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PREFACE

As in other recent volumes, the several themes treated here are not di-
rectly related to each other, except for their common bond to physical
acoustics.

One of the remarkable properties of liquid helium II, the liquid phase
existing below 2.172°K, is that a certain fraction of it can flow without any
viscosity. The result is that it can flow from beaker to beaker via the thin
film that is absorbed upon the walls. It is possible to excite propagating
waves in such films and these waves are called third sound. This first chapter
considers the theory of third sound, methods for exciting such waves, third
sound resonators, and many other properties. Most of the theories presented
are generalizations of hydrodynamic theories but attempts are now being
made as described to introduce quantum mechanical properties.

The method of matched asymptotic expansions (MAE) is an established
technique in theoretical mechanics but is not yet widely employed in modern
acoustics research. The ability of this relatively new method to produce new
results in acoustics as well as to provide fresh insight into classical problems
is demonstrated in the second chapter. Written as an introduction to the
subject, Lesser and Crighton also go far enough to enable the reader to
apply the MAE technique to his own problems. The method is of general
interest because it is effective not only in resolving particular problems, but
also in unifying different mathematical models. For example, the MAE
formalism provides derivations of a number of acoustical equations together
with estimates of their validity and a definite interpretation of their meaning
(e.g., Burgers’ equation in relation to the linear wave equation and the
Navier—Stokes equations).

One of the principal problems in acoustic measurements at high fre-
quencies is the effect of diffraction in determining the shape of the propa-
gating waves. Diffraction can affect not only the attenuation but also the
velocity measurements. The third chapter by Papadakis includes discussions
of bulk and surface waves, monochromatic bursts and broadband sources,
effects of variation of the displacement of the radiator over its surface, and
the effects of the anisotropy of the medium. Calculations are compared with
experiments with good agreement.

In recent years, acoustic surface waves have been intensively investi-
gated for a number of signal-processing applications including delay line

xi
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memories, filters, and correlators. After a discussion of phase coded signals
and their generation and detection by interdigital grid structures, the
chapter ““Elastic Surface Wave Devices” describes a 13 bit Barker code
correlator, a programmable sequence generator, and pulse compression
filters.

The fifth chapter by Gagnepain and Besson is devoted to an investiga-
tion of nonlinear effects in quartz crystals. The extent to which the oscilla-
tion level of a quartz crystal unit can be increased (in order to improve the
signal to noise ratio and short-term stability) is limited by nonlinear resonator
effects. Additional motivation for studying the origin of nonlinearities is
provided by the possible use of nonlinear effects in correlators, strain-biased
resonators, and other devices. Observed nonlinear behavior is related to
nonlinearities in the elastic, piezoelectric, dielectric, and damping properties
of the crystal.

Acoustic emission, the subject of the last chapter, deals with the noise
produced in materials when they are strained. The first responses seem to
have been obtained in rocks, where they were called microseisms and were
shown to be connected with strains. These emissions received practical appli-
cation in providing warnings for rock slides in mines, etc. Starting in 1948,
acoustic emissions were observed in metals. Studies indicated that they
were of two forms—continuous and burst-type emissions. In all cases, the
emissions have been correlated with various types of dislocation motions.
Practical applications have been made of these emissions in determining the
approach to failure in pressure vessels, bridges, cranes, and other mechan-
isms. Fatigue in metals and other materials also produces characteristic
emissions and these emissions can serve as warnings of this form of degrada-
tion. Hence acoustic emissions are becoming a nondestructive test for many
types of material degradations.

The Editors owe a debt of gratitude to the contributors who have made
this volume possible and to the publishers for their unfailing help and
advice.

WARREN P. MasonN
RoBERT N. THURSTON
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I. Introduction

One of the remarkable properties of helium II, the liquid phase of helium
that exists between 0° and 2.172°K, is that a certain fraction of it can flow
without any viscosity. As a result of this, helium II can flow quite freely
through very narrow superleaks, or it can flow from beaker to beaker via the
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2 David J. Bergman

thin film that is adsorbed upon the walls. It is also possible to excite propaga-
ting waves in such a film, analogous to long waves on the surface of a shallow
body of water. These waves are called third sound.

Surface waves on helium films were originally considered as a possible
mechanism for the critical velocity of the film. It was speculated by Kuper
(1956a,b), Atkins (1957), and Arkhipov (1957) that the critical velocity
would be the velocity of flow at which it would become energetically favorable
to create a ripplon—one quantum of surface excitation. Careful measure-
ments performed more recently (Pickar and Atkins, 1969) have shown that
the velocity of third sound is two or three times larger than the critical
velocity of superfluid flow instead of being equal to it, as one would expect
from the above mechanism. But in the meantime, third sound has turned out
to be a fascinating physical phenomenon in its own right.

Atkins, who did most of the early theoretical work on the properties
of third sound (Atkins, 1959), also conducted the first experiment that
detected third sound (Everitt et al., 1962). This was done in a helium film
formed upon a flat solid substrate which was in equilibrium with helium
vapor a few centimeters above a liquid helium bath. This is a relatively thick
film, called a saturated film, whose thickness depends mainly on the height
above the liquid. Films obtained in this way range in thickness from about
500 A (140 atomic layers) at a height of 1 cm to about 250 A (70 atomic layers)
at a height of 10 cm. The same group made measurements of the velocity of
third sound in these films as a function of temperature, height above the
fluid, and frequency, and of the attenuation as a function of frequency
(Everitt et al., 1964).

Later, Rudnick and co-workers succeeded in detecting third sound in
helium films which are formed on a flat substrate in equilibrium with helium
gas whose pressure P is well below the saturated vapor pressure P, (Rudnick
et al., 1968). These are called unsaturated films, and their thickness is deter-
mined mainly by the ratio P/ P, . Their thickness ranges from about 180 A (50
atomic layers) down to 14 A (4 atomic layers) and even less, depending on the
temperature. Groups headed by Rudnick have since made detailed measure-
ments of the velocity (Kagiwada et al., 1969; Rudnick and Fraser, 1970;
Fraser, 1969) and of the attenuation (Fraser, 1969; Wang and Rudnick, 1972)
of third sound in unsaturated films for various temperatures, film thicknesses,
and frequencies. The above mentioned experiments as well as the early
theories are described in great detail in an excellent review article (Atkins and
Rudnick, 1970). Hence we will not go into them in great detail.

More recently, Ratnam and Mochel (1970a,b, 1974) have developed a new
system to investigate the properties of third sound by measuring the response
of a third sound resonator. The resonator is made by forming an unsaturated
helium film on the inner surface of a hollow cell made of two parallel plates
welded together at the edges.

In this article we shall present a detailed discussion of the present state
of our understanding of third sound. Section II is devoted to a quite detailed
development of the hydrodynamic theory of third sound in flat films. This is
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done because we feel that any physicist wishing to enter the field should have
a good understanding of the continuum theory of third sound. This is especi-
ally true since one of the things we look for in third sound is deviation from
continuum hydrodynamics. That section can nevertheless still be useful to
readers who are not interested in working through the detailed theoretical
considerations: They need read only the first two subsections, A and B,
omit subsections C-G, and go right on to the results of the theory, which are
described in Section III. Section IV describes experimental results to the
extent that they can be compared with the theoretical results of Section II1.
We have not attempted to give an exhaustive account of experimental
procedures, and we instead refer the reader to the review article by Atkins
and Rudnick (1970). In Section V we discuss the problem of surface roughness
of the substrate. Section VI is about third sound resonators—both theory and
experiments. Section VII is about mixed He®-He! films. Section VIII is
about the energy content of a third sound wave. Section IX discusses the
contribution of normal fluid motion to the attenuation of third sound. In
Section X we describe briefly some attempts to go beyond hydrodynamics in
describing third sound. That section, the last one in the article, is incomplete,
since work on a microscopic theory of third sound is still going on in several
places at this time.

In order to assist the reader, we have compiled a glossary of some of the
more important symbols and standard phrases that are used in this article.

II. The Theory of Third Sound in Flat Films

A. ELEMENTARY THEORY

An elementary discussion of third sound makes the enormously simpli-
fying assumptions that (a) there are no temperature variations in the helium
film, (b) there is no interaction between the film and its surroundings, (c) there
is no normal fluid motion in the film, (d) dissipative processes in the film are
unimportant and, (e) the properties of the film are completely constant in the
direction perpendicular to the plane of the film. As a consequence of these
assumptions, the hydrodynamic equations of superfluid motion in the film
reduce to an equation for the conservation of mass

Pt 6h/at = _hps avs:t/ax (1)

and an equation of motion for the superfluid velocity v, in a direction parallel
to the film

OV, |0t = —Bujox = —f Oh/ox, 2)
where
f=(op/oh)r. (3)

In these equations p; is the total mass density of the film, p; is the super-
fluid mass density, h(z, t) is the instantaneous thickness of the film (see
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IMAGINARY REFERENCE PLANE

ittt Y=y y
He VAPOR

T N yzhin) .
He FILM

7 suestRaTE 77 0 CC

Fie. 1. Schematic drawing of a third sound wave. The imaginary reference plane
at y = ¥, is placed outside the range of the substrate—helium forces, but y, is still much
less than the mean free path in the gas. From Bergman (1969), by permission of the
American Institute of Physics and Physical Review.

Fig. 1), vg(z, t) is the superfluid velocity, assumed to be entirely parallel to
the plane of the film, and p(z, t) is the chemical potential per unit mass of the
helium.
Equations (1) and (2) can be combined to give a wave equation
%k
h=nte 4
/o )
which describes third sound as an unattenuated wave propagating with a
velocity u; given by

U2 = kf’;—: . (5)

B. QuaLITATIVE DIscussioN OF THE DETAILED THEORY

Even this very simplified theory describes third sound rather well—
Eq. () is usually in good agreement with experiments. It does not explain,
however, the origin of the rather large attenuation that is observed experi-
mentally. In order to get a better theory which includes attenuation, and
also to understand why the simplified theory works so well, we will have to
reexamine and modify some of the drastic assumptions we have been making.

It is clear, for example, that contrary to assumption (a) of the previous
section, there will in fact be temperature variations in the film if assumption
(c) about the absence of normal fluid motion has any validity: The peaks of
the wave must then be associated with an increase of p, above its average
value and with a decrease of the entropy density S/V below its average value.
These variations will bring about a variation of the temperature as well. The
variations in temperature or entropy satisfy an equation of motion which was
ignored in the simplified treatment, but which should be included in a more
detailed theory. The temperature variations will also contribute to the
gradient of the chemical potential in Eq. (2).

The periodic variations of the temperature, as well as those of the
chemical potential u, will cause energy to flow from the film to its surroundings
(the helium gas and the substrate) and helium particles to evaporate into
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and condense from the gas phase. While these surface phenomena would be
of minor importance as far as bulk properties of helium are concerned, it
turns out that they are very important in the case we are considering where
all of the liquid helium is very near to the two surfaces of the film.

The importance of the temperature variations and of evaporation and
condensation phenomena in third sound was first realized by Atkins (1959).
The decisive role of heat flow to the surroundings of the film in determining
some of the properties of third sound was first realized by Bergman (1969).

The normal fluid motion in the film parallel to the surfaces is damped
because of the boundary condition that requires it to vanish at the substrate,
and the finite shear viscosity that is encountered when different layers of
helium slide past each other with different normal fluid velocities. When the
thickness of the film is much less than the viscous penetration depth, (x;/
2p, w)'?, this damping is very effective and vy, « vg;. The possibility that it
is still important in accounting for the attenuation of third sound was
considered by Pollack (1966a,b).

In the next subsection we will give a rather detailed treatment of the
theory of third sound based only on hydrodynamics. In this treatment we
will not make any of the assumptions made in the previous subsection. We
shall find that, although the simple theory given before is usually adequate
to give the velocity of third sound, a calculation of the attenuation requires a
careful consideration of all the interactions with the surrounding media.
The intrinsic dissipative processes of the liquid helium film—viscosity and
thermal conductance—still turn out to be unimportant.

Before closing this subsection, we will summarize qualitatively the
results of the detailed theory.

When the interactions of the helium film with its surroundings are taken
into account, we find that third sound is a phenomenon which is not confined
to the film: Along with the wave traveling in the film there are companion
waves in the adjoining substrate and gas. In the substrate this is simply a
thermal conduction wave in which only the temperature oscillates. In the
gas we have a combination of three waves: an ordinary acoustic wave, a
viscous wave, and a thermal wave. Each of the companion waves has its own
wave vector and propagates in a different direction, though always away from
the film. The wavefronts of these waves are drawn qualitatively in Figure 2.
The viscous and thermal waves travel nearly perpendicular to the film with
a wave vector whose real and imaginary parts are nearly equal, and are usually
greater than the third sound wave vector k;. Their amplitude decreases
exponentially as one moves away from the film. Nevertheless. the distance
that they penetrate into the gas and substrate is always much greater than
the thickness of the film. Whereas typical values for the penetration depth
are 0.003 cm for the viscous and thermal lengths in the gas, and 0.1 em for
the thermal length in the substrate, the film thickness is typically 15-500 A.

The acoustic wave travels nearly parallel to the film and, contrary to
what one might expect, its amplitude increases exponentially as one moves
away from the film in a perpendicular direction. This happens because the
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Fia. 2. Schematic drawing of the wavefronts of third sound and its companion
waves: a thermal wave in the substrate; a thermal, a viscous, and an acoustic wave in

the gas. The thermal and viscous waves travel nearly perpendicular to the film. The
acoustic wave travels nearly parallel to the film.

attenuation of third sound is much larger than the intrinsic attenuation of
the acoustic wave in the gas. The acoustic wave at a point further away from
the film thus reflects the third sound intensity at an earlier point in the film,
where it was greater. The characteristic perpendicular distance over which
the acoustic mode increases is about equal to the third sound wavelength.
But since it travels nearly parallel to the film it must cover a large distance
(i.e. until it is significantly attenuated) before it can get that far away from the
film.

While third sound is thus seen to penetrate rather far into the sur-
roundings of the film, most of the energy of the wave resides within the film,
in the form of kinetic energy of the superfluid flow and potential energy in the
force field of the substrate in equal amounts. The importance of the companion
waves is that they supply most of the attenuation of third sound. It turns
out that for thin films (the precise meaning of thin and thick films in this
context will be defined in Section III, A) the attenuation is due to the
excitation of thermal waves in the substrate and the gas. Energy is lost by
being radiated from the film in the form of thermal waves. This energy is
eventually transformed into an increase of the total entropy by the dissipative
processes of thermal conduction in the gas and substrate and the Kapitza
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resistance at the film-substrate interface. For thick films (the precise meaning
of this will also be defined in Section III,A) the important dissipative process
is evaporation and condensation of helium atoms between the film and the
gas.

C. LiNEARIZED EQUATIONS OF MOTION FOR A SUPERFLUID FILM

The hydrodynamic theory of third sound in superfluid helium films
starts out from the ordinary two-fluid hydrodynamic equations of bulk
superfluid helium in linearized form (e.g., see Khalatnikov, 1965, p. 66):

pr+divd=0 (6)
of, oP @ ov,, v, 2 )

ERES E{"‘[E ow, 30w V“]
8Ly v — pove) + 8y Ly div v ™
Vo Vi = VL divid — pev,) + & div v,] (8)
(0[0t)(peSe) + div (peSe vy — (k/ T)VT) =0 (9)
curl vy =0, (10)

where

pt=ps+ pn> (11)
J=ps ¥+ pa Vs (12)

We look for a solution of these equations which describes a wave with a
frequency w, traveling in the positive x-direction with a (generally complex)
wave vector k. All the dynamic variables of the film thus have the form

Tf — T _+_ Tr'e—lwti»ikz, (13)
where
wlk = c, (14)

defines the (complex) velocity of third sound, c¢;. As defined up to now, our
problem is essentially a two-dimensional one, since nothing happens in the
z-direction. We will consequently ignore the z-coordinate and the z-com-
ponents of all vectors throughout the rest of our discussion.

We first analyze these equations in the zero frequency limit. In that
case, third sound reduces to a dc superfluid flow. Hence all velocity compon-
ents except for v,, must vanish as w —0, and we may write

Vgy ~ Wg; Vyy ~ W, Vpy ~ Wy, . (15)

Looking at Eq. (7) (the Navier-Stokes equation) in this limit, we can clearly
simplify its z-component to read

Ps 755: + (8P/8x) = nf(azvnz/ayz)' (16)
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We will now write the z-component of Eq. (8) (the equation of motion for
the superfluid velocity) in the same limit, using also the approximation of
neglecting the temperature gradient which, as we shall see in Sections IT1,B
and C, is at least a good first approximation. We thus get

op 10P
?)szz—-a;:—,;%. (17)
Substituting this in Eq. (16) we immediately get
. %0y
Pn¥ss = —n; ay;‘ (18)
Finally, Eq. (10) together with (15) leads us to the result
Ovs, Ovg, .
By~ m w?v,, ~ 0, (19)

which means that v, is constant across the film.
We now use (13) to calculate v, , and integrate Eq. (18) across the thick-
ness of the film to get
vy,
oy

ovy,
v oy

_twpy
R Nt
But at the free surface y =% we have to satisfy a boundary condition to

make the shear force vanish (the shear force exerted by the gas on the other
side is negligible, as we will show later in Sections 111, B and C)

(y - h)vsz . (20)

OV, [0y |, = Ovy, 0|, = ikvy, ~ w,,. (21)

Thus, dv,,/dy is of higher order in w at y = % than elsewhere, and it can be
neglected there. Another integration then leads to the desired result

iwpy b2 h?
vn:(y:h) == L?)sz: _i—gvsz’ (22)
Nt Iy
where
27]r 1/2
e

is the viscous penetration depth for liquid helium. Its values range from
I,=2x10"*cmat T=19K, w=10*sec ' tol,=7x 103 cm at T =
1.3°K, w =102 sec~1. The thickest films in which third sound has been
observed are 500 A thick. This is still 40 times less than the smaller l,.
Hence we will in our further discussions always neglect v,, as compared to
Vgz -

As for the two perpendicular velocities vg,, vy, , it seems fairly obvious
that in the limit w —0 they cannot depend on either 7, {;, {,, {5, or «;.
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The only dimensionless constant one has in the theory that is proportional
to w but independent of any of the dissipative coefficients is

hk = hw/cy.

Remembering that the wave vector ¥ must always be accompanied by ¢, we
may write

Vgy X thkvg; Vyy = thkvg, . (24)

These equalities are expected to hold as far as the order of magnitude is
concerned.

Having thus determined v,,, vy, , v,, in terms of v,, we do not need
Eq. (7) (the Navier Stokes equation) any longer and we will base our sub-
sequent considerations on Egs. (6) and (8)—(10) alone.

We note however that merely to say that, e.g., v,,< vy, is not enough in
order to justify neglecting v, altogether. The important question is whether
v,, makes any sizable contribution to the dissipative processes which govern
the attenuation of third sound. We will return to this question in Section IX.

D. AvERAGING OF THE EQUATIONS ACROSS THE FiLm

Equations (6) and (8)-(10) and the functions appearing therein still
depend on the y-coordinate. But there is no practical way to measure any of
these dependences. In practice what is always measured is some quantity
that is averaged across the film and propagates in the z-direction. We
accordingly try to eliminate any explicit reference to y in these equations
by integrating them from y =0 to y =A. This type of procedure was first
used by Sanikidze et al. (1967) in the treatment of fourth sound. We will
follow and slightly simplify the discussion given by Bergman (1969) for the
third sound equations.

Because the velocity of third sound is much less than the velocity of
first sound in helium, and because all the other velocities (i.e. v, v,) are
certainly much less than that for small amplitude waves, we may assume
that the liquid helium is incompressible. Equation (6) thus becomes

divd =0. (25)

Integrating this over y we find
0| ay (e ) 2 | T, h 26
- o y ax + ay - ax o yPs(y) + y(x’ )’ ( )

where we have ignored nonlinear terms in the oscillating amplitudes, as well
as the y-dependence of v, which, according to Egs. (9) and (24), is given by

ov
5 2
ay = hk vsI‘ (27)
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We have also used the fact that
Jy@,y=0)=0, (28)

as well as the fact that v,,« vy, . There is, however, no need to assume that pg
is independent of y (its dependence on x is a second order term and thus may
be consistently ignored): We can define an average superfluid density

1
Ps E T d?/Ps(?/) (29)

in terms of which Eq. (26) becomes
Wy 2 L ) = (30)

We also note that the rate at which helium evaporates from the film into the
gas per unit area of surface, Jy, is connected to J (x, h) and the vertical
velocity of the liquid-gas interface % as follows:

Ju=J, k) — hpn, (31)

where py, is the liquid density at the interface. Consequently, Eq. (30) now
becomes

kPh+hPs 3 +JM— . (32)

We note at this point that mass conservation allows us to write an
alternative expression for Jy in terms of variables of the gas:

JM = [Pg(vgy - k)]y =yp* (33)

These variables are taken not at y = k but at an imaginary reference plane
y = Y. (see Fig. 1} which is far enough away from the film so that all quanti-
ties such as p, have their bulk values and are not influenced by the short
range potential exerted by the substrate on atoms of the gas. Since the mean

free path in the gas
3k,

e = peCre '

(34)

where ¢ is the velocity of sound in the gas and C,, is the constant pressure heat
capacity per unit mass, is at least 10~% em and thus much greater than the
range of these forces, a plane y =y, can be found where the gas is still in
equilibrium with the film.Inthisconnectionit has been pointed out by Rudnick
in a private communication that there is no other consistent way to describe
the equilibrium at the film—gas interface: Because the range of the substrate
potential is less than the mean free path, the gas atoms do not reach equilib-
rium within the potential in the sense that their velocity distribution is not
Maxwellian, and their pressure does not satisfy the barometric formula. The
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true situation is in fact at the other extreme, where one can neglect the
effect of the substrate potential on the gas and consider the bulk gas outside
the potential to be directly in equilibrium with the liquid film.

A similar treatment is now given to Eq. (9): We integrate it across the
thickness of the film, obtaining

0= Jhmdy (a(Pfo) + o(S¢vy,) ke 2T Kk, asz)

at dy T oy> T oa?
8 [r@ y ke T )@ R e 02T
=% J; peSe dy — puSely = h)h + [pf‘sfvny -7 W]o 1, d?/f ox2 "
(35)

This is further transformed as follows: We introduce an average film tempera-
ture T,

1
Tx) =7 Ldy Te(x, y), (36)
in terms of which the last term in (35) becomes
hic 02T,
T 37)

We express the entropy (as well as other thermodynamic quantities of the
film) as functions of 2 and 7T';. This leads to the following expression for the
first term of (35)

o (" ka B # 8 [n
a_tLPfod?/: ah OPfod?/+ fa—T_fLPfod?/

T
— hpu8 + hpCy 7‘ , (38)
where
1 /0 (*

is the partial (as distinet from average) entropy per unit mass of the film, i.e.
it is the rate at which the total entropy changes as more mass is added to the
film. As opposed to the average entropy of the film, which is always positive,
the partial entropy is sometimes negative, as shown by Fraser (1969) (see
also Atkins and Rudnick, 1970) following a suggestion by Bergman. This is
an indication of the fact that, as the film is made very thin, some order
(perhaps the superfluid order) is destroyed. The other new quantities in (38)
are the average heat capacity per unit mass at constant A

C*—T o " S;d
h=‘ﬁ'; an OPf £ &Y N’ (40)

the average mass density g;, and the ambient temperature 7.
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The second term and the term in square brackets in Eq. (35) represent
the heat fluxes that flow out of the film and into its surroundings. Energy
conservation at the film-substrate interface is expressed by

S. v _ita_Tt __KsubaTsub
PePsVny T 8y y=0_ T 8y

= —Jsub, (41)

y=0

where Jgy;, is the heat current flowing into the substrate. Energy conservation
at the film-gas interface is expressed by

oT
[P‘(Jy - kPr) + TPfo(vny - k) — K¢ Ef]yzh

0T,
= [(P‘ + T8e)pe(vey —h) — Ke™5 ] . (42)
Y lv=vr
By using mass conservation at this interface, i.e. equating (31) and (33), the
terms including p in (42) are seen to cancel. [In reality, the chemical potential
in the gas differs from that in the film, but that would be a second order
effect in (42).] We are thus left with an equality of heat flows:

Tp:S h T, =|Tp.8 h T,
Pt f(vny_ )_Kta—y y=h_ Pe g(vgy" )_Kg 3y veur

= TSy Jy +J,, (43)
g

where we have separated the total heat flow in the gas into a sum of a con-
vective flow T'S,Jy and a thermal conduction flow

. oT,
Jo= —k Y ly-ve (44)
If we now substitute (37), (38), (41), and (43) into (35), we obtain
_ s 2T,
hon TS + hpeCo Ty + TSy Iy + I + Jsup — hice 2= =0 | 4D

Subtracting from this Eq. (32) multiplied by T'S we get

i 0v,, T
o T L+ g+ Jow —hic 5 =0, (46)

ko CuTe — hp, TS

where

L=T(S, —8) (47)

is the latent heat of evaporation per unit mass from the film to the gas.
Dividing (46) by L and subtracting it from Eq. (32), we get another form
for this equation

TS?) Do 1o Jotdom MPTe

kPh+"Ps(1+7—: G T Lt I L
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In order to develop Eq. (8), we first rewrite its z-component in detail,
taking into account the fact that div J =0:

. op 0? vnz vy, 49
Vsz = ——+ C PfCa 8.’62 +ax 8y . ( )
On the right-hand side, one of the terms is
0%v,,
(L, — Ps L3) o2 = —k*{ — Ps {8)Vns
twpy b2
= S R — Lo (50)

where we have used (22). Comparing this with the left-hand side we find:

pn(Cl — Pt Ca)
N

(Cl — Pr Ca)(azvnz/axz)/ész = — h2k2~ (51)

The dimensionless number
hk = h|X = hofc,

is extremely small, being between 10~ and 102 in all cases. We do not have
any numerical information about {; or {5, but we do have rather good infor-
mation about 7., showing that its values lie between 10 and 20 uP for tem-
peratures in the range 1.1-2.1°K. We also have some information about ,
from attenuation measurements of first sound which indicate that it can be
up to 100 times greater than 7, (see Dransfeld et al., 1958). If we assume that
both p, {; and p, p¢ {5 are not much greater than {,, then the term 92%v,,/0x?
can be ignored in (49).
We integrate the remainder of Eq. (49) across the film to get

923 nz) 3# n
Usr Ay = ’“}sx = dy + (C — Pt Ca)ikvny . (62)
0 0 o 0
Comparing the last term with the left-hand side, and using (24), we find
(& — Pt Cs)ikvny/’wsx ~iw(f — Pt Ca)/632~ (63)
Again, having no better estimate for {; and {;, we assume
Pl (& — Pt {a) = L <107% P, (64)

and find that the ratio calculated in (53) is very small, being no larger than
10-3. We can therefore rewrite Eq. (52) in the form

Vs = _af‘bl’/ax’ (55)

where p, is now the chemical potential averaged across the film

1 h
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As before, we treat p, as a function of 2 and T,. We have already used one
of its partial derivatives, which we now redefine as

D
—) =f. 57
(%), = 1)
The other one is determined as follows: The increment of internal energy per
unit area of the film dE, is given by
dEy=T;dSa + pedMy,

where §, is entropy per unit area and M, is mass per unit area. Taking into
account the fact that one can write

dM , = py, dh,
and making a Legendre transformation we find
AE, —TSy) = —8,dT; + u; pn dh. (58)
Hence, assuming that py, is independent of T and recalling (39), we get

Ops 1 [0S, _
(ﬁ)h i (—5; .= —S. (59)
We can summarize (57) and (59) in the form

dp, = —8 dT, -+ fh, (60)

and use this to write (55) in the form

. oT, ,oh
vszzga—fa . (61)

The three equations we have obtained in this section, namely (32), (45)
[or one of its alternative forms (46), (48)], and (61) are the basic linearized
hydrodynamic equations for a thin superfluid helium film adsorbed upon
a flat solid substrate and in contact with helium vapor. They include all of
the existing interactions with these two neighboring media. They do not
include any intrinsic dissipative mechanisms except for the horizontal
thermal conductivity term —«, 32T,/d2? in (45) and in its alternative equa-
tions (46) and (48). All of the other dissipative terms, i.e. the various types of
viscous forces, were discarded in the process of setting up these equations
because we found that they were small. While this means that one can leave
them out when solving the equations to a lowest approximation, we have not
ruled out the possibility that they might make an important contribution to
more subtle features, such as the attenuation of third sound. This possibility
must be considered since, as we have seen in the introduction, the crudest
approximation, which neglects both the intrinsic dissipative mechanisms as
well as interactions with the surrounding media, leads to a zero attenuation.
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We will return to examine the possibility that %; contributes to the attenua-
tion in Section IX.

At this point we will summarize the conditions which must be satisfied
for the analysis of this section to hold:

1. hk « 1: h is much less than the wavelength of third sound.

2. hjl,<« 1: k is much less than the viscous penetration depth in the film.

3. w(ly —psla)es®« 1.

Of these, the first two are known to hold very well in all the experiments
which have been performed on third sound. The last one is not known for lack
of information about {; and {3, but is estimated to hold from the assumption
that pe {; = p2ls < Lp-

The three hydrodynamic equations of motion that we derived in this
section fork [Eq.(32)], for T'; [Eq. (46)], and for v, [Eq. (61)], include also some
variables of the substrate and the gas: Jy, Jaup, J, . In order to solve these
equations, we must first find explicit expressions for these quantities or some
more equations of motion. We do this in the next two subsections, where we
discuss the hydrodynamic equations for the substrate and the gas and
transport processes between them and the film.

E. EQuaTioN OF MOTION FOR THE SUBSTRATE

Consideration of the substrate is necessary in order to obtain an explicit
expression for Jgy;, . Hydrodynamically speaking, the substrate is a relatively
simple system, with only the temperature variations to worry about. These
satisfy a diffusion type equation

Psub Osub Tsub = Ksup Vszub s (62)

whose solution will also depend on the boundary conditions at the film—
substrate interface, and on the other side of the substrate.

Ordinarily in hydrodynamics or in thermal conduction theory we would
take Tsup == T'; at the interface. But in superfluid helium we know that this
is usually not a good approximation, due both to the the very efficient heat
conducting processes of the superfluid and to the relatively high value of the
thermal boundary resistance between helium and all solids, caused by the
large mismatch in phonon velocities. We therefore allow for a discontinuity in
temperature at the interface and write

Jsub = Ksub 6Tsub/6yl y=0— Bl(Tf - Tsub) l y=0 (63)

for the boundary condition. 1/B, is the well known Kapitza resistance. If the
other side of the substrate is sufficiently far away (compared to the thermal
penetration depth, shortly to be defined), then we may take the other
boundary condition to be that the wave travels away from the film without
any reflections from the far side. We can therefore write the solution in the
form

Tsub =T + T/sub eXP( _iwt + "ka + Jsub ?/)’ (64)
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where ¢qu), satisfies the following dispersion equation

28“ 1 isu Cu
u:__f’_w;lmqmdl (65)

w? ¢ © Kgyy
In this equation, the second term on the right-hand side usually dominates
and in that case we have
" C " 1/2
Gsun = e-i"/4(p——s S "w) (66)
Ksup

The real (and the imaginary) part of ¢, is then equal to the reciprocal
thermal penetration depth 1/l , where

2 u 1/2
loup = (—’i"—) (67)

Psub C'sub w

As long as kg lsup , Where kg, is the thickness of the substrate, there will be
no reflections to worry about.

If we now substitute (64) into the other boundary condition (63), we
can solve for Ty in terms of T';. We can then write

Joww=B(T; —T), (68)

where
1 1 1

E - Fl + Ksub Jsub

(69)

is an effective Kapitza resistance.

We have not included in our discussion the possibility of exciting an
acoustic wave in the substrate. The coupling between third sound and such
a wave is expected to be quite negligible since the pressure oscillations in
the film are very small. Though we have not included this acoustic wave in our
analysis, we can learn by analogy with the acoustic mode in the gas (see
Sections II,B and III) that it will make a negligible contribution to the
properties of third sound. This is all the more so for the acoustic mode in the
substrate because there is less interaction with it than with the acoustic
mode in the gas, and because the velocity mismatch with third sound is even
greater.

F. EQuaTions oF MOTION FOR THE GAS

To calculate J, and Jy; is far more complicated, because the hydrodyna-
mic equations of the gas are more numerous and they have not one but
three distinct wave-type solutions similar to (64), which are excited in the gas
when a third sound wave travels in the film. The equations, linearized but
including all of the dissipative mechanisms, are

pe + pe divvy, =0, (70)
PeVe + VP — 1, Viv, — (L + ine)V div vg =0, (71)
pe TSg — g VT, =0, (72)
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plus the ideal gas equation of state
P=p,kgTe/m. (73)

The boundary condition away from the film, if the gas is thick enough, will
again be that the wave travels away from the film. But the boundary condi-
tion at the gas—film interface is more complicated than before: Whereas
before only energy could be transported across the film—substrate interface
{(in the form of heat), we now have to consider both energy and mass trans-
port. These will be the result of small discontinuities in both 7" and u across
the interface. There is also the added complication that the interface is moving
with velocity 4 relative to the gas far away. We will now calculate formulas
for these transport processes, analogous to Eq. (63), in terms of T, — T, and
e — Mg, by using simple kinetic theory for the gas.

We do this by starting from the simple kinetic theory formulas for
the mass and energy fluxes J® and J&, respectively, that hit the wall of a
vessel containing a classical ideal gas in equilibrium but moving away from
the wall with a velocity u,:

m 1/2 1
g — - _
Iut =P g(zka Tg) g P (74)
ks T\Y2 5
T = 2Pg( 277'm) — 2 Peu,. (75)

The first term on the right-hand side of these equations is the usual formula
for a stationary gas. The second term takes into account the fact that the gas
is assumed to be moving away from the wall.

For the analogous fluxes in the film phase no such simple treatment is
possible. Since we assume, however, that local equilibrium holds everywhere
in the film, we calculate instead the fluxes in the gas phase that would be in
equilibrium (locally) with the film. These are equal to the corresponding
fluxes in the film if we assume that there are no reflections of gas particles
striking the interface. For a film in equilibrium with gas at temperature T,
pressure P, and density p,;, but moving at a velocity u, towards the wall,
we thus find for the fluxes of mass and energy that come out of the film

m  \Y2 1
It = Pgr(m) + 3 Per e (76)
ks T\Y2 5
Jof = 2ng(%) + 1 Pertte. (77)

The net mass and energy fluxes flowing from the film and into the gas,
Jy and Jg respectively, are obtained by subtracting (74) and (75) from (76)
and (77), remembering that u, and u; are in fact determined by Jy:

Pete =, (78)
PolUs=d . (79)
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We thus obtain

m \1/2 P
(1 _ ;;) Ty = 2(2,710 T) [pgf —Py— 5 (T — Tg)] (80)

5k T kg T\'/2 9P _

Je=5"— M—é(%—m) l:Pg[_Pg-f_éTy(Tf_Tg) » (81
where we have only kept terms that are linear in Ty — T, or P, — P,, and
written 7', P for the average temperature and pressure. Since P, is not a
direct property of the film, a more convenient form for these equations is in

terms of the discontinuity in the chemical potential p; — pg:

m \1/2 kg 7
(=) n=onfi) [pmt (s -52) @ 1],

(82)
5ky T
Jo=J5— 3= Jy
1 ks T\1/2 9k

where J is the heat flux into the gas. We can now use the thermodynamic
equations

du; = —SdT. + fdh (84)
1
dpg = —S dT, + — dPg

ky T dpg
Pe
to expand both u; and . in (82) and (83) around the average . We thus get

p amA (L ky\ . ks ks T
(1 g)JM““kT[('__r__B T — 32 Ty — p‘—f—fh (86)

= (_S + ) dTg +— (85)

Pn B 2m m
L 9k , Tks , kgT pg
Jg——A[(T 2m) T+ 5T — +Jh] (87)
where
A = Lp (kg T|2mm)V/2, (88)

We would like to point out that our treatment is by no means faultless.
One glaring example is found if one writes J; and —J in terms of

AQT)=(1/Tg) — (1Ty), (89)
A/ T) = (pe/ Ts) — (pef To). (90)
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Neglecting p,/pn compared to 1, these become

m 2] u kT 1
_JM = 2pg T(m) [A _f —2 m A T:I (91)
m \V2[ 9kT pu 11kyT 1
JE=2PST(W) [”ZWAT+77AT]' (92)

We then note that the rate of increase of entropy per unit area due to the
transport of mass and energy through the interface is given by

S/A=Jg  AQUT) —Jyu- Ap/T). (93)

Onsager’s relations then require that the coefficient of A(u/T) in Jg be
equal to the coefficient of A(1/T') in —Jy;. This is clearly not the case in
(91) and (92). Nevertheless, the quadratic expression for S in terms of A(1/T)
and A(u/T) that is obtained when (91) and (92) are substituted in (93) is
positive definite. The violation of Onsager’s relations means that we have
erred in some of the assumptions made in calculating Jy and Jg. There is
clearly room here for work to investigate the properties of & liquid gas inter-
face under conditions where simple continuity of temperature, pressure, and
‘chemical potential does not hold.

If we just substituted (68), (86), and (87) into the three equations for the
film, (32), (46), and (61), our troubles would not be over: instead of the
unknown quantities Jy, J,, and Jgy;, we would now have the unknown
quantities 7';’ and p;’ in addition to the film variables. What we must do is
to enlarge our system of equations so as to include also those equations that
are implied by the film-gas boundary conditions, i.e.

I = PelVgy _h)ly=yr’ (94)
Jg= —Kg 3Tg/3y| y=yr> (95)
Vnz = vle y=yr* (96)

The last condition is the one usually assumed to hold between velocities at
any boundary of superfluid helium, including a liquid-gas interface. It has
been verified experimentally for a gas-liquid helium interface by Osborne
(1962) in a direct experiment, and by Henkel et al. (1968) indirectly, by the
observation of persistent currents in a helium film in contact with helium gas.
We have not included a boundary condition on the pressure or on the tangen-
tial forces acting on the interface, and this omission requires some discussion.

In conventional treatments of an interface between a liquid and its
own vapor, it is always assumed that the temperature, the pressure, and the
shearing stresses are continuous across the interface. The mass and energy
currents are then determined by the bulk properties of the two media. This is
not always good enough for our situation, even though there are cases where
the discontinuities are very small. In order to investigate what happens in all
cases we had to calculate Jy and Jg microscopically without assuming local
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equilibrium across the interface. These direct calculations replace the assump-
tions of continuous T’ and u. The pressure and the shear stress exerted on the
interface by the helium film are not exactly calculable within the framework
of our rather primitive theory for the film. However, since we have already
assumed that they have no influence on the values of J; and J , we may also
consistently assume that they simply adjust themselves so as to equal the
corresponding stresses exerted by the gas, and then stop concerning ourselves
with them.

The new equations, (94)-(96), also include two new gas variables: v,
and v,,. What must now be done is to express all four gas variables T,
Pe’> Ygr, and v, in terms of independent amplitudes representing the inde-
pendent wave modes of the gas. These are the solutions of (70)-(73) that have
the form

g-iotFiks—ay. Tm g < 0. (97)

There are three such modes: an acoustic mode M (corresponding to ordinary
sound waves), a viscous mode M, and a thermal mode M,. The appropriate
dispersion equations for ¢ are

. 1  Quis 1 ?:pg 1/2
M. o == (032 — 70 , (98)
1 gy 1 ip C\2
M oz @ (5? K] (99)
Lo 1 —— Qac 1 1 1/2
M3.608=—J_(682——62 , (100}
Im 1/60i<0 for 1=1,2, 3, (101)

where ¢ is the velocity of sound in the gas. In (99) and (100) we have neglected
terms of the order

K w]pg Cp ¢ or e w/pg € (102)
compared to 1, and we shall continue to do this throughout.

Equation (101), which selects one of the two square roots in each of
Egs. (98)-(100), expresses the requirement that all the modes in the gas
have wave vectors whose real parts point away from the film. Actually, it is
the group velocity which must always point away from the film, but this too

is satisfied by the solutions we have selected. In all the interesting cases, we
find that

Im 1/es? « pwmn, and pe Colwig
Re 1/c;? is at most not much greater than either p,/wn, or pgCp/wk,,
Im 1/c,2>» Im 1/e?,
and
Re 1/c32 > Re 1/c2.
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It follows that
Re qy4s and Re ¢, >0,
but
Re ¢, < 0.
This means that in M, and M, the amplitude decreases exponentially as

one moves away from the film in the y-direction, the characteristic distances
being of the order of the viscous penetration depth of the gas

ne |2
los = (2p “w) (102a)
€
and the thermal penetration depth of the gas
K 1/2
b = (2P = w) : (102b)
P

respectively. The real part of the wave vector in these modes is likewise of
the same order as 1/ly;5 and 1/l,;, so that these waves have a very short wave-
length, and decay after traveling at most only a few wavelengths.

In the acoustic mode M;, the amplitude increases exponentially as one
moves away from the film. The characteristic distance is of the order of
1/k, i.e. the wavelength of third sound. This increase does not continue
indefinitely, however. It stops as soon as one gets to a point where the begin.-
ning of the acoustic wave train has just arrived. Moreover, it can easily be
shown from (100) that at any point moving with the wavefronts of the acous-
tic mode the amplitude is constant: Its increase in the y-direction, deter-
mined by Re 1ljcqg, is exactly canceled by its decrease in the z-direction,
determined by Im 1/c;. This happens because the attenuation of the acoustic
mode is due to small terms such as (102), which we have neglected.

Choosing for the three independent amplitudes of the gas T, , Ty; (the
temperature amplitudes of the thermal and the acoustic mode, respectively),
and v, , we find the following expressions for the various gas quantities that
appear in our equations, all of them at y =y,.:

pe _ Ter, 1 Te

0. T Ty—1 T (103)
v_zc_v__K_w(c__c_)Z_
C3 c3 ¢35 pgCpca®\Coz ©¢3) T
tTC, [ ca 601) Tes
+ 5 (6—03—63 =, (104)
oT T, T
— kg ayg:ng(?f+_%iaa)’ (105)

where

y=0,/C, . (106)



22 David J. Bergman

In the following discussion we will follow Bergman (1971) in assuming
that

Vezly=y, =0 (107)
instead of (96) and (22). This has the advantage of basing our discussion on
a published calculation. This is in any case expected to be a good approxima-
tion since, according to (22), v,, « v,,. We have in fact also solved the equa-

tions of the film using (96), and found that, indeed, there are no significant
changes in the result.

G. Tue ComBINED EQUATIONS OF THIRD SOUND

If we use (103)-(105), (94), (95), (107), and (13) and its analogs to sub-
stitute in (32), (48), (61), (86), and (87), we obtain the following system of
equations in the corresponding order:

(1_&)5_,,_&(L_°ﬂ)T_ez
pu/ R pnCp \Co2 €%/ T
__P_gTCp 1 cor) T'es
pn hw

=0,  (l08)

2
Coz €3

% TS T (iB  _ ik hw\ T
(1 Tz (T e ) 7

ikgT (1 Toy 1 T\
hpy L (602 T '"co3 T) 0, (109)
hips I T8 p, T
Cazphh_v_gz_ai_o’ (110)
m thw (py b the (py
e G| 5w (B ):
2L Ty T, y+1Tg
+ (m—l) TrT y—ir % M
m b L NTy (9 20T\ Te,
Mt t (kBT/m_§) T (§+ aPcoz)T
7 1 2w\ Teg
+ (E—y—_ﬁ apcoa)7= )
where
0= Folp)Oslea); @ = (ky T/2mm)!l2 (113)

These equations are identical to the system (23) of Bergman (1971). Equations
(108)—(112) are a system of five linear, homogeneous equations for the five
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amplitudes &', v, T, Ty, and T5. The determinant of this system, when
set equal to zero, gives a very complicated dispersion equation for ¢; in terms
of w. The exact dispersion equation has been calculated by Bergman (1971).
There one can also find a discussion of the possible approximations that can
be made to simplify it.

III. The Properties of Third Sound in Flat Films— Theory

A. GenErAL RESuLts

A simple approximate form for the dispersion equation, which seems to
be adequate over the entire range of experiments that have been performed,

)
Yao _ 9 ko T icopy TS P_)( Z’§)]
632_{1+[1— — (1—Ph 1+
Tf [iB 2/ PeCh kg 2
e (2 )
9 ko T iwpy (TS)? P_)( E) -
s R @) -0 T) | e

u3o = hf (Bs/pn)[1 + (TS| L)T*. (115)

where

For this approximation to hold it is only necessary that
kgw[pCpeea <1, (116)
and that

kg w[pgOpcs® and  7g w/pgcs® (117)

be at most not much greater than 1.
Even simpler approximate dispersion equations are obtained in two
special cases: (a) the limit of very thin films or low frequencies, which is

characterized by
Kg w

Mg @
«1 and «< 1. (118)
P Cyp c5* 2

PeCs

(b) The region where the thickness or the frequency are large enough so that

Kg

w Ng W
_"e® <1 and >1, 119
PsCpcs® PgCa® (119)
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but still small enough for our whole treatment to be valid (i.e. (102), (116),
and (117) must be satisfied). For these two cases, which we will call “thin
films ” and * thick films,” respectively, the dispersion equation becomes

1_‘& =14 L%f ein/s {(M)llz
Pn

¢35 w

-1/2 -1
o (Preee) o 2] ) (120)

w 1
and

2 ; Q\ 2 gy -2 -1
a0 _ [ D ks Ticopy (T8 Pe)(1 4. 28
X [l 32 m Af \ L 1 Pn 1+ L ) (121)
These equations all lead to a complex value for ¢;. Hence we can derive not
only the velocity of third sound ug, but the coefficient of attenuation « as

well:
uz = 1/Re(l/ecs) = ugo/Re(ugo/cs), (122)

a = 2w Im(1/c5) = (2w/uge) Im(ugo/cs)- (123)

In many cases, (122) leads to results which are not very different from
those of Eq. (5) of the elementary theory, because both 7'S/L and the second
term on the right-hand side of (120) or (121) are small compared to 1. For
thick films, where S is equal to the bulk entropy per unit mass of liquid
helium Sy, , and L is equal to the latent heat of bulk helium L, ;. , TSy, /
Ly 1s an increasing function of T'. Typical values are

TSpuik/Lyune =0.081  for T =2°K,
TSbu!k/Lbulk =0.013 for T =15K.

The second term on the right-hand side of (120) becomes large when
either A or w are very small. In that case it leads not only to changes in u,
but also to some dispersion, with #; an increasing function of w. In Fig. 3
we have plotted the ratio ug/ug, versus b for thin films at two different
frequencies. We should point out that u; is the phase velocity of third sound,
whereas some experiments (i.e., the time of flight experiments of Rudnick’s
group—Rudnick et al., 1968; Kagiwada et al., 1969; Rudnick and Fraser,
1970; Fraser, 1969) measure the group velocity. The region of thicknesses
where ug/ugo deviates seriously from 1 is also where the dispersion becomes
appreciable, and it works in such a way that it cancels much of the deviation.
Other techniques of measurement, such as the third sound resonators used by
Ratman and Mochel (1970a,b, 1972), measure the phase velocity and they
should be able to detect this dispersion.

For sufficiently thick films or high frequencies ug/us, will again deviate
from 1 as well as exhibit dispersion. This will occur when the second term
on the right-hand side of (121) is large. Here again u3/u3, will be an increasing
function of both @ and %, but the dispersion will now serve to increase the
deviation in the expression for the group velocity.
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Fic. 3. Plot of usfug, versus the film thickness for thin films at 7" = 1.5°K and
frequencies of 1 kHz and 5 kHz. From Bergman, (1969}, by permission of the American
Institute of Physics and Physical Review. [Note: Since this article was written, Rudnick
and his co-workers decided to revise the value of  (the coefficient of the Van der Waals
potential) that they use to calculate the thickness of their films (Scholtz ef al., 1974).
This leads to a reduction of all their film thicknesses by a factor .677. The new value of o
was obtained from ultrasonic interferometric measurements of the thickness of helium
films (Sabisky and Anderson, 1973a,b). Since all the thicknesses displayed in Figs. 3, 4,
8, 9, 11 were calculated using the old value of «, they should now all be corrected by
multiplying by this factor .677.]

Another point to remember is that u; can deviate from the value given
by Eq. (5) also because of p; being different from the bulk value pg py -
This effect does not appear in the ratio ug/us,, which is independent of g, .
We will discuss this effect later in Section X,A.

Equation (123) always leads to interesting results, since the simple theory
of Section I1,A gave no attenuation at all. In Fig. 4 we plot the results of a
typical calculation of the attenuation coefficient o versus A, as derived
from Egs. (114), (120), and (121) and from a numerical solution of the exact
dispersion equation derived by Bergman (1971). In this calculation we have
taken pg = pg puix » Which will turn out to be not so for the small thicknesses.
(In practice it would be preferable to plot «ug, which is independent of g,
but from Fig. 4 one can get a clearer picture of the order of magnitude of «.)
From Fig. 4 it is clear that for most values of A either (120) or (121) (i.e. the
equation that gives the larger value for «) gives a sufficiently precise value for
o, (114) being required only in a small transition region. Even there, a simple
sum of the values obtained from (120) and (121) is fairly accurate. As for
(114), it gives results which are indistinguishable (in the figure) from the
numerical results, the largest difference being 2%, and occuring near the
minimum in the transition region.
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Fic. 4. Attenuation coefficient « versus film thickness & for T' = 1.3°K. The two
solid lines are the results of a numerical solution of the third sound equations at frequen-
cies of 1 kHz and 5 kHz. They also represent, to within the accuracy of the drawing, the
results calculated from Eq. (114). The two dashed lines are the result of the approximate
equations (120) and (121). For thick films {not too thick though) a is proportional to
w?ht'2, while for thin films (again, not too thin) & is proportional to w?!/? and also,
approximately, to A~ 5/2, From Bergman (1971), by permission of the American Institute
of Physics and Physical Review. See note in caption to Fig. 3.

In the region of thick films shown in Fig. 4 and in most of the region of
thin films (as long as the attenuation over one wavelength is sufficiently
small), « has a simple dependence on both the thickness and the frequency:

o ~ w'2h=5%/2  for thin films, (124)
o ~ w?h!/? for thick films. (125)

The strong dependence on k results mostly from the presence of the substrate-
helium force f both explicitly and implicitly, i.e. in w%,q.
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Not all of the physical processes we took into account in setting up the
equations of motion in fact contribute to these results. In order to see which
of them are important we will write down the solution for the various oscil-
lating quantities in the two limits (118) and (119). We will also write down
simplified equations of motion for the two limits that will reproduce the
dispersion equations (120) and (121).

B. Tain Froms

For the thin film case the physical quantities which take part in the
third sound wave are related to each other as follows

ve:  Hf T8\ v

o o3 (1 +T) % (126)
T, W
T-"I% (127)

Tg'—Tf'__ih'wphl—pg/ph _T__ + ho
T 164 1+ TS/L\ L pL2 Pe®n

C, k,\ 12 4L 14 TS/L
a/a [PepKe _
+( w ) (1 kBT/ml—pg/ph)]}’ (128)

Tes kK wegs py 1 TS  pe T8
e e (U Y [ it
T TC, pgl+ TS/L L " py L

T WAL L TS
+p iz[ + phCh +em/4(” w") (1_TC (1+ ))]} (129)

T C 1/2
{5 (-2 [ pa o (LT o

Pn w

o= e~ 4w py O /2Ty, (131)
e — be = (8¢ —¥hafm)(Ty’ — T¢) + (i f TIAL)™4(p, Cy gfeo)1',
(132)
P = pr — peq = Kf1L + (TS/L)], (133)
Tiw — Ty = —Jup/ By = —(B|B)T,'. (134)
Some consequences follow immediately from these equations:

T, — T/« T/, (135)

Be — B L e (136)
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so that in fact the temperature and the chemical potential of the gas and the
film follow each other closely at the interface. On the other hand, Ty, — T
is not much smaller than 7. It is also evident that

Tes < T, (137)

so that most of the temperature variations in the gas are due to the thermal
mode. However, v, has comparable contributions from both the thermal and
the acoustic mode. Similarly, v,,, although it vanishes by assumption, is
made up of mutually cancelling contributions from both the acoustic and
the viscous modes. We have summarized the main contributors to various
gas quantities in Table I. This table shows that all three modes of the gas

TasrE I

PriNcIPAL CONTRIBUTORS TO VARIOUS GAs

VARIABLES®
Gas variable Principal contributing modes
T, p, 6T|oy M,
Vy My, My
Vg M,, M,

¢ From Bergman (1969), by permission of the
American Institute of Physics and Physical Review.

must be excited in order to satisfy the boundary conditions. Nevertheless,
not all of these modes make a significant contribution to the dispersion
equation for third sound. ¥From Eq. (120) it is clear that the right-hand side
depends only on the two heat fluxes J, and Jg,,, and these are connected
mainly with the thermal wave modes of the gas (see Table I) and the sub-
strate.

We also note that, from (130) and (33), we get that
Vgy = (J/pg) + 5 < —(pu/pe)h. (138)
We also note that in the mode M; (the acoustic mode)
Vgas = Vgys = Uy (139)

that in the mode M, (the viscous mode)

Vgz1 = —Vgz3>
(140)
Qv1s> Qac = k?
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and that therefore we can estimate the tangential shear force exerted by the
gas on the surface of the film by

Ovy,  Ovg,
e oy  or

= ng(QVls - ik)vgy<< Mg dvis % k

Yy=yr 4

w 1/2
~ (p ij) phawr, . (141)
g

This must be equal to the shear force exerted on the interface fom the other
side

"]r(avnz/ay - avny/ax) l y=h- (142)
If we rewrite Eq. (20) in the form
nt(avnx/ayl v avm:/ayl n = an w(y — h)vsz s (143)

we can easily see by comparing the right-hand side of (141) and (143) that,
except when y = A, (142) is much less than the right-hand side of (143). We
can therefore add (142) to the left-hand side of (143) without changing any-
thing. This is equivalent to replacing ov,,/dy by dv,,/éx at y = h, as we did in
(21) without the proper justification.

With the knowledge we now have, we can set up a simplified system of
equations which will have (120) as their exact dispersion equation: These are
Eqs. (109) and (110) and p; = u, . In these equations we set

Ch=ty=dy=J, =T,y =0, (144)
Tpo=T, =T, (145)

We thus get the following system

4 TS T [iB peCo e\ 2] T
I —_ = — | — infle {LE7PE f_

h hoy w w
hfps B TS ps Ty
cazphz—v—E;‘?—O, (147)
fi+ L T‘ =0. (148)

The first of these equations, (146), depends on the nonreflecting boundary
conditions we have assumed to hold at the far ends of both the substrate and
the gas. Since we will later apply this theory to situations where the gas and
substrate are not infinite and where there are reflections, we rewrite it in a
more general form that follows directly from Eq. (48) if we make the assump-
tions (144) and (145):

% T3 Jo+Joun
I—(1+T)”+W_O’ (149)
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where
Jg= —kg 0Tg[0Y]y oy, (150)
and
JsubEKsub aT,sub/a?/1y=0 (151)

have to be calculated taking into account only the thermal modes of the gas
and substrate which must however satisfy the correct boundary conditions.

Note added in proof: It has been pointed out by Scholtz et al. (1974) that
for the thinnest films used in experiments (i.e., films approaching a total
thickness of two atomic layers) the third-sound velocity is close enough to
the first-sound velocity in liquid helium so that compressibility corrections
become non-negligible. Under these conditions the value we obtained for 1/c,?
should be multiplied by a factor

- 2
u
e (G), =1 B

This lowers the calculated velocity u; by as much as 8%, for the thinnest
films and considerably improves the agreement with experiment.

C. Tuick Firus

For the thick film case, the amplitudes of oscillating physical quantities
are related to each other as follows:

v _pn () T 152
03 —’-)s + L h ’ ( )
Ty hf 1 W
T T T LJgk (153)
T, —T, . 'Lwh'ph@ 1 — pe/pn (154)
T 164 L 14+T§/L°
Tos _ Wees pn_ 1 TS _pe(y T8 (155)
T TC legl—f—TS/L Pn L))
Iy = th'wp(TS|L)/(1 + TS|L), (156)
o, Pn TS|L Ps) Pn
vy, = th'w = | ——— & —22h, 157
o T Pe (1 +T§/L  py, Pe (157)
_ kgwTy twp, TS Pe T8\ -1
Jg - Co2 [1 + 16Af J.IO 1 — P 1 + ’ (158)
B — pg = (Sg — $kg/mN( T — TY'), (159)
e ~-h'f(l‘f‘ J10)9 (160)

T’sub e Tf, = _(B/Bl)Tf’9 (161)
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where

JIOE[1_3M%§(1—&)(1+%§)~1]-1, (162)

32 m Af L Pn
_ 1 _ %010z TKg W €03 Co1003
Si=1 c4® pe o T (002 % ) ’ (163)

Some consequences of these equations are:

(a) T, — T, is not small compared to T,'. All three quantities 7',
T, ,and T, — T, are comparable.

(b) Toe« T, so that again most of the temperature variations in the
gas are due to the thermal mode.

(¢) pg — u¢ is comparable to u,’.

(d) In the expression (82) for Jy the contributions of Ap = p, — u, and
of AT = T, — T, are comparable to the final result.

(e) In the expression (83) for J, the contributions of Ay and AT separa-
tely are much greater than the final result. These two terms in J, thus nearly
cancel each other.

(f) Because of (157), we can repeat the argument following Eq. (138) and
again justify the assumption that was made in Eq. (21).

We see that in many respects the situation is quite different from the
one prevailing in the thin film regime, where p,, T, followed p,, T, very
closely.

From the dispersion equation (121) it is clear that none of the modes
excited in the gas makes a significant contribution to the properties of third
sound in thick films. The fact that the parameter 4 appears in (121) indicates
that one or both of the transport processes through the film—gas interface
must be important.

A simplified system of equations which has (121) as their exact dispersion
equation is obtained from (32), (46) [or (48)], (61), (86), and (87) by setting

Co=r;=Jg=Jgp =T =0. (164)

We thus get the following equations:
puh + hpy(00,.[0m) + T =0, (165)
—hp, T8(0v,,/0x) + LJy =0, (166a)

or

puh -+ h5,[1 + (TS| L)] v, /0w =0, (166b)
bs; —S(0T,0x) + f (Oh]0x) =0, (167)
JMZ%:%(I —%n)_l(g Tf'+k—;T—‘%£—"+fh'), (168)

0=J, = —AUL/T)T +3(kg/m)(Tg — T{') + fA']. (169)
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From these equations it is clear that J,, i.e. the evaporation and condensation
of helium, is the main cause of third sound attenuation in thick films. This
was first realized by Atkins (1959).

To conclude this section, we would like to point out that for the thin
film case, the detailed expressions (82) and (83) that we derived for J4 and
Jg were unimportant, as they only served in practice to determine that
T, =T, and p, = p,. But in the thick film case the detailed expressions are
important, since the fact that J, = 0 determines a certain ratio between Ap
and AT. This, in turn, determines a definite expression for J,;, on which the
dispersion equation depends.

That J, must vanish in all cases can also be seen from the following
consideration: if we try to calculate the contribution to J; of only one of the
four terms, say the third one, appearing in (83), we find, in order of magnitude,

pg Ckig Ty Im. (170)

Calculating J from (44), assuming that only the thermal mode contributes,
we get, in order of magnitude,

(g pg Cp) /2T (171)
The ratio of the total flux in (171) to the partial flux in (170) is of the order
(szlpzopcz)llzy

which is always much less than 1 [see (102)]. Hence the conclusion is that
either AT = Au =0, as in the thin films, or else AT and Ap cancel each
other in the expression for J,, as in the thick films.

IV. Experiments on Third Sound

Experiments on third sound in flat films have been performed using both
saturated and unsaturated films. Both types of film are formed on a flat
solid substrate in equilibrium with helium gas.

For saturated films the experiment is performed a small distance H
above the surface of a liquid helium bath. Therefore the pressure of the gas
is very close to saturated vapor pressure, the difference being due only to
gravitational effects. Equilibrium is usually maintained by having the lower
part of the substrate immersed in the liquid so that there is direct contact
between the film and the bulk liquid. The thickness of the film is determined
by the substrate-helium atdm potential at the film-gas interface ¢(h). This
potential is usually assumed to have the form

$(h) = —afhm, (172)

where 7 is either 3 or 4, and « is a positive constant. The potential is due in
part to a sum of all the Van-der-Waals interactions of atoms of the sub-
strate with an atom of helium at a distance &, minus the sum of the interactions
that the helium atom would have with a bulk liquid helium bath replacing the



1. Third Sound in Superfluid Helium Films 33

substrate. If this were the only effect, it would lead to a 1/k® potential. In
practice, ¢(h) is determined from experimental measurements of adsorption
isotherms of helium (e.g., see McCormick et al., 1968; Anderson and Sabisky,
1970a,b). The sum of this potential and of the gravitational potential must
vanish, leading to

alk® =gH, (173)

where g is the acceleration of gravity. In practice, the film thicknesses obtained
in this way range from 500 A (140 atomic layers) at H =1 c¢m to 250 A {70
atomic layers) at H = 10 cm.

Unsaturated films are formed when the substrate is in equilibrium with
helium gas that is well below its saturation pressure. There is no bulk liquid
in the neighborhood of the film. In this case the potential of Eq. (172) must
be cancelled by the additional chemical potential of the gas over and above
that of the saturated gas. This leads to the following equation to determine
the thickness

afk" = (kg T[m) log[ Py(T)/ P], (174)

where the right-hand side was calculated assuming that the helium gas is a
classical ideal gas. In practice the thicknesses obtained in this way range from
about 180 A (50 atomic layers) down to about 14 A (4 atomic layers) and even
less, depending on the temperature. For very thin films or very low tempera-
tures it eventually becomes impossible to control the film thickness by means
of the pressure because even the saturation pressure becomes too small. One
then has to resort to a method where one bleeds a known amount of helium
into the system whose total surface area is known.

We would like to point out that the classification of films into either
saturated or unsaturated films is not the same as their classification into
either thick or thin films. The latter classification differentiates between
regimes where different physical processes determine the properties of third
sound. The former classification differentiates between regimes where
different experimental methods have to be used to create the films and to
make measurements. In fact, as we can see from Fig. 4, the regime of unsa-
turated films includes part of the regime of thick films in addition to the
entire regime of thin films.

The saturated film experiments have mostly been done by Atkins and
coworkers (Everitt et al., 1962, 1964). They used a periodically interrupted
infrared beam shining on a small segment of the film to excite the third
sound waves. Detection of the waves was achieved by an optical method that
could sense the small periodic variations in the film thickness. The velocity
uz was measured as a function of frequency, temperature, and H and was
found to be independent of frequency, in agreement with theory. The
dependence on H and T can be obtained by noting that

hf = h(0]0h)(—o/h™) = not/h™ = ngH. (175)
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Substituting this into the approximate formula

u? = ufo = hf (5s/pn)1 + (TS| L), (176)
and noting that for saturated films g, = pg puix and S = Spu1c, We get
u3? = ngH(pg pux/ Pu)[1 + (TSpun/ L) I (177)

The results indicate that u;2 ~ H except for H <0.3 cm, and that =» is
between 3 and 4 (see Fig. 5).
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Fi1a. 5. Velocity of third sound versus height of film above the surface of bulk

helium; A, highly polished stainless steel; @, roughly polished stainless steel; ], nickel;
theoretical curve with n = 3; — — — theoretical curve with n = 4. From Everitt et
al. (1964), by permission of the American Institute of Physics and Physical Review.

The temperature dependence of (177) is mostly due t0 p; yuy - This dependence
1s in approximate though not exact agreement with experiment (see Fig. 6).
The reason for the discrepancy is not clear. One possibility is that due to the
experimental method of exciting the waves, the film is not at its equilibrium
thickness. Another possibility is that the exponent n depends on the tempera-
ture. More experiments need to be done to clarify this.

The same group also measured the attenuation coefficient of third sound
as a function of frequency at 7'=1.2°K and H =9 cm (see Fig. 7). The
measurements, though not accurate nor reproducible from day to day, seem
to show an attenuation that is two or three orders of magnitude greater than
the theoretical predictions. Despite the poor quality of the experimental
results, it seems quite clear that the theory is inadequate here.

Experiments on unsaturated films have been done mostly by Rudnick
and co-workers (Rudnick et al., 1968; Kagiwada et al., 1969; Rudnick and
Fraser, 1970; Fraser, 1969). They utilized thin strips of superconducting
aluminum deposited upon the flat substrate as both transmitters and detectors
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Fia. 6. Normalized third sound velocity versus temperature for different film
heights: O, 0.44 em; [, 12.3 em; A, 13 cm; @, normalization point; — — — proportional
t0 (pus burc/p)*? (1 + T'Spune/L)*'2. From Everitt ef al. (1964), by permission of the
American Institute of Physics and Physical Review.
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Fia. 7. Attenuation versus frequency at a constant film height H =9 ecm. O, A,
and @ represent three different experiments performed on three different days. From
Everitt et al. (1964), by permisssion of the American Institute of Physics and Physical
Review.

for third sound pulses. One strip was operated as a fast response electric
heater in order to emit a third sound pulse. The other strip was operated
near its superconducting transition as a very sensitive resistance thermo-
meter in order to pick up the temperature oscillations of third sound. The
velocity was measured by recording the time of flight of a third sound pulse.
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Since the film thickness was controlled by varying the pressure of the helium
gas, results were obtained as a function of P, T, and to a certain extent also
frequency. Using (174) and (175) to substitute into (176), we get

ua? 2 n(ps/pu)L + (T'S/L) (kg T'|m) log[ Py(T')/P]. (178)

In Fig. 8 we show experimental results and a theoretical curve for u, versus P
at a fixed temperature. The theoretical curve was calculated from (178)
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F1a. 8. The velocity of third sound u, plotted versus the pressure P, of the helium
gasin contact with the adsorbed film. Py is the saturated vapor pressure at this tempera-
ture. The broken vertical lines indicate that third sound signals were visible but were
too small to be measured accurately. The hatched area at Py — Pg = 1290 i indicates
where all signals disappeared. The full curve is based on Eq. (178) with g, = Ps) bulk 5
Pr = Pouik s TS|L = 0. From Rudnick et al. (1968), by permission of the American
Institute of Physics and Physical Review Letters. See note in caption to Fig. 3.

assuming p; = pg pui- Lhree things are at once evident: (a) For films thicker
than about 15 layers the agreement of theory with experiment is very good.
(b) For thinner films, a large discrepancy quickly develops—the theoretical
values are too high. (¢) For sufficiently thin films, third sound vanishes
altogether. The large discrepancy was interpreted as being due to a size
effect that makes p, depend on % (and therefore on P) for sufficiently thin
films. This is to be expected since, if A is too small, we know that super-
fluidity disappears completely, i.e. p, = 0. This suppression of g, as well as the
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onset of superfluidity cannot be understood merely on the basis of hydro-
dynamics. We will return to a discussion of these phenomena in Section X.

The attenuation was also measured for this regime by using the same
basic arrangement of a transmitting strip and a detecting strip deposited on a
cylinder rather than on a flat substrate (Wang and Rudnick, 1972). In this
way they could observe and measure the decaying amplitude of the third
sound pulse as it made its way several times around the cylinder. In Fig. 9 we
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Fia. 9. The coefficient of attenuation « versus the film thickness k for T' = 1.41°K.
The points are the measured attenuation of third sound pulses. The line is caleulated from
Eq. (114). The vertical hatching marks the onset thickness of third sound propagation.
The frequency of maximum spectral intensity for the pulses is 230 Hz, and this was used
in calculating the line. From Wang and Rudnick (1972), by permission of Plenum
Publ. Co. See note in caption to Fig. 3.

see a comparison of the experimental results and the theoretical prediction for
a typical case. There is a rather small intermediate range of thicknesses
where the two agree, while everywhere else, both above and below, the experi-
mental attenuation is greater, sometimes by as much as two or three orders
of magnitude. The fact that it is never significantly less than the theoretical
result is encouraging. We interpret it to mean that the hydrodynamic sources
of attenuation are always there. But in many of the regions there are appa-
rently other sources of attenuation that have to be taken into account. These
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must, in our opinion, be looked for outside the realm of continuum hydro-
dynamics, in the framework of which we have tried to take into account all
possible processes. In particular, it would not surprise us if for sufficiently
thin films, continuum theory broke down and one needed to develop a micro-
scopic theory. It is, however, surprising that there is a large (in fact the
largest) discrepancy in the thick film region. We will return to a discussion of
this in Section X.

As for the frequency dependence, that has been checked close to the
experimental attenuation minimum, where we expect the hydrodynamic
attenuation to dominate, and found to obey a w2 law (Wang and Rudnick,
1972) as predicted by the theory for thin films.

Goodstein and Saffman (1971) claim to have found a new mechanism for
attenuation of third sound which gives values for o that have the right
order of magnitude for thick films. Closer examination proves, however, that
their mechanism is not new but had been included in the detailed theory
developed by Bergman (1969, 1971) and described in Section II. The way they
obtained their result was by arbitrarily selecting one of the terms that
comprise the expression for Jy {see Eq. (86)], and discarding all the rest. In
fact, however, some of the other terms are just as important and tend to
cancel the term that was singled out. Their results are therefore, unfortun-
ately, incorrect, as has been pointed out by Bergman (1973).

V. The Surface Roughness of the Substrate

When one wishes to apply the theory to experimental situations, one should
be concerned about one of the idealizations which has been made from the
beginning: We have assumed all along that the substrate, as well as the film,
are ideally flat whereas, in fact, we know that even the best polished surfaces
have irregularities when viewed on a microscopic scale. In most physical
situations one can ignore such irregularities if their scale of size is much
smaller than the size of the relevant physical phenomena. In our case, the
size of the irregularities is certainly small compared to the wavelength of
third sound, but it is not small compared to the film thickness. Electron
micrographs of polished surfaces of optical glass show a fairly jagged struc-
ture, with peaks of a few hundred angstroms jutting up occasionally.

These peaks and irregularities in the substrate will have a complicated
influence on the helium film: To a certain extent the film will simply follow
the contour of the more gradual variations. The steeper peaks, however, will
have less helium coating them, whereas the steeper crevices will have more
than the average thickness of helium coating them. This will have two main
effects: (a) Some of the third sound wave will be scattered and this will
appear as additional attenuation of the wave. (b) The effective optical path
between the emitter and the detector will be increased, reducing somewhat
the measured velocity.

The first of these effects can be estimated by noting that a single circular
obstruction of radius a exhibits the following cross section for the scattering
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of long wavelength sound in two dimensions (e.g., see Morse and Feshbach,
1953, pp. 1377 and 1382)

o = in’a(ka)?; ko< 1. (179)

The contribution of this cross section to the attenuation coefficient is at most
equal to N, o, where N, is the total number of scatterers per unit area (this
occurs when they scatter independently). N, is at most equal to (mwa?)~?;
hence an upper bound to this contribution is given by

(37/4)(ka)?/a ~ 0.5 x 10~ 3 em ~?

for a =100 &, k = (2#/10-2)em %, which is an extremely bad case. This is
much less than the experimentally observed attenuation (see Fig. 9).

The second effect can be analyzed by looking at a vertical section of the
film (see Fig. 10) and noting that a portion that has a slope of 8 contributes an

b X -

Fia. 10. Vertical section of the film showing in a schematic way the jagged peaks
and crevices that the film must climb over. The effective optical path between the end-
points is increased above = because each segment Az making an angle § with the plane
of the film contributes an amount Az/cosf to the path.

amount Azx/cos § to the optical path between the two endpoints. A path z
which contains many sections will thus be effectively increased by the average
of 1/cos . This average, while always greater than 1, can be very close to it if
the large angle segments are rare. In that case, we may write

{dfeos 6> ~ 1 + $<(6>2. (180)

Such an effect would cause the measured velocity u; to appear smaller than
it is in a flat film. One has to consider the possibility that this is the cause of
the discrepancy in Fig. 8.

In order to do this, we reproduce a graph taken out of Atkins and
Rudnick (1970) where u; is plotted versus % for two different temperatures
(see Fig. 11). If the deviation of u32 from the ““ bulk ” value u3® p,1 » iven by

T8\?
u5?, pun Ehfps_:ﬂ( (1 + T)

h

, (181)



40 David J. Bergman

5000
4000 | g
L ]
— 3000} 4 .
¢ \
~
£ \.
5 2000} 3,‘:,. i
1B
%- .
1000 ot e * : . .
%&Qow R . :
.° % 8 L] °°
O 1 1 1 ] I ] 1 _1 ] i i i ] —
0 10 20 30

h {atomic layers ]

Fic. 11. Measurements of u, plotted versus k at two temperatures T, = 1.18°K(@)
and T, =1.77°K({). The graph exhibits the fact that the ratio wy(T;, h)jus(T,, h)
begins to vary as a function of & for & smaller than 12 atomic layers. This is about the
same thickness where w3 begins to deviate from u,,,.; (see Fig. 8). From Atkins and
Rudnick (1970), by permission of North-Holland Publ. Co. See note in caption to Fig. 3.

were entirely due to an increase in the effective optical path, i.e. a purely
geometrical effect, we could take it into account by means of an appropriate
h-dependent factor G(h)

T8\?

ug? = by Dotk (1 4+ —) Q(h). (182)
Pn L

From this it would follow that the ratio of velocities at two different tempera-

tures for the same thickness » should be independent of &

ug(Ty, h) __ psvuix(Th)

ug(T2, ) ps.pui(T2)
From Fig. 11 it is clear that while this ratio is constant for large %, it changes
quite considerably when the thickness begins to approach the onset thickness.
Moreover, the ratio begins to vary at about the same thickness where ug
begins to deviate from w; .1, (see Fig. 8). Hence we may conclude that the
deviations are not primarily due to optical path effects.

To summarize this section, we conclude that surface roughness of the
substrate does not appear to have any observable effects on the velocity
or attenuation of third sound. The idealization of a geometrically flat film is
justified. One must look elsewhere for an explanation of the discrepancies
shown in Figs. 8 and 9.

= independent of A. (183)
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V1. Third Sound Resonators

The theory described in detail in Section II for third sound in a flat film can
be extended to other configurations. We now do this for third sound resona-
tors operating in the thin film regime. Third sound resonators have been
developed by Ratnam and Mochel (1970a,b).

Such a resonator is usually made up of two thin quartz or Pyrex plates
that are spaced a certain distance apart from each other. The volume between
them is then sealed off hermetically by fusing the plates together at the edges.
All this is performed in an atmosphere of argon, some of which is thus sealed
within the cell. A certain amount of helium is then admitted into the cell by
placing it in a room temperature helium atmosphere at a filling pressure,
Py, and allowing helium to diffuse through the walls. Subsequent experi-
ments are performed at low temperatures, where diffusion through the walls
is negligible, so that the total amount of helium in the cell is fixed. When the
system is cooled down from room temperature, the argon is completely
adsorbed on the walls in the form of a solid film long before any helium begins
to be deposited. The solid argon coating thus forms the substrate for the
liquid helium film. Third sound is generated by periodic heating of the helium
film by means of a carbon strip resistor placed at one end of the cell, and is
detected by means of another carbon strip resistor operated as a thermometer
(see Fig. 12). It is thus possible to measure the response of the resonator at

Xo X
emitter detector

y

Lx

detector
}
o VA L
X2

Fre. 12. Schematic drawing of a vertical section of a third sound resonator of
length L obtained by sealing the edges of a double film. Also shown are the emitter and
detector of third sound, placed at the points z, and ,;, respectively, on the wall of the
cell. It is also possible to place the detector on the other wall of the cell, at z;.
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different frequencies. Various resonances were found and their properties
investigated (see Ratnam and Mochel, 1970a,b, 1974).

As a prelude to considering the properties of such a resonator, we will
discuss the properties of third sound in a pair of thin, infinite, parallel
liquid helium films, deposited on a pair of identical parallel substrates of
thickness hy,,, and separated by helium gas of thickness A, (see Fig. 13).

Vacuum
1
Substrate 2 h.i“
He film 2 hp
“““"“"“"“—1-“r—
y
He gas
hg
X
_________ mmm—— g ==L
He film | ; ) y=0
Substrate | h;ub
Vacuum

F1a. 13. Schematic drawing of a vertical section of a helium double film: Two flat,
parallel substrates, separated by helium gas and coated on the inside by an adsorbed
liquid helium film,

Both h; and Ay, are not assumed to be large compared to the appropriate
(i.e. the thermal) penetration lengths, so that reflections will have to be
taken into account. Outside the two substrates we assume that there is a
vacuum. This immediately fixes one boundary condition, namely, that no
heat flows from the substrate into the vacuum (radiation can be shown to be
negligible), i.e.

0T 5/0y = O at substrate vacuum interfaces. (184)

In order to write down the equations of motion for this system, we
take advantage of the insight gained from our detailed treatment of the
single, infinite, thin film. We will thus, from the beginning, use the simplified
system of equations (147)-(151). In order to calculate J,,, we note that
T, 18 now a combination of the two modes

exp(—iwt + k2 + @uun y), (185)
exp(—twt + ikr — g, y)- (186)



1. Third Sound in Superfluid Helium Films 43

From Eq. (184) we find that the right combination for the lower film in
Fig. 13 is

Toup =T + Tiupe™ "'+ "2 cosh[geup(¥ + Psuv)]- (187)
Using (63), we can now express J,,, in terms of 7" alone
J o = BT, (188)
where
1/B = (1/B;) + (ksup gsun t8Dh Geup Agyp) - (189)

The calculation of J is, as usual, more complicated. T’y is also a com-
bination of two waves similar to (185) and (186). But there is no boundary
condition this time to determine the combination. We must therefore leave it
in the general form

Te=T + Ti exp(—iwt + 1hx — qu y) + Tgo eXpl —twt +- tkx 4 geu(y — hg)]l.
(190)

The actual combination will only be known when we have solved the equa-
tions. There are now eight variables

Tll'l ’ T;2 ’ hll; h2l, vl, ’Uz s Tlgl; Té2 s (191)

where the subscripts 1 and 2 added to T, #’, and v, refer to the two films
(see Fig. 13). The eight equations are

fh/ + L(T|T) =0, (192)
hfﬁs hl’ TS f-)s Tf{
ot U@ T =0, (193)

where 4 =1, 2, and

by T3 o iBT},
5 (1 + T)vl ~ Foopn L [Tg1 — Tz eXp(—qun be) — Foopn L =0,
(194)
hy 7§ iKgdn ;o iBTj,
5 (1 -+ T)”z ~ Fopn L [Ty — Ty exp(—qintg)] — Fop L~ 0,
(195)
Ty = T{;l + T4z exXp(—gin hg), (196)
Tio="Te + Ty exp(—gen bg)- (197)

These coupled equations can be separated into two uncoupled sets of four
equations each for the two sets of variables

hy' + b, T+ Tia, v1 4+ v, Ty + Tiq, (198)
hy —hy, T4 — Tty v1 — vy, Ty — Ths. (199)
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The dispersion equations for the two sets are

ufo . - Tf "B ixgqm Gun g

E— 1 + o 12 [w + » tanh ) (200)
and

ufo Tf [1B | ixgn Gun g
respectively.

For ¢y, b > 1 and gg,p hey, > 1, both of these revert to the equation we
got previously for a single thin film with infinitely thick gas and substrate
[see Eq. (120)]. Forg¢,;, k. « 1, the mode described by Eq. (201) is very strongly
damped. The other mode, by contrast, will have the attenuation due to the
gas greatly diminished, because

1Kg Gin tanh chzhg ~ i"ggzzhg

~ a real number, (202)

1.e. the lowest order in h, gives almost no attenuation. This will then be
the mode that is observed experimentally. At intermediate values of ¢, kg,
both will be present with nearly the same velocities but different attenua-
tions, and interference effects may occur.

In a resonator these modes will first propagate, then get reflected at the
edges. A complicated interference pattern will usually appear, depending
on the precise geometry of the resonator. We will assume a very long resona-
tor, and that only longitudinal modes are excited in it. This is effectively a
one-dimensional resonator. In it, each of the modes (200), (201) appears
twice—as a wave moving either in the positive {(e.g. v;*) or in the negative
(e.g. v, ) x-direction. The boundary condition at the edges of the resonator is
obtained by noting that when the superfluid flow v, in one film reaches the
end of the resonator, it simply turns around the edge (which is, of course,
also covered by the helium film) and reappears as a superfluid flow in the
opposite direction in the other film. We thus obtain the following conditions
at the edges of the resonator

vh = —wv; and vH = —vg. (203a)

Using Eqgs. (148), (61) [(we cannot use (147) instead of (61) because (147) is
only correct for a wave traveling in the positive z-direction], and (145) we
can translate these into boundary conditions for either T, &', or T, '. All
of these quantities have the same behavior at the edge, exemplified by

T =Tqm and TH=T;. (203b)

From Egs. (203a) and (203b) we can easily derive the manner in which each
of the two propagating modes that we have found gets reflected at the edges.

We can use these boundary conditions to calculate the response of the
resonator, i.e. the steady state temperature amplitude at a point z, that
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results when a periodic signal of unit amplitude in the temperature, ¢~ ¢,
is inserted at a point z,, as shown in Fig. 12. Such a calculation gives the
result (details of this calculation will be published elsewhere)

1 cos kxy cos (L — ;) __ 4 sin kK'xg sin k'(L — x;)

2 sin kL 3 Sn P L ’ (204)

where k is the complex wave vector resulting from (200), while &’ is the com-
plex wave vector resulting from (201). The upper sign in (204) refers to the
case where both the emitter and the detector are on the same plate of the
resonator, while the lower sign refers to the case where they are on opposite
plates (see Fig. 12: in the second case we have denoted the position of the
detector by z, in the figure). The first term of (204) clearly comes from the
symmetric mode of (198), while the second term comes from the antisym-
metric mode of (199). As we noted above, there will in general be interference
effects between the two terms. The second term will, however, be suppressed
if we place either the emitter or the detector at the edge of the cell, so that
either z5 == 0 or z; = L. The second term will also be less important when
g hg < 1, since the antisymmetric mode is then strongly damped, while
the symmetric mode has its damping reduced.

We therefore focus our attention on the first term in (204). This term
will have resonances when the denominator is very small. If we consider
only the denominator (the other parts are slowly varying functions of k) we
can write

1/sin kL = Ae~1?, (204a)
where
A =|1/sin kL] =[sin*Re kL) + sinh?*(Im kL)]~1/2, (205)
and
tan ¢ = tanh(Im kL}/tan(Re kL). (206)
Assuming that the attenuation is small, i.e. that
Im kL =wL Im(l/c5) « 1, (207)
we can write
A = {sin?[wL Re(1/e)] + [wL Im(1/e5)]2}~1/2 (208)
tan ¢ = wL Im(1/c;)/tan[w L Re(1/c,)]. (209)

The response function obviously has resonances whenever w = w,, where w,
is given by

w, L Re 1/c; = nm; n=12,3,.... (210)
This condition just means that the length of the cell L must as usual be

equal to an integral number of half-wavelengths of third sound. The half-
maximum of these resonances will occur at w = w5, given by

|sin{wy;s L Re(1/c3)]| = w12 L Im(1/cs). (211)
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Because of (207) and (210), this can be written as
w2 — wy| L Re(leg) = w, L Im(1/cy). (212)
The Q value of each resonance is thus given by
Q=2 wy) — wa Jw, = 2 Im(1/eg) /Re(1/c). (213)

Experiments on third sound resonators have been made by Ratnam and
Mochel (1970a,b, 1974). By using a heater at one end to excite the resonator
and a carbon thermometer at the other end to detect the temperature
oscillations, they could observe a series of resonances in the response of the
cell. Measurements of both the resonance frequency (see Fig. 14) and the @
values (see Fig. 15) have been made from the onset of superfluidity down to
0.3°K.

These measurements also include mixed He®-He* films, which we shall
discuss in Section VII. Looking for the moment only at the results for pure
He?, we can deduce from Fig. 14 that below about 0.8°K, the film thickness is
constant. This also agrees with a direct calculation, which shows that only
about 19, of the He* is in the gas phase at that temperature. It is therefore
a little surprising to find in Fig. 15 that the @-value is still strongly increasing

1200 — - T T T T T T T T T -+ T
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Fie. 14. Plot of third sound cell fundamental resonance w; /27 versus T for a cell
containing a fixed amount of He* and varying amounts of He®. The He? content is
equivalent to a film 4.87 atomic layers thick at 0°K. Curves are plotted for amounts of
He? equivalent to about 0, }, 1, 2, and 4 atomic layers at 0°K. The filling pressures at
300°K for the He* and He® were 552; 551, 50; 554, 100; 559, 199; and 557, 400 mm Hg,
respectively. The length of the cell is L = 1.79 cm, and the third sound velocity is given
by 43 = 3.58 w,{27. The curves terminate at the high temperature side at the points
above which no third sound is observed. (After Ratnam and Mochel, 1974, by permission
of Colorado University Press.) On the ordinate axis we have marked by elongated
straight lines the theoretical predictions for w;/27 at 0°K for the various curves, nor-
malized to the observed resonance frequency of the pure He* film,
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Fic. 15. Plot of third sound cell @ = w,/Aw; 2, Where w; is the resonance frequency
and Aw,;, the resonance width, versus T for the same experimental setup as in Fig. 14.
From Ratnam and Mochel (1974), by permission of Colorado University Press.

as one goes from 0.8°K to 0.6°K, leveling off only below 0.6°K. The only
physical quantity that changes appreciably over that region is the density
of the gas p,, which decreases by about a factor 4 from 0.8°K to 0.6°K (this
is due mainly to the rapid decrease of the saturated vapor pressure). But a
careful analysis of Eq. (200) shows that the terms depending on p, are
apparently completely negligible in this region. The attenuation, and there-
fore the @ value, are determined mainly by the properties of the substate.
To see this we assume that

Gnhe <1 (214)
and
9sup hsub<< 17 (215)

and then expand the hyperbolic tangents in (189) and (200) as a power
series in these arguments, keeping only the first two terms. Assuming also
that

qgub Ksub hsub/Bl « 17 (216)

and using Eq. (65) for ¢, we now get the following expression for the
terms in the square brackets on the right-hand side of (200):

tB ~ Conk 1w Ksup Rsup iwpgub Ogub hgub iwpg“b Og“b hg“b
@ = Psub Y sub Zsup + 632 B1 3Ksub ’
(217)
. A 1 . h . 20 2p 3
I g D008 o 2 p Oy by + gt + e 2. (218)

2¢,? 24,
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The first terms of (217) and (218) are real and do not contribute to the attenu-
ation. Of the remaining terms, only the ones in (217) could be large enough
to make an important contribution to «. For a sufficiently thick substrate, a
further simplification can occur in that only the last term of (217) is import-
ant. There is a range of values of kg, for which this is true while nevertheless
(215) and (218) still continue to hold. In that case, we would find a very
strong temperature dependence for @:

Qt~TC3, ~T. (219)

This would lead us to expect a 7.5-fold increase in ¢ when we go from 0.8°
to 0.6°K. In fact, an 8-fold increase has been observed (see Fig. 15).

For the experiment under discussion (Ratnam and Mochel, 1974) this
simplification is not entirely justified, however, and one must really use all
the terms of (217) in calculating @. We have made such a calculation, and the
results are shown in Fig. 16, together with the experimental results for com-
parison. There is some agreement in absolute values, though perhaps not in
the dependence on temperature, between 0.5° and 0.65°K. But at higher
temperatures the experimental results show an increasingly large deviation

vvuvl
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F1c. 16. Calculations of the @ value for the third sound resonator used by Ratnam
and Mochel (1974). Its dimensions were L = 1.79 cm, h, = 4.26 um, hy,y = 100 pm.
Py, was 552 mm Hg. Curves 4 and 5 show results for slightly different values of the
substrate potential [the coefficient am/kp in Eq. (174) was taken to be 87° in 4 and 79°
in 5]. Curves 2 and 3 were calculated for am/ky = 87°, hyy, = 70u, and Py = 528 and
552 mm Hg, respectively. Curve 1 reproduces the experimental results for a pure He*
film from Fig. 15.
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from the calculation. The indication is again, as in the time-of-flight experi-
ments, that other dissipation mechanisms must exist, not included in the
hydrodynamic description of the helium film.

VII. Third Sound in Mixed He’~He* Films

Recently, experiments were begun on third sound in superfluid films com-
posed of a mixture of the two isotopes He® and He*. Ratnam and Mochel
(1974) have performed such experiments using the third sound resonators
described in Section VI. They have measured both the resonance frequency
(see Fig. 14) and the @ value (see Fig. 15) of the cavity as a function of
temperature for a fixed amount of He? inside the cell (about 5 atomic layers),
and varying amounts of He®. The amount of He® was varied up to almost the
amount of He®. Downs and Kagiwada (1972) have also measured the velocity
of third sound in unsaturated mixed films using the time-of-flight technique
developed by Rudnick and co-workers, which was described briefly in Sec-
tion IV (for a more complete description of this technique, see the review
article by Atkins and Rudnick, 1970). For a fixed temperature (1.4°K), they
measured #; both in a pure He? film and in a mixture that contained a
fixed percentage (about 17%,) of He® as a function of the He* partial thick-
ness (see Fig. 17).
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Fie. 17. Preliminary measurements of the third sound velocity u; for a pure He*
film and for a mixed He®-He* film as a function of the partial thickness of He*. The He?®
concentration in the mixed film was always around 17.49% of the total by number, and
all measurements were made at 7 = 1.400°K. The full and empty circles represent
measured points. The lines were drawn merely to aid the eye (Downs and Kagiwada,
1972).
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These experiments show that on the one hand the addition of even small
quantities of He? to a pure He* film has a strong influence on both u; and «:
ug is invariably decreased (see Figs. 14 and 17) while « is either increased (at
low T') or decreased (at high T') (see Fig. 15, and note that o« ~ @~ approxi-
mately).

On the other hand, the onset point of superfluidity displays a remarkable
invariance: In the experiments of Ratnam and Mochel the onset temperature
appears to remain unchanged within the experimental accuracy even when 4
atomic layers of He® are added onto 5 atomic layers of He? (see Figs. 14 and
15). The experiment of Kagiwada and Downs is even more striking in this
respect: Although the relative amount of He® added is smaller than in the
resonator experiments, the partial thickness of He* at onset is seen to be
very precisely unchanged by this addition (see Fig. 17). This immediately
suggests that the He® might not be taking part in the formation of the
superfluid film, but might instead be floating inertly above it. Indeed, we
know that in bulk He®-He* mixtures there is an abnormally high concentra-
tion of He? at the surface (see Andreev, 1966; Zinov’eva and Bolarev, 1969;
Andreev and Kompaneets, 1972). The appeal of this idea is that not only can
it explain the constancy of the onset point but, as we will now show, it also
seems to be able to explain the large changes in u;.

Consider the approximate equation for u,

us® = uo = hf (Bs/pd)(1 + (TS L)P. (220)

f is some function of %, derived from the chemical potential of the film

1 = (@pfoh)y. (221)

The chemical potential in the film at a distance z from the substrate can be
written as a sum of two terms

2) = pound T, P(2)) + $(2), (222)

the first of which is simply the chemical potential of bulk liquid helium at the
appropriate temperature and pressure. The second term is the difference in the
potential energy of a helium atom in the liquid when, beginning at a distance,
z, the rest of the liquid has been replaced by a solid substrate. In equilibrium
(2) is independent of z, hence P(z) must vary in such a way as to compensate
for the variation of ¢. In general, both terms on the right-hand side of (222)
will depend on k. Only at z=h can we say that, since P(h) 2~ 0, essentially
all of the h-dependence comes from ¢(h). Therefore, if we wish to derive f from
¢ in the form

f=a¢(h)[h, (223)
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instead of from the definition (221), we must make sure that at k the hydro-
static pressure vanishes.

From this analysis it is clear that even though the mixed film probably
has a highly concentrated layer of He® floating on top of it, we should always
use the total thickness  in calculating the force f. From the same argument it
also follows that we should include in kb any solid layer of helium that may
exist close to the substrate.

On the other hand, the & which appears explicitly in (220) should really
go together with p;, in the sense that

hps = M, = superfluid mass per unit area of film. (224)

This should be evident from Eq. (29), where p; was defined.
Therefore, if one adds some He® to an existing He* film, then if there is
no change in M, , the velocity u; will decrease according to

ug ~ f2 ~ B2, (225)

simply because the total film thickness has increased. If, in addition, there
is a lowering of M, due to a mixing of the two isotopic components, «, will be
lowered even more.

On the other hand, in the region of very thin films, where there is already
an appreciable reduction of %3, due to a size effect, a good mixing of the two
isotopes could increase M., thus counteracting and perhaps even over-
coming the effect of f. An increase in u3 following the addition of He?® to a
pure He* film could only occur if the pure film were initially at such a tem-
perature and thickness that u; was already an increasing rather than a
decreasing function of the thickness.

Turning our attention to Fig. 14 we attempt to analyze the information
it contains at the lowest temperatures. Here we expect all of the He® and
He* to be in the film phase and none in the gas phase. This is indeed supported
by the fact that all the curves tend to a constant value. In that case we can
tell what the total film thickness is in each case from the pressure P;); at
which the cell was filled with helium gas. Assuming Eq. (225) and using the
measured value of the resonance frequency w; for the pure He! film, we
calculated w, for the various mixed films. In these calculations we used the
300°K filling pressures reported by Ratnam and Mochel (1974) as the measure
of the film thickness at 0°K. The results appear on the ordinate of Fig. 14,
while the filling pressures are given in the figure caption. The results of this
calculation agree fairly well with the asymptotic behavior of the resonance
frequency curves. This supports the idea that in fact there is a very consider-
able separation of phases in these films, since in that case M, would not
depend on the amount of He?® that is added and (225) would hold exactly.
This conjecture is also supported by the fact that the onset temperature,
which should depend on the thickness of the superfluid, is unaltered when He®
is added to the film.



52 David J. Bergman

VIII. Energy in Third Sound

The energy of a third sound wave is made up of three contributions: from the
film, from the gas, and from the substrate.
To calculate the film contribution we start out by writing some basic
thermodynamic relations for the superfluid helium film
dEy=TdS —~ PydA + pdM + (v, — v,) * ddy, (226)
—P,A=E, —T8 —puM — M, (v, — V)2 (227)
These are direct consequences of two-fluid hydrodynamics applied to a film

(Khalatnikov, 1965). E, is the total energy in a frame of reference moving
with the superfluid, J, is the total momentum in that frame

Jo = My(v, — V), (228)

M., M,, and M are the normal, the superfluid, and the total masses, 4 is the
area of the film, and P, is the two-dimensional pressure acting on the film.
Since we are dealing with a constant area film, we can write (226) in terms of
quantities per unit area Ey,, S,, M, , J,y, as follows:

AEo, =T dSs+pdMs+ (vy — V)" ddos. (229)

The available energy AE in a nonequilibrium system (i.e. the energy
that can be extracted to do work) is given by the difference between the
instantaneous energy and the energy that the system would have if it were in
equilibrium with its surroundings. We write this energy per unit area as
follows:

AEAEEA(MAysAyvssVn) _EA(MAsSAs 0: 0)7 (230)

where the bar over M,, S, signifies the ambient values of M,, S,. In a
third sound wave the bar can signify alternatively an averaging over a single
period of oscillation. The total energy E, is related to E,, by

Ey=FEy+vs Jop +3Mu0s (231)

Using this equation, and developing AE,, in a Taylor series up to second
order terms in AM, = M, — M, , etc., we find

AE, =T AS, + p AM, + 0TS, AS, + 2(61/68,) AS, AM
4 (OufoM ) AM 2] + (Vo — Vo)  Jop + Vo * Jou + 3 M 50,2
— T ASy + p AMy + }(084/0T )iy AT? + §(0u/0M ) AM 2
+3Mop 0% + EM v (232)
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We now calculate the average available energy by averaging AE, over a
single period, noting that

AM,=AS, =0, (233)
v, =0, (234)
Mon =hps, (235)
AM, = AR(OM ,|0h)r = Ahp;, (236)
0
(@)~ @) (%)% e
(084/0T ) = hﬁr Cy/T. (238)
We thus find

AE, = }(hp Co T) AT + 3 5 AR® + Jhpy v (239)

Noting that, because of the sinusoidal dependence on time, we get
AT2 = 1T, ete., (240)

and using (126), (127), (152), and (153), we find

1 | TC, kf pshf T8\ 2
Tf+l+prlcsl(l+7)}' (241)

8E, =35l 7

In this equation the first term, which arises from ATE, is negligible, while
the two other terms are very nearly equal. Neglecting the difference between
them, as well as the first term, we find for the energy per unit area of the film

AE, = }|W2| 5of = HL2pf) | T¢I T|?|J %]
= 3hp(pe/pn) [v3: |- (242)

Similar considerations are applied to calculate the energy available from
the helium gas. The available energy per unit volume is calculated as follows:

AE ., = Ey(Sy, pe, Ve) — Bv(Sy, fe)
oT E
—TASv+FAPg+ ( ASy? gf;ASvAPg+5§;AP32)
1
+§Pevg
1
=T A8y bpet g (5p) AT 43 (5) Bnt 43 pevt (289

Averaging over one period of oscillation we find

— peC i —— 1 —
AEgvz ;Tv AT32+'2pg—2KTApgz+§nggz. (244)
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In our case, all the average quantities are in principle quadratic combinations
of contributions from all three modes of the gas. Each of these contributions
still has an exponential dependence on y, of the form

exp[ —y Re(g; + ¢,)]- (245)

One of the contributions, the acoustic mode, is even increasing in the y-direc-
tion though this increase is limited by the time at which the third sound
wave started to propagate. Each contribution must be integrated over y to
yield the energy per unit area of the film.

A careful consideration of the various contributions leads to the following,
not unexpected results: In the thick film case the energy content of the
gas is completely negligible. In the thin film case it is negligible as far as
the acoustic and the viscous modes are concerned. The thermal mode makes
the largest contribution to the energy content—this is consistent with the fact
that it makes the only significant contribution to the dispersion equation.
It contributes to the energy mainly through the first two terms of (244),
i.e. the thermal and the potential energy terms. This contribution is obtained
by substituting

Aplp= —AT|T (246)

[see (103) and (137)] in (244), and multiplying the resulting AEy by one half
of the thermal length in the gas:

Hlon = (g/2p¢ Cp ). (247)
We thus find
DBy, = (5/8v/2)| T¢ | T |*(g wpg Cy 667" Pegev, (248)
where we have also used
xp = 1/P; Cy = 3kg/m. (249)

The ratio of the energy in the gas to the energy in the film is, from (248)
and (242), given by (note that in the thin film case J;, = 1)

AE,, 5 ( K @ )1/2 ks T/m pg cg hf
AE, 42 \pCpecs? L p hwL

Numerically, this is still usually considerably less than 1, though it increases
very fast as the film becomes thinner. For example, while it is only about
0.003 at w =103, T=1.5°K, and » = 18 atomic layers, it rises to 0.13 at
w=10% T =15°K, and » = 5.2 layers, at which the onset of superfluidity
occurs for that temperature.

For the energy of the substrate we get an expression analogous to the
first term in (244):

pé’zh"‘w"l/z. (250)

E‘sub,v = (Psuh Csub/2T) A_Tgub . (251)
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As in the case of the gas, this only has any importance at all in the thin film
case. As before, we use (134) to substitute for T, in terms of T, and we also
have to multiply (251) by one half of the thermal diffusion length in the
substrate

%lsub = (Ksublzpsub Csub w)llz (252)
in order to get the energy per unit area:

2 2

B

Ty
~ B

1 Ksup 1z
AE'sub.A = Z Psub Tosub (——") T

2 Psub Csub w

(253)

For an order of magnitude estimate of the ratio of this energy to the film
energy we take

1— BJB| 21 (254)
and find
K—E_vsib.A ~ 1 ( Ksupb )1/2 Psub TCsub& }-L—‘f~ T3/2],~ 44y~ 1/2.
AEI - 2'\/2 Psub Csub 632 f;t L hw L

(255)

Numerically this is again usually considerably less than 1: For w = 103,
T =1.5°K, and k=18 atomic layers the ratio is about 0.004, rising to
about 0.16 for w = 10%, T = 1.5°K, and & = 5.2 layers.

We can summarize the results of this section by saying that most of the
energy of a third sound wave usually resides in the height oscillations (poten-
tial energy) and the superfluid velocity oscillations (kinetic energy) of the
helium film. The processes taking place in the gas and the substrate are only
important because they provide the mechanisms for attenuation.

IX. The Normal Fluid Motion and Attenuation

In the previous sections we have always neglected the normal fluid motion in
the film parallel to the substrate. We have indeed shown in Eq. (22) that this
motion is very small due to the small thickness of the film. Nevertheless,
one should still consider whether it makes any contribution to the attenuation
of third sound, which is itself usually a small effect. This question has been
looked into by Pollack (1966a,b). Similar considerations have also been made
by Sanikidze et al. (1967) for the problem of fourth sound attenuation.

In discussing this problem, we begin by combining Egs. (7) and (8) to
get an equation of motion for v,,

Oy puOP oT,

%, T
Po g = o0 2 —psSi 7 + 9 W -+ other dissipative terms. (256)
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&

Noting that, when y is fixed, one can write either
du = —8,dT + (1/p) dP (257)
or
du= —8dT +fdh, (258)

we can rewrite Eq. (256) in the form

77 oh Ps aTr Nt azvnz — .
=~ fé; + 185 =81 +Pn o + on O -+ other dissipative terms.

(259)

If this equation is now integrated across the thickness of the film, we will
still be left with a term ov,,/¢y. Both Pollack (1966a,b) and Sanikidze et al.
(1967) have shown that one may make the following replacement

Mg 0%00,/0Y* = Rvy,|yan, (260)

where Rv,, is an effective dissipative force per unit volume opposing the
motion v,,. R was calculated for a flat film by Sanikidze et al. (1967) from
two-fluid hydrodynamics, and found to be given by

R = 3n,/h2. (261)

When the film thickness is less than the mean free path, we cannot describe
this force by hydrodynamics. It is then a result of the collisions of elementary
excitations (phonons) with the film boundaries. We will write this force in the
form

Rvy. = po s/ T, (262)
where 7 is the time of flight of phonons across the film:
T = hfc, (263)

where ¢, is the velocity of first sound in superfluid helium. In this case, there-
fore, we get

R =p,/7 = puci/h. (264)

The other dissipative terms in (259) are unimportant and will be neglected.

We note that the term —f 0h/éx appears also in Eq. (61), and that it is
approximately equal to ¥,,, since the other term, S 67 /dz, is small. From
these observations, as well as the fact that v, « v,,, we can write (259) in the
form

0 =195 + (B/pn)¥ns, (265)
from which we get
Vny = (twpy/ R)vg, . (266)

If we use (261) to substitute for R, we again obtain a result similar to (22).
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We now calculate the contribution of the dissipative force R to the
attenuation of third sound. Energy is dissipated by this force at the rate

Ediss = Rvnzz' (267)

The contribution to the attenuation coefficient due to this process is therefore

E'd iss _ R I vn22 I w2Pn2

= — =5 = —- 268
2?1/3 AEf 2u3Ps l ’ng‘ 2“3 Ps R ( )
The two different expfessions for R, (261) and (264), thus lead to
22,2
tpyq = s——=—— in the hydrodynamic regime, (269)
B¢ ps ug

Twip,  hw?p, .
= — = — in the nonhydrodynamic (Knudsen) regime.
Suap.  2uge, p ydrodyn. ( ) reg
(270)

In both regimes these attenuation coefficients are much less than the ones we
have calculated due to interactions of the film with its surroundings.

K

X. Microscopic Theories

The theories we have discussed up to now were all based on classical con-
tinuum physics—ordinary hydrodynamics for the gas, two-fluid hydrodyna-
mics for the film, and thermal conduction theory for the substrate. Even
simple experiments that measure only the velocity of third sound reveal,
however, that these theories do not tell the whole story. In practice, it is
found that there is an onset thickness, depending on the temperature, below
which third sound is not observed (see Fig. 8). This onset thickness is in
fairly good agreement with measurements of the onset thickness for de super-
fluid flow (see Atkins and Rudnick 1970, Fig. 18). Since third sound is in fact
a phenomenon of low frequency ac superfluid flow, it is natural to identify
the two onsets. But even above the onset u; is less than the value one gets
from the dispersion equations if one assumes that p; has its bulk value every-
where in the film (see Fig. 8). We have anticipated this, which is why we have
the average ps appearing in our equations, and not pg -

A. THE AVERAGE SUPERFLUID DENSITY

Part of the reduction of g, below its bulk value can be understood as a
result of the strong force field f due to the substrate. This causes the first
atomic layer of the film to be so strongly bound to the substrate that it
exhibits solid rather than fluid properties: Its specific heat looks like that of a
two-dimensional solid (Brewer et al., 1965). This decreases p; below its bulk
value. However, unpublished calculations made by M. Chester and by Bergman
have shown that neither this effect nor the hydrostatic pressure effect on g,
are enough to explain the observed reduction in ug.
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Even when the film is fluid, we might expect surface effects to be
important when the film is only a few atoms thick. Ginzburg and Pitaevskii
(1958) have proposed a phenomenological theory which attempts to explain
at the same time the properties of the lambda transition in bulk helium, and
the properties of superfluid helium in constrained geometries. The theory
assumed that the free energy of the superfluid can be expanded as a power
series in the complex order parameter (x) which characterizes the superfluid
state

F(T, )= Fy(T) +J[A(T)|z/;]2 -+ B(T) ||t + C(T)| V|2 dx.  (271)

Higher order terms are neglected. p; is proportional to || 2. The equilibrium
value of ¢ is determined by minimizing F with respect to variations of ¢)(x).
This leads to a nonlinear differential equation which s must satisfy

—CVA+ A+ 2B| Y| —o. (272)

s must also vanish at the walls.

In bulk systems, the gradient term can usually be neglected and the
equilibrium value of {(x) taken to be a constant. In fact, however, the
gradient term determines the rate at which i changes near the walls. There
is a characteristic ““ healing length ”’ I, given by

12 = O(T)/A(T), (273)

over which ¢ must increase from zero at the walls to its fixed bulk value.

In a small system, such as a thin film where ! is not small compared
to the thickness A, i and hence p; are not constant over a considerable part of
the system. One can calculate from the theory the average value p; as a
function of k. pg/ps puic depends only on the ratio A/2l, as shown in Fig. 18.
At h = 7l p, goes to zero, signifying inability to solve the differential equation
(272) for ¢ and also satisfy the boundary condition ¢ = 0. This point is the
onset thickness predicted by the theory.

In its original form, this theory included certain assumptions about the
form of A(T), B(T), C(T) which did not give good agreement with experi-
mental results for the lambda transition in bulk helium. Josephson (1966) and
Mamaladze (1967) showed that by a proper choice of these coefficients,
agreement could be obtained. Using their choice we get the following expres-

sion for I:
hzT}.Ps.bulk/P /2 T, 213
l= [2m2 AC,T, —TF| = 1.63 (Ta — T) A (274)

Here 7', is the lambda temperature (T'; = 2.172°K) and AC, is the jump in the
heat capacity per unit mass at constant pressure that is superimposed upon
the symmetrical logarithmic singularity at 7', . While the exact functional
relationship between pg/ps wuix and k/2l is fairly complicated and involves
elliptic integrals, it has been shown (e.g., see Fraser, 1969, p. 33) that,
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(.o ,
0.5+
L il ! | i | 1 L I
0.05 | 2 3 4 5 3 T R 0
hs2l
Fic. 18. The size effect in the Ginzburg—Pitaevskii theory. Plotted versus h/2l

are: Pslpssbaik s + - + - the approximate form p/ps,puix = 1 — 24/2l/h; — — — the maxi-
mum value of ps/ps, pu; = = — (F — Fo)/(F — Fo)pux -

except for the region where p /ps pui i small, a good approximation to this
relation is the asymptotic formula (see Fig. 18)
ﬁs/Ps.bulk =1— (D/k)’ (275)

where
D=2Vl (276)

One can include in this form also the correction due to the solid helium layer
at the substrate by writing

D = hy+2V2I, (277)

where %, is the solid layer thickness.

A comparison of this theory with experiment (Kagiwada et al., 1969),
which we reproduce in Fig. 19 and Table II, shows that good quantitative
agreement can be obtained for u3 as a function of  if [ T') is adjusted for each
temperature, rather than being taken from Eq. (274). This is no surprise
because (274) is only expected to be accurate for T close to T'; . Empirically,
it turns out that a fairly accurate representation for ! over the entire region
that was investigated is (see Revzen, 1969a,b)

! = By T/ps buix » (278)

where

By, =2.9 x 10-%g em~2deg 1. (279)
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Fi1a. 19. Plots of u; versus Py — P at various temperatures. The full curves were
calculated from the Ginzburg-Pitaevskii theory [i.e. Eq. (275)] with D =h 4 24/2
chosen to give the best possible fit near the maximum of each curve. From Kagiwada
et al. (1969), by permission of the American Institute of Physics and Physical Review
Letters.

However, the superfluid onset does not occur when A = h, 4 #l, but at
a slightly greater thickness. Furthermore, while the theory predicts that p,,
and therefore uz, decrease continuously to zero as the onset is approached, it
seems as though the onset occurs while %3 is still quite large (close to its
maximum value for the given temperature, in fact). de measurements of
superfluid flow show a similar behavior in that the critical velocity extra-
polates to zero while p; does not (Henkel et al., 1968). From the last column
of Table II it seems as though the value of ps/ps puic at the onset of third
sound is approximately constant for different temperatures, being always
around 0.36. It is worthwhile pointing out that it is not entirely clear whether
ps is in fact discontinuous at the onset. Another possibility is that, even
though p, itself goes to zero continuously, the onset that is in fact observed is
due to the beginning of a strong attenuation of third sound. This is the
prevalent view nowadays, since experiments have failed to detect any dis-
continuity in the volume (see Goodstein and Elgin, 1969) or a latent heat
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TaBLg IT

SUPERFLUID PARAMETERS oF THIN HELiuM Fiimse ¢

Healing lengths

Experi- Onset Size effect

mental for from from thickness at onset
T(°K) fit D hy=1 Eq.(278) Eq.(274) he (he — D)2 palss puix
1.125 2.79 0.63 0.63 0.76 3.84 4.51 0.38
1.192 3.04 0.72 0.67 0.79 4.29 4.91 0.39
1.205 3.05 0.73 0.68 0.80 4.34 4.84 0.37
1.310 3.22 0.79 0.76 0.86 4.41 4.48 0.35
1.415 3.41 0.85 0.84 0.934 4.71 4.42 0.36
1.495 3.61 0.92 0.92 1.01 5.10 4.45 0.37
1.512 3.67 0.94 0.94 1.03 5.18 4.45 0.36
1.586 3.89 1.02 1.03 1.11 5.73 4.59 0.38
1.778 4.99 1.41 1.39 1.45 7.35 4.57 0.36
1.852 5.53 1.60 1.61 1.67 9.27(8.25) 5.13(4.56) 0.44(0.37)
2.046 9.55 3.02 3.17 3.10 17.50(13.80) 5.21(4.04) —

2 From Rudnick and Fraser (1970), with permission of Plenum Publ. Co.

® Units of length are atomic layers (3.6 A). The values in parentheses are for P[Py at
onset determined from a pool of other experiments.

¢ See Note added in proof at the end of this subsection.

¢ The parameter ! is from Eq. (278).

(Frederikse, 1949; Evenson ef al., 1968) which were expected to accompany
any jump in p,. We would like to point out, however, that g, might still be
discontinuous all by itself. An example of a model system where this occurs is
the two-dimensional ideal Bose-Einstein gas which, at constant pressure,
undergoes a phase transition into a condensed state. This transition involves
no latent heat or volume discontinuity. But the occupation number of the
single particle ground state jumps from essentially zero to essentially N—the
total number of particles (Imry et al., 1974; Gunther et al., 1974).

In this connection, attempts have been made to explain the onset or
cessation of superfluidity as being the result of a hydrodynamic instability
which sets in at that point (Goodstein and Elgin, 1969; Goodstein, 1969).
One result of the detailed hydrodynamic theory which we have described in
Section 11 is to rule out completely such a possibility as far as the linearized
equations are concerned.

A recent unpublished experiment has been performed by Kagiwada and
Downs in which a great effort was made to take measurements in the region
close to the onset thickness of third sound, where the attenuation is large and
detection becomes very difficult. Using signal averaging techniques, Kagiwada
succeeded in observing u; begin to descend towards zero as the onset was
approached from above. The descent, though more rapid than expected from
the theory, nevertheless looks quite continuous.
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An attempt to modify the Ginzburg-Pitaevskii-Josephson-Mamaladze
(GPJM) theory so as to get a superfluid transition of the first order in thin
films was made by Amit (1968a,b,c). Amit argued that, in order to ensure
stability of the solution ¢y =0 at T' = T, in bulk helium, one should include
a ¢ term in the expansion of the free energy [Eq. (271)]. His theory leads
indeed to a first order superfluid transition in helium films. But the jump in
ps is accompanied by a jump in the thickness and by a latent heat, both of
which have not been observed, as we mentioned before.

The GPJM theory is not a true microscopic theory. It is a phenomeno-
logical theory of the complex superfluid order parameter, similar to the
Ginzburg-Landau (GL) theory of superconductivity, and in the spirit of
Landau’s general theory of second order phase transitions. Moreover, it has
no rigorous microscopic justification similar to the one existing for the GL
theory of superconductivity. It thus looks as though much more work on
microscopic theories will have to be done in order to understand the onset of
superfluidity and third sound.

Note added in proof: Because an improved value of « (the coefficient of the
Van der Waals potential) is now available, thanks to Sabisky and Anderson
(1973a,b), all the experimentally determined values of D have to be reduced
by a factor .677. Obviously this will alter the healing lengths determined by
Eq. (277) and appearing in the third column of Table II. It will also change
the nature of the fit to experimental data of Eq. (278), necessitating at least
a change in the empirical coefficient B,. See also note in caption to Fig. 3.

B. THE ONSET OF SUPERFLUIDITY AND ATTENUATION OF THIRD SOoUND

A few attempts have been made to go beyond hydrodynamics in calcula-
ting the attenuation of third sound.

Revzen (1969a,b) has applied the Aslamazov-Larkin theory for fluctua-
tions in thin superconductors to helium films. Revzen finds the following
expression for the mobility u of the superfluid fraction of the film

= pu expld(h — ho)/l], (280)

where y, and &, are parameters of the theory. This is essentially equivalent to
a coefficient of attenuation that depends exponentially on 4. The onset is thus
viewed as a point where the increasing attenuation becomes so large that
third sound is undetectable in practice.

Putterman et al. (1971) have tried to correlate the anomalous attenuation
with the appearance of quantum fluctuations in the film. They argue that
analogously to the usual uncertainty principle for particles obeying quantum
mechanics, one has the following uncertainty principle for helium films

m Av,Ah ~ £. (281)

On the left-hand side Ak is the uncertainty in the vertical position of a
particle in the film and Awv; is the corresponding uncertainty in the superfluid
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velocity, while on the right-hand side # is Planck’s constant. They then argue
that when Avg > ug, a large attenuation of third sound is to be expected due
to large fluctuations of a purely quantum nature. Wang and Rudnick (1972)
have pointed out that together with the large fluctuations Av, one will have
large fluctuations in A as well, which may lead to a local vanishing of g, if &
fluctuates to values below nl. The precise meaning of these ideas is not
altogether clear since they do not arise from an underlying theory. They
should be viewed, in our opinion, as preliminary ideas in the attempt to
construct such a theory. Some interesting results nevertheless follow from
(281): If one estimates Ak by h/4/12 (this assumes a constant probability
distribution for finding the particle at any position across the film), and
replaces Av; by 43 in (281), one arrives at the following condition under which
large attenuation due to large fluctuations in v, is expected:

Bin/12)m > ugh. (282)

Comparison with experiment (Wang and Rudnick, 1972) shows that where
(282) is not satisfied the attenuation is small and fairly well described by the
continuum theory. At the onset, (282) is approximately satisfied as an
equality. Furthermore, when one considers thick films, (282) is again satisfied,
since 4z then decreases very rapidly with thickness. This is precisely the
region where the greatest discrepancy in the attenuation is found. The
quantum fluctuations may thus be important not only for thin films, but for
thick films as well!

Another idea, put forward by Rudnick (see the last paragraph of Atkins
and Rudnick, 1970) is that nonlinearities in the propagation of third sound
waves may contribute significantly to the attenuation. Such effects are well
known in surface waves on an ordinary shallow liquid: The velocity at the
crest is different from the velocity at the trough because: (a) the sound
velocity varies with the total depth 4 and (b) the fluid is moving locally in
the direction of propagation at the crest but in the opposite direction at the
trough. In the case of third sound waves, the velocity decreases with increas-
ing A for thick films but may increase with A when the size effects become
important. The difference in sound velocity between crest and trough
causes the wave to become highly nonsinusoidal in shape as it propagates,
eventually developing either a leading or a trailing shock front—this is the
well known phenomenon of wave breaking. Such behavior would give rise to
attenuation. It is interesting to note that there is a film thickness for which
the two velocity effects mentioned above, (a) and (b), exactly cancel and
therefore nonlinearies do not develop. This occurs for rather thin films.
Near that point one also observes experimentally that the attenuation has its
minimum value, and is in good agreement with the hydrodynamic caleulations
(Putterman, 1974, Sect. 48).

Lastly, we will only mention the attempt that has been made by Chester
and Maynard (1972) to construct a microscopic theory of third sound by
quantizing the two-fluid equations of a helium film. The theory incorporates
the macroscopic quantum uncertainty principle discussed previously.
Quantitative results of the theory have not yet been published.



64 David J. Bergman

C. SUMMARY

This section by its very nature cannot be summarized. There is clearly
much more work to be done in developing a microscopic quantum theory for
third sound and other properties of superfluid helium films. Some of it is
being actively pursued at this time. The continuum theory and its com-
parison with experiments must serve as a guiding post in these attempts.

Glossary of Key Symbols and Phrases

In the second column we list, wherever possible, the equation or table where
the symbol is defined, or where it appeared for the first time.

SymBOL EquaTtion DErINITION

4 88 Kinetic coefficient in the theory of evapora-
tion.

B 69, 189 1/B is the effective thermal resistance of the
substrate

B 63 1/B, is the Kapitza thermal boundary resis-
tance

C,, 0, 99, 106 Heat capacity of the helium gas per unit
mass at constant pressure, volume

Caup 62 Heat capacity of the substrate per unit mass

Cy 40 Heat capacity of the helium film per unit
mass

c 100 Complex velocity of sound in He gas

zo1 gg Complex velocities of the three wave modes

Gz: 100 in He gas

3 14 Complex velocity of third sound

¢ 263 Velocity of first sound in superfluid helium

D 275 Coefficient of 1/k in approximate formula for

3, 57 Fo’;'ce exerted by the substrate on a unit

mass of helium at the gas—film interface

h 1 Thickness of the He film

A 86 Amplitude of oscillations around A

hy 277 Thickness of the layer of solid helium at the
substrate

ke Table I1, Thickness of the He film at onset of third

280. sound

Poun 67 Thickness of the substrate

3, J,,J, 7,77 Mass current in the film and its components

I 33 Net mass flux from film to gas

Je 44 Heat flux from film to gas

Jg 81 Net energy flux from film to gas

Jsub 41 Heat flux from film to substrate
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SymBoL

thick film
thin film
T

Tsub’ Téub

Ts 4 Ts’
T,
Tr’ Tr’

TSZ 3 Tga

EquaTioN
163
162

13
73
47

204
273

34
67
23
102a
102b
98
99
100
65
98
99
100
260

42

39
119
118
38

41, 64

42, 86

36, 86

103

5, 122
115
113

DEerFINITION

Numerical coefficient appearing in the thick
film equations

Numerical coefficient appearing in the thick
film equations

Complex wave vector of third sound

Boltzmann’s constant

Latent heat of evaporation from film to gas
per unit mass

Length of a third sound resonator

Healing length in the Ginzburg-Pitaevskii
theory

Mean free path in the gas

Thermal penetration depth in the substrate

Viscous penetration depth in liquid He

Viscous penetration depth in He gas

Thermal penetration depth in He gas

The viscous mode in He gas

The thermal mode in He gas

The acoustic mode in He gas

Thermal wave vector in the substrate

Viscous wave vector in He gas

Thermal wave vector in He gas

Acoustic wave vector in He gas

Coefficient of the effective drag force due to
viscosity of the normal fluid

Entropy per unit mass of liquid He

Entropy per unit mass of the He gas

Partial entropy per unit mass of the film

Film for which «; w/p,Cpcg? =1

Film for which «gw/p,Cpcy2« 1

Equilibrium temperature

Instantaneous temperature of substrate,
amplitude of its oscillations

Instantaneous temperature of gas, amplitude
of its oscillations

Instantaneous temperature of the film

Instantaneous temperature of the film

averaged across the thickness, amplitude of

the oscillations

Amplitudes of temperature oscillations in
modes My, My of the gas

Real velocity of third sound

Approximate real velocity of third sound

(ps/Ph)(vsx/ca)
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vn ? vm:’ vny

Vg Ugys Vgy
X

Y
Yr

o
[»4

Y

N> Ne
gl: gz, €3

Ky, Kg s Ksyp

Ko
Hs g ,
,u'f s .u'f

Pt> P> Pt
Ps Pns Ps

Psub

Pes Pe
w/27

SUBSCRIPTS

g > sub

EquaTtion

1,8

7
33,42
Fig. 1

Fig. 1
Fig. 1, 33

123

172

106
7,71
7,8

9, 72, 62

244

2, 82
56, 133
1, 31, 38
1,11, 29

62
33, 42, 103

13

58,229, 243
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DEFINITION

Superfluid velocity and its components

Normal fluid velocity and its components

Velocity of the He gas and its components

Coordinate axis parallel to the third sound
wave vector

Coordinate axis perpendicular to the film

Position of the imaginary reference plane in
the gas

Coefficient of attenuation of third sound

Constant appearing in the equation for f

The ratio C,/C, for He gas

Coefficient of shear viscosity of liquid, gas

Coefficients of bulk viscosity of liquid He

Coefficient of thermal conductivity of liquid,

gas, substrate

Isothermal compressibility of He gas

Chemical potential of helium liquid, gas

Chemical potential of helium averaged across
the film, amplitude of its oscillations

Mass density in the liquid film, at the surface,
averaged across the film

Superfluid, normal mass density, superfluid
density averaged across the film

Mass density of substrate

Mass density of the gas, amplitude of its
oscillations

Frequency of third sound

Signify quantities of the gas, film, and sub-
strate, respectively

Signify quantities per unit area and volume,
respectively
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I. Introduction and Elementary Ilustrations

A. INTRODUCTION

The main purpose of the present article is to show how the relatively
new technique of “ Matched Asymptotic Expansions” (MAE) can be applied
to problems of interest in acoustic research. We hope in the course of the
discussion to answer questions such as: What is MAE? What is its relevance
to acoustics? What type of problems can be solved? and What physical
insights does it provide? Also, sufficient information will be provided to
enable the careful reader to apply the MAE technique to certain problems
which are relevant to his research.

The technique of MAE is basically a refinement and extension of clas-
sical perturbation methods. Such methods typically make use of the solution
to a known, relatively simple problem to obtain a useful approximation to a
more complex situation. For example, the complete solution to a particular
problem in acoustics might express the pressure p as a function of space,
time, and some typical parameters such as a piston velocity amplitude and
the sound speed in the medium,

p=px,t, U, a).

The full solution in terms of arbitrary parameters might be unobtainable,
or so complex as to be useless for interpretation—or even for computation.
With perturbation theory one attempts to study such a situation by starting
with a limiting case where the solution may be obtained in relatively simple
closed analytical form, for example when %/a = ¢ >0 in the above example.
Using this solution the equations for the ““full” problem are used to pro-
vide correction or perturbation terms so that the approximation to the
above solution might take the form

p = P, t) + pule)pDa, ¢)

where p,(¢) is a function of the perturbation parameter ¢ which vanishes
as ¢ —>0. When such a form for the solution applies over the whole domain
of independent variables of interest,  and ¢ in the above example, the
perturbation is termed regular. When the form fails to give meaningful
results for some values of the independent variables, the perturbation is
termed singular. The singular case is more the rule than the exception
in practice, and MAE is one means of coping with this problem. Nonuniform



2. Acoustics and Matched Expansions 71

perturbation expansions (singular perturbations) arisé in an enormous
variety of different ways, of course, and several basically distinct procedures
have been developed for removing the nonuniformity in different types of
problems. MAE is but one of these techniques, and forms the subject of this
article because we believe it to be the one with the most immediate appli-
cability in a number of areas within acoustics. References to work describing
other singular perturbation techniques will be found in the concluding
section.

The method of attack with MAE is to seek several perturbation series
with differing domains of validity. In typical boundary value problems
such as one encounters in acoustics, constants appear in the solution of the
full problem which must be determined from boundary and initial conditions.
However, when several perturbation series are employed for a problem the
unknown constants for each solution cannot usually all be found from the
boundary and initial conditions appropriate to that solution. This then
leads to the problem of finding the remaining unknown constants in the
separate series by utilizing the fact that each of the solutions is an approxi-
mation, in a certain sense, to the same function. The evaluation of the con-
stants in this way is called matching; hence the name Matched Asymptotic
Expansions.

Perhaps the most rapid appreciation of MAE can be obtained from a
brief historical sammary of how it developed. The origins of MAE are closely
connected with acoustics’ sister subject, fluid mechanics. The work of the
great mathematicians and physicists of the eighteenth and nineteenth cen-
turies had made theoretical fluid mechanics a subject of great beauty as
well as a vehicle for the development of many of the significant techniques of
modern applied mathematics. Paradoxically, however, despite their mathe-
matical elegance, the methods were almost totally inadequate for predicting
or understanding many observed flow situations. The crux of the problem
faced by those wishing to bring the results of theoretical calculation into
agreement with experimental findings lay in the treatment of fluid viscosity.
When the ratio of inertial force to viscous stresses on a body of given charac-
teristic length, as characterized by the famous nondimensional parameter
known as the Reynolds number Re, is large or small, it appears reasonable to
make some very helpful simplifications to the difficult hydrodynamic equa-
tions. As in many cases the fluid is air or water with relatively small viscosi-
ties, taking Re large and dropping the viscous terms from the equations
would seem to be quite a reasonable procedure. The Re small case, where
inertial terms are dropped, also appears plausible when bodies are small,
and has even met with some success, for example in the famous Stokes drag
formula for spheres. Somewhat astonishingly, however, both these reasonable
approximations have produced results either totally at variance with ex-
periment or completely inconsistent with plausibility. It is not our purpose
to discuss Fluid Mechanies in detail here. However, as Physical Acoustics
provides cases analogous with the small-large Re problems, some discussion
is worthwhile. The reader interested in more of the details can consult
Birkhoff (1960), Van Dyke (1964), or Kaplun (1967).
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The problem faced in the large Re situation is that plausible reasoning
leads to the nonphysical result known as d’Alembert’s paradox—that a
steadily translating rigid body suffers no drag in an infinite fluid. Attempts
to correct this physically unreasonable result and to overcome other related
problems met with little real success until the work of Prandtl (1904). With
an inspired injection of physical reasoning, he saw both how to explain the
lack of success and how to overcome the problem, at least in the important
case of relatively streamlined bodies. Thus he observed that when the viscous
terms are dropped from the equations of motion the order of the equations
is lowered and fewer boundary conditions can be satisfied, i.e., dropping
viscous terms implies dropping a boundary condition on the wall of the mov-
ing body. It seemed almost self-evident that no flow into a solid body could
be allowed; hence this condition was retained, and the fluid was assumed to
slip along the surface of the body. Prandtl observed, however, that at the
surface the fluid must in general not be allowed to slip. His picture of the pro-
cess Re — oo was that, in the region away from the body the viscosity plays a
decreasingly important role as Re increases. However, near the body the
gradient in velocity must be large to adjust to the no-slip condition on the
surface. This in turn implies that even though 1/Re is small (in general
implying small viscosity), the product of 1/Re and the velocity gradient terms
can be quite comparable in magnitude with other terms. Hence he concluded
that in such a “ boundary layer,” a different set of approximating equations—
the ‘ boundary layer equations ’—should be applied. Thus the basic idea was
established that two sets of approximating equations, one appropriate to
the outer flow (the classic potential flow equations) and one for the inner
flow (the boundary layer) were needed to provide an adequate calculational
scheme for determining the viscous drag on streamlined bodies. The scheme
and equations proposed by Prandtl have met with enormous success and are
considered by many to have changed the whole face and role of Theoretical
Fluid Mechanics.

The difficulties with small Re flows, on the other hand, proved to be a
far more subtle problem, whose solution was not really found until recent
times with the work of Kaplun (1957), Friedrichs (1955), Lagerstrém and
Casten (1972), and others. The problem is exemplified in the so-called para-
doxes of Stokes and Whitehead. Stokes (1851), dropping the inertial terms
from the equations of motion, attempted to calculate the drag on a cylinder
in uniform flow. He found that, because the fundamental solution to the
resulting equation (the Stokes equation) is logarithmically singular at infinity,
he could not produce a solution that would satisfy the uniform flow condition,
i.e., the plausible assumption about viscous effects led to a problem with
no mathematical solution. The three-dimensional problem of slow flow
about & sphere, of course, does give the well-known Stokes drag formula,
and all appeared well with the sphere until Whitehead (1889) tried to improve
the result by the reasonable device of inserting the Stokes solution into the
neglected terms, and treating the result as inhomogeneous terms in Stokes’
equation. The result was found to lead again to a solution growing with dis-
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tance from the body. The explanation for these difficulties is that as more and
more of the fluid about the body is considered, the inertia effects become
more and more important; hence one cannot expect the solution to retain its
validity in this “outer’’ region. In the case of three dimensions, one is able
to calculate the drag, as the body effect dies off with sufficient rapidity with
distance to permit a meaningful first approximation. However, in two
dimensions even this modest desire cannot be fulfilled. A partial solution
was found by Oseen (1910,1913), who proposed an equation which gave a
better representation of the outer flow. However, full understanding did
not come until the work of Kaplun (1957), Proudman & Pearson (1957),
and the full development of MAE. As with the large Re case, it was shown
that two regions had to be considered, one near the body where inertia
could be ignored, at least to first approximation, and an outer region where
the body could be looked upon as a point singularity. While in this case no
boundary condition is lost by reduction in the order of the governing equa-
tions, the problem of matching the solutions in the two regions proved to be
very difficult.

It will be seen that the MAE method, as presently practiced, is derived
from an abstraction of the above ideas. First, it consists of a formalization
of the process used by Prandtl, which permits a logical development of
correction terms in both the boundary layer region and the outer region.
A discussion of this is given in the book by Van Dyke (1964). It should be
noted that the higher order corrections to the drag are of great technical
and engineering importance, yet fifty years passed between Prandtl’s intro-
duction of the boundary layer and the modern calculations. Thus, even in
the technical area which gave birth to some of the basic ideas of MAE,
the modern formalization has provided a significant advance. Second, it
is becoming increasingly realized just how wide is the general applicability
of the formalism to a large number of areas. As should become apparent,
the formalism is both mathematical and physical in content. In fact, one
of the very important features of MAE is the extent to which it ties together
and helps to create physically significant conceptual structures. The clas-
sical example is how the boundary layer, and perfect (nonviscous) flow,
corresponding to the inner and outer flow regions, join to provide a satisfying
understanding of the complex real (viscous) fluid flow about bodies. The
importance of MAE is thus in both the conceptual framework it provides for
unifying mathematical models, and its effectiveness in resolving particular
problems—sometimes with surprising simplicity.

In the application of MAE, dimensional reasoning and an understanding
of physical scales and magnitudes in a problem play a very important role.
As a foretaste of this, let us consider the small Re problem discussed above,
and an equivalent acoustic problem—the scattering of sound by a body
small compared with the wavelength of the incident radiation. From the
viewpoint of MAE the problems are quite similar, while the latter problem
makes a good introduction for the reader educated in physical acoustics, and
hence will be considered in some detail below. A heuristic understanding of
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why the Re—>0 problem calls for different approximations in two regions
and why the ““small ” acoustic scatterer can be examined in a similar light
can be gleaned from dimensional considerations. Both problems can be
cast into forms where the variables are nondimensional. Thus, in the Re —0
problem the velocity can be given in units of the free stream velocity and
the coordinates in units of body characteristic size. After this transformation,
one is left with equations that contain only one parameter, Re, and the solu-
tion for any dependent variable (eg., pressure p) must be a function of the
dimensionless or scaled coordinates and Re, i.e., p = F(r/l, Re). Examina-
tion of the parameter Re shows that it can be considered as the ratio of two
lengths, as the characteristic body dimension Iy divided by the length found
by appropriately grouping the parameters of viscosity, density, and free
stream velocity, {, (the so-called viscous length). When the body is small
compared with the viscous length, Re = I/l is small, viscouseffects dominate,
and inertia terms can be ignored, at least near the body surface.

Dropping the inertia terms is thus equivalent to taking

lim F(r/ly, Re)

Re—0
in the solution for arbitrary Re. A little thought, however, shows that Re—0
can be characteristic of two very different physical situations. In one case,
consider I fixed but [, — oo; for example, a body of fixed size in a fluid
of increased viscosity, giving a very large viscous length. Alternatively,
suppose Iz —0 but hold I, fixed. In the second case the body is very small
and the free field dominates the physics. Clearly, the correct mathematical
description must reflect this state of affairs. Thus, for the above limit to be
unique, we must prescribe a relation f(lg, I,, Re)= 0 which holds as Re —0.
The traditional Stokes problem is connected with the case Re —0, [, fixed.

Now consider scattering of radiation of wavelength A by a body of
scale . Again, the equation of interest (now the familiar Helmholtz equation)
and the boundary condition can be put into suitably nondimensional form
so that the scaled pressure is given by a function F(r/l, I/A). If [ is much
smaller than A, it seems plausible that an incompressible flow problem
should provide an adequate description of the situation near the body.
As the scattering problem is linear and has been studied for a number of
years by a variety of techniques, such as integral equations, it is well known
that the solution requires taking proper account of the outer radiation field.
However, even if this were not so, the reasoning applied to the Re—0
problem applies here and, as we shall see, the problem provides a useful
introduction to MAE methods in acoustics. The parameter I/A can become
small in two vastly different ways. If { -0 with A constant, we should have
a solution appropriate for a radiation region, but if A — oo with [ constant,
one expects a solution for an incompressible flow region.

Using MAE we will show how asymptotic expansions can be found
directly from the differential equations in a term-by-term manner for the
two regions, and how the linking of the two expansions ties up with some
classical conceptual structures, such as scattering matrices and impedances.
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A large part of what follows will in fact involve problems of linear
physical acoustics. Aside from providing an excellent introduction, such
problems will be shown to have considerable interest in themselves. Thus,
in this case, we will take as basic the linearised compressible flow equations,
and show how MAE can be used to arrive at various well-known theoretical
acoustical constructs such as the Webster Horn equation, radiation end
corrections, and others.

An important point to note is that in the MAE approach to a problem
we choose a mathematical framework which contains complete descriptions
of the physics of interest. Various simpler theories, and conceptual structures
then arise as limiting cases, applicable to restricted spatial and temporal
regions. Later in the article, for example, we will show how, starting with
the Lighthill (1956) approximation to the Navier-Stokes equations, we
can take a problem of nonlinear acoustics and by considering various limiting
cases of the relevant parameters divide the problem into space-time regions
where Burgers’ equation, the linear wave equation and the heat conduction
equation describe the asymptotic solution. Hence, as another side product,
the MAE formalism provides logical derivations of a number of equations
popular in acoustics, together with estimates of their validity and a very
definite interpretation of their meaning in a larger context (e.g. Burgers’
equation in relation to the linear wave equation and the Navier-Stokes
equation).

We shall introduce the formalism by stages, starting with some very
simple model examples of acoustical interest. After defining some of the no-
tation, consideration will be given to the problem of linear wave propagation
in a one-dimensional medium of varying sound speed. The well-known
WKB method can be related to the MAE formalism. However, both for
novelty and intrinsic interest, the opposite case, where the wavelength is
large compared with the inhomogeneity scale, will be treated here. While the
problem is simple, the asymptotic aspects are rich and provide an excellent
foretaste of what follows in a fairly clear context. This problem will also be
used to discuss the tricky problem of matching asymptotic series with dif-
ferent domains of validity. In some ways, matching is similar to finding
connection formulas for turning point problems of the WKB type, though
the context is considerably more general.

With this background, we will examine various problems for the wave
equation where most of the parametric dependence arises from the geo-
metrical situation and the boundary behavior, i.e., scattering problems,
wave propagation in variously shaped ducts, radiation from cavities, and
resonant systems. After this- discussion of what might be called classical
linear acoustics, we will enlarge our viewpoint and take the full Navier—
Stokes equations of nonlinear viscous gas dynamics with allowed finite
boundary motions as our basic model. After suitable normalizations based on
particular situations, several theories important in nonlinear acoustics are
developed, in particular those of weak shock formation, shock reflection
from a wall, and the spatial evolution of an initially sinusoidal signal.



76 M. B. Lesser and D. G. Crighton

Matched Asymptotic Expansions are a tried and trusted technique in a
number of areas of theoretical mechanics. Despite this and the fact that much
of the technique’s origins (Van Dyke, unpublished, 1971) lie in the great
work of 19th century acousticians, the method has not been widely employed
in modern acoustics research. For this reason the authors have worked
out a number of new problems, not only for their expository value, but also
for their current scientific interest.

We hope that this article will demonstrate the ability of MAE both to
produce new and worthwhile results and to provide fresh insight into familiar
results, and that readers will be thereby encouraged to apply these methods in
acoustics as freely and widely as they have been in other branches of mecha-
nics.

B. TECHNIQUES oF MAE THROUGH ONE-DIMENSIONAL EXAMPLES

The main purpose of the present section is to provide a brief but useful
introduction to the working techniques of MAE. To accomplish this task
we shall first consider a model or analog problem of wave motion in a one-
dimensional medium where waves can only propagate in the direction of
increasing space coordinate. The problem chosen has the advantage that,
while simple to solve exactly and easy to understand in its essential aspects,
its asymptotic properties retain many of the essential technical difficulties
found in more complicated problems.

Thus consider the model problem defined by the equation

gﬁ 1 w_,, (1)
x  a(x) ot

where p is the “ pressure,”  and ¢ space and time coordinates, and a(x) the
wave velocity, or ‘“sound speed.” In the rest of Section I, B we shall refer
to these variables as if they were the pressure and sound speed of a gas.
The reader should be aware that this use of language is only meant as a
descriptive analogy. The algebra and computations associated with the
model problem are simple enough for the reader to follow in all detail. Also,
the situation described by Eq. (1) is close enough to an actual one-dimensional
sound propagation problem to make the use of such language meaningful.
We note in passing that a traditional way of introducing MAE is to treat
the problem of a simple spring-mass~damper system, with the mass taken
as the small, or perturbation, parameter. Such a treatment can be found,
for example, in the book by Cole (1968). The present model is, however,
felt to be more appropriate for the understanding of typical applications of
MAE to acoustics.

In such a model the ‘physics” is present only in the choice of the
function a(x). Thus there are a number of situations of interest that can
be examined by suitable choices of a(z) and boundary conditions on p.

For the present discussion we consider a piston, oscillating harmonically
at angular frequency w, and located at x =0. Waves of amplitude p, are

13
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radiated away from the piston through a region of varying sound speed,
and out to regions of large 2. One length scale in the problem is the wave-
length A =2=/k,, where k; = w/a, is the wavenumber and a, is the sound
speed at x = 0. Another length scale can be introduced into the problem by
our assumptions about a(x). Thus we shall assume that a(x) changes rapidly
(has a large derivative) in a region of width [ near the piston (0 <z <1).
However, when x> 1 it is assumed that a(x) changes only slowly. These
assumptions apply to the rate of change of a; a itself is assumed to be finite
and bounded. We can think of I as being an inhomogeneity scale for sound
speed variation in the vicinity of the piston. One would expect different
kinds of results, depending on whether this inhomogeneity scale is larger
than, smaller than, or comparable with the wavelength 2#/k,. For our
demonstration of MAE we assume the wavelength to be large compared with
the inhomogeneity scale, and thus choose as a small parameter ¢ = 2nl/A =
kol. Even with these restrictions a number of qualitatively different situa-
tions can be generated by the detailed behavior of a(z). As it is not our
purpose to make an exhaustive study of all these situations, but merely
to introduce MAE, we will confine ourselves to the case where a(x) behaves
algebraically as x — 00, as defined in Eq. (6) below.
In more formal terms our model is given by

p=p(x)e” ",
apla = g(z[l),
(dp/dzx) =ik, g(2/l)p, (2)

where g varies only slowly for z/l > 1, and an asymptotic solution is sought
for the case

2(0) = p,
e=ky1—>0. (3)

In keeping with the philosophy of the method, the first step is to scale the
problem so that dependent and independent variables are O(1) and the prob-
lem formulation is in a “universal” form with parameters appearing in
suitable dimensionless groups. For Eq. (2) this is an easy task; thus, scale
the pressure with the source pressure p,, and scale length with 1/k,, which is
proportional to the wavelength, to obtain

D =p[Po>
T =rkyx, (4)
zfl = &/kol = &/e.
Hence
(dp/dz) — ig(Z/e)p =0
where
P=p(%, €) ()
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and
P0, £) =1.

Consistent with our assumptions about the behavior of g we assume that, as
f — 0

9O ~B+ 3 7l (®)

This form fulfills the requirements that a vary rapidly near the piston at
=0, and slowly in the region far away from the piston, the terms “near”
and “far” being judged with reference to the wavelength 2z/k,. A concrete
example of the kind of function envisaged would be

g(§) =1+ (23/m) tan=* £
~148—(28/nf)+ -+, (7
this implying an almost steplike change in wave speed in the vicinity of the

source, followed by a slow change on the wavelength scale.
The problem of Eq. (5) is easy to solve exactly, and we find

P = exp[ig(, ¢)], (8)
where the phase function is given by
z/e
g a0 ©
In the special case of Eq. (7)
@ =& + (28/m)[% tan~1 (&/e) — }e In(e? 4 Z2) 4+ e In €. (10)

Having the full solution at our disposal, it is possible to make a number of
observations about its asymplotic structure for small ¢. However, it s instructive
to try to appraise the structure directly from Eq. (5), this being the more natural
situation in practice.

In formal terms we are faced with the problem of finding a useful
approximation to a function p(x, ¢) for small values of ¢, where P is defined
implicitly by Eq. (5). The common device for this problem is to seek an
asymptotic or perturbation expansion of p of so-called Poincaré form, i.e.
one assumes

P(Z, &) ~ nzoﬁ‘"’(i)p«n(b‘) + o(ux(e)) (11)
where

FLOZI, “’n+120(“’n) as &¢—0, (12)

this meaning that wu,.;/u,—0 as ¢—0. Once the set of gauge functions
{pn} is prescribed, the coefficients p can be uniquely defined by a limit

process. We use the symbol lim to denote the limit as ¢ —0 with & held
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constant (meaning in physical terms that we are regarding the limit as
achieved by holding the wavelength constant and contracting the inhomo-
geneity scale ! to zero). Then the coefficients in the Poincaré expansion of
P(Z, &) with respect to the gauge functions {u,} are defined by the limits
(which are assumed to exist)

pOF) =Tlim H(z, o), (13)
PD(x) — lim [-(i" €) — p(O)(x)] ,
pa(e)

PO(F) = Tim [—(‘Z" &) —pOE) — P«l(e)i’(l)(‘z')]

2(€) ’
or, in general,
FO(E) =Tim {f’@ &) —3Ns if’*)(:z)p(en)} , (14)

pnle)

It is convenient to express this process of expanding the function H(Z, &)
by defining a formal expansion operator Ey{uy} for a given gauge sequence

{px} by .
Eyp(z, ) = ’éoﬂn(8)ﬁ(")(i),

where it is assumed that
| B(Z, &) — Ey p(Z, €)| = o(un(e)), (15)

that the limits of Eq. (14) exist, and that Eq. (15) holds for some set of
points {z}. It is evident that one can exercise a great deal of formalistic
care in definitions like Eq. (15). However, except where deemed truly
necessary, we shall take a heuristic approach, leaving unsaid fine details
that would confuse the main points of the arguments. The reader interested
in a careful step by step definition—proof discussion of MAE can consult the
monograph of Eckhaus (1973) with profit.

If we insert a series of the type of Eq. (11) into Eq. (5) the question
arises as to how to choose u,. In the region bounded away from £ =0 for ¢
small, insertion of Eq. (6) into Eq. (5) gives

d_i)—i{ﬁ—{— 3 8"%},5:0, (16)

dz "

n=1 T
and at first glance it would appear that p, = &” is the proper choice of gauge
function. The problem with this choice is that substitution into Eq. (16) of
P = PO+ e + - - gives for 1’ the inhomogeneous equation
(dpVfdz) —ippD = iy, POz (17)

where $© = ¢'%* for the condition 5»(0) = 1. The solution of Eq. (17) will
give a term proportional to In Z, and hence when Z=0(g), ep”’ will be
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O(elne). This effect (referred to as “Switchback,” Kaplun, 1967, p. 14),
where one finds that terms of intermediate order must be inserted in an
expansion, is a common one, and can be taken into account automatically,
at least in principle, by assuming u, to be unknown. Another clue to the
inconsistency of a straightforward & type expansion is that the natural
boundary condition on 5> would appear to be 5> = 0. However, the pre-
sence of a term like In & which becomes infinite as £ —0 implies that 5’
cannot be made to satisfy such a condition. The problem, of course, is in the
approximation for g(#/e), which is not valid in the domain & ~ ¢. This lack
of validity, at least in a formal sense, is not serious enough to prevent us
from finding a reasonable 5, although the In & terms seem to terminate the
possibility of continuing the expansion process.

“Physical ”’ reasoning suggests that we must introduce a type of bound-
ary layer in the region of strong inhomogeity in the medium, i.e. for £ =
kox = O(g) = O(kyl), or in other words when z/l =0(1). A formal device
for doing this is to introduce the *stretching ’ transformation T': & = /e —
z/l, into the differential equation and boundary conditions. Applying 7'
to Eq. (5) gives

(dJdZ)P(E, ) — isg(#)p =0
$(0) =1. (18)

From the above reasoning we expect Eq. (18) to provide a useful asymptotic
series solution, at least for £ = O(1). Again, we can substitute a series of the
form E,p(%, ¢) into the equation [note that now & is fixed in the limit pro-
cesses that define p™(%)]. However, as soon as p, = O(), infegration of the
Sorcing function introduced from lower order terms will give a solution propor-
tional to & In other words [as we shall see below, Eq. (28)] the expansion
for § will contain a term (constant) eZ.

This implies that as & becomes increasingly large the second term of
the expansion becomes larger than the first, although the terms were con-
structed on the basis that the second must be smaller than the first. The
% term above begins to have a magnitude comparable with the first term in
the piston region solution when & ~ 1/s.

One can now make the following observations: (1) the expansion in an
asymptotic series of the problem for Z fixed leads to results invalid when
T = (s) (2) transformation 7' leads to an (inner) asymptotic series invalid
for #=0(1/¢); (3) the region of validity of the (outer) series is in general
outside the point of applicability of the boundary condition; (4) the choice
of gauge functions wu,(¢).is not a priori obvious, e.g. w,(e)=¢" leads to
“switchback.”

To resolve the difficulties we seek to determine two separate series,
with the gauge functions p,(¢) to be found as part of the solution. For com-
parison with later work, the series

N
Evp= Z Pu (19)
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will be called the Helmholtz expansion, and #, etc. Helmholtz variables.
The reason for this terminology is that the region (away from the piston)
where this series applies is analogous to the region where the full Helmholtz
or reduced wave equation applies in the scattering and waveguide problems
of Sections II and III. In a similar way we shall use the terms, Laplace
region and Laplace expansion, for the region near the piston where the varia-
bles P, # are relevant.

It is assumed that the set of gauge functions can be found so that H(Z, ¢)
can also be expanded using them, with the proviso that ™ or ™ may
vanish identically for some n. We use the transformation symbol 7' to de-
note the change from Helmholtz variables, £, to what we are calling Laplace
variables, Z,

Eyp=ExTp. (20)

Because of the problem with boundary conditions and with determining
i, We need some rule connecting, say, Eyp and E, p for as arbitrary an
N and M as possible. Now 5(Z, ¢) and H(Z, €) = Td(&, €) are clearly just
different ways of expressing the same function, the transformation 7' pro-
viding a formal means of changing the form of the asymptotic expansion.
Therefore, we have every reason to expect a relation between Ey $ and E,, B,
the real question being what form such a relation must take. For example,
we might have

lim (%) = lim (&),

-0 fo
a simple instance being
P=1+5"1 Tp=(1+eF) 1~l—eit- .

Now quite generally we can define a relation between the expansions
as

(TEN TEM —EM TEN T)i’ = HN,M (z, €), (21)

where T' denotes the transformation #-—>z. For any given function $(Z, )
and gauge functions u,(¢), the *“ commutator matrix ”’ Hy , can be readily and
routinely calculated from this definition. The first term on the left of Eq. (21)
is obtained by expanding $(£, ¢) in terms of the u,(¢) according to the de-
finition of Eq. (14), terms up to and including u,(e) being retained. The
result is then expressed in terms of the variable & = Z/¢, and expanded again
in terms of the u,(¢) with & held fixed this time, and with the inclusion of
all terms up to and including uy. This contribution is finally reexpressed
in terms of the original variable Z. For the second contribution, the function
B(&, €) is written at once as a function 7'p of # and ¢, and this is expanded
for fixed # through terms O(uy), the result then being written in terms of £
and further expanded through O(u,,).

Usually, however, we do not know $(Z. ¢) exactly, though we do claim
to be able to construct asymptotic series like Ey $ and E, %ﬁ by formally
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substituting assumed series into governing equations and boundary condi-
tions and equating coefficients of like terms. As already explained, each of
the expansions obtained in this way will contain unknown constants, arising
from the fact that the boundary conditions which can be imposed on each of
the separate expansions are insufficient to determine it uniquely. We can
therefore calculate Hy (%, ¢) in any given case, and find that it involves Z, ¢,
and various unknown constants. The usefulness of the definition equation
(21) now lies in the fact that, under suitable restrictions on N, M, and the
gauge functions w,,,

Hy u(#, &) =0. (22)

This is an identity for all the values of % of interest and for all sufficiently
small ¢. It is called the Asymptotic Matching Principle, and in most cases
can be used to uniquely determine the various unknown constants in Hy .

We emphasize that several matching principles are in current use [see,
for example, Kckhaus (1973)], and that it is somewhat a matter of taste
as to which one an author may choose in a particular application. Some
discussion of this is given in Section V. We find that definition (21) and the
principle (22) are by far the most convenient to use in terms of the algebraic
bookkeeping needed for really efficient exploitation of MAE. While it is,
no doubt, a rather formal prescription, it is simple to apply, and the reader
will be protected from many possible pitfalls by strict adherenceto the formal-
ism.

It is difficult to provide adequate motivation or mathematical proof
for the Asymptotic Matching Principle. Given that E, $ and E, TH are
asymptotic expansions for a certain function §(Z, ¢) it is possible to prove
the result (22) under appropriate restrictions on the expansion and the
gauge functions (Fraenkel, 1969; Crighton and Leppington 1973). That,
however, is only part of the issue, for one rarely knows, in practice, whether
formal techniques are really producing proper asymptotic expansions or
not. Aside from that, examples are known (see references above) in which
the principle (22) works under conditions violating those assumed in the
proof of (22), so that the widest conditions under which (22) holds are not
yet known. Basically, the conditions assumed so far in proving (22) involve
the idea of ““overlap "—that E), $ is an approximation of ¢ for # = 0(1), or
at any rate for Z not too small, while Ey T5 is an approximation to § for
&= 0(1), or at any rate for Z not as large as O(1). One hopes then that there
is an “overlap region,” & « &« l-—say Z = O(&'/%)—in which both approxi-
mations hold simultaneously, and thus the difference between appropriate
versions of the approximations should, in some sense, be small. This is what
Eq. (21) and (22) say; the first member of Hy j, can be looked at as a further
approximation to E, P as £ becomes small, while the second member is the
approximate form of Ey T'p as & becomes large. In fact this is nof a sound
way of looking at the principle, for Ey TEy  and E, TEy Tp are approxi-
mations of approximations, and neither is necessarily an asymptotic repre-
sentation of §(Z, ¢) for any values of Z at all (Crighton and Leppington,
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1973). The Asymptotic Matching Principle does not claim that the two
terms of Hy , have any particular meaning; it merely says that they are
equal to each other. Therefore, while the idea of expanding p(z, ¢) for z « 1
and matching that to the result of expanding 7'5 as # > 1 may be physically
suggestive, we ask the reader to accept the principle (22) mainly on mathe-
matical grounds and to use it in a strict way in what follows. Much more
will, of course, be said about the Asymptotic Matching Principle in the
course of this article.

As stated earlier, MAE is both mathematical and physical in its ap-
proach, and in typical a.pplica.tions a certain amount of cut and try combined
with physical insight is needed for success. In this spirit, we return to the
model problem, Eq. (5). Taking hmg_,0 $ and lim,_,, 75 we have two prob-
lems. Firstly, in the Helmholtz region & > O(¢)

(dp*V[dz) —iBp® =0, (23)
PO = A’oeiﬂi, (24)

where A, is a constant and where, in keeping with the philosophy of our
approach, the condition on P is given outside the domain of the Helmholtz
limit, i.e., at £ = 0. On the other hand, in the Laplace limit,

dp@dz =0, PO =1, (25)
and hence
PO =1.
To join the two expansions, we use the rule
(TE, TE, — E, TE, T)p =0, (26)
in which
TE, TE,p = TE, TA, ¢z
— T A' giBek
= TJ =4,
and

E,TE, Tp=E, TE, p=E, T1 =1,

leading to the trivial and expected result that 4, = 1. The result is trivial
only because of the fact that §© is not singular as &—0, a state of affairs
which, from the general point of view, is accidental, as we shall see later.

To proceed, we look for the next term in the Laplace region. A tentative
estimate of its order is obtained by recalling that for matching we have

(TEx TE, —E, TE, T)p=0, (27)

with Ky denoting the expansion up to the next nonzero term in the Laplace
region. As

TE, TE.p = TEy (%) = T{1 + iBei}
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the Laplace expansion proceeds as
P~1+epg.

Note that the possibility of terms of order between 1 and ¢ in the Helmholtz
expansion has beeh accounted for by not fixing K. Substituting into Eq. (5),
after using 7' and expanding, we have

APJdE = ig@)P® = ig(2),
and
PH(0) =0, (28)
so that

z
PE —j J g(#) d.
0

In applying the matching rule we shall need to know the singular behavior
of Eq. (28) as #— co0. Using the assumed behavior of ¢ for large values of the
argument it is straightforward to see that

FE ~ aE + aEE + a) In 2. (29)

Fow

As we will be most interested in the singular behavior of functions, it is
useful to employ a uniform and suggestive notation. For almost all cases of
interest forms such as

PP(E—>0) ~ Y @& (In £)* (30)
and
PME > o0) ~ Y @M & (In E)* (31)

suffice, where the sum is over nonzero a{"), and j and k may be negative.
Inserting Eq. (29) into the rule

(TEy TE, —E, TE, TYp=0 (32)
yields
E, TE, Tp=E, T[1 + &(@) + aX) &
+a§ In &) + -]
=E(l1+elneaf)+---).

Now E,p will designate the series up to the first term after 5. Hence,
for matching to be possible u; == ¢In ¢, and in the chosen numbering system
for gauge functions K =2, i.e.,

P~ pOZ) + e In e pAAE) + epP(E) (33)
and

P~ PO&)+eln e POE) + & pAA), (34)
where for this model problem it appears that 3 = 0.
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After this preliminary work we retrace our steps, and insert Eqs. (33)
and (34) into the problem in Helmholtz and Laplace coordinates, respectively.
Thus we have
(d/di)i)m) _ ,,;Bi,(o) — 0,
(@Jdz)ps —ifp =0,

(d[dZ)p® — ifp® = iy, PO/, (35)

with the solutions
PO = A, e,
pY =4, e, (36)
p® = Y GALL A’O iy, €' In &,
and
dp©/dE = dp?V|dE =0,
dﬁ(Z)/di — ip’(o)g(i)’ (37)
with the solutions (using the conditions $©(0) = 1, (0)*> 2 = 0)
pO=1, PPV =0, (38)

PR = zj (%) dz.

0

The expression for 52 can also be expressed in terms of the phase term Eq.
(39)

(9) of the exact solution
PR =ip(&, 1).
Substituting the expressions
PO ~ Ay H AL
FOINETYSI T R (40)
PP ~ G+ AN+ AR gt
for z->0 and
pO=aR=1,
PO =0, (41)
PP ~a@y+aE+afiIng,
for & — oo into
(TE, TE, —E, TE, T)p =0 (42)
1 (43)

gives

A,=1, 4,=4y,, and A,=0.

The matching rule also requires that @{2) =48 and {2} =1y, .
Before examining some of the interesting implications of these results,

we now briefly examine the general matching rule Eq. (22), in the light of

the specific example Eq. (10), with § = 7/2. As we have the complete solution



86 M. B. Lesser and D. G. Crighton

at our disposal for this case, we can verify Eq. (43) and perform an empirical
test of Eq. (22). Thus, using Eq. (10) and the fact that in Laplace variables

P = exp [1ep(Z, 1)], (44)
we find, with
@& 1) =&(1 4 tan™* &) — } In(1 + 27), (45)
and the definition
§=(+Ina),
that the Laplace and Helmholtz expansions to O(&?) are
By Tp=1+ eig(&, 1) + e3[@(&, 1)1, (46)

and
E.p =%l + icIn e —ic§ — 362(In ¢)?

+ ge?ln ¢ — 372 2. (47)

The argreement with the solutions Eqgs. (36) and (38) is evident, if we note
thatin Eq. (43) y, = —landthat =14 6=1 + #/2.

To check the matching formula Eq. (22) it is convenient to use a slightly
less explicit notation. Note that the principle expressed in Eq. (21) involves
transformation of Ey TE, p back to the coordinate %= &% We can define
two operators, one for the Helmholtz series, the other for the Laplace series,
such that results are always expressed in the & coordinate. These two opera-
tors in the £ space are

Ey=E,T (48)

and _
Ey,=TE,T. (49)

With this notation Eq. (21) reads

(By By — Ey EN)I3 = Hy (&, ¢). (50)
Van Dyke (1964) proposed that Hy , =0 for all N, M. If Eqgs. (46) and (47)
are used in Eq. (50) we can calculate the matrices By Ey § = Py yyand Ey By §
=Py nu- The “commutator ” matrix Hy , has the structure for N, M <5,

o() 1 elne & £%(lng)?2 &%?lne &2

1 0 0 0 0 0 07

elneg 0 * 0 0 0

£ 0 0 0 0 0 0

(51)

e(ln £)2] 0 0 0 * *

e2lneg |0 * 0 * * 0

& o 0o o o 0 o]

where the asterisks indicate values of N and M for which Van Dyke’s rule
fails. It is clear that Van Dyke’s hypothesis is not generally correct. Fraenkel
(1969) has made a careful study of the rule Eq. (22) and has compared it
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with other principles of matching. One of many conclusions reached was
that Eq. {22) is probably the most convenient method for computations.
It is usually only for simple problems that complete proofs of the correctness
of asymptotic expansions can be found, and for this reason justification of
an expansion is usually by physical arguments, the study of known special
cases, and/or comparison with numerical and experimental results. It is
thus worthwhile finding out under what conditions Eq. (22) may be correct.

Actually Fraenkel was able to achieve a great deal by showing that if
the exact solution of the problem has a “reasonable’ structure (which he
shows to be the case in many interesting examples) then, under certain
restrictions on N and M, Hy ,, = 0. We shall return briefly to the problem of
matching in the final section of this article. Here we now present a “ prac-
tical ” rule based on Theorem I, Assumption 3 of Fraenkel’s paper. Under
fairly general conditions, such as the existence of all appropriate limits, a
sufficient condition for Hy , to vanish, for an arbitrary set of gauge functions
iy > 1s that for some o >0

1in01 (o+1/pee®) =0 (52)

where @ — N or M. For example, in our test case

e2lne

lim £% —lim _~_ 2% _—
e~0 &g e~08XIn &)2e* .0&%lne

and clearly no « > 0 exists for which this limit vanishes. The way to apply
this criterion is to mateh in blocks, i.e. choose a subset of the gauge functions
for which Eq. (52) holds. For the case

{pn}={1, elne¢, ¢ eIn¢, e%In¢, €%, ...}
we choose
{1, ¢ &2, &% ...}

which, by Fraenkel’s theorem, leads us to match using N, M as indicated
in the matrix

1 ¢elne & &?2In?e &Zlne &2 & Inde
1 Jo — o —  — o —]
ghe | — — — — — — —
€ 0 — 0 — — 0 —
eZn?egl— — — — - - -

e&hej]— — — — — — —

&2 0 — 0 — — 0 —

endegl— @ — — — — — —

L A
l.e.,
Hyo=H,,=Hyo=Hyo=Hzy3=Hz o="=0. (53)
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The fact that other elements of the matrix (51) vanish must be taken as
peculiar to the special example chosen. The possibility that the criterion
(62) cannot be satisfied for any N, M also occurs in practice, for example in
the problem of scattering from a “soft”’ cylinder. However, we shall defer
further discussion of this case until Section II, where we shall see that it is
advantageous, and indeed vital, to choose the gauge functions in such a
way that the rule Eq. (22) does hold.

Before leaving the problem of matching (to be taken up again in the
final section) it is important to consider another point of view on how the
matching process works, and which has considerable intuitive appeal despite
its computational awkwardness. This is the idea that the matching of two
asymptotic series is possible because for a fixed & — 0, both series have a
common domain of validity to some given order in &, and hence may be
compared. One technique for performing this comparison is to pose an
‘‘intermediate”’ expansion in terms of intermediate variables such as * =
#[e”, 1 > o> 0, to express both asymptotic series in terms of x*(¢), and ex-
amine the difference as ¢ 0 to determine unknown constants. The book by
Cole (1968) gives many examples of this process.

The idea of an intermediate region where both expansions are valid
leads to the idea of combining the expansions to produce a so-called *com-
posite expansion,” which has the property of being asymptotically equivalent
to each expansion in its respective domain of validity. One popular way
of accomplishing this is to add the series to given order and to subtract
off the common part. Alternatively, one may multiply the two series and
divide the product by the common part, though zero divisor problems can
occur with this type of composition (see Schneider, 1973).

In terms of the operators E,,, Ey, a composite expansion (not unique)
in the space £ which is valid to O(u,) in the “inner” region and O(uy) in
the outer is given by the composite operator

EM,N = EM + EN - EM EN . (54)
Note that
EM EM.N P= EM{EM + EN - EM En}ﬁ = EM D, (55)
and, using
Hy y=0,
EN EM.N p= EN P. (56)

Thus the operator E, y giyes a single smooth function in the variable &
which has asymptotic equivalence with both expansions. For our example
problem
E,op=¢e%1+4ielne —i(l +Ing)e]+1
+ie{(#/e)[1 + tan~(Z/e)] — § In[1 + (2/e3)])
—[1 +4B% +ieln & —ie(l + In %)].
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C. TuE IMPEDANCE CONCEPT

A major conceptual advantage of MAE is that it provides formal de-
finitions of various useful conceptual structures. For example, the general
idea of impedance is frequently related to making a division of a problem,
one part of which is then represented as an impedance to another part.
Again we illustrate this with our sample problem. In an impedance approach
we think of the “ piston ™ in the region of strong sound speed variation as
being represented by a “ generator”’ and a ““ source impedance ”’ which drive
a ‘‘transmission line ” represented by Eq. (1b). Thus generator and source
impedance represent boundary conditions for Eq. (16). If one-dimensional
sound waves in a gas were being described by our model, the velocity would
be given by

4= — i dp|di (67)

where @ = wZy[p,y , Z, = po @, being the wave impedance.

We label the applied driving pressure at & =0, the effective pressure,
and the source impedance with subscripts I, E, and S, respectively. Then,
referring to Fig. 1 for sign conventions, we have

ﬁI:ﬁE—{'ZSdE' (58)

+ - -

Zs O jr

~ol
ol

S

O

Fia. 1. Equivalent circuit for source.

In our perturbation procedure all the source P; was taken to drive the first
term $® in the expansion for §. Therefore, using Eq. (57) in Eq. (68) and the
expansion for $, we find, with Zg = 2 + e¢ln eZ§) + - - -,

P =lim (5O —iZ© dp©|dz) (659)

£—0
and if we now substitute the series (40) for 5©’ as £—0, this gives
Pr=as% —iZ§ af. (60)

The matching (Eo By — EoEo)p =0 gives af®) =a$%), and as a0 is the
constant term in the Laplace region, i.e., the driving pressure §;, we find

29 =0. (61)
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The next term is O(¢ In ¢), and Eq. (58) gives
lim [ Z@(dFO)dE) — p] = 0. (62)

z—0

Then substitution of the small Z form of 5V from Eq. (40) gives
a(“ — zZ(“a(‘” (63)

The coefficients g%} and @{°) are found from the matching
(E2E2 _Ez Ez)ﬁzo’ (64)
and can be expressed in terms of the coefficients @ in the large & series for
7™, Eq. (41), to give
29 — ia@jagy. (65)
The same line of attack, using

lim (p® — ¢ 2@ dp®}dE) =0, (66)

-0

gives Z. However, it is at this point that the true singular behavior of
the outer approximation series comes into play, in the fact that as £—0,
P ~ a@)Ini. This indicates that Z® must display the same behavior,
if the impedance is to replicate the true outer solution. We adopt the formal
device that

F0)=afln 23}
means
F(x) ~alnzx (6')
as
x—0,
and with the matching Eq. (64) this gives
Z@ = —i(a§3/aR)n z}. (68)

Determination of the inner coefficients @ requires solution of the inner
or Laplace region problem to O(e2). For our example Eq. (46)

FO=F. V=0
and
P ~ifE—iIn &
(P = 1 with our normalization), and hence we find
Zg=¢(1 +1n &)(3/B)(1 —fln ZP + O(e? In2 ¢). (69)

Using Eq. (69) with the impedance definition Eq. (58) and the O(e)
truncated version of Eq. (16),

dpjdz — i — (&/Z)}p =0, (70)
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one can solve the problem in the outer Helmholtz region to O(¢). The main
point is that the large £ behavior of the inner problem sequence can be used
to define the effective impedance of the source region in a quite definite
manner which can be carried out to as high an order of approximation as
needed. We shall come across a number of examples in which MAE can be
used to verify the accuracy and validity as well as compute the needed
parameters in such idealized acoustic constructs. Section II, E deals with the
“end correction ”’ for a thick plate, for example, while an equivalent * scat-
tering matrix " is discussed in Section III, C.

D. A Seconp-OrpER MODEL EQUATION

Before leaving the domain of elementary one-dimensional examples,
let us examine a problem closer to the type that one meets in practice, i.e.
a problem with two directions of wave motion possible, so that instead of
Eq. (2) as our starting point, we have a second-order equation. Thus, after
suitable normalization and removal of the explicit time dependence by
Fourier analysis, our equivalent of Eq. (5) takes the form

d*pldz® + g(Z/e)p =0,
gl&)=p> +ae™ 7%,
p(0) =1, (71)
PE — 00) ~ etz

To fix ideas, the reader might think of this as a simple model expressing, for
example, the variation in sound speed in a bonding layer between a crystal
transducer and a target medium with nondimensional wavenumber B, the
limit ¢ >0 expressing the fact that the layer thickness is small compared
with the typical wavelength. In accord with this physical situation, we
restrict £ to positive values.

The operation ¢ >0 on Eq. (71) with Z fixed gives that g(z/e) =82 +
terms of exponentially small order. Therefore the & dependence of § for
correction terms of algebraic order, that also meet the outgoing or radiation
condition, must be of the form

PO = Ay o (12)

and hence,
L
E,p=E, Tp= ( Zopn(s)fIL)ewi. (73)

Clearly, such a representation as Eq. (73) is not capable of providing an
asymptotic representation of p “near’ the piston surface, where the expo-
nential dependence of the varying sound speed becomes important, i.e.,
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when & = O(g). In this Laplace region, over which phase changes are small,
the suitable variable is again & = &/e, and Eqgs. (71) take the form

d?pldE? 4 29(%)p = 0,
#O)=1, (74)
p(& — 0): form given by matching.

The appearance of the term ¢2 in Eq. (74) might give the impression
that the gauge functions ug(¢) for the problem might proceed as 1, €%, &%, ....
We shall adopt a somewhat cautious point of view and leave the general
form of py undetermined. When £ —0 in Eq. (74), we are clearly left with
a meaningful problem. It is also evident that the effect of g(&) will first
become significant for a term O(g2?). Therefore we assume, as a tentative
hypothesis, the form

By Tp=Hop =5 + pu(e)p™ + 2. (75)

If Eq. (75) does not prove to have enough structure between terms O(1) and
O(e?%), we shall have to relabel the terms and add more gauge functions. (In
the next section we will study diffraction by a strip, where we are con-
fronted with this type of problem and show how it can be dealt with in a
systematic way.) Inserting Eq. (75) into Eq. (74) and thus developing equa-
tions for @, $, and §? we find

PO=1+Bo8, V=B,

PP = (afy?)(1 — e~ ") + [ By — (afy)]% — 1B°5,
where we have used the boundary conditions $©(0) =1, $*>°%0) = 0. The
reader will note that B,, B,, and B, remain to be determined by the match-
ing principle, and that the so-called eigensolutions (general solutions to the
homogeneous problem) B,#, B,%, and B,# are singular as 2 —> 0.

Under our assumptions about the sequence pu,, the outer solution to
O(¢?) is given by Eq. (73) as
E,p= (/Io + I"'IJI + 82“12)@‘35- ) (77)
With the assumed gauge function defining £ and with £ = ET, £ = TET,
the matching principle has the form

(EzEzEz —Ez)i’:O- (78)

(76)

For this simple problem the reader can easily confirm that, for Eq. (78) to
hold, it is required that

”1:8, Jozl,

4,=0, 4d,= afy?, (79)

and that
B,=o, B, =B, B, = afy. (80)
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Therefore
Eyp=[1+ (afy*)e?]e'’, (81)
and
B, p=1+1iB%+ (afy®)(1 —e™7) — 3% (82)
Finally, we can form a composite expansion by using the formula (54). Thus
Ey o ="l + (2afy?)(1 —exp{—[if + (y[e)}E})], (83)

a result which should be relatively simple to interpret and which provides a
uniformly valid approximation in 0 <& << 0 to O(¢2).

We could continue with a number of one-dimensional wave propagation
problems of increasing complexity, including ones that fall into the class of
WXKB turning point problems (see, for example, Harper et al., 1971; Nayfeh,
1973, Chapter 7; Murray, 1974, Chapter 6; O’Malley, 1974). However, it is
more instructive for the purpose of this article to examine some classical
diffraction problems, and problems relating to resonant cavities and wave-
guides. For some informative MAE treatments of one-dimensional linear
problems, the reader can consult the second chapter of Cole (1968). We shall,
however, return to one-dimensional wave propagation in our examination of
nonlinear acoustics.

The present section contains all the formalism needed to understand
other sections, which can now be read independently.

II. Scattering and Diffraction Problems

A. INTRODUCTION

In this section we examine some acoustic scattering and diffraction
problems from the MAE viewpoint. We start by considering the scattering
of a plane wave by a strip of width 2a, using MAE to find a uniformly valid
asymptotic solution in the low frequency limit ¢ = k,a —0. (We shall some-
times refer to ¢, essentially the ratio of obstacle size to wavelength, as the
Helmholtz number.) Without having to carry the expansion too far, we find
that this problem exemplifies several interesting and important features.
Firstly, whether the strip is hard or soft, there are a large number of eigen-
solutions to both the inner (Laplace) and outer (Helmholtz)} problems,
depending upon conditions which can be tolerated at infinity and at the
strip edges. Secondly, logarithmic gauge functions and the ‘“switchback ™
phenomenon arise early on, in the second approximation for the hard strip,
in fact. Thirdly, an inhomogeneous Laplace equation arises in the second
inner approximation, and in this simple case the reader can see in detail how
to deal with this kind of situation. Fourthly, if the strip is soft the asymp-
totic sequence of gauge functions appears to proceed very slowly, in inverse
powers of (In &), giving a situation analogous to that arising in plane viscous
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flow at low Reynolds number (Van Dyke, 1964, p. 161). We shall see that a
naive application of the Matching Rule Eq. (22) is quite unsatisfactory, the
rule working for some values of (N, M) and failing for others. However, a
simple change of the gauge function (In &)~ to (In ¢+ K)™! effectively
allows the whole series in inverse powers of (In &) to be summed, leaving
only more rapidly decreasing algebraic functions of ¢, and allows the match-
ing to be performed with no difficulty.

We then go on to summarize some results obtained elsewhere for a
more complicated problem, involving the diffraction of a plane wave by a
semiinfinite screen of small, but finite, thickness. For this problem the
approximate MAE method leads to simple, exact, closed-form results for
some quantities, in contrast to the approximate purely numerical results
which have been given previously from an “exact’’ solution of the problem.
The article concludes with a section which quotes some results for three-
dimensional scattering problems which may be constructively attacked
using MAE. The great difficulties encountered in applying MAE, as much as
any other method, to three-dimensional scattering problems are also em-
phasized.

B. ScaTTERING BY A HARD STRIP

We take the simplest case, in which the plane wave, with potential
¢! = exp(—ikoy — iwt), is at normal incidence to the hard strip occupying
y =0, |z| <a; see Fig. 2a. Then, suppressing the time factor exp(—iwt),
(w = ag k), the complete problem for the scattered potential is

(V24 ko*)p =0, (84)
(0/oy)[$ + exp(—ikoy)] =0  (y=0, [z] <a),

which implies that ¢ is odd in ¥ and hence that
$=0 (y=0, |z]|>a). (85)

In addition, ¢ must satisfy a radiation condition at infinity, and ¢ must
satisfy some edge conditions of the kind

$=0(1) pVd=o(l) (86)

as p =[(x 4 )% + y?]'/2 —0. These conditions imply that the pressure must
be finite and the velocity no more than integrably singular at the edges. By
well-known theorems in diffraction theory, the problem defined by Egs. (84)
—(86) has a unique solution (e.g., Jones, 1964).

Outer or Helmholtz variables are defined as

T=kyx, =1k Y,
bz, y) = (&, §), (87)
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(b)

Fic. 2. Scattering by a strip and conformal mapping of Eq. (7).

and we assume an outer expansion

$E 9 ~ 3, pale)$™(E, 7).
In outer variables, the complete problem is

(V2+1E=0,
@lopd=:i  (F=0, |&] <o), (88)
$=0 (F=0, |&]>e).
When the outer expansion is substituted into this problem, the condition on

8¢/07 is irrelevant and all we can enforce is the condition on ¢, together with
the radiation condition. Thus

({7'2 + 1)$(n)=0’ .
gm=0 (F=0, |g]|#0), (89)

i.e. ™ is an outer eigensolution for all n. The most general (generalized)
function satisfying Eq. (89) can easily be shown to be

¢ =Y Apm A, ) (90)

where A, (7, 8) = HP(F) sinmf (m=1,2,...) and £=Fcos 8, J=7sind,
—g <<+
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Now the outer and inner solutions do not both necessarily start with
the same order term, so that, according to our scheme for numbering the
gauge functions, we should not prejudice the issue by assuming that the first
term of & is in fact O(u,), i.e., the inner solution may start off with higher
order terms than the outer solution. We therefore assume merely that to

leading order
¢ ~ pa(e)d® = pp Y, Apm An(F, 0). (91)

According to the principle of Minimum Singularity (Van Dyke, 1964, p. 53),
it is a matter of practical experience that only the least singular term of
Eq. (81) is capable of matching a suitably well-behaved inner solution, and
therefore

¢ ~ pp Ap H{P(7) sin 0 (92)

is the leading term, denoted by Epd(%, 7, €) of the outer expansion. Terms
corresponding to Ay, with m > 1 can be included if the reader is suspicious
of the Minimum Singularity Principle, but then matching with an inner
solution will indeed be found to show that Ay, =0 for m > 1, provided the
inner solution satisfies the edge conditions.

Now the appropriate inner variables are evidently

& ) = T(, §) = (Fe, Fle)
and

$@, 5. &) = T4 . <), (93)
The gauge functions are assumed to be chosen so that ¢ may also be expanded
in them,

$E 7 &)~ ule)d™E 9).

n=0

The complete problem in inner variables is

(V2 + &g =0,
alog=ie  (F=0, |&] <), (94)
=0 (=0,

where the edge conditions are to be enforced, but the radiation condition
must be relinquished in favor of matching with the outer solution. When the
inner expansion is inserted into Eq. (94), we find that the leading term must
vanish identically unless its gauge function is appropriately chosen. If we
require $‘°’ to be nonzero, then there is only one possible choice for u,(e)—
the distinguished limit (Cole, 1968, p. 10) po(e) =&, which preserves just
enough structure in the differential equation and boundary conditions to
start the expansion immediately with a nontrivial term. Then

V’z$<0)=0,
0pg=i (=0, |z <), (95)
$9=0 (=0, |&|>1),
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which is satisfied by §© =g + f,, where f, is any inner eigensolution, i.e.,
a solution of

€2fo=0,
o%lof=0 (F=0, [#] <1), (96)
f=0  (F=0, |&]>1).

The most general inner eigensolution can be found by conformal mapping.
We use the imaginary unit j in this context, to avoid confusion with the ¢
arising from the time dependence. Then the mapping

L [E—1\Y2
w_u+]v_](5+l) , (97)
with Z = & + j§, takes the segment |&| <1, § =0 into the whole line v =0,
and the flow domain into » > 0, as depicted in Fig. 2b. The line 5 =0, |&| > 1,
on which f, =0, maps into the imaginary axis u = 0. The eigensolution f,
is the real part (with respect to j) of a complex potential {(w) which has
constant imaginary part on v = 0, and zero real part on « =0, v > 0.

Now, in order to match the outer solutions, the potentials $(") must all be
small as [%| — co. Because of particular solutions like the 7 in §, the
eigensolutions need not be small, but can be algebraically large at infinity in
the Z-plane. Correspondingly, in the w-plane the eigensolutions can have a
pole of finite order at w=j. In general, they may also have half-power
singularities at the edges of the strip, which in the w-plane allows the com-
plex potential to have algebraic growth as |w| —> o0, and to have an alge-
braic singularity as w —0. These arguments apply, of course, only to the
flow domain » > 0. However, since f, is the real part of an { which has zero
imaginary part on v=0, Q is analytically continuable to v <0, and may
have a pole of finite order at w = —j (identical with that at w = 4j) and
poles of finite order at w = oo, w = 0. The most general form of € is thus

w'n

T+ o)

Q(w)

(times any constant which is real with respect to j), m amd n being any
positive or negative integers. This gives

Q) = (j7/2™)(E — D™2E+ 1) /2, (99)

which clearly has all the stated properties.

In the present case of normal incidence, symmetry between Z — 1 and
Z + 1 requires m = n. The resulting function € then has zero imaginary part
on§ =0, |# <1,but haszerorealparton =0, |Z| > 1 only whenm = +1,
43, 45, .... Thus the most general symmetric inner eigenfunction is

Ap=Re[(j2)"" B —1)" "V ne 22, 1,0, 41, 42000 - (100)
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The eigensolutions which fulfill the edge condition have m >>1; those which
vanish at infinity have m < 0. As |Z| -0,

A ~ Re [(j[2)?m 12" 1 (3)], (101)
1\ 1 —hm—9 1
Ful® ~l—(m—§) §_2+%(!m2)§4+...

Now consider the matching principle
(ENEM—EMEN)‘;:O’ TENT:EN> EMT:EM» (102)

where T' denotes the transformation from # —>&, T that from #— &, and the
E, are the partial expansion operators through O[uy(¢)]. Take M = R and
then
TEr$ = pple) A H{V(eF) sin 6
~(1/&)p(e) A gy (—2i/7F) sin 8

to leading order. For this to match the inner expansion starting with
Ho(€)PD = ¢, we must have

pr(e) = €2

Thus the matching rule is to be applied with M = R (where uj = ¢2) and
N = 0 (uo=2¢), and we have

TE,TE ¢ = e24,,(—2i/nF) sin 6. (103)

To match this, §© must vanish as |Z| — co, and yet must satisfy the edge
conditions, so that the only possibility is that

$O =i + ao A,®). (104)
This gives
E, T‘; = g[if + do, A4 (B)],
TE, TJ; = e[(17/e) + Ao A1 (Z/€)],
ExTE,T¢ = s{(ife) + Goy Re,[(j3/26) — (je[42)]}
= 1§ — $801J — 1d,,€%(sin 6)/7, (105)

and matching Eq. (105) with Eq. (103) then yields

Aoy = 21, Ay = /4, (106)
so that

& = 2(wr[4)H{P(F) sin 6 4 o(e2),

&= eli + 2iA,3)] + ofe). oD
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C. HicuErR ORDER APPROXIMATIONS

We continue to higher order by observing that the expansion Eq. (105)
proceeds with a term O(¢?),

o2 ok
EsTE, T§ = —5 sin 6 — 2= sin 30.
sTE,Té 57 Sin 6 g Sin 30 (108)
This suggests that
¢ = pa(e)® + ps(e)d + olus),

where ps(e)= e* and
K
¢ =Y Ay, HP(F) sin mb.
m=1

For matching with an inner solution which is at most O(¢), the inner expan-
sion of £*¢*®)(ex) must be at most O(e), and therefore K cannot exceed 3,
so that

a
¢ =Y A, HY(7) sin m#. (109)
m=1
The coefficient 453 can be immediately determined by using the matching
rule with 4 =S8, N =0,
(Bo Bs — Bs Bo)§ = 0. (110)

The second member of this equation is given by Eq. (108) above, while the
first member is

ie? . 1641645, sin 30

7 T 73

, (111)

and therefore
Ag= [128. (112)

Now the next term, after O(e), of the inner expansion of the outer
series as far as O(ps(¢€)) is in fact O(e?) arising from the H{(7) term in Eq.
(109)

E,TE; $ = E, TE; (; - ‘-11 528 81?229'
T 7

(113)

The inner expansion therefore continues with a term O(ug) = O(¢?)

& ~ e + pr(e)F® + o(uz),

where §® is an eigensolution which must satisfy the edge conditions and
vanish as [Z| — o0 in order to match Eq. (113). There is nc eigensolution
with this property, and therefore

Agy=0. (114)



100 M. B. Lesser and D. G. Crighton

We may now simplify our notation a little by writing
pa(e) = py(e) = &% (115)

Continuing the inner expansion of the outer series, we find that the next
terms beyond O(£?) are O(¢® In ¢) and O(&?),

g8ind

o
E,TE;$=E, TES$—;’ 16
e 7 T onf

+%~[1—%(1—2y+2ln2)]} (116)

g a "
1e3sin 36 we {1,7‘ (In7 +1n &)

m™

where y = 0.5772 . . . is the Euler constant. This suggests an inner expan-
sion
$~ e+ pe(e)P + pole)$, (117)
where
up(e) =edlne, Hole) = €%,

and we treat pp and p, as both of the same algebraic order, O(¢?), in order
to avoid the kind of possible errors mentioned in the Introduction. §®
is an eigensolution which we consider later. The problem for 9’ involves a
Poisson equation,

%2&0) — _(5(0)’ (118)
where
$©@ = i§ + ¢ Re, j(32 — 1)V/2,
$9 must also satisfy the boundary conditions @ =0 on § =0, [&] >1,

@25 =0 on §=0, |#| <1, must vanish at infinity, and must satisfy
the edge conditions.

Write
$@ = (—ig®[3!)) — i Re,(j ), (119)
and then
Vo= (22— 1),
or
0%[0% 0% = }(32 — 1)V/2
where
=& —jj.
Thus

= §3E*(32 — 1)1/2—15* cosh ! 3, (120)
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plus any function of Z alone. The first term in ¢ does satisfy the boundary
conditions on 95‘9’, as does the 7 term in Eq. (119). The second contribution
to s can be made to satisfy the boundary conditions if a term

32 cosh™1Z

is added to . The complete expression for @ also satisfies the edge condi-
tions, but is not small at infinity. We must therefore add on eigensolutions
which satisfy the edge conditions, and grow no more rapidly than 23 at
infinity, to give
$@ = (i7/3) — i Re,[4]7|2(2* — )2
— §J(Z* — %) cosh ™1 2] 4 @1 A1(B) + G0 As(?). (121)
For the eigensolution ¢® a term growing as rapidly as 2° is not permit-

ted, but there is no reason to suppose that the less rapidly growing eigen-
solution A; will not be present, so that we take

Sg(m = dp A4 (2). (122)
Thus
E,TE=E T+ 2 1lned® + 3@
and

EyTE,T§ = E;TE, 1§

7277 =3 - .
+ £3a02|:1(?ﬂ_y_) _i?_{_i £ 8in 0]

8\ & & 16 64 7
~ 15 lesinf\ 3
sq. . _-Y_&5nYYy Al
te Ql( 2 4 7 ) 6

—ie( -~ L — g G ein 6 — 45in )

—-l-fsin t9(1n2-[—1n7’—lns)-}-esm_t9 (1 —2sin2 6)
4¢ 167
+&lne apl(—%— 2= 9) : (123)

This expression must match the result of applying T' to Eq. (116), namely,

. . 4
TE, T’ES$=—21A-3184 s 0—% (8 sin 0 — 4 sin® 6)
k)

r 73

€

. ._ .
+’%sin 0{"1nr-+2is [-%(l—2y+2ln2):|}. (124)
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The first terms in Eqgs. (123) and (124) agree because of the matching which
has already been carried out. Matching of the remaining terms gives the
following results:

‘ioz = _%i
dopy=—in+3—3y+iln2,
dp = _%i,
Agy = 3n(5/64 4 im[16 — /8 + } In 2), (125)

and at the same time provides a partial check on the working in that
these choices, determined from a particular set of matchings, then auto-
matically ensure the matching of other terms. There is, however, a term
(3/8)e* In ¢ 7= sin 8 left unmatched in Eq. (123). This deficiency indicates
that we should add a **Switchback ” term

~(m/16)e* In ¢ H{(7) sin 8 (126)
to the outer solution, for this supplies only the contribution
(¢/8)e* In & 7~ sin

to Eq. (124), and therefore matches the extra term in Eq. (123) without
violating any of the other matchings we have performed.
Thus the inner solution proceeds with the series

<$= {e,%Ine, €3, ..},
the outer with
$=1{e% etlne e, ..},

and we have now determined the outer series completely to O(¢*), and the
inner to O(&3).

As a check on the results obtained, we can calculate the total power in
the radiated wave,

P = (pyw?ag) lim f R
rT—x 0
and we find
P = (2po w?|a,)e(72[16)[1 4 (562/16)(1 — 83/5) + o(?)] (127)
where

d=y+Ilneg—2In2.

This agrees exactly with results given by Bowman et al. (1969, p. 210). It is
clear, moreover, that the MAE calculation presented here can be carried out
to any order in ¢, using precisely the methods which have been needed to
derive Eq. (127). Further, that while some of the many classical methods which
have been derived to attack this problem may quickly yield a number of
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terms in the expansion for particular quantities, such as the pressure on
the strip, or the far-field scattering coefficient, there is no method superior
to the MAE method for providing a detailed and readily interpretable
picture of the entire field. Usually it is convenient to have that picture in
the form of separate inner and outer expansions, as we are normally inter-
ested in either the pressure field on the scattering surface or in the distant
radiation field. Composite expansions can, however, be formed if desired
(see Van Dyke, 1964, p. 94). Thus, from Egs. (107) a composite approxima-
tion, valid to O(e?) for 7= O(1) and to O(g) for #= O(1), may be formed
either by additive composition, giving

b ~ £%(m[4) sin O[H{O(F) + (2ifnf)] + e[if + 20 A4(3)), (128)
or by multiplicative composition, which gives the somewhat neater result
B ~ (m|20)eHO(Pi7 + 26 Ay (2)). (129)

D. SCATTERING BY A SOFT STRIP

Turning now to the soft strip, the boundary condition ¢ -+ e~ ¥ =0
on (y =0, [x| <a) implies that ¢ is even in y, so that d¢/dy = 0 for (y =0,
[2]| > a@). All terms of the outer expansion

$(, 7, &) ~ . ga(e)™(Z, 7) (130)
are outer eigensolutions, with the general form
¢ =Y Ay HY(F) cos mb. (181)
m=0

For the leading order term, ¢’ say, the Minimum Singularity Principle, or
matching, shows that only a monopole is present, with

¢ = A,, H(7), (132)
and to leading order
9,(e)FV(eF) ~ ga(e)(2 A o/m) In e (133)
Assuming an inner expansion
$&, 7, &) ~ Y. 9.(e)P™(Z, 7), (134)

we see that the leading term will be nonzero (implying 4,, # 0) only if the
leading gauge function is

and that then
FO = —1. (135)

If we now take g,(¢) = 1/In ¢, and tentatively apply the rule
T8, TE,$ — E,TE, T,
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we have Eq. (133) for the left side, —1 for the right, and hence we get

A, =mij2. (136)
Proceeding beyond Eq. (133) we have
ETE,d=—(1/lne)lne+1InF—1In2 +y— imi), (137)
TE,TE,§ = —(1/In &)(In {F 4y — §ri). (138)
The first of these equations suggests that
$=—1+(1/lne)g®+---, (139)

in which $(1> is an inner eigensolution, a harmonic function with $(1> =0on
§=0, |&| <1 and with 8¢’/8§ =0 on § =0, |&| > 1. The general form of
this eigensolution can be found using the mapping Eq. (97) again. For the
present case of a soft body, however, it is more convenient to use the mapping

2= [ + (1/@)]. (140)

Since this sends the strip in the Z-plane into the unit circle in the @-plane, it
is obvious that the general inner eigensolution is a linear combination of
Re, In % and Re(#" — @ ~"). The source term In % is evidently required for
Y so that we assume

$® = a, Re, In[z + (32 — 1)1/2]. (141)

There are now two possibilities for determining @,. Firstly, since ¢
contains no O(1) term, we can use the matching rule

TE,TE,$ = E,TE, T4, (142)
in which the left side is zero, while
E,T§ = —1+ (1/In £)d, Re, In[Z + (32 — 1)V/2] (143)
so that
E,TE,T¢=—1—a,. (144)
Thus
a,=—1.

Alternatively, using the rule
TE,TE.$ = E,TE,T§, (145)
the left side is given by Eq. (138) above, while from Eq. (143) the right side
is equal to
—1—a;, + (1/In &)a, In 27. (146)

Clearly there is no choice of @; which makes Eq. (138) identical with Eq.
(146), though the choice @; = —1 does at least have the merit of matching
the O(1) terms and the terms proportional to In #/ln ¢.
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The fact that the matching nearly works leads us to suspect that a
slight change in the gauge functions may yield expansions which have the
structure necessary for matching to work.

Fraenkel (1969, p. 217) has discussed this kind of situation, showing
by example that three cases may arise, depending on the gauge functions.
With the “most appropriate’ choices the principle Eq. (22) holds; with a
less appropriate choice the principle may or may not hold, while with other
choices there is no matching principle at all. At present we are in the third
position. However, experience of other problems involving inverse powers
of In ¢ (for example, plane flow at low Reynolds number, Van Dyke, 1964,
p- 161), consideration of, say, the scattering of a plane acoustic wave by a soft
circular cylinder, for which the total potential is given exactly by

BN Jn(ko a)

;= exp(tkyr cos §) — imetnf
P

H®Y(k 147
= H'(‘l)(koa) n ( Or)’ ( )

and consideration of the fact that mere redefinition of ¢ by a constant factor
involves the addition of a constant to In ¢, all lead to the idea of trying

gole) =1,  gi(¢) =1/(In ¢ + K). (148)

Then, with notation as before,

E,¢=[1/(In ¢ + K)]d,, HL(#), (149)
s 7 20410 | 2041 (InF—In2 4y — i — K)
B TEf = T + T (In ¢ + K) ’
while
E,T§ = —1+[1/(In & + K))a@, Re; In[Z + (Z — 1)!/2] (150)
and

E,\TE,T§ = —14[d/(In ¢ + K)][—(In ¢ + K) 4 K + In 27].
Now the rules
TE,TE:$ =E,TE, T
and

TE,TE,§ — B, TE, T

lead to the same choice of 4;, and @, as previously, namely A,, = mi/2,
d, = —1. However, the rule Eq. (145) which failed before now requires

—(K +In 27) = (2iAl°/ﬂ)(1n Ff—1In2+4 9y — }mi)

which is satisfied if
K=y—4mi—In4 (151)
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Thus the matching is satisfactorily accomplished, and leads quite
naturally to the introduction of the parameter

K +In e=In(koa) + y — 3,

whose origin in other approximate treatments of this kind of problem is
normally rather obscure. Further, what appeared earlier to take the form of
a very slow expansion in inverse powers of In ¢,

é=(1/In &)¢ +[1/(In &)>]¢® + - - -, (152)

is now seen to arise simply from the binomial expansion of (In ¢ + K)-1.
We have in fact summed the logarithmic series, and the second term in the
new outer expansion is of algebraic order in ¢. To see this, expand Eq. (150)
to the next term beyond g,(e),

rp g (K4 1n2F) e? cos 26
B, TB,T¢ = (ne+K) ' (Ine+ K) 472

This suggests that the outer expansion takes the form

$~[1/n e + KD +[e*f(In e + KNF® + 2@ -+ (153)

where we should again treat the last two terms simply as both O(&?). Note,
however, that there is no reason why a switchback effect should not occur,
forcing us to introduce an earlier term with gauge function ¢%(In ¢ + K), for
example. In fact that does not occur at this stage, though it does at O(e®),
where the gauge functions &%(In ¢ + K)?, e8(In ¢ 4 K), &%, e®(lne+ K)1,
and €5(In ¢ + K)~2 are all needed (cf. Bowman et al., 1969, p. 190). Pursuit
of higher order terms for this problem is an arduous business, though in
principle it can be accomplished to any order using only the methods which
have already been demonstrated in this article. The interested reader is
recommended to look at the somewhat simpler problem of scattering by a
soft circular cylinder, for which the exact solution Eq. (147) will serve as a
ready check on the working. Harper (1969) has examined this problem in
detail from the MAE viewpoint, showing how the time-harmonic results
can be used in a Fourier synthesis to describe transient pulse scattering by a
soft cylinder.

E. DrrrrAcTION BY A THICK PLATE

As a demonstration of the full power of the MAE technique we examine
briefly the problem of the diffraction of a plane wave by a semiinfinite
rigid plate of small but finite thickness 2a, the expansion parameter being
the Helmholtz number ¢ = kya (Crighton and Leppington, 1973). Although
the outer solutions here are much more complicated than the eigensolutions
of Sections 1I,B and C above, the principle is just the same; an outer wave-
field with boundary conditions appropriate to a zero-thickness half-plane
is matched to an inner incompressible field describing the details of the
flow around the blunt edge of the plate.
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This problem has been attacked by other authors using a formally
exact extension of the Wiener—Hopf method. In particular, Jones (1953)
gives a contour integral solution, valid for arbitrary ¢, involving an infinite
sequence of parameters which are themselves the solutions of an infinite
system of linear algebraic equations with coefficients dependent on ¢. For
€ € 1 this system can be truncated to a small closed finite system, and the
parameters have purely numerical values which can be found approximately.
In the limit ¢ -0, the parameters have a simple interpretation in terms of
the Fourier coefficients of the pressure across the end face of the plate,
and a simple interpretation of the effect of finite thickness on the distant
diffracted sound field can also be given.

The specific results obtained by Jones are that the first few parameters
have the approximate values

A,=03481, A, =0.0543,
A;=0.0229, A, =0.0130,... (154)

and that to O(e) the distant field of the thick plate is identical with that of a
parallel plate duct of width 2a whose plates are longer than the plate faces
by an amount

L =0.22aq, (155)

apart from an obvious monopole effect associated with plane wave propaga-
tion down the duct.

It is perhaps remarkable that the approximate MAE method improves
on these results by providing exact closed form expressions. Moreover, the
MAE method can be developed much further than the “exact’ method,
though admittedly the process is very laborious, and in this problem it
illustrates in a very striking manner the danger of failing to include all
logarithmic terms with those of the same algebraic order in performing the
matching.

Suppose the plate occupies x <0, |y| <<a with a plane incident wave
exp[ —ikq(x cos 6, + y sin 6,)]. Then the scattered field satisfies

(V2 + ko) =0,
2¢ [y = ik, sin 0, exp(—ikox cos 0, TF i sin 6,) (y=4a, x<0),
8¢|dx = ik, cos 0, exp(—ik,y sin ;) (x=0, —a<y<+a),
with no more than an integrable singularity in V¢ at the corners, and with a
radiation condition at infinity. Defining outer coordinates as £=kqz, § =
k,y, it is found that the outer expansion takes the form
(ﬁ(ft, 7; &) ~ (;(0) +elne (ﬁ(l) +e& (;(2)
+&2In? & ¢ 4 &2 In £ 4 + 24 + O(e?),  (156)
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while in inner coordinates & = Z/¢, § = /e,

B(E, §; &) ~ e12¢® + ¢ FV 4 622 1n & @
4 6328® L e2lne @ + £24® + 0(e512), (157)

(using a notation more convenient here than our usual one). The first outer
solution ¢© is Sommerfeld’s solution for the zero-thickness problem,

$© =} exp[—iF cos (8 + ;)] — ¥ exp[ —¢F cos (8 —8,)]
—} exp[ —i7 cos (8 + 0)o] erf {e~"/%(27)1/2 cos [(8 + 8,)/2T}
—3 exp[—17 cos (6 — 6,)] erf { —e~™4(27)/2 cos [(6 — 6,)/2}]. (158)

This fails to describe the field correctly only within a circular neighborhood
of radius O(a) around the plate edge, and it is therefore appropriate to stretch
both of the coordinates in the same way. We find then that the inner be-
havior of $© is

FO(e, ) ~ £112(2%1% =114/ 12)7112 sin (6/2) sin (8o/2). (159)

The first inner solution $‘°’ is harmonic, with zero normal derivative
over the whole of the thick plate (£ <0, |#| <1), and with behavior
#1/2 gin (H/2) as #— oo in order to match Eq. (159). It is proportional to the
real part of a complex potential {(&%) = @, where

—3r(E 4 6) = W2 — 1)V2 —In [@ + (@7 — 1)1/2] (160)

maps the low domain into Im % > 0, the surface of the plate into Im & =0,
and the corners into @& = +1.

Now although Eq. (160) defines @ implicitly in terms of Z, the Fourier
coefficients of the potential across the end face, #=0, —1 <§ <+1, can
be found explicitly, and the result for the quantities 4,,, 1 is

1 1 1
Aznn:m [Jn(n+§) _Jn+1(n+§)]’ (161)

the first few values of which agree with those in Eq. (154) to within the
numerical accuracy of those results. By continuing the outer expansion
through O(e) and matching it to the inner expansion through O(¢), one can
also show that the so-called ““ end correction’ L is given exactly by

L =a(ln 2)/m, (162)

which agrees numerically with Eq. (155). Further, as if the numerical agree-
ment were not a sufficiently convincing demonstration of the validity of
the MAE approach, it was shown by Crighton and Leppington (1973) that
Eq. (161) does indeed constitute the exact solution of the full infinite system
of equations whose approximate numerical solution is given by Eq. (154),
and that a certain infinite series involving the A4,,,; can be summed exactly
to produce the result Eq. (162) for the end correction.
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In the calculation of higher order terms an interesting phenomenon
presents itself. If one attempts to treat logarithmic and algebraic gauge
functions independently, then the outer O(e? In? £) term can be found and
matched to the inner solution in an apparently perfectly satisfactory way—
that is, the right functional forms arise from inner and outer expansions,
and there are just enough matching equations to determine all the un-
knowns uniquely. However, one finds that the asymptotic form of ¢® is
then not symmetric in the angles 8, 8,, as is required at all orders by the
Reciprocal Theorem, permitting the interchange of source and receiver.
Without this additional check one would not suspect any error in ¢®. Of
course, at even higher order some inconsistency would be bound to arise, but
then one might not be able to carry the calculations through to a sufficiently
high order for the error to be revealed.

This then serves as another warning as to the importance of assessing
orders of magnitude on algebraic grounds alone [if ¢, ¢’ and ¢ are all
treated as O(e?) and taken together in a ““ block ”’ matching then it is found
that, as #—> oo, these functions are indeed each symmetric in 6 and 8,],
and of the danger in regarding consistency alone as a sufficient justification
for either the form of an expansion or for the form of a matching rule.

F. THREE-DIMENSIONAL PROBLEMS

Three-dimensional scattering problems at low Helmholtz number can
in principle be treated in just the same way as the problems already discussed
here. In practice, however, we are limited by the relative scarcity of solutions
to the inner problem in three dimensions, unless the scattering body coin-
cides with a coordinate surface in one of the coordinate systems in which the
Laplace equation is separable. The reader will find it a straightforward
matter, as suggested by Kanwal (1967), for example, to derive several
terms in the inner and outer series for the scattering of a plane wave ¢! =
exp (—tkor cos 8) by a sphere r =a, in the limit ¢ = kya —0. The results
should be compared with those obtained by applying the inner and outer
limit processes to the exact solutions

95__

Jn(&) 1 a
0 —)"(2n 4+ 1 )hm(e) h& X (kyr) Py(cos 6), (163)

n[\’]s

<1>('()) h{(kyr)P,(cos ), (164)
valid, respectively, for the soft sphere and the hard sphere, with ¢ denoting
the scattered potential. Note that the solution Eq. (163) indicates that the
difficulties experienced in Section II,D are likely to arise only in two-dimen-
sional scattering problems with soft surfaces.

A more taxing problem in three dimensions is created by the scattering
of an axially incident plane wave ¢'= exp ik, z by a paraboloid of revolution
n=m;, the paraboloidal coordinates being defined by x=2(£5)'? cos «,

i y(2n + 1)
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y =2(&n)'? sin a, z = &€ — 7. 1, may be interpreted as one-half of the radius
of curvature at the nose, and in the low frequency limit ¢ = k; %, —0. Again,
the results should be compared with those derived from the exact solutions

. %‘” - Si(2ko 7]) +1 Ci(2ko 7]) ikoz
¢ N [%‘” - Si(2ko 7]1) 4+ Ci(2ko 7]1)] ‘ ’ (169)
¢ _ ( %‘” - Sl(2k0 7]) + % Cl(2k0 7]) ) etkoz (166)
(32"‘0"1/1‘70 m) — (37 —Si(2ky ) + ¢ Ci(2k, 71)] ’

for the soft and hard surface, respectively. These solutions are given by
Bowmar et al. (1969, pp. 602 and 611). The sine and cosine integral functions
are defined as

x o

Si(x) = J (sin ¢)/t dt, Ci(z) = ——J (cos t)/t dt.
0 z
A vastly more difficult problem is created by the three-dimensional analog
of the problem of Section II,E—that of the scattering by a semiinfinite
circular rod in the low frequency limit. Matched Expansions would seem the
ideal technique for attacking this problem, yet it is impossible to make any
progress short of solving the entire problem. The first-order inner flow is
simply that of uniform incompressible streaming past the rod —oo <& <0,
7< 1, which at present can be found only with the aid of Jones’ (1953,
1955) modified Wiener-Hopf method, which, as in Section ILE, reduces
the problem to that of numerical inversion of an infinite matrix—just the
kind of problem we hope to circumvent by using MAE. Moreover, technical
difficulties often arise in the solution of purely incompressible flow problems
by the Wiener-Hopf method, and what is normally taken is the limit ky —0
of the compressible problem, so that even the first inner flow can only be
found at present by determining the ““exact’ solution by the method we
hoped to avoid. This sort of difficulty sets a real limitation on the usefulness
of purely analytical applications of MAE in three-dimensional scattering
problems. Though the analytical difficulties associated with inner problems
in three dimensions are quite severe, there is however a real possibility
that matching can be very useful in a practical sense when combined with
numerical or experimental data. A good example of this viewpoint can be
seen in the work of Landahl et al. (1971), where near field pressure data taken
in a wind tunnel are matched to analytical outer fields to yield sonic boom
signatures.

HI. Acoustic Waveguides

A. INTRODUCTION

Problems of acoustic waves in guides provide another example of how
MAE unifies and extends classical ideas. As in the section on diffraction
problems, attention is confined to linear problems. No attempt to review
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the long history of this class of problems and the various ad hoc schemes
developed to deal with them will be given. However, we shall simply indicate
how scaling ideas and recognition of singular regions can be used to develop,
extend, and render more precise the notions used to deal with such problems.

As a first step we show how considerations of scale lead to a formal
scheme which gives, for the equation obeyed by the lowest order term,
the Webster Horn Equation (for a discussion of this equation, see Eisner,
1964). Our derivation is an extension, to the time dependent three-dimen-
sional case, of the derivation given in Lesser and Lewis (1972a). The deriva-
tion gives clear conditions for the applicability of the scheme which applies
when the scale of the guide variation is comparable to, and the guide dia-
meter is small in relation to a typical wavelength.

If these conditions break down in some region of the guide, coordinate
stretching leads to an equivalent static problem whose solution matches
the Webster Horn expansion. In effect this provides a formalization of the
ideas of Rayleigh (1945, Art. 264), which have been applied to a number of
problems, as described, for example, by Morse and Ingard (1968, Chapter 9).

To indicate the advantage of the formal MAE approach, we investigate
the singularity introduced into the Webster expansion by a small slit in the
guide wall. This forces us to introduce a third expansion, valid in the region
exterior to the guide, which describes the radiation from the slit. The prob-
lem thus formulated is easily solved by asymptotic expansions, though
an exact solution would present great difficulties. We are also given an
opportunity to show how the matching formula can be used to calculate a
scattering matrix for the slit.

The section closes with a brief discussion of the case where the guide
width varies slowly on the scale of the average width and the wavelength
is of the order of the width. As well as being important in its own right,
this problem demonstrates the ready applicability of matching methods in
contexts where other singular perturbation techniques (such as multiple
scaling or averaging methods; see, for example, Nayfeh, 1973) have almost
invariably been used in the literature.

B. TE LoNx¢ WAVELENGTH APPROXIMATION AND THE WEBSTER HORN
EquaTiox

The Webster Horn equation has played an important role in duct
acoustics and it is of some interest to see how it fits into a more complete
expansion scheme which would permit the estimation of errors and the
caleulation of higher order terms. The equation is expected to give a reason-
able representation of the plane wave mode traveling in a guide where the
guide width is small compared to the wavelength and the guide cross sec-
tional area varies slowly with respect to the average guide diameter. Thus
we shall scale the acoustic equations and boundary conditions in accordance
with these ideas. The situation under consideration is shown in Fig. 3, in
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which H is the typical sectional dimension and L is the longitudinal length
scale, so that the guide shape is given by

r=Hh(z/L, 9), (167)
where A is dimensionless and
ohjo(@| L) = f ] L, 6) = O(1),
ohjel = g(z| L, 8) = 0(Q1), (168)
as

H|L =¢—0.

F1a. 3. Duct of slowly varying cross section.

If the duct walls are hard, the condition of no flow through the wall gives
that

v, + Hgv,Jr = efu (169)
on

r=Hb,

where q = (u, v;, v;) are the x, r, and § velocity components. The acoustie
equations are

po(0q/0t) + Vp =0 (170)
and

(9p[0t) + poa®(V - q) = 0. (171)

The concept of wavelength is introduced by considering that a typical pulse
has a time scale 7' and that the Helmholtz number

k = Lj(a, T) = O(1). (172)
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If we consider the guide to be driven by a piston at large negative z
with & mean velocity U the pressure scale will be p,a, U. Also the boundary
relation (169) indicates that »;/u and v,/u are O(e). The profile variation
function and the requirements on its derivatives, (168), indicate that L and
H are the appropriate longitudinal and cross sectional length scales. There-
fore we define the “ Webster variables”’ as

a4=ulU, 7; = v,/eU, Ty = v,/eU, (173)
P =Dp[(poao U).

If V! = (9/07, (1/7) 8/88) is defined as the cross sectional gradient and q =
(By, ¥,) is the cross sectional velocity vector, the equations in Webster
variables are

k(oa/ot) 4 (op/ox) =0, (174)
e2k(0g/ol) + Vi =0, (175)

and
k(op/et) + (oajox) + V- §=0. (176)

Ifn=(1, g/r) is the component of a normal vector in a cross sectional plane,
the boundary condition (169) is

n-q)=fa on f=h. (177)
We define the leading term in the ‘“ Webster expansion” by
lim p(&, 7, 0, f, &) =pO(&, 7, 6, {). (178)
£-=0
Application of this limit to Eqgs. (174)-(177) gives
Vig®» =0, (179)
and hence
PO = F(&, f). (180)
Taking time derivatives and some simple algebraic manipulation gives
Vi w=(1/k)(0°F[0z® — k® 02 F |oi?) (181)
and
n-w= —(l/k)foF/ox on F=h, (182)

where the transverse acceleration is
w = (8/0F)§®.

Now integrate V! - w over a cross section and apply the Gauss theorem to

obtain
J'J' Vi-wdA, =J' (w *n) do. (183)
Az Az
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The flux integral in Eq. (183) can be evaluated in terms of the boundary
condition (182) and V! « w is, by Eq. (181), a function of Z and { only. There-

fore
VI-WJ\J\ dA; = A@E@)V! - w
Az
1 . OF(E,§)
S d
kfaAff(x’ ) oz
__lﬁf" O 6) 4 0y dp
kox |, ox
10F d (271
—_— — b2 &
- k@a?da':fo 3 (% 0) db,
l.e.,
1/d oF
lew=_{—_InA} . 184
view k(da?ln )89': (154)

Thus we arrive at the three-dimensional time dependent form of the Webster
Horn Equation

2F (d oF 2F
T (A 2 185
T (da‘: " (x)) & e (185
where
50 _ F
=5 ) (186)
ou®|of = —(1/k) 6F oz,
and
d 1/d oF
o f(lqo) = [P maAl Yl 187
v (afq ) k(da?n )89': (187)

The integration of (187) to find § in the general case is nontrivial, except
in the special case of the two-dimensional duct.

C. RADIATION FROM AN OPEN SLIT IN A WAVEGUIDE IN THE LONG
WAVELENGTH LiMIT

Our derivation of the Webster Horn equation by scaling arguments
indicates that the perturbation series based on Webster variables and limits
fails, i.e. shows singular behavior, when the derivative of the guide width
variation function becomes large. We shall now demonstrate how MAE’s

can be used to treat a problem where the Webster expansion becomes
singular.
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To keep matters simple we will consider a straight-walled two-dimen-
sional duct with a slit, the slit dimension being small on the scale of a wave-
length. Also we shall restrict ourselves to the case of harmonic excitation,
with a time dependence e¢~* where T' the time scale is w~?, the reciprocal
of the angular frequency. The generalization to the case of varying duct
width is straightforward, and examples of this type of problem can be found
in Lesser and Lewis (1972a,b). The geometry of the problem is shown in
Fig. 4a, which is in the plane of the Webster variables (£, §) = (z/L, y/H).

lY
—‘{ I“?.cc
A B 1 E __A
C E
cvwm'rwrnv%wvwwwrn?&v;*T ta)
l'l
| L1 4
A 8 D el ¢l o
i‘T""T"l (b)

Fie. 4. Geometry of slit in a parallel plate waveguide and conformal mapping
defined by Egs. (216)—(218).

The size of the slit is 2cH (in this problem, with no variation in &, we
take L = unit length and ¥ = wL/a,). We assume the excitation is at positive
and negative infinity in the duct, that only outgoing waves are scattered
to infinity, and that the edge conditions [used previously in our treatment
of scattering problems, Eq. (86)] are satisfied at points B and F. In the in-
terior of the duct, narrow compared with the wavelength, the asymptotic
solution is governed by the Webster series, and since the excitation for the
present problem arises from the duct we take the Webster variable formu-
lation as a natural starting point, so that

—ikd + Pz =0, (188)
—ie?kt + p§ =0, (189)
and

—ikp + @+ 55 =0, (190)
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with the boundary conditions
=0 on §=0, (191)
=0 on F=1, [& > oe (192)
We assume general excitation conditions in the duct, i.e.,
P~ oy €tFE as o> —o0, |7| <1, (193)
P~ oye e as Z—>-+ oo, |F| <l (194)
This will result in reflected waves given by
P~ Bre as £——o0, |F] <1, (195)
p~Bre™  as E>+o0, |§] <l (196)

The reflected wave amplitudes will of course be related to the incident wave
amplitudes by the duct geometry. This relation is given by the scattering

matrix 8§, defined by
(ﬁl) = S(“l) . (197)
B- G2

From the reciprocity theorem 8;, =8,;, and from the symmetry of the
present problem 8;; = 8,,.
One of our tasks is to calculate an asymptotic representation for 8,

8~y pae)S™. (198)

As radiation takes place from the slit, § will not be unitary and another
task is to calculate and specify the characteristics of the radiation field.
Because the slit width is small on the wavelength scale, we will be able to
specify the radiation field in terms of multipoles located at the center of
the slit.

We shall designate the Webster series valid for £ << —eg by

B =) pn BV (199)
and the series valid for £ > ¢o by
D=1 pn P (200)

We assume that the excitation conditions are such that the leading
gauge function p,=1. Because the duct width is fixed, Eqs. (188)-(190)
show that for any =

PLY = aff) et + Bir) ek (201)

As the limit expansion based on Webster variables fails near the slit,
Py and P, cannot be directly related to one another. To treat the singular
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behavior of the Webster expansion near £ =0 we introduce the Laplace
variables

1(z, §) = (e, ) (202)
and
T(®) = d/e.
The equations in Laplace variables take the form:
—eikid + p; =0, (203)
—&ikd + Py =0, (204)
—etkp +a; + 5 =0. (205)

Designate terms with integral powers of ¢ such as 6™ by &"P,,. These
are terms related to gauge functions directly expected from the form of
Eqgs. (203)—(205). In addition, we can expect “switchback’ terms of inter-
mediate orders. Thus

P=PO 4 PO+ P, (206)
Also define the “up to ¢"” expansion operator by
BB =3O+ + pin(e) B+ 750 (207)

Formal insertion of B, % into Eqgs. (203)—(205) shows that, with § = (4, ),
PO = C§ = constant,
q@ = ‘t(ik) “Wha, qo,= (k)" 16@2) ) (208)

Vpy, =0, V2 gy = —ikp‘®.

To determine solutions to these equations we need conditions as
F-+0 in |F] <1

and as

F= (&2 + §2)12 > o0, (7| >1.

The former are given by matching with the two Webster region series for
P, and P, . The latter present a problem, as the source solutions of Laplace’s
equation in two dimensions will be singular as # — oo, and we have a situa-
tion similar to that existing in our treatment of the scattering problem. To
account for the singular bebhavior as 7 — oo it is thus natural to try a variable
transformation that will lead to a limit process expansion whose terms
satisfy the Helmholtz equation.
The most convenient choice is given by

T(%, §) = (&fe, §le +1), (209)
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so that
Vip + k2p =0, (210)

q= k)~ Vp. (211)

In the limit ¢—0, with (£, §) fixed, the Laplace region shrinks, crudely
speaking, to the point #=0. The solution to (210) satisfying the wall boun-
dary condition and the outgoing wave condition will thus be

B =2 pale}p™,
=y CH O (k) cos mb, (212)
m=0

F=(E+49Y2,  =tan~1 (g/4).

As we have considered this type of situation in our treatment of scat-
tering problems we will not carry all the terms given in (212), and will give
only heuristic arguments for the terms retained. The reader can verify that
the terms ignored cannot be suitably matched, i.e. can be rejected on the
basis of the matching principle.

Thus as £ —0 the slit vanishes and we would expect no O(1) radiation
field; in fact, as the slit area is proportional to &, we expect the first nonzero
term in p to be E,p = &P, . Because of the behavior of H{(p) as p—0,
namely

HMp)~Inp,  HP(p)~p~™

the only eigensolution in £’ that will match with the Laplace region in
(208) is H{*(kf). Therefore, we take

E(l)?3 =0<1>0H<<)1)(kf)~ (213)

We could continue with the general approach, not labeling terms in the
expansion until we have filled in ““ switchback > terms as in our treatment of
scattering. However, it is reasonably clear that the logarithmic behavior of
H{V will lead to the presence of In & terms in the gauge functions, and either
by trial and error or by a deductive procedure it is found that

{3={l,elne ¢ ...} (214)
and from now on we shall number terms accordingly, so that
E b = Ey p =CEHD(F). (215)

In the Laplace region we have
Esp =00 +¢elne O + e5D(%, §)
where V2@ = 0. To resolve this problem we make use of conformal mapping,

again using j for the complex variable to avoid confusion with the i of the
time dependence. Thus with Z = & 4 j§, w = £ + jn the mapping

Z=5+w+ (1/m)In (w +b) — (1/7) In (w —b) (216)
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with
wo = {b[b + (2/m)]}*/* (217)

and
o = wo+ (1) In (wy + b) — (1) In (w, —b), (218)

takes the upper half Z plane into the upper half w plane, with the guide
sides along the ¢ axis as indicated in Fig. 4b.

At the points B and F we can add eigensolutions that satisfy the edge
and matching conditions, while at C and E we must place source singularities
corresponding to the behavior required by matching with the Webster
regions. Near the edges [the mapping (216) shows for Z—>o +j that w —
wo ~ (2 — a —J)*/?], a term such as (w — w,)™ corresponds to (z — o — j)™%,
so that the edge conditions require m =2, 3, 4, ... . Matching eliminates all
such eigenfunctions from $® as can be readily verified. Therefore, we have

7@ =Re,[C? 4 0@ In (w + b) 4+ T2 In (w — b)]. (219)

As Eq. (218) gives w(Z) implicitly, matching requires the derivation of
the asymptotic behavior of Eq. (216) as w — +b, for which Re;Z— + o0 in
0 <§ < l,and as |w| — + o0, for which Z— o0, 7 > 1. By a relatively straight-
forward calculation it can be established that as

E—> —00, 0<y<l,

w = —b + 2b exp[w(Z + b)] + Ofexp[2n(Z 4 b)]}, (220)
as
& — 400, 0<y<l,
w=b —2b exp[w(b —Z)] + O{exp[2=(b — )]}, (221)
and as
Fo>o, §>1,
2b 1
=F—j—-——_+0|=]). 222
w=ioi= g+ () -
The Webster expansions
B, p, =P + eln e p) + P, £<0
and

E,p, =P + e In e P + 52, >0
are matched to the Laplace expansion by
(TE, TE, — E, TE, T =0, (223)
while the Helmholtz expansion is matched by using
(PE, TE, — E, TE, Typ=0. (224)
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As the procedure is now familiar we simply give the results as read off from
a straightforward application of Eqgs. (223) and (224);

al® 4 B = 0@, (Matching of E, §, with E, p)

(2 — B0 = (k)0

o + B =0, o
o 4 P = C@ + w0 + (0P + OP) In 26,
a® 4 B =0,  (Matching of E, p, with E,H)
a® — B = (:T/ik)C"éz’, (226)
g + BEY = O,
o + pP = 0@ + 7bCP + (P + CF) In 20,
C@ =0, (Matching of E, p with E,B)
O — (0 +0@) =0, (227)

C» =ACP,
C@ + 0P = (2i/=)C®,
where A =1+ (2i/m)(y + Ink/2); y=Euler Constant. Thus matching

gives us 12 equations for the 18 constants «, f, €, €. Hence we can solve for
12 of the constants in terms of a suitably chosen set of 6. We choose

— ( 1 (1 2 2
&= (a(lm, a20), “(1 )’ ) ), a(l )’ a(2 ))
as our known constants representing the amplitudes of the incoming waves

from 4 oo in the strip. From Eq. (197) or (198) we now seek the scattering
matrix S(e). Thus manipulating Eqs. (225)-(227) we find, using Eq. (198), that

E,8S=89 4 ¢ln g SV 4 &89, (228)
10
8O = _[=— (0 1) : (229)
S = (24k/m)], (230)
r -+ 2¢kb r
2) —
8% = (* r r 4 2ikb) ’ (231)

where
r=kA + (2ik/=) In 2b. (232)
As a partial check on our work we note that the components of 8 satisfy

the symmetry properties required by the problem. The source strength of
the radiation term is

O = k(o + of?) (233)



2. Acoustics and Matched Expansions 121

and the constants for the Laplace region solution are

0 =0,

O = (2ik/m) (o 4 ),

06 = kA(ef” + o), (234)
C{? = (2ik|m)a§®,

0P — (2ik/m)al.

The dependence of b on o is given by (217) and (218). The calculation of
higher order terms involves careful attention to eigenfunctions arising from
the edge. However, $,, still only involves the solution of a homogeneous
equation. In addition, enough information already is contained in E,
to calculate some higher order radiation terms.

Another problem closely connected with waveguides, the calculation of
eigenfunctions and eigenvalues in a closed cavity, can also be dealt with
by MAE. This application can be found in Lesser and Lewis (1974), where
the effect of a hard scatterer, small on the wavelength scale, is treated by
the MAE method. Other problems which may be treated in this fashion
are easily found, and solved, for example, propagation past an iris in a parallel
plate waveguide, radiation from the end of a parallel plate waveguide with
either a small flange or an infinite flange fitted, and propagation past a
T-junction in a paralle]l plate waveguide.

D. TuE SrowLy VARYING GUIDE IN THE SHORT WAVELENGTH LIMIT

A common problem of great practical interest in waveguide theory is
the calculation of waveguide modes when the parameters defining the
guide are variable. For example, the guide may be curved, have variable
cross sectional area, and contain material whose sound speed varies. In
Section ITI,B we examined one case where a perturbation treatment proved
useful, that where the guide width variation scale L was large compared
with the guide width H, and 1/k;, the wave or pulse length scale was
large compared with H, but approximately the same as L. In terms of the
parameter ¢ = H/L this implies ¢ €1 and kg L = 0(l), where k, is the
dimensional wavenumber. A brief treatment will now be given of a case
where the guide is not narrow compared with the wavelength, and thus we
now assume that

ko H = O(1) as &¢—0. (235)
The formal problem to be solved is now
Vip +k32p=0 (236)
in

0<z<o, O0<y<HWz/L),
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with boundary conditions appropriate to hard walls given by

py(x’ Hbh, g) = (H/L)hl(x/L)pz(x’ Hh, ¢),

py(x, 0’ 8) = 0’ (237)
and
b = 0(1).
Also, for the sake of completeness assume that
(0, y, &) =p,f (y/H), (238)

that as x—> 00, h—1, and that only waves trave