − k) = 0 (14.6a)
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Fig. 14.2 The equation of the plane k · r = k2.

Since k · k = k2x + k2y + k2z = k2 we obtain

k · r = kxx + kyy + kzz = k2 (14.6b)

The normal form of the equation of the plane is given by

kx

k
x + ky

k
y + kz

k
z = k (14.6c)

Hence equation (14.5), indeed, is the equation representing plane surfaces of con-
stant phase.
Let us return to the argument of the cosine function of equation (14.2), which is

called the phase of the harmonic wave. There is no reason why the magnitude of
the wave could not be anything one would like it to be at time t = 0 and at z = 0.
This can be achieved by shifting the cosine function by introducing an initial phase
ε so that the phase is given by

ϕ = kz − ωt + ε (14.7)

Without loss of generality we will set ε = 0. When we envision a harmonic wave
sweeping by, we determine its speed by observing the motion of a point at which
the magnitude of the disturbance remains constant. Thus, the speed of the wave is
the speed at which the condition of constant phase travels, or

(
dz

dt

)
ϕ=constant

= −

(
∂ϕ

∂t

)
z(

∂ϕ

∂z

)
t

= ω

k
= 2πν

k
= L

τ
= c with L = 2π

k
, τ = 1

ν

(14.8)
Here L is the wavelength and τ the period of the wave.
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In passing we would like to remark that the functions cos(kr −ωt) have constant
values on a sphere of radius r at a given time. As t increases the functions would
represent spherically expandingwaves except for the fact that they are not solutions
of the wave equation. However, it is easy to verify that the function U (r, t) =
(1/r) cos(kr − ωt) is a solution of the wave equation

∂2(Ur)

∂r2
= 1

c2

∂2(Ur)

∂t2
(14.9)

14.2 The group velocity

In connection with the transport of energy by waves we need to discuss briefly
the concept of the group velocity. When dealing with trigonometric functions it is
often convenient to use the complex notation. Instead of (14.3) we introduce

U = U0 exp[i(k · r − ωt)] (14.10)

It is understood that the real part is the actual physical quantity being represented.
Now let us consider two harmonic waves that have slightly different angular
frequencies ω + �ω and ω − �ω. The corresponding wavenumbers will, in
general, also differ. These shall be denoted by k + �k and k − �k. Let us assume,
in particular, that the two waves have the same amplitudes U0 and are traveling in
the same direction, which is taken to be the z-direction. Superposition of the two
waves gives

U = U0 exp[i(k + �k)z − i(ω + �ω)t] + U0 exp[i(k − �k)z − i(ω − �ω)t]
(14.11a)

which can be rewritten as

U = U0 exp[i(kz − ωt)] {exp[i(�k z − �ω t)] + exp[−i(�k z − �ω t)]}
(14.11b)

Using the Euler formula we obtain

U = 2U0 exp[i(kz − ω t)] cos(�k z − �ω t) (14.11c)

This expression can be regarded as a single wave described by 2U0 exp[i(kz−ωt)],
which has a modulation envelope cos(�k z − �ω t) as shown in Figure 14.3.
Generalization to three dimensions results in

U = 2U0 exp[i(k · r − ω t)] cos(�k · r − �ω t) (14.11d)
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Fig. 14.3 The envelope of the combination of two harmonic waves.

where now 2U0 exp[i(k · r − ω t)] is the single wave and cos(�k · r − �ω t) the
modulation envelope. Inspection of (14.11c) shows that the modulation amplitude
does not travel with the phase velocity ω/k but at the rate cgr = �ω/�k, which is
called the group velocity. In the limit cgr is given by

cgr = dω

dk
(14.12)

Utilizing (14.8) we find

cgr = dω

dk
= d

dk
(kc) = c + k

dc

dk
= c − L

dc

dL
(14.13)

showing that the group velocity differs from the phase velocity only if the phase
velocity c explicitly depends on thewavelength. Rossbywaves, these are large-scale
synoptic waves, to be discussed later, exhibit this behavior. The dependency of the
angular frequency on the wavenumber, that is ω = ω(k), is known as the dispersion
relation. Whenever dc/dL > 0 one speaks of normal dispersion; if dc/dL < 0
the dispersion is called anomalous dispersion. Very informative discussions on
wave motion and group velocity can be found in many textbooks on optics and
elsewhere. We refer to Fowles (1968).
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The generalization of the group velocity to three dimensions is carried out by
expanding the total derivative dω as

dω = ∂ω

∂kx
dkx + ∂ω

∂ky
dky + ∂ω

∂kz
dkz = ∇kω · dk

with ∇kω = ∂ω

∂kx
i1 + ∂ω

∂ky
i2 + ∂ω

∂kz
i3

(14.14)

Defining the components of the group velocity vector cgr as

cgr,x = ∂ω

∂kx
, cgr,y = ∂ω

∂ky
, cgr,z = ∂ω

∂kz
(14.15a)

we obtain
cgr = ∇kω (14.15b)

14.3 Perturbation theory

In order to isolate some simple wave forms we need to linearize the basic
atmospheric equations by means of the so-called perturbation method. The set of
equations to be linearized consists of the three equations representing frictionless
motion on the tangential plane,

du

dt
= ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −α

∂p

∂x
+ f v

dv

dt
= ∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −α

∂p

∂y
− f u

dw

dt
= ∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −α

∂p

∂z
− g

(14.16)

the continuity equation,

α

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
−

(
∂α

∂t
+ u

∂α

∂x
+ v

∂α

∂y
+ w

∂α

∂z

)
= 0 (14.17)

and the first law of thermodynamics, which will be approximated by assuming that
we are dealing with adiabatic processes:

de + p dα = 0 (14.18)

Here, α=1/ρ is the specific volume. Since we are going to investigate the behavior
of dry air only, we do not need to consider the equations for partial concentrations.
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Treating the air as an ideal gas, we may substitute the ideal-gas law and the
differential for the internal energy

pα = R0T, de = cv,0 dT (14.19)

into (14.18) to obtain, after some slight rearrangements,

pκ

(
∂α

∂t
+ u

∂α

∂x
+ v

∂α

∂y
+ w

∂α

∂z

)
+ α

(
∂p

∂t
+ u

∂p

∂x
+ v

∂p

∂y
+ w

∂p

∂z

)
= 0

(14.20)
with R0 = cp,0 − cv,0 and κ = cp,0/cv,0.
We will now summarize the perturbation method.

(i) Any variable ψ is decomposed into a part representing the basic state ψ0 and another
part describing the disturbance ψ ′, which is also called the perturbation:

ψ = ψ0 + ψ ′ (14.21)

(ii) The basic state ψ0 is considered known and must satisfy the original system of non-
linear equations.

(iii) The total motion, i.e. the basic field plus the disturbance, must satisfy the system of
nonlinear equations.

(iv) The perturbations ψ ′ are assumed to be very small in comparison with the basic
state ψ0.

(v) Products of perturbations are ignored. This implies the linearization.

On applying (14.21) to the variables of motion and to the thermodynamic vari-
ables we find

(u, v,w, p, α, T ) = (u0, v0, w0, p0, α0, T0) + (u′, v′, w′, p′, α′, T ′) (14.22)

As an example we demonstrate the perturbation procedure by linearizing a
simplified form of the advection equation:

∂u

∂t
+ u

∂u

∂x
= 0 (14.23)

We split u according to (14.22) and obtain

∂

∂t
(u0 + u′) + (u0 + u′)

∂

∂x
(u0 + u′) = 0 (14.24a)

Owing to assumption (ii) we may write

∂u0

∂t
+ u0

∂u0

∂x
= 0 (14.24b)
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By subtracting (14.24b) from (14.24a) we obtain the linearized equation

∂u′

∂t
+ u′ ∂u0

∂x
+ u0

∂u′

∂x
= 0 (14.24c)

fromwhich, according to (v), the nonlinear term u′ ∂u′/∂x has been omitted. In this
very simple case the linearization procedure is very brief. For the more complex
equations of the complete atmospheric system this procedure is very tedious, so a
shortcut method would be welcome.
Such a method is the so-called Bjerkness linearization procedure, which results

directly in the linearized equations. Suppose that we wish to linearize the product
ab. This is done by varying the factor a to give δa = a′ and then multiplying a′

by the basic state factor b0. This is followed by obtaining another product term by
multiplying the basic state a0 by the variation δb = b′ of the factor b. In principle
this is the product rule of differential calculus, which may be written as

δ(ab) = (ab)′ = (δa)b0 + a0 δb = a′b0 + a0b
′ (14.25a)

Suppose that we wish to linearize the triple products abc occurring in (14.20).
This is best done by combining two factors to give d = bc and then using the rule
(14.25a):

δ(abc) = δ(ad) = (δa)d0 + a0 δd = a′b0c0 + a0(b
′c0 + b0c

′) (14.25b)

Application of the Bjerkness linearization rule results in the following system of
atmospheric equations, which can be checked quickly and easily for accuracy. The
equations of atmospheric motion are given by

∂u′

∂t
= −u′ ∂u0

∂x
− v′ ∂u0

∂y
− w′ ∂u0

∂z
− u0

∂u′

∂x
− v0

∂u′

∂y

− w0
∂u′

∂z
− α′ ∂p0

∂x
− α0

∂p′

∂x
+ f v′

∂v′

∂t
= −u′ ∂v0

∂x
− v′ ∂v0

∂y
− w′ ∂v0

∂z
− u0

∂v′

∂x
− v0

∂v′

∂y

− w0
∂v′

∂z
− α′ ∂p0

∂y
− α0

∂p′

∂y
− f u′

∂w′

∂t
= −u′ ∂w0

∂x
− v′ ∂w0

∂y
− w′ ∂w0

∂z
− u0

∂w′

∂x
− v0

∂w′

∂y

− w0
∂w′

∂z
− α′ ∂p0

∂z
− α0

∂p′

∂z

(14.26)
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The adiabatic equation is

p′κ

(
∂α0

∂t
+ u0

∂α0

∂x
+ v0

∂α0

∂y
+ w0

∂α0

∂z

)

+ α′
(
∂p0

∂t
+ u0

∂p0

∂x
+ v0

∂p0

∂y
+ w0

∂p0

∂z

)

+ p0κ

(
∂α′

∂t
+ u′ ∂α0

∂x
+ v′ ∂α0

∂y
+ w′ ∂α0

∂z
+ u0

∂α′

∂x
+ v0

∂α′

∂y
+ w0

∂α′

∂z

)

+ α0

(
∂p′

∂t
+ u′ ∂p0

∂x
+ v′ ∂p0

∂y
+ w′ ∂p0

∂z
+ u0

∂p′

∂x
+ v0

∂p′

∂y
+ w0

∂p′

∂z

)
= 0

(14.27)

which is easily identified by the appearance of the factor κ = cp,0/cv,0. The
continuity equation is given by

α′
(
∂u0

∂x
+ ∂v0

∂y
+ ∂w0

∂z

)
+ α0

(
∂u′

∂x
+ ∂v′

∂y
+ ∂w′

∂z

)

−
(
∂α′

∂t
+ u′ ∂α0

∂x
+ v′ ∂α0

∂y
+ w′ ∂α0

∂z
+ u0

∂α′

∂x
+ v0

∂α′

∂y
+ w0

∂α′

∂z

)
= 0

(14.28)
Finally the linearized ideal-gas law is given by

p′α0 + p0α
′ = R0T

′ (14.29)

In order to isolate certain types of wavemotion we are going to use trial solutions
of the type

U = U0 exp[i(kxx + kyy + kzz − ωt)] (14.30)

In order to make the system of linearized equations (14.26)–(14.29) more
manageable, it is customary to introduce some simplifications without disturbing
the basic physics contained in the original set of linearized equations. These
simplifications are the following.

(i) We restrict the propagation of plane waves to the (x, z)-plane: v = 0, ∂/∂y = 0.
(ii) We assume that there is a constant basic current given by u0 = constant so that

v0 = w0 = 0 and hence v′ = 0.
(iii) We assume that, in the basic state, the atmosphere is in hydrostatic balance:

α0 ∂p0/∂z = −g.
(iv) We assume that isothermal conditions pertain for the basic field so that ∂α0/∂z = g/p0.
(v) We assume that the rotation of the earth may be ignored by setting f = 0.
(vi) The basic thermodynamic variables are taken to be independent of x and t .
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Application of these assumptions results in the following simplified set of
linearized equations:

(a)
∂u′

∂t
+ u0

∂u′

∂x
+ α0

∂p′

∂x
= 0

(b) δ

(
∂w′

∂t
+ u0

∂w′

∂x

)
+ α0

∂p′

∂z
− g

α′

α0
= 0

(c) α0

(
∂p′

∂t
+ u0

∂p′

∂x

)
− gw′ + p0κ

(
∂α′

∂t
+ u0

∂α′

∂x
+ w′ ∂α0

∂z

)
= 0

(d) α0

(
∂u′

∂x
+ ∂w′

∂z

)
−

(
∂α′

∂t
+ u0

∂α′

∂x
+ w′ ∂α0

∂z

)
= 0

(14.31)

Following Haltiner andWilliams (1980), we have introduced the quantity δ into the
equation for vertical motion. If δ = 1 this equation remains unchanged; by setting
δ = 0 we ignore certain vertical-acceleration terms.
We shall now transform (14.31) by introducing the relative pressure q = p′/p0

and the relative density s = ρ ′/ρ0 = −α′/α0. The latter relation may be easily
obtained by linearizing the equation ρα = 1. Using the abbreviation d1/dt =
∂/∂t + u0 ∂/∂x and matrix notation, we find without difficulty




d1

dt
0 R0T0

∂

∂x
0

0 δ
d1

dt
R0T0

∂

∂z
− g g

0
g(κ − 1)

R0T0

d1

dt
−κ

d1

dt
∂

∂x

∂

∂z
− g

R0T0
0

d1

dt







u′

w′

q

s




= 0 (14.32)

Inspection shows that all coefficients multiplying the variables (u′, w′, q, s) or the
differential operators are constants, so the operator method may be applied to solve
the homogeneous system of differential equations (14.32). We will demonstrate
the procedure in the following sections.

14.4 Pure sound waves

The system (14.32) contains soundwaves and gravity waves, including interactions
between these two types of wave. In order to isolate pure sound waves we have
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to set g = 0. In the general case we set δ = 1. Nonzero values of the unknown
functions (u′, w′, q, s) of the homogeneous system can be obtained by setting the
determinant of the four-by-four matrix in (14.32) equal to zero:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d1

dt
0 R0T0

∂

∂x
0

0
d1

dt
R0T0

∂

∂z
0

0 0
d1

dt
−κ

d1

dt
∂

∂x

∂

∂z
0

d1

dt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (14.33)

The evaluation of the determinant gives the partial differential equations

(
∂

∂t
+ u0

∂

∂x

)2[(
∂

∂t
+ u0

∂

∂x

)2
− κR0T0

(
∂2

∂x2
+ ∂2

∂z2

)]
ψj (x, z, t) = 0

(14.34)

which applies to the four variables (ψ1, ψ2, ψ3, ψ4) = (u′, w′, q, s). Since we are
dealing with a constant-coefficient system we may assume the validity of wave
solutions of the type

ψj = Aj exp
[
i(kxx + kzz − ωt)

]
(14.35)

where the Aj are constant coefficients. The system (14.31) is linear so that any
linear combination of solutions is a solution also. Therefore, it is sufficient for
our purposes to consider a single harmonic. Substituting (14.35) into (14.34) and
rearranging the result gives the fourth degree frequency equation

(kxu0 − ω)2[−(kxu0 − ω)2 + k2κR0T0] = 0 with k2 = k2x + k2z (14.36)

in agreement with Haltiner and Williams (1980), who assumed that α0 = constant
and p0 = constant.
We will now discuss the four roots of this equation. The quadratic first factor

results in

ω1,2 = 2πν1,2 = kxu0 = 2π

Lx

u0 (14.37a)

From this equation it follows that the phase speed

cx = kx

k
u0 (14.37b)
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Fig. 14.4 Propagation of plane harmonic waves in the (x, z)-plane.

corresponds to simple advection. The third and fourth roots are given by

ω3,4 = 2πν3,4 = kxu0 ± k
√
κR0T0 (14.37c)

The corresponding phase velocities are

c3,4 = ν3,4L = ω3,4L

2π
= kxu0

k
± cL with cL =

√
κR0T0 (14.37d)

It is seen that c3,4 consists of two parts including the basic current u0 and the
Laplace speed of sound cL which is independent of direction and amounts to about
330 m s−1.
With the help of Figure 14.4 we are going to investigate the propagation of plane

harmonic waves in the (x, z)-plane. The wave vector k is normal to the equiphase
surfaces (phase lines kxx + kzz = constant in the (x, z)-plane). The wavelength L

is the normal distance between two of these surfaces, (1) and (2); the distances Lx

and Lz are the distances between these two surfaces in the x- and z-directions. The
displacement of equiphase surfaces occurs with the phase speed c. The horizontal
and vertical displacement speeds are denoted by ch and cv. From the trigonometric
relations we find

sinβ = L

Lx

= c

ch
= kx

k
, cosβ = L

Lz

= c

cv
= kz

k

L = LxLz√
L2

x + L2
z

, c = ω

k
= ω√

k2x + k2z

(14.38)

If the phase speed c and β are given, we can calculate ch. From Figure 14.4 it can
be seen that the horizontal speed ch increases with decreasing angle β.
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14.5 Sound waves and gravity waves

Gravity waves arise from the differential effects of gravity on air parcels of different
densities at the same level. It might be a better terminology to call them buoyancy
waves. Let us reconsider the linearized system (14.32). For simplicity, without
changing the essential physics, we set the basic flow speed u0 = 0 so that d1/dt
degenerates to the partial derivative ∂/∂t . The determinant of the four-by-four
matrix of (14.32) now reduces to

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂

∂t
0 R0T0

∂

∂x
0

0 δ
∂

∂t
R0T0

∂

∂z
− g g

0
g(κ − 1)

R0T0

∂

∂t
−κ

∂

∂t
∂

∂x

∂

∂z
− g

R0T0
0

∂

∂t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (14.39)

whose expansion is

[
δ

∂4

∂t4
− κR0T0

(
δ

∂4

∂x2 ∂t2
+ ∂4

∂z2 ∂t2

)
+ κg

∂3

∂z ∂t2
− g2(κ − 1)

∂2

∂x2

]
ψj = 0

(14.40)

Here (ψ1, ψ2, ψ3, ψ4) = (u′, w′, q, s). With the exception of one term all space
derivatives in (14.40) are of second order. This asymmetry can be removed by
substituting

ψj = exp

(
gz

2R0T0

)
Fj (x, z, t) (14.41)

into (14.40) to obtain

[
δ

∂4

∂t4
− κR0T0

(
δ

∂4

∂x2 ∂t2
+ ∂4

∂z2 ∂t2

)
+ κg2

4R0T0

∂2

∂t2
− g2(κ − 1)

∂2

∂x2

]
Fj = 0

(14.42)
where all space derivatives are now of second order. Substitution of the constant-
coefficient harmonic-wave solution

Fj = Aj exp[i(kxx + kzz − ωt)] (14.43)

into (14.42) results in the frequency equation

δω4 − ω2

(
κR0T0

(
δk2x + k2z

) + κg2

4R0T0

)
+ g2(κ − 1)k2x = 0 (14.44)
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Thus, the partial differential equation (14.42) was transformed into a fourth-degree
algebraic equation for the circular frequency, permitting us to determine the phase
velocities of the various waves.
For δ = 1 representing the general case, equation (14.44) will be investigated

from two points of view. In case (i) the appearance of gravity waves will be
suppressed by setting g = 0; in case (ii) the gravity waves will be admitted.

(i) g = 0
This condition results in

ω1,2 = 0, ω3,4 = ±k
√
κR0T0 = ±kcL (14.45)

From (14.45) it follows that only twowaves exist, namely the compressionalwaves.
Thus, we have repeated the results shown in (14.37a) and (14.37c) for the special
case that u0 = 0.

(ii) g 
= 0
Now we obtain the solution

ω2
1,2 = 1

2

(
κR0T0k

2 + κg2

4R0T0

)
±

√
1

4

(
κR0T0k2 + κg2

4R0T0

)2
−g2(κ − 1)k2x

(14.46)
for sound and gravity waves combined. The positive square root results in a solution
for sound waves that are modified by gravitational effects. The negative square root
may be viewed as a solution for gravity waves that are modified by sound effects.
We will conclude this section by considering some additional special cases of

the frequency equation (14.44). These are the effect of incompressibility and the
propagation of sound waves in the horizontal and vertical directions.

14.5.1 The effect of incompressibility

In textbooks on thermodynamics it is shown that, in an incompressible fluid where
the coefficient of piezotropy γ ρ

p approaches zero, the Laplace speed of sound cL is
infinitely large:

γ ρ
p = 1

κR0T0
= 1

c2L
= 0 (14.47)

On setting δ = 1 in (14.44) and multiplying this equation by the piezotropy
coefficient, we find

γ ρ
p ω

4 − ω2

(
k2 + g2

4R2
0T

2
0

)
+ g2k2x

R0T0
− g2k2xγ

ρ
p = 0 (14.48)
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Permitting the piezotropy coefficient to approach zero to simulate incompressibility,
we find the frequency equation for an incompressible medium to be

−ω2

(
R0T0k

2 + g2

4R0T0

)
+ g2k2x = 0 (14.49)

Owing to the elimination of sound waves the frequency equation is now only of
second degree and contains gravity waves only. The frequency of the gravity waves
is given by

ω1,2 = ±
√

g2k2x

R0T0k2 + g2/(4R0T0)
(14.50)

Now we wish to investigate the effect of static stability on gravity waves. For
this purpose we replace the term κ − 1 in (14.44) by the vertical gradient of the
potential temperature θ0. Logarithmic differentiation of the basic-state potential-
temperature equation, assuming that we have isothermal conditions of the basic
state, and application of the hydrostatic equation results in

κ − 1 = κR0T0

gθ0

∂θ0

∂z
(14.51)

Substituting this expression into (14.44), setting δ = 1, and observing that the scale
height is given by H = R0T0/g, we find

ω4 − ω2
(
κR0T0k

2 + κg

4H

)
+ k2xg

κR0T0

θ0

∂θ0

∂z
= 0 (14.52a)

This formof the frequency equation permits us tomake a very useful approximation,
which should be valid for a great number of situations. First we form the ratio
κR0T0k

2
z

/
[κg/(4H )] with k2 = k2x + k2z . If the largest vertical wavelength Lz does

not significantly exceed the scale heightH , as is often the case, this ratio is roughly
150. For Lz < H the ratio is even larger, so that the term κg/(4H ) in (14.52a)
may be dropped in comparison with κR0T0k

2 without a significant loss of accuracy.
This yields the simplified form

ω4 − ω2κR0T0k
2 + k2xg

κR0T0

θ0

∂θ0

∂z
= 0 (14.52b)

As before, we multiply this equation by the piezotropy coefficient. Permitting this
coefficient to approach zero, we obtain the simplified frequency equation

ω1,2 = ±kx

k

√
g

θ0

∂θ0

∂z
, u0 = 0 (14.53)
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for the incompressible medium. If u0 differs from zero, analogously to (14.37c) we
must replace ω1,2 by

χ1,2 = ω1,2 − u0kx = ±kx

k

√
g

θ0

∂θ0

∂z
(14.54)

The term χ is known as the intrinsic frequency. In contrast to the circular frequency,
the intrinsic frequency ismeasured by an observer drifting with the basic air current.
The introduction of χ avoids the explicit appearance of the Doppler effect. The
corresponding phase velocities are then given by

c1,2 = ω1,2

k
= ± kx

k2

√
g

θ0

∂θ0

∂z
, u0 = 0

or c1,2 = ω1,2

k
= kx

k
u0 ± kx

k2

√
g

θ0

∂θ0

∂z

(14.55)

One final remark on the approximation used in (14.52) might be helpful. Had we
ignored the term g2/(4R0T0) in comparison with R0T0k

2
z in (14.49), we would have

obtained a slightly different approximation.
Inspection of (14.54) shows that, for stable stratification, ∂θ0/∂z > 0, stable

oscillations occur. An amplified disturbance occurs for superadiabatic conditions
with ∂θ0/∂z < 0 since c1,2 is complex.
Finally, if the depth of the disturbance is large in comparison with the horizontal

scale, that is k2x � k2z , then k in (14.53) may be approximated by kx and we obtain
the Brunt–Vaisala frequency

ωBr =
√

g

θ0

∂θ0

∂z
(14.56)

which is usually discussed in connection with oscillations in vertical stability of
isolated air parcels.
Next we wish to show that the system (14.32) contains two special cases

describing sound waves propagating in the horizontal or in the vertical direction.
For simplification we set the basic current u0 = 0.
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14.5.2 Horizontal sound waves

In the basic system (14.32) we set g = 0 and w′ = 0 to eliminate gravity waves
and vertical motion. This means that the remaining sound wave can propagate only
in the x-direction so that the wave front is parallel to the (y, z)-plane. With these
simplifications (14.32) reduces to the prognostic set

∂u′

∂t
+ R0T0

∂q

∂x
= 0,

∂q

∂t
− κ

∂s

∂t
= 0,

∂u′

∂x
+ ∂s

∂t
= 0 (14.57)

By combining the last two expressions we find

∂u′

∂t
+ R0T0

∂q

∂x
= 0,

∂u′

∂x
+ 1

κ

∂q

∂t
= 0 (14.58)

from which we determine the perturbation velocity u′ and the relative pressure
disturbance q. By employing the operator method we obtain the wave equation for
horizontally propagating sound waves:(

∂2

∂t2
− κR0T0

∂2

∂x2

)
ψj = 0 (14.59)

with (ψ1, ψ2) = (u′, q). The solution to (14.59), also known as D’Alembert’s
solution, can be written in the general form

ψj = ψj (x ± cLt) with c2L = κR0T0 (14.60)

where the disturbances propagate in the positive and negative x-directions with the
speed of sound cL.

14.5.3 Vertical sound waves

In the basic system (14.32) we set δ = 1, g = 0, and u′ = 0 to suppress gravity
waves and the horizontal velocity. This results in the following system:

∂w′

∂t
+ R0T0

∂q

∂z
= 0,

∂q

∂t
− κ

∂s

∂t
= 0,

∂w′

∂z
+ ∂s

∂t
= 0 (14.61)

Eliminating again ∂s/∂t and applying the operatormethod to the remaining system,
we obtain the wave equation(

∂2

∂t2
− κR0T0

∂2

∂z2

)
ψj = 0 (14.62)

with (ψ1, ψ2) = (w′, q). The solution is given by

ψj = ψj (z ± cLt) (14.63)

showing that the disturbances propagate in the positive and negative vertical
directions with the speed of sound.
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14.5.4 Hydrostatic filtering

In the basic set of the linearized equation (14.32) we now set δ = 0. Thus, the
term (∂/∂t + u0 ∂/∂x)w′ disappears so that a prognostic equation is replaced by a
diagnostic relation. This corresponds to hydrostatic filtering. Instead of (14.44) the
frequency equation now reads

−ω2

(
R0T0k

2
z + g2

4R0T0

)
+ g2k2x

κ − 1

κ
= 0 (14.64)

The comparisonwith the frequency equation (14.49) for an incompressiblemedium
reveals far-reaching agreement, demonstrating that the hydrostatic approximation
has eliminated to a large extent the effect of compressibility. This can also be seen
by solving (14.64) for ω, yielding

ω2 = g2κ − 1

κ

k2x

R0T0k
2
z + g2/(4R0T0)

(14.65)

This expression shows that, for g = 0, not only gravity waves but also sound
waves have completely been eliminated from the system since in this case ω = 0.
Comparison of (14.64) with (14.49) shows that the hydrostatic approximation has
eliminated the quantity k2x in comparison with k2z , meaning that Lx � Lz. From
Figure 14.4we recognize that, in the present situation, the angle of inclination of the
wave front is very small, so the horizontal displacement velocity ch is much larger
than the phase speed c itself, whose direction is perpendicular to the wave front.
Finally, we wish to show from another point of view that hydrostatic filtering

of the system (14.32) eliminates vertically propagating sound waves. This type of
filtering is very important in numerical weather prediction. The reason for this is
that the time step of integration that can be chosen is inversely proportional to
the phase speed of the fastest waves contained in the system, which are the sound
waves. More information on this topic will be given in the chapter on numerical
procedures in weather prediction.
In order to actually show that the vertically propagating sound waves are filtered

out of the system, we eliminate gravitational effects by setting g = 0 and set
u′ = 0 in (14.32). Thus, the remaining wave can propagate in the positive or
negative z-direction only. With these assumptions (14.32) reduces to

R0T0
∂q

∂z
= 0,

∂q

∂t
− κ

∂s

∂t
= 0,

∂w′

∂z
+ ∂s

∂t
= 0, u0 = 0 (14.66)

The first expression implies that the relative pressure disturbance is independent
of height. Nevertheless, q might still be a function of time. If it turns out that q is
a function of time so that ∂q/∂t 
= 0, then the pressure disturbance occurs at all
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heights simultaneously. This means that the vertical phase speed of the pressure
disturbance is infinitely large, thus leaving the atmosphere immediately.
To look at the problem from a slightly different point of view, we differentiate

the second expression of (14.66) with respect to z and find

∂

∂t

∂q

∂z
= κ

∂

∂t

∂s

∂z
= 0 since q 
= q(z) (14.67)

From the third expression of (14.66) it now follows that

∂2w′

∂z2
= 0 =⇒ w′ = az + b (14.68)

The kinematic boundary condition states that w′(z = 0) = 0, so b = 0. To prevent
w′ becoming infinitely large with increasing z, we set a = 0 so that w′ = 0.
Therefore, according to (14.66), we have ∂s/∂t = 0 and finally ∂q/∂t = 0, so
q 
= q(t). Now q is independent of height and time so that there exists no (z, t)-
relation for q, which would be required for a moving wave. We interpret this by
saying that vertically propagating soundwaves have been filtered out of the system.
Horizontal sound waves have not been eliminated by hydrostatic filtering. They
may result from a degeneration of horizontal gravity waves, as will be shown next.

14.5.5 Degeneration of horizontal gravity waves

We conclude this section by showing that horizontally propagating gravity waves
may degenerate to sound waves. Setting w′ = 0 in the system (14.32), we obtain
with u0 = 0 the prognostic system

∂u′

∂t
+ R0T0

∂q

∂x
= 0,

∂q

∂t
− κ

∂s

∂t
= 0,

∂u′

∂x
+ ∂s

∂t
= 0 (14.69)

consisting of the first equation of motion, the adiabatic equation, and the continuity
equation. Furthermore, due to the hydrostatic filtering, the second row of (14.32)
becomes a diagnostic relation:(

R0T0
∂

∂z
− g

)
q + gs = 0 (14.70)

In order to apply the operator method, we form the required determinant:∣∣∣∣∣∣∣∣∣∣∣∣

∂

∂t
R0T0

∂

∂x
0

0
∂

∂t
−κ

∂

∂t
∂

∂x
0

∂

∂t

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (14.71)
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Expansion of this determinant results in

∂

∂t

(
∂2

∂t2
− c2L

∂2

∂x2

)
ψj = 0 (14.72)

with (ψ1, ψ2, ψ3) = (u′, q, s). Excluding the trivial solution in which the functions
u′, q, and s are constants, we obtain D’Alembert’s wave equation

(
∂2

∂t2
− c2L

∂2

∂x2

)
ψj = 0 (14.73)

whose solution is given by (14.60). This equation shows that the disturbances are
displaced in the positive or the negative x-direction.
Let us now specifically discuss the pressure disturbance q = q(x ± cLt, z) in

a little more detail by including the compatibility equation (14.70). Integration of
the second expression of (14.69) with respect to time gives

q

κ
= s + f (x, z, t0) (14.74)

where f (x, z, t0) is an arbitrary function. Initially, at time t0, the relative pressure q
and the relative density s are assumed to be zero so that f is zero also. Substitution
of (14.74) into (14.70) yields

(κ − 1)g

κ
q = R0T0

∂q

∂z
(14.75)

which can be integrated to give

q = Q exp

(
(κ − 1)gz

κR0T0

)
= Q exp

(
(κ − 1)gz

c2L

)
(14.76)

with Q = q(x ± cLt, z = 0). Now we introduce the definition of the relative
pressure disturbance q = p′/p0 into (14.76). We also recall that the basic state
pressure p0 decays exponentially so that

p0 = p0(z = 0) exp
(
− z

H

)
with H = R0T0

g
= c2L

κg
(14.77)

Therefore, the pressure disturbance is given by

p′ = p0(z = 0)Q(x ± cLt, z = 0) exp

(
−gz

c2L

)
(14.78)

This equation describes the horizontal displacement of a pressure disturbance with
a speed of displacement cL. The disturbance decreases with height. At a height of
10 km the disturbance has decreased by about one third of its value at the surface of
the earth. In this special case the pressure disturbance p′ decreases exponentially
with height in a horizontally displaced gravity wave that is moving with the speed
of sound.
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14.6 Lamb waves

By direct substitution it is easily shown that for u0 = 0 the basic system (14.31) is
satisfied by the following solution:

u′ = S exp
( z

H

)
exp

(
− z

κH

)
exp[ikx(x − cLt)]

w′ = 0

p′ = P exp
(
− z

κH

)
exp[ikx(x − cLt)]

α′ = A exp

(
2z

H

)
exp

(
− z

κH

)
exp[ikx(x − cLt)]

(14.79)

where the coefficients S, P,A are constants. This wave, known as the Lamb wave,
has no vertical velocity and propagates horizontally with the speed of sound cL.
Waves propagating in the horizontal direction only are known as trapped waves or
evanescent waves. As mentioned above, a wave moving with the speed of sound is
important in numerical weather prediction since it places a severe restriction on the
maximum time step. For details on Lamb waves see Haltiner and Williams (1980).

14.7 Lee waves

When air is forced to cross a mountain ridge under statically stable conditions,
individual air parcels are displaced from their equilibrium level. In this case the air
parcels begin to oscillate about their equilibrium positions. The consequence is the
formation of a wave system in the lee region of the mountain. There exists a rather
detailed theory for two-dimensional air flow crossing idealized mountains; see, for
example, Queney (1948), Queney et al. (1960), and Smith (1979). The interested
reader may consult Gossard and Hooke (1975), where this topic is treated in some
detail. More realistic simulations are possible with the help of numerical models,
which may be verified by means of satellite observations.

14.8 Propagation of energy

Wave motion is associated with the transport of physical quantities such as energy
and momentum. In this section we will briefly derive an important equation for
the transport of energy by gravity and acoustic waves. To keep the analysis simple
but still sufficiently instructive, we will restrict our discussion to frictionless wave
motion in the (x, z)-plane. Furthermore, we consider a scale of motion on which
Coriolis effects are not important. We refer to Gossard and Hooke (1975) and
Pichler (1997), where additional details may be found.
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If p′, u′, w′ are the perturbed field quantities due to wave motion, we must
average the energy flux F = i1Fx + i3Fz (energy per unit area and time) over one
complete cycle τ , yielding

F = pv = 1

τ

∫ τ

0

pv dt (14.80)

In order to assume solutions of the type (14.35),wemust have a constant-coefficient
system of differential equations. To handle this particular problem, we transform
the sytem (14.31) as shown next. First we set δ = 1 and introduce the operator
d1/dt . This gives

d1u
′

dt
+ α0

∂p′

∂x
= 0 (14.81a)

Next we apply the operator d/dt to (14.31b) and eliminate dα′/dt by means of
(14.31c), yielding

(
d2
1

dt2
+ ω2

Br

)
w′ + α0

d1

dt

(
∂

∂z
+ g

c2L

)
p′ = 0

with ω2
Br = g

(
1

α0

∂α0

∂z
− g

c2L

) (14.81b)

Here we have written the Brunt–Vaisala frequency ωBr as defined in (14.56) in a
more suitable form. Finally, we combine (14.31c) and (14.31d) and obtain

d1p
′

dt
− g

α0
w′ + c2L

α0

(
∂u′

∂x
+ ∂w′

∂z

)
= 0 (14.81c)

The wave solution (14.35) cannot be applied to (14.81) since α0 depends on
height. In order to obtain a constant-coefficient system, we transform the variables
according to

u′ = U

(
α0

αs

)1/2
, w′ = W

(
α0

αs

)1/2
, p′ = P

(
α0

αs

)1/2
(14.82)

where αs is a constant. Refer to Bretherton (1966). This transformation leads to the
system

d1U

dt
+ αs

∂P

∂x
= 0(

d2
1

dt2
+ ω2

Br

)
W + αs

d1

dt

(
∂

∂z
+ E

)
P = 0

αs

c2L

d1P

dt
+ ∂U

∂x
+

(
∂

∂z
− E

)
W = 0

(14.83)
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Here we have introduced the so-called Eckart coefficient

E = − 1

2α0

∂α0

∂z
+ g

c2L
(14.84)

Assuming that we have a basic isothermal state, equation (14.83) is a constant-
coefficient system so that the trial solution




U

W

P


 =




A1

A2

A3


 exp[i(kxx + kzz − ωt)] (14.85)

may be applied. The coefficients Ai are constant amplitudes. The resulting
equations

(a) χA1 − αskxA3 = 0
(b)

(
ω2
Br − χ 2

)
A2 + αsχ(kz − iE)A3 = 0

(c) kxA1 + (kz + iE)A2 − αs
c2L
χA3 = 0

with χ = ω − kxu0

(14.86)

give the relations among the various Ai which are needed in order to find Fx

and Fz.
Employing (14.80), we obtain

Fx = p′u′ = A1A3
α0

αs

1

τ

∫ τ

0
cos2(kxx + kzz − ωt) dt (14.87)

since only the real part of the wave is physically meaningful. By eliminating A1

from this equation, we find that the energy flux Fx is proportional to the square of
the pressure amplitude:

Fx = αs

2

(
kx

χ

)
A2

3 (14.88)

In order to find the correlation Fz = p′w′ we proceed likewise. Inspection shows
that equation (14.86b) is complex. In order to establish a relationship between p′

and w′ that is entirely real, we set the Eckart coefficient E equal to zero. Thus we
obtain the following relation for the energy flux in the z-direction:

Fz = p′w′ = A2A3
1

τ

∫ τ

0
cos2(kxx + kzz − ωt) dt (14.89)
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and, after eliminating A2 by means of (14.86),

Fz = − αsχkzA
2
3

2
(
ω2
Br − χ 2

) (14.90)

As expected, the vertical energy transport Fz is proportional to the square of the
pressure amplitude.
The next step is to establish the relation between the flow of energy and the

group velocity. For the group velocity, relative to the basic current u0, we replace
ω in (14.15b) by χ = ω − u0kx . This gives

c̃gr = cgr − u0i1 = ∇kχ = ∂χ

∂kx
i1 + ∂χ

∂kz
i3 (14.91)

Wewill now find the relationship between the flow of energy and the group velocity
for gravity waves. From (14.54) and (14.56) we obtain

χ 2 = k2x

k2
ω2
Br =⇒ ∂χ

∂kx
= χk2z

kxk2
,

∂χ

∂kz
= −χkz

k2
(14.92)

Hence, for gravity waves we have ω2
Br > χ 2. Owing to this inequality,

equation (14.90) admits a very interesting and useful interpretation. If χ > 0
and the wave motion is in the upward direction (kz > 0), then the flow of energy
(Fz < 0) is in the downward direction. If the wave motion is in the downward
direction (kz < 0), then the flow of energy is upward (Fz > 0).
For acoustic waves the situation is different. In this case the directions of the

wave motion and the energy flux are identical. For kz < 0 we have Fz < 0 and for
kz > 0 we find Fz > 0.
We are now ready to state the relationship between the flow of energy and the

group velocity. On substituting the derivative expressions listed in (14.92) into
(14.91) we find immediately

c̃gr = χkz

k2

(
kz

kx
i1 − i3

)
(14.93)

On combining the components Fx and Fz of the energy flux F, we find

F = αsA
2
3

2

(
kx

χ
i1 − χkz

ω2
Br − χ 2

i3

)
(14.94)

After eliminating the square of the Brunt–Vaisala frequency in (14.94) with the
help of (14.92), we obtain after some slight rearrangements the equation

F = k2xαsA
2
3

2kzχ

(
kz

kx
i1 − i3

)
(14.95)
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Comparison of this equation with (14.93) shows that the energy flux and the group
velocity have the same direction so that (14.93) and (14.95) may be combined
to give

F = αsA
2
3

2

(
kx

kz

)2(
k

χ

)2
c̃gr (14.96)

We see that the energy flux and the group velocity are unidirectional. This is true
not only for gravity waves but also for wave motion in general.

14.9 External gravity waves

In this section the atmosphere is modeled by a one-layer, homogeneous, and
incompressible fluid. Surfacewaves due to gravitational effects closely approximate
ocean waves. Since these waves occur at the outer boundary of the fluid they are
called external gravity waves. For simplicity we again restrict the motion to the
(x, z)-plane so that the waves can propagate along the x-axis only. Since the fluid
is homogeneous and incompressible, we set α′ = 0 so that α = α0 = constant. In
this particular situation the first law of thermodynamics does not apply, so (14.31c)
must be ignored. Thus, the equation system (14.31) reduces to a system of three
equations, given by

(a)
∂u′

∂t
+ u0

∂u′

∂x
+ α0

∂p′

∂x
= 0

(b) δ

(
∂w′

∂t
+ u0

∂w′

∂x

)
+ α0

∂p′

∂z
= 0

(c)
∂u′

∂x
+ ∂w′

∂z
= 0

(14.97)

Again we assume that the perturbed flow may be represented by harmonic waves
but now we admit that the amplitudes Aj are height-dependent:


u′

w′

p′


 =




A1(z)

A2(z)

ρ0A3(z)


 exp[ikx(x − ct)] (14.98)

The density ρ0, multiplying the amplitude A3, is irrelevant insofar as the solution
is concerned and has been introduced for mathematical convenience.
Substituting (14.98) into (14.97) gives



u0 − c 0 1

0 ikxδ(u0 − c)
d

dz

ikx
d

dz
0







A1(z)

A2(z)

A3(z)


 = 0 (14.99)
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If ρ0 had not been included, then the specific volume of the basic state would have
appeared explicitly. Equation (14.99) is a coupled set that can be solvedmost easily
by means of the operator method. As in the previous cases, we set the determinant
of the coefficient matrix equal to zero,

∣∣∣∣∣∣∣∣∣∣∣

u0 − c 0 1

0 ikxδ(u0 − c)
d

dz

ikx
d

dz
0

∣∣∣∣∣∣∣∣∣∣∣
= 0 (14.100)

and then evaluate the determinant. The resulting operator

(
d2

dz2
− k2xδ

)
Aj (z) = 0 (14.101)

applies to all Aj (j = 1, 2, 3). For the general case δ = 1, the eigenvalues (charac-
teristic values) are ±kx so that the solution is of the form

Aj (z) = C1 exp(kxz) + C2 exp(−kxz) (14.102)

Now we must evaluate the integration constants C1 and C2 by applying proper
boundary conditions. We begin with the case A2. From (14.98) and (14.102) the
vertical velocity perturbation is given by

w′(z, t) = [
C1 exp(kxz)+ C2 exp(−kxz)

]
exp[ikx(x − ct)] (14.103)

By applying the kinematic boundary condition (9.43a) and canceling out the form
factor of the harmonic wave exp(ikx(x − ct) which cannot be zero, we obtain

w′(0) = 0 = C1 + C2 =⇒ C1 = −C2 = A (14.104)

so
A2 = A[exp(kxz) − exp(−kxz)] (14.105)

The amplitude A1 is found from the last equation of (14.99), yielding

A1 = − 1

ikx

dA2

dz
= iA[exp(kxz)+ exp(−kxz)] (14.106)

From the first equation of (14.99) we obtain the amplitude A3:

A3 = −(u0 − c)A1 = −iA(u0 − c)[exp(kxz)+ exp(−kxz)] (14.107)
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The next step is to eliminate the integration constant A. This is done by
application of the dynamic boundary condition (9.44c). For a frictionless fluid
and a free material surface, the dynamic boundary condition is given by

p(H ) = 0,

(
dp

dt

)
H

= 0 (14.108a)

where H is the height of the medium, which varies with the distance x and with
time. SinceH in general differs very little from the average heightH of themedium,
we may use the approximate boundary condition

p(H ) = p0(H ) + p′(H ) = 0,

(
dp

dt

)
H

=
(
∂p

∂t
+ u

∂p

∂x
+ w

∂p

∂z

)
H

= 0

(14.108b)
The required perturbation pressure p′ is found by linearizing the previous equation
to give (

∂p′

∂t
+ u0

∂p′

∂x
+ w′ ∂p0

∂z

)
H

= 0 (14.109)

If the pressurep0 of the basic field were permitted to vary with x, an acceleration of
the flow in the x-direction would have to take place, in contrast to the assumption
that u0 is constant. For this reason the pressure gradient of the basic field in the
x-direction must be set equal to zero, that is ∂p0/∂x = 0.
After substituting for p′ according to (14.98), using (14.107), we find

−kxc(u0 − c)+ kxu0(u0 − c) − g tanh(kxH ) = 0 (14.110)

since the constant A cancels out. The phase speed of the surface gravity waves
propagating in the x-direction is then given by

c = u0 ±
√

g

kx
tanh(kxH ) (14.111)

Two special cases of external gravity waves forming at the free surface are of
particular interest.

14.9.1 Case I

Suppose that the lateral extent of the disturbance Lx is very large in comparison
with the depthH of the homogeneous layer, i.e.Lx � H . In this case the argument
of the hyperbolic tangent approaches zero. From the Taylor expansion of tanh we
then find

lim
kxH→0

tanh(kxH ) = kxH (14.112)
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so the phase speed of the so-called shallow-water waves or long waves is given by

c = u0 ±
√
gH if H � Lx (14.113)

This formula, first given by Lagrange, is correct to within one percent if H <

0.024Lx . For the homogeneous atmosphere we may replace the argument gH by
R0T0 so that the phase speed is given by

c = u0 ±
√
R0T0 (14.114)

In the absence of the basic current u0 the long waves propagate with the Newton
speed of sound cN = √

R0T0, which is only slightly less than the Laplace speed of
sound cL.

14.9.2 Case II

Suppose that the depth of the fluid medium is large in comparison with the
horizontal extent of the disturbance, i.e. Lx � H . In this case the hyperbolic
tangent approaches the value 1, so the phase speed of the so-called deep-water
wave is given by

c = u0 ±
√

gLx

2π
if H � Lx (14.115)

This formula may be used with an error of about one percent ifH > 0.4Lx . For the
linear theory it is possible to determine the trajectories (orbits) of the fluid particles
for progressive waves; see LeMéhaute (1976). For the shallow-water waves the
fluid-particle trajectories are elongated ellipses whereas for the deep-water waves
they are nearly circular.
Case I dealing with Lx � H is equivalent to the hydrostatic approximation.

To confirm this, we set δ = 0 in (14.101) and obtain the simple second-order
differential equation

d2A2

dz2
= 0 (14.116)

which can be integrated to give the linear profile

A2(z) = D1z + D2 (14.117)

so the vertical velocity perturbation is given by

w′(z) = (D1z + D2) exp[ikx(x − ct)] (14.118)
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Fig. 14.5 Formation of an internal gravity wave on a zeroth-order discontinuity surface
of density and velocity.

Proceeding as above, we find D2 = 0. Putting D1 = D, we obtain

(a) A2 = Dz

(b) A1 = − 1

ikx

dA2

dz
= iD

kx

(c) A3 = −(u0 − c)A1 = −(u0 − c)
iD

kx

(14.119)

wherein (14.119b), and (14.119c) follow from (14.99). KnowingA3, we also know
p′ from (14.98). On substituting p′ into the linearized dynamic boundary condi-
tion (14.109) the remaining constant D cancels out and we obtain, as expected,
equation (14.113).

14.10 Internal gravity waves

We are going to deepen our understanding of gravity waves by discussing internal
gravity waves, which may develop on a zeroth-order discontinuity surface both
for density and for velocity. Waves of this type are known as Helmholtz waves.
The theory presented here has also been worked out for less restrictive conditions,
under which the density may vary in a simple manner; see, for example, Gossard
and Hooke (1975). The situation is depicted in Figure 14.5 stating the terminology
which is used.
Again we are dealing with the solution to equation (14.101), which must be

obtained for each of the two layers k = 1, 2:

(
d2

dz2
− k2x

)
Aj,k(z) = 0, j = 1, 2, 3, k = 1, 2 (14.120)
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The required kinematic boundary conditions for the two rigid boundaries at z = H

and z = −H are

z = H : w′
1 = 0, z = −H : w′

2 = 0 (14.121)

while the vertical velocity at the discontinuity surface is given by equation (9.41).
Setting the generalized height ξf = H + H ′(x, t), see Figure 14.5, we find

w′
k = dkH

′

dt
= ∂ξf

∂t
+ uk

∂ξf

∂x
, k = 1, 2 (14.122)

We assume that awavewill form at the boundary and be in phasewith the remaining
disturbances. Hence,H ′ may be written as

H ′ = A exp[ikx(x − ct)] (14.123)

Linearization of (14.122) yields

w′
k = ∂H ′

∂t
+ u0,k

∂H ′

∂x
= −(c − u0,k)

∂H ′

∂x
, k = 1, 2 (14.124)

For brevity we also introduce the operatorQk:

Qk = ∂

∂t
+ u0,k

∂

∂x
= −(c − u0,k)

∂

∂x
(14.125)

By forming the ratio of the perturbations of the vertical velocity for the two layers
we find

w′
1

w′
2

= Q1H
′

Q2H
′ = c − u0,1

c − u0,2
(14.126)

indicating that this ratio involves the phase speed and the two constant horizontal
velocities of the basic unperturbed fluid currents. This ratio will be needed shortly.
Next we apply the dynamic boundary condition at the interface:

p1 − p2 = 0,
dk

dt
(p1 − p2) = 0 with

dk

dt
= ∂

∂t
+ uk

∂

∂x
+ wk

∂

∂z
(14.127)

Application of the Bjerkness linearization rule gives

∂p′
1

∂t
+ u0,k

∂p′
1

∂x
+ w′

k

∂p0,1

∂z
−

(
∂p′

2

∂t
+ u0,k

∂p′
2

∂x
+ w′

k

∂p0,2

∂z

)
= 0

or Qk(p
′
1 − p′

2) − g(ρ0,1 − ρ0,2)w
′
k = 0

(14.128)

where the hydrostatic equation has been used to obtain the second relation.
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We are now ready to determine the perturbations of the vertical velocities in each
layer. The solution of (14.120) is analogous to (14.103), so the vertical perturbations
are given by

w′
1(z) = A2,1(z) exp[ikx(x − ct)]

= [C1 exp(kxz)+ C2 exp(−kxz)] exp[ikx(x − ct)]

w′
2(z) = A2,2(z) exp[ikx(x − ct)]

= [D1 exp(kxz)+ D2 exp(−kxz)] exp[ikx(x − ct)]

(14.129)

The constants C1, C2,D1, and D2 will now be determined from the boundary
conditions. Application of the kinematic boundary condition (14.121) to the first
equation of (14.129) requires that A2,1(H ) = 0, from which

C1 exp(kxH ) = −C2 exp(−kxH ) = C/2 (14.130)

follows immediately. Therefore, the amplitude A2,1(z) is given by

A2,1(z) = C

2
{exp[kx(z − H )] − exp[−kx(z − H )]} = C sinh[kx(z − H )]

(14.131)
Expanding the hyperbolic sine function and contracting the constants gives for the
disturbance w′

1

w′
1(z) = A[sinh(kxz) − tanh(kxH ) cosh(kxz)] exp[ikx(x − ct)]

with A = C cosh(kxH ) = constant
(14.132)

Application of the kinematic boundary condition (14.121) for the lower layer
results in

D1 exp(−kxH ) = −D2 exp(kxH ) = D/2 (14.133)

and

A2,2(z) = D

2
{exp[kx(z + H )] − exp[−kx(z + H )]} = D sinh[kx(z + H )]

(14.134)
Hence, the perturbation velocity w′

2 may be written as

w′
2(z) = B[sinh(kxz)+ tanh(kxH ) cosh(kxz)] exp[ikx(x − ct)]

with B = D cosh(kxH ) = constant
(14.135)

In order to find a relation between the integration constants A and B, we form the
ratio (14.126) and obtain

w′
1(z = 0)

w′
2(z = 0)

= −A

B
= c − u0,1

c − u0,2
=⇒ (c − u0,2)A + (c − u0,1)B = 0 (14.136)
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For the determination of the phase speed c of the wave we need another relation
between the constants A and B. To obtain this relation we apply the linearized
dynamic boundary condition (14.128) to the layer k = 1. From (14.125) we have

Q1(p
′
1 − p′

2) = −(c − u0,1)
∂

∂x
(p′

1 − p′
2)

= −(c − u0,1)

[
−ρ0,1

(
∂

∂t
+ u0,1

∂

∂x

)
u′
1 + ρ0,2

(
∂

∂t
+ u0,2

∂

∂x

)
u′
2

]

= −(c − u0,1)

[
ρ0,1(c − u0,1)

∂u′
1

∂x
− ρ0,2(c − u0,2)

∂u′
2

∂x

]
(14.137)

The pressure gradient for each layer has been eliminated with the help of the
original perturbation equation (14.97a). Using the continuity equation (14.97c)
together with (14.128) in (14.137), we find

−(c − u0,1)

[
−ρ0,1(c − u0,1)

∂w′
1

∂z
+ ρ0,2(c − u0,2)

∂w′
2

∂z

]
= g(ρ0,1 − ρ0,2)w

′
1

(14.138)
Had we used k = 2 in (14.128), then, owing to (14.126) we would have obtained
the same result.
The vertical partial derivatives of the perturbation velocities w′

1 and w′
2 at the

boundary z = 0 follow from (14.132) and (14.135):

(
∂w′

1

∂z

)
z=0

= kxA exp[ikx(x − ct)],

(
∂w′

2

∂z

)
z=0

= kxB exp[ikx(x − ct)]

(14.139)
By substituting these expressions into (14.138) we obtain the second relation
between A and B:

[
(c − u0,1)

2ρ0,1kx + g(ρ0,1 − ρ0,2) tanh(kxH )
]
A − (c − u0,1)(c − u0,2)ρ0,2kxB = 0

(14.140)
Together with equation (14.136) we now have two homogeneous equations for the
unknowns A and B. Arranged in matrix form we may write


 (c − u0,1)

2ρ0,1kx + g(ρ0,1 − ρ0,2) tanh(kxH ) −(c − u0,1)(c − u0,2)ρ0,2kx
c − u0,2 c − u0,1




×

A

B


 = 0

(14.141)
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Nonzero values of the integration constants A and B are possible only if the
determinant of the matrix of this expression vanishes. Evaluating the determinant
yields the two roots of the phase speed of the wave at the interface between the two
fluid layers:

c1,2 = ρ0,1u0,1 + ρ0,2u0,2

ρ0,1 + ρ0,2
±

√
g

kx

ρ0,2 − ρ0,1

ρ0,1 + ρ0,2
tanh(kxH )− ρ0,1ρ0,2(u0,1 − u0,2)2

(ρ0,1 + ρ0,2)2

(14.142)
The first term is known as the convective term while the square root is known as the
dynamic term. Owing to the complexity of this equation we will consider special
cases that are more easily interpreted than the original equation.
First of all, it will be noticed that (14.142) reduces to the one-layer solution

(14.111) on setting ρ0,1 = 0. For shallow-water waves, Lx � H , we find

c1,2 = ρ0,1u0,1 + ρ0,2u0,2

ρ0,1 + ρ0,2
±

√
gH

ρ0,2 − ρ0,1

ρ0,1 + ρ0,2
− ρ0,1ρ0,2(u0,1 − u0,2)2

(ρ0,1 + ρ0,2)2
(14.143)

which reduces to (14.113) if ρ0,1 = 0.
For deep-water waves, Lx � H , we find

c1,2 = ρ0,1u0,1 + ρ0,2u0,2

ρ0,1 + ρ0,2
±

√
g

kx

ρ0,2 − ρ0,1

ρ0,1 + ρ0,2
− ρ0,1ρ0,2(u0,1 − u0,2)2

(ρ0,1 + ρ0,2)2
(14.144)

which reduces to (14.115) for ρ0,1 = 0.
Inspection of (14.142) shows that the expression under the square root might be

negative, giving a complex value for the phase speed of the wave. Whenever this
happens the wave is said to be unstable. The conditions for stable and unstable
wave motion are given by

Stable waves: (u0,1 − u0,2)
2 ≤ gLx

2π

ρ2
0,2 − ρ2

0,1

ρ0,1ρ0,2
tanh

(
2πH

Lx

)

Unstable waves: (u0,1 − u0,2)
2 >

gLx

2π

ρ2
0,2 − ρ2

0,1

ρ0,1ρ0,2
tanh

(
2πH

Lx

) (14.145)

Unstable Helmholtz waves are known as Kelvin–Helmholtz waves.
We conclude this section by considering three special cases that follow from

inspection of (14.142). If the velocities of the basic currents in each layer are equal
but the densities differ, that is u0,1 = u0,2, ρ0,1 
= ρ0,2, then the wave is unstable
only if the density of the upper layer exceeds the density of the lower layer. The
result is obvious since overturning would take place immediately. If the densities in
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each layer are the same but the basic air currents differ, i.e. u0,1 
= u0,2, ρ0,1 = ρ0,2,
the wave is always unstable because the dynamic term is always imaginary. These
waves are called shearing waves since the wave velocity depends only on the wind
shear.
Finally, we consider the stationary wave by setting the phase speed c equal to

zero. Furthermore, we assume thatwe are dealingwith deep-waterwaves,Lx � H .
In this special case the wavelength Lx is expressed by

Lx = 2π

g

ρ0,1u
2
0,1 + ρ0,2u

2
0,2

ρ0,2 − ρ0,1
(14.146)

Using the ideal-gas law and recalling that, at the interface, the dynamic boundary
condition must hold (p1 = p2 = p), we find the wavelength of the so-called billow
clouds to be

Lx = 2π

g

u2
0,1T2 + u2

0,2T1

T1 − T2
(14.147)

These clouds are observed to form at the boundary of an inversion. Assuming
that the clouds move with the mean velocity (u0,1 + u0,2)/2 of the lower and the
upper layer, the wave velocity vanishes in a coordinate system moving with the
velocity of the cloud system. Condensation and cloud formation take place when
the air is ascending while the sky is clear where the wave motion causes descent of
air. Comparison with observations shows that this simple theory overestimates the
wavelengths of the billow clouds. As early as 1931 Haurwitz improved the above
theory by permitting a variation in density of both air masses. This resulted in a
better agreement between theory and observations. If the difference in temperature
at the top of the inversion is about 4 K and the corresponding change in the wind
velocity 5.5 m s−1, the wavelength of the billow cloud is about 600 m. In this case
the above theory agrees reasonably well with observations.

14.11 Nonlinear waves in the atmosphere

There are other types of wave motion that cannot be handled using the methods
described so far. Instead of linear equations, nonlinear equations must be solved,
with their accompanying complexities. In this section we merely wish to make a
few comments on solitary waves, which are described by the so-called Korteweg–
de Vries equation. A quite informative mathematical introduction to this topic
is to be found, for example, in Keener (1988). Here we follow the introduction
given by Panchev (1985), who treats some aspects of meteorological applications
in connection with solitary waves.
A solitary wave is a localized perturbation propagating in a dispersive medium

without change of shape. If solitary waves collide without changing shape they
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Fig. 14.6 The shape of the solitary wave.

are called solitons. The Korteweg–de Vries equation, in the shallow-water
approximation, describes the evolution of long surface gravity waves with small
amplitudes. In the one-dimensional case this equation may be written as

∂h

∂t
+ (C0 + C1h)

∂h

∂x
+ C2

∂3h

∂x3
= 0 (14.148)

Here C0, C1, and C2 are constants and h(x, t) is the deviation from the free surface.
In the linear approximation (C1 = 0) there exists the solution

h(x, t) = A exp[i(kxx − ωt)] with ω = C0kx − C2k
3
x (14.149)

whereA is the amplitude of the disturbance. The dispersion relation shows that the
angular frequency ω depends on the wavenumber kx only, not on the amplitude.
In the general case equation (14.148) also has a periodic solution that can be
expressed in terms of elliptic cosine functions (Jacobi’s elliptical function). It is
quite remarkable that, in addition to the periodic solution, equation (14.148) has a
particular solution that can be expressed in terms of the hyperbolic secant function

h(x, t) = A sech2
[
k̃x(x − ct)

]
(14.150)

with

k̃x =
√

AC1

12C2

and

c = C0 + AC1

3

The angular frequency depends not only on the wavenumber, as in the linear
case, but also on the amplitude. This is the most important property of dispersive
nonlinear waves.
Figure 14.6 shows the shape of the function h(x̃), that is the real part of h(x̃),

where x̃ = kx(x − ct). In the extremely far wings h approaches the value zero; at
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Fig. 14.7 Interaction of two solitons.

the center of the disturbance h = A. A disturbance, i.e. the solitary wave, moves
in the positive x-direction with a speed c that is proportional to the amplitude A.
Linear equations do not behave in this way. From mathematical theory we know
that the superposition of solutions of linear systems gives another solution. Owing
to this fact, a neutral (not decaying or amplifying) linear wave can overtake another
neutral linear wave without the shape of either wave changing. In contrast to this,
the superposition of solutions of nonlinear equations does not give a new solu-
tion. Nevertheless, many solitary waves exhibit aspects of linear behavior. When
one solitary wave overtakes another, they interact nonlinearly. After separating
they retain their original shapes as shown in Figure 14.7. The soliton with the
larger amplitude overtakes a soliton of smaller amplitude as shown in part (b) of
Figure 14.7. The occurrence of nonlinearity follows from the observation that, after
the interaction, the solitons are not located at those coordinates where they would
have been found had no interaction taken place.
Finally, we briefly describe a meteorological application. From a careful

analysis of the surface pressure field, sometime in 1951 in Kansas, USA, a pressure
disturbance of 3.4 hPa was observed to propagatewith a speed of about 21 m s−1 up
to a distance of 800 km. Abdullah (1955) explains this phenomenon as an internal
gravitational solitary wave resulting from an impulsivemotion of a quasi-stationary
cold front in the thermal inversion layer. Further observations of this type have been
presented by Christie et al. (1978).
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14.12 Problems

14.1: Sketch the profile of the wave U = U0 sin(kx − ωt + ε) with ε = π .

14.2: Astanding or stationarywave canbe described as the productU = U1(x)U2(t).
Show that the superposition of two waves of the same amplitude and the same pe-
riod moving in opposite directions can be written in this way. Assume that we are
dealing with simple sine waves and give the explicit form of U .

14.3: Let α0 = constant, p0 = constant, and u0 = constant. Eliminate α′ in
(14.31) and verify that pure sound waves move according to (14.37d). Assume that
δ = 1.

14.4: Let δ = 1, u0 = 0, and g = 0 in the system (14.31). Introduce the transfor-
mation (14.82). Instead of α0 = constant assume that the relative change in height
(1/α0) ∂α0/∂z is constant. Does this result in the phase speed of a pure sound
wave?

14.5: Show that the system of Lamb waves (14.79) satisfies the basic linearized
system (14.31). For simplification set u0 = 0.

14.6: Modify equation (14.142) for the case in which both fluids are infinitely
deep.

14.7: In shallowwater the phase speed is given by (14.113) if the earth’s rotation is

ignored. Estimate the effect of the earth’s rotation. In this case c =
√
gH + f 2/k2x

if u0 = 0.

14.8: Find an approximate wavelength of a lee wave forming behind a symmetric
mountain in a stable atmosphere. This wavelength is fairly well approximated by
a standing wave produced by vertical oscillations in a homogeneous current at a
height twice the height of the mountain. Assume that u0 = 10 m s−1, the observed
lapse rate is −10 K km−1, and T0(3000 m) is 240 K.

14.9: Show that ω2
Br = (g/α0) ∂α0/∂z − g2/c2L.



15

The barotropic model

Barotropic and baroclinic atmospheric processesmanifest themselves in the numer-
ous facets of large-scale weather phenomena. Typical examples are the formation
and propagation of synoptic waves having wavelengths of several thousand kilo-
meters and the characteristic life cycles of high- and low-pressure systems. The
barotropic and baroclinic physics provides the physical basis of numerical weather
prediction. In this chapter we will consider various aspects of barotropic models. It
is realized that the prediction of the daily weather by means of barotropic models is
no longer practiced by the national weather services. Nevertheless, by discussing
the mathematical theory of the barotropic physicswe can learn very well how phys-
ical variables are interconnected and howmuch caremust be taken to construct even
a very simple prediction model. The first numerical barotropic weather-prediction
model was introduced by the renowned meteorologist C. G. Rossby and by the
famous mathematician John von Neumann. Baroclinic models will be described in
some detail in later chapters.
Barotropic models are short-range-prediction models that include only the re-

versible part of atmospheric physics. The consequence is that the atmosphere is
treated as a one-component gas consisting of dry air. The irreversible physics such
as non-adiabatic heating and cloud formation is not taken into account.

15.1 The basic assumptions of the barotropic model

The name of the model is derived from the assumption that the atmosphere is in
a barotropic state throughout the prediction period. The condition of barotropy
by itself, however, is not sufficient to construct a barotropic prediction model;
additional assumptions are mandatory. The model described here rests on three
basic assumptions. These are

435
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(i) the validity of the condition of barotropy for the entire prediction period:

ρ = ρ(p) or ∇ρ × ∇p = 0 for t ≥ t0 (15.1)

(this is known as the condition of autobarotropy)
(ii) the validity of the hydrostatic equation at all times

∂p

∂z
= −gρ for t ≥ t0 (15.2)

(iii) the horizontal wind is independent of height

∂vh
∂z

= 0 for t ≥ t0 (15.3)

The assumption of hydrostatic equilibrium is also an integral part of most baro-
clinic large-scale-weather-prediction models. It can be shown that conditions (i)
and (ii) imply that the horizontal pressure-gradient force is independent of height.
This is equivalent to stating that the geostrophic wind is height-independent or that
the thermal wind vanishes. In contrast to this, the strength of the thermal wind is a
measure of atmospheric developments in baroclinic models. Moreover, the hydro-
static assumption implies the removal of the rapidly moving vertical sound waves.
This is important since the filtering of the rapidly moving “noise” waves permits
a larger time step in the numerical integration of the model equations. Insofar as
condition (iii) is concerned, it may be replaced by a weaker statement. Indeed, it is
sufficient to require that the horizontal wind is height-independent at the beginning
of the prediction period since (i) and (ii) automatically guarantee that the horizontal
wind remains height-independent at all later times. We will prove this statement at
the end of Section 15.2.1.
There also exists the so-called equivalent barotropic model, in which the actual

horizontal wind changes with height in a prescribed manner. We are not going to
discuss this type of model since it requires various empirical modifications that are
not entirely consistent with the remaining physics of the model.
A few remarks on the assumptions involved in the model may be helpful. As-

sumption (i) does not permit the formation of isobaric temperature gradients. All
development processes are thermally inactive. Thus we ignore the first and second
laws of thermodynamics. Only one thermodynamic variable, either pressure or
density, needs to be controlled.
Assumption (ii), as we have demonstrated in the previous chapter, eliminates

vertically propagating sound waves. If the wavelength of the disturbance becomes
comparable to the depth of the homogeneous atmosphere, the hydrostatic assump-
tion becomes unrealistic.
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Assumption (iii) together with assumptions (i) and (ii) reduces the model at-
mosphere to a spatially two-dimensional system. In contrast to this, all baroclinic
models are three-dimensional, thus simulating atmospheric processes more real-
istically. Hence, the barotropic model applies to one pressure level only, which
is usually taken as the 500-hPa surface. There the model physics applies best.
Owing to the special assumptions of the model the barotropic model suppresses
the synoptically relevant interactions of height-dependent velocity divergences and
temperature varations which are responsible for the transformation of potential
energy into kinetic energy on a significant scale. Development processes such as
frontogenesis and occlusions are suppressed by the barotropic model. At most,
transformations between the kinetic energy of the mean flow and the disturbances
are taking place.
Finally, it should be realized that there are numerous variants of the barotropic

model. We are going to discuss unfiltered and filtered barotropic models, in which
the gravitational surface waves are eliminated by means of diagnostic relations.
From the historical point of view it is interesting to remark that the first barotropic
model using actual meteorological data was successfully applied by Charney and
Eliassen (1949). They used a filtered linearized version of the model.

15.2 The unfiltered barotropic prediction model

15.2.1 The general barotropic model

We will now consider the barotropic model without the elimination of the rapidly
moving surface gravity waves. The elimination of these fast waves is called noise
filtering. Let us consider a large enough section of the atmosphere so that the
hydrostatic equation applies. For simplicity, we represent the field of motion on
a tangential plane fixed to the earth where the motion is described in terms of
Cartesian coordinates. The surface of the earth is the rigid lower boundary zs(x, y)
while the upper boundary is assumed to be a free surface,H (x, y, t). The pressure
at the earth’s surface will be denoted by ps(x, y, t); the hydrostatic pressure at the
free surface vanishes as depicted in Figure 15.1.
At an arbitrary reference level z the hydrostatic pressure is given by

p(x, y, z, t) = g

∫ H

z

ρ dz′ (15.4a)

so that the surface pressure may be written as

ps(x, y, t) = p(x, y, z, t) + g

∫ z

zs

ρ dz′ (15.4b)
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Fig. 15.1 A vertical cross-section of the atmosphere in the (x, z)-plane.

Since the horizontal pressure gradient force is height-independentwemay compute
this gradient everywhere, including at the earth’s surface. We must keep in mind,
however, that the occurrence of orographywillmodify the surface pressure gradient.
In order to handle this situation we apply the Leibniz rule to (15.4b). We first
carry out the partial differentiations with respect to the horizontal coordinates.
Remembering that zs also depends on x and y, we obtain

∂

∂x
[ps(x, y, t)] = ∂

∂x
[p(x, y, z, t)] + g

∫ z

zs

∂ρ

∂x
dz′ − gρs

∂

∂x
[zs(x, y)]

∂

∂y
[ps(x, y, t)] = ∂

∂y
[p(x, y, z, t)] + g

∫ z

zs

∂ρ

∂y
dz′ − gρs

∂

∂y
[zs(x, y)]

(15.5a)

with ρs = ρ(p(zs), t). Combining these equations leads to

∇hp(x, y, z, t) = ∇hps − g

∫ z

zs

∇hρ dz
′ + gρs ∇hzs (15.5b)

On letting z approach zs the integral will vanish. Thus, in the limit z −→ zs we
find

[
1

ρ
∇hp

]
z=zs

= 1

ρs
∇hps + ∇hφs (15.6)

Here we have introduced the geopotential φs(x, y) of the earth’s surface, which is
a time-independent quantity and may be computed with the help of a suitable map,
i.e. φs(x, y) = gzs(x, y).
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Since in the barotropic model the horizontal pressure gradient is independent of
height, we may introduce (15.6) into (2.29) to obtain the equation of motion for
frictionless flow on the tangential plane as

(
∂vh
∂t

∣∣∣
qi

)
h

+ vh · ∇hvh + f i3 × vh + 1

ρs
∇hps + ∇hφs = 0 (15.7)

Recall that the vertical line attached to the local time derivative simply means
that the basis vectors are not to be differentiated with respect to time. Their time
dependency is already contained in the Coriolis term. As usual, the sum of the local
acceleration term and the advection term can be combined to give the horizontal
acceleration. To complete the prognostic system we must involve the continuity
equation

∂ρ

∂t
+ ∇h · (ρvh)+ ∂

∂z
(ρw) = 0 (15.8)

In order to apply the kinematic boundary conditions, this equationwill be integrated
from the lower to the upper boundary of the atmosphere, yielding∫ H

zs

∂ρ

∂t
dz+

∫ H

zs

∇h · (ρvh) dz+ (ρw)
∣∣∣H
zs

= 0 (15.9)

Reference to equations (9.43b) and (9.43c) shows that these boundary conditions
may be written as

w(H ) = ∂H

∂t
+ vh · ∇hH, w(zs) = vh · ∇hzs (15.10)

The first term of (15.9) will now be given a more suitable form with the help of the
Leibniz rule

∂

∂t

∫ H

zs

ρ dz =
∫ H

zs

∂ρ

∂t
dz+ ρH

∂H

∂t
(15.11)

with ρH = ρ(p(H ), t). The second term in (15.9) will also be rewritten with the
help of the Leibniz rule. The differentiation with respect to the coordinate x yields

∂

∂x

∫ H

zs

ρu dz =
∫ H

zs

∂

∂x
(ρu) dz+ (ρu)

∣∣∣
H

∂H

∂x
− (ρu)

∣∣∣
zs

∂zs

∂x
(15.12)

The differentiation with respect to y is accomplished by simply replacing x by the
coordinate y. Therefore, the second term of (15.12) can be written as∫ H

zs

∇h · (ρvh) dz = ∇h ·
∫ H

zs

(ρvh) dz− (ρu)
∣∣∣
H

∂H

∂x

+ (ρu)
∣∣∣
zs

∂zs

∂x
− (ρv)

∣∣∣
H

∂H

∂y
+ (ρv)

∣∣∣
zs

∂zs

∂y

(15.13)
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Substituting (15.10), (15.11), and (15.13) into (15.9) gives

∂

∂t

∫ H

zs

ρ dz− ρH
∂H

∂t
+ ∇h ·

∫ H

zs

ρvh dz− ρHvh · ∇hH

+ ρsvh · ∇hzs + ρH

(
∂H

∂t
+ vh · ∇hH

)
− ρsvh · ∇hzs = 0

(15.14)

in which several terms cancel out. Finally we obtain

∂

∂t

∫ H

zs

ρ dz+ ∇h ·
∫ H

zs

ρvh dz = 0 (15.15)

On multiplying both sides of (15.15) by the acceleration due to gravity g and
recalling that the horizontal velocity is height-independent, we find in view of
(15.4a) the surface-pressure tendency equation

∂ps

∂t
+ ∇h · (vhps) = 0 (15.16)

For the model variables vh(x, y, t) and ps(x, y, t) we have with equations (15.7)
and (15.16) the required prognostic equations for the barotropic model. With the
help of the condition of barotropyρ = ρ(ps) the barotropicmodelmay be integrated
in principle if proper initial conditions are provided.
It is of great advantage for the numerical integration of the barotropic model

equations that the model variables are independent of height. For practical applica-
tions, however, a suitable connection between the model variables vh(x, y, t) and
ps(x, y, t) for the behavior of the real atmosphere must be established. For the
surface pressure this connection follows immediately. Consequently, the predicted
horizontal wind should correspond to the surface wind. However, it can hardly
be expected that the model produces a reliable replication of the observed sur-
face wind. Experience shows that the vertical average of the observed wind or the
wind at some intermediate level is a better representation of the large-scale motion
than is the surface wind. Therefore, it may be expected that the two-dimensional
barotropic model will produce more realistic pressure and wind fields at the 500-
hPa pressure level which is located near the so-called “level of nondivergence”
at which the observed divergence of the wind velocity is negligibly small. Since
the two-dimensional barotropic model is incapable of producing meteorologically
significant amounts of divergence, best results should be expected if the model is
applied to the 500-hPa level.
Before closing this section, we will now prove the statement that the horizontal

wind remains height-independent if it is height-independent initially at time t0.
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For this purpose let us formally rewrite equation (15.7) as ∂vh/∂t = F(x, y, t),
where the right-hand side is independent of height. Let us now formally carry
out the integration over time. After the first time step �t the right-hand side is
height-independent again:

vh(x, y, t0 +�t) = vh(x, y, t0) +�t F(x, y, t0) (15.17)

On repeating this procedure for the following time steps the right-hand side remains
height-independent. Hence, it may be concluded for the barotropic model that the
horizontal wind remains height-independent if it is height-independent initially.

15.2.2 The barotropic model of the homogeneous atmosphere

In place of the surface pressure ps(x, y, t) it is of advantage to introduce the height
of the free surface H (x, y, t) as a model variable. In order to construct a finite-
height model it is necessary to specify the barotropy function ρ(p) in a suitable
manner. The condition of barotropy must not necessarily be invertible to guarantee
barotropy. The simplest condition of barotropy is given by assuming that we have
a homogeneous model atmosphere specified by

ρ = ρs = constant, ∇ρ = 0,
dρ

dt
= 0 (15.18)

For a ground temperature of 273 K the pressure scale height or the height of the
homogeneous atmosphere is about 8000 m. Instead of the height of the free surface
itself we may just as well use the corresponding geopotential so that the upper and
lower boundaries of the model atmosphere are specified by

φ(x, y, t) = gH (x, y, t), φs(x, y) = gzs(x, y) (15.19)

Owing to the constant-density assumption the surface pressure is given by

ps = gρ(H − zs) = ρ(φ − φs) (15.20)

Introducing this expression into (15.7) leads to the equation of horizontal motion
assuming the form

(
∂vh
∂t

∣∣∣
qi

)
h

+ vh · ∇hvh + f i3 × vh + ∇hφ = 0 (15.21)

Owing to (15.18) the continuity equation (15.8) reduces to the statement that the
three-dimensional velocity divergence vanishes. Height integration of the reduced
continuity equation between the lower and upper boundaries gives∫ H

zs

∂w

∂z
dz = w(H ) −w(zs) = −∇h · vh

∫ H

zs

dz = −(H − zs)∇h · vh (15.22)
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since the horizontal velocity is height-independent. By introducing the kinematic
boundary conditions (15.10) into (15.22) and recalling that zs is time-independent
we obtain

∂

∂t
(H − zs) = −∇h · [vh(H − zs)] (15.23a)

Multiplying this equation by the acceleration of gravity results in the corresponding
expressions for the geopotentials:

∂

∂t
(φ − φs) = −∇h · [vh(φ − φs)] (15.23b)

By multiplying both sides of (15.23a) by the constant model density, we obtain

∂ρA

∂t
= −∇h · (vhρA) or

dρA

dt
+ ρA ∇h · vh = 0 (15.23c)

where ρA = ρ(H − zs) is the density per unit area. This form of the continuity
equation for the two-dimensional space closely resembles the normal continuity
equation (15.8) for the three-dimensional space, where the density represents mass
per unit volume.
Let us consider the prognostic set (15.21) and (15.23b), where the density does

not appear at all as a parameter. At first glance there seems to be no connection
between the model variables φ(x, y, t) and the horizontal velocity vh(x, y, t) on the
one hand and the variables of the real atmosphere on the other. It is postulated and
verified by experience that the height-independent horizontal wind vector of the
model atmosphere is a reasonable approximation to the height-averaged wind field
of the real atmosphere. This wind is assumed to apply to the so-called equivalent
barotropic level, which for practical reasons is taken as the 500-hPa pressure level.
As mentioned previously, this surface is located near the level of nondivergence
which approximately divides the mass of the atmosphere into two equal parts. This
results in the following correspondence of variables:

vh = v(p = 500 hPa), φ = φ(p = 500 hPa) (15.24)

Various empirical reductions of the geopotential of the earth’s surface may be
necessary in order to prevent the orography modifying the predicted fields too
strongly. These modifications are based on experience and are of entirely empirical
character.
The model consisting of equations (15.21) and (15.23b) is best described by a

cylinder filled with water having a free surface that is rotating about its vertical
axis of symmetry. The assumption of autobarotropy is satisfied reasonably well
by pure water and deviations from the hydrostatic pressure are small as long as
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the flow velocities are not too large. Height-independent horizontal velocities,
however, cannot be realized in general. In this rotating cylinder characteristic
flow patterns evolve with embedded vortices. In addition to this, one observes
expanding ring-type waves of short periods, which are superimposed on the larger-
scale characteristic flow patterns.
In close correspondence, the model equations of the homogeneous atmosphere

describe relevant characteristic synoptic flow patterns and the displacement of
ridges and troughs. Superimposed on the large-scale features are high-speed ex-
ternal gravity waves of short periods. These waves, which we have described as
“meteorological noise,” have little direct influence on the processes associated with
the formation of the synoptic waves. As mentioned before, due to the existence
of the rapidly moving external gravity waves, the time integration of the model
necessitates the use of very small time steps. Moreover, the amplitudes of the noise
waves may be large enough to falsify meteorologically relevant results. In a later
sectionwewill briefly discuss how to filter out the noisewaveswithout significantly
modifying the synoptic waves.

15.2.3 The energy budget of the homogeneous model and the available
potential energy

First of all we define the kinetic energy

KA =
∫ H

zs

ρ
v2h
2
dz = ρ(H − zs)

v2h
2

= ρA
v2h
2

(15.25)

and the potential energy

PA =
∫ H

zs

gρz dz = gρ
H 2 − z2s

2
= ρA

φ + φs

2
(15.26)

contained in a vertical column of unit cross-sectional area. These definitions are
then used to set up the budget equations. It will be shown that only limited amounts
of potential energy can be transformed into kinetic energy, otherwise the principle
of conservation of mass would be violated. The amount of potential energy that
can be transformed into kinetic energy is known as the available potential energy.
First we rewrite (15.21) as(

dvh
dt

∣∣∣
qi

)
h

+ f i3 × vh = −∇hφ (15.27a)

and, in component form, as
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −∂φ

∂x

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −∂φ

∂y

(15.27b)
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Scalar multiplication of (15.27a) by ρAvh, using simplified notation, gives

ρA
d

dt

(
v2h
2

)
= −ρAvh · ∇hφ (15.28)

As expected, the Coriolis term vanishes since the Coriolis force cannot perform
any work. The left-hand side of (15.28) may be rewritten in budget form. With the
help of the two-dimensional continuity equation (15.23c) we find immediately

ρA
d

dt

(
v2h
2

)
= ∂

∂t

(
ρA

v2h
2

)
+ ∇h ·

(
ρAvh

v2h
2

)
(15.29)

Expressing the geopotential in terms of ρA = ρ(H − zs), equation (15.19) yields

φ = φs + gρA/ρ (15.30)

After a slight rearrangement of terms we obtain from (15.28)

∂

∂t

(
ρA

v2h
2

)
+ ∇h ·

(
ρAvh

v2h
2

+ vh
gρ2A

2ρ

)
= gρ2A

2ρ
∇h · vh − ρAvh · ∇hφs (15.31)

which has the desired budget form. Denoting the flux of the kinetic energy by

FKA = vhKA + vh
gρ2A

2ρ
(15.32)

and the corresponding source by

QKA = gρ2A

2ρ
∇h · vh − ρAvh · ∇hφs (15.33)

we may write the budget equation for the kinetic energy in the usual form

∂KA

∂t
+ ∇h · FKA = QKA

(15.34)

Next we derive the budget equation for the potential energy by first multiplying
(15.23c) by the factor (φ + φs)/2. Recalling that φs is independent of time, we
obtain immediately

∂PA

∂t
− ρA

2

∂φ

∂t
= −∇h · (vhPA)+ ρA

2
vh · ∇h(φ + φs) (15.35)

Replacing ∂φ/∂t in this expression by means of (15.23b) yields

∂PA

∂t
+ ∇h · (vhPA) = −ρA

2
∇h · [vh(φ − φs)] + ρA

2
vh · ∇h(φ + φs)

= −gρ
2
A

2ρ
∇h · vh + ρAvh · ∇hφs = QPA

(15.36)
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where (15.30) was used to obtain the second equation. In (15.36) the source term
QPA of the potential energy of the column has been introduced. Comparison ofQPA

with QKA as given by (15.33) shows that QPA = −QKA. This yields the desired
budget equation

∂PA

∂t
+ ∇h · (vhPA) = −QKA

(15.37)

If QKA > 0 then kinetic energy is produced from potential energy and vice versa.
Wewill now show that only a limited amount of the potential energyPA contained

in a column of air can be transformed into kinetic energy due to the constraint of
conservation of mass. Let us decompose the height of the free surface H into its
mean value H and the fluctuation H ′:

H = H +H ′ (15.38)

According to equation (15.26) the potential energy is given by

PA = gρ

2

(
H

2 + 2HH ′ +H ′2 − z2s
)

(15.39)

Let us now consider a materially closed region of cross-section S. On averaging
the potential energy we find

P A = gρ

2S

∫
S

(
H

2 + 2HH ′ +H ′2 − z2s
)
dS ′ (15.40)

This equation may be simplified since the average over the fluctuation must vanish:

1

S

∫
S

H ′ dS ′ = 1

S

∫
S

H dS ′ − 1

S

∫
S

H dS ′ = H −H = 0 (15.41)

Therefore, the average value of the potential energy within the domain defined by
the upper and lower boundaries as well as by the side walls is given by

P A = gρ

2

(
H

2 +H ′2 − z2s
)

with H ′2 = 1

S

∫
S

H ′2 dS ′ (15.42)

Since the quantity H
2 − z2s is fixed, it defines the minimum amount of potential

energy contained within the region:

Pmin = gρ

2

(
H

2 − z2s
)

(15.43)

The potential energy which is free or available for transformation into kinetic
energy leads to the definition of the available potential energy,

Pav = P A − P min = 1
2gρH

′2 (15.44)
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Fig. 15.2 Available potential energy.

which is proportional to the mean value of the square of the fluctuation; see
Figure 15.2.
It will be recognized that the transformation is solely due to the appearance of

short-periodic noise processes. This transformation has nothing to do with baro-
clinic developments, whereby the kinetic energy is gained from potential energy
due to a rearrangement of cold and warm air in the same volume.
To complete the discussion, we must show that the potential energy cannot

become smaller than Pmin if the principle of conservation of mass is not violated.
The mass contained within the volume is defined by

M =
∫
S

ρ(H − zs) dS
′ = ρS(H − zs) (15.45)

From

∂M

∂t
= ρS

∂H

∂t
= 0 or

∂H

∂t
= 0 (15.46)

it follows that conservation of mass is equivalent to the statement that the average
height of the model region does not change with time. Therefore, Pmin cannot
change with time either:

∂Pmin

∂t
= gρH

∂H

∂t
= gH

S

∂M

∂t
= 0 (15.47)

We will close this section by remarking that the available potential energy of
baroclinic processes has been investigated by E. Lorenz (1955) and van Miegham
(1973). For adiabatic processes invariance of the potential temperature must be
observed.

15.2.4 Properties of the homogeneous model

In order to survey all types of wave motions admitted by the barotropic model,
we apply the linearization method described in the previous chapter to the basic
model equations (15.21) and (15.23b). For simplicity we ignore the occurrence
of orographic effects by setting φs = 0. Furthermore, we assume that we have a
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stationary basic state (denoted by the overbar) that is independent of the coordinates
(x, t) and we hold the Coriolis parameter constant, i.e. f ≈ f0:

u = − 1

f0

∂φ

∂y
, φ(y) = gH (y) (15.48)

Nowwe are able to obtain analytic solutions that are easy to interpret. Superimposed
on the basic current are the periodic disturbances u′(x, t), v′(x, t) and φ ′(x, t). This
results in the basic set of equations describing the motion and the mass continuity:

∂u′

∂t
+ u

∂u′

∂x
+ ∂φ ′

∂x
− f0v

′ = 0

∂v′

∂t
+ u

∂v′

∂x
+ f0u

′ = 0

∂φ ′

∂t
+ u

∂φ ′

∂x
+ φ0

∂u′

∂x
− uf0v

′ = 0

(15.49)

Here the geopotential of themean heightφ(y) has been approximated by an average
value φ0 = constant. This is not quite consistent mathematically but it makes it
possible to take a solution of the form



u′

v′

φ ′


 =



u∗

v∗

φ∗


 exp[ikx(x − ct)] (15.50)

where the amplitudes are constants. Substitution of (15.50) into (15.49) results in
the cubic equation

(c − u)3 −
(
φ0 + f 2

0

k2x

)
(c − u) − f 2

0

k2x
u = 0 (15.51)

from which the unknown phase velocities can be determined. This cubic equation
in the variable c − u is in the reduced form of the general cubic equation. The
coefficients in the reduced form (15.51) satisfy a condition that guarantees the
existence of three real solutions. One of the three waves, whose phase speed,
say c1, is of the order of the mean wind speed u, is of meteorological relevance.
Therefore, we may apply the inequality

|c1 − u|2  φ + f 2
0

/
k2x (15.52)

to obtain an approximate expression for c1. Owing to (15.52) the first term in
(15.51) may be neglected in comparison with the second term and we obtain the
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approximate solution for c1

c1 ≈ u
φ

φ + f 2
0

/
k2x

(15.53)

Inspection shows that shorter waves (Lx < 3000 km) move practically with the
mean wind speed uwhereas longer waves movewith a lesser speed. The remaining
two waves c2,3 are external or surface gravity waves moving approximately with
the Newtonian speed of sound so that the inequality

(c2,3 − u)3 � uf 2
0

/
k2x (15.54)

is satisfied. Therefore, in obtaining c2,3, the last term in (15.51) may be neglected.
The resulting phase speeds are approximately given by

c2,3 = u±
√
φ + f 2

0

/
k2x (15.55)

demonstrating that the gravity waves are moving in the positive and negative
x-directions. Comparison with equation (14.113) shows that the speed of the grav-
itational surface waves is slightly modified due to the rotation of the earth which
resulted in the term f 2

0 /k
2
x under the square root in (15.55).

Finally, by neglecting gravitational effects, i.e. putting g = 0, and by setting
u= 0 we obtain the so-called inertial waves. In this case (15.49) reduces to two
equations for the components of the horizontal wind field:

∂u′

∂t
− f0v

′ = 0,
∂v′

∂t
+ f0u

′ = 0 (15.56)

Taking the solution in the form (15.50), we find the frequency equation

∣∣∣∣∣∣
−ikxcI −f0
f0 −ikxcI

∣∣∣∣∣∣ = −k2xc2I + f 2
0 = 0 (15.57)

The phase speed for pure inertial waves is then

cI = ±f0/kx (15.58)

For midlatitudes and a wavelength of 3000 km the phase speed cI is about 50 m s−1.
In a later chapter we will discuss the inertial waves in more detail.
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15.2.5 Adaptation of the initial data

In the previous section we have shown that the barotropic model equations admit
two different types of processes. These are noise processes and the so-called me-
teorologically relevant Rossby processes. On weather maps drawn entirely on the
basis of observational data, noise processes are totally absent. Therefore, it is desir-
able to eliminate noise processes that might be produced by numerical procedures
of weather prediction.
A well-proven method for eliminating noise processes from the solutions of the

barotropic model equations (15.21) and (15.23) is to require that, at time t = 0, the
divergence of the wind vector and its time derivative vanish:

Dh,0 = (∇h · vh)t=0 = 0,

(
∂Dh

∂t

)
t=0

= 0 (15.59)

These filter conditions do not influence the prognostic system.What happens is that
the application of (15.59) restricts the free specification of the initial wind velocity
vh(t = 0) and the geopotential φ(t = 0). To assure that the condition (15.59) truly
holds we introduce the stream function ψ , see equation (7.21), by means of

vh(t = 0) = i3 × ∇hψ or u(t = 0) = −∂ψ
∂y
, v(t = 0) = ∂ψ

∂x
(15.60)

Simple substitution verifies that Dh is zero. The wind defined by this equation is
tangential to the lines ψi = constant. The geostrophic wind possesses the same
property, but in this case the geopotential assumes the role of the stream function.
In order to apply (15.59) we must derive an expression wherein the divergence

appears explicitly. This is done by scalar multiplication of the equation of motion
(15.21) by the two-dimensional nabla operator. The result is

∂Dh

∂t
+ ∇hvh··∇hvh + vh · ∇hDh + ∇h · (f i3 × vh) = −∇h · ∇hφ = −∇2

hφ (15.61)

where now the divergence and its time derivative appear explicitly so that the
condition (15.59) can be enforced. According to

∇hvh ··∇hvh = D2
h − 2J (u, v) with J (u, v) =

∣∣∣∣∣∣∣∣∣∣

∂u

∂x

∂v

∂x

∂u

∂y

∂v

∂y

∣∣∣∣∣∣∣∣∣∣
(15.62)

the double scalar product in (15.61) can be replaced, resulting in

∂Dh

∂t
+D2

h − 2J (u, v) + vh · ∇hDh + ∇h · (f i3 × vh) = −∇2
hφ (15.63)
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Here we have also introduced the Jacobian J for brevity. This is the barotropic
divergence equation. For t = 0, by applying the conditions (15.59) we obtain the
so-called balance equation

−2J (u, v)
∣∣∣
t=0

+ ∇h · (f i3 × vh)
∣∣∣
t=0

= −∇2
hφ

∣∣∣
t=0

(15.64a)

Without the nonlinear term 2J (u, v)|t=0 the balance equation reduces to the
geostrophic wind relation, as may be easily verified.
In order to insure that the divergence of the horizontal wind vector is zero, we

have to introduce the stream function (15.60) into (15.64a) . This results in

−2J
(
∂ψ

∂x
,
∂ψ

∂y

)
− ∇h · (f ∇hψ) = −∇2

hφ

∣∣∣
t=0

(15.64b)

or, by expanding the Jacobian, we find

2

[
−∂

2ψ

∂x2

∂2ψ

∂y2
+

(
∂2ψ

∂x ∂y

)2]
− f ∇2

hψ − ∇hf · ∇hψ = −∇2
hφ

∣∣∣
t=0

(15.64c)

This is a partial differential equation of the Monge–Ampère type.
We summarize: Before starting the integration over time of the barotropic pre-

diction equations (15.21) and (15.23), it is necessary to solve the balance equation
(15.64c). From a given geopotential field φ(t = 0) the stream function ψ must be
calculated, from which the initial velocities u(t = 0) and v(t = 0) can be obtained
by using (15.60). Now the wind field is free from divergence, and it is so adjusted to
the geopotential fieldφ(t = 0) that the time derivative of the divergence, as required
by (15.59), also vanishes at time t = 0. This mathematical process suppresses the
undesirable noise processes.
We will not discuss the numerical evaluation of the prediction equations and

of the balance equation but leave this to textbooks on numerical weather predi-
ction.

15.3 The filtered barotropic model

By assuming that the conditions listed in (15.59) are valid at all times, not only at
t = 0, we obtain the so-called filtered barotropic model wherein the high-speed
gravity waves are completely eliminated. The model condition is now given by

Dh = ∇h · vh = 0 for t ≥ 0 (15.65)
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which replaces the continuity equation (15.23). Equation (15.65) and the equation
of motion (

∂vh
∂t

∣∣∣
qi

)
h

+ vh · ∇hvh + f i3 × vh = −∇hφ (15.66)

constitute the basic predictive system. The physical model described by this mathe-
matical system consists of a rotating homogeneous incompressible fluid embedded
between two plane-parallel plates. Owing to the incompressibility of the fluid,
vertical motion cannot take place, so the horizontal divergenceDh vanishes. Thus
we are dealing with frictionless purely horizontal motion. The upper surface is
no longer a free surface where the pressure vanishes. Instead, the pressure at the
top of the fluid layer must differ from zero and be changing, for example, in the
y-direction so that a basic current in the x-direction may form. At the top of the
fluid the geopotential can be interpreted as p/ρ plus an irrelevant constant. This
simple physical model would require that some pistons are part of the upper plate
so that the pressure may be varied horizontally.
The system (15.65) and (15.66) is unsuitable for the numerical integration.

Instead, we should use the balance equations (15.64a) and (15.64b), extending
their validity to all times t ≥ 0, i.e.

−2J (u, v) + ∇h · (f i3 × vh) = −∇2
hφ, t ≥ 0 (15.67a)

or utilize the stream function

2J

(
∂ψ

∂x
,
∂ ψ

∂y

)
+ ∇h · (f ∇hψ) = ∇2

hφ, t ≥ 0 (15.67b)

together with the equation of motion (15.66) as the prognostic system.
Nevertheless, due to computer limitations, numerical errors resulting in small

amounts of divergence may occur. To avoid this type of numerical problem it is
customary to integrate the barotropic vorticity equation

∂ζ

∂t
+ vh · ∇hη = 0 with η = ζ + f (15.68)

which is repeated from (10.147), instead of the equation of motion. By introducing
the stream function (15.60) into the definition of the relative vorticity, we obtain

ζ = ∂v

∂x
− ∂u

∂y
= ∂2ψ

∂x2
+ ∂2ψ

∂y2
= ∇2

hψ (15.69)

Substituting this equation into (15.68) gives the divergence-free vorticity equation

∇2
h

∂ψ

∂t
+ ∂ψ

∂x

∂

∂y

(∇2
hψ + f

) − ∂ψ

∂y

∂

∂x

(∇2
hψ + f

) = 0 (15.70)
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which may be rewritten as

∇2
h

∂ψ

∂t
+ J

(
ψ,∇2

hψ + f
) = 0 (15.71)

This equation and the balance equation (15.67b) constitute the prognostic system
of the filtered model. The entire prognostic process is taken care of by the vorticity
equation (15.71) with the prediction variable ψ . Since only ψ appears, one must
solve a Poisson equation for each time step. Equation (15.67b) is used only if
information about the pressure field which is represented by the geopotential field
is desired.
Because the filtered model does not permit the appearance of noise processes

there is no exchange of potential and kinetic energy. Therefore, in a materially
closed region the total kinetic energy must be conserved.Which energetic changes
are still possible in the filtered model? Apparently only those processes which
redistribute kinetic energy between waves and vortices of differing dimensions are
permitted. Charney et al. (1950) used (15.71) to carry out successfully numerical
forecasts.
Summarizing, we may say that the unfiltered and the filtered barotropic models

are different in principle. Therefore, it is quite surprising that these two models
produce nearly the same predictions. This justifies the filtering of noise waves.

15.4 Barotropic instability
15.4.1 Shearing instability as a limiting case of barotropic instability

Again we consider the previous case in which the constant-density barotropic fluid
is embedded between two plane-parallel plates so that the horizontal divergence
Dh = 0. We must imagine that the pressure variation is imposed at the top of the
model. We assume that the basic current is directed parallel to the positive x-axis
and that the region of flow along the y-axis extends to infinity in the positive and
negative directions as shown in Figure 15.3. Between y = −a and y = a the model
assumes that we have a linear wind shear, thus dividing the flow region into three
subregions. Since the basic current is in the x-direction, in each of the three regions
the mean geopotential φj , j = 1, 2, 3, cannot vary in the x-direction, otherwise
there would be a mean flow in the y-direction. Again the Coriolis parameter is
held constant within the entire region. It should be expected that a disturbance of
the flow field will occur in the shear region. For the three regions j = 1, 2, 3 the
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Fig. 15.3 Formation of a wave in the shearing zone.

Fig. 15.4 Barotropic stability and instability.

horizontal flow field is given by

uj = uj,0 + uj,1y uj,0 = − 1

f0

∂φj

∂y
= constantj u1,1 = u3,1 = 0

u2,1 = u2(a) − u2(−a)
2a

u2(a) = u1 u2(−a) = u3

(15.72)
Since the fluid is bounded by the lower and the upper plate there is no available

potential energy. The only transformation of energywhich is possible is an exchange
of kinetic energy between the vortices, called kinetic energy of the eddies K ′, and
the kinetic energy of the zonal current K . If the exchange is from K ′ to K , one
speaks of barotropic stability. Barotropic instability occurs if the flow of kinetic
energy is in the opposite direction, that is from the zonal current to the eddies. The
situation is displayed schematically in Figure 15.4.
In order to obtain an analytic solution to the problem we must linearize the

horizontal equations of motion (15.27b). For ease of notation we introduce the
operatorQj for the three regions:

Qj = ∂

∂t
+ uj

∂

∂x
, j = 1, 2, 3 (15.73a)
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From (15.72) we find

∂Q1

∂y
= Q1

∂

∂y
,

∂Q2

∂y
= Q2

∂

∂y
+ u2,1

∂

∂x
,

∂Q3

∂y
= Q3

∂

∂y
(15.73b)

Keeping in mind that the basic current is along the x-direction, the individual
derivatives are linearized as

(
duj

dt

)′

= ∂u′
j

∂t
+ uj

∂u′
j

∂x
+ v′

j

∂uj

∂y
= Qju

′
j + v′

j

∂uj

∂y(
dvj

dt

)′

= ∂v′
j

∂t
+ uj

∂v′
j

∂x
= Qjv

′
j , j = 1, 2, 3

(15.74)

For the three regions we now have to deal with the following set of equations:

Region 1

Q1u
′
1 = −∂φ

′
1

∂x
+ f0v

′
1, Q1v

′
1 = −∂φ

′
1

∂y
− f0u

′
1,

∂u′
1

∂x
+ ∂v′

1

∂y
= 0

(15.75a)

Region 2

Q2u
′
2 + u2,1v

′
2 = −∂φ

′
2

∂x
+ f0v

′
2, Q2v

′
2 = −∂φ

′
2

∂y
− f0u

′
2,

∂u′
2

∂x
+ ∂v′

2

∂y
= 0

(15.75b)

Region 3

Q3u
′
3 = −∂φ

′
3

∂x
+f0v′

3, Q′
3v

′
3 = −∂φ

′
3

∂y
−f0u′

3,
∂u′

3

∂x
+ ∂v′

3

∂y
= 0 (15.75c)

In each region the condition of vanishing divergence has been added. In this set
there are six unknown variables (u′

j , v
′
j , j = 1, 2, 3), requiring six conditions in

order to solve the problem. These conditions are the behaviors of the solution at
y = ±∞, two kinematic boundary-surface conditions at y = ±a, and two dynamic
boundary-surface conditions at y = ±a.
Instead of using the equations of motion directly, it is easier to find the solution

to the problem (15.75) by employing the barotropic vorticity equation. This can be
done directly by linearizing (15.68) and keeping in mind that the mean geopotential
cannot vary in the x-direction. In each region we are going to obtain the linearized
vorticity equation by taking the partial derivative with respect to x of the second
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equation of motion and subtracting the partial derivative with respect to y of the
first equation. For the second region this will now be demonstrated. From (15.73b)
and (15.75b) we find

Q2
∂u′

2

∂y
+ u2,1

∂u′
2

∂x
+ u2,1

∂v′
2

∂y
= − ∂2φ ′

2

∂x ∂y
+ f0

∂v′
2

∂y

Q2
∂v′

2

∂x
= − ∂2φ ′

2

∂x ∂y
− f0

∂u′
2

∂x

(15.76)

Subtraction results in

Q2

(
∂v′

2

∂x
− ∂u′

2

∂y

)
− u2,1

(
∂u′

2

∂x
+ ∂v′

2

∂y

)
= −f0

(
∂u′

2

∂x
+ ∂v′

2

∂y

)
(15.77)

Since the divergence must vanish, we find

Q2

(
∂v′

2

∂x
− ∂u′

2

∂y

)
= 0 (15.78)

Hence, the Q2 term is operating on the vorticity of this region. With the help
of (15.75a) and (15.75c) it may easily be verified that one obtains analogous
expressions for regions 1 and 3 so that in general we have

Qj

(
∂v′

j

∂x
− ∂u′

j

∂y

)
= 0, j = 1, 2, 3 (15.79)

This equation can also be written in the form dη′
j/dt = 0 so that vorticity is

conserved. The physically interesting solution in connection with the problem at
hand is to set the vorticity itself equal to zero:

∂v′
j

∂x
− ∂u′

j

∂y
= 0, j = 1, 2, 3 (15.80)

On differentiating this equation with respect to x and the divergence condition with
respect to y, we find upon elimination of the mixed partial derivatives the Laplace
equation

∂2v′
j

∂x2
+ ∂2v′

j

∂y2
= 0, j = 1, 2, 3 (15.81)

which must hold in each region j . We assume the validity of a solution of the form

v′
j = Vj (y) exp[ikx(x − ct)], j = 1, 2, 3 (15.82)

If the phase speed c happens to be real, then the solution corresponds to a stable
wave. If c is complex then the amplitude will grow and barotropic instability will
occur. We will now state the solution conditions.
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(1) Lateral boundary conditions at infinity:

y = ∞ : v′
1 = 0, y = −∞: v′

3 = 0 (15.83)

(2) Kinematic boundary conditions at y = ±a
The kinematic boundary condition (9.41) also applies to the horizontal situation.
Therefore, we may write for region 1 and 2 at y = a the conditions for the
generalized y-coordinate ξa:

v′
1(a) = ∂ξa

∂t
+ u1,0

∂ξa

∂x
, v′

2(a) = ∂ξa

∂t
+ u2,0

∂ξa

∂x
(15.84a)

Analogously we find the kinematic boundary condition at y = −a:

v′
2(−a) = ∂ξ−a

∂t
+ u2,0

∂ξ−a
∂x

, v′
3(−a) = ∂ξ−a

∂t
+ u3,0

∂ξ−a
∂x

(15.84b)

Since u1,0=u2,0 at y=a and u2,0=u3,0 at y=−a, we find the kinematic boundary
conditions at y = ±a:

v′
1(a) = v′

2(a), v′
2(−a) = v′

3(−a) (15.85)

(3) Dynamic boundary conditions at y = ±a
The dynamic boundary condition, see Section 9.5, requires that the pressure

must be continuous across the boundary in order to prevent infinitely large forces
occurring. In the present situation the pressure is represented by the geopotential.
Therefore, we may write the dynamic boundary conditions in the form

y = a:
d

dt
(φ1 − φ2) = 0, y = −a: d

dt
(φ2 − φ3) = 0 (15.86)

or, expanded and linearized for each side, as

(
dφj

dt

)′
= ∂φ ′

j

∂t
+ uj

∂φ ′
j

∂x
+ v′

j

∂φj

∂y
, j = 1, 2, 3 (15.87)

This form follows upon recalling that the averaged geopotential does not vary in
the x-direction. By taking the partial derivative with respect to x of this expression,
for each j we find

∂

∂x

(
dφj

dt

)′

= ∂

∂x

(
∂

∂t
+ uj

∂

∂x

)
φ ′
j + ∂

∂x

(
v′
j

∂φj

∂y

)
= Qj

∂φ ′
j

∂x
+ ∂φj

∂y

∂v′
j

∂x

(15.88)
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Inspection of Figure 15.4 shows that, at y = ±a, the basic currents coincide, that
is u1(a) = u2(a) and u2(−a) = u3(−a), so that Q1(a) = Q2(a) and Q2(−a) =
Q3(−a). Thus, the partial derivative with respect to x of (15.86) is given by

y = a: Q1

(
∂φ ′

1

∂x
− ∂φ ′

2

∂x

)
+

(
∂φ1

∂y
− ∂φ2

∂y

)
∂v′

1

∂x
= 0

y = −a: Q3

(
∂φ ′

2

∂x
− ∂φ ′

3

∂x

)
+

(
∂φ2

∂y
− ∂φ3

∂y

)
∂v′

3

∂x
= 0

(15.89)

where we have used the kinematic boundary condition (15.85). Owing to the facts
that u1,0(a) = u2,0(a) and u2,0(−a) = u3,0(−a), it follows from (15.72) that

y = a:
∂φ1

∂y
− ∂φ2

∂y
= −f0u1,0 + f0u2,0 = 0

y = −a: ∂φ2

∂y
− ∂φ3

∂y
= −f0u2,0 + f0u3,0 = 0

(15.90)

Therefore, in each equation of (15.89) the second term vanishes.
As in the case of (15.79), at y = ±a we consider the differential equations

y = a:
∂φ ′

1

∂x
− ∂φ ′

2

∂x
= 0, y = −a: ∂φ ′

2

∂x
− ∂φ ′

3

∂x
= 0 (15.91)

On replacing ∂φ ′
j/∂x in these expressions by means of (15.75a) and (15.75b) and

utilizing the kinematic boundary conditions (15.85) we obtain

y = a: −Q1u
′
1 +Q2u

′
2 + u2,1v

′
2 = 0

y = −a: −Q2u
′
2 +Q3u

′
3 − u2,1v

′
2 = 0

(15.92)

Since the Laplace equation (15.81), which needs to be solved, is expressed in the
variable v′

j , we must eliminate the variables u′
j in terms of the variables v′

j of
the filtering condition stated for each region. This task is accomplished by partial
differentiation of (15.92) with respect to x and then replacing ∂u′

j/∂x by −∂v′
j /∂y

since Dh = 0. This results in the dynamic boundary conditions

(a) y = a: Q1
∂v′

1

∂y
−Q2

∂v′
2

∂y
+ u2,1

∂v′
2

∂x
= 0

(b) y = −a: Q2
∂v′

2

∂y
−Q3

∂v′
3

∂y
− u2,1

∂v′
2

∂x
= 0

(15.93)
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Weare now ready to determine the phase velocity of the disturbance. Substitution
of (15.82) into (15.81) gives the ordinary linear differential equation

d2Vj

dy2
− k2xVj = 0, j = 1, 2, 3 (15.94)

which can easily be solved by standard methods. The characteristic values of this
equation are kx and−kx , so the solution for each of the three regions can be written
down immediately as

Vj = Aj exp(−kxy) + Bj exp(kxy), j = 1, 2, 3 (15.95)

The constants B1 and A3 must vanish in order to keep the solution bounded for
y −→ ±∞. Using the trial solution (15.82) for (15.81), we obtain the perturbation
velocities

v′
1 = A1 exp(−kxy) exp[ikx(x − ct)]

v′
2 = [A2 exp(−kxy) + B2 exp(kxy)] exp[ikx(x − ct)]

v′
3 = B3 exp(kxy) exp[ikx (x − ct)]

(15.96)

which still contain the unknown constants A1, A2, B2, B3. Owing to the kinematic
boundary surface conditions (15.85) we find the following relations among the
remaining constants:

y = a: v′
1 = v′

2 =⇒ A1 exp(−kxa) = A2 exp(−kxa)+ B2 exp(kxa)

y = −a: v′
2 = v′

3 =⇒ B3 exp(−kxa) = A2 exp(kxa) + B2 exp(−kxa)
(15.97)

So far we have used the conditions at infinity and the kinematic boundary condi-
tions.
Nowwe are going to involve equations (15.93), which resulted from the dynamic

boundary conditions. We will show how to evaluate (15.93a). For y = a we need
to substitute the expressions

Q1
∂v′

1

∂y

∣∣∣
y=a

= ik2x(c − u1)A1 exp(−kxa) exp[ikx (x − ct)]

Q2
∂v′

2

∂y

∣∣∣
y=a

= ik2x(c − u1)[A2 exp(−kxa)− B2 exp(kxa)] exp[ikx(x − ct)]

(15.98)
into (15.93a). The constant A1 exp(−kxa) can be replaced by means of (15.97).
After some easy manipulations we obtain the upper equation of the matrix system
 u2,1 exp(−kxa) [2kx(c − u1) + u2,1] exp(kxa)

[2kx(c − u3) − u2,1] exp(kxa) − u2,1 exp(−kxa)




 A2

B2


 = 0

(15.99)
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In complete analogy the lower equation of this system has been obtained from
(15.93b), wherein now the constant B3 exp(−kxa) has been replaced with the help
of (15.97).
Nonzero values ofA2 andB2 are possible only if the determinant of the homoge-

neous equations (15.99) vanishes. On solving the determinant of this two-by-two
matrix for the phase velocity we obtain

c1,2 = u±
√
(�u)2

4

(
1 − 1

akx
+ 1 − exp(−4kxa)

4a2k2x

)
(15.100)

where the abbreviations

u = u2(y = 0) = u1 + u3

2
, �u = 2au2,1 = u1 − u3 (15.101)

have been introduced.
Equation (15.100) will now be discussed. If the expression within the large

parentheses is less than zero then the phase velocity will be a complex number so
that barotropic instability occurs. Numerical evaluation of this expression shows
that

1 − 1

akx
+ 1 − exp(−4kxa)

4a2k2x
< 0 for kxa = 2aπ

Lx
< 0.64 (15.102)

Since 2a is the width of the shear zone, we see that the ratio of this width
to the wavelength Lx determines whether the wave is barotropically stable or
not. Broad zones of wind shear with short wavelength of the disturbance are
barotropically stable since they do not satisfy the inequality occurring in (15.102).
Laterally small zones of wind shear with a large wavelength are barotropically
unstable.
Assume that the shear zone shrinks to zero. In this case a velocity jump occurs

at y = 0, where the basic current abruptly changes from u1 to u3. Letting a → 0,
we find upon using L’Hospital’s rule or by expanding the exponential at least to
the quadratic term that

c1,2 = u±
√

− (�u)2

4
(15.103)

Since the phase velocity is always complex this is the unstable solution yielding the
shearing waves. It is noteworthy that the same result has been obtained for gravity
waves at discontinuities by setting u0,1 �= u0,2 and ρ0,1 = ρ0,2 in (14.142).
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Fig. 15.5 A continuous velocity profile u(y).

15.4.2 Conditions for the occurrence of barotropic instability

Let us now consider a continuous velocity profile of the basic current; see
Figure 15.5. For the continuous velocity profile it is possible to derive a necessary
condition for the occurrence of barotropic instability. The basic model assumptions
are

∇h · vh = 0, u = u(y), f = f0 + βy, β = ∂f

∂y
= constant (15.104)

Again the barotropic fluid is embedded between two plane-parallel plates so that
no potential energy can be transformed into kinetic energy. The decisive change
in the model assumptions (15.72), apart from the velocity profile, is that now the
Coriolis parameter is permitted to change with y. The parameter β is known as the
Rossby parameter.
Startingwith the vorticity equation (15.71) and linearizing the Coriolis parameter

after Rossby, we obtain

∂

∂t

(∇2
hψ

) + J
(
ψ,∇2

hψ
) + β

∂ψ

∂x
= 0 (15.105)

We assume that the stream function varies according to

ψ = ψ(y) + ψ ′(x, y, t) (15.106)

so that the velocity components of the basic current can be expressed by

u = −∂ψ
∂y
, v = ∂ψ

∂x
= 0 (15.107)
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In order to obtain an analytic solution to the problem we must linearize (15.105).
This results in the following equation:

∂

∂t

(∇2
hψ

′) + u
∂

∂x

(∇2
hψ

′) − d2u

dy2

∂ψ ′

∂x
+ β

∂ψ ′

∂x
= 0 (15.108)

which can be solved by assuming the solution

ψ ′ = F (y) exp[ikx(x − ct)] (15.109)

We now introduce the absolute vorticity of the basic current

η = −du
dy

+ f (15.110)

Differentiation of this equation with respect to y leads to the introduction of the
Rossby parameter β:

dη

dy
= −d

2u

dy2
+ β (15.111)

Hence, we speak of a representation in the β-plane. Substituting (15.109) and
(15.111) into (15.108) gives the desired differential equation for the amplitude
F (y) of the disturbance:

d2F

dy2
−

(
k2x + 1

c − u

dη

dy

)
F = 0 (15.112)

This is the famous Orr–Sommerfeld equation for frictionless flow, which cannot
be solved for arbitrary values of u(y).
To make the solution of (15.112) more tractable we assume that we have a

channel flow that is bounded by rigid walls at y = ±a. We may think of the walls
of the channel as latitude circles. At the rigid walls the normal components of the
velocity must vanish:

v(y = ±a) = ∂ψ

∂x

∣∣∣
y=±a

= ∂ψ ′

∂x

∣∣∣
y=±a

= 0 since
∂ψ

∂x
= 0 (15.113)

so the amplitude of the disturbance must vanish also, that is F (y = ±a) = 0. In
order to have a very general solution we permit not only the phase velocity c but
also the amplitude F to be complex:

c = cr + ici, F = Fr + iFi (15.114)
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Substitution of (15.114) into (15.112) gives

d2Fr

dy2
+ i

d2Fi

dy2
−

(
k2x + cr − ici − u

λ2

dη

dy

)
(Fr + iFi) = 0 (15.115)

with λ2 = (cr − u)2 + c2i . By separating the real and the imaginary parts we find

(a)
d2Fr

dy2
−

(
k2x + cr − u

λ2

dη

dy

)
Fr − ci

λ2

dη

dy
Fi = 0

(b)
d2Fi

dy2
−

(
k2x + cr − u

λ2

dη

dy

)
Fi + ci

λ2

dη

dy
Fr = 0

(15.116)

The next step is to multiply (15.116a) by Fi and (15.116b) by −Fr and then add
the resulting equations together. Application of the identity

Fi
d2Fr

dy2
− Fr

d2Fi

dy2
= d

dy

(
Fi
dFr

dy
− Fr

dFi

dy

)
(15.117)

and then integrating over the width of the channel yields
∫ a

−a

d

dy

(
Fi
dFr

dy
− Fr

dFi

dy

)
dy = ci

∫ a

−a

F 2
i + F 2

r

λ2

dη

dy
dy (15.118)

Since F (y = ±a) = 0, the left-hand side of (15.118) must vanish. Thus, the
remaining part

ci

∫ a

−a

(
F 2
i + F 2

r

λ2

)
dη

dy
dy = 0 (15.119)

determines whether the flow is barotropically stable or unstable. If ci = 0 then
the flow is always stable. If, however, ci �= 0 then unstable solutions exist only if
the integral is zero. This type of stability treatment originated with Rayleigh. For
comparison let us recall the result of the previous section, where we considered a
situation with a linear wind shear and a constant Coriolis parameter. In this case
dη/dy = 0 and the instability was determined solely by ci.
Let us now discuss the stability integral (15.119). Since the expression in paren-

theses is positive definite, it is the product ci dη/dy that determines the stability.
The derivative of the absolute vorticity was given by (15.111), permitting three
possibilities:

dη

dy
= −d

2u

dy2
+ β

>=
<
0 (15.120)

(i) The flowfield is always stable if dη/dy does not change sign in the region of integration
so that the integral cannot vanish. If dη/dy > 0 or dη/dy < 0 between −a ≤ y ≤ a
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then ci must be zero so that (15.119) remains valid. This condition is sufficient for
barotropic stability since (15.109) results in stable oscillations.

(ii) If ci differs from zero then dη/dy must have at least one zero in order to satisfy
(15.119). This condition is necessary but not sufficient for barotropic instability to
occur. Thus the necessary condition for barotropic instability is that β−d2u/dy2 = 0
somewhere in the range of integration. Suppose that dη/dy has a zero to make the
integrand zero. The flow field is not necessarily unstable since ci could be zero also so
that (15.119) vanishes under all circumstances. According to the results of the previous
section, we may speculate that a sufficient condition for instability would result from
the requirement that the wavelength of the disturbance is large in comparison with
the lateral extent of the shear zone.

(iii) Suppose that ci differs from zero and that dη/dy = 0 everywhere. If the Coriolis
parameter is assumed to be fixed, then dη/dy = −d2u/dy2 = 0. In this case we have
either a vorticity maximum or a vorticity minimum. Therefore, the wind profile must
have an inflexion point. This is a particular example of inflexion-point instability. This
type of stability investigation goes back to Lord Rayleigh (1880) for a nonrotating
system. Kuo (1951) has extended the theory by including the β-term.

15.5 The mechanism of barotropic development

Let us return to the divergence-free vorticity equation (15.105). This nonlinear
equation is satisfied by the so-called Neamtan solution (Neamtan, 1946)

ψ = ψ + ψ ′ with
ψ = constant− u0y + A cos(ky)

ψ ′ = B cos[kx(x − ct)] cos(kyy)
(15.121)

The term ψ represents the stream function of the basic current, k = 2π/L is the
wavenumber, and L the wavelength of the basic current. The term ψ ′ is the stream
function of the disturbance which is superimposed on the basic flow.
We will now investigate the Neamtan solution. Assuming that

k =
√
k2x + k2y (15.122)

the disturbance moves with the constant phase velocity

c = u0 − β/k
2

(15.123)

which is known as the phase velocity of the Rossby wave. The validity of (15.123)
will be shown later. Note also that, in this particular situation, the wave moves
without change of shape since c is independent of y. This situation is known as the
indifferent case.
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Fig. 15.6 A schematic view of the basic flow field u(y) for the Neamtan solution.

The basic current itself is obtained by differentiating the basic current part of the
stream function with respect to y; see Figure 15.6.

u = −∂ψ
∂y

= u0 + kA sin(ky) (15.124)

Since the indifference of the flow field results from the equality (15.122), we may
expect that the formation of barotropic stability or instability in some way depends
on the inequality

k �=
√
k2x + k2y (15.125)

For this general case it is impossible to determine the phase velocity c.
Let us reconsider the vorticity equation (15.68) in the form

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
+ βv = 0 (15.126)

We split the vorticity and the velocity components:

ζ = ζ + ζ ′, u = u+ u′, v = v′ since v = ∂ψ

∂x
= 0 (15.127)

We substitute these into (15.126) but retain the nonlinear terms and find

∂ζ ′

∂t
+ ∂ζ

∂t
= −

[
u
∂ζ ′

∂x
+

(
u′ ∂ζ

′

∂x
+ v′ ∂ζ

′

∂y

)
+ v′ ∂ζ

∂y
+ βv′

]
(15.128)

Note that ∂ζ /∂x = 0 since ψ = ψ(y). By averaging this equation and recalling
that the mean over the fluctuation vanishes, i.e.

∂ζ ′

∂t
= 0,

∂ζ ′

∂x
= 0, v′ = 0 (15.129)
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we find

∂ζ

∂t
= −

(
u′ ∂ζ

′

∂x
+ v′ ∂ζ

′

∂y

)
= −v′

h · ∇hζ ′ (15.130)

Thus, the change of ζ with time results from the advection of the perturbation
vorticity due to the perturbation velocity.
Let us now consider the Neamtan formula at the initial time t = 0. For clarity

we have collected the basic relationships needed to evaluate (15.130) in

u′ = −∂ψ
′

∂y
, v′ = ∂ψ ′

∂x
, ζ ′ = ∇2

hψ
′ = −(

k2x + k2y
)
ψ ′

∂ζ ′

∂x
= −(

k2x + k2y
)
v′,

∂ζ ′

∂y
= (

k2x + k2y
)
u′,

∂ζ

∂y
= k

3
A sin(ky)

(15.131)

The reason why these expressions are valid at t = 0 is that in general the phase
velocity c depends on y. Performing the required differentiations and substituting
the resulting expressions into (15.130) results in

(
∂ζ

∂t

)
t=0

= 0 (15.132)

We conclude that, at t = 0, the nonlinearity of the vorticity equation (15.126) is
removed due to the Neamtan solution. Again using (15.131), we find at t = 0 from
(15.128) for the change with time of the perturbation vorticity that

(
∂ζ ′

∂t

)
t=0

= −
(
u− 1

k2x + k2y

∂ζ

∂y
− β

k2x + k2y

)
∂ζ ′

∂x
(15.133)

This formula has the form of an advection equation, so the expression within
the large parentheses is the momentary phase velocity c(y)t=0 of the vorticity in
the x-direction. By substituting u according to (15.124) and replacing the partial
derivative of the mean vorticity, we obtain the final form for the phase speed at
t = 0:

c(y)t=0 =
(
u0 − β

k2x + k2y

)
+ kA

(
1 − k

2

k2x + k2y

)
sin(ky) (15.134)

There are three cases that need to be discussed.
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Fig. 15.7 Positive and negative areas of the perturbation field cos(kxx) cos(kyy) at t = 0
with kxx = kyy. u′ = 0 at positions a and c; v′ = 0 at positions b and d.

(i) k
2 = k2x + k2y

The disturbance moves with a constant velocity given by (15.123), which is inde-
pendent of y. The phase velocity and the disturbance do not adapt to the profile of
the basic current. In this case of indifference the disturbance moves without change
of shape.
Before we discuss the second case let us obtain a picture of the disturbance

ψ ′ of (15.121) for the special case that kxx = kyy; see Figure 15.7. Positive and
negative areas correspond to regions of high and low pressure, thus defining the
sense of the circulation. On the boundaries of each region one of the two velocity
components, u′ or v′, is zero so that the product u′v′ is zero. Thus, the zonal
mean of the perturbation product is zero also. However, the product u′v′, which
is usually nonzero, can be interpreted as the meridional transport of the mean
zonal momentum along a latitudinal circle. The direction and the magnitude of
the transport strongly depend on the structure of the disturbance. As shown in the
appendix to this chapter, the kinetic energy of the flow may be decomposed into a
zonal part K plus a perturbation part K ′. There it is demonstrated that the change
of K with time is given by

∂K

∂t
= − 1

WL

∫ L

0

∫ W

0

u
∂

∂y
(u′v′) dy dx (15.135)

where W and L represent the width and the length of the channel. Since in the
present case u′v′ is zero, there is no meridional transport of zonal kinetic energy.
Hence,K does not change with time.

(ii) k
2
< k2x + k2y

This means that the wavelengths Lx and Ly are small in comparison with the
wavelength of the basic current. According to (15.134) the phase velocity and thus
the shape of the perturbation field adjust to the shape of the basic flow profile
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Fig. 15.8 Meridional transport of momentum, ∂u′v′/∂y < 0.

(see Figure 15.6) since the factor multiplying sin(ky) remains positive. The largest
contribution occurs at ky = π/2. The situation is displayed schematically in
Figure 15.8. To illustrate, let us consider the flow at points (a, c) and (b, d). In both
cases u′v′ < 0, so the zonal mean of u′v′ is also less than zero. The central part
of Figure 15.8 repeats the situation of case I, in which the meridional transport of
momentum vanishes. Consider the points (A, C) and (B, D) in the lower section of
Figure 15.8. In both cases we have u′v′ > 0, so the zonal mean of u′v′ is also larger
than zero. In summary, the situation is characterized by ∂u′v′/∂y < 0. Thus, for the
configuration of the perturbed part of the flow field shown in Figure 15.8 the zonal
kinetic energy increases with time due to the meridional transport of momentum.
This leads to the formation of a jet stream. Referring to Figure 15.4, this situation
expresses barotropic stability.
From energy balances it follows that the real (baroclinic) atmosphere in the

majority of cases is barotropically stable. Friction would cause the western flow to
slow down if kinetic energy of the perturbations were not transferred to the kinetic
energy of the basic current. To state it differently, barotropic stability is an essential
requirement for the maintenance of the westward wind drift. All barotropic models
exhibit the tendency of zonalization.

(iii) k
2
> k2x + k2y

In this caseLx andLy are not small in comparison with the wavelength of the basic
current. Now the termmultiplying sin(ky) in (15.134) is negative. The contributions
of the basic current and the perturbations to the phase velocity occur with opposite
signs, in contrast to the previous case. Therefore, the disturbance has the opposite
shape, as shown in Figure 15.9. According to (15.135) this results in a depletion of
the zonal kinetic energy and in an accumulation of K ′. According to Figure 15.4
this corresponds to barotropic instability. This situation is relatively rare and occurs
only in connection with large wavelengths of the disturbances. It is known that this
type of process contributes to the formation and maintenance of blocking highs.
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Fig. 15.9 Meridional transport of momentum, ∂u′v′/∂y > 0.

15.6 Appendix

In this appendix we are going to briefly derive a formula for the transformation of
zonal to perturbation kinetic energy and vice versa for the filtered model. Since for
themomentwe are interested inmidlatitude flowonly, we limit the flow to a channel
of widthW and lengthL. Wemay think of this restricted atmospheric flow as being
bounded by two latitude circles.Moreover, the northern and southern boundaries of
the channel are treated as rigid walls. We also assume that the Coriolis parameter
varies according to (15.104). The average kinetic energy of the horizontal flow
within the channel is then given by

K = 1

WL

∫ L

0

∫ W

0

v2h
2
dy dx = 1

WL

∫ L

0

∫ W

0

(∇hψ)2

2
dy dx (15.136)

since the divergence-free wind is given by vh = i3 × ∇hψ . In view of

∇hψ · ∇h
∂ψ

∂t
= ∇h ·

(
ψ ∇h

∂ψ

∂t

)
− ψ ∇2

h

∂ψ

∂t
(15.137)

the change with time of the kinetic energy is given by

∂K

∂t
= − 1

WL

∫ L

0

∫ W

0

ψ
∂ζ

∂t
dy dx (15.138)

Application of the two-dimensional Gaussian divergence theorem (M6.34) shows
that the divergence termof (15.137) does not contribute to the change in energy. This
results from the assumption that we have rigid walls and cyclic boundary conditions
in the x-direction. Using (15.68) and recalling that the horizontal divergence of the
velocity field is zero in this equation, we find

∂K

∂t
= 1

WL

∫ L

0

∫ W

0
∇h · (vhψη) dy dx (15.139)
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since vh · ∇hψ = 0. By again applying the divergence theorem and the adopted
boundary conditionswe find that the changewith time of the kinetic energy vanishes
completely:

∂K

∂t
= 0 (15.140)

Next we split the horizontal velocity by introducing the zonal average vh and the
perturbation velocity v′

h:

vh = vh + v′
h, vh = 1

L

∫ L

0

vh dx, v′
h = 0 (15.141)

Analogously, we split the kinetic energy into the zonal and perturbation parts:

K = K +K ′ = 1

WL

∫ L

0

∫ W

0

(vh)2 + (v′
h)
2

2
dy dx (15.142)

In view of (15.138) we may write for the change of K with time

∂K

∂t
= − 1

WL

∫ L

0

∫ W

0

ψ
∂ζ

∂t
dy dx = 1

WL

∫ L

0

∫ W

0

ψ v′
h · ∇hζ ′ dy dx (15.143)

since the zonal average of ∂ζ /∂t has the form (15.130).On rewriting this expression
we find

∂K

∂t
= 1

WL

∫ L

0

∫ W

0
∇h · (ψ v′

hζ
′) dy dx − 1

WL

∫ L

0

∫ W

0
v′
hζ

′ · ∇hψ dy dx

= − 1

WL

∫ L

0

∫ W

0

v′ζ ′ ∂ψ

∂y
dy dx

(15.144)
where the first integral on the right-hand side must vanish due to the divergence
theorem of Gauss and due to the boundary conditions.
Equation (15.144) can be rewritten giving a formula that consists of three inte-

grals:

∂K

∂t
= − 1

WL

∫ L

0

∫ W

0

u
∂

∂y
(u′v′) dy dx + 1

WL

∫ L

0

∫ W

0

u v′ ∂v
′

∂x
dy dx

+ 1

WL

∫ L

0

∫ W

0
u u′ ∂v

′

∂y
dy dx

(15.145)
Only the first of these differs from zero, so

∂K

∂t
= − 1

WL

∫ L

0

∫ W

0
u
∂

∂y
(u′v′) dy dx (15.146)
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This is the desired equation for the change with time of the zonal kinetic energy.
The other two integrals in (15.145) are zero, as follows immediately from partial
integration and by application of the boundary conditions. Finally, due to (15.140),
we find

∂K

∂t
= −∂K

′

∂t
(15.147)

showing the only possible way for transformation of kinetic energy to occur.
Several parts of this chapter are based on the synopsis The Barotropic Model

reported inPromet (1973), which is a publication of the GermanWeather Service. It
refers to articles by Reiser (1973), Edelmann (1973), Edelmann and Reiser (1973),
and Tiedtke (1973).

15.7 Problems

15.1: Show that the conditions (15.1) and (15.2) guarantee that the horizontal
pressure gradient in the barotropic model atmosphere is independent of height.
Hint: Start with the relation ∇ × [(1/ρ)∇p] = 0. Prove it.

15.2: Show that any two of the three relations

∇ρ × ∇p = 0,
∂

∂z

(
1

ρ
∇hp

)
= 0,

1

ρ

∂p

∂z
= f (z)

imply the correctness of the third one.
Hint: First prove that ∇hρ × ∇hp = 0.

15.3: Verify equation (15.62).

15.4: Verify equation (15.103).

15.5: An upper-level midlatitude jet profile may be approximated by

u = u0 sech
2(y/y0)

Plot the wind profile u/u0 (x-axis) versus y/y0.
(a) Suppose that β = 0. Is the necessary condition for barotropic instability satis-
fied?
(b) Suppose that β �= 0. Find the necessary condition for barotropic instability.
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Rossby waves

The daily weather maps for any extended part of the globe in middle and high
latitudes show well-defined dynamic systems, which normally move from west to
east. The speed of displacement of these systems differs from the mean wind speed
of the air current. Moreover, the structure of these systems varies considerably with
height. Near the earth’s surface the motion systems exhibit much complexity, their
predominant features being closed cyclonic and anticyclonic patterns of irregular
shape. In contrast to this, in the middle and upper troposphere as well as in the lower
stratosphere (200–700 hPa), the dynamic systems usually consist of relatively
simple smooth wave-shaped patterns. Typically one finds about four or five waves
around the hemisphere. Their thermal structure is characterized by cold troughs
and warm ridges. The dynamics of these relatively long waves was first studied by
Rossby (1939) and in some generalization by Haurwitz (1940). Therefore, these
waves are called Rossby–Haurwitz waves or more simply Rossby waves.

16.1 One- and two-dimensional Rossby waves

Rossby employed the filtered barotropic model which we have studied in some de-
tail in the previous chapter. This model assumes that there is horizontal frictionless
flow between plane-parallel plates. The medium is thought to be an incompress-
ible homogeneous fluid of constant density so that, due to the upper boundary
condition, sound waves and gravity waves cannot form. Nevertheless, horizontal
pressure gradients are possible.

The starting point of the analysis is the divergence-free barotropic vorticity
equation (15.70), which is restated here for convenience:

∇2
h

∂ψ

∂t
+ ∂ψ

∂x

∂

∂y

(∇2
hψ + f

) − ∂ψ

∂y

∂

∂x

(∇2
hψ + f

) = 0

with f = f0 + βy, β = 2	 cosϕ

a
= constant

(16.1)

where a is the mean radius of the earth.

471
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With Rossby we shall assume that the Coriolis parameter varies linearly in the
y-direction; see also equation (15.104). In order to obtain an analytic solution for
the speed of displacement of the long waves we will linearize the vorticity equation.
We assume the validity of a linearization of the form

ψ = ψ(y) + ψ ′(x, y, t), ψ = constant − uy, u = −∂ψ

∂y
= constant

(16.2)
where u is the mean wind speed of the air current. The corresponding linear variant
of the vorticity equation in the so-called β-plane is

(
∂

∂t
+ u

∂

∂x

)
∇2

hψ
′ + β

∂ψ ′

∂x
= 0 (16.3)

Substituting the wave-type disturbance

ψ ′(x, y, t) = A exp[i(kxx + kyy − ωt)] (16.4)

into (16.3) gives the characteristic or frequency equation

ω = kxu− βkx

k2
x + k2

y

(16.5)

Division of the circular frequency by the wavenumber kx or by ky yields the
components of the phase velocity c in the x- and y-directions:

cx = ω

kx
= u− β

k2
x + k2

y

cy = ω

ky
= kx

ky
u− βkx/ky

k2
x + k2

y

= kx

ky
cx

(16.6)

From the mathematical point of view it is interesting to remark that the Rossby
waves satisfy not only the linearized equation (16.3) but also the complete nonlin-
earized equation (16.1). By combining terms (16.1) may be written as

∇2
h

∂ψ

∂t
+ J

(
ψ,∇2

hψ
) + β

∂ψ

∂x
= 0 (16.7)

The Jacobian is given by

J
(
ψ,∇2

hψ
) = ∂ψ ′

∂x

∂

∂y

(∇2
hψ

′) − ∂ψ ′

∂y

∂

∂x

(∇2
hψ

′) − ∂ψ

∂y

∂

∂x

(∇2
hψ

′)
= −ikxu

(
k2
x + k2

y

)
ψ ′

(16.8)
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Substitution of (16.8) into (16.7) together with (16.2) and (16.4) again yields the
frequency equation (16.5).

First let us discuss the original Rossby formula by assuming that ky = 0 in
(16.4). In this case and with u = 0 we speak of pure Rossby waves. We then find
for the more general case with u �= 0

cx = u− β

k2
x

= u− β
L2
x

4π 2
(16.9)

In the midlatitudes, for a wide range of values of Lx , this formula is in reasonable
agreement with observations.

The simplest situation occurs if we assume that the wind speedu vanishes. In this
case the Rossby waves propagate from east to west as implied by the minus sign
in (16.9). Usually the zonal flow is large enough with u > 0 that the Rossby waves
propagate to the east. However, relative to the basic zonal current, the waves still
move to the west. Furthermore, we recognize that the phase velocity of the Rossby
wave equals the mean wind speed u if the Coriolis parameter is not permitted to
vary with latitude. For high geographical latitudes and very short waves this is
in rough agreement with reality. For lower geographical latitudes and increasing
wavelength Lx the wave lags behind the zonal air current.

There exists a certain wavelength Lx,stat

Lx,stat = 2π

√
u

β
= 2π

√
au

2	 cosϕ
(16.10)

at which the wave becomes stationary. For a latitude ϕ = 45◦ and u = 10 m s−1

the stationary wavelength is about 5000 km and for u = 20 m s−1 it amounts to
7000 km.

Introducing (16.10) into (16.9), the wave speed may be expressed as

cx = β

4π 2

(
L2
x,stat − L2

x

)
(16.11)

From this equation it follows that waves of length Lx > Lx,stat are retrogressive,
i.e. they are moving from east to west. LetN represent the number of waves around
a latitude circle so that

NLx = 2πa cosϕ (16.12)

The so-called velocity deficit of the retrogressive wave cx − u may be found, for
example, from the equation

cx − u = −2	a cos3 ϕ

N 2
(16.13)
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If, for a given latitude, the wave speed is zero, we may calculate the so-called
stationary wavenumber Nstat so that the velocity deficit may also be determined
with the help of

cx = 2	a cos3 ϕ

(
1

N 2
stat

− 1

N 2

)
(16.14)

The velocity deficit may assume considerable values. For example, for a latitude
ϕ = 45◦ and N = 3 the deficit amounts to −36.5 m s−1; for N = 6 and for the
same latitude the deficit is only −9.1 m s−1. The largest deficits are found at low
latitudes and for very long waves. For ϕ = 30◦ andN = 3 the deficit is −67 m s−1.

Compared with observations, particularly for the very long waves, the velocity
deficit is clearly too high. This very unrealistic behavior of the Rossbydisplacement
formula may be traced back to the simplicity of the model which assumed the
existence of a fixed upper plate. This resulted in a vanishing horizontal divergence
of the velocity field. If the rigid lid is replaced by a free surface, then the Rossby
formula (16.9) assumes a modified form, as will be shown next. For convenience
we restate the two equations needed for the analysis. These are the barotropic
vorticity equation

dη

dt
+ η∇h · vh = 0 (16.15)

repeated from (10.146), and the time-change equation for a free surface H

dH

dt
+H ∇h · vh = 0 (16.16)

repeated from (15.23a). Since we wish to find a simple analytic solution to the
problem we assume that the ground is flat. By eliminating the divergence of the
horizontal wind field between these two equations we find

∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
− η

H

(
∂H

∂t
+ u

∂H

∂x
+ v

∂H

∂y

)
= 0 (16.17a)

which can also be written as the conservation statement

d

dt

( η
H

)
= 0 (16.17b)

This is the potential vorticity equation which was derived earlier; see Section 10.5.8.
It simply states that the potential vorticity of each individual air parcel is conserved
in a divergent barotropic flow. Hence, the number of minima and maxima of the
absolute vorticity cannot change, so a true cyclogenesis cannot be predicted by the
theory of barotropic flow. It should be emphasized, however, that in many regions
for long time periods the atmosphere acts nearly as a barotropic medium. Many
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developments that appear to be new simply result from a redistribution of already
existing extremals of the absolute vorticity.

Equations (16.17a) and (16.17b) were obtained from the equations for the
barotropic vorticity and the free surface without any additional assumptions, so
gravity waves are not eliminated. A reasonable filter for this type of noise is the
geostrophic approximation of the wind field. By introducing the geostrophic wind
components

ug = − g

f0

∂H

∂y
, vg = g

f0

∂H

∂x
(16.18)

we find the following expressions for the absolute geostrophic vorticity ηg:

ηg = ζg + f with ζg = ∂vg

∂x
− ∂ug

∂y
= g

f0
∇2

hH (16.19)

It can be seen that the Coriolis parameter f has been replaced by the average value
f0 in the expression for ζg but not in the expression for ηg. This treatment ensures
that the β-effect will still be accounted for in the model and that at the same time
analytic solutions may be obtained.

By substituting (16.18) and (16.19) into (16.17a) we obtain the barotropic model
equation

∇2
h

∂H

∂t
− ∂H

∂y

∂

∂x

(
g

f0
∇2

hH + f

)
+ ∂H

∂x

∂

∂y

(
g

f0
∇2

hH + f

)

− f0

gH

(
g

f0
∇2

hH + f

)
∂H

∂t
= 0

(16.20)

This partial differential equation for the tendency ∂H/∂t is of the Helmholtz type
and can be solved, for example, by a numerical procedure known as the relaxation
method.

In order to obtain an analytic solution for the displacement of a wave-type dis-
turbance, we must linearize equation (16.20). We assume that a simple disturbance
(perturbation) is embedded in a zonal current. For this purpose we decompose the
H -field into a part H (y) plus a perturbation H ′(x, t):

H (x, y, t) = H (y) +H ′(x, t) (16.21)

In analogy to the geostrophic wind component ug we may write for the zonal
current

− g

f0

∂H

∂y
= u = constant (16.22a)

Integration yields
H (y) = H0 − uf0y/g (16.22b)

where H0 is a constant.
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Substituting (16.21) into (16.20) gives the linearized equation(
∂2

∂x2
− f 2

0

gH0

)
∂H ′

∂t
+ β

∂H ′

∂x
+ u

∂3H ′

∂x3
= 0 (16.23)

Wherever H appears in undifferentiated form we have replaced it by the mean
height H0 of the free surface. Moreover, we have approximated ff0 ≈ f 2

0 .
Assuming that the disturbance is a wave propagating in the x-direction,

H ′ = A exp[ikx(x − ct)] (16.24)

we find that the phase velocity of a Rossby wave, modified by gravitational effects,
is given by

cx =
u− β

L2
x

4π 2

1 + f 2
0 L

2
x

gH04π 2

(16.25)

Sometimes this wave is also called a mixed Rossby wave.
We now compare (16.25) with (16.9), which applies to a fixed upper boundary.

We recognize that the stationary wavelength has not changed. For all nonstationary
waves the magnitude of the phase velocity cx is smaller than that predicted by
(16.9). The velocity deficit with respect to the basic current increases somewhat
for waves propagating from west to east. However, the speed of the extremely
fast retrogressive waves is considerably less, resulting in better agreement with
observations. For the above example, assuming a latitude ϕ = 30◦, N = 3, and
H0 = 8000 m, the deficit is now −56.5 m s−1 instead of −67 m s−1 as computed
from (16.13). Had we chosen H0 = 2000 m, the velocity deficit would have been
reduced further, to a value of only −40 m s−1.

16.2 Three-dimensional Rossby waves

The starting point of the analysis is the baroclinic vorticity equation (10.77) in the
pressure coordinate system, which is rewritten as

∂ζ

∂t
+ vh · ∇hη + ω

∂ζ

∂p
=

(
er × ∂vh

∂p

)
· ∇hω + η

∂ω

∂p
(16.26)

For simplicity we have omitted the suffix p since confusion is unlikely to occur.
With sufficient accuracy we will now replace the velocity vector by the geostrophic
wind vector and the vorticity by the geostrophic vorticity

vh −→ vg, ζ −→ ζg = 1

f0
∇2

hφ, η −→ ηg = ζg + f (16.27)
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In view of this approximation and a consequential treatment of the various terms
appearing in the vorticity equation, we obtain the quasi-geostrophic approximation
of the vorticity equation in the form

(
∂

∂t
+ vg · ∇h

)
(ζg + f ) = f0

∂ω

∂p
(16.28)

As before, on the left-hand side the Coriolis parameter f is permitted to vary with
latitude to include the β-effect. The steps leading to (16.28) will be given later
when we discuss the quasi-geostrophic theory in some detail.

In order to include in a rough approximation the vertical structure of the
atmosphere, we must involve the first law of thermodynamics. The approximate
adiabatic form for dry air is given by

ρcp,0
dT

dt
= dp

dt
= ω (16.29)

It is useful to introduce the definition of the static stability σ0 into the previous
equation:

σ0 = − 1

ρ

∂ ln θ

∂p
= R0

p

(
R0T

cp,0p
− ∂T

∂p

)
(16.30)

After a few easy steps we find
(
∂

∂t
+ vg · ∇h

)
T − p

R0
σ0ω = 0 (16.31)

By means of the hydrostatic equation we replace the temperature T in terms of
the geopotential φ:

T = − p

R0

∂φ

∂p
(16.32)

so that the first law of thermodynamics can be written as

(
∂

∂t
+ vg · ∇h

)
∂φ

∂p
+ σ0ω = 0 (16.33)

Recall that we are using the p system, so the operators ∂/∂t and ∇h are applied at
constant pressure.

In order to obtain an analytic solution to our problem we must linearize
equations (16.28) and (16.33). With vg = ugi + vgj, ug = u we have

vg · ∇hζg =⇒ u
∂

∂x

(
1

f0
∇2

hφ
′
)
, vg · ∇hf =⇒ β

f0

∂φ ′

∂x
(16.34)
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With this linearization the vorticity equation obtains the form(
∂

∂t
+ u

∂

∂x

)
∇2

hφ
′ + β

∂φ ′

∂x
= f 2

0

∂ω′

∂p
(16.35)

while the first law of thermodynamics may be written in linearized form as(
∂

∂t
+ u

∂

∂x

)
∂φ ′

∂p
+ σ0ω

′ = 0 (16.36)

By eliminating the generalized vertical velocity, equations (16.35) and (16.36) may
be combined to give the single equation(

∂

∂t
+ u

∂

∂x

)(
∇2

hφ
′ + f 2

0

σ 0

∂2φ ′

∂p2

)
+ β

∂φ ′

∂x
= 0 (16.37)

In order to obtain this equation we have replaced the stability parameter σ0 by an
average value σ 0 for the vertical layer under consideration. Assuming as a solution
of (16.37) the three-dimensional wave in the form

φ ′(x, y, p, t) = A exp[i(kxx + kyy + kpp − ωt)] (16.38)

we obtain the desired dispersion relation for the intrinsic frequency χ :

χ = ω − ukx = − βkx

k2
x + k2

y + (
f 2

0

/
σ 0

)
k2
p

(16.39)

The component of the phase velocity c of the three-dimensional wave along the
x-axis is given by

cx = ω

kx
= u− β

k2
x + k2

y + (
f 2

0

/
σ 0

)
k2
p

(16.40a)

Compared with the two-dimensional phase velocity of (16.5), the value of cx is
modified due to the presence of the verticalwavenumber kpwhich has the dimension
hPa−1. Along the y-axis, in analogy to the two-dimensional case (16.6), we find

cy = ω

ky
=

(
u− β

k2
x + k2

y + (
f 2

0

/
σ 0

)
k2
p

)
kx

ky
= cx

kx

ky
(16.40b)

The phase speed cp along the vertical pressure axis,

cp = ω

kp
=

(
u− β

k2
x + k2

y + (
f 2

0

/
σ 0

)
k2
p

)
kx

kp
= cx

kx

kp
(16.40c)

has the units hPa s−1.
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Let us now return to equation (16.40a) to obtain the condition for the standing
wave. Setting cx equal to zero, we find

Standing wave: k2
p,s =

(
β

u
− (

k2
x + k2

y

))σ 0

f 2
0

(16.41)

showing how the vertical and the horizontal wavenumbers must be related for
standing waves to form. Compare this result with (16.10). Inspection of (16.38)
shows that vertical propagation of Rossby waves is possible only if kp is a real
quantity, i.e. k2

p > 0. In order to state this condition for the more general case we
solve (16.40a) and obtain

k2
p =

(
β

u− cx
− (

k2
x + k2

y

))σ 0

f 2
0

(16.42)

For the large-scale motion which is being considered here, the vertical stability
is larger than zero. From (16.42) we recognize that the condition k2

p > 0 holds
whenever the inequality

β

u− cx
> k2

x + k2
y (16.43)

is satisfied. This requires that, for a large positive value of the velocity deficit
u − cx , vertically propagating Rossby waves cannot occur as might be the case
for strong westerly flow. For easterly flows with a negative value of the velocity
deficit, the vertical propagation of Rossby waves is not permitted by (16.42). These
conclusions are supported by observations.

Finally we observe that (16.40a) reduces to (16.6) if kp = 0.

16.3 Normal-mode considerations

Additional information about vertical Rossbywaves can be obtained by simplifying
the basic equations (16.35) and (16.36). Following Wiin-Nielsen (1975) we set the
basic flow velocity u = 0 and ignore any y-dependency of the pertinent variables.
However, we permit the amplitudes of the geopotential and the generalized vertical
velocity to depend on pressure. The system of equations to be solved is then given
by

(a)
∂

∂t

∂2φ ′

∂x2
+ β

∂φ ′

∂x
= f 2

0

∂ω′

∂p

(b)
∂

∂t

∂φ ′

∂p
+ σ0ω

′ = 0
(16.44)

Now we consider perturbations of the form
 φ ′

ω′


 =


 A(p)

B(p)


 exp[ikx(x − ct)] (16.45)
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which are referred to as normal-mode solutions. By substituting (16.45) into (16.44)
we obtain the first-order differential-equation system

(
k3
xc + kxβ

)
iA = f 2

0

∂B

∂p
, ikxc

∂A

∂p
= σ0B (16.46)

Since A and B depend only on the single variable p we may replace the partial
by the total derivative. By obvious steps we combine this system to give a single
second-order differential equation:

d2B

dp2
− c + β/k2

x

c(f0/kx)
2σ0B = 0 (16.47)

We now introduce the abbreviations

cR = β

k2
x

, cI = f0

kx
, a2 = σ0p

2
0, pr = p

p0
(16.48)

into (16.47) and obtain

d2B

dp2
r

+ l2(pr)B = 0 with l2(pr) = −c + cR

cc2
I

a2(pr) (16.49)

Note that, according to (16.30) and (16.48), a2 = a2(pr) so that we also have
l2 = l2(pr). We recognize that −cR and cI represent the phase velocities of the pure
Rossby waves and of the inertial waves. The amplitude B of the vertical velocity
is now defined with respect to the relative pressure pr. Obviously the solution of
(16.49) depends on the behavior of l2(pr).

A simple wave-type solution can be obtained by requiring that l(pr) is a constant
and that l2 > 0. In this case the characteristic values of (16.49) are imaginary, thus
resulting in the solution

B(pr) = C1 cos(lpr) + C2 sin(lpr) (16.50)

Imposing the boundary conditions

B(pr = 0) = 0, B(pr = 1) = 0 =⇒ C1 = 0, l = ln = nπ, n = 0, 1, . . .
(16.51)

which require that the generalized vertical velocities vanish at the top and at the
base of the atmosphere, means that we must select l = ln = nπ to make the sine
function vanish.

With ln = nπ, n = 0, 1, . . . from (16.49) we find a whole spectrum of phase
velocities:

cn = − a2cR

a2 + n2π 2c2
I

(16.52)
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In case of n = 0 the phase velocity c0 = −cR = −β/k2
x . This is the zeroth normal

mode of the pure Rossby wave. This solution is consistent with the requirement
that pure Rossby waves form in the absence of vertical velocities. For n = 1, 2, . . .
higher-order vertical modes are obtained. The corresponding pure waves also prop-
agate from east to west since cn < 0, but they move more slowly than in case of
the zeroth normal mode. The amplitudes of the generalized velocities for normal
modes in this case differ from zero as shown in

B(pr) = C2 sin(lnpr) �= 0 (16.53)

For large values of n equation (16.52) can be approximated by

cn ≈ − a2cR

n2π 2c2
I

= − a2β

n2π 2f 2
0

(16.54)

showing that cn no longer depends on the wavelength of the wave. This particular
situation is known as the ultra-long-wave approximation.

We will now show that the approximation leading to (16.54) is equivalent to ig-
noring the time-dependent term in the vorticity equation (16.44a). This assumption
implies an approximate balance between the β-effect and the divergence of the
flow. In fact, the expression ∂ω′/∂p represents vertical stretching, which is coupled
with the occurrence of divergence. This also follows directly from the continuity
equation in pressure coordinates which will be formally derived in a later chapter.

The mathematical development is the same as that above leading to the form
(16.49) but now l2(pr) has a different meaning so that we formally replace B(pr)
by B1(pr). Instead of (16.49) we now obtain

d2B1

dp2
r

+ l21B1 = 0 with l21 = −a2β

cf 2
0

(16.55)

Assuming that l1 is a constant and that l21 > 0, we again obtain a wave solution,
which is given by

B1(pr) = D1 cos(lpr) +D2 sin(lpr) (16.56)

By imposing the boundary conditions that the vertical velocity vanishes at the
top of the atmosphere and at the ground where p = p0, we immediately find the
conditions

B(pr = 0) = 0, B(pr = 1) = 0 =⇒ D1 = 0, l = nπ, n = 0, 1, . . .
(16.57)

so that cn is given by

cn = − a2β

n2π 2f 2
0

(16.58)
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This verifies the above statement that ignoring the term a2 in the denominator
of (16.52) is equivalent to ignoring the time-dependency in the vorticity equation
(16.44a).

16.4 Energy transport by Rossby waves

It is well known that the horizontal as well as the vertical transport of energy by
Rossby waves plays an important role in the maintenance of the general circulation
of the troposphere and the lower sections of the stratosphere. We have previously
shown that the direction of the group velocity coincides with the direction of the
transport of energy.

We begin by repeating the fundamental equation (14.91):

c̃g,x = ∂χ

∂kx
= ∂ω

∂kx
− u = cg,x − u (16.59)

giving the relation between the group velocity (indicated by a tilde), relative to the
basic current, and the intrinsic frequency χ . Using the basic frequency equations
(16.39), we obtain immediately the components of the group velocity for the three
directions. The specialization to lower dimensions is obvious. Note that, in case of
the vertical direction, we are dealing with a generalized velocity. From

cg,x = ∂ω

∂kx
= u+ β

k2
x − k2

y − (
f 2

0

/
σ 0

)
k2
p[

k2
x + k2

y + (
f 2

0

/
σ 0

)
k2
p

]2 (16.60)

we see that, for pure Rossby waves (ky = kp = 0) and u = 0, the energy flux
is always downstream so that cg,x > 0. Comparison with (16.40a) shows that, for
u = 0, the phase and group velocities have opposite directions. In the general case,
however, cg,x may be either positive or negative so that energy may flow in both
directions.

From

cg,y = ∂ω

∂ky
= 2βkxky[

k2
x + k2

y + (
f 2

0

/
σ 0

)
k2
p

]2 (16.61)

we recognize that meridional transport of energy is possible only if ky differs from
zero.

The basic requirement for meridional transport of energy to occur is that the axis
of troughs (ridges) must be inclined with respect to the south–north direction. For
a southward transport (ky < 0) the axis must assume a direction from the south-
west to the north-east. In case of a northward transport of energy (ky > 0) the axis



16.5 The influence of friction on the stationary Rossby wave 483

must be directed from the south-east to the north-west. Comparison with equation
(16.40b) shows that, for pure Rossby waves, the phase velocity cy and the group
velocity cg,y are opposite in direction.

Let us now consider the vertical transport of energy. From

cg,p = ∂ω

∂kp
= 2βkx

(
f 2

0 /σ 0

)
kp[

k2
x + k2

y + (
f 2

0 /σ 0

)
k2
p

]2 (16.62)

it follows that, for a positive vertical wavenumber (kp > 0), the transport of energy
is upward. If the vertical wavenumber is negative (kp < 0), then the transport is
downward. For u = 0 we recognize immediately that cp and cg,p have opposite
signs (see equation (16.40c)).

16.5 The influence of friction on the stationary Rossby wave

There is much observational evidence that Rossby waves may be amplified by
external forcing due to large-scale thermal inhomogeneities resulting, for example,
from the distribution of continents and oceans. Inspection of weather maps shows
that their dimensions are of the same order as the lengths of stationary Rossby
waves. Not only does forcing play an important role in the dynamics of the Rossby
waves, but also dissipating factors are of importance. As in any physical problem,
dissipation is usually very difficult to treat mathematically if realistic situations are
assumed. In order to assess the influence of friction between the atmosphere and
the earth’s surface, we will accept the simple Guldberg and Mohn scheme, which
assumes that the frictional force is proportional to the wind velocity. Therefore,
we must include the frictional effect in the vorticity equation. We proceed by
including on the right-hand sides of the horizontal components of the equation
of motion (15.27b) the terms −ru and −rv, where r is a frictional factor. We
then derive the divergence-free vorticity equation analogously to (15.20), but now
the term rζ will be added. With Panchev (1985) we assume that we are dealing
with stationary conditions; we also ignore any y-dependence of the variables. This
leads to

u
∂ζ

∂x
+ βv + rζ = 0 (16.63a)

In order to obtain an analytic solution, we linearize this equation with u =
constant, v = 0 and obtain

u
dζ ′

dx
+ βv′ + rζ ′ = 0 (16.63b)

Since ζ ′ = dv′/dx we obtain an ordinary second-order differential equation for v′:

u
d2v′

dx2
+ βv′ + r

dv′

dx
= 0 (16.64)
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Assuming that, at x = 0, the velocity v′ = 0, and (dv′/dx)0 = ζ0, which is the
initial vorticity, the solution to the frictional problem is given by

v′ = ζ0

k′
stat

exp
(
− r

2u
x
)

sin(k′
statx) with k′

stat =
√
β

u
− r2

4u2 (16.65)

Comparison of L′
stat = 2π/k′

stat with (16.10) shows that the stationary wavenumber
has been modified due to the existence of surface friction. Accepting Panchev’s
value r = 10−6 s−1, the amplitude of the wave decreases to about half its value for
u = 10 m s−1 if x = 2L′

stat for a midlatitude situation. We may conclude that the
frictional effect surely counteracts quite efficiently any forcing that would produce
amplification of the Rossby wave.

16.6 Barotropic equatorial waves

In this section we will briefly consider Rossby waves forming at the equator of the
earth. The starting points of the analysis are the shallow-water equations (15.23b)
and (15.27b), which will be linearized and simplified. Assuming that the basic
current is zero means that we must also set the inclination of the mean height of
the fluid equal to zero. For a flat ground the basic equations are

∂u′

∂t
− βyv′ = −∂φ ′

∂x
,

∂v′

∂t
+ βyu′= −∂φ ′

∂y
,

∂φ ′

∂t
+ φ

(
∂u′

∂x
+ ∂v′

∂y

)
= 0

(16.66)

The Coriolis parameter is approximated according to (16.1) with f0 = 0. We wish
to obtain a solution of the form



u′

v′

φ ′


 =



û(y)

v̂(y)

φ̂(y)


 exp[i(kxx − ωt)] (16.67)

Substitution of this equation into (16.66) results in the coupled system

−iωû− βyv̂ = −ikx φ̂, −iωv̂ + βyû = −dφ̂

dy
,

−iωφ̂ + φ

(
ikxû+ dv̂

dy

)
= 0

(16.68)

consisting of one purely algebraic equation and two differential equations. At this
point it is of advantage to introduce the dimensionless form of (16.68). The only
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dimensional parameters in this set of equations areβ andφ, whichwill be combined
to introduce scales of time and length:

τ = 1

β1/2φ
1/4 , l = φ

1/4

β1/2
(16.69)

These scales are then used to define the dimensionless variables

ũ = û
τ

l
= û

φ
1/2 , ṽ = v̂

τ

l
= v̂

φ
1/2 , ỹ = y

l
= y

β1/2

φ
1/4

k̃x = kxl = kx
φ

1/4

β1/2
, φ̃ = φ̂

τ 2

l2
= φ̂

φ
, ω̃ = ωτ = ω

β1/2φ
1/4

dφ̃

dỹ
= 1

φ
3/4
β1/2

dφ̂

dy
,

dṽ

dỹ
=

d
(̂
v/φ

1/2
)

d
(
yβ1/2/φ

1/4
) = 1

β1/2φ
1/4

dv̂

dy

(16.70)
By introducing these variables into (16.68), we find the equivalent dimensionless
set

−iω̃ũ− ỹṽ + ĩkx φ̃ = 0, −iω̃ṽ + ỹũ+ dφ̃

dỹ
= 0,

−iω̃φ̃ + ĩkx ũ+ dṽ

dỹ
= 0

(16.71)

Eliminating ũ and φ̃ by obvious steps yields

d2ṽ

dỹ2
+

(
ω̃2 − k̃2

x − k̃x

ω̃
− ỹ2

)
ṽ = 0 (16.72)

This is Schrödinger’s equation for the simple harmonic oscillator. Application of
the natural conditions ṽ(±∞) = 0 gives the general solution

ṽ(̃y) = AnHn(̃y) exp

(
− ỹ2

2

)
(16.73)

to (16.72) in terms of the Hermite polynomials Hn(̃y) upon assuming the validity
of the dispersion relation

ω̃2 − k̃2
x − k̃x/ω̃ = 2n+ 1, n = 0, 1, . . . (16.74)

The lowest-order Hermite polynomials are H0 = 1, H1 = 2̃y, and H2 = 4̃y2 − 2.
Itwill be observed that (16.74) is a cubic equation in the reduced form.Conditions

under which this equation provides three real and unequal roots are known. In the
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present case the three real roots correspond to different types of waves. From the
type of the basic equations (16.66) we should expect two inertial gravity waves and
one Rossby wave. The solutions can be separated by considering two approximate
cases.

Let us consider the conditions stated for the first approximate case

ω̃2 − k̃2
x � k̃x/ω̃ (16.75)

so that the dimensionsless frequency equation (16.74) reduces to

ω̃n = ±
√

2n+ 1 + k̃2
x (16.76)

The lowest possible frequency is found by setting n = 0. On returning to the
dimensional form by means of (16.70) we obtain

ωn = ±
√

(2n+ 1)βφ
1/2 + φk2

x (16.77)

The phase speeds of the two waves are given by

cn = ωn

kx
= ±

√
(2n+ 1)

βφ

k2
x

+ φ (16.78)

Recalling that at the equator the Coriolis parameter is very small, for u = 0 this
equation is very similar to (15.55). Clearly, (16.78) describes a pair of eastward-
and westward-propagating inertial gravity waves.

The conditions for the second approximate case are

ω̃2 � k̃x/ω̃ + k̃2
x (16.79)

so that (16.74) reduces to the frequency equation

ω̃n = − k̃x

k̃2
x + 2n+ 1

(16.80)

The dimensional form is given by

ωn = − βkx

k2
x + (2n+ 1)k2

scale

with kscale = 1

l
= β1/2

φ
1/4 (16.81)

Here the wavenumber scale kscale has been introduced. Assuming that φ =
105 m2 s−2, the corresponding wavelength scale l is about 4000 km. By divid-
ing ωn by kx we obtain the phase speed

cn = − β

k2
x + (2n+ 1)k2

scale
(16.82)
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We observe that, unlike the inertial gravity waves, this type of wave is unidirectional
and propagating in the westward direction only, as is implied by the negative sign.
Therefore, we are dealing with a Rossby-type wave since all Rossby waves move
from east to west if the basic current u = 0, as follows from (16.9). This section
originates from the work of Matsuno (1966).

16.7 The principle of geostrophic adjustment

In the previous chapter we considered the properties of the homogeneous atmo-
sphere by discussing the solution of the system (15.49).We found that the frequency
equation has three real roots. One of these represents the meteorologically inter-
esting wave moving with a speed c1, see (15.53), which is of the order of the wind
velocity. This is not an actual Rossby wave since the Coriolis parameter f was not
permitted to vary with latitude. Nevertheless, loosely speaking, we sometimes call
the slow-moving waves displaced with c1 also Rossby waves. Had we permitted
f to vary with the coordinate y, u would have had to be replaced by u − β/kx .
The remaining two roots resulted in the phase velocities c2,3 of the external gravity
waves, see (15.55), moving at approximately the Newtonian speed of sound.

The solution of the predictive meteorological equations requires a complete
set of initial data. These observational data are usually measured independently
with a certain observational error. In contrast, the meteorological variables are
connected by a system of prognostic and diagnostic equations that must be satisfied
by the meteorological variables at all times, including the initial time. Owing to
observational errors, the initital data will introduce a perturbation, which cannot be
completely avoided.Observational evidence shows that the large-scale atmospheric
motion is quasi-geostrophic and quasi-static, implying a balance among theCoriolis
force, the pressure-gradient force, and the gravitational force. If this balance is
disturbed in some region by frontogenesis or by some other phenomenon, fast
wave motion is generated and perturbation energy is exported to other regions of
the atmosphere. After a period of adjustment the quasi-balance is restored. In fact,
this process of adjustment operates continually to maintain a state of approximate
geostrophic balance.

Let us reconsider the linearized shallow-water equations assuming that we have
a resting basic state. From (15.23b) with φs = 0 and from (15.27b) we obtain
directly

∂u′

∂t
− f v′ = −∂φ ′

∂x
,

∂v′

∂t
+ f u′= −∂φ ′

∂y
,

∂φ ′

∂t
+ φ

(
∂u′

∂x
+ ∂v′

∂y

)
= 0

(16.83)
We could have found this equation also from (15.66) by replacing β by f . In order
to simplify the notation, the primes on u, v, and φ will be omitted henceforth. Note
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well that the gradient of the mean geopotential must be zero for a resting mean
state to exist, that is φ = constant. In order to simplify the system we set ∂/∂x = 0,
thus obtaining a problem in one-dimensional space:

(a)
∂u

∂t
− f v = 0

(b)
∂v

∂t
+ f u = −∂φ

∂y

(c)
∂φ

∂t
+ φ

∂v

∂y
= 0

(16.84)

It turns out that the result we are going to obtain is quite general and does not
depend on the dimension of the adjustment process. For the treatment of the
higher-dimensional adjustment processes see Panchev (1985).

The initial conditions will be specified by

v(y, t = 0) = v = 0, ∇φ(y, t = 0) = 0

|y| ≤ a: u(y, t = 0) = u, |y| > a: u = 0
(16.85)

We need to point out that the initial fields of the velocity and the geopotential are
not balanced since, on the line segment |y| ≤ a, the basic state velocity u �= 0
while the gradient of the geopotential φ is assumed to vanish. This inconsistency
stimulates a disturbance that will propagate away from the region of imbalance.

We proceed by eliminating u and φ in (16.84) and obtain the partial differential
equation

∂2v

∂t2
+ f 2v − φ

∂2v

∂y2
= 0 (16.86)

If we seek a solution of the form

v = V exp[i(kyy − ωt)], V = constant (16.87)

we find the frequency equation

ω = ±
√
f 2 + φk2

y
(16.88)

This dispersion relation shows that inertial gravity waves, which will eventually
propagate out of the imbalance region, are generated. After a period of adjustment
the geostrophic balance will be restored.

In order to study the adjustment process itself, it is not sufficient to consider the
frequency equation; we must actually solve an initial-value problem. We will now
solve equation (16.86) subject to the initial conditions

t = 0, |y| ≤ a: v(y, 0) = 0,

(
∂v

∂t

)
t=0

= −uf (16.89)



16.7 The principle of geostrophic adjustment 489

noting that the second condition is formulated with the help of (16.84) and (16.85).
The method of solution we choose is based on operational calculus. By introducing
the pair of Fourier transforms

(a) ṽ(ky, t) =
∫ ∞

−∞
v(y, t) exp(−ikyy) dy

(b) v(y, t) = 1

2π

∫ ∞

−∞
ṽ(ky, t) exp(ikyy) dky

(16.90)

we transform the partial differential equation (16.86) into an ordinary second-order
differential equation. We could also apply the Laplace-transform method to find
the solution to this equation. Multiplying (16.86) by exp(−ikyy) and integrating
over y from −∞ to +∞ as required by (16.90a), we obtain∫ ∞

−∞

∂2v

∂y2
exp(−ikyy) dy= f 2

φ

∫ ∞

−∞
v exp(−ikyy) dy+ 1

φ

∂2

∂t2

∫ ∞

−∞
v exp(−ikyy) dy

(16.91)
We have extracted the partial derivative with respect to time from under the integral
sign since the integration is over y and the limits of the integral are independent
of t . In the appendix to this chapter it is briefly shown how to take the Fourier
transform of a derivative and of a constant. With reference to the appendix, see
equation (16.117), we immediately find the differential equation

1

φ

d2ṽ

dt2
+ f 2

φ
ṽ = (iky)

2ṽ (16.92)

in the transformed plane, which is now an ordinary differential equation. Using
(16.88), we may write equation (16.92) more succinctly as

d2ṽ

dt2
+ ω2ṽ = 0 (16.93)

The solution to this equation can be written down immediately:

ṽ(ky, t) = A(ky) cos(ωt) + B(ky) sin(ωt) (16.94)

Since the differentiation variable is the time t , the integration constants, in general,
should depend on ky .

From the boundary condition (16.89) it follows that

ṽ(ky, 0) = 0 =⇒ A(ky) = 0 (16.95a)

From (16.89) we obtain

∂

∂t
[v(y, 0)] = −uf = constant (16.95b)
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so that from (16.120) derived in the appendix we find the integration constant
B(ky):

∂

∂t

∫ ∞

−∞
v(y, 0) exp(−ikyy) dy = ∂

∂t
[̃v(ky, 0)] = −2uf

ky
sin(kya)

=⇒ B(ky) = −2uf

kyω
sin(kya)

(16.96)

Hence, ṽ(ky, t) is known. The Fourier integral (16.90b) then provides the solution
to the differential equation (16.93), which is given by

v(y, t) = −uf

π

∫ ∞

−∞

sin(kya) sin(ωt)

kyω
exp(ikyy) dky (16.97)

By splitting the integral into two parts ranging from −∞ to 0 and from 0 to +∞
we get the final form of the solution:

v(y, t) = −2uf

π

∫ ∞

0

sin(kya) sin(ωt)

kyω
cos(kyy) dky (16.98)

The imagninary part of (16.97) vanishes, as can readily be verified. If desired,
u(y, t) and φ(y, t) can easily be found from (16.84a) and (16.48c).

We nowdirect our attention to the behavior of v(y, t) as t → ∞. For convenience
we consider the central point y = 0, and then change the integration variable from
ky to ω using the positive root (16.88). After a few obvious steps we find

v(0, t) = −2uf

φ

∫ ∞

f

ω sin
(
a
√
γ
)

γ

sin(ωt)

πω
dω = −2uf

φ

∫ ∞

f

g(ω)
sin(ωt)

πω
dω

(16.99)
where the abbreviations γ = (ω2 − f 2)/φ and g(ω) = ω sin

(
a
√
γ
)
/γ have been

introduced. The integrand is quite suitable for use of the Dirac delta function in the
form

δ(ω) = lim
t→∞

sin(ωt)

πω
(16.100)

In the limit t → ∞ we may therefore write for (16.99)

v(0, t → ∞) = −2uf

φ

∫ ∞

f

g(ω)δ(ω − 0) dω = 0 (16.101)

where the integral has been evaluated by means of (M6.80). We obtain the identical
result for the negative sign of the root in (16.88).
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Let us now consider the tendencies of u, φ, and v at the central point y = 0 as
the time t approaches infinity. The result is

(a)
∂u

∂t

∣∣∣
t→∞

= 0, (b)
∂φ

∂t

∣∣∣
t→∞

= 0, (c)
∂v

∂t

∣∣∣
t→∞

= 0 (16.102)

For the stationary values u∞ = u(y, t → ∞), v∞ = v(y, t → ∞), and φ∞ =
φ(y, t → ∞), characterized by vanishing partial derivatives with respect to time,
we find

u∞ = − 1

f

∂φ∞
∂y

, v∞ = 0, φ∞ = φ∞(y) (16.103)

Owing to the assumption that only the space variable y is considered, φ∞ must be
independent of x. If this were not the case v∞ would differ from zero. The important
point to observe is that, in case of stationarity, we have geostrophic balance.

In order to evaluate u∞, we must derive the profile function for φ∞. We proceed
by observing that the system (16.84) has an invariant. This follows simply by
combining parts (16.84a) and (16.84c) and by treating the Coriolis parameter as a
constant. The result is

∂

∂t

(
∂u

∂y
+ f

φ

φ

)
= 0 (16.104)

from which it follows that

∂u

∂y
+ f

φ

φ
= constant (16.105)

The similarity to the potential vorticity defined by equation (10.149) is apparent.
Application of the conservation theorem (16.105) for the cases t → ∞ and t = 0
gives

du∞
dy

+ f
φ∞
φ

= du

dy
+ f

φ(y, 0)

φ
(16.106)

With Rossby we introduce the characteristic length LR,

LR = φ
1/2
/f (16.107)

now known as the Rossby deformation radius, and we obtain the second-order
ordinary differential equation

d2φ∞
dy2

− φ∞
L2

R

= −f du

dy
− φ(y, 0)

L2
R

(16.108)
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This differential equation can be solved by specifying proper conditions involving
u and the geopotential φ. On applying the conditions

φ(y, 0) = 0 |y| ≤ ∞
φ∞(y) = 0 |y| → ∞
u(y) =

{
0 |y| ≥ L
U

[
1 + cos(πy/L)

] |y| < L

(16.109)

whereU andL are fixed values of velocity and length, equation (16.108) transforms
to give

d2φ∞
dy2

− φ∞
L2

R

=
{ 0 |y| ≥ L

(πUf/L) sin(πy/L) |y| < L
(16.110)

The eigenvalues (characteristic values) of the homogeneous part of (16.110) are
given by ±LR, so the general solution of the homogeneous part of this differential
equation can be written down immediately. The particular solution φ̂∞ may be
found using the method of undetermined coefficients by choosing a solution of the
type of the right-hand side of (16.110)

φ̂∞ = A sin
(πy
L

)
=⇒ A = − πLUf

π 2 + L2/L2
R

(16.111)

wherein the constantA has been obtained by substituting φ̂∞ into (16.110). For the
various segments on the y-axis we obtain the complete solution as

φ∞(y) =


B exp(−y/LR) y ≥ L

C exp(y/LR) y ≤ −L
D exp(y/LR) + E exp(−y/LR) + φ̂∞ |y| < L

(16.112)

The various integration constants can be found from the requirement that φ∞ and
∂φ∞/∂y are continuous at y = ±L. They are given by

B = −C = πA
LR

L
sinh

(
L

LR

)

D = −E = πA

2

LR

L
exp

(
− L

LR

) (16.113)

Inspection of the integration constants shows that the ratio L/LR plays a dominant
role. Therefore, we are going to consider two asymptotic cases. For the stationary
velocity field we obtain

u∞ = − 1

f

∂φ∞
∂y

=
{ 0 L � LR

u(y) L � LR
(16.114)
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Hence, for t → ∞ we obtain for the limited line segment L � LR that the
initial and final velocity fields nearly coincide. For L � LR the final velocity
field is mainly dominated by the mass field which is represented by the stationary
geopotential. The verification of the latter equation is left as an exercise.

Several sections of this chapter quite closely follow Panchev (1985) and also
Pichler (1997) in slightly modified form.

16.8 Appendix

In this appendix we briefly derive the Fourier transform of a derivative and of the
constant A. The Fourier transform ṽ1(y, t) of the partial derivative ∂v(y, t)/∂y is
given by

ṽ1(ky, t) =
∫ ∞

−∞

∂v(y, t)

∂y
exp(−ikyy) dy

= v(y, t) exp(−iky)
∣∣∣∞
−∞

+ iky

∫ ∞

−∞
v(y, t) exp(−ikyy) dy

(16.115)

Assuming that v(y, t) vanishes at y = ±∞,

lim
y→±∞

v(y, t) = 0 (16.116)

the transform of the partial derivative of v(y, t) is given by the second term on the
right-hand side of (16.116). Generalizing, we obtain for the nth derivative of the
function v(y, t)

ṽn(ky, t) = (iky)
nṽ(ky, t) (16.117)

provided that all the integrated parts vanish at y = ±∞.
If the function v(y, t) is specified as

v(y) =
{
A |y| ≤ a
0 |y| > a

(16.118)

the Fourier transform is given by

ṽ(ky) = A

∫ a

−a
exp(−ikyy) dy = A[exp(ikya) − exp(−ikya)]

iky

= 2A sin(kya)

ky
, ky �= 0

(16.119)
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16.9 Problems

16.1: Assume that the stream function

ψ(x, y, t) = −u0y + A sin(ay + ε) + B sin[kx(x − ct − µy)]

satisfies the nonlinear divergence-free vorticity equation. Which conditions must
be satisified? The basic current is expressed by the first two terms on the right-hand
side of the above equation. Find an expression for the velocity of the zonal basic
current.

16.2: Show that the static stability can be written as

σ0 = ∂2φ

∂p2
+ 1

κp

∂φ

∂p
with κ = cp

cv

16.3: Derive equation (16.55).

16.4: Prove that equation (16.71) is equivalent to equation (16.72).

16.5: Verify equation (16.73) for n = 2.

16.6: Verify equation (16.102). Show that (16.102b) is independent of Y . To verify
(16.102c), make a proper transformation.

16.7: Solve the differential equation (16.110) subject to the conditions (16.109) to
verify the solution (16.112).

16.8: Verify equation (16.114) for the section |y| < L defined by equation
(16.112).
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Inertial and dynamic stability

In Sections 17.1–17.3 we consider inertial frictionless horizontal motion of an
air parcel in a basic zonal geostrophic flow field. Dynamic-stability criteria for
atmospheric motions are derived in Sections 17.4–17.7. The criteria for inertial
and dynamic stability will be derived by means of the so-called air-parcel-dynamic
method. This method considers an isolated air parcel that is subjected to a virtual
displacement that leaves the state variables of the basic field undisturbed. The air
pressure acting on the parcel is assumed to be identical with the air pressure of the
unperturbed surroundings.

17.1 Inertial motion in a horizontally homogeneous pressure field

The simplest case is frictionless horizontal inertial motion in a homogeneous
pressure field. In this case the basic current is absent. The horizontal components
of the equation of motion on the tangential plane, assuming that we have a constant
Coriolis parameter f0, are given by

du

dt
− f0v = 0

f0u + dv

dt
= 0

or




d

dt
− f0

f0
d

dt




 u

v


 = 0 (17.1)

We shall find the solution of this system by application of the operator method,
converting the system (17.1) into a second-order differential equation:

(
d2

dt2
+ f 2

0

) u

v


 = 0 (17.2)

495
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Because of the positive sign in front of f 2
0 we have the well-known vibrational

differential equation with the general solution

u = A cos(f0t) + B sin(f0t)

v = C cos(f0t) + D sin(f0t)
(17.3)

The frequency of the vibrational motion is often called the inertial frequency:

ω = 2π/τ = f0 (17.4)

τ is the period of the vibration. To evaluate the four constants and to find the
trajectory we choose as initial conditions

t = 0: x = x0, u = 0; y = y0 = 0, v = v0 (17.5)

Using (17.5) we find from (17.3) and the differential equations of the flow

A = D = 0, B = v0, C = v0 (17.6)

The solution to (17.2) is then given by

u = v0 sin(f0t), v = v0 cos(f0t) (17.7)

Integration over time yields

x − x0 = v0

f0
[1 − cos(f0t)], y = v0

f0
sin(f0t) (17.8)

Elimination of the time dependency by squaring (17.8) results in the trajectory of
the inertial motion: [

x −
(
x0 + v0

f0

)]2
+ y2 = v2

0

f 2
0

(17.9)

which is depicted in Figure 17.1. This figure represents circular anticyclonicmotion
of inertial frequency f0. This type of motion is known as the circle of inertia. By
necessity the motion is stable since the air parcel returns to its initial position.

Fig. 17.1 The trajectory of an air parcel with vanishing pressure gradient, inertial motion.
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Fig. 17.2 A homogeneous geostrophic wind field.

17.2 Inertial motion in a homogeneous geostrophic wind field

In contrast to the previous section,we assume the existence of a constant geostrophic
air current. An isolated air parcel embedded in it is subjected to a virtual displace-
ment. Owing to the parcel-dynamic condition, the pressure existing within the
moving air parcel is identical to that of the unperturbed surroundings. The situation
is depicted in Figure 17.2.

The equation of motion of the isolated air parcel, in constrast to (17.1), is now
given by

d

dt
(ug − u) + f0v = 0, −f0(ug − u) + dv

dt
= 0 (17.10)

since the geostrophic wind is assumed to be constant. Application of the operator
method gives (

d2

dt2
+ f 2

0

)
 ug − u

v


 = 0 (17.11)

Again we find a differential equation of pure vibration of inertial frequencyω = f0

whose general solution is given by

ug − u = A cos(f0t) + B sin(f0t), v = C cos(f0t) + D sin(f0t) (17.12)

We apply the initial conditions

t = 0: x = x0, u = ug; y = y0 = 0, v = v0 (17.13)

to obtain the integration constants and the trajectory. From (17.12) and the differ-
ential equation of the flow field we find

A = D = 0, B = −v0, C = v0 (17.14)

yielding
u = ug + v0 sin(f0t), v = v0 cos(f0t) (17.15)
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Integration over time leads to

x − x0 = ugt + v0

f0
[1 − cos(f0t)], y = v0

f0
sin(f0t) (17.16)

This parametric representation of the trajectory of the isolated air parcel can be
transformed onto amoving (ξ, y)-coordinate system inwhich the ξ -axis is displaced
in the positive x-direction with the geostrophic velocity ug. The new coordinate ξ
is then given by

ξ = x − ugt with ξ (t = 0) = ξ0 = x0 (17.17)

In the moving system equation (17.16) reads

ξ = ξ0 + v0

f0
[1 − cos(f0t)], y = v0

f0
sin(f0t) (17.18)

Elimination of the time dependency results in the circular trajectory[
ξ −

(
ξ0 + v0

f0

)]2
+ y2 = v2

0

f 2
0

(17.19)

in the moving coordinate frame. Backward transformation to the resting coordinate
system yields a cycloid as the trajectory for the inertial motion of the isolated air
parcel as a superposition of the circular motion and the uniform basic air current.
Again we have a stable inertial motion since the motion repeats itself.

17.3 Inertial motion in a geostrophic shear wind field

17.3.1 Stability considerations

Wenowconsider the inertialmotion of an isolated parcel of air in a basic geostrophic
flow of horizontal shear ug = ug(y) as shown in Figure 17.3.

The horizontal equations of motion for the particle velocity (u, v) assuming the
parcel-dynamic condition are given by

du

dt
− f0v = 0,

dv

dt
+ f0(u − ug) = 0 (17.20)

Fig. 17.3 A geostrophic shear wind field.
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We may introduce the invariant quantity I into the u-component equation by
means of

du

dt
−f0v = du

dt
−f0

dy

dt
= d

dt
(u−f0y) = dI

dt
= 0 with I = u−f0y (17.21)

showing that, for the perturbedmotion of the air parcel, the quantity I is individually
conserved. Correspondingly, for the basic current we define the quantity

I = u − f0y or Ig = ug − f0y (17.22)

The isolated air parcel is displaced latitudinally from its original position some-
where on the x-axis at x = x0 and y = y0 = 0 to position y. If it does not return to
its original position we observe the case of inertial instability. We conclude from
(17.21) that the displaced particle retains its invariant quantity I of the original
position at y = 0, which is Ig(0), or

I (y) = I (0) = Ig(0) (17.23)

In the undisturbed surroundings at position y, however, we have

Ig(y) ≈ Ig(0) + dIg

dy
(0)y (17.24)

From the above equations it follows immediately that

u(y) − ug(y) = I (y) − Ig(y) = −dIg

dy
(0)y (17.25)

This expression will be introduced into the equation of motion (17.20). Before
doing so we will introduce the definition of the absolute geostrophic vorticity ηg.
With vg = 0 we have

ηg = ζg + f0 = −∂ug

∂y
+ f0 (17.26)

From (17.22) we find

−dIg

dy
(0) = −∂ug

∂y
(0) + f0 = ηg(0) (17.27)

Owing to the assumption about the geostrophic wind field the relative vorticity is
a pure shear vorticity. Equation (17.25) can now be written as

u(y) − ug(y) = ηg(0)y (17.28)
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On introducing this expression into the v-component of the equation of motion
(17.20)we obtain a differential equation for the perturbedmotion in the y-direction:

dv

dt
+ f0(u − ug) = d2y

dt2
+ f0ηg(0)y = 0 (17.29)

whose well-known solution properties are

ηg(0)

{
>0 vibration solution stable inertial motion
=0 transition the indifferent case
<0 exponential solution unstable inertial motion

(17.30)

To make the physical interpretation easier, this stability criterion will be rewritten
with the help of the relative shear vorticity (17.27) as

∂ug

∂y
(0)

{
<f0 stable inertial motion
=f0 the indifferent case
>f0 unstable inertial motion

(17.31)

This criterion states that inertial instability occurs only if the anticyclonic wind
shear of the basic geostrophic current exceeds a critical value. This effect is often
observed at the southern edge of the jet stream.

17.3.2 Determination of the trajectories

Since ug = ug(y) we have from the Taylor expansion (discontinued after the linear
term)

ug(y) = ug(0) + ∂ug

∂y
(0)y,

dug

dt
= v

∂ug

∂y
(0) = −vζg(0) (17.32)

so that the u-component of the equation of motion (17.20) can be written as

d

dt
(u − ug) − (ζg(0) + f0)v = 0, where ζg(0) + f0 = ηg(0) (17.33)

By applying the operator method to the set consisting of (17.33) and the
v-component of (17.20) we obtain at once

(
d2

dt2
+ ω2

)
 u − ug

v


 = 0 with ω2 = f0ηg(0) (17.34)

The general solution is given by

u − ug = A cos(ωt) + B sin(ωt), v = C cos(ωt) + D sin(ωt) (17.35)
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where ω refers to the natural frequency of the system. The four constants and the
trajectory are evaluated with the help of the following initial conditions:

t = 0: x = x0, u = ug(y = 0); y = y0 = 0, v = v0 =⇒
A = D = 0, B = v0ηg(0)

ω
= v0ω

f0
, C = v0

(17.36)

where (17.20) and (17.35) have been utilized. In order to obtain the trajectory
we use (17.36) in (17.35) and integrate the resulting equation over time. After
introducing the moving coordinate system, as before, by means of

ξ = x − ug(0)t, ξ0 = x(t = 0) = x0 (17.37)

we find that the equation of the trajectory is given by

[
ξ −

(
ξ0 + v0

ηg(0)

)]2

+ y2 f0

ηg(0)
= v2

0

ηg(0)2

since ug(y) ≈ ug(0) + ∂ug

∂y
(0)y = ug(0) + ∂ug

∂y
(0)

v0

ω
sin(ωt)

(17.38)

For the trajectory of the air parcel in the moving system we distinguish three
cases:

ηg(0)

{
>0 ellipse stable case
=f0 > 0 circle stable case
<0 hyperbola unstable case

(17.39)

For the cases in which the displaced air parcels eventually return to their original
positions (circle, ellipse) we have the stable situation. In case of the hyperbola
the air parcel continues to be displaced from the original position, so we have the
unstable situation. For ηg(0) = f0 (17.38) reduces to (17.19). The special situation
ηg(0) = 0 will be discussed in Problem 2.

17.4 Derivation of the stability criteria in the geostrophic wind field

Hydrostatic stability is a special stability case of atmospheric motion characteriz-
ing the vertical displacement of an air parcel. In contrast to this, inertial stability
concerns a purely horizontal displacement in case of an indifferent hydrostatic
equilibrium. Both effects taken together lead to consideration of the so-called
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dynamic stability. The stability of the geostrophic wind field was first investigated
by Kleinschmidt (1941a and b) and was thoroughly discussed by Van Mieghem
(1951).

The fundamental assumption is the existence of a basic geostrophic shear wind
field,

u(y) = ug(y) �= 0, v = w = 0 (17.40)

On this basic field of motion with ∂p/∂x = 0 we superimpose an adiabatic
perturbation, which is assumed to obey the system of equations

(a)
dI

dt
= 0

(b)
dv

dt
= − 1

ρ

∂p

∂y
− f0u

(c)
dw

dt
= − 1

ρ

∂p

∂z
− g

(17.41)

with
I = u − f0(y − y0), I = Ig = ug − f0(y − y0) (17.42)

where the overbar refers to the mean flow. It is customary to introduce the Exner
function � as a variable instead of the pressure p by means of

(a) � = cp,0

(
p

p0

)k0

, k0 = R0/cp,0

(b)
1

ρ
= θR0p

−k0
0 pk0−1

(c)
1

ρ

∂p

∂s
= cp,0θ

∂

∂s

(
p

p0

)k0

= θ
∂�

∂s
, s = x, y, z

(17.43)

Using (17.42) and (17.43c), equations (17.41b) and (17.41c) then read
dv

dt
= −f0I − f 2

0 (y − y0) − θ
∂�

∂y

dw

dt
= −g − θ

∂�

∂z

(17.44)

and represent the motion in the (y, z)-plane while equation (17.41a) remains
unaltered.

For ease of mathematical manipulation the two equations for the perturbed
motion in the (y, z)-plane will be symmetrized in order to represent the motion by
a vector. For this purpose we define two new functions by means of

L = f0(y − y0),
∂L

∂y
= f0,

∂L

∂z
= 0

H = f 2
0

2
(y − y0)

2 + g(z − z0),
∂H

∂y
= f 2

0 (y − y0),
∂H

∂z
= g

(17.45)
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Using the definitions of the new functions, the equation of motion reads

dI

dt
= 0

dv

dt
= −I

∂L

∂y
− ∂H

∂y
− θ

∂�

∂y

dw

dt
= −I

∂L

∂z
− ∂H

∂z
− θ

∂�

∂z

(17.46)

Combination of the (y, z)-components of the perturbed motion gives

dvv
dt

= −I ∇vL − ∇vH − θ ∇v�

with vv = jv + kw, ∇v = j
∂

∂y
+ k

∂

∂z

(17.47)

The suffix v denotes the vertical (y, z)-plane. Introduction of the arbitrary displace-
ment s in the (y, z)-plane transforms (17.47) into

d2s

dt2
= −I

∂L

∂s
− ∂H

∂s
− θ

∂�

∂s
(17.48)

Assuming that we have parcel-dynamic conditions, not only ∂L/∂s and ∂H/∂s

but also ∂�/∂s of the perturbed field are equivalent to the corresponding values
of the basic field. Therefore, due to the equilibrium conditions of the undisturbed
surroundings of the displaced particle in the (y, z)-plane, we have

0 = −I
∂L

∂s
− ∂H

∂s
− θ

∂�

∂s
(17.49)

where I and θ refer to the basic field variables. Subtraction of (17.49) from (17.48)
eliminates ∂H/∂s, resulting in

d2s

dt2
= −(I − I )

∂L

∂s
− (θ − θ)

∂�

∂s
(17.50)

We now assume that the perturbed motion takes place from y0 = 0 with invariant
I and θ . At the original position the perturbed and the basic field quantities are
identical, so, due to the invariance of I and θ , we have at position s

I (s) = I (0), θ(s) = θ (0) (17.51)

In contrast to this, we find for the basic field at position s

I (s) ≈ I (0) + ∂I

∂s
(0)s, θ(s) ≈ θ (0) + ∂θ

∂s
(0)s (17.52)
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where we have discontinued the Taylor expansion after the linear term. All con-
sequences derived from the following equations are then valid only to within this
approximation. Using this information, equation (17.50) transforms into

d2s

dt2
−

(
∂I

∂s
(0)

∂L

∂s
+ ∂θ

∂s
(0)

∂�

∂s

)
s = 0

with
∂�

∂s
= ∂�

∂s
= ∂

∂s

(
�(0) + ∂�

∂s
(0)s

)
= ∂�

∂s
(0) = constant

(17.53)

describing the perturbed motion in the (y, z)-plane. This equation has the well-
known solution properties

∂I

∂s
(0)

∂L

∂s
+ ∂θ

∂s
(0)

∂�

∂s

{
<0 vibration solution dynamic stability
=0 transition the indifferent case
>0 exponential solution dynamic instability

(17.54)

We will briefly discuss two examples representing two important special cases.

Example 1: Static stability The displacement occurs in the vertical direction: s =
z − z0. Since ∂L/∂z = 0, dynamic stability is obtained if

∂θ

∂z
(0)

∂�

∂z
< 0 (17.55)

Since ∂�/∂z < 0 we must have ∂θ/∂z (0) > 0, which is the well-known criterion
of hydrostatic stability.

Example 2: Inertial stability The displacement occurs in the horizontal direction y

along an isobaric surface, so (∂�/∂y)� = 0. Now (17.54) yields dynamic stability
if

∂I

∂y
(0)f0 < 0 or

(
∂ug

∂y
(0) − f0

)
f0 < 0 (17.56)

Since f0 > 0 we have again the inertial-stability criterion (17.31):

∂ug

∂y
(0) < f0 (17.57)

17.5 Sectorial stability and instability

It is somewhat easier to treat the problem of sectorial stability and instability by
eliminating the Exner function in (17.54). We proceed by eliminating ∂�/∂s by
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Fig. 17.4 An indifference line separating stable and unstable sectors.

obvious steps from (17.48) and (17.49) and obtain

1

θ

d2s

dt2
= −

(
I

θ
− I

θ

)
∂L

∂s
−

(
1

θ
− 1

θ

)
∂H

∂s
(17.58)

Steps analogous to (17.51) and (17.52)with a slight additional approximation result
in the differential equation of the displacement in the form

d2s

dt2
− θ

[
∂

∂s

(
I

θ

)
(0)

∂L

∂s
+ ∂

∂s

(
1

θ

)
(0)

∂H

∂s

]
s = 0 (17.59)

whose solution properties are given by[
∂

∂s

(
I

θ

)
(0)

∂L

∂s
+ ∂

∂s

(
1

θ

)
(0)

∂H

∂s

]{
<0 dynamic stability
=0 the indifferent case
>0 dynamic instability

with
∂

∂s
= cosα

∂

∂y
+ sinα

∂

∂z

(17.60)

We have included in (17.60) a well-known transformation of the partial derivatives
relating the direction s to directions y and z by means of an angle α, which will be
defined now. It stands to reason that the regions of stability and instability in the
(y, z)-plane will be separated by a line of indifference; see Figure 17.4. We wish
to find the direction of this indifference line.

In this general display the regions of stability and instability could have been
interchanged. Application of the transformation listed in (17.60) together with
(17.45) to the condition of indifference at the point (y0 = 0, z) yields

f0

g

[
∂

∂y

(
I

θ

)
(0) + tanα

∂

∂z

(
I

θ

)
(0)

]
+ tanα

∂

∂y

(
1

θ

)
(0)

+ tan2 α
∂

∂z

(
1

θ

)
(0) = 0

(17.61)
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This relation is a quadratic equation for tanα, which defines at (y0 = 0, z) the
inclination of the indifference line with respect to the y-axis. Therefore, there exist
two directions for the indifferent behavior of the displaced air parcel.

As the next step we find an expression for the inclination of an isentropic surface
with respect to the y-axis at y0 = 0. This is easily done by using the differential
expression

d

(
1

θ

)
= ∂

∂z

(
1

θ

)
dz + ∂

∂y

(
1

θ

)
dy = 0 (17.62)

from which it follows that

(
dz

dy

)
θ=constant

= −
∂

∂y

(
1

θ

)

∂

∂z

(
1

θ

) = tanαθ = constant (17.63)

On dividing (17.61) by [∂(1/θ )/∂z](0) we easily find

tan2 α + tanα


− tanαθ + f0

g

∂

∂z

(
I

θ

)
(0)

∂

∂z

(
1

θ

)
(0)


 + f0

g

∂

∂y

(
I

θ

)
(0)

∂

∂z

(
1

θ

)
(0)

= 0 (17.64)

where use of equation (17.63) has been made. To finish our analysis we first return
to the equilibrium condition (17.49) which will be applied to the special directions
y and z, as is shown next:

(a) s = y: 0 = −I
∂L

∂y
− ∂H

∂y
− θ

∂�

∂y
= −If0 − f 2

0 (y − y0) − θ
∂�

∂y

(b) s = z: 0 = −I
∂L

∂z
− ∂H

∂z
− θ

∂�

∂z
= −g − θ

∂�

∂z
(17.65)

On dividing both equations by θ and differentiating (17.65a) with respect to z and
(17.65b) with respect to y we obtain at y0 = 0 the expressions

(a) 0 = −f0
∂

∂z

(
I

θ

)
(0) − ∂2�

∂y ∂z
(0)

(b) 0 = −g
∂

∂y

(
1

θ

)
(0) − ∂2�

∂y ∂z
(0)

(17.66)

We eliminate the Exner function by subtraction and find

∂

∂z

(
I

θ

)
(0) = g

f0

∂

∂y

(
1

θ

)
(0) (17.67)



17.5 Sectorial stability and instability 507

By using this expression in the third term from the left in (17.64) we find with the
help of (17.63)

f0

g

∂

∂z

(
I

θ

)
(0)

∂

∂z

(
1

θ

)
(0)

=
∂

∂y

(
1

θ

)
(0)

∂

∂z

(
1

θ

)
(0)

= − tanαθ (17.68)

and therefore

tan2 α − 2 tanα tanαθ + f0

g

∂

∂y

(
I

θ

)
(0)

∂

∂z

(
1

θ

)
(0)

= 0 (17.69)

The solution of this quadratic equation is given by

tanα1,2 = tanαθ ±

√√√√√√√√tan2 αθ − f0

g

∂

∂y

(
I

θ

)
(0)

∂

∂z

(
1

θ

)
(0)

(17.70)

The existence of two indifference lines in the (y, z)-plane requires that the
discriminant be greater than zero. If this is the case then the two indifference
lines are arranged as shown in Figure 17.5.

In order to investigate the indifference behavior, the discriminant in (17.70) will
be reformulated. This is best accomplished by introducing the potential tempera-
ture as the vertical coordinate. In (M4.51) itwas shown that, for an arbitrary function

Fig. 17.5 The arrangement of two indifference lines.
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ψ , the following transformation relation is valid:(
∂ψ

∂y

)
z

=
(
∂ψ

∂y

)
θ

− ∂ψ

∂z

(
∂z

∂y

)
θ

,

(
∂z

∂y

)
θ

= tanαθ (17.71)

Application of this formula at y0 = 0 gives[
∂

∂y

(
I

θ

)
(0)

]
z

=
[

∂

∂y

(
I

θ

)
(0)

]
θ

− ∂

∂z

(
I

θ

)
(0) tan αθ (17.72)

Utilizing (17.72) together with (17.67) yields the second part of the discriminant
as

f0

g

[
∂

∂y

(
I

θ

)
(0)

]
z

∂

∂z

(
1

θ

)
(0)

= f0

g

[
∂

∂y

(
I

θ

)
(0)

]
θ

∂

∂z

(
1

θ

)
(0)

−

[
∂

∂y

(
1

θ

)
(0)

]
z

∂

∂z

(
1

θ

)
(0)

tanαθ

= −f0θ(0)

g

(
∂I

∂y

)
θ

(0)

∂θ

∂z
(0)

+ tan2 αθ = f0θ(0)ηθ (0)

g
∂θ

∂z
(0)

+ tan2 αθ

(17.73)
In this expression the vorticity ηθ (0) has been introduced according to (17.42):(

∂I

∂y

)
θ

(0) =
(
∂ug

∂y

)
θ

(0) − f0 = −ηθ (0) (17.74)

Instead of (17.70) we finally obtain

tanα1,2 = tanαθ ±
√√√√√−f0θ(0)ηθ (0)

g
∂θ

∂z
(0)

(17.75)

which can be more easily interpreted. This equation reveals that the indifferent
behavior is possible only if the potential vorticity expression of the basic field at
y0 = 0 is restricted by

ηθ (0)

∂θ

∂z
(0)

< 0 (17.76)

This condition is the requirement for the existence of partial or sectorial stability or
instability. Hence there always exist two displacement directions s1 and s2 defining
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the indifference lines separating stable and unstable regions for displacements in
the (y, z)-plane. If, in contrast to (17.76),

ηθ (0)

∂θ

∂z
(0)

> 0 (17.77)

then no indifference lines exist. Therefore, we have either total stability or total
instability. If this is the case at the point being considered, i.e. at y0 = 0 of the basic
field, then, independently of the selected direction s of the virtual displacement in
the (y, z)-plane, we have total dynamic stability for all directions if

∂θ

∂z
(0) > 0 and ηθ (0) > 0 (17.78)

and total dynamic instability for all directions if

∂θ

∂z
(0) < 0 and ηθ (0) < 0 (17.79)

On the other hand, the validity of (17.76) results in the formation of four sectors
with alternating regions of stability and instability.

17.6 Sectorial stability for normal atmospheric conditions

In order to investigate the sectorial stability for normal atmospheric conditions we
assume that we have hydrostatic stability, which is characterized by
[∂θ (0)/∂z] > 0. According to (17.76) we then must have ηθ (0) < 0. We now
wish to find the stable and unstable sectors. Obviously stable and unstable sectors
are separated by lines of indifference. Now we consider the displacement of an
air parcel along a line θ = constant and consider the stability equation (17.60).
In this particular situation the second term of (17.60) vanishes and we obtain the
relation

1

θ

(
∂I

∂s

)
θ

(0)
∂L

∂s

{
<0 dynamic stability
=0 the indifferent case
>0 dynamic instability

(17.80)

Now we expand ∂/∂s as shown in (17.60) by using (17.45) and find

f0 cos2 αθ

θ

(
∂I

∂y

)
θ

(0)

{
<0 dynamic stability
=0 the indifferent case
>0 dynamic instability

(17.81)

Note that, according to (17.42), I is independent of the vertical coordinate z. Using
(17.74) we may rewrite this formula and find the very useful expression

−f0 cos2 αθ

θ
ηθ (0)

{
<0 dynamic stability
=0 the indifferent case
>0 dynamic instability

(17.82)
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θ = constant = θ�

z

Fig. 17.6 The arrangement of stable and unstable sectors for the normal atmosphere.

Since ηθ (0) < 0 the lower unequality applies, so the displacement along the line
θ = constant is unstable. Thus, the line θ = constant is located in the unstable
sector as shown in Figure 17.6.

It is of some interest to determine the conditions which satisfy the requirement
ηθ (0) < 0. We have previously given an expression relating the absolute vorticities
in the p and θ systems, see Section (10.4.5). This expression has the form

ηθ = ηp − g

f0T

(∇h,pT )2

γa − γg
(17.83)

We recognize that the horizontal temperature gradient is mainly responsible for
satisfying the requirement ηθ (0) < 0. We will now estimate the limiting value for
the occurrence of sectorial stability. Assuming the validity of

ηp = ζ p + f0 ≈ f0 (17.84)

we find for midlatitude situations, setting (17.83) equal to zero, that the limiting
value for the occurrence of sectorial stability is

|∇h,pT | ≈ 2K/100 km (17.85)

Larger values of |∇h,pT | are common in frontal zones.
The reader interested in a more comprehensive discussion on dynamic stabil-

ity is referred to the detailed discussions presented by Van Mieghem (1951) in
the Compendium of Meteorology and in the textbook Dynamic Meteorology and
Weather Forecasting by Godske et al. (1957).

17.7 Sectorial stability and instability with permanent adaptation

In Section 17.4 we derived the equation for the perturbed motion (17.50) of an
air parcel. All results obtained so far followed from the invariance of I and the
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potential temperature θ . Ertel (1943) approached the stability problem in a different
way by giving up the requirement that I is invariant. Instead, he assumed that
the quantity I of the perturbed motion permanently assumed the value I of the
basic field at each position. The truth probably lies between the assumptions of
invariance and the permanent adaptation. Ertel’s assumption simplifies equation
(17.50), which now reads

d2s

dt2
= −(θ − θ )

∂�

∂s
(17.86)

Using (17.51) and (17.52), the differential equation for the perturbed motion is
given by

d2s

dt2
− ∂θ

∂s
(0)

∂�

∂s
s = 0 (17.87)

The solution properties of this equation are given by

∂θ

∂s
(0)

∂�

∂s

{
<0 dynamic stability
=0 the indifferent case
>0 dynamic instability

(17.88)

We consider two examples.

(i) Vertical displacement, s = z − z0. Because ∂�/∂z < 0 we must have
∂θ/∂z > 0 for dynamic stability.

(ii) We consider two arbitrary directions s1 and s2 of displacement in the (y, z)-plane as
shown in Figure 17.7. Indifference lines are isentropes and lines of constant Exner
functions. Displacement s1 results in dynamic instability whereas displacement s2
represents dynamic stability. The figure refers to average conditions in the tropospheric
west-wind region.

In case of permanent adaptation of the quantity I to average field conditions
the unstable sector is located between isentropes and lines of � = constant. For a
useful physical interpretation of Ertel’s theory we are compelled to borrow a result
from the general circulation theory. Let us designate rising motion by the vertical
velocityω′ < 0 in the p system. In case of southerly flowwe expect heating θ ′ > 0.
For the production of kinetic energy we must have

θ ′ω′ < 0 (17.89)

where the primed quantities refer to the deviation of properly defined mean values
and the overbar refers to the average of the correlation. Equation (17.89) states
that rising motion must be accompanied by heating. This requirement is satisfied
by displacement s1 so that dynamic instability is coupled with the production of
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Fig. 17.7 Sectors of stability and instability in case of permanent adaptation. Unstable
displacement s1: ∂θ/∂s < 0, ∂�/∂s < 0; stable displacement s2: ∂θ/∂s > 0, ∂�/
∂s < 0.

kinetic energy. The situation differs in case of the stable displacement s2. Here the
advective temperature change due to southerly flow is overcompensated by a very
strong rising air current (ω′ < 0) causing a cooling effect (θ ′ < 0). Therefore, a
stable dynamic displacement s2 due to

θ ′ω′ > 0 (17.90)

is connected with a reduction of the kinetic energy of the flow. For further details
on the theory of stability see Ertel et al. (1941).

17.8 Problems

17.1: Perform in detail all steps between equations (17.35) and (17.38).

17.2: Discuss the special case ηg(0) = 0, see equation (17.34), and find the trajec-
tory. Express your answer in the moving coordinate system.

17.3: Show in detail the steps involved in going from (17.60) to (17.63).

17.4: Derive equation (17.81).



18

The equation of motion in general coordinate systems

18.1 Introduction

The numerical investigation of specificmeteorological problems requires the selec-
tion of a suitable coordinate system. In many cases the best choice is quite obvious.
Attempts to use the same coordinate system for entirely different geometries usu-
ally introduce additional mathematical complexities, which should be avoided. For
example, it is immediately apparent that the rectangular Cartesian system is not
well suited for the treatment of problems with spherical symmetry. The inspection
of the metric fundamental quantities gij or gij and their derivatives helps to decide
which coordinate system is best suited for the solution of a particular problem. The
study of the motion over irregular terrain may require a terrain-following coordi-
nate system. However, it is not clear from the beginning whether the motion is best
described in terms of covariant or contravariant measure numbers. We will discuss
this situation later.
From the thermo-hydrodynamic system of equations consisting of the dynamic

equations, the continuity equation, the heat equation, and the equation of state we
will direct our attention mostly toward the equation of motion using covariant and
contravariant measure numbers. We will also briefly derive the continuity equation
in general coordinates. In addition we will derive the equation of motion using
physical measure numbers and assuming that the curvilinear coordinate lines are
orthogonal.
The starting point of the analysis is the equation of motion in the absolute

coordinate system. The description of the motion in a rotating and time-dependent
coordinate system, in general, requires knowledge of the rotational velocity of a
point in the atmosphere as well as the deformation velocity of the material surface
on which the point is located. Finally, we must compute the velocity of an air parcel
relative to this point. For further details review Chapter 1.
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In order to obtain the general form of the equation of motion, it is very con-
venient to use the method of covariant differentiation. The reader who is not
familiar with this method may find the necessary mathematical background in
Chapter M5.

18.2 The covariant equation of motion in general coordinate systems

Before proceeding with the derivation of the equation of motion in covariant coor-
dinates, it will be best to present some useful expressions that will be needed later.
We begin the discussion by writing down the individual derivative of the rotational
part of vP in the absolute and the relative coordinate systems. In contrast to the
invariant individual derivative which is independent of any particular coordinate
system, the local derivative does depend on the coordinate system. The local time
derivative ∂v�/∂t in the absolute coordinate system is zero, as was shown in (1.45).
Therefore, it follows from

dv�
dt

=
(
∂v�
∂t

)
xi

+ vA ·∇v� = (vP + v)·∇v� =
(
∂v�
∂t

)
qi

+ v·∇v� (18.1)

that the local time derivative of the rotational part of the motion in the general qi

system is given by (
∂v�
∂t

)
qi

= ∂v�
∂t

= vP ·∇v� (18.2)

and in terms of measure numbers by

∂

∂t

(
Wm
�
qm

)
= Wnqn ·qr ∇r

(
Wm
�
qm

)
with Wi = Wi

�
+Wi

D
(18.3)

On applying the rules of covariant differentiation followed by scalar multiplication
by qk, we obtain

∂

∂t
Wk
�

= Wn ∇nWk
�

(18.4)

Using this relation together with (M5.17) and splitting Wi , we immediately find
the expression

∂

∂t
Wk
�

= Wn
�

∇kW
n +Wn ∇nWk

�

= Wn
�

∇kW
n

�
+Wn

�
∇kW

n

D
+Wn

�
∇nWk

�
+Wn

D
∇nWk

�

= Wn
�

∇kW
n

D
+Wn

D
∇nWk

�
+Wn

�
(∇nWk

�
+ ∇kWn

�
)

(18.5)
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which is not yet in the form most useful to our analysis. Since ∇v� is an antisym-
metric dyadic we recognize at once that

∇v� + ∇̃v� = qmqn(∇mWn
�

+ ∇nWm
�
) = 0 =⇒ ∇ iWj

�

+ ∇jWi
�

= 0 (18.6)

so that the expression in parentheses of (18.5) vanishes. Additionally, with the help
of (M5.4) and (M5.6), we find that the remaining part of equation (18.5) may be
formulated as
∂

∂t
Wk
�

= Wn
�

∇kW
n

D
+Wn

D
∇nWk

�
= Wn

�
(∇kWn

D
+Wr

D
�nrk)+Wn

D
(∇nWk

�
−Wr

�
�rnk)

(18.7)
The two parts involving the Christoffel symbols add up to zero:

Wn
�
Wr

D
�nrk −Wn

D
Wr
�
�rnk = 0 (18.8)

which is most easily recognized by interchanging the summation symbols n and r
in the second term. We have finally found the important relation

∂

∂t
Wk
�

= Wn
�

∇kWn

D
+Wn

D
∇nWk

�

(18.9)

which is very useful to our work. In fact, it should be observed that the local
time derivative ofWk

�
does not vanish if the deformation velocity of the coordinate

surfaces differs from zero. Otherwise, in the absence of deformation, ∂Wk
�
/∂t = 0.

We begin the derivation of the equation of motion in covariant measure numbers
bywriting down the equation of absolutemotion, which is repeated for convenience
from (1.11):

dvA
dt

= − 1

ρ
∇p − ∇φa + 1

ρ
∇· J (18.10)

with vA = qn(vn +Wn). The covariant individual time derivative follows immedi-
ately:

qn
dvA,n

dt
= qn

(
dvn

dt
+ dWn

dt

)
= − 1

ρ
qn
∂p

∂qn
− qn ∂φa

∂qn
+ 1

ρ
∇· J (18.11)

Scalar multiplication of this equation by the covariant basis vector qk gives
dvA,k

dt
= dvk

dt
+ dWk

dt
= − 1

ρ

∂p

∂qk
− ∂φa

∂qk
+ 1

ρ
qk · ∇ · J (18.12)

With the help of (M5.40) we may write
dvk

dt
= ∂vk

∂t
+ vn ∇nvk − vnvm�mkn − vn ∇kW

n (18.13)

The term involving the Christoffel symbol can be rewritten in a more convenient
manner simply by employing the rules of raising and lowering the appropriate
indices. This yields

vnvm�
m
kn = vngmrvr�mkn = vnvr�knr = vnvm�knm = 1

2
vnvm

∂gnm

∂qk
(18.14)
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where use of (M3.40) has been made. By combining the first and the second term
on the right-hand side of (18.13) to give the individual acceleration, we may finally
write for the covariant derivative

dvk

dt
= dvk

dt
− 1

2
vnvm

∂gnm

∂qk
− vn ∇kW

n (18.15)

The second term on the right-hand side is known as the metric acceleration since
it involves the metric fundamental quantities. This fictitious acceleration does not
result from the interaction of an air particle with other bodies but rather stems from
the particular choice of the coordinate system which is used to describe the motion
of the particle.
Next we must find suitable expressions for the individual time derivatives of the

measure numbersWk measuring the acceleration of a point P in the qi-coordinate
system that is moving with the velocity vP relative to the absolute system. In the
previous sections we have already set up the relationships which are needed. With
the help of (M5.39) we obtain immediately

dWk

dt
= d

dt
Wk
�

+ d

dt
Wk
D

= ∂

∂t
Wk
�

+ ∂

∂t
Wk
D

+ vn ∇nWk
�

+ vn ∇nWk
D

(18.16)

On replacing the covariant time derivatives by means of (M5.37) we find

dWk

dt
= ∂

∂t
Wk
�

−Wn
D

∇kW
n

�
−Wn

�
∇kW

n

D

+ ∂

∂t
Wk
D

−Wn
D

∇kW
n

�
−Wn

D
∇kW

n

D
+ vn ∇nWk

�
+ vn ∇nWk

D

(18.17)

By utilizing (M5.49) the last two terms in (18.17) can be rewritten as

vn(∇nWk
�

+ ∇nWk
D
) = 2vn(ωnk

�
+ ωnk

D
)+ vn(∇kWn

�
+ ∇kWn

D
)

= 2vn(ωnk
�

+ ωnk
D
)+ vn(∇kW

n

�
+ ∇kW

n

D
)

(18.18)

where the final step resulted from raising and lowering of indices, and the fact
that the metric fundamental quantities may be treated as constants in covariant
differentiation.
Again by raising and lowering indices and by renaming them whenever needed,

we find without any difficulty

Wn
�

∇kW
n

�
= ∇k(Wn

�
Wn

�
)−Wn

�
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2

)
= ∇k

(
v2�
2

)
= ∇k

(
v2�
2

) (18.19)
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In this expression we have used the facts that v2�/2 is a scalar field function and
that, for any scalar field function, the ordinary and covariant differential operators
are identical since no basis vector needs to be extracted. By applying identical
operations we find

Wn
D

∇kW
n

D
= ∇k

(
v2D
2

)
= ∇k

(
v2D
2

)
(18.20)

We may now combine the following three terms occurring in (18.17) as

∂
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�
= 2Wn

D
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(18.21)

Here we have replaced the local time derivative of Wk
�
with the help of (18.7) and

have used the defining relation (M5.48) for ωij
�
. On substituting (18.19), (18.20),

and (18.21) into (18.17) we obtain for the individual covariant time derivative ofWk

dWk

dt
= 2Wn

D
ωnk
�

− ∇k
(
v2�
2

+ v2D
2

)
+ 2vn(ωnk

�
+ωnk

D
)+ vn ∇kW

n + ∂

∂t
Wk
D

(18.22)

Expressions (18.15) and (18.22) are now used in (18.11), yielding the covariant
form of the equation of relative motion with repect to a general time-dependent
coordinate system:

dvk

dt
− vnvm

2

∂gmn

∂qk
+ 2vn(ωnk

�
+ ωnk

D
) = − 1

ρ

∂p

∂qk
− ∂φ

∂qk
+ 1

ρ
qk ·∇ ·J

+ ∂

∂qk

(
v2D
2

)
− ∂

∂t
Wk
D

− 2Wn

D
ωnk
�

(18.23)
where the geopotential φ has been introduced according to

φ = φa − v2�
2

= φa + φz, φz = −v
2
�

2
(18.24)

Closer inspection of this equation shows that several terms also contain contravari-
ant coordinates. Since the leading term, i.e. the individual time derivative dvk/dt ,
contains the covariant velocity vk , the entire equation is called the covariant form
of the equation of motion.
Finally we consider an important simplification by requiring that the coordi-

nate lines are rigid so that the deformation velocity vD = 0. In this case (18.23)
reduces to

dvk

dt
− vnvm

2

∂gmn

∂qk
+ 2vnωnk

�
= − 1

ρ

∂p

∂qk
− ∂φ

∂qk
+ 1

ρ
qk ·∇ ·J (18.25)
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In some cases the covariant equation may be less convenient for practical appli-
cations than its contravariant counterpart. In the following section we are going to
derive the contravariant form of the equation of relative motion. Which of these
two equations is more easily applied can be decided by inspecting the metric
fundamental quantities gij or gij and their derivatives.

18.3 The contravariant equation of motion in general coordinate systems

The derivation of the contravariant representation of relative motion follows the
procedure of the previous section. We begin the derivation by stating the individual
change with time of the absolute velocity in terms of the contravariant measure
number vkA

d

dt

(
vnAqn

) = qn
dvnA

dt
(18.26)

The components of the gradient operator appearing as part of the individual time
derivative are

∇ = qm ∇m = qm ∂

∂qm
= gmnqm ∂

∂qn
(18.27)

The equation of absolute motion (18.10) in terms of the contravariant measure
number vkA is given analogously to (18.12) by

dvkA

dt
= dvk

dt
+ dWk

dt
= −g

nk

ρ

∂p

∂qn
− gnk ∂φa

∂qn
+ 1

ρ
qk ·∇ ·J (18.28)

The next step is to derive an expression for the individual covariant change with
time of the contravariant relative velocity vk . Application of (18.11), (18.16), and
(M5.4) results in

dvk

dt
= ∂vk

∂t
+ vn ∇nv

k = ∂

∂t
vk + vn ∇nW

k + vn ∇nv
k

= ∂vk

∂t
+ vn ∇nW

k + vn ∇nvk + vnvm�knm
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dt
+ gkmvn ∇nWm + vnvm�knm

(18.29)

The covariant derivative of the contravariant measure numbers Wk will not be
derived anewbut will be foundmore briefly by raising the covariant index. Utilizing
(18.22) we find

dWk
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= gkm dWm

dt
= gkm

[
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D
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D

) (18.30)

By application of the addition theorem of the velocities in the form vkA = vk +Wk,
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we obtain from (18.29) and (18.30)
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= dv
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(18.31)

Utilizing (M5.49) and (18.6), three of the terms occurring on the right-hand side
of this expression may be combined according to
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Substitution of (18.31) together with (18.32) into (18.28) yields the final form
of the contravariant equation of motion for a general time-dependent coordinate
system:
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+ vmvn�kmn + 2vn(∇nW
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(18.33)

For the special case of a rigid system the deformation velocity vanishes, so the
above equation reduces to

dvk

dt
+ vmvn�kmn + 2vnω k

n
�

= −gkm
(
1

ρ

∂p

∂qm
+ ∂φ

∂qm

)
+ 1

ρ
qk ·∇ ·J (18.34)

Summarizing, we may state that with equations (18.23) and (18.33) we have
obtained the components of the equation of motion in covariant and contravariant
representations in a very general form. We may apply these forms to any time-
dependent coordinate system. No restriction has been made regarding the velocity
vP . If we wish to write down the equation of motion in a particular coordinate sys-
tem, all we must do is procure information about the metric fundamental quantities
gij or gij and the velocity vP . If this information is available, we are in a position to
write down at once the components of the equation of motion either in the covariant
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or in the contravariant form. Thus, the laboriousmethod of obtaining the component
representation of the equation of motion for each coordinate system separately can
be entirely avoided. Which system is simpler to use for the numerical solution
depends on the metric fundamental quantities and on the final form of the equation.
In the next chapters we will gain some practice in applying the various coordinate
systems.

18.4 The equation of motion in orthogonal coordinate systems

In this section we are going to assume that the qi-coordinate lines form an orthog-
onal system so that gij = 0, i �= j , and giigii = 1. Whenever orthogonal systems
are used it is customary and useful to introduce the physical measure numbers
since there is no difference between covariant and contravariant physical measure
numbers. Furthermore, unit vectors will be employed instead of basis vectors. We
will transform the covariant form of the equation of motion (18.23) into physical
measure numbers.
The way we proceed is to multiply (18.23) by the factor 1/

√
gkk . For clarity we

transform each term of (18.23) separately. All mathematical steps are summarized
in
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gkk

∂q
* n

)

−1
2

vnvn√
gkk

∂gnn

∂qk
= − v

nvn√
gkk

gnn√
gnn

∂
√
gnn

∂qk
= − v

* nv*
n

√
gnn

∂
√
gnn

∂q
* k

2vn√
gkk
(ωnk
�

+ ωnk
D
) = 2vn√

gkk
(ωnk
�

+ ωnk
D
)
√
gnn√
gnn

= 2v* n(ω* nk
�

+ ω* nk
D
)

1√
gkk

[
− 1

ρ

∂p

∂qk
− ∂φ

∂qk
+ ∂

∂qk

(
v2D
2

)]
= − 1

ρ

∂p

∂q
* k

− ∂φ

∂q
* k

+ ∂

∂q
* k

(
v2D
2

)

− 1√
gkk

∂

∂t
Wk
D

= − ∂

∂t

(
Wk
D√
gkk

)
+Wk

D

∂

∂t

(
1√
gkk

)
= − ∂

∂t
Wk
D

* −
Wk

D

*

√
gkk

∂
√
gkk

∂t

−
2Wn

D
ωnk
�√
gkk

= −
2Wn

D
ωnk
�√
gkk

√
gnn√
gnn

= −2Wn

D

*

ω* nk
�

(18.35)

Recall that k is not a summation index. Substituting the various terms of (18.35)
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into (18.23) gives the desired equation for orthogonal coordinate systems:

dv*
k

dt
+ v* n

(
v*
k

√
gkk

∂
√
gkk

∂q
* n − v*

n

√
gnn

∂
√
gnn

∂q
* k

)
+ 2v* n(ω* nk

�
+ ω* nk

D
)

= − 1

ρ

∂p

∂q
* k

− ∂φ

∂q
* k

+ 1

ρ
ek ·∇ ·J

+ ∂

∂q
* k

(
v2D
2

)
− ∂

∂t
Wk
D

* − (v* k +Wk

D

*

)
1√
gkk

∂
√
gkk

∂t
− 2Wn

D

*

ω* nk
�

(18.36)

If the relative system is moving like a rigid body then the terms involving vD and
∂
√
gkk/∂t vanish and we obtain

dv*
k

dt
+ v* n

(
v*
k

√
gkk

∂
√
gkk

∂q
* n − v*

n

√
gnn

∂
√
gnn

∂q
* k

)
+ 2v* nω* nk

�

= − 1

ρ

∂p

∂q
* k

− ∂φ

∂q
* k

+ 1

ρ
ek ·∇ ·J

(18.37)

It will be observed that the expression in parentheses vanishes if n = k. This
simplifies equations (18.36) and (18.37) if they are written down separately for
k = 1, 2, 3.
It might be of interest to expand the frictional term as

ek ·∇ ·J = ek√
g

· ∂
∂qn

(√
gJ nmqm

) = ek√
g

· ∂
∂qn

(
√
g

J
* nm

√
gnn

√
gmm

qm

)

= ek ·
[
1√
g

∇n
( √

g√
gnn
J
* nm

)
em + J

* nm

√
gnn

∇nem
] (18.38)

by using the general divergence formula (M3.56). The last term involves the spatial
derivative of the unit vector ej which, according to (M4.45), can be written as

∇jei = ej ∇* i√gjj − δijem∇* m√gii (18.39)

Using this equation in (18.38) yields

ek ·∇ ·J = ek ·em
[√

gnn√
g

∇* n
( √

g√
gnn
J
* nm

)
+ J

* mn

√
gmm

∇* n√gmm − J
* nn

√
gnn

∇* m√
gnn

]

(18.40)
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so that the final form of the frictional term is given by

ek ·∇ ·J =
√
gnn√
g

∇* n
( √

g√
gnn
J
* nk

)
+ J

* kn

√
gkk

∇* n√gkk − J
* nn

√
gnn

∇* k√gnn (18.41)

Hence, if the form of the frictional dyadic and the metric tensor gij are known we
can evaluate equation (18.41). However, for practical purposes one will often be
satisfied with simple parameterizations. If the measure numbers of the frictional
dyadic are given in Cartesian coordinates, we can transform these by well-known
rules to the general qi system.
Finally, we will briefly show that the term (1/

√
gkk) ∂

√
gkk/∂t contained in the

general form (18.36) of the equation of motion disappears if vD = 0. Starting with

∂qi
∂t

= ∇ivP = qi ·∇vP (18.42)

and utilizing (M5.44), we can write for the local change with time of the metric
tensor gij

∂gij

∂t
= ∂

∂t
(qi ·qj ) = qi ·(qj ·∇vP )+ qj ·(qi ·∇vP ) = qi ·vP

�∇·qj + (qi ·∇vP )·qj
= qi ·(∇vP + vP

�∇)·qj = qi ·2DP ·qj = 2dij
(18.43)

Hence, the desired term of (18.36) can be written as

1√
gkk

∂
√
gkk

∂t
= dkk

gkk
(18.44)

showing that it is equal to zero if the deformational part DP of the dyadic ∇vP
vanishes due to (18.6).
The steps leading to the continuity equation in general coordinates are very

simple. From (M6.67) we have

Dρ

Dt
= dρ

dt
+ ρ ∇·vA = dρ

dt
+ ρ ∇ · v+ ρ ∇·vP = 0 (18.45)

By expanding the individual derivative in the relative system we find

∂ρ

∂t
+ v·∇ρ + ρ ∇ · v+ ρ ∇·vP = 0 (18.46)

On combining the second and third terms to give a divergence expression for the
quantity ρv and applying the general equation (M3.56) for the divergence, we find
the desired form of the continuity equation:

∂ρ

∂t
+ 1√

g

∂

∂qn
(
√
gq̇nρ)+ ρ√

g

∂
√
g

∂t
= 0 (18.47)
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For a rigid system the last term of (18.47) vanishes, resulting in the usual form

∂ρ

∂t
+ 1√

g

∂

∂qn
(
√
gq̇nρ) = 0 (18.48)

which can be found in many textbooks.

18.5 Lagrange’s equation of motion

Another method for the representation of the covariant form of the equation of
motion is due to Lagrange. We will derive Lagrange’s equation of motion in the
form best suited for meteorological applications. The entire method is based on
knowledge of the absolute kinetic energy permitting the determination of themetric
fundamental quantitites and the velocity vP .
The starting point of the analysis is the well-known relation

(dr)2 = gmn dqm dqn (18.49)

The kinetic energy per unit mass can be written as

KA = 1

2

(
dr
dt

)2
= v2A

2
= ẋnẋn

2
(18.50)

in the absolute Cartesian coordinate system and as

KA = gmn

2
q̇mA q̇

n
A = 1

2
(gmnq̇

m +Wn
�

+Wn
D
)(q̇n +Wn

�
+Wn

D
) (18.51)

in the general qi system. This expression may also be formulated as

KA = gmn

2
q̇mq̇n + q̇n(Wn

�
+Wn

D
)+ 1

2

(
v2� + v2D

) +Wm
�
Wm

D
(18.52)

since v2� = Wn
�
Wn

�
and v2D = Wn

D
Wn

D
. Inspection of (18.52) shows that the abso-

lute kinetic energy is a quadratic inhomogeneous form in the variables q̇ i . The
coefficients of the quadratic term are the metric fundamental quantities gij ; the
coefficients of the linear term are the covariant measure numbers Wk

�
and Wk

D
of

the velocity vP . The kinetic energy of the relative system appears as the separate
term (gmn/2)q̇mq̇n.
The Lagrange equation will be derived by transforming the individual terms of

the absolute equation of motion

dẋi

dt
= − 1

ρ

∂p

∂xi
− ∂φa

∂xi
+ 1

ρ
ii ·∇ ·J (18.53)
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expressed in the rectangular Cartesian system to the qi system. Now we apply
the method of contraction by multiplying the latter equation by ∂xi/∂qk and then
adding the result from i = 1 to i = 3:

3∑
i=1

∂xi

∂qk

dẋi

dt
= − 1

ρ

3∑
i=1

∂xi

∂qk

∂p

∂xi
−

3∑
i=1

∂xi

∂qk

∂φa

∂xi
+ 1

ρ

3∑
i=1

∂xi

∂qk
ii ·∇ ·J (18.54)

The same expression can also be written more briefly by applying the Einstein
summation rule:

∂xn

∂qk

dẋn

dt
= − 1

ρ

∂xn

∂qk

∂p

∂xn
− ∂xn

∂qk

∂φa

∂xn
+ 1

ρ

∂xn

∂qk
in · ∇ · J

= − 1

ρ

∂p

∂qk
− ∂φa

∂qk
+ 1

ρ
qk ·∇ ·J

(18.55)

Let us rewrite the left-hand side as

∂xn

∂qk

dẋn

dt
= d

dt

(
∂xn

∂qk
ẋn

)
− ẋn d

dt

(
∂xn

∂qk

)

= d

dt

(
∂xn

∂qk
ẋn

)
− ẋn

(
∂2xn

∂t ∂qk
+ q̇m ∂2xn

∂qm ∂qk

) (18.56)

Wewill now attempt to introduce the kinetic energyKA, which is a function of q̇k

and qk . We need to recall that themetric tensor gij and themeasure numbersWk and
Wk are functions of qk only. Implicitly the contravariant velocities q̇k also depend
on qk and on the time t . In the Lagrange treatment the kinetic energy will be
considered as a function of the independent variables q̇k and qk so that KA =
KA(q̇k, qk, t). For clarity we also introduce the special partial derivative operator

∂

∂qk

∣∣∣
q̇i

=
(
∂

∂qk

)
q̇1,q̇2,q̇3

(18.57)

indicating that the differentiation ∂/∂qk is performed for constant-velocity com-
ponents q̇1, q̇2, q̇3. Using this convention, the last term in (18.56) can be rewritten
as

ẋn
∂

∂qk

∣∣∣
q̇i

(
∂xn

∂t
+ q̇m ∂x

n

∂qm

)
= ẋn ∂ẋ

n

∂qk

∣∣∣
q̇i

= ∂

∂qk

∣∣∣
q̇i

(
ẋnẋn

2

)
= ∂KA

∂qk

∣∣∣
q̇ i

(18.58)

The next step in the derivation is made easy by applying the transformation rule

A
x

k = ∂xk

∂qm
A
q

m (18.59)
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which is repeated from (M4.15). On identifying Ak as the measure number ẋk of
the absolute velocity vA we obtain

ẋk = ∂xk

∂qm
(q̇m +Wm) (18.60)

Next we differentiate ẋk with respect to q̇ i :

∂ẋk

∂q̇ i
= ∂xk

∂qm
δmi = ∂xk

∂qi
(18.61)

since ∂xk/∂qm and Wm surely do not depend on q̇ i . Substituting this expression
together with (18.58) into (18.56) yields

∂xn

∂qk

dẋn

dt
= d

dt

(
∂ẋn

∂q̇k
ẋn

)
− ∂KA

∂qk

∣∣∣
q̇i

= d

dt

(
∂KA

∂q̇k

)
− ∂KA

∂qk

∣∣∣
q̇i

(18.62)

so (18.55) may be written as

d

dt

(
∂KA

∂q̇k

)
− ∂KA

∂qk

∣∣∣
q̇i

= − 1

ρ

∂p

∂qk
− ∂φa

∂qk
+ 1

ρ
qk ·∇ ·J (18.63)

Since the potential φa of the gravitational attraction is assumed to be a function of
the position qi only,wemay rewrite equation (18.63) by introducing theLagrangian
function L, defined by

L = KA − φa = 1

2
gmnq̇

mq̇n + q̇n(Wn
�

+Wn
D
)+ 1

2
v2D +Wm

�
Wm

D
− φ (18.64)

As usual, we have combined the potential of the gravitational attraction φa with the
centrifugal potential φz = v2�/2 to give the geopotential φ = φa − φz representing
the effective gravitational force. Thus, we obtain

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk

∣∣∣
q̇i

= − 1

ρ

∂p

∂qk
+ 1

ρ
qk ·∇ ·J (18.65)

which is known as Lagrange’s equation of motion in general coordinates or Lan-
grange’s equation ofmotion of the second kind.Wemust observe that the derivatives
∂L/∂q̇k and ∂L/∂qk|q̇i are again functions of q̇ i and qi .
Finally, we expand the individual time operator d/dt = ∂/∂t+ q̇n ∂/∂qn, which

requires differentiationswith respect to qi .Moreover, the velocity q̇ i must no longer
be considered a constant. On rewriting (18.65) in detail we find

∂

∂t

(
∂L

∂q̇k

)
+ q̇n ∂

∂qn

(
∂L

∂q̇k

)
− ∂L

∂qk

∣∣∣
q̇i

= − 1

ρ

∂p

∂qk
+ 1

ρ
qk ·∇ ·J (18.66)
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The required derivatives

∂L

∂q̇k
= gmkq̇m +Wk

�
+Wk

D
= vk +Wk

�
+Wk

D
(18.67)

and
∂L

∂qk

∣∣∣
q̇i

= q̇
mq̇n

2

∂gmn

∂qk
+ q̇n ∂

∂qk

(
Wn
�

+Wn
D

)
+ ∂

∂qk

(
v2D
2

)

+Wn
�

∂

∂qk
Wn

D
+Wn

D

∂

∂qk
Wn
�

− ∂φ

∂qk

(18.68)

follow directly from (18.37). It will be observed that the metric fundamental quan-
tity gij occurs twice since gij = gji , so the factor 12 no longer appears in (18.67).
We will now prove that Lagrange’s equation (18.65) is a special form of the

covariant equation of motion (18.23). We proceed by first taking the individual
time derivative of (18.67) to obtain

d

dt

(
∂L

∂q̇k

)
= dvk

dt
+ ∂

∂t
Wk
�

+ q̇n ∂

∂qn
Wk
�

+ ∂

∂t
Wk
D

+ q̇n ∂

∂qn
Wk
D

(18.69)

With (18.68) and (18.69) the left-hand side of (18.65) can be written as

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk

∣∣∣
q̇i

= dvk

dt
− q̇mq̇n

2

∂gmn

∂qk

+ q̇n
[
∂

∂qn

(
Wk
�

+Wk
D

)
− ∂

∂qk

(
Wn
�

+Wn
D

)]
+ ∂φ

∂qk
+ ∂

∂t
Wk
D

− ∂

∂qk

(
v2D
2

)
+ ∂

∂t
Wk
�

−Wn
�

∂

∂qk
Wn

D
−Wn

D

∂

∂qk
Wn
�

(18.70)

According to (M5.47) the term in brackets is given by 2(ωnk
�

+ ωnk
D
). Furthermore,

the last three terms of (18.70) may be reformulated by means of (18.25), (18.27),
and (18.9), yielding 2Wn

D
ωnk
�
. By substituting the resulting equation into (18.65)

we finally obtain

dvk

dt
− q̇mq̇n

2

∂gmn

∂qk
+ 2q̇n(ωnk

�
+ ωnk

D
) = − 1

ρ

∂p

∂qk
− ∂φ

∂qk
+ 1

ρ
qk ·∇ ·J

+ ∂

∂qk

(
v2D
2

)
− ∂

∂t
Wk
D

− 2Wn

D
ωnk
�

(18.71)

Comparison with the general covariant form of the equation of motion (18.23)
shows that these two equations are completely identical. The Langrange method is
very powerful, as we shall see from various applications to be described later.
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18.6 Hamilton’s equation of motion

We conclude this chapter by briefly discussing Hamilton’s equation of motion.
Let us consider Lagrange’s equation in the form for absolute motion. In this case
(18.65) can be written as

d

dt

(
∂L

∂q̇kA

)
− ∂L

∂qk

∣∣∣
q̇iA

= − 1

ρ

∂p

∂qk
+ 1

ρ
qk ·∇ ·J (18.72)

Now the components q̇ iA, i = 1, 2, 3, are held constant when the differentiation
with respect to qk is carried out. Thus, the Lagrangian function is given by

L
(
q̇kA, q

k
) = KA

(
q̇kA, q

k
) − φa(qk) = gmn

2
q̇mA q̇

n
A − φa(qk) (18.73)

from which it follows that

∂L

∂q̇kA
= 1

2

(
gmnδ

m
k q̇

n
A + gmnδnk q̇mA

) = gknq̇nA = q̇k,A (18.74)

Let us now introduce the Hamiltonian function H , which is defined by

H (q̇k,A, q
k) = KA(q̇k,A, q

k)+ φa(qk) = gmn

2
q̇m,Aq̇n,A + φa(qk) (18.75)

To facilitate the operations we have expressed the kinetic energy KA in terms
of covariant velocity components. We now differentiate H with respect to the
covariant velocity component q̇k,A and obtain

∂H

∂q̇k,A
= 1

2

(
gmnδkmq̇n,A + gmnδknq̇m,A

) = 1

2

(
gknq̇n,A + gkmq̇m,A

) = q̇kA (18.76)

This results in the contravariant velocity component q̇kA which appears in the kinetic
energy used in the Lagrange function L in (18.73).
Next we find from (18.73) the derivative of L with respect to qk, where the

contravariant velocity component q̇ iA is held constant. This yields

∂L

∂qk

∣∣∣
q̇iA

= q̇mA q̇
n
A

2

∂gmn

∂qk
− ∂φa

∂qk
(18.77)

Holding the covariant velocity constant, we find from (18.75)

∂H

∂qk

∣∣∣
q̇i,A

= q̇m,Aq̇n,A

2

∂gmn

∂qk
+ ∂φa

∂qk
(18.78)
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So far we have not found any important relation between L and H . In order to
discover these, we reformulate the first term on the right-hand side of (18.78) with
the help of well-known relations, giving

q̇m,Aq̇n,A
∂gmn

∂qk
= q̇rAgmr q̇s,A

∂gms

∂qk
= −q̇rAq̇s,Agms

∂gmr

∂qk
= −q̇rAq̇mA

∂gmr

∂qk

since gmrg
ms = δsr =⇒ ∂gmr

∂qk
gms + gmr ∂g

ms

∂qk
= 0

(18.79)

Therefore, equation (18.78) can be rewritten in the form

∂H

∂qk

∣∣∣
q̇i,A

= − q̇
m
A q̇

n
A

2

∂gmn

∂qk
+ ∂φa

∂qk
(18.80)

Comparison of this equation with (18.77) gives the desired relation

∂H

∂qk

∣∣∣
q̇i,A

= − ∂L
∂qk

∣∣∣
q̇iA

(18.81)

Substituting (18.74) into (18.72) gives Lagrange’s form of the equation of
motion:

dq̇k,A

dt
= ∂L

∂qk

∣∣∣
q̇iA

− 1

ρ

∂p

∂qk
+ 1

ρ
qk ·∇ ·J (18.82)

Finally, with the help of (18.81), we obtain Hamilton’s form of the equation of
motion:

dq̇k,A

dt
= −∂H

∂qk

∣∣∣
q̇i,A

− 1

ρ

∂p

∂qk
+ 1

ρ
qk ·∇ ·J (18.83)

We now look at the same problem from a different point of view. Using the
basic definitions of L andH stated in (18.73) and (18.75), we find the relationship
betweenH and L. Since the gij depend on qk and q̇A,k = gknq̇nA we may also write

H = 2KA − L = gmnq̇
m
A q̇

n
A − L(

q̇kA, q
k
) = q̇n,Aq̇

n
A − L(

q̇kA, q
k
)

(18.84)

Let us considerH as a function of (q̇A,k, qk). Then the variation of H results in

δH = ∂H

∂q̇n,A
δq̇n,A + ∂H

∂qn

∣∣∣
q̇i,A

δqn = q̇n,A δq̇nA + q̇nA δq̇n,A − ∂L

∂q̇nA
δq̇nA − ∂L

∂qn

∣∣∣
q̇iA

δqn

(18.85)

Here the first and the third term on the right-hand side cancel out according to
(18.74). Inspection of the latter equation shows that

∂H

∂q̇k,A
= q̇kA,

∂H

∂qk

∣∣∣
q̇i,A

= − ∂L
∂qk

∣∣∣
q̇iA

(18.86)
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thus verifying the relations (18.76) and (18.81).
Equations (18.76) and (18.83),

∂H

∂q̇k,A
= q̇kA,

∂H

∂qk

∣∣∣
q̇i,A

= −dq̇k,A
dt

− 1

ρ

∂p

∂qk
+ 1

ρ
qk ·∇ ·J (18.87)

are known as Hamilton’s canonical equations of motion. They consist of 2n first-
order differential equations whereas Lagrange’s equation consists of n second-
order differential equations. In our case n = 3. The velocity component q̇k,A may
be considered as the momentum for unit mass. Hamilton’s canonical equations are
very general and hold for the case that the potential-energy function also depends
on q̇k (the tidal problem) and for systems in which L explicitly depends on time,
but in these cases the total energy is no longer necessarily H .
In our furture work we will have many opportunities to work with Lagrange’s

equation of motion, but we refrain from using the Hamilton formulation, which
is an extremely important tool in quantum mechanics. In our work the Hamilton
formulation has no decisive advantageover the Lagrangemethod.A very simple but
illuminating example will be given next in order to obtain Hamilton’s equations of
motion for the one-dimensional harmonic oscillator. The equation of the harmonic
oscillator is of great importance in many branches of physics and in physical
meteorology, but it will usually be obtained by elementary considerations.
Recalling that there is no difference between covariant and contravariant coor-

dinates in the Cartesian system, H assumes a particularly simple form. Since we
are not dealing with unit mass, we write for the kinetic energyKA and the potential
energy V

KA = mẋ2

2
, V = kx2

2
(18.88)

where m is the mass of the oscillating particle and k is Hooke’s constant. Now the
Hamiltonian function is given by

H = mẋ2

2
+ kx2

2
(18.89)

resulting in Hamilton’s equations of motion as

∂H

∂(mẋ)
= ẋ, ∂H

∂x

∣∣∣
ẋi

= −mdẋ
dt

= kx (18.90)

The first expression is simply an identity while the second expression is the well-
known equation of the harmonic oscillator:

m
dẋ

dt
+ kx = 0 (18.91)
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18.7 Appendix

The material of this appendix is not essential for understanding the following chap-
ters and may therefore be omitted. However, it helps us to grasp the consequences
of the metric simplification which will be introduced soon.
Let us form the Riemann–Christoffel tensor or the covariant curvature tensor.

First we form the covariant expression ∇ i(∇jAk) − ∇j (∇ iAk), where Ak is any
covariant tensor of rank 1. For the first term, according to Section M5.6, we may
write

∇ i(∇jAk) =∇i(∇jAk)− (∇mAk)�
m
ij − (∇jAm)�

m
ik

=∇i(∇jAk − An�njk)− �mij (∇mAk − An�nmk)− �mik(∇jAm −An�njm)
= ∇i(∇jAk)− �njk ∇iAn −An ∇i�njk − �mij ∇mAk

+An�mij�nmk − �mik ∇jAm +An�mik�njm
(18.92)

The second term is found by interchanging the free indices i and j . We obtain

∇j (∇ iAk) = ∇j (∇iAk)− �nik ∇jAn −An ∇j�nik − �mji ∇mAk
+ An�

m
ji�

n
mk − �mjk ∇iAm + An�mjk�nim

(18.93)

Next we subtract (18.93) from (18.92). The underlined terms cancel out since
�kij = �kji and due to the fact that ∇i∇j = ∇j∇i . Thus, we obtain
∇ i(∇jAk)−∇ j (∇ iAk) = An(�

m
ik�

n
jm−∇i�njk−�mjk�nim+∇j�nik) = AnR

n
kij (18.94)

The expression

Rlkij = �mik�ljm − ∇i�ljk − �mjk�lim + ∇j�lik (18.95)

is known as the Riemann–Christoffel tensor or the curvature tensor.
In the Cartesian coordinate system we obviously have Rlkij = 0. Thus, in the

Euclidean space the interchange rule

∇ i ∇j = ∇j ∇ i (18.96)

is valid. In atmospheric dynamics we often use simplified metric forms resulting
from the assumption that the radius of the earth–atmosphere system is equal to the
mean radius of the earth itself. By assuming that the atmosphere has zero vertical
extent we are leaving the Euclidean metric. Therefore, there exists no relation
between the qi coordinates of the chosen system and the Cartesian coordinates,
so qi �= qi(x1, x2, x3, t). In this case the curvature tensor does not vanish and the
interchange rule (18.96) concerning the covariant derivatives is no longer valid.
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18.8 Problems

18.1: Perform in detail the steps involved in going from (18.65) to (18.68).

18.2: Show the steps involved in going from (18.78) to (18.79).

18.3: Express the Euler expansion d/dt with the help of covariant, contravariant,
and physical measure numbers of the velocity in the spherical coordinate system
with q1 = λ, q2 = ϕ, and q3 = r .

18.4: Express the continuity equation for the rigid spherical coordinate system by
employing

(a) physical measure numbers of the velocity, and
(b) contravariant measure numbers of the velocity.

18.5: Consider the spherical coordinate system shown in Figure 1.2. For rigid
rotation (vD = 0) the kinetic energy is given by

KA = 1

2

[
r2 cos(λ̇+�)2 + r2ϕ̇2 + ṙ2]

(a) From the metric fundamental quantities (see Section M4.2.1) find Wi
�
, Wj

�
, �kij with

i, j, k = 1, 2, 3.

(b) Find the elements of the matrices (ωij
�
) and (ωij

�

* ).
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The geographical coordinate system

In this chapter we will present the equation of motion and the continuity equation
in component form for the geographical coordinate system. This is a spherical
coordinate system that is rotating with constant angular velocity� about the polar
axis ϕ = π/2. The horizontal coordinate lines to be used are the geographical
length λ and the geographical latitude ϕ. The vertical coordinate is taken as the
distance r from the center of the earth to the point under consideration. The
horizontal coordinate lines are curved but orthogonal to each other. The deformation
of coordinate surfaces will not be taken into account. A graphical representation of
the geographical system is shown in Figures 1.2 and 1.4 of Chapter 1.

19.1 The equation of motion

All we need do is employ the metric tensor as well as the velocity vP of the
geographical system in connection with the general formulations of the equations
of motion which we have presented in the previous chapter. The covariant forms of
the metric fundamental quantities have been derived previously; see (1.73). Since
we are dealing with an orthogonal coordinate system, we obtain the contravariant
form from the basic relation gii = 1/gii so that

g11 = r2 cos2 ϕ, g22 = r2, g33 = 1, gij = 0, i �= j

g11 = 1

r2 cos2 ϕ
, g22 = 1

r2
, g33 = 1, gij = 0, i �= j

(19.1)

Of fundamental importance is the absolute kinetic energy KA of the system:

KA = 1

2

(
dr
dt

)2
= vA2

2
= 1

2

(
r2 cos2 ϕ λ̇2A + r2ϕ̇2

A + ṙ2A
)

(19.2)
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where dr is taken from (1.72). The components of the contravariant velocity are
given by

q̇1A = λ̇A = λ̇+�, q̇2
A = ϕ̇A = ϕ̇, q̇3A = ṙA = ṙ (19.3)

The angular velocity � of the rotating system has been added to λ̇ since we
are considering the motion in the absolute reference frame. The covariant and
contravariant components of the velocity vP = v� are then given by

W 1

�
= �, W 2

�
= 0, W 3

�
= 0

W1
�

= �r2 cos2 ϕ, W2
�

= 0, W3
�

= 0
(19.4)

There is another way to obtain the metric fundamental quantities as well as
the components Wi

�
. According to (M4.38), the kinetic energy KA of the system

provides all the information which is needed. First we split KA into the kinetic
energy K of relative motion and the kinetic energy KP of the rotating system,
KA = K +KP , with

KA = vA2

2
= (v + vP )2

2
= v2

2
+ v·vP + v2P

2

K = v2

2
= 1

2
(r2 cos2 ϕ λ̇2 + r2ϕ̇2 + ṙ2)

KP = v·vP + v2P
2

= �r2 cos2 ϕ λ̇+ �2

2
r2 cos2 ϕ

(19.5)

From these expressions we then obtain

g11 = ∂2K

∂ λ̇2
= r2 cos2 ϕ, g22 = ∂2K

∂ϕ̇2
= r2, g33 = ∂2K

∂ṙ2
= 1

W1
�

= ∂KP

∂ λ̇
= �r2 cos2 ϕ, W2

�
= ∂KP

∂ϕ̇
= 0, W3

�
= ∂KP

∂ṙ
= 0

(19.6)

The covariant formof the equation ofmotion for rigid rotation is given by (18.25).
In order to evaluate this equation, we need to calculate the components of the tensor
ωij
�

as defined in (M5.48). Inspection shows that this tensor is antisymmetric or

skew-symmetric, as it is often called, so that

ωij
�

= 1

2

(
∂

∂qi
Wj
�

− ∂

∂qj
Wi
�

)
= −ωji

�
(19.7)
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For consistencywith our previous notation we put (q1, q2, q3) = (λ, ϕ, r). For ease
of reference we summarize the necessary components of the rotational tensor in

ω11
�

= 0, ω12
�

= �r2 cosϕ sinϕ, ω13
�

= −�r cos2 ϕ
ω21
�

= −ω12
�
, ω22

�
= 0, ω23

�
= 0

ω31
�

= −ω13
�
, ω32

�
= 0, ω33

�
= 0

ω k
i

�
= gkmωim

�
, ω

*
ij

�
=

√
gii

√
gjjωij

�

(19.8)

In order to write down the contravariant form of the equation of motion, we need
to specify the Christoffel symbols of the second kind whose definition is repeated
here:

�kij = gkn

2

(
∂gin

∂qj
+ ∂gjn

∂qi
− ∂gij

∂qn

)
= �kji (19.9)

Even though the Christoffel symbols have the outward appearance of a tensor, they
do not obey the transformation laws for tensors. Nevertheless, it is still possible to
raise and lower the indices. In the most general case we would have 27 nonzero
Christoffel symbols. For orthogonal systems the easy but tedious computational
work is drastically reduced. For the geographical system the Christoffel symbols
are

�1
11 = 0, �1

12 = − tanϕ, �1
13 = 1/r

�1
21 = �1

12, �1
22 = 0, �1

23 = 0

�1
31 = �1

13, �1
32 = 0, �1

33 = 0

�2
11 = cosϕ sinϕ, �2

12 = 0, �2
13 = 0

�2
21 = 0, �2

22 = 0, �2
23 = 1/r

�2
31 = 0, �2

32 = �2
23, �2

33 = 0

�3
11 = −r cos2 ϕ �3

12 = 0, �3
13 = 0

�3
21 = 0, �3

22 = −r, �3
23 = 0

�3
31 = 0, �3

32 = 0, �3
33 = 0

(19.10)

Using the above information it is a simple task to write down the covariant form
of the equation of motion:
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dv1

dt
+ 2�r cos2 ϕ ṙ − 2�r2 cosϕ sinϕ ϕ̇ = − 1

ρ

∂p

∂λ
− ∂φ

∂λ
+ 1

ρ
qλ ·∇ ·J

dv2

dt
+ r2 cosϕ sinϕ λ̇2 + 2�r2 cosϕ sinϕ λ̇ = − 1

ρ

∂p

∂ϕ
− ∂φ

∂ϕ
+ 1

ρ
qϕ ·∇ ·J

dv3

dt
− r cos2 ϕ λ̇2 − rϕ̇2 − 2�r cos2 ϕ λ̇ = − 1

ρ

∂p

∂r
− ∂φ

∂r
+ 1

ρ
qr ·∇ ·J

d

dt
= ∂

∂t
+ v1

r2 cos2 ϕ

∂

∂λ
+ v2

r2

∂

∂ϕ
+ v3

∂

∂r

(19.11)
and the contravariant form:

d λ̇

dt
+ 2

r
(λ̇+�)ṙ − 2(λ̇+�) tan ϕ ϕ̇ = − 1

r2 cos2 ϕ

(
1

ρ

∂p

∂λ
+ ∂φ

∂λ

)
+ 1

ρ
qλ ·∇ ·J

dϕ̇

dt
+ cosϕ sinϕ (λ̇+ 2�)λ̇+ 2ϕ̇ṙ

r
= − 1

r2

(
1

ρ

∂p

∂ϕ
+ ∂φ

∂ϕ

)
+ 1

ρ
qϕ ·∇ ·J

dṙ

dt
− r cos2 ϕ (λ̇+ 2�)λ̇− rϕ̇2 = −

(
1

ρ

∂p

∂r
+ ∂φ

∂r

)
+ 1

ρ
qr ·∇ ·J

d

dt
= ∂

∂t
+ λ̇

∂

∂λ
+ ϕ̇

∂

∂ϕ
+ ṙ

∂

∂r

(19.12)
just by following the general equations (18.25) and (18.34). The reader may decide
for himself which form he likes best and which set of equations seems easier to
use. It should be noted that the underlined terms are usually omitted in practi-
cal applications. The justification for omitting these terms will be given a little
later.

In equation (19.11) the leading terms are written as dvi/dt while the remaining
velocity variables appearing in this equation are (λ̇, ϕ̇, ṙ). If it is desired to use the
contravariant components of the velocity (λ̇, ϕ̇, ṙ) everywhere in this equation, we
may replace the vi by using the definitions

v1 = g1nv
n = r2 cos2 ϕ λ̇, v2 = g2nv

n = r2ϕ̇, v3 = g3nv
n = ṙ (19.13)

We will now derive the three components of the equation of motion in physical
coordinates. Since deformation of the coordinate surfaces is ignored (vD = 0) the
equation of motion in the form (18.37)may be applied. For the chosen geographical
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coordinate system we have

v*
k = √

gkkq̇
k =⇒ v*

1 = r cosϕ λ̇, v*
2 = rϕ̇, v*

3 = ṙ

∂

∂q
* k

= 1√
gkk

∂

∂qk
=⇒ ∂

∂q
* 1

= 1

r cosϕ

∂

∂λ
,

∂

∂q
* 2

= 1

r

∂

∂ϕ
,

∂

∂q
* 3

= ∂

∂r

(19.14)

Recall that, in this particular system, there is no difference between covariant
and contravariant physical measure numbers. Using (19.8) and the information
(19.6) on the metric tensor gij , it is a simple matter to obtain the component
equations in physical measure numbers by successively setting k = 1, 2, 3 in
(18.37). Denoting the velocity components by v* 1 = u, v*

2 = v, and v* 3 = w,
we obtain

du

dt
+ uw

r
− uv

r
tanϕ − f v + lw = − 1

r cosϕ

(
1

ρ

∂p

∂λ
+ ∂φ

∂λ

)
+ 1

ρ
eλ ·∇ ·J

dv

dt
+ uw

r
+ u2

r
tanϕ + f u = −1

r

(
1

ρ

∂p

∂ϕ
+ ∂φ

∂ϕ

)
+ 1

ρ
eϕ ·∇ ·J

dw

dt
− (u2 + v2)

r
− lu = −

(
1

ρ

∂p

∂r
+ ∂φ

∂r

)
+ 1

ρ
er ·∇ ·J

d

dt
= ∂

∂t
+ u

r cosϕ

∂

∂λ
+ v

r

∂

∂ϕ
+ w

∂

∂r

(19.15)
which is the most frequently used form of the equation of motion. For brevity we
have also introduced the Coriolis parameters f = 2� sinϕ and l = 2� cosϕ; see
Figure 1.4 and equation (1.81). It should be noted that the underlined terms are
usually omitted.

Certainly, it would have been possible to obtain the equation of motion in spheri-
cal coordinates from the vector equation directly, as we have already demonstrated
in Section 1.6 for physical measure numbers. However, by using the general forms
of the equation of motion derived in Chapter 18, we avoid entirely any problems
arising from the differentiation of the basis or unit vectors with respect to time and
space.

19.2 Application of Lagrange’s equation of motion

Now we wish to demonstrate how to obtain the components of the covariant form
of the equation of motion by using the powerful Lagrange formalism. At this point
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it will be sufficient to demonstrate the method for k = 1. For this situation equation
(18.65) can be written as

d

dt

(
∂L

∂ λ̇

)
− ∂L

∂λ

∣∣∣
q̇i

= − 1

ρ

∂p

∂λ
+ 1

ρ
qλ ·∇ ·J (19.16)

where the Lagrangian is given by

L = KA − φa = 1
2 (r

2 cos2 ϕ λ̇2 + r2ϕ̇2 + ṙ2 + 2�r2 cos2 ϕ λ̇+ r2 cos2 ϕ �2) − φa

(19.17)
From this equation we easily find

∂L

∂ λ̇
= r2 cos2 ϕ λ̇+�r2 cos2 ϕ = v1 +�r2 cos2 ϕ

∂L

∂λ

∣∣∣
q̇i

= −∂φa

∂λ
= −∂φ

∂λ
with φ = φa − φz = φa − �2

2
r2 cos2 ϕ

(19.18)

which are then substituted into (19.16). With very little effort we find the equation
of motion for the covariant measure number v1:

dv1

dt
+ 2�r cos2 ϕ ṙ − 2�r2 cosϕ sinϕ ϕ̇ = − 1

ρ

∂p

∂λ
− ∂φ

∂λ
+ 1

ρ
qλ ·∇ ·J (19.19)

which is, of course, identical with the first equation in (19.11).
In order to obtain the corresponding equation in physical measure numbers, we

transform (19.19). However, there may be situations in which it is preferable to use
(18.37) or even (18.36) when the deformation velocity vD cannot be ignored. To
transform (19.19) into physical velocity variables we use the relations

v1 = r cosϕ u, ϕ̇ = v/r, ṙ = w (19.20)

Substitution of (19.20) into (19.19) gives

d

dt
(r cosϕ u) + lr cosϕ w − lr sinϕ v = − 1

ρ

∂p

∂λ
− ∂φ

∂λ
+ 1

ρ
qλ ·∇ ·J (19.21)

Simple differentiation of the first term finally results in the first equation of (19.15).
Similarly, we may use the Lagrange method to verify the remainder of (19.15).
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19.3 The first metric simplification

Now we wish to explain the meaning of the underlined terms of the previous
equations. Observing that the vertical extent of the atmosphere is very small in
comparison with the radius a of the earth, it seems reasonable to introduce the
so-called first metric simplification. By this we mean that, in coordinate systems
having r or z as a vertical coordinate, we appear to be justified in replacing the
variable radius r by the fixed radius r = a whenever r appears in undifferentiated
form, i.e.

g11 = a2 cos2 ϕ, g22 = a2, g33 = 1, gii = 1/gii, gij = 0 for i �= j

(19.22)
This simply means that the components of the metric tensor gij and gij become
independent of height. From (19.22) it follows that

(dr)2 = a2 cos2 ϕ (dλ)2 + a2(dϕ)2 + (dr)2 (19.23)

Equations (19.22) and (19.23) describe a metric system in which various spherical
surfaces in the atmosphere, actually having different radii of curvature r , are forced
to assume the same radius of curvature a. This system cannot be visualized in
three-dimensional Euclidean space. We have already made some remarks on the
effect of this approximation in the appendix to Chapter 18.

The first metric simplification also leads to a change in the definition of the
absolute kinetic energy KA. Instead of (19.2) we now write

KA = 1
2 [a

2 cos2 ϕ (λ̇2 + 2λ̇�) + a2ϕ̇2 + ṙ2] + 1
2a

2 cos2 ϕ �2 (19.24)

and for the functional determinant

√
g =

√∣∣gij ∣∣ =
√∣∣∣∣ ∂

2KA

∂q̇i ∂q̇j

∣∣∣∣ = a2 cosϕ (19.25)

Specifically, if we were to repeat the derivations leading to equations (19.10),
(19.11), and (19.13), but using the gij as stated in (19.22), the underlined terms
would not appear at all.

Comparison of equation (19.15), omitting the underlined terms, with equation
(2.26) shows that they are identical. Thus, the use of the first metric simplification
gives the same result as the scale analysis leading to (2.26). It should be noted,
however, that, in (2.26b), we have also ignored the latitudinal dependency of the
geopotential due to the assumption (1.83b).
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19.4 The coordinate simplification

In this section we wish to briefly review and elaborate the discussion on the
geopotential presented in Section 1.6. From the physical point of view it would
be desirable to replace the spherical coordinate system which we have used to
describe the atmospheric motion by another orthogonal coordinate system. This
new coordinate system should be adapted to the force fields of the rotating earth
in such a way that the vertical coordinate q3 should follow the force lines resulting
from the gravitational attraction of the earth and from the centrifugal force.

In this system surfaces q3 = constant would coincide with surfaces of constant
geopotential φ = φa − 1

2 (�
2r2 cos2 ϕ), which may be well approximated by a

rotational ellipsoid of very small eccentricity. Such a surface φ = constant would
be the earth’s surface if it were not rigid, but instead had a freely movable surface
mass such as water, and if it were subjected only to the gravitational pull of the
earth and to the centrifugal force. The analytic consequenceof this special idealized
surface would cause the horizontal derivatives of the geopotential to vanish.

Such an ideal coordinate system to describe the atmospheric motion would be a
spheroidal coordinate system,which is characterized by a rather complicatedmetric
tensor. The description of the metric fundamental quantities would then require the
specification of the geocentric latitude, see Figure 1.3, and the eccentricity of the
earth. Moreover, hyperbolic functions would arise in the description of the gii
instead of the trigonometric functions appearing in (19.1). However, the difference
between the geographical and the geocentric latitude is very small and it would
be very impractical to introduce an elliptic coordinate system to describe the flow
instead of the simple spherical coordinate system we have used so far. For this
reason we will continue to use the spherical coordinate system, but we retain the
advantage of the elliptic system by assuming that, in the relevant section of the
atmosphere, surfaces of φ = constant coincide with surfaces of r = constant.
Thus, the horizontal derivatives vanish:

∂φ

∂λ
= 0,

∂φ

∂ϕ
= 0 =⇒ φ = φ(r) (19.26)

Furthermore, we may assume that, in the region relevant to atmospheric weather
systems, the geopotential is a linear function of q3 = r:

φ = gr + constant (19.27)

From this it follows that
∂φ

∂r
= g (19.28)

where we take g = 9.81 m s−1 as a sufficiently representative value. We will call
the approximations (19.26)–(19.28) the coordinate simplification.
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19.5 The continuity equation

In the absence of deformation of the coordinate surfaces, vD = 0, the functional
determinant for the rigid rotation of the spherical coordinate system is given by√
g = r2 cosϕ and the continuity equation in the form (18.48) is valid. Thus, we

immediately obtain

∂ρ

∂t
+ 1

r2 cosϕ

(
∂

∂λ
(ρr2 cosϕ λ̇) + ∂

∂ϕ
(ρr2 cosϕ ϕ̇) + ∂

∂r
(ρr2 cosϕ ṙ)

)
= 0

(19.29)

On combining the various terms we obtain the continuity equation with contravari-
ant velocity components in the form

1

ρr2 cosϕ

d

dt
(ρr2 cosϕ) + ∂ λ̇

∂λ
+ ∂ϕ̇

∂ϕ
+ ∂ṙ

∂r
= 0

with
d

dt
= ∂

∂t
+ λ̇

∂

∂λ
+ ϕ̇

∂

∂ϕ
+ ṙ

∂

∂r

(19.30)

By introducing the relations (19.14) into (19.29), we find the continuity equation
expressed in physical velocity components:

1

ρ

dρ

dt
+ 1

r cosϕ

(
∂u

∂λ
+ ∂

∂ϕ
(v cosϕ)

)
+ ∂w

∂r
+ 2w

r
= 0

with
d

dt
= ∂

∂t
+ u

r cosϕ

∂

∂λ
+ v

r

∂

∂ϕ
+w

∂

∂r

(19.31)

Suppose that we repeat the derivation of the continuity equation leading to
(19.30) but now using the first metric simplification. This simply means that we
replace r2 by a2. In this case the functional determinant (19.25) must be used, so
equation (19.30) simplifies to the form

1

ρ cosϕ

d

dt
(ρ cosϕ) + ∂ λ̇

∂λ
+ ∂ϕ̇

∂ϕ
+ ∂ṙ

∂r
= 0

with
d

dt
= ∂

∂t
+ λ̇

∂

∂λ
+ ϕ̇

∂

∂ϕ
+ ṙ

∂

∂r

(19.32)

which is used in many practical applications. Finally, utilizing the first metric
simplification, equation (19.31) can be written as

1

ρ

dρ

dt
+ 1

a cosϕ

(
∂u

∂λ
+ ∂

∂ϕ
(v cosϕ)

)
+ ∂w

∂r
= 0

with
d

dt
= ∂

∂t
+ u

a cosϕ

∂

∂λ
+ v

a

∂

∂ϕ
+ w

∂

∂r

(19.33)

It can be seen that the term 2w/r in (19.31) has vanished in (19.33). This form is
also used for many practical applications.
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19.6 Problems

19.1: Use equation (18.52) and the information given in Section 19.1 to verify the
validity of the second equation of (19.11). Then use Lagrange’s equation of motion
to show that the second equation of (19.11) is correct. By a direct transformation
obtain the second equation of (19.12) from the second equation of (19.11).

19.2: Use the first metric simplification in conjunction with Lagrange’s equation
of motion to show that the underlined term in the first equation of (19.11) drops
out. Transform this equation to physical measure numbers of the velocity to show
that the two underlined terms in the first equation of (19.15) drop out.

19.3: Use the first metric simplification to show that the term 2w/r in equation
(19.31) vanishes.

19.4: The generalized coordinates of the elliptic coordinate systemmay be denoted
by qi = λ′, ϕ′, r ′. The equations for transformation between the Cartesian and the
elliptic coordinates are then given by

x1 = ε cosh r ′ cosϕ′ cos(λ′ +�), 0 ≤ λ′ ≤ 2π

x2 = ε cosh r ′ cosϕ′ sin(λ′ +�), −π/2 ≤ ϕ ′ ≤ π/2

x3 = ε sinh r ′ sinϕ′, 0 ≤ r ′ ≤ ∞
where ε is the excentricity.
(a) Show that the kinetic energy of the elliptic coordinate system is given by

KA = ε2

2
[(cosh2 r ′ − cos2 ϕ′)(ϕ̇′2 + ṙ ′2) + cosh2 r ′ cos2 ϕ′ (λ̇′ +�)2]

(b) Find g11 from the definition (M4.8).
(c) Find the fundamental quantities gij .



20

The stereographic coordinate system

For the analysis and depiction of meteorological data it is useful and customary to
map the surface of the earth onto a plane. Therefore, it is advisable for purposes of
numerical weather prediction to formulate and evaluate the atmospheric equations
in stereographic coordinates. Such a map projection should represent the spherical
surface as accurately as possible, but obviously some features will be lost. It is
extremely important to preserve the angle between intersecting curves such as the
right angle between latitude circles and meridians. Maps possessing this desirable
and valuable property are called conformal. If distances were preserved by mapping
the sphere onto the projection plane, the map would be called isometric. Mapping
from the sphere to the stereographic plane is conformal but not isometric. In order
to remove this deficiency to a tolerable level, a scale factor m, also called the image
scale, will be introduced.

20.1 The stereographic projection

We will now describe the sphere-to-plane mapping by introducing a projection
plane that is parallel to the equatorial plane. On the projection plane we may
construct a Cartesian (x, y, z)-coordinate system with a square rectangular grid.
The stereographic Cartesian coordinate system differs from the regular Cartesian
coordinates since the metric fundamental quantities are not gij = δij . In fact, they
still contain the Gaussian curvature 1/r of the spherical coordinate system, showing
that in reality we have not left the sphere.

Conformal mapping means that the angle between two lines intersecting at a
certain point on the sphere is reproduced in magnitude and sense by the angle
between the corresponding curves on the plane. Infinitesimally small triangles
around such points on the sphere are mapped onto similar infinitesimally small
triangles on the plane. Moreover, a small circle remains a circle and an ellipse

542
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(     )

2 2
1(     )(dsr)1

(dsr)

Fig. 20.1 The infinitesimal surroundings of a point Pr on the sphere and of the point PE

on the projection plane.

transforms into an ellipse such that the ratio of the lengths of the major and minor
axes is preserved. This is demonstrated in Figure 20.1 for the infinitesimally small
area of elliptical shape. The point Pr is somewhere on the sphere, and PE is located
on the projection plane symbolized by the subscript E. Since the ratio of a line
element on the sphere dsr to the line element mapped onto the projection plane
dsE is independent of the orientation of the line element we have

(dsr)1

(dsE)1
= (dsr)2

(dsE)2
(20.1)

We will use this information to define the scale factor.
Let us consider the plane E0 defined by the angle of latitude ϕ0 shown in

Figure 20.2. The conformal stereographic map results from projecting an arbitrary
spherical reference surface within the atmosphere, defined by the radius r , onto the
planeE. This plane is parallel to E0 and is located a distance r−r0 aboveE0, where
r0 is the mean radius of the earth. For a central projection the line element dsr ,
defined by the latitudinal angle ϕ, now has a length dsr0 on the surface of the earth.
Obviously, the latitude and the longitude (ϕ, λ) do not change. The infinitesimal
line element dsr0 is first projected stereographically onto the plane E0, yielding
dsE0, and then onto the plane E without any distortion, resulting in dsE. From
Figure 20.2 we see that the projection source is the south pole. Furthermore, we
have dsr0 = −r0 dϕ and dsE0 = dR.

We will now define the scale or image factors for the earth’s surface m0 = m(r0)
and the spherical reference surface m = m(r) by means of

m0 = dsE0

dsr0

= − dR

r0 dϕ
, m = dsE

dsr
= − dR

r dϕ
=⇒ m = m0

r0

r
(20.2)

As will be seen, the scale factors are independent of the longitude λ.
In order to establish the dependency of m on the latitude ϕ, we consider the

rectangular triangle formed by the sides l0 + r0, R, and the projection ray extending
from the south pole at angle γ measured from the polar axis; see Figure 20.2. From
the figure we immediately find

(a) γ = 1

2

(π
2

− ϕ
)

= χ

2
, c = r0 + l0 = r0(1 + sinϕ0)

(b) tan γ = R

r0 + l0
= R

c
= sinχ

1 + cosχ
= cosϕ

1 + sinϕ

(20.3)
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(       )0 0

0

0

0

0

−�
�

�

� 

dsE = dR

E(z = 0)

E(z)

dsr

Fig. 20.2 Stereographic projection of a line element dsr on the longitudinal circle with
radius r onto the projection plane E(z) with height z = r − r0. The line element on E is
dsE .

where the angle χ is the co-latitude π/2 − ϕ. Equation (20.3b) makes use of a
well-known trigonometric identity. From (20.2) and (20.3b) upon differentiation
we obtain

m0(ϕ) = c

r0

1

1 + sinϕ
(20.4)

showing that m0 depends on the latitude only. By eliminating the constant c/r0 we
find the desired form

m0 = 1 + sinϕ0

1 + sinϕ
(20.5)

where ϕ0 is a fixed but arbitrary latitude. The Weather Services of Germany and
the USA use ϕ0 = 60◦ and ϕ0 = 90◦, respectively.
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cos
0

0�

�

 �
 �

0

E(z = 0)
R

0

γ

Fig. 20.3 Stereographic projection of the line element dsr0 on the latitudinal circle with
radius r0 cosϕ onto the projection plane E(z = 0). The line element on E(z = 0) is dsE0 .

It will be useful to derive additional forms of the scale factor m. On replacing
the term 1/(1 + sinϕ) in (20.4) by means of (20.3b) we find

m0 = R

r0 cosϕ
(20.6)

Substitution of (20.4) and (20.6) into the expression sinϕ =
√

1 − cos2 ϕ gives

m0 = c2 + R2

2cr0
(20.7)

Finally, we project stereographically a line element of a latitudinal circle onto
the plane E(z = 0) = E0 as shown in Figure 20.3. Using the definition of m0 given
in (20.6) we may write

m0 = dsE0

dsr0

= R dα

r0 cosϕ dλ
= R

r0 cosϕ
since dα = dλ (20.8)

Here we have used the cylindrical coordinates R and α. Summarizing, we may
write for the scale factor m

m = dsE

dsr
= − dR

r dϕ
= R

r cosϕ
= c

r

1

1 + sinϕ
(20.9)
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Inspection of (20.9) shows that m depends not only on the latitude ϕ but also on
the radial distance r . The explicit dependence of m on r follows from (20.9):

∂m

∂r
= ∂m

∂z
= −m

r
(20.10)

If we use the metric simplification r = r0 = a then m = m0. Later we will make
use of this approximation since it will simplify our work without significant loss
of accuracy.

In order to introduce the Coriolis parameter f = 2� sinϕ into the equation of
motion in stereographic coordinates, we need to derive an auxiliary relation. First
we write the trigonometric function sin ϕ with the help of equations (20.2) and
(20.6) in the form

sinϕ = − 1

2 cosϕ

d cos2 ϕ

dϕ
= m2

0

2R

d

dR

(
R2

m2
0

)
(20.11)

from which it follows immediately that

sinϕ = 1 + m2
0R

2

d

dR

(
1

m2
0

)
(20.12)

Thus, we have expressed the sine function in terms of the cylindrical coordinate R.
For the horizontal position vector in cylindrical coordinates R = qRR we may

write

R·∇ = qRR ·
(
qR

∂

∂R
+ qα

∂

∂α
+ qz

∂

∂z

)
= R

∂

∂R
(20.13)

Thus, we may express the sine function in (20.12) as

sin ϕ = 1 + m2
0

2
R·∇

(
1

m2
0

)
(20.14)

where m0 depends on R only, see (20.7), so that the total derivative in (20.12) may
be replaced by the partial derivative.

20.2 Metric forms in stereographic coordinates

Our first task is to derive an expression for the functional determinant in the stere-
ographic system by relating the various derivatives appearing in the geographical
system with coordinates (λ, ϕ, r) and the stereographic system with cylindrical
coordinates (R,α, z).
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Let us consider the unspecified function ψ which will be expressed in both
systems. Expressing ψ as a function of the longitude, i.e. ψ(λ) = ψ [α(λ)], we
obtain(

∂ψ

∂λ

)
ϕ,r

=
(
∂ψ

∂α

)
R,z

dα

dλ
=

(
∂ψ

∂α

)
R,z

=⇒ 1

r cosϕ

(
∂ψ

∂λ

)
ϕ,r

= m

R

(
∂ψ

∂α

)
R,z

(20.15)
where the geographical part r cosϕ of (20.9) is appended to the geographical system
and m/R to the stereographic system. We proceed similarly with the remaining
partial derivatives. Since the longitude λ and the angle α correspond to each other,
as do r and z, we may write

(
∂ψ

∂ϕ

)
λ,r

=
(
∂ψ

∂R

)
α,z

dR

dϕ
=⇒ −1

r

(
∂ψ

∂ϕ

)
λ,r

= m

(
∂ψ

∂R

)
α,z

(20.16)

where again use of (20.9) has been made. Finally
(
∂ψ

∂r

)
λ,ϕ

=
(
∂ψ

∂z

)
R,α

(20.17)

is the obvious statement that dr = dz.
In order to find the functional determinant for the stereographic system we use

the well-known transformation formula (M4.21) which leads to

√
g
∣∣
R,α,z

= √
g
∣∣
λϕ,r

∣∣∣∣ ∂(λ, ϕ, r)

∂(R,α, z)

∣∣∣∣ = r2 cosϕ

∣∣∣∣∣∣∣∣∣∣

0 1 0

− cos ϕ

R
0 0

0 0 1

∣∣∣∣∣∣∣∣∣∣
(20.18)

The various elements of the determinant can then be found by identifying in ψ

(20.15)–(20.17) with λ, ϕ, and r successively. For the case that ψ = λ this will
now be demonstrated:

m

(
∂λ

∂R

)
α,z

= −1

r

(
∂λ

∂ϕ

)
λ,r

= 0

(
∂λ

∂α

)
R,z

= R

mr cosϕ
= 1

(
∂λ

∂z

)
R,α

=
(
∂λ

∂r

)
λ,ϕ

= 0

(20.19)
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Expanding the determinant and using (20.9), we get the desired result
√
g
∣∣
R,α,z

= R/m2 (20.20)

The next task is to find the metric fundamental quantities gij for the stereographic
system in cylindrical coordinates. From (20.9) we find the basic relation for the
surfaces r = constant or z = constant

(ds)2
spherical = 1

m2
(ds)2

stereographic (20.21)

In general we may write

(dr)2 = (ds)2
spherical + (dr)2 = 1

m2
(ds)2

stereographic + (dz)2 (20.22)

We apply this formula to the stereographic cylindrical coordinates and find

(dr)2 = gmn dq
m dqn = 1

m2

[
(dR)2 + R2(dα)2

] + (dz)2 (20.23)

since the arclength element dsstereographic = dR eR +R dα eα. Hence, we are dealing
with an orthogonal system. The covariant and contravariant metric fundamental
quantities gij and gij are easily found as

g11 = 1/m2, g22 = R2/m2, g33 = 1, gij = 0 for i 	= j

g11 = m2, g22 = m2/R2, g33 = 1, gij = 0 for i 	= j
(20.24)

since giigii = 1. We proceed analogously with the Cartesian system. From (20.23)
we find with x = R cosα and y = R sinα

(dr)2 = gmn dq
m dqn = 1

m2

[
(dx)2 + (dy)2

] + (dz)2 (20.25)

so that

g11 = 1/m2, g22 = 1/m2, g33 = 1, gij = 0 for i 	= j

g11 = m2, g22 = m2, g33 = 1, gij = 0 for i 	= j
(20.26)

Equation (20.14) can also be used to state the sine function in terms of the
Cartesian coordinates (x, y) by expressing the horizontal position vector R as

R = xqx + yqy (20.27)

Therefore, we find

R·∇ = (xqx + yqy)·
(
qx

∂

∂x
+ qy

∂

∂y
+ qz

∂

∂z

)
= x

∂

∂x
+ y

∂

∂y
(20.28)

so that

sin ϕ = 1 + m2
0

2

[
x

∂

∂x

(
1

m2
0

)
+ y

∂

∂y

(
1

m2
0

)]
(20.29)
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20.3 The absolute kinetic energy in stereographic coordinates

There are several ways to derive an expression for the absolute kinetic energy in the
stereographic system. One possibility is to transform the absolute kinetic energy
of the geographical system,

KA = 1

2

[
r2 cos2 ϕ (λ̇ + �)2 + r2ϕ̇2 + ṙ2

]
(20.30)

to the stereographic system. From equation (20.9) and the transformation relations
dλ = dα, dr = dz one obtains

λ̇ = α̇, ϕ̇ = − Ṙ

mr
, ṙ = ż, cosϕ = R

mr
(20.31)

Substituting (20.31) into (20.30) results in the absolute kinetic energy of the stere-
ographic system in cylindrical coordinates:

KA =K + KP = 1

2

(
Ṙ2 +R2( α̇2 + 2 α̇�)

m2
+ ż2

)
−φz

with K = 1

2

(
Ṙ2 + R2 α̇2

m2
+ ż2

)
, KP = R2 α̇�

m2
− φz, φz = −R2�2

2m2

(20.32)
where φz represents the centrifugal potential.

Some useful relations between the Cartesian and the cylindrical coordinates are
summarized in

x = x1 = R cosα, y = x2 = R sinα, z = x3

R =
√
x2 + y2, Ṙ = xẋ + yẏ√

x2 + y2

d tanα

dt
= α̇

cos2 α
= d

dt

(y
x

)
, α̇2 = ẋ2 + ẏ2

x2 + y2
− (xẋ + yẏ)2

(x2 + y2)2

(20.33)

Substituting these expressions into (20.32) gives the absolute kinetic energy of the
stereographic system in Cartesian coordinates:

KA = K + KP = 1

2

(
ẋ2 + ẏ2 + 2�( ẏx − ẋy)

m2
+ ż2

)
− φz

with K = 1

2

(
ẋ2 + ẏ2

m2
+ ż2

)
, KP = �( ẏx − ẋy)

m2
− φz,

φz = − (x2 + y2)�2

2m2

(20.34)

The covariant measure numbers of the velocities vP are obtained by differentiat-
ing KP with respect to the contravariant measure numbers of the relative velocity.
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For the cylindrical coordinates from (20.32) we have

(W1
�
,W2

�
,W3

�
) =

(
0,

R2�

m2
, 0

)
, (W 1

�
,W 2

�
,W 3

�
) = (0,�, 0) (20.35)

In this expression the contravariant measure numbers are obtained by raising the
indices of the covariant measure numbers. From the relation gii = ∂2K/(∂q̇i∂ q̇i)
the validity of (20.24) may be easily checked.

For the kinetic energy in Cartesian coordinates as given by (20.34) the corre-
sponding result is

(W1
�

,W2
�
,W3

�
) =

(
−�y

m2
,
�x

m2
, 0

)
, (W 1

�
,W 2

�
,W 3

�
) = (−�y,�x, 0)

(20.36)
Again (20.26) may be obtained from gii = ∂2K/(∂q̇i∂ q̇i). Finally, in stereographic
cylindrical coordinates the measure numbers of the relative velocity are

(v1, v2, v3) = (Ṙ, α̇, ż), (v1, v2, v3) =
(

Ṙ

m2
,
R2 α̇

m2
, ż

)
(20.37)

whereas in Cartesian coordinates they are given by

(v1, v2, v3) = (ẋ, ẏ, ż), (v1, v2, v3) =
( ẋ

m2
,
ẏ

m2
, ż

)
(20.38)

On utilizing these results in cylindrical coordinates the components of the absolute
velocity are given by

(
v1

A, v
2
A, v

3
A

) = (Ṙ, α̇ + �, ż), (vA,1, vA,2, vA,3) =
(

Ṙ

m2
,
R2( α̇ + �)

m2
, ż

)

(20.39)
In the Cartesian coordinate system we obtain analogously

(
ẋ1

A, ẋ
2
A, ẋ

3
A

) = (ẋ − �y, ẏ + �x, ż)

(ẋA,1, ẋA,2, ẋA,3) =
(
ẋ − �y

m2
,
ẏ + �x

m2
, ż

)
(20.40)

20.4 The equation of motion in the stereographic Cartesian coordinates

Before we evaluate the general equations in the covariant, the contravariant, and
the physical coordinate systems we need to state the components of the rotational
tensor and the Christoffel symbols of the second kind. In order to simplify the
pertinent equations we make use of the first metric simplification by setting r = a
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so that m = m0. Substituting (20.26) into (19.9) yields for the Christoffel symbols

&1
11 = − 1

2m2
0

∂m2
0

∂x
, &1

12 = − 1

2m2
0

∂m2
0

∂y
, &1

13 = 0

&1
21 = &1

12, &1
22 = 1

2m2
0

∂m2
0

∂x
, &1

23 = 0

&1
31 = 0, &1

32 = 0, &1
33 = 0

&2
11 = 1

2m2
0

∂m2
0

∂y
, &2

12 = − 1

2m2
0

∂m2
0

∂x
, &2

13 = 0

&2
21 = &2

12, &2
22 = − 1

2m2
0

∂m2
0

∂y
, &2

23 = 0

&2
31 = 0, &2

32 = 0, &2
33 = 0

&3
ij = 0 for i, j = 1, 2, 3

(20.41)

From equations (M5.48), (20.29), and (20.36) we find

ω11
�

= 0, ω12
�

= f

2m2
0

, ω13
�

= 0

ω21
�

= −ω12
�

, ω22
�

= 0, ω23
�

= 0

ω31
�

= 0, ω32
�

= 0, ω33
�

= 0

ω k
i

�
= gkmωim

�
, ω* ij

�
=

√
gii

√
gjjωij

�

(20.42)

The computational labor leading to these equations is not excessive since we are
dealing with orthogonal coordinate systems.

Utilizing (20.26), (20.38), and (20.42) it is easy to evaluate the covariant equa-
tions of motion for rigid rotation (18.25):

dv1

dt
+ v2

1 + v2
2

2

∂m2
0

∂x
− f v2 = − 1

ρ

∂p

∂x
− ∂φ

∂x
+ 1

ρ
q1 ·∇ ·J

dv2

dt
+ v2

1 + v2
2

2

∂m2
0

∂y
+ f v1 = − 1

ρ

∂p

∂y
− ∂φ

∂y
+ 1

ρ
q2 ·∇ ·J

dv3

dt
= − 1

ρ

∂p

∂z
− ∂φ

∂z
+ 1

ρ
q3 ·∇ ·J

with
d

dt
= ∂

∂t
+ m2

0

(
v1

∂

∂x
+ v2

∂

∂y

)
+ v3

∂

∂z

(20.43)
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To get some exercise with Lagrange’s formulation, we verify the first equation
of (20.43). From the Lagrangian function L,

L = KA − φa = 1

2

(
ẋ2 + ẏ2 + 2� (xẏ − ẋy)

m2
0

+ ż

)
− φ

with φ = φa − (x2 + y2)�2

m2
0

(20.44a)

we find with little effort

∂L

∂ẋ
= ẋ − �y

m2
0

d

dt

(
∂L

∂ẋ

)
= d

dt

(
ẋ

m2
0

)
− �

d

dt

(
y

m2
0

)

= dv1

dt
− � ẏ

m2
0

− �y

[
ẋ
∂

∂x

(
1

m2
0

)
+ ẏ

∂

∂y

(
1

m2
0

)]

∂

∂x

∣∣∣∣
ẋ, ẏ

L = � ẏ

m2
0

+ 1

2
[ ẋ2 + ẏ2 + 2�(xẏ − ẋy)]

∂

∂x

(
1

m2
0

)
− ∂φ

∂x

(20.44b)

Substitution of (20.44b) into the Lagrange equation of motion (18.65) yields

d

dt

(
∂L

∂ẋ

)
− ∂

∂x

∣∣∣∣
ẋ, ẏ

L = dv1

dt
− 2�

m2
0

ẏ

{
1 + m2

0

2

[
x

∂

∂x

(
1

m2
0

)
+ y

∂

∂y

(
1

m2
0

)]}

ẋ2 + ẏ2

2m4
0

∂m2
0

∂x
+ ∂φ

∂x
= − 1

ρ

∂p

∂x
+ 1

ρ
q1 ·∇ ·J

(20.45a)

Utilizing (20.29) and (20.38), we have

2�

m2
0

ẏ

{
1 + m2

0

2

[
x

∂

∂x

(
1

m2
0

)
+ y

∂

∂y

(
1

m2
0

)]}
= v22� sinϕ = f v2

ẋ2 + ẏ2

2m4
0

∂ m2
0

∂x
= v2

1 + v2
2

2

∂m2
0

∂x

(20.45b)

Equation (20.45a) agrees with the first equation of (20.43).
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The contravariant system is obtained by evaluating (18.34) with the help of
(20.41) and (20.42):

dẋ

dt
+ ẏ2 − ẋ2

2m2
0

∂m2
0

∂x
− ẋ ẏ

m2
0

∂m2
0

∂y
− f ẏ = −m2

0

ρ

∂p

∂x
− m2

0

∂φ

∂x
+ 1

ρ
q1 ·∇ ·J

dẏ

dt
+ ẋ2 − ẏ2

2m2
0

∂m2
0

∂y
− ẋ ẏ

m2
0

∂m2
0

∂x
+ f ẋ = −m2

0

ρ

∂p

∂y
− m2

0

∂φ

∂y
+ 1

ρ
q2 ·∇ ·J

dż

dt
= − 1

ρ

∂p

∂z
− ∂φ

∂z
+ 1

ρ
q3 ·∇ ·J

with
d

dt
= ∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ ż

∂

∂z

(20.46)
The covariant system and the contravariant system are equivalent.

Whenever we are dealing with orthogonal coordinate systems, physical velocity
components offer some advantages. Owing to the rigidity of motion the basic
equation (18.37) is easy to evaluate. The required relations are summarized as

v*
1 = u = ẋ/m0, v*

2 = v = ẏ/m0, v*
3 = w = ż

∂

∂q
* 1 = m0

∂

∂x
,

∂

∂q
* 2 = m0

∂

∂y
,

∂

∂q
* 3 = ∂

∂z

(20.47)

Hence, the equations of motion in stereographic Cartesian coordinates with physical
measure numbers are given by

du

dt
+ v

(
v
∂m0

∂x
− u

∂m0

∂y

)
− f v = −m0

ρ

∂p

∂x
− m0

∂φ

∂x
+ 1

ρ
e1 ·∇ ·J

dv

dt
− u

(
v
∂m0

∂x
− u

∂m0

∂y

)
+ f u = −m0

ρ

∂p

∂y
− m0

∂φ

∂y
+ 1

ρ
e2 ·∇ ·J

dw

dt
= − 1

ρ

∂p

∂z
− ∂φ

∂z
+ 1

ρ
e3 ·∇ ·J

with
d

dt
= ∂

∂t
+ m0

(
u

∂

∂x
+ v

∂

∂y

)
+ w

∂

∂z

(20.48)
If the coordinate approximation is applied, i.e. φ = φ(z), then the partial derivatives
of φ with respect to x and y vanish in (20.43), (20.46), and (20.48).

We will now reexamine the geographical system. At the north pole this sys-
tem is undefined due to the appearance of tanϕ in equations (2.26), (19.12), and
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(19.15). In contrast to this, the tanϕ term does not appear in the stereographic
coordinate system. It should be observed that this term does not appear in the
covariant geographical system (19.11) either. This is certainly an advantage of the
covariant geographical system over the contravariant formulation.

Suppose that we wish to evaluate the system (19.15) numerically by using finite-
difference methods. The longitudinal term ∂/∂q

* 1 = (1/r cosϕ) ∂/∂λ appearing
in the expansion of d/dt is latitude-dependent, so the numerical grid becomes
latitude-dependent also. This is an undesirable property. In contrast to this, the
Cartesian grid of the stereographic system is distorted only very slightly, which is
favorable for the numerical evaluation of the prognostic equations.

We now wish to establish the relation between the Cartesian coordinates of the
stereographic system and the coordinates of the geographical system. From (20.3),
(20.5), and (20.33) we have

x = R cosλ, y = R sinλ, R = 1 + sinϕ0

1 + sinϕ
a cosϕ = m0a cosϕ

(20.49a)

In order to estimate the distances of the Cartesian grid in terms of the variables of
the geographical system, we expand dx and dy as

dx =
(
∂x

∂ϕ

)
λ

dϕ +
(
∂x

∂λ

)
ϕ

dλ, dy =
(
∂y

∂ϕ

)
λ

dϕ +
(
∂y

∂λ

)
ϕ

dλ (20.49b)

Evaluating the partial derivatives with the help of (20.49a) yields


 dx

dy


 = m0


 −sin λ −cosλ

cosλ −sin λ




 dλ

*

dϕ*


 (20.49c)

with dλ
* = a cosϕ dλ and dϕ* = a dϕ. It should be observed that the matrix stated

in (20.49c) is orthogonal, so the inversion of the system to find (dλ
*

, dϕ
* ) is easily

accomplished. For additional details see Haltiner and Williams (1980).

20.5 The equation of motion in stereographic cylindrical coordinates

As we have seen, it is possible to introduce not only Cartesian coordinates but
also cylindrical coordinates in the stereographic plane. We will proceed as in
Section 20.4. Again we use the approximation m = m0. The Christoffel symbols
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in cylindrical coordinates are given by

&1
11 = m2

0

2

∂

∂R

(
1

m2
0

)
, &1

12 = 0, &1
13 = 0

&1
21 = 0, &1

22 = −m2
0

2

∂

∂R

(
R2

m2
0

)
, &1

23 = 0

&1
31 = 0, &1

32 = 0, &1
33 = 0

&2
11 = 0, &2

12 = m2
0

2R2

∂

∂R

(
R2

m2
0

)
, &2

13 = 0

&2
21 = &2

12, &2
22 = 0, &2

23 = 0

&2
31 = 0, &2

32 = 0, &2
33 = 0

&3
ij = 0 for i, j = 1, 2, 3

(20.50)

Comparison with (20.41) shows that more Christoffel symbols are zero than in the
Cartesian system. From (M5.48) and (19.7) we find

ω11
�

= 0, ω12
�

= Rf

2m2
0

, ω13
�

= 0

ω21
�

= −ω12
�

, ω22
�

= 0, ω23
�

= 0

ω31
�

= 0, ω32
�

= 0, ω33
�

= 0

ω k
i

�
= gkmωim

�
, ω* ij

�
=

√
gii

√
gjjωij

�

(20.51)

The rotational dyadic exhibits the same simplicity as (20.42).
Substitution of (20.24), (20.38), and (20.51) into (18.25) results in the covariant

equations of motion

dv1

dt
+ R2v2

1 + v2
2

2R2

∂m2
0

∂R
− v2

2m
2
0

R3
− f v2

R
= − 1

ρ

∂p

∂R
− ∂φ

∂R
+ 1

ρ
qR ·∇ ·J

dv2

dt
+ f v1R = − 1

ρ

∂p

∂α
− ∂φ

∂α
+ 1

ρ
qα ·∇ ·J

dv3

dt
= − 1

ρ

∂p

∂z
− ∂φ

∂z
+ 1

ρ
qz ·∇ ·J

with
d

dt
= ∂

∂t
+ m2

0

(
v1

∂

∂R
+ v2

R2

∂

∂α

)
+ v3

∂

∂z

(20.52)
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On substituting (20.50) and (20.51) into (18.34), the contravariant counterparts are
analogously given as

dṘ

dt
− Ṙ2 − α̇2R2

2m2
0

∂m2
0

∂R
− α̇2R − f α̇R = −m2

0

ρ

∂p

∂R
− m2

0

∂φ

∂R
+ 1

ρ
qR ·∇ ·J

dα̇

dt
− α̇Ṙ

m2
0

∂m2
0

∂R
+ 2α̇Ṙ

R
+ f Ṙ

R
= − m2

0

R2ρ

∂p

∂α
− m2

0

R2

∂φ

∂α
+ 1

ρ
qα ·∇ ·J

dż

dt
= − 1

ρ

∂p

∂z
− ∂φ

∂z
+ 1

ρ
qz ·∇ ·J

with
d

dt
= ∂

∂t
+ Ṙ

∂

∂R
+ α̇

∂

∂α
+ ż

∂

∂z

(20.53)

In order to obtain the equations of motion in physical measure numbers we
evaluate (18.37). Utilizing (20.24), (20.51), and

v*
1 = u = Ṙ/m0, v*

2 = v = Rα̇/m0, v*
3 = w = ż

∂

∂q
* 1 = m0

∂

∂R
,

∂

∂q
* 2 = m0

R

∂

∂α
,

∂

∂q
* 3 = ∂

∂z

(20.54)

we find the desired equations of motion

du

dt
+ v2 ∂m0

∂R
− v2m0

R
− f v = −m0

ρ

∂p

∂R
− m0

∂φ

∂R
+ 1

ρ
e1 ·∇ ·J

dv

dt
− uv

∂m0

∂R
+ uv

m0

R
+ f u = −m0

Rρ

∂p

∂α
− m0

R

∂φ

∂α
+ 1

ρ
e2 ·∇ ·J

dw

dt
= − 1

ρ

∂p

∂z
− ∂φ

∂z
+ 1

ρ
e3 ·∇ ·J

with
d

dt
= ∂

∂t
+ m0

(
u

∂

∂R
+ v

R

∂

∂α

)
+ w

∂

∂z

(20.55)

The degree of complexity of this set of equations is about the same as that of
(20.48). If the coordinate approximation is applied, i.e. φ = φ(z), then the partial
derivatives of φ with respect to R and α vanish in (20.52), (20.53), and (20.55).

20.6 The continuity equation

In order to solve any prognostic system describing the atmospheric motion we also
need to solve the equation of continuity in addition to the heat equation and the
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ideal-gas law. In this section we will briefly derive the various versions of the
continuity equation. For the system describing rigid rotation the last term in (18.47)
vanishes. This equation can be easily rewritten in the form

dρ

dt
+ ρ√

g

∂

∂qn
(
√
gq̇n) = 0 (20.56)

For the various cases the continuity equation can now be obtained very easily.

Covariant stereographic Cartesian coordinates

1

ρ

dρ

dt
+ m2

0

(
∂v1

∂x
+ ∂v2

∂y

)
+ ∂v3

∂z
= 0 (20.57)

Contravariant stereographic Cartesian coordinates

1

ρ

dρ

dt
+ m2

0

[
∂

∂x

(
ẋ

m2
0

)
+ ∂

∂y

(
ẏ

m2
0

)]
+ ∂ż

∂z
= 0 (20.58)

Physical stereographic Cartesian coordinates

1

ρ

dρ

dt
+ m0

(
∂u

∂x
+ ∂v

∂y

)
−

(
u
∂m0

∂x
+ v

∂m0

∂y

)
+ ∂w

∂z
= 0 (20.59)

Covariant stereographic cylindrical coordinates

1

ρ

dρ

dt
+ m2

0

R

[
∂

∂R
(Rv1) + ∂

∂α

(v2

R

)]
+ ∂v3

∂z
= 0 (20.60)

Contravariant stereographic cylindrical coordinates

1

ρ

dρ

dt
+ m2

0

R

[
∂

∂R

(
R Ṙ

m2
0

)
+ ∂

∂α

(
Rα̇

m2
0

)]
+ ∂ ż

∂z
= 0 (20.61)

Physical stereographic cylindrical coordinates

1

ρ

dρ

dt
+ m0

(
∂u

∂R
+ 1

R

∂v

∂α

)
+ ∂w

∂z
+ m0u

R
− u

∂m0

∂R
= 0 (20.62)

In a later chapter we will integrate in principle various versions of the atmospheric
equations and then recognize more fully the importance of the continuity equation.
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20.7 The equation of motion on the tangential plane

In Section 2.5 we have introduced equations decribing the motion on the tangential
plane. This was done by fixing a rectangular coordinate system at the point of
observation on the surface of the earth. The z-axis is pointing to the local zenith
so that the x- and y- axes describe a tangential plane. The x-axis is pointing to the
east and the y-axis to the north, so the motion is described with respect to a right-
handed system. Going directly from the geographical coordinate system (19.15)
to the equation of motion on the tangential plane is not possible even if we delete
the underlined terms. Even on taking the radius of the earth as infinitely large to
approximate a plane, we still have a problem at the north pole. On the other hand,
if we set m0 = 1, which corresponds to ϕ = ϕ0 in (20.5), we obtain the equations
of motion with reference to the tangential plane directly. For the Cartesian system
we find from (20.48)

du

dt
− f v = − 1

ρ

∂p

∂x
+ 1

ρ
e1 ·∇ ·J

dv

dt
+ f u = − 1

ρ

∂p

∂y
+ 1

ρ
e2 ·∇ ·J

dw

dt
= − 1

ρ

∂p

∂z
− ∂φ

∂z
+ 1

ρ
e3 ·∇ ·J

(20.63)

The corresponding equations of the cylindrical system follow from (20.55) as

du

dt
− v2

R
− f v = − 1

ρ

∂p

∂R
+ 1

ρ
e1 ·∇ ·J

dv

dt
+ uv

R
+ f u = − 1

Rρ

∂p

∂α
+ 1

ρ
e2 ·∇ ·J

dw

dt
= − 1

ρ

∂p

∂z
− ∂φ

∂z
+ 1

ρ
e3 ·∇ ·J

(20.64)

In (20.63) and (20.64) use of the coordinate approximation φ = φ(z) has been
made.

Geostrophic motion is a very simple but also a very useful approximation to
real flow, describing unaccelerated frictionless motion parallel to the isobars. By
neglecting in (20.63) frictional effects and setting the horizontal accelerations
du/dt = 0 and dv/dt = 0 we obtain the well-known geostrophic wind relations

−f vg = − 1

ρ

∂p

∂x
, f ug = − 1

ρ

∂p

∂y
(20.65)
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It is also possible to give an analytic solution to horizontal frictionless motion
on a horizontal plane if the advection term is ignored in the expansion of d/dt . In
this case (20.63) reduces to

∂u

∂t
− f v = −f vg,

∂v

∂t
+ f u = f ug (20.66)

By employing the somewhat complicated method of two-dimensional Laplace
transforms, see Voelker and Doetsch (1950), Chapter 5, we find the solution to the
coupled system

u(z, t) = u(z, 0) cos(f t) + v(z, 0) sin(f t)

− f

∫ t

0
cos(f t ′) vg(z, t − t ′) dt ′ + f

∫ t

0
sin(f t ′)ug(z, t − t ′) dt ′

v(z, t) = v(z, 0) cos(f t) − u(z, 0) sin(f t)

+ f

∫ t

0

cos(f t ′)ug(z, t − t ′) dt ′ +f

∫ t

0

sin(f t ′) vg(z, t − t ′) dt ′

(20.67)
where the geostrophic wind components may be dependent on height and time.
For negative arguments ug and vg are set equal to zero. The solution (20.67) may
be verified by substituting (20.67) into (20.66).

20.8 The equation of motion in Lagrangian enumeration coordinates

We will now return to Section 3.5 to express the equation of motion in terms of
the Lagrangian enumeration coordinates. We assume that we have frictionless flow
and apply the Cartesian coordinate system of the stereographic projection. The
transformation will be carried out with the help of Lagrange’s form of the equation
of motion.

We recall the transformation rule (M4.15) for covariant measure numbers of
vectors for the transformation from the Cartesian xi system to a general ai system.
In the present context the ai are the Lagrangian enumeration coordinates. This rule
is given by

A
a k

= A
x n

∂xn

∂ak
(20.68)

Application of this formula to the velocity results in

V
a k

= V
x n

∂xn

∂ak
(20.69)

where the Cartesian components (20.38) are given by

V
x k

=
(
ẋ1

m2
,
ẋ2

m2
, ẋ3

)
(20.70)
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Using the stringent metric simplification m = 1 gives

V
a k

= ẋn
∂xn

∂ak
(20.71)

It is also possible to use m = m(x1, x2) but the solution is more complicated and
less readily interpreted.

The contravariant basis vectors in the Cartesian and the Lagrangian system will
be arranged as

(
ii
) =

(
i1

i2

i3

)
,

(
ai

) =
(
a1

a2

a3

)
(20.72)

According to (M4.9) the transformation rule is given by

(
ii
) =

(
∂xi

∂aj

)(
ai

) = (
T i

j

)(
ai

) =
(
∂xi

∂an
an

)
(20.73)

Here i and j denote the row and the column of the transformation matrix, respec-
tively. For the column of the basis vectors in the Lagrangian system we obtain the
following relation:

(
T i

j

)−1 =
(
∂xi

∂aj

)−1

=
(
∂ai

∂xj

)
,

(
ai

) =
(
∂xi

∂aj

)−1(
ii
)

(20.74)

Using the rules of matrix inversion, we find for the contravariant basis vector in the
Lagrangian system, see also (M3.14),

ai = Mi
ni

n∣∣∣∣ ∂x
i

∂aj

∣∣∣∣
= Mi

ni
n

√
g
a

(20.75)

The M
j

i are the elements of the adjoint matrix (Mi
j ) of the transformation matrix

(T i
j ).
In order to apply the Lagrangian form of the equation of motion, we need to find

an expression for the derivative of an arbitrary field function ψ with respect to the
enumeration coordinate ak. Recalling that ȧk = 0, we may write

∂ψ̇

∂ȧk
= lim

ȧk→0

{
∂

∂ȧk

(
dψ

dt

)}

= lim
ȧk→0

{
∂

∂ȧk

[(
∂ψ

∂t

)
ak

+ ȧn
∂ψ

∂an

]}

= δnk
∂ψ

∂an
= ∂ψ

∂ak

(20.76)

which is a very useful expression.
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According to (18.64) the Lagrangian function L = KA − φa for the Cartesian
coordinates of the stereographic projection is given by

L = 1

2m2
[(ẋ1)2 + (ẋ2)2 + 2�(ẋ2x1 − x2ẋ1)] + (ẋ3)2

2
+ �2

2m2

[
(x1)2 + (x2)2

] − φa

(20.77)
We now make use of the metric simplification m = 1, which requires that � must
be replaced by � sin ϕ = f/2 since we leave the stereographic plane and go to the
tangential plane. Therefore, the metrically simplified form reads

L = 1
2 [(ẋ1)2 + (ẋ2)2 + (ẋ3)2 + f (ẋ2x1 − x2ẋ1)] − φ (20.78)

In the basic system of Cartesian coordinates of the stereographic projection the
Coriolis force may be written as

−2Ω
+

× v = −f a3 × (a1ẋ
1 + a2ẋ

2 + a3ẋ
3)

= f

m2

(
a1ẋ2 − a2ẋ1

) = C
x 1
a1 + C

x 2
a2 + C

x 3
a3 = C

x n
an

(20.79)

The + above Ωwas placed there to show that, in general, the direction of the rotation

differs from the rotational direction in the geographical coordinates. Whereas Ω
+

has a fixed direction and cannot be decomposed, the rotational vector Ω can be split
in two components. On setting m = 1 we find for the covariant measure numbers

C
x 1

= f ẋ2, C
x 2

= −f ẋ1, C
x 3

= 0 (20.80)

Finally, according to (20.68), the transformation of these measure numbers to the
Lagrangian enumeration coordinates yields

C
a k

= C
x n

∂xn

∂ak
(20.81)

Owing to the special properties ( ȧi = 0) of the Lagrangian enumeration coor-
dinates we must write the Lagrangian equation of motion in the form

lim
ȧk→0

{
d

dt

∂L

∂ȧk
− ∂L

∂ak

∣∣∣∣
ȧk

}
= − 1

ρ

∂p

∂ak
(20.82)
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The substitution of (20.78) into (20.82) is somewhat complex, therefore we shall
proceed stepwise. Recalling (3.58) and (20.76), we may first write

lim
ȧk→0

{
∂L

∂ȧk

}
= lim

ȧk→0

{
ẋ1 ∂ẋ

1

∂ȧk
+ ẋ2 ∂ẋ

2

∂ȧk
+ ẋ3 ∂ẋ

3

∂ȧk
+ f

2

(
x1 ∂ẋ

2

∂ȧk
− x2 ∂ẋ

1

∂ȧk

)}

= ẋ1 ∂x
1

∂ak
+ ẋ2 ∂x

2

∂ak
+ ẋ3 ∂x

3

∂ak
+ f

2

(
x1 ∂x

2

∂ak
− x2 ∂x

1

∂ak

)

=
(
∂x1

∂t

)
ak

∂x1

∂ak
+

(
∂x2

∂t

)
ak

∂x2

∂ak
+

(
∂x3

∂t

)
ak

∂x3

∂ak

+ f

2

(
x1 ∂x

2

∂ak
− x2 ∂x

1

∂ak

)
= A

(20.83)
Observing (3.58) once again, we obtain

lim
ȧk→0

{
d

dt

(
∂L

∂ ȧk

)}
=

(
∂A

∂t

)
ak

=
(
∂2x1

∂t2

)
ak

∂x1

∂ak
+

(
∂2x2

∂t2
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ak

∂x2

∂ak

+
(
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∂ak
+

(
∂x1

∂t

)
ak

∂2x1

∂t ∂ak
+

(
∂x2

∂t

)
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∂t ∂ak

+
(
∂x3

∂t

)
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∂t ∂ak
+ f

2

[ (
∂x1
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)
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∂ak
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−
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∂t
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∂ak
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∂t ∂ak

]

(20.84)
For the second term on the left-hand side of (20.82) we find from (20.78) the
following expression:

lim
ȧk→0

{
− ∂L

∂ak

∣∣∣∣
ȧk

}
= −ẋ1 ∂ẋ

1

∂ak
− ẋ2 ∂ẋ

2

∂ak
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2
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2
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1
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1
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2
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)
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−

(
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)
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+
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∂t ∂ak

−
(
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)
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]
+ ∂φ

∂ak

(20.85)
Substitution of (20.84) and (20.85) into (20.82) results in a number of terms

canceling out. The equation of motion in terms of the Lagrangian enumeration
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coordinates now reads
(
∂2x1

∂t2

)
ak

∂x1

∂ak
+

(
∂2x2

∂t2

)
ak

∂x2

∂ak
+

(
∂2x3

∂t2

)
ak

∂x3

∂ak

= − 1

ρ

∂p

∂ak
− ∂φ

∂ak
+ f

[(
∂x2

∂t

)
ak

∂x1

∂ak
−

(
∂x1

∂t

)
ak

∂x2

∂ak

]

with

(
∂x1

∂t

)
ak

= ẋ1,

(
∂x2

∂t

)
ak

= ẋ2

(20.86)

The last term on the right-hand side of this equation represents the Coriolis effect.
With the help of (20.80) and (20.81) the Coriolis part of the equation of motion
can then be written as

f

(
ẋ2 ∂x

1

∂ak
− ẋ1 ∂x

2

∂ak

)
= C

x 1

∂x1

∂ak
+ C

x 2

∂x2

∂ak
= C

a k
(20.87)

so that (20.86) assumes the form

(
∂2xn

∂t2

)
ak

∂xn

∂ak
= − 1

ρ

∂p

∂ak
− ∂φ

∂ak
+ C

a k
(20.88)

This equation can often be found in the literature, but usually without the Coriolis
effect. Together with the continuity equation we now have a system of four scalar
equations from which to determine the variables u, v,w, and ρ.

It is possible to write (20.88) in still another form by applying a Legendre
transformation and by using (3.58) again. For the left-hand side of (20.88) we find

(
∂2xn

∂t2

)
ak

∂xn

∂ak
= ∂

∂t

∣∣∣∣
ak

(
∂xn

∂t

∂xn

∂ak

)
−

[
∂

∂ak

(
∂xn

∂t

)
ak

](
∂xn

∂t

)
ak

= ∂

∂t

∣∣∣∣
ak

(
ẋn

∂xn

∂ak

)
− 1

2

∂

∂ak

[(
∂xn

∂t

)
ak

(
∂xn

∂t

)
ak

]

= ∂

∂t

∣∣∣∣
ak

(
ẋn

∂xn

∂ak

)
− ∂

∂ak

(
v2

2

)

with v2 = g
x nn

ẋnẋn = ẋnẋn (m = 1 or g
x ii

= 1)

(20.89)

Substituting (20.89) into (20.88) results in the following version of the equation
of motion in terms of the Lagrangian enumeration coordinates:

∂

∂t

∣∣∣∣
ak

(
ẋn

∂xn

∂ak

)
= − 1

ρ

∂p

∂ak
+ ∂

∂ak

(
v2

2
− φ

)
+ C

a k
(20.90)
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By using the transformation equation (20.81), we find in place of (20.90) the very
convenient form

∂

∂t

∣∣∣∣
ak

(
v
a k

)
= − 1

ρ

∂p

∂ak
+ ∂

∂ak

(
v2

2
− φ

)
+ C

a k
(20.91)

Sometimes the pressure term is replaced by the thermodynamic relation

− 1

ρ
δp = T δs − δh (20.92)

where s and h denote the specific entropy and the specific enthalpy. With δ = ∂/∂ak

equation (20.91) is given the final form

∂

∂t

∣∣∣∣
ak

(
v
a k

)
= ∂

∂ak

(
v2

2
− φ − h

)
+ T

∂s

∂ak
+ C

a k
(20.93)

This equation, the continuity equation, the first law of thermodynamics, and the
ideal-gas law give a complete system from which to determine the nonturbulent
flow of unsaturated air.

20.9 Problems

20.1:
(a) Use Lagrange’s equation of motion to verify the second equation of (20.43).
(b) Transform the first equation of (20.43) to obtain the first equation of (20.46).
(c) Transform the first equation of (20.46) to obtain the first equation of (20.48).

20.2: Verify that equation (20.67) is a solution by substituting u(z, t) and v(z, t)
into the first equation of (20.66).

20.3: On the Mercator and Bond map the surface of the earth is represented by
a Cartesian system in such a way that latitude circles are parallel to the x-axis
and longitude circles are parallel to the y-axis. The representation is due to the
differential transformation relations dx = r dλ and dy = r dϕ/cosϕ.
(a) Show that the representation is conformal. Find the map factor m.
(b) Starting with the rigidly rotating geographical coordinate system, find the
following quantities: the metric fundamental form (dr)2, kinetic energy KA, metric
fundamental quantities gij , gij ,

√
g, and covariant and physical measure numbers

of the relative velocity v.
(c) Replace z by the pressure coordinate p and find

√
g
p
. Assume the validity of the

hydrostatic equation.
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Orography-following coordinate systems

21.1 The metric of the η system

Suppose that we wish to model the air flow over a limited region of the earth’s
surface so that the effect of the earth’s curvature on the flow may be ignored. In
this case we may set the map factor m0 = 1 so that the air flow refers to the
tangential plane. The flow, however, might be strongly influenced by orographic
effects. The question which now arises quite naturally is that of how the effects of
the lower boundary on the flow should be formulated. It is always possible to state
the lower boundary condition in the presence of orography by using the orthogonal
Cartesian system but the formulation might be quite unwieldy. A far superior
method for handling orography is to replace the Cartesian vertical coordinate z by
a new vertical coordinate η, which is formulated in such a way that the surface
of the earth coincides with a surface of the new vertical coordinate. We call this
coordinate system the η system. The relation between the coordinate z and the new
coordinate η is defined by the following transformation:

η = z − H

H − h(x, y)
= η(x, y, z) =⇒ z(x, y, η) = η[H − h(x, y)] + H (21.1)

In this formula H represents a fixed upper boundary of the model region while
h(x, y) describes the orography. The new coordinate system is not orthogonal, so the
equation of motion assumes a form that is more complicated than before. We admit
only rigid rotation so that the coordinate surfaces of the η system do not deform.
By introducing the η-coordinate the mathematical complexity is overcompensated
by the effectiveness in the numerical evaluation of the flow model.

In order to visualize the transformation procedure we consider the idealized sit-
uation depicted in Figure 21.1. The covariant basis vectors qx and qη are tangential
to the x- and η-coordinate lines while the contravariant basis vectors qx and qη

point in the direction of the gradients ∇qi , see (M3.27), since qi = ∇qi . We would
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Fig. 21.1 A schematic representation of orography.

like to point out that we are dealing with a right-handed coordinate system. Had
we taken the numerator of (21.1) as H − z then the surface of the earth would
be defined by η = 1, describing a left-handed coordinate system. As will be seen
soon, in this case the functional determinant

√
g assumes negative values.

The elements of the metric tensor or the metric fundamental quantities gij can
be found by substituting

dz =
(

∂z

∂x

)
y,η

dx +
(

∂z

∂y

)
x,η

dy +
(

∂z

∂η

)
x,y

dη (21.2)

into the metric fundamental form of the Cartesian system,

(dr)2 = (dx)2 + (dy)2 + (dz)2 (21.3)

This yields

(dr)2 =
[

1 +
(

∂z

∂x

)2

y,η

]
(dx)2 +

[
1 +

(
∂z

∂y

)2

x,η

]
(dy)2 +

(
∂z

∂η

)2

x,y

(dη)2

+ 2

(
∂z

∂x

)
y,η

(
∂z

∂y

)
x,η

dx dy + 2

(
∂z

∂x

)
y,η

(
∂z

∂η

)
x,y

dx dη

+ 2

(
∂z

∂y

)
x,η

(
∂z

∂η

)
x,y

dy dη

(21.4)

The required partial derivatives are obtained from the transformation (21.1) as
(

∂z

∂x

)
y,η

= −η
∂h

∂x
,

(
∂z

∂y

)
x,η

= −η
∂h

∂y
,

(
∂z

∂η

)
x,y

= H − h (21.5)
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Comparison of (21.4) with the general relation (dr)2 = gnm dqn dqm gives all
components of the metric tensor:

g11 = 1 + η2

(
∂h

∂x

)2

, g12 = η2 ∂h

∂x

∂h

∂y
, g13 = −η

∂h

∂x
(H − h)

g21 = g12, g22 = 1 + η2

(
∂h

∂y

)2

, g23 = −η
∂h

∂y
(H − h)

g31 = g13, g32 = g23, g33 = (H − h)2

(21.6)
In the work to follow we will also need the contravariant components gij . A
convenient way to find the gij is to evaluate the transformation rule (M4.19):

gij

q
= ∂qi

∂am

∂qj

∂an
gmn

a
, qi = (x, y, η), ai = (x, y, z), gij

a
= δij

(21.7)
An example of (21.7) is given next in order to find the components g23

η
of the metric

tensor:

g23

η
=

(
∂y

∂x

)
y,z

(
∂η

∂x

)
y,z

+
(

∂y

∂y

)
x,z

(
∂η

∂y

)
x,z

+
(

∂y

∂z

)
x,y

(
∂η

∂z

)
x,y

= η

H − h

∂h

∂y(
∂η

∂x

)
y,z

= η

H − h

∂h

∂x
,

(
∂η

∂y

)
x,z

= η

H − h

∂h

∂y
,

(
∂η

∂z

)
x,y

= 1

H − h

(21.8)
The complete contravariant metric tensor gij is listed below:

g11 = 1, g12 = 0, g13 = η

H − h

∂h

∂x

g21 = g12, g22 = 1, g23 = η

H − h

∂h

∂y

g31 = g13, g32 = g23, g33 = 1

(H − h)2

[
1 + η2

(
∂h

∂x

)2

+ η2

(
∂h

∂y

)2
]

(21.9)

In order to obtain the continuity equation of the η system we need to find the
functional determinant. This quantity is obtained from the general transformation
rule (M4.21):

√
g

q
= √

g
a

∣∣∣∣ ∂(a1, a2, a3)

∂(q1, q2, q3)

∣∣∣∣ =⇒ √
g

η
= √

g
z

(
∂z

∂η

)
x,y

= H − h,
√

g
z

= 1

(21.10)
This expression confirms our previous statement that the functional determinant
becomes negative if we choose H −z instead of z−H in the transformation relation
(21.1) for going between η and z.



568 Orography-following coordinate systems

21.2 The equation of motion in the η system

In order to proceed efficiently, we will first obtain various parts of the equation of
motion. Then it will be easy to write down the final covariant and contravariant
forms in the η system. The relations between the contravariant and covariant
velocity components are

q̇1 = v1 = ẋ, q̇2 = v2 = ẏ, q̇3 = v3 = η̇, vi = ginv
n (21.11)

and can be used whenever needed. Next we wish to obtain the gradient of the
geopotential

φ = gz = g[η(H − h) + H ] (21.12)

yielding

(
∂φ

∂x

)
y,η

= −gη
∂h

∂x
,

(
∂φ

∂y

)
x,η

= −gη
∂h

∂y
,

(
∂φ

∂η

)
x,y

= g(H − h) (21.13)

Here the usual symbol g has been utilized for the gravitational acceleration since
confusion with the functional determinant

√
g is unlikely.

Next, we wish to obtain the components of the rotational dyadic by employing
equation (M5.48). The required components Wi

�
of the rotational velocity v� are

found with the help of (20.36). We are going to retain m0 in the calculations and
set m0 = 1 at the end of the analysis. Application of the general transformation
rule (M4.15) to the components of v� yields

W
q i

=
(

∂an

∂qi

)
qk

W
a n

(21.14)

with qi = x, y, η and ai = x, y, z. Both systems refer to the stereographic projec-
tion. From (20.36) we find

W
a 1

= W1
�

= −�y

m2
0

, W
a 2

= W2
�

= �x

m2
0

, W
a 3

= W3
�

= 0 (21.15)

Employing the transformation rule (21.14) yields

W
η 1

= −�y

m2
0

, W
η 2

= �x

m2
0

, W
η 3

= 0 (21.16)
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For example, we find for the component ω12
�

ω12
�

= 1

2

[
∂

∂x

(
�x

m2
0

)
+ ∂

∂y

(
�y

m2
0

)]

= �

m2
0

{
1 + m2

0

2

[
x

∂

∂x

(
1

m2
0

)
+ y

∂

∂y

(
1

m2
0

)]}

= �

m2
0

sin ϕ = f

2m2
0

(21.17)

The last step follows with the help of (20.29) so that the Coriolis parameter f =
2� sin ϕ can be utilized.

The complete rotational tensor is given by

ω11
�

= 0, ω12
�

= f

2m2
0

, ω13
�

= 0

ω21
�

= −ω12
�

, ω22
�

= 0, ω23
�

= 0

ω31
�

= 0, ω32
�

= 0, ω33
�

= 0

(21.18)

which agrees with (20.42). For the evaluation of the contravariant form of the
equation of motion, given by (18.34), we need the relation

ω k
i

�
= gkmωim

�
(21.19)

Finally, we calculate the Christoffel symbols according to equation (21.9). The
evaluation is an easy but admittedly very tedious task. The result is

�3
11 = − η

H − h

∂2h

∂x2
, �3

12 = − η

H − h

∂2h

∂x ∂y
, �3

13 = − 1

H − h

∂h

∂x

�3
21 = �3

12, �3
22 = − η

H − h

∂2h

∂y2
, �3

23 = − 1

H − h

∂h

∂y

�3
31 = �3

13, �3
32 = �3

23, �3
33 = 0

�1
1i = 0, �2

2i = 0, i = 1, 2, 3
(21.20)

Now we have all the parts needed in order to evaluate the general covariant form
of the equations of motion (18.25) and general contravariant form (18.34). The
covariant equations of motion of the η system are given by
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dv1

dt
− η2

[
ẋ2

2

∂

∂x

(
∂h

∂x

)2

+ ẏ2

2

∂

∂x

(
∂h

∂y

)2

+ ẋẏ
∂

∂x

(
∂h

∂x

∂h

∂y

)]

− η̇2

2

∂

∂x
(H − h)2 + η̇η

[
ẋ

∂

∂x

(
(H − h)

∂h

∂x

)

+ ẏ
∂

∂x

(
(H − h)

∂h

∂y

)]
− f ẏ = − 1

ρ

∂p

∂x
+ gη

∂h

∂x
+ 1

ρ
q1 ·∇ ·J

dv2

dt
− η2

[
ẋ2

2

∂

∂y

(
∂h

∂x

)2

+ ẏ2

2

∂

∂y

(
∂h

∂y

)2

+ ẋẏ
∂

∂y

(
∂h

∂x

∂h

∂y

)]

− η̇2

2

∂

∂y
(H − h)2 + η̇η

[
ẋ

∂

∂y

(
(H − h)

∂h

∂x

)

+ ẏ
∂

∂y

(
(H − h)

∂h

∂y

)]
+ f ẋ = − 1

ρ

∂p

∂y
+ gη

∂h

∂y
+ 1

ρ
q2 ·∇ ·J

dv3

dt
− η

[
ẋ2

(
∂h

∂x

)2

+ ẏ2

(
∂h

∂y

)2

+ 2ẋẏ
∂h

∂x

∂h

∂y

]

+ η̇

(
ẋ

∂h

∂x
+ ẏ

∂h

∂y

)
(H − h) = − 1

ρ

∂p

∂η
− g(H − h) + 1

ρ
q3 ·∇ ·J

with
d

dt
= ∂

∂t
+ vng

mn
∂

∂qm

(21.21)
and those in the contravariant form are given by

dẋ

dt
− f ẏ = − 1

ρ

∂p

∂x
− 1

ρ

(
η

H − h

∂h

∂x

)
∂p

∂η
+ 1

ρ
q1 ·∇ ·J

dẏ

dt
+ f ẋ = − 1

ρ

∂p

∂y
− 1

ρ

(
η

H − h

∂h

∂y

)
∂p

∂η
+ 1

ρ
q2 ·∇ ·J

dη̇

dt
− η

H − h

(
ẋ2 ∂2h

∂x2
+ ẏ2 ∂2h

∂y2
+ 2ẋẏ

∂2h

∂x ∂y

)

− 2 η̇

H − h

(
ẋ

∂h

∂x
+ ẏ

∂h

∂y

)
+ f η

H − h

(
ẋ

∂h

∂y
− ẏ

∂h

∂x

)

= − η

H − h

(
∂h

∂x

∂p

∂x
+ ∂h

∂y

∂p

∂y

)
− g

H − h
+ 1

ρ
q3 ·∇ ·J

− 1

(H − h)2

[
1 + η2

(
∂h

∂x

)2

+ η2

(
∂h

∂y

)2
]

∂p

∂η

with
d

dt
= ∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ η̇

∂

∂η

(21.22)
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It should be understood that η̇ is the vertical velocity of a point mass. Comparison
of (21.21) with (21.22) shows that the contravariant form has a less complicated
structure than the covariant form and, therefore, is easier to apply. It should also
be noted that the gradient of the geopotential does not appear in the horizontal
components of the contravariant system. The covariant system, however, does
contain contributions from the geopotential.

21.3 The continuity equation in the η system

The general form of the continuity equation (18.48) for rigid rotation is easily
adapted to the η system since the functional determinant has already been given by
(21.10). The following result is obtained:

dρ

dt
+ ρ

H − h

(
∂

∂x
[(H − h)ẋ] + ∂

∂y
[(H − h)ẏ] + ∂

∂η
[(H − h)η̇]

)
= 0 (21.23)

If covariant velocity components are desired in the continuity equation, we need
to substitute equation (21.11) into (21.23). This gives a very lengthy equation,
which will not be presented here.

In this chapter we have demonstrated that it is very easy to obtain the equation
of motion for a special coordinate system due to our knowledge of the general
equations for the covariant and contravariant forms given by (18.23), (18.25),
(18.33) and (18.34). It appears that Sommerville and Gal-Chen (1974) were the
first to introduce the orography following-coordinates giving the exact form of the
equation of motion. In this context we also recommend the important paper by
Gal-Chen and Sommerville (1975). Many other papers have followed. Very often
various approximations were used, such as forced orthogonalization. This can be
done quite simply by setting the off-diagonal elements in the metric tensors gij and
gij in (21.6) and (21.9) equal to zero.

21.4 Problems

21.1: Rewrite the first equation of (21.21) by using covariant velocity components.
To keep the analysis simple, simplify the metric tensor by a forced orthogonaliza-
tion.
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The stereographic system with a generalized vertical
coordinate

In the previous chapterwe introduced the vertical coordinate η to handle orographic
effects in mesoscale models. In the synoptic-scale models we are going to replace
the height coordinate zwhich extends to infinity by a generalized vertical coordinate
ξ . The introduction of ξ is motivated by the fact that we cannot integrate the
predictive equations using z as a vertical coordinate to infinitely large heights.
Replacing z by the atmospheric pressure p, for example, results in a finite range
of the vertical coordinate. We will see that another advantage of the (x, y, p)-
coordinate system is that the continuity equation is time-independent. There are
other specific coordinate systems that we are going to discuss. Therefore, it seems
of advantage to first set up the atmospheric equations in terms of the unspecified
generalized vertical coordinate ξ . Later we will specify ξ as desired. We wish to
point out that the introduction of the generalized coordinate is of advantage only if
the hydrostatic equation is a part of the atmospheric system.
We will briefly state the consequences of the transformation from the stereo-

graphic (x, y, z)-coordinate system to the stereographic (x, y, ξ )-coordinate sys-
tem, which henceforth will be called the ξ system.

(i) The hydrostatic approximation is not restricted to the hydrostatic equation itself but
enters implicitly into the horizontal equations of motion and the continuity equation.

(ii) The boundary conditions at the earth’s surface can be formulated rather easily. A
surface ξ = constant may be arranged in such a way that it coincides with the
orographic surface of the earth.

(iii) The infinite height range in the z-coordinate is usually replaced by a finite height
range in the ξ -coordinate. Large-scale models normally employ covariant and phys-
ical velocity measure numbers to formulate the equation of motion. For this reason
and to prevent the following chapters from becoming too lengthy, we will omit any
discussion of contravariant forms.Nevertheless, we have given a sufficient background
for any interested reader to formulate these by using the proper transformation rules.
Furthermore, we will neglect friction in the large-scale flow.
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22.1 The ξ transformation and resulting equations

As the original system we consider the orthogonal stereographic Cartesian system.
The uniqueness of the transformation between the (x, y, z)-systemand the (x, y, ξ )-
system is guaranteed by the requirement that ξ is a monotonically increasing or
decreasing function of z. Now the function z = z(x, y, ξ, t) represents the height
of the time-dependent ξ -surface. Although the original system is orthogonal, the
effect of the coordinate transformation is that the new system is not orthogonal. In
order to retain the convenience of the orthogonal systems we are forced to make
a simplifying assumption regarding the metric tensor. We assume that the height
of the ξ -surface is independent of the horizontal coordinates (x, y). We call this
assumption the second metric simplification since it is used only to find a simplified
form of the metric tensor. Hence, we have

z = z(ξ, t) =⇒ ż =
(
∂z

∂t

)
ξ

+
(
∂z

∂ξ

)
t

ξ̇ (22.1)

We obtain the metric tensor by replacing ż2 in the original system (20.34) with the
help of (22.1). The absolute kinetic energy is given by KA = K +KP with

K = 1
2

[
ẋ2 + ẏ2
m20

+
(
∂z

∂ξ

)2
t

ξ̇ 2

]

KP = �(xẏ − ẋy)
m20

+ (x
2 + y2)�2
2m20

+ 1
2

(
∂z

∂t

)2
ξ

+
(
∂z

∂t

)
ξ

(
∂z

∂ξ

)
t

ξ̇

(22.2)

from which we obtain the covariant form of the metric tensor according to

gij = ∂2KA

∂q̇i ∂q̇j
=⇒ g11 = 1

m20
, g22 = 1

m20
, g33 =

(
∂z

∂ξ

)2
t

, gij = 0, i �= j

(22.3)

Since all off-diagonal elements of gij are zero, we are dealing with an orthogonal
system as desired. What we have done, in fact, is implemented a forced orthog-
onalization of the metric tensor. Had we permitted the height z of the ξ -surface
to vary with the horizontal coordinates (x, y), every element gij would have been
nonzero.
As the next step we are going to obtain the components of the velocity vector vP

which can be split into the two velocity vectors v� and vD describing the rotation
of the earth and the deformation of the material surfaces on which the point P is
located. The componentsWi of vP can be found from

Wi = ∂KP

∂q̇i
=⇒ W1 = −�y

m20
, W2 = �x

m20
, W3 =

(
∂z

∂t

)
ξ

(
∂z

∂ξ

)
t

(22.4)
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Utilizing this information, the components of vP are given by

(W1
�
,W2
�
,W3
�
) =

(
−�y
m20
,
�x

m20
, 0

)
, (W 1

�
,W 2

�
,W 3

�
) = (−�y,�x, 0)

(W1
D
,W2
D
,W3
D
) =

(
0, 0,

(
∂z

∂t

)
ξ

(
∂z

∂ξ

)
t

)
, (W 1

D
,W 2

D
,W 3

D
) =

(
0, 0,−

(
∂ξ

∂t

)
z

)

(22.5)

From the contravariant measure numbers of the relative velocity (v1, v2, v3) =
(ẋ, ẏ, ξ̇ ) we obtain the covariant and physical measure numbers with the help of
(22.3) as

(v1, v2, v3) =
(
ẋ

m20
,
ẏ

m20
,

(
∂z

∂ξ

)2
t

ξ̇

)
, (u, v,w) =

(
ẋ

m0
,
ẏ

m0
,

(
∂z

∂ξ

)
t

ξ̇

)
(22.6)

Since the ξ system is deformational, in contrast to the Cartesian stereographic
system, we have to evaluate the general forms (18.23) (covariant) and (18.36)
(physical) of the equations of motion. From (22.5) it can be seen that only the third
component of the deformational velocity differs from zero. Furthermore, due to
the second metric simplificationW3

D
is independent of (x, y). As a consequence of

this we have, see (M5.48),

ωij
D

= 0, i, j = 1, 2, 3, ∂

∂x

(
v2D
2

)
= 0,

∂

∂y

(
v2D
2

)
= 0, ∂

∂t
W1
D

= 0, ∂

∂t
W2
D

= 0
(22.7)

The rotational tensor ωij
�
is identical with the corresponding tensor of the stereo-

graphic system and is given by (20.42). Comparison of (22.3) with (20.26) shows
that g11 and g22 are also identical in these two systems since we are using m = m0.
With this information the evaluation of (18.50) shows that the horizontal com-
ponents of the equations of motion in the ξ system are the same as those in the
Cartesian stereographic system. However, it should be observed that, in the ξ sys-
tem, all partial derivatives with respect to x, y, or t are taken at constant values
of ξ , in contrast to the stereographic coordinate system, in which the independent
variable z is held constant in these operations.
For the vertical component of the equation of motion we obtain from (18.23)

dv3

dt
− ξ̇ 2

2

∂

∂ξ

(
∂z

∂ξ

)2
t

+ ∂

∂t
W3
D

− 1
2

∂

∂ξ

[(
∂z

∂t

)2
ξ

(
∂z

∂ξ

)2
t

]
= − 1

ρ

∂p

∂ξ
− ∂φ

∂ξ
(22.8)
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Had we permitted the height z of the ξ -surface to vary with (x, y) then this equation
as well as the horizontal componentswould have assumed a very complicated form.
Even in the simplified form the left-hand side of (22.8) is difficult to evaluate.
In Section 2.3 we discussed the hydrostatic approximation and showed bymeans

of scale analysis that, for large-scale frictionless flow, the vertical equation of
motion may be realistically approximated by the hydrostatic equation. However,
for mesoscale motion the use of the hydrostatic equation is not permitted. We may
find the hydrostatic equation in terms of the generalized coordinate ξ from

∂p

∂z
= ∂p

∂ξ

∂ξ

∂z
= −gρ, ∂φ

∂ξ
= ∂φ

∂z

∂z

∂ξ
= g

∂z

∂ξ
=⇒ ∂p

∂ξ
= −ρ ∂φ

∂ξ
(22.9)

The same equation is obtained by setting the left-hand side of (22.8) equal to zero.
Assuming that we have hydrostatic conditions and frictionless flow, the covariant
form of the equations of motion in the ξ system may be written as

dv1

dt
+ v21 + v22

2

∂m20

∂x
− f v2 = − 1

ρ

∂p

∂x
− ∂φ

∂x

dv2

dt
+ v21 + v22

2

∂m20

∂y
+ f v1 = − 1

ρ

∂p

∂y
− ∂φ

∂y

0 = − 1
ρ

∂p

∂ξ
− ∂φ

∂ξ

with
d

dt
= ∂

∂t
+m20

(
v1
∂

∂x
+ v2 ∂

∂y

)
+ ξ̇ ∂

∂ξ

(22.10)

After substituting the identities u = m0v1 and v = m0v2 into (22.10), by obvious
steps we obtain the equations of motion in physical velocity components:

du

dt
+ v

(
v
∂m0

∂x
− u ∂m0

∂y

)
− f v = −m0

ρ

∂p

∂x
−m0 ∂φ

∂x

dv

dt
− u

(
v
∂m0

∂x
− u ∂m0

∂y

)
+ f u = −m0

ρ

∂p

∂y
−m0 ∂φ

∂y

0 = − 1
ρ

∂p

∂ξ
− ∂φ

∂ξ

with
d

dt
= ∂

∂t
+m0

(
u
∂

∂x
+ v ∂

∂y

)
+ ξ̇ ∂

∂ξ

(22.11)

As in the covariant case, the horizontal equations of motion agree with the corre-
sponding equations (20.48) of the stereographic (x, y, z) system. Recall, however,
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that all partial derivatives with respect to x, y, or t in (22.11) are calculated at
constant values of ξ .
Any realistic flow problem requires the involvement of the continuity equa-

tion, which will be derived next. The necessary prerequisite is knowledge of the
functional determinant whose elements were given in (22.3) so that

√
g = √|gij | = 1

m20

(
∂z

∂ξ

)
t

= 1

m20g

(
∂φ

∂ξ

)
t

= − 1

m20gρ

(
∂p

∂ξ

)
t

(22.12)

follows immediately. Since the density ρ is time-dependent, the functional deter-
minant

√
g is time-dependent also, so the last term in (18.47) does not vanish, that

is the ξ system is deformative. Rewriting (18.47) as

1

ρ
√
g

d

dt
(ρ

√
g)+ ∂q̇n

∂qn
= 0 (22.13)

yields the contravariant form of the continuity equation:

m20(
∂p
∂ξ

)
t

d

dt

[
1

m20

(
∂p

∂ξ

)
t

]
+ ∂ẋ

∂x
+ ∂ẏ

∂y
+ ∂ξ̇

∂ξ
= 0 (22.14)

With the help of (22.6) we obtain the covariant form

m20(
∂p
∂ξ

)
t

d

dt

[
1

m20

(
∂p

∂ξ

)
t

]
+ ∂

∂x

(
m20v1

) + ∂

∂y

(
m20v2

) + ∂ξ̇

∂ξ
= 0 (22.15)

and the form with physical velocity components

m20(
∂p
∂ξ

)
t

d

dt

[
1

m20

(
∂p

∂ξ

)
t

]
+ ∂

∂x
(m0u)+ ∂

∂y
(m0v)+ ∂ξ̇

∂ξ
= 0 (22.16)

For convenience the contravariant velocity component ξ̇ has been retained in the
latter two equations.
In order to solve atmospheric flow problems, it is sometimes of advantage

to combine the equation of motion and the continuity equation to give the so-
called stream-momentum form of the equation of motion. This form is obtained
by multiplying the covariant horizontal equations of motion by ∂p/∂ξ and the
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continuity equation by vk, k = 1, 2. Adding the resulting equations yields

∂

∂t

(
∂p

∂ξ
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∂x
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∂m20
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+ f ∂p
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v1 = − 1

ρ

∂p

∂ξ

∂p

∂y
− ∂p

∂ξ

∂φ
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(22.17)

22.2 The pressure system

For any practical applications we need to specify ξ in order to obtain various
prediction systems. In this section we choose p as the generalized vertical coor-
dinate and thus obtain the so-called pressure system or simply the p system. In
the following we will see that the atmospheric equations assume a simpler form
in the p system than they do in any other ξ system. Therefore, the p system is
often used for analytic and numerical studies. The (x, y, z)-coordinate system is a
right-handed system. For the (x, y, ξ )-coordinate system to be right-handed also,
the generalized coordinate ξ should also increase with height so that ξ = −p. It is
customary, however, to set ξ = p so that we may view this system as left-handed
since z and p increase in opposite directions. It can be shown that the resulting
equations of the p system are identical irrespective of whether we choose ξ = −p
or ξ = p. Therefore, we stick to the conventional notation and choose ξ = p.
It should be observed that the p system as used here was subjected to a forced
orthogonalization.
Since the pressure cannot vary along any constant-pressure surface, the covariant

form of the equations of motion (22.10) simplifies to

dv1

dt
+ v21 + v22

2

∂m20

∂x
− f v2 = −∂φ
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dv2

dt
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∂φ

∂p
= − 1

ρ
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d
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= ∂

∂t
+m20

(
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∂

∂x
+ v2 ∂

∂y

)
+ ω ∂

∂p

(22.18)
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whereω = dp/dt . The system (22.11) with physical velocity components assumes
the form

du

dt
+ v

(
v
∂m0

∂x
− u ∂m0

∂y

)
− f v = −m0 ∂φ

∂x

dv

dt
− u

(
v
∂m0

∂x
− u ∂m0

∂y

)
+ f u = −m0 ∂φ

∂y

∂φ

∂p
= − 1

ρ

with
d

dt
= ∂

∂t
+m0

(
u
∂

∂x
+ v ∂

∂y

)
+ ω ∂

∂p

(22.19)

No further comments are necessary. Likewise the continuity equations (22.15) and
(22.16) reduce to

m20

(
∂v1

∂x
+ ∂v2

∂y

)
+ ∂ω

∂p
= 0 (22.20)

and

m0

(
∂u

∂x
+ ∂v

∂y

)
+ ∂ω

∂p
−

(
u
∂m0

∂x
+ v ∂m0

∂y

)
= 0 (22.21)

From (22.6) we see that, for the special casem0 = 1, the contravariant velocities
(ẋ, ẏ), the covariant velocities (v1, v2), and the physical velocity components (u, v)
are identical. In this case the equations ofmotion and the continuity equation reduce
to

du

dt
− f v = −∂φ

∂x
dv

dt
+ f u = −∂φ

∂y

∂φ

∂p
= − 1

ρ

(22.22)

and
∂u

∂x
+ ∂v

∂y
+ ∂ω

∂p
= 0 (22.23)

describing the flow on the tangential plane.
The introduction of ξ = p causes the continuity equation to assume the form of

a diagnostic relation in which the time derivative does not appear explicitly. This
form of the continuity equation implies that the air behaves like an incompressible
fluid in the pressure system, as will be shown next. For simplicity let us assume
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Fig. 22.1 An example of mass flow and corresponding vertical displacement of isobars.
The initial pressure distribution is given by the dashed lines.

that m0 = 1 so that the motion takes place on the tangential plane. Let us consider
the mass M contained between the two constant-pressure surfaces p2 > p1. The
mass contained in a volume defined by an area S and p1 and p2 can easily be found
with the help of the hydrostatic equation and is given by

M =
∫ z2

z1

∫
S

ρ dx dy dz = −1
g

∫ z2

z1

∫
S

∂p

∂z
dx dy dz

= 1
g

∫ p2

p1

∫
S

dx dy dp = S(p2 − p1)
g

(22.24)

Since the pressure surfacesp1 and p2 are constant,M is also constant, so dM/dt =
0. Therefore, in a hydrostatic system using pressure as the vertical coordinate,
horizontal convergence must be compensated by vertical divergence or vice versa.
Figure 22.1 shows the vertical displacement of the isobars p1 = constant and p2 =
constant resulting from horizontal convergence and divergence.

22.3 The solution scheme using the pressure system

In this section we are going to solve in principle the predictive system consisting
of the equation of motion, the continuity equation, and the heat equation. In order
to reduce the problem to the simplest form possible, we assume that we have dry
adiabatic flow so that the heat equation reduces to a conservation equation for the
potential temperature θ :

dθ

dt
= 0 (22.25)
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The equation of state is always a part of the total atmospheric forecast system. For
dry air we have p = ρR0T .
Before we explain the numerical solution procedure we must set up the proper

boundary conditions. The lower boundary is the earth’s surface where the surface
pressure ps is observed. Since ps varies with the horizontal coordinates (x, y) and
with time t , we may think of the lower boundary as an oscillating pressure surface.
The upper boundary at p = 0 may be thought of as a rigid plane surface.
According to Section 9.4.3, the boundary conditions may be written in the

following form:

Lower boundary: p = ps(x, y, t),
dps

dt
= ωs

= ∂ps

∂t
+m20

(
v1,s

∂ps

∂x
+ v2,s ∂ps

∂y

)

Upper boundary: p = 0, ω(p = 0) = 0

(22.26)

It should be observed that, in the p system, the pressure surface p = ps(x, y, t)
coincides with the time-independent geopotential φ = φs(x, y) of the earth’s sur-
face. Hence, a variation in time of ps is equivalent to an apparent vertical displace-
ment of φs; see Figure 22.2. Owing to the vibrating lower boundary surface ps
external gravity waves are produced. This type of meteorological noise is particu-
larly undesirable from the numerical point of view.
We wish to demonstrate the principle of the integration over time of the atmo-

spheric system consisting of the covariant form of the equation of motion (22.18),
the continuity equation (22.20), the heat equation (22.25) for dry adiabatic pro-
cesses, and the equation of state. If we prefer to work with the physical velocity
components we may proceed analogously.

0, p = 0

0

0S S

SS �

�

�

� ≠

≠

ω
x,y

ps(x,y,t0), φs(x,y), ω ≠ 0

ps(x,y,t1), φs(x,y), ω ≠ 0

Fig. 22.2 The time dependency of the lower boundary p = ps(x, y, t) of the p system.
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22.3.1 Initial data

At the starting time t0 = 0 of the numerical integration we prescribe without any
restriction initial values of the prognostic variables ps and (v1, v2, θ) for 0 <
p < ps.

22.3.2 The diagnostic part

The hydrostatic equation and the continuity equation do not contain time deriva-
tives. Thus, they may be viewed as diagnostic relations or compatibility conditions.
With the help of the hydrostatic equation in the form

∂φ

∂p
= − 1

ρ
= −R0T

p
= −R0

p

(
p

p0

)k0
θ = − R0

p
k0
0

θ

p1−k0
, k0 = R0

cp,0
(22.27)

we find a suitable expression for the geopotential, given by

φ(x, y, p) = φs(x, y) + R0

p
k0
0

∫ ps

p

θ

p1−k0
dp (22.28)

The suffix 0 refers to dry air. The continuity equation (22.20) permits the calculation
of the generalized vertical velocity, yielding

ω(x, y, p) = −m20
∫ p

0

(
∂v1

∂x
+ ∂v2

∂y

)
dp (22.29)

In general, the integrals in (22.28) and (22.29) must be evaluated numerically.

22.3.3 The prognostic part

Let us assume that all required values of the variables φ and ω have been gener-
ated with the help of the initial data and the compatibility relations (22.28) and
(22.29). The local tendencies of v1, v2, and θ can be written down from (22.18) and
(22.25) by expanding the individual time derivative for each of these quantities.
The tendency of ps follows from (22.26). The complete set of prognostic equations
is summarized as
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∂v1

∂t
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v1
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+ v2 ∂v1
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2
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+ f v2 − ∂φ
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∂v2
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v1
∂v2

∂x
+ v2 ∂v2

∂y

)
− ω ∂v2

∂p
− v21 + v22

2

∂m20

∂y
− f v1 − ∂φ

∂y

∂θ

∂t
= −m20

(
v1
∂θ

∂x
+ v2 ∂θ

∂y

)
− ω ∂θ

∂p

∂ps

∂t
= −m20

(
v1,s

∂ps

∂x
+ v2,s ∂ps

∂y

)
+ ωs

(22.30)

The numerical integration is carried out by replacing the local time derivatives
by means of suitable finite-difference quotients. After the first time step (t , the
prognostic variables (v1, v2, θ, ps) are available at t1 = t0 + (t . They now serve
as initial values for the next time step as well as for the new evaluation of the
diagnostic equations. This iteration must be continued until the entire prognostic
period has been covered.
The integration which we have described in principle is the integration scheme

which was used by Richardson (1922). However, he did not get any useful results
because he employed time steps that were too large. The maximum allowable time
step (t is specified by the so-called Courant–Friedrichs–Lewy criterion, which
will be explained later. When Richardson performed the numerical integrations
this criterion was still unknown.

22.4 The solution to a simplified prediction problem

In this section we are going to discuss the solution of the atmospheric system by
employing simplified boundary conditions. The method we are going to describe
has been applied successfully by Hinkelmann (1959) and his research group to
solve for the first time the atmospheric equations in their primitive (original) form.
The historical aspect by itself would not be sufficient to justify the discussion.
What is more important to us is to show that the simplifying assumptions often
cannot be restricted to a certain part of the system. Consequences resulting from
the simplifying assumptions must be carefully analyzed since they may influence
the entire system.
In the previous section we did not place any restriction on the lower bound-

ary surface ps(x, y, t). This oscillating lower boundary pressure surface generates
external gravity waves whose appearance may obscure the Rossby physics. More-
over, due to the high phase speed of the gravity waves, see Chapters 15 and 16,
the integration scheme requires very short time steps. In order to suppress these



22.4 The solution to a simplified prediction problem 583

external gravity waves we assume that the lower pressure surface is fixed, say at
p0 = 1000 hPa so that the generalized velocity ω now vanishes not only at the
upper but also at the lower boundary. An immediate consequence of this assump-
tion is that the horizontal velocities v1 and v2 at time t0 = 0 cannot be prescribed
without any restrictions as before. By evaluating (22.29), which must be valid for
all times including t0 = 0, we find the following unavoidable restriction on the
velocity components: ∫ p0

0

(
∂v1

∂x
+ ∂v2

∂y

)
dp = 0 (22.31)

so that
∂

∂t

[∫ p0

0

(
∂v1

∂x
+ ∂v2

∂y

)
dp

]
= 0 (22.32)

Equation (22.32) provides a new boundary condition for the geopotentialφ since
(22.28) is no longer valid due to the modified upper limit of the integral. In order to
enforce the condition (22.32) we must employ the equation of motion. We use the
stream-momentum formulation of the equation of motion in the p system, which
is easily obtained from (22.17) as

∂v1

∂t
= −m20

(
∂

∂x

(
v21

) + ∂

∂y
(v1v2)

)
− ∂

∂p
(v1ω)− v21 + v22

2

∂m20

∂x
+ f v2 − ∂φ

∂x

∂v2

∂t
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(
∂

∂x
(v2v1)+ ∂

∂y

(
v22

)) − ∂

∂p
(v2ω)− v21 + v22

2

∂m20

∂y
− f v1 − ∂φ

∂y
(22.33)

To simplify the notation, we introduce the following abbreviations:

F1 = −m20
(
∂

∂x

(
v21

) + ∂

∂y
(v1v2)

)
− v21 + v22

2

∂m20

∂x
+ f v2

F2 = −m20
(
∂

∂x
(v2v1)+ ∂

∂y

(
v22

)) − v21 + v22
2

∂m20

∂y
− f v1

(22.34)

Substituting (22.34) into (22.33) yields

∂v1

∂t
= F1 − ∂

∂p
(v1ω)− ∂φ

∂x

∂v2

∂t
= F2 − ∂

∂p
(v2ω)− ∂φ

∂y

(22.35)

so (22.32) can be written as

∂

∂t

[∫ p0

0

(
∂v1

∂x
+ ∂v2

∂y

)
dp

]
=

∫ p0

0

(
∂F1

∂x
+ ∂F2

∂y

)
dp −

[
∂

∂x
(v1ω)+ ∂

∂y
(v2ω)

]p0
0

− ∇2h
∫ p0

0

φ dp = 0
(22.36)
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The second term on the right-hand side is zero due to the vanishing of generalized
velocities ω at the lower and upper boundaries of the model.
Next we introduce the vertical mean of the geopotential,

φ = 1

p0

∫ p0

0
φ dp (22.37)

into (22.36) and obtain

∇2hφ = 1

p0

∫ p0

0

(
∂F1

∂x
+ ∂F2

∂y

)
dp (22.38)

This Poisson-type equation is a balance equation for φ. Let us assume that proper
boundary conditions have been stated for φ and that (22.38) has been solved so
that φ(x, y) is a known quantity.
We will now integrate the hydrostatic equation (22.27) to find the geopotential

φ(x, y, p). Instead of (22.28) we now obtain

φ(x, y, p) = φ(x, y, p0)+ R0

p
k0
0

∫ p0

p

θ

p1−k0
dp (22.39)

where φ(x, y, p0) is still an unknown quantity for which we must find a suitable
expression. Integration of (22.37) by parts results in

φ(x, y) = φ(x, y, p0)− 1

p0

∫ p0

0
p
∂φ

∂p
dp (22.40)

By elimination of φ(x, y, p0) between the latter two equations and also using
(22.27), we find

φ(x, y, p) = φ(x, y) + R0

p
k0
0

(∫ p0

p

θ

p1−k0
dp −

∫ p0

0

pk0θ

p0
dp

)
(22.41)

which can be evaluated to give the geopotental at all required coordinates.
The prediction now follows the integration cycle of the previous section. The

tendencies of the quantities (v1, v2, θ) are taken from (22.30). The calculation of the
geopotential makes use of (22.41) thus guaranteeing that the boundary condition
(22.31) is satisfied.

22.5 The solution scheme with a normalized pressure coordinate

In this section we introduce the so-called σ system, which is defined by

ξ = p/ps = σ (22.42)
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This very useful coordinate transformation was introduced by Phillips (1957).
Since the vertical coordinate σ also decreases with height, the σ system is also
left-handed. The integration region is limited by σ = 0 and σ = 1. Thus, the
mountainous orographic surface of the earth φ = φs(x, y) coincides with the
surface of the constant vertical coordinate σ = 1 where p = ps. At the lower
and at the upper boundary the generalized velocity σ̇ = 0. This statement results
from the application of the kinematic boundary condition requiring that the normal
component of the velocity must be zero at the boundaries. It is this simple form
of the lower boundary condition that provides the advantage of the σ system over
the p system. It should be clearly understood that σ̇ is not zero because the
derivative of a constant is zero. If this were the reason for σ̇ vanishing at the
boundaries, the generalized vertical velocity would be zero everywhere. This is, of
course, not the case.
According to (22.10) the pressure gradient and the geopotential gradient must be

evaluated along constant σ -surfaces. Therefore, the horizontal pressure gradients
may be written as

1

ρ

∂p

∂x
= σ

ρ

∂ps

∂x
,

1

ρ

∂p

∂y
= σ

ρ

∂ps

∂y
(22.43)

The hydrostatic equation is given by

∂φ

∂σ
= ∂φ

∂p

∂p

∂σ
= −ps

ρ
= −R0T

σ
(22.44)

Therefore, the covariant equation of motion (22.10) assumes the form

dv1

dt
+ v21 + v22

2

∂m20

∂x
− f v2 = −σ

ρ

∂ps

∂x
− ∂φ

∂x

dv2

dt
+ v21 + v22

2

∂m20

∂y
+ f v1 = −σ

ρ

∂ps

∂y
− ∂φ

∂y

∂φ

∂σ
= −ps

ρ

with
d

dt
= ∂

∂t
+m20

(
v1
∂

∂x
+ v2 ∂

∂y

)
+ σ̇ ∂

∂σ

(22.45)

Note that the horizontal gradients of the geopotential do not vanish since they
have to be evaluated along surfaces with σ = constant. The continuity equation
is obtained from (22.15) simply by replacing the generalized coordinate ξ by σ .
After expanding the individual derivative and rearranging terms we find

∂ps

∂t
+m20

(
∂

∂x
(v1ps)+ ∂

∂y
(v2ps)

)
+ ∂

∂σ
(σ̇ ps) = 0 (22.46)
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Owing to the validity of the hydrostatic equation for all times, the atmospheric
fields φ and the unreduced surface pressure ps uniquely determine the atmospheric
mass field. We will now discuss the principle of the integration scheme.

22.5.1 Initial data

The geopotential of the earth’s surface φs = (x, y) and the map factor m0(x, y) are
considered known. Moreover, the Coriolis parameter f appears in the prognostic
system. Since the latitude ϕ does not enter explicitly, we must express the sinϕ
function by means of (20.29) so that the Coriolis parameter may be written as
f = f (x, y). The three quantities φs,m0, and f do not depend on time. For the
initial time t0 = 0, without any restriction, we prescribe the prognostic variables
ps at σ = 1 and (v1, v2, θ) for 0 ≤ σ ≤ 1.

22.5.2 The diagnostic part

By using the ideal-gas law and the potential-temperature formula, the hydrostatic
equation of the σ system can be rewritten as

∂φ

∂σ
= −R0T

σ
= −R0

(
ps

p0

)k0
σ k0−1θ (22.47)

Integration between the limits σ and 1 gives the geopotential

φ(x, y, σ ) = φs(x, y) + R0
(
ps

p0

)k0 ∫ 1

σ

(σ ′)k0−1θ dσ ′ (22.48)

Our next task is to find a suitable expression for the generalized vertical
velocity σ̇ . Integrating the continuity equation (22.46) between the limits σ = 0
and σ = 1 gives

∂ps

∂t
+m20

∂

∂x

(∫ 1

0
v1ps dσ

)
+m20

∂

∂y

(∫ 1

0
v2ps dσ

)
= 0 (22.49)

since σ̇ vanishes at the boundaries of the model.We now eliminate the surface pres-
sure tendency ∂ps/∂t between (22.46) and (22.49) and then integrate the resulting
equation between σ = 0 and σ . Recognizing that equation (22.49) is independent
of σ , we find

σ̇ =−m
2
0

ps

∫ σ

0

(
∂

∂x
(v1ps)+ ∂

∂y
(v2ps)

)
dσ + m

2
0σ

ps

∫ 1

0

(
∂

∂x
(v1ps)+ ∂

∂y
(v2ps)

)
dσ

(22.50)
Since (v1, v2, θ, ps) are known at t0, we may proceedwith the numerical integration
of (22.48) and of (22.50). Inspection of this equation shows that the condition σ̇ = 0
is satisfied at the lower and upper boundaries.
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22.5.3 The prognostic part

Using (22.49) and eliminating the density of the air, the prognostic set is given by

∂v1

∂t
= −m20

(
v1
∂v1

∂x
+ v2 ∂v1

∂y

)
−σ̇ ∂v1

∂σ
− v21 + v22

2

∂m20

∂x
+ f v2

− R0

ps

(
ps

p0

)k0
σ k0θ

∂ps

∂x
− ∂φ

∂x

∂v2

∂t
= −m20

(
v1
∂v2

∂x
+ v2 ∂v2

∂y

)
− σ̇ ∂v2

∂σ
− v21 + v22

2

∂m20

∂y
− f v1

− R0

ps

(
ps

p0

)k0
σ k0θ

∂ps

∂y
− ∂φ

∂y

∂θ

∂t
= −m20

(
v1
∂θ

∂x
+ v2 ∂θ

∂y

)
−σ̇ ∂θ

∂σ

∂ps

∂t
= −m20

∫ 1

0

(
∂

∂x
(v1ps)+ ∂

∂y
(v2ps)

)
dσ

(22.51)

The partial derivatives may now be replaced by suitable finite-difference formulas
and the iteration of this systemmay be started. Knowing (v1, v2, θ, ps) after the first
iteration step, new values of the diagnostic quantities φ and σ̇ can be determined
by means of (22.48) and (22.50). The iterations may be carried out in the same
manner as we have described for the p system.
Finally, we wish to remark that, so far, all tendencies appeared explicitly. By this

we mean that they are not embedded in differential operators. A consequence is that
an increasing resolution of the grid results only in a linear growth of the numerical
work. This is not the case in some other numerical schemes. The integration
principle we have described in this section was used for a considerable period of
time by the Weather Services of the USA and Germany.

22.6 The solution scheme with potential temperature as vertical coordinate

By selecting the potential temperature as the generalized vertical coordinate, often
called the isentropic vertical coordinate, we require that the potential temperature
is a monotonically increasing function. This requirement reflects the observed
large-scale conditions. Thus, we may write

ξ = θ, ξ̇ = θ̇ (22.52)

If the atmosphere were adiabatically stratified in a certain height interval, there
could be no unique attachment of a potential temperature to height coordinates.
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Using the potential-temperature formula, we find that the components of the
pressure gradients along isentropic surfaces are given by

− 1
ρ

∂p

∂x
= −cp,0 ∂T

∂x
, − 1

ρ

∂p

∂y
= −cp,0 ∂T

∂y
(22.53)

By introducing the so-calledMontgomery potential,

M = cp,0T + φ (22.54)

we may write for the right-hand sides of the horizontal equations of motion

− 1
ρ

∂p

∂x
− ∂φ

∂x
= −∂M

∂x
, − 1

ρ

∂p

∂y
− ∂φ

∂x
= −∂M

∂y
(22.55)

According to (22.9) the hydrostatic equation for the θ system is given by

− 1
ρ

∂p

∂θ
− ∂φ

∂θ
= cp,0

T

θ
− cp,0 ∂T

∂θ
− ∂φ

∂θ
= 0 (22.56)

Introduction of the Montgomery potential leads to the final form of the hydrostatic
equation:

∂M

∂θ
= cp,0

T

θ
(22.57)

An attractive feature of the θ system is that, for dry adiabaticmotion, the potential
temperature of each air parcel is conserved, so dθ/dt = θ̇ = 0. The predictive set
(22.10) can then be written as

∂v1

∂t
= −m20

(
v1
∂v1

∂x
+ v2 ∂v1

∂y

)
− v21 + v22

2

∂m20

∂x
+ f v2 − ∂M

∂x

∂v2

∂t
= −m20

(
v1
∂v2

∂x
+ v2 ∂v2

∂y

)
− v21 + v22

2

∂m20

∂y
− f v1 − ∂M

∂y

∂

∂t

(
∂p

∂θ

)
= −m20

[
∂

∂x

(
v1
∂p

∂θ

)
+ ∂

∂y

(
v2
∂p

∂θ

)]
(22.58)

The last expression is the continuity equation of the θ system.
The lower boundary condition on θ may be written as

dθs

dt
= ∂θs

∂t
+m20

(
v1,s

∂θs

∂x
+ v2,s ∂θs

∂y

)
= 0 (22.59)

With increasing height the potential temperature increases to infinity while the
pressure and density decrease to zero. By utilizing (22.56) the upper boundary
condition may be written as

lim
θ→∞
ρ→0

∂p

∂θ
= cp,0 lim

θ→∞
ρ→0

(
ρ
∂T

∂θ
− ρT

θ

)
= 0 (22.60)

where ∂T /∂θ is finite.
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In order to find the pressure tendency we integrate the continuity equation, i.e.
the last equation of (22.58), between θ and θ → ∞ and obtain with the help of the
Leibniz rule

∂p

∂t
= m20

(
∂

∂x

∫ ∞

θ

v1
∂p

∂θ ′ dθ
′ + ∂

∂y

∫ ∞

θ

v2
∂p

∂θ ′ dθ
′
)

(22.61)

For adiabatic flow the θ system has the decisive advantage that the vertical
velocity vanishes everywhere so that we are dealing with two-dimensional motion.
As soon as nonadiabatic effects must be taken into account this advantage is lost,
so the θ system is not used for routine numerical investigations. Therefore, we will
omit a detailed discussion of the integration cycle.
Finally, wewould like to remark that other generalized vertical coordinatesmight

be used, such as the density of the air. The theory for this system has been worked
out, but it has not yet found many important applications.

22.7 Problems

22.1: By a direct transformation obtain the first equation of (22.11) from the first
equation of (22.10). Compare your result with equation (20.48).

22.2: Show that equations (22.20) and (22.21) follow from (22.15) and (22.16).

22.3: Balloons drifting on surfaces of constant density could be used to collect
global atmospheric data. To utilize these data, we need a predictive system using
ρ as a vertical coordinate.
(a) Introduce the Montgomery potential for the ρ system N = R0T + φ to find
the horizontal equation of motion in terms of the covariant velocity components.
Obtain the hydrostatic equation. State the individual derivative d/dt for this system.
(b) Find the continuity equation.
(c) Formulate the upper and lower boundary conditions for the ρ system.
(d) Find an expression for the pressure tendency ∂p/∂t .

22.4: Consider an idealized atmosphere consisting of an incompressible friction-
less fluid with a free surface zH . Assuming that vh is independent of height, find a
prognostic equation for the free surface.

22.5: Consider the equation of motion for a frictionless fluid in Cartesian coordi-
nates (m0 = 1) in simplified form, i.e.

dvh
dt

∣∣∣
qi

= − 1
ρ

∇h,ξp − f k × vh − ∇h,ξ φ
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where ∇h,ξ is the horizontal nabla operator in the arbitrary ξ system. Show that, for
the σ system, we may write the equation of motion in the form

∂

∂t
(.vh)

∣∣∣
qi

+ ∇h,σ ·(.vhvh)+ ∂

∂σ
(.vhσ̇ )

= −∇h,σ (.φ)+ ∂

∂σ
(φσ )∇h,σ.−.f k × vh

where σ = p/ps and. = ps/p0.
22.6: With the help of the Leibniz rule, verify equation (22.61).

22.7: Verify equation (22.46).
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A quasi-geostrophic baroclinic model

23.1 Introduction

So far we have treated the so-called primitive equations of baroclinic systems
which, in addition to typical meteorological effects, automatically include horizon-
tally propagating sound waves as well as external and internal gravity waves. These
waves produce high-frequency oscillations in the numerical solutions of the baro-
clinic systems, which are of no interest to the meteorologist. Thus, the tendencies
of the various field variables are representative only of small time intervals of the
order of minutes while the predicted weather tendencies should be representative
of much longer time intervals.

In order to obtain meteorologically significant tendencies we are going to elim-
inate the meteorological noise from the primitive equations b y modifying the
predictive system so that a longer time step in the numerical solution becomes
possible. We recall that the vertically propagating sound waves are no longer a
part of the solution since they are removed by the hydrostatic approximation. The
noise filtering is accomplished by a diagnostic coupling of the horizontal wind field
and the mass field while in reality at a given time these fields are independent of
each other. The simplest coupling of the wind and mass field is the geostrophic
wind relation. The mathematical systems resulting from the artificial inclusion of
filter conditions are called quasi-geostrophic systems or, more generally, filtered
systems. For such systems at the initial time t0 = 0 only one variable, usually the
geopotential, is specified without any restriction. The remaining dependent vari-
ables, for a given time, result from the employment of compatibility conditions
with the geopotential, which is known as diagnostic coupling.

For reasons of expediencywe select thep system. Since we are interested only in
a qualitative discussion of the large-scale motion rather than in actual weather fore-
casts, we simply describe the flow on the tangential plane by setting the map factor
m0 = 1. This eliminates a number of terms and simplifies our work. The theory

591
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which will be presented in the following sections is indispensable for compre-
hending in some depth large-scale atmospheric motion and some of the problems
associatedwithweather prediction. The actualweather prediction is carried outwith
the help of the primitive equations in some modification using adjusted and com-
patible initial fields. In contrast to this, some drastic modifications are required in
order to obtain the quasi-geostrophic system. However, the advantage of the quasi-
geostrophic system is that the resulting mathematical system is simple enough to
promote the physical interpretation of the motion field. Moreover, we learn that
approximations have to be applied with great care, otherwise inconsistencies may
result, such as increases of the potential and kinetic energy at the same time.

We will now introduce and discuss in some detail the quasi-gestrophic theory,
which is based on suitable modifications of the first law of thermodynamics and
of the baroclinic vorticity equation. It will also be shown that the ageostrophic
approximation of the wind field due to Philipps (1939) is a very useful tool for
verifying some of the results of this theory. Numerous authors have contributed
to the development of the quasi-geostrophic theory. The first group of important
contributions includes the pioneering work of Charney (1947), Eady (1949), and
Phillips (1956).

23.2 The first law of thermodynamics in various forms

We begin our work by writing the heat equation in the form

ρcp
dT

dt
− dp

dt
= ρ

d q

dt
(23.1)

where the term ρd q/dt includes all heat sources such as radiation, heat conduction,
turbulent heat transport, phase changes of the water substance, and friction if the
equations to be considered represent the mean atmospheric motion. This equation
may also be expressed in terms of the potential temperature as

d ln θ

dt
= 1

cpT

d q

dt
(23.2)

It is customary to introduce the static stability σ0 which, according to (16.30), is
given by

σ0 = − 1

ρ

∂ ln θ

∂p
= R0

p

(
R0T

cpp
− ∂T

∂p

)
= R2

0T

gp2
(� − γ ) (23.3)

Here � and γ are, respectively, the dry adiabatic and the actually observed geo-
metric lapse rates. Expansion of (23.1) gives the form

∂T

∂t
+ vh · ∇hT + ω

(
∂T

∂p
− R0T

cpp

)
= 1

cp

d q

dt
(23.4)
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from which it follows that

∂T

∂t
+ vh · ∇hT − pσ0ω

R0
= 1

cp

d q

dt
(23.5)

due to the introduction of the static stability by means of (23.3). Expanding (23.2)
results in

∂ ln θ

∂t
+ vh · ∇h ln θ + ω

∂ ln θ

∂p
= 1

cpT

d q

dt
(23.6)

or, using the static stability, we find

∂ ln θ

∂t
+ vh · ∇h ln θ − ρσ0ω = 1

cpT

d q

dt
(23.7)

Finally, we will write the heat equation in a form involving the geopotential φ.
From the hydrostatic equation we first find

∂φ

∂p
= − 1

ρ
= −R0T

p
=⇒ T = − p

R0

∂φ

∂p
(23.8)

Remembering that all equations refer to the p system, we obtain from (23.5) after
a few easy steps the expression

∂

∂t

(
∂φ

∂p

)
+ vh · ∇h

(
∂φ

∂p

)
+ σ0ω = − R0

cpp

d q

dt
with σ0 = ∂2φ

∂p2
+ cv

cpp

∂φ

∂p

(23.9)
The latter form of σ0 follows from substituting (23.8) into (23.3) withR0 = cp−cv.

The physical interpretation of the heat equation is quite simple. The first term
of equation (23.5) describes the temperature tendency, the second term expresses
the change in temperature due to horizontal advection, and the third term describes
convective processes or changes in temperature due to anisobaric vertical motion.
The term d q/dt has already been explained above. Corresponding explanations
apply to equations (23.7) and (23.9).

23.4 The vorticity and the divergence equation

In order to eliminate the meteorological noise, it is convenient to employ the
baroclinic vorticity equation instead of the horizontal equation of motion itself.
The vorticity equation is a scalar equation and, therefore, cannot be equivalent to
the horizontal equation of motion, which is a vector equation. To express complete
equivalence to the equation of horizontal motion we must also add the baroclinic
divergence equation. A comparison of the filtered system with the exact system is
facilitated by applying the unfiltered vorticity and divergence equations instead of
employing the equivalent equation of horizontal motion itself.
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To begin with, we repeat the baroclinic vorticity equation (10.77) for the p

system, which, in its modified form, is one of the basic equations of the quasi-
geostrophic theory. Suppressing for convenience the suffix p and using the conti-
nuity equation (22.23), we find

∂η

∂t
+ vh · ∇hη+ η∇h · vh +ω

∂η

∂p
+k ·

(
∇hω × ∂vh

∂p

)
= 0

I II III IV V
(23.10)

where η = k · ∇h × vh + f is the absolute vorticity. This is the baroclinic vorticity
equation in the unfiltered form. Terms I, II, III, and IV can be easily interpreted but
term V is more difficult to comprehend. Term I stands for the local change of either
the absolute or the relative vorticity, term II represents the horizontal advection
of the absolute vorticity, term III describes the divergence or convergence of the
horizontal velocity, and convective processes are expressedby term IV. The twisting
term V, also called the tipping or the tilting term, implies that, due to rotational
motion, the vertical component of the vector ∇ × v, i.e. the relative vorticity
ζ = k · ∇ × v = k · ∇h × vh, increases at the expense of the horizontal component
of the vector ∇ × v which is represented by the vertical shear k × ∂v/∂p.

The expansion of the twisting term results in

k ·
(

∇hω × ∂vh

∂p

)
= ∂ω

∂x

∂v

∂p
− ∂ω

∂y

∂u

∂p
(23.11)

In order to better understand the meteorological significance of the twisting term,
we will consider the simplified physical situation shown in the upper part of
Figure 23.1. At the point A the upward transport of low v values from lower layers
will produce a local decrease of v with time, whereas at point B high v values of
upper layers are transported downward, yielding a local increase of v with time.
From (23.10) and (23.11) we see that, in this particular situation, the local change
with time of the vorticity resulting from the twisting term is positive, as indicated
in the lower part of the figure.

The baroclinic divergence equation, which is not yet at our disposal, will now be
derived. For the barotropic system the divergence equation (15.63) was obtained
from the horizontal equation of motion (15.21). The baroclinic form of the hori-
zontal equation of motion in the p system formally differs from (15.21) only by
virtue of the vertical advection term ω∂/∂p which appears in the expansion of the
individual time derivative. This fact permits a shortcut in the derivation. We simply
take the divergence of this term,

∇h ·
(
ω
∂vh

∂p

)
= ω

∂D

∂p
+ ∇hω · ∂vh

∂p
with D = ∇h · vh (23.12)
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Fig. 23.1 Interpretation of the twisting term.

and then add the result to equation (15.63). This gives the baroclinic divergence
equation

∂D

∂t
+ vh · ∇hD +D2 + ω

∂D

∂p
+ ∇hω · ∂vh

∂p
+ 2J (v, u)

− k · [∇h × (f vh)
] = −∇2

hφ

(23.13)

which will be used later. Once again, we consider equations (23.10) and (23.13) to
be equivalent to the horizontal equation of motion.

23.5 The first and second filter conditions

As in Section 22.4 we introduce an artificial boundary condition by replacing the
lower boundary by a rigid surface p = p0 = 1000 hPa. This results in the first filter
condition (22.31), which is not repeated here. Since we are studying the flow on the
tangential plane, i.e.m0 = 1, we conclude that the covariant velocities v1 and v2 are
identical with the physical velocity components u and v. As discussed previously,
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the lower rigid boundary eliminates external gravity waves, which would form if
the lower boundary were free to oscillate. The first filter condition states that, at the
initial time t0 = 0, the horizontal velocity components (u, v) cannot be prescribed
without any restriction, but rather must obey the condition (22.31). We will now
introduce the second filter condition to eliminate horizontal sound waves, internal
gravity waves, and possibly inertial waves characterized by the frequency f/k. We
proceed as follows.

With the help of the continuity equation of the p system (22.23) we replace the
horizontal divergence ∇h · vh in term III of the unfiltered vorticity equation (23.10)
by −∂ω/∂p. In the remaining terms the wind is assumed to be nondivergent so that
vh may be expressed by a stream function:

vh = k × ∇hψ, u = −∂ψ

∂y
, v = ∂ψ

∂x
(23.14)

Since the divergence term is exempted from the filtering process we speak of
selective filtering. On specifying the stream function as

ψ = φ/f0 (23.15)

we see that the horizontal wind is very similar to the geostrophic wind. The only
difference is that the Coriolis parameter f occurring in the definition of vg has been
replaced by the constant f0 representing an area average of the Coriolis parameter.

We have shown in (6.12) that the horizontal wind may be decomposed as

vh = k × ∇hψ + ∇hχ (23.16)

These two components represent the rotational part and the divergence part of the
wind field.We might proceedby introducing equation (23.16) into the heat equation
and the vorticity equation and then set ψ = φ/f0. This unselective filtering results
in a less drastic simplification of the physics but in more complicated equations.
For simplicity we will restrict ourselves to a model based on selective filtering.

In order to preserve important integral properties (averages expressed by inte-
grals) of the filtered system, it is necessary to introduce additional modifications
and simplifications into the predictive equations. We will now discuss in detail the
filtering of the heat equation and the vorticity equation. The introduction of the
stream function (23.15) into (23.14) results in a nondivergent wind, which we will
call the geostrophic wind. The vorticity resulting from the geostrophic wind will
be called the geostrophic vorticity:

vg = 1

f0
k × ∇hφ, ∇h · vg = 0, ζg = k · ∇h × vg = 1

f0
∇2

hφ (23.17)
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Moreover,we require that the advection is replaced by the geostrophic advection.
If B represents a general field function then the geostrophic advection is given by

vg · ∇hB = − 1

f0

∂φ

∂y

∂B

∂x
+ 1

f0

∂φ

∂x

∂B

∂y
= 1

f0
J (φ,B) = J (ψ,B) (23.18)

where the Jacobian has been introduced for brevity.

23.6 The geostrophic approximation of the heat equation

For simplicity we assume that we have adiabatic conditions so that the right-hand
side of (23.9) vanishes. Geostrophic filtering requires the replacement of the actual
horizontal wind by the geostrophic wind. Thus, the filtered heat equation is given
by

∂

∂t

(
∂φ

∂p

)
+ 1

f0
J

(
φ,

∂φ

∂p

)
= −σ 0ω (23.19)

In this equation we have replaced the static stability σ0(x, y, p, t) by its horizontal
averageσ 0(p, t). This has been done in order to preserve some integral properties of
the predictive system. Integral properties of the system are characteristic features
that are obtained if we average the model equations over a certain atmospheric
region.

A detailed but qualitative justification for the introduction of σ 0 into (23.19)
will now be given. To facilitate the discussion we employ the unfiltered heat
equation in the temperature form (23.5), assuming thatwe have adiabatic conditions
for consistency. Thus, we obtain

∂T

∂t
+ ∇h · (vhT ) = T ∇h · vh + p

R0
σ0ω (23.20a)

The filtered heat equation is found by introducing the divergence-free geostrophic
wind (23.17) into the previous equation:

∂T

∂t
+ ∇h · (vgT ) = p

R0
σ0ω (23.20b)

By means of the integral operator

B = 1

A

∫
A

Bdx dy (23.21)

we introduce the average of the arbitrary field function B over the horizontal area
A which is a part of a pressure surface. The very small inclination of A relative
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to the (x, y)-plane has been ignored. Thus, the average horizontal divergence is
defined by

∇h · vh = 1

A

∫
A

∇h · vh dxdy = 1

A

∮
�A

vh · ds, ds = dr × k (23.22a)

where we have used the two-dimensional divergence theorem (M6.34). Here ds is a
vector line element perpendicular to �A. Assuming that we have vanishing normal
components of the horizontal and the geostrophic wind vector along the boundary
of A, the average divergence is zero. If ds is normalized then vh · ds is the normal
component of vh on �A. As an example, we choose A as a rectangle with sides
parallel to the coordinate axis. Then we obtain

∇h · vh = 1

A

∮
�A

(udy − v dx) = 0, ∇h · Bvh = 0, ∇h · Bvg = 0

(23.22b)
This type of situation occurs if A comprises a region with a periodic continuation
of the wind field. Had we taken the average over a pressure surface enclosing the
earth, we would have obtained the same result since a spherical surface has no
boundary.

We will now apply the averaging formula (23.21) to the unfiltered and filtered
forms of the heat equation, (23.20a) and (23.20b). Since the divergence terms
vanish, we find for the unfiltered system

∂T

∂t
= TD + p

R0
σ0ω (23.23a)

and for the filtered system
∂T

∂t
= p

R0
σ0ω (23.23b)

The two systems differ by the term TD = T∇h · vh. As the next step we will
qualitatively estimate the effect produced by the term TD by considering the cor-
relations between T and D = ∇h · vh for a development situation characterized by
intensifying cyclones and anticyclones.

We proceed by dividing the atmosphere into an upper and a lower section. The
separating pressure surface plnd is placed at the level of nondivergence, which is
usually located between the 500- and 600-hPa pressure surfaces. Hence, we have
D(plnd) = 0. Above or below plnd we assume that the sign of D is uniform in each
subregion. In the real atmosphere more than one pressure level plnd may occur.

Figure 23.2 depicts the qualitative behaviors of the variables (D,T,ω, σ0) in
the subregions of rising and sinking air within the developing region A. At any
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p = 0

p
lnd

p = p0g

Fig. 23.2 Behaviors of variables in the subregions of rising and sinking air within the
developing region A.

height the horizontal average values of the variables within A are (D,T ,ω, σ 0)
while the deviations from the average values are denoted by (D′, T ′, ω′, σ ′

0). For
any pair of these variables the correlation product is ψχ = ψ χ + ψ ′χ ′ with
ψ = ψ + ψ ′, χ = χ + χ ′, and ψ,χ = T,D,ω, σ0. Since D = 0 and ω = 0 we
have D′ = D and ω′ = ω. The signs of D and ω in the subregions of rising and
sinking air follow immediately from the assumed directions of flow indicated in
the figure. In the subregion of sinking air motion we expect colder temperatures
than the average temperature of the entire region A so that there T < T or T ′< 0.
In the subregion of rising air the opposite situation is observed, that is T ′ > 0. Note
that T ′ is a temperature difference. Since D = 0 we obtain TD = T ′D′ = T ′D.
Analogously, due to ω = 0 we have T ω = T ′ω′ = T ′ω and σ0ω = σ ′

0ω
′ = σ ′

0ω.
Let us consider the upper section of the atmosphere. In the upper subregion of

sinking air we see that D < 0 and T ′ < 0 so that in this subregion the correlation
product TD is positive. In the upper subregion of rising air we haveD>0 and T ′>0
so that there the correlation is also greater than zero. This means that, throughout
the upper section of the atmosphere, the correlation of temperature and divergence
is TD > 0. We proceed similarly with the lower section and with the remaining
variables.
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p = 0

p = p0

Fig. 23.3 Changes of the atmospheric stability σ0 in the subregions of rising and sinking
air within the developing regionA. Full curves: initial temperature profiles; dashed curves:
modified temperature profiles after vertical motion.

To study the correlation between the static stability σ0 and the vertical velocity
ω in the subregions of rising and sinking air, we refer to Figure 23.3. Assuming
that T < T in the left section of the developing region and T > T in the right
section we obtain sinking and rising air motion as discussed for Figure 23.2.
At the upper and lower boundaries of the atmosphereω vanishes, so the temperature
remains constant there. Obviously, sinking air motion results in dry adiabatic
heating whereas rising air motion causes dry adiabatic cooling. The maximum
change in temperature is expected at the level of nondivergence where the vertical
velocity is largest. According to (23.3) σ0 ∝� − γ , so the relation between σ0

and σ 0 shown in Figure 23.3 is easily verified. This yields the σ ′
0 distribution

shown in Figure 23.2 and therefore the correlations σ0ω < 0 in the upper section
and σ0ω > 0 in the lower section of the atmosphere. In summary we expect the
following correlations:

p < plnd: TD > 0, σ0ω < 0, T ω < 0

p > plnd: TD < 0, σ0ω > 0, T ω < 0
(23.24)

Before continuing our discussion of the correlations it will be helpful to make the
following observations.
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(i) Assuming the validity of the hydrostatic equation, it is shown in textbooks on thermo-
dynamics that the internal and the potential energy in an air column always change
in the same sense. Thus, for a qualitative discussion we do not need to consider the
internal energy separately.

(ii) In case of an atmospheric development the average kinetic energy in region A must
increase. This occurs at the expense of the potential and the internal energy. Owing
to the rising warm air and the sinking cold air, the center of mass of the system must
decrease in height. At the end of this section we will verify mathematically that the
negative correlation T ω < 0 is consistent with an increase of the average kinetic
energy.

From the correlations (23.24) we conclude that, in the developing stage of region
A in the upper and in the lower section, the two terms on the right-hand side of
(23.23a) have opposite effects. The term TD results in heating of the upper section
(p < plnd) and cooling of the lower section of the atmosphere.Owing to the thermal
rearrangement, we conclude from equations (23.23a) and (23.24) that

∣∣TD∣∣ > p

R0
|σ0ω| (23.25)

Owing to the geostrophic approximation, in the averaged filtered equation
(23.23b) the term TD has disappeared. Since (p/R)σ0ω has an effect opposite
to that of (p/R)σ0ω + TD, it then follows from (23.23a) and (23.23b) that the
changes in temperature in the filtered and unfiltered systems take place in opposite
directions.

In order to improve the energy balance of the filtered system, it seems logical to
omit not only TD in order to preserve integral properties, but also the less effective
term (p/R)σ0ω in (23.23b). This term drops out on replacing the static stability
σ0(x, y, p, t) by an average value σ 0(p, t), so

σ 0ω = σ 0ω = 0 (23.26)

This is the reason why σ 0 was introduced into equation (23.19). Owing to this
treatment the energy balance will certainly not be corrected but now the unphysical
simultaneous increase of potential and kinetic energy is no longer possible.

We now want to show that the average kinetic energy in the developing region
does indeed increase with time as required by the correlation product (23.24).
We first obtain a prognostic equation for the kinetic energy of horizontal motion
Kh = v2

h/2. In vector form the horizontal equation of motion is given by

∂vh

∂t
+ vh · ∇hvh + ω

∂vh

∂p
+ f k × vh = −∇hφ (23.27)
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Scalar multiplication of this equation by the horizontal velocity vh results in

∂Kh

∂t
+ vh · ∇hKh + ω

∂Kh

∂p
= −vh · ∇hφ (23.28)

Owing to the continuity equation (22.23) we find the equivalent form

∂Kh

∂t
+ ∇h · (vhKh) + ∂

∂p
(ωKh) = −∇h · (vhφ) + φ ∇h · vh (23.29)

Since we are dealing with a developing region that is assumed to extend from the
bottom to the top of the model atmosphere, we are motivated to introduce a volume
average by means of

B
V = 1

Ap0

∫ p0

0

∫
A

B dx dy dp (23.30)

Here B, as before, represents an arbitrary field function. The normal velocity van-
ishes at the boundaries of V since we are dealing with a closed system. Application
of (23.30) to (23.29) immediately yields

∂Kh
V

∂t
= φ ∇h · vh

V
(23.31)

Here we have used (23.22b) and the lower and upper boundary conditions with
ω = 0 at p = 0 and p = p0. With the help of the continuity equation and with
(23.8), the right-hand side of (23.31) can easily be rewritten as

φ ∇h · vh
V = − ∂

∂p
(ωφ)

V

+ ω
∂φ

∂p

V

= −R0
T ω

p

V

(23.32)

so the volume average of the kinetic energy may be stated in the form

∂Kh
V

∂t
= −R0

T ω

p

V

(23.33)

Hence, if we require an increase in the kinetic energyK
V

h , the vertical velocity and
the temperature T must be negatively correlated everywhere in the atmosphere.
Reference to (23.24) shows that this requirement is precisely satisfied.
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23.7 The geostrophic approximation of the vorticity equation

In this section we derive a simplified form of the vorticity equation, which will
be used in the quasi-geostrophic system. To begin with, we rewrite the baroclinic
vorticity equation (23.10) by replacing the divergence term with the help of the
continuity equation,

∂ζ

∂t
+ vh · ∇hη + ω

∂ζ

∂p
+ k ·

(
∇hω × ∂vh

∂p

)
= η

∂ω

∂p
(23.34)

which may also be written in the equivalent form

∂ζ

∂t
+ ∇h ·

(
ηvh + ω

∂vh

∂p
× k

)
= 0 (23.35)

Thus, the tendency of the vorticity can be expressed as the divergence of two
vectors. We wish to retain this form in the quasi-geostrophic theory. In analogy to
(23.34) the selective geostrophic approximation of the vorticity equation can be
written as

∂ζg

∂t
+ vg · ∇hηg + ω

∂ζg

∂p
+ k ·

(
∇hω × ∂vg

∂p

)
= ηg

∂ω

∂p
(23.36)

It should be observed that ∂ω/∂p appearing on the right-hand side of this equation
is equivalent to −∇ · vh, so the actual horizontal wind velocity is retained in this
term while everywhere else it is replaced by the geostrophic wind. This is the
reason why we speak of a selective geostrophic approximation.

We will now discuss the selective or quasi-geostrophic approximation of the vor-
ticity equation. According to (23.22b) there exists the following integral property
for the unfiltered system:

∇h · (ηvh) = vh · ∇hη + η∇h · vh = 0 (23.37)

We wish to retain this integral property even after the introduction of the geostrophic
approximation

vh · ∇hη → vg · ∇hηg, η∇h · vh → −ηg
∂ω

∂p
(23.38)

While the first expression of (23.38) is already zero since vg · ∇hηg = ∇h · (vgηg) =
0, the second expression does not vanish. However, this expression will also be
zero if we replace ηg by a constant value. To preserve the integral property (23.37)
in the filtered system, we neglect ζg in the expression for the absolute geostrophic
vorticity ηg = ζg + f and replace f by the constant Coriolis parameter f0. Under
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typical midlatitude atmospheric conditions ζg < f . Now we obtain for the second
expression of (23.38)

η∇h · vh → −ηg
∂ω

∂p
= −(ζg + f )

∂ω

∂p
≈ −f0

∂ω

∂p
= f0 ∇h · vh = 0 (23.39)

Hence, we also retain the integral property (23.37) in the filtered system.
Owing to the approximation (23.39) the term ζg ∂ω/∂p will be ignored on the

right-hand side of (23.36). Let us now investigate the importance of the term
ω ∂ζg/∂p. Introducing the vertical average over the model atmosphere according
to

B
p = 1

p0

∫ p0

0

B dp (23.40)

we obtain
∂

∂p
(ωζg)

p

= 1

p0

∫ p0

0

∂

∂p
(ωζg) dp = 0 (23.41)

since the vertical velocity vanishes at the boundaries of the atmosphere. As a
consequence of this we have

∣∣∣∣∣ω
∂ζg

∂p

p
∣∣∣∣∣ =

∣∣∣∣∣ζg
∂ω

∂p

p
∣∣∣∣∣ (23.42)

Hence, on average, the term ω ∂ζg/∂p is of the same order of magnitude as the
term ζg ∂ω/∂p. Since the term ζg ∂ω/∂p has been neglected in (23.36), it seems
logical to ignore the term ω ∂ζg/∂p on the left-hand side of this equation as well.

Finally we observe that the termω∂ζg/∂p plus the twisting term can be combined
to give a divergence expression:

ω
∂ζg

∂p
+ k ·

(
∇hω × ∂vg

∂p

)
= ∇h ·

(
ω
∂vg

∂p
× k

)
(23.43)

Obviously, without the omitted term we cannot obtain a divergence expression
for the tendency of the geostrophic vorticity. Thus, it stands to reason that we
should omit the twisting term in (23.36) as well. This simplification is also justified
because, in large-scale flow fields, ∇hω is usually small in comparison with the
remaining terms of the vorticity equation.

On introducing these simplifications into (23.36)we obtain the quasi-geostrophic
approximation of the vorticity equation as

∂ζg

∂t
+ vg · ∇hηg = f0

∂ω

∂p
(23.44)
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which, in analogy to (23.35), can be written in the desired divergence form

∂ζg

∂t
+ ∇h · (ηgvg + f0vh) = 0 (23.45)

Utilizing (23.17) and (23.18), we may also write (23.44) as

∂

∂t

(∇2
hφ

) + 1

f0
J
(
φ,∇2

hφ
) + β

∂φ

∂x
= f 2

0

∂ω

∂p
(23.46)

In order to give a simple physical interpretion of the vorticity equation, we
integrate (23.44) over the depth of the atmosphere from p = 0 to p = p0.
Observing that the generalized vertical velocity vanishes at the lower and the upper
boundaries of the model, we obtain the following tendency equation:

∂ζg
p

∂t
= −vg · ∇h(ζg + f )

p
(23.47)

This equation shows that, within the validity of the quasi-geostrophic theory, the
change with time of the vertical average of the geostrophic vorticity in the p system
depends solely on the horizontal advection of the absolute vorticity. Amore detailed
physical interpretation will be given later.

It should be realized that the derivation of the divergence form of the vorticity
equation in the geostrophic approximation results in a severe reduction of physical
significance in comparison with the original equation. We will show at the end of
this chapter that the quasi-geostrophic approximation of the vorticity equation and
other results of the quasi-geostrophic theory can be easily derived with the help of
the ageostrophic wind approximation of Philipps (1939).

The heat equation (23.19) and the geostrophic vorticity equation (23.44) form
the basis of the entire quasi-geostrophic theory. Both equations result from a drastic
simplification of the original equations. In particular, the geostrophic approxima-
tions of the horizontal wind in the advection terms vh · ∇hT and vh · ∇hη make
it impossible to realistically predict such processes as occlusion and frontogene-
sis and to form precise energy balances. However, it is possible to improve the
theory.

23.8 The ω equation

The heat equation, the vorticity equation, and the divergence equation require
knowledge of the vertical velocity ω. The integration of the continuity equation in
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the p system appears to give the required information:

ω = −
∫ p

0
∇h · vh dp (23.48)

However, routine measurements of the horizontal wind field are not sufficiently
accurate to determine the divergence ∇h · vh, so this equation is unsuitable for
finding ω. Thus, we have to look for a more powerful method to determine ω.

We proceed by eliminating the tendency ∂φ/∂t from the vorticity equation
(23.46) and from the heat equation in the form (23.19). This is accomplished by
the following mathematical operations. (1) We differentiate the vorticity equation
with respect to p. (2) We apply the horizontal Laplacian to the heat equation.
(3) We subtract one of the resulting equations from the other and find

σ 0 ∇2
hω + f 2

0

∂2ω

∂p2
= ∂

∂p

[
J

(
φ,

∇2
hφ

f0

)]
+ β

∂2φ

∂x ∂p
− 1

f0
∇2

h

[
J

(
φ,

∂φ

∂p

)]

= f0
∂

∂p
(vg · ∇hηg) − ∇2

h

(
vg · ∇h

∂φ

∂p

)

(23.49)

This equation is known as the ω equation. For large-scale motion the stability
function σ 0 > 0, so we are dealing with a partial differential equation of the el-
liptic type. Thus, we are confronted with a boundary-value problem permitting
us to find ω if the geopotential field φ(x, y, p, t = constant) is known at a fixed
time. Textbooks on numerical analysis discuss the numerical procedures to be
used. In earlier days this equation closed a gap in routine weather observations,
which even today do not report the vertical velocity field. The mass field, repre-
sented by the geopotential, is measured relatively accurately. It is a simple matter
to find the geostrophic wind from the geopotential field, but it requires quite a
bit of numerical work to find the generalized vertical velocity from the ω equa-
tion. Sometimes the ω equation is called the geostrophic relation for the vertical
wind.

It should be observed that the so-called τ equation is equivalent to theω equation.
By eliminating ω from the vorticity and the heat equation we find a second-
order partial differential equation for the tendency ∂φ/∂t , which for simplicity is
designated τ . Since we do not gain anything new, we omit a discussion of this
boundary-value problem.

The principle of the numerical solution for the quasi-geostrophic system will
now be summarized.

(i) At the initial time t0 = 0, the geopotential φ(x, y, p, t0 = 0) is assumed to be given
so that vg and ω can be determined by solving (23.17) and (23.49).
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(ii) With ω known initially, a new φ-field at t1 = t0 + )t can be determined from the
vorticity equation (23.46). The whole system can now be iterated.

(iii) If the temperature field is required at any time t , we have to solve the hydrostatic
equation (23.8).

(iv) If it is sufficient to find the actual wind field in some approximation, we make use of
the divergence equation (23.13). By assuming that the divergenceD is zero, we obtain
a balance equation of the Monge–Ampère type, which can be solved numerically. The
problem may be further simplified by assuming that barotropic conditions apply for
each layer so that ∂vh/∂p vanishes. Since the divergence was set equal to zero, we
may express the wind by means of the stream function. Thus, we have to solve the
following equation:

2J

(
∂ψ

∂x
,
∂ψ

∂y

)
+∇h · (f ∇hψ) = ∇2

hφ with ∇h · (f ∇hψ) = −βu+f ζ (23.50)

We have shown that the quasi-geostrophic theory of filtering has reduced the
prognostic system to a one-field system. The entire prognostic process is reduced
to the determination of the geopotential field, which must be known at the initial
time t0 = 0. This fact verifies that all noise waves (horizontal sound waves,
gravitational waves, inertial waves) have been eliminated, since they can appear
only if more than one variable can be specified without restriction at the initial time
t0 = 0. In the next chapter we will actually show how to solve the quasi-geostrophic
system for the simple case of a four-layer model. It should be realized that, with the
availability of modern computers, the quasi-geostrophic theory is no longer used
for actual weather forecasting. Nevertheless, the theory is of great value for the
interpretation of the atmospheric mechanism.

In order to improve our understanding of the quasi-geostrophic theory we will
extract the physical content of the ω equation. In a rough approximation we assume
that the vertical velocity is given by a harmonic function of the form

ω = A sin

(
πp

p0

)
cos(kxx) cos(kyy) (23.51)

satisfying the boundary conditions ω(p = 0) = ω(p = p0) = 0. Substituting
(23.51) into (23.49) yields

−l2ω = f0
∂

∂p
(vg · ∇hηg) − ∇2

h

(
vg · ∇h

∂φ

∂p

)
(23.52)

where the correlation factor l2 is given by

l2 = f 2
0

(
π

p0

)2

+ σ 0

(
k2
x + k2

y

)
(23.53)
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Fig. 23.4 A schematic intepretation of the term ∂(vg · ∇hηg)/∂p of the ω equation.

Since σ 0 > 0 in large-scale motion, the quantity l2 is positive. From (23.52) we
see that the left-hand side of (23.49) is negatively correlated to ω.

We will now interpret this equation. Since in the quasi-geostrophic theory we
have reduced the solution of the prognostic system to knowledge of the geopotential
field, for the interpretation of the ω equation it is sufficient to prescribe the φ-field.
In order to understand the effect of the first term on the right-hand side of (23.52),
let us consider an idealized sinusoidal pattern of φ-contour lines as shown in
the upper part of Figure 23.4. Since ηg = (1/f0)∇2

hφ + f the corresponding ηg

curve has maximum and minimum values in the low- and high-pressure regions,
respectively, as indicated by the dashed curve in the lower part of Figure 23.4. For
simplicity the lower part of Figure 23.4 depicts the evolution of the curves along
the x-axis only. From the ηg curve we immediately obtain the ∇hηg curve which
is also shown in Figure 23.4. We conclude that, in region A of Figure 23.4, the
term vg · ∇hηg < 0. For typical atmospheric situations |vg| increases with height
so that ∂(vg · ∇hηg)/∂z < 0 and, therefore, ∂(vg · ∇hηg)/∂p > 0. Hence, in region
A the first term on the right-hand side of (23.52) induces rising air motion, that is
ω < 0. In region B we observe the opposite situation. Here vg · ∇hηg > 0 so that
∂(vg · ∇hηg)/∂p < 0 and ω > 0, thus indicating sinking air motion.

Next we consider the effect of the second term on the right-hand side of the ω
equation. An assumed vertical distribution of the geopotential field is shown in the
upper part of Figure 23.5. Since ∂φ/∂p = −R0T/p we obtain regions of cold and
warm air as indicated in the figure. This yields cold- and warm-air advection in
regions A and B, respectively. From the given φ distribution we obtain curve a
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Fig. 23.5 A schematic intepretation of the term ∇2
h (vg · ∇h(∂φ/∂p)) of the ω equation.

The three curves in the lower part of the figure describe the pattern of the following terms:
a, ∂φ/∂p; b, vg · ∇h(∂φ/∂p); and c, ∇2

h (vg · ∇h(∂φ/∂p)).

denoting the pattern of ∂φ/∂p. Curve b describes vg · ∇h(∂φ/∂p) and finally the
pattern of the term ∇2

h [vg ·∇h(∂φ/∂p)] is indicated by curve c. According to (23.52)
we conclude that sinking air motion is observed in regions of cold-air advection
and rising air motion in regions of warm-air advection.

23.9 The Philipps approximation of the ageostrophic component
of the horizontal wind

The actual weather is determined in large measure by the deviation of the actual
horizontal wind from the geostrophic wind. We call this part of the horizontal
wind the ageostrophic wind component, vag = vh − vg. The ageostrophic wind
component can be elegantly discussedwith the help of an approximation introduced
by Philipps (1939). Moreover, this approximation can be used to obtain most easily
the geostrophic approximation of the vorticity equation.

We begin the analysis by introducing the geostrophic wind into the horizontal
equation of motion (22.22), yielding

du

dt
= f (v − vg),

dv

dt
= −f (u− ug) with ug = − 1

f

∂φ

∂y
, vg = 1

f

∂φ

∂x
(23.54)

On multiplying the prognostic equation for v by i = √−1 and adding this to the
prognostic equation for u, we find

dq

dt
+ if q = if qg, with q = u+ iv, qg = ug + ivg (23.55)
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In this expression we approximate the Coriolis parameter f by the constant value
f0 and obtain

q = qg,0 − 1

if0

dq

dt
with qg,0 = ug,0 + ivg,0 (23.56)

This rough approximation will be partly amended a little later. Successive differ-
entiation of (23.56) with respect to time yields

dq

dt
= dqg,0

dt
− 1

if0

d2q

dt2
,

d2q

dt2
= d2qg,0

dt2
− 1

if0

d3q

dt3
, . . . (23.57)

On substituting these expressions into (23.56) we obtain the series

q = qg,0 − 1

if0

dqg,0

dt
+ 1

(if0)2
d2qg,0

dt2
− 1

(if0)3
d3qg,0

dt3
+ · · ·

=
∞∑
n=0

(−if0)
−n d

nqg,0

dtn

(23.58)

For the convergence properties of this series, see the original paper of Philipps
(1939). If the series is discontinued after the second term we obtain the scalar form
of the wind equation:

u = ug,0 − 1

f0

dvg,0

dt
, v = vg,0 + 1

f0

dug,0

dt
(23.59)

For brevity we write the vector form

vh = vg,0 + 1

f0
k × dvg,0

dt
(23.60)

This equation expresses the actual wind by means of the approximated geostrophic
wind

vg,0 = 1

f0
k × ∇hφ = f

f0
vg (23.61)

and its time derivative. Writing the Coriolis parameter f in the form f = f0 +)f

with )f � f0, the factor f0/f can be approximated as

f0

f
= 1 − )f

f
≈ 1 − )f

f0
= 2 − f

f0
(23.62)

From (23.61) we then obtain

vg =
(

2 − f

f0

)
vg,0 (23.63)
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Philipps made two basic assumptions.

(i) In order to partly restore the loss of the latitudinal variability of the Coriolis parameter,
he replaced the first term on the right-hand side of (23.60) by the original geostrophic
wind vg.

(ii) The individual derivative d/dt is approximated by dg,0/dt as given by

dg,0

dt
= ∂

∂t
+ vg,0 · ∇h (23.64)

Introduction of these two assumptions into equation (23.60) gives the approxima-
tion

vh =
(

2 − f

f0

)
vg,0 + 1

f0
k × dg,0vg,0

dt
(23.65)

which is known as the Philipps wind.
Now we are ready to derive the ageostrophic component of the horizontal wind

in the p system. For simplicity we omit the suffix p. First we evaluate the second
term on the right-hand side of (23.65) as

1

f0
k × dg,0vg,0

dt
= 1

f0
k × ∂vg,0

∂t
+ 1

f0
k × (vg,0 · ∇hvg,0)

= − 1

f 2
0

∇h
∂φ

∂t
+ 1

2f0
k × ∇hv2

g,0 − 1

f0
k × [vg,0 × (∇h × vg,0)]

= − 1

f 2
0

∇h
∂φ

∂t
+ 1

2f 3
0

k × ∇h(∇hφ)2 − 1

f 2
0

vg,0 ∇2
hφ

since v2
g,0 = 1

f 2
0

(k × ∇hφ) · (k × ∇hφ) = 1

f 2
0

(∇hφ)2

and k× [vg,0 × (∇h × vg,0)] = 1

f0
vg,0 ∇2

hφ

(23.66)
In this expression use of (M1.48) and of the Lamb development (M3.75) has been
made. By utilizing (23.66) we obtain a suitable expression for the ageostrophic
wind component:

vag = vh − vg,0

=
(

1 − f

f0

)
vg,0 − 1

f 2
0

∇h
∂φ

∂t
+ 1

2f 3
0

k × ∇h(∇hφ)2 − 1

f 2
0

vg,0 ∇2
hφ

= vag(I) + vag(II) + vag(III) + vag(IV)

(23.67)
This geostrophic deviation is largely responsible for the occurrence of large-scale
changes in weather. The four terms of equation (23.67) will now be discussed
individually.
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Fig. 23.6 A schematic interpretation of the latitude effect, term vag(I) of equation (23.67).

Fig. 23.7 A schematic interpretation of the pressure-tendency effect, term vag(II) of equa-
tion (23.67).

23.9.1 The latitude effect

Figure 23.6 shows idealized contour lines of φ and the corresponding geostrophic
wind vg,0 at points A, B, and C. The Coriolis parameter f changes with latitude
in such a way that f < f0 in the south, that is below the dashed line, while in
the north f > f0. From (23.67) we see that the first term on the right-hand side
yields |vh| >

∣∣vg,0

∣∣ at point B while |vh| <
∣∣vg,0

∣∣ at points A and C. Owing to its
latitudinal dependency, this term is called the latitude effect.

23.9.2 The pressure-tendency effect

The effect of the second term on the right-hand side of (23.67) is easily illustrated.
For simplicity we assume that circular isallobaric tendencies pertain. In a region
of falling pressure the gradient of ∂φ/∂t is directed away from the center of the
system so that the ageostrophic component resulting from the second term has the
opposite direction; see Figure 23.7(a). This implies that, due to mass transport,
the system is filling or decreasing in strength. In a region of rising pressure the
opposite effect will be observed; see Figure 23.7(b). With the help of (M4.51) it
is easy to show that height tendencies of pressure surfaces may be converted to
pressure tendencies ∂p/∂t at fixed levels by means of (∂p/∂t)z = ρ(∂φ/∂t)p . Thus
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Fig. 23.8 A schematic interpretation of the confluence effect, term vag(III) of equation
(23.67).

isolines of ∂φ/∂t may be relabelled as isallobars, which are isolines of ∂p/∂t or
vice versa.

The term −(1/f 2
0 )∇h(∂φ/∂t) is known as the isallobaric or the Brunt–Douglas

wind after the two scientists who first formulated this expression in the year 1928.

23.9.3 The confluence and diffluence effect

This kinematic effect is best demonstrated for regions of confluence and diffluence,
which must not be confused with regions of convergence and divergence. Conflu-
ence and diffluence refer to converging and diverging contour lines or isobars. Let
us consider an air parcel moving from the west to the east; see Figure 23.8. We
assume that initially the wind is in geostrophic balance. As the air approaches a
region with a stronger geopotential gradient, the geopotential gradient force −∇hφ

will exceed the Coriolis force so that the ageostrophic component is directed
toward the low pressure; see point A of Figure 23.8. Let us assume that, at the
point B, the geostrophic balance has been restored so that vag(III) = 0. Because
the air is approaching a region with a weaker geopotential gradient, the Coriolis
force exceeds the geopotential gradient force, so the ageostrophic wind is directed
toward the higher pressure; see point C of Figure 23.8. In summary, in a region of
confluence the ageostrophic wind is directed toward the low pressure, whereas in
a region of diffluence the ageostrophic wind is directed toward the high pressure.
This effect is known as the confluence and diffluence effect.

23.9.4 The curvature effect

The fourth term on the right-hand side describes the so-called curvature effect
and is schematically illustrated in Figure 23.9. The Laplacian of φ is negative in
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Fig. 23.9 A schematic interpretation of the curvature effect, term vag(IV) of equation
(23.67).

a high-pressure region but positive in a low-pressure region. Since in (23.67) the
term appears with a negative sign, we find that the horizontal wind |vh| > |vg,0| at
points A and C while |vh| < |vg,0| at point B.

23.10 Applications of the Philipps wind

We multiply equation (23.65) scalarly by the horizontal gradient of the geopotential
and obtain

vh · ∇hφ =
(

2 − f

f0

)(
1

f0
k × ∇hφ

)
· ∇hφ + 1

f0
k × dg,0vg,0

dt
· ∇hφ

= −
(
k × dg,0vg,0

dt

)
· (k × vg,0) = −dg,0vg,0

dt
· vg,0 = −dg,0

dt

(
v2

g,0

2

)

(23.68)

This is the selective geostrophic approximation of the kinetic energy of the horizon-
tal motion. It should be observed that the horizontal advection of the geopotential
involves the actual wind. Had we replaced the actual wind in the advection term
by the geostrophic wind, this term would have vanished. Thus, the change in
kinetic energy is given by the horizontal advection of the geopotential with the
ageostrophic wind component.

In Section 23.7 we have discussed the geostrophic approximation of the vorticity
equation, regarding which we had to use a number of arguments to justify the
procedure. With the help of the Philipps wind this approximation follows very
easily. Utilizing the Lamb development (M3.75), we expand (23.65) with the help
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of (23.66) and obtain

vh = 2vg,0 − f

f0
vg,0 + 1

f0
k × ∂vg,0

∂t
+ 1

f0
k ×

[
∇h

(
v2

g,0

2

)
+ (∇h × vg,0) × vg,0

]

= 2vg,0 − f

f0
vg,0 + 1

f0
k × ∂vg,0

∂t
+ 1

f0
k × ∇h

(
v2

g,0

2

)
− 1

f0
ζg,0vg,0

(23.69)
with ζg,0 = k · ∇h × vg,0. Now we take the horizontal divergence of (23.69) and
recall that the divergence of vg,0 is zero. The resulting equation

∇h · vh = − 1

f0
vg,0 · ∇hf − 1

f0
k · ∇h × ∂vg,0

∂t
− 1

f0
vg,0 · ∇hζg,0 (23.70)

is already the desired result which is particularly suitable for physical interpretation.
The usual form (23.46) of the geostrophic approximation can be obtained by
rewriting (23.70) as

−f0 ∇h · vh = dg,0 ηg,0

dt
(23.71)

Utilizing (23.17) and (23.18) gives the final form

∇2
h

∂φ

∂t
+ J

(
φ,

1

f0
∇2

hφ + f

)
= −f 2

0 ∇h · vh (23.72)

which is identical with (23.46). This partial differential equation describing the
tendency of the geopotential field apparently involves the three field quantities
(u, v, φ). On replacing the divergence term by means of the continuity equation we
recognize that this equation involves only the two variables ω and φ. The vertical
velocity is found from the ω equation.

Now we will present a physical interpretation of the geostrophic approximation
of the vorticity equation (23.70).

23.10.1 Westward displacement of a pressure system

Let us consider the idealized contour pattern of Figure 23.10. The gradient of
the Coriolis parameter, of course, is pointing to the north. In region A we have
cos(vg,0,∇hf ) < 0 while in region B scalar product is positive. Owing to the
negative sign, the first term on the right-hand side of (23.70) produces divergence
in region A and convergence in region B. This results in a westward displacement
of the wave, which is known as the β effect since |∇hf | = β.
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Fig. 23.10 A schematic interpretation of the term −(1/f0)vg,0 · ∇hf of equation (23.70).

Fig. 23.11 A schematic interpretation of the term −(1/f0)k · ∇h × ∂vg,0/∂t =
−(1/f 2

0 )∇2
h ∂φ/∂t of equation (23.70).

23.10.2 The pressure-tendency effect

Let us assume that we have an idealized circular pattern of the geopotential ten-
dency whose magnitude is largest at the center. The sign of the term determines
whether divergence or convergence occurs. For a positive tendency the Lapla-
cian of this quantity is negative. The resulting divergence opposes the effect of
the pressure tendency, as displayed in Figure 23.11(a). In case of a negative ten-
dency the Laplacian of the pressure tendency is positive, so the opposite situation
occurs.

23.10.3 The curvature effect

Again we consider sinusoidal contour lines, see Figure 23.12. In region A we
observe cos(vg,0,∇hζg,0) > 0 resulting in convergence while in region B the scalar
product is negative, thus producing divergence.This term, often called the curvature
effect, results in an eastward displacement of the Rossbywave. Hence, the curvature
effect opposes the β effect. Usually the shorter Rossby waves move from west to
east, so the curvature effect dominates over the β effect. On the other hand, very
long Rossby waves move from east to west, so in this case the β effect dominates
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Fig. 23.12 A schematic interpretation of the term −(1/f0)vg,0 ·∇hζg,0 of equation (23.70).

over the curvature effect. There exists a critical wavelength, see Chapter 16, at
which standing Rossby waves form, resulting in blocking high- and low-pressure
systems.

23.11 Problems

23.1: Show that

σ0

{
>0 stable atmosphere, ∂θ/∂z > 0
=0 neutral atmosphere, ∂θ/∂z = 0
<0 unstable atmosphere, ∂θ/∂z < 0

Start your derivation with the definition of σ0 given in (23.9).

23.2:
(a) Consider the heat equation cp dT /dt−(1/ρ) dp/dt = B/ρ, whereB represents
the non-adiabatic terms. With the help of the hydrostatic approximation and the
continuity equation written in the (x, y, σ ) system (σ = p/ps), show that the heat
equation can be written in the form

∂

∂t

(
∂φ

∂σ

)
+ vh · ∇h,σ

(
∂φ

∂σ

)
+ σ̇

(
∂2φ

∂σ 2
+ ∂φ

∂σ

1 − k

σ

)

+ k
∂φ

∂σ
∇h,σ · vh + k

∂φ

∂σ

∂σ̇

∂σ
= k

σps

∂φ

∂σ
B

with k = R0/cp.
(b) Show that

∂2φ

∂σ 2
+ ∂φ

∂σ

1 − k

σ
= 1

g

(
∂φ

∂σ

)2
∂ ln θ

∂z
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23.3: The Richardson equation is a diagnostic equation for the vertical velocity w
if the fields of the horizontal wind and the pressure are known. This equation can
be derived with the help of the continuity equation and the equation of an adiabat
which is given by p = constant × ρκ , where κ = cp/cv.
(a) Show that the Richardson equation in the z system can be written in the form

∂

∂z

(
p
∂w

∂z

)
= − ∂

∂z
(p∇h ·vh) + 1

κ

(
∂p

∂z
∇h · vh − ∂vh

∂z
· ∇hp

)

if the hydrostatic equation is assumed to be valid.
(b) Compare the Richardson equation with the ω equation. Hint: First show that

dρ

dt
= 1

g

∂p

∂z

(
∇h ·vh + ∂w

∂z

)

23.4:
(a) Find the solution to the differential equation (23.55) by assuming that f = f0.
The initial conditions are q = q0 and qg = qg(0).
(b) State the conditions under which the wind is geostrophic at all times. Give the
form of the corresponding geopotential field.
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A two-level prognostic model, baroclinic instability

24.1 Introduction

In this chapter we are going to discuss the two-level quasi-geostrophic prediction
model. This model divides the atmosphere into four layers as shown in Figure 24.1.
The vorticity equation is applied to levels l = 1 and l = 3 while the heat equation
is applied to level l = 2. By eliminating the vertical velocity ω it becomes possible
to determine the tendency of the geopotential ∂φ/∂t . Initially only the geopotential
φ(x, y, p, t0 = 0) for the entire vertical pressure range 0 ≤ p ≤ p0 must be
available. The discussion will be facilitated by resolving the dependent variables in
the vertical direction only. The remaining differentials will be left in their original
forms, which may be approximated by finite differences whenever desired.

In the second part of this chapter we are going to discuss the concept of
baroclinic instability. In a rotating atmosphere this type of instability, which was
first investigated by Charney (1947) and Eady (1949), arises from the vertical wind
shear if the static stability is not too large. The stability properties of the Charney
model are difficult to analyze. The two-level model, however, makes it possible
to obtain the stability criteria in a rather simple way, with results consistent with
Charney’s model. Details, for example, are given by Haltiner andWilliams (1980).

24.2 The mathematical development of the two-level model

The basic system consists of the vorticity equation (23.44) and the first law of
thermodynamics (23.19). These equations are restated in slightly changed forms as

(
∂

∂t
+ vg ·∇h

)
(ζg + f ) = f0

∂ω

∂p
+Kh ∇2

hζg(
∂

∂t
+ vg ·∇h

)
∂ψ

∂p
= −σ 0ω

f0
− R0

cp,0f0p

d q

dt

(24.1)

619
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hPa

hPa

hPa

hPa

hPa

Fig. 24.1 The vertical grid structure of the two-level model.

In (24.1) we have also added the termKh ∇2
hζg to simulate large-scale horizontal

diffusion, where Kh is a large-scale diffusion constant. Furthermore, heat sources
have been included on the right-hand side of (24.1). The vertical derivative of the
arbitrary field function B will be approximated by(

∂B

∂p

)
l

= Bl+1 − Bl−1

�p
(24.2)

see Figure 24.1, so the vertical derivative of ω at levels l = 1, 3 is given by(
∂ω

∂p

)
1

= ω2 − ω0

�p
= ω2

�p
,

(
∂ω

∂p

)
3

= ω4 − ω2

�p
= − ω2

�p
(24.3)

Thus, the basic system can also be written as

(a)

(
∂

∂t
+ vg,1 ·∇h

)
(ζg,1 + f ) = f0ω2

�p
+Kh ∇2

hζg,1

(b)

(
∂

∂t
+ vg,3 ·∇h

)
(ζg,3 + f ) = −f0ω2

�p
+Kh ∇2

hζg,3

(c)

(
∂

∂t
+ vg,2 ·∇h

)
(ψ3 − ψ1) = −σ 0ω2�p

f0
− R0�p

cp,0f0p2

(
d q

dt

)
2

(24.4)

For the simple theory which is presented here this type of parameterization will be
sufficient. The heating term d q/dt simulates all essential heat sources, including
radiative effects.

In order to simplify the mathematical analysis of the problemwe assume that we
have a linear distribution of the geostrophic wind within the range p1 < p < p3.
Hence, we obtain

vg,2 = vg,1 + ∂vg
∂p

�p

2
,

∂vg
∂p

= vg,3 − vg,1
�p

= 1

�p
k× ∇h(ψ3 − ψ1)

=⇒ vg,2 = vg,1 + 1
2
k× ∇h(ψ3 − ψ1) = vg,3 − 1

2
k× ∇h(ψ3 − ψ1)

(24.5)
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Utilizing this expression, the advection term of the first law of thermodynamics is
given by

vg,2 ·∇h(ψ3 − ψ1) = vg,1 ·∇h(ψ3 − ψ1) = vg,3 ·∇h(ψ3 − ψ1) (24.6)

since the scalar triple product must vanish whenever two identical vectors appear.
This expression shows that the thermal wind is orthogonal to the gradient of the
relative topography:

(vg,3 − vg,1)·∇h(ψ3 − ψ1) = 0 (24.7)

Our next task is to eliminate the generalized vertical velocity ω2 in the predicitve
system (24.4). To accomplish this we multiply the heat equation by the term

λ2 = f 2
0 /[σ 0(�p)

2] (24.8)

which is positive since σ 0 is positive for large-scale motion. Furthermore, we use
the fact that, due to (24.6) in the advection term of the heat equation, vg,2 may be
replaced by vg,1 or vg,3. Therefore, (24.4c) can also be written as

(
∂

∂t
+ vg,1 ·∇h

)
[λ2(ψ3 − ψ1)] = −f0ω2

�p
− R0λ

2

cp,0f0

(
d q

dt

)
2(

∂

∂t
+ vg,3 ·∇h

)
[λ2(ψ3 − ψ1)] = −f0ω2

�p
− R0λ

2

cp,0f0

(
d q

dt

)
2

(24.9)

We observe that we have the same term on the right-hand sides of (24.4a) (24.4b)
and (24.9). Therefore, ω2 can be eliminated by adding and subtracting the heat
equation (24.9) from (24.4a) and (24.4b), respectively. The result is

(
∂

∂t
+ vg,1 ·∇h

)
[ζg,1 + f − λ2(ψ1 − ψ3)] = Kh ∇2

hζg,1 − R0λ
2

cp,0f0

(
d q

dt

)
2(

∂

∂t
+ vg,3 ·∇h

)
[ζg,3 + f + λ2(ψ1 − ψ3)] = Kh ∇2

hζg,3 + R0λ
2

cp,0f0

(
d q

dt

)
2

(24.10)

In order to have a concise notation we introduce the following definitions:

q1 = ζg,1 − λ2(ψ1 − ψ3) = ∇2
hψ1 − λ2(ψ1 − ψ3)

q3 = ζg,3 + λ2(ψ1 − ψ3) = ∇2
hψ3 + λ2(ψ1 − ψ3)

(24.11)
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into (24.10). On momentarily setting Kh and d q/dt equal to zero, the basic pre-
diction equations are given by

(
∂

∂t
+ vg,1 ·∇h

)
(q1 + f ) = 0,

(
∂

∂t
+ vg,3 ·∇h

)
(q3 + f ) = 0 (24.12)

This form is particularly suitable for demonstrating the principle of the numerical
integration procedure.

24.2.1 The principle of the numerical integration procedure

Step 1
Prescribe at the initial time t0 the two independent variables ψ1(x, y, t0 = 0) and
ψ3(x, y, t0 = 0). Calculate vg,1 = k× ∇hψ1, vg,3 = k× ∇hψ3, and q1, q3.
Step 2
Compute the tendencies ∂q1/∂t, ∂q3/∂t and find q1, q3 at t1 = t0 +�t by solving
(24.12) according to

q1(t1) = q1(t0) −�t [vg,1 ·∇h(q1 + f )]t0
q3(t1) = q3(t0) −�t [vg,3 ·∇h(q3 + f )]t0

(24.13)

Step 3
From q1, q3 at time t1 calculate ψ1, ψ3 in order to iterate. We proceed by defining
the quantities

ψ+ = ψ1 + ψ3

2
, ψ− = ψ1 − ψ3

2
, q+ = q1 + q3

2
, q− = q1 − q3

2
(24.14)

Addition and subtraction of the two equations (24.11) yields

q+ = 1
2 ∇2

h (ψ1 + ψ3), q− = 1
2 ∇2

h (ψ1 − ψ3) − λ2(ψ1 − ψ3) (24.15)

When they are stated in the form

∇2
hψ+ = q+, ∇2

hψ− − 2λ2ψ− = q− (24.16)

we recognize that these two equations are decoupled.They represent two boundary-
value problems of the Poisson and Helmholtz type, which can be solved by well-
known numerical methods if suitable boundary conditions have been provided.
Step 4
From ψ+ and ψ− we find ψ1 = ψ+ + ψ− and ψ3 = ψ+ − ψ−. In order to iterate
we again start with step 1, where now t0 is replaced by t1.



24.3 The Phillips quasi-geostrophic two-level circulation model 623

We would like to remark that the complete decoupling stated in (24.16) is
possible only for the two-level model, where by a three-dimensional problem
could be reduced to the solution of two-dimensional partial differential equations.
Each of these contains only one dependent variable. In multilevel models coupled
systems must be solved simultaneously.

Themodel expressed by the prediction equations (24.12) is a typical short-range-
forecast model. In order to extend the time interval of the forecast, we must also
include heat sources and large-scale diffusion.

24.3 The Phillips quasi-geostrophic two-level circulation model

We employ the basic predictive equations (24.9) but now we include the large-
scale diffusion and heating terms by takingKh 	= 0 and (d q/dt)2 	= 0. We consider
channel flowwith solid walls at the southerly and northerly boundaries of themodel
as shown in Figure 24.2. For f we take the β approximation f = f0 + βy; the
large-scale exchange coefficient Kh is assumed to be a constant. The heating term
(d q/dt)2 represents the sum of radiative heating (d q/dt)2,rad and of heat sources
resulting from turbulent heat fluxes (d q/dt)2,tur. To represent the radiative effects
we assume that we have a heat source at y = −d/2 and a sink at y = d/2 with a
linear variation between the walls:(

d q

dt

)
2,rad

= −2y

d
Qrad, Qrad > 0 (24.17)

The turbulent heat flux will be approximated with the help of (11.85):

Jθt = −ρĉpKh ∇h̃θ (24.18)

Since the heat equation applies to the level p2, we may replace the potential
temperature θ̃ by the actual temperature T2 at this level and absorb the constant

2,rad

2,rad

Fig. 24.2 The geometry of the channel flow.
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(p0/p2)R0/cp,0 into the large-scale turbulent exchange coefficientKh. However, it is
still open to debate whether cyclonic and anticyclonic activities may be viewed as
atmospheric macroturbulence so that large- and small-scale turbulent fluxes may
be treated analogously. The turbulent heat flux is approximated as(

d q

dt

)
2,tur

= − 1

ρ
∇h ·Jθt = ĉpKh ∇2

hT2

with T2 = −p2

R0

(
∂φ

∂p

)
2

= −p2f0(ψ3 − ψ1)

R0�p
= 2f0ψ−

R0

(24.19)

Substitution of (24.17) and (24.19) togetherwith the definitions (24.11) into (24.10)
yields the final form of the prediction equations:(

∂

∂t
+ vg,1 ·∇h

)
(q1 + βy) = 2λ2R0y

cp,0f0d
Qrad +Kh ∇2

hq1(
∂

∂t
+ vg,3 ·∇h

)
(q3 + βy) = −2λ2R0y

cp,0f0d
Qrad +Kh ∇2

hq3

(24.20)

These equationsmay be integrated analogously to the procedure described above
by including the inhomogeneous terms which were left out of equations (24.12)
for simplicity.

Phillips (1956) used the system (24.20) to carry out the first successful
numerical experiment to simulate the general circulation. He added another term
to the second equation of (24.20). For details see the original paper.

24.4 Baroclinic instability

As stated in the introduction to this chapter, the solutions of baroclinic models may
become physically unstable when the baroclinicity, i.e. the vertical wind shear,
is sufficiently large and the static stability is sufficiently small. This instability
behavior is known as baroclinic instability and is common to all baroclinic models.
Baroclinic instability is responsible for the development of atmospheric cyclones
and anticyclones.

The analysis proceeds by linearizing the fundamental equations (24.12). The
stationary basic state and the disturbances are designated with an overbar and
primes, respectively. Application of the Bjerkness linearization rule immediately
results in the following system:(

∂

∂t
+ vg,1 ·∇h

)
q ′
1 + v′

g,1 ·∇h(q1 + f ) = 0
(
∂

∂t
+ vg,3 ·∇h

)
q ′
3 + v′

g,3 ·∇h(q3 + f ) = 0
(24.21)



24.4 Baroclinic instability 625

1
1

2

3
3

4

Fig. 24.3 The vertical profile of the horizontal wind.

Next we must describe the basic state:

f = f0 + βy, β = ∂f

∂y
= constant

ug = U = −∂ψ
∂y

= constant, vg = 0

ψ = ψ(y), ∇2
hψ = 0

q1 = −λ2(ψ1 − ψ3), q3 = λ2(ψ1 − ψ3)
∂q1

∂y
= λ2(U1 − U3),

∂q3

∂y
= −λ2(U1 − U3)

(24.22)

The mean values U+, ψ ′
+, q

′
+ and the differences U−, ψ ′

−, q
′
− are defined as

U+ = U1 + U3

2
, ψ ′

+ = ψ ′
1 + ψ ′

3

2
, q ′

+ = q ′
1 + q ′

3

2

U− = U1 − U3

2
, ψ ′

− = ψ ′
1 − ψ ′

3

2
, q ′

− = q ′
1 − q ′

3

2

(24.23)

Figure 24.3 shows the vertical distribution of the horizontal wind and the
corresponding values of U+ and U−. To facilitate the analysis we introduce the
Q operators by putting

Q1 = ∂

∂t
+ U1

∂

∂x
, Q3 = ∂

∂t
+ U3

∂

∂x
, Q+ = ∂

∂t
+ U+

∂

∂x
=⇒

Q1 = ∂

∂t
+ U1

∂

∂x
= ∂

∂t
+ U+

∂

∂x
+ U−

∂

∂x
= Q+ + U−

∂

∂x

Q3 = ∂

∂t
+ U3

∂

∂x
= ∂

∂t
+ U+

∂

∂x
− U−

∂

∂x
= Q+ − U−

∂

∂x
(24.24)

By employing these definitions, the linearized fundamental equations (24.21) can
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be written as

(a) Q1q
′
1 + ∂ψ ′

1

∂x
(2λ2U− + β) = Q+q

′
1 + U−

∂q ′
1

∂x
+ ∂ψ ′

1

∂x
(2λ2U− + β) = 0

(b) Q3q
′
3 + ∂ψ ′

3

∂x
(−2λ2U− + β) = Q+q

′
3 − U−

∂q ′
3

∂x
+ ∂ψ ′

3

∂x
(−2λ2U− + β) = 0

(24.25)
In order to derive a suitable form for the solution of the predictive equations we

add and subtract (24.25a) and (24.25b) and find

Q+q
′
+ + U−

∂q ′
−

∂x
+ 2λ2U−

∂ψ ′
−

∂x
+ β

∂ψ ′
+

∂x
= 0

Q+q
′
− + U−

∂q ′
+

∂x
+ 2λ2U−

∂ψ ′
+

∂x
+ β

∂ψ ′
−

∂x
= 0

(24.26)

Next we eliminate q ′
+ and q ′

− by introducing the above definitions. Observing
(24.16), we obtain the expressions

q ′
+ = q ′

1 + q ′
3

2
= 1

2
∇2

h (ψ
′
1 + ψ ′

3) = ∇2
hψ

′
+

q ′
− = q ′

1 − q ′
3

2
= 1

2
∇2

h (ψ
′
1 − ψ ′

3) − λ2(ψ ′
1 − ψ ′

3) = ∇2
hψ

′
− − 2λ2ψ ′

−

(24.27)

to be substituted into equation (24.26). This gives the final forms of the prognostic
equations:

(
Q+ ∇2

h + β
∂

∂x

)
ψ ′

+ + U−
∂

∂x

(∇2
hψ

′
−
) = 0

(
Q+

(∇2
h − 2λ2

) + β
∂

∂x

)
ψ ′

− + U−
∂

∂x

(∇2
h + 2λ2

)
ψ ′

+ = 0
(24.28)

which are linear in ψ ′
+ and ψ ′

−. In order to solve this system we use the trial
solutions 

ψ ′
+
ψ ′

−


 =


A+

A−


 exp[ikx(x − ct)] (24.29)

where we assume that the perturbations depend on x and t only. The quantities A+
and A− are constant amplitudes, kx = 2π/Lx is the wavenumber in the x-direction
corresponding to the wavelengthLx , and c is the phase velocity of the waves. From
(24.29) we easily obtain the operators

∂

∂t
= −ikxc, ∂

∂x
= ikx, ∇2

h = −k2x =⇒

Q+ = ∂

∂t
+ U+

∂

∂x
= −ikx(c − U+)

(24.30)
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Using (24.30) in (24.28) yields the homogeneous system

(a)
[
(c − U+)k

2
x + β

]
A+ − U−k

2
xA− = 0

(b)
(
2λ2 − k2x

)
U−A+ + [

(c − U+)
(
2λ2 + k2x

) + β
]
A− = 0

(24.31)

where we have canceled out the exponential term representing the form of the
wave. To find nontrivial solutions of this homogeneous system, i.e. A+ 	= 0 and
A− 	= 0, the determinant of the coefficient matrix must vanish:

∣∣∣∣∣∣
(c − U+)k

2
x + β − U−k

2
x(

2λ2 − k2x
)
U− (c − U+)

(
2λ2 + k2x

) + β

∣∣∣∣∣∣ = 0 (24.32)

The expansion of this determinant results in the frequency equation

(c − U+)
2 + 2(c − U+)

β
(
λ2 + k2x

)
k2x

(
2λ2 + k2x

) + β2 + U 2
−k

2
x

(
2λ2 − k2x

)
k2x

(
2λ2 + k2x

) = 0 (24.33)

for the determination of the phase velocity c. The solution of this quadratic equation
is

c1,2 = U+ − β
(
λ2 + k2x

)
k2x

(
2λ2 + k2x

) ±
√
δ

with δ = β2λ4

k4x
(
2λ2 + k2x

)2 − U 2
−
2λ2 − k2x

2λ2 + k2x

(24.34)

Inspection of (24.34) shows that we have either two real roots (δ > 0) or two
complex conjugated roots (δ < 0), resulting in baroclinic stability or instability,
respectively.

24.4.1 The instability condition

For a fixed wavenumber kx = constant the two roots c1,2 can now be used to
construct the solution to (24.28) as

ψ ′
+
ψ ′

−


 =


A+,1
A−,1


 exp[ikx(x − c1t)] +


A+,2
A−,2


 exp[ikx(x − c2t)] (24.35)

We note that the amplitudes A+ and A− are not independent. The relation between
A+ and A− can be found from (24.31). We select (24.31a) and find the ratio

A−,j
A+,j

= k2x(cj − U+) + β

k2xU−
, j = 1, 2 (24.36)
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We could have also chosen (24.31b) to form the ratio, but the ratio is more
complicated. From matrix theory it is known that every eigenvalue has an infinite
number of eigenvectors. If X is an eigenvector then any scalar multiple of X is
also an eigenvector with the same eigenvalue. Therefore, we may write for the
components of the two eigenvectors in (24.35) the product

A+,j = Bjψ
′
+,j , A−,j = Bjψ

′
−,j , j = 1, 2 (24.37)

where B1 and B2 are two arbitrary integration constants that may be determined
from general initial conditions. Thus, we may write the solution in the form


ψ ′

+
ψ ′

−


 = B1


ψ ′

+,1
ψ ′

−,1


 exp[ikx(x − c1t)] + B2


ψ ′

+,2
ψ ′

−,2


 exp[ikx(x − c2t)]

(24.38)
By assigning the value 1 to one of the components, from (24.36) we obtain for the
second component

ψ ′
+,j = 1, ψ ′

−,j = k2x(cj − U+) + β

k2xU−
, j = 1, 2 (24.39)

A particular example of the determination of an eigenvector was given in Section
4.2.2.

Suppose that the two roots c1,2 are real. In this case the solution (24.38) is
bounded and the two partial waves move along the x-direction without change of
amplitude, i.e. without change of shape. If the roots are complex conjugate, one of
the two partial waves approaches infinity with increasing time so that the solution
is physically unstable.

Inspection of equation (24.34) shows that the sign of the discriminant
determines whether the solution is physically stable or unstable, or even neutral.
If δ > 0 we have stability since c1,2 are real quantities. If δ < 0 we have instability
since c1,2 are complex conjugate; δ = 0 denotes the neutral case.

24.4.2 Stable and unstable regions

Of special significance is the transition from the stable to the unstable region, which
is characterized by the condition δ = 0. By treating β as a constant, we may view
the equation

δ(U−, λ
2, kx) = δ(U−, σ 0, Lx) = 0 (24.40)

as a surface in space with the three coordinatesU−, σ 0 = f 2
0 /[(�p)

2λ2], and Lx =
2π/kx separating the stable from the unstable region. This surface is schematically
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Fig. 24.4 The neutral surface separating the stable from the unstable region.

shown in Figure 24.4. Thus, a particular choice of the coordinates (U−, σ 0, Lx)
determines whether the corresponding solution (24.38) is stable or unstable. The
separating surface is known as the neutral surface.

A convenient mathematical form of the neutral surface will be derived now. For
δ = 0 from (24.34) we find by obvious steps

k4x
(
4λ4 − k4x

) = β2λ4

U 2
−

=⇒
(
k4x

2λ4
− 1

)2
= 1 − β2

4U 2
−λ

4
(24.41)

The latter equation motivates the introduction of the following (x, y)-coordinates:

x = k4x

2λ4
= k4x(�p)

4

2f 4
0

σ 0
2, y = 2U−λ2

β
= 2f 2

0

(�p)2β

U−
σ 0

(24.42)

Therefore, the coordinate x gives the quantity k4x in units of 2λ4 while y expresses
the quantityU− in units ofβ/(2λ2). From (24.41) and (24.42)we obtain the equation
of the neutral surface:

(x − 1)2 = 1 − 1

y2
=⇒ y = ±

√
1

1 − (x − 1)2
(24.43)

whose graph is shown in Figure 24.5. Reflecting this curve on the x-axis gives the
representation of the neutral surface for negative values of y. In the following we
will discuss positive y values only. Since according to (24.42) x ≥ 0, we recognize
that there is no need to consider negative x values.

From (24.43) we recognize that no real values of y exist for x > 2 and that
the ordinate y approaches infinity for x = 0 and x = 2. Furthermore, for x = 1
we find y = 1, which is the minimum value of the curve, as may be verified by
differentiation.
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1

1 2

δ > 0

δ < 0

Fig. 24.5 A schematic representation of the stable (δ > 0) and unstable (δ < 0) regions.

Now we need to ask on which side of the neutral surface the unstable region
is located. We consider the straight line x = 1 and investigate the behavior of δ
along this line for increasing y. For x = 1 we find k4x = 2λ4. Next we substitute
this identity into the instability condition (24.34) and then multiply the resulting
expression by the positive quantity

M2 = 2
(
2λ2 + k2x

)2
β2

> 0 (24.44)

yielding
M2δ = 1 − y2 (24.45)

For y < 1 the discriminant δ > 0; for y > 1 the discriminant δ < 0. Thus, the
stable and unstable regions are located as indicated in Figure 24.5. The boundary
point (x = 1, y = 1) corresponds to a point on the neutral curve.

24.4.3 Unconditional stability regions, the dominating wavelength

Inspection of Figure 24.5 shows that the solution is stable in the region y < 1
for all x values, i.e. independently of the wavelength Lx . This situation relates the
vertical shear of the horizontal wind field U− to the atmospheric stability σ 0 as

U− <
(�p)2β

2f 2
0

σ 0 (24.46)

The region x > 2 is stable for all values of y, i.e. stability is guaranteed to be
independent of U−, which is a measure of the baroclinicity of the atmosphere.
From (24.42) we obtain the corresponding stability condition

Lx <
π

√
2�p

f0

√
σ 0 (24.47)
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showing that all waves with wavelengths shorter than the given value are stable,
independently of the baroclinicity U−.

From (24.42) we see that, for fixed values of β and σ 0, instability will be
generated if the baroclinicity U− increases to large enough values. Instability will
also be generated if σ 0 becomes small enough for fixed values of β and U−. The
wavelength corresponding to x = 1 is of particular interest since, for increasing
y, the unstable region is reached faster than at any other point on the x-axis. This
condition yields

Lx = 23/4π �p

f0

√
σ 0 (24.48)

as follows from (24.42). The wavelength defined by this equation is known as the
dominating wavelength and is proportional to the static stability σ 0. It follows that,
with increasing static stability, waves of increasing wavelength will dominate.

24.4.4 Neutral surfaces in the (U−, Lx)-plane

The representation of the neutral curve in the (U−, Lx)-plane is particularly easy to
visualize. Now σ 0 and β serve as parameters with which to label curves belonging
to the same family. Suppose that we set β = constant. Using the definition (24.42),
the equation of the neutral curve can now be written as

U− = ± β

2λ2

√√√√√
1

1 −
[(

k4x

2λ4

)
− 1

]2 (24.49)

In the limiting case that σ 0 = 0 or λ → ∞, we find after a few easy steps that U−
is the parabola

U− = βL2
x

8π 2
(24.50)

Thus, for σ 0 = 0 we find the parabola depicted in Figure 24.6. The area above the
curve represents the unstable region. For values σ 0 > 0 we obtain from (24.49)
the family of curves shown in Figure 24.6. Hence, with increasing static stability
the area of the unstable region decreases in size.

Reference to equation (23.20b) shows that, in the filtered model, for σ 0 = 0
changes in temperature are caused by horizontal advection only. Models in which
the static stability is set equal to zero are called advection models. In these
models the short waves are always unstable, as follows from Figure 24.6.
Using the terminology of optics, very short waves of the solar spectrum are located
in the ultra-violet spectral region. Therefore, the unconditional instability for short
waves in the advection models is called the ultra-violet catastrophy.
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Fig. 24.6 A schematic representation of the neutral curves for β = constant and varying
static stability σ 0 with (σ 0)2 > (σ 0)1.

Fig. 24.7 A schematic representation of the effect of β on the region of instability for the
limiting case σ 0 = 0 with β3 > β2 > β1.

Suppose that we vary the Rossby parameter β. From (24.50) we then obtain a
family of parabolas as shown in Figure 24.7. The unstable region for each β is
on the left-hand side of the corresponding parabola. This is best recognized by
considering the stability condition (24.34) whereby increasing values of β prevent
δ from becoming negative.

Let us now consider the special case that β = 0. From (24.34) we find for δ = 0

2λ2 = k2x =⇒ Lx =
√
2π �p

f0

√
σ 0 (24.51)

which represents a family of vertical lines. It stands to reason that, with increasing
static stability, the stable region must increase in size, as shown in Figure 24.8.

From the previous figures we may conclude that short and long waves are stable
in the quasi-geostrophic theory provided that β 	= 0 and σ 0 	= 0. Moreover, we
observe that increasing values of β and σ 0 have a stabilizing effect. By combining
the results of this section we find Figure 24.9.

We wish to point out that the results derived from the two-level model are
not sufficiently representative to permit us to draw general conclusions about the
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Fig. 24.8 A schematic display of neutral curves for β = 0 and variable static stability σ 0
with (σ 0)2 > (σ 0)1 > (σ 0)0.

Fig. 24.9 The region of instability in the (Lx,U−)-plane for the general case β 	= 0 and
σ 0 	= 0.

baroclinic instability of the real atmosphere. Nevertheless, the two-level model
provides at least qualitatively the major characteristics of baroclinic instability and
yields results consistent with the more general model proposed by Charney (1947).

24.5 Problems

24.1: Show in detail the steps between equation (24.25) and (24.28).

24.2: Use calculus to verify the minimum of Figure 24.5.



25

An excursion concerning numerical procedures

In order to solve the atmospheric equations it is necessary to apply numeri-
cal methods. It is not our intention to present a detailed discussion on numerical
methods since this would require a separate textbook of many chapters. An early
book on numerical methods applicable to atmospheric dynamics was written by
Thompson (1961). It is quite suitable as a first introduction to numerical weather
analysis. A more modern and extensive account of numerical methods is that by
Haltiner and Williams (1980). Both books may be consulted regarding the follow-
ing discussion. There also exist many papers and reports on the subject, which are
too numerous to be quoted here. In this chapter we wish to point out some problems
that may arise when one is using finite-difference methods. In fact, many numer-
ical problems become apparent even in treating the one-dimensional advection
equation.

25.1 Numerical stability of the one-dimensional advection equation

25.1.1 Introduction

The typical appearance of numerical instability in analytic form can be easily
recognized from the discretized form of the one-dimensional advection equation:

∂ψ

∂t
+ U

∂ψ

∂x
= 0 with U = constant (25.1)

This is a linear first-order partial differential equation whose solution is given by
f (x − Ut), where f is an arbitrary function. A special solution is the harmonic
wave

ψ = A exp[ik(x − Ut)] (25.2)

where k = 2π/L is the wavenumber and L the wavelength. Equation (25.1)
shall now be discretized in various ways in order to compare the solutions of the

634
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Fig. 25.1 The grid structure in space and time for one spatial dimension. The spatial
distance x is counted in units of j �x while time t is advanced in units of n�t .

difference equations with the solution (25.2). This procedure will permit us to study
the stability behavior in terms of time for various numerical schemes.

The finite-difference equations can be constructed in various ways. We will
obtain these by expanding the function f (x − Ut) in a Taylor series of only one
spatial dimension as shown in Figure 25.1. Let us first obtain finite-difference
expressions with which to approximate the partial derivative ∂ψ/∂x.

The Taylor-series expansions about the point j in forward and backward direc-
tions are given by

(a) ψn
j+1 = ψn

j +
(
∂ψ

∂x

)
j

�x + 1

2

(
∂2ψ

∂x2

)
j

(�x)2 + 1

6

(
∂3ψ

∂x3

)
j

(�x)3 + · · ·

(b) ψn
j−1 = ψn

j −
(
∂ψ

∂x

)
j

�x + 1

2

(
∂2ψ

∂x2

)
j

(�x)2 − 1

6

(
∂3ψ

∂x3

)
j

(�x)3 + · · ·
(25.3)

From (25.3a) we find, for fixed time t , indicated by the superscript n, the finite-
difference equation in the forward direction:(

∂ψ

∂x

)
j

= ψn
j+1 − ψn

j

�x
− 1

2

(
∂2ψ

∂x2

)
j

�x + · · · (25.4a)

The terms following the finite-difference terms are dominated by a second-order
derivative, which is multiplied by �x. By ignoring this term and all other terms in-
volving higher derivatives we have introduced a first-order truncation error O(�x)
since �x appears as a first power. From (25.3b) we could have obtained a similar
approximation in the backward direction, which involves the point j − 1 instead
of j + 1. Since we do not use the backward approximation, we will not write it
down. The first term on the right-hand side of (25.4a) is known as the forward-in-
space difference approximation to ∂ψ/∂x. On subtracting (25.3b) from (25.3a) the
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second-order derivatives will vanish. The remaining terms are dominated by a term
involving the third-order derivative at point j multiplied by �x3. On dividing by
�x we obtain the so-called central finite-difference approximation to the first-order
derivative: (

∂ψ

∂x

)
j

= ψn
j+1 − ψn

j−1

2�x
− 1

6

(
∂3ψ

∂x3

)
j

(�x)2 + · · · (25.4b)

which is the first term on the right-hand side of (25.4b). By ignoring all terms
involving higher-order derivatives we obtain a better approximation to the derivative
∂ψ/∂x since now the truncation error is of second order, O

(
(�x)2

)
.

In order to obtain approximations to the time derivative we proceed in a similar
manner. Then we obtain expressions analogous to (25.3), where now j is fixed and
n is varied. We will now apply the various difference approximations.

25.1.2 The numerical phase speed

The advection equation (25.1) in discretized form using central differences in time
and space now reads

ψn+1
j − ψn−1

j + U
�t

�x

(
ψn

j+1 − ψn
j−1

) = 0 (25.5)

The solution to this finite-difference equation is found by substituting a trial grid-
point function of the type (25.2) of the analytic solution into (25.5):

(a) ψn
j = A exp[ik(j �x − cn�t)]

(b) ψn+1
j = A exp{ik[j �x − c(n + 1)]�t} = ψn

j exp(−ikc �t)

(c) ψn−1
j = ψn

j exp(ikc �t)

(d) ψn
j+1 = ψn

j exp(ik �x)

(e) ψn
j−1 = ψn

j exp(−ik �x)

(25.6)

Here U has been replaced by the phase speed c = ω/k, where ω is the circular
frequency. The trial solution is identical with (25.2) only if c = U . Substitution of
(25.6) into (25.5), after canceling out the common factor ψn

j , gives

exp(ikc �t) − exp(−ikc �t) = U �t

�x
[exp(ik �x) − exp(−ik �x)] (25.7)

Dividing both sides of this equation by 2i (i = √−1) and using the Euler expansion
gives the frequency equation

sin(kc �t) = U �t

�x
sin(k �x) (25.8)
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The numerical phase speed follows immediately and is given by

c = 1

k �t
arcsin

(
U �t

�x
sin(k �x)

)
(25.9)

Using

lim
�x→0

sin(k �x)

�x
= k, lim

ε→0

arcsin ε

ε
= 1 (25.10)

we find for (�x,�t) −→ 0 the consistent result

lim
�x,�t→0

c = U (25.11)

25.1.3 Numerical instability

We now reconsider equation (25.9) and assume that

U
�t

�x
> 1 (25.12)

At the same time we require that sin (k �x) in the argument of (25.9) reaches
the maximum possible value 1. Because k �x = π/2 this corresponds to the
wavelength L = 4�x. In this case the argument of arcsin( ) is greater than 1 and
(25.9) can be satisfied only by complex values of the numerical phase speed,

c = cr ± ici (25.13)

In order to evaluate the real part cr and the imaginary part ci ≥ 0 of the phase
speed, assuming the validity of (25.12), we go back to the frequency equation (25.8).
This equation now reads

sin(kc�t) = sin(αr ± iαi) = 1 + a, a > 0 (25.14)

The complex number αr ±iαi arises because of (25.13). The quantity a on the right-
hand side must be positive. Application of the trigonometric addition theorems
gives

(a) sinαr cos(iαi) ± sin(iαi) cosαr = 1 + a

(b) sinαr coshαi ± i sinhαi cosαr = 1 + a
(25.15)

where we have introduced the hyperbolic functions in (25.15b). Comparison of
real and imaginary parts results in

(a) Real part: sinαr coshαi = 1 + a

(b) Imaginary part: cosαr sinhαi = 0
(25.16)
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Since we require that αi = kci �t �= 0 it follows from (25.16b) that cosαr = 0, so

αr = kcr �t = ±π

2
,±3

2
π, . . . (25.17)

For further discussion we select the representative value

cr = π

2k �t
(25.18)

On the other hand, with αr = π/2, from (25.16a) it follows that

coshαi = cosh(kci �t) = 1 + a =⇒ ci = cosh−1(1 + a)

k �t
> 0 (25.19)

From (25.6a), (25.18), and (25.19), assuming the validity of (25.12), we obtain the
general solution to (25.5):

ψn
j = A1 exp[ik(j �x − crn�t − icin�t)]

+ A2 exp[ik(j �x − crn�t + icin�t)]
(25.20)

Owing to (25.18) this expression may be rewritten in such a way that

ψn
j = A1 exp(ikj �x) (−i)n exp(kcin�t) + A2 exp(ikj �x) (−i)n exp(−kcin�t)

(25.21)
since in this case exp(−ikcrn�t) = exp(−inπ/2) = (−i)n. Because ci > 0 the
first term with alternating sign approaches infinity for large n, thus indicating
numerical instability. The second term with alternating sign in (25.21) approaches
zero. We conclude that the numerical solution in the present case using central
difference quotients in time and space is stable only if the condition (25.12) is
changed to

U
�t

�x
≤ 1 or �t ≤ �x

U
(25.22)

In this case the phase velocity is real and the solution remains stable. Equation
(25.22) is the well-known Courant–Friedrichs–Lewy (CFL) stability criterion for
the case of the linear difference equation which we have considered here.

Equation (25.22) can be usefully interpreted. Numerical stability occurs when-
ever the time step �t is smaller than the time required for the wave moving with
phase speed U to cover the grid distance �x.
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Fig. 25.2 Ambiguity of phase velocities.

25.1.4 The so-called weak instability

Even if the CFL criterion (25.22) is obeyed we still do not obtain an absolutely
stable numerical behavior. The phase velocity c according to (25.9) now assumes
real values, as desired. The arcsine function, however, admits two different real
phase velocities c1,2, in contrast to the analytic solution (25.2) of (25.1), which
admits the phase velocity c = U only. Owing to sin γ1 = sin γ2 with γ2 = π − γ1,
see Figure 25.2, the frequency equation (25.8) is satisfied by

γ1 = c1k �t = arcsin

(
U

�t

�x
sin(k �x)

)

γ2 = c2k �t = π − c1k �t

(25.23)

With decreasing �x,�t −→ 0 these two phase velocities become

lim
�t,�x→0

c1 = U, lim
�t,�x→0

c2 = ∞ (25.24)

One part of the solution with c1 = U is physically real; the other part with
c2 = ∞ is a wave due to the numerical procedure and, therefore, is counted
as a weak instability. The artificial numerical wave is caused by the difference
equation (25.5), which requires for the forecast knowledge of ψ at two initial
times ψn

j−1, ψ
n
j+1, ψ

n−1
j whereas for the analytic solution of (25.1) only one initial

condition is needed. The requirement of a second initial condition is responsible
for the existence of the numerical wave with phase velocity c2.

In order to discuss the behavior of the numerical wave we substitute c1 and
c2 according to (25.23) into the complete numerical solution. According to the
principle of superposition we find

ψn
j = A1 exp[ik(j �x − c1n�t)] + A2(−1)n exp[ik(j �x + c1n�t)] (25.25)

since exp(−inπ ) = (−1)n. The second term on the right-hand side is the numerical
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wave whose amplitude changes sign with each time step. Moreover, by recalling
that the analytic solution is given by f (x −Ut), it is easily seen that the numerical
wave moves in a direction opposite to the physical wave.

The amplitudes A1 and A2 will be determined from the initial conditions with
the goal of eliminating the numerical wave. From (25.25) we find

ψn=0
j = A1 exp(ikj �x) + A2 exp(ikj �x)

ψn=1
j = A1 exp[ik(j �x − c1 �t)] − A2 exp[ik(j �x + c1 �t)]

(25.26)

The first predicted value of ψ then refers to n = 2. In order to eliminate A2 we
multiply the first equation by exp(−ikc1 �t) and then subtract the second equation.
From this it follows that

A2 = ψn=0
j exp(−ikc1 �t) − ψn=1

j

exp(ikj �x) [exp(ikc1 �t) + exp(−ikc1 �t)]
(25.27)

For A2 to vanish we must set

ψn=1
j = ψn=0

j exp(−ikc1 �t) (25.28)

In this particular simple case we were able to relate the initial conditions. In practical
numerical weather prediction the differential equations to be solved numerically
are much more complicated, so the phase speed c is unknown. In a later section we
will show how to eliminate the numerical wave in a different manner.

25.2 Application of forward-in-time and central-in-space
difference quotients

In contrast to the previous sections we will now replace the local time derivative by
means of a forward-in-time difference quotient. Instead of (25.5) we now obtain

ψn+1
j − ψn

j + U �t

2�x

(
ψn

j+1 − ψn
j−1

) = 0 (25.29)

In comparison with (25.5) the second initial value at time step n− 1 is not needed,
resulting in only one phase velocity c. Now only one initial condition for t = 0 or
n = 0 is required. Thus weak instability does not occur. We will now investigate
whether the remaining wave is numerically stable. We substitute the trial solution
(25.6a) into (25.29) and obtain after canceling out of ψn

j the expression

exp(−ikc �t) − 1 + U �t

2�x
[exp(ik �x) − exp(−ik �x)] = 0 (25.30)
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Using c = cr + ici and the relation sin x = [exp(ix) − exp(−ix)]/(2i), we find

exp(kci �t) exp(−ikcr �t) − 1 + iU �t

�x
sin(k �x) = 0 (25.31)

Application of Euler’s formula permits us to separate the real and imaginary parts,
i.e.

(a) Real part: exp(kci �t) cos(kcr �t) = 1

(b) Imaginary part: exp(kci �t) sin(kcr �t) = U �t

�x
sin(k �x)

(25.32)

Squaring (25.32a) and (25.32b) and adding the results gives

exp(2kci �t) = 1 +
(
U �t

�x

)2

sin2(k �x) (25.33)

Solving for ci results in

ci = 1

2k �t
ln

[
1 +

(
U �t

�x

)2

sin2(k �x)

]
> 0 (25.34)

Dividing the imaginary part in (25.32) by the real part gives the real part of the
phase speed:

cr = 1

k �t
arctan

(
U �t

�x
sin(k �x)

)
≈ U (25.35)

for sufficiently small�t and�x, see equation (25.11). By substituting the complex
phase velocity (25.34) and (25.35) into the trial solution (25.6a) we find

ψn
j = A exp[ik(j �x − crn�t)] exp(cin�t) (25.36)

Inspection shows that the numerical solution to the difference equation (25.29)
approaches infinity with increasing time since ci > 0. This means that the numerical
solution is absolutely unstable.

In conclusion we will investigate the behavior of ci as the time step approaches
zero. From (25.34) it follows that

ci = 1

2k �t
ln[1 + B(�t)2] =⇒ lim

�t→0
ci = 0 (25.37)

with B > 0. This means that, for a very small first time step, the solution (25.36)
to the difference equation (25.29) is sufficiently accurate.
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25.3 A practical method for the elimination of the weak instability

The combination of the results of the previous sections leads to a practical compu-
tational method, which will be outlined now. For the first-order partial differential
equation (25.1) a unique solution is guaranteed whenever the variable ψ is speci-
fied at t = 0. The corresponding difference equation (25.5), however, requires an
arbitrary specification of the variable ψ not only at time t = t0 = 0 but also at
t = t1 = �t . The initial data for the two times t0 and t1 are not harmonized in
any way by the difference equation. This freedom in the choice of the initial data
resulted in the weak instability.

The application of the forward-in-time difference scheme (25.29), in agreement
with the differential equation, requires specification of the variable only for the
time t = 0. The weak instability does not occur in this case, but the numerical
scheme is unstable. Thus we apply equation (25.29) only for the very first time
step.

This suggests that we should use a combination of these two procedures, as will
be explained now. The numerical calculations are started by applying the forward-
in-time difference method for a fraction, say �t ′ = 1

8
�t , of the regular time step

�t . In this way we calculate with a high degree of stability, without the presence
of the numerical wave, the variable ψ at the time t = �t/8. In the second step
the normal solution scheme is applied, using the centered difference quotients with
�t ′ = 1

8 �t . In the third step one doubles the time step, i.e. �t ′ = 1
4 �t , thereby

always starting from n = 0. In the next step we use �t ′ = 1
2
�t until, in the

fifth step with �t ′ = �t , the value of ψ at time step n = 2 is obtained. The
procedure, which is also known as the leap-frog method, is shown schematically
in Figure 25.3. By means of this successive initialization the phenomenon of the
weak instability is suppressed very efficiently. Much more could be said about this
and other calculation procedures, but we have given sufficient evidence that great
care must be taken in applying finite-difference schemes. Later we will discuss an
entirely different instability, which is associated with the numerical treatment of
the nonlinear advection equation.

25.4 The implicit method

It is possible to give a numerical scheme for the solution of (25.1) that is abso-
lutely stable. In this case we proceed as follows. Time and spatial derivatives are
discretized by

∂ψ

∂t
= ψn+1

j − ψn
j

�t

∂ψ

∂x
= 1

2

(
ψn+1

j+1 − ψn+1
j−1

2�x
+ ψn

j+1 − ψn
j−1

2�x

) (25.38)
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n = 1

1
2

1
4
1
8 forward

n = 2

2 ∆t

Fig. 25.3 The leap-frog method.

The partial derivative with respect to time is discretized by a forward-in-time
difference quotient while the partial spatial derivative is expressed by a mean value
in time. Therefore, the discretized form of equation (25.1) is given by

ψn+1
j − ψn

j + U �t

4�x

(
ψn+1

j+1 − ψn+1
j−1 + ψn

j+1 − ψn
j−1

) = 0 (25.39)

In contrast to the methods which we have discussed so far, the required grid function
at n + 1 now appears at three different places and cannot be determined explicitly
as before. Therefore, this difference method is called the implicit scheme. In order
to find the solution of the advection problem, (25.39) must be written down for
all grid points j , including the boundary points j = 0 and j = J . This leads to
a band matrix that can be solved by known methods for the required values ψn+1

j

with j = 1, 2, . . ., J − 1. We will not describe the numerical procedure, but the
numerical effort by far exceeds the computational labor of the explicit schemes.
This is the price to be paid for the stability of the numerical method.

In order to prove the stability of the scheme, we introduce the trial solution
(25.6a) into (25.39) and obtain

exp(−ikc �t) − 1 + U �t

4�x
[exp(ik �x) − exp(−ik �x)][exp(−ikc �t) + 1] = 0

(25.40)
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Dividing this equation by the expression within the second set of brackets gives

exp(−ikc �t) − 1

exp(−ikc �t) + 1
+ U �t

4�x
[exp(ik �x) − exp(−ik �x)] = 0 (25.41)

On multiplying the numerator and denominator of the first term by exp(ikc �t/2)
and using well-known trigonometric relations we obtain without difficulty the
frequency equation

−i tan

(
kc �t

2

)
+ i

U �t

2�x
sin(k �x) = 0 (25.42)

The required expression for the phase velocity follows immediately:

c = 2

k �t
arctan

(
U �t

2�x
sin(k �x)

)
(25.43a)

The argument of the arc tangent may become arbitrarily large since the tangent
may assume any value between minus and plus infinity. This means that the phase
velocity is real for all values of �t and �x. For this reason the solution of the
difference equation (25.39) remains absolutely stable. Since arctan x ≈ x for
|x| � 1 we find

lim
�x,�t→0

c = U (25.43b)

so that in the limiting case we obtain the required phase velocity.
The implicit method is used in many practical applications, since the CFL

criterion does not have to be obeyed in the implicit method. However, the smaller
the values of �t and �x the closer the agreement with the analytic solution, in
general.

The implicit treatment of the meteorological equations is very time-
consuming. In order to reduce the numerical effort Robert (1969) introduced the
so-called semi-implicit method. This is a procedure that treats implicitly only those
terms which are mainly responsible for the propagation of the high-speed waves
requiring very small time steps in the explicit treatment. The remaining terms are
treated explicitly. This leads to a considerable increase of �t , which is now limited
only by the slower waves of meteorological significance.



25.5 The aliasing error and nonlinear instability 645

25.5 The aliasing error and nonlinear instability

In order to demonstrate the existence of a different type of instability, we consider
the one-dimensional nonlinear advection equation

∂u

∂t
+ u

∂u

∂x
= 0 (25.44)

which is always a part of the equations of motion. The analytic solution, as is easily
verified, is given by

u = f (x − ut) (25.45)

where f is an arbitrary function. We now consider the nonlinear term which results
from the multiplication of u and its spatial derivative. When the calculation is
performed in finite differences, we obtain an error due to the inability of the grid to
resolve wavelengths shorter than 2�x, or wavenumbers larger than kmax = π/�x.
Mesinger and Arakawa (1976) give an illuminating example by considering the
function

u = sin(kx) (25.46)

where k < kmax. Substituting (25.46) into the nonlinear term gives

u
∂u

∂x
= k sin(kx) cos(kx) = 1

2
k sin(2kx) (25.47)

The wavenumber appearing in the sine wave of (25.47) is twice as large as the
original wavenumber in (25.46). Suppose that the wavenumber in (25.46) is in the
interval 1

2kmax < k ≤ kmax. It follows that the nonlinear term produces a wave that
cannot be resolved by the grid, which leads to an improper evaluation of the finite-
difference calculation. To gain further insight, consider a wave whose wavenumber
exceeds kmax. This, for example, is the case if the wavelength is 4�x/3, as shown
by the full line in Figure 25.4.

Fig. 25.4 Misrepresentation of a wave of length 4�x/3 (full curve) as a wave of length
4�x due to the use of the finite-difference grid.
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All we can know about a variable is its values at the grid points. Therefore, we
cannot distinguish this wave from the dashed-line wave of wavelength 4�x. This
misrepresentation is known as the aliasing error.

In the more general case the variable u will be represented by an infinite series
of harmonic components of the type (25.46):

u =
∑
n

un with un = sin(knx) (25.48)

so that many nonlinear terms of the type sin(k1x) sin(k2x) will appear due to the
nonlinear term. This, of course, will falsify the energy spectrum of the process
to be studied. Since aliasing is due to nonlinear effects one speaks of nonlinear
instability. Apparently, this effect was first encountered by Phillips (1956) in his
famous numerical experiment modeling the general circulation of the atmosphere.

Arakawa (1966) and Arakawa and Lamb (1977) constructed finite-difference
equations that suppress the effect of nonlinear instability by restricting the inter-
action between the resolved and unresolved scales. We refer to Kasahara (1977),
who used the simple nonlinear advection equation (25.44) to demonstrate the basic
property of the Arakawa scheme. First of all, we consider the integrated linear
momentum Mu and the kinetic energy Ku per unit mass

Mu =
∫ L

0

u dx, Ku = 1

2

∫ L

0

u2 dx (25.49)

The dependent variable u is defined on a cyclic continuous domain from x = 0 to
x = L so that u(0) = u(L). In the integrated form the advection equations for the
linear momentum and the kinetic energy can be written as

(a)
∫ L

0

∂u

∂t
dx = −

∫ L

0
u
∂u

∂x
dx = −

∫ L

0

∂

∂x

(
u2

2

)
dx = 0

(b)
∫ L

0

∂

∂t

(
u2

2

)
dx = −

∫ L

0
u

∂

∂x

(
u2

2

)
dx = −

∫ L

0

∂

∂x

(
u3

3

)
dx = 0

(25.50)
since u(0) = u(L). Equation (25.50a) implies the well-known space-centered
difference scheme

∂uj

∂t
= − (uj+1)2 − (uj−1)2

4�x
(25.51)

Using (25.51), we may approximate (25.50a), to obtain

∂

∂t

J∑
j=1

uj = − 1

4�x

J∑
j=1

[(uj+1)2 − (uj−1)2] = 0 (25.52)
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where J = L/�x must be a natural number. Hence it is seen that the finite-
difference scheme (25.51) conserves the momentum. It will be left as an excercise
to show that the kinetic energy is not conserved by using (25.51) as indicated by

∂

∂t

J∑
j=1

u2
j

2
�= 0 (25.53)

The conservation of the momentum by itself does not ensure computational stabil-
ity.

Both momentum and energy may be conserved by using an alternate scheme.
By writing (25.44) in the form

∂u

∂t
= −u

∂u

∂x
= −1

3

(
u
∂u

∂x
+ ∂u2

∂x

)
(25.54)

we find the finite-difference approximation

∂uj

∂t
= −1

3

(
uj

uj+1 − uj−1

2�x
+ (uj+1)2 − (uj−1)2

2�x

)
(25.55)

It will be left as an exercise to show that the scheme (25.55) conserves the
momentum and the kinetic energy. A difference scheme may be stable if it conserves
both the momentum and the kinetic energy. Since no change in the potential energy
of the system occurs, the total energy is conserved. This prevents the spurious
growth of energy which may occur on using (25.51) and various other advection
schemes. Additional details are given by Washington and Parkinson (1986), where
further references may be found, particularly with respect to the use of spatial-
difference schemes.

It is well known that most numerical modeling of all scales of atmospheric flow is
based on the approximation of horizontal derivatives by finite differences. The basic
concepts of finite-difference approximations are relatively simple to understand.
Indeed, much sophistication has gone into the construction of many finite-difference
schemes, which are needed in order to handle various flow problems. It is fair to
say that numerical modeling of atmospheric flow since the pioneering work by
Charney et al. (1950) has been a story of great success. Most of the numerical work
represents the meteorological variables in space and time on a finite-difference
grid. However, there are other methods for describing atmospheric fields. It has
been shown by various modelers of the atmospheric flow that hemispheric and
global modeling can be advantageously carried out by means of a spectral model
that makes use of the orthogonality properties of the spherical functions. Various
versions of spectral models have been devised. In the next chapter we will briefly
discuss the philosophy of the spectral model and show how the model equations
may be obtained.
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25.6 Problems

25.1: Show that equation (25.39) can be expressed with the help of a band matrix
multiplying the vector

(
ψn+1

1 , ψn+1
2 , . . .

)T
, where T denotes the transpose. The

boundary points are assumed to be independent of time; all ψn
j are considered to

be known.

25.2: Show all steps between (25.41) and (25.43a).

25.3: Verify equation (25.53) by using equation (25.51).

25.4: Show that the momentum and the kinetic energy are conserved by using
(25.55).
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Modeling of atmospheric flow by spectral techniques

26.1 Introduction

The representation of atmospheric flow fields by means of spherical functions has a
long history. Haurwitz (1940) represented themovement of Rossbywaves bymeans
of spherical functions. The development of the spectral method for the numerical
integration of the equations of atmospheric motion goes back to Silberman (1954),
who integrated the barotropic vorticity equation in spherical geometry. The spectral
method attracted the attention of others and studieswere performed, for example, by
Lorenz (1960), Platzman (1960), Kubota et al. (1961), Baer and Platzman (1961),
and Elsaesser (1966). Lorenz demonstrated that, for nondivergent barotropic flow,
the truncated spectral equations have some important properties. Just like the exact
differential equations, they preserve the mean squared vorticity, called enstrophy,
and the mean kinetic energy. Platzman pointed out that this very desirable property
automatically eliminated nonlinear instability, which at that time was a substantial
difficulty in grid-point models. The earlyworkmade use of the so-called interaction
coefficients to handle nonlinearity. This cumbersome procedurewas replaced by the
efficient transform technique for solving the spectral equations, which was devised
independently by Orszag (1970) and by Eliasen et al. (1970). In compressed form
the essential information on spectral modeling is given by Haltiner and Williams
(1980). Much valuable information about spectral techniques – which is usually
not readily available – can be extracted from the “gray” literature. We refer to an
excellent report by Eliasen et al. (1970). Finally, we refer the reader to an excellent
article on “Global modelling of atmospheric flow by spectral methods”, by Bourke
et al. (1977). This article states the merits of the spectral relative to finite-difference
models. We will briefly repeat these.

Foremost among the advantages of the spectral method relative to finite-
difference methods are

649
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(i) the intrinsic accuracy of evaluation of horizontal advection,
(ii) the elimination of aliasing arising from quadratic nonlinearity,
(iii) ease of modeling flow over the entire globe, and
(iv) the ease of incorporation of semi-implicit integration over time.

These characteristics of the spectral method result in highly accurate and
stable numerics and efficient and simple computer coding. The spectral transform
technique described in this chapter follows the description in Technical Report
No. 6 “TheECHAM3AtmosphericGeneralCirculationModel”,DKRZ,Hamburg,
1993, where the operational forecast model is presented. The model equations are
based on various suitable approximations to simplify the required parameterizations
of fluxes and the numerical procedures. These approximations include simplified
forms of the continuity equation and the heat equation. We do not discuss these
approximations but use the equations in the forms given in the previous chapters.
Since the model equations ignore the diffusion flux of the dry air, it becomes
possible to reduce the system of continuity equations of the partial masses to a
single prediction equation for the moisture variable q = mH2O, which here refers
to the sum of the specific humidity for the vapor (m1), the specific liquid (m2), and
the specific ice content (m3). All physical effects are thought to be described by the
symbolQq . The moisture equation in the model is structured in such a way that it
is compatible with the heat equation.

26.2 The basic equations

In this section we will present the basic equations used for the spectral representa-
tion. These are the horizontal equations of motion, the continuity equation and the
hydrostatic equation, the prognostic equations for temperature, and the moisture
variable q. These equations have been derived in previous chapters but need to be
rewritten to a certain extent. First of all we repeat the equation for the individual
derivative in the spherical system, see equation (19.15),

d

dt
= ∂

∂t
+ u

a cosϕ

∂

∂λ
+ v

a

∂

∂ϕ
+ ξ̇

∂

∂ξ
(26.1)

where we have used the unspecified general vertical coordinate ξ and r has been
replaced by the constant earth radius a. Robert (1966) has pointed out that it is
appropriate for the spectral representation of the flow field on the globe to replace
the original velocity components by the transformation

u = U

cosϕ
, v = V

cosϕ
(26.2)

For notational convenience it is costumary to introduce the symbolµ = cos θ =
sinϕ, where θ = π/2 − ϕ is the co-latitude. From this definition follows a
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differential relation given by

∂

∂ϕ
= cosϕ

∂

∂µ
(26.3)

Using the transformation (26.2), we find for the individual time derivative

d

dt
= ∂

∂t
+ U

a(1 − µ2)

∂

∂λ
+ V

a

∂

∂µ
+ ξ̇

∂

∂ξ
(26.4)

We have discussed in an earlier chapter the fact that, due to ever-existing compu-
tational limitations and insufficient data to specify the initial conditions, the atmo-
sphere cannot be resolved to the extent necessary to include all scales of motion.
Therefore, it becomes necessary to average the pertinent atmospheric equations.
We know from our earlier work that the averaging process produces a number
of correlations but otherwise retains the form of the unaveraged equations. These
correlations represent the unresolved and, therefore, unknown subgrid fluxeswhich
need to be parameterized. Various research groups use different parameterizations
for the same correlations. Furthermore, these parameterizations are subject to revi-
sion as more and better observational data become available. For these reasons we
will not discuss the parameterizations in the present context. Instead, we assume
that the averaging process has been carried out already and we simply assign sym-
bols to the correlations. Moreover, to keep the notation simple we also leave out
the various averaging symbols.

Using (26.4) the equation for the U -component of the horizontal motion can
then be written as

∂U

∂t
+ U

a(1 − µ2)

∂U

∂λ
+ V

a

∂U

∂µ
+ ξ̇

∂U

∂ξ
− f V

= − 1

aρ

∂p

∂λ
− 1

a

∂φ

∂λ
+ PU +KU

(26.5a)

The subgrid fluxes are simply denoted by PU and KU representing the vertical
change of the momentum flux and the tendency of U due to horizontal diffusion.
The description of the subgrid fluxes given here is rather vague but this has no effect
on the discussion of the spectral method. Similarly, we obtain for the V -component

∂V

∂t
+ U

a(1 − µ2)

∂V

∂λ
+ 1

a

∂

∂µ

(
V 2

2

)
+ ξ̇

∂V

∂ξ
+ U 2 + V 2

a

µ

1 − µ2
+ fU

= −1 − µ2

aρ

∂p

∂µ
− 1 − µ2

a

∂φ

∂µ
+ PV +KV

(26.5b)
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By omitting the P and K terms and reverting to the original variables u and v we
return to the original form of the horizontal equations of motion in the spherical
coordinate system.

Instead of transforming the U - and V -components directly, the motion will be
described in terms of the vorticity and divergence equations. This approach was
successfully practiced by Bourke (1972). To this end, first of all, we introduce the
vorticity into equation (26.5) by means of

ζ = er · ∇ × v = 1

a cosϕ

(
∂v

∂λ
− ∂

∂ϕ
(u cosϕ)

)
= 1

a

(
1

1 − µ2

∂V

∂λ
− ∂U

∂µ

)
(26.6)

After a few easy mathematical steps we obtain

∂U

∂t
− (f + ζ )V + ξ̇

∂U

∂ξ
+ R0Tv

a

∂ lnp

∂λ
+ 1

a

∂

∂λ
(φ +E) = PU +KU

with E = 1

1 − µ2

U 2 + V 2

2

(26.7a)

∂V

∂t
+ (f + ζ )U + ξ̇

∂V

∂ξ
+ (1−µ2)

R0Tv

a

∂ lnp

∂µ
+ 1 − µ2

a

∂

∂µ
(φ+E) = PV +KV

(26.7b)
Tv is the virtual temperature.

To formulate the prognostic equation of temperature we refer to equation (23.4).
We replace the individual derivative d/dt by means of (26.4) and use Tv instead of
T in the second ω term and obtain

∂T

∂t
+ U

a(1 − µ2)

∂T

∂λ
+ V

a

∂T

∂µ
+ ξ̇

∂T

∂ξ
− R0Tv

cpp
ω = Qh (26.8a)

or
∂T

∂t
− FT = Qh with

FT = − U

a(1 − µ2)

∂T

∂λ
− V

a

∂T

∂µ
− ξ̇

∂T

∂ξ
+ R0Tv

cpp
ω

(26.8b)

The radiative flux divergence and the release of latent heat are thought to be included
inQh. For the reason given in the introduction to this chapter we may write for the
moisture equation

∂q

∂t
+ U

a(1 − µ2)

∂q

∂λ
+ V

a

∂q

∂µ
+ ξ̇

∂q

∂ξ
= Qq (26.9a)

or

∂q

∂t
− Fq = Qq with Fq = − U

a(1 − µ2)

∂q

∂λ
− V

a

∂q

∂µ
− ξ̇

∂q

∂ξ
(26.9b)
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The continuity equation involving the generalized vertical coordinate ξ with the
scaling factor m0 = 1 follows from (22.16) and is given by

∂

∂ξ

(
∂p

∂t

)
+ ∇h ·

(
vh
∂p

∂ξ

)
+ ∂

∂ξ

(
ξ̇
∂p

∂ξ

)
= 0 (26.10)

Now, ∇h refers to spherical coordinates. Obviously, the hydrostatic equation in
terms of ξ is given by

∂φ

∂ξ
= −R0Tv

p

∂p

∂ξ
(26.11)

Next, we wish to obtain a suitable expression for the generalized vertical velocity
ω = dp/dt . This is accomplished by rewriting (26.10),

∂

∂ξ

(
∂p

∂t
+ vh · ∇hp + ξ̇

∂p

∂ξ
− vh · ∇hp

)
+ ∇h ·

(
vh
∂p

∂ξ

)
= 0

or
∂

∂ξ
(ω− vh · ∇hp) + ∇h ·

(
vh
∂p

∂ξ

)
= 0

(26.12)

Integrating this expression between the limits shown yields∫ ξ

0

∂ω

∂ξ ′ dξ
′ =

∫ ξ

0

∂

∂ξ ′ (vh · ∇hp) dξ
′ −

∫ ξ

0

∇h ·
(
vh
∂p

∂ξ ′

)
dξ ′ (26.13)

So far we have not specified the direction of ξ . The reason for this is that in the
expression ξ̇ ∂/∂ξ it does not make any difference whether ξ increases from the top
of the atmosphere or from the ground. If we start the integration from the ground
then (26.13) necessarily involves the evaluation of ω at the earth’s surface. Instead,
we let ξ increase in the downward direction from the top of the atmosphere to get
a simpler expression since ω(ξ = 0) = 0, or

ω(ξ ) = (vh · ∇hp)ξ −
∫ ξ

0
∇h ·

(
vh
∂p

∂ξ ′

)
dξ ′ (26.14)

Since the surface pressure is not fixed in general but varies with time, we need
to derive a suitable expression for the surface-pressure tendency. By integrating
(26.10) we obtain

∂ps

∂t
= −

∫ 1

0
∇h ·

(
vh
∂p

∂ξ

)
dξ or

∂ lnps

∂t
= − 1

ps

∫ 1

0
∇h ·

(
vh
∂p

∂ξ

)
dξ

(26.15)
The predictive equations require knowledge of ξ̇ . By integrating the continuity

equation (26.10) from the top of the atmosphere where p = 0 to the arbitrary level
ξ we find

ξ̇
∂p

∂ξ
= −

(
∂p

∂t

)
ξ

−
∫ ξ

0

∇h ·
(
vh
∂p

∂ξ ′

)
dξ ′ (26.16)

If ξ = 1 we again obtain equation (26.15).
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We are now ready to derive the vorticity and the divergence equations in terms
of the transformed velocity variables U and V . To this end we apply the operators
a−1 ∂/∂µ to (26.7a) and [a(1 − µ2)]−1 ∂/∂λ to (26.7b) and subtract one of the
results from the other to obtain

1

a

∂

∂t

(
1

1 − µ2

∂V

∂λ
− ∂U

∂µ

)

+ 1

a(1 − µ2)

∂

∂λ

[
(f + ζ )U + ξ̇

∂V

∂ξ
+ (1 − µ2)

R0Tv

a

∂ lnp

∂µ

]

+ 1

a

∂

∂µ

[
(f + ζ )V − ξ̇

∂U

∂ξ
− R0Tv

a

∂ lnp

∂λ

]
= 1

a(1 − µ2)

×
(
∂PV

∂λ
+ ∂KV

∂λ

)
− 1

a

(
∂PU

∂µ
+ ∂KU

∂µ

)
(26.17)

The expressions in the square brackets which are differentiated with respect to λ
and µ will be abreviated by −FV and FU . Reference to equation (26.6), which is
the definition of the vorticity, shows that (26.17) can be written as

∂ζ

∂t
= 1

a(1 − µ2)

∂

∂λ
(FV + PV ) − 1

a

∂

∂µ
(FU + PU ) +Kζ

with Kζ = 1

a

(
1

1 − µ2

∂KV

∂λ
− ∂KU

∂µ

)

FU = (f + ζ )V − ξ̇
∂U

∂ξ
− R0Tv

a

∂ lnp

∂λ

FV = −(f + ζ )U − ξ̇
∂V

∂ξ
− (1 − µ2)

R0Tv

a

∂ lnp

∂µ

(26.18)

Now we wish to introduce the horizontal divergence by means of

D = 1

a(1 − µ2)

∂U

∂λ
+ 1

a

∂V

∂µ
(26.19)

The derivation of this equation will be left as an exercise. By applying the operators
[a(1 − µ2)]−1 ∂/∂λ to (26.7a) and a−1 ∂/∂µ to (26.7b) and then adding the results
we obtain
1

a

∂

∂t

(
1

1 − µ2

∂U

∂λ
+ ∂V

∂µ

)

− 1

a(1 − µ2)

∂

∂λ

(
(f + ζ )V − ξ̇

∂U

∂ξ
− R0Tv

∂ lnp

∂λ
+ 1

a

∂

∂λ
(φ + E)

)

+ 1

a

∂

∂µ

(
(f + ζ )U + ξ̇

∂V

∂ξ
+ (1 − µ2)

R0Tv

a

∂ lnp

∂µ
+ 1 − µ2

a

∂

∂µ
(φ + E)

)

= 1

a(1 − µ2)

∂

∂λ
(PU +KU ) + 1

a

∂

∂µ
(PV +KV )

(26.20)
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On introducing the divergence according to (26.19) we find

∂D

∂t
= 1

a(1 − µ2)

∂

∂λ
(FU + PU ) + 1

a

∂

∂µ
(FV + PV ) +KD − ∇2

hG

with KD = 1

a(1 − µ2)

∂KU

∂λ
+ 1

a

∂KV

∂µ
, G = φ + E

∇2
h = 1

a2(1 − µ2)

∂2

∂λ2
+ 1

a2

∂

∂µ

(
(1 − µ2)

∂

∂µ

)
(26.21)

We now recall that, according to Helmholtz’s theorem (Section 6.1); the velocity
vector v can be decomposed into the sum of the rotational and the divergent parts,
v = vROT + vDIV. In the two-dimensional situation we may write, see equation
(6.12a),

ueλ + veϕ = U

cosϕ
eλ + V

cosϕ
eϕ = er × ∇hψ + ∇hχ

= eϕ
1

a cosϕ

∂ψ

∂λ
− eλ

cosϕ

a

∂ψ

∂µ
+ eλ

1

a cosϕ

∂χ

∂λ
+ eϕ

cosϕ

a

∂χ

∂µ

(26.22)

where ψ is the stream function and χ the velocity potential. Successive scalar
multiplication by the unit vectors eλ and eϕ gives

(a) U = −1 − µ2

a

∂ψ

∂µ
+ 1

a

∂χ

∂λ

(b) V = 1

a

∂ψ

∂λ
+ 1 − µ2

a

∂χ

∂µ

(26.23)

Using the horizontal Laplacian as shown in equation (26.21) leads to the well-
known expressions for the vorticity ζ and the divergenceD as in (6.13):

ζ = ∇2
hψ, D = ∇2

hχ (26.24)

The Laplacian in spherical ccordinates is defined in (26.21).

26.3 Horizontal discretization

The prognostic equations are formulated in terms of the vorticity ζ (26.18), the
divergence D (26.21), the temperature T (26.8), the moisture q (26.9), and the
surface pressure ln ps (26.15). These quantities as well as the surface geopoten-
tial φ will be represented in terms of the spherical functions. Before proceeding, we
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will briefly review those properties of the spherical functions which are needed in
our work. More detailed information can be found in any standard textbook on this
subject. We refer to Lense (1950).

26.3.1 Surface spherical harmonics

A function f (x, y, z) is said to be homogeneousof degreen if the following relation
holds:

f (λx, λy, λz) = λnf (x, y, z) (26.25)

It is required thatn is a real number, not necessarily an integer. Partial differentiation
of this identity with repect to λ, afterwards setting λ = 1, gives Euler’s relation

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= nf (26.26)

A spherical function Wn of degree n is defined to be a homogeneous potential
function of degreen. Solutions ofLaplace’s equation, in general, are called potential
or harmonic functions. Therefore, the functionWn satisfies the Euler relation

x
∂Wn

∂x
+ y

∂Wn

∂y
+ z

∂Wn

∂z
= nWn (26.27)

and the Laplace equation
∇2Wn = 0 (26.28)

Introduction of the spherical coordinates

x = r sin θ cosλ, y = r sin θ sin λ, z = r cos θ (26.29)

into the expression r ∂Wn(x, y, z)/∂r gives

r
∂Wn

∂r
= r

(
∂Wn

∂x

∂x

∂r
+ ∂Wn

∂y

∂y

∂r
+ ∂Wn

∂z

∂z

∂r

)

= x
∂Wn

∂x
+ y

∂Wn

∂y
+ z

∂Wn

∂z
= nWn

(26.30)

Laplace’s equation in spherical coordinates is given by

∂

∂r

(
r2
∂Wn

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂Wn

∂θ

)
+ 1

sin2 θ

∂2Wn

∂λ2
= 0 (26.31)

SinceWn is homogeneous of degree n, we may write

Wn(x, y, z) = Wn(r sin θ cosλ, r sin θ sinλ, r cos θ)

= rnWn(sin θ cosλ, sin θ sin λ, cos θ)

= rnYn(λ, θ)

(26.32)



26.3 Horizontal discretization 657

The part depending only on the angular coordinates (λ, θ) is known as the spherical
function Yn.

In order to find a solution for Yn, we first use (26.30) to obtain

r2
∂Wn

∂r
= nrWn (26.33)

and
∂

∂r

(
r2
∂Wn

∂r

)
= n(n+ 1)Wn (26.34)

so that (26.31) can be written as

1

sin θ

∂

∂θ

(
sin θ

∂Yn

∂θ

)
+ 1

sin2 θ

∂2Yn

∂λ2
+ n(n+ 1)Yn = 0 (26.35)

If the function Yn(λ, θ) depends on θ only, we will call this function Pn(θ), which
is known as the zonal spherical function. Thus the partial differential equation
(26.35) reduces to

1

sin θ

d

dθ

(
sin θ

∂Pn(θ)

∂θ

)
+ n(n+ 1)Pn(θ) = 0 (26.36)

Since θ is the only independent variable, we have obtained an ordinary differential
equation. On introducing the definition µ = cos θ , equation (26.36) assumes the
form

(1 − µ2)
d2Pn(µ)

dµ2
− 2µ

dPn(µ)

dµ
+ n(n+ 1)Pn(µ) = 0 (26.37)

which is known as Legendre’s differential equation. The particular solution

Pn(µ) = 1

2nn!

dn

dµn
(µ2 − 1)n, −1 ≤ µ ≤ 1 (26.38)

is called the Legendre polynomial of degree n. It is well known that these polyno-
mials form a system of orthogonal functions on the interval −1 ≤ µ ≤ 1. Tables
of Pn(µ) can be found in many textbooks and mathematical handbooks.

By differentiating (26.37) m times with respect to µ, we easily find

(1 −µ2)
d2P (m)

n (µ)

dµ2
− 2(m+ 1)µ

dP (m)
n (µ)

dµ
+ [n(n+ 1)−m(m+ 1)]P (m)

n (µ) = 0

(26.39)
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where m = 0, 1, . . . and P (m)
n (µ) represents the mth derivative of Pn(µ). We leave

the verification of (26.39) to the exercises. We now introduce the definition

Pm
n (µ) = (−1)m(1 − µ2)m/2P (m)

n (µ) = (−1)m
(1 − µ2)m/2

2nn!

dn+m

dµn+m (µ
2 − 1)n

(26.40)
into (26.39) and obtain

(1 − µ2)
dPm

n (µ)

dµ2
− 2µ

dPm
n (µ)

dµ
+

(
n(n+ 1) − m2

1 − µ2

)
Pm
n (µ) = 0 (26.41)

which is known as the associated Legendre equation. The Pm
n (µ) are the associated

Legendre polynomials satisfying (26.41). Details regarding going from (26.39) to
(26.41) will be left to the problems. The associated Legendre polynomials also
form a system of orthogonal functions on the interval −1 ≤ µ ≤ 1. Some details
will be given shortly.

We will now obtain a suitable expression for the spherical surface function Yn,
also known as Laplace’s spherical function, by separating the variables θ and λ.
By substituting

Yn(λ, θ) = -(θ).(λ) (26.42)

into (26.35), we find

sin θ

-

d

dθ

(
sin θ

d-

dθ

)
+ n(n+ 1) sin2 θ = − 1

.

d2.

dλ2
(26.43)

whose left-hand side depends on θ only, so we immediately obtain

d

dλ

(
1

.

d2.

dλ2

)
= 0 (26.44)

The solution to equation (26.41) is given by

1

.

d2.

dλ2
= −m2 (26.45)

where m is a constant. Moreover, the solution to (26.45) is

.(λ) = Am cos(mλ) + Bm sin(mλ) (26.46)

By introducing µ = cos θ into (26.43) we obtain

(1 − µ2)
d2-

dµ2
− 2µ

d-

dµ
+

(
n(n+ 1) − m2

1 − µ2

)
- = 0 (26.47)

If m is an integer and 0 ≤ m ≤ n, the comparison of (26.47) with (26.41) shows
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that - is the associated Legendre polynomial Pm
n (µ), i.e.

-(µ) = Pm
n (µ) (26.48)

Since the differential equation (26.35) is linear and homogeneous, we obtain from
(26.42) the desired solution

Yn(λ, θ) =
n∑

m=0

[Am cos(mλ) + Bm sin(mλ)]P
m
n (cos θ) (26.49)

We will now give the orthogonality relation for the assciated Legrende polyno-
mials: ∫ +1

−1

Pm
n (µ)P

m
l (µ) dµ = 2

(2l + 1)

(l +m)!

(l −m)!
δn,l (26.50)

As usual, the symbol δn,l is the Kronecker delta. The proof of this relation is not
particularly difficult and can be found in any textbook on the subject. As will be
seen, the normalized form of the associated Legendre polynomials P̃ m

n (µ) is given
by

P̃ m
n (µ) =

√
2n+ 1

2

(n−m)!

(n+m)!
Pm
n (µ) (26.51)

from which it follows that ∫ +1

−1
P̃ m
n (µ)P̃

m
l (µ) dµ = δn,l (26.52)

Various useful identities involving the Legendre polynomials are listed next:

Pm
l (µ) = 0 if m > l

Pm
l (−µ) = (−1)l+mPm

l (µ)

P −m
l (µ) = (−1)m

(l −m)!

(l +m)!
Pm
l (µ)

P̃ −m
l (µ) = (−1)mP̃ m

l (µ)

Pm=0
l (µ) = Pl(µ)

(26.53)

The linearly independent parts of (26.49) are written down separately together
with the zeros of the function:

(a) Ym
n (λ, θ)c = cos(mλ)Pm

n (cos θ) with zeros at λ = π

2m
,
3π

2m
, . . .

(b) Ym
n (λ, θ)s = sin(mλ)Pm

n (cos θ) with zeros at λ = 0,
π

m
,
2π

m
, . . .

(26.54)
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Fig. 26.1 Nodes of the surface harmonics Y 3
5 (λ, θ ) = sin(3λ)P 3

5 (cos θ ). The function has
negative values in the shaded regions.

They are also known as the surface spherical harmonics of the first kind, tesseral
for m < n and sectoral for m = n. Their usefulness follows from the fact that
everywhere they are single-valued and continuous functions on the surface of the
sphere. The number ofwavesm around the latitude circle, defined either by (26.54a)
or by (26.54b), is known as the east–west planetary wavenumber. Moreover, the
function Pm

n (µ) has n − m zeros that are symmetric with respect to the equator
at θ = π/2. The number n − m is the so-called meridional wavenumber, which
is defined as the number of nodal zeros between the poles but excluding these. A
typical example for the tesseral harmonics is given in Figure 26.1 for n = 5 and
m = 3. The so-called nodal latitude is 19.5◦. The nodal latitudes are also known
as the Gaussian latitudes. Values for other combinations of m and n are given by
Haurwitz (1940).

The alternating pattern of low and high values of variables may be thought of as
negative and positive deviations from the mean values. A specific and interesting
example involving the geopotential derived from the shallow-water equations is
given by Washington and Parkinson (1986).

Instead of using equation (26.49) in terms of cos(mϕ) and sin(mϕ) it is more
convenient to use the normalized form
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Ym
n (λ, θ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cos θ) exp(imλ) = 1√

2π
P̃ m
n (cos θ) exp(imλ)

(26.55)
Observing the orthogonality relation

∫ 2π

0
exp(imλ) exp(−im′λ) dλ = 2πδm,m′ (26.56)

and the normalized form (26.51) of the associated Legendre polynomials, we may
easily verify the orthogonality relation

∫ 2π

0

dλ

∫ 1

−1

Ym
n (λ,µ)

[
Ym′
n′ (λ,µ)

]∗
dµ = δm,m′δn,n′ (26.57)

The superscript ∗ denotes the complex conjugate of the function Ym
n .

Equation (26.49) may be written in the more convenient form

Yn(λ, θ) =
n∑

m=−n
AmYm

n (λ, θ) (26.58)

Equations (26.49) and (26.58) are completely equivalent, each requiring 2n + 1
expansion coefficients.

26.3.2 Spectral representation

According to Sommerfeld (1964), equation (26.58) represents the most general
surface spherical harmonics. If we wish to represent a function f on the sphere we
must sum over all n so that

f (λ,µ) =
∞∑
n=0

Yn =
∞∑
n=0

n∑
m=−n

Am
n Y

m
n (λ,µ) (26.59)

This expression, also known as Laplace’s series, is a uniformly convergent double
series of spherical harmonics. Now we wish to apply (26.59) to the prognostic
variables X = ζ,D, T , q, and lnps, where the variables ζ and D are used instead
of U and V . Obviously, the meteorological variables vary on the surface of the
earth not only with the longitude λ and the latitude ϕ but also with the generalized
height ξ and with time. In order to use the series representation in the numerical
integrations it is necessary to truncate the series and retain only a finite number
of terms. We restrict the series expansion tom ≤ M and n−|m| ≤ J , whereM and
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J are positive integers. Thus, we write

X(λ,µ, ξ, t) =
M∑

m=−M

|m|+J∑
n=|m|

Xm
n (ξ, t)Y

m
n (λ,µ) (26.60)

In order to obtain expressions for the expansion coefficients Xm
n we make use of

the orthogonality relations (26.57). We obtain immediately the complex-valued
expression

Xm
n (ξ, t) =

∫ +1

−1

∫ 2π

0
X(λ,µ, ξ, t)

[
Ym
n (λ,µ)

]∗
dλ dµ (26.61)

Since X is real we recognize with the help of (26.53) that

X−m
n = (−1)m

(
Xm
n

)∗
(26.62)

In the complex representation of Fourier series, the Fourier coefficients ofX are
defined by

Xm(µ, ξ, t) = 1

2π

∫ 2π

0

X(λ,µ, ξ, t) exp(−imλ) dλ (26.63)

Substitution of (26.60) into (26.63) and using the orthogonality condition (26.56)
yields

Xm(µ, ξ, t) = 1√
2π

|m|+J∑
n=|m|

Xm
n (ξ, t)P̃

m
n (µ) (26.64)

Therefore, (26.60) can be written as

X(λ,µ, ξ, t) =
M∑

m=−M
Xm(µ, ξ, t) exp(imλ) (26.65)

Equations (26.60) and (26.43) can now be used to obtain the horizontal derivatives
of X entirely analytically:

∂X(λ,µ, ξ, t)

∂λ
=

M∑
m=−M

|m|+J∑
n=|m|

Xm
n (ξ, t)

im√
2π

P̃ m
n (µ) exp(imλ)

∂X(λ,µ, ξ, t)

∂µ
=

M∑
m=−M

|m|+J∑
n=|m|

Xm
n (ξ, t)

1√
2π

dP̃ m
n (µ)

dµ
exp(imλ)

(26.66)
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The derivative of the associated Legendre polynomials involved in (26.66) can be
expressed by the following recurrence relation:

(1 − µ2)
d

dµ
P̃ m
n (µ) = −nεmn+1P̃

m
n+1(µ) + (n+ 1)εmn P̃

m
n−1(µ)

with εmn =
√
n2 −m2

4n2 − 1

(26.67)

We now multiply equation (26.35) by the factor 1/a2, where a is the mean radius
of the earth. The first two terms are equivalent to the horizontal Laplacian operator
in spherical coordinates. Thus we obtain

∇2
hYn(λ,µ) = −n(n+ 1)

a2
Yn(λ,µ) (26.68)

This important relation will be used shortly.
Next we need to formulate the spectral coefficients for the vorticity and the

divergence. The mathematical process is not difficult but is somewhat lengthy.
Therefore, the derivation will be done in several steps. The first step is the formu-
lation of the Fourier coefficients for U and V as stated by (26.23). Application of
equation (26.63) to U gives immediately

Um(µ, ξ, t) = 1

2πa

∫ 2π

0

(
−(1 − µ2)

∂ψ

∂µ
+ ∂χ

∂λ

)
exp(−imλ) dλ (26.69)

Note that the stream functionψ and the velocity potential χ appear in differentiated
form. On replacing X in (26.66) by ψ and then by χ we find

Um(µ, ξ, t) = 1

a(2π )3/2

M∑
m′=−M

|m′|+J∑
n=|m′|

[
−(1 − µ2)ψm′

n (ξ, t)
d

dµ
P̃ m′
n (µ)

+ im′χm′
n (ξ, t)P̃

m′
n (µ)

] ∫ 2π

0
exp[i(m′ −m)λ] dλ

(26.70)

For compactness of notation we will introduce

Hm
n (µ) = −(1 − µ2)

d

dµ
P̃ m
n (µ) (26.71)

into (26.70). Thus we find

Um(µ, ξ, t) = 1√
2π

|m|+J∑
n=|m|

1

a

[
ψm
n (ξ, t)H

m
n (µ) + imχm

n (ξ, t)P̃
m
n (µ)

]
(26.72)
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Our next goal is to involve the vorticity and the divergence (see (26.24)) instead of
the stream function and the velocity potential. On expanding the vorticity according
to (26.60) we find without difficulty

ζ (λ,µ, ξ, t) =
M∑

m=−M

|m|+J∑
n=|m|

ζmn (ξ, t)Y
m
n (λ,µ)

=
M∑

m=−M

|m|+J∑
n=|m|

ψm
n (ξ, t)∇2

h

[
Ym
n (λ,µ)

]

=
M∑

m=−M

|m|+J∑
n=|m|

ψm
n (ξ, t)

(
−n(n+ 1)

a2

)
Ym
n (λ,µ)

(26.73)

where we have used (26.68) to eliminate the Laplacian operator. Inspection of
(26.73) shows that

ζmn (ξ, t) = −ψm
n (ξ, t)

n(n + 1)

a2
(26.74)

Since ζ and D have the same mathematical structure, we obtain immediately

Dm
n (ξ, t) = −χm

n (ξ, t)
n(n+ 1)

a2
(26.75)

Substituting (26.74) and (26.75) into (26.73) expresses the Fourier coeffientUm in
terms of the spectral coefficients ζmn and Dm

n ,

Um(µ, ξ, t) = − 1√
2π

|m|+J∑
n=|m|

a

n(n+ 1)

[
ζmn (ξ, t)H

m
n (µ) + imDm

n (ξ, t)P̃
m
n (µ)

]
(26.76)

After introducing the definitions

Um
ζ (µ, ξ, t) = − 1√

2π

|m|+J∑
n=|m|

a

n(n+ 1)
ζmn (ξ, t)H

m
n (µ)

Um
D (µ, ξ, t) = − 1√

2π

|m|+J∑
n=|m|

iam

n(n+ 1)
Dm
n (ξ, t)P̃

m
n (µ)

(26.77)

we may write
Um(µ, ξ, t) = Um

ζ (µ, ξ, t) + Um
D (µ, ξ, t) (26.78)

Inspection of equations (26.23a) and (26.23b) reveals a certain symmetry in
the structure of the equations involving the stream function ψ and the velocity
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potential χ . This allows us to write down the spectral coefficients for the velocity
components V m

ζ and V m
D without any additional work:

V m
ζ (µ, ξ, t) = − 1√

2π

|m|+J∑
n=|m|

iam

n(n+ 1)
ζmn (ξ, t)P̃

m
n (µ)

V m
D (µ, ξ, t) = 1√

2π

|m|+J∑
n=|m|

a

n(n+ 1)
Dm
n (ξ, t)H

m
n (µ)

(26.79)

In analogy to (26.78) we find

V m(µ, ξ, t) = V m
ζ (µ, ξ, t) + V m

D (µ, ξ, t) (26.80)

The function Hm
n (µ) is defined by (26.71) and can be evaluated by means of the

recurrence relation (26.67).
Much work has gone into the formulation of a suitable truncation of the series

expression and various truncation schemes have been proposed. One rather simple
scheme is the so-called triangular scheme in which J = M . At present, this scheme
is being used operationally with J exceeding 100.

26.3.3 The spectral tendencies

The general form of the spectral model is based on the work of Bourke (1974) and
Hoskins and Simmons (1975). The formulation of the spectral tendencies for the
prognostic variables X = ζ,D, T , q, and lnps given by (26.18), (26.21), (26.8b),
(26.9b), and (26.15) is accomplished with the help of equation (26.61). We will
demonstrate the procedure for the vorticity equation. The remaining prognostic
equations are handled likewise. We multiply both sides of equation (26.18) by
[Ym

n (λ,µ)]
∗ and then integrate over the sphere. For the left-hand side of the equation

we find ∫ +1

−1

∫ 2π

0

∂

∂t
ζ (λ,µ, ξ, t)

[
Ym
n (λ,µ)

]∗
dλ dµ = ∂

∂t
ζmn (ξ, t) (26.81)

so that the spectral tendency equation for the vorticity is given by

∂

∂t
ζmn (ξ, t) = 1

a

∫ +1

−1

∫ 2π

0

(
1

1 − µ2

∂

∂λ
(FV + PV )

− ∂

∂µ
(FU + PU )

)[
Ym
n (λ,µ)

]∗
dλ dµ+ (Kζ )

m
n

with (Kζ )
m
n =

∫ +1

−1

∫ 2π

0
Kζ

[
Ym
n (λ,µ)

]∗
dλ dµ

(26.82)
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Likewise, we find

∂

∂t
Dm
n (ξ, t) = 1

a

∫ +1

−1

∫ 2π

0

(
1

1 − µ2

∂

∂λ
(FU + PU ) + ∂

∂µ
(FV + PV )

− a ∇2
hG

)[
Ym
n (λ,µ)

]∗
dλ dµ+ (KD)

m
n

with (KD)
m
n =

∫ +1

−1

∫ 2π

0

KD

[
Ym
n (λ,µ)

]∗
dλ dµ

(26.83)
∂

∂t
T m
n (ξ, t) =

∫ +1

−1

∫ 2π

0
(FT +Qh)

[
Ym
n (λ,µ)

]∗
dλ dµ (26.84)

∂

∂t
qmn (ξ, t) =

∫ +1

−1

∫ 2π

0
(Fq +Qq)

[
Ym
n (λ,µ)

]∗
dλ dµ (26.85)

∂

∂t
(lnps)

m
n =

∫ +1

−1

∫ 2π

0
Fp

[
Ym
n (λ,µ)

]∗
dλ dµ

with Fp = − 1

ps

∫ 1

0
∇h ·

(
vh
∂p

∂ξ

)
dξ

(26.86)

Equations (26.82) and (26.83) contain partial derivatives, which can be elimi-
nated by partial integration to bring them into the form of the remaining prognostic
equations. Observing thatPm

n (±1) = 0 (m > 0) and using the cyclic boundary con-
dition (0, 2π ) which applies when one is integrating along a fixed latitude circle,
we easily obtain

∂

∂t
ζmn (ξ, t) = 1

a

∫ +1

−1

∫ 2π

0

(
im

1 − µ2
(FV + PV )

[
Ym
n (λ,µ)

]∗

+ (FU + PU )
d

dµ

[
Ym
n (λ,µ)

]∗
)
dλ dµ+ (Kζ )

m
n

(26.87)
and

∂

∂t
Dm
n (ξ, t) = 1

a

∫ +1

−1

∫ 2π

0

( im

1 − µ2
(FU + PU )

[
Ym
n (λ,µ)

]∗

− (FV + PV )
d

dµ

[
Ym
n (λ,µ)

]∗

+ n(n+ 1)

a
G

[
Ym
n (λ,µ)

]∗)
dλ dµ+ (KD)

m
n

(26.88)
Every forecast requires a set of consistent initial data. In the ideal case these data

should be free from any imbalances between the wind and the mass field. Sophisti-
cated procedures for providing such initial data sets have been worked out by var-
ious research groups. However, these initialization techniques are model-specific.
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Here we will simply assume that such data sets exist for the prognostic variables
X = ζ,D, T , q, and lnps on a suitable grid of points over the sphere.With the help
of equation (26.61) the quantitiesXm

n

∣∣
t=0

= ζmn ,D
m
n , T

m
n , q

m
n , and lnps can be com-

puted. These quantities are required for the first time step in order to evaluate the
tendency equations (26.84)–(26.88). Moreover, the Xm

n

∣∣
t=0

are sufficient for calcu-
lating Um

ζ ,U
m
D , V

m
ζ , and V

m
D , soU

m and V m can be found from (26.78) and (26.80).
With the help of (26.65) the velocity components U and V which are needed for
the evaluation of FU , FV in (26.18) and FT , Fq in (26.8) and (26.9) can then be
found. The horizontal derivatives ∂T /∂λ, ∂T /∂µ, ∂q/∂λ, ∂q/∂µ, ∂ lnps/∂λ, and
∂ lnps/∂µ can be found analytically by summing (26.66) overm. This information
should also be sufficient for computing Fp in (26.86) and G in (26.21) as well
as all parameterized quantities. Since all field quantities are evaluated at the same
grid points, the forecast can be started. Whenever desired, the conversion to the
variables X = ζ,D, T , q, and lnps can be achieved with the help of (26.60).

To carry out the forecast, the model must contain a suitable vertical finite-
difference scheme to evaluate the terms involving the generalized vertical coor-
dinate ξ . There exist various suitable vertical schemes. In the earlier phases of
modeling the σ system (ξ = σ = p/ps) which satisfies the condition that σ = 0
at the top of the atmosphere and σ = 1 at the surface was used. We will omit any
discussion of the specific numerical procedures such as the evaluation of (Kξ )mn and
(KD)mn since these are subject to continual revision. As stated before, the spectral
model is well suited for the application of the semi-implicit method. Following
Robert et al. (1972), the model uses such a scheme for the equations of divergence,
temperature, and the surface pressure. In addition, the model uses a semi-implicit
method for the zonal advection terms in various equations.

Many details, too numerous to be described here, are required for proper handling
of the model. For further information the original literature should be consulted.

26.4 Problems

26.1: Omitting the underlined terms in equation (19.15) and replacing the radius
r by the constant radius a, show that the horizontal components of the equation of
motion can be written as stated in (26.5a) and (26.5b). Ignore frictional effects.

26.2: Use equation (1.77) and the formulas stated in problem (1.8) to show that
the vorticity can be written in the form (26.6). Set r = a whenever r appears in
undifferentiated form.

26.3: Prove the validity of equation (26.19).

26.4: Show that the definition of ∇2
h stated in (26.21) is correct.
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26.5: Find P3(µ) and show that this function satisfies equation (26.37).

26.6: Differentiate Legendre’s equation (26.37) m times to prove the validity of
(26.39).

26.7: Show that equation (26.39) can be transformed to give equation (26.41) by
using the transformation (26.40).

26.8: Use the recurrence relations

(1 − µ2)
dPm

n

dµ
= −nµPm

n + (n+m)Pm
n−1

and

µPm
n = n+m

2n+ 1
Pm
n−1 + n−m+ 1

2n+ 1
Pm
n+1

to prove the validity of equation (26.67).



27

Predictability

The convection equations in the form presented by Lorenz (1963) have been in-
vestigated very thoroughly because they exhibit chaotic behavior for a wide range
of values of model parameters. Lorenz discovered that his simple-looking three-
dimensional deterministic system yielded solutions that oscillate irregularly, never
exactly repeating but always remaining in a bounded region of phase space. This
aperiodic long-term behavior exhibits a very sensitive dependence on initial condi-
tions. Since the Lorenz system consists of nonlinear differential equations, he found
the trajectories describing the convection by numerical integration. By plotting the
trajectories in three dimensions, he discovered that they settled onto a very com-
plicated set, which is now called a strange attractor. The expression deterministic
system implies that the system has no random or noisy inputs or parameters. The
irregular behavior results from the nonlinear terms.

27.1 Derivation and discussion of the Lorenz equations

Lorenz obtained his mathematical system by drastically simplifying the convection
equations of Saltzman (1962) which describe convection rolls in the atmosphere.
We will now derive and discuss the Lorenz equations in some detail, beginning
with the basic model equations for two-dimensional flow in the (x, z)-plane. We
apply the Boussinesq approximation by assuming that no divergence takes place
and that the rotation of the earth can be neglected. In the (x, z)-plane the velocity
vector vv, the gradient operator ∇v, the divergence Dv, and the vorticity ζv are
defined by

vv = ui +wk, ∇v = i
∂

∂x
+ k

∂

∂z
, Dv = ∂u

∂x
+ ∂w

∂z
, ζv = ∂w

∂x
− ∂u

∂z

(27.1)
where the index v denotes the vertical direction. The equation of motion in this

669
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plane is given by

(a)
∂u

∂t
+ vv ·∇vu+ α ∂p

∂x
− ν ∇2

vu = 0

(b)
∂w

∂t
+ vv ·∇vw + α ∂p

∂z
− ν ∇2

vw = 0
(27.2)

where ν is the kinematic viscosity and α is the specific volume. By differentiating
(27.2a) and (27.2b) with respect to z and x, and subtracting one of the resulting
equations from the other, we obtain the vorticity equation

∂ζv

∂t
+ u ∂ζv

∂x
+w ∂ζv

∂z
+ ∂α

∂x

∂p

∂z
− ∂α

∂z

∂p

∂x
− ν ∇2

vζv = 0 (27.3)

The rotational axis of the vorticity is orthogonal to the (x, z)-plane, thus pointing
in the y-direction. Since the divergence is assumed to be zero, the velocity field
and the vorticity can be expressed in terms of the stream function ψ(x, z, t):

u = −∂ψ
∂z
, w = ∂ψ

∂x
, ζv = ∂2ψ

∂x2
+ ∂2ψ

∂z2
= ∇2

vψ (27.4)

Thus the vorticity equation can also be written as

∂

∂t

(∇2
vψ

) + J (
ψ,∇2

vψ
) = J (α,−p) + ν ∇2

v

(∇2
vψ

)
(27.5)

The Jacobian operator J (α,−p) is the solenoidal term representing the number
of unit solenoids in the (x, z)-plane. The solenoids cause an acceleration of the
circulation driving the convection.

With Saltzman (1962),wemake the following assumptions about the temperature
and the specific volume fields. The temperature distribution is expressed by

T (x, z, t) = Tm(t) + T1(x, z, t) (27.6)

where Tm(t) is a mean value over the entire convection region and T1(x, z, t) is
the deviation from the mean value. The anelastic assumption is assumed to apply,
so the relative temperature deviations are large in comparison with the relative
pressure variations. Therefore, the Taylor expansion of the specific volume α about
an equilibrium point (T0, p0) can be approximated by

α(T, p) = α(T0, p0) + ∂α

∂T

∣∣∣
T0,p0

(T − T0) + ∂α

∂p

∣∣∣
T0,p0

(p − p0) + · · ·

≈ α0 + α0

T0
(T − T0) with α0p0 = R0T0

(27.7)
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On replacing T0 in this expression by Tm and α0 by αm we obtain the equation of
state for the specific volume:

α(T ) = αm(1 + εT1) (27.8)

where αm is the mean value of the specific volume of the entire region of convection
and ε = 1/Tm is the cubic expansion coefficient of the air.

Next we need a suitable expression for the pressure p(x, z, t), which may be
expressed as the sum of the hydrostatic pressure ph(x, z, t) and the deviation
p′(x, z, t) from this value. Let ph(z, t) represent the horizontal average of the
hydrostatic pressure at height z and time t and ph(z, 0) be the initial value at time
t = t0. Furthermore, we introduce a new pressure variable P according to

P (x, z, t) = [p(x, z, t) − ph(z, 0)]αm

= [p(x, z, t) − ph(zt, 0)]αm − g(zt − z)
with p(x, z, t) = ph(x, z, t) + p′(x, z, t),

ph(z, 0) = ph(zt, 0) + g

αm
(zt − z)

(27.9)

where zt denotes the top of the convective layer. In reality P has dimensions of
energy per unit mass. Thus we may express the Jacobian J (α,−p) by

J (α,−p) = J

(
αm(1 + εT1),− P

αm
− ph(zt , 0) − g

αm
(zt − z)

)
(27.10a)

Expansion of the Jacobian yields

J (α,−p) = εJ (T1,−P ) + εg ∂T1
∂x

≈ εg
∂T1

∂x
(27.10b)

The first term on the right-hand side of this expression is of second order in
comparison with the second term and has, therefore, been neglected. By utilizing
(27.10b) in (27.5) we obtain Saltzman’s approximate form of the vorticity equation:

∂

∂t

(∇2
vψ

) + J (
ψ,∇2

vψ
) = εg

∂T1

∂x
+ ν ∇2

v

(∇2
vψ

)
(27.11)

This is an equation in two unknowns involving the stream function ψ and the
temperature deviation T1. Therefore, a second prognostic equation is needed in
order to determine T1. In order to avoid the appearance of new dependent variables
Saltzman chooses the very simplified form of the heat equation

∂T1

∂t
+ vv ·∇vT1 = K ∇2

vT1 (27.12)
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where K is the exchange coefficient for heat. Introducing the stream function ψ
according to (27.4), the heat equation can be written in the concise form

∂T1

∂t
+ J (ψ, T1) = K ∇2

vT1 (27.13)

Thus equations (27.11) and (27.13) describe the model convection in the (x, z)-
plane. It should be realized that, due to the appearance of clouds and phase transi-
tions, the actual convective processes are much more complicated.

The temperature deviation T1 may be decomposed and expressed as the sum of
an average value T 1(z, t) along the x-axis plus the deviation T ′

1 (x, z, t):

T1(x, z, t) = T 1(z, t) + T ′
1 (x, z, t) (27.14)

Furthermore, T 1(z, t) can be decomposed into a part representing a linear variation
between the upper and lower boundary and a departure T ′′ from the linear variation:

T 1(z, t) =
(
T 1(0, t) −�T0(t) z

zt

)
+ T ′′

1(z, t) (27.15)

with �T0(t) = T 1(0, t) − T 1(zt, t). Now equation (27.14) can be written in the
following form:

T1(x, z, t) =
(
T 1(0, t) −�T0(t) z

zt

)
+ ϑ(x, z, t) (27.16)

with ϑ(x, z, t) = T
′′
1(z, t) + T ′

1 (x, z, t). Saltzmann assumes that the temperatures
at the lower and upper model boundaries are kept constant by external heating.
This implies

T 1(0, t) = T 1(0), T 1(zt, t) = T 1(zt) =⇒ �T0 = T 1(0) − T 1(zt) = constant
(27.17)

so that

∂T1

∂t
= ∂ϑ

∂t
,

∂T1

∂x
= ∂ϑ

∂x
,

∂T1

∂z
= −�T0

zt
+ ∂ϑ

∂z
, ∇2

vT1 = ∇2
vϑ

(27.18)
follow from (27.16) and (27.17). From (27.11) and (27.13) we finally find a pair of
partial differential equations describing the convection

∂

∂t

(∇2
vψ

) + J (
ψ,∇2

vψ
) = gε

∂ϑ

∂x
+ ν ∇2

v (∇2
vψ)

∂ϑ

∂t
+ J (ψ,ϑ) = �T0

zt

∂ψ

∂x
+K ∇2

vϑ

(27.19)
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The first terms on the right-hand sides of (27.19) represent the driving forces of
the convection while the second terms cause damping due to viscosity and heat
conduction.

We wish to introduce the dimensionless Rayleigh number, which is defined by

Ra = gεz3t �T0

νK
(27.20)

Ra is a measure of convective instability. The numerator of Ra involves the buoy-
ancy force per unit mass gε�T0 while the denominator denotes damping expressed
by the kinematic viscosity ν and the heat-conduction coefficient K . If zt and l
stand for the height and the width of the convection rolls, the aspect ratio a = zt/l

defines the critical Rayleigh number

Rac = π 4(1 + a2)3
a2

(27.21)

The critical Rayleigh number depends on the geometric parameters of the model.
Whenever the ratio r = Ra/Rac > 1, convection is expected to occur.

Saltzman (1962) assumes that the stream function and the temperature departure
in equation (27.19) can be expressed as sums of double Fourier components.
Lorenz (1963), motivated by Saltzman’s work, assumed the validity of the simple
trial solutions

ψ =
√
2(1 + a2)K

a
X(t) sin

(
πax

zt

)
sin

(
πz

zt

)

ϑ = �T0

πr

[
Y (t)

√
2 cos

(
πax

zt

)
sin

(
πz

zt

)
− Z(t) sin

(
2πz

zt

)] (27.23)

containing only three development coefficients X(t), Y (t), Z(t), which are slowly
varying amplitudes in time. According to the trial solution, the X mode represents
the flow pattern, the Y mode the temperature cells, and theZ mode the temperature
stratification.When equations (27.23) are substituted into (27.19), ignoring trigono-
metric terms that do not occur in the trial solution, we obtain the famous Lorenz
system consisting of three ordinary differential equations in dimensionless time t∗:

dX

dt∗
= Ẋ = −σX + σY = f1(X,Y,Z)

dY

dt∗
= Ẏ = rX − Y −XZ = f2(X,Y,Z)

dZ

dt∗
= Ż = XY − bZ = f3(X,Y,Z)

with t∗ = π 2(a2 + 1)K

z2t
t, σ = ν

K
, b = 4

a2 + 1
> 0, r = Ra

Rac
(27.24)
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The term σ is the Prandtl number. The consequence of the simplification is that
the advection term in the first equation of (27.19) is suppressed.

The Lorenz system is a three-dimensional autonomous dynamic system, which
may formally be expressed by

Ẋ = f(X) with X = (X,Y,Z) (27.25)

If the function f depends not only on the vector X but also explicitly on time t , we
speak of a nonautonomous dynamic system. This type of system is more difficult
to handle.

Owing to the simplifications introduced by Lorenz, this approach does not re-
alistically model convection rolls. What Lorenz had in mind was to show that the
low-order nonlinear dynamic system (27.24) with only three degrees of freedom
reacts very sensitively to small variations in the initial conditions. This simple fact
has many important consequences for weather prediction.

The discussion of simple properties of the Lorenz system requires that the reader
is somewhat familiar with a few basic concepts of nonlinear dynamics. Some
readers may be quite familiar with this subject; others may wish to consult one of
the many textbookswhich are available at all levels of sophistication. For the reader
entirely unfamiliar with the subject, we gave a brief and incomplete introduction
in Chapter M7. There we extract most of the required information from Strogatz’s
excellent book on Nonlinear Dynamics and Chaos (1994). His very informative
book is much more than a first introduction. It provides pleasant reading at a level
of mathematical sophistication that does not exceed the usual background of a
senior student in meteorology. The next four sections again follow his book.

Inspection of (27.24) shows that the only nonlinearities are the quadratic terms
XY and XZ. Lorenz found that, over a wide range of parameters, the numerical
solutions oscillate irregularly in time, but they never exactly repeat. This led him to
title his now famous paper “Deterministic Non-Periodic Flow”.Moreover, he found
that the solutions to (27.24) always remain in a bounded region of phase space.
When he plotted the trajectories in three dimensions, there emerged a strange figure
that resembled a pair of butterflywings. This figure is now called a strange attractor.
In the following we list important simple properties of the Lorenz equations.

27.1.1 Nonlinearity

The Lorenz system consists of the two nonlinearities XY and XZ.
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Fig. 27.1 Contraction in volume of a dissipative system.

27.1.2 Symmetry

On replacing (X,Y ) in (27.24) by (−X,−Y ), the equations do not change. Thus,
if [X(t∗), Y (t∗), Z(t∗)] is a solution to (27.24), so is [−X(t∗),−Y (t∗), Z(t∗)].

27.1.3 The Lorenz system is dissipative

In general, a dynamic system is either conservative or dissipative. An important
property of phase space is the preservation of phase volume of conservative or
constant-energy systems. For dissipative systems, the volume in phase space con-
tracts under the flow. In this case the divergence of the phase velocity is negative.
In contrast, if the divergence is zero, the dynamic system is conservative.

To illuminate the idea, we consider an arbitrary closed surface S(t∗) of the
volume V (t∗) as shown in Figure 27.1. We may think of points on S as initial
conditions for trajectories that evolve during the time interval dt∗, thus resulting
in a change in volume. What is the volume at time t∗ + dt∗? As usual, the vector
n denotes the outward normal on S. We do not have to restrict ourselves to the
Lorenz system, but we consider the arbitrary three-dimensional system Ẋ = f(X).
The scalar product f · n is the outward normal component of the velocity vector
Ẋ. During the time interval dt∗ a patch of surface area dS = n dS sweeps out a
volume element dV = (f · n dt∗) dS = V (t∗ + dt∗) − V (t∗). Integrating over all
patches yields

V̇ = V (t∗ + dt∗) − V (t∗)
dt∗

=
∫
S

f · n dS =
∫
V

∇ · f dV (27.26)

where we have used Gauss’ divergence theorem (M6.31). For the Lorenz system
the divergence ∇·f turns out to be

∇ · f = ∂f1

∂X
+ ∂f2

∂Y
+ ∂f3

∂Z
= −(σ + 1 + b) < 0 (27.27)
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On substituting this expression into (27.26) we obtain for the change of the
volume with time

V̇ (t∗) = −(σ + 1 + b)V (t∗) (27.28a)

from which it follows that

V (t∗) = V (0) exp[−(σ + 1 + b)t∗] (27.28b)

Thus the volume in phase space shrinks exponentially fast. This implies that a
large blob of initial conditions eventually shrinks to a limiting set of zero volume.
Stating it differently, all trajectories starting in the blob end up somewhere in the
limiting set. We recognize that volume contraction imposes stringent constraints
on possible candidate solutions.

27.1.4 Fixed points

The Lorenz system has two types of fixed points.
(1) The origin is a fixed point for all parameter values of r, σ, b:

(X∗, Y ∗, Z∗) = (0, 0, 0) (27.29a)

This state at the origin of the phase space does not describe any convection, but
rather describes the equalization of temperature resulting from conduction of heat.
The system remains at rest.

(2) For r > 1 there is a pair of symmetric fixed points. Setting Ẋ = 0, Ẏ = 0,
Ż = 0 in (27.24) gives

X∗ = ±
√
b(r − 1), Y ∗ = X∗, Z∗ = r − 1 (27.29b)

Lorenz called these symmetric points C+ and C−. As r → 1, the symmetric fixed
points collide with the origin in a pitchfork bifurcation. Of meteorological interest
is that the symmetric fixed points represent left- or right-turning convection rolls.

27.1.5 Linear stability at the origin

The three-dimensional Jacobian matrix of the system is given by

A =




∂f1

∂X

∂f1

∂Y

∂f1

∂Z
∂f2

∂X

∂f2

∂Y

∂f2

∂Z
∂f3

∂X

∂f3

∂Y

∂f3

∂Z




=




−σ σ 0

r − Z −1 −X
Y X −b


 (27.30)
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By evaluating this matrix at the origin we obtain for the linearized system


Ẋ

Ẏ

Ż


 =




−σ σ 0

r −1 −0

0 0 −b






X

Y

Z


 (27.31)

From this equation we recognize that the Z-component is uncoupled from the
remaining system, so


 Ẋ

Ẏ


 =


 −σ σ

r −1




 X

Y


, Ż = −bZ (27.32)

Hence Z(t∗) is proportional to exp(−bt∗), i.e. Z(t∗) is decreasing exponentially
fast to zero as t∗ → ∞. The trace and the determinant of the square matrix in
(27.32) are given by

τ = λ1 + λ2 = −(σ + 1), � = λ1λ2 = σ (1 − r) (27.33)

According to Figure M7.13, for r > 1 the origin is a saddle point since the
determinant � < 0. It is easy to show that, in this case, one of the eigenvalues of
the two-dimensional system is negative, while the other one is positive. Counting
the Z-component, we have two incoming and one outgoing directions. If r < 1 all
eigenvalues are negative. This means that all directions are incoming, so the origin
is a sink. In this case τ 2 − 4� = (σ − 1)2 + 4σr > 0. Thus Figure M7.13 reveals
that, for r < 1, the origin is a stable node.

We will now verify that, for r < 1, every trajectory approaches the origin as the
time t∗ approaches infinity. This implies that the origin is a globally stable point.
Hence there can be no limit cycle or chaos for r < 1. We verify this statement with
the help of the Liapunov function

V (X,Y,Z) = 1

σ
X2 + Y 2 + Z2 (27.34)

Surfaces V = constant are concentric ellipsoids about the origin. First we wish to
show that, for (X,Y,Z) �= (0, 0, 0) and r < 1, the time derivative of the volume is
negative. Carrying out the differentiation dV/dt∗ using (27.24), we find

1

2
V̇ = 1

σ
XẊ + Y Ẏ + ZŻ

= (XY −X2) + (rXY − Y 2 −XYZ) + (XYZ − bZ2)

= (r + 1)XY −X2 − Y 2 − bZ2

(27.35)
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Completing squares results in

1

2
V̇ = −

(
X − r + 1

2
Y

)2
−

[
1 −

(
r + 1

2

)2]
Y 2 − bZ2 (27.36)

Inspection shows that, for r < 1, this expression cannot be positive. The question
of whether V̇ could be zero arises. This is possible only if each term on the right-
hand side vanishes separately. This happens if (X,Y,Z) = (0, 0, 0). The total
conclusion is that V̇ = 0 only if (X,Y,Z) = (0, 0, 0); otherwise V̇ < 0 and the
origin is globally stable.

27.1.6 Stability of C+ and C−

By evaluating the left-hand side of (27.30) at (X∗, Y ∗, Z∗) = (C±, C±, r − 1) we
obtain




−σ σ 0

r − Z −1 −X
Y X −b



C±,C±,r−1

=




−σ σ 0

1 −1 ∓
√
b(r − 1)

±
√
b(r − 1) ±

√
b(r − 1) −b




(27.37)

The three eigenvalues of this linear system are found by solving the equation for
the determinant |A− λE| = 0, resulting in the characteristic equation

λ3 + (σ + b + 1)λ2 + b(σ + r)λ+ 2bσ (r − 1) = 0 (27.38)

Inspection of the fixed points C± = ±√
b(r − 1) shows that the condition r ≥ 1

must hold, otherwise C+ and C− cannot exist.
First let us consider the special case that r = 1, that is Ra = Rac, marking the

onset of convection. It is not difficult to recognize from (27.38) that the eigenvalues
are given by λ1 = 0, λ2 = −b, λ3 = −(σ + 1). In this case one speaks of the
margin of stability since no eigenvalue is larger than zero.

In order to study the characteristic equation in the more general case, we write
equation (27.38) in the form

λ3 + a2λ2 + a1λ+ a0 = 0 (27.39)
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According to Vieta’s theorem, see for example Abramowitz and Segun (1968),
there exists the relation

λ1λ2λ3 = −a0 (27.40)

By substituting λ2 = −b and λ3 = −(σ + 1) into this equation, we obtain an
approximate value for λ1, which may be used if r ≈ 1:

λ1 ≈ −2σ (r − 1)

1 + σ for r ≈ 1 (27.41)

Thus, for r > 1 and in the limit r → 1, stability is lost because the approximate
negative eigenvalue λ1 approaches 0.

Now suppose that r > 1 so that all coefficients in the characteristic equation
(27.38) are positive. The theory of cubic equations provides several intricate re-
lationships for the roots of this equation involving the coefficients a0, a1, and a2.
With some patience one can show that there exists one real root and two complex-
conjugate roots. We have shown already by an approximate method that the real
root λ1 < 0 so that λ2,3 = λr± iλi . Convection rolls remain stable as long as λr < 0
and begin to be unstable if λr = 0 so that λ2,3 are purely imaginary. In this case r
assumes a critical value rH where the subscript H has been used to show that C+

and C− lose stability at the Hopf bifurcation at r = rH.
We will now find an expression for r = rH. According to a theorem attributed to

Vieta, the sum of the roots is given by

λ1 + λ2 + λ3 = −a2 = −(σ + b+ 1) (27.42)

Since the complex conjugates are purely imaginary, the sum of the complex con-
jugates λ2 + λ3 is zero, so we obtain

λ1 = −(σ + b + 1) (27.43)

Substituting (27.43) into (27.38) results in

−(σ + b + 1)3 + (σ + b + 1)(σ + b + 1)2

− b(σ + r)(σ + b + 1) + 2bσ (r − 1) = 0
(27.44)

After some elementary algebra we find the desired expression for rH:

r = rH = σ (σ + b + 3)

σ − b− 1
(27.45)

To repeat, the quantity rH is that value of r for which the complex-conjugate roots
are purely imaginary. Instability can arise only for such σ, b that rH > 1. Thus
the fixed points C+ and C− remain stable if and only if either of the following
condition holds:
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(i) σ < b + 1 and r > 1, (ii) σ > b + 1 and 1 < r < rH.

Both conditions can be readily understood. The parameter r must be larger than
1 so that the fixed pointsC+ andC− can exist. (i) For σ < b+1 there is no positive
value of r to satify (27.45). (ii) σ > b + 1 causes equation (27.45) to be positive
but the value of r is still less than the critical value rH.

In meteorological terms, stationary convection rolls remain stable as long as
either condition is satified. For large enough Rayleigh numbers the convection
becomes unstable. If the critical value rH is exceeded then the real parts λr of the
eigenvalues λ2,3 will be positive and irregular convective motion takes place, and
the so-called deterministic chaos may occur.

Following Lorenz, we study the particular case σ = 10. Selecting a2 = 1
2 , we

find from (27.24) b = 8
3
, so rH = 24.74. Hence, on choosing r = 28, which is just

past theHopf bifurcation, we expect something strange to happen. Steady-state con-
vectionmay be calculated from (27.29) to give (X∗, Y ∗, Z∗) = (6

√
2, 6

√
2, 27) and

(−6
√
2,−6

√
2, 27) while the state of no convection corresponds to (X∗, Y ∗, Z∗) =

(0, 0, 0).
As we know, the complete set (27.24) cannot be integrated by analytic methods.

Nonstationary solutions can be found only numerically. Lorenz began integrating
from the initial condition (0, 1, 0)which is close to the saddle point at the origin. The
result is depicted in Figure 27.2. The trajectory starts near the origin and immedi-
ately swings to the right and then dives into the center of the spiral on the left. From
there the trajectory spirals outward very slowly and then, all of a sudden, shoots
back over to the right-hand side. There it spirals around, and so on indefinitely. The
number of circuits made on either side varies unpredictably from one cycle to the
next one. The spiral leaves of the attractor simulate rising and descending air of
the convective motion.

Figure 27.2 shows what is now called a strange or chaotic attractor. The strange
attractor consists of an infinite number of closely spaced sheets having zero volume
but an infinite surface area. Numerical experiments have shown that the fractional
dimension of the Lorenz attractor is about 2.06 if theHausdorff definition is applied.
The fractional dimension of the strange attractor implies a fractional structure of
many length scales. If one magnifies a small part of the strange attractor, new
substructures will emerge.

Figure 27.3 shows as an example the evolution of Y versus t∗. After reaching an
early peak, irregular oscillations persist as time increases. Since the motion never
repeats exactly, we speak of aperiodic motion.

Let us now consider the importance of Lorenz’s discoveries for weather predic-
tion. The character of chaotic dynamics can be recognized very easily by imagining
that the system is started twice but from slightly different initial conditions. We
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Fig. 27.2 Aperiodic motion of the Lorenz system, showing trajectories in the (X,Y,Z)-
space.

may think of this small initial difference as simulating measurement errors, which
can never be avoided entirely. For nonchaotic systems this uncertainty in the initial
conditions leads to a prediction error that grows linearly with time. For chaotic
systems this error grows exponentially with time, so that, after a short time, the
state of the system is essentially unknown. This means that long-term prediction is
impossible for Lorenz-type systems.

27.2 The effect of uncertainties in the initial conditions

We wish to discuss the situation more quantitatively. Let the uncertainties in the
initial conditions be represented by two points on two neighboring trajectories.
Suppose that the transient has decayed so that the trajectory is already on the
attractor. LetX(t) represent a point on the attractor at time t . We consider a nearby
pointX(t)+ δ(t) on a neighboring trajectory, where δ(t) is a tiny separation vector
of initial length |δ0|; see Figure 27.4. Numerical studies of the Lorenz attractor
show that the separation vector changes approximately according to

δ(t) = |δ0| exp(λLt), λL ≈ 0.9 (27.46)
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Fig. 27.3 Aperiodic motion of the Lorenz system, showing the Y -component versus
dimensionless time t∗.

X(t)
( )δ

X(t) + δ(t)

Fig. 27.4 Two points in phase space on neighboring trajectories.

where λL is the Liapunov exponent. Hence neighboring trajectories separate ex-
ponentially fast. Actually there are n different Liapunov exponents for an n-
dimensional system but λL ≈ 0.9 turns out to be the largest value. Whenever
a system has a positive Liapunov exponent, there is a time horizon beyond which
prediction breaks down. This is shown schematically in Figure 27.5. Beyond t = thor

the predictability breaks down. The two initial conditions represented by points on
the plot are so closely spaced that they cannot be distinguished.

Let us assume that the initial conditions of some physical experiment have been
determined very accurately. Nevertheless, a small measurement error will always
occur so that the measured initial condition differs from the true initial condition by
|δ0|. After time t of the prediction period the discrepancy has increased according
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t = 0

hor

Fig. 27.5 A schematic plot of the time horizon where the two trajectories diverge rapidly.

to (27.46). We must permit a certain acceptable tolerance in the accuracy of the
prediction. Let a be a measure of this tolerance, i.e. if a prediction is within a of the
true state, then the prediction is tolerable. Thus the prediction becomes intolerable
if |δ(t)| ≥ a. According to (27.46) the order of magnitude O of the time interval
thor may be expressed as

thor ≈ O
[
1

λL
ln

(
a

|δ0|
)]

(27.47)

Let us consider the following idealized example, which has little to do with
actual weather prediction. In a first attempt, we are trying to predict a chaotic
system within a tolerance of a = 10−3, assuming that the initial state is uncertain
to within |δ0| = 10−7. For what time period can we predict the state of the system
and still remain within the given tolerance? In this case the time horizon is given
by

thor(1) ≈ 1

λL
ln

(
10−3

10−7

)
= 4 ln 10

λL
(27.48)

In a second attempt we succeed in measuring the initial state a million times better
so that |δ0| = 10−13. How much longer can we predict within the tolerance limits?
The result is disappointing, as follows from

thor(2) ≈ 1

λL
ln

(
10−3

10−13

)
= 10 ln 10

λL
= 2.5thor(1) (27.49)

The conclusion is that a million-fold improvement in the initial uncertainty permits
us to predict for only 2.5 times longer. Lorenz suggested that this logarithmic
dependency on |δ0| is what makes long-term weather prediction so difficult.

27.3 Limitations of deterministic predictability of the atmosphere

In the previous section we gave a rather artificial example of the Liapunov time
horizon of a chaotic system that is difficult to apply to weather prediction. It is at
present not possible to state this time horizon in a general form since the time span
of predictability depends on the scale of the fields to be predicted and also on the
synoptic situation.
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Table 27.1. Spatial and time scales of atmospheric motion

Motion Spatial scale Time scale

Turbulence 0.1–100 m 1–1000 s
Convection 0.1–10 km 1–60 min
Mesoscale motion 1–1000 km 30 min to several days
Large-scale motion 1000–10 000 km 1–10 days

After and even before Lorenz (1963) published his celebrated paper, a number of
publications attempting to assess the predictability of the atmosphere appeared in
the literature. To a large extent, the prediction of the future state of the atmosphere
for an extended time period is very difficult due to the width of the spectrum of
atmospheric processes. To give an impression of the scales of motion, we present in
Table 27.1 a very rough classification of the spatial and time scales of atmospheric
motion.

More refined classifications are avaliable, see e.g. Orlanski (1975). For large-
scale motion the characteristic scales are determined by the wavelength and the
period of the planetary waves. On smaller scales the dimensions and life times
of turbulent vortices determine the characteristic scales. Nonlinear interactions of
physical processes between different scales take place continually and vary strongly
in time and space.

Weather prediction on a mathematical–physical basis proceeds as follows. In
order to study weather phenomena of a certain scale, we must construct a math-
ematical model by employing the methods of scale analysis. The model is made
deterministic by parameterizing the interactions with neighboring scales in terms
of available model variables. Since a general parameterization theory is not yet
available, it is necessary to employ empirical knowledge to determine the pa-
rameter functions. This procedure introduces nondeterministic elements into the
prediction model. In order to develop a global circulation model, for example, it
would be necessary to parameterize the interactions with the complete spectrum
of the subsynoptic processes. So far this problem has not been solved satisfacto-
rily.

In order to carry out short- and medium-range numerical weather forecasts, it
is necessary to initialize the model with consistent input data in order to integrate
the predictive system of differential equations forward in time. The field of the
initial data may be obtained with the help of an objective analyis. Procedures for
how to carry out this analysis are given by Haltiner and Williams (1980) and in
more recent references. Various sophisticated methods have been devised in or-
der to make the observed data physically and computationally as consistent with
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the numerical model as possible. Methods have been proposed for producing an
objective analysis by statistically extracting the maximum amount of information
from observations, climatological data, spatial correlations betweenmeteorological
variables, and other available data. This type of procedure, known as the optimum
interpolation, requires knowledge of the statistical structure of the fields of meteo-
rological variables. Nevertheless, upon completion of the objective analysis, mass
and motion fields are still not precisely balanced.

Naturally, questions about the sensitivity of the weather-prediction model arise
due to uncertainties in the parameterized interaction with neighboring scales, the
uncertainties in the initial conditions, and the particular properties of the numerical
scheme. In other words, for what prediction time interval is the deterministic
character of the model equations prevalent before the nondeterministic elements
begin to dominate the prediction?We canwell imagine that theremust be limitations
to deterministic predictability, which vary fromonemathematicalmodel to the next.
In the remaining part of this chapter we will investigate the uncertainties in the
initial conditions.

Among various attempts to investigate the predictability of the atmosphere,
Lorenz (1969) modeled the atmosphere with the help of the divergence-free
barotropic vorticity equation in which the horizontal velocity is expressed in terms
of the stream function. Assuming “exact” initial conditions and ignoring possible
errors due to the numerical procedure, the solution of this deterministic equation
should result in an “exact” deterministic prediction over an arbitrarily long period
of time. Exact initial conditions, however, do not exist, so the predicted fields
are expected to be at variance with nature after a certain time span. Moreover,
it should be realized that the model equations are too simple to approximate the
actual atmospheric behavior over an extended time period.

To simulate the effect of uncertainties in the initial conditions, two predictions
may be carried out. The first prediction uses initial conditions that are defined to
be exact. The prediction on the basis of the model equations is deterministic and
“exact,” thus correctly representing the nature of the model. The second prediction
uses somewhat different initial conditions,which simulate imperfect measurements
and other errors. After a longer prediction time the results differ so much that, even
on the largest scales, they are not even similar. In fact, Lorenz showed that, on the
basis of hardly discernible differences in the initial conditions of the subsynoptic
scales, but identical initial conditions in the synoptic scale, after three weeks of
prediction time the two forecasts were so different that they could not be compared
in a reasonable way. We may conclude from this numerical investigation that
the atmosphere has forgotten the initial conditions altogether after a time span
of no more than four weeks. The short memory of the atmosphere is caused by
the nonlinear interactions taking place, which are accompanied by a propagation
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of errors relative to the initial conditions. This memory property has been well
known for many years from the numerical experiments simulating the general
circulation. Even on starting the numerical integration with the simplest and most
unrealistic initial conditions, that is a resting atmosphere and isothermal vertical
temperature stratification, due to an influx of energy and to friction a reasonably
realistic atmosphere has evolved after a time span of only one month. Again,
this implies that the atmosphere has completely forgotten the unrealistic initial
conditions.

Proponents of the so-called stochastic dynamicmethod of weather prediction and
others have criticized the conclusions resulting from Lorenz’s numerical investi-
gation. They argued that the Lorenz model, ignoring even the important β effect,
is too simple to give a realistic estimate of the limits of atmospheric predictability.
The prediction range can be extended by applying the stochastic dynamic method
to the Lorenz scheme and to more complete prediction models. The stochastic
dynamic approach apparently was initiated by Obuchov (1967). Just like any other
dynamic prediction, the method is based on the deterministic model equations
generally used to describe the atmosphere. The novel part is that this method in-
troduces the concept of uncertainty in the initial conditions by means of statistical
characteristics.

Even if the initial conditions cannot be precisely known, from experience we
have developed some ideas about the most probable forms of the fields of variables
describing the initial state of the atmosphere. The typical operational forecast
requires one field of initial data for each variable with unknown errors. Instead of
prescribing a single set of initial fields of the variables, one prescribes a set of initial
fields of variables by means of a probability distribution of initial fields. Instead of
a single forecast resulting from a single set of initial fields of the variables, a great
number of forecasts can be produced. How one might obtain an approximation of
the initial joint probability distribution will not be discussed here. For our purposes
we simply assume that it can be constructed in some way.

Any probability distribution may be characterized by the usual statistical mea-
sures: expectation, variance, and higher moments. Thus we may describe the joint
probability distribution of the initial fields of variables by these statistical measures.
Moreover, we may also calculate the same statistical measures from the collection
of the predicted fields. For various times and spatial points the statistical measures
of the predicted fields may be related to the corresponding measures of the initial
fields. The prediction of the statistical measures of the variables is the core of
the stochastic dynamic prediction. This forecasting procedure makes it possible to
extend the predictability horizon. By employing the barotropic vorticity equation
in the form used by Lorenz, it is possible to increase the duration of predictability
significantly.
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In the following we will give a brief mathematical description of the stochastic
dynamic method. Lorenz (1963) had already recognized that all meteorological
prediction equations, after transformation into the spectral domain, can be written
in the form

Ẋk =
∑
m

∑
n

AkmnXmXn −
∑
m

BkmXm + Ck (27.50)

where the Xk are general time-dependent variables describing the state of the
atmosphere. The time t is the only independent variable; A,B,C are constants
describing the nonlinear interaction, external forces, and dissipative mechanisms.
The symbols m and n are dummy indices. Fortak (1973) verified the form (27.50)
by employing the following five dependent variables: the three components of the
wind vector (u, v,w), the Exner function 6 = cp(p/p0)R0/cp,0 , and the potential
temperature θ . By developing the five scalar variables in the form



u

v

w


 =

N∑
m=1

Fm



um

vm

wm


, 6 =

N∑
m=1

Fm6m, θ =
N∑
m=1

Fmθm (27.51)

whereFk = Fk(x, y, z) is a suitable normalized three-dimensional orthogonal func-
tion, we obtain a set of five ordinary differential equations ( u̇k, v̇k, ẇk, 6̇k, θ̇ k)
of relatively simple structure.

In order to proceedwith our discussion,we do not need to know themathematical
form of the Fk and need not repeat Fortak’s analysis. The functions Fk may be
obtained in generalization to the two-dimensional case, see Abramowitz and Segun
(1968). Suppose, for example, that the spatial fields are resolved to a wavenumber
N = 20. In this case we would have to evaluate deterministically 5N = 100
nonlinear coupled time-dependent ordinary differential equations for the coefficient
functions Xk assuming the existence of exact initial conditions of the variables.
Imagining that this 5N -dimensional space is spanned by the totality of the variables
Xk then the state of the system in phase space at a certain time is represented by a
point. As we have previously discussed, any changes in the state of this system are
represented by the motion of this point or by a trajectory in phase space.

We know that the initial conditions cannot be specified exactly. This is equiv-
alent to saying that we do not know the exact location of the point in phase
space specifying the initial state t = t0. Suppose that the probability density
P (X1,X2, . . . , X5N , t0) for the position of the point is available with P > 0 for all
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Xk and all t . By definition, the normalization condition∫ ∞

−∞
· · ·

∫
P (X1,X2, . . ., X5N , t) dX1 dX2 · · · dX5N

=
∫ ∞

−∞
· · ·

∫
P (X1,X2, . . ., X5N , t) dτ = 1

(27.52)

must be valid for all t . The evolution with time of the probability density follows
from the differentiation with respect to time of the normalization condition. By
employing Lagrange’s method we obtain

d

dt

(∫ ∞

−∞
· · ·

∫
P dτ

)
=

∫ ∞

−∞
· · ·

∫
dP

dt
dτ +

∫ ∞

−∞
· · ·

∫
P

(
1

dτ

d

dt
(dτ )

)
dτ = 0

(27.53)
The expression in parentheses on the right-hand side represents the relative change
in volume or the divergence:

1

dτ

d

dt
(dτ ) =

5N∑
m=1

∂Ẋm

∂Xm
(27.54)

which is a generalization of the three-dimensional case; see (M6.38b). Next we
replace dP/dt in (27.53) by the generalized Euler expansion

dP

dt
= ∂P

∂t
+

5N∑
m=1

Ẋm
∂P

∂Xm
(27.55)

Substitution of this expression together with (27.54) into (27.53) yields

d

dt

(∫ ∞

−∞
· · ·

∫
P dτ

)
=

∫ ∞

−∞
· · ·

∫ (
∂P

∂t
+

5N∑
m=1

∂

∂Xm
(PẊm)

)
dτ = 0 (27.56)

In differential form this equation may be written as

∂P

∂t
+

5N∑
m=1

∂

∂Xm
(PẊm) = 0 (27.57)

which is known as the Liouville equation or the continuity equation for the proba-
bility density.

Equation (27.57) can be evaluated, at least in principle, if we replace Ẋk by
(27.50). This results in

∂P

∂t
+

5N∑
m=1

∂

∂Xm

(
P

5N∑
r=1

5N∑
s=1

AmrsXrXs −
5N∑
r=1

BmrXr + Cm
)

= 0 (27.58)
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which describes the evolution with time of the probability density for a specificme-
teorological problem as formulated by a model. The latter equation was originally
and independently derived by Epstein (1969) and by Tatarsky (1969). In principle,
this equation can be solved numerically if P (t = t0) is known and if the boundary
conditions for P (vanishing at infinity) can be satisfied.

At present the numerical effort required in order to solve (27.58) is prohibitively
expensive and practically impossible. Tatarsky and Epstein pointed out that com-
plete knowledge of P includes much superfluous information. So it is usually
sufficient to know the simplest moments describing essential characteristics of the
distribution instead of knowing the complete distribution. These are the first and the
second moment. The first moment is the expectation or mean value of the variable
while the second moment is related to the covariance. Knowledge of these two
statistical measures is sufficient for approximating the actual probability density
by the Gaussian distribution.

27.4 Basic equations of the approximate stochastic dynamic method

We will now derive the prognostic equations for the expectation value and for
the covariance tensor. These equations were given independently by Tatarsky and
Epstein. It turns out that we will have to deal with the same type of closure problem
as that which is known to us from the theory of turbulence.

The first moment or the expectation value of X, also known as the mean value
µk, is defined by

E(Xk) = µk =
∫ ∞

−∞
· · ·

∫
XkP (X1,X2, . . ., X5N, t) dτ (27.59)

The second moment ρkl is given by

ρkl(t) =
∫ ∞

−∞
· · ·

∫
XkXlP (X1,X2, . . ., X5N, t) dτ (27.60)

This quantity is related to the covariance σkl as will be shown next. In analogy to
the theory of turbulence, we split the variable Xk into the mean value µk plus the
deviation X′

k

Xk = µk +X′
k with E(X′

k) = 0 (27.61)

By definition, the expectation value of the deviation X′
k is zero. Equation (27.60)

involves the product XkXl . By introducing (27.61) into this product we find

XkXl = µkµl +X′
kµl +X′

lµk +X′
kX

′
l (27.62)
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On applying the expectation operator to (27.62) we immediately find

E(XkXl) = µkµl + σkl with σkl = E(X′
kX

′
l) (27.63)

Since E(XkXl) = ρkl we have found the relation between the second moment
and the covariance. The expectation value of a function is defined analogously to
(27.59) simply by replacing Xk by the function f (X1,X2, . . . , X5N ).

Of primary importance to stochastic dynamic forecasting is the time derivative
of the expectation value. With the help of the Liouville equation (27.57) it is not
very difficult to prove the validity of

d

dt
[E(f )] = E

(
df

dt

)
(27.64)

showing that the mathematical expectation operator and the time derivative may
be interchanged. We will leave the proof to the exercises.

To find the prognostic equation of the mean value µk we first apply the expecta-
tion operator to equation (27.50) and obtain

E

(
dXk

dt

)
=

5N∑
m=1

5N∑
n=1

AkmnE(XmXn) −
5N∑
m=1

BkmE(Xm) + CkE(1) (27.65)

With the help of (27.63) and (27.64) it is not difficult to obtain the desired equation

µ̇k =
5N∑
m=1

5N∑
n=1

Akmnµmµn −
5N∑
m=1

Bkmµm + Ck +
5N∑
m=1

5N∑
n=1

Akmnσmn (27.66)

Comparison of (27.66) with (27.50) shows the similarity between these two equa-
tions. The first three terms are identical in form. In place of Xk in (27.50) we now
have the mean value µk. The decisive difficulty with equation (27.66) arises from
the last term, which requires knowledge of the covariance σkl . Thus we need to
derive a prognostic equation for the covariance. If there were no uncertainties, the
covariance tensor σkl would be zero and the final term would vanish so that there
would be no need to obtain a prognostic equation for σkl. In practical situations this
idealized case of zero uncertainties does not occur. The analogy with averaging
the equation of motion is apparent since the averaging procedure produces the
Reynolds stress tensor as an additional term.

Now we direct our attention to the evaluation of the covariance term in (27.66).
There is no formal difficulty in finding the prognostic equation for σkl. All we need
to do is to differentiate (27.63) with respect to time, yielding

σ̇ kl = E(ẊkXl) + E(Xk Ẋl) − µ̇kµl − µk µ̇l (27.67)
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The terms involving Ẋk and µ̇k can be eliminated with the help of (27.50) and
(27.66). This gives a fairly involved expression, which we are not going to state
explicitly. The interested reader may find this equation in explicit form in Epstein
(1969), Fortak (1973), or elsewhere.

Had we written out this equation, we would have found that new unknown
quantities appear in the form of the next higher moments τijk. Formally, we could
easily obtain a differential equation for τijk containing as new unknowns still higher
moments. We could go on indefinitely deriving prognostic equations for any order
of moments, but these would always contain the unknown next-higher generation
of moments. The same type of closure problem is already known from the theory
of turbulence. Since the deterministic prediction equations are nonlinear, it is
impossible to derive a closed finite set of prognostic equations for themoments. The
numerical evaluation of the third and even higher moments requires prohibitively
large amounts of computer time, so Epstein (1969) was compelled to close the
system of predictive equations consisting of the µk and the σkl by ignoring the
occurrence of the third-order moments τijk in the σkl equations. Fleming (1971a)
discussed the closure problem very thoroughly. For details we refer to his paper.

Moreover, Fleming (1971a) also applied the stochastic dynamic method to in-
vestigate the effect of uncertainties in the initial conditions on the energetics of
the atmosphere. When one is investigating certain phenomena, the method makes
it possible also to study in a systematic fashion the uncertainties resulting from
the parameterization of neighboring scales. By introducing the quadratic ensem-
ble mean

∑
µ2
k one may estimate the most probable energy distribution, which is

called the certain energy. With the help of the variance
∑
σkk or uncertainty, the

so-called uncertain energy can be determined. An atmospheric scale corresponding
to a certain wavenumber k becomes unpredictable whenever the uncertain energy
is as large as or even larger than the certain energy. For details we must refer to the
original literature.

We may easily recognize the advantages of the stochastic dynamic method over
the deterministic forecast. Stochastic dynamic forecasts produce a significantly
smaller mean square error than do deterministic forecasts. As discussed above,
the range of useful forecasts can be extended by applying the stochastic dynamic
method. The main disadvantage of this method is that forecasts require a much
higher level of computational effort than does the deterministic procedure.

Many research papers on the stochastic dynamic method have appeared in the
literature since Fortak (1973). The interested reader will have no difficulty in
finding the proper references. It is beyond the scope of this book to discuss newer
developments aiming to increase the accuracy of the forecast and the period of
useful predictability. Suffice it to say that, at present, even with the best available
weather-prediction models, the predictability on the synoptic scale hardly exceeds
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two weeks. A brief account of the predictability problem is also given by Pichler
(1997).

27.5 Problems

27.1: Show that equation (27.64) is valid.



Answers to problems

Chapter M1

M1.1: Yes.

M1.2: (a) linearly dependent, (c) linearly independent.

M1.3:
|A2| = 0.683 |A|, α = 7.25◦

M1.4:

(a) (A1, A2, A3) = (3,−2, 3), (b) (A1, A2, A3) = (7, 8, 8)

M1.8:

[Ã, B̃, C̃] = 1

[A,B,C]

Chapter M2

M2.1:

�′′ = −√
g
[
A1(q2q3 − q3q2) + A2(q3q1 − q1q3) + A3(q1q2 − q2q1)

]

M2.4: The eigenvalues are

(λ1, λ2, λ3) = (2, 2 +
√

2, 2 −
√

2)

The corresponding eigenvectors are

A1 = C1(i1 − i3), A2 = C2(i1 −
√

2i2 + i3), A3 = C3(i1 +
√

2i2 + i3)

where the Ci are constants.

693
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Chapter M3

M3.2:

∇θ = θ

T
∇T − θ

�
∇�

M3.3:

(a) 2Ω·r, (b) 2r × Ω, (c) 6Ω, (d) 2v·rΩ
M3.4:

(a) ∇2χ, (b) ∇2Ψ, (c) −∇ × ∇2Ψ + ∇(∇2χ )

(d) ∇(∇2χ ), (e) − 1
2∇ × (∇2Ψ) + 2

3∇(∇2χ )

M3.6:

(b) (Jij ) = η

2




0 0
∂u

∂z

0 0
∂v

∂z
∂u

∂z

∂v

∂z
0




(c) λ1 = 0, λ2,3 = ±ηA/2

(d) Ψ1 = 1

A

(
∂v

∂z
i − ∂u

∂z
j
)
, Ψ2 = 1√

2A

(
∂u

∂z
i + ∂v

∂z
j + Ak

)

Ψ3 = 1√
2A

(
∂u

∂z
i + ∂v

∂z
j − Ak

)
with A =

√(
∂u

∂z

)2

+
(
∂v

∂z

)2

(e) z = 1

x

r·J·r
η∂u/∂z

Chapter M4

M4.1:
(a) g11 = r2 cos2 ϕ, g22 = r2, g33 = 1,

gij = 0 if i �= j,
√
g

q
= r2 cosϕ

(b) g11 = 1

r2 cos2 ϕ
, g22 = 1

r2
, g33 = 1, gij = 0 if i �= j

M4.2:
W
q

1 = �, W
q

2 = 0, W
q

3 = 0

M4.3:
√
g

ξ

= √
g

q

(
∂q3

∂ξ

)
q1,q2
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Chapter M6

M6.4:

(a) k
∫ L

0

[
Ay(x, y = 0) + Ay(x, y = M)

]
dx − k

×
∫ M

0

[
Ax(x = 0, y) + Ax(x = L, y)

]
dy

(b) k
(
L2

2
− 2 + cosM − sinM

)

M6.5:
(a) C[r(2) − r(1)], (b) 4Cπa2

M6.6:

(a) 2πa2�, (b) 2Ω ·
∫
S

dS

Chapter 1

1.3:

(b) ∇ · J(v) = µ
∂2u

∂z2
i =⇒ ∇ · J(v1) = −µC1

z2
i, ∇ · J(v2) = 0

1.4:

(b)
∂p

∂x
= µ

(
∂2u

∂y2
+ ∂2u

∂z2

)
, (c) u =

∣∣∣∣∂p∂x
∣∣∣∣
∣∣R2 − R2

0

∣∣
4µ

,

(d) Q =
∣∣∣∣∂p∂x

∣∣∣∣ πρR
4
0

8µ

Chapter 2

2.3:

Mλ = uw

a
− uv

a
tanϕ, Mϕ= vw

a
+ u2

a
tanϕ, Mr = −u2 + v2

a

Chapter 3

3.2: The flow is nonstationary since the time t appears explicitly.
(a) y = x, (b) x = y1+ln y .

3.3:

(a) y − y0=
C(x − x0)
(A + Bt0)

, (b) x − x0=
A

C
(y − y0) + B

2C2
(y − y0)

2
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Chapter 5

5.1:
∇ · J = µ[∇2vA + 1

3
∇(∇ · vA)]

5.3:

(a) Parabolic velocity profile with

u(z) = gρ sinα (2H − z)z

2µ
α is the angle of inclination.

(b) Isobars are parallel to the x-axis with p(z) = p0 − gρz cosα.
(c) The amount of fluid is

q = gρ2H 3 sinα

3µ

(d)
∫ H

0
ρε dz = ρ(gρ sinα)2H 3

3µ

5.4:

(a) u(z) = u(z = H )z/H .

(b) u(z) =
∣∣∣∣− 1

ρ

∂p

∂x

∣∣∣∣ρ(H − z)z

2µ
, parabolic flow, u

(
H

2

)
= umax

5.5:
vA = Cr, C = constant =⇒ ∇vA = C ∇r = CE, ∇ · vA = 3C

Dai = ∇vA + vA

�∇
2

− ∇ · vA

3
E = CE − CE = 0

J =
(

2µ

3
− λ

)
∇ · vAE, p2(vA) = n · J = 3Cn

(
2µ

3
− λ

)

r · J · r = 3Cr2

(
2µ

3
− λ

)
= 2F = ±1

depending on the sign of C. The tensor ellipsoid is a spherical surface.

Chapter 6

6.1:
(a) (∇v)I =∇2φ, (∇v)× = ∇2Ψ,

(∇v)′′ =1

2

(
−∇(∇ × Ψ) + ∇ × Ψ

�∇
)

(b)
d

dt
(∇2Ψ) = −(∇2Ψ)∇2φ − (∇2Ψ) · ∇(∇ × Ψ)

+ (∇2Ψ) · ∇(∇φ) − ∇
(

1

ρ

)
× ∇p
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Chapter 7

7.1:

(a) vr = ∂χ

∂r
, vt = 1

r

∂χ

∂θ

(b)
∂2χ

∂r2
+ 1

r

∂χ

∂r
+ 1

r2

∂2χ

∂θ 2
= 0

7.2: χB − χA, where A and B are the endpoints of L.

7.3:

(a) χ = χA1 + 2nπ , where n is an arbitrary integer.
(b) χB2 = χA2 = 0. Reason:After one complete circulation the angle θ returns

to its original value.

7.4:
(a) |vh| =

√
a2 + b2, u = a, v = b

(b) ψ = −ay + bx = constant

Chapter 9

9.1:

ωs = ρs

[(
∂φ

∂t

)
p

+ vh · ∇h,pφ

]
s

− ρsvh · ∇h,pφs

In the case that at all times the earth’s surface is identical with the pressure surface
p0, we may set ∇h,pφs = ∇hφs.

9.2:

tanα = f

g

T (2)
v v(1)

g − T (1)
v v(2)

g

T
(2)
v − T

(1)
v

Chapter 12

12.1: In both cases you obtain 6[V (1)V (5)+V (2)V (4)+V (3)V (3)+V (4)V (2)+
V (5)V (1)].

Chapter 13

13.2:

� =
(
∂θ̃

∂z

)(
H

ρcp,0

)−2/3(
g

T

)1/3

z4/3
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13.3:

(a) ε = κKε
2/3
M k−5/3, � = ε(k)k5/3

ε
2/3
M

(b) �1 = ε(k)

ν5/4ε1/4 , �2 = k

(
ν3

εM

)1/4

13.4:

(b) Sl(0) = 1

13.5:

(13.84): Sl = 0.143, (13.88): SL = 0.578

13.7:

û = ug

[
1 −

√
2 sinα0 cos(Az + π/4 − α0) exp(−Az)

]
v̂ = ug

√
2 sinα0 sin(Az + π/4 − α0) exp(−Az)

zg =
(

3

4π
+ α0

)√
2k

f

Chapter 14

14.1: Reflection of U = U0 sin(kx − ωt) on the x-axis.

14.2:

U = 2A sin

(
2πx

L

)
cos(ωt)

14.4: No. In order to obtain (14.37d) you must assume that α0 �= α0(z).

14.6:

H → ∞, tanh(kxH ) → 1

14.7: The influence of the earth’s rotation is small.

14.8: 2200 m.

Chapter 15

15.5:

(a) From the plot it follows that the curvature changes sign. =⇒ Barotropic
instability.

(b ) −2 ≤ y2
0β/u0 ≤ 2

3 .
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Chapter 16

16.1:

c = u0 − β

a2
, a2 = k2

x(1 + µ2), u = u0 − Aa cos(ay + ε)

Chapter 17

17.2:

ξ = ξ0 + f0

2v0
y2

Chapter 18

18.3:

covariant:
d

dt
= ∂

∂t
+ v1

r2 cos2 ϕ

∂

∂λ
+ v2

r2

∂

∂ϕ
+ v3

∂

∂r

contravariant:
d

dt
= ∂

∂t
+ λ̇

∂

∂λ
+ ϕ̇

∂

∂ϕ
+ ṙ

∂

∂r

physical:
d

dt
= ∂

∂t
+ u

r cosϕ

∂

∂λ
+ v

r

∂

∂ϕ
+ w

∂

∂r

18.4:

(a)
1

ρ

dρ

dt
+ 1

r cosϕ

(
∂u

∂λ
+ ∂

∂ϕ
(v cosϕ)

)
+ ∂w

∂r
+ 2w

r
= 0

(b)
1

ρ

dρ

dt
+ 1

r cosϕ

(
∂

∂λ
(r cosϕλ̇) + ∂

∂ϕ
(rϕ̇ cosϕ)

)
+ ∂ṙ

∂r
+ 2ṙ

r
= 0

18.5:

(a) W1
�

= �r2 cos2 ϕ, W 1

�
= �

=1
12 = −tanϕ, =1

13 = 1

r
, =2

11 = cosϕ sinϕ

=2
23 = 1

r
, =3

11 = −r cos2 ϕ, =3
22 = −r

(b) ω12
�

= �r2 cosϕ sinϕ, ω13
�

= −�r cos2 ϕ,

ω12
�

∗ = � sinϕ, ω13
�

∗ = −� cosϕ

with =k
ij = =k

ji and ωij
�

= −ωji
�

. The remaining terms of Wi
�
, Wi

�
, ωij

�
, and =k

ij

vanish.
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Chapter 19

19.4:

g11 = ε2 cosh2 r ′ cos2 ϕ′, g22 = g33 = ε2(cosh2 r ′−cos2 ϕ′), gij = 0, i �= j

Chapter 20

20.3:

(a) For constant values of x, y, λ, andϕ the ratios dsE,x/dsphere,λ and dsE,y/dsphere,ϕ

give the same result. Thus, the projection is conformal. m = 1/cosϕ.
(b)

(dr)2 = 1

m2
(dx2 + dy2) + dz2

KA = 1

2m2
(ẋ2 + ẏ2) + ż2

2
+ �r

m2
ẋ + �r2

m2

g11 = 1/m2, g22 = 1/m2, g33 = 1, gij = 0, i �= j

g11 = m2, g22 = m2, g33 = 1,
√
g = 1/m2

v1 = ẋ/m2, v2 = ẏ/m2, v3 = ż

v*
1 = ẋ/m, v*

2 = ẏ/m, v*
3 = ż

(c)
√
g
p

= − 1
m2gρ

Chapter 21

21.1:

dv1

dt
− v2

n

gnn

∂

∂x
(hgnn) − f v2

g22
= − 1

ρ

∂p

∂x
+ gη

∂h

∂x
+ 1

ρ
q1 ·∇ ·J

Chapter 22

22.3:

(a) The same as (22.58) but replace ∂M/∂x and ∂M/∂y as follows:

∂M

∂x
−→ ∂N

∂x
+ ρ̇

∂v1

∂ρ
,

∂M

∂y
−→ ∂N

∂y
+ ρ̇

∂v2

∂ρ

The hydrostatic equation is
∂N

∂ρ
= −R0T

ρ

The individual derivative is

d

dt
= ∂

∂t
+ m2

0

(
v1

∂

∂x
+ v2

∂

∂y

)
+ ρ̇

∂

∂ρ
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(b) Replace θ in (22.58) by ρ and add the term (∂/∂ρ)(ρ̇∂p/∂ρ).
(c) Lower boundary condition: Replace θs in (22.59) by ρs, but ρs �= 0. Upper

boundary condition: ρ̇ = 0.
(d) Replace θ in (22.61) by ρ and add the right-hand side term ρ̇ ∂p/∂ρ. The

integration limits are (0, ρ). Also multiply ∂p/∂t by −1.

22.4:
∂zH

∂t
= −∇h · [vh(zH − zs)]

Chapter 23

23.4:

(a) q(t) = [q0 − qg(0)] exp(−if0t) + qg(t) −
∫ t

0

dqg(t ′)

dt ′
exp[−if0(t − t ′)] dt ′

(b) q0 = qg(0) and dqg(t)/dt = 0 or (d/dt) ∂φ/∂x = 0, (d/dt) ∂φ/∂y = 0.
Hence φ = ax + by + F (p, t), where F (p, t) is an arbitrary function.

Chapter 26

26.5: P3(µ) = 5µ3/2 − 3µ/2.



List of frequently used symbols

ai: Lagrangian enumeration coordinates
c: displacement speed (m s−1)
cp: specific heat at constant pressure (m2 s−2 K−1)
cv: specific heat at constant volume (m2 s−2 K−1)
D: divergence (s−1)
D: deformation part of the velocity dyadic (s−1)
dg: geometric differential

D3/Dt: budget operator (s−1)
e: specific internal energy (m2 s−2)

ei, ei: covariant and contravariant unit vectors
E: unit dyadic

Eu: Euler number
f : vertical Coriolis parameter (s−1)

Fr: Froude number
FR: radiative flux (kg s−3)
g: acceleration due to gravity (m s−2)

gij , g
ij : covariant and contravariant metric fundamental quantities√
g: functional determinant
h: specific enthalpy (m2 s−2)
I k: phase-transition rate of substance k (kg m−3 s−1)
J: viscous-stress tensor (kg m−1 s−2)

Jh: enthalpy flux (kg s−3)
Jh
s : sensible enthalpy flux (kg s−3)

Jk: diffusion flux (kg m−2 s−1)
Jk
t : turbulent diffusion flux of substance k (kg s−3)

Jθ
t : turbulent heat flux (kg s−3)
K: exchange coefficient (m2 s−1)
K: specific kinetic energy for relative motion (m2 s−2)
KA: specific kinetic energy for absolute motion (m2 s−2)
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k: wavenumber (m−1)
L: Lagrangian function (m2 s−2)
l: horizontal Coriolis parameter (s−1)
l: mixing length (m)

L∗: Monin–Obukhov length (m)
M: mass (kg)
Mk: partial mass of substance k (kg)
mk: concentration of substance k
p: pressure (kg m−1 s−2)
PE: Ertel’s potential vorticity (kg−1 m4 s−3 K−1)
PR: Rossby’s potential vorticity (kg−1 m s K)
Q: entropy production (kg m−1 s−3 K−1)
q: specific humidity

qi, qi: covariant and contravariant basis vectors
qi, q

i : covariant and contravariant position coordinates of a vector
R: distance from the earth’s axis (m)
R0: gas constant for dry air (m2 s−2 K−1)
Re: Reynolds number
Ri: Richardson number
Rif: flux Richardson number
Ro: Rossby number

r: position vector
S: surface (m2)
s: specific entropy (m2 s−2 K−1)

St : Strouhal number
T : temperature (K)
t: time (s)

T: stress vector (kg m−1 s−2)
T: general stress tensor (kg m−1 s−2)
u: velocity component in x-direction (m s−1)
u∗: frictional velocity (m s−1)
V : volume (m3)
v: velocity component in y-direction (m s−1)
v: relative velocity (m s−1)

vA: absolute velocity (m s−1)
vD: deformation velocity (m s−1)
vg: velocity of the geostrophic wind (m s−1)
vh: velocity of the horizontal wind (m s−1)
vP : velocity of the point (m s−1)
vT: translatory velocity (m s−1)
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v': rotational velocity (m s−1)
w: velocity component in z-direction (m s−1)

Wi,W
i : covariant and contravariant measure numbers of vP

α: specific volume (m3 kg−1)
β: Rossby parameter (m−1 s−1)

-ijk,-
k
ij : Christoffel symbols of the first and the second kind
γ : lapse rate (K m−1)
ε: energy dissipation (kg m−1 s−3)
ζ : vorticity (s−1)
η: absolute vorticity (s−1)
λ: degrees of longitude

µk: specific chemical potential of substance k (m2 s−2)
ρ: mass density (kg m−3)
ρk: partial density of substance k (kg m−3)
‖: surface Hamilton operator
σ0: static stability (kg−2 m4 s2)
τ : stress vector (kg m−1 s−2)
φ: geopotential (m2 s−2)
φa: gravitational potential (m2 s−2)
φz: centrifugal potential (m2 s−2)
8: general dyadic
8′: symmetric dyadic
8′′: antisymmetric dyadic
8a: adjoint dyadic
8×: vector of a dyadic
8I: first scalar of a dyadic
8II: second scalar of a dyadic
8III: third scalar of a dyadic
8−1: inverse dyadic

ϕ: degrees of latitude
χ : velocity potential (m2 s−1)
ψ : stream function (m2 s−1)

{ψ}: jump of the field function ψ
Ω: angular velocity of the earth (s−1)
': rotational part of the velocity dyadic (s−1)
ω: angular speed (s−1)
ω: generalized vertical speed (kg m−1 s−3)
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List of constants

β: Rossby parameter (55◦ latitude) (1.313× 10−11 m−1 s−1)
cL: speed of sound at 273 K (331 m s−1)
γ : gravitational constant (6.672× 10−11 Nm2 kg−2)

Cp,0: specific heat at constant pressure, dry air (1005 J kg−1 K−1)
Cp,1: specific heat at constant pressure, water vapor (1847 J kg−1 K−1)
Cv,0: specific heat at constant volume, dry air (718 J kg−1 K−1)
Cv,1: specific heat at constant volume, water vapor (1386 J kg−1 K−1)
c2: specific heat of liquid water (4190 J kg−1 K−1)
c3: specific heat of ice (2090 J kg−1 K−1)
f : vertical Coriolis parameter (55◦ latitude) (1.195× 10−4 s−1)
l: horizontal Coriolis parameter (55◦ latitude) (0.836× 10−4 s−1)

l21: latent heat of vaporization (2.5× 106 J kg−1)
l31: latent heat of sublimation (2.834× 106 J kg−1)
l32: latent heat of melting (0.334× 106 J kg−1)
ME: mass of the earth (5.973× 1024 kg)
µ: Lamé coefficient (293 K) (1.815× 10−5 kg m−1 s−1)
R∗: universal gas constant (8.314 32 J mol−1 K−1)
R0: gas constant of dry air (287.05 J kg−1 K−1)
R1: gas constant of water vapor (461.51 J kg−1 K−1)
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1.5-order closure scheme, 347

absolute circulation, 289
acceleration due to gravity, 152
action integral, 273
advection models, 631
advection term, 50
ageostrophic wind component, 609
air-parcel-dynamic method, 495
aliasing error, 645
anelastic assumption, 670
anomalous dispersion, 402
angular velocity of the earth, 137
antecedent, 5
anticyclonic flow, 243
aperiodic motion, 680
apparent gravity, 150
associated Legendre equation, 658
associated Legendre polynomials, 658
associative law, 3, 7
attractive potential, 136, 146
attractor, 118

chaotic, 128, 680
strange, 128, 669, 680

Austausch coefficient, 345
Austauschkoeffizient, 396
available potential energy, 443

β-effect, 615
β-plane, 461, 472
balance equation, 101, 450
buoyancy energy, 357
baroclinic instability, 624
baroclinicity vector, 290
barotropic instability, 452
barotropic stability, 453
basis vector, 5

contravariant, 15
covariant, 15

bifurcation, 113
saddle-node, 113
point, 113
Hopf, 124, 127, 679

pitchfork, 114, 676
subcritical Hopf, 128
subcritical pitchfork, 115
supercritical Hopf, 128
supercritical pitchfork, 114
transcritical, 114

billow clouds, 431
Bjerkness linearization procedure, 405
Bjerkness’ circulation theorem, 288

barotropic form
Blaton’s equation, 236
boundary surface, 246
Boussinesq approximation, 669
Brunt–Douglas wind, 613
Brunt–Vaisala frequency, 413, 419
Buckingham π theorem, 393
budget operator, 100, 144
budget equation, 101,

for the energy density, 334
for the geopotential, 148
for the general relative system, 149
for the kinetic energy, 148, 444
for the mass concentrations, 103
for the potential energy, 148, 444
for the turbulent system, 310

capacity dimension, 129
Cauchy–Riemann equations, 220
center, 119, 197

kinematic, 194
neutrally stable, 120

central finite-difference approximation, 636
centrifugal potential, 142, 146
centripetal acceleration, 238
certain energy, 691
characteristic equation, 33
characteristic length, 360
characteristic numbers, 158
chemical affinity, 322
Christoffel symbol, 51
circle of inertia, 496
circulation integral, 88
closure assumptions, 347

713
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coefficient of volume viscosity, 211
commutative law, 3, 7
compatibility conditions for pressure systems, 581
condition of particle invariance, 251
condition of autobarotropy, 436
confluence, 239

effect, 613
conformal map, 542
consequent, 5
contingency angle, 230
continuity equation, 102, 522, 557, 576

Ertel’s form, 268
for the probability density, 688
general form, 144
Lagrangian form, 173, 175

contraction, 51, 194
contravariant differentiation, 79
convection equations, 669
convective flux, 102
convective time scale, 162
coordinate line, 44, 84

curvilinear, 44
coordinate simplification, 539
coordinate system

absolute, 67
geographical, 137, 532
inertial, 67
natural, 230
relative, 67
semi-orthogonal, 84

Coriolis force, 147
components, 152

Coriolis parameters, 152, 162, 536
correlation product, 304
Couette flow, 212
counter-gradient flow, 312
Courant–Friedrichs–Lewy stability criterion,

176, 182, 582, 639
covariant curvature tensor, 530
covariant differential operator, 76
covariant time operator, 80
criterion of hydrostatic stability, 504
critical-flux Richardson number, 358
critical point, 111
critical Rayleigh number, 673
cross product, 9
cross-isobar angle, 379
Curie’s principle, 321
curvature effect, 613, 616
curvature tensor, 108, 530
cyclonic flow, 243
cyclostrophic wind, 244

d’Alembert’s solution, 414
d’Alembert’s wave equation, 417
deformational flow, 220
del operator, 48
deterministic chaos, 680
diagnostic coupling, 591
diffluence, 239

effect, 613

diffusion flux, 95
dilatation, 194, 203
dimensional matrix, 391
Dirac delta function, 104
direct circulation, 290
directional stationarity, 236
Dirichlet problem, 216
Dirichlet conditions, 326
discontinuity surface, 246
dispersion relation, 402
dissipation range, 339
distortion, 203
distributive law, 7
distributive law, 3
divergence, 54

two-dimensional, 192
divergence, coordinate-free definition, 92
divergence due to directional change, 239
divergence effect, 280, 292
divergence equation

barotropic, 450
baroclinic, 593

dominating wavelength, 630
double scalar product, 38
double-dot product, 38
driving force, 673
dyad, 5, 30
dyadic, 5

adjoint, 30
anisotropic part, 35
antisymmetric, 29
complete, 25
conjugate, 28
deformation, 189
first scalar, 35
invariants, 34
isotropic part, 35
local, 50, 82
local velocity, 151, 193
planar, 26
product, 10
reciprocal, 31
rotation, 189
second scalar, 36
singular, 26
symmetric, 28
third scalar, 39
unit, 19
velocity, 189
two-dimensional velocity, 192
vector, 35

Dyer–Businger equations, 369
dynamic boundary-surface condition, 258
dynamic stability, 502

Eckart coefficient, 420
eigendirection, 120

fast, 120
slow, 120

eigenvalue equation, 33
eigenvector, 33
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Einstein summation convention, 6
Ekman layer, 349, 375
Ekman pumping, 390
Ekman spiral, 379
energy budget

for the absolute system, 136
for the general relative system, 147
for the turbulent system, 313

energy cascade, 335
energy dissipation, 104, 143
energy-transfer function, 333
ensemble average, 302
enstrophy, 649
enthalpy flux, 104
enumeration coordinates, 171
equation of motion, 133,

contravariant, 518
covariant, 514
in Lagrangian enumeration coordinates,

559
in orthogonal coordinate systems, 520
in the absolute system, 135
in the general relative system, 146
in the orography following η-system, 570
for the tangential plane, 169, 558
Hamilton’s, 527
Hamilton’s canonical, 529
horizontal, 167
Lagrange’s, 523, 559
Lagrange’s, in general coordinates, 525
Lagrange’s, of the second kind, 525
stream-momentum form, 576, 583

equation of the harmonic oscillator, 529
equilibrium point, 111
equilibrium solution, 111
equiphase surface, 409
equipotential surface, 150
equivalent barotropic model, 436
equivalent-barotropic level, 442
ergodic condition, 309
Ertel–Rossby invariant, 275

barotropic form, 294
Ertel’s conservation theorem, 278
Ertel’s vortex invariant, 279
Ertel’s vortex theorem, 278

barotropic form, 295
Euclidian norm, 9
Euclidian space, 9, 107
Euler development, 50
Euler equation, 135

horizontal form, 169
Euler number, 159
Euler wind, 167
Euler’s relation, 656
Eulerian derivative, 187
exchange coefficient, 323, 342
exchange dyadic, 323
Exner function, 317, 502
expectation value, 302
extensive quantity, 5
extensive variable, 95

external boundary surface, 254
external change, 103

filter condition
first, 595
second, 596

filtered barotropic model, 450
fine structure of the pressure field, 220
first law of thermodynamics, 104, 592, 597
first metric simplification, 538
first-order closure scheme, 347
fixed point, 111, 197, 676

neutrally stable, 118
attracting, 118

flow integral, 88
fluid integral, 96
fluid line, 94
fluid surface, 94
fluid volume, 94, 140
flux Richardson number, 356
focus, 126
force, 133

attractive, 206
external, 206
fictitious, 133, 153
frictional stress, 207
gravitational, 134
inertial, 206
internal, 206
mass, 133
metric, 153
pressure, 134, 207
pressure gradient, 150
real, 133, 153
surface, 133, 207
viscous, 134
volume, 133, 206

forced orthogonalization, 573
forward-in-space difference approximation, 635
fractal dimension, 128
free surface, 254
Frenet–Serret formulas, 233
Froude number, 159, 392
functional determinant, 13, 47

chain rule for, 66
fundamental tensor, 8

Gauss’ divergence theorem, 92
Gauss’ two-dimensional divergence theorem, 93
Gauss’ theorem, 104
Gaussian latitudes, 660
general product, 10
general baroclinic vortex theorem, 276, 573
generalized vertical coordinate, 72, 256
generalized vertical velocity, 256
geocentric latitude, 147
geometric differential, 45
geopotential, 146, 438
geostrophic adjustment, 487
geostrophic relation for the vertical wind, 606
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geostrophic wind, 167, 558
deviation, 380
height, 379

Gibbs’s fundamental equation, 319
gliding mean, 308
globally stable point, 677
gradient operator, 48
gradient Richardson number, 357
gradient transport theory, 347
gradient wind relation, 243
Gram determinant, 13, 23
Grassmann rule, 13, 18
gravitational attraction, 134
gravitational constant, 134
gravitational potential, 134
Green’s function, 216
group velocity, 401, 421, 482
Guldberg and Mohn scheme, 483

Hamilton operator, 48
Hamilton operator, two-dimensional, 86
Hamiltonian function, 527
harmonic function, 219, 656
Hausdorff dimension, 129
heat flux, 101
Heisenberg

constant, 335
exchange coefficient, 338
relation, 361
spectrum, 336

Helmholtz theorem
three-dimensional, 214
two-dimensional, 216

Helmholtz’s baroclinic vortex theorem, 286
Helmholtz’s vortex theorem, 286

barotropic form, 295
Hesselberg average, 305
Hollmann’s conservation law, 277
Hooke’s constant, 529
Hooke’s law, 210
hydrostatic approximation, 166
hydrostatic filtering, 415
hydrostatic stability, 501

ideal-gas law, 160
idempotent rule, 303
image factor, 542
image scale, 542
image vector, 26
implicit scheme, 643
indifference line, 505
indirect circulation, 290
individual differential, 45
individual time change, 68, 139
inertial frequency, 496
inertial instability, 499
inertial motion, 496
inertial subrange, 339
inflexion-point instability, 463
intensive variable, 95
interaction coefficients, 649

interchange rule, 103
integrability condition, 222
internal boundary surface, 255
internal change, 103
internal energy, 136, 147
intrinsic frequency, 413
isallobaric wind, 613
isentropic vertical coordinate, 587
isogon, 244
isometric map, 542
isotach, 244
isotropic condition, 333

Jacobi’s elliptical function, 432
Jacobian matrix, 122
Jacoby operator, 63

k−5/3 law, 339
K theory, 347
KEYPS formula, 365
kinematic boundary surface condition, 253
kinetic energy

absolute, 69, 136, 443, 523, 549, 573
relative, 70, 148, 523, 549, 573

Kolmogorov constant, 340
Korteweg–de Vries equation, 431

Lagrangian function, 294, 525, 561
in the absolute system, 273

Lagrangian derivative, 187
Lamb transformation, 58
Lamé’s coefficients, 210
Lamé’s coefficients of viscosity, 135
laminar sublayer, 349
Laplace operator, 55
Laplace speed of sound, 409
Laplace’s equation, 219, 656
Laplace’s series, 661
Laplace’s spherical function, 658
large-eddy simulation, 347
latitude effect, 612
latitudinal effect, 292
leap-frog method, 642
Legendre polynomial, 657
Legendre’s differential equation, 657
level surface, 150
level of nondivergence, 440
Liapunov exponent, 682
Liapunov function, 128, 677
Liapunov stable, 118
limit cycle, 124
line integral, 87
linear Onsager theory, 318
linear stability, 112
linear vector function, 25
linear vector space, 4
Liouville equation, 688
local closure schemes, 346
local stability, 112
local time change, 68
local time derivative, 45
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log-linear wind profile, 365
logarithmic wind profile, 360
Lorenz system, 669
low-pass filter, 308
lowering rule, 20

magnitude, 157
margin of stability, 678
Margules boundary surface, 260
mass flux, 101
material line, 95
material surface, 95, 251
material volume, 94
mean free path, 395
mean molecular sensible enthalpy flux,

317
measure numbers, 5

affine, 6
contravariant, 19, 26
covariant, 19, 26
mixed, 26
physical, 19, 84

meteorological noise, 443, 591
method of contraction, 524
metric acceleration, 153, 165, 516
metric fundamental quantity, 8
metric tensor, 8

contravariant, 16
covariant, 16

midpoint surface, 32
mixed boundary surface condition,

258
mixing length, 360, 394
Monin–Obukhov

function, 363
length, 363
similarity theory, 358

Montgomery potential, 588
moving mean, 308

nabla operator, 48
natural frequency, 501
Navier–Stokes equation, 135
Neamtan solution, 463
Neumann problem, 216
neutral surface, 629
Newton speed of sound, 425
Newton’s law of attraction, 134
Newton’s second law of motion, 133
node, 117

degenerate, 120
stable, 117, 677
symmetric, 117
unstable, 122

noise filtering, 437
nonconvective flux, 102
nonlocal closure schemes, 346
nonlinear instability, 645
normal, 224, 230
normal dispersion, 402
normal mode solutions, 480

ω equation, 605
optimum interpolation, 685
Orr–Sommerfeld equation, 461
oscillation, 398

Parseval’s identity for Fourier series, 328
partial stability, 508
perturbation, 404
perturbation method, 403
phase fluid, 111
phase path, 197
phase point, 111
phase space, 111
phase speed, 399
phase velocity of the Rossby wave, 463, 472
phenomenological theory, 318
Philipps wind, 611
planetary boundary layer, 349
Poiseuille flow, 213
Poisson’s differential equation, 106
position vector, 7
potential energy, 136, 443
potential flow, 215, 220
potential vorticity, 278

Rossby’s form, 282
Rossby’s form for a barotropic fluid, 300

Prandtl layer, 349
Prandtl number, 357, 674
pressure number, 392
pressure scale height, 162
pressure system, 580
pressure-tendency effect, 612
primitive equations, 582, 591
principal-axis transformation, 32, 210
principal-axis directions, 33

quasi-geostrophic baroclinic model, 591

radiative flux, 101
raising rule, 20
Rayleigh dissipation function, 137
Rayleigh number, 673
relative circulation, 289
relative gravity, 150
relative motion, 137
relaxation method, 475
repellor, 118
Reynolds number, 159, 392
Reynolds tensor, 312
Ricci calculus, 6
Richardson equation, 618
Richardson number, 345, 357
Riemann–Christoffel tensor, 108, 530
Riemannian space, 107
rigid rotation, 137, 204
rigid translation, 203
Rossby

deformation radius, 491
number, 159
parameter, 460
processes, 449
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Rossby wave, 471
mixed, 476
pure, 471
stationary, 223, 473, 483, 617
three-dimensional, 476

rotation, 55
coordinate-free definition, 91

roughness height, 349

saddle point, 117, 198, 677
scalar product, 7
scalar triple product, 11
scalar, 3
scale analysis, 157
scale factor, 542
Schrödinger’s equation, 485
second metric simplification, 572
sectorial stability, 504, 510
selective filtering, 596
semi-implicit method, 644
shearing instability, 452
sidereal day, 138
sigma system, 584
simple fluctuation, 303
simple mean value, 302
solenoid, 290
solenoidal effect, 281
solenoidal term, 670
solitons, 432
source strength, 101
curve in space, 94
spatial mean for fixed time, 308
space-time average, 308
specific partial quantity, 316
specific value, 95
spectral diffusivity theory, 346
spectral energy density, 334
speed of sound, 176
spherical function, 656, 657
spherical harmonics of the first kind,

660
spin down, 390
spin-down time, 390
spiral, 120, 197

stable, 120
unstable, 120

spiral layer, 349
stable equilibrium, 111
stable manifold, 117
star, 117
static stability, 477, 592
stereographic coordinates, 542
stereographic projection, 544
stochastic dynamic method, 686
Stokes’ integral theorem, 90
strange attractor, 669
streak line, 185
stream filament, 296
stream function, 216
stream tube, 296

streamline, 183, 230
two-dimensional, 222

stress tensor
general, 206
viscous, 104, 134, 207

stress vector of the boundary layer, 352
viscous-stress vector, 207
Strouhal number, 159
surface

divergence, 248
gradient, 248
Hamilton operator, 248
in space, 84
integral, 87
rotation, 249

surfaces of constant phase, 399
surface spherical harmonics, 660
system

autonomous, 112
conservative, 675
contragredient, 15
contravariant, 15
covariant, 15
deterministic, 669
dissipative, 675
η, 565
exclusive, 319
filtered, 591
inclusive, 319
Lorenz, 669, 673
microturbulent, 154, 302
molecular, 154
nonautonomous, 112, 674
nonturbulent, 154
p, 577
quasi-geostrophic, 591
recriprocal, 15
σ , 584
ξ , 572

τ equation, 606
tangential acceleration, 238
tensor, 31

ellipsoid, 32
surface, 32

thermal wind, 264, 621
Thomsons’s circulation theorem, 288

barotropic form, 295
tipping- or tilting-term effect, 280, 595
total derivative, 45
total energy, 137, 148
trajectory, 111, 171, 230
transfer region, 339
transilient turbulence theory, 346
triangular scheme, 665
turbulence, homogeneous and stationary,

309
turbulent Exner flux, 318
turbulent flux, 311
turbulent heat flux, 318
turbulent latent-enthalpy flux, 317
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turbulent Prandtl number, 357
turbulent sensible-enthalpy flux, 317
turning point, 114
twisting term, 594
two-level quasi-geostrophic prediction model,

619

ultra-long-wave approximation, 481
ultra-violet catastrophy, 631
uncertain energy, 691
universality region, 335
unstable manifold, 117

van Mieghem, 103
vector

basis, 6
Cartesian basis, 7
collinear, 3
components, 5
coplanar, 3
potential, 214
product, 9
unit, 3

vectorial triple product, 13
velocity, 67, 133

absolute, 68, 133
addition theorem, 67, 140, 518
angular, 137
barycentric, 95
deficit, 473
deformation, 69, 139
diffusion, 96
divergence, 239
dyadic, 189
frictional, 356
numerical phase, 637
of the point, 139
potential, 214
scalar potential, 214
relative, 140
relative, 69
rotational, 69, 138
translatory, 69

viscous force, 134
viscous-stress tensor, 134
volume integral, 87
volume-true change, 203
von Karman constant, 344, 359
von Karman relation, 362
vortex

filament, 296
line, 296

strength, 298
tube, 296

vorticity, 91, 192, 217, 240
absolute, 279
absolute geostrophic, 499
geostrophic, 389, 596
kinematic, 191
relative, 279
theorem, 279
theorem, barotropic form, 299

vorticity equation, 280, 652, 670
divergence-free barotropic, 451, 471
baroclinic, 282
quasi-geostrophic, 477, 593, 603

wave, 417
barotropic equatorial, 484
buoyancy, 410
deep-water, 425
evanescent, 418
gravity, 410
gravity, external, 422
gravity, inertial, 486
gravity, internal, 426
Helmholtz, 426
inertial, 448
Kelvin–Helmholtz, 430
Lamb, 418
lee, 418
long, 425
nonlinear, 431
motion, 398
phase of, 400
plane harmonic, 398
shallow water, 425
shearing, 431
solitary, 431
sound, 407
sound, horizontal, 414
stable, 430
trapped, 418
vector, 330, 399
unstable, 430

wavenumber, 399
east–west planetary, 660
meridional, 660
stationary, 474

weak instability, 639
Weber transformation, 271
weighted expectation value, 304
weighted mean value, 304

zonal spherical function, 657
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