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PREFACE 

As in other recent volumes, the several themes treated here are not di
rectly related to each other, except for their common bond to physical 
acoustics. 

One of the remarkable properties of liquid helium I I , the liquid phase 
existing below 2.172°K, is tha t a certain fraction of it can flow without any 
viscosity. The result is tha t it can flow from beaker to beaker via the thin 
film tha t is absorbed upon the walls. I t is possible to excite propagating 
waves in such films and these waves are called third sound. This first chapter 
considers the theory of third sound, methods for exciting such waves, third 
sound resonators, and many other properties. Most of the theories presented 
are generalizations of hydrodynamic theories but a t tempts are now being 
made as described to introduce quantum mechanical properties. 

The method of matched asymptotic expansions (MAE) is an established 
technique in theoretical mechanics but is not yet widely employed in modern 
acoustics research. The ability of this relatively new method to produce new 
results in acoustics as well as to provide fresh insight into classical problems 
is demonstrated in the second chapter. Writ ten as an introduction to the 
subject, Lesser and Crighton also go far enough to enable the reader to 
apply the MAE technique to his own problems. The method is of general 
interest because it is effective not only in resolving particular problems, but 
also in unifying different mathematical models. For example, the MAE 
formalism provides derivations of a number of acoustical equations together 
with estimates of their validity and a definite interpretation of their meaning 
(e.g., Burgers' equation in relation to the linear wave equation and the 
Navier-Stokes equations). 

One of the principal problems in acoustic measurements a t high fre
quencies is the effect of diffraction in determining the shape of the propa
gating waves. Diffraction can affect not only the at tenuation but also the 
velocity measurements. The third chapter by Papadakis includes discussions 
of bulk and surface waves, monochromatic bursts and broadband sources, 
effects of variation of the displacement of the radiator over its surface, and 
the effects of the anisotropy of the medium. Calculations are compared with 
experiments with good agreement. 

In recent years, acoustic surface waves have been intensively investi
gated for a number of signal-processing applications including delay line 

xi 
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memories, filters, and correlators. After a discussion of phase coded signals 
and their generation and detection by interdigital grid structures, the 
chapter "Elast ic Surface Wave Devices" describes a 13 bit Barker code 
correlator, a programmable sequence generator, and pulse compression 
filters. 

The fifth chapter by Gagnepain and Besson is devoted to an investiga
tion of nonlinear effects in quartz crystals. The extent to which the oscilla
tion level of a quartz crystal unit can be increased (in order to improve the 
signal to noise ratio and short-term stability) is limited by nonlinear resonator 
effects. Additional motivation for studying the origin of nonlinearities is 
provided by the possible use of nonlinear effects in correlators, strain-biased 
resonators, and other devices. Observed nonlinear behavior is related to 
nonlinearities in the elastic, piezoelectric, dielectric, and damping properties 
of the crystal. 

Acoustic emission, the subject of the last chapter, deals with the noise 
produced in materials when they are strained. The first responses seem to 
have been obtained in rocks, where they were called microseisms and were 
shown to be connected with strains. These emissions received practical appli
cation in providing warnings for rock slides in mines, etc. Starting in 1948, 
acoustic emissions were observed in metals. Studies indicated tha t they 
were of two forms—continuous and burst-type emissions. In all cases, the 
emissions have been correlated with various types of dislocation motions. 
Practical applications have been made of these emissions in determining the 
approach to failure in pressure vessels, bridges, cranes, and other mechan
isms. Fatigue in metals and other materials also produces characteristic 
emissions and these emissions can serve as warnings of this form of degrada
tion. Hence acoustic emissions are becoming a nondestructive test for many 
types of material degradations. 

The Editors owe a debt of gratitude to the contributors who have made 
this volume possible and to the publishers for their unfailing help and 
advice. 

W A R R E N P. MASON 
R O B E R T N . THURSTON 
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I. Introduction 

One of the remarkable properties of helium I I , the liquid phase of helium 
tha t exists between 0° and 2.172°K, is tha t a certain fraction of it can flow 
without any viscosity. As a result of this, helium I I can flow quite freely 
through very narrow superleaks, or it can flow from beaker to beaker via the 
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2 David J . Bergman 

thin film tha t is adsorbed upon the walls. I t is also possible to excite propaga
ting waves in such a film, analogous to long waves on the surface of a shallow 
body of water. These waves are called third sound. 

Surface waves on helium films were originally considered as a possible 
mechanism for the critical velocity of the film. I t was speculated by Kuper 
(1956a,b), Atkins (1957), and Arkhipov (1957) tha t the critical velocity 
would be the velocity of flow at which it would become energetically favorable 
to create a ripplon—one quantum of surface excitation. Careful measure
ments performed more recently (Pickar and Atkins, 1969) have shown tha t 
the velocity of third sound is two or three times larger than the critical 
velocity of superfluid flow instead of being equal to it, as one would expect 
from the above mechanism. But in the meantime, third sound has turned out 
to be a fascinating physical phenomenon in its own right. 

Atkins, who did most of the early theoretical work on the properties 
of third sound (Atkins, 1959), also conducted the first experiment tha t 
detected third sound (Everitt et al., 1962). This was done in a helium film 
formed upon a flat solid substrate which was in equilibrium with helium 
vapor a few centimeters above a liquid helium bath. This is a relatively thick 
film, called a saturated film, whose thickness depends mainly on the height 
above the liquid. Films obtained in this way range in thickness from about 
500 A (140 atomic layers) at a height of 1 cm to about 250 A (70 atomic layers) 
a t a height of 10 cm. The same group made measurements of the velocity of 
third sound in these films as a function of temperature, height above the 
fluid, and frequency, and of the attenuation as a function of frequency 
(Everitt et al, 1964). 

Later, Rudnick and co-workers succeeded in detecting third sound in 
helium films which are formed on a flat substrate in equilibrium with helium 
gas whose pressure Ρ is well below the saturated vapor pressure Pv (Rudnick 
et al., 1968). These are called unsaturated films, and their thickness is deter
mined mainly by the ratio P / P v . Their thickness ranges from about 180 A (50 
atomic layers) down to 14 A (4 atomic layers) and even less, depending on the 
temperature. Groups headed by Rudnick have since made detailed measure
ments of the velocity (Kagiwada et al., 1969; Rudnick and Fraser, 1970; 
Fraser, 1969) and of the attenuation (Fraser, 1969; Wang and Rudnick, 1972) 
of third sound in unsaturated films for various temperatures, film thicknesses, 
and frequencies. The above mentioned experiments as well as the early 
theories are described in great detail in an excellent review article (Atkins and 
Rudnick, 1970). Hence we will not go into them in great detail. 

More recently, Ra tnam and Mochel (1970a,b, 1974) have developed a new 
system to investigate the properties of third sound by measuring the response 
of a third sound resonator. The resonator is made by forming an unsaturated 
helium film on the inner surface of a hollow cell made of two parallel plates 
welded together at the edges. 

In this article we shall present a detailed discussion of the present state 
of our understanding of third sound. Section I I is devoted to a quite detailed 
development of the hydrodynamic theory of third sound in flat films. This is 
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done because we feel tha t any physicist wishing to enter the field should have 
a good understanding of the continuum theory of third sound. This is especi
ally true since one of the things we look for in third sound is deviation from 
continuum hydrodynamics. Tha t section can nevertheless still be useful to 
readers who are not interested in working through the detailed theoretical 
considerations: They need read only the first two subsections, A and B, 
omit subsections C-G, and go right on to the results of the theory, which are 
described in Section I I I . Section IV describes experimental results to the 
extent tha t they can be compared with the theoretical results of Section I I I . 
We have not a t tempted to give an exhaustive account of experimental 
procedures, and we instead refer the reader to the review article by Atkins 
and Rudnick (1970). In Section V we discuss the problem of surface roughness 
of the substrate. Section VI is about third sound resonators—both theory and 
experiments. Section VII is about mixed H e 3 - H e 4 films. Section V I I I is 
about the energy content of a third sound wave. Section I X discusses the 
contribution of normal fluid motion to the at tenuation of third sound. In 
Section X we describe briefly some a t tempts to go beyond hydrodynamics in 
describing third sound. That section, the last one in the article, is incomplete, 
since work on a microscopic theory of third sound is still going on in several 
places at this time. 

In order to assist the reader, we have compiled a glossary of some of the 
more important symbols and standard phrases tha t are used in this article. 

A. ELEMENTARY THEORY 

An elementary discussion of third sound makes the enormously simpli
fying assumptions t ha t (a) there are no temperature variations in the helium 
film, (b) there is no interaction between the film and its surroundings, (c) there 
is no normal fluid motion in the film, (d) dissipative processes in the film are 
unimportant and, (e) the properties of the film are completely constant in the 
direction perpendicular to the plane of the film. As a consequence of these 
assumptions, the hydrodynamic equations of superfluid motion in the film 
reduce to an equation for the conservation of mass 

and an equation of motion for the superfluid velocity vsx in a direction parallel 
to the film 

II. The Theory of Third Sound in Flat Films 

p{ dh\dt = —hps dvsx/dx (1) 

dvax\dt = —d^jdx = —f dh/dx, (2) 
where 

(3) 

In these equations p{ is the total mass density of the film, ps is the super-
fluid mass density, h(x, t) is the instantaneous thickness of the film (see 
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IMAGINAFW REFERENCE P L A N E 

He VAPOR 

y = y r 

y = h(x) 

He FILM 

/ / / / S U B S T R A T E / / / Y = C 

F I G . 1. Schematic drawing of a third sound wave . The imaginary reference plane 
at y = yr is placed outside the range of the substrate-hel ium forces, but yr is still m u c h 
less than the mean free path in the gas. From Bergman (1969), b y permission of the 
American Ins t i tute of Phys ics and Physical Review. 

Fig. 1), vsx(x, t) is the superfluid velocity, assumed to be entirely parallel to 
the plane of the film, and μ(χ, t) is the chemical potential per unit mass of the 
helium. 

Equations (1) and (2) can be combined to give a wave equation 

v p„ d2h 

which describes third sound as an unat tenuated wave propagating with a 
velocity u3 given by 

u3* = hf^. (5) 
Pi 

B . QUALITATIVE DISCUSSION OF THE DETAILED THEORY 

Even this very simplified theory describes third sound rather well— 
Eq. (5) is usually in good agreement with experiments. I t does not explain, 
however, the origin of the rather large attenuation tha t is observed experi
mentally. In order to get a better theory which includes attenuation, and 
also to understand why the simplified theory works so well, we will have to 
reexamine and modify some of the drastic assumptions we have been making. 

I t is clear, for example, tha t contrary to assumption (a) of the previous 
section, there will in fact be temperature variations in the film if assumption 
(c) about the absence of normal fluid motion has any validity: The peaks of 
the wave must then be associated with an increase of ps above its average 
value and with a decrease of the entropy density SjV below its average value. 
These variations will bring about a variation of the temperature as well. The 
variations in temperature or entropy satisfy an equation of motion which was 
ignored in the simplified treatment, but which should be included in a more 
detailed theory. The temperature variations will also contribute to the 
gradient of the chemical potential in Eq. (2). 

The periodic variations of the temperature, as well as those of the 
chemical potential μ, will cause energy to flow from the film to its surroundings 
(the helium gas and the substrate) and helium particles to evaporate into 



1. Third Sound in Superfluid Helium Films 5 

and condense from the gas phase. While these surface phenomena would be 
of minor importance as far as bulk properties of helium are concerned, it 
turns out tha t they are very important in the case we are considering where 
all of the liquid helium is very near to the two surfaces of the film. 

The importance of the temperature variations and of evaporation and 
condensation phenomena in third sound was first realized by Atkins (1959). 
The decisive role of heat flow to the surroundings of the film in determining 
some of the properties of third sound was first realized by Bergman (1969). 

The normal fluid motion in the film parallel to the surfaces is damped 
because of the boundary condition tha t requires it to vanish at the substrate, 
and the finite shear viscosity tha t is encountered when different layers of 
helium slide past each other with different normal fluid velocities. When the 
thickness of the film is much less than the viscous penetration depth, (η{/ 
2ρηω)1/2, this damping is very effective and vnx« vsx. The possibility tha t it 
is still important in accounting for the at tenuation of third sound was 
considered by Pollack (1966a,b). 

In the next subsection we will give a rather detailed t reatment of the 
theory of third sound based only on hydrodynamics. In this t reatment we 
will not make any of the assumptions made in the previous subsection. We 
shall find that , although the simple theory given before is usually adequate 
to give the velocity of third sound, a calculation of the at tenuation requires a 
careful consideration of all the interactions with the surrounding media. 
The intrinsic dissipative processes of the liquid helium film—viscosity and 
thermal conductance—still turn out to be unimportant. 

Before closing this subsection, we will summarize qualitatively the 
results of the detailed theory. 

When the interactions of the helium film with its surroundings are taken 
into account, we find tha t third sound is a phenomenon which is not confined 
to the film: Along with the wave traveling in the film there are companion 
waves in the adjoining substrate and gas. In the substrate this is simply a 
thermal conduction wave in which only the temperature oscillates. In the 
gas we have a combination of three waves: an ordinary acoustic wave, a 
viscous wave, and a thermal wave. Each of the companion waves has its own 
wave vector and propagates in a different direction, though always away from 
the film. The wavefronts of these waves are drawn qualitatively in Figure 2. 
The viscous and thermal waves travel nearly perpendicular to the film with 
a wave vector whose real and imaginary parts are nearly equal, and are usually 
greater than the third sound wave vector k3. Their amplitude decreases 
exponentially as one moves away from the film. Nevertheless, the distance 
tha t they penetrate into the gas and substrate is always much greater than 
the thickness of the film. Whereas typical values for the penetration depth 
are 0.003 cm for the viscous and thermal lengths in the gas, and 0.1 cm for 
the thermal length in the substrate, the film thickness is typically 15-500 A. 

The acoustic wave travels nearly parallel to the film and, contrary to 
what one might expect, its amplitude increases exponentially as one moves 
away from the film in a perpendicular direction. This happens because the 
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\ 
S u b s t r a t e 

F I G . 2. Schematic drawing of the wavefronts of third sound and its companion 
waves : a thermal w a v e in the substrate; a thermal, a v iscous , and an acoustic wave in 
the gas. The thermal and viscous waves travel nearly perpendicular to the film. The 
acoustic wave travels nearly parallel to the film. 

attenuation of third sound is much larger than the intrinsic attenuation of 
the acoustic wave in the gas. The acoustic wave at a point further away from 
the film thus reflects the third sound intensity at an earlier point in the film, 
where it was greater. The characteristic perpendicular distance over which 
the acoustic mode increases is about equal to the third sound wavelength. 
But since it travels nearly parallel to the film it must cover a large distance 
(i.e. until it is significantly attenuated) before it can get tha t far away from the 
film. 

While third sound is thus seen to penetrate rather far into the sur
roundings of the film, most of the energy of the wave resides within the film, 
in the form of kinetic energy of the superfluid flow and potential energy in the 
force field of the substrate in equal amounts. The importance of the companion 
waves is tha t they supply most of the attenuation of third sound. I t turns 
out tha t for thin films (the precise meaning of thin and thick films in this 
context will be defined in Section I I I , A) the attenuation is due to the 
excitation of thermal waves in the substrate and the gas. Energy is lost by 
being radiated from the film in the form of thermal waves. This energy is 
eventually transformed into an increase of the total entropy by the dissipative 
processes of thermal conduction in the gas and substrate and the Kapitza 
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resistance a t the film-substrate interface. For thick films (the precise meaning 
of this will also be defined in Section ΙΙΙ ,Α) the important dissipative process 
is evaporation and condensation of helium atoms between the film and the 
gas. 

C. LINEARIZED EQUATIONS OF MOTION FOR A SUPERFLUID F I L M 

The hydrodynamic theory of third sound in superfluid helium films 
starts out from the ordinary two-fluid hydrodynamic equations of bulk 
superfluid helium in linearized form (e.g., see Khalatnikov, 1965, p. 66): 

pt + div J = 0 (6) 

8Jt dP d j \dvni dvnk 2 ] 

+ S, k ζ1 div(J - p{ v n ) + 8ik ζ2 div v n | (7) 

v s + - ν[ζ3 div(J - p{ v n ) + ζ, div v n ] (8) 

(dldt)(PfS{) + div (PFS{vn - (K{IT)VT{) = 0 (9) 

c u r l v 3 - 0 , (10) 
where 

Pf = Ps + Pn> (11) 

J = /> sv s + p n v n . (12) 

We look for a solution of these equations which describes a wave with a 
frequency to , traveling in the positive ^-direction with a (generally complex) 
wave vector k. All the dynamic variables of the film thus have the form 

T{ = Τ + T/e-i03t + i k x , (13) 
where 

ω/k ~ c3 (14) 

defines the (complex) velocity of third sound, c 3 . As defined up to now, our 
problem is essentially a two-dimensional one, since nothing happens in the 
z-direction. We will consequently ignore the z-coordinate and the z-com-
ponents of all vectors throughout the rest of our discussion. 

We first analyze these equations in the zero frequency limit. In tha t 
case, third sound reduces to a dc superfluid flow. Hence all velocity compon
ents except for vsx must vanish as ω ->0 , and we may write 

vay ~ ω ^ χ vny ~ ωυΒΧ vnx ~ ωνΒΧ. (15) 

Looking at Eq. (7) (the Navier-Stokes equation) in this limit, we can clearly 
simplify its x-component to read 

ps v„ + (dP/dx) = ηΑ82ναχΙ8ρ2). (16) 
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We will now write the ^-component of Eq. (8) (the equation of motion for 
the superfluid velocity) in the same limit, using also the approximation of 
neglecting the temperature gradient which, as we shall see in Sections I I I ,Β 
and C, is at least a good first approximation. We thus get 

V«=~te = -Jtte- ( 1 7 ) 

Substituting this in Eq. (16) we immediately get 

/>n^sx = -Vf-0-2-' (18) 

Finally, Eq. (10) together with (15) leads us to the result 

dvsx dv„v 

~ ω 2 ^ = ° · ( 1 9 ) 

which means tha t vsx is constant across the film. 
We now use (13) to calculate vsx, and integrate Eq. (18) across the thick

ness of the film to get 

3y 3y ^(y~h)vsx. (20) 

But at the free surface y = h we have to satisfy a boundary condition to 
make the shear force vanish (the shear force exerted by the gas on the other 
side is negligible, as we will show later in Sections I I I , Β and C) 

dvnxldy\h = dvnyjdx\h = ikvny ~ ω2ν3Χ. (21) 

Thus, dvnJdy is of higher order in ω at y = h than elsewhere, and it can be 
neglected there. Another integration then leads to the desired result 

ιωρηΊι2 . h2 

vnx(y = h)= — vsx = -ij~2 vsx, (22) 

where 

, 1 / 2 

is the viscous penetration depth for liquid helium. I t s values range from 
ln = 2x 1 0 " 4 cm at Τ = 1.9°K, ω = 10 4 s ec " 1 to ln = 7 χ 1 0 " 3 cm at Τ = 
1.3°K, ω = 10 2 s e c - 1 . The thickest films in which third sound has been 
observed are 500 A thick. This is still 40 times less than the smaller Ιη. 
Hence we will in our further discussions always neglect vnx as compared to 

As for the two perpendicular velocities vsy, vny, it seems fairly obvious 
tha t in the limit ω ->0 they cannot depend on either η{, ζ ΐ 5 ζ 2 , ζ3, or κ Γ . 
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The only dimensionless constant one has in the theory tha t is proportional 
to ω but independent of any of the dissipative coefficients is 

hk = hw/c3. 

Remembering tha t the wave vector k must always be accompanied by i, we 
may write 

vsy ~ ihkvsx; vny ~ ihkvsx. (24) 

These equalities are expected to hold as far as the order of magnitude is 
concerned. 

Having thus determined vnx, vsy, vny in terms of vsx we do not need 
Eq. (7) (the Navier Stokes equation) any longer and we will base our sub
sequent considerations on Eqs. (6) and (8)-(10) alone. 

We note however tha t merely to say that , e.g., vnx« vsx is not enough in 
order to justify neglecting vnx altogether. The important question is whether 
vnx makes any sizable contribution to the dissipative processes which govern 
the attenuation of third sound. We will return to this question in Section IX . 

D . AVERAGING OF THE EQUATIONS ACROSS THE F I L M 

Equations (6) and (8)-(10) and the functions appearing therein still 
depend on the y-coordinate. But there is no practical way to measure any of 
these dependences. In practice what is always measured is some quanti ty 
tha t is averaged across the film and propagates in the ^-direction. We 
accordingly t ry to eliminate any explicit reference to y in these equations 
by integrating them from y = 0 to y = h. This type of procedure was first 
used by Sanikidze et al. (1967) in the t reatment of fourth sound. We will 
follow and slightly simplify the discussion given by Bergman (1969) for the 
third sound equations. 

Because the velocity of third sound is much less than the velocity of 
first sound in helium, and because all the other velocities (i.e. v s , v n ) are 
certainly much less than tha t for small amplitude waves, we may assume 
tha t the liquid helium is incompressible. Equation (6) thus becomes 

div J = 0. (25) 

Integrating this over y we find 

Ch(x) (dJx dJv\ dvsx Ch 

° = J „ rfH^+^f)=^Jo^(2/)+J^'A)' ( 2 6 ) 

where we have ignored nonlinear terms in the oscillating amplitudes, as well 
as the ^/-dependence of vsx which, according to Eqs. (9) and (24), is given by 

dv 
^~hk2vsx. (27) 
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We have also used the fact tha t 

Jy(x,y = 0) = 0, (28) 

as well as the fact tha t vnx« vsx. There is, however, no need to assume tha t ps 

is independent of y (its dependence on χ is a second order term and thus may 
be consistently ignored): We can define an average superfluid density 

dypB(y), (29) 

in terms of which Eq. (26) becomes 

hps^ +Jy(x,h) = 0. (30) 

We also note tha t the rate a t which helium evaporates from the film into the 
gas per unit area of surface, J M , is connected to Jy(x, h) and the vertical 
velocity of the liquid-gas interface In as follows: 

Ju=Jy(x,h)-hph, (31) 

where ph is the liquid density at the interface. Consequently, Eq. (30) now 
becomes 

(32) 

We note at this point tha t mass conservation allows us to write an 
alternative expression for J M in terms of variables of the gas: 

JM = [pe(vgy-h)]y = y T . (33) 

These variables are taken not at y = h but a t an imaginary reference plane 
y = yr (see Fig. 1) which is far enough away from the film so tha t all quanti
ties such as pg have their bulk values and are not influenced by the short 
range potential exerted by the substrate on atoms of the gas. Since the mean 
free path in the gas 

where c is the velocity of sound in the gas and C p is the constant pressure heat 
capacity per unit mass, is a t least 1 0 " 5 cm and thus much greater than the 
range of these forces, a plane y=yv can be found where the gas is still in 
equilibrium with the film. In this connection it has been pointed out by Rudnick 
in a private communication tha t there is no other consistent way to describe 
the equilibrium at the film-gas interface: Because the range of the substrate 
potential is less than the mean free path, the gas atoms do not reach equilib
rium within the potential in the sense tha t their velocity distribution is not 
Maxwellian, and their pressure does not satisfy the barometric formula. The 
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true situation is in fact a t the other extreme, where one can neglect the 
effect of the substrate potential on the gas and consider the bulk gas outside 
the potential to be directly in equilibrium with the liquid film. 

A similar t reatment is now given to Eq. (9): We integrate it across the 
thickness of the film, obtaining 

(*"<*> (d(ptSt) d(Stvay) Kld*Tt K t 8*Tt\ 
J o y \ et + ey τ df τ dx*J 

d Γ Λ ( Ι ) Γ κ{ dTt~\ft(l) /"*<*> 
= j t I ptS{ dy - phSt(y = h)h + | p f ν η ϊ - — J ^ - I dy 

Τ dx2 * 
(35) 

This is further transformed as follows: We introduce an average film tempera
ture Ts 

1 f » 

Tt(x) = ^ \ dy Tt(x, y), (36) 

in terms of which the last term in (35) becomes 

~ Τ dx2 ' (37) 

We express the entropy (as well as other thermodynamic quantities of the 
film) as functions of h and Tf. This leads to the following expression for the 
first term of (35) 

d Ch d Ch · 3 Ch 

- ^ S , dy = h ΰ)0*8Α> + *< Wt ]0P<St d y 

Τ 
= hPhS + hpiCh^> (38) 

where 

is the partial (as distinct from average) entropy per unit mass of the film, i.e. 
it is the rate a t which the total entropy changes as more mass is added to the 
film. As opposed to the average entropy of the film, which is always positive, 
the partial entropy is sometimes negative, as shown by Fraser (1969) (see 
also Atkins and Rudnick, 1970) following a suggestion by Bergman. This is 
an indication of the fact that , as the film is made very thin, some order 
(perhaps the superfluid order) is destroyed. The other new quantities in (38) 
are the average heat capacity per unit mass a t constant h 

the average mass density pf, and the ambient temperature T. 
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The second term and the term in square brackets in Eq. (35) represent 
the heat fluxes tha t flow out of the film and into its surroundings. Energy 
conservation at the film-substrate interface is expressed by 

sub υ ·*- sub 
dy y = 0 

(41) 

where J s u b is the heat current flowing into the substrate. Energy conservation 
at the film-gas interface is expressed by 

3T 
H(jy - hp{) + Tp{8{(vny —h)-K{ —f 

°V J ν = h 

= \^+TSg)Pg(vg (42) 

By using mass conservation at this interface, i.e. equating (31) and (33), the 
terms including μ in (42) are seen to cancel. [In reality, the chemical potential 
in the gas differs from tha t in the film, but tha t would be a second order 
effect in (42).] We are thus left with an equality of heat flows: 

dΤ1 Γ dT 
°y Jy = h L °y J y = yr 

TSgJu + Jg (43) 

where we have separated the total heat flow in the gas into a sum of a con-
vective flow TSgJM and a thermal conduction flow 

If we now substitute (37), (38), (41), and (43) into (35), we obtain 

(44) 

hPh TS + hptCh ft + TSgJM + Jg + J s u b - h K { - ^ = 0 • (45) 

Subtracting from this Eq. (32) multiplied by TS we get 

i dv dzT 
hpiChTl - hp. T S ^ + LJM + Jg + «7 s u b - h K t ^ = 0, (46) 

where 
L = T(8e-S) (47) 

is the latent heat of evaporation per unit mass from the film to the gas. 
Dividing (46) by L and subtracting it from Eq. (32), we get another form 
for this equation 

hpb + hps\l + —j — —Tt Y Τ Ί Ο Γ = 0 · (48) L dz2 
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d* ι if ϊ \{^ν^ • d2v> 

On the right-hand side, one of the terms is 

32Vn: 

dx2 

d2vnx 

(£i -pdz) = -& 2(£i -prison 

~ ! ^ % 2 ( £ 1 - / > f £ 3 K x , ( 5 0 ) 

where we have used (22). Comparing this with the left-hand side we find: 

(Si - UW2vnxldx2)lvsx ~ - Ρ η ( ζ ΐ ~ Ρ Γ ζ 3 ) h2k2. (51) 

The dimensionless number 

hk — h/X = hw/c3 

is extremely small, being between 10 ~ 6 and 10" 3 in all cases. We do not have 
any numerical information about ζ1 or ζ3 , but we do have rather good infor
mation about η{, showing tha t its values lie between 10 and 20 μΡ for tem
peratures in the range 1.1-2.1°K. We also have some information about ζ2 

from attenuation measurements of first sound which indicate tha t it can be 
up to 100 times greater than η{ (see Dransfeld et al., 1958). If we assume tha t 
both pn ζ1 and pnp{ ζ3 are not much greater than ζ2, then the term d2vnxjdx2 

can be ignored in (49). 
We integrate the remainder of Eq. (49) across the film to get 

vsx dy = hvsx = (52) 

Comparing the last term with the left-hand side, and using (24), we find 

(ζι—Pt L)^vnyjhvsx ~ ίω(ζ1 - pf ζ3)/ο3

2. (53) 

Again, having no better estimate for ζ1 and ζ3, we assume 

p f ( £ i - p f £ 3 ) = £ 2 < i o - 3 P , (54) 
and find tha t the ratio calculated in (53) is very small, being no larger than 
10~ 3 . We can therefore rewrite Eq. (52) in the form 

vsx = —8μ{/8χ, (55) 

where μ{ is now the chemical potential averaged across the film 

1 Ρ J 

μι = τ \ μάρ. (56) 

In order to develop Eq. (8), we first rewrite its component in detail, 
taking into account the fact tha t div J = 0: 

3ll „ ld2vnx d2vnv\ 
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As before, we treat μί as a function of h and T{. We have already used one 
of its partial derivatives, which we now redefine as 

(£),-'· 
The other one is determined as follows: The increment of internal energy per 
unit area of the film dEA is given by 

dEA=T{dSA + p{ dMA, 

where 8A is entropy per unit area and MA is mass per unit area. Taking into 
account the fact tha t one can write 

dMA = ph dh, 

and making a Legendre transformation we find 

d(EA - T{SA) = -SA dT{ + μ ί ph dh. (58) 

Hence, assuming tha t ph is independent of Τ and recalling (39), we get 

We can summarize (57) and (59) in the form 

άμ{ = -SdTt +fdh, (60) 

and use this to write (55) in the form 

(61) 

The three equations we have obtained in this section, namely (32), (45) 
[or one of its alternative forms (46), (48)], and (61) are the basic linearized 
hydrodynamic equations for a thin superfluid helium film adsorbed upon 
a flat solid substrate and in contact with helium vapor. They include all of 
the existing interactions with these two neighboring media. They do not 
include any intrinsic dissipative mechanisms except for the horizontal 
thermal conductivity term — κ{ d2Tijdx2 in (45) and in its alternative equa
tions (46) and (48). All of the other dissipative terms, i.e. the various types of 
viscous forces, were discarded in the process of setting up these equations 
because we found tha t they were small. While this means tha t one can leave 
them out when solving the equations to a lowest approximation, we have not 
ruled out the possibility tha t they might make an important contribution to 
more subtle features, such as the attenuation of third sound. This possibility 
must be considered since, as we have seen in the introduction, the crudest 
approximation, which neglects both the intrinsic dissipative mechanisms as 
well as interactions with the surrounding media, leads to a zero at tenuation. 
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We will return to examine the possibility tha t η{ contributes to the attenua
tion in Section IX . 

At this point we will summarize the conditions which must be satisfied 
for the analysis of this section to hold: 

1. hk « 1: h is much less than the wavelength of third sound. 
2. Κβη « 1: h is much less than the viscous penetration depth in the film. 
3. ω ( ζ 1 - ρ Γ ζ 3 ) / ο 3

2 « 1 . 
Of these, the first two are known to hold very well in all the experiments 
which have been performed on third sound. The last one is not known for lack 
of information about ζλ and ζ3 , but is estimated to hold from the assumption 
tha t p{ ζ1 ~ p f

2 £ 3 < ζ 2 · 
The three hydrodynamic equations of motion tha t we derived in this 

sectionfor& [Eq. (32)], for T{ [Eq. (46)], and for vax [Eq. (61)], include also some 
variables of the substrate and the gas: JM, J s u b , Jg. In order to solve these 
equations, we must first find explicit expressions for these quantities or some 
more equations of motion. We do this in the next two subsections, where we 
discuss the hydrodynamic equations for the substrate and the gas and 
transport processes between them and the film. 

E. EQUATION OF MOTION FOR THE SUBSTRATE 

Consideration of the substrate is necessary in order to obtain an explicit 
expression for Jsu}3. Hydrodynamically speaking, the substrate is a relatively 
simple system, with only the temperature variations to worry about. These 
satisfy a diffusion type equation 

Psub Csub Tsnh = / c s u b V 2 7 7

s u b , (62) 

whose solution will also depend on the boundary conditions at the film-
substrate interface, and on the other side of the substrate. 

Ordinarily in hydrodynamics or in thermal conduction theory we would 
t ake T s u b = Tt a t the interface. But in superfluid helium we know tha t this 
is usually not a good approximation, due both to the the very efficient heat 
conducting processes of the superfluid and to the relatively high value of the 
thermal boundary resistance between helium and all solids, caused by the 
large mismatch in phonon velocities. We therefore allow for a discontinuity in 
temperature a t the interface and write 

«/sub = /cSub dTsuhldy\y = 0 = B^Tt - Tsnh)\y = 0 (63) 

for the boundary condition. l/B1 is the well known Kapitza resistance. If the 
other side of the substrate is sufficiently far away (compared to the thermal 
penetration depth, shortly to be defined), then we may take the other 
boundary condition to be tha t the wave travels away from the film without 
any reflections from the far side. We can therefore write the solution in the 
form 

^sub = Τ + T s u b exp( — icot + ikx + g s u b y), (64) 
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where g s u b satisfies the following dispersion equation 

<72SUb 1 ^ S U b ^ S U b T f\ / β Κ ν 

—γ = — 2 ; I m i sub < 0. 65 
ωζ c3

z ω * s u b 

In this equation, the second term on the right-hand side usually dominates 
and in tha t case we have 

q s u ^ e - , J p ^ ^ ) m

 ( 6 6 ) 

The real (and the imaginary) part of q s n h is then equal to the reciprocal 
thermal penetration depth 1 /£ S U b > where 

kub = - — ^ — - I (67) 
VPsub^sub <*>/ 

As long as A S u b » ^sub > where A s u b is the thickness of the substrate, there will be 
no reflections to worry about. 

If we now substitute (64) into the other boundary condition (63), we 
can solve for T s u b in terms of Tf. We can then write 

Jsnh = B(T{-T), (68) 
where 

1 1 1 
-r = 1T + —— (69) Β ±$1 ,C S U B q s u h 

is an effective Kapitza resistance. 
We have not included in our discussion the possibility of exciting an 

acoustic wave in the substrate. The coupling between third sound and such 
a wave is expected to be quite negligible since the pressure oscillations in 
the film are very small. Though we have not included this acoustic wave in our 
analysis, we can learn by analogy with the acoustic mode in the gas (see 
Sections I I ,Β and I I I ) tha t it will make a negligible contribution to the 
properties of third sound. This is all the more so for the acoustic mode in the 
substrate because there is less interaction with it than with the acoustic 
mode in the gas, and because the velocity mismatch with third sound is even 
greater. 

F . EQUATIONS OF MOTION FOR THE GAS 

To calculate Jg and JM is far more complicated, because the hydrodyna
mic equations of the gas are more numerous and they have not one but 
three distinct wave-type solutions similar to (64), which are excited in the gas 
when a third sound wave travels in the film. The equations, linearized but 
including all of the dissipative mechanisms, are 

/ j g + / 3 & d i v v g = 0, (70) 

P e v e + VP-Vs V 2 v g - (ζβ + iVg)V div vg = 0, (71) 
psTSs-KgV*Te = 0, (72) 
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plus the ideal gas equation of state 

P = PgkBTJm. (73) 

The boundary condition away from the film, if the gas is thick enough, will 
again be tha t the wave travels away from the film. But the boundary condi
tion at the gas-film interface is more complicated than before: Whereas 
before only energy could be transported across the film-substrate interface 
(in the form of heat), we now have to consider both energy and mass trans
port. These will be the result of small discontinuities in both Τ and μ across 
the interface. There is also the added complication tha t the interface is moving 
with velocity Κ relative to the gas far away. We will now calculate formulas 
for these transport processes, analogous to Eq. (63), in terms of Tg — T{ and 
μΕ — μζ, by using simple kinetic theory for the gas. 

We do this by starting from the simple kinetic theory formulas for 
the mass and energy fluxes J M

g and J E

& , respectively, tha t hit the wall of a 
vessel containing a classical ideal gas in equilibrium but moving away from 
the wall with a velocity ug\ 

„ I m \ 1 / 2 1 
J * = P ' \ 2 n ^ J ~2P*U* ( 7 4 ) 

The first term on the right-hand side of these equations is the usual formula 
for a stationary gas. The second term takes into account the fact tha t the gas 
is assumed to be moving away from the wall. 

For the analogous fluxes in the film phase no such simple t reatment is 
possible. Since we assume, however, tha t local equilibrium holds everywhere 
in the film, we calculate instead the fluxes in the gas phase tha t would be in 
equilibrium (locally) with the film. These are equal to the corresponding 
fluxes in the film if we assume tha t there are no reflections of gas particles 
striking the interface. For a film in equilibrium with gas at temperature T{, 
pressure Pg{, and density p g { , but moving at a velocity u{ towards the wall, 
we thus find for the fluxes of mass and energy tha t come out of the film 

/ m \ 1 / 2 1 

^ = 2 Μ ^ Γ + ϊ ρ ^ - ( 7 7 ) 

The net mass and energy fluxes flowing from the film and into the gas, 
J M and J E respectively, are obtained by subtracting (74) and (75) from (76) 
and (77), remembering tha t ug and uf are in fact determined by J M : 

pgug=JM, (78) 

phUf=JM. (79) 
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( 8 0 ) 

5 knT 1 ikBT\1/2 Γ 9 Ρ _ 1 

where we have only kept terms tha t are linear in T{ — Tg or Pg{ — Pg, and 
written Τ, Ρ for the average temperature and pressure. Since Pgi is not a 
direct property of the film, a more convenient form for these equations is in 
terms of the discontinuity in the chemical potential μί — μκ: 

(* - £ ) ' « - M d h T h - * + ( * - έ ) α - τ ] · 
( 8 2 ) 

_ 5 * b T 
J B = , / E 2 »» M 

= - M f e u T ( 8 · - Ι τ Υ * < - τ 4 · ( 8 3 ) 

where J s is the heat flux into the gas. We can now use the thermodynamic 
equations 

άμ{= -SdTf + fdh ( 8 4 ) 

άμ,= -8εάΤ, + ^-άΡ, 
He 

\ m) m P g 

to expand both μί and μζ in ( 8 2 ) and ( 8 3 ) around the average μ. We thus get 

( - 2 ) ' - £ [ ^ έ ) * . - έ ' . - ¥ 2 Η <»> 

* l\T 2m J 1 2 m * m pg

 J J v 7 

where 

A^lpg(kBTI2nm)^. ( 8 8 ) 

We would like to point out tha t our t reatment is by no means faultless. 
One glaring example is found if one writes JE and — JM in terms of 

A ( l / T ) = ( l / T g ) - ( l / r t ) , ( 8 9 ) 

MriT) = (FRLTE)-(HLFT). ( 9 0 ) 

2 m 

We thus obtain 
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Neglecting pjp^ compared to 1, these become 

(91) 

(92) 

We then note tha t the rate of increase of entropy per unit area due to the 
transport of mass and energy through the interface is given by 

Onsager's relations then require tha t the coefficient of Δ(μ/Τ) in J E be 
equal to the coefficient of Δ(1/ίΓ) in —</Μ· This is clearly not the case in 
(91) and (92). Nevertheless, the quadratic expression for $ in terms of Δ(1 /Τ) 
and Δ(μ/Τ) t ha t is obtained when (91) and (92) are substituted in (93) is 
positive definite. The violation of Onsager's relations means tha t we have 
erred in some of the assumptions made in calculating J M and JE. There is 
clearly room here for work to investigate the properties of a liquid gas inter
face under conditions where simple continuity of temperature, pressure, and 
chemical potential does not hold. 

If we just substituted (68), (86), and (87) into the three equations for the 
film, (32), (46), and (61), our troubles would not be over: instead of the 
unknown quantities JM, Jg, and J s u b we would now have the unknown 
quantities Tg and pg in addition to the film variables. Wha t we must do is 
to enlarge our system of equations so as to include also those equations t ha t 
are implied by the film-gas boundary conditions, i.e. 

The last condition is the one usually assumed to hold between velocities a t 
any boundary of superfluid helium, including a liquid-gas interface. I t has 
been verified experimentally for a gas-liquid helium interface by Osborne 
(1962) in a direct experiment, and by Henkel et al. (1968) indirectly, by the 
observation of persistent currents in a helium film in contact with helium gas. 
We have not included a boundary condition on the pressure or on the tangen
tial forces acting on the interface, and this omission requires some discussion. 

In conventional t reatments of an interface between a liquid and its 
own vapor, it is always assumed tha t the temperature, the pressure, and the 
shearing stresses are continuous across the interface. The mass and energy 
currents are then determined by the bulk properties of the two media. This is 
not always good enough for our situation, even though there are cases where 
the discontinuities are very small. In order to investigate what happens in all 
cases we had to calculate J M and JE microscopically without assuming local 

SlA=Jt - ±(1IT)-JU' Δ{μ/Τ). (93) 

3/ = 2/r ' 

y = Vr ' 

(94) 

(95) 

(96) 
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equilibrium across the interface. These direct calculations replace the assump
tions of continuous Τ and μ. The pressure and the shear stress exerted on the 
interface by the helium film are not exactly calculable within the framework 
of our rather primitive theory for the film. However, since we have already 
assumed tha t they have no influence on the values of JM and J E , we may also 
consistently assume tha t they simply adjust themselves so as to equal the 
corresponding stresses exerted by the gas, and then stop concerning ourselves 
with them. 

The new equations, ( 9 4 ) - ( 9 6 ) , also include two new gas variables: vgy 

and vgx. What must now be done is to express all four gas variables Tg, 
Pe> v g x ' a n ( i v g y m terms of independent amplitudes representing the inde
pendent wave modes of the gas. These are the solutions of ( 7 0 ) - ( 7 3 ) tha t have 
the form 

e-icot + i k x - Q y ; i m q < 0 (97) 

There are three such modes: an acoustic mode M3 (corresponding to ordinary 
sound waves), a viscous mode Ml9 and a thermal mode M2 . The appropriate 
dispersion equations for q are 

Im l / c 0 i < 0 for i = 1, 2 , 3 , ( 1 0 1 ) 

where c is the velocity of sound in the gas. In ( 9 9 ) and ( 1 0 0 ) we have neglected 
terms of the order 

Kgw/pgCpc2 or ?7g<Wpgc2 ( 1 0 2 ) 

compared to 1, and we shall continue to do this throughout. 
Equation ( 1 0 1 ) , which selects one of the two square roots in each of 

Eqs. ( 9 8 ) - ( 1 0 0 ) , expresses the requirement tha t all the modes in the gas 
have wave vectors whose real parts point away from the film. Actually, it is 
the group velocity which must always point away from the film, but this too 
is satisfied by the solutions we have selected. In all the interesting cases, we 
find tha t 

Im 1 / c 3

2 « ΡζΙωη8 and pg CJcoKg, 

Re l / c 3

2 is a t most not much greater than either ρ8/ωηΕ or peCvjwKg, 

I m l / c 3

2 » I m 1 /c 2 , 
and 

Re l / c 3

2 > R e l / c 2 . 
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I t follows tha t 
Re g v i s and Re qth > 0 , 

but 
Re q&c<0. 

This means tha t in Μλ and Μ2 the amplitude decreases exponentially as 
one moves away from the film in the ^/-direction, the characteristic distances 
being of the order of the viscous penetration depth of the gas 

U = (t^t)1'2 (102a) 

and the thermal penetration depth of the gas 

_' 1 / 2 

^ ( ϊ τ τ γ ζ ) > (102b) 

respectively. The real part of the wave vector in these modes is likewise of 
the same order as \\lv\s and l/lth, so tha t these waves have a very short wave
length, and decay after traveling a t most only a few wavelengths. 

In the acoustic mode M 3 , the amplitude increases exponentially as one 
moves away from the film. The characteristic distance is of the order of 
l/k, i.e. the wavelength of third sound. This increase does not continue 
indefinitely, however. I t stops as soon as one gets to a point where the begin
ning of the acoustic wave train has just arrived. Moreover, it can easily be 
shown from ( 1 0 0 ) t ha t a t any point moving with the wavefronts of the acous
tic mode the amplitude is constant: I t s increase in the ^-direction, deter
mined by Re l / c 0 3 , is exactly canceled by its decrease in the ^-direction, 
determined by Im l / c 3 . This happens because the attenuation of the acoustic 
mode is due to small terms such as ( 1 0 2 ) , which we have neglected. 

Choosing for the three independent amplitudes of the gas Tg2, Tg3 (the 
temperature amplitudes of the thermal and the acoustic mode, respectively), 
and vgx, we find the following expressions for the various gas quantities tha t 
appear in our equations, all of them at y = yr: 

Ps =
 Tz2 , 1 Tg3 

P. τ - 1 Τ ' ( 1 0 3 ) 

^01 uex K S w / ° 3 W)l \ g2 

C 3 C 3 

+ - Γ Ί Γ Ι : Γ - - Τ 1 ) ^ 2 · ( 1 0 4 ) 
C 3 

Kg ω Λ ^ 3 _ _ £ ο ι \ Tg2 

C p C 3 2 \ C 0 2 C 3 / ^ 

( C 3 C 0 l \ Tg3 

C 0 3 C3 / Τ 

- " • ^ — " { ^ • ά · ( i o 5 ) 

where 
Y = CPICV. (106) 
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In the following discussion we will follow Bergman (1971) in assuming 
tha t 

» .« | » - , r = 0 (107) 

instead of (96) and (22). This has the advantage of basing our discussion on 
a published calculation. This is in any case expected to be a good approxima
tion since, according to (22), vnx« vsx. We have in fact also solved the equa
tions of the film using (96), and found that , indeed, there are no significant 
changes in the result. 

G . T H E COMBINED EQUATIONS OF T H I R D SOUND 

If we use (103)-(105), (94), (95), (107), and (13) and its analogs to sub
sti tute in (32), (48), (61), (86), and (87), we obtain the following system of 
equations in the corresponding order: 

(108) 

(109) 

(110) 

(111) 

(112) 

(113) 

where 

These equations are identical to the system (23) of Bergman (1971). Equations 
(108)-(112) are a system of five linear, homogeneous equations for the five 
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amplitudes h\ v, Tf', Tg2, and Tg3. The determinant of this system, when 
set equal to zero, gives a very complicated dispersion equation for c 3 in terms 
of o>. The exact dispersion equation has been calculated by Bergman (1971). 
There one can also find a discussion of the possible approximations tha t can 
be made to simplify it. 

III. The Properties of Third Sound in Flat Films—Theory 

A . GENERAL R E S U L T S 

A simple approximate form for the dispersion equation, which seems to 
be adequate over the entire range of experiments tha t have been performed, 
is 

<-U.ι.Γι ^Ι^Σ^ΕίΙΙίΛ_Ei\(i , Ι Ά ' 1 ] 

c 3

2 ~ \ + [ 3 2 m Af L \ l />h/ \ L / J L2 

4 '-έ¥^ΓΗ)(^?)Τ· <-> 
where 

< = hf(pJPb)[l + (TS/L)]2. (115) 

For this approximation to hold it is only necessary tha t 

KE<*>lpgCvcc3« 1, (116) 

and tha t 

^ ^ / p g O p c 3

2 and ηΕωΙρΕο3

2 (117) 

be a t most not much greater than 1. 
Even simpler approximate dispersion equations are obtained in two 

special cases: (a) the limit of very thin films or low frequencies, which is 
characterized by 

ω « 1 and - « 1 . (118) 

(b) The region where the thickness or the frequency are large enough so t ha t 

and ^ £ 1 , (119) 
pgCpc3

2~ pec3

2 
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but still small enough for our whole t reatment to be valid (i.e. (102), (116), 
and (117) must be satisfied). For these two cases, which we will call " t h i n 
films'' and " th ick films,'' respectively, the dispersion equation becomes 

+ ^ £ ^ ή - + e_in/i «β - i j ( i 2 o ) 

and 

These equations all lead to a complex value for c 3 . Hence we can derive not 
only the velocity of third sound u3, but the coefficient of at tenuation α as 
well: 

u3 = l /Re(l /c 3 ) = u30IRe(u30lc3), (122) 

α = 2ω Im(l /c 3 ) = (2α>/^3 0) Im(^ 3 0 / c 3 ) . (123) 

In many cases, (122) leads to results which are not very different from 
those of Eq. (5) of the elementary theory, because both TS/L and the second 
term on the right-hand side of (120) or (121) are small compared to 1. For 
thick films, where S is equal to the bulk entropy per unit mass of liquid 
helium # b u l k , and L is equal to the latent heat of bulk helium LhxxlK, T $ b u l k / 
A>uik is a i * increasing function of T. Typical values are 

TShulk/LhVLlK = 0.081 for T = 2°K, 
^ b u i k / A m i k = 0.013 for T = 1.5°K. 

The second term on the right-hand side of (120) becomes large when 
either h or ω are very small. In tha t case it leads not only to changes in u3 

but also to some dispersion, with u3 an increasing function of ω. In Fig. 3 
we have plotted the ratio u3ju3Q versus h for thin films at two different 
frequencies. We should point out tha t u3 is the phase velocity of third sound, 
whereas some experiments (i.e., the time of flight experiments of Rudnick's 
group—Rudnick et al., 1968; Kagiwada et al., 1969; Rudnick and Fraser, 
1970; Fraser, 1969) measure the group velocity. The region of thicknesses 
where u3lu30 deviates seriously from 1 is also where the dispersion becomes 
appreciable, and it works in such a way tha t it cancels much of the deviation. 
Other techniques of measurement, such as the third sound resonators used by 
Ra tman and Mochel (1970a,b, 1972), measure the phase velocity and they 
should be able to detect this dispersion. 

For sufficiently thick films or high frequencies u3/u30 will again deviate 
from 1 as well as exhibit dispersion. This will occur when the second term 
on the right-hand side of (121) is large. Here again u3/u30 will be an increasing 
function of both ω and h, but the dispersion will now serve to increase the 
deviation in the expression for the group velocity. 
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F I G . 3. P lo t of u3/u30 versus the film thickness for thin films a t Τ = 1 . 5 ° K and 
frequencies of 1 k H z and 5 k H z . From Bergman, (1969), b y permission of the American 
Inst i tute of Phys ics and Physical Review. [Note: Since this article was writ ten, Rudnick 
and his co-workers decided to revise the value of α (the coefficient of the V a n der Waals 
potential) tha t t h e y use to calculate the thickness of their films (Scholtz et al., 1974). 
This leads to a reduction of all their film thicknesses b y a factor .677. The new value of α 
was obtained from ultrasonic interferometric measurements of the thickness of hel ium 
films (Sabisky and Anderson, 1973a,b). Since all the thicknesses displayed in Figs . 3, 4, 
8, 9, 11 were calculated using the old value of a, t h e y should now all be corrected b y 
mult ip ly ing b y th is factor .677.] 

Another point to remember is tha t u3 can deviate from the value given 
by Eq. (5) also because of ps being different from the bulk value /> S ( b uik · 
This effect does not appear in the ratio u3/u30, which is independent of ps. 
We will discuss this effect later in Section X,A. 

Equation (123) always leads to interesting results, since the simple theory 
of Section I I ,A gave no attenuation at all. In Fig. 4 we plot the results of a 
typical calculation of the attenuation coefficient α versus h, as derived 
from Eqs. (114), (120), and (121) and from a numerical solution of the exact 
dispersion equation derived by Bergman (1971). In this calculation we have 
taken ps = pSihuUc , which will turn out to be not so for the small thicknesses. 
(In practice it would be preferable to plot <xu30 which is independent of ps, 
but from Fig. 4 one can get a clearer picture of the order of magnitude of a.) 
From Fig. 4 it is clear tha t for most values of h either (120) or (121) (i.e. the 
equation tha t gives the larger value for a) gives a sufficiently precise value for 
a, (114) being required only in a small transition region. Even there, a simple 
sum of the values obtained from (120) and (121) is fairly accurate. As for 
(114), it gives results which are indistinguishable (in the figure) from the 
numerical results, the largest difference being 2 % and occuring near the 
minimum in the transition region. 
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F I G . 4. At tenuat ion coefficient α versus film thickness h for Τ = 1.3°K. The t w o 
solid lines are the results of a numerical solut ion of the third sound equat ions a t frequen
cies of 1 k H z and 5 k H z . They also represent, to wi th in the accuracy of the drawing, the 
results calculated from Eq . (114). The two dashed lines are the result of the approximate 
equations (120) and (121). For thick films (not too thick though) α is proportional to 
cu2h1112, while for thin films (again, not too thin) α is proportional t o ω112 and also, 
approximately , to h~512. From Bergman (1971), by permission of the American Inst i tute 
of Physics and Physical Review. See note in capt ion to Fig . 3. 

In the region of thick films shown in Fig. 4 and in most of the region of 
thin films (as long as the attenuation over one wavelength is sufficiently 
small), α has a simple dependence on both the thickness and the frequency: 

α ~ ω 1 / 2 Λ - 5 / 2 for thin films, (124) 

α - ω 2 Λ 1 1 / 2 for thick films. (125) 

The strong dependence on h results mostly from the presence of the substrate-
helium force / both explicitly and implicitly, i.e. in u30 . 
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Not all of the physical processes we took into account in setting up the 
equations of motion in fact contribute to these results. I n order to see which 
of them are important we will write down the solution for the various oscil
lating quantities in the two limits (118) and (119). We will also write down 
simplified equations of motion for the two limits tha t will reproduce the 
dispersion equations (120) and (121). 

B . T H I N FILMS 

For the thin film case the physical quantities which take par t in the 
third sound wave are related to each other as follows 

Ύ=-ττ (127) 

Γ . ' - Tt' ih'a>phl-pjph \TS Tf [iB , . ^ 
Τ ~ ~ 16A 1 + TSIL\L ~ p b L 2 [ w + p i l h L b 

Tg3 A ' w c 0 3 

Τ TC p,l + T8LL\ Σ + ρ ι \ 1 + ΐ ) 

4 Tf 

J, = t-^\wKtPtCv)^Tt', (131) 

Κ - μ . = (Β, - **β/»»)(Γ.' - 27 ) + (ih'cofTIAL)ei»l*(peCpKelo>y'2, 

(132) 

μ,' =μ,- μΒ(ί = Λ'/[1 + {TS/L)], (133) 

TL* - Τ<' = - J ^ B 1 = —(BjBx)Tt'. (134) 

Some consequences follow immediately from these equations: 

7 7 - Tt'« 2 y , (135) 

μί'-μ/«μί', (136) 
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so tha t in fact the temperature and the chemical potential of the gas and the 
film follow each other closely at the interface. On the other hand, T s u b — T{' 
is not much smaller than T/. I t is also evident tha t 

Tg3«Tg\ (137) 

so tha t most of the temperature variations in the gas are due to the thermal 
mode. However, vgy has comparable contributions from both the thermal and 
the acoustic mode. Similarly, vgx, although it vanishes by assumption, is 
made up of mutually cancelling contributions from both the acoustic and 
the viscous modes. We have summarized the main contributors to various 
gas quantities in Table I. This table shows tha t all three modes of the gas 

T A B L E I 

P R I N C I P A L CONTRIBUTORS TO V A R I O U S G A S 

V A R I A B L E S 0 

Gas variable Principal contributing modes 

T, p, BT/dy M2 

vy M2,M3 

vx Ml9M3 

a From Bergman (1969), b y permission of the 
American Inst i tute of Physics and Physical Review. 

must be excited in order to satisfy the boundary conditions. Nevertheless, 
not all of these modes make a significant contribution to the dispersion 
equation for third sound. From Eq. (120) it is clear tha t the right-hand side 
depends only on the two heat fluxes Js and J s u b , and these are connected 
mainly with the thermal wave modes of the gas (see Table I) and the sub
strate. 

We also note that , from (130) and (33), we get tha t 

vgy = (JulPz) + h« -(pjpe)h. (138) 

We also note tha t in the mode M3 (the acoustic mode) 

*>g*3 = vgy3 Ξ vgy , (139) 

tha t in the mode M1 (the viscous mode) 
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and tha t therefore we can estimate the tangential shear force exerted by the 
gas on the surface of the film by 

dy dx j Pg 
1/2 

Phfowsx- (141) 

This must be equal to the shear force exerted on the interface fom the other 
side 

Vt(fonxl8y - dvnylfa) \ y = h · (142) 

If we rewrite Eq. (20) in the form 

vt(fo>nzldy\v - &>nzldy\h) = ipn«>(y - h)vsx, (143) 

we can easily see by comparing the right-hand side of (141) and (143) that , 
except when y = h, (142) is much less than the right-hand side of (143). We 
can therefore add (142) to the left-hand side of (143) without changing any
thing. This is equivalent to replacing dvnxldy by dvny/dx at y = h, as we did in 
(21) without the proper justification. 

With the knowledge we now have, we can set up a simplified system of 
equations which will have (120) as their exact dispersion equation: These are 
Eqs. (109) and (110) and p f = p g . I n these equations we set 

<?h = *f =Ju =Jg = Tg* = 0, (144) 

T*2 = Tg = Tt'. (145) 

We thus get the following system 

hf ( TS\ Τ \iB . , Ιρ*0ΌκΛ1ΐ2~] Tf' 

* " ( i + x r - ^ [ « + e W 4 ( ^ ) ] ΐ = ο ' ( i 4 6 ) 

φ * " * * * 0. (,47) 
c3

2Ph h c3

2ph Τ 

fh' + L ^ = 0. (148) 

The first of these equations, (146), depends on the nonreflecting boundary 
conditions we have assumed to hold at the far ends of both the substrate and 
the gas. Since we will later apply this theory to situations where the gas and 
substrate are not infinite and where there are reflections, we rewrite it in a 
more general form tha t follows directly from Eq. (48) if we make the assump
tions (144) and (145): 

V / | T8\ | J g + J s u b _ 0 

h \ L J ihcoph L 
(149) 
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where 
JE=-KedTJdy\ymyr ( 1 5 0 ) 

and 
^ s u b = Ksub ^ s u b / % | y = 0 

have to be calculated taking into account only the thermal modes of the gas 
and substrate which must however satisfy the correct boundary conditions. 

Note added in proof: I t has been pointed out by Scholtz et al. ( 1 9 7 4 ) t ha t 
for the thinnest films used in experiments (i.e., films approaching a total 
thickness of two atomic layers) the third-sound velocity is close enough to 
the first-sound velocity in liquid helium so tha t compressibility corrections 
become non-negligible. Under these conditions the value we obtained for l / c 3

2 

should be multiplied by a factor 

1 + 
isPt (dPt\ „ ! , Pi u*o 

This lowers the calculated velocity u3 by as much as 8 % for the thinnest 
films and considerably improves the agreement with experiment. 

C. THICK FILMS 

For the thick film case, the amplitudes of oscillating physical quantities 
are related to each other as follows: 

Tt' _ hf 1 h' 
~T = ~Tj\0~h 

T.'-T,- iwh'PhTS~ l - p J P h 

( 1 5 2 ) 

( 1 5 3 ) 

(154) 

( 1 5 5 ) 

( 1 5 6 ) 

( 1 5 7 ) 

( 1 5 8 ) 

( 1 5 9 ) 

( 1 6 0 ) 

( 1 6 1 ) 
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where 

32 m Af L \ L pJ\L + L) J 
(162) 

1 ^01^03 ^Kgω / C 0 3 C 0 1 C 0 3 \ 
c 3 2 Ps^p2T \Cq2 c 3 2 / 

(163) 

Some consequences of these equations are: 
(a) Tg — T{' is not small compared to Tf'. All three quantities T{', 

Tg', and Tg — T{' are comparable. 
(b) Tg3 « Tg so tha t again most of the temperature variations in the 

gas are due to the thermal mode. 
(c) μβ' — μ/ is comparable to μ/. 
(d) In the expression (82) for JM the contributions of Δμ, = μκ — μί and 

of ΔΤ == Tg — Tf are comparable to the final result. 
(e) In the expression (83) for Jg the contributions of Δμ and Δ Τ separa

tely are much greater than the final result. These two terms in Jg thus nearly 
cancel each other. 

(f) Because of (157), we can repeat the argument following Eq. (138) and 
again justify the assumption tha t was made in Eq. (21). 

We see tha t in many respects the situation is quite different from the 
one prevailing in the thin film regime, where μ8, Tg followed μί, Tt very 
closely. 

From the dispersion equation (121) it is clear tha t none of the modes 
excited in the gas makes a significant contribution to the properties of third 
sound in thick films. The fact t ha t the parameter A appears in (121) indicates 
tha t one or both of the transport processes through the film-gas interface 
must be important. 

A simplified system of equations which has (121) as their exact dispersion 
equation is obtained from (32), (46) [or (48)], (61), (86), and (87) by setting 

@h — Kf — Jg — *^sub — Tg3 — 0 . (164) 

We thus get the following equations: 

P b h + hps(8vBXl8x) + J M = 0 , 

-hpe TS(8vJ8x) + LJM = 0 , (166a) 

(165) 

or 

Phh + hpjl + {TS/L)] 8vJ8x = 0 , 

vax-S(dTtidx) +f(eh/dx) = o, 

(166b) 

(167) 

(168) 

0 = Jg = -A[(LIT)Tt' +UkBH(Ts' - 27) +fl']. (169) 
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From these equations it is clear tha t J M , i.e. the evaporation and condensation 
of helium, is the main cause of third sound attenuation in thick films. This 
was first realized by Atkins (1959). 

To conclude this section, we would like to point out tha t for the thin 
film case, the detailed expressions (82) and (83) tha t we derived for J M and 
Je were unimportant, as they only served in practice to determine tha t 
Tg = Τ ι and /xg = μ Γ . But in the thick film case the detailed expressions are 
important, since the fact tha t Jg = 0 determines a certain ratio between Δμ 
and ΔΤ. This, in turn, determines a definite expression for J M , on which the 
dispersion equation depends. 

That Jg must vanish in all cases can also be seen from the following 
consideration: if we t ry to calculate the contribution to Jg of only one of the 
four terms, say the third one, appearing in (83), we find, in order of magnitude, 

PgCkBTt'lm. (170) 

Calculating Jg from (44), assuming tha t only the thermal mode contributes, 
we get, in order of magnitude, 

(ωκ,ρ,Ο^Τ,'. (171) 

The ratio of the total flux in (171) to the partial flux in (170) is of the order 

which is always much less than 1 [see (102)]. Hence the conclusion is tha t 
either Δ Τ = Δμ = 0, as in the thin films, or else Δ Τ and Δμ cancel each 
other in the expression for Jg, as in the thick films. 

IV. Experiments on Third Sound 

Experiments on third sound in flat films have been performed using both 
saturated and unsaturated films. Both types of film are formed on a flat 
solid substrate in equilibrium with helium gas. 

For saturated films the experiment is performed a small distance Η 
above the surface of a liquid helium bath. Therefore the pressure of the gas 
is very close to saturated vapor pressure, the difference being due only to 
gravitational effects. Equilibrium is usually maintained by having the lower 
par t of the substrate immersed in the liquid so tha t there is direct contact 
between the film and the bulk liquid. The thickness of the film is determined 
by the substrate-helium atdm potential a t the film-gas interface <f>(h). This 
potential is usually assumed to have the form 

φ(Η) = -a/hn, (172) 

where η is either 3 or 4, and α is a positive constant. The potential is due in 
par t to a sum of all the Van-der-Waals interactions of atoms of the sub
strate with an atom of helium at a distance h, minus the sum of the interactions 
tha t the helium atom would have with a bulk liquid helium bath replacing the 
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substrate. If this were the only effect, it would lead to a l/h3 potential. In 
practice, </>(h) is determined from experimental measurements of adsorption 
isotherms of helium (e.g., see McCormick et al., 1968; Anderson and Sabisky, 
1970a,b). The sum of this potential and of the gravitational potential must 
vanish, leading to 

φ η = ρΗ, (173) 

where g is the acceleration of gravity. In practice, the film thicknesses obtained 
in this way range from 500 A (140 atomic layers) a t Η = 1 cm to 250 A (70 
atomic layers) a t Η = 10 cm. 

Unsaturated films are formed when the substrate is in equilibrium with 
helium gas tha t is well below its saturation pressure. There is no bulk liquid 
in the neighborhood of the film. In this case the potential of Eq. (172) must 
be cancelled by the additional chemical potential of the gas over and above 
tha t of the saturated gas. This leads to the following equation to determine 
the thickness 

α/Α» = (*B T/m) l o g [ P v ( ^ ) / P ] , (174) 

where the right-hand side was calculated assuming tha t the helium gas is a 
classical ideal gas. In practice the thicknesses obtained in this way range from 
about 180 A (50 atomic layers) down to about 14 A (4 atomic layers) and even 
less, depending on the temperature. For very thin films or very low tempera
tures it eventually becomes impossible to control the film thickness by means 
of the pressure because even the saturation pressure becomes too small. One 
then has to resort to a method where one bleeds a known amount of helium 
into the system whose total surface area is known. 

We would like to point out tha t the classification of films into either 
saturated or unsaturated films is not the same as their classification into 
either thick or thin films. The latter classification differentiates between 
regimes where different physical processes determine the properties of third 
sound. The former classification differentiates between regimes where 
different experimental methods have to be used to create the films and to 
make measurements. In fact, as we can see from Fig. 4, the regime of unsa
turated films includes par t of the regime of thick films in addition to the 
entire regime of thin films. 

The saturated film experiments have mostly been done by Atkins and 
coworkers (Everitt et al., 1962, 1964). They used a periodically interrupted 
infrared beam shining on a small segment of the film to excite the third 
sound waves. Detection of the waves was achieved by an optical method tha t 
could sense the small periodic variations in the film thickness. The velocity 
u3 was measured as a function of frequency, temperature, and Η and was 
found to be independent of frequency, in agreement with theory. The 
dependence on Η and Τ can be obtained by noting tha t 

hf = h(djdh)(-φη) = noc/hn = ngH. (175) 
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Substituting this into the approximate formula 

«3

2 £ «§„ = hf(pslPb)[l + (TSlL)f, (176) 

and noting tha t for saturated films ps = / ) s , b u i k a n ( i $ — $t>uik» w e 

«3« = ^ ( P s . b u l k / / > h ) [ l + ( ^ , , , / i ) ] 2 . (177) 

The results indicate tha t u3

2 ~ Η except for Η < 0.3 cm, and tha t η is 
between 3 and 4 (see Fig. 5). 

500 γ 
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I 
FIG. 5. Veloc i ty of third sound versus height of film above the surface of bulk 

hel ium; A , highly polished stainless steel; # , roughly polished stainless steel; • , nickel; 
theoretical curve wi th η = 3; theoretical curve wi th η = 4. F r o m Ever i t t et 

al. (1964), b y permission of the American Inst i tute of Phys ics and Physical Review. 

The temperature dependence of (177) is mostly due to / > s > b u i k . This dependence 
is in approximate though not exact agreement with experiment (see Fig. 6). 
The reason for the discrepancy is not clear. One possibility is t ha t due to the 
experimental method of exciting the waves, the film is not a t its equilibrium 
thickness. Another possibility is t ha t the exponent η depends on the tempera
ture. More experiments need to be done to clarify this. 

The same group also measured the attenuation coefficient of third sound 
as a function of frequency at Τ = 1.2°K and Η = 9 cm (see Fig. 7). The 
measurements, though not accurate nor reproducible from day to day, seem 
to show an attenuation tha t is two or three orders of magnitude greater than 
the theoretical predictions. Despite the poor quality of the experimental 
results, it seems quite clear tha t the theory is inadequate here. 

Experiments on unsaturated films have been done mostly by Rudnick 
and co-workers (Rudnick et al., 1968; Kagiwada et al., 1969; Rudnick and 
Fraser, 1970; Fraser, 1969). They utilized thin strips of superconducting 
aluminum deposited upon the flat substrate as both transmitters and detectors 
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F I G . 6. Normal ized third sound ve loc i ty versus temperature for different film 
he ights : O * 0.44 c m ; • , 12.3 c m ; Δ » 13 c m ; # , normal izat ion point ; proportional 
to ( p 8 > b u i k / p ) 1 / 2 (1 + T £ b u l k / Z , ) 1 / 2 . F r o m Ever i t t et al. (1964), b y permission of t h e 
American Ins t i tu te of Phys ic s a n d Physical Review. 

F I G . 7. At tenuat ion versus frequency at a constant film he ight Η = 9 cm. Ο » Δ » 
and φ represent three different exper iments performed o n three different days . F r o m 
Ever i t t et al. (1964), b y permisssion of the American Ins t i tu te of Phys ics and Physical 
Review. 

for third sound pulses. One strip was operated as a fast response electric 
heater in order to emit a third sound pulse. The other strip was operated 
near its superconducting transition as a very sensitive resistance thermo
meter in order to pick up the temperature oscillations of third sound. The 
velocity was measured by recording the time of flight of a third sound pulse. 

2.5 

0> 100 300 500 700 900 1100 l&O Ι5θΟ 
FREQUENCY (Hz) 



3 6 David J . Bergman 

Since the film thickness was controlled by varying the pressure of the helium 
gas, results were obtained as a function of Ρ , T, and to a certain extent also 
frequency. Using (174) and (175) to substitute into (176), we get 

« 3 2 S n(pJPh)[l + (TSmnki T\m) l og [P v (T ) /P ] . (178) 

I n Fig. 8 we show experimental results and a theoretical curve for u3 versus Ρ 
at a fixed temperature. The theoretical curve was calculated from (178) 

0 2 0 0 4 0 0 6 0 0 8 0 0 1000 1200 

Py-P [microns] 

F I G . 8. The veloc i ty of third sound u3 p lot ted versus the pressure Pg of the hel ium 
gas in contact wi th the adsorbed film. Pv is the saturated vapor pressure at this tempera
ture. The broken vertical lines indicate that third sound signals were visible but were 
too small t o be measured accurately. The hatched area at P v — Pg = 1290 μ indicates 
where all signals disappeared. The full curve is based on Eq . (178) wi th pa = ps, b u l k , 
p h = p b u l k , TiS/L = 0. From Rudnick et ol. (1968), b y permission of the American 
Inst i tute of Phys ics and Physical Review Letters. See note in capt ion to Fig . 3. 

assuming p3 = p s > b u l k . Three things are a t once evident: (a) For films thicker 
than about 15 layers the agreement of theory with experiment is very good, 
(b) For thinner films, a large discrepancy quickly develops—the theoretical 
values are too high, (c) For sufficiently thin films, third sound vanishes 
altogether. The large discrepancy was interpreted as being due to a size 
effect tha t makes p3 depend on h (and therefore on P) for sufficiently thin 
films. This is to be expected since, if h is too small, we know tha t super
fluidity disappears completely, i.e. ps = 0. This suppression of ps as well as the 
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onset of superfluidity cannot be understood merely on the basis of hydro
dynamics. We will return to a discussion of these phenomena in Section X. 

The attenuation was also measured for this regime by using the same 
basic arrangement of a transmitting strip and a detecting strip deposited on a 
cylinder rather than on a flat substrate (Wang and Rudnick, 1972). In this 
way they could observe and measure the decaying amplitude of the third 
sound pulse as it made its way several times around the cylinder. In Fig. 9 we 

5 μ 

h (layers) 

F I G . 9. The coefficient of a t tenuat ion α versus the film thickness h for Τ = 1.41°K. 
The points are the measured at tenuat ion of third sound pulses. The line is calculated from 
E q . (114). The vertical hatching marks the onset thickness of third sound propagation. 
The frequency of m a x i m u m spectral intensi ty for the pulses is 230 H z , and this was used 
in calculating the line. F r o m W a n g and Rudnick (1972), b y permission of P lenum 
Publ . Co. See note in capt ion to Fig . 3. 

see a comparison of the experimental results and the theoretical prediction for 
a typical case. There is a rather small intermediate range of thicknesses 
where the two agree, while everywhere else, both above and below, the experi
mental at tenuation is greater, sometimes by as much as two or three orders 
of magnitude. The fact tha t it is never significantly less than the theoretical 
result is encouraging. We interpret it to mean tha t the hydrodynamic sources 
of attenuation are always there. But in many of the regions there are appa
rently other sources of at tenuation tha t have to be taken into account. These 
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must, in our opinion, be looked for outside the realm of continuum hydro
dynamics, in the framework of which we have tried to take into account all 
possible processes. In particular, it would not surprise us if for sufficiently 
thin films, continuum theory broke down and one needed to develop a micro
scopic theory. I t is, however, surprising tha t there is a large (in fact the 
largest) discrepancy in the thick film region. We will return to a discussion of 
this in Section X. 

As for the frequency dependence, tha t has been checked close to the 
experimental attenuation minimum, where we expect the hydrodynamic 
attenuation to dominate, and found to obey a ω 1 / 2 law (Wang and Rudnick, 
1972) as predicted by the theory for thin films. 

Goodstein and Saffman (1971) claim to have found a new mechanism for 
attenuation of third sound which gives values for α tha t have the right 
order of magnitude for thick films. Closer examination proves, however, t ha t 
their mechanism is not new but had been included in the detailed theory 
developed by Bergman (1969, 1971) and described in Section I I . The way they 
obtained their result was by arbitrarily selecting one of the terms tha t 
comprise the expression for JM [see Eq. (86)], and discarding all the rest. In 
fact, however, some of the other terms are just as important and tend to 
cancel the term tha t was singled out. Their results are therefore, unfortun
ately, incorrect, as has been pointed out by Bergman (1973). 

V. The Surface Roughness of the Substrate 

When one wishes to apply the theory to experimental situations, one should 
be concerned about one of the idealizations which has been made from the 
beginning: We have assumed all along tha t the substrate, as well as the film, 
are ideally flat whereas, in fact, we know tha t even the best polished surfaces 
have irregularities when viewed on a microscopic scale. In most physical 
situations one can ignore such irregularities if their scale of size is much 
smaller than the size of the relevant physical phenomena. In our case, the 
size of the irregularities is certainly small compared to the wavelength of 
third sound, but it is not small compared to the film thickness. Electron 
micrographs of polished surfaces of optical glass show a fairly jagged struc
ture, with peaks of a few hundred angstroms jutt ing up occasionally. 

These peaks and irregularities in the substrate will have a complicated 
influence on the helium film: To a certain extent the film will simply follow 
the contour of the more gradual variations. The steeper peaks, however, will 
have less helium coating them, whereas the steeper crevices will have more 
than the average thickness of helium coating them. This will have two main 
effects: (a) Some of the third sound wave will be scattered and this will 
appear as additional attenuation of the wave, (b) The effective optical path 
between the emitter and the detector will be increased, reducing somewhat 
the measured velocity. 

The first of these effects can be estimated by noting tha t a single circular 
obstruction of radius a exhibits the following cross section for the scattering 
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of long wavelength sound in two dimensions (e.g., see Morse and Feshbach, 
1953, pp. 1377 and 1382) 

σ = |ττ 2 α(ϋ») 3 ; ka«l. (179) 

The contribution of this cross section to the at tenuation coefficient is a t most 
equal to NA σ, where NA is the total number of scatterers per unit area (this 
occurs when they scatter independently). NA is a t most equal to ( π α 2 ) " 1 ; 
hence an upper bound to this contribution is given by 

(3π/4)(βα) 3/α - 0.5 χ 1 0 " 3 c m ' 1 

for a = 100 A, k = ( 2 7 r / 1 0 " 2 ) c m _ 1 , which is an extremely bad case. This is 
much less than the experimentally observed attenuation (see Fig. 9). 

The second effect can be analyzed by looking a t a vertical section of the 
film (see Fig. 10) and noting tha t a portion tha t has a slope of Θ contributes an 

F I G . 10. Vertical sect ion of t h e film showing in a schematic w a y t h e jagged peaks 
and crevices t h a t t h e film m u s t c l imb over. The effective optical p a t h b e t w e e n t h e end-
points is increased a b o v e χ because each segment Ax mak ing an angle Θ w i t h the plane 
of t h e film contributes an a m o u n t Aa?/cos0 t o t h e path . 

amount Δ#/cos Θ to the optical pa th between the two endpoints. A pa th χ 
which contains many sections will thus be effectively increased by the average 
of 1/cos Θ. This average, while always greater than 1, can be very close to it if 
the large angle segments are rare. In t ha t case, we may write 

<l/cos0> ~ 1 + Κ0> 2· (180) 

Such an effect would cause the measured velocity u3 to appear smaller than 
it is in a flat film. One has to consider the possibility t ha t this is the cause of 
the discrepancy in Fig. 8. 

In order to do this, we reproduce a graph taken out of Atkins and 
Rudnick (1970) where u3 is plotted versus h for two different temperatures 
(see Fig. 11). If the deviation of u3

2 from the " bulk " value % 2 , b u i k > given by 

« 3 2 , b u . K - ¥ ^ f ( l + x ) 2 . (181) 
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F I G . 11. Measurements of u3 p lot ted versus h a t t w o temperatures T± = 1.18°K( # ) 
and T2 = 1 . 7 7 ° K ( 0 ) . The graph exhibits the fact that the ratio u3{Tlt h)ju3{T2,h) 
begins t o vary as a function of h for h smaller t h a n 12 atomic layers. This is about the 
same thickness where u3 begins t o deviate from u3 , b u l k (see F ig . 8). From Atkins and 
Rudnick (1970), b y permission of North-Hol land Publ . Co. See n o t e in capt ion t o Fig . 3. 

were entirely due to an increase in the effective optical path, i.e. a purely 
geometrical effect, we could take it into account by means of an appropriate 
Α-dependent factor G(h) 

M 3 2 = α / £ ϊ ^ £ ε ^ + i i y 0 { h Y ( 1 8 2 ) 

From this it would follow tha t the ratio of velocities a t two different tempera
tures for the same thickness h should be independent of h 

u^(T1)h) p s > b u i k ( y i ) 
„ ( T η = " 77ϊΓ\ = independent of h. (183) 

From Fig. 11 it is clear tha t while this ratio is constant for large h, it changes 
quite considerably when the thickness begins to approach the onset thickness. 
Moreover, the ratio begins to vary at about the same thickness where u3 

begins to deviate from u3 b u l k (see Fig. 8). Hence we may conclude tha t the 
deviations are not primarily due to optical path effects. 

To summarize this section, we conclude tha t surface roughness of the 
substrate does not appear to have any observable effects on the velocity 
or attenuation of third sound. The idealization of a geometrically flat film is 
justified. One must look elsewhere for an explanation of the discrepancies 
shown in Figs. 8 and 9. 
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VI. Third Sound Resonators 

The theory described in detail in Section I I for third sound in a flat film can 
be extended to other configurations. We now do this for third sound resona
tors operating in the thin film regime. Third sound resonators have been 
developed by Ra tnam and Mochel (1970a,b). 

Such a resonator is usually made up of two thin quartz or Pyrex plates 
tha t are spaced a certain distance apar t from each other. The volume between 
them is then sealed off hermetically by fusing the plates together a t the edges. 
All this is performed in an atmosphere of argon, some of which is thus sealed 
within the cell. A certain amount of helium is then admitted into the cell by 
placing it in a room temperature helium atmosphere at a filling pressure, 
Pnn, and allowing helium to diffuse through the walls. Subsequent experi
ments are performed at low temperatures, where diffusion through the walls 
is negligible, so tha t the total amount of helium in the cell is fixed. When the 
system is cooled down from room temperature, the argon is completely 
adsorbed on the walls in the form of a solid film long before any helium begins 
to be deposited. The solid argon coating thus forms the substrate for the 
liquid helium film. Third sound is generated by periodic heating of the helium 
film by means of a carbon strip resistor placed a t one end of the cell, and is 
detected by means of another carbon strip resistor operated as a thermometer 
(see Fig. 12). I t is thus possible to measure the response of the resonator a t 

x o * i 

F I G . 12. Schematic drawing of a vertical sect ion of a third sound resonator of 
l ength L obta ined b y sealing the edges of a double film. Also shown are the emitter and 
detector of third sound, placed at the points x0 and xlf respectively, on the wall of the 
cell. I t is also possible to place the detector on the other wall of the cell, a t x2. 
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different frequencies. Various resonances were found and their properties 
investigated (see Ratnam and Mochel, 1970a,b, 1974). 

As a prelude to considering the properties of such a resonator, we will 
discuss the properties of third sound in a pair of thin, infinite, parallel 
liquid helium films, deposited on a pair of identical parallel substrates of 
thickness hSVLh, and separated by helium gas of thickness hg (see Fig. 13). 

Vacuum 

S u b s t r a t e 2 hiub 
* 

He_f j jm_2 Jt*__ 

He g a s 
h g 

He ~fiim~l T h T " 

S u b s t r a t e 1 
f 

h e u b 

* 
V a c u u m 

y=o 

F I G . 1 3 . Schematic drawing of a vertical sect ion of a he l ium double film: T w o flat, 
parallel substrates, separated b y hel ium gas and coated on the inside b y an adsorbed 
l iquid hel ium film. 

Both hg and hsxlh are not assumed to be large compared to the appropriate 
(i.e. the thermal) penetration lengths, so t ha t reflections will have to be 
taken into account. Outside the two substrates we assume tha t there is a 
vacuum. This immediately fixes one boundary condition, namely, t ha t no 
heat flows from the substrate into the vacuum (radiation can be shown to be 
negligible), i.e. 

< ^ s u b / ^ 2 / = 0 a t substrate vacuum interfaces. (184) 

I n order to write down the equations of motion for this system, we 
take advantage of the insight gained from our detailed t reatment of the 
single, infinite, thin film. We will thus, from the beginning, use the simplified 
system of equations (147)-(151). I n order to calculate J s u b we note t ha t 
T s u b is now a combination of the two modes 

exp( — io>t + ikx + g s u b y), (185) 

exp( — iwt + ikx — g s u b y). (186) 
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( 1 9 4 ) 

iBT't2 

= 0 , 

( 1 9 5 ) 

Th = T'el + T'g2 e x p ( - 3 t h he), ( 1 9 6 ) 

T't2 = T'g2 + T'gl e x p ( - ffth A , ) . ( 1 9 7 ) 

T h e s e c o u p l e d e q u a t i o n s c a n b e s e p a r a t e d i n t o t w o u n c o u p l e d s e t s o f f o u r 

e q u a t i o n s e a c h f o r t h e t w o s e t s o f v a r i a b l e s 

hi' + h2', Th + T't2, V l + v2, T'ei + T'g2, ( 1 9 8 ) 

V - h2', Th ~ Τ'ί2 , v i - v 2 , T'gi - T'g2. ( 1 9 9 ) 

F r o m E q . ( 1 8 4 ) w e find t h a t t h e r i g h t c o m b i n a t i o n f o r t h e l o w e r film i n 

F i g . 1 3 i s 

T s u b = Τ + T ^ e - ^ ^ 2 c o s h [ g s u b ( 2 / + A . u b ) ] . ( 1 8 7 ) 

U s i n g ( 6 3 ) , w e c a n n o w e x p r e s s < 7 3 U b i n t e r m s o f Tt' a l o n e 

J s u b = BTt', ( 1 8 8 ) 

w h e r e 

l/B = (ljBJ + ( / c s u b < z s u b t a n h ff^Anb)"1- ( 1 8 9 ) 

T h e c a l c u l a t i o n o f Jg i s , a s u s u a l , m o r e c o m p l i c a t e d . Te i s a l s o a c o m 
b i n a t i o n o f t w o w a v e s s i m i l a r t o ( 1 8 5 ) a n d ( 1 8 6 ) . B u t t h e r e i s n o b o u n d a r y 
c o n d i t i o n t h i s t i m e t o d e t e r m i n e t h e c o m b i n a t i o n . W e m u s t t h e r e f o r e l e a v e i t 
i n t h e g e n e r a l f o r m 

Tg=T+ T'gl e x p ( —ia>t + ikx — qthy) + Tg2 e x p [ - i o > * + ikx + qth(y — hg)]. 
( 1 9 0 ) 

T h e a c t u a l c o m b i n a t i o n w i l l o n l y b e k n o w n w h e n w e h a v e s o l v e d t h e e q u a 
t i o n s . T h e r e a r e n o w e i g h t v a r i a b l e s 

T'tl, T'a, hi, h2', »i, « a , T'gl, T'g2, ( 1 9 1 ) 

w h e r e t h e s u b s c r i p t s 1 a n d 2 a d d e d t o Tf', h', a n d v, r e f e r t o t h e t w o films 

( s e e F i g . 1 3 ) . T h e e i g h t e q u a t i o n s a r e 

β^ + Σ(Τ^Τ) = 0, ( 1 9 2 ) 

hfp.ht' TSpsT'ti 

( 1 9 3 ) 

w h e r e i = 1, 2 , a n d 

V I TS\ iKgqth r m m , iBT'n 

τ -11+Th - 4 f t [T« - Ti> e x p ( - ? t h h g ) - t e s t = 0 ) 
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The dispersion equations for the two sets are 

• Tf \iB ι iKgqtbi u qtbhe 

c 3

2 ~ l +

 PbL* 
(200) 

and 

«lo = 1 , Tf 
c 3

2 ~ ^ P b L * 
[ ^ + ^ c o t h ^ l , (201) 

respectively. 
For qthK>:> 1 a n ( * 9 'sub^sub» 1? both of these revert to the equation we 

got previously for a single thin film with infinitely thick gas and substrate 
[see Eq. (120)]. F o r g t h hg« 1, the mode described by Eq. (201) is very strongly 
damped. The other mode, by contrast, will have the attenuation due to the 
gas greatly diminished, because 

! M i 5 tanh ζ ~ a r e a l n u m b e r ) ( 2 0 2 ) 
ω Δ Ζω 

i.e. the lowest order in hg gives almost no attenuation. This will then be 
the mode tha t is observed experimentally. At intermediate values of #th^&> 
both will be present with nearly the same velocities but different at tenua
tions, and interference effects may occur. 

In a resonator these modes will first propagate, then get reflected a t the 
edges. A complicated interference pat tern will usually appear, depending 
on the precise geometry of the resonator. We will assume a very long resona
tor, and tha t only longitudinal modes are excited in it. This is effectively a 
jone-dimensional resonator. In it, each of the modes (200), (201) appears 
twice—as a wave moving either in the positive (e.g. v1

 +) or in the negative 
(e.g. vx~) ^-direction. The boundary condition a t the edges of the resonator is 
obtained by noting tha t when the superfluid flow vs in one film reaches the 
end of the resonator, it simply turns around the edge (which is, of course, 
also covered by the helium film) and reappears as a superfluid flow in the 
opposite direction in the other film. We thus obtain the following conditions 
a t the edges of the resonator 

vs

+i = —v~2 and i>s

+

2 = —v s l . (203a) 

Using Eqs. (148), (61) [(we cannot use (147) instead of (61) because (147) is 
only correct for a wave traveling in the positive ^-direction], and (145) we 
can translate these into boundary conditions for either T/, h\ or Tg'. All 
of these quantities have the same behavior a t the edge, exemplified by 

T{\ = Tf2 and Tf

+

2 = Tf1. (203b) 

From Eqs. (203a) and (203b) we can easily derive the manner in which each 
of the two propagating modes tha t we have found gets reflected at the edges. 

We can use these boundary conditions to calculate the response of the 
resonator, i.e. the steady state temperature amplitude at a point xx t h a t 
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results when a periodic signal of unit amplitude in the temperature, β ' ί ω ί , 
is inserted at a point XQ , as shown in Fig. 12. Such a calculation gives the 
result (details of this calculation will be published elsewhere) 

1 cos kx0 cos k(L — χλ) i sin k'x0 sin k'(L — χλ) 
2 slnkL T 2 sin fc'L ' ( 2 0 4 ) 

where k is the complex wave vector resulting from (200), while k! is the com
plex wave vector resulting from (201). The upper sign in (204) refers to the 
case where both the emitter and the detector are on the same plate of the 
resonator, while the lower sign refers to the case where they are on opposite 
plates (see Fig. 12: in the second case we have denoted the position of the 
detector by x2 in the figure). The first term of (204) clearly comes from the 
symmetric mode of (198), while the second term comes from the antisym
metric mode of (199). As we noted above, there will in general be interference 
effects between the two terms. The second term will, however, be suppressed 
if we place either the emitter or the detector at the edge of the cell, so tha t 
either x0 = 0 or x1 = L. The second term will also be less important when 
qth hg« 1, since the antisymmetric mode is then strongly damped, while 
the symmetric mode has its damping reduced. 

We therefore focus our attention on the first term in (204). This term 
will have resonances when the denominator is very small. If we consider 
only the denominator (the other parts are slowly varying functions of k) we 
can write 

1/sin kL^Ae-**, 
where 

A = 11/sin kL\ = [sin 2(Re kL) + s inh 2 (Im kL)]~1/2, 
and 

tan φ — tanh(Im &2>)/tan(Re kL). 

Assuming tha t the attenuation is small, i.e. tha t 

Im kL = wL I m ( l / c 3 ) « 1, (207) 
we can write 

A = {sm2[a>L Re(l /c 3 )] + [wL I m ( l / c 3 ) ] 2 } - 1 / 2 (208) 

tan φ = ωL Im(l/c 3)/tan[o>Z Re(l /c 3 )] . (209) 

The response function obviously has resonances whenever ω = ωη, where ωη 

is given by 
a)nLB,e l / c 3 = mr; η = 1, 2, 3, . . . . (210) 

This condition just means tha t the length of the cell L must as usual be 
equal to an integral number of half-wavelengths of third sound. The half-
maximum of these resonances will occur at ω = ω 1 / 2 , given by 

(204a) 

(205) 

(206) 

s in[co 1 / 2 IrRe(l /c3)] | = o> 1 / 2 L Im( l /c 3 ) . (211) 
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Because of (207) and (210), this can be written as 

\ω1Ι2-ωη\Σ Re(l /c 3 ) = o>nL Im( l /c 3 ) . (212) 

The Q value of each resonance is thus given by 

Q'1 = 21 ω1Ι2 - ωηIΚ - 2 I m ( l / c 3 ) / R e ( l / c 3 ) . (213) 

Experiments on third sound resonators have been made by Ra tnam and 
Mochel (1970a,b, 1974). By using a heater a t one end to excite the resonator 
and a carbon thermometer a t the other end to detect the temperature 
oscillations, they could observe a series of resonances in the response of the 
cell. Measurements of both the resonance frequency (see Fig. 14) and the Q 
values (see Fig. 15) have been made from the onset of superfluidity down to 
0.3°K. 

These measurements also include mixed H e 3 - H e 4 films, which we shall 
discuss in Section VII . Looking for the moment only at the results for pure 
He 4 , we can deduce from Fig. 14 tha t below about 0.8°K, the film thickness is 
constant. This also agrees with a direct calculation, which shows tha t only 
about 1% of the H e 4 is in the gas phase a t tha t temperature. I t is therefore 
a little surprising to find in Fig. 15 tha t the Q-value is still strongly increasing 

1200 

l 1 I I , I . I I L I 1 J I I 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

T(°K) 
F I G . 14. P lo t of third sound cell fundamental resonance ωι/2π versus Τ for a cell 

containing a fixed amount of H e 4 and varying amounts of H e 3 . The H e 4 content is 
equivalent to a film 4.87 atomic layers thick at 0°K. Curves are plotted for a m o u n t s of 
H e 3 equivalent to about 0, 1, 2, and 4 atomic layers at 0°K. The filling pressures a t 
300°K for the H e 4 and H e 3 were 552; 551, 50; 554, 100; 559, 199; and 557, 400 m m H g , 
respectively. The length of the cell is L — 1.79 cm, and the third sound ve loc i ty is g iven 
b y u3 = 3.58 ωι/27Γ. The curves terminate a t the high temperature side a t the points 
above which no third sound is observed. (After R a t n a m and Mochel, 1974, b y permission 
of Colorado Univers i ty Press.) On the ordinate axis we have marked b y e longated 
straight lines the theoretical predictions for ωχ/2π a t 0°K for the various curves, nor
malized to the observed resonance frequency of the pure H e 4 film. 
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F I G . 1 5 . P lot of third sound cell Q = ω ι / Δ ω ι / 2 > where α>ι is the resonance frequency 
and Δα>ι/2 the resonance width , versus Τ for the same experimental se tup as in F ig . 1 4 . 
From R a t n a m and Mochel ( 1 9 7 4 ) , b y permission of Colorado Univers i ty Press. 

as one goes from 0.8°K to 0.6°K, leveling off only below 0.6°K. The only 
physical quanti ty tha t changes appreciably over tha t region is the density 
of the gas pg, which decreases by about a factor 4 from 0.8°K to 0.6°K (this 
is due mainly to the rapid decrease of the saturated vapor pressure). Bu t a 
careful analysis of Eq. (200) shows tha t the terms depending on pg are 
apparently completely negligible in this region. The attenuation, and there
fore the Q value, are determined mainly by the properties of the substate. 

To see this we assume tha t 

and 

?sulAut>« 1> 

(214) 

(215) 

and then expand the hyperbolic tangents in (189) and (200) as a power 
series in these arguments, keeping only the first two terms. Assuming also 
tha t 

2sub K s u b ^ s u b / ^ 1 « !> (216) 

and using Eq. (65) for g s u b , we now get the following expression for the 
terms in the square brackets on the right-hand side of (200): 

sub ^sub ' 
sub , ^ P s u b ^ s u b ^sub , ^^Psub ^sub ^sub 

B1 
3/c s u b 

(217) 

» ' t t g g t h . . g u A _ 1

 n , 
_ _ t a n h — ΖΈΡ,ΰΡΚ 2 c 3

2 24/fe 

(218) 



48 David J. Bergman 

The first terms of (217) and (218) are real and do not contribute to the attenu
ation. Of the remaining terms, only the ones in (217) could be large enough 
to make an important contribution to a. For a sufficiently thick substrate, a 
further simplification can occur in tha t only the last term of (217) is import
ant. There is a range of values of A s u b for which this is true while nevertheless 
(215) and (216) still continue to hold. In tha t case, we would find a very 
strong temperature dependence for Q: 

Q- (219) 

This would lead us to expect a 7.5-fold increase in Q when we go from 0.8° 
to 0.6°K. In fact, an 8-fold increase has been observed (see Fig. 15). 

For the experiment under discussion (Ratnam and Mochel, 1974) this 
simplification is not entirely justified, however, and one must really use all 
the terms of (217) in calculating Q. We have made such a calculation, and the 
results are shown in Fig. 16, together with the experimental results for com
parison. There is some agreement in absolute values, though perhaps not in 
the dependence on temperature, between 0.5° and 0.65°K. But at higher 
temperatures the experimental results show an increasingly large deviation 

I 0 4 

1 0 ' 

_L _L 
0 . 2 0.4 0.5 0 . 6 0 . 7 0.8 

T C K ) 
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F I G . 16. Calculations of the Q value for the third sound resonator used b y R a t n a m 
and Mochel (1974). I t s dimensions were L = 1.79 cm, hg = 4.26 μ,ιτι, h8Uh = 100 μτη. 
Pun was 552 m m Hg . Curves 4 and 5 show results for sl ightly different values of the 
substrate potential [the coefficient 0LmjkB in Eq . (174) was taken to be 87° in 4 and 79° 
in 5] . Curves 2 and 3 were calculated for am/fc B = 87°, hsuh = Ί0μ, and P f i l l = 528 and 
552 m m H g , respectively. Curve 1 reproduces the experimental results for a pure H e 4 

film from Fig . 15. 
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from the calculation. The indication is again, as in the time-of-flight experi
ments, tha t other dissipation mechanisms must exist, not included in the 
hydrodynamic description of the helium film. 

VII. Third Sound in Mixed H e 3 - H e 4 Films 

Recently, experiments were begun on third sound in supejrfluid films com
posed of a mixture of the two isotopes H e 3 and H e 4 . Ra tnam and Mochel 
(1974) have performed such experiments using the third sound resonators 
described in Section VI. They have measured both the resonance frequency 
(see Fig. 14) and the Q value (see Fig. 15) of the cavity as a function of 
temperature for a fixed amount of H e 4 inside the cell (about 5 atomic layers), 
and varying amounts of H e 3 . The amount of H e 3 was varied up to almost the 
amount of H e 4 . Downs and Kagiwada (1972) have also measured the velocity 
of third sound in unsaturated mixed films using the time-of-flight technique 
developed by Rudnick and co-workers, which was described briefly in Sec
tion IV (for a more complete description of this technique, see the review 
article by Atkins and Rudnick, 1970). For a fixed temperature (1.4°K), they 
measured u3 both in a pure H e 4 film and in a mixture tha t contained a 
fixed percentage (about 17%) of H e 3 as a function of the H e 4 partial thick
ness (see Fig. 17). 

4 0 0 0 I 1 1 1 — r ι ι ι ι 

3 5 0 0 \ 

3 0 0 0 - \\ 
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« 1500 - \ \ 

1 0 0 0 - \ pure H e 4 

5 0 0 - ^ H e 3 * He 4 " 
Mixture 

0 1 ι ι ι I 1 . .1 1 1 I ι ι — — ι 1 1 
0 4 8 12 16 2 0 2 4 2 8 3 2 3 6 4 0 

T H I C K N E S S (ATOMIC L A Y E R S ) 

F I G . 1 7 . Prel iminary measurements of the third sound veloc i ty u3 for a pure H e 4 

film and for a mixed H e 3 - H e 4 film as a function of the partial thickness of H e 4 . The H e 3 

concentrat ion in the mixed film was a lways around 1 7 . 4 % of the total b y number, and 
all measurements were made at Τ = 1 . 4 0 0 ° K . The full and e m p t y circles represent 
measured points . The lines were drawn merely to aid the eye (Downs and Kagiwada , 
1 9 7 2 ) . 
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These experiments show tha t on the one hand the addition of even small 
quantities of H e 3 to a pure H e 4 film has a strong influence on both u3 and a: 
u3 is invariably decreased (see Figs. 14 and 17) while α is either increased (at 
low T) or decreased (at high T) (see Fig. 15, and note tha t α ~ Q'1 approxi
mately). 

On the other hand, the onset point of superfluidity displays a remarkable 
invariance: In the experiments of Ra tnam and Mochel the onset temperature 
appears to remain unchanged within the experimental accuracy even when 4 
atomic layers of H e 3 are added onto 5 atomic layers of H e 4 (see Figs. 14 and 
15). The experiment of Kagiwada and Downs is even more striking in this 
respect: Although the relative amount of H e 3 added is smaller than in the 
resonator experiments, the partial thickness of H e 4 a t onset is seen to be 
very precisely unchanged by this addition (see Fig. 17). This immediately 
suggests tha t the H e 3 might not be taking part in the formation of the 
superfluid film, but might instead be floating inertly above it. Indeed, we 
know tha t in bulk H e 3 - H e 4 mixtures there is an abnormally high concentra
tion of H e 3 a t the surface (see Andreev, 1966; Zinov'eva and Bolarev, 1969; 
Andreev and Kompaneets, 1972). The appeal of this idea is tha t not only can 
it explain the constancy of the onset point but, as we will now show, it also 
seems to be able to explain the large changes in u3. 

Consider the approximate equation for u3 

u3

2 ~ u2

30 b e hf(pJPf)[l + (TS/L)]2. (220) 

/ is some function of h, derived from the chemical potential of the film 

/=(3μΙ3Η)τ. (221) 

The chemical potential in the film at a distance ζ from the substrate can be 
written as a sum of two terms 

μ(*) = μ*η*(Τ,Ρ(*))+Φ(*), (222) 

the first of which is simply the chemical potential of bulk liquid helium at the 
appropriate temperature and pressure. The second term is the difference in the 
potential energy of a helium atom in the liquid when, beginning at a distance, 
z, the rest of the liquid has been replaced by a solid substrate. In equilibrium 
μ(ζ) is independent of z, hence P(z) must vary in such a way as to compensate 
for the variation of φ. In general, both terms on the right-hand side of (222) 
will depend on h. Only at ζ = h can we say that , since P(h) ~ 0, essentially 
all of the λ-dependence comes from φ(Η). Therefore, if we wish to der ive/ f rom 
φ in the form 

f=d#h)idh, ( 2 2 3 ) 
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instead of from the definition (221), we must make sure tha t a t h the hydro
static pressure vanishes. 

From this analysis it is clear tha t even though the mixed film probably 
has a highly concentrated layer of H e 3 floating on top of it, we should always 
use the total thickness h in calculating the force/. From the same argument it 
also follows tha t we should include in h any solid layer of helium tha t may 
exist close to the substrate. 

On the other hand, the h which appears explicitly in (220) should really 
go together with ps, in the sense tha t 

hps = MsA = superfluid mass per unit area of film. (224) 

This should be evident from Eq. (29), where ps was defined. 
Therefore, if one adds some H e 3 to an existing H e 4 film, then if there is 

no change in ΜsA, the velocity u3 will decrease according to 

u3~f1/2~h~2, (225) 

simply because the total film thickness has increased. If, in addition, there 
is a lowering of MsA due to a mixing of the two isotopic components, u3 will be 
lowered even more. 

On the other hand, in the region of very thin films, where there is already 
an appreciable reduction of u3 , due to a size effect, a good mixing of the two 
isotopes could increase MsA, thus counteracting and perhaps even over
coming the effect of / . An increase in u3 following the addition of H e 3 to a 
pure H e 4 film could only occur if the pure film were initially a t such a tem
perature and thickness t ha t u3 was already an increasing rather than a 
decreasing function of the thickness. 

Turning our attention to Fig. 14 we a t tempt to analyze the information 
it contains at the lowest temperatures. Here we expect all of the H e 3 and 
H e 4 to be in the film phase and none in the gas phase. This is indeed supported 
by the fact tha t all the curves tend to a constant value. In t ha t case we can 
tell what the total film thickness is in each case from the pressure Pfm a t 
which the cell was filled with helium gas. Assuming Eq. (225) and using the 
measured value of the resonance frequency ωλ for the pure H e 4 film, we 
calculated ωλ for the various mixed films. In these calculations we used the 
300°K filling pressures reported by Ra tnam and Mochel (1974) as the measure 
of the film thickness at 0°K. The results appear on the ordinate of Fig. 14, 
while the filling pressures are given in the figure caption. The results of this 
calculation agree fairly well with the asymptotic behavior of the resonance 
frequency curves. This supports the idea tha t in fact there is a very consider
able separation of phases in these films, since in tha t case MsA would not 
depend on the amount of H e 3 tha t is added and (225) would hold exactly. 
This conjecture is also supported by the fact tha t the onset temperature, 
which should depend on the thickness of the superfluid, is unaltered when H e 3 

is added to the film. 



52 David J. Bergman 

VIII. Energy in Third Sound 

The energy of a third sound wave is made up of three contributions: from the 
film, from the gas, and from the substrate. 

To calculate the film contribution we star t out by writing some basic 
thermodynamic relations for the superfluid helium film 

dE0 = Τ dS - PAdA + μ dM + (v n - v s ) · dJ0, (226) 

-PAA = Ε0-Τβ-μΜ-ΜΤί (v n - v s ) 2 . (227) 

These are direct consequences of two-fluid hydrodynamics applied to a film 
(Khalatnikov, 1965). E0 is the total energy in a frame of reference moving 
with the superfluid, J 0 is the total momentum in tha t frame 

J o ^ n K - v J , (228) 

Mn, Μa, and Μ are the normal, the superfluid, and the total masses, A is the 
area of the film, and PA is the two-dimensional pressure acting on the film. 
Since we are dealing with a constant area film, we can write (226) in terms of 
quantities per unit area E0A, SA, MA, J0A as follows: 

dE0A = Τ dSA + μ dMA + (v n - v.) · dJ0A. (229) 

The available energy ΔΕ in a nonequilibrium system (i.e. the energy 
tha t can be extracted to do work) is given by the difference between the 
instantaneous energy and the energy tha t the system would have if it were in 
equilibrium with its surroundings. We write this energy per unit area as 
follows: 

AEA = EA(MA,SA,vs, v n ) - E A ( M A , S A > 0 , 0), (230) 

where the bar over MA, SA signifies the ambient values of MA, SA. In a 
third sound wave the bar can signify alternatively an averaging over a single 
period of oscillation. The total energy EA is related to E0A by 

EA = E0A + v s · J 0 A + \MA v*. (231) 

Using this equation, and developing Δ ^ 0 α m a Taylor series up to second 
order terms in ΔΜΑ = MA — fflA, etc., we find 

AEA = Τ Δ $ Α + jn ΔΜΑ + \[dTldSA Δ $ Α + 2(0,*/aSA) ASA ΔΜΑ 

+ (8μΙ8ΜΑ) AMA*] + (v n - v s ) · J 0 A + v 3 · J 0 A + \MA v* 

= ΤΑ8Α + μ AMA + U^J8T)MA AT2 + ϊ(8μΙΒΜΑ)τ AMA

2 

+ W»a< + \MsAv2. (232) 
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&Et = l(hptChIT) Δ Τ Γ

2 + \fpt Δ&2 + \hpB v*. (239) 

Noting that , because of the sinusoidal dependence on time, we get 

A r f

2 = i!T{ 2, etc., (240) 

and using (126), (127), (152), and (153), we find 

AE{ = \fpf\h'*\ 
1 

d10 

TChhf i pahf 
L L pt\c3 

τ + ι + ΐ Ί τ π ( ι + χ ) 2 } · (241) 

In this equation the first term, which arises from Δ Τ Γ

2 , is negligible, while 
the two other terms are very nearly equal. Neglecting the difference between 
them, as well as the first term, we find for the energy per unit area of the film 

S « f = \I*'aIPif = I(L%LF) I Τ/ΙΤ\21J2
01 

= &Ps(PtlpM\. (242) 

Similar considerations are applied to calculate the energy available from 
the helium gas. The available energy per unit volume is calculated as follows: 

AEgV = Ey(SY , pg , V g ) — Ey(Sy , pg) 

1 IdT 8T du \ 
= Τ ASV + μ Apg + g ( W v Δ β τ » + 2 - ASV APe + £ 

e 

= IT AS T + μ Δ λ + i ΔΤ* + 1 ( ^ ) τ Δ λ · + 1 (243) 

Averaging over one period of oscillation we find 

U „ = ϋ φ AT? + Ap7 + 5 ft V - (244) 

We now calculate the average available energy by averaging AEA over a 
single period, noting tha t 

ΔΜΑ = ASA = 0, (233) 

" n ^ O , (234) 

MsA^hpS) (235) 

ΔΜΑ = M(dMAldh)T = Ahp{, (236) 

{ΘΜ~Α)Τ

 = ( » ) τ / ( " » τ ) τ

 = i ' ( 2 3 7 ) 

(dSA/dT)M = hp{ChIT. (238) 
We thus find 
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I n our case, all the average quantities are in principle quadratic combinations 
of contributions from all three modes of the gas. Each of these contributions 
still has an exponential dependence on y, of the form 

e x p t - y R e i f c + * / ) ] . ( 2 4 5 ) 

One of the contributions, the acoustic mode, is even increasing in the y-direc-
tion though this increase is limited by the time at which the third sound 
wave started to propagate. Each contribution must be integrated over y to 
yield the energy per unit area of the film. 

A careful consideration of the various contributions leads to the following, 
not unexpected results: I n the thick film case the energy content of the 
gas is completely negligible. I n the thin film case it is negligible as far as 
the acoustic and the viscous modes are concerned. The thermal mode makes 
the largest contribution to the energy content—this is consistent with the fact 
tha t it makes the only significant contribution to the dispersion equation. 
I t contributes to the energy mainly through the first two terms of ( 2 4 4 ) , 
i.e. the thermal and the potential energy terms. This contribution is obtained 
by substituting 

Δρ/ρ = -AT/T ( 2 4 6 ) 

[see ( 1 0 3 ) and ( 1 3 7 ) ] in ( 2 4 4 ) , and multiplying the resulting ΔΕν by one half 
of the thermal length in the gas: 

llttl = (Kj2pgCpo>y12. (247) 

We thus find 

Δ ^ & α = (5 /V2)I T//T\ *(Kgω/ρ,Ορc3

2)1/2Pc3/o>, ( 2 4 8 ) 

where we have also used 

κτ = 1 / P ; Cv = p B / m . ( 2 4 9 ) 

The ratio of the energy in the gas to the energy in the film is, from ( 2 4 8 ) 
and ( 2 4 2 ) , given by (note tha t in the thin film case J 1 0 = 1 ) 

Δ ^ α 5 / κ,ω y*kBTlmpg c3 hf 

n ; = v 2 t a w ) —τ- τ ^ τ ~ ^ * ω 1 ' 2 - ( 2 5 0 ) 

Numerically, this is still usually considerably less than 1 , though it increases 
very fast as the film becomes thinner. For example, while it is only about 
0 . 0 0 3 a t ω = ΙΟ 3, Τ = 1.5°K, and h = 1 8 atomic layers, it rises to 0 . 1 3 a t 
ω = ΙΟ 4, Τ = 1.5°K, and h = 5 .2 layers, a t which the onset of superfluidity 
occurs for tha t temperature. 

For the energy of the substrate we get an expression analogous to the 
first term in ( 2 4 4 ) : 

^ B U b i V = ( p . u b C f . u b / 2 r ) A T J l (251) 
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As in the case of the gas, this only has any importance a t all in the thin film 
case. As before, we use (134) to substitute for Tsuh in terms of T{, and we also 
have to multiply (251) by one half of the thermal diffusion length in the 
substrate 

¥sub = ( K s u b / 2 P s u b C s u t , ^ ) l / 2 

in order to get the energy per unit area: 

A ^ s u b . A — I Psub TCsub 

/ *sub \ 

\2 P s u b ^ s u b W 

1/2 I 

1 - - 7 7 -
Β 2 

2 V 
Τ 

(252) 

(253) 

For an order of magnitude estimate of the ratio of this energy to the film 
energy we take 

l l - B / B J S l (254) 

and find 

A ^ s u b . A 

AE{ * V 2 W i b C s u b ^ 

/ *sub V / 2 Psub TCsnb C3 Μ _ T3/2h-4^-1/2 

Pi L Κω L 

(255) 

Numerically this is again usually considerably less than 1: For ω = 10 3 , 
T=l.5°K, and h = 18 atomic layers the ratio is about 0.004, rising to 
about 0.16 for ω = ΙΟ 4, Τ = 1.5°K, and h = 5.2 layers. 

We can summarize the results of this section by saying tha t most of the 
energy of a third sound wave usually resides in the height oscillations (poten
tial energy) and the superfluid velocity oscillations (kinetic energy) of the 
helium film. The processes taking place in the gas and the substrate are only 
important because they provide the mechanisms for attenuation. 

IX. The Normal Fluid Motion and Attenuation 

I n the previous sections we have always neglected the normal fluid motion in 
the film parallel to the substrate. We have indeed shown in Eq. (22) tha t this 
motion is very small due to the small thickness of the film. Nevertheless, 
one should still consider whether it makes any contribution to the at tenuation 
of third sound, which is itself usually a small effect. This question has been 
looked into by Pollack (1966a,b). Similar considerations have also been made 
by Sanikidze et al. (1967) for the problem of fourth sound attenuation. 

I n discussing this problem, we begin by combining Eqs. (7) and (8) to 
get an equation of motion for vnx 

p n ~ w = ~ ^ ^ ~ ~ p s S f i t + V f d~w+other d i s s i P a t i v e t e r m s - ( 2 5 6 ) 
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Noting that , when y is fixed, one can write either 

άμ = - f l f dT + (l/p f) dP (257) 

or 

άμ=-8άΤ+/άΚ, (258) 

we can rewrite Eq. (256) in the form 

+M1+£)] £+ 
(259) 

If this equation is now integrated across the thickness of the film, we will 
still be left with a term dvnxldy. Both Pollack (1966a,b) and Sanikidze et al. 
(1967) have shown tha t one may make the following replacement 

ltd2vJdy2^Rvnx\y^, (260) 

where Rvnx is an effective dissipative force per unit volume opposing the 
motion vnx. R was calculated for a flat film by Sanikidze et al. (1967) from 
two-fluid hydrodynamics, and found to be given by 

R = 3mlh2. (261) 

When the film thickness is less than the mean free path, we cannot describe 
this force by hydrodynamics. I t is then a result of the collisions of elementary 
excitations (phonons) with the film boundaries. We will write this force in the 
form 

Rvnx ~ p n VJT, (262) 

where τ is the time of flight of phonons across the film: 

τ ~ λ/cj. (263) 

where cx is the velocity of first sound in superfluid helium. In this case, there
fore, we get 

R^pjr^p^/h. (264) 

The other dissipative terms in (259) are unimportant and will be neglected. 
We note tha t the term —/ dhjdx appears also in Eq. (61), and tha t it is 

approximately equal to vsx, since the other term, 8 dTf/dz, is small. From 
these observations, as well as the fact tha t νηχ<κ vBX, we can write (259) in the 
form 

0 = vsx + (Rlpn)vnxf (265) 

from which we get 

vnx = (iwpnIR)vsx. (266) 

If we use (261) to substitute for R, we again obtain a result similar to (22). 
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We now calculate the contribution of the dissipative force R to the 
attenuation of third sound. Energy is dissipated by this force at the rate 

^ d , S S = ^ n x 2 - ( 2 6 7 ) 

The contribution to the at tenuation coefficient due to this process is therefore 

i d i s s R\vnx

2\ ω*ρ* 

X. Microscopic Theories 

The theories we have discussed up to now were all based on classical con
t inuum physics—ordinary hydrodynamics for the gas, two-fluid hydrodyna
mics for the film, and thermal conduction theory for the substrate. Even 
simple experiments tha t measure only the velocity of third sound reveal, 
however, t ha t these theories do not tell the whole story. In practice, it is 
found tha t there is an onset thickness, depending on the temperature, below 
which third sound is not observed (see Fig. 8). This onset thickness is in 
fairly good agreement with measurements of the onset thickness for dc super-
fluid flow (see Atkins and Rudnick 1970, Fig. 18). Since third sound is in fact 
a phenomenon of low frequency ac superfluid flow, it is natural to identify 
the two onsets. But even above the onset u3 is less than the value one gets 
from the dispersion equations if one assumes tha t ps has its bulk value every
where in the film (see Fig. 8). We have anticipated this, which is why we have 
the average p3 appearing in our equations, and not p S f b u i k . 

A . T H E AVERAGE SUPERFLUID D E N S I T Y 

Par t of the reduction of p3 below its bulk value can be understood as a 
result of the strong force field / due to the substrate. This causes the first 
atomic layer of the film to be so strongly bound to the substrate t ha t it 
exhibits solid rather than fluid properties: I t s specific heat looks like tha t of a 
two-dimensional solid (Brewer et al., 1965). This decreases p3 below its bulk 
value. However, unpublished calculations made by M.Chester and by Bergman 
have shown tha t neither this effect nor the hydrostatic pressure effect on p3 

are enough to explain the observed reduction in u3. 

The two different expressions for R, (261) and (264), thus lead to 

(268) 

(269) 

(270) 

in the hydrodynamic regime, 

in the nonhydrodynamic (Knudsen) regime. 

In both regimes these attenuation coefficients are much less than the ones we 
have calculated due to interactions of the film with its surroundings. 
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Even when the film is fluid, we might expect surface effects to be 
important when the film is only a few atoms thick. Ginzburg and Pitaevskii 
(1958) have proposed a phenomenological theory which at tempts to explain 
a t the same time the properties of the lambda transition in bulk helium, and 
the properties of superfluid helium in constrained geometries. The theory 
assumed tha t the free energy of the superfluid can be expanded as a power 
series in the complex order parameter φ(χ) which characterizes the superfluid 
state 

F(T, φ) = Ε0(Τ) + [Α(Τ)\φ\* + Β(Τ)\φ\* + 0(Τ)\νφ\*]άχ. (271) 

Higher order terms are neglected. ps is proportional to | φ\ 2 . The equilibrium 
value of φ is determined by minimizing F with respect to variations of φ(χ). 
This leads to a nonlinear differential equation which φ must satisfy 

-θν2φ + Αφ + 2Β\φ\2φ = 0. (272) 

φ must also vanish at the walls. 
In bulk systems, the gradient term can usually be neglected and the 

equilibrium value of φ(χ) taken to be a constant. In fact, however, the 
gradient term determines the rate at which φ changes near the walls. There 
is a characteristic "healing l eng th" I, given by 

l2 = C(T)/A(T), (273) 

over which φ must increase from zero at the walls to its fixed bulk value. 
In a small system, such as a thin film where I is not small compared 

to the thickness h, φ and hence ps are not constant over a considerable part of 
the system. One can calculate from the theory the average value ps as a 
function of h. p s / p S i b u i k depends only on the ratio h/21, as shown in Fig. 18. 
At h = ττΐ p s goes to zero, signifying inability to solve the differential equation 
(272) for φ and also satisfy the boundary condition φ = 0. This point is the 
onset thickness predicted by the theory. 

In its original form, this theory included certain assumptions about the 
form of A(T), B(T), C(T) which did not give good agreement with experi
mental results for the lambda transition in bulk helium. Josephson (1966) and 
Mamaladze (1967) showed tha t by a proper choice of these coefficients, 
agreement could be obtained. Using their choice we get the following expres
sion for I: 

L - L2M2ACp(TA-T)2\ = Υ Μ \ τ λ - Τ ) Α' ( 2 7 4 ) 

Here Τλ is the lambda temperature (Τλ = 2.172°K) and Δ (7 Ρ is the jump in the 
heat capacity per unit mass at constant pressure tha t is superimposed upon 
the symmetrical logarithmic singularity at Τλ. While the exact functional 
relationship between p s / p s > b u i k and h/2l is fairly complicated and involves 
elliptic integrals, it has been shown (e.g., see Fraser, 1969, p . 33) that , 
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h/2l 

F I G . 18. The size effect in t h e Ginzburg-Pi taevski i theory. P l o t t e d versus h/2l 

are: / 5 s // ) s ,bu ik ; · · · · the approximate form /5 s /ps>buik = 1 — 2y/2l/h; the maxi 
m u m value of p s / p s , b u i k ; - · - • -(F — F0)j{F — i ^ i b u i k · 

except for the region where /5 s /p s .buik * s small, a good approximation to this 
relation is the asymptotic formula (see Fig. 18) 

P.//»..i»iic = l - W A ) , (275) 

where 

D = 2V2Z. (276) 

One can include in this form also the correction due to the solid helium layer 
at the substrate by writing 

D = hs + 2V21, (277) 

where hs is the solid layer thickness. 
A comparison of this theory with experiment (Kagiwada et al., 1969), 

which we reproduce in Fig. 19 and Table I I , shows tha t good quanti tat ive 
agreement can be obtained for UQ as a function of h if l( T) is adjusted for each 
temperature, rather than being taken from Eq. (274). This is no surprise 
because (274) is only expected to be accurate for Τ close to Τλ . Empirically, 
it turns out tha t a fairly accurate representation for I over the entire region 
tha t was investigated is (see Revzen, 1969a,b) 

l = B0Tlp9tha*, (278) 

where 

£ 0 = 2.9 X 10" 9 g c m - M e g " 1 . (279) 
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P 0 -P  [microns ] 

F I G . 1 9 . P lots of u3 versus Pv — Ρ a t various temperatures. The full curves were 
calculated from the Ginzburg-Pijbaevskii theory [i.e. Eq . (275)] wi th Ζ)==Λ 8 + 2 \ / 2 ί 
chosen to g ive the best possible fit near the m a x i m u m of each curve. From K a g i w a d a 
et al. ( 1 9 6 9 ) , b y permission of the American Inst i tute of Phys ics and Physical Review 
Letters. 

However, the superfluid onset does not occur when h = hs + rrl, but a t 
a slightly greater thickness. Furthermore, while the theory predicts tha t ps, 
and therefore u3, decrease continuously to zero as the onset is approached, it 
seems as though the onset occurs while u3 is still quite large (close to its 
maximum value for the given temperature, in fact), dc measurements of 
superfluid flow show a similar behavior in tha t the critical velocity extra
polates to zero while p8 does not (Henkel et al., 1968). From the last column 
of Table I I it seems as though the value of /5 s / /> S t b u l k a t the onset of third 
sound is approximately constant for different temperatures, being always 
around 0.36. I t is worthwhile pointing out tha t it is not entirely clear whether 
ps is in fact discontinuous at the onset. Another possibility is that , even 
though pa itself goes to zero continuously, the onset tha t is in fact observed is 
due to the beginning of a strong attenuation of third sound. This is the 
prevalent view nowadays, since experiments have failed to detect any dis
continuity in the volume (see Goodstein and Elgin, 1969) or a latent heat 
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Heal ing lengths 
Experi Onset Size effect 
mental for from from thickness a t onset 

T(°K) fit D K = l E q . (278) E q . (274) Κ (Κ-Ι)β* Ps/s> bulk 

1.125 2.79 0.63 0.63 0.76 3.84 4.51 0.38 
1.192 3.04 0.72 0.67 0.79 4.29 4.91 0.39 
1.205 3.05 0.73 0.68 0.80 4.34 4.84 0.37 
1.310 3.22 0.79 0.76 0.86 4.41 4.48 0.35 
1.415 3.41 0.85 0.84 0.934 4.71 4.42 0.36 
1.495 3.61 0.92 0.92 1.01 5.10 4.45 0.37 
1.512 3.67 0.94 0.94 1.03 5.18 4.45 0.36 
1.586 3.89 1.02 1.03 1.11 5.73 4.59 0.38 
1.778 4.99 1.41 1.39 1.45 7.35 4.57 0.36 
1.852 5.53 1.60 1.61 1.67 9.27(8.25) 5.13(4.56) 0.44(0.37) 
2.046 9.55 3.02 3.17 3.10 17.50(13.80) 5.21(4.04) — 

α F r o m Rudnick and Fraser (1970), w i th permission of P lenum Publ . Co. 
b Un i t s of length are atomic layers (3.6 A). The values in parentheses are for P / P v

 a ^ 
onset determined from a pool of other experiments . 

c See N o t e added in proof a t the end of this subsection. 
d The parameter I is from Eq . (278). 

(Frederikse, 1949; Evenson et aL, 1968) which were expected to accompany 
any jump in ps. We would like to point out, however, tha t ps might still be 
discontinuous all by itself. An example of a model system where this occurs is 
the two-dimensional ideal Bose-Einstein gas which, a t constant pressure, 
undergoes a phase transition into a condensed state. This transition involves 
no latent heat or volume discontinuity. But the occupation number of the 
single particle ground state jumps from essentially zero to essentially Ν—the 
total number of particles (Imry et al., 1974; Gunther et al., 1974). 

In this connection, a t tempts have been made to explain the onset or 
cessation of superfluidity as being the result of a hydrodynamic instability 
which sets in at tha t point (Goodstein and Elgin, 1969; Goodstein, 1969). 
One result of the detailed hydrodynamic theory which we have described in 
Section I I is to rule out completely such a possibility as far as the linearized 
equations are concerned. 

A recent unpublished experiment has been performed by Kagiwada and 
Downs in which a great effort was made to take measurements in the region 
close to the onset thickness of third sound, where the attenuation is large and 
detection becomes very difficult. Using signal averaging techniques, Kagiwada 
succeeded in observing u3 begin to descend towards zero as the onset was 
approached from above. The descent, though more rapid than expected from 
the theory, nevertheless looks quite continuous. 

T A B L E I I 

S U P E R F L U I D P A R A M E T E R S OF T H I N H E L I U M F I L M S 0 * B - C 
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An at tempt to modify the Ginzburg-Pitaevskii-Josephson-Mamaladze 
(GPJM) theory so as to get a superfluid transition of the first order in thin 
films was made by Amit (1968a,b,c). Amit argued that , in order to ensure 
stability of the solution φ = 0 at Τ = Τλ in bulk helium, one should include 
a 0 6 term in the expansion of the free energy [Eq. (271)]. His theory leads 
indeed to a first order superfluid transition in helium films. But the jump in 
p s is accompanied by a jump in the thickness and by a latent heat, both of 
which have not been observed, as we mentioned before. 

The GPJM theory is not a true microscopic theory. I t is a phenomeno-
logical theory of the complex superfluid order parameter, similar to the 
Ginzburg-Landau (GL) theory of superconductivity, and in the spirit of 
Landau's general theory of second order phase transitions. Moreover, it has 
no rigorous microscopic justification similar to the one existing for the GL 
theory of superconductivity. I t thus looks as though much more work on 
microscopic theories will have to be done in order to understand the onset of 
superfluidity and third sound. 

Note added in proof: Because an improved value of α (the coefficient of the 
Van der Waals potential) is now available, thanks to Sabisky and Anderson 
(1973a,b), all the experimentally determined values of D have to be reduced 
by a factor .677. Obviously this will alter the healing lengths determined by 
Eq. (277) and appearing in the third column of Table I I . I t will also change 
the nature of the fit to experimental data of Eq. (278), necessitating at least 
a change in the empirical coefficient B0. See also note in caption to Fig. 3. 

B. T H E ONSET OF SUPERFLUIDITY AND ATTENUATION OF T H I R D SOUND 

A few at tempts have been made to go beyond hydrodynamics in calcula
ting the attenuation of third sound. 

Revzen (1969a,b) has applied the Aslamazov-Larkin theory for fluctua
tions in thin superconductors to helium films. Revzen finds the following 
expression for the mobility μ of the superfluid fraction of the film 

p,==/x cexp[4(A-/* c)/Z], (280) 

where /xc and hc are parameters of the theory. This is essentially equivalent to 
a coefficient of attenuation tha t depends exponentially on h. The onset is thus 
viewed as a point where the increasing attenuation becomes so large tha t 
third sound is undetectable in practice. 

Put terman et al. (1971) have tried to correlate the anomalous attenuation 
with the appearance of quantum fluctuations in the film. They argue tha t 
analogously to the usual uncertainty principle for particles obeying quantum 
mechanics, one has the following uncertainty principle for helium films 

mAvsAh^h. (281) 

On the left-hand side Ah is the uncertainty in the vertical position of a 
particle in the film and Avs is the corresponding uncertainty in the superfluid 
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velocity, while on the right-hand side h is Planck's constant. They then argue 
tha t when Avs > u3 , a large at tenuation of third sound is to be expected due 
to large fluctuations of a purely quantum nature. Wang and Rudnick (1972) 
have pointed out tha t together with the large fluctuations Avs one will have 
large fluctuations in h as well, which may lead to a local vanishing of ps if h 
fluctuates to values below πΐ. The precise meaning of these ideas is not 
altogether clear since they do not arise from an underlying theory. They 
should be viewed, in our opinion, as preliminary ideas in the a t tempt to 
construct such a theory. Some interesting results nevertheless follow from 
(281): If one estimates Ah by h/\/\2 (this assumes a constant probability 
distribution for finding the particle a t any position across the film), and 
replaces Avs by u3 in (281), one arrives at the following condition under which 
large at tenuation due to large fluctuations in vs is expected: 

h^\2jm^u3h. (282) 

Comparison with experiment (Wang and Rudnick, 1972) shows tha t where 
(282) is not satisfied the attenuation is small and fairly well described by the 
continuum theory. At the onset, (282) is approximately satisfied as an 
equality. Furthermore, when one considers thick films, (282) is again satisfied, 
since u3 then decreases very rapidly with thickness. This is precisely the 
region where the greatest discrepancy in the at tenuation is found. The 
quantum fluctuations may thus be important not only for thin films, but for 
thick films as well! 

Another idea, put forward by Rudnick (see the last paragraph of Atkins 
and Rudnick, 1970) is t ha t nonlinearities in the propagation of third sound 
waves may contribute significantly to the attenuation. Such effects are well 
known in surface waves on an ordinary shallow liquid: The velocity a t the 
crest is different from the velocity at the trough because: (a) the sound 
velocity varies with the total depth h and (b) the fluid is moving locally in 
the direction of propagation at the crest but in the opposite direction a t the 
trough. In the case of third sound waves, the velocity decreases with increas
ing h for thick films but may increase with h when the size effects become 
important. The difference in sound velocity between crest and trough 
causes the wave to become highly nonsinusoidal in shape as it propagates, 
eventually developing either a leading or a trailing shock front—this is the 
well known phenomenon of wave breaking. Such behavior would give rise to 
attenuation. I t is interesting to note t ha t there is a film thickness for which 
the two velocity effects mentioned above, (a) and (b), exactly cancel and 
therefore nonlinearies do not develop. This occurs for rather thin films. 
Near tha t point one also observes experimentally tha t the at tenuation has its 
minimum value, and is in good agreement with the hydrodynamic calculations 
(Putterman, 1974, Sect. 48). 

Lastly, we will only mention the a t tempt t ha t has been made by Chester 
and Maynard (1972) to construct a microscopic theory of third sound by 
quantizing the two-fluid equations of a helium film. The theory incorporates 
the macroscopic quantum uncertainty principle discussed previously. 
Quantitative results of the theory have not yet been published. 
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C. SUMMARY 

This section by its very nature cannot be summarized. There is clearly 
much more work to be done in developing a microscopic quantum theory for 
third sound and other properties of superfluid helium films. Some of it is 
being actively pursued at this time. The continuum theory and its com
parison with experiments must serve as a guiding post in these at tempts. 

Glossary of Key Symbols and Phrases 

In the second column we list, wherever possible, the equation or table where 
the symbol is defined, or where it appeared for the first time. 

SYMBOL EQUATION DEFINITION 

A 88 Kinetic coefficient in the theory of evapora
tion. 

Β 69,189 \jB is the effective thermal resistance of the 
substrate 

Bx 63 1/i?! is the Kapitza thermal boundary resis
tance 

C p , Cy 99, 106 Heat capacity of the helium gas per unit 
mass at constant pressure, volume 

(7 s u b 62 Heat capacity of the substrate per unit mass 
Ch 40 Heat capacity of the helium film per unit 

mass 
c 100 Complex velocity of sound in He gas 
C q i Ι Complex velocities of the three wave modes 

100 J m He gas 
c 3 14 Complex velocity of third sound 
c x 263 Velocity of first sound in superfluid helium 
D 275 Coefficient of 1 /h in approximate formula for 

Ps 
/ 3, 57 Force exerted by the substrate on a unit 

.mass of helium at the gas-film interface 
h 1 Thickness of the He film 
h' 86 Amplitude of oscillations around h 
hs 277 Thickness of the layer of solid helium at the 

substrate 
hc Table I I , Thickness of the He film a t onset of third 

280. sound 
havLh 67 ^Thickness of the substrate 
J> Jx>Jy 7, 7, 7 Mass current in the film and its components 
J M 33 Net mass flux from film to gas 
Jg 44 Heat flux from film to gas 
JE 81 Net energy flux from film to gas 
t / s u b 41 Heat flux from film to substrate 
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SYMBOL EQUATION D E F I N I T I O N 

Λ 163 Numerical coefficient appearing in the thick 
film equations 

«Λ,ο 162 Numerical coefficient appearing in the thick 
film equations 

k 13 Complex wave vector of third sound 
kB 73 Boltzmann's constant 
L 47 Latent heat of evaporation from film to gas 

per unit mass 
L 204 Length of a third sound resonator 
I 273 Healing length in the Ginzburg-Pitaevskii 

theory 
*. 34 Mean free path in the gas 
hub 67 Thermal penetration depth in the substrate 

23 Viscous penetration depth in liquid He 
his 102a Viscous penetration depth in He gas 
It* 102b Thermal penetration depth in He gas 
M1 98 The viscous mode in He gas 
MA 99 The thermal mode in He gas 
M3 100 The acoustic mode in He gas 
Qsub 65 Thermal wave vector in the substrate 
tfvis 98 Viscous wave vector in He gas 
9th 99 Thermal wave vector in He gas 

100 Acoustic wave vector in He gas 
R 260 Coefficient of the effective drag force due to 

viscosity of the normal fluid 

st 
9 Entropy per unit mass of liquid He 
42 Entropy per unit mass of the He gas 

s 39 Partial entropy per unit mass of the film 
thick film 119 Film for which / c g a>/p g C p c 3

2 ^ 1 
thin film 118 Film for which Kg w/pg C p c 3

2 « 1 
Τ 38 Equilibrium temperature 
m m, 
·*· sub ' sub 41, 64 Instantaneous temperature of substrate, 

amplitude of its oscillations 
Τ Τ ' 42, 86 Instantaneous temperature of gas, amplitude 

of its oscillations 
9 Instantaneous temperature of the film 

τ„ τ; 36, 86 Instantaneous temperature of the film 
averaged across the thickness, amplitude of 
the oscillations 

T%2 , Tg3 103 Amplitudes of temperature oscillations in 
modes M 2 , M 3 of the gas 

u3 5, 122 Real velocity of third sound 
115 Approximate real velocity of third sound 

V 113 (ps/Ph)(*We 3) 
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SYMBOL EQUATION D E F I N I T I O N 

1, 8 Superfluid velocity and its components 
7 Normal fluid velocity and its components 

^g ' ^gx ' ^gy 33, 42 Velocity of the He gas and its components 
X Fig. 1 Coordinate axis parallel to the third sound 

wave vector 
y Fig. 1 Coordinate axis perpendicular to the film 
Vr Fig. 1, 33 Position of the imaginary reference plane in 

the gas 
α 123 Coefficient of attenuation of third sound 
α 172 Constant appearing in the equation for / 
y 106 The ratio O P / O V for He gas 

7, 71 Coefficient of shear viscosity of liquid, gas 
7 , 8 Coefficients of bulk viscosity of liquid He 

/C f , Kg , Ksui) 9, 72, 62 Coefficient of thermal conductivity of liquid, 
gas, substrate 

244 Isothermal compressibility of He gas 
μ> Pg f 

2, 82 Chemical potential of helium liquid, gas 
56, 133 Chemical potential of helium averaged across 

the film, amplitude of its oscillations 
Pf > Ph > Pf 1, 31, 38 Mass density in the liquid film, a t the surface, 

averaged across the film 
Ps » Pn > Ps 1, 11, 29 Superfluid, normal mass density, superfluid 

density averaged across the film 
Psub 62 Mass density of substrate 
Pg > Pg' 33, 42, 103 Mass density of the gas, amplitude of its 

oscillations 
ωβπ 13 Frequency of third sound 

SUBSCRIPTS 

g) f > sub Signify quantities of the gas, film, and sub
strate, respectively 

A J V 58, 229, 243 Signify quantities per unit area and volume, 
respectively 
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I. Introduction and Elementary Illustrations 

A. INTRODUCTION 

The main purpose of the present article is to show how the relatively 
new technique of "Matched Asymptotic Expansions " (MAE) can be applied 
to problems of interest in acoustic research. We hope in the course of the 
discussion to answer questions such as: What is MAE? What is its relevance 
to acoustics? What type of problems can be solved? and What physical 
insights does it provide? Also, sufficient information will be provided to 
enable the careful reader to apply the MAE technique to certain problems 
which are relevant to his research. 

The technique of MAE is basically a refinement and extension of clas
sical perturbation methods. Such methods typically make use of the solution 
to a known, relatively simple problem to obtain a useful approximation to a 
more complex situation. For example, the complete solution to a particular 
problem in acoustics might express the pressure ρ as a function of space, 
time, and some typical parameters such as a piston velocity amplitude and 
the sound speed in the medium, 

ρ = p(x, t, a). 

The full solution in terms of arbitrary parameters might be unobtainable, 
or so complex as to be useless for interpretation—or even for computation. 
With perturbation theory one at tempts to study such a situation by starting 
with a limiting case where the solution may be obtained in relatively simple 
closed analytical form, for example when 4tja = ε ->0 in the above example. 
Using this solution the equations for the " f u l l " problem are used to pro
vide correction or perturbation terms so tha t the approximation to the 
above solution might take the form 

ρ ~ p(0\x, t) + μ1{ε)ρα){χ, t) 

where μχ{ε) is a function of the perturbation parameter ε which vanishes 
as ε - > 0 . When such a form for the solution applies over the whole domain 
of independent variables of interest, χ and t in the above example, the 
perturbation is termed regular. When the form fails to give meaningful 
results for some values of the independent variables, the perturbation is 
termed singular. The singular case is more the rule than the exception 
in practice, and MAE is one means of coping with this problem. Nonuniform 
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perturbation expansions (singular perturbations) arise* in an enormous 
variety of different ways, of course, and several basically distinct procedures 
have been developed for removing the nonuniformity in different types of 
problems. MAE is but one of these techniques, and forms the subject of this 
article because we believe it to be the one with the most immediate appli
cability in a number of areas within acoustics. References to work describing 
other singular perturbation techniques will be found in the concluding 
section. 

The method of at tack with MAE is to seek several perturbation series 
with differing domains of validity. In typical boundary value problems 
such as one encounters in acoustics, constants appear in the solution of the 
full problem which must be determined from boundary and initial conditions. 
However, when several perturbation series are employed for a problem the 
unknown constants for each solution cannot usually all be found from the 
boundary and initial conditions appropriate to tha t solution. This then 
leads to the problem of finding the remaining unknown constants in the 
separate series by utilizing the fact tha t each of the solutions is an approxi
mation, in a certain sense, to the same function. The evaluation of the con
stants in this way is called matching; hence the name Matched Asymptotic 
Expansions. 

Perhaps the most rapid appreciation of MAE can be obtained from a 
brief historical summary of how it developed. The origins of MAE are closely 
connected with acoustics' sister subject, fluid mechanics. The work of the 
great mathematicians and physicists of the eighteenth and nineteenth cen
turies had made theoretical fluid mechanics a subject of great beauty as 
well as a vehicle for the development of many of the significant techniques of 
modern applied mathematics. Paradoxically, however, despite their mathe
matical elegance, the methods were almost totally inadequate for predicting 
or understanding many observed flow situations. The crux of the problem 
faced by those wishing to bring the results of theoretical calculation into 
agreement with experimental findings lay in the t rea tment of fluid viscosity. 
When the ratio of inertial force to viscous stresses on a body of given charac
teristic length, as characterized by the famous nondimensional parameter 
known as the Reynolds number Re, is large or small, it appears reasonable to 
make some very helpful simplifications to the difficult hydrodynamic equa
tions. As in many cases the fluid is air or water with relatively small viscosi
ties, taking Re large and dropping the viscous terms from the equations 
would seem to be quite a reasonable procedure. The Re small case, where 
inertial terms are dropped, also appears plausible when bodies are small, 
and has even met with some success, for example in the famous Stokes drag 
formula for spheres. Somewhat astonishingly, however, both these reasonable 
approximations have produced results either totally a t variance with ex
periment or completely inconsistent with plausibility. I t is not our purpose 
to discuss Fluid Mechanics in detail here. However, as Physical Acoustics 
provides cases analogous with the small-large Re problems, some discussion 
is worthwhile. The reader interested in more of the details can consult 
Birkhoff (1960), Van Dyke (1964), or Kaplun (1967). 
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The problem faced in the large Re situation is tha t plausible reasoning 
leads to the nonphysical result known as d'Alembert's paradox—that a 
steadily translating rigid body suffers no drag in an infinite fluid. Attempts 
to correct this physically unreasonable result and to overcome other related 
problems met with little real success until the work of Prandt l (1904). With 
an inspired injection of physical reasoning, he saw both how to explain the 
lack of success and how to overcome the problem, at least in the important 
case of relatively streamlined bodies. Thus he observed tha t when the viscous 
terms are dropped from the equations of motion the order of the equations 
is lowered and fewer boundary conditions can be satisfied, i.e., dropping 
viscous terms implies dropping a boundary condition on the wall of the mov
ing body. I t seemed almost self-evident tha t no flow into a solid body could 
be allowed; hence this condition was retained, and the fluid was assumed to 
slip along the surface of the body. Prandt l observed, however, tha t a t the 
surface the fluid must in general not be allowed to slip. His picture of the pro
cess Re -> oo was that , in the region away from the body the viscosity plays a 
decreasingly important role as Re increases. However, near the body the 
gradient in velocity must be large to adjust to the no-slip condition on the 
surface. This in turn implies tha t even though 1/Re is small (in general 
implying small viscosity), the product of 1/Re and the velocity gradient terms 
can be quite comparable in magnitude with other terms. Hence he concluded 
tha t in such a " boundary layer," a different set of approximating equations— 
the " boundary layer equations "—should be applied. Thus the basic idea was 
established tha t two sets of approximating equations, one appropriate to 
the outer flow (the classic potential flow equations) and one for the inner 
flow (the boundary layer) were needed to provide an adequate calculational 
scheme for determining the viscous drag on streamlined bodies. The scheme 
and equations proposed by Prandtl have met with enormous success and are 
considered by many to have changed the whole face and role of Theoretical 
Fluid Mechanics. 

The difficulties with small Re flows, on the other hand, proved to be a 
far more subtle problem, whose solution was not really found until recent 
times with the work of Kaplun (1957), Friedrichs (1955), Lagerstrom and 
Casten (1972), and others. The problem is exemplified in the so-called para
doxes of Stokes and Whitehead. Stokes (1851), dropping the inertial terms 
from the equations of motion, a t tempted to calculate the drag on a cylinder 
in uniform flow. He found that , because the fundamental solution to the 
resulting equation (the Stokes equation) is logarithmically singular at infinity, 
he could not produce a solution tha t would satisfy the uniform flow condition, 
i.e., the plausible assumption about viscous effects led to a problem with 
no mathematical solution. The three-dimensional problem of slow flow 
about a sphere, of course, does give the well-known Stokes drag formula, 
and all appeared well with the sphere until Whitehead (1889) tried to improve 
the result by the reasonable device of inserting the Stokes solution into the 
neglected terms, and treating the result as inhomogeneous terms in Stokes' 
equation. The result was found to lead again to a solution growing with dis-
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tance from the body. The explanation for these difficulties is tha t as more and 
more of the fluid about the body is considered, the inertia effects become 
more and more important; hence one cannot expect the solution to retain its 
validity in this " o u t e r " region. In the case of three dimensions, one is able 
to calculate the drag, as the body effect dies off with sufficient rapidity with 
distance to permit a meaningful first approximation. However, in two 
dimensions even this modest desire cannot be fulfilled. A partial solution 
was found by Oseen (1910,1913), who proposed an equation which gave a 
better representation of the outer flow. However, full understanding did 
not come until the work of Kaplun (1957), Proudman & Pearson (1957), 
and the full development of MAE. As with the large Re case, it was shown 
tha t two regions had to be considered, one near the body where inertia 
could be ignored, at least to first approximation, and an outer region where 
the body could be looked upon as a point singularity. While in this case no 
boundary condition is lost by reduction in the order of the governing equa
tions, the problem of matching the solutions in the two regions proved to be 
very difficult. 

I t will be seen tha t the MAE method, as presently practiced, is derived 
from an abstraction of the above ideas. First, it consists of a formalization 
of the process used by Prandtl , which permits a logical development of 
correction terms in both the boundary layer region and the outer region. 
A discussion of this is given in the book by Van Dyke (1964). I t should be 
noted tha t the higher order corrections to the drag are of great technical 
and engineering importance, yet fifty years passed between Prandtl ' s intro
duction of the boundary layer and the modern calculations. Thus, even in 
the technical area which gave birth to some of the basic ideas of MAE, 
the modern formalization has provided a significant advance. Second, it 
is becoming increasingly realized just how wide is the general applicability 
of the formalism to a large number of areas. As should become apparent, 
the formalism is both mathematical and physical in content. In fact, one 
of the very important features of MAE is the extent to which it ties together 
and helps to create physically significant conceptual structures. The clas
sical example is how the boundary layer, and perfect (nonviscous) flow, 
corresponding to the inner and outer flow regions, join to provide a satisfying 
understanding of the complex real (viscous) fluid flow about bodies. The 
importance of MAE is thus in both the conceptual framework it provides for 
unifying mathematical models, and its effectiveness in resolving particular 
problems—sometimes with surprising simplicity. 

In the application of MAE, dimensional reasoning and an understanding 
of physical scales and magnitudes in a problem play a very important role. 
As a foretaste of this, let us consider the small Re problem discussed above, 
and an equivalent acoustic problem—the scattering of sound by a body 
small compared with the wavelength of the incident radiation. From the 
viewpoint of MAE the problems are quite similar, while the latter problem 
makes a good introduction for the reader educated in physical acoustics, and 
hence will be considered in some detail below. A heuristic understanding of 
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why the R e - > 0 problem calls for different approximations in two regions 
and why the " s m a l l " acoustic scatterer can be examined in a similar light 
can be gleaned from dimensional considerations. Both problems can be 
cast into forms where the variables are nondimensional. Thus, in the R e - > 0 
problem the velocity can be given in units of the free stream velocity and 
the coordinates in units of body characteristic size. After this transformation, 
one is left with equations tha t contain only one parameter, Re, and the solu
tion for any dependent variable (eg., pressure p) must be a function of the 
dimensionless or scaled coordinates and Re, i.e., ρ = -P(r/ZB, Re). Examina
tion of the parameter Re shows tha t it can be considered as the ratio of two 
lengths, as the characteristic body dimension lB divided by the length found 
by appropriately grouping the parameters of viscosity, density, and free 
stream velocity, lv (the so-called viscous length). When the body is small 
compared with the viscous length, Re = 1Ββν is small, viscous effects dominate, 
and inertia terms can be ignored, a t least near the body surface. 

Dropping the inertia terms is thus equivalent to taking 
lim F(r/lB, Re) 

Re->0 

in the solution for arbitrary Re. A little thought, however, shows tha t Re ->0 
can be characteristic of two very different physical situations. In one case, 
consider lB fixed but Z v ->oo; for example, a body of fixed size in a fluid 
of increased viscosity, giving a very large viscous length. Alternatively, 
suppose £ B ->0 but hold lv fixed. In the second case the body is very small 
and the free field dominates the physics. Clearly, the correct mathematical 
description must reflect this state of affairs. Thus, for the above limit to be 
unique, we must prescribe a relation f(lB, lw , R e ) = 0 which holds as Re—^0. 
The traditional Stokes problem is connected with the case R e - > 0 , lB fixed. 

Now consider scattering of radiation of wavelength λ by a body of 
scale I. Again, the equation of interest (now the familiar Helmholtz equation) 
and the boundary condition can be put into suitably nondimensional form 
so tha t the scaled pressure is given by a function F(r/l, l/λ). If I is much 
smaller than λ, it seems plausible tha t an incompressible flow problem 
should provide an adequate description of the situation near the body. 
As the scattering problem is linear and has been studied for a number of 
years by a variety of techniques, such as integral equations, it is well known 
tha t the solution requires taking proper account of the outer radiation field. 
However, even if this were not so, the reasoning applied to the R e - > 0 
problem applies here and, as we shall see, the problem provides a useful 
introduction to MAE methods in acoustics. The parameter l/X can become 
small in two vastly different ways. If with λ constant, we should have 
a solution appropriate for a radiation region, but if λ - ^ oo with I constant, 
one expects a solution for an incompressible flow region. 

Using MAE we will show how asymptotic expansions can be found 
directly from the differential equations in a term-by-term manner for the 
two regions, and how the linking of the two expansions ties up with some 
classical conceptual structures, such as scattering matrices and impedances. 
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A large par t of what follows will in fact involve problems of linear 
physical acoustics. Aside from providing an excellent introduction, such 
problems will be shown to have considerable interest in themselves. Thus, 
in this case, we will take as basic the linearised compressible flow equations, 
and show how MAE can be used to arrive at various well-known theoretical 
acoustical constructs such as the Webster Horn equation, radiation end 
corrections, and others. 

An important point to note is t ha t in the MAE approach to a problem 
we choose a mathematical framework which contains complete descriptions 
of the physics of interest. Various simpler theories, and conceptual structures 
then arise as limiting cases, applicable to restricted spatial and temporal 
regions. Later in the article, for example, we will show how, starting with 
the Lighthill (1956) approximation to the Navier-Stokes equations, we 
can take a problem of nonlinear acoustics and by considering various limiting 
cases of the relevant parameters divide the problem into space-time regions 
where Burgers' equation, the linear wave equation and the heat conduction 
equation describe the asymptotic solution. Hence, as another side product, 
the MAE formalism provides logical derivations of a number of equations 
popular in acoustics, together with estimates of their validity and a very 
definite interpretation of their meaning in a larger context (e.g. Burgers' 
equation in relation to the linear wave equation and the Navier-Stokes 
equation). 

We shall introduce the formalism by stages, starting with some very 
simple model examples of acoustical interest. After defining some of the no
tation, consideration will be given to the problem of linear wave propagation 
in a one-dimensional medium of varying sound speed. The well-known 
W K B method can be related to the MAE formalism. However, both for 
novelty and intrinsic interest, the opposite case, where the wavelength is 
large compared with the inhomogeneity scale, will be treated here. While the 
problem is simple, the asymptotic aspects are rich and provide an excellent 
foretaste of what follows in a fairly clear context. This problem will also be 
used to discuss the tricky problem of matching asymptotic series with dif
ferent domains of validity. In some ways, matching is similar to finding 
connection formulas for turning point problems of the W K B type, though 
the context is considerably more general. 

With this background, we will examine various problems for the wave 
equation where most of the parametric dependence arises from the geo
metrical situation and the boundary behavior, i.e., scattering problems, 
wave propagation in variously shaped ducts, radiation from cavities, and 
resonant systems. After this discussion of what might be called classical 
linear acoustics, we will enlarge our viewpoint and take the full Navier-
Stokes equations of nonlinear viscous gas dynamics with allowed finite 
boundary motions as our basic model. After suitable normalizations based on 
particular situations, several theories important in nonlinear acoustics are 
developed, in particular those of weak shock formation, shock reflection 
from a wall, and the spatial evolution of an initially sinusoidal signal. 
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Matched Asymptotic Expansions are a tried and trusted technique in a 
number of areas of theoretical mechanics. Despite this and the fact tha t much 
of the technique's origins (Van Dyke, unpublished, 1971) lie in the great 
work of 19th century acousticians, the method has not been widely employed 
in modern acoustics research. For this reason the authors have worked 
out a number of new problems, not only for their expository value, but also 
for their current scientific interest. 

We hope tha t this article will demonstrate the ability of MAE both to 
produce new and worthwhile results and to provide fresh insight into familiar 
results, and tha t readers will be thereby encouraged to apply these methods in 
acoustics as freely and widely as they have been in other branches of mecha
nics. 

B . TECHNIQUES OF MAE THROUGH ONE-DIMENSIONAL EXAMPLES 

The main purpose of the present section is to provide a brief but useful 
introduction to the working techniques of MAE. To accomplish this task 
we shall first consider a model or analog problem of wave motion in a one-
dimensional medium where waves can only propagate in the direction of 
increasing space coordinate. The problem chosen has the advantage that , 
while simple to solve exactly and easy to understand in its essential aspects, 
its asymptotic properties retain many of the essential technical difficulties 
found in more complicated problems. 

Thus consider the model problem defined by the equation 

^ + J _ ^ = 0, (1) 
8x a(x) dt 

where ρ is the "pressure ," χ and t space and time coordinates, and a(x) the 
wave velocity, or "sound speed." In the rest of Section I, Β we shall refer 
to these variables as if they were the pressure and sound speed of a gas. 
The reader should be aware tha t this use of language is only meant as a 
descriptive analogy. The algebra and computations associated with the 
model problem are simple enough for the reader to follow in all detail. Also, 
the situation described by Eq. (1) is close enough to an actual one-dimensional 
sound propagation problem to make the use of such language meaningful. 
We note in passing tha t a traditional way of introducing MAE is to t rea t 
the problem of a simple spring-mass-damper system, with the mass taken 
as the small, or perturbation, parameter. Such a t reatment can be found, 
for example, in the book by Cole (1968). The present model is, however, 
felt to be more appropriate for the understanding of typical applications of 
MAE to acoustics. 

In such a model the " p h y s i c s " is present only in the choice of the 
function a(x). Thus there are a number of situations of interest t ha t can 
be examined by suitable choices of a(x) and boundary conditions on p. 

For the present discussion we consider a piston, oscillating harmonically 
a t angular frequency ω, and located at χ = 0. Waves of amplitude p0 are 
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radiated away from the piston through a region of varying sound speed, 
and out to regions of large x. One length scale in the problem is the wave
length λ = 2πβ0, where k0 = ω\α0 is the wavenumber and a0 is the sound 
speed at χ = 0 . Another length scale can be introduced into the problem by 
our assumptions about a(x). Thus we shall assume tha t a(x) changes rapidly 
(has a large derivative) in a region of width I near the piston ( 0 < # < ; I). 
However, when χ J> I it is assumed tha t a(x) changes only slowly. These 
assumptions apply to the rate of change of α; α itself is assumed to be finite 
and bounded. We can think of I as being an inhomogeneity scale for sound 
speed variation in the vicinity of the piston. One would expect different 
kinds of results, depending on whether this inhomogeneity scale is larger 
than, smaller than, or comparable with the wavelength 2πβ0. For our 
demonstration of MAE we assume the wavelength to be large compared with 
the inhomogeneity scale, and thus choose as a small parameter ε = 2πΙ/λ — 
k01. Even with these restrictions a number of qualitatively different situa
tions can be generated by the detailed behavior of a(x). As it is not our 
purpose to make an exhaustive study of all these situations, but merely 
to introduce MAE, we will confine ourselves to the case where a(x) behaves 
algebraically as χ -> oo, as defined in Eq. ( 6 ) below. 

In more formal terms our model is given by 

where g varies only slowly for χ β » 1, and an asymptotic solution is sought 
for the case 

In keeping with the philosophy of the method, the first step is to scale the 
problem so tha t dependent and independent variables are 0(1) and the prob
lem formulation is in a "un ive r sa l " form with parameters appearing in 
suitable dimensionless groups. For Eq. (2) this is an easy task; thus, scale 
the pressure with the source pressure pQ , and scale length with l/k0 , which is 
proportional to the wavelength, to obtain 

p=p(x)e-i<at, 

(dp/dx) =ik0g(xjl)pi (2) 

P(0)=po 

s = k0l->0. (3) 

P=p/Po, 
χ — A/Q x, 

xjl = xjkQl = χ/ε. 
(4) 

Hence 
(dp/dx) — ig(x^)p = 0 

where 
ρ = p(x, ε) (5) 
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and 
P(0, e) = l. 

Consistent with our assumptions about the behavior of g we assume that , as 
ξ->οο 

9(ξ)~β+ Σ ΥηΙξη- (6) 
η = 1 

This form fulfills the requirements tha t a vary rapidly near the piston a t 
χ = 0, and slowly in the region far away from the piston, the terms " near " 
and "far " being judged with reference to the wavelength 2n/k0 . A concrete 
example of the kind of function envisaged would be 

9(ξ) = 1 + (2δ/π) t a n " 1 ! 
~ 1 + δ - (2δ / τ τ£ ) + · · · , (7) 

this implying an almost steplike change in wave speed in the vicinity of the 
source, followed by a slow change on the wavelength scale. 

The problem of Eq. (5) is easy to solve exactly, and we find 

Ρ = exp[i<p(£, ε)1 (8) 

where the phase function is given by 
ΓχΙε 

In the special case of Eq. (7) 

φ = χ + (2δ/π)[χ t a n " 1 (χ/ε) - \ε 1η(ε2 + χ2) + ε 1η ε]. (10) 

Having the full solution at our disposal, it is possible to make a number of 
observations about its asymptotic structure for small ε. However, it is instructive 
to try to appraise the structure directly from Eq. ( 5 ) , this being the more natural 
situation in practice. 

In formal terms we are faced with the problem of finding a useful 
approximation to a function p(x, ε) for small values of ε, where ρ is defined 
implicitly by Eq. (5). The common device for this problem is to seek an 
asymptotic or perturbation expansion of p of so-called Poincare form, i.e. 
one assumes 

p(x, ε)~Σ ρ(η\χ)μη(ε) + ο(μΝ(ε)) (11) 
η = 0 

where 

μο = ι> μ>η + ι=ο(μη) as ε - ^ 0 , (12) 

this meaning tha t μη + ιΙμη~^^ a s ε-+0. Once the set of gauge functions 
{μη} is prescribed, the coefficients p(n) can be uniquely defined by a limit 
process. We use the symbol lim to denote the limit as ε - > 0 with χ held 
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constant (meaning in physical terms tha t we are regarding the limit as 
achieved by holding the wavelength constant and contracting the inhomo-
geneity scale I to zero). Then the coefficients in the Poincare expansion of 
p(x, ε) with respect to the gauge functions {μη} are defined by the limits 
(which are assumed to exist) 

p ( 0 ) (£ ) = hm p(x, ε), (13) 

or, in general, 

W ) = m ( ^ z K f ^ i . ( 1 4 ) 

I t is convenient to express this process of expanding the function p(x, ε) 
by defining a formal expansion operator ΕΝ{μΝ} for a given gauge sequence 
W by 

Ν 

ENp(x, e)= Σ μη(ε)Ρ(η\ϊ), 

where it is assumed tha t 

\p(x, ε)-ΕΝρ(χ, ε)\ =ο(μΝ(ε)), (15) 

tha t the limits of Eq. (14) exist, and tha t Eq. (15) holds for some set of 
points {x}. I t is evident tha t one can exercise a great deal of formalistic 
care in definitions like Eq. (15). However, except where deemed truly 
necessary, we shall take a heuristic approach, leaving unsaid fine details 
tha t would confuse the main points of the arguments. The reader interested 
in a careful step by step definition-proof discussion of MAE can consult the 
monograph of Eckhaus (1973) with profit. 

If we insert a series of the type of Eq. (11) into Eq. (5) the question 
arises as to how to choose μη. In the region bounded away from χ = 0 for ε 
small, insertion of Eq. (6) into Eq. (5) gives 

and at first glance it would appear t ha t μη = εη is the proper choice of gauge 
function. The problem with this choice is tha t substitution into Eq. (16) of 
ρ _ ρω) _|_ £pd) _|_.. g i v e s f o r 2?<D the inhomogeneous equation 

(dpa)jdx) — ίβρα) = iyi P(0)/x (17) 

where p(0) = eiex for the condition p ( Q ) (0) = 1. The solution of Eq. (17) will 
give a term proportional to In x, and hence when χ = 0(ε), ερα) will be 
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0(ε\τιε). This effect (referred to as "Switchback," Kaplun, 1967, p. 14), 
where one finds tha t terms of intermediate order must be inserted in an 
expansion, is a common one, and can be taken into account automatically, 
a t least in principle, by assuming μη to be unknown. Another clue to the 
inconsistency of a straightforward εη type expansion is tha t the natural 
boundary condition on pa) would appear to be pa) = 0. However, the pre
sence of a term like In χ which becomes infinite as x-*0 implies t ha t pa) 

cannot be made to satisfy such a condition. The problem, of course, is in the 
approximation for gix/ε), which is not valid in the domain χ ~ ε. This lack 
of validity, a t least in a formal sense, is not serious enough to prevent us 
from finding a reasonable pi0\ although the In χ terms seem to terminate the 
possibility of continuing the expansion process. 

" Physical" reasoning suggests tha t we must introduce a type of bound
ary layer in the region of strong inhomogeity in the medium, i.e. for χ = 
k0x = 0(ε) = O(k0l), or in other words when x/l = 0(l). A formal device 
for doing this is to introduce the " stretching " transformation f:x = χ\ε = 
χ β, into the differential equation and boundary conditions. Applying f 
to Eq. (5) gives 

From the above reasoning we expect Eq. (18) to provide a useful asymptotic 
series solution, a t least for χ — 0(1). Again, we can substitute a series of the 
form Enp(x, ε) into the equation [note tha t now χ is fixed in the limit pro
cesses t ha t define pin)(x)]. However, as soon as μη = 0(ε), integration of the 
forcing function introduced from lower order terms will give a solution propor
tional to x. In other words [as we shall see below, Eq. (28)] the expansion 
for ρ will contain a term (constant) εχ. 

This implies tha t as χ becomes increasingly large the second term of 
the expansion becomes larger than the first, although the terms were con
structed on the basis tha t the second must be smaller than the first. The 
εχ term above begins to have a magnitude comparable with the first term in 
the piston region solution when χ ~ 1/e. 

One can now make the following observations: (1) the expansion in an 
asymptotic series of the problem for χ fixed leads to results invalid when 
x — 0(e); (2) transformation *T leads to an (inner) asymptotic series invalid 
for # = 0(1/ε); (3) the region of validity of the (outer) series is in general 
outside the point of applicability of the boundary condition; (4) the choice 
of gauge functions μη(ε) vis not a priori obvious, e.g. μη(ε) = εη leads to 
" switchback." 

To resolve the difficulties we seek to determine two separate series, 
with the gauge functions μη(ε) to be found as part of the solution. For com
parison with later work, the series 

(d/dx)p(x, ε) — iεg(x)p = 0 
p(0) = 1 . (18) 

Ν 

n = 0 
(19) 
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will be called the Helmholtz expansion, and χ, etc. Helmholtz variables. 
The reason for this terminology is tha t the region (away from the piston) 
where this series applies is analogous to the region where the full Helmholtz 
or reduced wave equation applies in the scattering and waveguide problems 
of Sections I I and I I I . In a similar way we shall use the terms, Laplace 
region and Laplace expansion, for the region near the piston where the varia
bles ρ, χ are relevant. 

I t is assumed tha t the set of gauge functions can be found so tha t p(x, ε) 
can also be expanded using them, with the proviso tha t p(n) or p(n) may 
vanish identically for some n. We use the transformation symbol Τ to de
note the change from Helmholtz variables, x, to what we are calling Laplace 
variables, x, 

ENp = ENfp. (20) 

Because of the problem with boundary conditions and with determining 
μη we need some rule connecting, say, ENp and EMp for as arbitrary an 
Ν and Μ as possible. Now p(x, ε) and p(x, ε) = Tp(x, ε) are clearly just 
different ways of expressing the same function, the transformation ΐ pro
viding a formal means of changing the form of the asymptotic expansion. 
Therefore, we have every reason to expect a relation between ENp and EMp, 
the real question being what form such a relation must take. For example, 
we might have 

lim p(0)(x) = lim pi0)(x), 

ϊ-*0 f-» oo 

a simple instance being 

p = (l+x)-1, Τρ = (1 + εχ)-1 ~ 1 -εχ+'" · 

Now quite generally we can define a relation between the expansions 
as 

(TEN fEM - EM TEN f)p = HNtM (χ, ε), (21) 

where Τ denotes the transformation x-+x. For any given function p(x, ε) 
and gauge functions μη(ε), the " commutator matrix " HN M can be readily and 
routinely calculated from this definition. The first term on the left of Eq. (21) 
is obtained by expanding p(x, ε) in terms of the μη(ε) according to the de
finition of Eq. (14), terms up to and including μΜ(ε) being retained. The 
result is then expressed in terms of the variable χ = χ /ε, and expanded again 
in terms of the μη(ε) with χ held fixed this time, and with the inclusion of 
all terms up to and including μΝ. This contribution is finally reexpressed 
in terms of the original variable x. For the second contribution, the function 
p(x, ε) is writ ten at once as a function fp of χ and ε, and this is expanded 
for fixed χ through terms 0(μΝ), the result then being written in terms of χ 
and further expanded through 0(μΜ). 

Usually, however, we do not know p(x. ε) exactly, though we do claim 
to be able to construct asymptotic series like EM p and EN fp by formally 
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substituting assumed series into governing equations and boundary condi
tions and equating coefficients of like terms. As already explained, each of 
the expansions obtained in this way will contain unknown constants, arising 
from the fact tha t the boundary conditions which can be imposed on each of 
the separate expansions are insufficient to determine it uniquely. We can 
therefore calculate HN M(x, ε) in any given case, and find tha t it involves χ, ε, 
and various unknown constants. The usefulness of the definition equation 
(21) now lies in the fact that , under suitable restrictions on Ν, M, and the 
gauge functions μη, 

HKJI(X,B) = 0. (22) 

This is an identity for all the values of χ of interest and for all sufficiently 
small ε. I t is called the Asymptotic Matching Principle, and in most cases 
can be used to uniquely determine the various unknown constants in HN M . 

We emphasize tha t several matching principles are in current use [see, 
for example, Eckhaus (1973)], and tha t it is somewhat a mat ter of taste 
as to which one an author may choose in a particular application. Some 
discussion of this is given in Section V. We find tha t definition (21) and the 
principle (22) are by far the most convenient to use in terms of the algebraic 
bookkeeping needed for really efficient exploitation of MAE. While it is, 
no doubt, a rather formal prescription, it is simple to apply, and the reader 
will be protected from many possible pitfalls by strict adherence to the formal
ism. 

I t is difficult to provide adequate motivation or mathematical proof 
for the Asymptotic Matching Principle. Given tha t EMp and ENTp are 
asymptotic expansions for a certain function p(x, ε) it is possible to prove 
the result (22) under appropriate restrictions on the expansion and the 
gauge functions (Fraenkel, 1969; Crighton and Leppington 1973). That, 
however, is only part of the issue, for one rarely knows, in practice, whether 
formal techniques are really producing proper asymptotic expansions or 
not. Aside from that , examples are known (see references above) in which 
the principle (22) works under conditions violating those assumed in the 
proof of (22), so tha t the widest conditions under which (22) holds are not 
yet known. Basically, the conditions assumed so far in proving (22) involve 
the idea of " overlap "—that EMp is an approximation of ρ for χ = 0(1), or 
at any rate for χ not too small, while EN Τ ρ is an approximation to ρ for 
χ = 0(1), or at any rate for χ not as large as 0(1). One hopes then tha t there 
is an "overlap region," ε « x« 1—say χ = 0 (ε 1 / 2 )—in which both approxi
mations hold simultaneously, and thus the difference between appropriate 
versions of the approximations should, in some sense, be small. This is what 
Eq. (21) and (22) say; the first member of HN M can be looked at as a further 
approximation to EMp as χ becomes small, while the second member is the 
approximate form of EN Τ ρ as χ becomes large. In fact this is not a sound 
way of looking at the principle, for EN TEMp and EM TEN fp are approxi
mations of approximations, and neither is necessarily an asymptotic repre
sentation of p(x, ε) for any values of χ at all (Crighton and Leppington, 
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1973). The Asymptotic Matching Principle does not claim tha t the two 
terms of HN M have any particular meaning; it merely says tha t they are 
equal to each other. Therefore, while the idea of expanding p(x, ε) for χ « 1 
and matching tha t to the result of expanding fp as χ » 1 may be physically 
suggestive, we ask the reader to accept the principle (22) mainly on mathe
matical grounds and to use it in a strict way in what follows. Much more 
will, of course, be said about the Asymptotic Matching Principle in the 
course of this article. 

As stated earlier, MAE is both mathematical and physical in its ap
proach, and in typical applications a certain amount of cut and t ry combined 
with physical insight is needed for success. In this spirit, we return to the 
model problem, Eq. (5). Taking l i m e _ 0 ρ and l i m e _ 0 fp we have two prob
lems. Firstly, in the Helmholtz region χ > 0(ε) 

(άρ(0ηάχ)-ίβρ(0) = 0, (23) 

p ( 0> = J ^ e " * , (24) 

where A0 is a constant and where, in keeping with the philosophy of our 
approach, the condition on p is given outside the domain of the Helmholtz 
limit, i.e., a t χ = 0. On the other hand, in the Laplace limit, 

dp(0)/dx = 0, £<°> = 1, (25) 
and hence 

To join the two expansions, we use the rule 

(fE0 TE0 - E0 TE0 T)p = 0, (26) 

in which 

TE0 TE0p= TE0 TA0 ei0i 

= TE0 Α0βίβε'χ 

— fAQ = A0 

and 
E0TE0 fp = E0 TE0 p = E0Tl = l, 

leading to the trivial and expected result tha t A0 = 1. The result is trivial 
only because of the fact tha t p(0) is not singular as i - > 0 , a state of affairs 
which, from the general point of view, is accidental, as we shall see later. 

To proceed, we look for the next term in the Laplace region. A tentative 
estimate of its order is obtained by recalling tha t for matching we have 

(TEK fE0 - E0 TEK f)p = 0, (27) 

with EK denoting the expansion up to the next nonzero term in the Laplace 
region. As 

TEK fE0p = fEK (βίβε£) = f{l + ιβεχ} 
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g(x) dx. 

In applying the matching rule we shall need to know the singular behavior 
of Eq. (28) as χ -> oo. Using the assumed behavior of g for large values of the 
argument it is straightforward to see tha t 

p(K) ~ + affi* + « S i n x. (29) 
f-»oo ' 

As we will be most interested in the singular behavior of functions, it is 
useful to employ a uniform and suggestive notation. For almost all cases of 
interest forms such as 

p(n)(x->o) ~ Σ ( L N * ) * ( 3 ° ) 
and 

p™(x ->oo) ~ £ aft> xj (ln x)k (31) 

suffice, where the sum is over nonzero affi, and j and k may be negative. 
Inserting Eq. (29) into the rule 

(TEK fE1 - Ε λ TEK f)p = 0 (32) 
yields 

Ex TEK Τ ρ = E1 T[l + ε(α<*> + aft χ 
+α&>1η *) + • · · ] 

= JB1(L + E L N E D I S + " - ) . 

Now j&iP will designate the series up to the first term after pi0). Hence, 
for matching to be possible μχ = ε In ε, and in the chosen numbering system 
for gauge functions Κ = 2, i.e., 

ρ - p(0\x) + ε ln ε ρα)(χ) + ερ(2){χ) (33) 
and 

ρ ~pm(x) + ε ln ε ρ α ) ( χ ) + ερ(2\χ), (34) 

where for this model problem it appears tha t pa) = 0. 

the Laplace expansion proceeds as 

ρ~1 + ερκ. 

Note tha t the possibility of terms of order between 1 and ε in the Helmholtz 
expansion has been accounted for by not fixing K. Substituting into Eq. (5), 
after using Τ and expanding, we have 

dp(K)/dx = ig(x)pm = ig(x), 

and 

£<*>(0) = 0, (28) 
so tha t 
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with the solutions 

and 

p<1> = J f 1 e w * , (36) 
p ( 2 ) = I 2 eiei + A0 i Y l ei0* In x, 

dp«»ldx = dp™ldx = 0, 
dp(2)/dx = ipi0)g{x), (37) 

with the solutions (using the conditions p(0)(0) = l,p(0)(n>0) = 0) 

p(o)==l) p^ = 0, (38) 

ι dx. j?<2> = i g(x) 

J ° 

The expression for p{2) can also be expressed in terms of the phase term Eq. 
(9) of the exact solution 

ρ™ = ίφ(χ, 1). (39) 

Substituting the expressions 

ρ ( 0 ) ~ < ο + « ί ° ο * + · · · , 
£ ( 1 ) ~ a f t i + + (40) 
Pi2) ~ «o2o + άί2)

0 x + ά{2\ xlnx + - - , 
for χ -> 0 and 

for χ -> oo into 

gives 

# ( 0 ) Λ(0) _ 1 
Ρ — ao,o — A> 

pa) = 0, (41) 
Pm~d™+d™x + d™ In* , 

( i ^ a i>J£a —J57 2 ^ 2 = 0 (42) 

^4 0 = 1, = and A2 = 0. (43) 

The matching rule also requires tha t d[2)

0 = ιβ and d^2{ = . 
Before examining some of the interesting implications of these results, 

we now briefly examine the general matching rule Eq. (22), in the light of 
the specific example Eq. (10), with δ = π/2. As we have the complete solution 

After this preliminary work we retrace our steps, and insert Eqs. (33) 
and (34) into the problem in Helmholtz and Laplace coordinates, respectively. 
Thus we have 

(dldx)p(0) - ίβρ™ = 0, 
{djdx)pa) -ίβρα) = 0, 
(d/dx)p(2) - ίβρ™ = ίγ&^/χ, (35) 
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at our disposal for this case, we can verify Eq. (43) and perform an empirical 
test of Eq. (22). Thus, using Eq. (10) and the fact tha t in Laplace variables 

p = exp[ie<p(z, 1)], (44) 
we find, with 

φ(χ, 1) = x(l + t a n " 1 χ) - | ln(l + x2), (45) 

and the definition 
y = (1 + ln x), 

t ha t the Laplace and Helmholtz expansions to 0(ε2) are 
E5fp = l + είφ(χ, 1) + \ε2[φ{χ, l ) ] 2 , (46) 

and 
E5 p = eifi*[l + ίε ln ε - ίε$ - |ε 2 (1η ε)2 

+ £ ε 2 1 η ε - ± £ 2 ε 2 ] . (47) 

The argreement with the solutions Eqs. (36) and (38) is evident, if we note 
tha t in Eq. (43) Ύ ι = - 1 and tha t y S = l + S = l-f- ττ/2. 

To check the matching formula Eq. (22) it is convenient to use a slightly 
less explicit notation. Note tha t the principle expressed in Eq. (21) involves 
transformation of EN TEM p back to the coordinate χ = εχ. We can define 
two operators, one for the Helmholtz series, the other for the Laplace series, 
such tha t results are always expressed in the χ coordinate. These two opera
tors in the χ space are 

EM = EMT (48) 
and 

EN = TENf. (49) 

With this notation Eq. (21) reads 
(ENEM-EM£N)p = HN>M(x, ε). (50) 

Van Dyke (1964) proposed tha t HNM = 0 for all Ν, M. If Eqs. (46) and (47) 
are used in Eq. (50) we can calculate the matrices ENEMp = pN M and ENEMp 
= PN.M- The " c o m m u t a t o r " matrix HNM has the structure for JV, M<5, 

0( ) 1 ε 1η ε ε ε 2 (1η ε ) 2 ε 2 1η ε ε 2 

1 "0 0 0 0 0 0" 

ε ln ε 0 * 0 0 0 0 

ε 0 0 0 0 0 0 

ε2(1η ε ) 2 0 0 0 * 0 

ε 2 In ε 0 * 0 * 0 

ε 2 _0 0 0 0 0 0 . 

(51) 

where the asterisks indicate values of JV and Μ for which Van Dyke's rule 
fails. I t is clear tha t Van Dyke's hypothesis is not generally correct. Fraenkel 
(1969) has made a careful study of the rule Eq. (22) and has compared it 
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with other principles of matching. One of many conclusions reached was 
tha t Eq. (22) is probably the most convenient method for computations. 
I t is usually only for simple problems t ha t complete proofs of the correctness 
of asymptotic expansions can be found, and for this reason justification of 
an expansion is usually by physical arguments, the study of known special 
cases, and/or comparison with numerical and experimental results. I t is 
thus worthwhile finding out under what conditions Eq. (22) may be correct. 

Actually Fraenkel was able to achieve a great deal by showing tha t if 
the exact solution of the problem has a " reasonab le" structure (which he 
shows to be the case in many interesting examples) then, under certain 
restrictions on Ν and Μ, HN M = 0. We shall re turn briefly to the problem of 
matching in the final section of this article. Here we now present a "p rac 
tical " rule based on Theorem I, Assumption 3 of Fraenkel 's paper. Under 
fairly general conditions, such as the existence of all appropriate limits, a 
sufficient condition for HNM to vanish, for an arbitrary set of gauge functions 
μΝ, is t ha t for some α > 0 

lim (μ9 + ιΙμο*) = 0 (52) 
e-»0 

where Q = Ν or Μ. For example, in our test case 

lim ^ 4 ε 2 In ε 
: hm — — = lim 

ε - ο εαμ3 ε - ο ε2(1η ε)2εα

 e - o εα In ε 

and clearly no α > 0 exists for which this limit vanishes. The way to apply 
this criterion is to match in blocks, i.e. choose a subset of the gauge functions 
for which Eq. (52) holds. For the case 

we choose 
{μη} = U> ε m £> e> ε2 In 2 ε, ε2 In ε, ε2, ...} 

{1, ε, ε 2 , ε 3 . . . } 

which, by Fraenkel 's theorem, leads us to match using Ν, Μ as indicated 
in the matr ix 

1 ε In ε ε ε 2 In 2 ε In, ε 3 In 3 , 

i.e., 
^ 0 . 0 = ^ 2 . 2 — Ηθ,2 — ^ 2 . 0 — - ^ 3 . 3 — ^ 3 . 0 — " ' — 0· (53) 
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The fact tha t other elements of the matrix (51) vanish must be taken as 
peculiar to the special example chosen. The possibility tha t the criterion 
(52) cannot be satisfied for any Ν, Μ also occurs in practice, for example in 
the problem of scattering from a " s o f t " cylinder. However, we shall defer 
further discussion of this case until Section I I , where we shall see tha t it is 
advantageous, and indeed vital, to choose the gauge functions in such a 
way tha t the rule Eq. (22) does hold. 

Before leaving the problem of matching (to be taken up again in the 
final section) it is important to consider another point of view on how the 
matching process works, and which has considerable intuitive appeal despite 
its computational awkwardness. This is the idea tha t the matching of two 
asymptotic series is possible because for a fixed ε -> 0, both series have a 
common domain of validity to some given order in ε, and hence may be 
compared. One technique for performing this comparison is to pose an 
" in te rmed ia te" expansion in terms of intermediate variables such as = 
χ/ε", 1 > α > 0, to express both asymptotic series in terms of χ*(ε), and ex
amine the difference as ε - > 0 to determine unknown constants. The book by 
Cole (1968) gives many examples of this process. 

The idea of an intermediate region where both expansions are valid 
leads to the idea of combining the expansions to produce a so-called " com
posite expansion," which has the property of being asymptotically equivalent 
to each expansion in its respective domain of validity. One popular way 
of accomplishing this is to add the series to given order and to subtract 
off the common part . Alternatively, one may multiply the two series and 
divide the product by the common part, though zero divisor problems can 
occur with this type of composition (see Schneider, 1973). 

In terms of the operators EM, EN, a composite expansion (not unique) 
in the space χ which is valid to 0(μΜ) in the " i n n e r " region and 0(μΝ) in 
the outer is given by the composite operator 

Ε-Μ.Ν = + EN — EMEN. (54) 

Note tha t 

EM EM.NP = EM{Em + E N - E M EN}p = EM p, (55) 

and, using 

HM,N = 0, 
ΕΝΈΜίΝρ = ΕΝρ. (56) 

Thus the operator EMN gives a single smooth function in the variable χ 
which has asymptotic equivalence with both expansions. For our example 
problem 

E22p = eifis[l + is ln ε -i(l + ln χ)ε] + 1 
+ ie{(xle)[l + t a n " 1 ^ ) ] - £ ln[l + (χ2/ε2)]} 
—[1 + ίβχ + ιε ln ε — ίε(1 + ln χ)]. 
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C. T H E IMPEDANCE CONCEPT 

A major conceptual advantage of MAE is tha t it provides formal de
finitions of various useful conceptual structures. For example, the general 
idea of impedance is frequently related to making a division of a problem, 
one par t of which is then represented as an impedance to another part . 
Again we illustrate this with our sample problem. I n an impedance approach 
we think of the " p i s t o n " in the region of strong sound speed variation as 
being represented by a "generator " and a "source impedance " which drive 
a "transmission l i n e " represented by Eq. (lb). Thus generator and source 
impedance represent boundary conditions for Eq. (16). If one-dimensional 
sound waves in a gas were being described by our model, the velocity would 
be given by 

ΰ = — i dpjdx (57) 

where u = uZ0/p0, Z0 = p0 a0 being the wave impedance. 
We label the applied driving pressure at χ = 0, the effective pressure, 

and the source impedance with subscripts I, E, and S, respectively. Then, 
referring to Fig. 1 for sign conventions, we have 

VI = PE + %S · (58) 

Ο 

F I G . 1. Equiva lent circuit for source. 

In our perturbation procedure all the source pT was taken to drive the first 
term p(0) in the expansion for p. Therefore, using Eq. (57) in Eq. (58) and the 
expansion for p, we find, with Zs = Zg> + ε In εΖ^ + · · · , 

pj = lim ( p ( 0 ) — iZ™ dpi0)ldx) (59) 
x-+0 

and if we now substitute the series (40) for p(0) as x->0, this gives 

Pi = <}o-iZrdi%. (60) 

The matching (E0 E0 — E0 E0)p = 0 gives d(

0% = agl, and as dgl is the 
constant term in the Laplace region, i.e., the driving pressure pli we find 

Zg» = 0. (61) 
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The next term is 0(ε In ε), and Eq. (58) gives 

lim [i Z<g\dp™ldx) - pa)] = 0. (62) 

Then substitution of the small χ form of pa) from Eq. (40) gives 

a£l = iZ£>al°l. (63) 

The coefficients d^ and a{°£ are found from the matching 

(E2E2-E2E2)p = 0, (64) 

and can be expressed in terms of the coefficients a in the large χ series for 
p(n\ Eq. (41), to give 

^ ^ « Μ ' * . (65) 
The same line of attack, using 

lim (p<2 ) - i Z™ dpi0)ldx) = 0, (66) 

gives Z(2). However, it is at this point tha t the true singular behavior of 
the outer approximation series comes into play, in the fact tha t as x-+0, 
p(2) ~ In x. This indicates tha t Z{2) must display the same behavior, 
if the impedance is to replicate the t rue outer solution. We adopt the formal 
device tha t 

^(0) = a{In x} 

means 

F(x) ~ a In χ (67; 

as 

x->0, 

and with the matching Eq. (64) this gives 

^ ^ - « / « Τ ο ^ η ^ . (68) 
Determination of the inner coefficients a ( 2 ) requires solution of the inner 

or Laplace region problem to 0(ε2). For our example Eq. (46) 

p{0) = Vn pa) = 0 
and 

p{2) ~ ίβχ — i In χ 

(ρτ = 1 with our normalization), and hence we find 

Zs = ε(1 + In ε)(ί/β)(1 - f i n χ}) + 0(ε2 In 2 ε). (69) 

Using Eq. (69) with the impedance definition Eq. (58) and the 0(ε) 
t runcated version of Eq. (16), 

dp/dx - ί[β - (ε/χ)]ρ = 0, (70) 



2. Acoustics and Matched Expansions 91 

one can solve the problem in the outer Helmholtz region to 0(e). The main 
point is tha t the large χ behavior of the inner problem sequence can be used 
to define the effective impedance of the source region in a quite definite 
manner which can be carried out to as high an order of approximation as 
needed. We shall come across a number of examples in which MAE can be 
used to verify the accuracy and validity as well as compute the needed 
parameters in such idealized acoustic constructs. Section I I , Ε deals with the 
" e n d correction" for a thick plate, for example, while an equivalent "scat 
tering matrix " is discussed in Section I I I , C. 

D . A SECOND-ORDER M O D E L EQUATION 

Before leaving the domain of elementary one-dimensional examples, 
let us examine a problem closer to the type tha t one meets in practice, i.e. 
a problem with two directions of wave motion possible, so tha t instead of 
Eq. (2) as our starting point, we have a second-order equation. Thus, after 
suitable normalization and removal of the explicit t ime dependence by 
Fourier analysis, our equivalent of Eq. (5) takes the form 

To fix ideas, the reader might think of this as a simple model expressing, for 
example, the variation in sound speed in a bonding layer between a crystal 
transducer and a target medium with nondimensional wavenumber β, the 
limit expressing the fact t ha t the layer thickness is small compared 
with the typical wavelength. I n accord with this physical situation, we 
restrict χ to positive values. 

The operation ε-^O on Eq. (71) with χ fixed gives tha t g(x\s) =β2 + 
terms of exponentially small order. Therefore the χ dependence of p for 
correction terms of algebraic order, tha t also meet the outgoing or radiation 
condition, must be of the form 

d2p\dx2 + g(xle)p = 0, 
0(f) = j82 + a e - * , 
0(0) = 1, 

p(x -> oo) ~ ei0£ 

(71) 

p(L> = ALei0i 
( 7 2 ) 

and hence, 

( 7 3 ) 

Clearly, such a representation as Eq. (73) is not capable of providing an 
asymptotic representation of ρ " n e a r " the piston surface, where the expo
nential dependence of the varying sound speed becomes important, i.e., 
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when χ = 0(e). I n this Laplace region, over which phase changes are small, 
the suitable variable is again χ = χ\ε, and Eqs. (71) take the form 

d2p\dx2 + e2g(x)p = 0, 
£(0) = 1, (74) 

p(x-> oo): form given by matching. 

The appearance of the term ε 2 in Eq. (74) might give the impression 
tha t the gauge functions μκ{ε) for the problem might proceed as 1, ε 2 , ε 4 , — 
We shall adopt a somewhat cautious point of view and leave the general 
form of μκ undetermined. When ε - > 0 in Eq. (74), we are clearly left with 
a meaningful problem. I t is also evident tha t the effect of g(x) will first 
become significant for a term 0(ε 2 ) . Therefore we assume, as a tentat ive 
hypothesis, the form 

E2 fp = E2p = p(0) + μι(ε)Ρα) + εψ2\ (75) 

If Eq. (75) does not prove to have enough structure between terms 0(1) and 
0(ε 2 ) , we shall have to relabel the terms and add more gauge functions. (In 
the next section we will s tudy diffraction by a strip, where we are con
fronted with this type of problem and show how it can be dealt with in a 
systematic way.) Inserting Eq. (75) into Eq. (74) and thus developing equa
tions for j5 ( 0 ) , pa\ and p{2) we find 

p(0) = l + S0x, p^ = Sxx, 

P™ = («/y 2 )(l -e'Yi) + [S2 - («Ιγ)]χ - ψχ2, ( 7 6 ) 

where we have used the boundary conditions j5 ( 0 )(0) = 1, p(n>0)(0) = 0. The 
reader will note tha t β0, Sl9 and S2 remain to be determined by the match
ing principle, and tha t the so-called eigensolutions (general solutions to the 
^homogeneous problem) Β0χ, -δι#, and S2x are singular as oo. 

Under our assumptions about the sequence μ η , the outer solution to 
0(ε 2 ) is given by Eq. (73) as 

E2p = (A0 + + ε2Ά2)^\ (77) 

With the assumed gauge function defining Ε and with Ε = ET, Ε = ΤΕΤ, 
the matching principle has the form 

(E2E2E2-E2)p = 0. (78) 

For this simple problem the reader can easily confirm that , for Eq. (78) to 
hold, it is required tha t 

μλ = ε, A0 = 1, 
(79) 

and tha t 

S0 = 0, Βχ = %β, Β2 = α/γ. (80) 
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Therefore 

£ 2 p = [l + ( a / y 2 ) £ 2 ] e i i f , (81) 

and 

E2p = 1 + i βχε + e 2 [(a/y 2 )( l - e " " ) - i jS 2 * 2 ]. (82) 

Finally, we can form a composite expansion by using the formula (54). Thus 

a result which should be relatively simple to interpret and which provides a 
uniformly valid approximation in 0 < oo to 0(ε2). 

We could continue with a number of one-dimensional wave propagation 
problems of increasing complexity, including ones tha t fall into the class of 
W K B turning point problems (see, for example, Harper et al., 1971; Nayfeh, 
1973, Chapter 7; Murray, 1974, Chapter 6; O'Malley, 1974). However, it is 
more instructive for the purpose of this article to examine some classical 
diffraction problems, and problems relating to resonant cavities and wave
guides. For some informative MAE treatments of one-dimensional linear 
problems, the reader can consult the second chapter of Cole (1968). We shall, 
however, return to one-dimensional wave propagation in our examination of 
nonlinear acoustics. 

The present section contains all the formalism needed to understand 
other sections, which can now be read independently. 

A. INTRODUCTION 

In this section we examine some acoustic scattering and diffraction 
problems from the MAE viewpoint. We start by considering the scattering 
of a plane wave by a strip of width 2a, using MAE to find a uniformly valid 
asymptotic solution in the low frequency limit ε = Jc0a ->0 . (We shall some
times refer to ε, essentially the ratio of obstacle size to wavelength, as the 
Helmholtz number.) Without having to carry the expansion too far, we find 
tha t this problem exemplifies several interesting and important features. 
Firstly, whether the strip is hard or soft, there are a large number of eigen-
solutions to both the inner (Laplace) and outer (Helmholtz) problems, 
depending upon conditions which can be tolerated at infinity and at the 
strip edges. Secondly, logarithmic gauge functions and the "swi tchback" 
phenomenon arise early on, in the second approximation for the hard strip, 
in fact. Thirdly, an inhomogeneous Laplace equation arises in the second 
inner approximation, and in this simple case the reader can see in detail how 
to deal with this kind of situation. Fourthly, if the strip is soft the asymp
totic sequence of gauge functions appears to proceed very slowly, in inverse 
powers of (In ε), giving a situation analogous to tha t arising in plane viscous 

E 2 . 2 P = β"*[1 + (e 2 a/y 2 ) ( l - e x p { - [ i £ + (y/e)]*})], (83) 

II. Scattering and Diffraction Problems 
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flow at low Reynolds number (Van Dyke, 1964, p . 161). We shall see tha t a 
naive application of the Matching Rule Eq. (22) is quite unsatisfactory, the 
rule working for some values of (Ν, M) and failing for others. However, a 
simple change of the gauge function (In ε ) - 1 to (In ε + K)'1 effectively 
allows the whole series in inverse powers of (In ε) to be summed, leaving 
only more rapidly decreasing algebraic functions of ε, and allows the match
ing to be performed with no difficulty. 

We then go on to summarize some results obtained elsewhere for a 
more complicated problem, involving the diffraction of a plane wave by a 
semiinfinite screen of small, but finite, thickness. For this problem the 
approximate MAE method leads to simple, exact, closed-form results for 
some quantities, in contrast to the approximate purely numerical results 
which have been given previously from an " e x a c t " solution of the problem. 
The article concludes with a section which quotes some results for three-
dimensional scattering problems which may be constructively at tacked 
using MAE. The great difficulties encountered in applying MAE, as much as 
any other method, to three-dimensional scattering problems are also em
phasized. 

B. SCATTERING BY A H A R D STRIP 

We take the simplest case, in which the plane wave, with potential 
φ{ = exp(— ik 0 y — icot), is a t normal incidence to the hard strip occupying 
y = 0, \x\ <a; see Fig. 2a. Then, suppressing the time factor exp(—icot), 
(w = a0k0), the complete problem for the scattered potential is 

(V 2 + Κ2)φ = 0, (84) 

(3ldy)[<f> + exp(-ik0y)] = 0 (y = 0, \x\ <a), 

which implies tha t φ is odd in y and hence tha t 

^ = 0 (y = 0, \x\ >a). (85) 

In addition, φ must satisfy a radiation condition at infinity, and φ must 
satisfy some edge conditions of the kind 

φ = 0(1) Ρνφ = ο(\) (86) 

as ρ = [(x± a)2 + y2]1/2 ->0 . These conditions imply tha t the pressure must 
be finite and the velocity no more than integrably singular at the edges. By 
well-known theorems in diffraction theory, the problem defined by Eqs. (84) 
-(86) has a unique solution (e.g., Jones, 1964). 

Outer or Helmholtz variables are defined as 

x = k0x, y = k0y, 

Φ(ν> V) = Φ(χ> 9), (87) 
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A Β C, 
/////////// A 

D J* 

( b ) 

F I G . 2. Scattering b y a strip and conformal mapping of E q . (97). 

and we assume an outer expansion 

fa y)~t μη(εψη)(χ, y)-
n = 0 

I n outer variables, the complete problem is 

(V a + 1)£ = 0, 
(dldy)f = i (y = 0, \x\ <ε), (88) 

φ = 0 (y = 0, \x\ >e). 

When the outer expansion is substi tuted into this problem, the condition on 
dfjdy is irrelevant and all we can enforce is the condition on φ, together with 
the radiation condition. Thus 

(V 2 + l)<£ ( n ) = 0, 
0<»> = O (y = 0, \Χ\Φ0), (89) 

i.e. φ(η) is an outer eigensolution for all n. The most general (generalized) 
function satisfying Eq. (89) can easily be shown to be 

ί < " = Σ 4 ι ^ ί ) (90) 
m 

where Am(f, Θ) = H% \f) sin πιθ (m = 1, 2, . . . ) and χ = f cos 0, y = r sin Θ, 
- 7 7 - < 0 < + 7 T . 
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Now the outer and inner solutions do not both necessarily start with 
the same order term, so that , according to our scheme for numbering the 
gauge functions, we should not prejudice the issue by assuming tha t the first 
term of φ is in fact 0(μ0), i.e., the inner solution may start off with higher 
order terms than the outer solution. We therefore assume merely tha t to 
leading order 

φ ~ μΛ(ε)φ<*> = μΕΣ ARmXm(r, θ). (91) 
m 

According to the principle of Minimum Singularity (Van Dyke, 1964, p. 53), 
it is a matter of practical experience tha t only the least singular term of 
Eq. (91) is capable of matching a suitably well-behaved inner solution, and 
therefore 

φ-μζΑκΗΡΜώιθ (92) 

is the leading term, denoted by Εκφ(χ, y, ε) of the outer expansion. Terms 
corresponding to ARm with m > 1 can be included if the reader is suspicious 
of the Minimum Singularity Principle, but then matching with an inner 
solution will indeed be found to show tha t ARm = 0 for m > 1, provided the 
inner solution satisfies the edge conditions. 

Now the appropriate inner variables are evidently 

(x, y) = f(x, y) = (χ/ε, y/ε) 
and 

φ(χ, y, ε) = Τφ(χ, y, ε). (93) 

The gauge functions are assumed to be chosen so tha t φ may also be expanded 
in them, 

00 

Φ(χ, y, ε) ~ £ μη(ε)φ{η\χ, y). 
71=0 

The complete problem in inner variables is 

(V 2 + e 2 ) ^ = 0, 
8φΐθ$ = ιε (y = 0, \x\ < 1 ) , (94) 

^ = 0 (£ = 0 , 1*1 > 1 ) , 

where the edge conditions are to be enforced, but the radiation condition 
must be relinquished in favor of matching with the outer solution. When the 
inner expansion is inserted into Eq. (94), we find tha t the leading term must 
vanish identically unless its gauge function is appropriately chosen. If we 
require φ(0) to be nonzero, then there is only one possible choice for μ0(ε)— 
the distinguished limit (Cole, 1968, p. 10) μ0(ε) = ε, which preserves just 
enough structure in the differential equation and boundary conditions to 
start the expansion immediately with a nontrivial term. Then 

V2<£(0> = 0, 
3φ«»Ι8$ = ι (y = 0, \z\<l), (95) 

£<o> = o $ = 0, | * | > 1 ) , 
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which is satisfied by <£ (0 ) = iy + / o , where f0 is any inner eigensolution, i.e., 
a solution of 

v 2 / 0 = o, 
dfoldS = 0 (g = 0, \x\<l), (96) 

/o = 0 (y = 0, \x\ > l ) . 

The most general inner eigensolution can be found by conformal mapping. 
We use the imaginary unit j in this context, to avoid confusion with the i 
arising from the time dependence. Then the mapping 

/ 2 _ i \ i / 2 
w = u+jv^j\—A , (97) 

with ζ = χ +jy, takes the segment \x\ < 1, y = 0 into the whole line ν = 0, 
and the flow domain into ν > 0, as depicted in Fig. 2b. The line y = 0, \x\ > 1, 
on which / 0 = 0, maps into the imaginary axis u = 0. The eigensolution f0 

is the real par t (with respect to j) of a complex potential Q(w) which has 
constant imaginary part on ν — 0, and zero real part on u = 0, ν > 0. 

Now, in order to match the outer solutions, the potentials <£ (n ) must all be 
small as \z\ ->oo. Because of particular solutions like the iy in $ ( 0 ) , the 
eigensolutions need not be small, but can be algebraically large at infinity in 
the 2-plane. Correspondingly, in the w-plane the eigensolutions can have a 
pole of finite order at w =j. I n general, they may also have half-power 
singularities at the edges of the strip, which in the w-plane allows the com
plex potential to have algebraic growth as \w\ -> oo, and to have an alge
braic singularity as w-+0. These arguments apply, of course, only to the 
flow domain ν > 0. However, since f0 is the real part of an Ω which has zero 
imaginary part on ν = 0, Ω is analytically continuable to ν < 0, and may 
have a pole of finite order a t w = —j (identical with tha t a t w = -{-j) and 
poles of finite order at w = oo, w = 0. The most general form of Ω is thus 

Q(w) = - — - (98) 

(times any constant which is real with respect to j ) , m amd η being any 
positive or negative integers. This gives 

Q(2) = (jn/2m)(z - l ) n / 2 ( z + l ) « - » / 2 , (99) 

which clearly has all the stated properties. 
In the present case of normal incidence, symmetry between ζ — 1 and 

2 + 1 requires m = n. The resulting function Ω then has zero imaginary par t 
o n y = 0, \x\ < 1, but has zero real par t on y = 0, \x\ > 1 only when m = ± 1 , 
± 3 , ± 5 , Thus the most general symmetric inner eigenfunction is 

A m = R e J [ ( j / 2 r - 1 ( 2 2 - l ) m - 1 / 2 ] ( m = . . . , _ 2 , - 1 > 0 . + 1 , + 2....> · (100) 
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so tha t 

= e > / 4 ) f l i » ( r ) sin θ + ο(ε% 
$ = s[iy + 2iA1(z)] + o(s). ( ' 

The eigensolutions which fulfill the edge condition have m > 1; those which 
vanish at infinity have m ^ 0. As | ζ | ->oo, 

A m ~ KeMMKo-W-yjz)], (101) 

Now consider the matching principle 

(ENEM — ΕΜΕΝ)φ = 0, TENT = EN, EMT = EM, (102) 

where Τ denotes the transformation from χ ->x, Τ t ha t from x-^x, and the 
EN are the partial expansion operators through 0[μΝ(ε)]. Take Μ = R and 
then 

ΤΕκφ = μκ{ε)ΑηιΗ£\εϊ) sin θ 
~(1Ιε)μΛ(ε)ΑΛ1(-2ίΙπτ) sin θ 

to leading order. For this to match the inner expansion starting with 
μ0(ε)φ{0) = εφ(0\ we must have 

μκ(ε) = ε2. 

Thus the matching rule is to be applied with Μ = R (where μκ = ε2) and 
Ν = 0 (μ0 = ε), and we have 

TE0 ΤΕκφ = ε2ΑΒ1(-2ίΙπη sin θ. (103) 

To match this, φ(0) must vanish as \z\ oo, and yet must satisfy the edge 
conditions, so tha t the only possibility is t ha t 

£<°> = » 0 + 0 0 ^ ( 2 ) . (104) 
This gives 

E0 Τφ = ε[ίρ + «οιΛ!^)] , 
TE0 Τφ = ε[(ίνΙε) + ^Α^ζ/ε)], 

ER ΤΕ0 Τφ = ε{(%$1ε) + α 0 1 Re y[( jz/2e) - (je/4z)]} 
= iy — id01y — Ja 0 1 e 2 ( s in 0)/f, (105) 

and matching Eq. (105) with Eq. (103) then yields 

«οι = 2i, AR1 = π/4, (106) 
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C . H I G H E R ORDER APPROXIMATIONS 

We continue to higher order by observing tha t the expansion Eq. (105) 
proceeds with a term 0(ε 4 ) , 

Es TE0 Tf=- — sme-—^ sin 30. (108) 
2f Sf3 

This suggests tha t 

$ = μΒ(ε)φ™ + μ8(εψ*> + 0(μ8), 

where μ8(ε) == ε 4 and 

m = 1 

For matching with an inner solution which is a t most Ο(ε), the inner expan
sion of ε 4 $ ( 5 ί ) (ε£) must be at most 0(ε), and therefore Κ cannot exceed 3, 
so tha t 

^=ilSmHii\f)sinme. (109) 
m = 1 

The coefficient A83 can be immediately determined by using the matching 
rule with Μ = S9 N = 0, 

(Ε0Ε8-Ε8Ε0)φ = 0. (110) 

The second member of this equation is given by Eq. (108) above, while the 
first member is 

- i f ! s i n g - ^ 1 6 ^ 3 ^ , (111) 

and therefore 

4 , 3 = 77/128. (112) 

Now the next term, after 0(ε), of the inner expansion of the outer 
series as far as 0(μ8(ε)) is in fact 0(ε2) arising from the H2

ly>(f) term in Eq. 
(109) 

ΕκΤΕ8φ = Ε 0 Τ Ε 8 φ - ^ Α 8 2 ε 2 ^ . (113) 

The inner expansion therefore continues with a term 0(μκ) = 0(ε2) 

where $ ( β ) is an eigensolution which must satisfy the edge conditions and 
vanish as \z\ -> oo in order to match Eq. (113). There is nc eigensolution 
with this property, and therefore 

AS2 = 0. (114) 
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sion 

where 
μΡ(ε) = ε3 ln ε, /^ (ε ) = ε 3 , 

and we treat μΡ and μ0 as both of the same algebraic order, 0(ε 3 ) , in order 
to avoid the kind of possible errors mentioned in the Introduction. </>(P) 

is an eigensolution which we consider later. The problem for <f>iQ) involves a 
Poisson equation, 

V2<£<*> (118) 
where 

0<o) = iy + i R e y j(z2 - 1 ) 1 / 2 . 

0<Q) m u s t also satisfy the boundary conditions <j>(Q) = 0 o n f = 0, | £ | > 1, 
dfiQ)ldy = 0 on y = 0, \x\ < 1 , must vanish a t infinity, and must satisfy 
the edge conditions. 

Write 
0(Q) = ( _ ^ 3 / 3 ! ) _ { R e , ( ^ ) , (119) 

82φ/3ζ 3ζ* = £(z 2 - 1 ) 1 / 2 

z* = x—jy. 

φ = %zz*(z2 - l ) i / 2 _ ig* c o s n - i z, (120) 

and then 

or 

where 

Thus 

We may now simplify our notation a little by writing 

μκ(ε)=μ>ι(ε) = ε2· (115) 

Continuing the inner expansion of the outer series, we find tha t the next 
terms beyond 0(ε2) are 0 ( ε 3 ln ε) and 0(ε3), 

EQ fEsf = E0 ?ES$ - * Isle° ^ 
π r 

ιε3 sin 30 πε3 . Λ f if m . 
~ ~7T7 + — sin 0 - (ln r + ln ε) 

64 r 4 [π 

+ I f - 1 (1 - 2y + 2 In 2)jJ (116) 

where γ = 0.5772 . . . is the Euler constant. This suggests an inner expan-

$ ~ 4 ( 0 > + μΡ(ε)φ™ + μ0(ε)^\ (117) 
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-ΐε3{-
f3 sin θ f sin θ ε . „ . . 3 „. 

: (3 sin θ — 4 s in 3 Θ) 8ε 3 16ε 64f 

- 1 ^ sin 0(ln 2 + In f - In ε) + ( 1 - 2 s in 2 Θ) j 4 e 1 ' ' ' 16f 

+ ι _ « * · ) . ( 1 » 

This expression must match the result of applying Τ to Eq. (116), namely, 

TE0 fEs$ = - ΙΒ1ε* — - — (3 sin θ - 4 s in 3 Θ) 
π f 64f 

+ ^ sin In f + L J _ I (1 - 2y + 2 In 2 ) j J . (124) 

plus any function of ζ alone. The first term in φ does satisfy the boundary 
conditions on $ ( Q \ as does the y3 term in Eq. (119). The second contribution 
to φ can be made to satisfy the boundary conditions if a term 

\z c o s h - 1 ζ 

is added to φ. The complete expression for $ ( Q ) also satisfies the edge condi
tions, but is not small a t infinity. We must therefore add on eigensolutions 
which satisfy the edge conditions, and grow no more rapidly than z 3 a t 
infinity, to give 

= (if /3!) - i Re y [ J j | z | 2 (z 2 - l ) 1 ' 2 

- - z) cosh" 1 z] + d^A^z) + dQ2 Λ 2 (ζ). (121) 

For the eigensolution φ(Ρ) a term growing as rapidly as z 3 is not permit
ted, but there is no reason to suppose tha t the less rapidly growing eigen
solution Λ χ will not be present, so tha t we take 

^ ( Ρ ) = α Ρ 1 Λ!(ζ) . (122) 

Thus 

EQ Τφ = Ε0Τφ + ε 3 In ε <£ ( P ) + εψ^ 

and 

ES TEQ Τφ = ES TE0 ΐφ 

3 \1/M2y y3\ 3 y 3 ε sin 01 
+ £ a ° 2 [S\— ~ V3) ~ Ϊ 6 ε ~ 64 " " Γ " ] 

/ ly 1 ε sin θ\ iy3 
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The first terms in Eqs. (123) and (124) agree because of the matching which 
has already been carried out. Matching of the remaining terms gives the 
following results: 

«oi = — \TT + \i — \iy + i In 2, 
aP1 = — Ji, 

Asi = 4^(5/64 + ίπ/1β - y/8 + J ln 2), (125) 

and at the same time provides a partial check on the working in tha t 
these choices, determined from a particular set of matchings, then auto
matically ensure the matching of other terms. There is, however, a term 
(ί/8)ε 4 ln ε f'1 sin θ left unmatched in Eq. (123). This deficiency indicates 
tha t we should add a " Switchback " term 

-(ττ /16)ε 4 ln ε H^(f) sin θ (126) 

to the outer solution, for this supplies only the contribution 

(ί/8)ε 4 ln ε f ~1 sin θ 

to Eq. (124), and therefore matches the extra term in Eq. (123) without 
violating any of the other matchings we have performed. 

Thus the inner solution proceeds with the series 

0 = {ε, ε3 ln ε, ε3, ...}, 

the outer with 

φ = {ε2, ε 4 ln ε, ε 4 , . . . } , 

and we have now determined the outer series completely to 0(ε 4 ) , and the 
inner to 0(ε 3 ) . 

As a check on the results obtained, we can calculate the total power in 
the radiated wave, 

Ρ=(ρ0ω21α0) lim \φ\2 τάθ 
r^°° Jo 

and we find 

Ρ = (2p 0 ω 2/α 0)ε 4(τΓ 2/16)[1 + (5ε 2/16)(1 - 88/5) + ο(ε 2)] (127) 

where 

S = γ + In ε - 2 ln 2. 

This agrees exactly with results given by Bowman et al. (1969, p . 210). I t is 
clear, moreover, tha t the MAE calculation presented here can be carried out 
to any order in ε, using precisely the methods which have been needed to 
derive Eq. (127). Further, tha t while some of the many classical methods which 
have been derived to at tack this problem may quickly yield a number of 
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terms in the expansion for particular quantities, such as the pressure on 
the strip, or the far-field scattering coefficient, there is no method superior 
to the MAE method for providing a detailed and readily interpretable 
picture of the entire field. Usually it is convenient to have tha t picture in 
the form of separate inner and outer expansions, as we are normally inter
ested in either the pressure field on the scattering surface or in the distant 
radiation field. Composite expansions can, however, be formed if desired 
(see Van Dyke, 1964, p . 94). Thus, from Eqs. (107) a composite approxima
tion, valid to 0(e2) for f = 0(1) and to 0(e) for f = 0(1), may be formed 
either by additive composition, giving 

φα ~ ε2(Φ) sin θ[Η?\τ) + (2i/nf)] + e[iy + 2iA 1(2)], (128) 

or by multiplicative composition, which gives the somewhat neater result 

φ„ ~ (7Tfj2i)eH^(f)\iy + 2iA1(z)]. (129) 

D. SCATTERING BY A SOFT STRIP 

Turning now to the soft strip, the boundary condition φ + e~ikoy = 0 
on (y = 0, Ix\ <a) implies tha t φ is even in y, so tha t ΰφ^ = 0 for (y = 0, 
I a; I > a). All terms of the outer expansion 

φ(χ,ΰ,ε)~Σ9η(εψη>(χ,ν) (130) 

are outer eigensolutions, with the general form 

Σ ^mH^(f) cos τηθ. (131) 
m = 0 

For the leading order term, φα) say, the Minimum Singularity Principle, or 
matching, shows t ha t only a monopole is present, with 

$™ = A10H?>W, (132) 

and to leading order 

9Mp»{er) ~ Λ ( β ) ( 2 ϋ 1 0 / π ) In ε. (133) 

Assuming an inner expansion 

fay,e)~Z9n(e)$(n)(£,y), (134) 

we see tha t the leading term will be nonzero (implying A10 Φ 0) only if the 
leading gauge function is 

9o(e) = l> 
and tha t then 

< £ ( 0 ) = - l . (135) 

If we now take g^e) = 1/ln ε, and tentatively apply the rule 

f E0 ΤΕχφ = ΕλΤΕ0 Τφ, 
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we have Eq. (133) for the left side, —1 for the right, and hence we get 

A10 = 77*72. (136) 

Proceeding beyond Eq. (133) we have 

ΕχΤΕχφ = - ( 1 / l n e)(ln £ + l n f - l n 2 + y - ±TTI), (137) 

ΤΕχΤΕχφ = - ( 1 / l n e)(ln \f + γ - \ττι). (138) 

The first of these equations suggests tha t 

φ = - 1 + (1/ln ε)<£(1) + · · · , (139) 

in which φα) is an inner eigensolution, a harmonic function with φ(1) = 0 on 
y = 0, \x\ < 1 and with d<j>a)ldy = 0 on i/ = 0, \x\ > 1. The general form of 
this eigensolution can be found using the mapping Eq. (97) again. For the 
present case of a soft body, however, it is more convenient to use the mapping 

2 = *[u; + ( 1 / 0 ) ] . (140) 

Since this sends the strip in the z-plane into the unit circle in the w-plane, it 
is obvious tha t the general inner eigensolution is a linear combination of 
R e y In w and R e y ( $ n — w~n). The source term In w is evidently required for 
<£ ( 1 ) so tha t we assume 

<£ (1) = «! R e y ln[z + (z 2 - 1 ) 1 / 2 ] . (141) 

There are now two possibilities for determining dv Firstly, since φ 
contains no 0(1) term, we can use the matching rule 

ΤΕ1ΤΕ0φ = E0 ΤΕ^φ, (142) 

in which the left side is zero, while 

ΕλΤφ = - 1 + (1/ln ε)«! Re , ln[z + (z 2 - 1 ) 1 / 2 ] (143) 

so tha t 

E0 ΤΕλΤφ = - 1 - αλ. (144) 

Thus 

d1 = — 1. 

Alternatively, using the rule 

TE1 ΤΕλφ = Ex TEX Τφ, (145) 

the left side is given by Eq. (138) above, while from Eq. (143) the right side 
is equal to 

- 1 - d± + (1 /In ε)α1 In 2 f . (146) 

Clearly there is no choice of % which makes Eq. (138) identical with Eq. 
(146), though the choice d1 = — 1 does at least have the merit of matching 
the 0(1) terms and the terms proportional to In f/ln ε. 
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The fact tha t the matching nearly works leads us to suspect tha t a 
slight change in the gauge functions may yield expansions which have the 
structure necessary for matching to work. 

Fraenkel (1969, p. 217) has discussed this kind of situation, showing 
by example tha t three cases may arise, depending on the gauge functions. 
With the " m o s t appropr ia te" choices the principle Eq. (22) holds; with a 
less appropriate choice the principle may or may not hold, while with other 
choices there is no matching principle a t all. At present we are in the third 
position. However, experience of other problems involving inverse powers 
of In ε (for example, plane flow a t low Reynolds number, Van Dyke, 1964, 
p. 161), consideration of, say, the scattering of a plane acoustic wave by a soft 
circular cylinder, for which the total potential is given exactly by 

φι = exp(ik0r cos Θ) - + f j " ( * ? 0 ) . H£\h0r), (147) 
η = - ο ο ίΐχ\κ0α) 

and consideration of the fact tha t mere redefinition of ε by a constant factor 
involves the addition of a constant to In ε, all lead to the idea of trying 

9o(s) = 1, 9M = l/(ln ε + Κ). (148) 

Then, with notation as before, 

Ε,φ = [l/(ln ε + K)]A10H™(f), (149) 

Ε T F i - 2 i I l ° I 2 ^ ι ο ( 1 η ^ - 1 η 2 + 7 - ^ - ϋ Γ ) 
1 1 9 π π (Ιηε + Κ) 

while 

Ε1Τφ=-1+ [l/(ln ε + #) ]« i Re , ln[z + (z - 1 ) 1 / 2 ] (150) 

and 

Ε^Ε^φ = - 1 + [djiln ε + K)][-(\n ε + Κ) + Κ + In 2f]. 

Now the rules 

TE0 ΤΕλφ = ExfEQ Τ φ 

and 

TE1TE0 φ = Ε0 ΤΕλ Τ φ 

lead to the same choice of A10 and dx as previously, namely A10 = πι/2, 
dx= — 1 . However, the rule Eq. (145) which failed before now requires 

— (K + In 2f) = (2iJf1 0/7R)(ln f - In 2 + γ - \πί) 

which is satisfied if 

Κ = γ — \Ή% — In 4. (151) 
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E. DIFFRACTION BY A T H I C K PLATE 

As a demonstration of the full power of the MAE technique we examine 
briefly the problem of the diffraction of a plane wave by a semiinfinite 
rigid plate of small but finite thickness 2a, the expansion parameter being 
the Helmholtz number 8 = k0a (Crighton and Leppington, 1973). Although 
the outer solutions here are much more complicated than the eigensolutions 
of Sections 11, Β and C above, the principle is just the same; an outer wave-
field with boundary conditions appropriate to a zero-thickness half-plane 
is matched to an inner incompressible field describing the details of the 
flow around the blunt edge of the plate. 

Thus the matching is satisfactorily accomplished, and leads quite 
naturally to the introduction of the parameter 

Κ + ln ε == l n ( p 0 a) + y — ^πΐ, 

whose origin in other approximate treatments of this kind of problem is 
normally rather obscure. Further, what appeared earlier to take the form of 
a very slow expansion in inverse powers of ln ε, 

φ = ( l / ln ε )^ 1 » + [l/(ln ε)2]<£<2> + · · · , (152) 

is now seen to arise simply from the binomial expansion of (ln ε + i f ) - 1 . 
We have in fact summed the logarithmic series, and the second term in the 
new outer expansion is of algebraic order in ε. To see this, expand Eq. (150) 
to the next term beyond <7ι(ε), 

Ε TE Τ ό - - ( Κ + 1 η 2 η I c ° C ° s 2 g 

2 1 9 (ln ε + Κ) (ln ε + Κ) 4f 2 ' 

This suggests tha t the outer expansion takes the form 

φ ~ [l/(ln ε + #)]<? ( 1 ) + [ε2/(1η ε + Κ)]φ™ + εψ3) + · · · (153) 

where we should again treat the last two terms simply as both 0(ε 2 ) . Note, 
however, tha t there is no reason why a switchback effect should not occur, 
forcing us to introduce an earlier term with gauge function ε2(1η ε + Κ), for 
example. In fact tha t does not occur at this stage, though it does at 0(ε 6 ) , 
where the gauge functions ε6(1η ε + Κ)2, ε6(1η ε + Κ), ε 6 , ε6(\η ε + K)'1, 
and ε6(1η ε-\- Κ)~2 are all needed (cf. Bowman etal., 1969, p. 190). Pursuit 
of higher order terms for this problem is an arduous business, though in 
principle it can be accomplished to any order using only the methods which 
have already been demonstrated in this article. The interested reader is 
recommended to look at the somewhat simpler problem of scattering by a 
soft circular cylinder, for which the exact solution Eq. (147) will serve as a 
ready check on the working. Harper (1969) has examined this problem in 
detail from the MAE viewpoint, showing how the time-harmonic results 
can be used in a Fourier synthesis to describe transient pulse scattering by a 
soft cylinder. 
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This problem has been at tacked by other authors using a formally 
exact extension of the Wiener-Hopf method. In particular, Jones (1953) 
gives a contour integral solution, valid for arbitrary ε, involving an infinite 
sequence of parameters which are themselves the solutions of an infinite 
system of linear algebraic equations with coefficients dependent on ε. For 
ε <̂  1 this system can be truncated to a small closed finite system, and the 
parameters have purely numerical values which can be found approximately. 
I n the limit ε -> 0, the parameters have a simple interpretation in terms of 
the Fourier coefficients of the pressure across the end face of the plate, 
and a simple interpretation of the effect of finite thickness on the distant 
diffracted sound field can also be given. 

The specific results obtained by J ones are tha t the first few parameters 
have the approximate values 

A± = 0.3481, ^ 3 = 0.0543, 

A5 = 0.0229, ΑΊ = 0 .0130, . . . (154) 

and tha t to 0(ε) the distant field of the thick plate is identical with t ha t of a 
parallel plate duct of width 2a whose plates are longer than the plate faces 
by an amount 

L = 0.22a, (155) 

apar t from an obvious monopole effect associated with plane wave propaga
tion down the duct. 

I t is perhaps remarkable t ha t the approximate MAE method improves 
on these results by providing exact closed form expressions. Moreover, the 
MAE method can be developed much further than the " e x a c t " method, 
though admittedly the process is very laborious, and in this problem it 
illustrates in a very striking manner the danger of failing to include all 
logarithmic terms with those of the same algebraic order in performing the 
matching. 

Suppose the plate occupies χ < 0, | y \ <a with a plane incident wave 
exp[—ik 0(x cos θ0 + y sin θ0)]. Then the scattered field satisfies 

(V 2 + Κ2)φ = 0, 
d$\dy = ik0 sin θ0 exp( — ik0 χ cos θ0 =Ρ %ε sin θ0) (y = ± a, χ < 0), 

d$jdx = ik0 cos θ0 exp( — ik0 y sin θ0) (χ = 0, —a <y < + a), 

with no more than an integrable singularity in V<£ at the corners, and with a 
radiation condition at infinity. Defining outer coordinates as χ — A/Q x, y — 
k0 y, it is found tha t the outer expansion takes the form 

φ(χ, y; ε) ~ φ(0) + ε In ε φα) + ε φ(2) 

+ ε2 1η 2 ε <£ (3 ) + ε 2 1η ε φ™ + εψ5> + 0(ε 3 ) , (156) 
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while in inner coordinates χ = χ/ε, y = yje, 

fa 9; ε) ~ ε 1 / 2 <£ ( 0 ) + ε <£(1) + ε312 ln ε <£(2) 

+ ε 3 / 2 <£ ( 3 ) + ε2 ln ε <£(4) + εψ5) + 0 ( ε 5 / 2 ) , (157) 

(using a notation more convenient here than our usual one). The first outer 
solution </>(0) is Sommerfeld's solution for the zero-thickness problem, 

<£ (0 ) = \ e x p [ - i f cos (0 + 0O)] ~ i exp[—if cos (0 - 0O)] 
- J e x p [ - i f cos (0 + 0) o] erf { β - π ί / 4 ( 2 0 1 / 2 cos[(0 + 0 o)/2]} 
- £ e x p [ - i f cos (0 - 0O)] erf { - e ~ J l i / 4 ( 2 f ) 1 / 2 cos [(0 - 0 o)/2}]. (158) 

This fails to describe the field correctly only within a circular neighborhood 
of radius 0(a) around the plate edge, and it is therefore appropriate to stretch 
both of the coordinates in the same way. We find then tha t the inner be
havior of <£ (0) is 

<£ ( 0 ) (EF, 0) - £ 1 / 2 ( 2 3 / 2 ^ ^ / 4 ^ 1 / 2 ^ 1 / 2 s i n ^β) sin (0 o/2). (159) 

The first inner solution <£ (0) is harmonic, with zero normal derivative 
over the whole of the thick plate ( £ < 0 , \y\ < 1), and with behavior 
F I / 2 sin (0/2) as f -> oo in order to match Eq. (159). I t is proportional to the 
real par t of a complex potential Ω(#) = w, where 

- \ t t ( z + i) = vb(w2 - 1 ) 1 / 2 - ln [w + (u>2 - I)1'2] (160) 

maps the flow domain into Im vb > 0, the surface of the plate into Im w = 0, 
and the corners into vb = ± 1 . 

Now although Eq. (160) defines w implicitly in terms of z, the Fourier 
coefficients of the potential across the end face, £ = 0, — 1 < y < + 1, can 
be found explicitly, and the result for the quantities A2n + 1 is 

A ^ = 2 ^ ) [ j i n + ^ - j A n + ^ ) ] ' m ) 

the first few values of which agree with those in Eq. (154) to within the 
numerical accuracy of those results. By continuing the outer expansion 
through Ο(ε) and matching it to the inner expansion through 0(ε), one can 
also show tha t the so-called " end correction " L is given exactly by 

L = α(1η 2)/π, (162) 

which agrees numerically with Eq. (155). Further, as if the numerical agree
ment were not a sufficiently convincing demonstration of the validity of 
the MAE approach, it was shown by Crighton and Leppington (1973) tha t 
Eq. (161) does indeed constitute the exact solution of the full infinite system 
of equations whose approximate numerical solution is given by Eq. (154), 
and tha t a certain infinite series involving the A2n + 1 can be summed exactly 
to produce the result Eq. (162) for the end correction. 



2. Acoustics and Matched Expansions 109 

In the calculation of higher order terms an interesting phenomenon 
presents itself. If one at tempts to t reat logarithmic and algebraic gauge 
functions independently, then the outer 0(ε2 In 2 ε) term can be found and 
matched to the inner solution in an apparently perfectly satisfactory way— 
tha t is, the right functional forms arise from inner and outer expansions, 
and there are just enough matching equations to determine all the un
knowns uniquely. However, one finds tha t the asymptotic form of φ(3) is 
then not symmetric in the angles θ, θ0, as is required at all orders by the 
Reciprocal Theorem, permitting the interchange of source and receiver. 
Without this additional check one would not suspect any error in φ{3). Of 
course, a t even higher order some inconsistency would be bound to arise, but 
then one might not be able to carry the calculations through to a sufficiently 
high order for the error to be revealed. 

This then serves as another warning as to the importance of assessing 
orders of magnitude on algebraic grounds alone [if φ(3), <£ (4 ) and φ(5) are all 
t reated as 0(ε2) and taken together in a " block " matching then it is found 
that , as f ->oo, these functions are indeed each symmetric in θ and θ0], 
and of the danger in regarding consistency alone as a sufficient justification 
for either the form of an expansion or for the form of a matching rule. 

F . THREE-DIMENSIONAL PROBLEMS 

Three-dimensional scattering problems at low Helmholtz number can 
in principle be treated in just the same way as the problems already discussed 
here. In practice, however, we are limited by the relative scarcity of solutions 
to the inner problem in three dimensions, unless the scattering body coin
cides with a coordinate surface in one of the coordinate systems in which the 
Laplace equation is separable. The reader will find it a straightforward 
matter, as suggested by Kanwal (1967), for example, to derive several 
terms in the inner and outer series for the scattering of a plane wave φ1 = 
exp (— ik0r cos Θ) by a sphere r = a, in the limit ε = koa->0. The results 
should be compared with those obtained by applying the inner and outer 
limit processes to the exact solutions 

φ=-Σ (-i)n(2n + l) ^ f L A a ) ( i 0 r ) P n ( c o s f l ) , (163) 

Φ = ~Σ (-i)n(2n+l) J^h^(k0r)Pn(cose), (164) 
n = o Λ ; Ι ; (ε) 

valid, respectively, for the soft sphere and the hard sphere, with φ denoting 
the scattered potential. Note t ha t the solution Eq. (163) indicates tha t the 
difficulties experienced in Section I I , D are likely to arise only in two-dimen
sional scattering problems with soft surfaces. 

A more taxing problem in three dimensions is created by the scattering 
of an axially incident plane wave φ*= exp ik0z by a paraboloid of revolution 
η — <ηχ, the paraboloidal coordinates being defined by χ = 2(ξη)112 cos α, 
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y = 2(ξη)112 sin α, ζ = ξ — 77. rji may be interpreted as one-half of the radius 
of curvature at the nose, and in the low frequency limit ε = k0 η1 ->0 . Again, 
the results should be compared with those derived from the exact solutions 

, = _ Γ JTT — Si(2fc0 η) Ci(2fc0 η) 1 i k Q Z 

9 | > - S i ( 2 M i ) + * WPKviU 

ώ = ( fr-Si(2k0ri) + iCi(2kQV) \ e i k Q , 
9 \(e2ik^lk0ηι) - [ΐττ - Si(2fc0 η ι ) + i Ci(2k0 ηι)]) ' 

for the soft and hard surface, respectively. These solutions are given by 
Bowman et al. (1969, pp. 602 and 611). The sine and cosine integral functions 
are defined as 

Si{x) • (sin t)jt dt, Gi(x) = — (cos t)jt dt 
ο i : 

A vastly more difficult problem is created by the three-dimensional analog 
of the problem of Section 11, Ε—that of the scattering by a semiinfinite 
circular rod in the low frequency limit. Matched Expansions would seem the 
ideal technique for attacking this problem, yet it is impossible to make any 
progress short of solving the entire problem. The first-order inner flow is 
simply tha t of uniform incompressible streaming past the rod — oo < χ < 0, 
f < l , which at present can be found only with the aid of Jones ' (1953, 
1955) modified Wiener-Hopf method, which, as in Section Ι Ι ,Ε , reduces 
the problem to tha t of numerical inversion of an infinite matrix—just the 
kind of problem we hope to circumvent by using MAE. Moreover, technical 
difficulties often arise in the solution of purely incompressible flow problems 
by the Wiener-Hopf method, and what is normally taken is the limit k0 ->0 
of the compressible problem, so tha t even the first inner flow can only be 
found at present by determining the " e x a c t " solution by the method we 
hoped to avoid. This sort of difficulty sets a real limitation on the usefulness 
of purely analytical applications of MAE in three-dimensional scattering 
problems. Though the analytical difficulties associated with inner problems 
in three dimensions are quite severe, there is however a real possibility 
tha t matching can be very useful in a practical sense when combined with 
numerical or experimental data. A good example of this viewpoint can be 
seen in the work of Landahl et al. (1971), where near field pressure da ta taken 
in a wind tunnel are matched to analytical outer fields to yield sonic boom 
signatures. 

III. Acoustic Waveguides 

A. INTRODUCTION 

Problems of acoustic waves in guides provide another example of how 
MAE unifies and extends classical ideas. As in the section on diffraction 
problems, attention is confined to linear problems. No a t tempt to review 
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the long history of this class of problems and the various ad hoc schemes 
developed to deal with them will be given. However, we shall simply indicate 
how scaling ideas and recognition of singular regions can be used to develop, 
extend, and render more precise the notions used to deal with such problems. 

As a first step we show how considerations of scale lead to a formal 
scheme which gives, for the equation obeyed by the lowest order term, 
the Webster Horn Equation (for a discussion of this equation, see Eisner, 
1964). Our derivation is an extension, to the time dependent three-dimen
sional case, of the derivation given in Lesser and Lewis (1972a). The deriva
tion gives clear conditions for the applicability of the scheme which applies 
when the scale of the guide variation is comparable to, and the guide dia
meter is small in relation to a typical wavelength. 

If these conditions break down in some region of the guide, coordinate 
stretching leads to an equivalent static problem whose solution matches 
the Webster Horn expansion. In effect this provides a formalization of the 
ideas of Rayleigh (1945, Art. 264), which have been applied to a number of 
problems, as described, for example, by Morse and Ingard (1968, Chapter 9). 

To indicate the advantage of the formal MAE approach, we investigate 
the singularity introduced into the Webster expansion by a small slit in the 
guide wall. This forces us to introduce a third expansion, valid in the region 
exterior to the guide, which describes the radiation from the slit. The prob
lem thus formulated is easily solved by asymptotic expansions, though 
an exact solution would present great difficulties. We are also given an 
opportunity to show how the matching formula can be used to calculate a 
scattering matrix for the slit. 

The section closes with a brief discussion of the case where the guide 
width varies slowly on the scale of the average width and the wavelength 
is of the order of the width. As well as being important in its own right, 
this problem demonstrates the ready applicability of matching methods in 
contexts where other singular perturbation techniques (such as multiple 
scaling or averaging methods; see, for example, Nayfeh, 1973) have almost 
invariably been used in the literature. 

B . T H E LONG WAVELENGTH APPROXIMATION AND THE W E B S T E R H O R N 
EQUATION 

The Webster Horn equation has played an important role in duct 
acoustics and it is of some interest to see how it fits into a more complete 
expansion scheme which would permit the estimation of errors and the 
calculation of higher order terms. The equation is expected to give a reason
able representation of the plane wave mode traveling in a guide where the 
guide width is small compared to the wavelength and the guide cross sec
tional area varies slowly with respect to the average guide diameter. Thus 
we shall scale the acoustic equations and boundary conditions in accordance 
with these ideas. The situation under consideration is shown in Fig. 3, in 
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F I G . 3. D u c t of slowly varying cross section. 

If the duct walls are hard, the condition of no flow through the wall gives 
tha t 

vl + HgO2lr = efu (169) 

on 
r = Hh, 

where q = (u, v1, v2) are the x, r, and θ velocity components. The acoustic 
equations are 

Po(d<ildt) + Vp = 0 (170) 
and 

(dpldt) + Poa0*(V -q) = 0. (171) 

The concept of wavelength is introduced by considering tha t a typical pulse 
has a time scale Τ and tha t the Helmholtz number 

k = LI(a0T)=0(l). (172) 

which Η is the typical sectional dimension and L is the longitudinal length 
scale, so tha t the guide shape is given by 

r = Hh(x/L, 0), (167) 

where h is dimensionless and 

dh/d(xiL)=f(xlL, 0) = O(i), 
dh/dd = g(x/L, Θ) = 0(1), (168) 

as 
£T/L = e ->0 . 
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If we consider the guide to be driven by a piston at large negative χ 
with a mean velocity U the pressure scale will be p0a0U. Also the boundary 
relation (169) indicates tha t vju and v2ju are 0(ε). The profile variation 
function and the requirements on its derivatives, (168), indicate tha t L and 
Η are the appropriate longitudinal and cross sectional length scales. There
fore we define the " Webster variables " as 

l = t/T, x = x/L, f = rjH 
a = ujU, v1 = v1/eUt v2 = v2leU) (173) 

p=pl(Poa0 U). 

If V 1 = (d/df, (I/f) d/dO) is defined as the cross sectional gradient and q = 
(ϋχ, ϋ2) is the cross sectional velocity vector, the equations in Webster 
variables are 

k(duldf) + (dp/dx) = 0, (174) 

e2k{d^dl) + V 1 ? = 0, (175) 
and 

k(dpldl) + (du/dx) + V 1 · q = 0. (176) 
If η = (1, g/r) is the component of a normal vector in a cross sectional plane, 
the boundary condition (169) is 

(n · q) =fu on y = h. (177) 

We define the leading term in the "Webster expansion" by 

lim p(x, f, Θ, I, e) = p™{x, r, θ, I). (178) 

Application of this limit to Eqs. (174)-(177) gives 

V y 0 ) = 0, (179) 
and hence 

β ( 0> = F(x, I). (180) 

Taking time derivatives and some simple algebraic manipulation gives 

V 1 · w = (llk)(32Fldx2 - k2 d2F\dl2) (181) 
and 

η · w = -{\jk)fdFjdx on f = h, (182) 

where the transverse acceleration is 

w = (a/ai)q (0 )-
Now integrate V 1 · w over a cross section and apply the Gauss theorem to 
obtain 

i f V 1 · w dAx = \ (w - n) da. (183) 
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V 1 · w ί ί dAf = A(z)W 
J J A * 

9 ) ^ 1 d. 
dx k)SAI 

IdF f * a A ( M ) . , - a,.a 

1 3F d f 2 * l 7 θ Λ Λ 

i.e., 

A; (ΆΑ ^ ) 

3F 
dx 

(184) 

Thus we arrive at the three-dimensional time dependent form of the Webster 
Horn Equation 

d2F 
~3&' Μ - * " * · ( 1 8 5 ) 

where 

and 

Β (0 ) = ^ 

du^/dt = - ( i / i ) a^/a*, 
(186) 

The integration of (187) to find q ( 0 ) in the general case is nontrivial, except 
in the special case of the two-dimensional duct. 

C. RADIATION FROM AN O P E N SLIT IN A W A V E G U I D E IN THE LONG 
WAVELENGTH LIMIT 

Our derivation of the Webster Horn equation by scaling arguments 
indicates tha t the perturbation series based on Webster variables and limits 
fails, i.e. shows singular behavior, when the derivative of the guide width 
variation function becomes large. We shall now demonstrate how MAE's 
can be used to t reat a problem where the Webster expansion becomes 
singular. 

The flux integral in Eq. (183) can be evaluated in terms of the boundary 
condition (182) and V 1 · w is, by Eq. (181), a function of χ and I only. There
fore 
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To keep matters simple we will consider a straight-walled two-dimen
sional duct with a slit, the slit dimension being small on the scale of a wave
length. Also we shall restrict ourselves to the case of harmonic excitation, 
with a time dependence e - i i where Τ the time scale is ω " 1 , the reciprocal 
of the angular frequency. The generalization to the case of varying duct 
width is straightforward, and examples of this type of problem can be found 
in Lesser and Lewis (1972a,b). The geometry of the problem is shown in 
Fig. 4a, which is in the plane of the Webster variables (χ, y) = (x/L, y/H). 

-A 

C D 

f 

% E - 0Q.) 

Wo 

A B< C' 

( b ) 

F I G . 4. Geometry of slit in a parallel p late waveguide and conformal mapping 
defined b y E q s . (216)-(218). 

The size of the slit is 2σΗ (in this problem, with no variation in h, we 
take L = unit length and k = ωΣ/α0). We assume the excitation is a t positive 
and negative infinity in the duct, t ha t only outgoing waves are scattered 
to infinity, and tha t the edge conditions [used previously in our t rea tment 
of scattering problems, Eq. (86)] are satisfied a t points Β and F . I n the in
terior of the duct, narrow compared with the wavelength, the asymptotic 
solution is governed by the Webster series, and since the excitation for the 
present problem arises from the duct we take the Webster variable formu
lation as a natural starting point, so t ha t 

—iku + px = 0, 

-ie2kv + py = 0, 

(188) 

(189) 

and 

—ikp + u£ + vy = 0, (190) 
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(βΛ=8ίαΛ. 
VPS/ \ a 2 / 

(197) 

From the reciprocity theorem S12=S21, and from the symmetry of the 
present problem Stl= S22. 

One of our tasks is to calculate an asymptotic representation for 89 

^ Σ Μ ^ ( η ) · (198) 

As radiation takes place from the slit, S will not be unitary and another 
task is to calculate and specify the characteristics of the radiation field. 
Because the slit width is small on the wavelength scale, we will be able to 
specify the radiation field in terms of multipoles located at the center of 
the slit. 

We shall designate the Webster series valid for χ < — εσ by 

Ρι = ΣΜίη> (199) 

and the series valid for χ > εσ by 

Α = Σ ^ η ) · ( 2 0 ° ) 

We assume tha t the excitation conditions are such tha t the leading 
gauge function μ0 = 1. Because the duct width is fixed, Eqs. (188)-(190) 
show tha t for any η 

Ρίη.2 = « 1 * 2 β * i k i + βίη,1 β ± i k i . (201) 

As the limit expansion based on Webster variables fails near the slit, 
βχ and β2 cannot be directly related to one another. To treat the singular 

with the boundary conditions 

v = 0 on y = 0, (191) 

v = 0 on y = l, \x\ > σε. (192) 

We assume general excitation conditions in the duct, i.e., 

β ~ ^e*** as X-+—CC, | y | < l , (193) 

β ~ oi2e~ikx as # - > + o o , | y | < l . (194) 

This will result in reflected waves given by 

β~βιβ-*"* as x->-oo, | y | < l , (195) 

β~β2ϊ*~χ as £ -> + oo, \y\ <l- (196) 

The reflected wave amplitudes will of course be related to the incident wave 
amplitudes by the duct geometry. This relation is given by the scattering 
matrix S, defined by 
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behavior of the Webster expansion near x = 0 we introduce the Laplace 
variables 

T(x, y) = (ex, y) ( 2 0 2 ) 

and 

Τ(ϋ) = ϋ/ε. 

The equations in Laplace variables take the form: 

—eiku + Pi = 0, ( 2 0 3 ) 

—eikv+py = 0, ( 2 0 4 ) 

—eikp + u-x + vv = 0 . ( 2 0 5 ) 

Designate terms with integral powers of ε such as enp(m) by enp(n). These 
are terms related to gauge functions directly expected from the form of 
Eqs. ( 2 0 3 ) - ( 2 0 5 ) . In addition, we can expect " swi tchback" terms of inter
mediate orders. Thus 

ρ = 0<O> + μ±ρα) + . . . + £pa) + . . . Β ( 2 0 6 ) 

Also define the " u p to εη" expansion operator by 

Ein)p=p™ + · • • + pm(e)V{m) + e n £ ( m + 1 ) . ( 2 0 7 ) 

Formal insertion of Ea)p into Eqs. ( 2 0 3 ) - ( 2 0 5 ) shows that , with q = (u, v), 

pW = Ci)0) = constant, 

ξ ( Ο ) = + ( i t ) - ^ ( 1 ) , q ( I , = + ( i t ) - 1 V # f ( a ) , ( 2 0 8 ) 

V 2 ^ ( 1 ) = 0 , V*p(2)=-ikp«>\ 

To determine solutions to these equations we need conditions as 

£ -> i oo in I I < 1 

and as 

F = ( « A + J F A ) 1 / A - > O O , \y\ > 1 . 

The former are given by matching with the two Webster region series for 
p1 and j9 2 · The latter present a problem, as the source solutions of Laplace's 
equation in two dimensions will be singular as f-> oo, and we have a situa
tion similar to tha t existing in our t rea tment of the scattering problem. To 
account for the singular behavior as f -> oo it is thus natural to t ry a variable 
transformation tha t will lead to a limit process expansion whose terms 
satisfy the Helmholtz equation. 

The most convenient choice is given by 

f(x-,9) = (xle,ule+l), ( 2 0 9 ) 
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so tha t 

V2fi + k2<p = 0, (210) 

4 = ( i t ) - 1 Vp. (211) 
In the limit ε ->0 , with (x, #) fixed, the Laplace region shrinks, crudely 
speaking, to the point f = 0. The solution to (210) satisfying the wall boun
dary condition and the outgoing wave condition will thus be 

fn> = £ C^H^\M) cos m £ (212) 
m = 0 

f = (f2 + 0 2 ) 1 / 2 , 5 = t a n " 1 (y/x). 

As we have considered this type of situation in our t reatment of scat
tering problems we will not carry all the terms given in (212), and will give 
only heuristic arguments for the terms retained. The reader can verify tha t 
the terms ignored cannot be suitably matched, i.e. can be rejected on the 
basis of the matching principle. 

Thus as £ ->0 the slit vanishes and we would expect no 0(1) radiation 
field; in fact, as the slit area is proportional to ε, we expect the first nonzero 
term in φ to be E(1)p = ερα). Because of the behavior of H£\p) as p->0, 
namely 

the only eigensolution in pa) tha t will match with the Laplace region in 
(208) is H^{kf). Therefore, we take 

E{1)f> = Cil)0H$\M). (213) 

We could continue with the general approach, not labeling terms in the 
expansion until we have filled in " switchback " terms as in our t rea tment of 
scattering. However, it is reasonably clear tha t the logarithmic behavior of 

will lead to the presence of ln ε terms in the gauge functions, and either 
by trial and error or by a deductive procedure it is found tha t 

Oxn} = { l > c l n e , e , . . . } (214) 

and from now on we shall number terms accordingly, so tha t 

Εα)φ = Ε2φ = ΰρΗΡ{Μ). (215) 

In the Laplace region we have 

E2p = <7<°> + e ln ε ΰ£> + ερ™(χ, y) 

where V 2 j5 ( 2 ) = 0. To resolve this problem we make use of conformal mapping, 
again using j for the complex variable to avoid confusion with the i of the 
time dependence. Thus with ζ = χ +jy, w = ξ the mapping 

z=j + w + (1/π) ln (w + b)- (1/π) ln (w - b) (216) 
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as 

and as 

£ - > + oo, 0<y<l, 

w==b_2b βχρ[ττ(6 - ζ)] + 0{βχρ[2ττ(δ - ζ)]}, (221) 

^ = * - ί - Γ 7 ^ + θ ( ρ ) . (222) 

oo, y>l 

2b_ 
π(ζ-j) 

The Webster expansions 

E2 Pi = Pi0) + « In ε p^ + ep{2\ χ < 0 
and 

E2P2 = Ρί0) + e In ε p^ + ε^ 2

2 ) , ά > 0 

are matched to the Laplace expansion by 

(TE2 fE2 - E2 TE2 f)p = 0, (223) 

while the Helmholtz expansion is matched by using 

(fE2 TE2 - E2 ΪΕ2 ϊ)φ = 0. (224) 

with 

W o = {6[6 + (2/TT)]} 1 ' 2 (217) 

and 

σ = w0 + (1/TT) In (w0 + b)- (l/ττ) In (wG - b), (218) 

takes the upper half ζ plane into the upper half w plane, with the guide 
sides along the ξ axis as indicated in Fig. 4b. 

At the points Β and F we can add eigensolutions t ha t satisfy the edge 
and matching conditions, while a t C and Ε we must place source singularities 
corresponding to the behavior required by matching with the Webster 
regions. Near the edges [the mapping (216) shows for z->a+j t ha t w — 
wo ~ (z — σ — j)ll2]> a term such as (w —w0)m corresponds to (ζ — σ —j)ml2, 
so tha t the edge conditions require m = 2, 3, 4, . . . . Matching eliminates all 
such eigenfunctions from p{2) as can be readily verified. Therefore, we have 

p ( 2> = Re/(?< 2 ) + <?ί0) In (to + b) + C™ In (w - 6)]. (219) 

As Eq. (216) gives w(z) implicitly, matching requires the derivation of 
the asymptotic behavior of Eq. (216) as w->±b, for which R e y Z - ^ + oo in 
0 < y < l ,and as \ w\ -> ± oo, for which ζ -> oo, y > 1. By a relatively straight
forward calculation it can be established tha t as 

£ - > —oo, 0 < y < l , 

w = -b + 2b βχρ[ττ(ζ + b)] + 0{βχρ[2ττ(ζ + 6)]}, (220) 
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α(0) _|_ βω) = £(o>, (Matching of E2 p1 with E2p) 
α ( 0 ) - ^ ) = ( π / ^ ( 2 ) 

a<2> + # 2 > = <?<,2)

 + ^ 6 ^ ( 2 ) + ( £ < 2 > + l n 2b, 

a (

2

0 > + j8 (

2

0 ) - C(

0°\ (Matching of E2p2 with E2p) 
«P-P2» = (nlik)C<2*\ 

a ( 2 ) + ^ ( 2 ) = C<2) + π ^ 2

2 > + (C«> + <7<2>) In 2b, 

<%°> = 0, (Matching of E2ρ with E2p) 
C^-(C™ + C2») = 0, 

<^2>=A(?<2>, 
C[v + C2v = (2iln)U™, 

(225) 

(226) 

(227) 

where Λ = 1 + (2ίΙπ)(γ + lnfc/2); γ = Euler Constant. Thus matching 
gives us 12 equations for the 18 constants α, β, C, C Hence we can solve for 
12 of the constants in terms of a suitably chosen set of 6. We choose 

α = (««», a (

2 °\ a<2>, a(

2

2>) 

as our known constants representing the amplitudes of the incoming waves 
from ± o o in the strip. From Eq. (197) or (198) we now seek the scattering 
matrix S(e). Thus manipulating Eqs. (225)-(227) we find, using Eq. (198), tha t 

E2S = S™ + ε ln ε + ε£< 2 ), (228) 

S < O > = _ / = _ G J), (229) 

= (2Λ/ΤΓ)Ι, (230) 

,ΟΛ (r + 2ikb r \ 

where 

r = JcA + (2Λ/ττ) In 2b. (232) 

As a partial check on our work we note tha t the components of S satisfy 
the symmetry properties required by the problem. The source strength of 
the radiation term is 

£ < 2 ) = &(αί0 ) + α2°>) (233) 

As the procedure is now familiar we simply give the results as read off from 
a straightforward application of Eqs. (223) and (224); 
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and the constants for the Laplace region solution are 

C(

0

2) = kA(oc[0) + 4 0 ) ) , 
C{2) = (2ik^)oc[°\ 
<7<2> = (2ik^)a2°\ 

(234) 

The dependence of b on σ is given by (217) and (218). The calculation of 
higher order terms involves careful at tention to eigenfunctions arising from 
the edge. However, p(2) still only involves the solution of a homogeneous 
equation. In addition, enough information already is contained in E2p 
to calculate some higher order radiation terms. 

Another problem closely connected with waveguides, the calculation of 
eigenfunctions and eigenvalues in a closed cavity, can also be dealt with 
by MAE. This application can be found in Lesser and Lewis (1974), where 
the effect of a hard scatterer, small on the wavelength scale, is t reated by 
the MAE method. Other problems which may be treated in this fashion 
are easily found, and solved, for example, propagation past an iris in a parallel 
plate waveguide, radiation from the end of a parallel plate waveguide with 
either a small flange or an infinite flange fitted, and propagation past a 
T-junction in a parallel plate waveguide. 

D . T H E SLOWLY VARYING G U I D E IN THE SHORT WAVELENGTH L I M I T 

A common problem of great practical interest in waveguide theory is 
the calculation of waveguide modes when the parameters defining the 
guide are variable. For example, the guide may be curved, have variable 
cross sectional area, and contain material whose sound speed varies. I n 
Section I I I , Β we examined one case where a perturbation t reatment proved 
useful, tha t where the guide width variation scale L was large compared 
with the guide width H, and l/& 0, the wave or pulse length scale was 
large compared with H, but approximately the same as L. I n terms of the 
parameter e = H/L this implies ε < 1 and kQL = 0(l), where k0 is the 
dimensional wavenumber. A brief t reatment will now be given of a case 
where the guide is not narrow compared with the wavelength, and thus we 
now assume tha t 

k0H = O(l) as (235) 

The formal problem to be solved is now 

V22> + k0

2p = 0 (236) 

in 

0 < # < o o , 0 <y < Hh^L), 
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with boundary conditions appropriate to hard walls given by 

py(x, Hh, ε) = (H/L)h'(xlL)px(x, Hh, ε), 

ρυ(χ,0,ε) = 0, (237) 

and 

h' = 0(1). 

Also, for the sake of completeness assume tha t 

p(0,y9e)=p0f(ylH), (238) 

tha t as # ->oo , A->1 , and tha t only waves traveling in the direction of 
increasing χ are allowable. The obvious scaling is to let 

y = y\H, i = zlL. 

Ρ = pIPo > k = kQH 

so tha t the problem expressed in dimensionless variables takes the form 

ε2Ρχχ + Pyy + k2p = 0 

on 

y = h, ft, = e aA'(*)fr (240) 

and on 

y = 0, p- = 0. 

If e - > 0 in Eq. (240) as written we arrive at a nonsensical conclusion, 
namely, 

p(0) ~ cos ky or sin ky, (241) 
p(y0) = 0 on y = 0, h, 

and as k is considered given and fixed in the limit process, the problem 
stated by Eq. (241) has no solution unless kh(x) = ηπ, η an integer. As h is 
considered to vary with χ this condition can not be expected to hold. 

One apparent way of resolving the problem is to stretch x, i.e., to let 

x = xje = x\H, y = y, (242) 

which leads to the problem 

and on 

y = h{ex) (243) 
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An examination of Eq. (243) in the limit ε ->0 shows tha t this reduces, for the 
lowest order term, to the case of a waveguide of constant width valid in the 
local region about χ = 0. As h' ceases to be denned a t this point (see Fig. 5), 
one would expect in general a need for such a local expansion about such a 
point. However, a little thought indicates t ha t such an expansion must 
eventually become nonuniform in higher order. The reason for this is t ha t the 
guide shape is t reated by a power series expansion of the upper wall condition 
as given by Eq. (243). Thus an expansion based on Eq. (242) is a local or inner 
expansion valid for regions where the scaling of Eq. (239) is inappropriate or 
η'φθ{\). 

_ INNER REGION 

oi 

C* 1 

^[ / / / * / / / / 7/"/]/ /UJ^ 

i 

F I G . 5. Inner region needed for uniform expans ion of waveguide problem. 

The problem with Eq. (240) is t ha t straightforward application of lim ε -> 0 
with χ fixed neglects the rapid phase variations expected in p. One way of 
overcoming this while remaining in the context of MAE is to introduce as 
new dependent variables 

p = e^le (244) 

for the outer region and 

p = e** (245) 

for the inner region. This leads to nonlinear equations for φ and φ, and the 
MAE method can be applied to obtain suitable matched expansions for 
φ = εφ. The algebra in such an approach is quite tedious, and for simplicity 
we shall adopt a simpler technique appropriate to obtaining the leading 
term in the outer region. Thus, assume the form 

p = P(x, y, ε) θχρ[ιΩ(£)/β]. (246) 
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Insertion of Eq. (246) into Eq. (240) gives 

Pyy + β2(*)Ρ + e(2ia'Ps + iQTP) + ε2Ρ„ = 0, (247) 

where 

/Ρ = jfea - (Ω') 2 (248) 

and ()' indicates, as always, differentiation with respect to the argument. 
If 

Ρ<°> = lim P, P^ = lim (P - P«»)le 
€-*0 €-*0 

(i.e., assuming the gauge functions are 1 and ε), then 

LBP(0) = [(d2/dy2) + β2]Ρ<0) = 0, (249) 

LBP™ = - 2 i Q ' i * 0 ) - £l"P(0\ (250) 
The boundary conditions are now 

^ 0 ) = 0 on y = 0 and y = h, (251) 

and 

Ρψ = 0 on y = 0; 
Pp = i&'h'P™ on y = h. ( 2 5 2 ) 

First consider the solution of Eq. (249). Only derivatives with respect 
to y are contained in LB . Therefore 

jfX°> = AB(x) cos β$ (253) 

and 

fi(x)h(x) = ηπ, η = 0, 1, 2, . . . , (254) 

where 

( Ω / ) 2 = ( Ρ - 0 2 ) . (255) 

The implications of Eqs. (253)-(255) should be clear to readers familiar with 
waveguide phenomena; thus 

[ Ci ( η2ττ2\112 I -
+ - l&2 ~ J ^ J * * Μ Η ( * ) cos {mryjh) 

+ e x p [ - \ \ ( P " S ^ ) 1 / 2 **] B n ( * ] ° o s ( n r r m ( 2 5 6 ) 

represents a mode given by the condition (254) (hence the replacement of 
β by η as a subscript). 

If k2 > η2ττ2\}ι2{χ), the radical in (256) is real and we can expect the 
mode to propagate. Also the phase speed of a mode varies with x, i.e., with 
the changing guide width. 
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The reader will note tha t the mode amplitudes An for waves traveling 
to the right and Bn for those to the left are not determined. Two procedures 
are needed to find them; (1) matching with an inner solution, such as one 
valid for the condition (238) or for a source or a region where h' Φ 0(1) 
(e.g., a step) and (2) consideration of the solvability of higher order problems. 

Thus Eq. (249) and the boundary condition (251) define an eigenvalue 
problem for the operator . This means tha t the forcing terms in Eqs. 
(250) and (252) must be orthogonal to the eigenfunctions of the (fortunately) 
self-adjoint operator L$ (see, e.g., Stakgold, 1967). The consistency condition 
is tha t 

j V < ° > A , J»«> - J»«>£B /»«») dy = [(PW - Pi"Pm. (257) 

which leads to the results 

An = Cnlh(Q>y>*, n>0 (258) 
and 

A0=C0l(hJc)1'2, n = 0. (259) 

As would be expected, Eq. (258) fails to yield a valid approximation when a 
mode changes from the traveling to the evanescent form, i.e., w h e n Q n = 0. 
These regions would require a t reatment using a local approximation in 
terms of a variable such as xc = (χ — χ0)\μ(ε), where Q,n(xc) = 0. The details 
of such a t reatment will be given in a forthcoming paper by Lesser. Formal 
completion of the solution for the problem posed requires meeting the condi
tion ρ = p0f (yjH) a t χ = 0 using the inner variable χ = χ/ε, and finding 
the constants C by matching. The results for the simple problem posed are 
what one would expect, i.e., only traveling modes (Ω^ real) appear in the 
outer region. 

The extension of these ideas to more intricate situations, such as a sharp 
change in h or an open end wall, affects the gauge functions but not the 
general idea of the expansion. 

We should note tha t Ahluwalia et al. (1974) have treated by quite 
similar methods the problem of propagation in a curved guide containing 
material with varying wave speeds. Unfortunately their t rea tment is marred 
by algebraic errors and is lacking in interpretation, and self-consistency. 
The ideas however are also related to work done on geometrical optics 
approximations to wave equations (Lewis and Keller, 1964) and W K B 
methods (Nayfeh, 1973). 

IV. Nonlinear Acoustics 

A. INTRODUCTION 

Up to this point, we have concentrated our at tention on problems of 
classical linear acoustics. While MAE methods provide an interesting and 
useful addition to more familiar techniques, as well as a unifying element for 
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acousticians interested in linear problems, it is in nonlinear problems tha t 
MAE's real utility is to be seen. To demonstrate how MAE can be used to 
advantage in this huge and relatively new field, we will s tudy a class of 
problems which has been discussed in a previous volume of this series (Vol
ume I IB , 1965) concerned with nonlinear acoustics—the propagation in 
one dimension of waves of finite but small amplitude. As the field of non
linear acoustics is extremely broad and our main concern is to show MAE 
at work on some relevant problems, we shall only t reat limited aspects of 
this field. 

The problem of propagation of finite amplitude waves is important 
not only in its own right, but also because it can help us better understand 
the limitations and strength of normal linear acoustic calculations carried out 
using the classical linear wave equation. As usual with the MAE approach, we 
shall see how the classical theory fits into the more complex model adopted 
for the class of problems under consideration. At the outset, we study 
the formation of a weak but finite shock wave, following the spirit of the 
t reatment given by Moran and Shen (1966). These authors considered how 
a weak shock wave develops when a piston starts moving into a quiescent 
gas whose motions obey the Navier-Stokes equations. A result of the diffu
sion effects built into these equations is tha t the initial discontinuity, caused 
by the suddenly accelerated piston, tends to smooth out. At the same time, 
the fact tha t rear portions of the wave move at the local sound speed plus 
the finite (but small) velocity of the piston causes the well-known convective 
steepening effect. The balancing of these two opposed phenomena leads to a 
traveling wave of fixed structure, which in a fluid of sufficiently small vis
cosity presents the observer with the apparent discontinuity known as a 
shock wave. For sufficiently weak waves (small piston velocity), the internal 
shock structure has a characteristic length scale large enough in comparison 
with the mean free path of the gas to justify a t reatment based on the con
t inuum approximation implicit in the use of the Navier-Stokes equation. 
For a more detailed t reatment of the physical aspects of weak shocks, 
the survey articles of Lighthill (1956) and of Hayes (1960) are highly 
recommended. 

B. DEVELOPMENT OF W E A K SHOCK W A V E S 

In their t reatment of the ' ' p i s t o n " problem Moran and Shen (1966) 
took as a starting point the complete Navier-Stokes equation for a compres
sible perfect gas. In order to simplify the mathematics a little, we will employ 
a simplified version of the Navier-Stokes equation derived by Lighthill 
(1956), which to the accuracy considered in the present work gives the same 
answers as the full Navier-Stokes equation, as long as we are not concerned 
with heat transfer effects at the piston wall. In fact, Lighthill showed tha t 
these equations provide the same results as the Navier-Stokes equation to 

Ο(ϋ0ν/τα3) and/or 0((ν/α2τ)2) (260) 
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where U0 and τ are the characteristic velocity and time scales, a is the sound 
speed, and ν is the kinematic viscosity, ν = μ/ρ, ρ being the gas density. The 
reader can of course also consider the equations as a model tha t yields a 
parallel, but simplified t reatment of the "pis ton problem," with many of the 
same results as obtained from the Navier-Stokes equations. Of course, there 
is a lot to be said for using equations tha t have minimal complications with 
regard to the intended calculation, an idea which is in fact implicit in the 
use of MAE methods. 

Thus we assume the gas motion to be governed by the equations 

du du 2 da 0 d2u 

T t + u r x

+ — i a ^ 8 ^ ' ( 2 6 1 ) 

da da γ — I du Λ / Λ Λ Λ ν 

Tt+uirx

+-ira8-x=0> 

«/«o = ( p / p o ) < r - 1 " 2 , (263) 

where γ is the ratio of specific heats, p0 and a0 are the quiescent density and 
sound speed, and using the Prandt l number σ = μ£Ρ/& (k = thermal conducti
vity) the parameter δ (called the diffusivity of sound by Lighthill, 1956) is 
given by 

(264) 

μ and μ being respectively the ordinary and the bulk viscosity. The reader 
should note t ha t for a small perturbation, i.e. for a = a0 + a>\ u = u' « a0, 
and small δ, dropping the nonlinear and diffusion terms leads to the familiar 
one-dimensional acoustic wave equation. 

The piston problem is specified by the boundary and initial conditions 

u{U0t, t)=H(t) U0, (265) 

u(x-+ao, 0 - * 0 , (266) 

a(x, t<0)=a0) (267) 

u(x, t<0) = 0, (268) 

H(t) being the Heaviside step function and U0 the piston velocity. As our 
interest is in waves of small amplitude, a perturbation parameter is given by 
the piston Mach number ε = UQja0 « 1. 

We are now faced with the task of scaling variables in a manner consis
ten t with the physics of the problem. If our understanding of the physical 
processes is both correct and correctly employed, this should a t least lead to 
a consistent mathematical formulation. The initial discontinuity caused by 
the abrupt motion of the piston will be smoothed out by molecular transport 
effects in a time scale appropriate to the molecular collision frequency in the 
gas and on a length scale appropriate to the mean free path. Strict adherence 
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to the physics would call for a kinetic theory (e.g., Boltzmann equation) 
t reatment of the problem at this stage. However, in the spirit of Moran and 
Shen (1966) we assume tha t the continum treatment of transport effects 
implicit in the diffusivity parameter δ provides sufficient accuracy for our 
purpose. This leads us to the initial length and time scales Ιλ = S/a0 and 
T l = δ / α 0

2 . The scaling for velocity and sound speed are arrived a t from 
conditions (265) and (267). These scalings should lead to a perturbation 
formalism adequate for the initial behavior of the gas. Thus let 

ea0u = u, α0(1 + εά)=α (269) 

and 

Alx = χ, i η = t. (270) 

Substitution of Eqs. (269) and (270) into Eqs. (261) and (262) and the bound
ary conditions leads to the formal problem of approximating ύ, a for small 
values of ε, these being implicitly defined by: 

3ύ 3u 2 3d 32u 

Yt + euTx + — i ( l + e d ) ^ = ^ ( 2 7 1 ) 

3d Λ 3d γ — 1 3ύ 
Μ + εύΤχ + — ( ι + €άΪΊΓχ==0> <272> 

u(ei/t) = H(t), (273) 

d ( f - > o o ) - > 0 , (274) 

d(x, t < 0) = ύ(ί, i < 0) = 0. (275) 

Using the operator E0 on Eqs. (271-275) gives the zeroth-order problem 

82u(0)l3i2 - 32n^\3x2 = 33u^j3x23t, (276) 

*2<°> (0,t)=H(t) 
(£->oo, t) = 0 (277) 

(f, f < 0 ) = 0. 

Many readers will recognize Eq. (276) as the equation employed by Rayleigh 
(1945, p. 315) and others to study dissipative effects in acoustics. An integral 
representation of u(0\ readily obtained by Laplace transforms, is 

fioo + c e x p { ^ - [ 5 / ( l + s ) 1 / 2 ] £ } 
ύ™ = (1Ι2πί)\ — 1 IK ' J *ds, (278) 

J - i o o + C 8 

and an expansion of this, valid for large t, is (Lagerstrom et al., 1949) 

ui°J„ - * erfc[(z - il(2i)112] + 0 (1/ y/t). (279) 

One can proceed to seek an 0(ε) term using Eqs. (271) and (272). How
ever, the basic problem tha t exists with the solution (278) would still be 
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present, this problem being tha t as i increases, the length scale of the pulse 
shown by Eq. (279) increases as y/t, i.e., the initial diffusion of the square 
starting pulse continues. Either by using Eq. (279) to estimate the order of 
the neglected terms (Moran and Shen, 1966) or by physical reasoning, one 
notes tha t the expected convective steepening can not be found by an 
asymptotic series based on the variables χ and i. The conclusion is tha t the 
asymptotic expansion is not uniformly valid for large t ime—but how large? 

Recall t ha t the length scale and time scale were based on initial molecu
lar transport effects, i.e. τχ = δ /α 0

2 . After sufficient time has elapsed, the 
time scale of the process should be governed by the piston speed U0, and 
we therefore expect r 2 = ojUQ

2 and l2 = o/U0 to be the appropriate time and 
length scales to govern the process (see Fig. 6a). I t is also evident tha t Eq. 

(a) 

ξ ( b ) 

F I G . 6 . Format ion of shock w a v e b y a m o v i n g piston and final s teady s tate struc
ture. 

(279) shows some kind of traveling wave structure moving at the sound 
speed, and it is in a coordinate system fixed relative to the moving distur
bance center tha t we expect r 2 and l2 to be the correct scales. To a certain 
extent, these reflections on scales may be the result of hindsight following 
some ad hoc cut and t ry procedures, it being, of course, somewhat a mat ter 
of taste how a problem is viewed. Even so, they provide insight and a reflec
tion of how MAE connects formal procedures with physical reasoning. Thus 
we write 

t = t U0

2l8 = e2i (280) 
and 

ξ=υ0(χ- a0t)l8 = ε(χ-1). (281) 
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This leads to the transformed form of Eqs. (271) and (272) in what we shall 
call the Burgers region, 

0 / 2 \ (d2u 2 da du du\ 

8ξ\γ-ΐ ) W 2 γ - l dij dl dl ν 

and 

d Ι 2 \ Γ 2 [da da\ du] 

There is one small problem with these equations tha t has created a bit of 
mystery in the literature, in tha t in the limit ε ->0 , f, I fixed, Eqs. (282) and 
(283) yield the same equation, i.e. only one equation results for the two 
unknowns. The problem is easily avoided if we choose as our two starting 
equations either (282) or (283) and the equation obtained by equating their 
right-hand sides, i.e., 

d2u d ι 2 \ d / 1 o 1 \ 

2 da du 
* 7 * - * 7 5 = 0 - (284) y - 1 dl dl 

Using the operator E0 on Eq. (283) or (282) gives 

4(—^-τα ( 0 ) -ύ ( 0 ) > | = 0 . 
0f \ y - 1 / 

(285) 

This equation is readily integrated, and using the no disturbance condition 
a t l~> oo, we find 

a<°> = J ( y - l ) f i « » . (286) 

Equation (284) under 2£0 just produces the changes w->w < 0 ) , ά - > ά ( 0 ) , so tha t 
using Eq. (286) we find 

Γ ^ ( 0 ) — = o — , (287) « ^ - " 2 

with r = J ( y + l ) . Equation (287) is the well-known Burgers equation, 
whose history can be found in the references. What is of prime interest here, 
of course, is how the derivation of the equation illustrates its connection 
with the full Navier-Stokes equation. 

In the spirit of MAE, boundary or initial conditions for this equation 
are to be found by matching. Thus, let Ε = ET and β = TEf define our 
expansion operators, and apply the rule 

(£0Eo-Eo£o)ii = 0. (288) 
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7(0) . 

Then 
£0 E0 u(l l) = E0 ύ<°> (I I) 

= TE0 ύ< 0 ) (ε(χ -i), e2i). (289) 

Continuing with E0 in Eq. (289) would appear to lead to u{0) (0, 0). However, 
before drawing this conclusion, consider the second member of Eq. (288), 

Λ β ^ , | ) = Λβ{1«&[̂ ]+0̂ )} 

4 e r f c ( ( i f4 ( 2 9 0 ) 

Therefore, for matching to be possible, the functional form of Ui0) must be 

u^{tl) = F(ll^ll^). (291) 

If this is so, the final term in Eq. (289) is 

TE0 F(e(x -t), ε2 i, (χ - ί)β112) = ^ ( 0 , 0, | / f 1 / 2 ) , (292) 

and hence, by matching, 

lim tf<o )(|)i) = lerfcy_). (293) 
ϊ / i " 1 ' 2 fixed 

The problem of solving Eq. (287) so as to meet the condition (293) is 
considerably expedited by the existence of the Hopf-Cole transformation, 
which relates Eq. (287) to a simple diffusion equation. If we write 

= _ ( ΐ / Γ ) ( 0 / 0 | ) ln φ(ξ, I) (294) 

in Eq. (287), we find tha t the nonlinear term disappears, and tha t 

8φ 1 82φ 

ί = 2 ψ · <295> 
We can proceed by direct means to satisfy Eq. (293) or we can follow the 
physical reasoning employed by Moran and Shen (1966) and by Lighthill 
(1956), t ha t in the Burgers region the problem is equivalent to the develop
ment of a step discontinuity, so t ha t Eq. (293) may effectively be replaced 
by the simpler condition 

ύ«»(ξ,0)=Η(-ξ). (296) 

Equation (295) is then solved by standard means to obtain 

_ / , , e x p [ r ( f - | n ) ] e r f c [ - f / ( 2 i ) i ' g ; n 
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If we let i ->0 with £ / i 1 / 2 fixed, it is apparent t h a t E q . (297) satisfies the match
ing condition (293). In addition, if we let ξ and I become large. 

^ ( 0 ) -> / τ ( Ι - *Γί) = 1/{1 + 6 χ ρ [ Γ ( | - *H)]} (298) 

This form displays the structure of a weak shock wave and was first derived 
by Taylor (1910). 

I t is worthwhile to briefly examine Eq. (298) in physical coordinates, 
in terms of which we have, by Eqs. (280) and (281), 

1 
ΊΓ0 ~ 1 + β χρ[(Γ£/ 0 /δ ) (* - Κ + £Γ£7 0) t] * ( 2 9 9 ) 

This represents a traveling wave of thickness S/C70 moving at speed 
a0 + j r Z 7 0 , faster than the sound speed by the amount | Γ ε a0 (see Fig. 6b). 
A uniformly valid solution to the piston boundary value problem could now 
be constructed by the composite expansion technique. By additive composi
tion such a solution, a t order zero, is 

Ε0ΰ + £ 0 ύ - Ε 0 £ 0 ΰ. (300) 

Before continuing, it is important to point out tha t Eq. (287) is as general a 
form of Burgers equation as found in the literature. Thus, although in the 
work of Moran and Shen (1966) and others one finds a parameter β multiply
ing the 32ΰ(0)Ι3ξ2 term, tha t form of Burgers equation can always be pu t 
into the form 

ντ+ ννξ = νξξ (301) 

by the transformation 

τ = 2Γ2ϊ/β, ξ = 2ΓξΙβ. (302) 

C. SHOCK REFLECTION FROM A W A L L 

Consideration of Burgers equation and the above derivation indicates 
tha t it provides a valid approximation when only one direction of wave 
propagation is of principal importance, as in the above piston problem. The 
question naturally arises as to what modifications are needed to deal with 
problems where two propagation directions assume simultaneous impor
tance. To obtain an answer to this question, Lesser and Seebass (1968) 
examined the problem of the time-dependent structure of a reflecting shock. 
Like Moran and Shen, they took the full Navier-Stokes equations as their 
starting point. Also, a major par t of their investigation involved the examina
tion of heat transfer effects during the reflection. Following the t reatment of 
the previous section, we will use Lighthill's approximations Eqs. (261) and 
(262) to the Navier-Stokes equations to present the main ideas. 

As our point of departure, we assume a weak shock, of the form given 
by Eq. (299), traveling toward a wall in such a way tha t its projected center 
would coincide with the wall position at i = 0 if the wall were not present 
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shock 

F I G . 7 . Shock reflection from wall. 

(see Fig. 7). Thus our starting point is now the Lighthill equations in Bur
gers variables, i.e. Eqs. (282) or (283) and (284), with the conditions tha t 

* - * / r ( f - * H ) + 0(e) ^ £ f - * - o o , (303) 
and 

u = 0 on | = - ( l / e ) i , (304) 

where the 0(e) terms in Eq. (303) indicate higher order shock structure 
which is ignored in the present calculation. I n the limit ε ->0 , u->um, 
Eq. (303) satisfies (287) and the wall boundary condition Eq. (304) goes to 
+ oo for t < 0. As I-+0 [e.g., when I = 0(e)], physical reasoning tells us t ha t 
Eq. (287), the Burgers equation for waves traveling in the direction of in
creasing coordinate, cannot be correct. The reason for this is tha t the " shock " 
must reflect from the wall, and the structure of Eq. (287) does not permit 
this. Also, we expect in this nonlinear problem tha t the wave speed of the 
reflected shock will differ from a0 -f ^Γϋ0, the wave speed of the incoming 
shock. Again, arguments based on the physical scales in the problem provide 
the solution. Recall [Eq. (280)] tha t the time scale for nonlinear events, 
i.e., the time scale of the convection, is S/U0

2. On the other hand, the reflection 
process takes place on a time scale equal to the shock thickness ojUQ divided 
by the sound speed a0, i.e., 8/ϋ0α0. This is the significant scale for the 
reflection process, so we define I = tU0a0/8 = tU0

2(a0/U0)lo = t/e as the 
"acous t i c " time scale. I t is also convenient to move into the reference 
frame of a fixed wall; hence let 

χ-1 = 1 (305) 

Making this transformation Φ(ξ, t->x — I, el) on Eqs. (282) and (283) 
we find 

du 2 da (d2u du 2 dcC 
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2 dx ( da y — 1 du\ / Λ _ ν 

- * « - V * M ) - ( 3 0 7 ) 

Thus 

and 

The reader will note tha t the limit of these equations as ε-+0 yields 
the one-dimensional wave equation, 

d2u\dx2 - d2ujdl2 = 0. (308) 

This is expected on physical grounds as, for sufficiently short times, weak 
shocks behave as sound waves. What is new here is a formal means of pro
ducing quantitative results from this knowledge by matching procedures. 

To arrive a t initial conditions for Eq. (308) we apply the matching 
principle 

(E0E0-E0E0)u = 0 (309) 

where 

Ε = ΤΕΤ. 

EQEQu = E0 ύ™(ξ + f/e, f/c), (310) 

E0 Ε0ύ = Ε0/τ(ξ-±Π) 
= Ε0/τ(χ-1-%Γε I) 
= / r (I) · (311) 

Now, as u(0) satisfies the simple wave equation, we can write down the 
general form of the solution which satisfies the wall boundary condition 
£ ( 0 ) (0,1) = 0, namely 

*(0)(*, l)==g(x-t) - g ( - x - *)· (312) 

Substituting into Eq. (310), we have 

E0 £<°> = E0 \g(i) - 9 ( - ξ - {211 ε))] (313) 

and as I < 0 for this matching, 

Ε0η(0) = 9(ξ)-9(+οο). (314) 

N o w / r ( + o o ) = 0, and therefore equating Eqs. (314) and (311) we see tha t 

g& =Mi) (315) 

or, in acoustic variables, 

« < o > = / r ( s _ i ) _ / r ( _ 2 _ i ) . (316) 

and 

da γ — I die 
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If we now attempt to improve this acoustic solution by using Eq. (316) 
to calculate terms of 0(ε), we would find that the result contained terms 
such as 

ύ α ) ~ (bounded terms) I 

so that the acoustic expansion fails when I = 0(1/ε), as expected. To calculate 
the solution at large positive times, we must place ourselves in a coordinate 
system moving in the direction of decreasing χ at the acoustic speed and 
rescale I to the " Burgers " time scale I = εΐ. Thus let 

rj = x + l (317) 

and apply the operator 

f+(x,l-+rj, I) 

to Eqs. (306) and (307). This results in an out-going wave form of Eq. 
(282) or (283), and in the limit ε - > 0 , (ί, ή) fixed, we obtain the appropriate 
Burgers equation, 

(dii^ldi) + (Γΰ™ - γ + 1) dU^/drj = £ dH^/drj2. (318) 

The traveling wave solution to Eq. (318) is 

*Τ(η> i) =Μη - έ(5 - 3y)f), (319) 

which, as the reader can verify, can be matched to u(0) for I > 0 by the rule 

(Ε+0Ε+0-Ε+0Ε+0)ΰ = 0. (320) 

If the acoustic region solution is carried out and matched to 0(ε), 
one can form the composite expansion to 0(1) in the incoming and outgoing 
Burgers regions and to 0(e) in the acoustic region. The details are quite 
cumbersome and can be found in Lesser and Seebass (1968). To 0(1), how
ever, we have 

"comp = / r ( l - *Π) -Μ-η), t<0, (321) 

=Μη - έ(5 - 3γ)ί) + / Γ ( | ) - 1, I> 0. (322) 

Lesser and Seebass also studied the problem of reflection from an isothermal 
wall, which involves a thermal boundary layer—yet another asymptotic 
region obtained by rescaling χ by ε~112. The calculations become somewhat 
lengthy and will not be presented here. 

D . T H E TIME-HARMONIC PISTON PROBLEM 

In the previous sections we have seen how, starting from the Navier-
Stokes equations [or, in our presentation at any rate, the Lighthill approxi
mation (261) and (262) to them] the MAE method leads to physically 
appropriate simplified equations for restricted domains of space and time. 
Thus, we have obtained the Burgers equations (287) and (318), describing 
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right and left propagating waves, the linear in viscid wave equation (308), 
and the linear wave equation (276) with dissipative effects included. We 
have also shown how MAE leads to the requisite boundary and initial da ta 
for these simplified equations. 

Now we want to extend the range of applicability of MAE by showing 
how Burgers equation itself can be solved with the aid of MAE for the classic 
problem of nonlinear wave excitation by a sinusoidally oscillating piston. 
We shall recover all the well-known results for this problem, but in a way 
which greatly clarifies their interrelationship. Further, we shall actually 
improve on some existing results, despite the fact tha t an exact solution to 
the problem is known from the Hopf-Cole transformation, Eqs. (294) and 
(295). The method can also be used to discuss problems in two- and three-
dimensional nonlinear acoustics, where no transformation of the Hopf-
Cole kind has yet been found. 

We avoid irrelevant complications by assuming from the outset tha t the 
whole motion is described by the Burgers equation (287), which in physical 
coordinates reads 

(dujdt) + (a 0 + Tu)(dujdx) = \o d2ujdx2. (323) 

This form of equation is suitable for initial value problems, in which 
u(x, t = 0) is prescribed. 

In the literature on nonlinear acoustics Burgers equation is introduced 
in a form suitable for the study of the evolution of a periodic wave form as it 
travels away from the source boundary (see, e.g., Blackstock, 1964a,b). 
Also the equation is viewed as a model or close analog to the full nonlinear 
acoustics equations. In Section IV, Β we indicated a rigorous and logical 
relation between the equations of viscous gas dynamics and Eq. (323). A 
heuristic relation between this form of Burgers equation and the form 
commonly used in acoustic studies may be obtained by using the linear 
nondissipative relation dujdt = —a0 dujdx in the nonlinear and dissipative 
terms, and then taking retarded time r = t — x/a0 and space χ as independent 
variables. The error thus involved is formally of the same order as tha t in
volved in taking Eq. (323) as the governing equation. 

A more careful study of this procedure is yet to be undertaken. How
ever, for our present purpose we continue our analysis with the resulting 
equation 

a0

3(du/dx) - Γα0 u(dujdr) = £δ d2u/dr2. (324) 

This can be put in the form 

(dujdx) - u(dujdf) = ε d2ujdr2 (325) 
with the definitions 

f = ωτ, χ = T(uQjaQ) ωχ/α0), 
u = uju0, ε = ω δ / 2 Γ ^ 0 α 0 , (326) 

ω and u0 denoting the piston frequency and velocity amplitude. 
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Consistent with the use of Eq. (325) to s tudy the developing wave form 
we omit the consequences of finite displacement of the piston, which are in 
any case confined to the neighborhood of the piston. 

This state of affairs is reflected by the parabolic structure of Eq. (325) 
where now χ plays the role of what is normally the time variable. Thus we 
now study the "boundary v a l u e " problem (in mathematical terms actually 
an initial value problem) equivalent to the piston boundary value problem 
given by the condition 

u(x = 0, t) = sin cut, or u(x, f) = sin f. (327) 

Our aim is to obtain an approximate solution of Eqs. (325) and (327) 
for small values of the inverse Reynolds number ε, such tha t the approxi
mate solution is uniformly valid in the (x, t) domain of interest. Observing 
tha t the differential equation preserves the pari ty and periodicity of the 
boundary value, we need to consider only 0 < f < + π, say, imposing the 
conditions 

u(x, f = 0) = u(x, f = π) = 0, (328) 

and defining ΰ elsewhere as the odd periodic continuation of the function in 
[0, 7T]. The solution must be uniformly valid for 0 < f < π and for all χ > 0. 

For (x, f) = 0(1) we assume tha t 

u(x, f) = U™(x, f) + o(l) as ε->0, 

and then 

du™ / n x du™ 

_ _ _ ^ > _ _ = 0. ( 3 2 9 ) 

The general solution of this equation can be written as 

ii™=f(a), a = f + xf(a), (330) 

where / denotes an arbitrary function and the variable a can be interpreted 
as a distorted version of time f, the distortion increasing with range χ from 
the source. Choosing / ( σ ) = βίησ enables the conditions (327) and (328) 
to be met, so tha t 

M ( 0 ) = sin σ, σ = τ-\-χύησ. (331) 

The next approximation can also be found, most easily by transforming 
the Burgers equation (329) to the variables χ and σ as 

du du d Γ du/da 1 
(1 — χ cos σ) — — (u — sin σ) — = ε — ζ = . 
v dx da da 11 —x cos a] 

Formal substitution of ΰ = ΰ{0) + εΰα) + ο(ε) into this equation gives 

d 
dx ' 

d ... δ / cos a \ 
— (l—x cos a)U{1} = —\ - ζ 1 . 
to da \l — χ cos a) 
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χ sm σ 
(1 — χ cos σ) 

and thus 

εχ 
m σ) = sin a\ 1 - ( 1 _ g o o e g ) , + | . (332) 

These solutions can, of course, be written as Fourier sine series in f. 
In particular, although ΰ(Ό) is given implicitly by Eq. (331), its Fourier 
coefficients can be found explicitly in terms of Bessel functions. This calcula
tion yields the well-known Fubini solution (Fubini-Ghiron, 1935) 

e<o) = 2 f sin nr. (333) 
η = ι n% 

Now when χ > 1 the relation σ = f + χ sin σ no longer defines σ as a 
one-valued function of f. This can easily be seen by noting tha t 

df/da = 1 — χ cos σ and hence da/df = 0 

when χ = 1/cos σ. In terms of χ and f, the transformation σ = σ(£, f) fails 
along the " l imit l i ne" 

f = c o s - 1 (\jx)-{x2 - 1 ) 1 / 2 . 

There is a range of values of f around f = 0 at which there are, according 
to Eq. (331), three different values of u(0) (see Fig. 8). The utility of the solu
tion (331) is not invalidated for all this range of f, however, since the solution 

F I G . 8. Triple valued inviscid wave and resulting viscous adjus tment zone. 

The solution satisfying 
ΰ(1) (χ = 0,τ)=0 

is 

ΰ α ) [χ, σ) = 
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corresponding to a given branch of σ = σ(τ) (A Β in Fig. 8) is smooth right 
up to f = 0, and would involve negligible values of the viscous terms omitted 
from Eq. (329). Things only go wrong, a t 0(1) a t any rate, very close to 
τ = 0, where this branch fails to satisfy the condition ΰ{0) = 0 if χ > 1, and 
the value of ΰ as f ->0 must there be rapidly brought down to zero by viscous 
force. This shock wave a t f = 0 is of dimensionless thickness ε, provided χ 
is not too close to unity. The reason for this is t ha t the processes competing 
in the shock wave are the nonlinear waveform steepening which, unchecked, 
would lead to the multivalued inviscid solution (331), and the waveform 
relaxing viscous forces, and therefore, if ΰ = 0(1) as f ->0 , a balance between 
u du/dr and ε d2u\dr2 can only be achieved if τ = 0(ε). 

The precise limit of ui0) (χ, f) is obtained from 

ϋ{0) ~ sin σ, σ ~ χ sin σ (334) 

as f - > 0 provided χ is bounded away from unity. The second of these can be 
writ ten in terms of spherical Bessel functions as 

Jo(°) = ( s i n σ)/σ = x — l 

so tha t σ =jo1(x~1)> where JQ1 is the function inverse to j0> and hence 

u™ (x, f) - f " 1 jo1(x~1) = h(x) (335) 
say, as f - > 0 . 

We analyze the shock by writing f = τ\ε and assuming [since i l ( 0 ) = 
0(1) as f - > 0 by Eq. (335)] t ha t 

ύ(χ, τ) = ύ™ {ζ, f) + o(l) (336) 

as ε -> 0, which leads to the anticipated shock equation 

-ύ™ du«»ld* = 82ύ™Ι8τ2. (337) 

This has the general solution 

4<°> (z, f) =f(x) t anh [\f(x) τ + g(z)], (338) 

for arbitrary / and g, and enables the condition u(0) = 0 at f = 0 to be satis
fied for all χ if g == 0. 

Now / ( £ ) must be found by matching. For simplicity we avoid our 
formal notation which is not needed to the order to which we carry out the 
expansions. Then 

4<o>(s, f = φ) =f(x) t anh [£ / ( z ) f / £ ] 

- |/(*)| 
as ε ->0 with f > 0, and this matches Eq. (335) if 

f(x) = h(x) =x~1 jo1 (339) 

Thus the shock structure is defined by 

u(x, f) = h(x) t a n h ( ^ ( 5 ) f ) + o(l). (340) 
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This formula describes the shock at all ranges χ = 0(1) from the piston 
except in the (iinitial shock region" around χ = 1 (see Fig. 9), the range a t 
which the first shock appears. If χ is sufficiently close to unity, the inner 
limit of the inviscid solution is not Eq. (335) but, rather, a function of x, f, 
and ε. This leads to an initial shock in which all three terms in Eq. (325) are 
of comparable magnitude, so tha t the description of the initial shock region 
is complicated and involves the solution of the full Burgers equation (325). 
The difference between the "initial shocks" around x = 1 and the shocks 
a t ranges χ bounded away from unity does not seem to have been noticed 
before. The details of the initial shock region will be reported elsewhere 
(Crighton, forthcoming article), as tha t region does not play an essential 
par t in the evolution of the wave. 

The shock, Eq. (340), and the inviscid flow, Eq. (331), around it, can be 
combined to give a composite approximation (good for all χ = 0(1) bounded 
away from unity, and for all τ from 0 to π) 

u?\x, f, f) = sin σ(χ9 f) + h(x) tanh(J*(f)f) - h(x). (341) 

This takes a simple form for xy>\, for then σ = f + χ sin σ can be satisfied 
only if σ is close to π. In fact, one easily finds tha t 

σ{χ,τ)~π-(?^) (342) 

h(x) ~ τ τ / ( ά + 1 ) (343) 

and tha t 

for χ » 1. Thus 

<·<*· '· •> - +fa) y h ] - ( Ϊ Τ Ϊ ) < « « > 

=(^)hh2<inH' <345' 
in which the inviscid solution has now developed from the Fubini form (333) 
to the Sawtooth form 

(ττ — f\ * sin nf / 2 \ 

^f)~(j+r)=n?1 — ( J + T ) ' ( 3 4 6 ) 

while the thickness (with respect to f) of the shock is not just Ο(ε), but in 
fact Ο(εχ). This shows tha t the shock thickness becomes comparable with 
the wavelength when χ = 0 ( ε _ 1 ) , and there Eq. (345) cannot necessarily be 
expected to hold any longer. 

A well-known result is found by expressing the whole of Eq. (345) in 
Fourier sine series form. If 

u™{x, f, f = ^ = Σ An(x, ε) sin nf, (347) 
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the contribution from the tanh in Eq. (345) can be found as an infinite 
series, leading to 

4ε / l 0 0 ( -1 ) " (1 - e - 2 p * 1 6 cosnn)\ 
(2pl8)2 + n2 J 

where the thickness δ = 2ε(χ + l)/π. If we now let ε ->0 with χ = 0(1) we 
have 

4ε / l » ( - l ) p \ 
Λ*{*> € ) ~ ^ δ \ η + 2 η Ζ (2ρΙδ)* + η*) 

= 2ε cosech ηε (χ + 1), 

so tha t 

sm nf W ^ ' ^ . U ^ + D- (348) 

This is the well-known Fay solution (Fay, 1931), which is now seen to 
be the Fourier series version of a composite solution made up from the saw
tooth solution (346) and the shock solution (340), in which viscous forces 
cancel the n~x fall-off of the Sawtooth Fourier coefficients and replace them 
with the decay exp[— ηε(χ + 1)] for large n. 

The Fay solution cannot be expected to hold at ranges χ so large tha t the 
shock thickness εχ has become comparable with the scale, 0(1), of the inviscid 
sawtooth waves between the shocks (though in fact it does, as we shall see 
in a moment). To follow the motion into its old age, in which viscous forces 
become significant everywhere and not just in narrow shock regions, we 
need to rescale x, defining χ* = εχ and finding another asymptotic solution 
which can be matched to Eq. (348). Note tha t we are now matching in x, 
rather than in f as previously, the need for two regions in f having been removed 
by forming the composite equation (348), which is uniformly valid in f. Now 
χ = ε~λ marks the range at which a superficial balancing of dujdx against 
ε3^[3τ2 would lead us to expect the dominance of viscous forces over 
inertia, so tha t for fixed x* we might expect to have to match Eq. (348) to a 
solution of the diffusion equation. That, however, is not the case, and all 
three terms in the Burgers equation are in a delicate balance around χ = ε~1, 
as we shall now see. 

We have 
x^ 0 0 sin nf = f, β ) ~ 2 . Σ Ι 5 5 Π Ί ? (349) 

as ε-^O, and therefore assume tha t 

u*(x*, f) = εη0*(χ*, f) + ο(ε), 

and so find tha t 
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The general solution can be written, with the aid of the Hopf-Cole trans
formation, as 

u0* = 2(d/df) In F(x*, f) (351) 

where 

dF/8x* = d2Fjdf2. 

I t is remarkable tha t this u0* is in fact just the function in Eq. (348). For 
according to the definition of the theta function (Abramowitz and Stegun, 
1964) 

oo 
(d/du) ln &t(u, q = e ~ a) = 2 £ sin 2?w/sinh not (352) 

n = l 

where 

&t(u, q) = 1 + 2 £ (-l)nqn2 cos nu, (353) 
n = l 

and therefore the function 

F(x*, f ) = # 4 ( f / 2 , q = β " * * ) (354) 

evidently satisfies the diffusion equation and matches Eq. (349) uniformly 
in f. Thus 

00 
u*(x*, f) = 2 £ sin wf/sinh nx* (355) 

n= 1 

is the required solution, in which the various Fourier coefficients do not 
simply satisfy the diffusion equation. If, however, x* » 1, then 

u0* ~ 4 e - z * s i n f (356) 

which is the old age solution, showing tha t a t ranges much greater than 
ε ~1 the wave contains only a single Fourier component, which decays under 
viscous action alone. This is also a well-known result, and it shows tha t 
Eq. (348) is uniformly valid for arbitrarily large ranges, and tha t no further 
asymptotically distinct regions are required. 

Thus we have recovered all the essential results for this problem, and 
have unified them in a way which had not previously been possible—even 
with the aid of the exact though rather intractable solution to Eqs. (325) and 
(327), 

u(x, f) = 2e(0/0f){ln[l + 2 £ ( - 1 ) Ιη(1/2ε)β-η2εϊ cos nf]} (357) 
n = 0 

which can be obtained from the Hopf-Cole transformation. Fur ther details 
of this problem, and other similar applications are given in a forthcoming 
article by Crighton. The various regions and solutions are depicted in Fig. 9. 
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limit 
line 

F I G . 9. Evo lu t ion of a periodic signal in terms of distance from source. 

I t was stated in the article on nonlinear acoustics in this series (Beyer, 
1965, p. 247) t ha t the relations between Eq. (357) and forms such as Fay ' s 
solution (348) have not been worked out. Although these relationships 
have now been partially clarified by methods other than MAE (see, for 
example, Blackstock, 1964a,b), it is evident t ha t MAE provides both new 
insight and new results for this problem. 

Limitations of space preclude us from dealing with other aspects of 
nonlinear acoustics. Fortunately, however, three other areas have already 
been discussed in the literature from the MAE viewpoint. First, Crow (1970) 
gives a particularly penetrating analysis of the problems interest in the form
ulation of theories of aerodynamically generated sound, a subject also treated 
by Lauvstad (1968), while the particular (linear) applications of MAE to 
aerodynamic noise are given by Amiet and Sears (1970), Crighton (1972, 
1975, and references given there), and Crighton and Leppington (1971). 
Second, numerous authors have used MAE in problems of " acoustic stream
i n g " induced by nonlinear inertia forces in unsteady viscous flows [see, for 
example, Wang (1968), and the article by Riley (1967)]. Third, the interac
tion of underwater sound with linear and nonlinear free surface motions 
has been treated by Harper and Simpkins (1975). 

V. Conclusions 

At this point the reader has had ample opportunity to appreciate the con
structive aspects of the theory of matched asymptotic expansions, and 
perhaps has seen some applications to problems of interest to him. In the 
remaining pages we wish to sum up the major points, indicate some side 
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branches of interest, and highlight some of the research toward making the 
theory more useful and mathematically sound. Therefore, in this last section 
we shall first discuss some of the current trends in the development of the 
theory. This will be followed by a very brief discussion of other " m o d e r n " 
perturbation methods with enough references to enable the interested 
reader to enter into a study of such techniques. Finally, we shall close with 
some personal opinions and prejudices regarding the present status of sing
ular perturbation theory in acoustics. 

Perhaps one of the most active areas of current research vis a vis M.A.E. 
is the technique of "match ing ." To convey some of the feelings among 
those working on the subject, consider the following quotations, all from 
investigators who have made weighty contributions to the development of 
M.A.E.; first Lagerstrom and Casten (1972) in a discussion of the Van Dyke 
principle: 

"Another important point, which has been made earlier, is t ha t what
ever techniques are used, matching is always based on overlap. I t obviously 
does not make sense to compare two approximations which do not have a 
common domain of val idi ty ." 1 

while on the other hand Fraenkel (1969) tells us: 

" T h e asymptotic matching principle correctly determines unknown 
constants, and leads to uniformly valid composite series, even though it is 
applied to inner and outer expansions which contain too few terms to overlap 
to the order of the terms being m a t c h e d . . . . Although it is not astonishing, 
the point is emphasized here because it seems to be widely believed tha t the 
success of the asymptotic matching principle depends on and implies over
lapping of the series used to the order of the terms being matched ." 2 

Finally Eckhaus (1973), after a discussion of several matching techniques, 
says: 

" In applications one usually has no a priori information on the structure 
of the uniform expansion, nor does one possess any a priori estimates of the 
overlap domain between different approximations. I t is for this reason tha t 
the choice of the matching rules to be used is usually dictated by the authors 
taste, habits and ingenuity." 3 

Perhaps the fairest thing tha t can be said at present is as follows. The 
matching principle, Eq. (22j, has been rigorously proved (in various forms) 
by Fraenkel (1969), Crighton and Leppington (1973, Appendix), and Eckhaus 

1 Reprinted wi th permission from SI AM Rev. (1972). Copyright 1972 b y Society 
for Industrial and Applied Mathematics . 

2 Reprinted from Proceedings of the Cambridge Philosophical Society\ w i th permission 
of Cambridge Univers i ty Press. 

3 Reprinted from "Matched Asymptot i c Expans ions and Singular Perturbations," 
wi th permission of North-Hol land Publishing Company. 
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(1973), subject to constraints like Eq. (52) on the gauge functions, and sub
ject to constraints on the asymptotic validity and domains of validity of 
the expansions being matched. The proofs show tha t "over lap ," in some 
properly defined sense, is sufficient for Eq. (22) to hold. Overlap is not neces
sary, however, as evidenced by Fraenkel 's statement above, and the details 
of his papers. On the other hand, it is easy to construct examples (see Crighton 
and Leppington, 1973) in which two expansions do not overlap and cannot 
be matched by Eq. (22), indicating tha t both a generalization of the matching 
principle and a wider notion than overlap are probably needed in order to 
find necessary conditions. 

But in any case the apparent conflict over matching rules, and the pro
blem of knowing whether an expansion produced by formal manipulations 
guided by physical and mathematical experience actually constitutes any 
kind of asymptotic series, is no reason for despair. Many of the methods 
in common use in physics fall into the same category and many others have 
only recently been removed from this status. Wha t is clear is tha t more 
research is needed in the foundations of the subject. For example, even the 
term "singular per turbat ion" is not always clear. The most widely accepted 
current meaning of the phrase appears to be tha t there does not exist one 
single expansion of Poincare form valid everywhere in the domain of interest 
of a singular perturbation problem. 

Another area of research in the foundations of the method concerns 
the very important practical question of how to find the scalings and regions 
appropriate to a given problem. At this stage this seems to be very much an 
art, although some first steps towards an answer to this question can be 
found in the monograph of Eckhaus (1973). For the present, the main 
approach to this problem lies in physical intuition, and experience in applying 
the method. Examples of this were given above; for example the classical 
ideas about problems in which the wavelength is long with respect to geo
metric scales were formalized so as to continue expansions beyond the obvious 
first terms. 

In the present exposition we have concentrated on only one of several 
newly developed techniques for dealing with so-called singular perturbation 
problems. Our reason for so doing is tha t we believe it to be both the most 
widely applicable method and the one most closely coupled to physical 
models. This certainly does not mean tha t it is the easiest to apply, or tha t all 
problems will yield to it. Another method, at present most applicable to 
nonlinear wave problems, involves variations of the multiple scales and P L K 
(Poincare-Lighthill-Kuo) techniques. A modern survey, in which the 
initiators of many of the new and most exciting developments along these 
lines speak for themselves, can be found in Leibovich and Seebass (1974). 
Without going into details of these techniques, we can simply state tha t they 
seek to transform the independent variables simultaneously with the pertur
bation procedure, in such a manner as to eliminate nonuniformities such as 
singular behavior and secular growth. A collection of such problems can be 
found in the book by Nayfeh (1973), who also gives an exhaustive biblio
graphy to which the interested reader is referred. Several papers of particular 
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note are those by Lighthill (1949), Lin (1954), Fox (1955), Morrison (1966), 
and Lick (1967,1970). 

Finally, we wish to say a few words about the place of MAE in the 
future of acoustics. There are clearly several roles which can be played, as 
illustrated above. In the discussion of linear problems, typically involving 
waveguides and diffraction effects, the method shows how to combine 
solutions of " s i m p l e " problems to obtain results for complex geometrical 
situations. In a way this can be considered a refinement of the traditional 
concepts of impedance, transmission line analog, etc., which are used to 
decompose problems into simpler elements. The utility of such a decomposi
tion was discussed in the work of Schwinger and Saxon (1968). There it was 
pointed out tha t for the technological application of a theory it is useful to 
have a buffer theory which employs constructs tha t are more easily manipu
lated than the concepts of the parent discipline, the latter being used to 
calculate the parameters of the buffer theory. A familiar example of this is 
the relation between solutions of the wave equation for simple geometries 
and the circuit type theories in which circuit element parameters like radia
tion impedance are obtained from such solutions. MAE provides not only 
a very attractive way of dealing with such calculations but also an excellent 
means of assessing their validity and of forming new buffer theories. I t is 
thus of central interest in dealing with such a classical subject as diffraction 
theory to carry out the approximate calculations to relatively high order 
so tha t fruitful results can be obtained for cases in which, for example, the 
wavenumber is not very small. To this end the recent work on Fade approxi-
mants (Graves-Morris, 1973) and computer formulation of analytical 
problem solving procedures (Schwartz, 1974) is of great interest. A number 
of cases now exist where restructuring of a perturbation series into rational 
fractions or Pade approximants has greatly extended the usefulness of 
the results [see, for example, the discussion by Shanks (1955) and Van 
Dyke (1970) for a more recent application]. 

Another contribution from MAE and other singular perturbation 
methods is directed toward a better and more systematic t reatment of 
nonlinear and more extensive physical effects in acoustics. The illustration 
of how Burgers' equation arises naturally from a MAE treatment of the 
Navier-Stokes equations is but one of many examples. The current critical 
examination of aerodynamic noise theory (Crow, 1970) and the examination 
of acoustic streaming effects are two others (Riley, 1967; Wang, 1968). At 
the very least* as a supplement to extensive and perhaps all-too-often per
formed numerical calculations, singular perturbation methods provide a 
powerful tool for expanding our understanding in these difficult areas. 
The same is likely to be true of solid mechanics, another field in which 
singular perturbation ideas have yet to be adequately recognized and emp
loyed—somewhat surprisingly, in view of the inevitably greater complex
ity which arises in linear boundary value problems in elasticity compared 
with their acoustic counterparts, not to mention nonlinear elastodynamics. 
The analogs in elasticity theory of the types of diffraction problem discussed 
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in Section I I above have, however, recently been solved using MAE by 
Dat ta (1974). Another paper dealing with the so-called "contac t p rob lem" 
(Schwartz and Harper, 1971), though treated in a nondynamic context, 
is nevertheless of interest for potential applications of MAE in the area; 
while surface waves in solids, a topic of great current interest, may perhaps 
be dealt with by extensions of the techniques used by Leppington (1972) to 
treat high frequency surface water wave scattering. 

We close with the hope tha t we have conveyed some of the excitement 
generated by these new methods and tha t many of the readers of this small, 
acoustically oriented survey of a very wide field will find MAE and related 
singular perturbation methods a powerful new tool in attacking problems of 
interest. 
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I. Introduction 

All ultrasonic diffraction can be divided into two parts : diffraction from 
apertures several wavelengths across, and diffraction from arrays of spacing 
of the order of a wavelength. The two areas of ultrasonic diffraction are of 
unlike character, and present different problems and varied opportunities 
to the experimentalist, the theoretician, and the device designer. I n the 
present chapter we will t reat only diffraction from single apertures several 
wavelengths across. 

Diffraction from large apertures became important with the advent of 
pulse-echo ultrasonic investigations utilizing piezoelectric plates as trans
ceivers. Early calculations applicable to narrow band bursts of rf waves soon 
made their way into the practical literature (Mason, 1958; McMasters, 
1959). 

Qualitatively, the effects of diffraction from large apertures are as 
follows: 

1. As in optics, there is a Fresnel region and a Fraunhoffer region 
separated by an ill-defined intermediate region. 

2. I n the Fresnel region for monochromatic waves, there are zeroes of 
pressure along the axis of the transducer, and local minima and maxima of 
pressure and phase across the diameter of the beam. 

3. In the Faunhoffer region for monochromatic waves, the beam is 
divided into lobes, a central lobe and symmetrically positioned higher-order 
lobes. 

4. The net effect of the Fresnel zone pressure and phase variations and 
the Fraunhoffer zone lobe divergence is commonly called " beam spreading," 
but is more complicated than simply considering the part of the central lobe 
and others which are not within the cylindrical beam defined by the perimeter 
of the radiating aperture (transducer). 

5. When the same transducer which generates the monochromatic 
beam (as a piston source in an infinite baffle) is used as a receiver in pulse-
echo measurements, the integrated effect of the pressure and phase variation 
in the field is to add a nonmonotonic loss to the echoes, and to add a mono-
tonic but nonlinear increment to the phase as a function of distance. As 
distance increases without limit, the added loss approaches 6 dB per doubling 
of distance, and the added phase approaches 7r/2. Similar results are obtained, 
of course, when two transducers are used on opposite ends of a specimen. If the 
transducers are of different size or are not coaxial, the results vary accord
ingly, but are qualitatively similar. 

6. When a transducer is used to examine a specimen for small flaws, the 
apparent flaw size "as measured by an echo amplitude varies with the position 
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of the flaw in the field of the transducer because of the pressure variations as a 
function of position in the monochromatic field. 

7. When a transducer producing monochromatic waves is placed on a 
specimen of regular geometry and finite lateral extent (e.g. on the end of a 
cylinder), the " b e a m spreading" (as lobes interact with the sidewalls) 
causes constructive and destructive interference versus distance from the 
transducer. Incremental loss and gyrations in phase are noted. 

8. " B e a m spreading," i.e. the effect of diffraction, is a function of the 
anisotropy of the specimen. " Beam spreading " can be accelerated, retarded, 
or "smoothed out ," depending on the symmetry involved. 

9. Broadband pulses (i.e. generated by spiked or rectangular voltage 
pulses applied to heavily dampened transducers) tend to average out the 
effects of diffraction because they contain a spectrum of frequencies, each 
of which experiences diffraction effects a t a different distance from the 
transducer. 

The diffraction problem is generally solved in two steps: (1) finding the 
pressure and phase a t all field points of interest in the field of the radiating 
aperture (transducer), and (2) finding the response of the receiving transducer 
which spans those field points of interest. 

For pulse-echo work in a specimen of length L, the field points of interest 
are on planes a t distances 2nL in the propagation direction and are within a 
cylinder defined by the perimeter of the transducer as directrix, and the 
normal direction to the transducer as generatrix. (Surface waves and plate 
waves would be two-dimensional problems.) 

For through-transmission work, the single plane of interest is a t the dis
tance L, and the set of points is over the area of the receiving transducer 
which may be of a different size from the transmitting transducer. In any 
specific instance, one may solve for the pressure and phase experienced by the 
receiving transducer as a function of distance from the transmitter. 

A . FORMULATION FOR PRESSURE AND P H A S E 

The pressure ρ in the field of an aperture in a rigid baffle in a fluid when 
the baffle is irradiated by a plane pressure wave (Rayleigh, 1945) is given by 

where ω is the angular frequency, p0 the material density, V the particle 
velocity amplitude at the aperture, β the magnitude of the propagation 
vector, r the distance to the field point from the element of area do on the 
aperture of area σ, and t is the time. 

Several authors have applied this formula to solve the beam-spreading 
problem for monochromatic waves in practical cases (Seki et cd., 1956; 

II. Theory 

(1) 
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F I G . 1 . All-plated transducer bonded to a sample for pulse-echo measurements . 
Stippled region is plating, while crosshatched layer is bond. F r o m Papadakis , ( 1 9 6 6 ) b y 
permission of the American Ins t i tute of Phys ics . 

Tjadens, 1961; Papadakis, 1959, 1963a, 1964a, 1966; Lord, 1966a,b; Benson 
and Kiyohara, 1974). Gitis and Khimunin (1969) have reviewed the field 
recently. The solution for fluids applies adequately to isotropic solids as long 
as the transducer is bonded adequately to one of a pair of plane parallel faces 
of a slab considerably larger in lateral extent than the transducer diameter 
(see Fig. 1). Then the result (Seki et al., 1956) for loss due to diffraction from 
circular apertures is shown in Fig. 2. This curve applies to isotropic solids and 
to fluids. I ts abscissa S = z\ja2 is propagation distance ζ normalized by the 

s — • 
F I G . 2 . Loss for a circular piston radiating longitudinal waves into isotropic media 

according to Seki et al. ( 1 9 5 6 ) . From Papadakis ( 1 9 6 6 ) , b y permission of the American 
Ins t i tute of Phys ics . 
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Fresnel length ά2/λ, making a universal curve. (Other losses may be associated 
with reflections a t the transducer or a t a reflector in a fluid.) Seki et al. 
(1956) and Benson and Kiyohara (1974) used mathematical expansions of 
the field in terms of cylindrical functions to solve for the pressure in the field 
of the transmitter and the response of the receiver. Papadakis (1964a, 1966) 
used a brute force approach involving numerical integration by computer. 
The lat ter approach is constructive to s tudy because it illustrates the pro
cedure to be followed in any method. The essence of the theory was presented 
by Seki et al. (1956). 

The formulation due to the author (Papadakis, 1963a, 1964a, 1966) is 
applicable to anisotropic solids. As will be seen, longitudinal waves in certain 
pure-mode directions yield the only simple solutions. 

In general, the pressure a t a field point is 

The integration is preformed over the area a of the transmitt ing transducer. 
See Fig. 3 for the geometry of the situation in the case of propagation along 

F I G . 3. Coordinates and relevant vectors for the integrat ion t o find t h e pressure in 
front of a circular p i s ton radiator. For anisotropic media , the propagat ion vector β 
deviates from the P o y n t i n g vector P, but these a n d t h e surface normal η are coplanar 
for 3- , 4-, and 6-fold axes along n. F r o m Papadakis (1966), b y permission of the American 
Ins t i tu te of Phys ics . 

axes of 3-, 4-, or 6-fold symmetry for cylindrical geometry. The equations 
could be written and solved in Cartesian coordinates, as well, for rectangular 
transducers. The vector r goes from the element of area da on the transducer 
to the field point (x, z). The Poynting vector Ρ lies along r. The coordinates of 
the element da are (ρ, φ). The segment of a plane wave carrying energy from 
da to the field point (x, z) along r has a propagation vector β t ha t deviates 
from r by an angle dp (Waterman, 1959). The vector β makes an angle θ 
with the transducer normal n. The angular frequency of the elastic wave is ω 
and the density of the medium is p0 . V(p, φ) is the particle velocity input 
amplitude at ζ = 0. I n the case of a piston source, V(p, φ) would be a constant 

(2) 

Ζ 
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j<*>Po V0 f expj[o>* - β · r] da 

J, [ι] · <3> 
Dropping the coefficient and using trigonometric identities, one finds 

f cosS 'T da Γ sin β · r da 
pec sinooM j-^j cos ωί j ^ . (4) 

This is written as p, and is given by 

ρ = A1 sinatf — A2 cosa>£, 
= <7cos(aji — δ), (5) 

where Ax is the first integral and A2 is the second integral of Eq. (4). Then we 
have 

C2 = A1

2 + A2

2 

and (6) 

tan δ = —AJA2. 

The response of the receiving transducer pM is proportional to the maximum 
over a period of the integral of ρ over its area a'. 

pM oc \ ρ da' = C cos(a)t — δ) da' 
Ja, max over t i m e Jff, 

(7) 

To find the maximum, a differentiation with respect to time is performed as 
follows: 

dpMjdt oc — J C sin(o>* — δ) da' 

= sincai C cos δ da' — cos cut \ C sin δ d da' 
J<r' Ja> 

= H2 sinoji — H1 coscoi. (8) 

Then, this is set equal to zero, and ω£Μ for the maximum is found from 

tan ω*Μ = HJH2. (9) 

The value of ootM found from H1 and H2 is substituted in Eq. (6) to give pM 

in the form 

J σ' 
pM cc C cos(o>fM — δ) da. (10) 

V0 over the transducer and zero elsewhere. The incremental phase ζ(ρ, φ) 
refers to the particle velocity input, and is zero for a piston source. Thus, for 
the piston source considered in this section, the pressure is 
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The maximization procedure might determine the minimum instead; but 
since the minimum in this case is just the negative of the maximum, it is 
sufficient to take the absolute value of pM in finding the decibel level of the 
pressure. Thus, 

dB = 2Qlog10{\pu\1l\pu\). (11) 

The subscript 1 refers to the reference level a t a certain distance along the ζ 
axis. I t corresponds to the first echo in a pulse-echo measurement. 

The quanti ty ωίΜ defines the excess phase φ experienced by the propa
gating wave as sensed by the transducer. I t turns out tha t ωίΜ is not linear 
in propagation distance, but t ha t ojtM — β0ζ increases from zero a t the origin 
to π /2 as ζ -> oo. Here, β0 is the magnitude of β for the direction of r pointing 
along the z-axis, the propagation direction. In any computer calculation, it is 
convenient to choose β0ζ in multiples of 2π to eliminate its perturbing 
effect. 

There is another method, the "angular spectrum of plane waves" 
representation, which arrives at the same results by a different system of 
integration (Kharusi and Farnell, 1970). I t should be studied for use in those 
cases in which it proves advantageous. One is propagation not along pure-
mode axes. The ASPW method will not be treated in this paper. 

B . FORMULATION FOR SPATIAL P H A S E D O T PRODUCT 

When plane elastic waves propagate in crystals, pure modes can travel 
along certain axes called pure-mode axes. One longitudinal mode and two 
shear modes, either distinct or degenerate, may be propagated along each 
axis. Surface waves may propagate on free surfaces, also. 

Axes of 3-, 4-, and 6-fold symmetry offer certain simplifications in the 
longitudinal bulk wave propagation problem since they are directions of 
either maximum or minimum longitudinal velocity, not saddlepoints. This is 
important when one consideres the implications of Fig. 3. There, the propaga
tion vector β deviates from the puremode axis (n and the z-axis) by an 
angle Θ. However, η, β, and Ρ are coplanar. Thus the velocity ν along β 
differs from the velocity v0 along the pure-mode axis where the magnitude of 
β is β0. W Taterman (1959) has given ν in the form 

v3 = v3(l + Av3/v3), (12) 

where the subscript 3 refers to the third mode tha t he treated, the longitu
dinal one. The increment Δν3 is proportional to Θ2, so one may write 

* = * ; o ( l - 6 0 2 ) , (13) 
where 

b=-kv3/v3e2 (14) 

of Waterman's paper. Since the propagation constant is | β | = 2π//ν, one 
may write 

| p | = j 8 0 ( l + W») (15) 
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when bd2« 1. Also, since dP is proportional to Θ, one may write 

άΡ = (2Β)1/2θ, 

thus defining B. The dot product β · r becomes 

β τ = \ρ\\τ\(1-Βθη 

= β0\τ\[1 + φ-Β)θ*]. 

I t was shown (Papadakis, 1964) tha t Β = 2b2, so 

( 6 - B ) = 6 ( 1 - 2 6 ) . 

Thus the expression in Eq. (3) for pressure becomes 
jop0V0 f e x p j { w i - j 3 0 | r | [ l + 6 ( l - 2 b ) 6 2 ] } da 

p = — l Μ 
(19) 

(18) 

(16) 

(17) 

The introduction of anisotropy into the spatial par t of the phase in the 
pressure integral is the only change from the theory of fluids to the present 
theory of diffraction in solids. The validity of this change is established by the 
comparison of experiment with calculations using Eq. (19) in Eqs. (4)-( l l ) to 
find the diffraction loss and phase change. 

Expressions similar to Eq. (13) hold for the extremal velocity directions 
of surface waves. Hence, expressions for the parameter b can be found on 
crystal surfaces. For bulk longitudinal waves in other than extremal direc
tions, and for bulk shear waves in all directions, the complication in the 
functional dependence of b upon direction proliferates (Waterman, 1959; 
Papadakis, 1966). Even the seemingly simple case of [110] propagation of 
longitudinal waves in a cubic crystal is overwhelming because tha t direction 
yields a saddle point in phase velocity. 

C. EXPRESSIONS FOR ANISOTROPY PARAMETER b FOR LONGITUDINAL 
W A V E PROPAGATION 

The expressions for Δν3/ν3 (Waterman, 1959) are converted to expressions 
for the parameter b by means of Eq. (14) and are presented here. Only those 
for 3-, 4-, and 6-fold axes are shown. 

1. Cubic system: 
(a) [100] propagation 

(b) [111] propagation 

b = 2(2c 4 4 + c i a - c n ) ( c n + 2c 1 2 + c 4 4 ) /3(c 1 2 + c 4 4 ) ( c n + 2 c 1 2 + 4c 4 4 ) . 

b = ( c n - c 1 2 2 c 4 4 ) ( c n + c 1 2 ) /2c 1 1 (c 1 1 — c 4 4 ) . (20) 

(21) 
2. Hexagonal system: c-axis propagation 

b = ( c 3 3 c 1 3 — 2c 4 4 ) ( c 3 3 + c 1 3 ) /2c 3 3 ( c 3 3 — c 4 4 ) . (22) 
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3. Tetragonal system: c-axis propagation 
0 — (C33 C13 — 2c 4 4 )(c 3 3 + C 1 3)/2C 33(C33 — C44). (23) 

4. Trigonal system: propagation along 3-fold axis 

b = (c33 - - 2c 4 4 )(c 3 3 + c13)/2c33(c33 - c 4 4). (24) 

Cases 2, 3, and 4 are identical; the other moduli, c 1 2 , c 2 5 , and c 6 e , are not 
present even if the crystal system has such moduli. Indeed, case 1(a) reduces 
to the form of 2, 3, and 4 if one uses the equalities c n = c33 and c12 = c13 

valid in the cubic system. Only case 1(b) is different. Equations (20)-(24) are 
needed to evaluate b in the diffraction problem. 

D . PHYSICAL LIMITS ON THE PARAMETER b 

Considering the propagation of elastic waves in crystals, one finds 0.5 to 
be an upper limit on b. By algebraic manipulation, Eq. (20) for b in the [100] 
direction in a cubic crystal may be rewritten as follows: 

>=°4+Γ-^-ΗΓ^)]> (25) 

L ° 1 1 ° 1 1 ° 4 4 ° 1 1 \ G 1 1 — C 4 4 / J 
or 

where 

b - 0 . 5 ( 1 + δ), (26) 

g £ l 2 C12 "t~ C 4 4 
Cll Cll C 4 4 - M r 1 ? ) - ( 2 7 ) 

c l l \ ° 1 1 — c 4 4 / 
I t can be shown in the following manner tha t δ is always negative. Call 
c 1 2 / c n == ε, and factor the sums (c 1 2 + c 4 4 ) into c 1 2 ( l + c 4 4 / c 1 2 ) , etc. Then, 

s (I + C44M2) ο (1 + C44/C12) 

We must have c 4 4 < c n and all the cu positive to ensure t ha t the shear wave 
velocities are smaller than the longitudinal wave velocities in all directions 
(Mason, 1958, pp. 370-372). Otherwise, there would be directions in which 
the quasilongitudinal and quasi-transverse waves would mix and perturb 
each other. New modes would form in a way shown diagrammatically in 
Fig. 4. With modes like these, the quasi-longitudinal and quasi-transverse 
character of particle motion would lose all meaning in the transition region. 
There, the particle motion of both modes would be a t nearly 45° to the 
propagation direction, not near it or near 90° to it. I n Eq. (28), the conditions 
c 4 4 < c n and c i y positive imply tha t the ratio (1 + c 4 4 / c 1 2 ) / ( l — c 4 4 / c n ) is 
greater than unity. Call 

(1 + <W<a2)/(l ~C44/C11) = 1+^7 . (29) 
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1  #  I  — PURE - MOD E AXI S  —  #  2 1 

DIRECTION O F PROPAGATIO N 

F I G . 4. The m i x i n g of elastic modes necessary if a crystal is t o h a v e an anisotropy 
parameter b > 0.5. A t least one shear m o d e m u s t h a v e a higher ve loc i ty t h a n the longi
tudinal mode along one pure-mode axis . F r o m Papadakis (1964a), b y permission of t h e 
American Ins t i tu te of Phys ics . 

Then Eq. (28) yields 
8 = ε(—ε-η-εη) (30) 

which is identically negative. With δ negative, Eq. (25) reveals tha t the 
anisotropy parameter b is less than 0.5. Thus, any normal cubic crystal is 
characterized by b < 0.5. A completely analogous analysis holds for the 
hexagonal crystals. The result is b < 0.5 if c 4 4 < c 3 3 and c{j > 0. 

III. Computations 

The calculations indicated in Eqs. (4) through (11) were carried out (Papa
dakis, 1966) with the aid of an electronic computer for values of b from —5.0 
to + 0 . 4 for circular transducers many wavelengths in diameter (β0α ~ 80). 
The transmitting and receiving transducers were made the same size and 
coaxial a t a distance ζ apart . Both dB and φ were calculated from S = 0.1 to 
# = 5.0 in steps of 8 = 0.1! (S = zX/a2 is the Seki parameter, propagation 
distance normalized by the Fresnel length.) To assure zero contribution to φ 
from the spatial par t of the phase in the integral of Eq. (19), the value of a 
was chosen to make β0 ζ an integer multiple of 2π a t each value of S. Thus 
outM gave φ directly. Elements of area da and da' were placed close enough 
together so tha t the arguments of the sinusoidal functions in the integrals 
changed by no more than 0.1 rad from element to element. 

The dB loss is plotted as a function of S with the anisotropy b as a 
parameter in Figs. 5 and 6. The first contains graphs with b between —5 and 
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F I G . 5. Diffraction loss for a circular p is ton radiat ing longitudinal w a v e s into a n 
anisotropic med ium along direction of 3- , 4-, or 6-fold symmetry . Values of the anisotropy 
parameter 6 from — 5 to — 1 are shown. This and the following figure are to be used in 
comput ing at tenuat ion corrections. F r o m Papadakis (1966), by permission of the 
American Ins t i tu te of Phys ics . 
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F I G . 6. Diffraction loss for a circular p i s ton radiat ing longitudinal w a v e s into a n 
anisotropic m e d i u m along a direction of 3- , 4-, or 6-fold symmetry . Values of the aniso
tropy parameter b from — 1 to -f 0.4 are shown. The upper l imit of b is 0.5. The pos i t ion 
of peak "A" is g iven b y SA = 0.8/(0.5 — 6). This and the preceding figure are to be used 
in comput ing at tenuat ion corrections. From Papadakis (1966), b y permission of the 
American Ins t i tute of Phys ics . 

— 1 , while the second covers b from —1 to + 0 . 4 . (It was shown above tha t b 
cannot be greater than 0.5.) The most striking feature of the curves is their 
similarity in shape. I t should be noted tha t 

1. The locations of the loss peaks move toward the origin as b decreases. 
2. The location of peak A shown in Figs. 1, 5, and 6 is given by the equa

tion 

SA = 0.8/(0.5 - 6 ) , (31) 
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s = z \ / a * 

F I G . 7. Phase advance φ for the w a v e from a circular p i s ton source. This advance 
occurs as the secondary lobes leave the region of the m a i n beam. T h e tota l advance from 
0 to infinity is 7r/2 rad. The phase advance can be used in correcting b o t h phase ve loc i ty 
and group ve loc i ty measurements . For group ve loc i ty , i t would be advantageous t o 
place the echoes where θφ/θβ = 0. F r o m Papadaki s (1966), b y permission of the American 
Ins t i tute of Phys ics . 
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0 I 2 3 4 5 

s = z \ / a 2 

F I G . 8. Relat ionship be tween the phase advance and the loss in the field of a p is ton 
source. Phase plateaus occur a t loss peaks. The phase goes to a l imit of π/2 rad whi le 
the loss increases logarithmically. From Papadakis (1966), b y permission of the American 
Ins t i tu te of Phys ics . 
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a new universal equation for pulse-echo experiments relating anisotropy to 
Fresnel length. 

3. The magnitude of a given peak, e.g. "peak A," remains almost 
constant, increasing only slightly with increasing b. 

4. The diffraction loss per unit 8 grows larger as b becomes smaller 
algebraically. 

5. Beyond the peaks the loss is monotonic increasing without limit but 
with a monotonic decreasing slope. 

6. The curve for b = 0, the isotropic case, duplicates the series expansion 
calculations (Seki et al., 1956; Tjadens, 1961; Benson and Kiyohara, 1974). 
Figures 5 and 6 are to be used for diffraction corrections to the attenuation. 

The phase change φ is plotted as a function of 8 with anisotropy b as a 
parameter in Fig. 7 for the range —5.0 ^ b ^ 0.4. These curves are very 
similar to those for loss with two exceptions: (i) the phase has plateaus 
instead of peaks, and (ii) it goes to a limit π/2 as S increases. The slope 
άφ/dS can be large. The curves in Fig. 7 are to be used for diffraction correc
tions to the velocity. 

The relationship between the phase plateaus and the loss peaks is shown 
in Fig. 8 in which the curves for b — 0 are repeated. The plateaus in phase 
coincide with the peaks in loss, and are about as wide in 8 as the distance 
between the points of inflection next to the loss peaks. 

Computations of Benson and Kiyohara (1974) extend the range of 8 to 
50, and actually show tha t the phase is asymptotic to π/2, and tha t the loss 
goes to 6 dB per doubling of distance, the point-source limit, a t large S. 

Calculated values of the pressure amplitude and phase in the field of the 
radiating transducers are given in Appendix A for certain values of 8, the 
normalized propagation distance, and xja, the fraction of the transducer 
radius from the centerline (Papadakis and Fowler, 1971). 

IV. Experiments 

AMPLITUDE AND Loss 

Many pulse-echo experiments have been performed in which echo ampli
tudes have been recorded (Roderick and Truell, 1952; Seki et al., 1956; 
Papadakis, 1963a, 1964a, 1966). These experiments yield copious evidence 
as to the correctness of Eq. (31), and thus verify the diffraction theory for 
anisotropic solids enunciated by the author (Papadakis, 1963a) in Eq. (3). 
From the echo amplitudes, the loss was calculated and plotted versus 8 for 
each crystal studied. A representative group of these graphs is reproduced in 
Figs. 9 through 16. Represented are propagation along the 6-fold axis in a 
hexagonal crystal, the 3-fold axis in a trigonal crystal, and the 2-fold, 3-fold, 
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F I G . 9. Loss versus S for successive echoes of longitudinal w a v e s along the c-axis of 
cadmium, an hexagonal crystal . There is ev idence for the existence of peak "A" in t h e 
diffraction loss a t a posit ion 5 0 % higher t h a n the correct va lues of SA. The curves are 
separated b y 2 d B at S — 0 for clarity. F r o m Papadakis (1966), b y permission of the 
American Inst i tute of Phys ics . 
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S  =  ζ λ / α 2 

F IG . 10. Loss versus S for success ive echoes of longitudinal w a v e s a long t h e 3-fold 
ax i s of c a l c i t e — C a C 0 3 , a trigonal crystal . The loss peaks are in the proper places accord
ing to E q . (16), and are be tween 6 0 % and 1 0 0 % of the theoretical peak ampl i tudes . T h e 
curves are separated a n arbitrary a m o u n t a t S = 0 for clarity. F r o m P a p a d a k i s (1966), 
b y permission of the American Ins t i tu te of Phys ics . 
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S = ζ λ / α 2 

F I G . 11. Loss versus S for successive echoes of longitudinal w a v e s along a 4-fold 
axis , [100], of K B r , a cubic crystal wi th large posit ive b. Ev idence for t w o loss peaks, 
"A" and " B , " can be seen. These are at the locations along S predicted b y theory. The 
intrinsic loss is about twice the diffraction loss at 12 MHz, and three t imes at 15 MHz. 
From Papadakis (1966), b y permission of the American Ins t i tute of Phys ics . 

and 4-fold axes in cubic crystals. Values of b from —1.4 to + 0 . 4 are repre
sented. The position SA of the loss peak A is indicated in each graph. These 
SA values are tabulated for all the available data (Papadakis, 1966) in 
Table I. 

There is excellent agreement between theory and experiment concerning 
the peak positions. The magnitude of the loss measured at peak A in the 
graphs agrees approximately with theory in the crystals with low intrinsic 
loss. 
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T A B L E 1 ° 

E X P E R I M E N T S ON P E A K P O S I T I O N S W I T H C I R C U L A R A L L - P L A T E D 

L O N G I T U D I N A L T R A N S D U C E R S 

Material b SA Theory SA Exper iment 

Zn c ax i s - 5 . 2 3 0.137 N o t seen 
Cd c ax is - 1 . 4 0 8 0.410 0.6 
Ge [100] - 0 . 5 8 1 0.74 0.7 
C a C 0 3 3-fold - 0 . 5 6 7 0.75 0.8 
S i [ 1 0 0 ] - 0 . 4 6 1 0.83 0.9 
Quartz 3-fold - 0 . 2 5 0 1.07 1.1 
N a C l [ l l l ] - 0 . 2 1 2 1.12 1.3 
Steel 0.000 1.60 1.8 
Si [111] 0.162 2.37 2.4 
NaCl [100] 0.196 2.63 2.7 
K B r [100] 0.373 6.30 6.3 
K I [100] 0.380 6.67 5.7 

α F r o m Papadakis (1966), b y permission of the American 
Ins t i tu te of Phys ics . 

3 0 

4 

S = ζ λ / α 2 

F I G . 12. Ultrasonic losses for longitudinal waves in [100] germanium showing the 
diffraction-loss peak A as occurring at SA = 0.74. The curves are separated b y 2 d B at the 
first echo for clarity. The true loss is zero at S = 0. (Data of Seki, Granato, and Truell). 
F r o m Papadakis (1964a), b y permission of the American Inst i tute of Phys ics . 
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S * z X / a 

F I G . 13. Ultrasonic losses in silicon for longitudinal waves propagating in the [100] 
direction. The piston source was an all-plated X - c u t quartz disk. The experimental peak 
posi t ion >SA of 0.9 compares favorably w i th the value of 0.83 computed from E q . (22). 
The curves are separated b y 1 d B at the first echo for clarity. The true loss is zero at 
S = 0. From Papadakis (1964a), b y permission of the American Ins t i tute of Phys ics . 

Seki et al. (1956), without knowledge of the theory for anisotropy, 
misinterpreted their data on [100] germanium. They supposed tha t the loss 
peak at S = 1.7 (Fig. 12 and Table I) was the B-peak, while actually it was the 
Α-peak at SA = 0.74, according to Eq. (31). Unfortunately, this misinterpre
tation has been developed in review literature (Truell et al., 1969) despite the 
intervening publications clarifying the matter (Papadakis, 1964a, 1966). In 
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F I G . 14. Ultrasonic losses in sil icon for longitudinal waves propagat ing in the [111] 
direction. The pis ton source was an all-plated X - c u t quartz disk. The experimental peak 
posi t ion SA of 2.4 agrees w i t h the predicted value of 2.37 from E q . (22). The curves are 
offset 1 d B a t the first echo for clarity. The true loss is zero at S = 0. F r o m Papadaki s 
(1964a), b y permission of t h e American Ins t i tute of Phys ics . 

reading the literature, one must be careful to distinguish also between the 
loss peaks referred to here, e.g. Figs. 1, 5, 6, 8-16, and the echo amplitude-
peaks referred to elsewhere (Seki et al., 1956; Truell et al., 1969). 

The nth echo amplitude peak follows the nth loss peak (which, of 
course, is observed as a valley in the echo pattern). In the notation of echo 
amplitude peaks, Seki et al. mistook the third echo amplitude peak in [100] 
germanium for the second. 
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F I G . 15. Diffraction loss for longitudinal waves in the [110] direction in silicon. The 
peaks show up only as a change of slope near SA. SA is actual ly variable since 6 is a 
function of the az imuth of the vector from an e lement of area on the transducer to a 
field point . The azimuthal dependence of the anisotropy apparently averages out the 
sharp peaks in the diffraction loss. From Papadakis (1966), b y permission of the American 
Inst i tute of Physics . 
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F I G . 16. Diffraction loss for longitudinal waves propagating along the [110] direc
t ion, a 2-fold axis , in NaCl, a cubic crystal. The peaks are m u c h weaker than those in the 
3-fold and 4-fold directions in NaCl (Papadakis , 1963) or in other crystals reported here 
and elsewhere. From Papadakis (1964a, 1966), by permission of the American Ins t i tu te 
of Phys ics . 
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V. Diffraction Corrections 

A . DIFFRACTION CORRECTIONS FOR ATTENUATION 

The author (Papadakis, 1959) outlined the method for computing the 
corrections for diffraction in ultrasonic attenuation experiments in isotropic 
bodies with plane parallel faces. The method is applicable to anisotropic 
media as long as the diffraction loss-distance characteristic is known; the 
procedure is recapitulated here. The diffraction loss-distance characteristic is 
a plot, as in Figs. 5 and 6, of decibel loss from beam spreading versus S, the 
normalized distance ζλ/α 2. I n pulse-echo work, the echoes are at specific 
points along S. Writing λ = v/f and ζ = 2Ln for the nth echo where L is the 
length of the specimen, we have 

Sn = 2Lnv/a2f. (32) 

Between echoes numbered m and n, the incremental loss is 

MB = dB(Sn) - dB(Sm), (33) 

where n>m. For loss per unit length, AdB is divided by 2L(n — m), the 
incremental path, so 

dB(Sn)-dB(Sm) 
a L d = 7ΓΠ \ · 3 4 ) 

2L(n —m) 
Here the subscript " L d " stands for " p e r unit length due to diffraction." 
Similarly, for loss per unit time, ΔάΒ is divided by 2L(n — m)/v, the incre
mental travel time (or by the time if it is measured directly), so 

v[dB(Sn)-dB(Sm)] 
a T d ~ 2L(n-m) ' (t*5) 

" T d " stands for " p e r unit time due to diffraction/9 These corrections, 
a L d and a T d , are to be subtracted from the measured attenuation, a L ' or a T ' 
per length or time, to find the true attenuation in the medium under study. 
Thus 

a L = a L — < * L d > 

and (36) 
OC»p = OCrp — ^ T d ' 

In most work, the majority of the measurements will be made in the 
Fresnel region where the diffraction loss is not monotonic in S. From Fig. 2 
one can see tha t the diffraction correction between certain pairs of echoes 
might even be negative. Thus it is very important tha t the corrections be 
computed accurately from the proper curves of dB versus S. 

In general, for a given size of transducer, the diffraction loss between a 
given pair of echoes will be higher a t the lower frequencies. When the fre
quency dependence of the attenuation is important (i.e. most of the time), 
the dependence on the raw data may be masked by the diffraction loss. 
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B. DIFFRACTION CORRECTIONS FOR VELOCITY 

The phase increment mentioned in Fig. 7 represents an error in the 
travel time in phase velocity measurements. The expression for the incre
ment in time is 

«D = W , ) - M » ) J 7 2 « / (37) 

with φ in radians and n>m, these integers being the echo numbers. The 
increment tO is to be added to the measured value tM of the travel time to get 
the true travel time t$\ Thus, 

'ff} = ' M + * D . (38) 

Other things being equal, tO decreases as / increases because / is in the 
denominator of tO and in the denominators of the S/s also. This finding is in 
agreement with the work of McSkimin (1960), and of Barshauskas et al. 
(1964) who found excess velocity at the lower frequencies. 

I t should be noted at this point tha t the pulse-superposition method of 
McSkimin (1961) partially masks the effect of diffraction by overlapping 
several echoes a t different S values simultaneously. Some kind of weighted 
automatic averaging is performed. The pulse-echo-overlap method (Papa
dakis, 1967) uses only pairs of echoes, and permits exact diffraction correc
tions. 

C. DISPERSION INTRODUCED BY DIFFRACTION 

As already mentioned, the phase velocity of waves is a function of S 
through diffraction. Integration over the phase profile makes this so. Since S 
is a function o f / a n d v, one can write the propagation constant β0 as a function 
of the phase and get the group velocity as follows. By definition, 

vg = άωΙάβ0 = 2nl(dfi0ldf). (39) 
This is equivalent to 

vg = V0l[l - (ω0Ιν0)(άνΙάω)01 (40) 

where the subscript " 0 " refers to the center frequency of a pulse spectrum. 
The time of flight for the apparent phase velocity is 

tu' = t u + t(Sm)-t(Sn), (41) 

where t(Sj) is a small increment due to diffraction. Using Eq. (37), one obtains 

ht' = * u - aWWSn) - <HSm)l (42) 
so the apparent phase velocity is 

2L(n — m) 
v = { < M - ( i M [ M J - M n ) ] } ( 4 3 ) 

or 
ν ~ [2L(n - m)/<M]{l + [φ(8Λ) - < A ( S m ) ] / a > i M } . (44) 
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The partial to insert for (dv/dw)0 is 

( £ ) . - s 5 ? { ^ - * « ' + [ * S L - « - 8 | J } -

This makes the group velocity 

(45) 

» . = » o ( l + ^ { [ ^ » ) - ^ » ) ] + <*n 
8φ 

•s, 
Sn 

δφ 
8S 

(46) 

As shown in Fig. 7, δφ/θβ fluctuates between zero and fairly large slopes, so 
the second term in the denominator of Eq. (46) can be large. Thus it can be 
seen tha t the group velocity can be considerably lower than the phase velocity 
in the Fresnel region. This dispersion is caused by diffraction alone. Experi
ments should be performed on video pulse transmission in the Fresnel region 
in intrinsically nondispersive media to test this finding. 

D . U S E OF B U F F E R R O D S 

The same curves, shown in Figs. 5 and 6, of loss versus normalized 
distance (dB versus S = ζλ/α2) can be used in the case of buffer rods or liquid 
columns which convey the ultrasonic waves from the transducer to the 
specimen and back. See Fig. 17. The theory for diffraction corrections in 
buffer/specimen systems is presented here (Papadakis et al., 1973). 

In a buffer/specimen system, one needs the amplitudes of three separate 
echoes, A, B , and C (or A', A, and Β where echo A' is echo A before the 
specimen is at tached in Fig. 17) for the calculation of the at tenuation and 

L 

( 2 ) 

A= R 

Β  =  ( 1 - R 2 ) e 2 < * L 

C »  - R ( | - R 2 ) e - 4 * L 

F I G . 1 7 . Definit ion of echoes A, B , and C from a spec imen at the end of a buffer. 
F r o m Papadakis et al. ( 1 9 7 3 ) , b y permission of the American Ins t i tute of Phys ics . 
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reflection coefficients. I n bulk specimens, these three echoes are affected to 
different degrees by diffraction (beam spreading). To be specific, each echo is 
smaller than it would have been in the absence of diffraction. The principle 
invoked in diffraction corrections in this case is the correction of each echo 
amplitude to its undiffracted value, and the subsequent calculation of R and α 
from the corrected echo amplitudes. 

First, 8 is calculated for each echo. 

S = ζλ/α2 = zv\a2f (47) 

is the normalized distance, where ζ is the propagation distance, ν is the 
velocity, a is the transducer radius, and / is the frequency. Use capital letters 
Ζ and V for distance and velocity in the buffer, and small ζ and ν for corres
ponding quantities in the specimen. Ζ = 2L where L is the length of the 
buffer, and ζ = 21 where I is the length of the specimen. The 8 values for 
echoes A, B, and C (or A', A, and B) are 

SA'=SA = 2LVIa2f, 

SB = 2LVIa2f+2lv/a2f, (48) 

and 

Sc = 2LV/a2f + 4lvla2f. 

Then, from the curve of dB versus 8, one finds 

dBA' = dBA = dB(SA), 

dBB = dB(SB), (49) 

and 

dBc = dB(8c). ζ 

From the definition dB = 20 l o g 1 0 ( X 0 / X ) , and the measured amplitudes A, B, 
and C (or A', A, and Β), one can find the corrected values Α0', A0, B0, and C0 

by inverting the equations 

dBA' = 2Qlog10(A0'IA'), 

dBA = 20\og10(A0IA), (50) 

dBB = 20 log10(B0/B), 
and 

dBc = 20 log 1 0 (O 0 /C). 

The values of A0 , B0, and C0 (or Α0', A0, and B0) are used in the calculation 
of R and α by the method of separate echoes (Papadakis, 1968a, 1971a; Lynn-
worth, 1974). The formulas are recapitulated here for completeness. 

Echoes A, B, and C 
R = [A0C0l(A000-\)fi\ (51) 
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and 
α = [1η(-Λ/0 ο )]/2ϊ, (52) 

where 

A0 
A0jB0 and C0 = C0IB0 

Echoes A', A, and Β 
R = Α0/Α0', (53) 

and 

α = { 1 η [ Λ ' ( 1 - £ 2 ) / £ 0 ] } / 2 ί . (54) 

In the present formulation, the relative signs of Α', A, B, and C must be 
used. The experimenter must note whether Α', B, or C are inverted with 
respect to A. 

Similar calculations use SA, SB, and Sc to find the phase φ to correct 
travel time measurements. 

E . CORRECTIONS FOR ATTENUATION: EXPERIMENTS 
WITH B O N D E D TRANSDUCER PLATES 

Diffraction corrections for at tenuation (Section V , A above) have been 
used to determine the functional relationship between the intrinsic attenua
tion in materials and the ultrasonic frequency used for measurement (Papa
dakis, 1960,1961,1963b, 1964b,c, 1965, 1968b, 1970; Papadakis et al, 1973). 
The major result has been the detection of attenuation in polycrystalline media 
dependent upon powers of frequency higher than 2.0 for data which did not 
show such a high power before diffraction corrections were applied. One 
expects at tenuation to depend on powers as high as 4.0 in the Rayleigh 
scattering region (λ » grain diameter) which was the condition in the experi
ments cited. The discovery of Rayleigh scattering at tenuation is evidence 
for the correctness of the diffraction corrections for attenuation. The experi
ments referred to as well as others are completely documented in an earlier 
volume of this set (Papadakis, 1968b). 

F . P H A S E AND T I M E D E L A Y EXPERIMENTS 

The author (Papadakis, 1967) used the pulse-echo-overlap method to 
study the phase shift in an ultrasonic beam due to diffraction versus distance. 
The travel times tM in several specimens were measured between the first 
echo and several other echoes with X-cut quartz transducers resonant at 15 
and 20 MHz. In the process of measuring and comparing the McSkimin 
Δί'β (McSkimin, 1961), it was found tha t the value of bond thickness was 
equivalent to 8° of phase, resulting in a reflection phase angle y R of 3°. The 
round-trip travel times t were computed from the values of tM and y R by 
McSkimin's formulas; so a set of values of t was found, one for echoes 1 and 2, 
another for 1 and 3, etc. up to 1 and 15. A monotonic t rend was found in the 
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data. These values of t were averaged, and a standard deviation found. Then 
the diffraction phase correction tD (Papadakis, 1 9 6 6 ) was calculated and added 
to tM to get (for true). See Section V,B above. Again, the round-trip 
travel times t(T) were found. The corrected da ta showed a much weaker trend, 
had an average differing from the original by about 6 0 ppm, and had a 
lower standard deviation. The lower standard deviation resulted from the 
correctness of the diffraction correction for phase based upon Fig. 7 which 
took the diffraction trend out of the data and made all the values of round-
trip travel time more equal. 

T A B L E 1 1 ° 

S T A N D A R D D E V I A T I O N S I N T R A V E L T I M E B E F O R E A N D 

A F T E R D I F F R A C T I O N CORRECTIONS FOR P H A S E 

Standard deviat ion (/xsec) 

Specimen Uncorrected Corrected 

1 in. fused quartz 0.00016 0.00013 
2 in. fused quartz 0.00015 0.00010 
[100] Silicon 0.00021 0.00017 
[110] Silicon 0.00014 0.00008 
[111] Silicon 0.00021 0.00012 

° From Papadakis (1967), b y permission of the American 
Inst i tute of Phys ics . 

Table I I shows the resulting standard deviations, before and after. The 
resultant error in absolute time is of the order of ± 0 . 1 nsec. This accuracy 
would be impossible without the corrections for the diffraction phase effect as 
calculated by the methods outlined in this chapter. All published data on 
elastic moduli found by ultrasonics should be reviewed in the light of the diffrac
tion phase effect. 

G . EXPERIMENTS WITH B U F F E R R O D S 

1. Outline 
The most important uses of diffraction corrections in buffer rods have 

been in conjunction with broadband pulses and spectrum analysis (Papadakis 
et al., 1 9 7 3 ) . Two basic propositions have been proved: (a) tha t ultrasonic 
attenuation can be measured accurately with the buffer method using spect
rum analysis of broadband pulses to retrieve amplitude data as functions of 
frequency, and (b) tha t broadband ultrasonic transducers radiate considerable 
energy down to zero frequency, and act as almost critically damped oscilla
tors. Both these proofs were effected with broadband pulses which will be 
treated further in Section VII below. 
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2 . Spectrum I Buffer Method 
The method of spectrum analysis is outlined in the block diagram in 

Fig. 18. The system is organized around a pulser-receiver-gate unit which 
performs several functions. First, it delivers a very short electrical pulse to 
energize the transducer which generates a broadband ultrasonic pulse and 

p u l s e r -
RECEIVER • 
GATE 
UNIT 

SYNC 

GATE 
PULSE 

SIGNAL 

GATED 
SIGNAL 

PULSE OUT 
IN ECHOES 

XDCR 

BUFFER 
ROD 

SPECIMEN 

SPECTRUM 
ANALYZER 

V . SPECTRUM OF 
GATED AREA 

F I G . 1 8 . Block diagram of electrical and ultrasonic sy s t em for spectrum analys is 
of echoes in a buffer/specimen sys tem. F r o m Papadaki s et al. ( 1 9 7 3 ) , b y permission of 
the American Inst i tute of Phys ics . 

receives broadband ultrasonic echoes. The pulser-receiver-gate unit amplifies 
the echoes and sends this signal into two channels: (1) directly to a monitoring 
oscilloscope, and (2 ) through a stepless gate to a spectrum analyzer. Thus, a 
single echo can be selected by the movable, variable-width gating pulse. The 
gate pulse is displayed along with the amplified signal on the two-channel 
oscilloscope. The spectrum of the selected echo is displayed on the spectrum 
analyzer. 
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The broadband signal in the buffer rod is partially reflected at the 
buffer-specimen interface, and is partially transmitted into the specimen. 
There, it reverberates, and part of the energy returns to the buffer at each 
reverberation. See Fig. 17. The amplitudes A, B, and C of the first three 
echoes are given as an inset in Fig. 17 in terms of the particle amplitude 
reflection coefficient R and the attenuation a. With the formulas of Eqs. (51) 
and (52), one can calculate R and α from A, B, and C, provided diffraction 
corrections be made to A, B, and C before the calculation of R and a. 

In the present system, echo A is gated into the spectrum analyzer and 
its spectrum photographed; then echoes Β and C are treated likewise. (If the 
echoes are very different in amplitudes, calibrated attenuation may be 
introduced to achieve comparable amplitudes. Correction for this must be 
made in subsequent calculations.) The output of the spectrum analyzer is 
A (/), Β ( / ) , and C ( / ) , the amplitudes as functions of frequency. 

3. Spectrum Analysis Compared with rf Bursts in Bonded Transducers 
The standard method for pulse-echo ultrasonic attenuation measure

ments (Roderick and Truell, 1952) utilizes direct bonding of quartz crystals 
to plane-parallel specimens. I t is pertinent to ask whether the spectrum/ 
buffer method presented in Section V,D agrees with the standard method. 
To this end, an experiment was performed (Papadakis et al., 1973) on a 
specimen of grade A nickel which had been measured previously (Papadakis, 
1965) in the standard manner. Diffraction corrections had been applied to 
these data in the recognized way [using Eqs. (35) and (36)]. 

The nickel specimen was mounted on a water buffer column and inter
rogated by a broadband 5 MHz longitudinal wave transducer (Panametrics, 
Inc., Waltham, Massachusetts) mounted in the other end of the buffer 
column. Data on the specimen, buffer column, and transducer appear in 
Table I I I . 

The spectra of echoes A, B, and C were photographed and measured for 
A(f), B(f), and C(f). These amplitudes were corrected for diffraction by the 

T A B L E I I P 

D A T A O N W A T E R B U F F E R , N I C K E L S P E C I M E N , A N D T R A N S D U C E R 

D a t u m Transducer Buffer Specimen 

Mode 
Crystal 

Longitudinal 

Diameter 
5 MHz 
1.27 cm 1.53 c m 

1.335 c m 
0.150 cm/jLtsec 

3.78 c m 
1.775 c m 
0.573 cm/^tsec 

Length 
Velocity 

α From Papadakis et al. (1973), b y permission of the American 
Inst i tute of Physics . 



3. Ultrasonic Diffraction from Single Apertures 181 

method in Section V,D above, to yield A0(f), B0(f), and C0(f). Then R(f) 
and a ( / ) were calculated. R(f) held fairly constant around R = 0.9435 
±0.0045 in agreement with the theoretical value R = (Zx — Z2)j(Z1 + Z2) = 
0.945 where the Z{ are the specific acoustic impedances. The attenuation α is 
plotted in Fig. 19 as a function of frequency. Superimposed are the values 
reported earlier on the same specimen measured by the standard methods of 
bonded quartz crystals and pulse-echo diffraction corrections. The agreement 
is exact within the standard error of either measurement method. We can 
conclude tha t the spectrum analysis method is as accurate as the bonded-
transducer method. As with other measurements, one is limited by the need 

I 2 3 4 5 6 7 8 9 
F R E Q U E N C Y (MHz) 

F I G . 19. At tenuat ion in a nickel specimen tes ted b y broadband pulses and spectrum 
analysis uti l izing the buffer method , and b y rf bursts wi th bonded quartz transducers. 
Open circles are data wi th broadband pulses, buffer rods, and spectrum analysis . Solid 
circles are data (Papadakis , 1965) taken wi th rf bursts and quartz transducers bonded 
to the nickel. Agreement is essential ly perfect, substant iat ing the buffer/specimen 
method wi th diffraction corrections as g iven in Sect ion V , D . From Papadakis et al. (1973), 
b y permission of the American Inst i tute of Phys ics . 
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for sufficient amplitude and by the requirement tha t the sidewalls of the 
buffer and specimen do not interfere with the measurement. Because of 
beam spreading in the relatively long buffer, the use of a buffer may some
times introduce sidewall interferences not found in pulse-echo experiments 
with bonded transducers. Under the proper conditions, the buffer method for 
attenuation by spectrum analysis yields accurate, quantitative data. 

4. Spectrum Analysis With and Without Buffers Compared 
Broadband NDT transducers adversely affect the second and subsequent 

echoes in a pulse-echo pat tern if they are coupled directly to the specimen. 
The adverse effect comes about because: (a) the efficient piezoelectric element 
extracts energy from the beam; (b) the matched backing behind the piezo
electric element absorbs the part of the wave passing through the transducer; 
and (c) the wear plate in front of the piezoelectric element distorts the pulse. 
The net effect should be twofold: to distort the frequency spectrum of the 
second and subsequent echoes, and to lower the amplitude of the second and 
subsequent echoes. 

An experiment was performed (Papadakis et al., 1973) to test these 
hypotheses and to demonstrate tha t the buffer method should be used in 
preference to the direct contact method when NDT transducers (search units) 
are used to measure at tenuation by spectrum analysis. 

A block of ATJ graphite was tested with a 1 MHz longitudinal wave 
transducer (Panametrics, Inc.) by spectrum analysis in two ways: by direct 
contact with a thin fluid couplant layer, and, by the Α' AB buffer method 
with a rubber buffer, also coupled with thin fluid layers. Da ta on the trans
ducer, buffer, and specimen are given in Table IV. 

T A B L E I V a 

D A T A O N R U B B E R B U F F E R , G R A P H I T E S P E C I M E N , A N D T R A N S D U C E R 

D a t u m Transducer Buffer Specimen 

Mode Longitudinal — 
Crystal 1 MHz — — 
Diameter 2.54 cm 5.0 c m 4.0 c m 
Length — 2.6 c m 4.0 c m 
Veloci ty — 0.116 cm//xsec 0.225 cm//xsec 

° F r o m Papadakis et al. (1973), b y permission of the American 
Ins t i tute of Physics . 

The attenuation data by contact were corrected for diffraction in the 
standard way, while the attenuation data by buffer rod were corrected for 
diffraction by the method outlined in Section V,D, above. The two resulting 
curves for attenuation versus frequency are drawn on the same graph in Fig. 
20. The attenuation shown by direct contact spectrum analysis is distinctly 
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1.0 ι . , , 

183 

03 I I I I I I I I 1 1 
0.1 0.2 0 . 4 0.7 1.0 

FREQUENCY (MHz) 
F I G . 20. At tenuat ion in A T J graphite b y spectrum analysis . Lower curve (open 

circles) is w i th a buffer rod. Upper curve is w i t h a d a m p e d broadband transducer coupled 
directly to the specimen. Direct coupling leads to higher a t tenuat ion readings because of 
absorption in the transducer. The buffer m e t h o d is preferred. F r o m Papadaki s et al. 
(1973), b y permission of the American Ins t i tute of Phys ics . 

higher than the at tenuation measured with the interposed buffer using spec
t rum analysis. This result bears out the contention tha t the NDT transducer 
used in direct contact extracts energy from the beam at each echo, at tenu
ating the echoes, and yielding erroneous results. In this case the excess 
at tenuation is as much as 0.2 dB/cm at 0.9 MHz, or 1.5 dB/echo at the 
transducer. Thus it is concluded tha t the buffer method is to be preferred over 
direct contact for at tenuation measurements by spectrum analysis. 
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5. Spectrum Analysis with Diffraction Corrections to Yield True Transducer 
Output 

The spectrum of echo A' a t the end of a plane, parallel, lossless buffer 
with no specimen attached is representative of the transducer efficiency upon 
two transductions—transmission and reception. The spectra from the A' 
echoes of a typical 10 MHz transducer (Panametrics, Inc.) radiating into 
various low-loss buffer materials are shown in Fig. 21 (Papadakis et al., 

F I G . 2 1 . The spectra of the first echo in bare buffer rods. A 1 0 MHz transducer was 
used for both transmission and reception, (a) 2 . 5 4 c m fused quartz, (b) 6 . 2 2 c m fused 
quartz, (c) 2 . 5 4 c m aluminum, (d) 1 . 8 9 c m hardened steel. F r o m Papadakis et al. ( 1 9 7 3 ) , 
b y permission of the American Inst i tute of Physics . 

1973). Information on the transducer and buffers are given in Table V. The 
spectra are seen to peak well below 10 MHz, and to contain appreciable 
energy down to 2 MHz. The spectra appear to depend upon buffer length 
and material a t this juncture. 

As discussed above, beam spreading is greater at low than a t high 
frequencies. This fact implies t ha t the low frequency output of the transducer 
is actually greater than in Fig. 21. If the correction of Eq. (50) is applied to 
the echo A', then the undiffracted plane wave amplitude emitted aud received 
by the transducer should be represented by AQ' as in Eq. (50). This calculation 
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0 5 10 15 0 5 10 15 

F R E Q U E N C Y (MHz) 

F I G . 2 2 The spectra of Fig . 2 1 after correction for diffraction and normalizat ion 
for the droop in the input spectrum. The transducer appears close to critically damped. 
Buffers: (a) 2 . 5 4 c m fused quartz; (b) 6 . 2 2 c m fused quartz; (c) 2 . 5 4 c m a luminum; 
(d) 1 . 8 9 c m hardened steel. F r o m Papadakis et al. ( 1 9 7 3 ) , b y permission of the American 
Ins t i tu te of Phys ics . 

was performed on the observed spectra of Fig. 21, and the results were then 
normalized to account for the input spectrum of the pulser used. The result
ing corrected amplitudes are shown in Fig. 22. The four graphs are not iden
tical, but do show the following common characteristics: a peak in the vicinity 
of 7 MHz, rapid fall-off above this peak, and amplitude less but not much less 
a t 1 MHz (and probably a t 0) than a t the peak. 
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Fused quartz Fused quartz 
D a t u m Transducer N o . 1 N o . 2 A luminum Steel 

Mode 
Crystal 
Diameter 
Length 
Veloci ty 

Longitudinal 
10 MHz 
1.27 c m 5.08 c m 

2.54 c m 
0.596 cm/ 

4.45 c m 
6.22 c m 
0.593 c m / 

5.08 c m 3.45 c m 
2.54 c m 1.89 c m 
0.638 c m / 0.590 c m / 

/xsec jxsec 

a From Papadakis et al. (1973), b y permission of the American Ins t i tute of Phys ics . 

The shapes of the curves differ between 0 and 7 MHz, but have a general 
rise around 3 MHz. The cause of the variation in the curves for the same 
transducer radiating into different low-loss materials is not explained a t 
present, but may relate to (a) radiation pat tern of a transducer with a wear 
plate—any deviation from piston profile could change diffraction, (b) quality 
of specimen surfaces, and (c) impedance mismatch between transducer and 
specimen. However, the general conclusion is tha t the transducers act like 
very highly damped oscillators with amplitude peaking somewhat a t a 
frequency significantly lower than the fundamental resonance of the piezo
electric plate sandwiched inside. 

A . BACKGROUND 

Some evidence exists tha t the diffraction loss changes if the transducer 
radiates as other than a piston source. Roderick and Truell (1952) pointed 
out tha t sidelobes would be suppressed if an unplated crystal transducer 
were activated by a convex metal electrode placed above it. The author 
(Papadakis, 1963a) found tha t the diffraction loss became more variable in 
magnitude as a function of 8, and was displaced along 8, if fringing fields near 
the rim of the transducer were important in doughnut-plated or wrap
around-plated transducers. In addition, it was found tha t the diffraction loss 
could be made more nearly monotonic in 8 if wave energy were absorbed 
from the outer portion of the beam impinging on the side of the specimen 
not bonded to the transducer. Martin and Breazeale (1971) have achieved 
narrow beams without sidelobes by utilizing fringing fields to lower the electric 
field strength at the periphery of a radiator. 

VI. Input Amplitude Profile 

T A B L E V A 

D A T A ON T R A N S D U C E R A N D V A R I O U S B U F F E R S 
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These pieces of evidence lead to the hypothesis t ha t the diffraction loss 
can be affected by the particle displacement profile across the face of the 
input transducer. In particular, lower rim amplitudes should lead to smoother 
diffraction-loss curves. The pressure in the field of a transducer was given by 
Eq. (2) including amplitude and phase profiles V(p, φ) and ζ(ρ, φ) as functions 
of radius ρ and azimuth φ. The calculations between Eq. (2) and Eq. (31) 
dealt with the case 7 = 1, ζ = 0, but included anisotropy in β along 3-, 4-, 
and 6-fold axes in crystals. This section deals with the case | β | = const, 
ζ = 0, and V = V(p). The results can be extended to anisotropic conditions by 
the formula (Papadakis, 1966) 

SA = S^I2(0.5-b), (55) 

where 8A is the location along 8 of the last diffraction-loss peak, 8^ is the 
value of 8A for isotropy calculated in this section, and b is the anisotropy 
parameter defined in Eq. (14). 

In the present section (Papadakis, 1971b) the normal derivative V(p, φ) 
of the velocity potential is taken to be circularly symmetrical, not dependent 
upon azimuth φ. Hence V = V(p). Various plausible functions are investigated 
to simulate transducers driven in such a way as to make V(p) maximum a t 
ρ = 0 and minimum a t ρ = a, the rim. Round transducers plated in a circu
larly symmetrical manner from ρ = 0 to ρ = α ρ with α ρ < a should respond 
in the way V(p) is defined. The actual response of a transducer may not 
correspond exactly to any of the functions V(p) chosen, however. 

B. CALCULATIONS 

Integration of Eq. (2) was carried out by numerical methods with a 
digital computer. The program written for Section I I I was modified in two 
respects for the new calculations: 

1. V(p) was employed as a weighting function for the input radiation from 
each element of area σ of the transducer acting as a transmitter . 

2. Reception was limited to an area with a radius a p < a corresponding 
to a partially plated top surface, and the weighting function over this area 
was made unity for reception. 
The second point is justified on the basis tha t the transducer elements 
receive amplitude and phase information independently and contribute it to 
an integrated output . This same assumption was made by Seki et al. (1956) 
and has been used ever since with good results. 

The functions used as V(p) are listed in Table VI. I n all cases, the value 
of «ρ, the radius of the plated area, was taken to be 0.8a where a is the radius 
of the transducer disk. 

The functions V(p) are drawn in Fig. 23. For these functions, the diffrac
tion-loss curves are plotted in Fig. 24 and the diffraction phase shifts are 
plotted in Fig. 25. The abscissa is # ( p ) , defined by the plated radius a p as 
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T A B L E V I ° 

F U N C T I O N S V(p) FOR V E L O C I T Y P O T E N T I A L 

D E R I V A T I V E 

Number Type Funct ion 

I Sinusoid cos(7r/3/4a) 
I I Sinusoid cos(7rp/2a) 
I I I Gaussian e x p ( - / o 2 / 1 . 2 8 a 2 ) 
I V Gaussian e x p ( - p 2 / 2 . 5 6 a 2 ) 
V Fermi 1/[1 + e x p ( 5 p / a - 4 ) ] 
V I Fermi 1/[1 + exp(25p/a - 20)] 

a F r o m Papadakis (1971b), b y permission of the 
American Inst i tute of Phys ics . 

#<p> = ζλ/α ρ

2 . I t seemed expedient to compare the diffraction-loss and phase 
curves in terms of the assumed receiving area. In experiments, it is frequently 
assumed tha t a p is the effective radius for both transmitting and receiving. 
The curves for the all-plated piston source are included for comparison. 

L— a D — J 

F I G . 23 . Profiles of the normal derivat ive V(p) of the ve loc i ty potential across the 
transmitt ing transducers. The functions are l isted in Table V I . From Papadakis (1971b), 
b y permission of the American Inst i tute of Phys ics . 
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0 1 2 3 4 

S < P > . Z X / a | — 

F I G . 2 4 . Diffraction-loss curves for input functions in Fig. 2 3 . Loss is decreased and 
smoothed b y monotonic decreasing functions V(p). F r o m Papadakis (1971b), by permis
sion of the American Ins t i tute of Phys ics . 
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F I G . 2 5 . Diffraction-phase-change curves for input functions in Fig . 2 3 . Phase is 
smoothed b y monotonic decreasing functions V(p). F r o m Papadakis (1971b), b y permis
sion of the American Ins t i tu te of Phys ics . 

C. DISCUSSION 

The principal effect of reducing the amplitude of motion of the outer 
par t of the radiating transducer is to lower the diffraction loss and its fluctua
tion with distance (see Fig. 24). This result confirms the hypothesis stated in 
Section VI,A. In addition, the position of the loss peaks along $ ( p ) depends 
upon the amount of radiation generated outside of a p . This is to be expected, 
because the receiver of radius ap is sensing the field of a larger transmitter 
with an effective radius at in the range a p < a t < a. Phase is affected in such a 
way as to smooth the curves (see Fig. 25). Plateaus found for the piston case 
are changed into regions of low slope. These regions are still located a t the 
diffraction-loss peaks if present, or a t diffraction-loss plateaus if the effect is 
strong enough to smooth out the diffraction-loss curves to monotonic func
tions. 

The proper function to be used for V(p) for partially plated transducers 
and for other nonpiston configurations will have to be determined. Experi
mental methods might include multiple-beam interferometry, laser Bragg 
scattering, and Lang X-ray topography. 
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D . CONCLUSIONS 

If a transducer deviates from a piston source, the ultrasonic radiation 
pat tern will be affected in such a way as to modify the diffraction-loss and 
diffraction-phase-change curves for pulse-echo experiments. When the normal 
derivative V(p) of the velocity potential on the face of the transmitter is 
monotonic decreasing with radius ρ from the center to the rim a t ρ = α, the 
diffraction loss is decreased and smoothed in the near field (up to S = ζλ/ 
a2 ~ 3), and the diffraction phase change is smoothed. Since transducers are 
plated over only a fraction of their area frequently, such gradients in the 
velocity potential are to be expected. The exact form of V(p) has not been 
determined, bu t plausible functions were tried. When diffraction curves are 
plotted against # ( p ) = ζλ/α ρ

2 , where a p is the plating radius, the positions 
along # ( p ) of characteristic features of the curves (such as loss peaks) depend 
upon the fraction of the radiation generated in the rim area. Thus, both the 
magnitudes of the diffraction loss and phase change, and their functional 
dependences upon S, depend upon the form of V(p). Fur ther work should be 
done on the definition of V(p) if partially plated transducers are to be used in 
experiments. 

VII. Broadband Pulses 

A. INTRODUCTION 

Although narrowband ultrasonic measurements have been widely used 
for many applications, such as the determination of ultrasonic at tenuation 
and velocity as functions of frequency and for ultrasonic flaw detection, there 
are also many applications which either require or are enhanced by broadband 
pulsed operation of ultrasonic transducers. These include digital storage 
delay lines (Eveleth, 1965), high resolution nondestructive flaw detection 
(Lees and Barber, 1968; Papadakis and Fowler, 1971), and pulse-echo 
spectrum analysis (Gericke, 1965, 1966; Papadakis and Fowler, 1971: 
Papadakis et al., 1973). 

In all cases, elastic pulses short in space and time must be generated, 
propagated, and received. Bandwidths upward of 4 0 % are required to make 
the pulse duration less than two wavelengths of the center frequency of the 
pulse spectrum. Much work has already been published (Ivanov et al., 1962; 
Redwood, 1963; Kossoff, 1966; Sittig, 1967, 1969) on the ultrasonic-pulse 
problem. Plane wave analysis has been used in this previous work. The 
present section follows Papadakis and Fowler (1971) and Papadakis (1972), 
and deals with the theory of pulse propagation as a single-aperture diffraction 
problem, utilizing a weighted superposition of the fields of single-frequency 
piston sources at various frequencies within the band. New pressure and 
phase profiles are calculated for broadband operation. The diffraction loss 
and phase change are calculated as functions of S for pulse-echo operation. 
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The profiles could be utilized in the future for the calculation of scattering 
factors for objects of various shapes and sizes such as flaws. 

B . THEORY AND CALCULATIONS 

1. Radiation Field 
The method of obtaining the pressure and phase in the broadband pulse 

follows. Let the pressure of a monochromatic transducer can be expressed as 

p = Cexf[j(o*-fi0z-8)l (56) 

where the phase ojt — β0ζ for a plane wave cancels, leaving the phase δ 
relative to the plane wave. Then p, C, and δ are functions of S, the normalized 
distance along the axis of the transducer, and ofx, the radial distance from the 
axis. They are implicitly functions of frequency / , since S = zXja2 = zvja2f is 
a function of/. The equation for ρ reduces to 

P(f) = <?(/)[cosS(/) - j sinS(/)]. (57) 

Introducing a spectral density function B(f) for the broadband pulse gives 

dp(f) = B(f)C(f)[cos8(f) -j s in8(/)] df. (58) 

Integrating, one obtains 

BC(coso — j βίηδ) df 

BC cosodf-j 
ο 

BC βίηδ df (59) 
ο 

This may be equated to 

ρ = ^4(cose — j sine), (60) 

with 

A cose = BC coso df = A1 

Jo 
and (61) 

A sine = BC βίηδ df = A2. 

This introduces a new amplitude A and an effective phase e for the broad
band pulse, where 

Α = (Α1

2 + Α2ψ2 

and (62) 

e = ta,n~1(A2/A1). 
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\ s0 

0.200 0.250 0.312 0.500 0.750 1.000 1.500 2.500 

1 1.000 1.250 1.560 2.500 3.750 5.000 7.500 12.500 
2 0.500 0.625 0.780 1.250 1.870 2.500 3.750 6.250 
3 0.333 0.417 0.520 0.833 1.250 1.670 2.500 4.170 
4 0.250 0.312 0.390 0.625 0.940 1.250 1.870 3.120 
5 0.200 0.250 0.312 0.500 0.750 1.000 1.500 2.500 
6 0.167 0.208 0.260 0.417 0.625 0.833 1.250 2.080 
7 0.143 0.179 0.223 0.357 0.536 0.714 1.070 1.790 
8 0.125 0.156 0.195 0.312 0.469 0.625 0.940 1.560 
9 0.111 0.139 0.173 0.278 0.417 0.555 0.833 1.390 

° From Papadakis and Fowler (1971), b y permission of the American Inst i tute of 
Physics . 

Since C and δ were known as functions of S and χ from previous computa
tions (Papadakis, 1966; see Sections I I and I I I ) , it was necessary only to 
tabulate C and δ in the appropriate order for the summations. (See Appendix 
A for C and δ at the values of S in Table VII.) 

The spectral density was represented by an idealized symmetrical 
function B(f). The function is given in Table VI I I for several percentage 
bandwidths. Since the real bandwidth of a transducer represents two trans
ductions, Β 2 is representative of the amplitude seen in the spectrum of an 
echo. 

For computational purposes, the integrals were turned into summations 
9 

Ax = 2 BnCn cos8 n 

n= 1 

and (63) 
9 

n = l 

For the calculation of the profiles, the quanti ty Sc was defined to be the value 
of S a t the center frequency fc of the spectral distribution, 

Sc = zvla2fc. (64) 

For any other frequency / , the equivalent value of S was 

S=SJJf. (65) 

Values of S as a function of / f o r / c = 5 MHz and Sc specified between 0.2 and 
2.5 are given in Table VII . 

T A B L E V I I 

V A L U E S OF S AT V A R I O U S F R E Q U E N C I E S W I T H / C A N D SC S P E C I F I E D 0 
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fo 10 20 
B a n d w i d t h (%) 

40 80 120 

1 
2 
3 
4 
5 
6 
7 
8 
9 

0.001 
0.002 
0.015 
0.100 
1.000 
0.100 
0.015 
0.002 
0.001 

0.002 
0.010 
0.100 
0.320 
1.000 
0.320 
0.100 
0.010 
0.002 

0.010 
0.030 
0.180 
0.840 
1.000 
0.840 
0.180 
0.030 
0.010 

0.100 
0.450 
0.840 
0.970 
1.000 
0.970 
0.840 
0.450 
0.100 

0.562 
0.840 
0.943 
0.983 
1.000 
0.983 
0.943 
0.840 
0.562 

α From Papadakis and Fowler (1971), b y permission of the American 
Inst i tute of Phys ics . 

A program was written to perform the summations and calculate Λ and 
ε, the pressure and phase. In Figs. 26a-26h, the results for the pressure 
profiles are presented at various values of Sc for various pulse bandwidths. 
The cw monochromatic case shows zeros on the centerline at 8C = 0.25 and 
0.50 as predicted by theory. (See Figs. 26b and 26d.) Sc = 0.50 is the Y 1

( _ ) 

point a t which the last zero in pressure occurs along the centerline of the 
transducer for monochromatic waves (McMasters, 1959). The finite band-
widths do not have zeros. Indeed, above 80% bandwidth the field is fairly 
flat out to three-fourths the radius of the transducer. Phase profiles are 
given in Figs. 27a-27h. They are smoother for higher bandwidths. 

Figure 28 contains a plot of the pressure profiles at various distances 
from a transducer of 120% bandwidth for double transduction. The pressure 
in the near field is relatively smooth, and no strong minima appear along the 
axis. This behavior is distinctly different from the rf burst case (Seki et al., 
1956; McMasters, 1959). 

In Fig. 29, the relative pressure along the centerline is plotted with 
bandwidth as a parameter. These pressure amplitudes plotted here represent 
the relative amplitudes as a function of path and do not represent the degree 
of sensitivity of the transducers versus bandwidth. The ratio of the heights 
of the last minimum to the last maximum is seen to increase with bandwidth. 
This ratio, plotted in Fig. 30, is suggested as one figure of merit for broadband 
nondestructive testing transducers. I t represents the difference in amplitude 
of the echoes from equal flaws at different depths, not counting attenuation 
effects. Note tha t not much more field uniformity is gained by a bandwidth 
above 80%. 

Frequently, transducers are used for immersed testing. Then part of the 
path is in water and par t in solid material. Figure 31 contains plots of the 

T A B L E V H P 

T A B U L A T I O N OF S P E C T R A L D E N S I T Y B(f) FOR V A R I O U S B A N D W I D T H S 
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amplitude along the centerline in the solid for two water paths. One might 
want to work in the region of increasing amplitude with distance to cancel 
at tenuation effects in the solid. 

Broadband pulses are advantageous for flaw detection because the 
acoustic pressure does not show any serious minima, because they are narrow 
in space and time (permitting high depth resolution), and because the 
spectrum contains information about the material interrogated or the flaw 
observed. Increased bandwidth is achieved a t the expense of sensitivity. 
Provided the signal-to-noise ratio is great enough, the loss in sensitivity can 
be compensated for by electronic amplification. 

Concerning resolution, the graph in Fig. 32 shows the predicted pulse 
shape of an echo from a broadband transducer with a 10 MHz piezoelectric 
plate. Sittig's (1967, 1969) analysis was used to account for the mechanical 
properties of the backing and face-plate materials and for the electrical 
terminations. The inset in this figure is an oscillogram of an echo from a 
transducer built to the same specifications. The details of pulse width and 
relative amplitude agree exactly. The width of the first half-cycle, about 60 
nsec, represents a round tr ip through about 0.1 mm of a metal. 

2. Diffraction Loss and Phase 

Further, the amplitude and phase profiles A(r) and e(r) calculated above 
for broadband pulses were used to study the effect of bandwidth on the 
diffraction loss and phase change in pulse-echo work (Papadakis, 1972). The 
response of the receiving transducer was calculated as follows: 

The phase φ for diffraction phase corrections is the weighted average 
over receiver area and wave amplitude of the effective phase profile ε, 

The pressure sensed by the transducer is proportional to the integral of the 
amplitude weighted by the cosine of the deviation from the average phase, 

The loss in decibels relative to the pressure at some arbitrary point along the 
axis of the transducer is 

The phase φ and loss in decibels are functions of the normalized distance 

(66) 

(67) 

AB = 201og1 0(i>0/j>). (68) 

Sc = zXJa2 = zi>/a2/c (69) 

where ζ is the propagation distance, a the transducer radius, ν the velocity, 
fc the center frequency of the broadband pulse, and Ac is the wavelength at the 
center frequency. Curves of decibels versus SQ and φ versus Sc result. 



F I G . 2 6 (a)-(h) . Pressure profiles for various bandwidths at several values of Sc. 
B. W.—bandwidth . From Papadakis and Fowler (1971), b y permission of the American 
Inst i tute of Physics . 
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F I G . 27. (a)-(h) . Phase profiles for various bandwidths at several va lues of S 
B. W . — bandwidth . F r o m Papadakis and Fowler (1971), b y permission of the American 
Ins t i tu te of Phys ics . 
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F I G . 2 7 ( c o n t . ) 



F I G . 28. Pressure profile contour m a p for the field of a transducer w i t h 120% 
bandwidth . B . W . — b a n d w i d t h . F r o m Papadakis and Fowler (1971), b y permission of 
the American Inst i tute of Physics . 
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F I G . 29. Centerline pressure of the transducer field for various bandwidths . From 
Papadakis and Fowler (1971), b y permission of the American Inst i tute of Phys ics . 
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the American Inst i tute of Physics . 
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F I G . 32. Pulse shape and duration for the echo from a broadband transducer 
wi th a 1 0 MHz piezoelectric plate. Exper iment and theory agree quantitath^ely (Sitt ig, 
1 9 6 7 , 1 9 6 9 ) . From Papadakis and Fowler ( 1 9 7 1 ) , b y permission of the American Ins t i tu te 
of Phys ics . 

For computational purposes, the integrals were turned into summations, 

φ = ΣΑη*η 2πτ η ΜΣΑη 2πνη ΔΓ , ( 7 0 ) 

η η 

and 

ρ = 2 ΛΛ cos[en - φ]2πτη ΔΓ . ( 7 1 ) 
η 

For each bandwidth ( 1 0 % , 2 0 % , 4 0 % , 8 0 % , 1 2 0 % ) the quantities φ and ρ 
were computed a t several values of SC. Then the decibel loss was calculated 
relative to ρ at SC = 0 . 2 0 . The curves were extrapolated back to SC = 0 in a 
way consistent with the cw case. 

Curves of loss in decibels and phase in radians versus SC appear in 
Figs. 3 3 and 3 4 . The curves are displaced vertically for clarity. I t can be seen 
tha t both the loss and phase smooth out as the bandwidth increases. For 
moderate and large percentage bandwidths, one would not expect to see the 
loss peaks or the phase plateaus present in monochromatic experiments. In 
anisotropic materials, one would redraw the curves with an abscissa scale 
factor as suggested in Eq. ( 5 5 ) . 

The curves for broadband pulses in Figs. 3 3 and 3 4 differ from the curves 
for monochromatic pulses (also shown) in tha t they are smoother. I t is 
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NORMALIZED DISTANCE S c « Z X c / o 2 

F I G . 33. Diffraction loss versus distance for broadband pulses w i t h bandwidth as 
the parameter. Loss becomes monotonic as the bandwidth increases. B . W . — b a n d w i d t h . 
From Papadakis (1972), b y permission of the American Ins t i tute of Phys ics . 

suggested tha t these curves are appropriate for making diffraction corrections 
for broadband pulses using Eqs. (36) and (38). Care must be taken in cases in 
which the at tenuation is a strong function of frequency because the pulse 
spectrum would change with distance, invalidating the calculations. The 
maximum error one could encounter due to diffraction could be calculated on 
the basis of the center frequency of the most at tenuated echo used in the 
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measurement. Comparison could be made with the diffraction effects upon 
less at tenuated echoes, arriving at an average probable correction. This 
correction, while itself in error to some degree, would be much better than 
no correction at all. The total difference between t and V can never be greater 
than r£°/4 where τ< α ) is the period of the center frequency of the most 
at tenuated echo, because the phase curve φ is asymptotic to 77/2 rad. The loss 

F I G . 34. Diffraction phase shift versus distance for broad-band pulses wi th band
width as the parameter. B . W.—bandwidth . From Papadakis (1972), b y permission of 
the American Inst i tute of Physics . 
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curve, on the other hand, rises as the logarithm of Sc , and the limits must be 
computed in each individual case. I t is suggested tha t a preferable method 
would be to use spectrum analysis with a buffer rod system to obtain mono
chromatic information from broadband pulses (Papadakis et al., 1973). 
Diffraction corrections for the buffer rod system were explained in Section 
V,D, and the spectrum analysis system is shown in Section V,G. 

VIII. Specimens of Finite Width 

Problems arise when one encounters specimens of dimensions not much larger 
than the transducer normal to the propagation direction. This frequently 
happens in solids where the specimen is a rod, a section of a plate, or a 
valuable crystal. Fluids contained in tubes also exhibit the problems. One 
encounters what is called qualitatively "sidewall effects" and technically 
" multimode guided-wave propagation." This means tha t although the cylin
der or plate are several or even many wavelengths in lateral extent, they are 
not large enough to support free-field propagation. Rather, they support all 
the rod modes or plate modes excited by the transducer and not beyond 
cutoff due to the geometry. These modes, being dispersive (Meeker and 
Meitzler, 1964), interfere with each other as they propagate down the 
specimen. I t is possible under certain circumstances for destructive inter
ference to be almost complete, canceling the pressure wave over the face of a 
receiving transducer (Carome and Witting, 1961; Carome et al., 1961). The 
interference phenomena are expressible in terms of the normalized distance 
S—parameter S = zX\a2. Universal curves obtain, with destructive inter
ference at sequential positions along S in the approximate ratio 1:3:5:7 · · · . 
Obviously, at tenuation measurements in this regime must be made judi
ciously because of the apparent loss caused by the interferences. In a pulse-
echo experiment it is best to measure loss using echoes at antinodes of the 
interference pattern. 

I t was also pointed out (Papadakis, 1969) tha t there is a phase shift 
associated with the destructive interference. This phase shift is large enough 
to interfere with the correct overlap in the pulse-echo-overlap method 
(Papadakis, 1967) and in the pulse-superposition method (McSkimin, 1961) 
when McSkimin's Δ£ Criterion is used with rf bursts. Sidewall effects can 
introduce several rf cycles of error into a travel time measurement if Mc
Skimin's Δί Criterion is used to determine the overlap in specimens supporting 
multimode guided-wave propagation. A solution was suggested (Papadakis, 
1969) employing broadband pulses with center frequency equal to the desired 
rf burst frequency to determine the proper overlap. This procedure is possible 
although the multimode interference distorts the broadband echoes some
what. There is a small difference between the broadband pulse measurement 
and the rf burst measurement set a t the same cycle-for-cycle overlap because 
the rf burst echo is affected more severely by the adjacent node in the echo 
pattern. A system for making pulse-echo-overlap measurements in the pre
sence of multimode guided-wave propagation is shown in Fig. 35. The theory 
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F I G . 35. Apparatus for pulse-echo overlap measurements employing v ideo pulses 
to establish the proper cyclic matching. For v ideo matching, the square pulse goes to 
the transducer; for rf matching , the square pulse triggers the rf generator which act ivates 
the transducer. From Papadakis (1969), b y permission of the American Ins t i tute of 
Physics . 

for the phase shift a t points of destructive interference in liquid columns in 
pipes has been worked out (Del Grosso, 1968), and shows a phase increment 
and then a decrement about the nodal S-value as S increases. These changes 
are superimposed on a curve quite similar to Fig. 7. These phase shifts can 
affect resonant measurements (interferometers) as well as pulse measurements. 
In either case, the travel time of the ultrasonic wave can be determined to 
better than ± \ period of the rf frequency if the proper matching or overlap 
is carried out, even if the exact diffraction correction cannot be computed. 

IX. Surface Waves 

Ultrasonic surface waves are a special two-dimensional case of the general 
diffraction problem. Their use in the study of ultrasonic diffraction is of 
particular importance because the surface can be probed acoustically, 
electrically, and optically to study the beam (Richardson and Kino, 1970; 
Slobodnik, 1970; Weglein et al., 1970). 
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Earlier experiments in three dimensions have probed the interiors of 
t ransparent substances with laser Bragg scattering (Cohen, 1967) and the 
ends of specimens with absorbers (Papadakis, 1963a). With surface wave 
probing, one can study directly both the beam-spreading angle, defined either 
as the angle between the center of the beam and the null between the main 
beam and the first sidelobe or as the half-power angle away from the sidelobe, 
and the beam-steering or '* walk-off" angle, i.e. the deviation angle between 
the energy flux (Poynting) vector and the normal to the wavefronts (Weglein 
et al, 1970). 

I n all physical cases for straight interdigital transducers, the beam-
spreading angle is positive. The limit of zero spreading is approached as the 
anisotropy parameter b approaches 0.5 from below. As stated earlier, b is the 
quadratic coefficient in the expansion of the velocity surface in the propaga
tion direction. For pure mode directions, the cubic coefficient is zero, and the 
beam does not deviate from the wave normal. There is an exact analogy for 
surface waves. For various cuts of crystals, there are various propagation 
directions for which the wave surface is parabolic, and the cubic coefficient is 
zero. I n these directions, the beam-steering or walk-off angle is zero. Examples 
are Y-cut Li N b 0 3 with Z-axis propagation and with propagation a t ±21 .9° 
from Ζ (Weglein et al., 1970), certain directions on other cuts of L i N b 0 3 

(Slobodnik and Conway, 1970; Slobodnik and Szabo, 1971), and certain 
directions on X-cut and Z-cut quartz (Coquin and Tiersten, 1967), etc. 

One can choose to propagate a wave with propagation vector along a 
pure-mode direction and calculate the anisotropy parameter b from measure
ments of the beam-spreading angle. One can also choose to propagate a wave 
with propagation vector a t a small angle θ to the pure-mode direction by 
misorienting the interdigital transducer, and then calculate b from measure
ments of the beam-steering angle. The beam-steering angle (walk-off angle) 
is the same as dP, the deviation angle between the propagation vector and the 
Poynting vector, and was given previously in Eq. (16) as dP = (2B ) 1 / 2 0 . 
The relationship Β = 2b2 (Papadakis, 1964a) yields dP = 260. This is analyti
cally true for bulk waves where b can be written in terms of the elastic moduli 
as in Eqs. (20)-(24), and is also t rue for surface waves although it is not 
possible to write an analytical expression for b for surface waves in terms of 
the elastic moduli (Weglein, 1973). 

Measurements of the half-power beam-spreading angle in Y-cut L i N b 0 3 

showed b approaching 0.5 in the Ζ direction (Weglein et al., 1970). Measure
ments of the deviation angle dP on a similar sample yielded b = 0.455 (de-
Klerk, 1970). These measurements show Y-cut Z-propagating L i N b 0 3 to 
give a highly collimated beam in agreement with diffraction theory which 
predicts perfect collimation for b = 0.5. A general t reatment of surface waves 
and their Poynting vectors has been given in an earlier volume of this series 
(Farnell, 1970). The diffraction loss for surface waves is given with fair 
accuracy by the two-dimensional calculation (Papadakis, 1964a) if the inter
digital transducers for transmission and reception are of equal width and 
placed for propagation along an equivalent pure-mode direction, and if the 
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equivalent b is known. I t has been shown tha t the length of the interdigital 
structure can have a small effect upon the diffraction loss and phase (Kharusi 
and Farnell, 1971). Diffraction must be taken into consideration when inter
digital transducers are apodized to tailor the bandpass characteristics of 
dispersive delay lines. A narrow pat tern at low frequencies will have more 
beam spreading than a narrow pat tern a t high frequencies. 

X. Summary 

Early and recent work on ultrasonic diffraction from single apertures has 
been reviewed and recapitulated. Topics covered have included bulk waves 
and surface waves; monochromatic bursts and broadband pulses; piston 
sources and shaded sources; diffraction corrections for attenuation and 
velocity; theory of the diffraction process; and critical experiments on 
diffraction and its effects. I t has been shown tha t the echo pat tern fluctuations 
seen in pulse-echo work are predictable, and tha t accurate measurements can 
be made in the presence of diffraction. The effects of anisotropy upon pulse-
echo work with bulk waves and on through-transmission work with surface 
waves have been explained. The stage is set for future work on unsolved 
problems in bulk shear wave diffraction and in engineering applications 
involving pulses, echoes, and spectra. 
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- 1 . 3 1 
- 1 . 3 5 
- 1 . 4 4 

1.10 
1.22 
1.33 
1.37 
1.45 
1.50 
1.52 
1.55 
1.60 
1.60 
1.60 
1.58 
1.49 
1.45 
1.31 
1.00 
0.85 
0.93 
1.10 
1.21 
1.47 
1.48 
1.49 
1.48 
1.40 
1.30 
1.45 
1.55 
1.60 
1.70 
1.90 
1.96 
1.95 
1.97 
1.98 
1.94 
1.90 
1.84 
1.78 
1.73 
1.62 
1.41 
1.17 
1.00 
0.91 
0.76 
0.63 
0.50 
0.29 

0.18 
-0 .06 
-0 .30 
-0 .22 
-0 .03 

0.11 
0.15 
0.18 
0.24 
0.18 
0.02 

-0 .17 
-0 .12 
-0.07 
-0 .14 
-0.37 
-0 .22 

0.14 
0.42 
0.39 
0.21 
0.12 
0.09 
0.07 
0.06 
0.10 
0.18 
0.19 
0.18 
0.14 
0.04 

-0 .02 
- 0 . 1 0 
-0 .27 
- 0 . 3 8 
- 0 . 4 6 
- 0 . 5 3 
-0 .56 
- 0 . 6 3 
-0 .67 
- 0 . 7 5 
- 0 . 8 9 
- 1 . 0 2 
-1 .11 
- 1 . 1 5 
- 1 . 2 1 
- 1 . 2 9 
- 1 . 3 3 
- 1 . 4 3 

1.05 
0.91 
0.77 
0.76 
0.81 
0.87 
0.92 
0.98 
1.07 
1.10 
1.15 
1.23 
1.28 
1.30 
1.26 
0.98 
0.85 
0.96 
1.19 
1.36 
1.63 
1.75 
1.77 
1.79 
1.80 
1.66 
1.47 
1.40 
1.37 
1.39 
1.45 
1.53 
1.43 
1.67 
1.71 
1.71 
1.69 
1.67 
1.63 
1.60 
1.52 
1.35 
1.14 
0.98 
0.89 
0.76 
0.62 
0.50 
0.29 

-0 .02 
-0 .11 
0.10 
0.09 

-0 .04 
0.01 
0.04 
0.00 

-0 .24 
-0 .28 

0.23 
-0 .05 

0.14 
-0 .14 

0.08 
0.32 
0.22 
0.12 
0.16 
0.25 
0.24 
0.16 
0.11 
0.06 

-0 .02 
-0 .17 
-0 .20 
-0 .18 
-0 .16 
-0 .12 
-0 .08 
-0 .10 
-0 .12 
- 0 . 2 4 
- 0 . 3 3 
- 0 . 4 0 
-0 .47 
- 0 . 5 0 
-0 .56 
- 0 . 6 0 
- 0 . 6 9 
- 0 . 8 3 
-0 .97 
- 1 . 0 6 
-1 .11 
- 1 . 1 8 
- 1 . 2 6 
- 1 . 3 1 
- 1 . 4 1 

1.25 
1.29 
1.30 
1.30 
1.27 
1.25 
1.23 
1.20 
1.14 
1.10 
1.05 
0.96 
0.98 
1.06 
1.21 
1.39 
1.48 
1.57 
1.63 
1.65 
1.55 
1.47 
1.40 
1.40 
1.45 
1.80 
1.58 
1.48 
1.40 
1.33 
1.18 
1.19 
1.15 
1.31 
1.40 
1.44 
1.44 
1.45 
1.44 
1.43 
1.39 
1.27 
1.09 
0.95 
0.87 
0.75 
0.61 
0.50 
0.29 

0.02 
- 0 . 1 3 
- 0 . 2 1 
- 0 . 2 3 
- 0 . 2 6 
- 0 . 1 9 
- 0 . 1 4 
- 0 . 0 5 

0.08 
0.09 
0.12 
0.14 
0.26 
0.30 
0.19 
0.12 
0.18 
0.18 
0.02 

- 0 . 1 1 
- 0 . 1 2 
- 0 . 0 1 

0.02 
0.02 

- 0 . 0 2 
- 0 . 2 0 
- 0 . 3 4 
- 0 . 3 8 
- 0 . 4 0 
- 0 . 4 0 
- 0 . 3 1 
- 0 . 2 7 
- 0 . 2 4 
- 0 . 2 3 
- 0 . 2 8 
- 0 . 3 4 
- 0 . 3 8 
- 0 . 4 2 
- 0 . 4 7 
- 0 . 5 1 
- 0 . 6 0 
- 0 . 7 5 
- 0 . 9 0 
- 1 . 0 0 
- 1 . 0 6 
- 1 . 1 3 
- 1 . 2 3 
- 1 . 2 8 
- 1 . 3 9 

α Papadakis and Fowler (1971), used b y permission of the American Ins t i tute of Phys ics . 
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I. Introduction 

Elastic surface wave filters are capable of performing many of the complex 
functions used in modern radar, ECM, and communications systems. In 
pulse compression radar, for example, a long coded pulse is transmitted and 
the received signal is processed to compress it into a relatively narrow pulse. 
In this way large average powers can be transmitted, which avoids the need 
for transmitting high peak powers. By this means, long range high target 
resolution can be achieved. The method of compression is determined by the 
type of code used in the long transmitted pulse. Codes employed can be phase 
modulated, frequency modulated, or time-frequency modulated. All of these 
codes enable the radar receivers to operate in " n o i s y " electromagnetic 
environments, by discriminating against all signals other than those contain
ing the desired code. The discriminating element is a filter which matches the 
transmitted code. 

A coded signal may be represented by either the time response f(t) or 
the frequency response F (ω) of the encoding filter. One method of generating 
a coded signal is by applying an electrical impulse to the encoding filter as 
shown in Fig. 1. The return signal reflected from a target is down converted to 
the I .F . frequency and fed to the matched filter before amplification, detec
tion, and display. The frequency response of the matched filter is the complex 
conjugate F*(OJ) of the encoding filter response. The matched filter output 
is the desired compressed pulse, which can be represented by the inverse 

1 This work was supported in part b y the Office of N a v a l Research. 
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F I G . 1 . Encoding and decoding b y m a t c h e d filters. 

Fourier transform of the product of the matched filter frequency response 
and the signal input response: 

9(t) = (1/2tt)J ^ \F(c) ' άω. (1) 

Another way of representing the output of the matched filter is by using the 
time response f(t) of the encoding filter. The same filter can be used for encod
ing and decoding, or expansion and compression, if the time inverse of the 
return signal is applied to the matched filter as shown in Fig. 2 . The matched 

J L 
Impulse Encoding 

Filter 
f(t) 

Modulator Transmitter 
Encoding 

Filter 
f(t) f ( t > * 

Modulator Transmitter 

Local 
Oscillator 

Ο 
Compressed 
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Filter 
f i t) 

Ji-U Time 
Display Amplifier 

Decoding 
Filter 
f i t) Inverter 

[Transmit-
Receive 
Antenna 

Switch 

Mixer 

f(t) 

F I G . 2. Encoding and decoding b y same filter using t i m e inversion. 
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filter output can then be expressed by the convolution of the signal with the 
impulse response of the matched filter: 

g(t) -i: f(T)f(-T) dT. (2) 

II. Phase Coded Signals 

A long phase coded pulse consists of a number of subpulses all of equal 
length and amplitude. The phase of each subpulse is determined by the 
sequence of the chosen code. The most frequently used codes employ binary 
phase coding, and consist of sequences of rf bursts, a t constant frequency, 
phased so tha t a 180° shift occurs each time the sign of the subpulse is 
changed. This is illustrated in Fig. 3. Any signal returning from a target is 

ι - 1 - 1 
Binary Code 

Phase Coded Waveform 
(2 Cycles/Bit) 

F I G . 3. B inary phase coded signal. 

compressed or decoded by means of a matched filter. The compression ratio 
is identical to the number of subpulses or bits in the transmitted phase code. 
The width of the compressed pulse, and hence the range resolution, is equal 
to the length of one subpulse or bit. 

A special group of binary phase codes, which allow the maximum peak 
compressed pulse amplitude to sidelobe ratio of Ν A, where Ν is the number 
of bits in the code, was developed by Barker (1953). There are only seven 
codes in this group, the maximum value of Ν being 13, which provides a 
peak-to-sidelobe ratio of 22.3 dB and a compression ratio of 13, where the 
width of the peak is measured at half amplitude. Longer codes, which do not 
fall into the Barker group, would provide a greater compression ratio but a 
lower peak to sidelobe ratio. 

Phase coded surface elastic waves can readily be generated by means of 
interdigital transducers (de Klerk, 1971a) as illustrated in Fig. 4. The code 
generated in this case would be the 5 bit code of Fig. 3. The 180° phase 
reversal is achieved by connecting two adjacent fingers of the I .D. structure 
to the same comb rail. As these connected fingers are at the same electric 
potential, no elastic strains will be generated between them. The field compo
nents generated in the substrate below the I .D. grid a t the phase change 
location is illustrated in Fig. 5. 
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5 Bit 
Binary Code —ι 

Acoustic Pulse 

H + H - H 

Out (Left) 

- iO 
-Impulse In 

Acoustic Pulse 

H + H - H 
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-Waveform 

r w w w v w 
F I G . 4. Generation of phase coded elastic surface waves (5 bit Barker code). 

F I G . 5. Ε field component s generated in the substrate below the I . D . grid at the 
phase change. 

If an electrical impulse is applied to the I .D. comb filter of Fig. 4, 
surface acoustic pulses will propagate along the surface in both directions 
normal to the fingers. The phase codes of these two acoustic pulses are shown 
in block form to the left or̂  to the right of the " encoding filter." The leading 
edge of the pulse propagating to the left would generate the electromagnetic 
signal, in a single finger pair detector, plotted directly below on the left in 
Fig. 4. Similar plots are shown for the pulse propagating to the right. I t will 
be seen tha t the electric signal on the left is the time reversal of tha t on the 
right. Furthermore, timewise the last two bits on the left and the first two 
on the right have each lost one half cycle due to this method of acoustic 
phase reversal. In contrast, an electronically generated code would have its 
full complement of cycles per bit. Both encoded signals can be used with the 
phase coded filter shown in Fig. 4. 



4. Elastic Surface Wave Devices 217 

The decoding or correlating filter operates in the reverse order to tha t 
of the encoding filter. The phase coded electromagnetic signal is applied to 
a launcher I .D. grid, usually consisting of a few pairs or even a single pair 
of fingers. The resultant elastic waves will propagate in both directions away 
from the launcher grid. The backward propagating wave can be damped by 
means of some wax on the substrate surface behind the launcher grid. As 
the forward propagating surface elastic wave passes under the decoding or 
correlating I .D. grid structure, it will generate electric signals in this structure. 
Figure 6 illustrates the operation of the decoding or correlating filter. The 
electrical input to the launcher grid and the layout of the device are shown 
in Fig. 6a. Figure 6b shows the progress of the elastic waves in discreet steps 
under the correlating grid structure and the total electrical output from this 
grid at each step. Figure 6c shows the ideal envelope of the correlation signal. 
The signal-to-noise or peak-to-sidelobe ratio is 5:1 or 14 dB. This figure also 
shows tha t the peak width a t half amplitude is just one bit width long 
yielding a compression ratio of 5:1, as stated above. 

Absorber 

( a ) 

i + 1 - 1 + 0 
1+ I» i+ ι - Ι - Π 

|+ 1+ 1 + I - 1 + 1 ο 
(b) 1+ 1+ 1+ I - J + T -

1+ 1+ 1+ I - i-n—---- — 0 
I | + 1+ 1-1+ 1 — — • * 

[ [ l + l + l + l - l + r - o 
•\—\~k : ! ι ι : 

(c) 

F I G . 6. Generation of a correlation signal b y a phase coded I . D . grid (a), as the 
surface wave propagates below the grid (b), resulting in the idealized signal (c). 
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In this analysis it was assumed tha t no reflections of the elastic waves or 
regeneration (de Klerk, 1971a) took place at the fingers of the interdigital grid 
structure. This assumption is approximately valid for low coupling materials 
such as quartz, but is invalid for high and medium coupling materials 
such as lithium niobate and bismuth germanium oxide. By including regenera
tion, due to the back piezoelectric effect, for the 5 bit sequence used in Fig. 6, 
the output of the correlator grid structure on lithium niobate, assuming a 
regeneration factor of —0.2 for characteristic impedance termination, would 
be tha t shown in Fig. 7a. The interference between the launched phase coded 

4 

3 

2 

I 1 
f 0 

-2 

-3 

-4 

2 
a> 1 •σ 1 

t o 

- 2 

F I G . 7. Degradat ion of correlation signal due to second-order effects such as 
reflections and regeneration in high coupling materials . 

elastic signal and regenerated antiphase elastic waves due to interaction 
between the signal and the grid structure reduces the peak-to-sidelobe ratio 
to 4.6 or 13 dB and the compressed peak amplitude by 1 dB. The regenerated 
signal, always 180° out of phase with the launched signal, is shown in Fig. 7b. 
Table I gives the analytical correlation grid signal outputs for Figs. 6 and 7. 
For longer code sequences, the interference would be greater. 

These second-order effects have been computed (Jones et al., 1972) for a 
13 bit Barker code correlator on YZ lithium niobate by a different method, 
using equivalent circuit models. Their experimental 13 bit Barker code 
derived by applying an impulse to an interdigital encoder sampled every 
half wavelength and detected by an I.D. grid with half the number of finger 
pairs contained in one whole bit, for forward and reverse directions is shown 
in Fig. 8. The computed responses for both directions are given in Fig. 9. 
These experimental and computed impulse responses show remarkable 
qualitative similarities. However, comparison of theory with experiment for 
the correlated signals, shows the existence of fairly large quantitative discre
pancies. Theoretical and experimental values of peak-to-sidelobe ratios 
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T A B L E I 

S I G N A L A M P L I T U D E S I N 5 B I T B A R K E R D E C O D E R AS A F U N C T I O N OF B I T 

C O I N C I D E N C E N U M B E R 

Correlation grid output 

B i t Regenerated 
coincidence Ideal signal phase Degraded 

number (no interference) shifted (π) signal 
F ig . 6c F ig . 7b F ig . 7a 

0 0 0 0 
1 1 - 0 . 1 6 + 0.84 
2 0 - 0 . 3 2 - 0 . 3 2 
3 1 - 0 . 6 4 + 0 . 3 6 
4 0 0 0 
5 5 - 1 . 1 2 + 3.88 
6 0 0 0 
7 1 - 0 . 4 5 + 0.55 
8 0 - 0 . 1 3 - 0 . 1 3 
9 1 - 0 . 4 2 + 0.58 

10 0 - 0 . 2 6 - 0 . 2 6 
11 0 - 0 . 2 6 - 0 . 2 6 

12 0 0 0 

reported by Jones et al. (1972) are given in Table I I . Columns 5 and 6 reveal 
substantial differences between theory and experiment. While the measured 
values of peak-to-sidelobe ratio for identical conditions except for direction 
of propagation, i.e. the order of the code sequence, differ by only 1 dB, 
computed values differ by 7 dB. These figures show tha t the equivalent 
circuit model used was inaccurate, and requires modification of the assump
tions made for reflection and regeneration. 

Some of the surface wave power contained in a wave incident upon an 
interdigital grid will be reflected back due to the periodic change in acoustic 
impedance of the substrate below and between fingers. As the velocity below 
the metal fingers is lower than tha t between the fingers, due to the effective 
shorting of the piezoelectric modulus by the conducting layer (Campbell 
and Jones, 1968), the acoustic impedance pv differs in these two locations. 
This is illustrated in Fig. 10. Using Campbell and Jones ' values of 
v 1 = 3.487 Χ 10 5 cm/sec" 1 and v2 = 3.401 Χ 10 5 cm/sec" 1 for YZ L i N b 0 3 

and taking the density of L i N b 0 3 substrate as 4.7, the values of Z1 and Z2 are 

Z1 = 16.39 and Z2 = 15.98 gm cm - 2 s e c " 1 χ 10 5 . 
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BIT OUTPUT 
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] ζ ] [ 

DIRECTION 1 DIRECTION 2 

(a) 

(b) 

( c ) 

F I G . 8 . Impulse responses of Barker code filter in forward and reverse directions 
(after Jones et al.t 1 9 7 2 ) . 

Using these values the reflection coefficient a t the edges of the fingers can 
be calculated: 

R12 = Z2 — Z1 -0.41 

R '21 

z2 + z± 

Z1 — z2 

32.37 - 1 . 2 6 χ ΙΟ" 2 , 

+ 1.26 χ 1 0 " 2 . 
z1 + z2 

Hence 1.26% of the energy is reflected when propagating from the unmetal-
lized surface to the metallized surface, with a phase change of π rad. When 
the forward propagating wave emerges from below the metallized surface 
1.26% is reflected back without any phase change. The resultant reflected 
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(a) 

(b) 

F I G . 9 . Computer impulse response for both directions of propagation (after Jones 
et al., 1 9 7 2 ) . 

T A B L E I I 

P E A K - T O - S I D E L O B E R A T I O S FOR 1 3 B I T B A R K E R C O D E F I L T E R S ON L i N b 0 3

a 

N u m b e r of sampling 
points 

Correlator Detector 
grid grid 

Mode of 
code gen. 

Propagat ion 
direction 

Theory 
(dB) 

E x p t . 
(dB) 

Jones et al. 
Fig. N o . 

Nb Ν/2 Electronic 1 2 0 1 8 1 3 

(perfect) 
Ν Ν12 Electronic 2 1 3 1 7 1 4 

(perfect) 
Ν J V / 2 Surface w a v e 2 1 0 1 3 1 5 

impulse 
I IN Ν Surface w a v e 1 c 1 9 . 6 1 6 , 1 7 

impulse 

α After Jones et al. ( 1 9 7 2 ) . 
b Ν = number of cycles per bit. 
c N o theoretical value reported. 

wave can be regarded as having two components, viz. those reflected from 
two interlaced diffraction gratings. One grating would comprise the π phase 
shift edges and the other the zero phase drift edges. The component reflected 
from the π grating is advanced in phase by π rad while the component 
reflected from the zero grating is retarded by π due to the extra forward and 
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Incident Surfacex 

Z 1 = p v 1 

Phase Shi f t on 
Reflection 
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I 
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I 

I 
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I 

I 

F I G . 10. Reflections at acoustic impedance mismatch due to ve loc i ty changes 
below interdigital grating. 

backward propagation distance of λ/2 under the metal finger. The two compo
nents are thus in phase and will propagate as a backward reflected wave. 

Regeneration, as distinct from reflection, occurs because both direct and 
inverse piezoelectric effects operate simultaneously as the surface wave 
propagates under the I .D. grid structure. As the first half cycle arrives under 
the first finger pair the direct piezoelectric effect causes electric polari
zation in the form of bound charges in the piezoelectric medium. This polari
zation induces free electric charges of opposite polarity on the metal fingers, 
which charges become instantaneously distributed over the whole metal 
grid structure. Thus, due to the inverse piezoelectric effect, another surface 
wave is launched under the complete grid and propagates in both directions. 
The regenerated wave is out of phase with the incident surface waves by π 
rad. While the incident surface wave propagates under the I .D. grid, new 
waves will be regenerated and will propagate in both directions. For the case 
of a phase coded I.D. grid, the backward wave propagates with the inverse 
phase code and the forward wave propagates with the code of the incident 
wave. These regenerated waves interfere with the incident wave and cause 
distortion of the electric output signal from the I.D. grid. The amount of 
distortion is strongly dependent upon the electromechanical coupling of the 
piezoelectric material and the electrical termination used. 

The influence of both electrical termination and electromechanical 
coupling on reflection and regeneration 2 (de Klerk, 1971a) is shown in Fig. 11. 
When the capacitance of the reflecting grid is shunted by a variable induc
tance, the value of the latter can be chosen to resonate at the driving fre
quency. With this critical termination, much more energy is regenerated 
than when the " reflecting " grid is terminated by the characteristic impedance 
or left open-circuited. Reflection coefficient measurements were made for 
lithium niobate and for quartz with all three terminations. The lithium 
niobate curve shows tha t only 10 finger pairs are required to get the maximum 
reflection coefficient of 0.82 when critically terminated as described above. 

2 These measurements were made b y M. R. Daniel at West inghouse Research 
Laboratories. 
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F I G . 1 1 . Reflection coefficient of surface waves on L i N b 0 3 and S i 0 2 as a funct ion 
of the number of finger pairs in the reflecting I . D . grid for various electrical terminat ions . 

The remaining 18% can be accounted for by conversion to bulk modes, 
regeneration in the forward direction from the trailing end of the I .D. grid, 
resistive heating of the metal fingers, and energy trapped under the grid due 
to multiple reflections from the fingers. 

Reference to Fig. 11 will confirm tha t less than 20% of the incident 
energy is reflected back when the "ref lect ing" grid consisting of 17 finger 
pairs is terminated by the characteristic impedance of this I .D. grid on 
lithium niobate. When this grid is left a t open circuit, less than 2 % of the 
incident energy is regenerated and reflected. Hence, "mass loading" due to 
the interdigital grid was less than 2 % . 

A 30 MHz, 13 bit, 14 cycles/bit Barker code correlator which is very stable 
and precise in frequency was developed a t Westinghouse Research Labora
tories and is being mass produced for three different radar systems at West
inghouse Aerospace and Electronic Systems Division (Thomas et al., 1972). 
This correlator was developed to replace a bulk wave correlator consisting 
of 13 bulk delay lines for radar pulse compression. All three radar systems 
for which the correlator was developed require a correlation peak-to-
maximum-sidelobe ratio of at least 21 dB, while the theoretical maximum 
peak-to-sidelobe ratio for a 13 bit Barker code is 22.3 dB. In a practical 
device the 21 dB ratio can only be achieved by very careful fabrication of 

III. 13 Bit Barker Code Correlator 
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transducers with very accurate amplitude, frequency, and phase responses. 
The required 21 dB ratio had to be maintained over the temperature range 
—40°C to +90°C. For this reason the correlator was fabricated on ST cut 
quartz and required no temperature compensation over the whole tempera
ture range. 

I n the radar systems which use this correlator or decoder, the Barker 
code is generated by a conventional electronic digital phase encoder which 
operates independently of the surface wave decoder. Hence, it was necessary 
to fabricate the surface wave decoders to operate a t a precisely controlled 
center frequency. In practice, it was found tha t in order to obtain a 21 dB 
ratio of correlation peak to maximum sidelobes, the center frequency of the 
decoder must be within approximately 8 kHz of the frequency of the encoder. 
This can be seen in Fig. 12, which shows the response a t the center frequency 

( a ) 

13 Bit Barker at f c 

( b ) 

13 Bit Barker at f c + 9 kHz 

F I G . 12. Correlation peak-to-sidelobe ratio for 13 bit Barker code decoder at (a) 
center frequency f0 and at ( b ) / c + 9 k H z (after T h o m a s et al., 1§72). 

and at 9 kHz away from the center frequency. The correlation peak does not 
decrease significantly for this frequency deviation, but the valley between 
the correlation peak and the first sidelobe on either side increases until it is 
higher than the first sidelobe, thus decreasing the peak-to-sidelobe ratio to 
below 21 dB. 

The manner in which the correlation signal deteriorates with even 
further frequency deviation is shown in Fig. 13. The response for frequency 
increments of approximately 12 kHz is shown, starting from center frequency 
a t the bottom. The sidelobes increase rapidly and the main lobe decreases 
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F I G . 1 3 . Response of surface w a v e 1 3 bit Barker decoder at f0 ( = 3 0 MHz) and a t 
frequency increments of 1 2 k H z (after T h o m a s et al.y 1 9 7 2 ) . 

until the peak-to-sidelobe ratio reaches unity a t approximately 35 kHz 
deviation from the center frequency. 

Figure 14 shows the variation of peak-to-sidelobe ratio as a function of 
bit-to-bit phase errors. The 21 d B level occurs when the phase error is approx
imately 10 deg. Phase error can be controlled by proper care in making the 
original artwork, but frequency errors depend on the size of the transducers, 
which in turn depends on the amount of photoreduction in making the 
mask for etching the interdigital transducers. 

In order to obtain a device with a center frequency within 8 kHz of the 
desired center frequency, the following procedure was used. The original 
mask was made on a computer-controlled plotter a t 20 times the estimated 
final size. Since the velocity of surface waves on the quartz used was not 
known to the desired accuracy, the exact photoreduction could not be 
determined without making devices and measuring the center frequency. 
The camera was set up for a reduction of 20:1 and a series of photoreductions 
was made near this setting by moving the camera mount in 5 mil increments 
to produce a slightly larger and smaller reductions. Care was taken to control 
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F I G . 1 4 . Degradat ion of correlated Barker response w i t h respect to bit-to-bit phase 
errors (after T h o m a s et al., 1 9 7 2 ) . 

the photoreduction process to yield a series of photomasks with an equal 
frequency difference between adjacent photoreductions in the series. By 
measuring the frequency of a device made from each photoreduction, a graph 
of frequency versus camera position was plotted and the exact camera 
position for the desired center frequency was taken from this plot. 

In order to produce correlators which maintain the 21 dB peak-to-
sidelobe ratio over the temperature range — 40°C to +90°C without using a 
constant temperature enclosure, ST cut X propagating natural Brazilian 
quartz was used because it has a surface wave velocity which is nearly 
constant over this temperature range. This cut is known as a +42.75° rotated 
Y cut in " right-handed " quartz, as indicated in Fig. 15. In Fig. 16 is plotted 
the frequency of best correlation as a function of temperature for a typical 
device made with ST cut X propagating natural Brazilian quartz. The graph 
shows tha t the peak-to-sidelobe ratio remains above 21 dB over a tempera
ture range of — 60°C to +100°C which is a greater temperature range than 
is required. I t was found tha t the elastic constants, and hence the surface 
wave velocity, of natural Brazilian and synthetic quartz differed so signifi
cantly tha t the photomask made for natural Brazilian quartz could not be 
used on synthetic quartz for fabricating correlators with the desired center 
frequency accuracy. 

The correlators are made with 5000 A thick aluminum transducers, 
etched using a solution of nitric, acetic, and phosphoric acids. Aluminum 
was chosen because its acoustic impedance is near tha t of quartz, which is 
necessary to prevent excessive reflections from the transducer fingers. 

The photoresist is filtered as it is applied to the quartz substrate to 
prevent imperfections in the pat tern due to impurities in the photoresist. 
Occasional shorts between fingers are eliminated by applying a small drop 
of etching solution to the area of the short and, with proper care, the short 
is removed before the remaining fingers are damaged by undercutting. 
Exposures of the photoresist are made through a high resolution photographic 
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Direction of Plate Normal Relative to Ζ - Axis, μ (Deg) 

F I G . 1 5 . Locat ion of axes for 4 2 . 7 5 ° rotated Y cut quartz w i t h respect t o substrate 
surface (after Slobodnik and Conway, 1 9 7 0 ) . 

Temperature (°C) 

F I G . 1 6 . Frequency of best correlation as a funct ion of temperature (after T h o m a s 
et al.f 1 9 7 2 ) . 

mask with collimated light. A 0.005 in separation is maintained between the 
mask and the substrate in order to prevent scratching the photoresist or the 
photographic emulsion on the mask. 

A photograph of the decoder which uses 7 finger pairs per bit is shown 
in Fig. 17, together with certain important characteristics. The quartz 
substrate is glued to a printed circuit board to aid in assembly into a package. 
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F I G . 1 7 . Photograph of Barker decoder wi th some characteristics (after T h o m a s 
et al., 1 9 7 2 ) . 

Gold leads are bonded to the aluminum transducer pads using a thermo-
compression technique in which the bond area of the lead is repeatedly tacked 
to the pad using a hot capillary loaded gold wire. The other end of the lead 
is bonded to the printed circuit board which is, in turn, connected to hermeti
cally sealed pins mounted in the package. Torroidal transformers and minia
ture tunable capacitors are used a t the input and output to match the 
impedance of the device to 75 ohms. A metal shield is placed above the 
substrate to prevent electromagnetic feedthrough from input to output, 
which would produce a spurious signal. A metal lid is finally solder-sealed 
to the package to prevent long term degradation of the performance due to 
corrosion of the aluminum or condensation of water vapor on the device 
surface. 

The errors inherent in this manufacturing process were estimated in 
order to determine whether it would be possible to produce correlators a t 
the correct frequency with a high yield. There are several possible sources of 
error, which are listed in Table I I I . They are classified either as errors in 
surface wave velocity or errors in the size of the transducer pattern. 

Velocity errors are due to misorientation of the transducer pat tern with 
respect to the crystal axes. Since the pat tern is registered with respect to a 
reference edge of the substrate, an error in the orientation of the pat tern or 
the crystal axes with respect to this edge can cause velocity and hence 
frequency errors. 

The change in velocity for small changes in angle between the propaga
tion direction and the X axis is shown in Fig. 18. The curve is nearly para-
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Veloci ty errors 

1 . X axis misorientat ion 
2 . Mask misregistration 
3 . Substrate normal misorientation 

Size errors 

1 . Thermal expans ion of mask 
2 . Project ion height changes 

bolic up to several degrees change and the velocity is given by the expression 

Δν = 0.22 θ2, (3) 

where θ is in degrees and ν is in meters per second. Hence, the frequency 
error due to misalignment of the transducer axis with the X axis is given by 
the expression 

Δν = 0.22 θ21λ3 (4) 

where As is the acoustic wavelength. 
Suppliers of quartz crystals can align a reference edge parallel to the X 

axis within 10 min of arc and the quartz substrate and the photomask can 

F I G . 1 8 . Surface wave ve loc i ty as a function of propagation angle near the X - a x i s 
of ST cut quartz (after T h o m a s et al., 1 9 7 2 ) . 

T A B L E I I I 

S O U R C E S OF F R E Q U E N C Y E R R O R 
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be oriented with respect to the reference edge to within approximately 2 min 
of arc using a specially designed alignment fixture. Substituting these angular 
errors into the equation, it will be seen tha t the maximum frequency error 
due to X axis and mask misalignments is 84 Hz. 

A more serious frequency error results from the deviation of the normal 
to the crystal face from the desired direction. The surface wave velocity as 
a function of the direction of the plate normal is shown in Fig. 15 (Slobodnik 
and Conway). ST cut quartz corresponds to an angle of 132.75° on this curve. 
The slope of velocity as a function of angle at this orientation is approxi
mately 0.94 m/sec per angular degree. Crystal manufacturers can hold the 
face normal to i 15 min of arc for substrates cut from different crystals and 
to less than 15 min for substrates cut from the same crystal. This angular 
error corresponds to a frequency error of 2.3 kHz. This error is acceptable 
assuming tha t other error sources do not increase the total error to the 8 kHz 
limit. 

In addition to velocity errors, there are errors due to incorrect size of 
the transducer pattern. Differential thermal expansion between the photo
mask and the substrate is one possible source of size error. For high resolution 
glass photographic plates, the frequency error is only 24 Hz/°C temperature 
difference between the mask and the substrate. The temperature of the mask 
will not deviate greatly from tha t of the substrate due to their close prox
imity. Hence, this error is a minor one. 

Another minor frequency error is due to slight variations in the size of 
the pat tern because the photomask is not in direct contact with the quartz 
substrate during the exposing of the photoresist to the light source. However, 
using carefully collimated light, the maximum error due to changes in height 
of the mask above the substrate has been reduced to an estimated 33 Hz. 

In order to verify tha t all errors are small except those due to orientation 
of the reference edge with respect to the crystal axes by the manufacturer 
of the quartz substrate, a long substrate was cut in half and a decoder was 
fabricated on each piece using the same reference edge for aligning both 
substrates with respect to the photomask. Thus, the substrates had the same 
surface normal and X axis orientation with respect to the transducers. The 
only differences between the decoders were possible differences in orientation 
of the reference edge with respect to the mask and possible temperature 
differences during the two exposures. The frequencies of the two decoders 
were measured with equipment which had a resolution of 1 kHz. No difference 
in frequency between these two decoders could be found. Thus, the main 
errors to be expected during production are those due to misorientation of 
the face normal, and they should be within approximately 2-3 kHz as indi
cated earlier. 

At the time of writing approximately 1300 decoders have been fabri
cated. The deviation from the desired center frequency has been less than 
2.5 kHz, which confirms the above error estimates. Furthermore, the yield 
so far has been close to 100%, which completely justifies the fabrication 
procedure adopted. 
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IV. Programmable Sequence Generator 

Certain signal processing applications require the ability to change the 
sequence of bits in a biphase code, instead of using the fixed code in the 
Barker decoder just described. That this can readily be achieved useing 
acoustic surface waves has been demonstrated (O'Clock et al., 1971, 1972). I n 
this case a combination of acoustic surface waves and semiconductor device 
technology was utilized to provide electronically switchable coding techniques 
for acoustic surface wave signal processing devices. 

Code flexibility was achieved by integrating the sequence generator 
matched filter combination with a suitable array of semiconductor switching 
elements. Phase control of the biphase code was achieved by using diode 
transmission gates between each interdigital finger and the rails of ac sum 
lines of the surface wave devices. The circuit is arranged as shown in Fig. 19. 

ί A r Ϊ r Ϊ 

u u 

(a) NORMAL CONFIGURATION 

Γ Γ ~ Π 

£ 
(b) PHASE REVERSAL CONFIGURATION 

F I G . 1 9 . Programmable sequence generator—normal and phase-reversed d iode 
configurations (after O'Clock et al., 1 9 7 1 ) . 

The phase of any finger pair is controlled by the polarity of the dc bias 
applied to four diodes as shown. Each finger is connected to a rail a t each end 
via a switching diode. By reversing the bias applied to a finger pair, the phase 
of the finger pair is changed by 180°. 

Several different semiconductor device technologies could be employed 
to construct transmission gates. For instance, bipolar transistors will pass 
rf, have very short switching time, and are readily available in a variety of 
configurations, including integrated circuit arrays at reasonable cost. Unfor
tunately, however, their forward resistance is rather large and this type of 
device uses relatively large amounts of power. Monolithic MOS transistors on 
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silicon are also economical bu t have large capacitances which will not effici
ently pass signals in the vhf range. Complementary MOS transistors in 
silicon-on-sapphire (SOS) format overcome the disadvantages of monolithic 
MOS transistors. Although they will pass the rf and present a suitably large 
impedance in the "off" state, they exhibit large " on " resistance as do other 
transistors. One class of integrated circuit device does possess the necessary 
frequency response, low capacitance, and low forward resistance, viz. diodes 
in the MOS/SOS format. These diodes have a forward resistance of approxi
mately 10 ohms a t 10 mA bias current. Other types, particularly Schottky 
barrier and p-i-n diodes with beam leads, have attractive features which 
make them suitable for use as transmission gates. Particularly well suited 
are p-i-n diodes with " o n " resistance of approximately 5 ohms and extre
mely low capacitance. Further attractions are their reliability, ready availa
bility, and low cost. 

I n their first reported sequence generator (O'Clock et al., 1971) the 
authors used beam lead diode switches as shown in Fig. 20. This hybrid 
structure consisted of an acoustic surface wave tapped delay line on L i N b 0 3 , 
where some of the interdigital transducer taps were connected through beam 
lead diode switches to the rf sum lines. Each miniature diode was approxi
mately 0.25 mm wide and 0.50 mm long, including leads. The complete 
hybrid integrated-circuit package was approximately 3.2 cm by 2.5 cm. This 

F I G . 2 0 . Switchable sequence generator (after O'Clock et al., 1 9 7 1 ) . 
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package incorporated the rf sum lines, bias pad connections for the diodes, 
and provision for mounting the acoustic delay line. Close examination of the 
hybrid circuit of Fig. 20. will reveal that some taps were connected to the 
rf sum lines through diode switches, while others were permanently wired 
directly to the rf sum lines. This arrangement allowed comparisons to be 
made between bits generated by taps that were permanently wired to the 
rf sum lines and those connected by diodes. Two types of diodes were used 
in this hybrid sequence generator. The smaller beam lead diodes in Fig. 20 
were Hewlett Packard 2740 beam lead hot carrier diodes, while the larger 
beam lead diodes were Texas Instrument MD90 p-i-n diodes. 

The 8 bit sequence generator shown in Fig. 20 operated at 60 MHz with 
a 5 MHz bit rate or 12 cycles/bit. An electrical impulse, consisting of either 
a 0.2 jLcsec 60 MHz rf pulse or a 0.2 /xsec video pulse was used as the impulse 
signal to launch the programmed biphase code. The launched surface acoustic 
signal was detected by an interdigital transducer half a bit in length. The 
theoretical insertion loss of this 8 bit switchable device was estimated to be 
25 dB unmatched, whereas the measured value was 29 dB. 

Approximately nine months after reporting their first device, the same 
authors (O'Clock et al., 1972) reported two similar but much more sophisti
cated devices, viz. a 16 bit switchable and a 32 bit fixed sequence generator/ 
correlator. 

F I G . 2 1 . 3 2 b i t fixed sequence generator/correlator (after O'Clock et al., 1 9 7 2 ) . 

The fixed code sequence generator/correlator is shown in Fig. 21. This 
32 bit device was fabricated on a quartz substrate and operated at 60 MHz. 
The upper left inset waveform shows the generated binary code while the 
lower right oscillogram shows the correlation signal output obtained from 
the correlator when the generated code was launched by the 1 bit long 
launcher grid on the left. The correlation peak-to-maximum sidelobe ratio 
was 12 dB. 
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F I G . 22. S O S diodes and characteristics (after All ison et al., 1969). 

The switching diodes used in the 16 bit sequence generator/correlator 
are shown in Fig. 22. These SOS diodes were fabricated in a 1.7 μ thick 
silicon film grown heteroepitaxially on a sapphire substrate in the following 
manner (Allison et al., 1969). Phosphorus was diffused into the entire wafer, 
resulting in n+ silicon doped to about 1 0 1 9 c m - 3 . The wafer was next therm
ally oxidized, holes were etched in the oxide, and boron was diffused through 
the holes into the silicon. The silicon was next etched into arrays of eight 
p+-n+ diodes. Each diode was 0.008 in wide. The devices were then metal
lized with 1 μ of aluminum. The resulting diodes had a reverse voltage 
limited by Zener breakdown to —4 V, a forward bias resistance r 0 of 7 ohms, 
and a interelectrode capacity (Cp) of approximately 0.5 pF . Each diode was 
bonded to an interdigital finger on the acoustic delay line by a 0.025 mm Al 
wire. Care was required to minimize the length of the bonding leads as a 
2 cm length of this wire could introduce an additional at tenuation of 8 dB 
a t vhf. 

The 16 bit switchable sequence generator shown in Fig. 23 operated a t 
a frequency of 60 MHz using 12 cycles/bit. With the SOS diode array used 
only 1.2 to 1.4 mW/bit was consumed. The entire 16 bit array used less than 
20 mW. The processing loss between the 16 bit code input (shown in upper 
left inset) and the output correlation peak in the lower right inset was approxi
mately 19 dB from the device as a correlator. The measured correlation 
peak-to-sidelobe ratio for this device was 11 dB compared to the theoretical 
maximum of 12 dB. Figure 24 shows four different codes generated by the 
16 bit sequence generator of Fig. 23. The range of correlation peak-to-sidelobe 
ratios for the codes shown in Fig. 24 was found to be from 8 dB to 10 dB. 

For the diode and switching arrangement used in the 16 bit sequence 
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F I G . 2 3 . 1 6 bit switchable sequence generator/correlator (after O'Clock et al., 1 9 7 2 ) . 

generator/correlator, it was found tha t isolation between bits was not perfect. 
Switching one diode pair on or off was found to cause a ± 5 % variation in 
the amplitude of another bit. Long bias lines were found to have a similar 
effect. I t was found tha t if bias lead lengths were restricted to less than λ/20 
electromagnetic, problems associated with electrical mismatch and the effects 
of adjacent bits influencing each other could be minimized. I n addition, it 
was found t ha t the resistance of the diode switching elements themselves 
should be less than 50 ohms to minimize insertion loss and the power required 
per bit. 

(SCALE - 0.32 ^.SEC/DIVISION) 

F I G . 2 4 . B iphase coded waveforms from 1 6 bi t switchable sequence generator (after 
O'Clock et al., 1 9 7 2 ) . 
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V. Pulse Compression Filters 

Elastic surface waves exhibit no velocity dispersion, i.e. all frequencies 
propagate at the same velocity, on any sample which has a thickness of many 
acoustic wavelengths. Velocity dispersion, however, can be created for a 
surface wave device by allowing the distance of propagation to vary with 
frequency (de Klerk, 1972). Figure 25 illustrates this method of creating 

M d H i 

Impulse Expanded FM Pulse' 

— " T i m e 

F I G . 25. Dispersive filter for generating an expanded frequency modulated pulse. 

velocity dispersions by employing two interdigital transducers which are 
linearly frequency modulated and mirror images of each other. When an 
impulse, short compared with half a period a t the highest frequency, is 
applied to the left grid, an expanded linear frequency modulated pulse is 
detected at the right grid. The length of the expanded pulse can be expressed, 
in terms of propagation distances and velocity, by 

M = {d^-dm)iv (5) 

where dh0 is the propagation distance for the lowest frequency, dm the 
propagation distance for the highest frequency, and ν is the surface wave 
velocity. The bandwidth of the expanded FM pulse will be 

A / = ( / h i - / l o ) . (6) 

By applying the expanded FM pulse, derived as shown from the right-
hand grid of Fig. 25, to the left-hand grid shown in Fig. 26, the signal detected 
at the right-hand grid will be compressed by a factor which is the product 
of the bandwidth and pulse length, or 

pulse compression ratio — Δ / Δ ί 

= ( / H i - / L o ) ( < * L o - < * H l ) / * > - ( ? ) 



4. Elastic Surface Wave Devices 237 

Input Output 

fHi fLo fLo 

Γ , 0 L o ^ H i " v 1 wvvwvv-
"Time Expanded FM Pulse 

Input 
Signal 

Output 
Signal 

Compressed Pulse 

F I G . 2 6 . Dispersive filter for compressing F M pulses. 

Correlation gain obtained during compression of the pulse can be expressed 
as 

relative correlation gain = K/m + / l o ) Δί 

= / 0 A * = RCG (8) 

where fc is the center frequency or arithmetic mean frequency. 

Absolute gain = RCG — conversion loss. 

In designing frequency modulated interdigital grids for pulse expansion 
or compression, the number and placement of finger pairs required can be 
calculated as follows. 

From a knowledge of the dispersion time width, Δί, and the center 
frequency, / c , the number of complete cycles in the FM or chirp signal is 
obtained from the following expression: 

n=fcAt. (9) 
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Hence, the total number of quarter wavelengths in each half of the pair of 
expansion or compression grids shown in Figs. 25 and 26 will be 2n + 1. Each 
successive finger and space will have a frequency increment 8f where 

δ / = Δ / / ( 2 η + 1). (10) 

In this case the widths of the fingers and spaces, as indicated in Fig. 27, are 
given by 

F I G . 2 7 . Detai l of frequency modulated grid showing change in w id th of fingers and 
spaces to s imulate ve loc i ty dispersion. 

where ν is the surface wave velocity, m — 1, 3, 5, . . . (2n + 1) for fingers, and 
m = 2, 4, 6, . . . 2n for spaces. Equation (11) is valid for low piezoelectric 
coupling materials. For strong coupling materials, however, it is necessary 
to use the appropriate surface wave velocities for the fingers and for the 
spaces. Thus, ν = vQ for the fingers, i.e., the unstiffened velocity (Campbell 
and Jones, 1968) and ν = for the spaces, i.e., the velocity stiffened by the 
piezoelectric effect. 

I t may also be necessary to amplitude modulate the frequency modulated 
pulse expansion or compression filter to compensate for frequency dependent 
effects such as propagation loss, beam spread, electrode resistive losses, and 
electrical matching. Amplitude modulation is achieved by varying the finger 
lengths of the interdigital grid. Each effect mentioned above will require 
its own unique amplitude modulation function for effective compensation. 

Experimental evidence (Tancrell and Williamson, 1971) has shown tha t 
removing the excess finger lengths from the surface can lead to serious 
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200 160 120 80 4 0 0 200 160 120 80 40 0 

F I G . 28. Wavefront distort ion of a surface w a v e due to ampl i tude modulat ion 
(after Tancrell and Wil l iamson, 1 9 7 1 ) . 

wavefront distortion as indicated in the upper half of each of Figs. 28 and 29. 
By allowing the excess to remain on the surface, which can be readily done 
by creating a gap approximately one wavelength long in the affected fingers, 
the wavefront remains relatively undistorted. The distortion arises from the 
(Δν/ν) effect (Campbell and Jones, 1968) caused by the nonuniform metalliza
tion of the surface of the piezoelectric medium when the * 6 excess" finger 
lengths are removed. This type of distortion is greatest for high coupling 
materials and directly proportional to the number of fingers involved. 

Surface wave pulse expansion and compression filters of the type just 
described are subject to several second-order effects which can seriously 
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F I G . 29. Wavefronts launched b y two types of ampl i tude modulated grids (after 
Tancrell and Will iamson, 1971). 

degrade the filter performance when using high coupling piezoelectric sub
strates, such as L i N b 0 3 . The second-order effects involve wavefront distor
tion (Figs. 28 and 29), multiple reflections between fingers and grids, bulk 
mode generation, and reradiation (de Klerk, 1971b). These undesirable effects 
can be avoided by reflecting the surface wave through two 90° angles (Willi
amson and Smith, 1973). This technique is illustrated in Fig. 30. The device 
consists of an input and an output interdigital transducer, each consisting of 
a few evenly spaced finger pairs, the spacing being determined by the wave
length at center frequency, and two sets of obliquely placed etched gratings. 
The spacings between slots in these gratings is varied uniformly, the closest 
spacings being adjacent to the input and output grids. This type of struc-
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ture will selectively reflect frequencies according to the spacings between 
slots. Thus, the portions of the gratings nearest the transducers will most 
strongly reflect the high frequencies, while those furthest away will favor 
the low frequencies, thus simulating velocity dispersion due to the different 
path lengths for the various frequencies. Ideally, the depths of the elements 

Etche d 

Output 
Transduce r 

F I G . 3 0 . Schematic diagram of a reflective array surface w a v e compression filter. 
The propagat ion paths a t different frequencies are indicated (after Wil l iamson and 
Smith , 1 9 7 3 ) . 

of the grating should also vary in a manner directly proportional to their 
spacing to achieve uniform amplitude of reflection over the complete pass-
band. Fabrication of such a device is naturally rather more complicated than 
conventional surface wave pulse compression filters. The process involves 
three separate photolithographic steps. In the first, the input and output 
grids are fabricated by conventional positive photoresist techniques (Smith 
et al., 1971). I n the second, the substrate is recoated with positive photoresist 
and the grating pat tern is exposed and developed, leaving openings where 
the grating elements will be machined. These areas are ion beam etched to 
the desired depths by selectively exposing them to the ion beam for varying 
lengths of time. In the third step, a closed border of thin film aluminum is 
placed around each transducer. When grounded, these isolation shields reduce 
the amount of direct electromagnetic feedthrough from input to output 
transducer. 

Several devices of this type, fabricated by Williamson and Smith 
(Williamson and Smith, 1973) on L i N b 0 3 , gave very encouraging charac
teristics. Figure 31 shows oscillograms of signals derived from two such 
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(a) 

( b ) 

(c) 

F I G . 31. Oscillograms obtained from t w o reflective array filters. One device genera
ted an expanded pulse of 30 jLtsec durat ion w i t h a bandwidth of 50 MHz, while the other 
compressed the expanded pulse t o approximate ly 20 nsec. (a) Compressed pulse, (b) 
E x p a n d e d pulse, (c) E x p a n d e d display of compressed pulse (after Wil l iamson and Smith , 
1973). 

reflective array filters; one generated an expanded linear FM pulse while the 
other compressed the expanded pulse. The expanded pulse had a gated 
length of 30 jusec shown in Fig. 31b. The 4 dB width of the compressed pulse 
(see Fig. 31c) was approximately 20 nsec, resulting in a compression ratio 
of 1500. 
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I. Introduction 
Since the appearance of Cady's first quartz vibrator, the evolution of quartz 
crystal units has continued over a long period of time. The crystal units 
appear to be very important in frequency and time measurements, in radio 

245 
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communication, and recently in electronic watchmaking since the introduction 
of quartz watches. 

Quartz crystal units cannot be considered for use in primary frequency 
standards because of their long term drift. Nevertheless they are very useful 
for short term studies because of their excellent spectral puri ty and short 
term stability; in each passive atomic standard a quartz crystal unit is 
included so as to achieve at the same time the low long term drift of the 
atomic device and the short term stability of the quartz unit. 

A quartz crystal unit is also often used when a fair degree of frequency 
stability is needed under set conditions (weight, dimensions, low cost, low 
environmental sensitivity). 

In fact, the best stabilities for a quartz crystal unit are in the neighbor
hood of 1 0 " 1 2 or 5 χ 1 0 " 1 3 over a few seconds and 1 0 " 1 0 to 1 0 " 1 1 per day. 
These results have been obtained by new technical methods (electrode 
plating, thermocompression bonding, cold welding, etc.). Higher Q factors, 
better spectral purity, and lower frequency drift are also obtained. In 
oscillators, components are carefully chosen and electronic circuitry is 
specially studied. 

Long term frequency stability is closely tied to the aging phenomena 
of resonators and components. Short term stability is associated with three 
different types of noise (Uebersfeld et al., 1973; Rutman, 1972): internal noise 
of the oscillating loop, additional external noise principally caused by output 
amplifiers, and flicker noise which is a low frequency noise with a power 
spectral density represented by a / " 1 curve. 

The signal to noise ratio may be improved by increasing the oscillation 
level. As a result the short term stability is improved, but the long term 
stability is partly destroyed. 

Increasing the oscillation level (i.e., increasing the power dissipated in 
the crystal) is limited by the nonlinear resonator effects apparent in the 
frequency amplitudes, by distorsions in the response curves, and by the 
harmonic frequencies generated. These phenomena may be important 
enough to prevent the normal use of resonators, and the origin of nonlinear 
phenomena should certainly be determined in order to lower nonlinear 
effects as far as possible. 

Nevertheless, nonlinearities are also a mat ter of positive interest in 
surface wave devices; nonlinear elasticity may be used to perform convolution 
and correlation in real time (Quate and Thompson, 1970). 

Nonlinear phenomena in quartz crystal are numerous and associated 
with different kinds of interaction processes. We shall consider nonlinear 
elastic, piezoelectric, electric, and damping effects (damping and elastic 
effects are related). These phenomena are not in agreement with classical 
laws (Hooke's law for instance), and correspond to very low time constants. 
We wish to distinguish between these effects and indirect effects, such as 
temperature effects. Temperature effects may also generate amplitude 
frequency effects during crystal heating when the oscillation level is increased, 
which corresponds to a long time constant. Coupling phenomena between 
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two vibration modes close to one another may also be confused with non
linear effects. Coupling phenomena will not be included here, because such 
an important subject requires a complete s tudy of its own. 

Strictly speaking, crystal plating and fixation influence should also be 
accounted for; this has yet to be investigated. 

Nonlinear phenomena have already been demonstrated experimentally. 
The AT and BT cut response curves have been obtained by Seed (1962b) 
revealing jump phenomena for a high level of excitation. Similar work has 
been done by Hammond et al. (1963). Experiments by Warner (1960) have 
shown tha t resonant frequency is a quadratic function with respect to current 
for an AT cut crystal. Smolarski (1965) and Gagnepain (1968) determined the 
amplitude frequency effect in a free oscillating quartz crystal from phase 
variation measurements. 

Theoretical results are few and far between. An approximate expression 
for the AT cut voltage frequency effect has been given by Seed (1962a). 
McMahon (1968) proposed basic equations but did not solve them. A similar 
approach to the AT cut nonlinear problem has been made by Franx (1967), 
and Gerber (1951) and Smolarski (1966) have determined phenomenologically 
nonlinear effects. 

II. Fundamental Equations of Quartz 

A . D E F I N I T I O N OF STRAINS 

We suppose tha t all strains are reversible. Therefore we consider perfectly 
elastic phenomena, although we are dealing with high amplitudes. The 
coordinates x, y, ζ of one particle before deformation become xl9 ylf zx after 
deformation. 

The components of the displacement vector are 

u = x1—x, v = y1—y, w = z1—z. (1) 

We consider the Jacobian matrix Κ given by 

K = ^ ( 2 ) 

y, ζ 
and we denote the components of the strain by 

η ι , = ΚΚ + Κ*) + ίΚΚ*, (3) 

where Κ* is the transpose of Κ. 
Κ Κ* is a nonlinear term introducing squared magnitudes of the strains. 

These nonlinearities are not related to the intrinsic crystal properties, but 
result from the definition of strain. In the infinitesimal theory of strain 
(Hooke's approximation) these products are negligible. 

Many different symbols are used for strains. The η„ notation is used by 
Murnaghan (1951). One can also quote the most commonly used notations: 
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B . EQUATION OF EQUILIBRIUM 

In the deformed state a portion of the medium is supposed to be in 
equilibrium under the action of various forces which consist of the surface 
forces given by the stress matrix T{ 

2 V 

Τι Te T5 

T6 T2 T4 

τ5 τ* T3 

(6) 

where T{ is related to one unit of surface, and the body forces Fj 

F,= F2 

Fa 

(6a) 

Weight is a typical example of a body force. 

the tensor notation with two subscripts Su and, the abbreviated notation 
with half the number of subscripts 8t. 
Factors of two are introduced between the single and double subscript shear 
strains. We have the following relations: 

$ 1 1 = #i , # 2 2 — # 2 j # 3 3 = $ 3 > 2 $ 2 3 = $ 4 , 2 $ 1 3 = S5, and 2S12 = S6, (4) 

the Voigt notation which is analogous to the single subscript notation, 
a , , y», * β , Jfe, , Xy (Voigt, 1928). 

Using the single subscript notation $ f , we obtain the following expres
sions for the strain: 

dw 1 \/du\2 (dv\2 dw\2~\ 

„ dv 1 \(du\2 (dv\2 (dwY\ 

n dw 1 \idu\2 Idv\2 ldw\2~\ 

8'=^+2[\Έή + ( & ) + ( & ) J -
dw; dv [dw dw dv dv dw; dw~\ (5) 

4 = fy + a i + [jtydz + fydi + ^~di\' 
dw dw; ["dw dw dv dv dw; dw\ 

5 = = d i * + fo + [dx'~dz~ + d ^ + d ^ d ^ J ' 
dw dv |~dw dw dv dv dw dw;1 

6 dy~^~ dx~^~ [dx dy dx dy~^~ dx dy\ 
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Considering a body in equilibrium, the resultant of all forces must be 
zero and 

dAh is the matrix of the surfaces and is given by 

dAh = 
dAx 

dA2 

dA3 

(7) 

(8) 

Using Ostrogradski's relation we obtain 

[(div Ti)* + Fj]dV = 0. ( 9 ) 

This relation can be extended over every arbitrary portion V of the medium. 
Hence 

(div Tt)* + Fj = 0. ( 1 0 ) 

In the case of a dynamical system the body would be in equilibrium if 
the inertial forces were added. Hence the equations of motion are given by 

(div Ttf + F^p-^f, ( 1 1 ) 

where u3- is the matrix of the displacements In this case we can neglect 

the body forces and obtain the equation of equilibrium in its final form: 

ρ d^./dt2 = (div Ϊ 1 ,)*. ( 1 2 ) 

Developing this relation we obtain the well known system: 

( 1 3 ) 

d2u dTx , 3 T 6 
8T5 

8xx 

Λ - + 8zx 

d2v dTe 8Ti 

pw = dxx 
+ dy1 

+ 8zx ' 

82w dT5 dTt , ST3 

dxx 

Η -
^ 8zx 

p is the specific mass of the crystal after deformation. 
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C. STRESS-STRAIN RELATION 

The relation proposed by Murnaghan ( 1 9 5 1 ) is the following: 

1 3Φ 

where Φ is the energy per unit initial volume, J the Jacobian matr ix 

χ, y, ζ 

and J * is the transpose of J . Using Eq. (1 ) , we have J = Κ + E3 where SJ3 is 
the unit matrix of dimension 3 . 

I n the case of infinitesimal deformations, the stress-strain relation 
becomes 

< 1 5 ) 

We distinguish between the stress Tx of the linear theory and the stress T{ of 
the nonlinear theory. These two stresses are related as follows: 

T*=MJW- (16) 

On expanding this relation we usually obtain rather long expressions. How
ever, it is only necessary to proceed as far as the fourth order nonlinear terms. 

The order of nonlinearities is defined by using the energy expression. 
Consequently the usual linear terms are second order terms, and the first 
nonlinearities correspond to third order terms, etc. 

In the particular case of a one-dimensional vibration, corresponding to a 
plane wave propagation, the relations are much simpler. For an X-cut rod, 
lengthwise vibrating, the principal stress is 

T * - { 1 + i l i ) * - ( 1 7 ) 

For an X-cut plate and a thickness compression vibration the stress will be 

For a vibrating plate in thickness shear the stress occurring is T6. I t can be 
readily shown, considering the order of the approximation, tha t 

( 1 9 ) 
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D . FUNDAMENTAL EQUATIONS 

Quartz crystal properties are described by a few equations t ha t we shall 
call the "fundamental equations of q u a r t z / ' These equations take into 
account linear and nonlinear elastic, electric, and piezoelectric phenomena, 
the latter being due to the interaction between elastic and electric phenomena. 

The first two equations, called " piezoelectric equations," are obtained by 
derivation of the energy with respect to the strains St [Eq. (20)] and with 
respect to the electric fields Em [Eq. (21)]. 

, Cijk, and Cijkl are the elastic constants of the second, third, and fourth 
order, respectively. r i y , r i j k , and rijkl are the corresponding damping terms. 
e m i is the piezoelectric constant of the second order, e m n i and emAj those of the 
third order, and e m A j k , e m n i i , and e m n j M those of the fourth order. 

The second relation gives the electric displacement Dh in terms of the 
strains and of the electric field. 

ehm, ehmn, and ehmnp are the dielectric coefficients of the second, third, and 
fourth order. (The different coefficients will be studied in the next section.) 

Using the fundamental dynamic equation we obtain 

where div Tx is the column matrix (d/dx^ djdy^ djdz^ and Tx the matrix of 
the stresses given by Eq. (6): 

(20) 

+ fchmnEmEn + \shmnpEmEnEp + · · ·. 
m 

(21) 

(22) 

Tt= τβ τ2 τ, 
τΒ τ 4 τ3 

(23) 

Boundary conditions are to be associated with Eq. (22); they express 
t ha t the fixation points are nodal points and tha t the stresses are null a t the 
ends of the crystal plate, if the surfaces are free. 
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The continuity condition has to be added. On the major surfaces of the 
crystal the normal component of the electric displacement is equal to the 
superficial density of charge. Therefore, the current expression is readily 
obtained: 

(24) 

where Ah is the electrode surface. 
When conductibility is negligible, there is no free charge in the crystal 

(the flux of the electric displacement being conservative). Thus we can write 

div Dh = 0. (25) 

If the resonator is used in forced oscillation conditions, the voltage V 
across the crystal is fixed. On the other hand, in a freely oscillating plate the 
voltage appears as a supplementary unknown value. Voltage and electric 
field are related by 

# m = - g r a d F . (26) 

If the conductibility is not negligible, we must introduce the density of 
charge q: 

div Dh = q. (27) 

Introducing the current density Jm and the coefficient of conductibility 
o-m n we obtain 

Jm = στηηΕη· (28) 

Finally, we present an equation governing the law of conservation of 
electricity: 

dq 
divJm=-^. (29) 

III. Characteristic Coefficients 

A complete description of quartz crystal properties implies the use of charac
teristic elastic, piezoelectric, and electric coefficients (Cady, 1946). Most of the 
time, the coefficients are defined by the free energy expression 

Φ = Φ 
elastic ~~h Φρ1βζοβ1βοί;Πο ~Γ" Φβίβο^ΐο · (30) 

Elastic energy will be written in terms of the power terms of the strains 8t. 
Similarly electric energy will be written using the power terms of the fields 
Em, and piezoelectric energy using products of electric fields and strains. 

A . ELASTIC COEFFICIENTS 

Elastic energy can be written in the following way: 

Φ = (1/2)(7„£Α. + ( l / e X V ^ S A + ( 1 / 2 4 ) 0 ^ , ^ ^ ^ 5 , + · · · 
{lln\)Cij...n8iSj---Sn. (31) 
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Cij9 Cijk, . . . Cijk... n are respectively the elastic coefficients of the second, 
third, up to the nth order. The subscripts i, j , k, . . . may have values from 
1 to 6 according to Einstein's convention. This convention introduces before 
each energy term a numerical factor of \jn\ type (Brugger, 1964, 1965). 

The first order terms in energy have not been considered because they 
are not very significant. They simply indicate tha t certain initial stresses are 
applied. 

Elastic energy may also be written in terms of strains. Compliance 
coefficients are then defined as s{j, sijk , ... sijk ... n . When the possible sym
metries in the crystal are not taken into account there are 21 second order, 
56 third order, and 126 fourth order elastic coefficients. 

Due to the cyclic threefold ζ -axis and the twofold a:-axis of quartz 
crystal some coefficients are equal to zero while others are related. Therefore 
the matrix of the second order coefficients has only 6 independent coefficients. 

Third order coefficients have been studied by Brugger (1964, 1965). 
There are 14 independent coefficients and 17 related ones, making 31 non
zero coefficients. All of the 14 independent coefficients have been measured by 
Thurston (1966). 

The number of coefficients increases rapidly with their order. There are 
126 fourth order coefficients when the symmetries are not taken into account. 
These coefficients were first studied by Seed (1962a). 

T A B L E I 

F O U R T H O R D E R I N D E P E N D E N T C O E F F I C I E N T S OF Q U A R T Z 

^ 1 1 1 1 ^ 3 3 3 3 C 4 4 4 4 ^ 6 6 6 6 C l l l 2 ^ 1 1 1 3 ^ 1 1 2 3 C 2 2 1 4 ^ 3 3 3 1 

^ 4 4 5 6 ^ 5 5 2 4 ^ 4 4 4 3 ^ 1 1 3 3 ^ 3 3 4 4 ^ 1 4 5 6 Cll55 ^ 1 1 3 4 ^ 2 3 5 6 

^ 4 4 2 3 ^ 4 4 1 3 ^ 3 3 1 4 ^ 6 6 1 4 ^ 6 6 2 4 

In the case of quartz we have found 23 independent coefficients which 
are given in Table I. We have found tha t there were 46 relations between the 
coefficients which are given in Table I I . Therefore there is a total of 69 non
zero coefficients. 

The fourth order elastic coefficients have not been thoroughly studied, 
and not many numerical values exist. Two values have been given by 
Fowles (1967) concerning 0 i m and C3333. 

C1111 = 1.59 Χ 1 0 1 3 N / m 2 ± 20%, 
C3333 = 1-84 χ 1 0 1 3 N / m 2 ± 20%. 

For the AT-cut, we have measured the coefficient 06666 (superscript D 
indicating tha t C D

6 6 6 is defined at constant or zero electric displacement). 
This measurement has been performed by means of the amplitude frequency 
effect in resonators which is completely different from the method of Thurston 
or Fowles, who measured wave velocities in crystal. 
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^2222 = ^1111 ^2266 = i i ^ l l l l — ^1112) ^2223 = ^1113 
C2221 ~ C l l l 2 C6612 = I ( C I M — 4 C 6 6 6 6 — C 1 1 1 2 ) ^2213=^1123 
^1166 =G2266 ^1122 — i ( — ^ 1 1 1 1 + 4 C 1 1 1 2 + 8 ( 7 6 6 Β 6 ) C 6 6 I 3 = J ( C 1 1 1 3 — C1123) 
C5555 = * ? 4 4 4 4 Ο4455 = J Ο4444 0 6 6 2 3 = C 6 6 i 3 

^1124 = — C2214 H~ ^6614 +^6624 C3312 " —-̂ 1133 
^1114 — 3( — C 2 2 i 4 + 2 C 6 6 1 4 — 2 ( 7 6 6 2 4 ) ^2233 = ^1133 
^2256 = έ (~ ' 20 2 2 ΐ4 + 3 C 6 6 1 4 — 5 C 6 6 2 4 ) ^6633 = ^1133 
^2224 = 3(C 22i4 — 3 C 6 6 1 4 + C 6 6 2 4 ) ^3355 — ^3344 
^1156 = i( — 2C2214 + 7 ( 7 6 6 1 4 — C 6 6 2 4 ) ^3332 = = C3331 
^1256 — i( — 2C 2 214 + 3 C 6 6 1 4 — C 6 6 2 4 ) ^5534 = —C4443 
^6665 = ί(̂ 6614 ~~ ^6624) 

C4442 ~ — 4 C 4 4 5 6 — C5524 ^1234 = ^1134 ~ 2 C 2 3 5 6 ^2255 = C4412 
^5514 = 2 0 4 4 5 6 4~ #5524 6*1356 = 2 C 1 1 3 4 -- 3 C 2 3 5 6 ^ 5 5 6 6 — ^1456 
^5556 = 3 ( 7 4 4 5 6 ^2234 = 4 ( 7 2 3 5 6 " ~ 3 ( 7 1 1 3 4 C3324 = —C3314 
C4441 — 2 ( 7 4 4 5 6 — 0 5 5 2 4 ^6634 = ^1234 ^3356 = ^3314 

^5512 = ^4412 ^1144 = ^4412 ^5523 = ^4413 
^2456 — ^1456 (?2244 — ^1155 ^5513 = C4423 
^4466 = ^1456 ^4412 -~ Cll55 — 4 C 1 4 5 6 ^3456 = I ( C 4 4 2 3 

Certain coefficients have also been measured in our laboratory by using 
a special pressing device tha t applies stresses up to 6 χ 10 8 N/ni2 on a quartz 
cylinder. The stresses parallel with the cylinder axis are measured. Subse
quent strains are also measured and " a p p a r e n t ' ' coefficients are obtained 
from the stress-strain relation with the aid of a computer. Only coefficients 
of the CH, CHi, CiHi type can be measured this way. Nevertheless, certain 
shear coefficients may be obtained by using several different cuts of the 
crystal. The coefficients measured are those defined at a zero electric field. 
I t should also be pointed out tha t the coefficients measured this way are 
" appa ren t " ones tha t differ slightly from the coefficients previously defined. 
In fact these last coefficients are calculated from 

Tt = CuS, + yD'mSsSk + lCijklSjSkSl. (32) 

This equation involves the main strain which is parallel to the applied 
stress, but it also involves other strain components which are nonzero. 
Therefore it is necessary either to measure the latter (and tha t is difficult for 
shear components), or to define " appa ren t " coefficients given by the following 
relation: 

Ti = c<tlsi + ictiisi* + ictiiis*- (33) 

T A B L E I I 

R E L A T I O N S B E T W E E N T H E F O U R T H O R D E R E L A S T I C C O E F F I C I E N T S 
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I n fact it is possible to relate these apparent coefficients to the coefficients 
defined a t constant electric field if all the matr ix values are known; but this 
would obviously be difficult. 

This problem does not occur when converse coefficients such as s u , 
sHi, siHi are measured, since for these the stress components different from 
the main one are null a t the end of the crystal. Applying a stress along the y 
axis we obtain 

C222 = - 2 . 1 Χ 10 1 1 N / m 2 , 

C%222 = 4.9 χ 1 0 1 3 N / m 2 . 

B. PIEZOELECTRIC COEFFICIENTS 

1. Definition 
From the energy expression, piezoelectric linear second order coefficients, 

direct or converse, e i ; or dif, are defined (the process is similar to the one 
used previously for elastic coefficients). Nonlinear third order and fourth 
order coefficients are also defined. They will be written using the following 
conventions: third order direct coefficients: eijttn, e i m n ; third order converse 
coefficients: dij%m, dimn; fourth order direct coefficients: e i j k t m ) e i / m n , e f m n p ; 
fourth order converse coefficients: dijkttn, dij>mn, dUmnp. 

In order to avoid possible confusion between the subscripts t ha t corres
pond to strains or stresses and those which correspond to fields, we separated 
them by a comma; the subscripts to the left always relate to the fields. 
Therefore 

eij.m — eji.m eij,m Φ ej.im a n ( l ei.mnp ~ ei,nmp = ei.pmn 

Piezoelectric energy is written: 

- Φ = eimEtSm + K . m t f i ^ m + Xmn EiSmSn + ' ' ' · 

Independent third order coefficients and corresponding relations have been 
determined. There are 41 nonzero coefficients among a total of 99; 16 coeffi
cients are independent and there are 25 relations. The independent coefficients 
and the relations are given in Tables I I I and IV. 

The dUmn type coefficients are usually called electrostriction coefficients 
and they are found in any crystal. 

2. Measurement 
The second order coefficients have often been measured over a long 

period of time. The variations between different authors ' experimental 
values, pointed out especially by Bottom (1969), have been due mainly to 
three causes: (i) different samples exhibit different characteristic coefficients 
(Langevin, 1939; Besson, 1970); (ii) nonlinear third order or higher order 
coefficients have very often been ignored in second order coefficient measure
ments; and (iii) "hys te res i s" effects appear in the strain versus electric field 
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0 2 2 , 1 = 0 1 1 . 2 0 1 . 5 5 = — 0 1 . 4 4 
e 2 2 . 2 = « 1 1 . 1 0 1 . 5 6 = 4 ( 0 1 . 2 4 — 0 1 . 1 4 ) 
e 2 2 . 3 = 0 1 1 . 3 0 2 . 1 6 i ( 0 i . n + 3 β ι ι 2 2 ) 
e 2 2 . 4 = — € l l , 4 0 1 . 6 6 — i ( e i . i i + 0 1 . 2 2 ] 
e 3 3 . 2 = e 3 3 , l 0 2 . 3 5 = — 0 1 . 3 4 

0 1 2 . 5 = e l l , 4 e 2 . 3 6 - 0 1 , 1 3 
e 1 2 . 6 = έ ( β ΐ 1 . 1 — β ΐ ΐ . 2 ) 

e 3 . 2 5 = — 0 3 . 1 5 
e 1 3 , 6 = β 2 3 . 1 0 2 . 4 5 = 0 1 . 4 4 
e 2 3 , 2 — ~ e 2 3 , l e 3 . 4 6 — 0 3 . 1 5 
e 2 3 . 4 = 0 1 3 . 5 0 2 . 4 6 = i ( 0 1 . 1 4 — 0 1 . 2 4 ) 

0 1 . 1 2 = — J ( 0 1 . 1 1 + 0 1 . 2 2 ) 

0 1 . 2 3 ~ — e 1 . 1 3 

0 2 . 1 5 = — 0 1 . 2 4 

0 2 . 2 5 = — 0 1 , 1 4 

0 2 . 2 6 = — 1 ( 0 1 . 2 2 + 3 e i . i i ) 

curves so tha t the measured strains depend on the fields previously applied 
(Besson, 1971). 

Third order coefficient values have been proposed by Hruska and Kazda 
(1968) using the frequency variation of a resonator with dc applied fields. 

Measurements have been performed in our laboratory using an original 
device. Since the best accuracies are obtained with frequency measurements, 
length variations have been changed into capacitance variations, and then 
into frequency variations. A 0.05 A resolution apparatus has been used to 
perform static length variation measurements up to ± 5 0 0 A with a 5 χ 10" 5 

linearity. 
The 0.05 A resolution is small compared to atomic distances and must 

therefore be explained. Frequency variations are obtained through capacit
ance variations; then the variations in position of an equipotential surface 
Σ Μ are actually measured. Even if Σ Μ is very different from a plane, it is 
perfectly possible to consider a small translation without deformation, as is 
suggested by Fig. 1. 

Σ Μ actually stands for an average position with respect to space and time 
variables as well. I n fact, thermal agitation causes vibrations of the sample 

T A B L E I I I 

I N D E P E N D E N T T H I R D O R D E R PIEZOELECTRIC 

C O E F F I C I E N T S 

e l l , l e l l , 2 e l l , 3 0 1 1 , 4 e 3 3 , l e 1 3 , 5 e 2 3 , l e 3 3 , 3 
e l , l l β 1 . 2 2 e 1 . 4 4 e l , 1 3 e 1 . 1 4 e l , 3 4 e 3 . 1 5 e l , 2 4 

T A B L E I V 

R E L A T I O N S B E T W E E N T H E T H I R D O R D E R P I E Z O 

ELECTRIC C O E F F I C I E N T S 

http://3ei.ii
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F I G . 1. Translation of the conductor equipotential surface in a displacement 
measurement . 

surface. The vibration frequency corresponds mainly to the sample resonance 
frequency, and the vibration amplitude is approximately 0.2 A (Mayer, 
1959). 

Static processes appear highly interesting because they eliminate par t 
of the noise; then the previously given resolution is possible if the phenome
non studied simply causes a translation of Σ Μ into Σ Μ / . 

The measuring device is represented by the scheme of Fig. 2. A grounded 

4-

! SAMPLE 

SAMPLE 

F I G . 2. Principle of the piezoelectric coefficients measurement . C : fixed conductor. 
Sample: quartz crystal or fused silica disks. H V : high vol tage electrode. R: grounded 
electrode. 

electrode R, a first sample, a high voltage electrode, a second sample, and a 
measurement electrode are piled up. The symmetry axis is vertical; the elec
trode R is a mechanical and electrical reference. The displacement of the 
measurement electrode is determined by measuring the variation of its 
capacitance with respect to a fixed conductor C. 

The conductor C is insulated by a fused silica cylinder. I t remains fixed 
during the measurement but, of course, its position can be adjusted before
hand. The measurement capacitance is the variable element of an LC sinu
soidal oscillator using a unijunction transistor. The frequency of this oscilla
tor is compared to the frequency of a synthesizer. 
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F I G . 3 . Complete device used for the measurement of piezoelectric coefficients. 

The complete measuring device is represented by Fig. 3. The complete 
device placed on a massive concrete table is insulated from vibrations as far 
as possible: its temperature stability is approximately 0.02°C per day. The 
stability of the LC oscillator is about 10" 7 over 20 min. The most troublesome 
frequency variations are long term drifts, but actually they do not cause 
much interference. The electric field applied across the samples is supplied 
by a high stability dc electrostatic generator. 

Two different samples may be used (Fig. 2) if they are sufficiently 
identical. In order to separate even effects from odd effects the samples are 
then successively placed according to the four existing possibilities. I n fact, 
one of the samples is usually fused silica, the electrostriction coefficient of 
which has been previously measured. The successive coefficients are then 
obtained from the following strain field relation with the aid of a computer. 

Si = + i <*n . i^i a + * rfm.i^i3. 

For example, the results for a Brazil quartz X cut crystal are 

du = ( -2 .232 ±0 .006) χ 1 0 " 1 2 m/V, 
= (5.0 ± 0.1) χ Ι Ο " 2 0 m 2 / V 2 , 

d l l l t l = 2.7 Χ 1 0 " 2 6 m 3 / V 3 . 

(34) 

About twenty independent measurements performed with the same sample 
exhibited a very low standard deviation. 
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T A B L E V 

M A D A G A S C A R N A T U R A L QUARTZ 

d n (10 ~ 1 2 m/V) ά11Λ(10-*° m 2 / V 2 ) 

-
0.86 
2.36 

8 W i t h large defects 
7 W i t h o u t apparent defects 

T A B L E V I 

H I G H Q S A W Y E R Q U A R T Z 

( 1 0 - 1 2 m/V) (10 
^ 1 1 . 1 ^ 1 1 1 . 1 

- 2 0 m 2 / V a ) ( 1 0 - 2 7 m 3 / V 3 ) 

- 2 . 2 2 0 

- 2 . 2 5 2 

5.8 

3.6 - 1 . 5 

Sample including the 
seed 

Sample t h a t does 
no t include t h e seed 

3 "Hysteresis" Effect 
Independently of the previous influence of the crystal origin, significant 

differences may be observed in experiments concerning a single sample. 
These variations are related to a dependence between the properties of the 
crystal and the previously applied fields; this dependence will be called the 
" hysteresis " effect. 

An X-cut is used and electric field is supposed to have never been 
previously applied. The thickness of the crystal will be denoted β and its 
relative variation Δβ/β. For positive electric fields the curves of Fig. 4 will be 
obtained. 

Experimental values, obtained when the electric field increases for the 
first time from 0 up to EM, correspond to OVB (see Fig. 4). After that , 
experimental values correspond to the OCB part of the curve. I t appears tha t 
applying Eu causes a permanent modification of the crystal. This modification 

Using a Y cut we obtained 

d12 = (2.329 ± 0.006) χ 1 0 " 1 2 m/V, 
du,2 = (1.42 ± 0.02) χ 1 0 " 1 9 m 2 / V 2 , 

d m . 2 = - 5 . 7 χ Ι Ο " 2 5 m 3 / V 3 . 

Numerous experiments have been performed with X cuts of different 
origin. Table V lists typical piezoelectric coefficients for Madagascar natural 
quartz some exhibiting large defects, and Table VI for synthetic high Q 
Sawyer quartz. 
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ο 

Electric fiel d 

F I G . 4. A dc electric posi t ive field is applied on a quartz sample. 

T A B L E V I I 

R E S U L T S OF T W O S E R I E S OF E X P E R I M E N T S 

1 2 

EM (Vim) 3.2 χ 106 1.6 χ 107 
Ev (V/m) 9.7 χ 105 9.9 χ 105 

e (m) 2.5 χ 10~ 3 3 χ ΙΟ" 4 

remains constant with time and to lower it it is necessary to apply a negative 
electric field, the amplitude of which is greater than Er. Two series of experi
ments have been performed, giving the results of table VII . If a negative 
EM field is applied then, by using positive increasing fields, the OAB par t 
will be obtained. 

A similar phenomenon is observed for measurements with negative 
fields; the complete results are illustrated in Fig. 5. The field variations in 
Fig. 5 correspond to Table VI I I . If the sample width is 2.5 mm the ratio 
AC/HC will be about 0.01. The coefficients in the development of the s t ra in-

T A B L E V I I I 

F I E L D V A R I A T I O N S I N F I G . 5 

O V B BCO O D E E F O O A B BCO 

Ε / 
0 

\ 

0 

0 
\ 

— EM 

0 

/ 
— EM 

EM 

0 
\ 

0 
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F I G . 5 . " Hysteres is " effect when dc pos i t ive and negat ive electric fields are applied 

field relation are of course different according to the par t of the curve being 
considered. The dn variation is very small, but the d l l t l coefficient typically 
varies from 1.0 X 1 0 " 2 0 to 6 χ 1 0 " 2 0 m 2 / V 2 . 

Finally, it is necessary to point out tha t the sample modification dis
appears by heating the crystal a t 480° for some hours. 

C. DIELECTRIC COEFFICIENTS 

Electrical relations may be obtained either by expressing the electric 
polarization Ρ in terms of the electric field E, or by expressing the electric 
displacement D in terms of E. Converse relations may also be used. 

I t has been chosen to express D in terms of E. Linear coefficients will 
be denoted by eu and will correspond to permitt ivity coefficients. The 
electric energy may be written: 

— ^ e i e c t . = iZijEiEj + \ e m E i E J E k + -h£iikiEiE}EkEi + '"> (35) 

where eu, eijk, e i m are respectively the second, third, and fourth order 
coefficients. 
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Second order coefficients are well known; three of them are nonzero 
coefficients: ε η , ε 2 2 = «η, and ε 3 3 . All the other permittivity matrix coeffi
cients are null. 

A study of the third and fourth order coefficients gives the following 
results: Third order coefficients consist of the independent coefficient ε ι η and 
the relation: ε22ι = — £ιη· Four th order coefficients consist of the indepen
dent coefficients ε 1 ι η , ε 3 3 3 3 , ε 1 1 3 3 , £ 2 2 2 3 a n d the relations £ 2 2 2 2 = € ι ι ι ι > ε ι ΐ 2 2 — 

J^llllJ £ 2233 = ε 1133 ' a n ( i ε 1 1 2 3 = ^2223 * 
Complete relations up to the fourth order may therefore be written: 

+ 2 ε ι ΐ 3 3 EXE3

2 — ε 2 2 2 3 ΕλΕ2 E3, (36) 

D2 = ε λ 1 Ε 2 — S111E1E2 + i £ 1 1 1 1 ^ 2 3 + i £ 2 2 2 3 ^ 2 2 - ^ 3 

+ i ^ l i n ^ l 2 ^ + i £ 1133 ^ 2 ^ 3 2 — £^2223 EX

2E3 , (37) 

^ 3 = ^ 3 3 ^ 3 + έ ε 3 3 3 3 ^ 3 3 + έ ε 2 2 2 3 ^ 2 3 + έ £ 1 1 3 3 ^ 1 2 ^ 3 

+ έ ε 1133 Ε2

2Ε3 — Ι ε 2223 Ε2Ε2 · (38) 

The different experimental methods usually employed to perform the 
measurements of ε η and ε 3 3 are not accurate enough to exhibit nonlinear 
dielectric coefficients. An original method is used in our laboratory to obtain 
directly these nonlinear coefficients (it may be used for any dielectric sample). 
An LC oscillator, similar to the one tha t has been previously described for 
piezoelectric coefficient measurements, has been designed (Besson and 
Gagnepain, 1972). The variable capacitance of this oscillator is obtained by 
using two quartz disks, as identical as possible. A dc voltage is applied across 
the samples (see Fig. 6). 

Unijunction 
transisto r 

F I G . 6. Experimental device used for the measurement of the nonlinear dielectric 
coefficients. 
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A recorder is used to obtain a t the same time the applied field and the 
capacitance variation. I t can be readily shown by calculating the oscillator 
frequency tha t the coefficient measured this way corresponds to dD/dE. 
Linear dielectric coefficients are obtained by substituting a standard capa
citance for the samples. Piezoelectric or electrostrictive strains must be 
taken into account as well as thermal effects. 

1. Results for an X-Cut 
The electric displacement Dx is written: 

(39) 

Two experimental cases are possible, which allow the separation of effects due 
to 

e m a n d to ε ι η ι . If the applied fields have the same sense for the two disks, 
the relative frequency variation is 

(40) 

On the other hand, if the applied fields have different senses for the two 
disks, then 

(41) 

In fact, the observed capacitance variation is not only due to permitt ivity 
variations, but also to the variations in dimension of the crystal (influence of 
dlly d12, and d14). The crystal thickness will be denoted β and the plated 
surface 8. For a maximum field of 3 χ 10 5 V/m we have 

Moreover, d 1 4 causes a surface shear in the yz plane. Thus the plated surfaces 
which were circular become elliptic, bu t the surface relative variation is 
smaller than 1 0 " 1 4 and may be ignored. Finally, the results obtained are 

(42) 

(43) 

2. Results for a Y-Cut 
The field is applied along the i/-axis. 

Therefore, the relative frequencv variation is 
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The influence of piezoelectric strains due to d25 and d26 may be ignored 
since they introduce a relative variation of about 1 0 " 1 4 for a maximum field 
of 3 χ 10 5 V/m. I t is again found tha t 

« m i < 8 x 1 0 " 3 1 F - m / V 2 . 

3. Results for a Ζ-Cut 

The only applied field is E3. Then D3 may be written: 

D3 = e33E3 + ie3333E^3. (44) 

Hence, the relative frequency variation is 

Lzh = _\ejmE^ (45) 

JO 4 « 3 3 

Since the second order coefficients are zero, the strains due to them are 
null. Therefore the only strains are a result of the third order coefficients 
^33,i» ^33 , 2 > a R d d333 · The relative frequency variation due to these strains 
is about 7.5 χ 1 0 " 1 1 for a maximum field of 3 X 10 5 V/m; it is negligible 
compared to the observed relative frequency variation. Then the results 
obtained are 

ε33 = (4.10 ± 0.02) χ 1 0 " 1 1 F/m, 

« 3 3 3 3 = (1.5 ± 0.3) χ 1 0 " 2 4 F · m/V 2 . 

ε 3 3 3 is confirmed to be null. 

4. Results for AT- and BT-Cuts 
AT- and BT-cuts are obtained by a rotation θ of the Y-cut about the 

z-axis. The AT cut corresponds to θ = 35° 15' and the BT cut to θ = - 4 9 ° . 
By applying a field E2 along the axis of the considered cut a displacement 
D2 is obtained, given by 

D2=e22E2' + ±e2222E>2

3, (46) 
where 

«22 = «22 C O s 2 # + « 3 3
 S i l * 2 0 (47) 

and 

«2222 = «3333 s i l * 4 # + θ sin θ(4ε2223 cos θ + 6 ε 2 2 3 3 sin θ) + ε 2 2 2 2 cos 4 θ. 
(48) 

Measuring ε 2 2 2 2 for the AT-and BT-cuts permits a determination of the two 
independent coefficients ε 2 2 2 3 and ε 1 1 3 3 . 

I t may be readily shown tha t piezoelectric strains cause a negligible 
effect. For an AT-cut the observed variation is very low and approaches the 
resolution of the measuring device, and 

«2222ΑΤ - 1.5 χ 1 0 - 2 6 F · m/V 2 . 
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For a BT cut 

e a a a a B T = (5.2 ±0 .8) χ 1 0 - 2 6 F - m/V 2 . 

Hence 

ε 2 2 2 3 - 1.2 X 1 0 - 2 5 F - m / V 2 . 
ε 1 1 3 3 ~ - 2 . 3 X 1 0 " 2 5 F - m / V 2 . 

D. DAMPING AND CONDUCTIVITY COEFFICIENTS 

1. Damping Coefficients 
Damping is partly at tr ibuted to imperfections and impurities in the 

crystal, when it is called internal friction. But damping may also be caused 
by plating and crystal fixation especially when the crystal mass is low. 
Measuring the internal friction is not interesting for our purpose, and total 
damping coefficients will be considered; they may be obtained from resonator 
properties. 

Linear and nonlinear damping coefficients are defined in a general form. 
Second, third, and fourth order coefficients are respectively denoted by 
r u , rijk, and r i j k l . The new stress-strain relation, including only elastic 
quantities, is written: 

rXi may be calculated from the measured values of the Q factor, while rijk and 
rijkl are obtained from the Q factor variations with the excitation level. These 
Q factor variations will be obtained theoretically and experimentally in the 
next sections. 

2. Electric Conductivity 
Quartz, being a very good insulator, has low conductibility. Therefore it 

has always been ignored in calculations dealing with quartz resonators. I t will 
be shown in the next sections tha t this assumption is a correct one. However, 
it would be interesting to know whether conductibility influences the damping 
of a crystal or not (i.e. its Q factor), because it is possible to obtain consider
able conductibility variations by heating the crystal. 

Conductibility has been measured for several cuts of different samples 
by applying a dc voltage of 1000 V and measuring the subsequent current. The 
following values have been obtained for a temperature of 23°C 

(49) 

for an X-cut: σ η = 4 . 1 0 - 1 * Q - 1 m - 1 ± 10%, 

for a Y-cut: σ 2 2 = 4 . 1 0 - 1 6 Q - 1 m - 1 ± 10%, 

for a Z-cut: σ 3 3 = 2 , 8 . 1 0 - 1 2 Q - 1 m - 1 ± 10% 
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Conclusion: Various coefficients have been theoretically studied. Their 
total has been given, and relations between them have been obtained. 

From the experimental point of view measurements have mainly 
concerned the coefficients occuring in theoretical expressions. The measured 
values and the values from the literature will allow, in the next Section, a 
comparison between theoretical and experimental results. 

IV. Nonlinear Effects in Shear Vibrating Quartz Crystal Resonators 

A . FUNDAMENTAL EQUATIONS 

Vibrating plates in thickness shear are now mostly used in the medium 
and high frequency ranges, because of their good stability and their high Q 
factors (2.5 χ 10 6 for the 5 MHz fifth overtone resonators). 

Since a theoretical study is being made, simple conditions are assumed. 
We shall consider a pure vibrating mode which has a variable excitation 
level. The frequency amplitude effect will be investigated without calculating 
the resonant frequency of the resonator from its dimensions, and without 
stating precisely the accurate ratios of the different overtone frequencies 
on the fundamental frequency. Only the main deformation will be considered. 
Our model is unidimensional; therefore a plane wave propagation will be 
considered (Gagnepain, 1972). 

We assume infinite plates of thickness e. The cut is Y + 0°, obtained 
from the Y-cut by rotation of an angle θ about the x-axis as shown in Fig. 7. 

We consider the displacement u which is a function of y, the corres
ponding strain S6 , and the main stress T6 . Here the electric field is perpendi
cular to the plane wave, and it will depend on both t ime and the space 

F I G . 7 . Υ + θ cut obtained b y a θ rotat ion of a Y cut about the X - a x i s . 
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ι*Ί? = ΊΪ> ( 5 3 ) 

3Ό2 

ν=°· ( 5 5 ) 

Equations (50) and (52) illustrate tha t nonlinear occurring coefficients are 
fourth order coefficients. Third order coefficients are zero in the case con
sidered: 

^ 6 6 6 —0> ^ 2 , 6 6 —0> ^ 2 2 , 6 —0> « 2 2 2 —0· (56) 

Equat ion (55) means t ha t space charges are ignored (i.e. t ha t crystal con
ductivity is considered null). I t will be seen in Section V,B tha t this assump
tion is quite correct. Therefore the electric displacement D2 is independent of 
y but depends only on the time variable. 

Using Eqs. (50) and (52) we express the field E2 and the stress Te in 
terms of the strain S6 and the electric displacement D2 . 

E 2 = β 2 2 D2 — h 2 6 S 6 - ( - J ^ 2 2 2 , 6 D2

2SQ -f- J ^ 2 2 , 6 6 D2SQ2 

H~ i ^ 2 , 6 6 6 ^ 6 3 H~ i / ^ 2 2 2 2 & 2 , (57) 

TQ = CQQSQ + 4 ^ 6 6 6 6 $ 6 3 ~f~ J ^ 2 2 . 6 6 ^ 2 ^ 6 4" i ^ 2 . 6 6 6 D2SQ2 

1 3 dSQ 1 2dS6 

+ β ^ 2 2 2 . 6 - ^ 2 3 — ^ 2 6 &2 + R66 + £ R6666 $ 6 2 > (58) 

variable y. There lies the difference between the thickness shear mode and the 
lengthwise vibrating mode, because in the lat ter the electric field, being 
parallel to the wave plane, depends only on the time variable. 

The fundamental equations are 

^ 6 — ^ 6 6 $ 6 + g ^ 6 6 6 6 + R66 + cjj Γ 6 β β β $ 6 2 β 2 6 Ε2 

— έ β 2 2 2 . 6 ^ 2 3 — έ β 2 2 , 6 6 ^ 2 2 $ 6 ~ έ β 2 . 6 6 6 ^ 2 $ 6 2 > (50) 

?6 = T6, (51) 

&2 = ^ 2 6 ^ 6 + i e 2 2 2 , 6 ^ 2 2 ^ 6 + έ β 2 2 , 6 β ^ 2 $ 6 2 + ^ . β β β ^ β 3 

+ β 2 2 ^ 2 + έ £ 2 2 2 2 ^ 2 3

> (52) 
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where 

j 8 M = -^ - , (59) 
« 2 2 

A 2 6 = ^ , (60) 
« 2 2 

^ 2 2 2 2 = ^Γ> 
« 2 2 

, _ 9

 β 2 6 _j_ ^26 , A t > v 
Λ 2 2 , 6 6 — ^ β 2 2 2 . 6 0 3 β 2 2 , 6 6 o 2 « 2 2 2 2 0 4 > 

« 2 2 « 2 2 « 2 2 

^26 ^26 "̂ 
^ 2 . 6 6 6 — 3β 2 2 2 ,6 ~ 3 h 3 β 2 2 > 6 6 72 6 2 . 6 6 6 ~ 

« 2 2 « 2 2 «22 

+ « 2 2 2 2 ~ 4 ~ ' ( ^ ) 
« 2 2 

, _ £ 2 6 e 2 2 2 t 6 / β . ν 
Λ 2 2 2 . 6 — « 2 2 2 2 „4 a · 

« 2 2 « 2 2 

CQQ and Cgeee are the elastic coefficients of the second and fourth order 
defined at constant electric displacement. They can be related to the Of6 

and Cf 6 6 6 coefficients defined at constant electric field. (Most of the time, 
for simplicity, these latter coefficients will be denoted as 0 6 6 and 0 6 6 6 6 . ) 

CŜCSe+T2, (65) 
« 2 2 

^ 6 6 6 6 = ^ 6 6 6 6 « 2 2 2 2 ^ 2 6 4~ ^ 2 2 2 , 6 ^ 2 6 H~ ^ 2 , 6 6 8 ^ 2 6 

— 6 β 2 2 , 6 6 ^ 2 6 · (66) 

B. W A V E PROPAGATION EQUATION 

By introducing from Eq. (58) the mechanical stress T6 into Eq. (53) 
and using the strain expressions, the following equation of motion is 
obtained: 

— — Γ^Γΐ I I
 G*666 (-Y _L I ^ 2 2 ' 6 6 Ω 2 I ^ 2 . 6 6 6 n ^ 

Λ » " ° L + 2 C? 6 \dy) + 2 C£>6 ^ 2 + V2dy\ dy2 

TQQ 33U l r 6 6 6 6 Γ dud2u d2u /du\2 33u 1 
+ 7" 'dy 2 ~m + ^ ~ [2dy^y2dy^t+ \dy) 'dyrdt\' ( 6 7 ) 

This last equation is obviously nonlinear. Nonlinearities are introduced in the 
velocity of propagation and in the damping terms. An analogous equation 



5. Nonlinear Effects in Piezoelectric Quartz Crystals 269 

dA1 d2Ax χ 1 ^ dBx d2Bx t 1 λ τ dA1 d2B1 

dy c 

1 λ τ dB1 ά2ΑΛ 

/3 dA1 w . „„λ „ ^1 . 
+ 0 C 2 [ l M l ^ ~ ~df+lMl^y~ ~αψ + 1 Ν ι dy dy2 

Λ oca> d2BJ 1 2 ω_ Γ /dA1\2d2B1 

j +~C2 ~φγ\ ~l μ0^ [~\dyl ly2 4 dy dy2 

+ \dy) dy2 + Z dy dy dy2 \' ('υ> 

ΡΒι ω2 _ ΓΙ (dAA2 d2B1 3 (dB1\ad*B1 1 dAl dBx d ^ 
dyr + C2~Bl~ \l\dy) dy2+A\dy) dy2 + 2 dy dy ly2 

/I d2B1 3 d2B, 1 d2AA 

dA1d2B1 1 dBxd2Ax 1 dA1d2A1 

dy dy2 4 1 α 

3 dB1 d2BA ω d2A^ 

* 2 ( 4 M l dy dy2 + 4 M l dy dy2 + 4 N l ' d y dy2 

Λ _ ω d2^! _ 1 ω Γ _ / d A \ 2 d 2 ^ 
d y 2 ,1 C2 dy2\ 4 ^ C 2 [ \ / dy2 

+ \ d y , / d y 2 dy dy d y 2 J ' 

was proposed by McMahon (1968) for longitudinal wave propagations along 
the Z-axis and for shear waves polarized along the Y-axis and propagating 
along the Z-axis. 

Solutions of the following form are chosen: 

00 

u = Σ [An(y) cosnatt + Bn(y) sinwtoi], (68) 
n = 0 

00 

D2 = £ (Mn coswto£ + Nn ύηηωί), (69) 
71 =  0 

where An and Bn are functions of the space variable y whereas Mn and Nn are 
constant, because the electric displacement D2 is independent of y and 
depends only on the time variable t. The form of the solutions has been chosen 
in relation to the form of the boundary conditions. 

By introducing Eqs. (68) and (69) into Eq. (67) and by identification, a 
new set of differential equations giving An, Bn, Mn, and Nn is obtained. 

Writing these equations is a lengthy procedure so we only give the two 
first equations corresponding to the fundamental frequency. 

d2A± ω2

 2 Γ3 ίάΑΛ2 d2Ax 1 IdBA2 d2A1 1 dAx dB1 d2B1 

~ l f + \ ^ A l = ~ k \ i \ ^ y ) ~d^2~ + l \ d i ) Ί^ + 2Ί^Ί^~αψ 

/3 d2Ax 1 d2Ax 1 d2B\ 

file:///l/dy
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C. BOUNDARY CONDITIONS 

Since a one-dimensional model is used in this study, two boundary 
conditions are found. First, the plate is supposed to be fixed a t the thickness 
center which is a nodal plane (see Fig. 8). Therefore it can be written in the 
form 

u = 0 for y = Q. (75) 

y 
e/2 

e/2 

^0 
X 

7 

-Thicknes s  shea r 

F I G . 8. Thickness shear vibrat ing plate. 

The two surfaces at the ends of the plate are free, and the corresponding 
stresses are null. Thus 

T 6 = 0 for y = ± e / 2 , (76) 

where e is the thickness of the plate. 
Using the first boundary condition one obtains: 

Λ = 0i = o. 
The second boundary condition is obtained by using the T6 expression given 
by Eq. (58) into which Eqs. (68) and (69) are introduced; identification is 
performed with respect to cosnwt and sinnatf terms. Thus two relations 

with 

, 2 £ ^ 6 6 6 6 , 2 _ 1 ^ 2 2 , 6 6 , 2 ^ 2 , 6 6 6 

ώ O g g ώ l_/gg O g g 

i » a = !25, μ *!5222, 0 » = ^ (72) 
Ρ 1 Ρ Ρ 

k2 is a small factor corresponding to the nonlinearities of the fourth order. 
The solutions of these two differential equations are of the form 

A, = a, sin(cuy/i7) + Λ cos(wy/C) + k2F, (73) 

B1 = bx un(wylC) + ft cos(a>ylC) + k2G. (74) 

# and 6r are functions of alf bl9 fl9 ft (especially of cubic terms such as a^, 
W3, αλ

2 δ ΐ 5 . . . ) . 
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expressing dA1jdy and dBJdy as functions of M1 and N1 are obtained for the 
fundamental frequency. 

dAJdy = <x±M1 + k2H, (77) 

dB1ldy = <XiN1 + k2J, (78) 

where 
e26 

a 4 : 
« 2 2 ^ 6 6 

Η and J are functions of third power terms with respect to M1 and N1 (such as 
Mf, Nf, M ^ 2 , ...). 

D. SOLUTIONS 

The ax, bl9 Ml9 and Nx constants occurring in the expression for the 
fundamental frequency vibration are obtained from Eqs. (73) and (74) 
using Eqs. (77) and (78). Two supplementary equations are needed; they are 
obtained by integrating the electric field with respect to the crystal thickness. 

i: 
12 

E2dy = V0 coswt. (79) 

V0 is the applied voltage (the electrodes being plated on the crystal surface). 
By solving these sets of equations, the second overtone terms (which 

are a2, b2, M2, and N2) are shown to be zero since the third order nonlinear 
coefficients are zero. 

The a x and 6X fundamental frequency constants are given by the following 
simplified system: 

1 2e 
(a2 + V)(2>i«i + Pi\) - <*i δ0 + 2Q bi = n*J(p V°' 

j 6 6 (80) 

(ax

2 + V)(2>A -Vi<*>i) - Mo - 2Q αι = °-

δ 0 is the relative difference between the excitation frequency and the resonant 
frequency. Q is the quality factor of the resonator and η is the overtone rank. 
The p1 and ρλ' coefficients depend respectively on the nonlinear elastic 
coefficient C%666 and the nonlinear damping coefficient r 6 6 6 6 . 

Sn2 C%666 7Γ 2 

Λ = βϊ"ό»Γ?· ( 8 1 ) 

, 5n2 r6666 τ ι 3 

A = 8 4 ~WT*- ( 8 2 ) 

System (80) has been simplified by taking into account the different 
coefficient magnitudes. In particular, the influence of the piezoelectric and 
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electric coefficients (h2 6 6 6 , h 2 2 6 6 > ^ 2 2 2 . 6 > « 2 2 2 2 ) * s negligible compared to the 
Cgeee influence (for these coefficient magnitudes see Section VI,B). 

E. AMPLITUDE FREQUENCY E F F E C T 

The resonator current is obtained from the electric displacement, the 
normal component of which corresponds to surface charge density. 

i=SdD2/dt. (83) 

S is the plated surface and D2 in this case is perpendicular to this surface. 
I0 the current amplitude, can be expressed in terms of ax and bl9 the mechani
cal vibration components. 

I0 = ( 2 e 2 6 ^ 0 / e ) ( a 1

2 + V ) 1 ' 2 . (84) 

In the same way, the phase angle φ between this current and the excita
tion voltage can be written 

φ = arctg(a 1 /6 1). (85) 

From system (80) and Eq. (84) the amplitude frequency effect expression 
can be deduced. 

37&2 C^6666 ^^-^O^ ~| 
/ = / o L 1 + 2 5 6 " C ^ i p w J - ( 8 6 ) 

This expression exhibits a quadratic variation law for frequency difference as 
a function of current amplitude. 

The theoretical resonance curves for amplitude and phase are presented 
for the case of a fundamental 5 MHz resonator (see Figs. 9a and 10a and) 
for the case of a fifth overtone 5 MHz resonator (see Figs. 11a and 12a). 
Theoretical curves are obtained using Eq. (80) and drawn by an analog 
computer. 

Corresponding experimental curves have been obtained and are shown 
in Figs. 9b, 10b, l i b , and Fig. 12b. The amplitude frequency effect curve 
corresponds approximately to the maximum of the amplitude-resonance 
curves. 

When the excitation level is important the amplitude frequency effect 
arises, and jump phenomena appear on resonance curves. [These phenomena 
had already been experimentally shown by Seed (1962b,) and Franx 
(1967), but a complete theoretical interpretation had not been given.] In 
this particular case, system (80) may exhibit three pairs (αφχ) of solutions. 
One pair corresponds to instability, and the corresponding values (dotted 
line) cannot be experimentally obtained (Fig. 13). 

I t should be pointed out tha t the curves obtained are similar to the 
solutions of Duffing's differential equations or similar ones. They will be used 
in the following section when equivalent nonlinear circuits are proposed. 
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F I G . 9a. Theoretical response curves representing the ampl i tude versus the fre
quency for a 5 MHz fundamental resonator. 

Fig. 9b. Exper imental response curves representing the ampl i tude versus the 
frequency for a 5 MHz fundamental resonator. 
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90 

-10 

FREQUENCY RELATIVE 
DIFFERENCE 

(a) 
F I G . 10a. Theoretical response curves representing the phase versus the frequency 

for a 5 MHz fundamental resonator. 

- 1 0 

FREQUENCY RELATIVE 
DIFFERENCE 

(b) 

Fig. 10b. Experimental response curves representing the phase versus the frequency 
for a 5MHz fundamental resonator. 
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F I G . 11a. Theoretical response curves representing the ampl i tude versus the 
frequency for a 5 M H z fifth overtone resonator. 

F ig . 1 l b . Exper imenta l response curves representing the ampl i tude versus the fre
quency for a 5 M H z fifth overtone resonator. 
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Fig. 12b. Experimental response curves representing the phase versus the frequency 
for a 5 MHz fifth overtone resonator. 

F I G . 12a. Theoretical response curves representing the phase versus the frequency 
for a 5 MHz fifth overtone resonator. 



5, Nonlinear Effects in Piezoelectric Quartz Crystals 277 

Frequenc y 

F I G . 1 3 . J u m p phenomenon obtained for a h igh exc i tat ion level . 

The 6 6 coefficient is calculated by means of experimental curves and 
the theoretical relation of Eq. (86). Then the following results are obtained: 
Using a 5 MHz fundamental resonator (first resonator, " Ζ " plating) 

^ 6 6 6 = ( 7 ± 0 . 1 ) 1 0 1 3 N / m 2 . 

Using a 5 MHz fifth overtone resonator (second resonator, rectangular 
plating) 

C ? 6 6 6 = ( l , 5 ± 0 , l ) 1 0 1 4 N / m 2 . 

Using a 5 MHz fifth overtone resonator (third resonator, circular central 
plating) 

<??666 = (1.3 ± 0 . 1 ) 1 0 1 4 N / m 2 . 

These three resonators are illustrated in Fig. 14. 
The damping linear and nonlinear coefficients r 6 6 and r 6 6 6 6 are measured 

respectively from the Q factor and from its variation with the excitation level. 
The following values have been obtained: 
first resonator 

2.7 χ 1 0 - 3 N - s e c / m 2 ± l % , 
3 X 1 0 6 N · sec/m 2 ± 1%, 

8.5 χ 10~ 4 Ν · sec/m 2 ± 1%, 
3.3 χ ΙΟ 5 Ν · sec/m 2 ± 4 % , 

6.2 χ 1 0 - 4 N - s e c / m 2 ± l % , 
1.2 χ 1 0 5 N · sec/m 2 ± 4 % . 

No significant difference is found between the two fifth overtone resona
tors. The difference for the first resonator is due to the small thickness of this 
crystal (0.33 mm), then plating and fixation influence become important 

second resonator 

r66 = 

r 6 6 6 6 = 

third resonator 

r66 = 

^6666 = 
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Circular centra l platin g 

Ζ platin g 

Rectangula r platin g 

F I G . 14. P lated electrodes used for the experiments . 

since damping coefficients arise. This influence is less important in the case of 
fifth overtone resonators because their thickness is five times greater (1.65 
mm). 

V. Equivalent Electrical Circuits of a Quartz Resonator 

B . T H E LINEAR EQUIVALENT ELECTRICAL CIRCUIT 

In the linear problem the fundamental equations are much simpler. 
They are written (again in the thickness shear case) 

Τ β = C66S6 - e26E2 + r 6 6 a S e / A , 

D2 = 626SQ -f- ε 2 2 Ε 2 . 

The equilibrium equation is 

82u 32u d3u 
p 8t2 ~G*63y2 + T 6 6 dy2dt' 

We choose a solution of the following form: 

u = A(y) cosa>i + B(y) sinwt. 

(87) 

(88) 

(89) 

(90) 
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J 

e /2 
Ε2 dy = V0 COSO>£. 

e /2 

By using the previous relations, the electric displacement D2 may be 
calculated and the current deduced. I t appears tha t the resonator may be 
represented by the equivalent circuit of Fig. 15. I t is well known tha t the 

F I G . 15. Equiva lent electrical circuit of a quartz resonator. 

expressions for the Ll9 Clf Rl9 C0 elements of the equivalent network are 
(Van Dyke, 1925, 1928, 1932) 

pe 3 8 e 2

6 # 
8 e i 6 ^ ' 1 7r2(7?6en2' 

7r2er66n2 _ ε 2 2 # 

The resonant frequency is given by 

TTC 4e2

6C 
ω0 = . (95) 

B. ELECTRIC CONDUCTIVITY INFLUENCE 

I t will be shown tha t electric conductivity may be ignored because its 
influence is insignificant. Of course, this is irrelevant in piezoelectric semi
conductors which are used to amplify or a t tenuate acoustic waves by applying 

Using the boundary conditions (u = 0 for y = 0) we obtain for A and Β 

. cn'y a>2ccy aj'y w2ocy 
A=asm — c h ^ - - b cos — sh , (91) 

£ = b sin — ch + a cos — sh - ^ g - , (92) 

where 
ω ' = ω ( 1 - | ω 2 α 2 Η C2 = C%6lp, and oc = r66lp. (93) 

Therefore α and δ may be readily calculated using the second boundary 
condition (T e = 0 for y = ±e/2) and integrating the electric field with respect 
to plate thickness. 
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a dc electric field. This field generates electron-phonon interactions as was 
shown by Hutson (1960), Hutson et al (1961), and Hutson and White (1962). 

In the problem tha t is considered here, the electric conductivity generates 
space charges of volume density q given by 

div D2 = 3D2ldy = q. (96) 

J2, the current density, is written in the form 

J2 = a22E2, (97) 

where σ22 is the conductivity coefficient par t of the matrix o{j in which σ η , 
σ22, and σ 3 3 are the only occurring coefficients. I t can be shown tha t 

σ22 = σ η · 

The expression for the conservation of electricity is written: 

div J2= —dqjdt. (98) 

Then, the following system is obtained: 

32u _ 32u d3u e26 d2D2 

p W = C 6 6 w + r 6 6 W u + ^ 2 W u ' m 

D * + t . - i = * ™ 8 « - ( 1 0 0 ) 

Solutions of the following form are chosen: 

u = A(y) coscoi + B(y) sina>£, (101) 

D2= M(y) coswt + N(y) βίηωί. (102) 

The difference between this and the usual case where σ 2 2 = 0 lies in the 
relation of Eq. (100); Μ and Ν are no longer constants but functions of the 
space variable y. By introducing these solutions into Eqs. (99) and (100), and 
expressing Μ and Ν as functions of A and B, a new set of differential equa
tion is obtained: 

Cf2(d2Ajdy2) + ω2 A + ω α ' ( ( ί 2 5 / ^ 2 ) = 0, (103) 

C'2(d2B\dy2) + ω2Β - wocf(d2A/dy2) = 0. (104) 

I t appears tha t the propagation velocity C and the damping coefficient 
[given by Eq. (93)] become 

b22 ω0 Ρ 

α = α + Ρ Ί ^ · ( 1 0 β ) 

ε22ω0 Ρ 
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Since σ 2 2 is approximately 4 χ 1 0 " 1 5 Ω - 1 m " 1 , the supplementary terms 
introduced by nonnull conductivity are very low and may perfectly well be 
ignored even if the temperature variation of σ 2 2 is taken into account. 

C. NONLINEAR EQUIVALENT CIRCUIT 

Considering the elements of the previous linear equivalent circuit as 
constants, this circuit does not give any account of nonlinear phenomena: it 
can only be used for low excitation levels. For higher excitation levels the 
elements of the equivalent circuit will have values depending on the applied 
resonator voltage or the resonator current. 

We shall express Ll9 Gl9 Rl9 and C0 in terms of powers of the current 
amplitude / . 

L± = L0(l + ocj + ac2P + · · ·), (107) 

B1 = R0(l + β1Ι + β2Ρ + - ·), (108) 

l/Ci = (l/Cio)(l +YJ + Y2l2 + " '), (109) 

l/C0 = (l/COo)(l + V + λ 2 / 2 + · · ·). (HO) 

I t is not necessary to introduce terms higher than the second order because in 
the previous study of nonlinear resonator properties only terms up to the 
fourth order coefficients were used. Moreover, it has been seen tha t when a 
thickness shear motion is considered, all the third order coefficients are null. 
Therefore it can be readily shown by identification tha t α χ = β1 = γλ = λ1 = 0. 

From relations (110) the resonant series frequency and the Q factor 
expressions can be obtained: 

/ = / o [ i - i ( « 2 - y 2 ) / 2 ] , ( H i ) 

Q=Q0[l-tf2-l«2-lY2)I2l (112) 
where 

f°2=i^hr0
 a n d « ° = ^ ? · ( 1 1 3 ) 

Relating the α 2 , β2, y2 coefficients to nonlinear elastic and damping 
coefficients will now be achieved. The frequency expression as a function 
of current is given by Eq. (86). The Q factor may be calculated from the 
system (80) t ha t gives the ax and b1 mechanical vibrations components, and 
from the expression for the current [Eq. (84)]. Thus the resonance curve band
width a t — 3dB will be calculated. This calculation has been performed when 
Eq. (80) has one pair of solutions (al9 b^; (i.e. when the excitation level is 
not too high). 

By successive approximations the following expression is obtained: 

Q = Go"- - (Qoe2/4e|6SW)(2>i + 3 i > 1 ' ) / 2 ] . (114) 
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For the case of a fifth overtone resonator p1 and p± are given by 

7 5 ( 7 & 6 β 7 Γ 2 , 125 

I t has been shown (Gagnepain, 1972) tha t nonlinear damping coefficients 
do not generate amplitude frequency effects. This means tha t a 2 and y2 are 
independent of ρχ', and conversely tha t β2 does not depend o n ^ . Therefore 
it is possible to calculate α 2 , γ 2> a i *d j82 thus : 

a a = ~ S τ Ι 2 i i i w { 1 + Q o ) ' ( 1 1 6 ) 

75 Cg^j66 * 7 7 2 

y 2 = 256 " 0 ^ " e 2

2

e £ W ( 1 ~~ Q o ) > ( U 7 ) 

3 7 5 r 6 6 6 6 τι 2 

^ - 2 5 6 r66 e 2
2

6 > S W 1 j 

In Eqs. ( 1 1 6 ) a n d ( 1 1 7 ) © 0 i s m u c n g r e a t e r t h a n l (Q - 2 χ 10 6), but nevertheless 
the (1 +Q0) and (1 — Q0) factors are introduced because in the frequency 
expression the quanti ty (a 2 — y 2 ) occurs. 

I n fact, experimental results from resonance curves correspond to a 
quadratic law for the amplitude-frequency effect in good agreement with 
relation (111). The laws concerning the resistance are more difficult to obtain 
because of the fixation influence. Actually it is usually rather difficult to 
distinguish between the internal friction damping and the fixation damping. 

By using the values previously determined for C g 6 6 6 , r 6 6 6 6 , and r 6 6 the 
following theoretical values are obtained: 

a 2 ~ y 2 - - 2 x l 0 5 i - 2 and β2 ~ 2.3 Χ 10 4 A"2. 

From several resonators the following average experimental values have 
been obtained: 

a 2 - y 2 - - 9 x l 0 4 i - 2 and β2 ~ 5 Χ 10 4 A~2. 

The C0 parallel capacitance variations with current may be at t r ibuted 
to the fourth order nonlinear permittivity coefficient ε 2 2 2 2 , which occurs 
in the electric displacement expression. Using only this nonlinear coefficient 
we shall write 

D2 = e26S6 + ε22Ε2 + \ε2222Ε*. (119) 

The other equations are unchanged. By using a calculation similar to the 
previous ones, the C0 expression for a fifth overtone resonator is obtained: 

C0 = c j l + ^ ^ , A . (120) u u |_ 512 ε 2 2 β 1 β £ 0

2 £ 2 ω 0

2 1 J v ' 
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λ 2 is obtained by identification: 

625 e 2 2 2 2 7r*Cg 6

2 

λ 2 ~ 512 ε 2 2 e i 6 ( 2 0

2 ^ W K ' 

Using the previously given values and ε 2 2 2 2 = 8 χ 1 0 " 3 1 F - m / V 2 we then 
obtain 

λ 2 = - 2 . 6 χ Ι Ο " 1 4 ^ " 2 . 

Since the value is very low, this coefficient may be ignored. Therefore in the 
equivalent circuit, near resonant frequency, C0 may be considered inde
pendent of current. 

I t should be pointed out t ha t the nonlinearities due to ε 2 2 2 2 also have 
an influence on the motional element values. The corresponding expressions 
are long, but the correcting terms are always very low and may be ignored. 

VI. Influence of an Applied dc Electric Field 

An applied electric field may cause a frequency variation which is due on the 
one hand to crystal dimension variations—changing the resonant frequency 
through width and specific mass variations—(This first phenomenon is a 
linear one and can be considered as due to usual piezoelectric effect) and, on 
the other hand to a quadratic variation (Kusters, 1970; Gagnepain, 1973) 
which is due to nonlinear crystal coefficients. I n the thickness shear mode 
fourth order coefficients are to be considered. 

These phenomena may be used to study and measure nonlinear coeffi
cients in a crystal, which has been one of the aims of this study. The practical 
interest of this frequency variation should also be pointed out. I t becomes 
possible to achieve accurate control of a crystal resonant frequency or even 
to capture a frequency for instance in a quartz crystal unit . This is usually 
done using a varicap diode, but t ha t may be a source of noise and therefore 
a cause of instability. The direct polarization realised by means of the very 
crystal electrodes or auxilliary electrodes had already been proposed by 
Hruska (1962). I t seems tha t this polarization method is less inconvenient 
than using diodes because it becomes possible to act completely outside of the 
oscillating loop. 

A. DIFFUSION PHENOMENA 

When a dc voltage is applied to a resonator a very fast frequency varia
tion followed by a slow frequency variation is observed. This last trouble
some variation must, if possible, be eliminated. 

An exponential law may be established (Fig. 16) for this last variation 
(Kusters, 1970) which corresponds to a frequency lowering or raising according 
to the shape and position of the electrodes. As it depends strongly on tempera
ture a diffusion process of ions or a defect inside the crystal is of concern. 
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F I G . 1 6 . Diffusion phenomenon in a quartz resonator. 

This diffusion generates a field gradient and a mass displacement which leads 
to a frequency variation. 

The time constant τ of the phenomenon varies as a function of tempera
ture according to 

where $ is the activation energy, k the Boltzmann constant, and Τ the 
absolute temperature. The τ variations (logarithmic scale) versus l/T are 
drawn on Fig. 17, for several crystals. The following average values have been 
obtained for £ and r 0 : £ = 0.75 eV and r 0 = 1.2 X 1 0 " 1 1 sec. 

In order to be free of the diffusion phenomena, resonators were studied 
in liquid azot; then diffusion phenomena can be neglected since the time 
constant τ becomes very large. 

B. FREQUENCY APPLIED F I E L D RELATION 

The frequency variation versus the applied dc field Ε is shown in Fig. 18 
and can be expressed by 

Note tha t in the particular case of a lengthwise vibrating crystal studied 
by Hruska (1962), the frequency variation is purely linear. This variation is 
due to piezoelectric second order coefficients and to nonlinear third order 
elastic and piezoelectric coefficients. 

The three components of the field Ε in Eq. (123) along the three axes will 
be denoted El9 E2, E3. A rotation of the reference trihedral by an angle 
θ — 35° 15' about the aj-axis has been performed in the AT-cut case. For a 
thickness shear motion the resonant frequency of the resonator is written 

τ = r 0 exv(<$lkT) (122) 

dflf=6x 10-^E + S χ Ι Ο " 2 0 E2. (123) 

f={\l2e)(C^IPY'2. (124) 



F I G . 17. Variation of the t ime constant τ versus inverse temperature using a 
logarithmic scale. 

F I G . 18. D c electric field influence on the resonant frequency of quartz resonators. 
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The linear par t (i.e. the first term) in Eq. (123) corresponds to longitu
dinal strains caused by E1 according to 

dflf=-(dele)-UdPlp) 
= (dxl cos 2 θ - d 1 4 sinrJ cosfl)^. (125) 

A quadratic variation is superposed to this linear variation; it corresponds to 
the second term in Eq. (123) and is at tr ibuted to : 

1. Shear strains due to the E2 component and the d25 and d26 coefficients. 
I t can be readily shown tha t the quanti ty (l/E2

2) (df/f) is negligible since 

(\IE2

2)(dflf) = 6x Ι Ο " 2 4 m2jV2. 

2. Piezoelectric third order coefficients of the dijtk type when they are 
not zero. Then (\jE2

2){df j f)y being approximately 5 χ 1 0 " 2 2 m 2 / V 2 , is also 
negligible. 

3. Nonlinear fourth order piezoelectric coefficients h2 6 6 6 , h22 6 6 , and 
^ 2 2 2 . 6 > elastic coefficient C%666, and nonlinear permittivity coefficient ε 2 2 2 2 · 
Actually piezoelectric coefficients only cannot be considered. Elastic coeffi
cients also have an influence since applying a dc field also causes a strain 
which brings about a frequency variation from nonlinear elasticity. 

The propagation equation and the boundary conditions are given by 
Eqs. (67), (75), and (76). In order to simplify the calculation, damping will be 
ignored. 

Solutions of the following form are chosen: 

u = A0(y) + A^y) cosajt, (126) 

D2 = Μ ο + M1 cosa>*. (127) 

u and D2 are introduced into the propagation equation, and identification is 
performed with respect to time. 

E2 is obtained from Eq. (57) and integrated over the crystal thickness: 
n + e / 2 

E2 dy = V0 coswt + eE, (128) 
-e\2 

where V0 cos ωί is the time dependent par t of the applied voltage and eE the 
dc part . 

After lengthy calculations similar to the previous ones, an approximate 
expression is obtained for the case of an AT-cut: 

1 df 1 Γ e 2

6 ε 2

2 ] 
E~2J~I [ 6 C%6*+ '66C¥e\ ' ( 1 2 9 ) 

where 

^ 2 2 . 6 6 — ^ 2 2 . 6 6 + 2 ^ 2 > 6 6 6 - + 16A 2 2 2 6 — 
« 2 2 ° 66 7 7 

e 2 6 
- 8 ε 2 2 2 2 2 „ 4 · (130) 

77" ε 2 2 
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^22,66> ^2.666>
 a n d ^ 2 2 2 . 6

 a r e g i v e n by Eqs. (62)-(64) and O g 6 6 6 is given by 
Eq. (66). 

From Eqs. (123) and (129) λ ? 2 . 6 6 m a y be obtained: 

A * 2 . 6 6 - 7 . 5 x l O n m /F . 

^ 2 2 . 6 6 * ^2 .666?
 a n ( * ^ 2 2 2 6 are independent coefficients; their approximative 

magnitudes cannot be higher than tha t of h*2.66 . Therefore 

μ 2 2 . 6 6 | < 7 . 5 χ 1 0 n m / F , μ 2 , 6 6 6 | < 3 .10 1 2 V/m, μ 2 2 2 ι 6 | < 3 . 1 0 1 2 F 2 V . 

These last results confirm tha t the approximations used in Section IV to 
obtain Eq. (80) are quite correct. 

VII. Conclusion 

At the end of this study, theoretical results should be compared with experi
mental results. 

All the nonlinearity causes t ha t seemed necessary to be considered have 
been introduced into the theoretical model. The values of certain coefficients 
have been measured directly from a quartz crystal by static methods. 

Other coefficient values have been determined from experimental results 
through the amplitude frequency effect or the influence of a dc applied field 
on the resonator frequency. Several resonators gave coherent results. Experi
mental results are in good agreement with theoretical results as can be 
readily seen by comparing the experimental and theoretical curves. 

Differences concerning the damping phenomena have been found. Since 
it is difficult to separate the internal friction of a crystal from damping due to 
plating and fixation, the influence of this is quite difficult to study theoretically. 

In conclusion, it appears t ha t it would be interesting to extend the 
result to a three-dimensional model. 
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I . In t roduct ion 

Acoustic emission involves stress waves internally generated during dynamic 
processes in various materials. The dynamic processes may be the result of 
and externally applied stress or the result of some other unstable situation, 
e.g. a phase transition or, on a larger scale, a shifting mine slope. The actual 
source of the stress waves depends on the material. I t may be dislocation or 
crack motion in a metal, interparticle movement in a soil, or fiber breaking 
in a composite or wood. The term acoustic emission will be generally used 
here. The phenomenon has been called by many other names, e.g. stress 
wave emission, sonic pulse, elastic shock; in rocks—microseisms, micro-
seismic activity, subaudible noise, rock noise, and seismoacoustic activity. 
Acoustic emission may be a somewhat misleading term, because in some 
materials the primary frequencies of the waves generated may be well above 
the audio range. 

Figure 1 shows a detailed experimental situation for detecting and analy
zing acoustic emission (Spanner, 1970). The stress wave pulses are detected 
with an electromechanical transducer of some sort, an amplifier (possibly a 
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filter), and a display device. A simple display device can be a conventional 
counter or oscilloscope. Much more complicated display and recording devices 
are generally used. 

A wide variety of materials have been studied using acoustic emission 
techniques. Metals and metallic structures have received the most attention. 
Of all other materials, rocks have been studied the most. Some of the other 
materials include composites, ice, wood, soils, ceramics, and concrete. 
Processes studied include phase transitions, welding, magnetic processes, and 
slope stability. A great deal of work has gone into determining the integrity 
of structures fabricated from metals. 

There are some excellent review articles on acoustic emission already 
in print (Liptai et al., 1971; Dunegan and Tatro, 1971; Green, 1969a; Liptai 
and Harris, 1971; Hardy, 1972; Knill et al., 1968). The first four deal primar
ily with metals and metal structures, whereas Hardy and Knill et al., deal 
with rocks. A recent bibliography has been collected by Drouillard (1974). 

The philosophy of this review article will be to a t tempt to review the 
work in metals and rocks somewhat more concisely than the above authors, to 
spend some time dealing with acoustic emission in soils, wood, and magnetic 
processes (areas where the author has some research interests), to stress the 
early original work in mines, and to present as complete a bibliography as 
possible. 

Π. Historical Work 

Hodgson (1943, 1958) in Canada and Obert (1941) and Obert and Duvall 
(1942, 1945ab, 1957, 1961) in the United States were all interested in predict
ing rock bursts in mines using the subaudible " microseisms " generated in 
the rocks. Their work started in the late 1930's. Hodgson, after some early 
development work, essentially used Obert 's apparatus. The transducer, called 
a geophone, was a bimorphic piezoelectric crystal 2\ in. long by f in. wide 
by J in. thick mounted as a cantelever in a steel tube 1 J in. in diameter and 
about 8 in. long. I t was designed to be the size of a stick of powder so it could 
be inserted in a rock-drill hole. A block diagram of Obert 's apparatus is 
presented in Hardy (1972)]. When the geophone is subjected to a subaudible 
mechanical impulse, the crystal suffers a slight flexure which results in the 
generation of a transient voltage between the two terminals of the crystal. 
The output of the geophone was connected to an impedence-matching 
transformer and then traveled (for safety reasons) through as much as 1000 ft 
of cable to an amplifier. The amplifier was a conventional three-stage resis
tance coupled unit having a gain of a few hundred thousand with a flat 
frequency response from 150 to 10,000 Hz. Filters were available for high-, 
low-, or bandpass operation. A logarithmic amplifier was used a t times. The 
recorder used a coil mounted on a pivoted stylus in the field of a permanent 
magnet. The mechanical energy of the impulse is thus coverted to a throw 
of the stylus. Recording was done by means of a small current carried by the 
stylus to and through the special record strip to a stationary metal platen. 
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The special paper made the recorder trace immediately visible. Each piece 
of equipment was essentially hand made by the workers themselves, whereas 
today one can purchase acoustic emission equipment of any desired degree of 
sophistication "off-the-shelf." (Appendix I lists sources of commercially 
available equipment.) 

I t was found during this work tha t microseisms (subaudible rock noises) 
do not occur in shallow mines, evidently because the pressure is not high 
enough there. Usually observations had to be made at a depth of at least 
2000 ft to observe microseisms. The ability to use microseisms as a means 
of predicting rock bursts depended very strongly on the type of mine investi
gated. Due to dispersion in the attenuation of elastic waves in rock, the 
high frequency components of a microseism were damped more rapidly than 
the low frequency parts. A listener therefore could estimate crudely, from 
the frequency of the microseism, the distance to the source. 

The predictability of rock bursts via microseism count has been found 
to be reasonably good in certain mines. Figure 2 shows the results for one 
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along abscissa. 

location in the Ahmeek Copper Mine in Michigan (Obert and Duvall, 1942). 
On this chart 14 rock burst predictions were made; 9 were followed by rock 
bursts within 12 hr or less. There were 5 predictions tha t were not followed 
by bursts, and 2 unpredicted bursts. The criteria for rock burst prediction 
was the following: " W h e n the number of recorded noises increased in any 
interval (not exceeding 24 hr) by a factor of 2 or more a dangerous condition 
is indicated. Furthermore if after such an increase, the number of noises 
continue to increase, the state of danger is presumed to persist." 

Obert and Duvall (1945b) contributed an extremely important early 
piece of information to the acoustic emission literature. They went into the 
laboratory, with controlled external stresses, to ascertain whether the micro
seisms originate from intermovement along fissures, seams, or fractures of 
geological origin or from the homogeneous rock itself. (Of course, there are 
microcracks in the "homogeneous" material.) I t was definitely shown tha t 
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microseisms can originate from initially homogeneous material. Obert and 
Duvall also observed a general behavior in emission rate versus stress, which 
subsequent workers have come to regard as ' n o r m a l " behavior in a wide 
variety of materials. Namely, if emission rate is plotted against stress, a high 
rate is found to start a t some value of stress significantly below the crushing 
strength. The rate then decreases with increasing stress and, finally, near or 
at failure, increases once again. The microseisms observed in the laboratory 
were similar to those observed in the mines. 

Triangulation studies (with multiple geophones) were at tempted by 
Obert in order to locate the source of the microseisms. Obert also looked at 
the problem of underground opening stability and roof control (Obert and 
Duvall, 1957, 1961). 

I t is interesting to note in passing tha t Hodgson, a seismologist, in 
addition to an interest in predicting rock bursts, also was interested in seismic 
velocities in the vicinity of Ottowa, Canada. Some rock bursts a t the Lake 
Shore Gold Mines in Kirkland Lake were severe enough to show up on the 
vertical Benioff seismograph in Ottawa. In fact, papers were published on 
seismic velocities between Kirkland Lake and Ottawa (Hodgson, 1942, 1947). 
One burst from Kirkland Lake was so severe tha t it registered in Weston, 
Massachusetts—a distance of 581 miles. 

I t is proper to point out here tha t this early work in " acoustic emission " 
contained most of the precursers of the future work (albeit crude though it 
may have been by today's standards). Instrumentat ion development was 
important—transducers, amplifiers, etc.; the use of filtering was tried; 
laboratory studies confirmed the sources of emissions in the materials them
selves; triangulation for source location was tried; the work had strong 
practical interest; and there was strong collaboration among the people 
involved. 

The Russians have been very active in using rock noise (seismoacoustics) 
to predict rock bursts (Antsyferov, 1966). Their work started in 1952, consid
erably later than the American and Canadian workers. The Russian workers 
favored electrodynamic geophones, with some work in piezoelectric types. 
A few of the interesting projects undertaken with seismo-acoustic techniques 
were: location of lost boreholes, correlation of measured rock pressure with 
seismo-acoustic activity, origin of emissions ahead of working face, source 
location via triangulation techniques, and determination of efficiency of 
pressure relief due to the drilling of gas relief boreholes. 

A permanent seismo-acoustic warning station gave the following statis
tics: 80 danger zones were diagnosed—these produced 21 rock bursts and 
9 face falls, and 15 faults were discovered. The statement is made, " T h e 
problem of predicting whether a mine working area is near a danger zone for 
a rock burst can now be considered as solved." In view of the prediction 
statistics given here and also by the American and Canadian workers, it 
appears tha t the above statement is somewhat extreme. Final decisions 
concerning the predictive use of seismo-acoustic techniques will certainly 
have to be made based on many factors including economics. 
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III. Early Work and General Background 

A. INITIAL MODERN W O R K 

Mason et al. (1948; Mason, 1950) observed what appeared to be acoustic 
emissions in the ultrasonic frequency region during the mechanical twinning 
of a very small t in specimen. A plane quartz cerystal was used as the detector. 
This work gave some of the first indirect evidence for the existence of disloca
tions in a mechanical process (twinning). At tha t time, preliminary measure
ments showed no effect in aluminum. 

Kaiser (1950, 1953) is credited with the first serious work in the field of 
acoustic emission. He worked with polycrystalline zinc, steel, aluminum, 
copper, and lead. Emissions were found in all the materials tested and the 
source of the emissions was presumed to be grain boundary motion induced 
by the applied stress. This hypothesis was subsequently discounted, because 
later workers found single crystals to be very active emitters. Kaiser also 
observed tha t the acoustic emission activity was irreversible. Emissions are 
not generated during the reloading of a material until the stress exceeds its 
previous high value. This fact has become quite useful in acoustic emission 
studies and is known as the "Kaiser Effect/ ' The Kaiser Effect applies to 
most metals, but not generally to other materials. Details of the Kaiser 
Effect will be discussed later. 

B . EARLY W O R K OF SCHOFIELD 

Schofield (1961) of Lessells and Associates (now Teledyne Materials 
Research) of Waltham, Massachusetts performed some very important early 
acoustic emission experiments. In this report may be found a good historical 
review of sounds associated with mechanical deformation. Work was done 
with aluminum and zinc single crystals, commercial copper, 24ST-4 alumi
num, lead, and 70-30 brass. The primary purpose of this early work was to 
determine the source of the emissions, and the single crystal work showed con
clusively tha t grain boundary effects were not the only source of emissions. 

Hydraulic loading was used on the tensile specimens and measurements 
were performed in a soundproof room in order to eliminate machine and 
ambient noise. 

Figure 3 shows Schofield's basic instrumentation. The da ta were analy
zed in terms of total emission, emission rate, and amplitude and frequency 
of the emission. Two transducer operations were used to locate the sources. 
Schofield realized, as did Tatro, tha t the emissions were modified by both 
electrical and mechanical filtering before being recorded. To assess this modi
fication, " k n o w n " pulses were introduced into the specimen and recorded 
as usual for emissions. 

In this work, Schofield was the first to make a real distinction between 
burst type (discrete) and continuous type emissions. The " Kaiser Effect" 
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F I G . 3. The equipment used in the early work of Schofield. 

was also verified. He was able to show tha t twin production and grain 
boundary reorientation (in a bicrystal) produced extremely large noises. 

Schofield showed conclusively tha t the emissions were generated within 
the test section of the tensile specimen and tha t the emissions come from 
the deformation process itself. 

Using simple dislocation-deformation arguments, it was estimated tha t 
each acoustic emission pulse resulted from the motion of some 5-50 disloca
tions. Schofield was able to show in some specimens a reasonably good 
one-to-one correspondence between acoustic emissions and slip lines. 

Later work by Schofield (1963a,b, 1964) was related to surface and 
volume effects in regard to acoustic emission. He used oriented single crystals 
of aluminum and gold in this work. The aluminum could be tested with and 
without the oxide layer, and gold was used because it does not form a brittle 
oxide as does the aluminum. The oxide coating on the aluminum single 
crystals was not a source of acoustic emissions. The surface and its condition 
seemed to play a secondary role in influencing emission response. The surface 
induced modification was primarily in the strain, where acoustic emissions 
started, and the quanti ty of large burst activity. Schofield's later work 
produced the major contribution tha t acoustic emission is mainly a volume 
and not a surface effect. 

C. E A R L Y W O R K OF TATRO 

Tatro (1959) became interested in acoustic emission in 1956, hoping to 
use the technique as a yield detector in materials. Tatro and Liptai (1962) 
worked with polycrystalline aluminum (2024-T4 and 2011-T3) and steel 
(C 1018). The acoustic emission count versus strain was strongly dependent 
on the material and the surface condition of the specimen. On the basis of 
their results it was concluded tha t acoustic emission was a surface phenome
non. (At this t ime Schofield was also of the same opinion.) I t was hypothe
sized tha t slip line formation, crack formation, or both were the cause of the 
acoustic emissions. Figure 4 shows a block diagram of Tatro and Liptai 's 
experimental apparatus, which is typical of the early modern work. 

Tatro and Liptai (1963) and Liptai (1963) also worked with single 
crystals. These were anodized in such a way as to enhance the large burst 
component of the acoustic emission. The oxide films were stripped from jbhe 
crystals and examined with the electron microscope. 
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F I G . 4 . Instrumentat ion used in the early work of Tatro and Liptai . 

Tatro and Kroll (1964) and Egle and Tatro (1967) were concerned with 
the effect of instrumentation and propagation in the specimen on the result
ing measured acoustic emissions. In the first mentioned study acoustic 
emission pulses were simulated by implanting a small cylindrical piezo
electric transducer in an oversized tensile test sample and attempting to 
excite it with a short duration pulse. The total system of specimen plus 
detection instrumentation was analyzed theoretically. Then a comparison 
was made between the resulting " emissions " received and theory to observe 
how the system altered the natural emissions. In the second study, the overall 
(mechanical and electrical) system response to both longitudinal and bending 
waves was evaluated. Then, the Fourier transforms of the acoustic emission 
response pulses were compared with the system's response so tha t something 
could be said about the nature of the actual emissions. They used the normal 
geometry for acoustic emission measurements (tensile test type specimen) 
and found tha t the bending response was actually larger than the longitudinal 
part . 

D. EARLY STRUCTURAL INTEGRITY W O R K 

The workers at Aerojet'-General Corporation were the first to employ 
acoustic emission to verify structural integrity (Green et al., 1964). They were 
working with the Polaris filament-wound, solid rocket motor cases. Due to 
the nature of the material, conventional techniques of experimental stress 
analysis were not satisfactory. In early test, the rocket motor cases had 
emitted potentially useful "popping noises." Conventional accelerometers 
were mounted at ten locations. The usual frequency response of the accelero
meters was to 8000 Hz. The amplified output of the accelerometers was tape 
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recorded for later analysis. Various methods of data presentation were tried 
in order to be able to predict burst pressure. One novel approach was the use 
of a "missile print ," analogous to the "voice pr int ." Here the output of an 
accelerometer is characterized by plotting frequency, pressure, and accelera
tion in a two-dimensional topographic map. 

E . MODERN INSTRUMENTATION 

Work in Metals: Figure 5 shows a typical instrumentation system used 
for work in metals or metal systems (Dunegan and Harris, 1969). Other 
groups have used reasonably equivalent instrumentational setups (Nakamura 
et al., 1972; Hut ton and Parry, 1971; Green, 1969a). The sensing transducer 
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F I G . 5. A modern acoustic emission instrumental setup, as used b y Dunegan and 
Harris. 

is usually PZT with a fundamental thickness mode resonance in the hundreds 
of kilohertz. [Other types of transducers have been used—Knill et al. (1968) 
list electromagnetic, capacitive, and resistive. Hardy (1972) describes work 
with semiconducting strain gages. Magnetostrictive transducers have been 
used by Vetrano and Jolly (1972) and Lynn worth and Bradshaw (1971)]. 
One important area in instrumentation advance is the development of 
transducers with flatter frequency response, broader bandwidth, and high 
temperature capability (Engle and Dunegan, 1969). The low noise preampli
fier has a gain of some 80 dB. The bandpass filter chooses a segment of the 
high kilohertz or low megahertz frequency range. The amplifier has a gain 
of some 10 dB. 
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Early work in acoustic emission was concerned with very much lower 
frequencies than those mentioned above. Hence ambient noise of all types 
had been a very significant problem in the emission experiments. Dunegan 
et al. (1964), were the first to work in this higher frequency regime and 
subsequently ambient noise was no longer the significant problem it once had 
been. The resulting amplified signal from the acoustic emission is fed into a 
counter (usually with a preset trigger level) or a tape recorder for subsequent 
detailed analysis. Counts per unit time and the accumulated counts seems 
to be of most utility, so it is a must to have a counter with a time gate and 
reset. If the data from the counter is to be displayed on an xy type recorder, 
then some digital to analog device must be used. A common method of 
presenting data is to plot acoustic emission versus some engineering parameter, 
say strain or stress, so strain gages, load cells, and associated circuitry are 
also incorporated in the experiment. A good t reatment of instrumentation is 
found in Liptai et al. (1969), and Tatro (1971, 1972) describes the total 
experimental situation. 

Efforts to derive information from pulse height and spectral analysis 
have not often proved fruitful. One reason for this is indicated in the work 
of Malone (1965). He showed tha t the apparatus and experimental technique 
used can alter the received emissions significantly. Certain frequencies, 
related to the piezoelectric crystal and specimen resonances, are enhanced 
' ' artificially.'' Some of these problems are discussed in Liptai and Harris (1971). 
Tatro and Kroll (1964) and Egle and Tatro (1967), whose work was discussed 
earlier, were concerned with this very problem. There is probably little hope 
of ever recording the true nature of an emission. The use of total emission 
counts and count rate usually seems the most rewarding approach. 

Work in Rocks: There are two schools of study of acoustic emissions from 

F I G . 6. Experimental setup used b y Hardy . 1 — R o c k specimen, 2—accelerometer, 
3—preamplifier, 4—variable gain amplifier, 5—bandpass filter, 6—magnet ic tape 
recorder, 7—speaker sys t em or earphones, 8—cathode ray oscil loscope, 9—electronic 
counter. 
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stressed rock. Mogi (1968) and Scholz (1968a,b,c,d) worked in the frequency 
range from 10-100 kHz to 1 MHz, while Hardy et al (1972) and Knill et al 
(1968) used the lower frequency region from 2 to 10,000 Hz. Figure 6 shows 
Hardy 's setup. Knill et al used an accelerometer and charge amplifier, the out
put of the charge amplifier going into a high speed uv recorder or a tape 
recorder. Mogi and Scholz used ceramic transducers (Ba T i 0 3 or PZT), 
preamplifiers, amplifiers, and a tape recorder (Scholz) or photography of 
oscilloscope tracings (Mogi). 

Work in Other Materials: The instrumentation used for acoustic emission 
work in other materials is usually based on the type described above. If 
there is any difference, it will be noted in the section on the individual 
material or process. 

F. T Y P E S AND MODELS OF ACOUSTIC EMISSIONS 

Continuous Emissions: These emissions appear in metals as a phenome
non similar to noise but are actually traceable to the deformation process. 
They occur rather steadily, are of high frequency, and very small magnitude. 
Their amplitude increases with increasing tensile stress and then decreases 
once yielding occurs. Continuous emissions supposedly arise from dislocations 
moving through the crystal and possibly slip movements. There seems to be 
no work a t all concerning this type of emission in nonmetals. 

Burst Emissions: As the name implies, this component of acoustic 
emission does not occur continuously, but in bursts of higher amplitude than 
the continuous emissions. These emissions, which are supposedly associated 
with failures such as twinning, microcracks, and blocks of dislocations break
ing away from obstacles, occur a t larger plastic strains. Burst emissions can 
also be associated with growth of an existing crack. The souree of emissions 
in certain nonmetals depends on the particular material and will be discussed 
in the appropriate section. 

Models of Emissive Sources: I t is safe to say tha t a t present there is no 
rigorous theory for the actual internal mechanism of acoustic emissions in 
any material. There are some heuristic models and a very few specialized 
rigorous a t tempts have been made. Liptai et al (1969) and Engle and Dune-
gan (1969) are of the opinion tha t breakaway of dislocations a t obstacles is a 
major source of acoustic emissions in metals. 

Pollack (1968) used a simple argument of a stretched spring coupled to 
a spring. If, during deformation, the spring moves fast enough, oscillations 
of the spring can develop and it is assumed tha t these oscillations can radiate 
elastic waves. If the system moves slowly, then no significant oscillations 
will develop. The string could be a dislocation or even possibly a surface of 
a crack. 

Models of the sources of acoustic emissions are given in Gillis (1971, 1972) 
and Tetelman and Chow (1972). Frederick and Felbeck (1972) developed a 
model based on the activation of dislocation sources and the subsequent 
shutting off of the sources by the back stress of piled-up dislocations. Their 
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model was able to explain the effect of microstructure of the metal on the 
acoustic emissions. 

Engle (1966) used single crystals of lithium fluoride oriented for easy 
glide under direct shear. Acoustic emissions and specimen displacement 
pulses were monitored. The largest displacement pulses ( 1 0 " 5 in.) were 
observed in coincidence with large acoustic pulses. Smaller displacement 
pulses (2 χ 1 0 " 7 in.) and emissions were observed together but not in coinci
dence. Some large acoustic emission pulses had no displacement pulses 
associated with them. On the basis of his result, he was able to determine 
group velocities of the dislocation which agreed well with previous measure
ments in lithium fluoride. The model proposed for the emissions involves an 
interaction between groups of piled-up dislocations and the obstacles tha t 
cause the pile-up. " T h e pinning causes an increase in local strain energy 
stored in the region of the obstacle. When the driving stress on the leading 
dislocation, composed of the applied stress and the additional stress due to 
the pileup itself, is large enough to cause breakaway and acceleration of part 
of the group, the local strain energy is availabe to excite lattice vibrations 
tha t appear as acoustic emissions." He considers other sources, including ones 
at high stresses when the stress concentrations at the leading edge of disloca
tion groups cause crack nucleation. 

Sedgwick (1968) worked with LiF and KC1 loaded in compression. He 
concluded tha t the main acoustic emission mechanism in ionic single crystals 
within the elastic region was the operation of fast dislocation sources (e.g. a 
Frank-Read mechanism). According to Sedgwick, the LiF had much more 
acoustic emission than the KC1 because LiF is a " h a r d " material (fast 
dislocation movement) whereas KC1 is a " s o f t " material (slow dislocation 
movement). 

Liptai et al. (1971) model one source on a certain grain boundary source, 
where during straining the upper half of the grain slips over the lower half 
by a certain distance. Using simple elasticity theory, the energy change 
accompanying the slip is calculated. They consider the initial event as an 
impulse which sets the grain into resonant vibration, with the upper half 
shearing over the lower half. With a grain diameter of 5 χ 10" 3 in. and using 
the physical properties of aluminum, this frequency of vibration is found to 
be about 2 MHz. Other estimates by Liptai et al. led to higher frequencies. 

Armstrong (1969) used a simple elastic energy release model for growing 
cracks, incorporating the Griffith crack theory. He obtained frequency of 
emissions of the order of 10 5 Hz, not unreasonable in view of the results of 
Scholz (1968a) and Mogi (1968). However this model would not seem to apply 
to the low frequency work of Hardy (1972) and Knill et al. (1968). Armstrong 
does not mention tha t the Griffith crack theory as applied to the problem 
appears to set an upper limit on the frequencies, but not a lower limit which 
is set by whatever features determine the maximum crack length. 

Scholz (1968a) has considered the sequence of events leading to acoustic 
emission in brittle rocks. At low stresses, the emissions are at tr ibuted to 
frictional sliding of preexisting cracks and crushing of pores. At moderate 
stresses, the material is nearly linearly elastic and few emissions occur. At 



6. Acoustic Emission 301 

high stresses, acoustic emissions return caused by propagation of new cracks. 
With regard to the propagation aspect, Ang and Williams (1959) studied 

the elastic radiation from a dislocation propagating with constant velocity. The 
dislocation treated is a step function discontinuity in the ζ -component of 
the displacement field which starts along the line χ = 0 and propagates with 
constant velocity in the plane ζ = 0. The elastic medium is initially unstressed. 
Linear elasticity and plane strain are assumed. The range of velocities from 
zero to infinity is considered. The problem is formulated in terms of Fourier 
integral equations and solved in closed form. 

Knopoff and Gilbert (1960) have treated rigorously a number of possible 
emission sources resulting from propagation of a dislocation in strain or 
displacement along a fault. They also use a unit step function and treat eight 
fault types. Their results apply to first motion produced by these sources at 
great distance from the fault. Some of the types of sources considered are: 
(1) two sides of fault offset with respect to each other and in a direction 
parallel to propagation direction, (2) dislocation transverse to direction of 
propagation of fault, (3) sudden expansion or collapse of a lenticular cavity, 
and (4) sudden discontinuity in shear strain between the two sides of the 
fault plane. Other types of sources are also included. 

Savage and Mansinha (1963) have investigated experimentally the 
radiation pat tern for elastic waves from a tensile fracture in a two-dimensional 
model. The waves were initiated in the glass sheet by applying a flame to a 
scratch. The observed patterns from the first motions were compared with 
the theory of Ang and Williams (1959) and Knopoff and Gilbert (1960). The 
experimental conditions did not reproduce all of the conditions of either 
theory but were felt to be close enough to warrant comparison. There was 
general qualitative agreement, but poor quantitative agreement. I t is pointed 
out tha t there may be significant problems in applying linear elasticity to 
fracture processes which certainly must take into account nonlinear effects. 

This, together with earlier work, emphasizes the extreme difficulty in 
learning about the actual acoustic emission source from the received record 
on the instrumentation. The elastic radiation problem of typical sources is a 
very significant mathematical problem fraught with difficulties, and then 
there is the problem of mechanical and electrical filtering in the system itself. 

Eshelby (1949) has calculated the energy radiated by a harmonically-
vibrating screw dislocation. The result is very simple and could be used as a 
crude estimate of the acoustic emission energy radiated by a moving single 
dislocation. 

IV. Materials Investigated with Acoustic Emission 

A. UNFLAWED METAL SPECIMENS 

There has been some work correlating the acoustic emissions with the 
number of slip events (Schofield, 1961; Fisher and Lally, 1967). The work of 
Fisher and Lally indicated tha t slip events occur cooperatively and tha t 
dislocation velocities during yielding may be as high as 10 3 cm/sec. 
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FIG . 7 . Acoustic emission versus strain in 7 0 7 5 - T S a luminum. Comparison wi th 
Gilman's mobile dislocation model . 

The results of one of the most beautiful acoustic emission experiments to 
date is presented in Fig. 7, which shows acoustic emission rate as a function of 
strain for a 7075-TS aluminum tensile specimen (Dunegan and Harris, 1969). 
Superimposed on the acoustic emission data is a fit of Gilman's (1966) mobile 
dislocation model, which gives mobile dislocation density as a function of 
plastic strain. The equation expressing the mobile density of dislocations is 

Nm =ιηερ6-φε*, (1) 

where Nm is the mobile dislocation density, ε ρ the plastic strain, m the disloca
tion breeding factor, φ = Η/σ, where Η is the hardening coefficient, and σ is 
the root mean square stress. Using these acoustic emission results, it is very 
easy to obtain the hardening coefficient, a very important mechanical para
meter. The possibility of using acoustic emission measurements to obtain 
fundamental parameters such as this was dealt a severe blow when it was 
found tha t the results for many materials did not fit Gilman's equation well 
at all. In particular, Dunegan and Harris (1969) and Dunegan and Tat ro 
(1971) describe the lack of fit for an i ron -3% silicon tensile specimen. Possible 
reasons for the lack of fit are presented, e.g. inhomogeneous strain due to 
Liider's bands. 

Gerberich and Reuter (1969) have also used Gilman's model to determine 
the values of the work-hardening coefficient of 7075 aluminum with various 
heat treatments. 

The author is not aware of a comprehensive program which may have 
been undertaken to ascertain how many materials (and under what condi
tions) will obey Gilman's equation. I t would seem to be a very fundamental 
area of cooperation between engineering and science. 
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Β . F L A W E D METAL SPECIMENS 

Acoustic emission techniques have great potential for detecting cracks 
and other flaws. These flaws act as stress concentrators and produce localized 
plastic deformation at macroscopic stress levels well below general yielding. 
The localized plastic deformation, in general, produces acoustic emissions and 
the emissions can thus be used to detect the onset of such flaws. Hence 
acoustic emission, probably better than any other nondestructive test, allows 
the monitoring of engineering structures for integrity against such flaws. 
(Structural integrity evaluation will be discussed in a later section.) 

Early work in this particular area used rather low sensitivity acoustic 
emission measurements to determine the " p o p - i n " stress for cracked 
(notched) specimens (Romine, 1961; Jones and Brown, 1964). The fracture 
toughness can be computed from the pop-in stress and the appropriate 
equations for the stress intensity factor. (Unstable fracture occurs in 
structural materials when the stress intensity factor of a growing crack, K, 
is equal to the fracture toughness of the material.) 

Recent work with more refined instrumentation has also related acoustic 
emission to flaws and analyzed the results using fracture mechanics (Dunegan 
et al, 1968, 1969, 1970; Dunegan and Harris, 1969). There was some work on 
" p o p - i n " here but the main thrust was to relate acoustic emission to the 
stress intensit}^ factor, K, and also to look for crack growth during proof 
loading. Stresses near the t ip of a crack in an elastic solid are completely 
controlled by the stress intensity factor. (This factor depends on the shape, 
size, and location of the crack, the specimen geometry, and type of loading.) 
I t is assumed by these workers t ha t plastic deformation is highly localized 
near the crack t ip and hence the plastic zone size will be controlled by K. 
Thus acoustic emission will depend on K. Dunegan et at. (1968) have proposed 
a theory for the relation between the acoustic emission from a flawed speci
men and the stress intensity factor for the crack. The prediction is tha t the 
accumulated acoustic emission count Ν should be proportional to the fourth 
power of K. This result applies for through cracks in plates. A similar expres
sion has been obtained by Dunegan et al. (1969) for penny-shaped cracks, 
but here it is not possible to directly determine Κ from the acoustic emission 
without also knowing the flaw size. Thus from theory it would appear t ha t 
acoustic emission measurements would allow the determination of the flaw 
condition. 

Measurements on single-edge-notch (SEN) fracture toughness specimens 
have shown the exponent η in the expression 

NocKn 

to be more like 4-6 for 7075-T6 aluminum and about 8 for beryllium. Figure 8 
shows the results from four specimens which happened to show the 
behavior. Work on multiple crack specimens have also shown tha t the 
emission is again controlled by K. 
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Stress intensity factor, Κ (Icsi- in. ) 

F I G . 8. Accumulated acoustic emission as a function of stress intensi ty factor. 
X , a0 = 0.550 in.; Ο , «o = 0.500 in.; # , a0 = 0.360 in.; • , a0 = 0.325 in. 

Dunegan et al. (1969, 1970) have devised a scheme whereby they can 
say whether cracks are growing at a fixed load or have grown during repeated 
proof loads. If, while holding a cracked specimen at a proof load, emission 
occurs, then the crack is propagating. There should be no acoustic emission 
upon repeated loadings to the proof load. If emissions occur a t a load less 
than the proof load then crack growth must have taken place during the 
proof loading scheme. 

Gerberich and Hartbower (1967) have found some very interesting and 
potentially useful empirical relations between crack parameters and acoustic 
emission. I t was found tha t the number and size of the acoustic emissions 
seemed to bear a unique relationship to the amount of slow crack growth. A 
semiempirical relationship was developed from elasticity theory. The result 
was 

Δ ^ ~ β » 2 Ε IK2, 

where Δ A is the incremental area swept out by the crack, Y<g is the sum of 
the stress wave amplitudes associated with the increments of growth, Ε is 
the elastic modulus, and Κ is the applied stress intensity factor. Figure 9 
shows the data comparing experiment with the empirical theory for steel, 
aluminum, and titanium. 
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F I G . 9. Stress w a v e parameter versus incremental crack area for certain materials 
O, D6aC stee l—high stress intens i ty fatigue; φ, D6aC stee l—environmental cracking 
under sustained load; • , 7075 T 6 aluminum—ris ing load; φ , 6A1-4V t i tanium—ris ing 
load. 

They also found tha t a reasonably linear relation exists between (Σ#)/ 
cycle and crack growth increment/cycle. This result is shown in Fig. 10. The 
slope in this relationship is very much dependent on the material and the 
condition of the specimen. 

Acoustic emission techniques have been used to study slow, subcritical 
crack growth in D6aC steel under hydrogen embrittling, stress corrosion 
cracking, and fatigue conditions (Hartbower et al., 1968), under hydrogen 
embrittling and stress corrosion cracking conditions (Gerberich and Hart-
bower, 1969), and under stress corrosion cracking conditions (Hartbower et 
al., 1972). Dunegan and Tetelman (1971a) studied hydrogen embritt lement 
in 4340 steel using acoustic emission. Katz and Gerberich (1970) studied stress 
corrosion cracking in t i tanium alloys and Dunegan and Harris (1974) used 
acoustic emission on a precracked uranium 0 .3% titanium specimen in 
salt water. 
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Crac k Growt h Incremen t Pe r Cycle , A2c /cycle  (in./cycle ) 

F I G . 1 0 . S u m of s tress-wave ampl i tudes per cycle versus crack growth increment 
per cycle . • , Specimens 1 7 5 0 - 1 , 2 ; Ο » specimens 1 5 5 0 - 1 , 2 , 3 . 

C . ROCKS 

As mentioned in the Introduction, the area of acoustic emission (often 
called microseisms) in rocks has been adequately surveyed in two review 
articles—Knill et al, (1968) and Hardy (1972). Hence, an a t tempt will be 
made here to summarize the work in rocks very briefly. The very early work 
was summarized in Section I I . Most of this was field work with a very small 
amount of laboratory work. The bulk of the subsequent knowledge gained 
in the laboratory came form three workers—Mogi, Scholz, and Hardy. 

1. Laboratory Work 
Mogi (1962a,b, 1968) performed bending tests on various rocks and 

monitored the acoustic emissions as well as stress and strain. I n the 1962 
work, a crystal cartridge type pickup was used, so acoustic emissions in the 
audio range were monitored. The 1968 work employed lead-titanate-zirconate 
compressional mode disks 3 mm thick to determine the source location; hence 
emissions used here were in the high kilohertz or low megahertz range. He 
found some striking similarities between rock emissions (microfracturing) of 
these laboratory samples and actual earthquakes in regard to their statistical 
behavior. The buildup of microfracturing (as determined by observing the 
acoustic emissions) before fracture is very often similar to foreshock behavior 
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in earthquakes. Fracture itself may correspond to the main shock of the earth
quake. 

Some similarities between the amplitude-frequency behavior in labora
tory microfracturing and earthquakes was found. I n seismology, this relation 
is embodied in the Gutenberg-Richter relation (Gutenberg and Richer, 1954) 

logN = a + b(8-M), 

where Ν is the number of earthquakes, Μ the instrumental magnitude 
introduced by Richter, and a and b are constants. Ishimoto and Iida (1939) 
have a similar relation 

n(a)da = Κα ~ m da, 

where a is the maximum trace amplitude of earthquakes, n(a)da the number 
of earthquakes having a maximum trace amplitude a to a + da, and Κ and 
m are both constants. There is a relation between b and m in the above 
formulas, namely 

b = m — 1. 

Mogi determined the amplitude-frequency curve for a large number of 
natural rocks and "artificial r o c k s " (pine resin, pine resin with mechanical 
irregularities, granular pumice, or coal) of varying degrees of heterogeniety. 
If the structure was sufficiently heterogeneous, the amplitude-frequency 
relation for the laboratory specimens obeyed the above equations. A specimen 
with a regular structure does not obey them. The value of m varied from 0.3 
to 2.7 depending on the structure of the medium and the state of the applied 
stress. The m-value increased with the degree of heterogeneity. Mogi hopes 
t ha t by comparing the m-values of lab tests and actual earthquakes, new 
information can be obtained concerning the heterogeneity and state of stress 
of the seismic region. The assumption was made tha t the elastic shocks occur 
stochastically, with a transition probability which depends on the state of 
stress. Using this, the frequency curve of elastic shocks under variable stress 
was calculated, the degree of heterogeniety being an important parameter. 

Mogi's 1968 work was involved with an accurate determination of 
microfracture source location in rocks subjected to bending. Here he needed 
high frequency emissions for good time resolution. He found tha t in hetero
geneous rocks at low stresses the sources were at random locations. However, 
before failure, the microfracturing was concentrated in limited regions, one 
of which initiated fracture. In homogeneous rocks, fracture takes place quite 
suddenly without the above microfracturing sequence. The spatial distribu
tion of sources has a certain resemblence to tha t of earthquakes. 

Scholz (1968a,b,c) made a detailed study of the microfracturing of 
brittle rocks using acoustic emission and stress-strain measurements. One 
of the unique features of Scholz's work (along with tha t of Mogi, 1968) is his 
use of the high frequency region (100kHz to 1 MHz); most other work in 
rocks had been done in the audio range. He also found tha t microfracturing 
events in many laboratory samples obeyed the Gutenberg-Richter of the 
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equivalent Ishimoto-Iida relation, and measured δ-values for a number of 
rocks with widely varying properties (Westerly granite, San Marcos gabbro, 
Colorado rhyolite tuff, marble, Pottsville sandstone, and Rutland quartzite). 
Results were obtained for uniaxial compression and Westerly granite was also 
compressed under various confining pressures. Early workers had not used 
confining pressures. The α-values and 6-values were quite different for 
ductile and brittle rocks. In particular, the value of the coefficient b depends 
very strongly on the state of stress and to a lesser degree on the rock type 
properties. Confining pressures, up to 5 kbar, did not produce a significant 
change in the microfracturing behavior, as indicated by the acoustic 
emissions. I t is important to make such studies at high pressures (and high 
temperatures) as the properties of rocks change with these parameters; rocks 
brittle under atmospheric pressure and room temperature become ductile at 
increased pressure and temperature (Mogi, 1962a). Scholz (1968b) also deter
mined the location of the sources and found (as did Mogi) tha t the locations 
of the initial sources were not related to the eventual fault plane. He found 
tha t the microfracturing could be directly related to the inelastic part of 
the stress-strain behavior, i.e. creep in brittle rock at low temperatures is due 
to time dependent cracking (microfracturing). The behavior could be 
adequately described by a statistical model in which the rock is treated 
as a heterogeneous elastic material. 

Scholz (1968c) performed an extremely interesting laboratory experiment 
which is of interest with regard to earthquake aftershocks. He found tha t 
microfracturing can still be observed after brittle fracturing of the rock, 
provided provisions are taken so tha t the specimen remains intact. If the 
intact sample is isolated after fracture, microfracturing activity decays 
hyperbolically in a manner similar to typical earthquake aftershock sequences. 

Hardy, a t Penn State, has been active in acoustic emission studies for a 
number of years. Chugh et al. (1968) investigated the frequency spectra of 
the acoustic emissions in Crab Orchard Sandstone, Indiana Limestone, and 
Barre Granite. The frequency range covered was from about 0.5 to 15 kHz. 
They concluded tha t frequency spectra provide only limited information 
with regard to the actual source of microseismic activity. (Frequency analysis 
is quite tenuous, for almost every element in the specimen instrumentation 
system has some frequency dependent properties, which change the nature 
of the emission as it propagates.) The amplitude-frequency spectra were not 
sufficiently stress dependent for use in predicting impending failure. 

Hardy et al. (1970) have made a detailed study of creep and micro-
seismic activity in a number of rocks of the type used by Chugh et al. (1968). 
Previous workers had already indicated tha t there was a correlation between 
creep and microseismic activity (Scholz, 1968d; Vinogradov, 1959; Gold, 
1960, 1968). I t was found tha t both the axial creep strain and accumulated 
acoustic emission activity versus time data could be fitted to the Burgers 
viscoelastic model. For all three rock types, a nearly linear relation existed 
between emission activity and creep strain. The actual degree of correlation 
between creep strain and microfracture is not known, but there is certainly 
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strong correlation between the two. A very detailed study would be needed 
to resolve this question, as rock fracture is a quite complicated process 
(Bieniawski, 1967a,b, 1969). 

Hardy (1969, 1972) was interested in using acoustic emission to assess 
the stability of underground gas storage reservoirs. Little is known about the 
fracturing process which goes on below the surface when fluids are injected 
under pressure into low permeability strata to increase storage capacity. I t 
is hoped to be able to locate unstable regions in the cap rock. Small laboratory 
size gas storage reservoir models have been developed in order to further 
understand the process. 

Some early work by Goodman (1963) is worth mentioning. Using rela
tively crude instrumentation, he observed the subaudible noise generated 
during repeated compressions of rocks. Emissions were observed during 
unloading as well as loading of the specimens. A load called the point of 
"accelerated rock noise ac t iv i ty" was found. If the load was not increased 
beyond this point, then fewer emissions were detected during subsequent 
loading cycles. If the load was increased beyond this point, the number of 
emissions may be even larger in subsequent loadings. Some of the acoustic 
emission activity which disappears with repeated loading cycles, can be 
recovered if the specimen remains unloaded for a period of time. The major 
recovery in acoustic emission generating ability occured within the first 
twelve hours of the rest period. Thus the Kaiser effect, which is so very 
important in metals, is not generally observed in rocks. 

2. Field Work 
Some work has already been described in Section I I . In this section, a 

very brief comment will be made on some additional field work. The majority 
of the work has been involved with determining instabilities in underground 
mines. Cook (1963) used acoustic emission monitoring of the Witwatersrand 
gold mines of South Africa. He used electromagnetic transducers with a flat 
response from 15 to 300 Hz, and there were provisions for recording 16 out
puts on tape. Sources of the emissions were determined from triangulation 
studies. Cook concluded tha t it should be possible to make rockbursts occur 
a t opportune times from information obtained via acoustic emission 
monitoring. 

A good account of relatively recent Soviet research is contained in 
Vinogradov (1959). I t is concerned with acoustic emission monitoring of the 
Anna lead mine in Czechoslovakia. Work was done at a depth of 1300 m, in 
a region very prone to rockbursts. Electrodynamic pickups were used and 
the passband of the system was 800 to 4000 Hz. The emission rate of the pulses 
did not prove sufficient for rockburst prediction; therefore the data was 
presented in other ways. The pulse energy (approximated by the square of 
the amplitudes) was plotted against t ime; the distribution of the number of 
pulses as a function of their energy was used, and also other special ways of 
presenting the data. These latter methods of analyzing the data proved more 
helpful in predicting rockbursts. 
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Some of the other recent field works are listed here. Work with regard to 
coal mines has been carried out by Stas et al. (1971), Sasaki and Takata 
(1970), and Bollinger (1970). Hedley et al. (1969) have monitored an iron ore 
mine and Sasaki and Takata (1970) and Blake and Leighton (1970a,b) have 
worked in various metal-producing mines. 

D. COMPOSITE MATERIALS 

There has been great interest lately in the structural use of composite 
materials. The hope is to develop materials which are lightweight and yet 
strong. I t is extremely important to understand the very complex deformation 
and fracture processes in such materials. Acoustic emission analysis techni
ques have been brought to bear on this extremely difficult problem and some 
encouraging preliminary results have been obtained. The first structural 
integrity investigations were performed on rocket motor cases made from 
composite materials (refer to Section I I I , D). 

Liptai et al. (1971) and Liptai (1971) give brief treatments on the general 
nature of composites. Here discussions are given of the three basic types— 
dispersion-strengthened, particle-reinforced, and fiber-reinforced—and poss
ible sources of acoustic emission in each type. Liptai gives results for acoustic 
emissions versus repeated loading for rings of Fiberglass with an epoxy resin 
matrix, and glass-epoxy pressure vessels. He concluded tha t acoustic emission 
data are helpful in establishing the mechanisms governing operative fracture 
modes and assessing structural integrity. 

Harris et al. (1972) made measurements on Al 3 Ni whisker-reinforced 
aluminum composites. These fall in the category of fiber-reinforced compo
sites. The percentage of broken fibers and acoustic emission were measured as 
a function of tensile strain. The authors developed a simple model for the 
number of acoustic emissions as a function of the number of broken whiskers. 
The experimental data of emissions versus percentage of broken fibers was 
compared with the theoretical result. The agreement was reasonably good, 
again indicating tha t acoustic emission can be used to monitor failures in 
composites. 

Gerberich (1970) used acoustic emission to establish the point a t which 
fiber fractures occured in composites made from ductile stainless steel fibers 
in an age-hardened aluminum matrix. 

Fitz-Randolph et al. (1972) investigated boron fiber-epoxy resin compo
sites using acoustic emission and other methods. The indications of this 
preliminary work were tha t acoustic emission could be related directly to 
fracture surface energies. 

Hay et al. (1972) have worked with stainless steel and tungsten fibers in 
an aluminum matrix. Various types of loading were used and some prelimi
nary frequency analysis was undertaken by using passband filters of frequen
cies of 0.1 to 0.3 MHz or 1 to 2 MHz. The stainless steel fiber specimens were 
noisier than those with tungsten fibers. The emission behavior was very 
dependent on the type of loading [Liptai, (1971) also found this in his Fiber-
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glass specimens]. This is to be expected because the type of loading determines 
the types of failure experienced by a composite specimen. They found 
preliminary indications from their acoustic emission da ta t ha t in two nomi
nally similar specimens, the one with a considerably lower elastic modulus 
also had much larger emission at low strains. This could indicate t ha t micro-
cracking was contributing to the lower modulus. 

Mehan and Mullen (1971), Mullen and Mehan (1972), and Mullen et al. 
(1971) have been interested in failure modes in epoxy composites and their 
possible detection and categorization via acoustic emission techniques. The 
failure mechanisms considered were fiber breakage, matrix cracking, and 
fiber debonding or pullout. They at tempted to identify various failure modes 
expected to occur in composites and to catalog characteristic acoustic signa
tures relating to individual failure modes. The best system for this work 
seemed to be the boron-epoxy system. Some work was done on single fila
ment specimens to isolate the mechanism as much as possible. These authors 
feel tha t frequency analysis of the emissions a t failure offers promise with 
regard to ascertaining the reliability of structures and understanding the 
failure mechanisms. In their work on composite failures, the emissions are 
handled in such a way tha t each emission registers only one count, indepen
dent of the size of the emission. 

E . CONCRETE 

Riisch (1959) did some early work on acoustic emission in concrete. He 
used a piezoelectric crystal microphone as a detector for the elastic waves. 
From the acoustic emission results and measurements of the change in volume 
and absorption of ultrasonic waves in concrete, he was able to infer t ha t in 
the typical brief duration tests, considerable disruption of the internal 
structure occurs a t about 7 5 % of the failure load. 

Green (1969b) has looked a t acoustic emission from laboratory type 
cylindrical concrete specimens and a scale model prestressed concrete reactor 
pressure vessel. Acoustic emissions were found to be an indicator of failure 
processes in concrete, and early warning of total compressive failure was 
indicated. Resolution of gross cracking, onset of pressure vessel failures and 
leakage, and prestressing rod failure were all indicated. A preliminary 
correlation between acoustic emission and material modulus was obtained. 

F. CERAMICS 

Romrell and Bunnell (1970) have used acoustic emission to monitor 
crack growth in ceramic tubes due to thermal shock. Thorium-yt t r ium oxide 
tubes, which are used as an electrolyte to measure oxygen concentration in 
liquid sodium, were thermally shocked by immersing in molten sodium. The 
acoustic emission results correlated well with microscopic observation of 
cracks. A high level of emissions from one tube was due to sodium corrosion 
of the ceramic. Aluminum oxide tubes were thermally shocked by inserting 
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one end into a furnace and heating to 1250°C. Again, as in the case of the 
thorium-yt tr ium tubes, acoustic emissions could be detected well before 
failure of the tubes. 

Gatti et al. (1971) observed acoustic emissions in the transparent cera
mics Lucalox alumina (G. E. product) and special spinels. Specimens were 
subjected to 4-point bending. The Lucalox proved to be much "noisier," 
bu t there was no clear reason for the difference. Flaws were also introduced by 
thermal shock (using a flame). The flaws were then extended under load and 
the acoustic emission monitored. Some work was also done on a thin single 
crystal sapphire disk. The crack growth was monitored photographically and 
an a t tempt was made to correlate crack growth and the acoustic emission 
results. There appeared to be no simple correlation between acoustic activity 
and the crack surface generated. 

G. I C E 

Gold (1960) investigated the creep of ice using acoustic emission techni
ques. He was interested in the degree to which cracking contributed to the 
various stages of creep. The cracking activity was determined from the acou
stic emission. Later work on ice is found in Gold (1968). Some workers in the 
acoustic emission field have used Gold's example to prove tha t cracking will 
produce acoustic emission, as it is possible to actually observe the cracks 
forming. 

H. SOILS 

Cadman and Goodman (1967) appear to be the only workers who have 
used a definite soil material (refer to Section V, C). 

Koerner and Lord (1972) investigated soils under controlled stress 
conditions in the laboratory. The instrumentation was very simple. An 
accelerometer, of bandwidth from a few hertz to 6000 Hz, picked up the 
emissions. The output of the accelerometer was fed into a charge amplifier, 
and the amplifier output went directly into an electronic counter, with a 
trigger level of 0.10 V. The amplified emissions were also observed on an 
oscilloscope. The sensitivity of the system was 20 V/g. The soil tested was a 
slightly organic, medium plasticity, clayey silt. The liquid limit was 5 5 % , 
the plastic limit 35%, and the shrinkage limit 27%. The soil was remolded 
and compacted into samples 2.8 in. in diameter and 5 in high. The specimens 
were tested in unconfined compression. The load was applied in 2.5 lb 
increments (until failure) with a hydraulically operated hand press. Tests 
with an aluminum specimen (which does not emit a t these low stresses) 
showed tha t with the instrumentation sensitivity used, the loading system 
produced no "artificial emissions." 

Four water contents were investigated and the results are shown in 
Fig. 11. As was expected, the drier, more brittle samples had much higher 
emission at the same stress level. Experiments with different types of contacts 
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F I G . 11. Acoust ic emiss ion versus stress in a m e d i u m plast ic i ty , c layey silt a t 
var ious water contents . 

between the specimen and the loading apparatus indicated tha t the emissions 
arose from the bulk of the sample and not the contacting surfaces. The stress-
acoustic emission curves showed a strong resemblance to the stress-strain 
curves of the material. Thus the possibility exists of using acoustic emission 
measurements in the field or the laboratory as an alternative to stress and/or 
strain measurements. 

Further work has been done in dry soils by Lord and Koerner (1974). 
The instrumentation used was similar to tha t of Koerner and Lord (1972), 
the only difference being tha t an acoustic steel wave guide was used between 
the sample and the accelerometer. The wave guide was a J in. diam. piece 
of drill rod about 1 ft long. I t was pointed on one end (this end was placed 
in the soil) and the accelerometer was screwed into the other end. The wave
guide was incorporated into the experimental setup for a very practical reason. 
A significant use of acoustic emission in soils might be the monitoring of the 
stability of earth embankments. Emissions might not travel very far in the 
soil, due to the high attenuation of elastic waves in soils; however, a wave 
guide (a good conductor of sound) could pick up emissions from any point near 
its surface and conduct them to the accelerometer. Thus the " range " of each 
accelerometer is increased many-fold. Wave guides have already been used by 
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other workers for various purposes (Dunegan and Tetelman, 1971b; Vetrano 
and Jolly, 1972; Speich and Fisher, 1972; Anderson et al., 1972). The soils 
were tested in unconfined compression using the hand-operated hydraulic 
press. A dial deflection gage was used to measure strains, Various blends of 
sand and clayey silt were investigated. 

The stress-strain and stress-acoustic emission responses of the five soils 
tested are presented in Figs. 12 through 16. The curves are typical of the four 
or five tests made for each type of soil. There is certainly a correlation be
tween cumulative acoustic emissions and strain, but the present results do not 
give a linear relation between the two as did the work in rocks (Hardy et al., 
1970). I t would seem tha t soils produce enough emissions via a wave guide 
pickup technique to consider seriously the possibility of monitoring earth 
slopes for stability. There has been much loss of life and many streams have 
been seriously polluted due to the failure of soil slopes or dikes. 

Some preliminary tests on soils using the commercial Dunegan Research 
Corporation acoustic emission apparatus failed to indicate any emissions what
soever. From this it was concluded tha t the emissions in soils are of frequen
cies much below 100 kHz, and tha t the frequency response of the present 
instrumentation was adequate. Viewing the emissions on the oscilloscope 
indicated tha t the primary frequencies are in the very low kilohertz region. 

I t should be mentioned, from a fundamental research standpoint, t ha t 
soils (along with other materials whose properties can be changed drastically 

F I G 12. Acoust ic emission and strain versus stress in a soil w i th 100% sand. 
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F I G . 1 3 . Acoust ic emission and strain versus stress in a soil w i t h 6 7 % sand and 
3 3 % c layey silt. 
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F I G . 1 5 . Acoust ic emission and strain versus stress in a soil wi th 3 3 % sand and 
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F I G . 16. Acoustic emission and strain versus stress in a soil with 100% c layey silt. 
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via frabrication) offer a unique opportunity to determine the nature of the 
source of emissions. For example, Lord and Koerner (1974) found tha t emis
sions are greater in the sandy soils than in the fine-grained soils. This suggests 
tha t sliding friction is probably more significant than rolling friction in 
producing acoustic emissions. 

I . W O O D 

There is little work published concerning acoustic emission in wood. In 
fact, only one article was uncovered in the literature search for this article. 
Kishinouye (1937) observed the emissions in wooden beams under flexural 
stress. Unfortunately, a t the time of this writing a copy of the article has not 
been obtained and no details of his work can be given. Both Green et al. (1970) 
and the Jersey Nuclear Co. Report mention observing emissions in wood. 
The Jersey Report states tha t emissions from fiber failure in wood are some
what similar to those from flawed metals, but are larger and lower infre-
quency. 

Meunow of the Law Engineering Testing Co. in Atlanta, Georgia has 
used acoustic emission to verify the integrity of many civil engineering 
structures. In performing safety inspections of buildings, the building is 
water-loaded. Acoustic emission sensors are placed under the load and on a 
circle with center on the load line. In this manner, areas of soft wood can be 
found, and in one case an area damaged by an unreported fire was located. 
(This same technique offers the detection of weld problems in structural steel 
and areas of deterioration in concrete.) Law also uses acoustic emission to 
determine the approximate locations of areas of poor bonding in large lami
nated wooden beams. The suspect areas are then examined by radiography 
or low frequency ultrasonic techniques, to determine the extent of the non-
bond areas. This approach eliminates the need for the much more costly 
complete examination by the more conventional radiographic and ultrasonic 
techniques. The complete details of Law's work are not available, due to the 
private nature of information between client and consultant. I t is most 
interesting tha t this work was performed in the low kilohertz region, where 
ambient noise interference would be expected to be very strong. 

Because of the lack of published da ta on wood, the author performed 
some acoustic emission tests on about 50 small fir specimens. The specimens 
of size J in. thick, 1J in. wide, and 12 in. long (8 in. between support points) 
were all cut from two by fours. A center load produced flexural stress in the 
specimens. The commercially available Dunegan Research Corp. acoustic 
emission apparatus was used. The sensor was placed about an inch from the 
center of the specimen. All runs were made with the filter off and an overall 
gain of 92 dB. Figure 17 shows the accumulated emissions versus the load 
(expressed as a percentage of failure load) in specimens of different water 
contents. The specimen of 4 6 % water had a curve almost identical with tha t 
of the as-received specimens. These latter specimens failed at an average 
load of 230 lb. The orientation between the direction of loading and the grain 
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F I G . 17. Acoust ic emission versus load in clear fir as a function of water content . 
O, Dry wood 0 % H 2 0 (failure at average of 435 lb); φ, as-received 1 1 % H 2 0 (failure 
at average of 352 lb). 
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F I G . 18. Acoustic emiss ion versus load in clear dry fir during first and second load 
application. Q> Trial 1; # , trial 2; failure at 485 lb. 
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varied from 40° to 10°. Four specimens were run at each water content. A 
typical total count before failure was about 5000. The time duration between 
initial load application and failure was about 20 min. 

Some preliminary da ta was gathered with regard to irreversibility in 
emission versus load curves. Figure 18 shows the results for a clear beam, 
while Fig. 19 depicts the case for a beam with a sizeable knot in it. Both 
experiments were for completely dry wood. Although there is not a strict 
"Kaiser effect," there is strong irreversibility which could be of significant 
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F I G . 19. Acoust ic emiss ion versus load in dry fir w i th a knot during first, second 
and third load applicat ion. Ο » Trial 1; # , trial 2; O , trial 3. Failure a t 435 lb . 

use in nondestructive testing. The knot seemed to be the source of significant 
emission at quite low stresses. 

These results are strictly of a preliminary nature and a great deal more 
work must be done to get a reasonably clear picture of the acoustic emission 
behavior of woods. For example, time effects may be important. 

Undoubtedly many more materials (unknown to the author) have been 
investigated and will be investigated in the future. For example, plastics 
must have received some attention by now. 
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V. Processes Studied with Acoustic Emission 

A. W E L D I N G 

Notvest (1966) was the first worker to apply acoustic emission techni
ques to the welding process. Crack sensitivity (in D6 Ac steel) during the 
welding cycle was evaluated by a restrained joint cracking test. The cracking 
was associated with transformation reactions, and was detected by acoustic 
emission measurements. Test welds were considered to have no cracks when 
no acoustic emissions were recorded. He was able to develop certain thermal 
weld cycles tha t produced no emissions and applied this knowledge to the 
weld fabrication of Titan I I I rock motor cases. Fabrication costs were 
reduced due to the reduction of rejects and shorter process cycles. 

Day (1969) and Jolly (1969) a t Battelle-Northwest have investigated 
the welding process in 304 and 316 stainless steel using acoustic emission. 
But t welds on plates were used. Transducers were attached near the weld 
line, and then the emissions monitored as the weld cooled. With his instru
mentation, Day (1969) was able to detect longitudinal, shear, and Rayleigh 
waves. Intentional defects were introduced into the welds by adding small 
amounts of t i tanium or other noncompatible filler. Other " t r i c k s " were also 
used to vary weld quality. The defects were analyzed by conventional radio
graphy and metallography. Acoustic emission was found to occur some 20 to 
45 sec after the defect region began to solidify. Typically, the acoustic emission 
rate reached a maximum within one minute following welding of the defect. 
(The acoustic emission-time profile will of course depend on the size of the 
piece being welded.) The acoustic emission da ta was successfully correlated 
with the defects as indicated radiographically and metallographically. 
Cracks and gross porosity can be detected via acoustic emsission. A " g o o d " 
weld produced something like 200 counts whereas a weld with significant 
cracks might result in over 10,000 counts. Acoustic emission results predicted 
cracks in some welds which were not seen in radiographs. However, subse
quent metallographic analysis did show cracks, thus validating the acoustic 
emission method. There are some problems to be overcome in using this 
method to test welds, e.g. scale flaking off the surface of some welds produces 
a number of emissions which are not indicative of weld integrity. I t seems 
as though the difficulties could be overcome, and the method offers great 
promise for detecting weld defects under actual working conditions. In some 
applications very long welds must be made, and it is very costly to have to 
rip out the entire length of the weld if a defect is subsequently discovered at 
the beginning of the pass. Acoustic emission should allow a defect to be detec
ted before the weld has increased significantly in length. Triangulation might 
be used to pinpoint the defect location. 

Hartbower et aL (1972) monitored the welds in high strength structural 
steel during, immediately after welding, and for periods of up to 18 days 
after welding. In this type material, fabricators are often required to wait 
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several days after weld completion to assure tha t cold (delayed) cracking is 
completed before nondestructive inspection. If the duration of cold cracking 
could be determined, then the production time between fabrication and test
ing could be saved. Acoustic emission offers the possibility of monitoring the 
cracking as it actually occurs. Cruciform specimens were used to induce 
weld cracking and actual shipyard welding practice was followed. Some welds 
were found to produce acoustic emission bursts for over 400 hr after welding. 
The acoustic emission was correlated with the amount of actual cracking as 
determined by metallography. (In this work it was found tha t cracking slag 
on the weld gave significant emission.) 

B. MARTENSITIC TRANSFORMATIONS 

Martensitic transformations are diffusionless, shear-type reactions tha t 
take place through the cooperative movement of very many atoms. The 
transformation takes place very rapidly and is autocatalytic, i.e. the forma
tion of each plate or crystallite triggers the nucleation of other plates in 
adjoining regions. Thus the martensitic transformation would appear to be 
a well-defined source of acoustic emissions. 

Liptai et al. (1969) determined the acoustic emission associated with the 
martensitic transformations in gold-47.5 a t .% cadmium, indium-22 a t . % 
thallium, cobalt, and plutonium. The specimens were tested in single crystal 
or large grain form and were | in. by 2.5 in. long. The gold-cadmium specimen 
was investigated in most detail. The martensitic cubic->orthorhombic trans
formation occured at about 71°C on heating and 60°C on cooling. About one 
million counts were observed both on heating and cooling. There were more 
emissions recorded on heating than cooling and they were over one order of 
magnitude larger. The indium-thallium system has a martensitic face-
centered-tetragonal (fct)->face-centered-cubic (fee) structure at about 27°C. 
The energy of the emissions were equivalent to those of the gold-cadmium 
system. Cobalt has a martensitic hexagonal-close-packed->fcc structure 
change at about 417°C. Exploratory experiments showed tha t emissions were 
generated on both heating and cooling. Plutonium shows the a->j8 trans
formation at 112°C which is consistent with a martensitic transformation. 
Again emissions were observed on heating and cooling. These workers also 
studied the eutectoid decomposition at 133°C in t in-19 a t .% cadmium. This 
is a nucleation-and-growth type transformation. No acoustic emissions were 
observed even though the gain used was two orders of magnitude larger than 
tha t used for the martensitic transformation runs. This result was not entirely 
unexpected since nucleation-and-growth transformations proceed at low, 
diffusion-controlled growth rates, where there is probably sufficient time for 
stresses to be relaxed. I t would appear tha t acoustic emission observations 
would indicate, among other things, what type of transformation was 
occurring. 

Beattie (1971) studied acoustic emission in the indium-23 a t .% thallium 
alloy. He found tha t emissions occured at the fee ->- fct phase transition only 
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in well annealed samples. Much larger amounts of emission were observed 
at temperatures below 210°K. 

Brown and Liptai (1972) used the martensitic transformation in the 
gold-47 a t .% cadmium alloy as a possible standard source of acoustic emissions. 
The prepackaged sample was sent to various laboratories active in acoustic 
emission research. " T h e results indicated tha t although many counting and 
display techniques were used to characterize the acoustic emissions from the 
martensitic phase transformation during heating and cooling, all of the 
methods produced equivalent information. No significant differences were 
noted in characterizing the transformation." I t was found tha t the system 
could not be used as a standard source because the acoustic emission activity 
changed with the repeated thermal cycling. 

Speich and Fisher (1972) have performed a detailed study of the marten
sitic transformation in a F e - 2 8 % Ni-0.11 %C alloy. Acoustic emission, electrical 
resistivity, and quantitative metallographic techniques were used. Simultan
eous measurement of the electrical resistance and the acoustic emission 
permitted the determination of the volume of martensite formed per acoustic 
emission. The metallography was used to determine the number of plates 
involved in each acoustic emission. The results for this alloy indicated tha t 
about fifteen martensite plates are involved in each acoustic emission. Also 
the volume of martensite formed per acoustic emission decreases with 
increasing volume fraction of martensite. I t appears tha t acoustic emission 
studies will be valuable in studying the kinetics of the martensite transforma
tion because they provide, unlike other techniques, essentially a plate-by-
plate record of the transition. 

C. SLOPE STABILITY 

Acoustic emission techniques have been used to determine the stability 
of slopes. Beard (1962) used the "Se i smi t ron" developed by Crandell of 
Liberty Mutual Insurance. This is a quartz crystal geophone. The number 
of microseisms per minute was used as a test for stability. Several slopes in 
California suspected of being unstable were monitored. When the micro
seismic rate was sufficiently high, the slope subsequently failed. 

McCauley (1965) of the California Division of Highways monitored 
highway construction slopes around the San Luis Reservoir in the Central 
Coast Ranges of California. There were significant problems with background 
noise, but some difinite conclusions could be drawn. The acoustic emission 
rates were high during construction and decreased after construction. The 
rates were higher during the rainy season than during the dry period. No 
major slides occured during the monitoring, but small local failures seemed 
to be indicated on the emission records. 

Goodman and Blake (1966) at the University of California, with the 
support of the California Department of Highways, addressed themselves to 
landslide and slope stability problems. They constructed and field tested 
their own rock noise detector instrumentation. They found tha t rock noises 
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from landslides and slopes are usually in the 100 to 1000 Hz range, and tha t 
creeping landslides definitely generate emissions. Triangulation studies 
encountered difficulty in determining the source location due to extreme 
velocity variations, and high at tenuation in the softer materials. The probes 
had a range of about 100 ft in the materials studied. There were definite 
ambient noise problems, but rock noise monitoring did give warning of 
sudden movements in landslides and rockslides. 

Cadman and Goodman (1967) built laboratory model " s l o p e " to 
perform careful triangulation studies. A box of 60 X 60 χ 60 X 124 cm was 
filled with moist sand. Four Rochelle salt, bender, crystal transducers 
(geophones) were placed a t known locations in the sand. The sand " s l o p e " 
was then tilted slowly to failure and the output of the geophones recorded 
on magnetic tape. The tape was then played through a high frequency oscillo
graph and the arrivals of the various pulses timed. From these arrival times, 
the foci of the emissions were determined. I t was found (as in the studies in 
rock) tha t the source locations close to failure were much nearer the real 
failure surface than were those of earlier noises. This laboratory work gives 
insight in to where to place transducers in the actual monitoring of slopes 
in the field. 

Paulsen et al. (1967) insti tuted a slope stability program at the U.S. 
Borax and Chemical Corporation open pit mine at Boron, California. I t was 
a joint venture between U. S. Borax and the U.S. Bureau of Mines. The 
equipment was essentially of the Obert (1941) type with an overall gain of 
about 1000. Recording was by a galvanometer type pen recorder. The number 
of emissions occurring in a 24 hr period was used as a measure of slope stabi
lity. When microseismic activity became high (and also a slight bed move
ment was indicated on an extensometer), corrective measures were taken. 
The effectiveness of the corrective measures can be directly determined via 
the rock noise records after the measures were taken. The authors feel t ha t 
the emission monitoring is a valuable aid in the slope stability problem. 

Wisecarver et al. (1969) of the U.S. Bureau of Mines in, cooperation with 
the U.S. Borax and Chemical Corporation and the Kennecott Copper Corpora
tion, have used acoustic emission monitoring to ascertain the stability of large, 
open-pit slope walls. The early work used Obert (1941) Rochelle salt type 
transducers and vacuum tube electronics. Later work used lead zirconate 
t i tanate transducers and solid state electronics. This latter instrumentation 
had a gain of about 10,000 and a flat frequency response from 50 to 5000 Hz. 
Because of mining operations noise, recordings were usually taken during 
hours of minimum mining noise. Slopes were monitored at the Boron mine 
near Boron, California, and the Kimberly, Liberty, and Tripp-Veteran open 
pit mines near Ely, Nevada. At Kimberly, monitoring was started when the 
pit was steepened from 40° to about 60°. The emission records indicated tha t 
the pit wall adjusted to the steeper slope. The measurements at the Liberty 
pit showed increased emission after nearby earthquakes. The rock noise rate 
in the pit wall rose significantly after each quake and then returned to normal 
within 24 to 48 hr. At the Tripp-Veteran pit monitoring with 10 geophones 
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was undertaken in an area which was expected to fail and in which tension 
cracks had formed. During the monitoring, the rock mass moved down the 
slope of the pit wall 5 ft but did not break away. (Most of the displacement 
occurred on one day.) The most active geophones produced an average rate 
of 750 noises/hr on the day of maximum movement. The high was 2500/hr. 
Within 8 hr of the maximum movement the rate had dropped to 200/hr and 
10 days later the rate was 3/hr. Microseismic rates measured a t locations 
greater than 300 ft from the failure could not be used for failure detection. 
The authors concluded tha t the technique, although still in the research 
stage, offers a satisfactory means for monitoring slope stability and deter
mining the effect of corrective measures. 

D. MAGNETIC EFFECTS 

I t has been pointed out in the acoustic emission literature (Spanner, 
1970) tha t there might be emissions associated with the magnetization 
process in ferromagnetic materials. The phenomenon would be the acoustic 
effect accompanying the well-known Barkhausen magnetic effect. The 
Barkhausen effect (Bozorth, 1929, 1951; Bozorth and Dillinger, 1930) is 
concerned with the small, discontinuous changes in overall magnetization of 
a ferromagnetic sample caused by the sudden change in spin direction of a 
relatively small number of atoms residing in a volume of some 1 0 " 5 t o l 0 " 6 

cm 3 . There should be some acoustic emissions generated during the Bark
hausen discontinuities due to magnetoelastic coupling (Lord, 1967). Search 
of the literature failed to reveal any such study. 

The work presented below is meant to be a very limited first study of 
this "acoustic Barkhausen effect." The Barkhausen effect literature was 
searched in order to set up a meaningful experiment. Pieces of nickel 200 rod*, 
I in. in diameter and 1 ft long were used. They were used in either the as-
received condition (actual condition unknown—probably cold worked) or 
annealed by holding a t 1100°C in a hydrogen atmosphere for a few hours 
and then furnace-cooled. The solenoid used to magnetize the sample was one 
inch in diameter and ten inches long. (Refer to Fig. 20.) The windings of the 
solenoid were such tha t the axial field at its center is calculated to be 

H(Oe) = 30 i (A), 

where Η is the magnetic intensity and i is the current. The coil could accom
odate 5 A without overheating. An applied magnetic field of about 3 Oe is 
needed to overcome the maximum demagnetizing field of this long rod 
sample. In the figures to follow the magnetizing force will be indicated in 
coil current, not magnetic field. Only relative values are of interest here so 
coil current is a good way to describe the magnetizing force. A Dunegan 
Research Corporation acoustic emission apparatus was used. The amplifica-

* The nickel rod was purchased from A. D . MacKay, Inc . , 198 Broadway , N e w 
York, N . Y . 
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F I G . 20. Schematic drawing of experimental setup to observe acoustic emission 
during magnet izat ion . 

tion was 92 dB and no filters were used. All measurements were made at room 
temperature. 

Prior to making measurements on the samples, the transducer was 
placed about \ in. from the top of the specimen and the magnetic field was 
varied from zero to maximum in both directions many times. Not a single 
emission was detected. Thus the transducer itself was totally insensitive to 
magnetic field changes. 

The hysteresis (B-H) curves were determined using the standard ballistic 
galvanometer approach (Bozorth, 1951; Wehr et al., 1969; Bates, 1961) with 
the coil of Fig. 20. Before each acoustic emission test the sample was demag
netized by passing a relatively large 60 Hz current through the solenoid and 
then slowly reducing the current to zero. This procedure was repeated many 
times to insure a fully demagnetized specimen. 
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F I G . 21 . Hysteres is loops for as-received and annealed nickel rods. A> As-received; 
Δ » annealed. 

Figure 21 shows the hysteresis curves of the as-received and annealed 
specimens. The as-received nickel rod was quite active acoustically. The first 
application of the magnetic field after demagnetizing produced a very small 
acoustic emission count (from 3 to 15). No additional counts were observed 
when the field was reduced to zero. Upon application of the reverse field, 
many emissions were produced starting between —0.60 and —0.65 A in the 
coil. Again no emissions were observed when the current was reduced to zero. 
Another reversal produced many emissions occurring between +0 .60 and 
4-0.65 A. These same results were obtained through as many current reversals 
as desired.* The number of emissions depended very strongly on the rate of 
current application. The rate dependence is shown in Fig. 22. Figure 22 
applies for both directions of current applications. The emissions versus coil 
current, for various rates of current application, are given in Fig. 23. Emis-

* T w e n t y reversals were as m a n y as were tried. 
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F I G . 22. Acoust ic emiss ion counts versus rate of solenoid current appl icat ion in 
as-received nickel rod. 

sions always start a t a current magnitude of between 0.60 and 0.65 A and 
end between 0.75 and 0.87 A, depending on the rate of current application. 
Reference to Fig. 21 shows tha t emissions only occur a t the steep parts of the 
hysteresis loop. 

Preliminary observations indicate t ha t the acoustic emissions are of the 
continuous type (Fig. 24) a t the onset of acoustic activity, and become 
discrete bursts (Fig. 25) near the end of acoustic emission generation. Crude 
frequency analysis from oscilloscope pictures indicate t ha t many of the 
emissions are in the 100 to 200 kHz range. (The statements in this paragraph 
should be considered of a very preliminary nature.) 

The material after anneal shows almost no acoustic emission a t any 
position on its hysteresis loop, a t any rate of current application. The most 
tha t could be obtained was about 20 counts. 

1600 
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F I G . 23. Acoust ic emiss ion count versus solenoid current in as-received nickel rod. 

F I G . 2 4 . Oscilloscope picture of the onset of acoustic emissions in as-received 
nickel rod. Vertical scale: 0.5 V / c m ; horizontal scale: 1 msec /cm. 
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F I G . 2 5 . Oscilloscope picture of acoustic emiss ions near the end of acoustic genera
tion. Vertical scale: 1 V / c m ; horizontal scale: 1 msec / cm. 

The data is generally consistent with the Barkhausen effect. Larger 
Barkhausen effects are seen in cold-worked than annealed material (Forster 
and Wetzel, 1941). 

The exact condition of the as-received material is unknown, but the 
hysteresis loops of Fig. 21 certainly show tha t the as-received material is 
much " h a r d e r " magnetically than the " s o f t " annealed material. The 
annealed rod was quite flexible and could be bent very easily, whereas the 
as-received material was much more rigid. 

The maximum Barkhausen noise in nickel occurs at the steep portion 
of the hysteresis loop (Bozorth, 1929). The acoustic emissions also occur a t 
the steep par t of the loop. The more rapid application of the magnetic field 
should cause the spins to change direction more rapidly, thus giving a larger 
inertial effect for generation of the acoustic emissions. 

I t is difficult to say at this point what fundamental* or practical! 
importance can be attached to a subsequent detailed analysis of this "acou
stical Barkhausen effect." Fortunately the effect is rather large compared 
to background noise, thus making the measurements themselves rather easy. 
I t is worthwhile to point out tha t there is an analogous Barkhausen effect 
in ferroelectrics (Chynoweth, 1958), and possible acoustic emissions could be 

* I t would seem that the s implest domain configurations [e.g. a picture frame 
specimen Lord ( 1 9 6 7 ) ] would have to be used here to s tudy the fundamentals of th is 
particular magneto-e last ic generation of elastic waves . 

t I t might be possible to make a " magnetic-hardness-tester " from this effect. For 
example , a s imple acoustic emiss ion rig could be used to tell if the material is " h a r d " 
(lots of emissions) or " s o f t " (few emissions) . However , the effect is probably qui te size-
dependent , as is the Barkhausen effect. 
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observed there also. [Note added in proof: This magnetic work has been 
published in Lett. Appl. Eng. Sci. 2, 1 (1974). Buckman (1972) has detected 
acoustic emissions in ferroelectric crystals.] 

VI. Structural Integrity 

Almost every acoustic emission measurement is involved in essence, in 
determining the integrity of some structure, e.g. a tensile specimen. However, 
in this section, the use of acoustic emission in actual engineering structures 
will be considered. Most structural failures result from the growth of a crack; 
hence the fundamental work on crack growth, described in Section IV B, is 
of the utmost importance here. In order to use the techniques for structural 
integrity analysis, it is mandatory to know the relation between crack 
behavior and acoustic emission in all materials of interest. The location of 
the flaws can be determined by triangulation techniques (such as are used in 
seismology) with the use of four transducers. [Good introductions to triangu
lation studies in the simplest geometry are found in Cadman and Goodman 
(1967), Obert and Duvall (1961), and Hardy and Chugh (1969).] The safety 
factor of the structure can be ascertained by comparing the acoustic emission 
behavior with tha t of a like structure which has been loaded to failure. 

The largest effort so far has gone into developing and using the techni
ques to evaluate pressure vessels, usually employing the proof test techniques. 
The Aerojet-General Corporation group was the first to use this technique 
(Section I I I , D) and they used it on a number of systems (Green et al., 1964, 
1966; Srawley, 1966; Green, 1966; Wildermuth, 1967; Reuter et al, 1968; 
Hartbower and Crimmins, 1968; Hartbower et al., 1969). Srawley (1966), 
from his recordings, was able to locate the failure source in the motor case 
by triangulation after the test was over. Hartbower and Crimmins (1968) 
discuss nineteen failures which they feel could have been prevented with the 
use of acoustic emission techniques. (These failures are described in Liptai 
et al, 1971.) 

In 1966, Hut ton and Parry started to develop acoustic emission tech
niques with the idea of applying the technology to the nondestructive testing 
of nuclear reactor pressure vessels and other pressure components. The 
ability to monitor the integrity of a nuclear reactor is of the utmost impor
tance for it is very undesirable to shut down a reactor, but yet public safety 
must be of first importance. A good review of their work on structural 
integrity (and the work of others) is found in Hut ton and Parry (1971) and 
Parry (1971). They used the shear wave component of the acoustic emission 
due to its sharp, distinct leading edge, thus making source location determi
nations more precise. The frequency range used was normally between 90 
and 300 kHz. This range eliminates a good share of the low frequency ambient 
noise, but is still low enough so tha t the emissions are not at tenuated too 
strongly as they travel in the material. Figure 26 shows a block diagram of 
the electronic situation. After amplification, the signals from the various 
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transducers are fed into a special time analysis digital computer. This compu
ter determines the emission source locations by hyperbolic triangulation 
techniques, which have been developed for many common structural shapes. 
In addition to source location, the circuitry also gives the acoustic energy 
released by the flaws, and this allows for a determination of whether a flaw 
is significant to the integrity of the structure. The results are available on a 
real t ime basis and all da ta is recorded for future analysis. Jersey Nuclear 
Co. workers (1971) used the technique on a representative commercial power 
reactor vessel manufactured by Rolls Royce. The vessel was clad with stain
less steel. Acoustic emission was monitored during a preservice hydrotest. 
Ten of thirteen suspect areas revealed by acoustic emission were immediately 
confirmed by ultrasonic examination. One area agreed with construction 
records. The remaining two areas were inaccessible to ultrasonic examination. 
These results were very encouraging. 

Parry (1971) has shown tha t leaks in pressure systems can be located 
using acoustic emission techniques. A brief account is given of the measure
ments on long runs of steam, gas, and chemical transmission pipes. This work 
also showed tha t corrosion areas could be detected on a gas transmission 
pipe. 
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Reactor noise presents a problem to the use of acoustic emission under 
actual operating conditions. Hut ton (1969) has simulated reactor hydraulic 
noise and showed tha t the emissions and noise could be separated if frequen
cies above 1.5 MHz are used. He looked at the noise from the turbulent flow 
with and without cavitation. Vetrano and Jolly (1972) have reviewed the 
problems of in-service measurements on reactor pressure vessels. 

A unique application of acoustic emission was applied to the study of 
the elevated temperature burst tests on reactor piping materials (Hutton, 
1968). Acoustic emission was monitored as a function of pressure so tha t 
burst could be predicted. This gave ample advanced notice, so tha t a high 
speed camera could be turned on to record the final stages of crack growth. 
This procedure gave considerably more advance notice than strain gage 
monitoring. 

The General Dynamic (Fort Worth) group has been active in acoustic 
emission since 1968. The object of the work is the development of a system 
which will be able to detect cracks in aircraft structures during fatigue 
cycling. This is an extremely difficult task, but one of the highest priority, 
since most noncombat aircraft crashes can be traced to crack growth of one 
kind or another. The big problem is tha t of friction noise from rivets and 
bolts, which can be much larger than the acoustic emissions from growing 
fatigue cracks. The results of their work can be found in Nakamura (1969, 
1971) and Nakamura et al. (1971a,b,c, 1972). In an a t tempt to eliminate 
background structural noise, one or more master transducers are located in 
the area to be monitored and the area is surrounded by a number of slave 
transducers. The slave transducers intercept noise from outside the region 
and inactivate the masters for a short time. The rejection of more than 30,000 
outside noise signals to detect one real emission is not uncommon. There 
are certainly problems with this system. The masters may be inactivated 
when a real acoustic emission occurs. The system cannot distinguish be
tween friction noise and real emissions within the area being monitored. 
Frequency filtering can be used to some advantage to help eliminate the 
background noise. The amplitude distribution (the number of events at a 
given amplitude) appear to be quite different for rubbing noise and emissions 
from a growing crack. This fact may be of significant help in separating the 
noise from the true emissions. 

Harris and Dunegan (1971) have written a short review and present 
some results on the structural integrity testing of pressure vessels. They 
emphasize (as have others) tha t the monitoring can be performed in two 
ways. The structure can be continuously monitored to detect emissions 
generated from crack growth, but a faster method is to periodically over 
pressurize (proof test) the structure and observe the acoustic emissions. If no 
crack growth has taken place since the last pressurization, no emissions will 
be observed until the previous maximum pressure is exceeded. If emissions 
are observed at a lower pressure, it is an indication tha t crack growth is 
proceeding. This is nicely summed up in Fig. 27. The figure represents the 
acoustic emission behavior versus pressure in a welded 4130 steel pressure 
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vessel of dimensions 6 in. long, 4 in. o.d., and \ in. wall thickness. End caps 
were welded on. An intentional defect was machined into the vessel. The 
vessel was initially pressurized to 12,000 psi, which turned out to be a conve
nient proof pressure. The first repressurization produced little emission. The 
vessel was next cycled 5000 times to 8000 psi and proofed. The emissions 
increased rapidly once the 8000 psi value was exceeded. The rapid buildup 
in emissions is a clear indication tha t failure will soon occur due to growing 
cracks. The proof and cycling pressures were then reduced and failure finally 
occurered at 7500 psi after many thousands of fatigue cycles. Thus acoustic 
emission gives a new nondestructive method for determining the fatigue life 
of a vessel. 

VII. Potpourri of Topics (Brief Descriptions) 

In this section a number of topics will be merely listed, so tha t the interested 
reader will a t least know tha t such work has been performed. The relegation 
of topics to this section in no way indicates lesser importance of the work. 
The subjects discussed earlier in the article were those with which the author 
was most familiar. 
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A. K A I S E R E F F E C T 

Work was performed by Kerawalla (1965) in carbon steel, from which 
he concluded tha t the Kaiser effect: (a) is not universal, (b) is associated only 
with continuous type emission, and (c) is not evident for loads below the 
upper yield point. 

Spanner (1970) indicated tha t normal annealing procedures will effec
tively return most of the " first stress " emission characteristics to essentially 
all metals. Spanner also indicated tha t some metals and alloys do not exhibit 
any measurable Kaiser effect. 

Dunegan and Tatro (1967) have used the Kaiser effect in aluminum to 
make a tell-tale pressure transducer. The passive transducer determines the 
maximum pressure to which it was subjected. 

B. EMISSIOMS DURING UNLOADING 

Sankar (1969) found tha t emissions occurring during unloading were 
related to Bauschinger effect (an immediate reduction in flow stress after the 
metal was lightly deformed in the opposite direction). Some metals exhibit 
much more emission upon unloading then loading. Kerawalla (1965) found 
tha t emissions generated during unloading were all of the burst type. 

C. E F F E C T S OF R A T E OF LOADING 

Dunegan and Green (1972) and Fisher and Lally (1967) have examined 
the effect of rate of loading on the acoustic emission behavior and found it 
to be quite rate sensitive. 

D. APPLICATION OF ACOUSTIC EMISSION TO CIVIL ENGINEERING 
STRUCTURES 

Meunow of the Law Engineering Testing Company in Atlanta, Georgia 
has used acoustic emission to investigate the structural integrity of many 
civil engineering type structures. [A brief resume of his work is contained in 
Hut ton (1972) and Liptai et al. (1971).] He has inspected large cranes, major 
bridges, wooden structures, and the prestressing effects of rods in concrete. 

E. EFFECTS OF NUCLEAR REACTOR IRRADIATION 

Michaels and Fraser (1967) determined the effect of nuclear reactor 
irradiation on the acoustic emission of zircaloy-2 tube specimens. The irra
diated material was found to be less ductile than the as-received tubing, and 
had a greater acoustic emission activity. The emission rate a t failure for 
irradiated tubing was some four times tha t of as-received material. 
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F. MEASUREMENT OF SURFACE COATING THICKNESS FROM ACOUSTIC 
EMISSION 

Dunegan and Tetelman (1971b) found tha t the acoustic emission of alu
minum alloys depended on the thickness of the anodized coating. They then 
used acoustic emission as a means of determining coating thickness. 

G. DETECTION OF BOILING 

The detection of the onset of boiling in liquid sodium in reactors has 
been at tempted by acoustic means. Details can be found in Woodward and 
Stephens (1971) and in Anderson et al. (1972). 

H. INVESTIGATION OF HONEYCOMB MATERIAL WITH ACOUSTIC EMISSION 

Green et al. (1970) determined the structural integrity of honeycomb 
material from acoustic emission measurements. 

I . DETERMINATION OF B O N D QUALITY FROM ACOUSTIC EMISSION 
MEASUREMENTS 

Acoustic emission behavior has been found to be a reliable indicator of 
bond quality (Schmitz and Frank, 1965; Beal, 1967; Pollack, 1968). 

J . C R E E P E F F E C T S AND ACOUSTIC EMISSION 

Tatro and Liptai (1962) observed continuous acoustic emission when 
solder wire was subjected to a constant load. Dunegan and Harris (1969) 
have observed acoustic emissions in beryllium during creep. Adams et al. 
(1969) have also studied the problem of creep in beryllium. Adams has 
continued his creep-acoustic emission studies a t Tulane University, and some 
of his results are reported in Liptai et al. (1971) and Engle and Dunegan (1969). 

K . FATIGUE E F F E C T S AND ACOUSTIC EMISSION 

Many of the investigations concerning structural integrity were con
cerned with fatigue effects. Some particular fatigue studies will be empha
sized here. Hu t ton (1970) found in stainless steel t ha t some acoustic emission 
effects began a t 2 5 % of the fatigue cycles required to form a visible surface 
crack. Acoustic emission measurements showed microcrack formation a t 10% 
of fatigue life in tension-tension fatigue tests in aluminum. Hut ton suggested 
tha t this fact could be used to significantly reduce fatigue testing time. 
Hartbower et al. (1968) have investigated low cycle fatigue effects in cracked 
fracture toughness specimens of D6AC steel specimens. Dunegan et al. (1970) 
have also dealt with fatigue of cracked fracture toughness specimens. Dau 
(1971) also talks of the fatigue problem, and Anderson et al. (1972) indicated 
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tha t acoustic emission measurement give an indication of microcrack genera
tion. Mitchell (1965) also dealt with fatigue effects. 

L. E F F E C T OF TEMPERATURE ON ACOUSTIC EMISSION 

Anderson et al. (1972) have worked on the development of sensors 
which can be used at high temperatures (and also used in a radioactive, 
sodium-immersed environment). They have also performed some acoustic 
emission measurements a t elevated temperatures in a stainless steel fatigue 
test specimen. 

Dunegan and Tetelman (1971b) have employed a "wave gu ide" to test 
a Rene 41 tensile specimen containing a transverse weld, a t 1400°F in a 
gleeble machine. They were able to detect crack initiation from the acoustic 
emission results. 

Baker (1968) has investigated the effect of temperature (—100° to 
+250°F) on acoustic emission response of maraging steels and D6 AC steel 
in various heat-treated conditions. 

Green (1969c) studied crack growth in various metals at 165°F via 
acoustic emission. 

Green et al. (1970) observed tha t during loading 2014-T6 (TIG welded 
with 4043 filler wire) produced a significantly larger number of emissions at 
—320° and —423°F than comparable specimens tested at room temperature. 

Crussard et al. (1958) observed tha t brittle failure of steel, a t — 193°C, 
was preceded by bursts of acoustic energy. They observed acoustic emissions 
when Luders bands formed (corresponding to the Portevin-Le Chatelier 
effect). I t might just be possible to determine the critical temperature at 
which body-centered-cubic metals become brittle by means of a nondestruc
tive acoustic emission method. 

Tetelman and Chow (1972) have measured the acoustic emission as a 
function of stress at — 321°F in a low carbon steel. 

VIII. Conclusions and Suggestions for Further Work 

A. FUNDAMENTAL A R E A 

In a fundamental sense, acoustic emission studies are extremely interest
ing and have great potential in the understanding of mechanical properties 
of solids. Unfortunately, not much new information has been obtained from 
recent acoustic emission studies due to the extreme difficulties in obtaining 
details of the actual source mechanism. For example, there does not appear 
to be definitive information as to whether longitudinal or transverse wave 
generation predominates at the source. Some work has been done by Kroll 
and Tatro (1964), Egle (1965), Egle and Tatro (1967), Hut ton (1968, 1969) 
and the Jersey Nuclear Co., but advances in this fundamental area will 
undoubtedly have- to wait for a breakthrough of some type in under-
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standing the source mechanism. I t would seem tha t an extension of the work 
of Savage and Mansinha (1963) should be undertaken. 

One area in which acoustic emission may yield some new information 
is in regard to the study of the kinetics of certain processes in fine detail. For 
example, a close look could be taken of the martensite transformation, creep 
effects, the curing of materials (e.g. concrete drying), etc. 

The effect of low and high temperatures on the acoustic emission response 
of most materials is not well known. However, many materials in service 
are exposed to extreme temperatures. Of special interest might be an invest
igation of the ductile to brittle transition in body-centered-cubic metals, and 
the temper brittleness problem in steels. 

The fatigue problem is a very large one (both in a fundamental and prac
tical vein). Work has shown tha t acoustic emission techniques can give very 
early indication of fatigue failure, and hence a nondestructive indication of 
fatigue life. This work should be followed up in great detail for, if successful, 
it could save enormous amounts of time in conventional fatigue tests. I t 
might also contribute information to the difficult fundamental area of frac
ture mechanics. 

No references were found, in the acoustic emission studies investigated, 
of the liquid metal embrittlement problem. This would seem to be a fruitful 
area. 

I t would be interesting to determine in detail the magnetoelastic effects 
accompanying the magnetic Barkhausen effect. 

In the area of rocks, it would seem to be of significant fundamental 
interest to determine the relative importance of emissions in the various 
frequency regimes. Also of interest here is the effect of pressure and tempera
ture on the acoustic emission behavior of rocks, as the ductility changes 
significantly with these factors. 

B. A P P L I E D A R E A 

I t is in the area of practical applications tha t acoustic emission really 
shines. Structural integrity studies have proved very successful, and it is 
almost certain tha t new types of structures will be monitored with the 
acoustic emission technique. This work has a decided advantage over conven
tional techniques, such as radiography and ultrasonics, in tha t a large area 
can be monitored and the defects located. Acoustic emission will undoubtedly 
find great use in the area of welding. The weld defects can be determined 
very quickly and hence eliminate long costly ripouts of the subsequent weld 
line. Acoustic emission will be very useful in determining the time scale of 
delayed cracking in welds. Acoustic emission detection of leaks in piping 
should also prove to be very popular. The extremely difficult work of 
Nakamura in determining acoustic emissions in the presence of large amounts 
of fastener and other background noise is ultimately a critical one. I t should 
be pursued with great vigor in spite of its very difficult nature. 



338 Arthur Ε. Lord, Jr. 

Acoustic emission work in soils should be continued with the hope of 
developing a means to determine the stability of earth embankment lagoons 
which contain ecologically hazardous materials. Then the majority of oil 
spills into rivers and other such ecological catastrophies can be averted. 

The mine slope stability results are very encouraging, and the method 
should be developed to the point where reliable predictions of failure of the 
slope is relatively routine. (Hopefully avalanches might also be predictable 
from acoustic emission measurements.) 

The acoustic emission behavior of construction woods should be pursued. 
I t is known from private consultants' work tha t this is a fruitful area. I t 
would be desirable to inform the general engineering community as to its 
potential. 

Bond integrity analysis is a natural application of acoustic emission. 
I t would seem possible to incorporate an acoustic emission quality control 
station in the product line making bonded parts. 

Of course, these final comments reflect the bias of the author, and 
probably the importance of some areas has been overstressed and some 
understressed. However, it is safe to say tha t the importance of acoustic 
emission in practical areas will increase in the future. Hopefully, new informa
tion will come out of fundamental studies. 

IX. Appendix 

A. SOURCES OF COMMERCIALLY AVAILABLE ACOUSTIC EMISSION AND 
R E L A T E D EQUIPMENT 

Dunegan/Endevco, Rancho Vie jo Road, San J u a n Capistrano, California 
92675. 

Hewlett-Packard, Delcon Division, 333 Logue Avenue, Mountain View, 
California 94040. Ultrasonic leak detectors. 

Jersey Nuclear Company, Division of Jersey Enterprises, Inc., 2101 
Horn Rapids Road, Richland, Washington 99352. 

Nortec, Northwest Technical Industries, 3001 George Washington Way, 
Richland, Washington 99352. 

Trodyne Corporation, 39 Industrial Avenue, Teterboro, New Jersey 
07608. 

Acoustic Emission Technology Corporation, 1828 A Tribute Road, 
Sacramento, California 95815. 

The Slope Indicator Co., 3668 Albion Place N., Seattle, Washington 
98103. 

B. ACOUSTIC EMISSION WORKING GROUP 

People actively engaged in acoustic emission work should consider 
joining the Acoustic Emission Working Group (AEWG). This body, composed 
of a great majority of those working in the area, meets regularly to hear 
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papers describing current work, to see demonstrations of acoustic emission 
equipment, and have committee meetings on various aspects of acoustic 
emission. 

The current secretary (as of January 1974) of the AEWG is: Thomas F . 
Drouillard, Secy. AEWG, Dow Chemical, Rocky Flats Division, P.O. Box 
888, Golden, Colorado 80401. 

Those interested in joining the AEWG should contact the secretary. 
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