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Preface

The aim of this book is to interpret all the laws of classical electromagnetism
in a modern coherent way. In a typical undergraduate course using vector
analysis, the students finally end up with Maxwell’s equations, when they
are often exhausted after a very long course, in which full discussions are
properly given of the full range of applications of individual laws, each
of which is important in its own right. As a result, many students do not
appreciate how limited is the experimental evidence on the basis of which
Maxwell’s equations are normally developed and they do not always appre-
ciate the underlying unity of classical electromagnetism, before they go on
to graduate courses in which Maxwell’s equations are taken as axiomatic.
This book is designed to be used between such an undergraduate course and
graduate courses. It is written by an experimental physicist and is intended
to be used by physicists, electrical engineers and applied mathematicians.
The main aim is to interpret Maxwell’s equations and the laws of classical
electromagnetism starting from the expressions for the electric and magnetic
fields due to an accelerating classical point charge. It is also hoped that the
book will be useful for long standing graduates, who missed out on such an
interpretation. To help students in their formative years and readers in their
rusty maturity, the reader is taken slowly through what at times are subtle
arguments with summaries on the way and generally at the end. In many cases,
topics are approached in different complementary ways. It is hoped that this
overall approach will make the book suitable for individual study to com-
plement traditional courses.

In Chapter 1, an account is given of a typical development of Maxwell’s
equations, that is devoid of applications so that the reader can see clearly
what assumptions are made. Particular emphasis is given to the interpreta-
tions of what makes a conduction current flow and the role of the vacuum
displacement current. Then in Chapter 2, the equations for the potentials ¢
and A are developed from Maxwell’s equations, leading up to the retarded
potentials, which are then applied to determine the electric and magnetic fields
due to an oscillating electric dipole. As an introduction to the approach we
shall develop in Chapter 4, it is illustrated in Chapter 2 how Maxwell’s equa-

Xvi



Preface  xvii

tions apply to the fields of the oscillating electric dipole. The Liénard-Wiechert
potentials are derived in Chapter 3 and then applied to derive the standard
expressions for the electric and magnetic fields due to an accelerating classical
point charge, which will then be used as the bases of our interpretation of
classical electromagnetism in Chapters 4-7. In Chapter 4 a modern interpre-
tation of Maxwell’s equations is developed using the expressions for the electric
and magnetic fields due to an accelerating classical point charge. In partic-
ular, we shall strip the vacuum displacement current of the last vestiges of
the nineteenth century aether theories. In Chapter 5, a new approach is
developed for the interpretation of the origin of the induction and radiation
electric fields due to varying charge and current distributions. A similar
approach is used in Chapter 6 to interpret the origin of the magnetic field
due to a varying current distribution. Then in Chapter 7 we shall interpret
the behaviour of AC circuits in terms of the electric and magnetic fields due
to the conduction electrons responsible for the conduction current flow. Until
Chapter 8 we shall generally avoid the use of methods based on energy, since
the underlying physical principles are not always apparent in those methods.
However, to complete the picture, we shall give a review of energy methods
in Chapter 8, presented in a way that is consistent with the approach devel-
oped in earlier chapters. This will lead up to a discussion of the conservation
laws for a system of spatially separated moving charges and to a critique of
the Poynting vector hypothesis. Since the theory of the electric and magnetic
fields due to dielectrics and magnetic materials is treated comprehensively
in many excellent text books, we shall only give a brief review in Chapter 9
of the extension of Maxwell’s equations to field points inside dielectrics and
magnetic materials, which will be presented and interpreted in a way that is
consistent with the approach developed in earlier chapters. We shall avoid
the use of special relativity until Chapter 10, so that readers do not get the
impression that the new ideas presented in this book are exotic relativistic
effects. Since special relativity and its applications are covered in detail in
many text books, we shall concentrate in Chapter 10 on topics that illustrate
the essential unity of classical electromagnetism and special relativity.

The author would like to thank Mrs Val Barnes and Mrs Eileen Satterly
for typing the manuscript.






CHAPTER 1

A typical conventional development of
Maxwell’s equation

1.1. Introduction

It will be assumed from the outset that the reader has already done an intro-
ductory course on classical electromagnetism leading up to Maxwell’s
equations, and that the reader is fully familiar with vector analysis. A summary
of the relevant formulae of vector analysis is given in Appendix Al. In this
chapter, a brief review is given of the way Maxwell’s equations can be
developed in an introductory course, so as to illustrate how limited is the exper-
imental evidence used to develop Maxwell’s equations in introductory courses.
Maxwell’s equations will then be discussed in greater detail in later chapters
and interpreted in a way consistent with the retarded potentials (Lorentz gauge).
A reader, interested in the historical background to the development of clas-
sical electromagnetism, is referred to books such as Whittaker [1] Tricker
[2] Schaffner [3] etc. The discussions in this book will be restricted to clas-
sical electromagnetism, and all quantum effects will be generally be neglected.

The electric field intensity E and the magnetic induction, or magnetic flux
density B at a field point in empty space will be defined in terms of the Lorentz
force law

- i( mou ) -
F= a\ = wH%/) = gE + qu X B (1.1)
acting on a test charge of magnitude g and rest mass m,, that is moving with
velocity u at the field point. For the sake of brevity, we shall generally use
the abbreviation ‘electric field E’ instead of the phrase ‘electric field of
intensity E’. Similarly we shall use the abbreviation ‘magnetic field B’ instead
of the phrase ‘magnetic field of magnetic induction (or magnetic flux density)
B.
Maxwell’s equations for the fields due to macroscopic charge and current
distributions made up of moving and accelerating atomic charges, such as
electrons and positive ions will be developed in three stages.

Stage 1. In this chapter, Maxwell’s equations will be developed first for

1



2 Chapter 1

continuous charge and current distributions in otherwise empty space. This will
lead up to equations (1.115), (1.116), (1.117) and (1.118).

Stage 2. Following Lorentz, charged atomic particles will be treated as con-
tinuous charge distributions of exceedingly small but finite dimensions. It
will be assumed that equations (1.115), (1.116), (1.117) and (1.118) hold at
field points inside such classical point charges. This will lead up to equa-
tions (1.137), (1.138), (1.139) and (1.140) for the microscopic fields e and
b. These equations will be called the Maxwell-Lorentz equations.

Stage 3. Macroscopic charge and current distributions are made up of moving
charged atomic particles such as electrons and positive ions. In atomic physics
one is sometimes interested in the microscopic fields e and b, near and inside
atoms and molecules. However, the scale of many electromagnetic phenomena
is so large on the atomic scale that one only needs to know the macroscopic
fields E and B, which are defined as the average values of the microscopic
fields e and b, averaged over volumes large on the atomic scale, but kept small
on the laboratory scale. The development of Maxwell’s equations for the
macroscopic fields E and B, for the case of charge and current distributions
in empty space, in which case the relative permittivity €, and the relative
permeability p, are both equal to unity everywhere, will be outlined in Section
1.11 of this chapter. A brief discussion of Maxwell’s equations for the macro-
scopic fields E and B inside stationary dielectrics and stationary magnetic
materials will be given in Chapter 9.

1.2. Electrostatics and the equation V .- E = p/e,
1.2.1. Coulomb’s law

The equation V - E = p/g, is generally developed from Coulomb’s law of
electrostatics, according to which, if there are two stationary point electric
charges of magnitudes g and g, at positions r and r, respectively, as shown
in Figure 1.1, then the force F, on the charge ¢ at r, due to the charge g, at
r,, is given by:

_ qq,(r =)  qq:R,
F, = dnegr —r,)>  4ne,R3 12)

where R, = (r — r;) is a vector from the position of the charge g, at r, to the
position of the charge g at r and R, = |r — r,] is the magnitude of the vector
R, = (r — ry). If the charges g and g, are both positive, or both negative, the
force given by equation (1.2) is a force of repulsion. If g, and g have opposite
signs, the force given by equation (1.2) is a force of attraction. According to
equation (1.2) the force F, is proportional to 1/R;. Priestly was probably the
first to develop the inverse square law. Priestly started from the observation
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Figure 1.1. The electrostatic force on the stationary charge g due to the stationary charge q,.

that there is no electrostatic force on a stationary charge inside a charged,
hollow conductor. This approach was extended by Cavendish, Maxwell,
Plimpton and Lawton and more recently in 1971 by Williams, Faller and Hill
who showed that, if the force between two stationary point electric charges
is proportional to 1/R{, where R, is the separation of the two charges, then
experimentally n = 2 to one part in 10", The inverse square law was checked
directly by Coulomb in 1785.

Equation (1.2) can be used to compare the magnitudes of two charges.
The ratio q,/q, of the magnitudes of two charges is given by the ratio of
the electrostatic forces the stationary charges ¢, and g, would give on a
stationary test charge of magnitude g, when the experiment is repeated with
first g, and then with g, at the same distance from the test charge g. If g, is
known, the magnitude of g, can then be determined.

1.2.2. SI units

The SI (or MKSA) system of units will be used throughout the text. In this
system, the unit of mass is the kilogramme (denoted kg), the unit of length



4  Chapter 1

is the metre (denoted by m) and the unit of time is the second (denoted by
s). The unit of electric current is the ampere (denoted A). The ampere will
be defined in Section 1.4.1. The unit of charge is the coulomb (denoted by
C) and is equal to the total charge passing any cross section of a circuit per
second, when the steady current in the circuit is 1A. The unit of force is the
newton (denoted by N).

If in equation (1.2), F, is expressed in newtons, g and g, in coulombs
and R, in metres, then €, has the numerical value of 8.854 187 817 ... X
107> F m™ where F m™ stands for farad per metre. The constant g, is gener-
ally called the absolute permittivity of free space, though we shall prefer to
call it the electric constant.

Using [M], [L], [T] and [Q] to represent the dimensions of mass, length,
time and electric charge respectively, it follows from equation (1.2) that the
dimensions of the electric constant &, are [M™! L T? Q*]. Some readers, who
are more familiar with cgs units, may think it strange to find that the electric
constant €, has dimensions. This is not very different to the case of the
gravitational constant G in Newton’s law of universal gravitation. The
gravitational constant G has the dimensions [M™ L’ T-*] and the experimental
value of 6.672 59 x 107" N m* kg™

1.2.3. The principle of superposition

Consider a system of N stationary point charges of magnitudes ¢q,, ¢, . . .,
gy at positions ry, r,, . . . , Iy respectively in empty space. According to the
principle of superposition the force on a test charge of magnitude g at r due
to the charge g, are r, is unaffected by the presence of the other charges g,,
qs, - - -, qy and is still given by equation (1.2). The resultant force on the
test charge g due to all the other N charges is given by the vector sum of
the forces F,, F,, . . . , Fy, on g due to q,, g,, . . . gy respectively, that is

N
qq{r —r;)
,-;1 dnege —rf (1.3)

F=F1+F2+...+FN=

A reader interested in a full discussion of Coulomb’s law is referred to the
article: “The teaching of Electricity and Magnetism at College Level”,
American Journal of Physics. Vol. 18, page 1, 1950.

1.2.4. The electric field

Equation (1.2) is often rewritten in the form:
F, = qE, (1.4)
with

E,(r) = a(r-r) _ qR, (1.5)
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where R, = (r — r)). It is then said that the charge g, at r, in Figure 1.1 gives
rise to an electric field, of intensity E, given by equation (1.5), at the position
of the test charge g at r. If there are N stationary point charges of magni-
tudes q;, g5, . . ., gy at I, Iy, . . ., Iy respectively, then, according to equation
(1.3) which was derived using the principle of superposition, the resultant force
on the test charge of magnitude g at r is

F=gE, +gE, +...+ qE, = qE(r) (1.6)
where E(r) is the intensity of the resultant electric field at r. We have
N
- _ g{r — r;)
Er)=E, +E, +...+E,= igl proy—— 1.7)

The contributions of the individual charges to the resultant electric field
intensity E must be added vectorially. Instead of using the phrase electric
field of electric intensity E we shall generally use the shorter phrase ‘the
electric field E’, where the symbol E stands for the electric field intensity.
Consider the continuous charge distribution shown in Figure 1.2. The total
charge inside the volume element dV, = dx, dy, dz,, at the position r; in
Figure 1.2, will be treated as a point charge of magnitude p(r,) dV,, where p(r,)
is the charge density, that is the charge per cubic metre, at r,. It follows from

'+ STATIC CHARGE DISTRIBUTION

d\/s R=r—7Ts P

I r

>
>

O X

Figure 1.2. Determination of the electric field due to a continuous, electrostatic charge
distribution.
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equation (1.7) that the resultant electric field E(r) at the field point at r is given
by

E(r) =

1 J p(r) (r —r)dv, (1.8)

drte, Ir —

Notice that we are using the position vector r, to denote the position of the
volume element dV; of the charge distribution at the position (x;, y,, z,), which
we shall call the source point. The position vector r is used to denote the
position of the field point at (x, y, z). This convention will be used throughout
the book.

If the test charge g placed at the field point at r were as large as one
coulomb, the test charge g would give rise to enormous charge distributions
on nearby conductors, which would change the value of the electric field at
the field point at r. The force on the stationary test charge ¢ would then be
equal to g E’, where E” would be the new value of the electric field resulting
from both the original charge distribution and the new extra charge distribu-
tions. In order to measure the value the electric field E had before the test
charge was introduced, we would have to make the magnitude of the test
charge as small as possible, so that, in the general case, the electric field E
at a field point in empty space is defined in terms of the force F,, acting
on a stationary test charge of magnitude g placed at the field point using the
relation:

E=um%§%) (1.9)

in the limit when the magnitude of the test charge g tends to zero. Notice E
is parallel to F.., so that the electric field E at a point is in the direction a
stationary positive point charge would start to move, if it were placed at that
point. Equation (1.9) is also used to define the electric field E in the general
case when the charge distributions are varying with time.

It is assumed in classical electromagnetism that, if the charge ¢ is moving
and accelerating in an electric field, the electric force on the moving charge
is still given by

Fee. = gE. (1.10)

For example, if an electron of charge g is moving in the electric field E between
the plates of a charged parallel plate capacitor, it is assumed in classical
electromagnetism that the electric force on the electron is given by gE,
whatever the position, velocity, acceleration and direction of motion of the
electron.

When equation (1.10) is applied to moving charges, it is assumed in clas-
sical electromagnetism that the magnitude g of the total charge on the charged
particle is independent of the velocity of the particle. There is now direct
experimental evidence in favour of this assumption. If the total charge on a
particle did vary with the velocity u of the particle, for example, if g =
qo(1 — u?/c*'2, then, since on average the electrons move faster than the protons
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inside a hydrogen molecule, the hydrogen molecule would have a resultant
electric charge and would be deflected by electric fields. In 1960 King [4]
showed that the charges on the electrons and protons inside hydrogen
molecules were equal in magnitude, but opposite in sign, to within one part
in 10%. We therefore conclude that the total charge on a particle is indepen-
dent of its velocity.

It follows from equation (1.10) that in the SI (or MKSA) system of units,
if the force F is measured in newtons and the charge ¢ is measured in coulombs,
then the electric field E can be expressed in newtons per coulomb (denoted
N C™). It will be shown in Section 1.2.9 that E is related to the electrostatic
potential ¢ by the equation E = ~V¢. Since the unit of ¢ is the volt (denoted
by V), the electric field E can also be expressed in volts per metre (denoted
vV m™).

The rate dW/dr at which the electric force, given by equation (1.10), is doing
work on the charge g, when it is moving with velocity u, is

S o Fue-u=qE-u. (1.11)

1.2.5. Electric field lines

It is convenient to represent the electric field at a given instant of time on a
diagram using imaginary electric field lines, drawn such that the direction of
the tangent to the electric field line at a point is in the same direction as the
electric field vector E at that point. The number of electric field lines is
generally limited such that, on field line diagrams, the number of electric
field lines per square metre crossing a surface, that is at right angles to the
direction of the field line, is equal to E, the magnitude of the electric field
at that point. The electric field lines are closest together where the magni-
tude of the electric field is highest. The electric field lines due to a stationary
positive point charge and a stationary negative point charge are shown in
Figures 1.3(a) and 1.3(b) respectively. The electric field lines diverge from
the positive charge and converge on the negative charge. In practice, depending
on the magnitude of E, one often gets better electric field line diagrams by
making the number of electric field lines proportional to, not equal to the
magnitude of E. The concept of using diagrams of electric field lines to
represent both the direction and magnitude of the electric field will be used
extensively throughout the text, for example when we interpret Gauss’ flux
law of electrostatics in the next section.

1.2.6. Gauss’ flux law of electrostatics

Consider the isolated, stationary, positive, point charge of magnitude g shown
in Figure 1.4(a). Consider the arbitrary shaped surface §, that surrounds the
charge, as shown in Figure 1.4(a). Such a surface drawn for the application
of Gauss’ flux law is often called a Gaussian surface. Consider the infinites-
imal element of area dS of the surface §, that is at a distance r from the



8 Chapter 1
POSITIVE CHARGE NEGATIVE CHARGE

. byt

(a) (b)

Figure 1.3. The electric fields due to (a) a stationary, positive, point hcarge (b) stationary negative
point charge.

charge g, as shown in Figure 1.4(a). The magnitude of the vector dS is equal
to the magnitude dS of the element of the surface, and the direction of dS is
the direction of the normal (perpendicular) to the element of surface pointing
outwards from the surface §,. According to Coulomb’s law, the electric field
E at a distance r from the charge g is gr/4xn €, r*. The scalar product E . dS
is given by

gr -dS _ gdS cos 8
dmeyr’ dear’

E.dS= (1.12)
where 0 is the angle between r and dS. Now dS cos 0 is equal to dS,, the
projection of the area dS on to a surface perpendicular to r. Since dS,/r* is
equal to the solid angle d2 subtended by dS at the position of the charge ¢,
we have

E-dS=( q )dQ.
4re,

Integrating over the area of the arbitrary shaped surface §, in Figure 1.4(a) and
remembering that f dQ = 4%, we have

- 4 _ 494
JE‘dS—%—eOJdQ-EE. (1.13)
Consider now the case shown in Figure 1.4(b), where the charge g is outside
the arbitrary shaped surface S,  Consider the two elements of area dS, and
dS, shown in Figure 1.4(b). Since the electric field lines point in a direction
directly away from the positive, point charge g, then E - dS, is negative whereas
E - dS, is positive. Since the magnitudes of E - dS, and E - dS, are both
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(b)

Figure 1.4. Derviation of Gauss’ flux law. (a) The charge is inside the Gaussian surface. (b)
The charge is outside the Gaussian surface.

equal (g/4me,)dQ their contributions to j E . dS, evaluated over the surface
S, in Figure 1.4(b), cancel each other. The other elements of area can be treated
in pairs in a similar way, so that f E . dS, evaluated over the surface S, is
zero, when the charge q is outside the surface S, in Figure 1.4(b). Summarizing:

[E -dS = -g—- [g inside the surface S;] (1.13)

0

[E -dS=0 [g outside the surface S,] (1.14)

This is Gauss’ flux law of electrostatics.

In the case of an isolated, stationary, point charge, Gauss’ flux law can
be illustrated using the concept of electric field lines. It will be assumed that
the number of electric field lines per square metre crossing an area perpen-
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dicular to E is equal to the magnitude of E. Assume that a spherical surface
of radius r is drawn around the point charge in Figure 1.3(a), with the charge
+q at the centre of the spherical surface. The total number of electric field lines
crossing the spherical area 4rr* is given by the product of this area and the
magnitude of the electric field E. This product is equal to g/e,. Hence the
total number of electric field lines crossing the spherical surface is indepen-
dent of its radius r, so that in the special case of an isolated, stationary, point
charge, whose electric field obeys Coulomb’s inverse square law, the electric
field can be represented by straight electric field lines going all the way from
the isolated, stationary, point charge to infinity.

Now consider the flux fE - dS crossing the arbitrary shaped Gaussian surface
S, 1in Figure 1.4(a), when the charge ¢q is inside the Gaussian surface. If the
number of electric field lines crossing each square metre of an area perpen-
dicular to E is equal to the magnitude of E, then the scalar product E - dS =
E dS, is equal to the number of electric field lines crossing dS. Hence the
integral fE - dS is equal to the total number of electric field lines crossing
the surface S, which, since the electric field lines carry on in straight lines
to infinity is equal to g/e, whatever the shape of the Gaussian surface. This
illustrates Gauss’ flux law of electrostatics. If the stationary charge g is outside
the Gaussian surface, its electric field lines just cross the surface in straight
lines. As many electric field lines leave the surface as enter it, so that in this
case [E - dS is zero.

1.2.7. Gauss’ flux law for a continuous charge distribution

Consider first a system of N stationary point charges of magnitudes g, ¢,,
. » qn- Applying equations (1.13) and (1.14) as appropriate to each of these
charges and adding, we find that for any arbitrary Gaussian surface,

fEl-dS+JE2-dS+-.-+JEN.dS=z'-g—;. (1.15)
The summation X’ on the right hand side of equation (1.15) is only over
those charges that are inside the Gaussian surface. Using the distributive
rule, equation (A1.2) of Appendix Al.1, we have

E,-dS+E,-dS+.. . Ey-dS=(E, +E,+...+Ey - -dS
=E.dS

where E is the resultant electric field at a point on the Gaussian surface due
to all the N charges in the system. Substituting in equation (1.15) and using
Gauss’ integral theorem of vector analysis, which is equation (A1.30) of
Appendix Al.7, we have

IE-dS=IV-EdV=Z’—g—". (1.16)
0

For a continuous charge distribution, of charge density p, X’g; is equal to
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f p dV evaluated over the volume V, enclosed by the Gaussian surface. Hence
for a continuous charge distribution

JE-dS=JV-EdV=Jp—:.¥. (1.17)

If the volume V, enclosed by the Gaussian surface is inside the continuous
charge distribution and if V, is made small enough for the variations of
V . E and p inside V, to be negligible, then after cancelling V,, equation
(1.17) reduces to

V. Em =20 (1.18)
€
In equation (1.18), E(r) is the total electric field at the field point at r due
to all the charge distributions in the system, and p(r) is the value of the
charge density at the field point at r where equation (1.18) is applied. Equation
(1.18) is one of Maxwell’s equations.

1.2.8. Generalization of the equation V - E = p/g, to moving charge
distributions

Equation (1.18) was developed for a stationary, continuous charge distribution,
that is for electrostatics. It is assumed in classical electromagnetism that
equation (1.18) applies at a field point inside a moving and accelerating
continuous charge distribution. Following Lorentz we shall use a simplified
classical model for individual charged atomic particles such as protons and
electrons, each of which will be treated as a continuous charge distribution
of finite, but exceedingly small dimensions. Lorentz assumed that equation
(1.18) held inside and outside such an accelerating classical point charge. Draw
a Gaussian surface of finite extent to enclose such a moving and acceler-
ating classical point charge. Integrating equation (1.18) at a fixed time and
applying Gauss’ theorem of vector analysis, which is equation (A1.30) of
Appendix A1.7, since f p dV evaluated at a fixed time is equal to g, we have

fv.EdV=fE.dS=-l—jpdV=-‘1—. (1.19)
€ €

It will be shown in Section 3.4 of Chapter 3 that the electric field lines due
to an accelerating point charge are curved and more complicated than in the
case of the stationary point charge shown in Figure 1.3(a). However, if equation
(1.19) is valid in the general case of an accelerating classical point charge
of magnitude g then the total flux of E crossing the Gaussian surface
surrounding the charge, which is also equal to the total number of electric field
lines coming from the accelerating charge, is still equal to g/, whatever the
speed and acceleration of the charge. This is an extremely important result,
which will appear from time to time throughout our discussions of Maxwell’s
equations.
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1.2.9. The electrostatic scalar potential

In many cases it is easier to determine electrostatic fields by introducing the
scalar electrostatic potential ¢. Consider again the two stationary point charges
of magnitudes g, and g that are at positions r; and r respectively in Figure
1.1. It is straightforward for the reader to show using cartesian coordinates that

V( 'r‘lfll ) ) V( [(xr = x)* + (y—lyl)2 + (z—zl)2]”2)

_ —_I(ir—_—rrlll)f (1.20)

where the operator V is given by

s 0 20 ., 0

V—lax+_]ay+kaz
and i, 3 and k are unit vectors pointing in directions parallel to the x, y and
z axes respectively. Hence the expression for the electric field E; due to the
charge g, in Figure 1.1, which is given by equation (1.5), can be rewritten
in the form

E, = -V, (1.21)

where

. | U
¢, megr — 1| + C,. (1.22)
The zero of the electrostatic potential ¢, is generally specified by assuming
that ¢, is zero at an infinite distance |r — r;| from the charge g, in which
case the constant C,; in equation (1.22) is zero.
It follows from equation (1.21) that, for a system of N charges q,, g,,

., qy at positions ry, r,, . . ., ry respectively, the resultant electrostatic
field at the field point at r is given by
E=E1+E2+...+EN=—V¢1—V¢2—...—V¢N
=-Vo (1.23)
where according to equation (1.22)
-3, =2—2L 1.24
o) = 2, = 2o (1.24)

Notice that the electrostatic potential ¢ can be determined by adding the
numerical values of the contributions ¢; due to the individual charges, whereas
the resultant electric field E is the vector sum of the contributions E; due to
the individual charges. The electrostatic potential ¢ is a scalar quantity.
Consider the continuous volume charge distribution shown in Figure 1.2.
By treating the charge inside the infinitesimal volume element dV; at r; in
Figure 1.2 as a point charge of magnitude p dV, where p is the charge density
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at r,, it follows from equation (1.24) that the total electrostatic potential ¢(r)
at a field point at r, due to the continuous charge distribution shown in Figure
1.2, is

_ 1 [ pry)dV;
¢(r) = 4neof ror] (1.25)

If there is a surface charge distribution of magnitude o coulombs per square
metre, the charge o(r,)dS, on an infinitesimal element of area dS; at r,; can
be treated as a point charge. This leads to the expression

o) = — Jc(r‘)dss (1.26)

e, ) r—ry)

for the contribution of the surface charge distribution to the electrostatic
potential.

Since according to equation (A1.26) of Appendix A1.6 the curl of the
gradient of any scalar function of position is zero, it follows by taking the
curl of both sides of equation (1.23) that

_VxVp=VxE=0. (1.27)

Integrating equation (1.27) over a finite surface and applying Stokes’ theorem
of vector analysis, which is equation (A1.34) of Appendix Al.8, we have
for the electrostatic field

JVxE-dS=3(E-dl=O. (1.28)

The condition V X E = 0 (or its integral form ffE - dl = 0) is a condition that
the electrostatic field E must satisfy if it is a conservative field. In the more
general case of varying charge distributions V x E is not zero but is equal
to —0B/ot, where B is the magnetic field. When we come to discuss varying
charge and current distributions in Section 2.2 of Chapter 2 we shall find
that equation (1.23) must be replaced by equation (2.7) of Chapter 2.
Putting E = —V¢ in equation (1.18) and using the relation V - (V) = V?9,
we obtain for a system of continuous charge distributions in empty space

vip=-L2 (1.29)
€
This is Poisson’s equation of electrostatics. The solution of Poisson’s equation

is given by equation (1.25). At a field point in empty space, p = 0 and Poisson’s
equation reduces to Laplace’s equation

V2 = 0. (1.30)

Laplace’s equation can be solved using the methods of potential theory. No
new physical principles are involved. The interested reader is referred to the
standard text books such as Jeans [5], Smythe [6] and Jackson [7].
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1.2.10. The potential energy of a charge in an electrostatic field

So far our development of the properties of the scalar electrostatic potential
¢ has been entirely mathematical. It is possible in the context of electro-
statics to give ¢ an operational interpretation in terms of the potential energy
of a test charge of magnitude g placed at the field point. To move a test
charge g at zero speed in an electrostatic field, we must apply a force

F —qE

app

equal and opposite to the electric force gE acting on the test charge. The
difference dU in the potential energy U at two points a distance dl apart can
be defined as the work done by the applied force F,,, in an infinitesimal
displacement dl of the test charge g against the electric force gE acting on
the test charge, that is

dU=F,, -dl=—E.dL (1.31)
Since for electrostatics E = —V¢, equation (1.31) can be rewritten in the form

dU =4V¢ - dl = ¢E - dl. (1.32)
Using equation (A1.9) of Appendix Al.2, we have

dU = gd¢ = —qE - di (1.33)

where d¢ is the total change in ¢ in the infinitesimal displacement dl. Using
equation (1.33), we find that the total work done in moving the test charge
q at zero speed from infinity, where by definition ¢ = 0 and U = 0, to the
position r, where the electrostatic potential is ¢(r) and the potential energy
is U(r), is given by

r

Ue) =

It follows from equation (1.28) that f E - dl and hence U are independent of
the path taken from infinity. Hence, the electrostatic scalar potential ¢ can
be defined in terms of the potential energy of a stationary test charge g by
the relation

E.d- qj' d¢ = go(). (1.34)

00

¢ = Limit (%) (1.35)

as g tends to zero. According to equation (1.34), if the test charge g is at a
field point where the electrostatic potential is ¢(r), then the potential energy
of the charge is g¢(r).

It follows from equation (1.33) that

d$ = -E - dl.

Integrating from position 1 where the electrostatic potential is ¢,, to position
2 where the electrostatic potential is ¢,, we find that
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2
o, — ¢, = —f E . dlL (1.36)
i
The quantity (¢, — ¢,) is called the potential difference between the positions
2 and 1. The idea of an electrostatic potential difference, given by equation
(1.36), will be used extensively in our discussions of Ohm’s law and conduction
current flow in Section 1.3 and in our discussions of quasi-stationary phe-
nomena in Chapter 7.

Since the electric force on a test charge of magnitude ¢, which is in an
applied electric field E, is equal to gE, the work done on the test charge by
the applied electric field in a displacement dl of the test charge is gE - dl. If
all this work goes into increasing the kinetic energy T of the test charge by
d7, then

dT = gE - dl.

Integrating we find that, if the test charge g is released from rest at a point
in empty space at the position r, where the scalar potential is ¢(r), then it
will reach infinity, where its potential energy is zero, with a kinetic energy
T given by

r

T=qrE-dl=—qf E.dl.

r o0

But according to equation (1.34)

—quE . dl = go(r) = U(r).

o0

Hence the test charge reaches infinity with a kinetic energy T given by
T = gd(r) = U(r). (1.37)

Using the relativistic expression for the Kinetic energy T of a charged particle
of (rest) mass m, and velocity u we can rewrite equation (1.37) in the form

mec? ( (1- ulz/cz)l/z -1 ) = q¢. (1.38)

In the zero velocity limit, equation (1.38) reduces to

1
-2- m0u2 = q¢.

If the test charge g is accelerated from position 1 to position 2 in the elec-
trostatic field, the reader can show, by using different limits of integration, that

2 i
Tz—Tl=qu-dl=—qu-dl=q(¢1—¢2)
i 2

where T, and T, are the kinetic energies of the test charge at positions 1 and
2 respectively, where the electrostatic potentials are ¢, and ¢,. Rearranging
we have
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T, + qb, = T, + gb,. (1.39)

Now g¢, and g¢, are the potential energies U; and U, of the test charge at
positions 1 and 2 respectively in the electrostatic field. Hence equation (1.39)
can be rewritten in the form:

Tl 4+ Ul = T2 4 U2 (1.40)

which is the law of conservation of energy for a charge moving in an elec-
trostatic field.

1.2.11. Summary of electrostatics

The basic equations of electrostatics, which we have derived from Coulomb’s
law for continuous charge distributions, can be summarized as follows

v.E=P (1.18)
&
VxE=0. (1.27)

The solution of these equations is given in terms of the scalar electrostatic
potential ¢ by

E=-V¢ (1.23)

where

o(r) = — fp(rs)dvs (1.25)

dne, | Ir—r1)
The differential equation for ¢, which is generally called Poisson’s equation
is

V2% = — -ép_ . (1.29)
0

In empty space, where p is zero, equation (1.29) reduces to Laplace’s equation
Vi = 0. (1.30)

1.3. Conduction current flow in stationary conductors
1.3.1. Introduction

So far in this chapter, we have only considered charges at rest (electro-
statics). Before going on to discuss the electric and magnetic fields due to
moving charges, which will lead up to Maxwell’s equations, we shall make
a few comments about conduction current flow in a stationary electrical con-
ductor. A fuller account of this important, but often neglected topic, is given
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in Appendix.B. The reader should be thoroughly familiar with the contents
of Appendix B, which should be read in conjunction with this section.

1.3.2. The equation J = oE and Ohm’s law

The conduction current / flowing in a conductor is equal to the rate at which
charge is crossing any cross section of the conductor. The conduction current
density J is defined as the current per square metre crossing an area
perpendicular to the direction of current flow, so that for uniform current
flow J = I/A, where A is the area of cross section perpendicular to the
direction of current flow.

It is found experimentally that, when a source of emf maintains a steady
electrostatic potential difference across a stationary metallic conductor, that
forms part of a complete electrical circuit, a steady conduction current flows
in the conductor. The ratio of the electrostatic potential difference ¢ across
the conductor to the current / flowing in the circuit is called the resistance R
of the conductor. We have

-9 (1.41)

Consider the uniform conductor of length / and of uniform cross sectional
area A shown in Figure 1.5. The conductor forms part of a complete elec-
trical circuit carrying a steady current /. The emf maintains an electrostatic
potential ¢ across the conductor. According to the equation E = -V ¢, there
is a steady electric field of magnitude E equal to ¢// inside the conductor.
Putting / = JA and ¢ = El in equation (1.41) and rearranging, in vector form
we have

J =0E (1.42)

E=¢/¢

\'%

[=JA ——>
Yl e O

«— Potential difference ¢ ——

Figure 1.5. An example to illustrate the relation J = oE.



18  Chapter 1

where

l

G=m.

(1.43)
The electrical conductivity o can be defined as the ratio of the current density
J at a point inside the conductor to the value of the total electric field E at
that point. The resistivity of the conductor is equal to the reciprocal of the
electrical conductivity. A conduction current, given by equation (1.42), flows
in a stationary conductor, whenever there is an electric field E inside the
conductor.

When Ohm'’s law is valid, the electrical conductivity ¢ and the resistance
R of a circuit are constants, which are independent of the potential differ-
ence across the conductor, provided the external conditions, such as
temperature, are kept constant. Ohm’s law is not a universal law of nature,
though it does hold for many metallic conductors over a wide range of values
of the applied potential difference. In general, particularly for semiconduc-
tors, the electrical conductivity o = J/E is a function of the electric field E
inside the conductor, as well as of the temperature of the conductor. For
single crystals ¢ may be a tensor. When a conductor is made up of a large
number of such anisotropic crystals orientated at random, the average con-
ductivity is generally isotropic.

The equation J = oE is not one of Maxwell’s equations. It is called a
constitutive equation. The value of o depends on the properties of the con-
ductor and on the experimental conditions.

1.3.3. Classical model of conduction current flow

There are in a metal a large number of electrons, generally called free or
conduction electrons, that are able to move about inside the metal under the
influence of an applied electric field. In a p-type semiconductor, most of the
charge carriers are positive holes. Consider a conductor of cross sectional
area A, and which is carrying a steady conduction current /. Let the number
of moving charges per cubic metre, each of charge g, be equal to n. Since /
is equal to the total charge passing any cross section of the conductor per
second, we have

I = gnAv (1.44)
where v is the mean drift velocity of the moving charges. The current density
J is given by

I
J= A = an (1.45)

When the conduction current is due to the drift of electrons, g is negative
and v is in the direction opposite to the direction of the electric field E inside
the conductor. For the conduction electrons in copper at room temperature
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n=85x10%¥m>and ¢ = -1.602 x 10™"° C. Consider a current of 1A flowing
in a copper wire of cross sectional area 1 mm?®. Substituting in equation
(1.44), we find that v = 7.3 x 10™ m s™. At this velocity it takes an electron
3.8 hours to drift one metre. The conduction electrons in copper have kinetic
energies of about 7eV. The corresponding velocity is about 1.6 x 10° m s/,
or approximately ¢/200, where c is the speed of light in empty space. Thus,
in the presence of the electric field inside a copper wire, the conduction
electrons acquire a mean drift velocity of only about 10~ m s™' superimposed
on their thermal velocities, which are in all directions and have magnitudes
of about 1.6 x 10° m s™'. The conduction electrons gain momentum and
kinetic energy when they are accelerated by the electric field inside the
conductor, but they lose this extra momentum and extra kinetic energy in
the collisions they make with impurities, lattice defects and phonons, which
reduce their mean drift velocity to the low value of about 10 m s™'. According
to the classical theory of electrical conductivity the electrical conductivity o
is given by
2

- "
o= mf (1.46)

where f is the collision frequency. For copper at room temperatures o =
5.8 x 10’ S m™. Putting n = 8.5 x 10® m>, ¢ = -1.602 x 10" C and
m = 9.108 x 10! kg in equation (1.46), we find that the collision frequency
fis 4.10 x 10", so that the mean time between collisions is about 2.4 x
10'* s. In this time interval, at a speed of ¢/200, a conduction electron
will travel a distance of 3.6 x 10 m, which is approximately 150 atomic
diameters. This shows that, on average, a conduction electron must pass
through or pass very close to many atoms before making a collision. This
illustrates how the use of quantum mechanics and the idea of quantum mechan-
ical tunnelling through potential barriers is essential in a full theory of electrical
conduction in metals. An introduction to the theory of electrical conduction
is given by Weisskopf [8].

1.3.4. Joule heating

According to equation (1.11), the instantaneous rate at which the electric
field E inside a stationary conductor is doing work on a charge g that is moving
with velocity u inside the conductor is gE - u. The average rate at which the
steady electric field E is doing work on a conduction electron is

(GE-uw)=gE - (u) =gE - v

where v is the mean drift velocity. A conduction electron gains kinetic energy
at this average rate, but loses this extra kinetic energy in collisions, leading
to Joule heating. If there are n conduction electrons per cubic metre, the rate
of generation of Joule heat per cubic metre inside a conductor is

ngEk -v)=E . (gnv) =E . ]
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where, according to equation (1.45), J = gnv is the conduction current density.
If the conductor is of length ! and of cross sectional area A, the rate of
generation of Joule heat in the conductor is IA(EJ). Since E = J/o = I/Ac,
the rate of generation of Joule heat is equal to I’R, where R = l/0A is the
resistance of the conductor and 7 is the current flowing through the con-
ductor.

1.3.5. Origin of the electric fields inside current carrying conductors

In electrostatics, when an electric field is applied to an isolated conductor a
transient electric current flows in the conductor until a surface charge distri-
bution of such a magnitude is built up that the electric field inside the isolated
conductor is zero and the conductor becomes an equipotential. However,
according to equation (1.42), there is steady electric field inside a conductor
that forms part of a stationary electrical circuit, when a steady conduction
current flows in the circuit. A full account of how a source of emf can maintain
such an electric field inside a stationary conductor is given in Appendix B1.
The illustrative example of a source of emf given in Appendix B1 is that of
a Van de Graaff generator, whose terminals are joined by a long conducting
wire. When a state of dynamic equilibrium has been reached, the charges,
that are moved mechanically by the belt of the Van de Graaff from one terminal
to the other, replace the charges removed from the terminals of the Van de
Graaff by the current flow into and from the wire connecting the terminals.
In this way the Van de Graaff can maintain an electric field inside the
connecting wire. It is shown in Appendix B1 that during the transient state,
before the current in the connecting wire is constant, electric charge distrib-
utions are built up on the surfaces of the connecting wire and at boundaries
where conductors of different conductivities are joined, that are of such
magnitudes that the resultant electric field E inside the connecting wire is
parallel to the wire and is of such a magnitude that it gives the same value
of current in all parts of the connecting wire. The resultant electric field E
inside the wire is equal to (E, + E,), where E, is the electric field due to the
charges on the terminals of the Van de Graaff and E; is the electric field due
to the surface and boundary charge distributions on the connecting wires.
Well away from the Van de Graaff generator, it is these surface and boundary
charge distributions that give the main contribution to the electric fields
inside the conductors and the potential differences across the resistors in the
distant parts of the circuit. It is shown in Appendix B3 that the magnitudes
of these surface and boundary charge distributions are exceedingly small.
An interesting query, often raised by students of geophysics is that, when
we carry ovt a resistivity survey by putting two metallic probes into the ground
and join them to a battery, such that a current flows in the ground from one
probe to the other, how does the current that enters the ground through one
probe know where the other probe is and how does the current get there?
The answer is that, though individual conduction electrons have velocities
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of about ¢/200 in all directions, on average they drift in the direction opposite
to the direction of the local electric field. When the battery is first connected
across the probes, there is an electric field associated with the potential
difference between the probes. Initially this electric field is present in both
the ground and in the air above ground. We can ignore the current flow in
the air above ground, but the electric field will give a current flow in the
conducting ground, which will build up charge distributions on the surface
of the ground and in regions where the conductivity o and the relative
permittivity €, vary with position. These charge distributions are of such
magnitudes that they give resultant electric field lines which join the two
probes. It does not matter to a conduction electron how this local electric
field is produced or where it comes from. The conduction electron just responds
to the local resultant electric field E and drifts in the direction opposite to
E. In this way current flows from one probe to the other along the resultant
electric field lines due to the applied potential difference and the surface and
boundary charge distributions.

1.3.6. A moving conductor

If a conductor (or plasma) is moving with velocity u in the laboratory refer-
ence frame in an electric field E and a magnetic field B, the force, measured
in the laboratory reference frame, on a charge of magnitude g that is at rest
relative to the conductor, but which is moving with velocity u in the labora-
tory reference frame, is given by the Lorentz force gE + gqu x B and not by
qE. This suggests that for a conductor moving with velocity u, the constitu-
tive equation J = oE must be changed to

J = o + u x B). (1.47)

Equation (1.47) can be derived more rigourously using relativistic methods.
Reference Rosser [9].

1.3.7. The continuity equation for a varying charge and current distribution

Consider a closed surface §, that encloses part of a charge and current dis-
tribution. It is found experimentally that the total charge of a complete system
is always conserved. The charge crossing the surface S, per second, due to
the electric current flow, leads to a corresponding decrease in the total charge
left inside the surface S,, so that

__9
JJ-dS——adeV.

Applying Gauss’ theorem of vector analysis, which is equation (A1.30) of
Appendix Al.7, to the left hand side and rearranging we obtain

J(V-J+%)dv=0. (1.48)
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Equation (1.48) must hold whatever the value of the volume enclosed by the
surface S,. If the volume enclosed by the surface S, is increased by an infin-
itesimal amount dV,, then (V - J + dp/dt)dV, must be zero if equation (1.48)
is to be valid for the new total volume. Hence, we must have
P _
vV.i+P oo (1.49)
This is the continuity equation for a charge and current distribution.

When the current in a circuit is steady, the surface and boundary charge dis-
tributions, that give the appropriate value of electric field inside the conductors
making up the circuit to give the same value of current in all parts of the circuit,
do not vary with time, so that dp/ot is zero for steady currents in complete
circuits and equation (1.49) reduces to

V.J=0 (steady currents). (1.50)

1.4. Magnetic fields due to steady current distributions (magnetostatics)
1.4.1. Introduction

Previously in Section 1.2, we only considered the forces between stationary
electric charges. We shall now go on to consider the forces between moving
and accelerating charges. No experiments have been carried out with moving
atomic charged paricles, such as an electron, to determine the precise expres-
sion for the magnetic field due to a moving and accelerating classical point
charge. (We shall return in Chapter 3 to derive the appropriate expressions after
developing Maxwell’s equations). Neither can we isolate part of an electrical
circuit that is carrying a steady conduction current, to determine experimen-
tally the precise expression for the magnetic field due to a current element
that forms part of the circuit. The most accurate experiments to start from
are those using steady currents in rigid current balances of different geomet-
rical configurations. It will be assumed throughout this section that there are
no magnetic materials, such as iron, present in the system, so that the relative
permeability p, = 1 everywhere.

Consider two complete, rigid, stationary electrical circuits in empty space,
which are carrying steady conduction currents /, and 7, respectively, as shown
in Figure 1.6. Experiments have confirmed, to an accuracy of about 1 part
in 107, that the total magnetic force F, on circuit 2 due to the current /, flowing
in circuit 1 can be calculated using the formula:

_ Wl ffj{; dl, x (dl, X 1)
F, i 1Y, 7, : (1.51)

In equation (1.51) dl, is an element of length d/, of circuit 1 pointing in the
direction that the current /, is flowing in circuit 1, dl, is an element of length
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Figure 1.6. The forces between two stationary, rigid circuits carrying steady currents /,
and /,.

dl, of circuit 2 in the direction of 7, and r,, is a vector from the position of
dl, to the position of dl,, as shown in Figure 1.6. Equation (1.51) is some-
times called Grassmann’s equation. There are other formulae, such as Ampeére’s
original formula

wol 1 2 3
F2 = — 4‘;5 2 §2§1 r]2 { ri;z (dll . d12) _— r?2 (dll . r]2) (d12 . r12) }
(1.52)

which give the same value for F, for steady conduction currents in complete
circuits. For a general discussion see Whittaker [10]. Equation (1.51) is
however the traditional starting point in classical electromagnetism since it
is the most convenient formula for the development of the concept of the
magnetic field due to the current in a circuit. We shall return to discuss the
general applicability of equation (1.51) in Chapter 6, after deriving the expres-
sion for the magnetic field due to an accelerating charge in Chapter 3.

It is shown in elementary text books on electromagnetism that, according
to equation (1.51), if there are two thin, infinitely long, straight, parallel
wires at a distance r apart in empty space and carrying steady conduction
currents /, and I, amperes, then the magnetic force f per metre length on
either of the two conductors is given by

fa ”2"1,{:2 _ (1.53)
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The ampere is defined as ‘that unvarying current which, if present in each
of two infinitely thin, straight, parallel conductors of infinite length and one
metre apart in empty space, causes each conductor to experience a force of
exactly 2 X 107”7 newtons per metre of length’. Putting I, =1, =1, r =1 and
f=2x 107 in equation (1.53), we find that p, is equal to 4% x 1077 henry
per metre. This shows that the value of p, = 47 x 107 H m™ follows from
the definition of the ampere. The constant W, is called the absolute permeability
of free space, though we shall prefer to call it the magnetic constant.
Equation (1.51) is generally divided into two parts. It is said that the steady
current /, in circuit 1 in Figure 1.6 gives rise to a magnetic field B, at the
position of the current element 7, dl, of circuit 2, where B, is given by

_ &ﬁ)§dnxm
B, = ( A l—rfz . (1.54)
Equation (1.54) is generally called the Biot-Savart law, in honour of the

contributions of Biot and of Savart to electromagnetism. Using equation (1.54)
we can now rewrite equation (1.51) in the form

F,=1, 3€ di, x B,. (1.55)
2

Equation (1.55) will be developed from the Lorentz force law in Section
1.4.3.

1.4.2. Definition of the magnetic induction (or magnetic flux density) B

According to the Lorentz force law, equation (1.1), if a test charge of mag-
nitude ¢ is at rest at a field point where there is an electric field of intensity
E and a magnetic field of magnetic induction (or magnetic flux density) B
the only force on the stationary test charge is the electric force

Feoec = qE. (1.56)

Equation (1.56) was used to define the electric field intensity E in Section
1.2.4. If the test charge g is moving with velocity u, according to the Lorentz
force law, equation (1.1), there is an extra contribution to the total force on
q, over and above the electric force Fg., namely the magnetic force which
is given by

Fo. = qu x B. (1.57)
The magnitude of the magnetic force F,,, depends on the magnitude and
direction of u the velocity of the test charge. The magnetic force is zero
when u is parallel to B. It is a maximum when u is perpendicular to B. The

strength of the magnetic field B can be defined in terms of the maximum
measured magnetic force using the relation

B = Limit Fmag)na (1.58)
qu
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in the limit as the magnitude g of the test charge tends to zero. The direc-
tion of the magnetic field B can be defined as the direction in which the test
charge ¢ would be moving if it experienced no magnetic force. The sense of
B is defined such that F,,,, B and u obey the left hand rule, according to which,
if the thumb of the left hand points in the direction of F,,, and the second
finger points in the direction of u, then for a positive test charge the first finger
of the left hand points in the direction of B. This direction for B is in
agreement with the direction in which the north pole of a compass needle would
point in empty space. In the SI (or MKSA) system of units, in which F,, is
measured in newtons, g in coulombs and u in metres per second, the value
of B given by equation (1.58) is expressed in tesla (denoted T), or alternatively
in webers per square metre (denoted Wb m™2). The weber is the SI unit of
magnetic flux. In some text books the magnetic vector B is called the magnetic
induction, whereas in other text books it is called the magnetic flux density.
To avoid the continued use of the long phrase: a magnetic field of magnetic
induction (or magnetic flux density) B, we shall generally us the abbrevia-
tion ‘a magnetic field B’, where the symbol B stands for the magnetic induction
(or magnetic flux density).

It is convenient to represent magnetic fields on diagrams using imaginary
magnetic field lines, drawn such that the direction of the tangent to the
magnetic field line at a field point is in the direction of the magnetic field B
at that point. The number of magnetic field lines is generally limited by spacing
the lines, such that on the diagrams the number of lines per square metre
crossing a surface perpendicular to the field line is equal to (or, if more
convenient, is proportional to) the magnitude of the magnetic field B at that
point.

1.4.3. The force on a current element in an external magnetic field

It will now be shown that the expression
F=7/dlxB

for the magnetic force on a current element of length dl, that forms part of a
stationary, rigid circuit which carries a steady conduction current / and which
is in an external magnetic field B, can be derived using the Lorentz force
law, equation (1.1). Let the area of cross section of the current element be equal
to A and let the number of moving charges, each of charge g, be equal to n
per cubic metre. Since the volume of the current element is A dl, the total
number of moving charges in the current element is N = nA dl. According
to equation (1.1), the magnetic force on a charge moving with velocity u,
in a magnetic field B is equal to gu; X B. Summing over all the moving
charges in the current element, we find that the total magnetic force on the
N = nA dl moving charges due to the external magnetic field B is

dF,,, = Yqu, X B = g(Xu) x B.
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Since
2u; = Nv = nAv dl

where v is the mean drift velocity of the moving charges, and since according
to equation (1.44)

I = gnAy
we find that the total magnetic force on the moving charges inside 7 dl is
dF,,,=gnAdlvxB=1dl xB. (1.59)

Integrating equation (1.59) around the complete circuit, we find that the total
magnetic force on the moving charges in the complete circuit is

dF = 1 ffdl x B. (1.60)

This in agreement with equation (1.55). At this point it is generally assumed
that equation (1.55) gives the resultant force on an electrically neutral current
element in the external magnetic field B. A brief discussion will now be
given of how the magnetic force on the moving charges is transmitted to the
current element.

Consider the stationary conductor of length ! and of cross sectional area
A, that lies parallel to the z axis in Figure 1.7(a). A simplified model will be
used in which there are n free electrons per cubic metre, each of charge —e
and all moving in the —z direction with the same velocity v in a uniform
potential well. There is a uniform external magnetic field B in the +y
direction in Figure 1.7(a). According to equation (1.59), the magnetic force
on the conduction electrons inside the conductor in Figure 1.7(a) is

F,. = Bl (1.61)

mag

in the —x direction. The magnetic force on one of the free conduction elec-
trons is equal to evB in the —x direction. This force tries to move the conduction
electrons in the —x direction. Initially, just after the current is switched on, there
will be a drift of conduction electrons in the —x direction until negative and
positive charge distributions are built up on the side surfaces of the con-
ductor, as shown in Figure 1.7(b). This is the Hall effect. These surface
charge distributions are of such magnitudes that they give a Hall electric
field E, in the —x direction of such a magnitude that the electric force —eE,
on a moving conduction electron is in the +x direction and balances the
magnetic force — ev X B in the —x direction. Hence, after the transient state
is over

E, = vB. (1.62)

Since the magnetic force on a moving conduction electron is balanced by
the electric force on the conduction electron due the the Hall electric field,
there is no resultant force on a moving conduction electron so that on our
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Figure 1.7. Derviation of the magnetic force BIl on a conductor of length / which is carrying
a conduction current / in a direction perpendicular to a magnetic field B. (a) The magnetic
force on one of the conduction electrons. (b) The electric force on the conduction electron due
to the Hall electric field.

simplified model the resultant forces on the conduction electrons cannot give
rise to the experimentally observed resultant force BIl on the stationary con-
ductor in Figure 1.7(a). It will now be assumed that there are n stationary
positive ions per cubic metre each of charge +e. There is no magnetic force
on the stationary positive ions. The positive and negative electrostatic charge
distributions, that give rise to the Hall electric field E,, attract each other
with equal and opposite electrostatic forces which add up to zero. In our low
velocity limit the electric forces on the surface charge distributions due to
the positive ions and the moving conduction electrons compensate each other.
In our simplified model the forces between the positive ions and the conduction
electrons give the cohesive forces holding the metallic conductor together,
and the resultant of these forces is zero. The force we have not included so
far is the force on the stationary positive ions due to the Hall electric field
E;. Since E; is in the negative x direction in Figure 1.7(a), the electric force
on each positive ion is of magnitude e¢E, = evB in the —x direction. Since
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there are N = nAl stationary positive ions in a length / of the conductor, the
total force on the positive ions is nAl evB = BIl in the —x direction in
Figure 1.7(a). Hence on our simplified model, the resultant force BIl on the
stationary current carrying conductor in Figure 1.7(a) comes from the unbal-
anced force on the stationary positive ions due to the Hall electric field E,,.

The model used so far is very much over simplified. First the mean drift
velocity v of a conduction electrons in a metal, which is only of the order
of 10* m s™, is superimposed on a velocity distribution, in which individual
electrons have speeds up to about ¢/200. It is straightforward for the reader
to show that equation (1.59) represents the average magnetic force on the
conduction electrons. Secondly, the conduction electrons do not move in a
uniform potential well, but in a periodic potential which leads to a band
structure, which in turn affects the equation of motion of a conduction electron,
leading to the introduction of the concept of effective mass. A reader inter-
ested in the application of this more refined model is referred to McKinnon,
McAlister and Hurd [11], who show that the resultant force on the current
carrying conductor in Figure 1.7(a) is still equal to BIL

1.4.4. The Biot-Savart law for the magnetic field due to a steady current in
a complete circuit

According to equation (1.54), the magnetic field B at a field point at a position
r due to steady current / in a stationary, rigid circuit can be calculated using
the formula

B(r) = ( u'OI ) § dls(rs) X (r — rs) . (163)

4TC Ir - rsl3

where dl(r,) is an element of the circuit at the source point at r; and (r - r,)
is a vector from dl; to the field point at r. Equation (1.63) is known as the
Biot-Savart law.

Equation (1.63) has been checked in its integral form, to an accuracy of
about 1 part in 107, by experiments with rigid current balances of different
geometrical configurations. Since it is not possible to carry out experiments
with isolated current elements carrying steady currents, equation (1.63) has not
been confirmed directly by experiment in the differential form:

dB(I’) = ( p’OI ) dls(rs) X (r — rs) ) (164)

47'5 Ir - rs|3

It is not possible to go from the integral form of the Biot-Savart law to the
differential form given by equation (1.64), since we can add a function, such
as the gradient of a scalar function of position, to the right hand side of equation
(1.64) and still obtain equation (1.63) when we integrate around the complete
circuit, provided the contribution of the extra function to the magnetic field
is zero when it is integrated around the complete circuit. Reference: Whittaker
[10]. We shall return in Chapter 6, after developing the full theory of elec-
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tromagnetism, to discuss the validity of the Biot-Savart law in both the integral
form given by equation (1.63) and the differential form given by equation
(1.64). It will be sufficient for our initial development of the theory of the
magnetic fields due to steady currents to assume that the Biot-Savart law is
valid in the integral form given by equation (1.63).

To generalize equation (1.63) to the case of the steady, continuous current
distribution shown in Figure 1.8,"divide the current distibution into a number
of filiamentary current loops. Equation (1.63) can then be applied to each of
these. Let the current density at the position r,, having coordinates x,, y, and
z,, be J(r,). The product J(r,) dV, can be treated as a current element. It then
follows from the Biot-Savart law, equation (1.63), that the magnetic field
B(r) at a field point at r is given by

B(l‘) = ( llo )j J(rs) X (I' — rs) st . (165)

4r Ir —r?

It is assumed in introductory courses that equation (1.65) holds both at a
field point outside the current distribution and at a field point, such as P in
Figure 1.8, which is inside the steady continuous current distribution.

CONTINUQUS
CURRENT
DISTRIBUTION

N

0 X

Figure 1.8. Derivation of the equation V X B = pu,J at a field point inside a steady, contin-
uous current distribution.
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1.4.5. The equation V - B =0
Consider the magnetic field B at a field point that can be either inside or outside

the steady current distribution shown in Figure 1.8. According to equation
(1.20)

(r‘ﬁ2=_v( L ) (1.66)

(1.67)

involves partial differentiation with respect to the coordinates x, y, z of the
field point, keeping the position r, of the source point fixed. Equation (1.65)
can now be rewritten in the form

B@)=(§%)Jv( ! )xJagdn. (1.68)

Ir - rsl

According to equation (A1.23) of Appendix A1.6, for any scalar function
of position and any vector function C of position

Vyx C=VxyC-y(VxC(C).

Putting ¢ = 1/[r — r| and C = J(r,) and then substituting in equation (1.68),
we obtain

B=(W)JVx(lﬁL)my-(W)vaﬁwdn. (1.69)

4 Ir-r| 4n Ir—r|

Now V x J(r,) involves partial differentiation with respect to the coordinates
x, y, z of the field point at r. The steady current density J(r,) at the fixed source
point at r; does not change, if the coordinates x, y, z of the field point at r
are changed. Hence V x J(r,) is zero, so that the second integral on the right
hand side of equation (1.69) is zero. Since integrating with respect to dV, =
dx, dy, dz, and taking the curl by varying the coordinates x, y, z of the field
point are independent linear operations, the order in which the operations
are carried out can be reversed. Hence, for steady currents, equation (1.69) can
be rewritten in the form

_ Ho J(r)
Mﬂ—Vx(m)Jh_mdw (1.70)

Since, according to equation (A1.25) of Appendix A1.6, the divergence of
the curl of any vector is zero, it follows by taking the divergence of both
sides of equation (1.70) that at field points both inside and outside the steady
current distribution in Figure 1.8

V.B=0. (1.71)
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Integrating equation (1.71) over a finite volume and applying Gauss’ theorem
of vector analysis, which is equation (A1.30) of Appendix Al.7, we obtain

Jv BdV= JB .dS = 0. (1.72)

Since according to equation (1.72) fB - dS is zero, there is no net flux of
the magnetic field B, due to a steady stationary current distribution, from
any arbitrary closed surface. It is assumed in classical electromagnetism that
equation (1.71) also holds for the magnetic field B due to a varying current
distribution.

It has been suggested, mainly on theoretical grounds, that magnetic
monopoles might exist, and that magnetic field lines would diverge from
such magnetic monopoles. The divergence of B would not be zero for a system
of such magnetic monopoles. However, even if it were proved that magnetic
monopoles do exist, they would be so rare that they would play no signifi-
cant role in classical electromagnetism and equation (1.71) would almost
invariably be valid in practice.

1.4.6. The vector potential A due to a steady current distribution

Consider again the steady, continuous current distribution shown in Figure 1.8.
Equation (1.70) can be rewritten in the form

B=VxA (1.73)
where the value of the vector A at the field point at a position r is given
by

_ (M ) I J(r) dv,
A(r) ( o ror] (1.74)

In equation (1.74), J(r,) is the current dentsity at the source point at r, having
coordinates x,, y,, z, and dV, = dx; dy, dz, is a volume element at r,. The
vector A is called the vector potential.

Taking the divergence of both sides of equation (1.74) at the field point
at r having coordinates x, y, z, we have

v.A<r>=v.[(5;)jJ<rs>dvs]

Ir —r|
()] (o

where the operator V is given by equation (1.67). Putting C = J(r,) and
Yy = 1/|r — r,| in equation (A1.20) of Appendix Al.6, which is

V.yC=yV.C+C.Vy (1.76)

and then substituting in equation (1.75), we obtain
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voam = ()| TRE + () 3 v (e ) o

r —r| r —r|
(1.77)

Since, for a steady current distribution the value of the steady current density
J(r,) at the fixed source point at r; does not vary when the coordinates x, y
and z at the field point are changed, then

V. Jr)=0. (1.78)

Hence, the first integral on the right hand side of equation (1.77) is zero.
The reader can check by carrying out the partial differentiations that

V(Ir—;rsl) =V ( {(x - x)* + (y —lys)2 +(z - zs)z}”z)

1
- v, T ) (1.79)
where the new operator
3 0 & 0
V. =i o + J . + k 9z (1.80)

is evaluated by keeping the coordinates x, y, z of the field point fixed and
varying the coordinates x,, y, and z, of the source point. Using equations
(1.78) and (1.79), equation (1.77) becomes

V. A(r)=—(—”-°—)[J(rs) . vs( 1 )st. (1.81)

47 r —r

Putting C = J(r,) and ¥ = 1/[r — r | in equation (1.76) and remembering that,
according to equation (1.50), V, - J(r,) is zero for steady currents, we have

R L)

Ir - rsl Ir - rsl

Substituting in equation (1.81) and applying Gauss’ theorem of vector analysis,
which is equation (A1.30) of Appendix Al.7, we obtain

o= (28] [, (o, (1) [ R
(1.82)

Provided the current distribution is not of infinite extent, which is true in all
practical cases, we can always find a surface that is completely outside the
current distribution such that J(r,) is zero at all points on that surface, in which
case the right hand side of equation (1.82) is zero so that

V.-A=0. (1.83)

This shows that the divergence of the vector potential A, that is given by
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equation (1.74), is zero. The expression for the vector potential A, given by
equation (1.74), was derived from the integral form of the Biot-Savart law
for a steady current distribution.

1.47. The equation V x B = W, J and Ampére’s circuital theorem

Ampeére’s circuital theorem can be developed from the integral form of the
Biot-Savart law, equation (1.63), using the magnetic scalar potential. Reference:
Scott [12]. The alternative method we shall use will give the reader some useful
practice using vector analysis.

Consider again the stationary, steady, continuous current distribution shown
in Figure 1.8. The field point P is inside the continuous current distribution,
as shown in Figure 1.8. Taking the curl of both sides of equation (1.73) and
using equation (A1.27) of Appendix Al.6, we have

VxB=Vx(VxA)=V(V.A) - VA,

According to equation (1.83), V . A is zero when A is given by equation (1.74).
Substituting for A from equation (1.74), we have

V x B(r) = -v? [( b )J Jl(r"{ f‘ll] . (1.84)

Since integrating with respect to dV, = dx, dy, dz, and the application of the
Laplacian

9* 9’ ol
= + +

oxr ~ oy T 97
are independent linear operations, the order in which the operations are carried
out can be reversed, so that equation (1.84) can be rewritten in the form

V x B(r) = - (ﬁ) J v (M) av. (1.86)

4t Ir —r ]

Since for a steady current distribution the value of J(r,) at the fixed source
point at r, is independent of changes in the coordinates x, y, z of the field
point when the operator V? is applied, equation (1.86) can be rewritten in
the form

V x B(r) = - (%) J I(r)V? (

The reader can check by differentiating that, when r is not equal to r,

V2

(1.85)

1
Ir —r

) dv.,. (1.87)

v ( Ir —1 r ) - Vz( {x-x)+ @ —lys)2 +(z - zs)2}“2) =0

Hence the integral on the right hand side of equation (1.87) is zero except
in the near vicinity of the point r = r,. Consider a very small spherical volume
with its centre at the field point at r. The variation of J(r,) inside this very



34  Chapter 1

small volume can be neglected, so that very close to r we have J(r,) = J(r).
Hence, when equation (1.87) is applied to only the small spherical volume
around the point r, equation (1.87) can be rewritten in the form

VxB(r)=—u—°J(£2-JV-[V( L )]dVS

47 Ir —rJ
e (09 R
-+ O g (R (1.88)

where we have rewritten the Laplacian V> as V - V then used equation (1.20)
and put r — r, = R. The integration in equation (1.88) is only over the volume
of the small spherical volume with centre at r. The integrand is zero elsewhere.
Since dR/0x = —0dR/dx,, we can rewrite the first terms in the expressions for
V. (R/R*) and V, . (R/R%) as follows:

S (5) - (3)(3)
-0z (-5 +

) = e ()5 ) - w5 l7)

with similar expressions for the other components. Hence

R R
v- (%) -v. (%)
Using this relation in equation (1.88) and applying Gauss’ theorem of vector
analysis, which is equation (A1.30) of Appendix Al1.17, we find that

VxB=—ﬁjvs-(5)dVS= “"J[((r‘rs))dss

47 R? ~ 4n Ir—r)

=%fd@

where

r,-r)-dS,  (r-r)-ds§

(
dQ = -
Ir, - rf Ir —rf

is the solid angle subtended at the field point at r by the element of area dS;
at r, of the small sphere with centre at r. Since f dQ is equal to 4w, we finally
find that at the field point P at the position r inside the steady, stationary,
continuous current distribution in Figure 1.8,

V x B(r) = uJ(r). (1.89)

Equation (1.89) relates the curl of the total magnetic field B(r) at the field
point P at the position r in Figure 1.8 due to all the currents in the system,
to the local value of the current density J(r) at the field point. Equation
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(1.89) was derived from the integral form of the Biot-Savart law, which, for
a steady, continuous current distribution, is given by equation (1.65).
Integrating equation (1.89) over any arbitrary surface, we have

JVXB-dS=u0JJ-dS.

Applying Stokes’ theorem of vector analysis, which is equation (A1.34) of
Appendix A1.8, we obtain

j£B -dl = pl (1.90)

where I = fJ - dS is the total current crossing any surface bounded by the
line integral on the left hand side of equation (1.90). Equation (1.90) is
Ampeére’s circuital theorem.

1.4.8. The differential equation for the vector potential due to a stationary,
steady continuous current distribution

Putting B =V X A in equation (1.89) and using equation (A1.27) of Appendix
Al.6, we have
Vx(VxA)=V(V.A) - VA=l (1.91)

Since according to equation (1.83), V - A is zero for the time independent
vector potential A given by equation (1.74), it follows from equation (1.91)
that, for steady, continuous current distributions,

VA = ) (1.92)
in the gauge in which

V.-A=0. (1.93)
Each cartesian component of A satisfies a differential equation of the form

VA, = -/,

This is similar to Poisson’s equation of electrostatics, which is equation (1.29)
and the solution of which is given by equation (1.25). Hence

Ar) = ( Ho ) J J{r) av,

4 Ir - rsl

Combining the solutions of A,, A, and A, leads to equation (1.74). Equations
(1.92) and (1.74) will be extended to the case of a varying current distribu-
tion in Chapter 2.
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1.5. Magnetic forces as a second order effect

In electrostatics we had
V.E=P. VxE-=o.
&

For the magnetic fields due to steady currents (magnetostatics) we had

V.-B=0;

V xB=p,l.

The above equations of electrostatics and of magnetostatics are completely
independent of each other, so that initially these two branches of electro-
magnetism can be developed independently. This often leaves students without
any idea of the relative magnitudes of the electric and magnetic forces between
moving charges. In this section we shall consider a simple example that
shows that the magnetic forces between moving charges is of the order of
(v*/c?) times the electric forces between the charges, where v is the velocity

of the charges.

Consider two infinitely long, straight, thin, uniformly charged, non-con-
ducting wires a distance r apart in empty space, as shown in Figure 1.9. The

yiz

A coulomb/metre

A coulomb/metre

Gaussian
surface to
calculate E

N

SE4EIEIFH
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1
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7,

Circular disk shaped
surface to calculate
the line integral of B

Figure 1.9. The calculation of the electric and magnetic forces between two parallel convec-

tion currents.
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wires are in the xy plane of a cartesian coordinate system fixed in the
laboratory frame, which will be referred to as the inertial reference frame X.
Both wires are moving in the positive x direction with uniform velocity v in
the laboratory system X, as shown in Figure 1.9. Let the electric charge on
each wire be A coulombs per metre, measured in the laboratory frame X.
Since the wires are moving with uniform velocity v, both charge distribu-
tions give electric convection currents of magnitudes / = Av in XZ. If it is
assumed that the equation V - E = p/g, holds for moving charge distribu-
tions, Gauss’ flux law equation (1.17), can be used to determine the electric
fields in . By symmetry, the electric field due to the charge distribution on
wire 1 must diverge radially from wire 1. Applying Gauss’ flux law, equation
(1.17), to the cylindrical Gaussian surface of radius r and height 4, shown in
Figure 1.9, we find that

JE - dS = 2nrhE, = M
&

Hence the electric field E, = E, at the position of wire 2 due to the electric
charge on wire 1 is

A
E,=E = 2nEy

(1.94)

According to the equation (1.10) this electric field gives rise to an electric force
of repulsion on wire 2, which is the +y direction and is of magnitude
)‘12
F, elec ATTE N

newtons per metre length. (1.95)

Consider now the circular disk-shaped surface S of radius r that has wire 1
at its centre as shown in Figure 1.9. Applying Ampeére’s circuital theorem,
equation (1.90), we have

cng-dl=uoI=uo7»v.
By symmetry B has the same value at all points on the circumference of the
surface S, so that

2nrB = pohv.

Hence the magnetic field at the position of wire 2 in Figure 1.9 due to the
convection current Av due to the motion of wire 1 is

_ MoAv
B, = 2nr -

Comparing with equation (1.94) we see that in the present case

B
7= o= . (1.96)
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According to equation (1.59), the magnetic force on wire 2 is flzdl2 x B,

where I, = Av. Hence the magnetic force on wire 2 is an attractive force

given by

AV
2ntr

Frog = — newtons per metre length. (1.97)

Adding questions (1.95) and (1.97), we find that the total force F = F,,.. +
F, ., on one metre length of wire 2, measured in the laboratory frame X, is

)\’2
F,= 2TEyr

(1 — pogeV?).

Numerical substitution of €, = 8.85 x 10" Fm™ and p, = 4x X 107 H m™
shows that p,e, = 1/¢%, where ¢ = 3 x 10° m s™' is the speed of light in empty
space. Hence

)\;2

z)
F,= ney ( 1 - 2 newtons per metre length. (1.98)

In this simple example, the ratio of the magnetic force of attraction to the
electric force of repulsion between the moving, charged wires in Figure 1.9
is v*/c*, where v is the velocity of the charged wires in the laboratory frame
~. This example illustrates how the magnetic forces between electric charges
moving with velocity v are only of the order of v*/c* times the electric forces
between the moving charges. Furthermore it can be shown that equation (1.98)
can be derived from Coulomb’s law of electrostatics and the transformations
of the theory of special relativity, illustrating how the magnetic forces between
moving charges are second order relativistic effects compared with the electric
forces between the charges. References: Section 10.6 of Chapter 10 and Rosser
[13]. This relativistic approach illustrates the essential unity of electrostatics
and magnetostatics in a vivid way.

It was shown in Section 1.3.3 that when a current of 1A flows in a copper
wire of cross sectional area 1 mm? (10° m?), the mean drift velocity of the
conduction electrons is only v = 7.3 x 10° m s™'. If the charges on the
wires in Figure 1.9 moved with this speed, according to equation (1.94) the
ratio of the magnetic force to the electric force on wire 2 would be about
5 x 107%. Why then are the magnetic forces between electric circuits so
important? In practice, there is no resultant volume charge density inside a
metallic conductor such as copper. The negative charges on the conduction
electrons are compensated by the charges on the positive ions which are at
rest in a stationary conductor as illustrated in Figure 1.10. (The exceedingly
small surface and boundary charge distributions associated with conduction
current flow, discussed in Section 1.3.5 and Appendix B, are being neglected).
Let the total positive charge on the positive ions be equal to +A coulombs
per metre length and let the total charge on the conduction electrons be equal
to —A coulombs per metre length.

According to equation (1.98), the force on the moving electrons in con-
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Figure 1.10. The forces between two conduction currents /. In the simplified model used, the
positive ions are at rest and the negative electrons all move with the same uniform velocity v.
The positive charge per unit length is +A and the negative charge per unit length —A. The
electric forces cancel leaving only the second order magnetic forces between the charges.

ductor 2 in Figure 1.10 due to the moving electrons in conductor 1 is a
repulsive force (magnetic plus electric) given by

A2 ( Vv )
F_= Iney 1 - P newtons per metre length. (1.99)
Since the positive ions in conductor 2 are at rest, there is no magnetic force
on them, so that the total force on the stationary positive ions in conductor
2 due to the moving electrons in conductor 1 is an attractive electric force
given by

xz
Fo=- 2TEYr

newtons per metre length. (1.100)

The force on the moving electrons in conductor 2 due to the stationary positive
ions in conductor 1 is an attractive force given by

12
Fo=- 2T, r

newtons per metre length. (1.101)

The force on the positive ions in conductor 2 due to the stationary positive
ions in conductor 1 is a repulsive electric force given by
x2
Fi= 21
€or

Adding equations (1.99), (1.100), (1,101) and (1.102), we find that the resul-
tant force per metre length on conductor 2 due to all the charges (positive

newtons per metre length. (1.102)
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ions and conduction electrons) in conductor 1 is an attractive force given by

2.2 2 2

Fe_2v__ I ___

2ne,cr 2ne,Ccr 2ntr
newtons per metre length. (1.103)

where we have put 1/g,c®> = ,. Thus the electric forces between the electri-
cally neutral current carrying conductors in Figure 1.10 add up to zero, leaving
only the second order attractive magnetic force p,/%*2mnr that is observed
experimentally.

1.6. The equation V x E = —-0B/ot and electromagnetic induction

In electrostatics we had:

V.E=P. VxE=0

&
For the magnetic fields due to steady currents (magnetostatics), we had:
V-B=0; V X B = pJ.

It can be seen that, when the charge density p and the current density J are
both constant, that is for electrostatics and magnetostatics, the equations for
E and the equations for B are independent of each other. Experiments will now
be outlined which show that, when the charge and current distributions are
varying with time, the vectors E and B at a field point are related. We shall
start by considering electromagnetic induction in this section and then go on
to introduce the displacement current in Section 1.7.

It is important to separate two distinct phenomena that can both contribute
to what is generally called the induced emf in a closed circuit.

(a) Motional induced emf (or dynamo emf)

A motional induced emf is generated when a conductor moves in a magnetic
field as, for example, in a dynamo. The origin of motional emfs will be
treated in detail in Section 7.7 of Chapter 7, where it will be shown that
motional induced emfs arise from the magnetic forces acting on the conduc-
tion electrons that are moving with a conductor that is moving in a magnetic
field.

(b) Transformer induced emf

Consider two stationary coils that are in a vacuum, as shown in Figure 1.11(a).
Since both coils are at rest, there are no motional induced emfs. It is found
experimentally that, when the current in the primary coil is varying with
time, for example when the key K in Figure 1.11(a) is closed or opened, a
current flows in the secondary coil. This current flow in the secondary coil
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Figure 1.11. (a) A stationary air-cored transformer; (b) a stationary iron-cored transformer.

is only present when the current in the primary coil is varying. The current
in the secondary coil depends on the resistance of the secondary, so that it is
an emf that is induced in the secondary coil and not a fixed current. It is
found experimentally that the emf, denoted &, induced in the secondary
coil is proportional to the rate of change of the magnetic flux @, passing
through the secondary coil due to the current flowing in the primary coil,
that is

- S
= "9r or

where B is the magnetic field due to the current flowing in the primary coil
and the integral is evaluated over a surface bounded by the secondary coil.
This induced emf is an example of a transformer induced emf. Equation (1.104)
is generally called Faraday’s law of electromagnetic induction. If an alter-
nating current flows in the primary coil, an alternating current flows in the
secondary coil. This is the principle of the air-cored transformer. Since there
are no moving parts in the air-cored transformer in Figure 1.11(a), there are
no motional induced emfs. According to the constitutive equation J = oE,
the conduction current in the secondary coil in Figure 1.11(a) should be
due to an electric field E inside the wire making up the secondary coil. The
emf in the stationary secondary coil is equal to ¢E - dl, which is the line integral
of the electric field E taken around the secondary coil, so that using equation
(1.104) we have

JB dS (1.104)

€ec = % E‘dl=—§t—J B.dS (1.105)
Using Stokes’ theorem of vector analysis, which is equation (A1.34) of

Appendix Al.8, equation (1.105) becomes

%E-dl=JVxE-dS=J(—%]—:-)-dS. (1.106)



42  Chapter 1

If the area AS of the secondary coil is small enough for the variations of
V x E and 0B/0t over AS to be negligible, then equation (1.106) becomes
oB

VXE-AS = (_W)'AS

so that

oB

VXE=- 3 (1.107)
It is assumed in classical electromagnetism that, when the magnetic field due
to the current in the primary coil is varying, there is an induction electric
field, whose curl is given by equation (1.107), present at the position of the
secondary coil in Figure 1.11(a) and in other parts of empty space, whether
the secondary coil is present or not. Equation (1.107) is a relation between
the field vectors E and B, which is valid at any field point. The full proper-
ties of induction electric fields will be developed later in Chapters 5 and 7.

Even though equation (1.107) is normally developed from experiments on
transformers carried out at mains frequency, it is assumed in classical elec-
tromagnetism that equation (1.107) holds at all frequencies, for example for
the radiation fields due to high frequency radio transmitters.

If there is a ferromagnetic material passing though the primary and sec-
ondary coils, as shown in Figure 1.11(b), the transformer induced emf in the
secondary coil is increased. The ferromagnetic core increases both the total
magnetic flux passing through the secondary coil and the emf induced in the
secondary coil. It is found experimentally that equations (1.104) and (1.107)
are still valid.

1.7. The equation V x B = p(J + eol'Z) and the displacement current

In Section 1.4.7 we developed equation (1.89), which is
VXxXB =) (1.108)

from the Biot-Savart law, equation (1.65), for the magnetic field due to a steady
charge and current distribution. Since, according to equation (Al.25) of
Appendix A1.6, the divergence of the curl of any vector is zero we must always
have

V.(VxB)=0. (1.109)

It follows by taking the divergence of both sides of equation (1.108) and
using equation (1.109) that, when equation (1.108) is applicable, we must have

V.J=0. (1.110)

Comparing equation (1.110) with equation (1.50) we see that equation (1.108)
can only be valid for steady charge and current distributions. According to
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the continuity equation (1.49), in the case of a varying charge and current
distribution, instead of equation (1.110) we have

v.y+ P o (1.111)

According to equation (1.18) p is equal to &,V - E. Substituting for p in
equation (1.111) we obtain

V-J+§;(EOV-E)=V-(J+801'«:)=0. (1.112)

A dot over a vector denotes partial differentiation with respect to time. The
correct modified form of equation (1.108) must lead to equation (1.112) in
the general case of a varying charge and current distribution. If instead of
equation (1.108), we had

V x B = po(J + &E) (1.113)
then, since the divergence of the curl of any vector is zero, we would have
V.- (VxB) =V -J+6E)=0

which would be in agreement with equation (1.112). It is assumed in clas-
sical electromagnetism that equation (1.113) holds in the general case of a
varying charge and current distribution in empty space whatever the frequency
of the variations in electric current.

At a field point in empty space where J is zero, equation (1.113) reduces
to

V x B = peE. (1.114)

Equation (1.114) relates the curl of the resultant magnetic field B at a field
point in empty space due to all the current distributions in the system to the
rate of change of the resultant electric field E at the same field point in
empty space due to the same charge and current distributions. The gE term
in equations (1.113) and (1.114) is generally called the vacuum displacement
current. Since it has the same dimensions of ampere per square metre as
the current density J, the eOE term should strictly be called the vacuum
displacement current density.

Equation (1.113) was developed from equation (1.108) by intelligent
guesswork by seeing how equation (1.108) must be modified such that, for
varying charge and current distributions, it becomes consistent with the con-
tinuity equation (1.49). Another approach used in introductory courses is to
develop equation (1.113) by seeing how Ampere’s circuital theorem must be
extended, when it is applied to the magnetic field between the plates of a
parallel plate capacitor that forms part of an AC circuit. Maxwell’s original
development of the vacuum displacement current density was based on a
very complicated mechanical model of the aether. A reader interested in the
historical approach is referred to Maxwell [14] or Tricker [15].
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In the approach presented in this chapter, the evidence in favour of the
g,E term in equations (1.113) and (1.114) is that predictions based on
equations (1.113) and (1.114) are in agreement with the experimental results.
For example, we shall shown in Section 1.9.2 that the prediction, based on
Maxwell’s equations, that there are electromagnetic waves, that travel at a
speed ¢ = 1/(ls€,)" in empty space, depends on the presence of the vacuum
displacement current density term €,E in Maxwell’s equations.

If we take Maxwell’s equations as axiomatic, then by taking the curl of
equation (1.114) and using equation (1.18) we obtain the equation of continuity.

1.8. Summary of Maxwell’s equations for continuous charge and
current distributions in empty space

The experimental evidence used in our development of Maxwell’s equations
for continuous charge and current distributions in this chapter can be
summarized as follows:

1. Coulomb’s law of electrostatics leads to the equation (1.18), which is

v.E=-F. (M1) (1.115)
&
2. The Biot-Savart law for a steady current distribution leads to the equation
(1.71) which is

V.B=0. (M2) (1.116)

3. Faraday’s law of electromagnetic induction, which is generally developed
on the basis of experiments carried out at mains frequency, leads to the
equation (1.107), which is

VXE=-B. (M3) (1.117)

4. The Biot-Savart law for steady currents leads to the equation V X B =
KoJ. This equation was then extended by adding the vacuum displace-
ment current density term €)E to the conduction current density J to give
equation (1.113), which is then consistent with the continuity equation
(1.49). According to equation (1.113)

V x B = u,(J + &E). (M4) (1.118)

The field vectors E and B at a field point in empty space can be related to
experiments by the Lorentz force law, equation (1.1), according to which

F = gE + qu X B. (1.119)

The Lorentz force law gives the magnitude of the force on a charge of mag-
nitude g that is moving with a velocity u at a field point in empty space,
where the electric field is E and the magnetic field is B. Equation (1.119) is
only valid provided the charge g is not emitting electromagnetic radiation.
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Maxwell’s equations divide into two pairs. The first pair, namely equa-
tions (1.115) and (1.116), which are sometimes referred to as M1 and M2
respectively are expressions for the divergences of the field vectors E and
B. The second pair of equations, namely equations (1.117) and (1.118) which
are sometimes referred to as M3 and M4 respectively, are expressions for
the curls of the field vectors E and B. It is equations (1.115) and (1.118),
that is equations M1 and M4, which bring in the sources p and J of the
electromagnetic field.

Maxwell’s equations, equations (1.115), (1.116), (1.117) and (1.118), were
developed in this chapter on the basis of very limited experimental evidence
for very special cases only. It is assumed in classical electromagnetism that
Maxwell’s equations can be applied in a far wider context than this very limited
experimental evidence. For example, it is assumed that Maxwell’s equations
are valid for the general case of rapidly varying charge and current distribu-
tions and for accelerating charged particles moving at relativistic speeds. In
our approach, the validity of Maxwell’s equations does not depend on whether
or not each individual equation has been verified by experiments for all possible
experimental situations, but rather on whether or not the predictions of the
theory taken as a whole are in agreement with the experimental results. It is
found experimentally that, provided all quantum effects can be neglected,
Maxwell’s equations do make predictions that are in agreement with the exper-
imental results. We have so far avoided a full discussion of the historical
development of Maxwell’s equations, so that we could go on directly to develop
a modern interpretation of classical electromagnetism, not influenced by
obsolete historical models such as the mechanical theories of the aether. We
shall defer discussion of these obsolete historical models until Section 4.13
of Chapter 4.

1.9. The differential equations for the fields E and B
1.9.1. Introduction

According to the Maxwell equation (1.118)
V x B = p(J + gE). (1.120)
Taking the curl of both sides of equation (1.120), we have

Vx(VxB)=pﬂVxJ+pﬂ80Vx%%.

Using equation (A1.27) of Appendix A1.6 to expand V x (V x B) and re-
arranging the right hand side, we obtain

V(V-B) - VB =pV xJ+ pﬂeo—aa;(v x E). (1.121)
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According to the Maxwell’s equations (1.116) and (1.117), V . B is zero and
V x E = —B. Hence equation (1.121) reduces to
2

VB - pon%—? =V xJ. (1.122)

It can be seen from equation (1.122) that the magnetic field B depends
only on the current density J via the V X J term in equation (1.122). The pyg,B
term in equation (1.122) comes from the &E term in equation (1.120). If
Maxwell had not introduced the vacuum displacement current term €,E, then
instead of equation (1.122), we would have obtained

VB =V xJ (1.123)

which is only valid for steady currents (magnetostatics). To obtain equation
(1.123) take the curl of both sides of equation (1.89). The reader can show
that, if the gE term were present in equation (1.120) but the B term were
absent from the Maxwell equation

we would again obtain equation (1.123). Both the EOE term in equation (1.120)
and the —B term in equation (1.124) are necessary to give the u,e,B term in
equation (1.122). The operator

nef)- (v £ 3)
(V- meogz) - (V- 53

is called the D’ Alembertian. The operator V2 on its own is called the Lapacian.
Since the —B term in the Maxwell equation (1.124) was known before Maxwell
introduced the vacuum displacement current term into equation (1.120),
historically, it was the addition of the vacuum displacement current term to
Maxwell’s equations that converted the Laplacian in equation (1.123) into
the D’ Alembertian in equation (1.122). It was this addition of the displace-
ment current term to Maxwell’s equations that led to the prediction that the
electromagnetic interaction was propagated at a finite speed, namely the
speed of light in empty space.

Taking the curl of both sides of the Maxwell equation (1.124), then using
equation (A1.27) of Appendix A1.6 to expand V x (V x E) and finally sub-
stituting for V x B using equation (1.120), we obtain

v(V VE = 9 v __9 T
Substituting p/g, for (V - E) from equation (1.115), we finally obtain
J°E ( p ) aJ
2 ———— — ——
V°E — uee, 32 = \% ) + U, 5 (1.125)

It can be seen from equation (1.125) that the electric field E depends on both
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the charge density p and the current density J via the Vp and J terms respec-
tively in equation (1.125).

The reader can show that we need both the displacement current density
term eOE in equation(1.120) and the _B term in equation (1.124) to obtain
the poe E term in equation (1.125). The reader can show that if the B term
were absent from equation (1.124), but the vacuum displacement current term
g,E were still present in equation (1.120) then, instead of equation (1.125),
we would obtain

VE = 1 vp (1.126)
&

which is only valid for electrostatics.

If the —B term were present in equation (1.124) but the vacuum displace-
ment current term €,E were absent from equation (1.120), which was the
historical situation before Maxwell introduced the vacuum displacement current
term, then, instead of equation (1.125), we would obtain

VE =V (g-) + 1oJ. (1.127)
0
In an electrical conductor where p is zero and J = oE, where o is the
constant electrical conductivity, equation (1.127) reduces to
V2E-uoo%15—o (1.128)
Equation (1.128) is used extensively in the quasi-stationary limit, that is at low
frequencies, when the contribution of the p,e,E term can be neglected. At high
frequencies the p,e,E term must be included. Equation (1.128) is the same
as the equation of diffusion. It is shown in text books on electromagnetism that
in a conducting medium of infinite extent there are plane wave solutions of
equation (1.128) propagation in the +x direction of the type

E, =E, exp(——’ai) cos co(t— %) (1.129)

where 8 = (2/wop,)"? is the skin depth. The waves described by equation
(1.129) are attenuated. Such waves cannot propagate in empty space, where
o=0.

1.9.2. Electromagnetic waves in empty space

In empty space where o = 0 and J = 0, equations (1.122) and (1.125) reduce
to

2

VB _ e, ?)?B' =0, (1.130)
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2 'E
V’E - ue, Fy 0. (1.131)
Full solutions of equations (1.130) and (1.131) are given in the standard test
books on classical electromagnetism. Both equations (1.130) and (1.131) are
wave equations. In both cases the velocity of the waves is

c= ——'1—72- (1.132)

(Mo€o)
The electromagnetic waves in empty space are identified with light waves,
so that the velocity ¢ in equation (1.132) is the velocity of light in empty space.
If Maxwell had not introduced the vacuum displacement current, then at a field
point in empty space equations (1.122) and (1.125) would reduce to

V’B = 0; V’E = 0.

These equations do not have propagating wave solutions in empty space. The
existence of electromagnetic waves, whose properties can be predicted using
Maxwell’s equations, is strong evidence in favour of the vacuum displace-
ment current term €K in equation (1.120).

1.9.3. Solution of the differential equations for E and B

The fields E and B can be determined independently using the differential
equations (1.125) and (1.122) respectively, provided the values of p and J
and their spatial and temporal variations are given. The methods of solution
and their interpretations are similar to the case of the retarded potentials, which
will be described in detail in Section 2.3 of Chapter 2. Hence at this stage
we shall only give a brief discussion. The reader should return to this section
after reading Chapter 2. By analogy with the retarded potentials a solution
of equation (1.122) giving the magnetic field B at a field point at a position
r at the time of observation ¢ is

_ 1 [ [V, xJr)]
B(r, 1) = dme,c [ R dv, (1.133)
where R = (r — r,) is a vector from a source point at r,, where the current
density is J(r,), to the field point at r. Quantities measured at the retarded
time t* = (¢t — R/c) are placed inside square brackets. Jefimenko [16] showed
that equation (1.133) can be rewritten in the form

1 )] | 1 [aolJ)] &
B(r, 1) = 4mte, J( R 'R [ ot ]) X R dV, (1.134)

where R is a unit vector in the direction from the source point at r, to the
field point at r, and [J(r,)] is the current density at r, at the retarded time
(t — R/c). Equation (1.134) will be derived in Section 2.7 of Chapter 2 using
the retarded potentials. We shall also derive equation (1.134) in Section 6.5
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of Chapter 6 from the expression for the magnetic field due to a moving
and accelerating classical point charge, where we shall show that equation
(1.134) is valid in differential form. We shall apply equation (1.134) to the
oscillating electric dipole in Section 2.7. It is of interest to note that the vacuum
displacement current term €,E does not appear as one of the sources of the
magnetic field in equation (1.134).

Again by analogy with the derivation of the retarded potentials, we conclude
that a solution of equation (1.125) giving the electric field E at a field point
at r at the time of observation ¢ is

_ 1 (V] 1 [d]
E(r,t)——4n£0J( 2 +Rc2[3t )dVS (1.135)

where the operation V_ is given by equation (1.80) of Section 1.4.6. Jefimenko
[16] has shown that equation (1.135) can be rewritten in the form

__1 (([PIR R [ap LB_J)
E(r,t)—4neoj( - +Rc[§ —Rcz[at dv, (1.136)

where [p] and [J] are the charge and current densities at the source point at
r, at the retarded time (¢ — R/c). Equations (1.134) and (1.136) will be called
Jefimenko’s equations. Equation (1.136) will be derived using the retarded
potentials in Section 2.7. An alternative expression for E, which, unlike
equation (1.136), is also valid in differential form, will be derived in Section
5.13 of Chapter 5 using the expression for the electric field due to a moving
and accelerating classical point charge.

1.10. The Maxwell-Lorentz equations for the microscopic fields

Maxwell’s equations were developed earlier in this chapter for continuous
charge and current distributions in otherwise empty space. In practice, all
macroscopic charge and current distributions are made up of large numbers
of charged atomic particles such as electrons, protons and positive ions, whose
charges are always on integral multiple of the electronic charge of

e =+1.602 x 107° C.

It is now believed that atomic particles, such as protons, consist of tightly
bound quarks, which have charges of +e/3 and +2¢/3. It will require enormous
energies to produce free quarks, so that it is safe to assume that free quarks
play no significant role in classical electromagnetism.

It will be assumed that individual atomic particles, such as protons and
electrons, can be treated as classical point charges, that is as continuous charge
distributions of finite but exceedingly small dimensions. As an example of a
classical point charge we shall now assume that the charge distribution shown
in Figure 1.8 is exceedingly small. Lorentz assumed that Maxwell equations
(1.115), (1.116), (1.117) and (1.118) held for the microscopic electric field e
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and the microscopic magnetic field b at a field point, such as P in Figure
1.8 that is inside such a classical point charge, as well as at field points in
the spaces between such classical point charges. Hence, according to Lorentz,
at a field point inside a classical point charge

V.e=P (1.137)
&

V.b=0 (1.138)
ob

Vxe=-%] (1.139)

Vxb= uo(p“““u+eo%) (1.140)

where e and b are the resultant microscopic fields due to all the charges in
the system and p™© and j™ = p™° u are the microscopic charge and current
densities at a field point inside a classical point charge, that is moving with
velocity u. Equations (1.137), (1.138), (1.139) and (1.140) will be called the
Maxwell-Lorentz equations.

The Maxwell-Lorentz equations will be taken as axiomatic from now
on. They are generally the starting point for the derivation of Maxwell’s
equations for the macroscopic fields E and B at field points inside stationary
dielectrics and stationary magnetic materials. Until we reach Chapter 9, we
shall only consider the electric and magnetic fields due to charge and current
distributions in empty space for the special case when the relative permit-
tivity €, and the relative permeability p, are both equal to unity everywhere.
A brief outline of this special case will now be given.

1.11. Maxwell’s equations for the macroscopic fields for the special
case when €, = 1 and i, = 1 everywhere

When the scale of an electromagnetic phenomenon is very much greater than
atomic dimensions, the enormous fluctuations in the microscopic fields e and
b on the atomic scale average out and we often only need to know the
values of the macroscopic variables, which are defined as the averages of
the corresponding microscopic variables taken over a region of space that is
much bigger than atomic dimensions, that is > 107'° m, but which is kept small
on the laboratory scale, say less than one micron (10 m). For example, a
sphere of a solid of diameter 10 m contains of the order of 10'* atoms.
Consider the field point P at a distance r from the origin O in Figure 1.12.
We shall start with a simplified method of averaging a microscopic variable
f(x, y, z, 1) to obtain the value of the corresponding macroscopic variable
F(x, y, z, f) at the field point P. Initially a microscopic variable will be averaged
over the volume of a sphere of radius a having its centre at the field point P
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.
~

O X

Figure 1.12. Determination of the macroscopic fields at the field point P by averaging the
corresponding microscopic fields over a very small volume that surrounds P.

in Figure 1.12, where a is large on the atomic scale but small on the labora-
tory scale. Initially equal weights will be given to all the volume elements
inside the sphere of radius @ and volume V, = 4na’/3. Let f(r + s) be the
value of the microscopic variable f at a point at a distance s, having compo-
nents s,, s, and s, from the field point at r, at which the value of the
macroscopic variable F is required. The value of the macroscopic variable
F will be defined initially in terms of the microscopic variable f by the
equation

F(r, 1) = (f) =Vlojf(x+sx,y+sy, z+ s, Hd’s (1.141)

where d’s = ds, ds, ds, and the integration is over the sphere of radius a,
whose centre is at the field point P in Figure 1.12.
In the case of the macroscopic charge density p, equation (1.41) gives
. pmic dBS
p = (p™) = f——v——— (1.142)
0

mic

where p™© is the value of the microscopic charge density at the point (r + s).
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For a system of atomic point charges the integral reduces to Xg;, which is
the sum of the charges of all the classical point charges inside the volume
V,, so that equation (1.142) becomes

mic z i

p={(pm) ==L (1.143)
VO

Sometimes the macroscopic charge density p is defined using equation (1.143),

as the average resultant charge per cubic metre. If the charge g; inside V is

moving with velocity u;, the macroscopic current density J is given by

mic u dSS iui
_ Jo™uds LLLE 23—0. (1.144)

The macroscopic electric field E and the macroscopic magnetic field B are
defined in terms of the corresponding microscopic fields e and b by the
equations

d3
E = (e) = jevo > (1.145)
B = (b) = [bds (1.146)

0

The disadvantage of equation (1.141) when we come to dielectrics is that
the surface of the sphere of radius a may cut through molecules. Russakoff
[17] suggested using a spherically symmetric weighting function w(s) that
was constant out to the surface of the sphere of radius a in Figure 1.12 but
which, instead of going to zero at s = a, decreases smoothly to zero over a
distance that is small on the laboratory scale, but which is large on the atomic
scale. The value of the macroscopic variable F(r, ¢) is then defined by the
equation

F(r, 1) = (f) = j “w(s) f(x + s, nd’s (1.147)
0

where f(r + s, ¢) is the value of the microscopic variable f at a distance s
from the field point P in Figure 1.12 at the time ¢. The weighting function
w(s) is normalised such that

rw(s) d’s = 1. (1.148)
0
Comparing equations (1.141) and (1.147), we see that the weighting function
used previously, in equation (1.141) was

1

w(s) = vo for s < a,

w(s) =0 for s > a.
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According to equation (A2.4) of Appendix A2 for any microscopic variable
f we have

9f> _XNH _ oF
(30 - %2 - % (1199

where F = (f) is the macroscopic variable determined from the corresponding
microscopic variable f using equation (1.147). Equation (1.149) can be sum-
marised by saying that the operations of first averaging the microscopic
variable f to determine the macroscopic variable F and then differentiating F
partially with respect to x gives the same result as first differentiating the
microscopic variable f partially with respect to x to determine df/dx and then
averaging the differential coefficient dffdx to determine (df7dx) . For the x
component of the electric field, equation (1.149) gives

) oE
)2
Similar results hold for JE /dy, JE,/dz, dB,/dx etc., and for JE /ot etc.
According to the Maxwell-Lorentz equation (1.137)

de,  de, Ode _ pP"°

> Tt T e (1.151)

Averaging both sides of equation (1.151) we have
an> <ae > < an> _p™

< ax/ T 7;yl "\oz/ T &
Applying the general result given by equation (1.149) we have

JOE, | OE, N OE, _p

ox = dy oz &
Hence,

V.E=- £ (1.152)

€
where E is the macroscopic electric field and p is the macroscopic charge
density, determined using equation (1.147). Proceeding in a similar way, the

reader can show that the Maxwell-Lorentz equations (1.138), (1.139) and
(1.140) lead to

V.-B=0 (1.153)
VXxE=-B (1.154)
V x B = p(J + &K) (1.155)

where B is the macroscopic magnetic field and J is the macroscopic current
density, determined using equation (1.147). This analysis shows that the
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Maxwell-Lorentz equations give Maxwell’s equations as the appropriate
relations between the macroscopic variables. E, B, J and p. A full discus-
sion of macroscopic electromagnetism is given by Robinson [18].
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CHAPTER 2

The scalar potential ¢ and the vector potential A

2.1. Introduction

Though it is possible to determine the electric and magnetic fields E and B
due to varying charge and current distributions by solving the differential
equations (1.125) and (1.122) for E and B, for example using the Jefimenko
solutions given by equations (1.136) and (1.134), it is sometimes more con-
venient to solve problems and to interpret electromagnetism using the scalar
potential ¢ and the vector potential A. Our starting point in this chapter will
be Maxwell’s equations for continuous charge and current distributions in
otherwise empty space. For these conditions, Maxwell’s equations at a field
point inside a charge and current distribution are

V.E-= Ep; @2.1)
V.B=0 2.2)
VXE=-B (2.3)
V x B = po(J + gE) (2.4)

where p is the charge density and J is the current density at the field point.
One dot above a variable denotes partial differentiation once with respect to
time, two dots above a variable denote partial differentiation twice with respect
to time etc. It will be assumed throughout this chapter that there are no
dielectrics or magnetic materials so that the relative permittivity €, and the
relative permeability p, are both equal to unity everywhere.

2.2. The differential equations for ¢ and A
The vector potential A was introduced in Section 1.4.6 of Chapter 1, where

we showed, using the Biot-Savart law, that the magnetic field due to a steady
current distribution (magnetostatics) could be expressed in terms of a vector

55
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potential A by the equation
B=VxA (2.5

where A was given by equation (1.74). We shall now go on to consider varying
charge and current distributions using Maxwell’s equations as our starting
point. It is consistent with equation (2.2) to assume that B can also be related
to a vector potential A by equation (2.5) in the general case of a varying current
distribution. To check this, take the divergence of both sides of equation
(2.5) and then use the result that, according to equation (A1.25) of Appendix
A1.6, the divergence of the curl of any vector is zero, to show that equation
(2.5) leads to equation (2.2). The divergence of A has yet to be specified.

The scalar potential ¢ was first introduced in electrostatics in Section 1.2.9
of Chapter 1, where, in the context of electrostatics, ¢ was related to the
electrostatic field E by equation (1.23), according to which

E =-Vo. (1.23)

According to equation (A1.26) of Appendix A1.6 the curl of the gradient of
any scalar function of position is zero. Hence it follows by taking the curl
of both sides of equation (1.23) that equation (1.23) can only be applied in
conditions where V X E is zero, that is in electrostatics. According to equation
(2.3), which expresses Faraday’s law of electromagnetic induction,

V xE =_B. (2.3)
Substituting for B using equation (2.5), we have

VxE=-2 (VxA)__Vx%‘:*—
Rearranging,

Vx(E+A)=0. (2.6)

Since, according to equation (A1.26) of Appendix AL1.6, the curl of the gradient
of any scalar function of position is zero it is consistent with equation (2.6)
to try putting (E + A) equal to —V¢ in the general case, when the charge
and current distributions are varying, giving

E-Vp-2. 2.7)

As a check, integrate equation (2.7) around any closed loop. Since, according
to equation (A1.11) of Appendix A1.2, §V¢ - dl is always zero, we have

oA 0
j(E.d1=—3QV¢.d1—3( = - dl= at%A.dl.

Applying Stokes’ theorem, equation (A1.34) of Appendix A1.8, to A - dl
and putting V x A equal to B we obtain
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%E-dl=—-a§;[VxA-dS=—§a;JB-dS (2.8)
which is the same as equation (1.105), which is Faraday’s law qf electro-
magnetic induction. It can be seen that the contribution of the —A term in
equation (2.7) to the total field E represents the contribution of electro-
magnetic induction to the total electric field in the case of a varying current
distribution. For static conditions, A is zero and equations (2.7) and (2.8) reduce
to equations (1.23) and (1.28) of electrostatics respectively.

So far, we have only used the Maxwell equations (2.2) and (2.3) to develop
equations (2.5) and (2.7), which relate the fields B and E to the potentials ¢
and A. The other two Maxwell equations, namely equations (2.1) and (2.4),
will now be used to develop the differential equations which relate ¢ and A
to the charge and current distributions. According to equation (2.4),

V x B = p(J + g,E) (2.4)

Substituting for E and B using equations (2.7) and (2.5) respectively, we
have

VX (VXA =pnJ+ p{,eog;(-w-;'\)

0 A
= WoJ — M€Y ( 8?) —uoso%z— . (2.9)

Notice that the uoeo}& term in equation (2.9) comes directly from the vacuum
displacement current term €,E in equation (2.4). From equation (A1.27) of
Appendix Al.6

Vx(VxA)=VV-.A -VA.
Substituting in equation (2.9), using W€, = 1/¢* and rearranging, we obtain

1 oA 19
2 <3 —V(V-A+?—£-)=—u0J. (2.10)

The divergence of A has yet to be specified. It will be shown in Section 2.8
that there is flexibility in the choice of V - A. In this section we shall specify
V . A using the equation

199 _

V- A+ g at—O. (2.11)
Equation (2.11) is known as the Lorentz condition. This choice is some-
times called the Lorentz gauge or the covariant gauge. Using the Lorentz
condition, equation (2.10) reduces to

82A
— 2.12
¢ o Hol- ( )

VA -

VA -

The reader can check that, if the vacuum displacement current term eOE
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were absent from equation (2.4), then equations (2.12) and (2.11) would reduce
to

VA=—pJ; V-A=0

which are equations (1.92) and (1.83) of magnetostatics. This shows that,
just as was the case with the differential equation (1.122) for B, it is the
presence of the vacuum displacement current term €E in equation (2.4)
which converts the Laplacian of magnetostatics into the D’Alembertian in
equation (2.12). Taking the curl of both sides of equation (2.12) gives equation
(1.122), which is the partial differential equation relating B to the current
distributions.
Substituting for E from equation (2.7) into equation (2.1), we obtain

V-(V¢+A)=—£—. 2.13)

0
Now

. %}
V.A==(V-A).

Using the Lorentz condition to substitute for V - A, we have

o0 (_L30)__19%
voa-g(-5) -5 5

Substituting in equation (2.13) for V - A and putting V - (V9) equal to V39,
we find that equation (2.13) reduces to

2 La_z?l__p
vo- s 5E=-E. 2.14)

Collecting the other equations for ¢ and A, in the Lorentz gauge we have

24 _ LA _
VA - 2 37 = —,J. (2.15)
1 d¢ ..
V.- A+ 23 0. (The Lorentz condition) (2.16)

The electric field E and the magnetic field B are given in terms of ¢ and A
by the equations
0A
=-V¢p - —. 2.1
¢ 3 2.17)
B=VxA. (2.18)

The choice of the Lorentz gauge decouples the differential equations for ¢
and A allowing us to solve the differential equations for ¢ and A separately.
Notice that in equation (2.14), the scalar potential ¢ depends only on the charge
density p and that in equation (2.12) the vector potential A depends only on
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the current density J. The choice of the Lorentz gauge also gives equations
that are relativistically invariant under a Lorentz transformation.

2.3. The retarded potentials

According to equation (2.14), in the Lorentz gauge the scalar potential ¢ due
to a varying, continuous charge distribution is related to the charge density
p by the partial differential equation

2 19 _ p
Vi - Ry R (2.19)
Equation (2.19) is an example of D’Alembert’s equation. In this section, a
simplified derivation of the solution of equation (2.19) will be given, which
illustrates how the solution of equation (2.19) can be applied in practice.
Readers interested in more rigorous solutions are referred to Panofsky and
Phillips [1], Ferraro [2], or Hauser [3].

Consider the finite continuous charge distribution shown in Figure 2.1(a).
The charge distribution is moving and varying in an arbitrary way such that
the charge density p(r,) and the current density J(r,) at the fixed source point
atr, are functions of time. Divide the charge distribution shown in Figure 2.1(a)
into a large number of infinitesimal volume elements. Consider the varia-
tions in the charge, that is inside the volume element dV| at the fixed position
r, in Figure 2.1(a), in isolation from the rest of the charge distribution, as shown
in Figure 2.1(b). Choose a new coordinate system with a new origin O’ at
the position of the volume element dV, as shown in Figure 2.1(b). Let the
distance from the volume element dV, at O’ to the field point P in Figure 2.1(b)
be denoted by R. The total charge dQ = p dV, inside the volume element
dV; will be treated as a point charge. For a system consisting of only the varying
charge inside the fixed volume element dV equation (2.19) becomes

c2 atz -

where the Dirac delta function 8(R) is zero unless R = 0 in which case
3(R) = 1. Outside the volume element dV, in Figure 2.1(b), equation (2.20)
reduces to

vip_ L9 _ e% S(R) (2.20)

V2¢_ — =t = Q. (221)

In the case of a point charge of magnitude dQ = pdV,, the scalar potential ¢
should be spherically symmetric, so that using equation (A1.42) of Appendix
Al.10, equation (2.21) becomes

L2 (p2) 19
RZ OR (R é'ﬁ - C2 atz = 0. (222)
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VARYING CHARGE AND
CURRENT DISTRIBUTION

(b)

Figure 2.1. (a) Determination of the retarded potentials at the field point P due to a varying
charge and current distribution (b) Derviation of the contribution of the charge and current
inside the volume element dV, to the retarded potentials at the field point P.

The solution of equation (2.22), that is valid at the field point P in Figure 2.1(b)
at the time of observation ¢, is

_ fitt = R/c) | f(t+ Rlc)
i S -

(2.23)

where f; and f, are, so far, unspecified functions of (¢ — R/c) and (¢ + R/c) respec-
tively. The reader can check this solution of equation (2.22) by substituting
for ¢ from equation (2.23) into equation (2.22). The solution (1/R)f(t + R/c)
is normally rejected, since it corresponds to the advanced potentials. Hence
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outside the element of charge inside dV; in Figure 2.1(b), the solution of
equation (2.21) should be of the form

o= f_l("_}fiﬁ , (2.24)

To specify the function f,(r — R/c) consider what happens very close to the
origin O’ in Figure 2.1(b). The solution given by equation (2.24) must satisfy
equation (2.20) inside the volume element dV,. Since ¢ is proportional to
1/R, ¢ tends to infinity as R tends to zero in Figure 2.1(b). Hence near the
origin O’ in Figure 2.1(b), ¢ varies much more rapidly with distance at a
fixed time than ¢ varies with time at a fixed value of R, so that near R = 0
the ¢/c* term in equation (2.20) can be neglected in comparison to the V¢
term. Hence near R = 0, equation (2.19) can be approximated by

v =-F . 2.2
¢ 5 (2.25)

This is Poisson’s equation. The solution of equation (2.25) in the case of a
point charge is Coulomb’s law. Hence when R tends to zero

_ filt = R/c) dg  pdV;
¢== R - dne,R — 4me,R (2.26)

The general solution, given by equation (2.24), must go over to this form when
R is very small. This suggests that in the general case

_ p(t = Rio)V,
¢= 4me R

(2.27)

where p(t — R/c) is a function of (¢ — R/c). According to equation (2.27), the
value of the scalar potential ¢ at the time of observation ¢ at the field point
P, at a distance R from the origin O’ in Figure 2.1(b), depends on the
magnitude of the charge inside the volume element dV, at the time (¢t — R/c),
that is at a time R/c before the value of ¢ is required at the field point P.
The time (z — R/c) will be called the retarded time and denoted by #*. Quantities
measured at the retarded time #* will be placed inside square brackets. For
example the p(¢r — R/c) term in equation (2.27) will be denoted by [p], so
that equation (2.27) can be rewritten in the form

_ Ipldv,

o = IR (2.28)
Consider now the finite varying charge distribution shown in Figure 2.1(a).
According to equation (2.28) the contribution, now denoted by d¢, of the
element of charge [p]dV, at r, in Figure 2.1(a) to the total scalar potential ¢
at the field point P at r at the time of observation ¢ is

_ [pldv;
do = 4me R
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where R = (r — ry). Summing over all the volume elements making up the
charge distribution shown in Figure 2.1(a), we find that the total scalar
potential ¢ due to the continuous, varying charge distribution is given by

or, 1) = -1 J [p@ldV, (229

4re, r —r

Since the various volume elements in the integral in equation (2.29) are at
different distances R = |r — r| from the field point P in Figure 2.1(a), the
appropriate retarded times are different for the various volume elements.
The solution of the equation
1 A
2 oA _

VA - 2 3p UoJ. (2.12)
can be obtained by solving equation (2.12) for the cartesian components A,,
A, and A, separately and then combining them to give

A(r, 1) = (-“-'z) f LJ(r)ldV, (2.30)

4 r—r|

where [J(r,)] is the value of the current density at r, at the retarded time
t* = (t — R/¢). Equations (2.29) and (2.30) are known as the retarded poten-
tials. Notice that in the Lorentz gauge the vector potential A depends only
on the current density J, showing that in the Lorentz gauge the vacuum dis-
placement current density €,E does not appear as one of the sources of the
magnetic field in equation (2.30).

It is sometimes useful, when applying the retarded potentials, to intro-
duce, for purposes of exposition only, an imaginary information collecting
sphere whose centre is at the field point P in Figure 2.1(a) and which
collapses with a velocity ¢ in empty space, such that the information collecting
sphere arrives at the field point P at the time of observation ¢, when the
potentials ¢ and A are required at the field point P. The information
collecting sphere passes the various volume elements dV, in equations (2.29)
and (2.30) at the appropriate retarded times. It is useful to imagine that this
information collecting sphere collects information about charge density, current
density and position at the appropriate retarded times. The data collected in
this way can then be used to calculate ¢ and A using equations (2.29) and
(2.30). The application of the retarded potentials will be illustrated in Section
2.4 by solving the example of the oscillating electric dipole.

So far in this section, we have only considered idealized continuous charge
and current distributions in otherwise empty space. In practice all charge and
current distributions are made up of moving atomic particles, such as electrons,
protons and ions. In Section 1.11 of Chapter 1, the macroscopic variables E,
B, p and J were defined in terms of the corresponding microscopic variables
using equation (1.147). Maxwell’s equations for the macroscopic fields E
and B were derived from the Maxwell-Lorentz equations for the micrcscopic



The scalar and vector potential 63

fields, namely from equations (1.137), (1.138), (1.139) and (1.140). This
leads us to equations (1.152), (1.153), (1.154) and (1.155) of Chapter 1.
These equations for the macroscopic fields have the same mathematical form
as Maxwell’s equations for an idealized continuous charge and current dis-
tribution, namely equations (2.1), (2.2), (2.3) and (2.4). It follows by the
same mathematical steps as were used earlier in Sections 2.2 and 2.3 that
the macroscopic fields E and B can be related to a macroscopic scalar
potential ¢ and a macroscopic vector potential A by the equations

where ¢ and A are again given by the retarded potentials, namely equations
(2.29) and (2.30) respectively, provided that p is now the macroscopic charge
density and J is the macroscopic current density calculated using equation
(1.147).

2.4. The oscillating electric dipole
2.4.1. Introduction

To illustrate the application and interpretation of the retarded potentials, we
shall now give an account of the calculation of the electric and magnetic
fields due to a stationary, oscillating, electric dipole. We shall assume that
the electric dipole consists of two varying point charge distributions of
magnitudes +Q and —Q respectively at a fixed infinitesimal distance d/ apart,
as shown in Figure 2.2. The instantaneous value of the electric dipole moment

p is
p = Qdl. (2.31)

The mid-point of the electric dipole is fixed at the origin of a co-ordinate
system, with p and dl pointing in the +z direction from the negative to the
positive charge as shown in Figure 2.2. The charges are joined by a straight
conducting wire of infinitesimal length d/. If a charge +dQ flows along the
wire in a time d¢ from the negative to the positive charge the charges are
changed to +(Q + dQ) and —(Q + dQ) respectively, and the current flowing
in the connecting wire is I = dQ/dt. Differentiating equation (2.31) with respect
to time, for fixed d/ we have

p= (L)ar-ra (2:32)

It will be assumed that the electric dipole moment p varies sinusoidally with
time, that is

p = p, Sin Wt (2.33)
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Figure 2.2. Determination of the electric and magnetic fields at the field point P which is at a
distance r from the oscillating electric dipole at the origin. The dipole moment points along
the z axis. The orientation of the x axis is chosen such that the field point P is in the xz plane.
The polar angle © of the spherical polar coordinate system is measured from the z axis. The
directions of the unit vectors r and @ at the field point P are shown. The unit vector ¢ is in
the direction of ¥ X 0, which is downwards into the paper.

where o is the angular frequency. Using equation (2.32) we have

_P . _%.) _

1 dl ( 3 ) €os Wt = I, cos Wt (2.34)
where I, = (0py/dl) is the maximum electric current that flows in the wire of
length dl.

Consider a field point P at a distance r from the electric dipole that is at
the origin in Figure 2.2. If the time of observation of the fields E and B at
the field point P in Figure 2.2 is ¢, then the corresponding retarded time at
the oscillating dipole is t* = (¢ — r/c). The value [p] of the electric dipole
moment at the retarded time £* is

[p] = py sin Wt* = p, sin ® (t - %) . (2.35)
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We shall now derive some of the formulae for the partial differential coeffi-
cients of the value of [p] given by equation (2.35). Differentiating equation
(2.35) partially with respect to time, we have

[p] = wp, cos ® (t - %) . (2.36)

Using equations (2.32) and (2.34), we have
[p] = [11dl = I, d] cos ( t— -:j) . (2.37)

Differentiating equation (2.36) and (2.37) partially with respect to time we
obtain

[p] = —0’p, sin ® (t - %) , (2.38)
[p] = [f] dl = -wl, dl sin ® (t - %) . (2.39)
Differentiating equation (2.35) partially with respect to r we have
. (2.40
[Pl _ M )
c c

Differentiating equation (2.36) partially with respect to r and using equation
(2.38) we have

opl _ [p] (7] d/ (2.41)

or c c

2.4.2. Determination of the magnetic field

Consider again the field point P, that is at a distance r > d/ from the electric
dipole at the origin in Figure 2.2. According to the expression for the retarded
vector potential, equation (2.30), the vector potential A at the field point P
at the time of observation ¢ is in the +z direction in Figure 2.2 and, since in
this example [J] dV, = [/] dl and R = r, the magnitude of A, is

w1 dl - pelpl
A, = dnr 4mr (2.42)

where [/] = I, cos w(t — r/c) is the value of the current in the oscillating electric
dipole at the retarded time #* = (¢t — r/c). Notice that the vacuum displace-
ment current density €,E at various points in space should not be included
as one of the sources of the vector potential in the Lorentz gauge.

Introduce spherical polar coordinates in Figure 2.2, measuring r from the
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origin, the polar angle 6 from the z axis and the azimuthal angle ¢ from the
x axis towards the y axis in the xy plane. Let T, 0 and ¢ be unit vectors in
the directions of increasing r, 0 and ¢ respectively. The use of the same symbol
¢ for both the scalar potential and the azimuthal angle in spherical polar
coordinates should not lead to any confusion since it should be clear from
the text which quantity the symbol ¢ stands for.

Resolving the value of A, given by equation (2.42) into components A,
Aq and A, in the spherical polar coordinate system we obtain

Wol/] dl cos ©  polpl cos 6

A= "m T am (2.43)
_ WelI1dlsin® _ p[p] sin O

Ag = - 4ntr T dmr (2.44)

Ay = 0. (2.45)

The magnetic field B at the field point P in Figure 2.2 at the time of obser-
vation ¢ is given by V X A, where in spherical polar coordinates V X A is given
by equation (A1.41) of Appendix A1.10. It is straight forward for the reader
to show that, since A, = 0 and A, and A, are independent of the azimuthal angle
¢, then

B,=0
By=0

13 1 94,
Bo=Tor ) - T 58

F

- Bl crsn o - 5 (P22},

r

From equation (2.41), d[p)/dr = —[p)/c. Since [p] is independent of 0, then
d[p)/06 = 0. Hence

_ Mesin® ([p]l . [pl);
b e (1, )5

Using equation (2.36), (2.37), (2.38) and (2.39), the expression for B can be
expressed in the alternative form

W] dlsin ® 5  p,[I] dlsin© 4
4nr? b+ 4mre .

_ Melycos w(t—r/c)dlsin ® 7 p,wl; sin W — r/c) dl sin 0 4
= 4t ¢. - 4drtre ¢

(2.48)

B =

(2.47)

The first term on the right hand side of equation (2.48) is proportional to
1/r%. Comparing equation (2.48) with equation (1.64), we see that the first term
on the right hand side of equation (2.48) is equal to the magnetic field that
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would be predicted by the differential form of the Biot-Savart law, if the
value [I] = I, cos w(t — r/c) of the current in the electric dipole at the retarded
time (¢ — r/c) is used in the differential form of the Biot-Savart law. The second
term on the right hand side of equation (2.48) is proportional to 1/r and is
called the radiation term. It predominates at large distances from the oscillating
electric dipole in Figure 2.2. The maximum amplitudes of the two harmoni-
cally varying terms on the right hand side of equation (2.48) are numerically
equal when 1/r = w/c, that is when the distance from the oscillating electric
dipole to the field point is

ol A _ 1 (2.49)

where A is the wavelength of the electromagnetic variations and k = 27/A is
the wave number. The region, where r < A/2rt and the first term on the right
hand side of equation (2.48) predominates, is called the near zone. The region
where r > A/2m and the second term on the right hand side of equation (2.48)
predominates is called the far zone. When r is very much greater than A/2m,
the second term on the right hand side of equation (2.48), namely the
radiation term, is very much bigger than the first term. The region where
r > M2m is called the radiation (or wave) zone.

Notice that, since according to equation (2.48) the only component of the
magnetic field due to the oscillating electric dipole is in the direction of ¢,
the magnetic field lines are closed circles having constant values of r and 0.

2.4.3. Determination of the electric field

Now that we have derived the expressions for the magnetic field B due to
the oscillating electric dipole in Figure 2.2 we could determine the electric
field E using the Maxwell equation
1 JE
VXB=—5—
¢ ot
in the way described later in Section 2.6.5. However, it will be useful in
some of our discussions in later chapters, if we derive the expression for the
electric field directly from the potentials ¢ and A using the equation
oA
E=-V§ -—. 2.17
o=, 2.17)
In addition to the expression for the vector potential A given by equations
(2.43), (2.44) and (2.45), to determine E we must also derive the expression
for the scalar potential ¢ from the charge distributions using equation (2.29).
To determine ¢, we shall assume that the negative and positive charges are
at distances r, = (r + '/,dl cos 0) and r, = (r — '/,dl cos ) from the field
point P in Figure 2.2. We shall assume that, when the information collecting
sphere passes the negative charge at the retarded time (¢ — r\/c), the magni-
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tude of the negative charge is [-Q]. We shall also assume that the magni-
tude of the positive charge is varying at the rate [Q] when the information
collecting sphere is passing the oscillating electric dipole in Figure 2.2.
Since the positive charge is at a distance (d/ cos 0) closer to the field point
P than the negative charge, it takes the information collecting sphere a time
(d/ cos 8)/c to cross the oscillating dipole so that the magnitude of the positive
charge recorded by the information collecting sphere is [Q + Q(dl cos 9)/c].
Substituting in the expression for the retarded scalar potential, given by
equation (2.29), we have

o= _ 10+ Q(dl cos O)/c] [0]
4reyr[1 — (dl cos 0)/2r] 4reor[1 + (dl cos 0)/2r] -

Expanding [1 + (d/ cos ©)2r)]"" using the binomial theorem, then multiplying
out and ignoring terms of order (d/)* we finally obtain

o = [Q1 dicos & [0] dl cos ©
T Amey? dnegrc

From equations (2.31) and (2.32), [Q] dl = [p] and [Q] dl = [I] dl = [p].
Substituting in equation (2.50), we find that the scalar potential ¢ is given
by

(2.50)

_cos O ([p] [15]
o= 4re, ( 7 rc ) (2.51)

Alternatively, the expression for ¢ can be determined from the Lorentz con-
dition, equation (2.11), in the way described later in Section 2.5. It is left as
an exercise for the reader to show, using the expression for V¢ given by
equation (A1.39) of Appendix 1.10 and using equations (2.40) and (2.41),
that

cos O (2[p]l 2[p] = [p] ) ~ sin® ([p] [p] )
4me, ( P TP T )T Tame, \P T
(2.52)
Differentiating equations (2.43) and (2.44) partially with respect to time and
using the relation p, = 1/g,c* we find that
_OA __cos6[p] o sin 6[p] o
ot 4meyrc? dregrc®
Adding equations (2.52) and (2.53) we finally obtain

_cos O (2[pl  2[p]\. 6 sin6 (p] . [P] pl) 4
k= 411:80( P Pe )r+ 41!:80( T e )0'

V¢ =

(2.53)

(2.54)

Notice that the term proportional to [p])/r in the r direction in equation (2.52)
for —V¢ cancels the term in the r direction proportional to —[p]/r in equation
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(2.53) for —AA leaving only the component proportional to [ p)/r that is in the
direction of @, which is in a direction perpendicular the vector r from the
electric dipole to the field point. It is useful to rewrite equation (2.54) in the
form

E=E, +E, +E, (2.55)
where
-2, Lm0
- 2lem0; plmog
y = %’];:Tnczg 6. (2.58)

Notice that E,, E, and E, are proportional to 1/r%, 1/r’c and 1/rc* respec-
tively.

Examples of the electric field due to an oscillating electric dipole at
successive instants of time are shown in Figures 2.3. The E, term, given by
equation (2.56), is similar to the expression for the electrostatic field due to
an electric dipole of dipole moment [p] = p, sin w( — r/c). The E, term
is proportional to 1/r* and predominates close to the oscillating electric dipole,
where the electric field resembles the electric field due to an electrostatic
dipole, as shown in the examples in Figure 2.3. The direction of the electric
field reverses every half period. The E, term, given by equation (2.57), is
proportional to 1/r*. It depends on [p] = [I] dl. It is the E, contribution to E
that gives rise to the induction electric field, that gives the main contribu-
tion to the induced emf in a stationary coil in the near zone (r < A/2m). The
E, term, given by equation (2.58) is proportional to 1/r and predominates at
very large distances from the oscillating electric dipole. It is the E, term that
gives the radiation electric field.

It follows from equations (2.54), (2.38) and (2.46) that the expressions
for E and B in the radiation zone where r > A/27 are

E = E, sin ® ( t— -g) 0. (2.59)
B =Bysino (- 2)é. (2.60)
where
w’p, sin O w’p,sin® E,
e ——————————— * B = e ——— | em—— 2.61
Eo Ameyrc? 0 dneyrc’ c ( )

Notice that in the radiation zone E and B are in phase and that E and B are
perpendicular to each other. Equations (2.59) and (2.60) represent electro-
magnetic waves travelling outwards from the oscillating electric dipole with the
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o

o =1

Figure 2.3. The electric field lines due to an oscillating electric dipole for wt = 0, n/2, & and
3n/2. The dipole is situated at the centre. (Reprinted from Electromagnetic Fields and Waves
by P. Lorrain and D. Corson with the permission of W. H. Freeman and Co. [4])

velocity of light. The Poynting vector N in the radiation zone is given by
EXxB _ 'pjsin’ 0 sin’ o(t — r/c) N

N = Hy 16w’ c’

(2.62)

The direction of the Poynting vector N in the radiation zone is radially outwards
from the oscillating electric dipole.

2.4.4. Relation of the fields E and B to experimental measurements

The fields E and B at any field point in empty space, due to the oscillating
electric dipole shown in Figure 2.2, could, in principle, be related to experi-
ments by using stationary and moving test charges. If the values of E and B
were known then the forces on the test charges could be calculated using the
Lorentz force law, which according to equation (1.1) is

d mou
F = E( - u02/c2)”2) =gE + qu X B (2.63)

where m, is the rest mass and u is the velocity of a test charge of magnitude
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q- Alternatively, if the values of E and B were unknown, their values could
be determined from the forces on a stationary and on moving test charges,
in the way described in Section 1.4.2 of Chapter 1, using equations (1.56)
and (1.58).

In practice, in the case of the oscillating electric dipole shown in Figure 2.2,
it is generally easier experimentally to get observable effects by placing a
stationary antenna at the field point in empty space, for example of the type
shown in Figure 2.4(a), which is a simple dipole. Typically such a dipole
antenna consists of a metal rod, split in the middle, and connected to a high
resistance R as shown in Figure 2.4(a). If at a particular instant the electric
field E due to the oscillating electric dipole is in the direction shown in
Figure 2.4(a), the electric field E gives an electric force on each of the con-
duction electrons in the receiving antenna leading to a current flow in the
antenna, which in turn gives rise to a potential difference V across the resistor
R. This potential difference can be measured using electronic methods. It
can be shown that, if the length [ of the receiving dipole is much less than

OSCILLATING
ELECTRIC DIPOLE

DIPOLE RECEIVING

ANTENNA
p
LARGE 0
E R Vv
DISTANCE J
(a)
LOOP RECEIVING
ANTENNA
p
E
LARGE T
R Vv
DISTANCE U
A
(-—2"—9
(b)

Figure 2.4. Measurement of the electric field due to an oscillating electric dipole (a) using a
dipole receiving antenna and (b) using a loop receiving antenna.
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the wavelength A, the potential difference across the resistor R is approximately
E,l, where E, is the component of E parallel to the dipole antenna. In practice,
in order to increase the signal strength, the total length of the receiving dipole
is generally made equal to A/2, so that each half section is of length A/4.
The full theory of a dipole antenna of finite length is rather complicated. The
interested reader is referred to a text book such as Lorrain and Corson [4].

In the example shown in Figure 2.4(a), the oscillating electric dipole is
equivalent to a radio transmitter and the receiving dipole antenna and asso-
ciated electronic circuits corresponds to a radio receiver. If the distance from
the transmitter to the receiver is > A/2m, the receiver is in the radiation (or
wave) zone, and responds mainly to the radiation electric field E; given by
equation (2.58).

It is assumed in the idealized case shown in Figure 2.4(a) that there is
nothing in the space between the transmitter and the receiver. If there were
isolated metallic conductors present, the varying electric field due to the
oscillating electric dipole would give varying conduction current flows in
the conductors, which in turn would give rise to electric and magnetic fields
which would be superimposed on the fields due to the oscillating electric
dipole. Any dielectrics present would be polarized in the electric field and
any magnetic materials present would be magnetized in the magnetic field
due to the oscillating electric dipole and would also give contributions to
the total electric and magnetic fields.

Advantage can be taken of the effects of induced electric currents in
conductors to improve the designs of receiving antennae. For example, in a
Yagi type antenna a rod is placed at an appropriate distance behind the
receiving dipole, but it is not connected electrically to the receiving dipole.
This extra rod acts as a reflector. A series of rods, called directors, are some-
times placed at appropriate distances in front of the receiving dipole to increase
the signal strength and to improve the directional properties of the antenna.

Another type of receiving antenna is the loop antenna of the type shown
in Figure 2.4(b). In this case the magnitude of the electrical signal in the
receiving antenna circuit depends on the spatial variations of the electric
field due to the transmitter. For example, if the two vertical sections in Figure
2.4(b) were A/2 apart, the electric field would be in opposite directions on
the two vertical sides of the receiving antenna, leading to a finite value for
ffE - dl, which gives rise to a voltage V across the resistor R. According to
Faraday’s law of electromagnetic induction, this emf is numerically equal to
the rate of change of the magnetic flux through the loop antenna.

The example of the oscillating electric dipole shown in Figures 2.4(a) and
2.4(b) can be used to illustrate the retarded potentials. Assume that there is
an oscillating electric dipole transmitter on a spaceship that is in the vicinity
of the planet Jupiter. Experiments, for example using radio signals from the
Pioneer 10 spaceship, have confirmed that it takes about 30 minutes for radio
signals to reach the Earth from such a spaceship. This shows that the value
of the electric field of a radio signal reaching the Earth from a spaceship
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near Jupiter depends on the value of the electric current in the transmitting
antenna on the spaceship at the retarded time, which is approximately 30
minutes before the time the radio signal reaches the Earth. If there were a series
of radio transmitters in space, we could imagine the radio signals coming in
with the information collecting sphere to reach the radio receiver on the Earth
at the time of observation.

2.5. Use of the Lorentz condition to determine the scalar potential ¢
from the vector potential A

In practice we do not always need to know all four of the variables ¢, A,, A,
and A, to determine the fields E and B. In the Lorentz gauge which we have
been using, ¢ and A are related by the Lorentz condition, equation (2.11). In
some problems it is possible to derive the scalar potential ¢ from the vector
potential A using the Lorentz condition. Integrating the Lorentz condition,
equation (2.11), with respect to time, we have

¢ = —CZJV <A dr + Go(x, y, 2) (2.64)

where ¢q(x, y, z) is a scalar function of x, y, z that is independent of time. When
the electric field is determined using equation (2.7), the —V¢, contribution gives
rise to a time independent, that is an electrostatic contribution to the total
electric field. By substituting the values of A,, Ay and A, given by equations
(2.43), (2.44) and (2.45) respectively into the expression for the divergence
of A given by equation (A1.40) of Appendix A1.10, the reader can show
that, in the case of the oscillating electric dipole shown in Figure 2.2, V . A
is given by

V-A=—“°Z?tse<[f2]+[’i]). (2.65)

Substituting for V - A in equation (2.64), then integrating with respect to
time and using |, = 1/g,c* we find that

cos 0

¢ = “dme, (sz—] + Lrl’c_]) + o, ¥, 2) (2.66)
where ¢, is the time independent constant of integration. Since there is no
electrostatic field in the case of the oscillating electric dipole shown in Figure
2.2, the ¢, term is zero in equation (2.66), which then reduces to equation
(2.51). This shows that in the case of an oscillating electric dipole that has
no resultant total charge, the six components of E and B can all be deter-
mined from the three components of the vector potential A. If there were an
additional electrostatic charge Q, at the origin in Figure 2.2 there would be
an additional electrostatic contribution ¢, = Q,/4ne,r to ¢, and the scalar
potential ¢ could not be determined completely from the vector potential A.
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2.6. Application of Maxwell’s equations to the electric and magnetic
fields due to an oscillating electric dipole

2.6.1. Introduction

Since the four variables A,, A, A, and ¢, given as functions of the variables
x, ¥, z and ¢, are sufficient to specify the varying electromagnetic field at a
field point in empty space, it is not necessary to use as many as the six
variables E,, E, E,, B,, B, and B, to specify the electromagnetic field due to
the oscillating electric dipole shown in Figure 2.2. Hence it is reasonable to
find that there are relations between the six components that specify the
fields E and B given by equations (2.54) and (2.46).

Problem. A plane transverse wave, that is propagating in the +x direction
and is linearly polarized in the y direction is described by the equation

Y=oncosw(t— %)

where c is the velocity of the wave. A typical example would be an elastic
S wave of seismology, in which case Y could stand for the displacement of
a point from its equilibrium position. Now, for the fun of it, introduce new
variables defined by

F = —Y; G=VxY.

Show that it follows from the definitions of F and G that’
VxF=-G.

Also show that

F=jcoYo sinu)(t— £); G=§(9)Yosinw<t— £)
c c c

and that the new variables F and G are related by the equation
S ol
VXG= 2o —I\ T2 cos w|r——J.
This is a relation between the new variables ¥ and G. It illustrates how, if

we use more variables than is necessary, we can end up with relations between
the variables.

One of the main aims of this book is to develop the interpretation of the
roles of the various terms in Maxwell’s equations, which we shall do in Chapter
4, where we shall start from the expressions for the electric and magnetic fields
due to an accelerating classical point charge. In this section we shall give a
brief introduction to the ideas, that we shall develop more fully in Chapter 4,
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by seeing how Maxwell’s equations apply to the fields E and B due to the
oscillating electric dipole in Figure 2.2.

2.6.2. The equation V - E =0

According to equation (A1.40) of Appendix A1.10, in the spherical polar co-
ordinate system (r, 6, ¢) shown in Figure 2.2, the divergence of E is given
by

1 1 8E¢)
ar(rzE,)+ sneae(E"Slne)+ s1n9(a¢ .

(2.67)

According to equation (2.54), for the oscillating electric dipole shown in Figure

-2 2]
E, = P + 2 cos © (2.68)
e Bt gy o
Ey = ame, L o+ g)sin ) (2.69)
E,=0. (2.70)

Throughout this section, all the quantities inside square brackets are measured
at the retarded time t* = (¢ — r/c). The reader can show, using equations
(2.68), (2.69) and (2.70), that

1 d 1  Jd 2p 215]
r* or ("E) = A r or TS 0
__2cos®[p P P ]
T 4me, * o rc * r’c? 71
1 0 ( 1 ) [ p 1o
7 sin 0 99 Lo Sin9) = 4re, ) r sin O 3+Tc—+F aesme
_2cos O [ P P ]
= ~———~—~4n80 o + 5 + oy (2.72)
1 OE,
r sin 0 W =0. 2.73)
Adding equations (2.71), (2.72) and (2.73), we find that
V-E=0.
In cartesian coordinates we have
v.g=2% 95 (9B _, (2.74)

ax+ay+az

Equation (2.74) is a relation between the components E,, E, and E,. According
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to equation (2.74), the divergence of the electric field due to an oscillating
electric dipole is zero at every field point in empty space. Integrating equation
(2.74) over any arbitrary finite volume that does not enclose any part of the
oscillating electric dipole, and applying Gauss’ theorem of vector analysis,
which is equation (A1.30) of Appendix A1.7, we find that at any fixed time

JV-EdV=JE-dS=O. 2.75)

To illustrate equation (2.75), consider a Gaussian surface in any of the examples
in Figure 2.3 that does not enclose any part of the oscillating electric dipole.
At a fixed instant of time, as many lines of E enter such a Gaussian surface
as leave it. The values of E at different points on the Gaussian surface are
at different distances from the oscillating electric dipole and have different
retarded times at the oscillating electric dipole.

Well away from the oscillating electric dipole in Figure 2.2, that is in the
radiation (wave) zone, the terms proportional to 1/7° and 1/7* are very much
smaller than the term proportional to 1/r, and to an excellent approximation
equation (2.54) reduces to
[p] sin © Y

E=E,= 4merc?

(2.76)
!

It is tempting to assume that equation (2.74) applies to E,,, in the radiation

zone. However if we apply equation (2.67) to the radiation field only,

we find that, since E, and E, do not contribute to E,, which only has a

component in the @ direction, then

1  d : _ 2[p] cos 8
7 sin 6 90 Lra S0 o) = dmeric?

showing that the divergence of E,, is finite. The reader can check back that
the contribution to V - E, given by equation (2.77), is cancelled in equation
(2.74) by the third term inside the square brackets on the right hand side of
equation (2.71), which arises from one of the contributions of the E, term to
V . E, where E, is given by equation (2.68). Notice E, does not contribute to
the radiation electric field. This result illustrates how, in the general case,
Maxwell’s equations are only valid when they are applied to the total electric
and the total magnetic fields, and cannot always be applied to only the radi-
ation fields even in the radiation zone. To illustrate this result consider one
of the closed electric field lines, well away from the oscillating electric dipole
in any one of the examples in Figure 2.3. According to equation (2.76), the
radiation electric field has only a component in the direction of 6. Hence if
the radiation electric field given by equation (2.76) were the only contribu-
tion to the electric field, then the electric field lines would have to be circles
of constant radii and, comparing equation (2.77) with equation (2.1) we see
that there would have to be a volume charge distribution at field pcints in
the radiation zone given by

V.E, = 2.77)
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€, 2cos 0 [p]
dnte r’c?

There is no such charge distribution in empty space. It can be seen from Figure
2.3 that the change in the magnitude of E4 with 0 is not due to the termina-
tion of electric field lines on a charge distribution, but is due to the deviation
of continuous electric field lines from circles due to the radial component E,
given by equation (2.68). It can be seen from the examples in Figure 2.3
that the electric field lines in the radiation zone are continuous so that
V . E, where E is the total electric field, is zero in this region. As r tends to
infinity, the value of V . E_,,, which according to equation (2.77) is propor-
tional to 1/7%, tends to zero and, in the limit of the idealized case of a plane
wave, the divergence of the radiation electric field is zero at field points in
empty space.

p=¢gV-E,= (2.78)

2.6.3. The equation V - B =0

According to equation (2.46) the magnetic field B, due to the oscillating electric
dipole shown in Figure 2.2, has only a B, component which is independent
of ¢. Hence substituting in equation (A1.40) of Appendix A1.10 we find that

1 ad 1 1 BB¢ 3
V-B= r2 (rz )+ r31n989(398m9)+ sine_aﬁ;-_o'
In cartesian coordinates we have
BB
az = 0. (2.79)

Equation (2.79) is a relation between the components B,, B, and B,. According
to equation (2.79), the divergence of the magnetic field B due to the oscillating
electric dipole in Figure 2.2 is always zero. Integrating equation (2.79) at a
fixed instant of time and applying Gauss’ theorem of vector analysis, we
have

fV-BdV=fB-dS=O. (2.80)

According to equation (2.80), as many lines of B should enter a closed surface
as leave it. In the case of the oscillating electric dipole in Figure 2.2, the
magnetic field lines are closed circles having constant values of r and 0, so
that as many magnetic field lines enter any closed surface in Figure 2.2 as
leave it.

2.6.4. The equation V X E = —B at a field point in empty space

According to equation (2.54), in the case of the oscillating electric dipole shown
in Figure 2.2, E, is zero and E, and E, are independent of ¢. Hence the
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expression for V x E, given by equation (A1.41) of Appendix A1.10, reduces
to

19 1 3E, \ »
VXE-= (7ar (rEo) - —5¢ )¢. (2.81)

Using equations (2.68) and (2.69) and remembering that, according to equation
(2.40), J[pYor = —[p)/c etc., the reader can show that at any field point in
empty space

10 _sin@d[p  p ﬁ]
rar(r o) = dmeyr Or —2_+§ >
__sn®f2p 2  p P (2.82)

Tdme, Lt T P T AT e

‘% %Ié, - (_l)( 4n£0)[ 2 ?25%] a%(cos 0)

_ sin @ [Z_p 2p
= e, L + 5] (2.83)
Adding equations (2.82) and (2.83), we find that
_ _sine)[ﬁ }')']A
VXE= ( ane, )L 722 + 3 . (2.84)

According to equation (2.46), for an oscillating electric dipole
sin 0 p ﬁ ] 2
B = Ame 2 * e .

Hence at any fixed field point

oB sin 0 [ ]
or  dme, . (2.85)
Comparing equations (2.84) and (2.85) we see that at any field point
oB
VXE=-3". (2.86)

Equation (2.86) is a relation we have derived which relates the spatial varia-
tions of E evaluated at a fixed time to the time variations of B evaluated at
a fixed field point. For example, the x component of equation (2.86) is

OE, OJE, 0B,

ayz B —Jéy_ at

which is a relation between the components E,, E, and B,.
Integrating equation (2.86) over a finite area at a fixed time ¢ and applying
Stokes’ theorem of vector analysis, we have
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JVxE.dS=§E.dl=J( %‘f) ds

3 90
-2 J as--2 2.87)

where @ is the magnetic flux through the area. Equation (2.87) is valid at
any instant of time and the values of E and B are their values at that instant
of time.

Consider one of the closed electric field lines, well away from the
oscillating electric dipole in any one of the examples in Figure 2.3. It can
be seen that ¢E - dl evaluated around the field line, which implies integrating
at a fixed time, is finite, showing that V X E is finite. The magnetic field B,
which is perpendicular to the paper in Figure 2.3, varies harmonically with
time leading to finite values for B and ®. According to equation (2.87)

E - dl evaluated around a closed electric field line in any one of the examples
in Figure 2.3 is equal to minus the rate of change of the magnetic flux @ =
f B - dS that goes through the closed electric field line. Different points on
the closed electric field line are at different distances from the oscillating
electric dipole in Figure 2.3 and correspond to different retarded times at the
oscillating electric dipole. The line integral 55E - dl is evaluated at a fixed
time of observation.

Since equation (2.3) is a relation between the fields E and B, equation
(2.3) can be used to determine B if E is known. Integrating equation (2.3)
with respect to time we have

= —JV x E dt + By(x, y, 2) (2.88)

where By(x, y, z) is a time independent, that is a magnetostatic contribution
to the magnetic field, which is zero in the case of the oscillating electric dipole
shown in Figure 2.2. To apply equation (2.88) to the oscillating electric dipole,
take the curl of equation (2.54) to give equation (2.84). Then substitute in
equation (2.88) and integrate with respect to time to obtain equation (2.46).

2.6.5. The equation V x B = E/c* at a field point in empty space
According to equation (2.46), for the oscillating electric dipole in Figure 2.2

_ sin@ p P ] A
B 411:80(: + - . (2.89)
Since B has only the B¢ component, the expression for V x B given by equation
(A1.41) of Appendix A1.10, reduces to

1

VXB= rsmea

1 o0 A
5 (B, sin or - e (rB,0. (2.90)
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It is left as an exercise for the reader to show that

1 0 : 2 cos O P

rsin © 00 (B, sin 6) = 41t£0c [ o (291)
L2y S0 (5  F B

— " ar (rB¢) = 4’TC80C2 r2C + rcz (2.92)

Substituting in equation (2.90) using equations (2.91) and (2.92) we have
(2 cos O )[p . (sme)[p p p
VxB-= ( 4me,c? 4mte ,zc 6
(2.93)

Since according to equation (2.54)

(25 £l (5 £+ 2]
E_( 47!80 rlc r+ 411:30 3+r2C+rC2 0

it follows that

LaE_(2COSG)[£ P ] (sme)[p P __p_]“
ot \ dme,c? /L P = 4me, P o

(2.94)
Comparing equation (2.93) and (2.94), we see that
_ _a_E _ ( B_E)
VxB 75, = Mol&y, ) (2.95)

Equation (2.95) is a relation we have derived between the electric and magnetic
fields due to the oscillating electric dipole in Figure 2.2, which is valid at
any field point in empty space. We shall go on in Section 4.8 of Chapter 4
to show that in the general case, when there is a current distribution at the field
point, we must add the p,J term to the right hand side of equation (2.95).
Integrating equation (2.95) over any surface in Figure 2.3 at a fixed time
of observation ¢, and applying Stokes’ theorem of vector analysis we obtain

oE 10
JVXB»dS=§B dl = J'at dS = 28tJE ds

L)

where ¥ = |E - dS is the electric flux through the surface. The magnetic
field lines due to the oscillating electric dipole are closed circles having
constant values of r and 6, so that §B . dl evaluated around one of these
magnetic field lines is finite, showing that V X B is finite. Since the electric
field E at all points on any surface bounded by the chosen magnetic field
line varies harmonically with time, E and hence ¥ are finite. According to
equation (2.95) at any field point in empty space V X B is equal to

and, according to equation (2.96), fﬁB dl evaluated around any closed loop
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is equal to (1/c?) times the rate of change of the electric flux ¥ through the
loop. These are relations between the field vectors E and B.

At large distances from the oscillating electric dipole in Figure 2.2, the
radiation fields predominate and at these large distances the other contribu-
tions to E and B are often neglected. According to equations (2.54) and (2.46),
the radiation fields due to the oscillating dipole are given by

[p] sin O & [p] sin O -
E,=~~——0, B,,=-""—F¢.
rad dmegrc? " Amerc® ¢

It is straightforward for the reader to show, remembering that d[p)/or is equal
to —[p)c, that

2[p] cos O - [p] sin © b

VXB,,=
R dre,ret

(2.97)

1 3K, _ [plsin6,
> ot dre,rct

(2.98)

Comparing equations (2.97) and (2.98), we see that V x B, is not equal to
E,.d/c’, showing that equation (2.95) is a relation between the total fields B
and E due to the oscillating electric dipole and cannot be applied to the radi-
ation fields on their own. In the limit when r tends to infinity the component
of V x B, in the direction of r, which is proportional to 1/7, becomes very
much smaller than the other terms in equations (2.97) and (2.98) so that in
the limit of a plane wave equation (2.95) can be applied to the radiation
fields.
Integrating equation (2.95) with respect to time, we have

E = CZJV X B dt + Ey(x, y, 2) (2.99)

where Ey(x, y, z) is a time independent, that is an electrostatic contribution
to the electric field. The E, term in equation (2.99) is zero in the case of the
oscillating electric dipole, shown in Figure 2.2, since there is no resultant
total electric charge to give an electrostatic field. To determine E from B for
the oscillating electric dipole, we start by taking the curl of the expression
for B, given by equation (2.46), to give equation (2.93). Then substitute for
V x B in equation (2.99) and integrate with respect to time to obtain equation
(2.54). Using this method, there is no need, in the case of the oscillating electric
dipole shown in Figure 2.2, to determine the scalar potential ¢ to determine
E, since B can be determined from the vector potential A and E can then be
determined using equation (2.99). If the oscillating electric dipole had a
resultant electric charge we would have to include the E, term in equation
(2.99), which would arise from a —V¢ contribution to the total electric field
E.
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2.6.6. Discussion of Maxwell’s equations

By deriving equations (2.74), (2.79), (2.86) and (2.95) from the expressions
for the electric field E and the magnetic field B due to the oscillating electric
dipole shown in Figure 2.2, both of which can be determine independently
from the vector potential in the way described in Section 2.4, we have illus-
trated how, at a field point in empty space, Maxwell’s equations are relations
between the components E,, E, E,, B,, B, and B, of the field vectors E and
B. We shall defer until Chapter 4, our discussion of how equations (2.74)
and (2.95) must be extended when there is a charge and current distribution
at the field point.

2.7. Derivation of the Jefimenko formulae for E and B from the
retarded potentials

Consider again the charge and current distribution shown previously in Figure
2.1(a). Consider the field point P at position r having coordinates (x, y, z)
and a source point at position r; having coordinates (x,, y,, z,). Let

R=(r-r)
R = RR
R = {(X - xs)2 + (y - ys)2 + (Z - Zs)2}l/2.

According to equation (2.17), the electric field at the field point P is given
by

E-_Vo-A (2.17)
where
2 d +20 =+ 0
V=l—a;+‘]—a;+k§z—. (2.100)

According to equation (2.29) the retarded scalar potential at the field point
Pis

1 J [p]

= —— | == dV,
\ dne, ] R 7

where [p] = p(t — R/c) is the value of the charge density p at the retarded

time t* = (¢t — R/c). Since differentiating partially with respect to x, y and z

and integrating with respect to x,, y, and z, are independent linear operations

_ 1 [p] __1_[ Ip]
Vo = Zmovf 2 dVS-4n80 V(R )dVS.
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Using equation (A1.17) of Appendix A1.6, we have

1

Vo= 4me,

1 1 [ Vip]
J [p1V ( R ) dv, + Ine, J R dv.. (2.101)

According to equation (1.20) of Chapter 1

1 R R
V(ﬁ) - R --R. (2.102)

The x component of V[p] is
op(t—rlc) __dlp]l J(t—-Rlc) _ [ opl(x-x)

ox ~ 9d(t — Rlc) ox ot Rc
Hence
o] R op 1R
V[p]=—[T?]E=— a_?]?' (2.103)
Substituting from equations (2.102) and (2.103) into equation (2.101) we
have
_ 1 [(lIR _[9p i%_)
Vo =- yros J( R + [ 5 ] Re dv.. (2.104)

Differentiating equation (2.30) partially with respect to time, for fixed R we
have

oA _ 1 @J[J] 1 “aJ av,
ot ~ dme o) R VT dme ) Lar I R (2.105)
Substituting from equations (2.104) and (2.105) into equation (2.17) we finally
obtain
- L [(BR [2]R ) L)
= 4neoJ ( ® Y Llordre Lorl &)Y (2.106)

This is the same as equation (1.136) of Chapter 1.
Using equations (2.18) and (2.30) we have

CVxA- Ly (B =__1__f (1)
B-VxA-4n€062Vx[Rst pr V x R dv..

Using equation (A1.23) of Appendix Al.6, we find that

1 ( 1 ) 1 [ v x [J]
B = 4neoc2JV = ) x 01 4V, + pr 7 4V (2.107)

The x component of V x [J] is

CPAREE'A
(VX WD = 5 = 52
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where [J,] amd [J,] are function of (¢ — R/c). Hence

(V x [J]), = [3{* ](at*) - [g#](at*)

-y [an ) [aJy

Rc ot Rc Aat
(2K -2, e

with similar expressions for the other components of (V x [J]). Using
equations (2.102) and (2.108) in equation (2.107) we finally obtain

B - 41;0(;2 f([% s ) xR av, (2.109)

This is the same as equation (1.134) of Chapter 1.
For the example of the oscillating electric dipole shown in Figure 2.2, [J]
is zero except at the dipole, where using equations (2.37) and (2.39) we have

[J1dV, = [1] dl = [p]

[%] dv, = [11d1 = [p].

Substituting in equation (2.109) we find that, for the oscillating electric dipole
shown in Figure 2.2,

_ 1 [p] . [p] :
B = 4neoc2(R2 + RC)xR. (2.110)

This is in agreement with equation (2.46). Having derived equation (2.109),
this is probably the quickest way of determining the expression for the magnetic
field due to the oscillating electric dipole. Once we know B, we can deter-
mine E using the Maxwell equation (2.95) in the integral form given by
equation (2.99).

2.8. Gauge transformations and the Coulomb gauge

So far in this chapter, we have only used the Lorentz gauge, in which the diver-
gence of A satisfies the Lorentz condition
1 d¢
V. A+ 37==0. 2.16
C2 at ( )
Among the advantages of the Lorentz gauge are that its choice decouples
the partial differential equations (2.14) and (2.15) for ¢ and A and leads to
the retarded potentials, which are easy to interpret and apply. Furthermore,
the equations for ¢ and A in the Lorentz gauge are Lorentz covariant, that
is they have the same mathematical form in all intertial reference frames,
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when the coordinates and time are transformed using the Lorentz transfor-
mations.

In classical electromagnetism, it is the field vectors E and B that appear
in the expression (gE + qu x B) for the Lorentz force acting on a test
charge of magnitude ¢ moving with velocity u. The potentials ¢ and A can
be modified provided the values of E and B are unchanged. For example,
consider the following transformation

A'=A+Vy (2.111)
o = ¢ — %‘—f— (2.112)

where ¥ is a scalar function of position and of time. Since according to
equation (A1.26) of Appendix Al1.6, V x Vy is zero, using equations (2.17)
and (2.18), we have

VXA ' =VXA+Vx(Vy)=VxA=B (2.111)
,  OA’ JA O
Vo - G = Vo +V(SE) - G- 5 oW
%A _
=-V¢ - aI—E.

Hence the transformation given by equations (2.111) and (2.112) leaves the
values of E and B unchanged. Such a transformation is called a gauge trans-
formation. Gauge transformations can be used to give flexibility in the choice
of V . A. One popular choice is the Coulomb gauge, in which the divergence
of the vector potential is put equal to zero.

Let the scalar potential and the vector potential in the Coulomb gauge be
denoted by ¢* and A* respectively. The discussion will again be confined to
the case when €, = 1 and pu, =1 everywhere. It will be assumed that the charge
and current distributions are given as functions of position and time. Sub-
stituting for E in the Maxwell equation V - E = p/g,, using the relation

E = -V¢* — A*
and using the result that V - V¢* = V2d*, we have
V-E=—V-(V¢*)—V.a—§i =—V2¢*—%(V-A*)=€£O.
(2.113)
It is assumed in the Coulomb gauge that
V.A*=0, (2.114)

Substituting in equation (2.113), we find that in the Coulomb gauge

V2¢* = _£ . (2.115)
€
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Comparing equation (2.115) with equation (2.14) in the Lorentz gauge, we
see that the —¢/c® term is absent from equation (2.115). Equation (2.115) is
the same as Poisson’s equation of electrostatics, which is equation (1.29) of
Chapter 1. By analogy with equation (1.26), we conclude that the solution
of equation (2.115) that gives the value of ¢* at a field point at position r at
the time of observation ¢, is

e 1 J p(r,, 1)
o*(r, 1) dme, | Ir=1) dv, (2.116)
where p(r,, #) is the charge density at the source point at r, at the time of
observation t. Equation (2.116) suggests that the scalar potential ¢* in the
Coulomb gauge is propagated from the varying charge distributions at an
infinite speed. Consequently the potential ¢* in the Coulomb gauge is often
called the instantaneous scalar potential.
Substituting B = V X A* into the Maxwell equation

VxB=u0(J+£0E)

where J is the electric current density due to the motion of free charges, and
€,E 1s the vacuum displacement current density, we have

V x (V x A*) = py(J + gE) = pu,C (2.117)
where
C=J+¢kK (2.118)

is what Maxwell called the “true current on which the electromagnetic
phenomena depend”. Using equation (A1.27) of Appendix Al.6 and putting
V . A* equal to zero we obtain

V2A* = —yC = —pg(J + gE). (2.119)

Maxwell [5] wrote the solution of equation (2.119), which is similar to
Poisson’s equation, in the form

{J@r, 1) + EOE(rS,

1)}
— dv.. (2.120)

A*(r, t) = e J

The integration in equation (2.120) is carried out over the whole of space at
the time of observation . To evaluate the integral, we must know the values
of both J(r,, 7) and eOE(rS, t) at all points of space at the time of observation
L.

Following Maxwell, equation (2.120) was interpreted in the nineteenth
century by saying that both the conduction current density J and the dis-
placement current density €,E contributed to the magnetic field, and that the
electromagnetic interaction was propagated at infinite speed from the source
to the field point. The vector potential A*, given by equation (2.120), is
sometimes called the instantaneous vector potential. In the nineteenth century,
ideas based on equations (2.116) and (2.120) fitted in with the then pre-
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vailing ideas of instantaneous action at a distance and Newtonian mechanics.
The position at the end of the nineteenth century is illustrated by the fol-
lowing quotation from Poincaré [6].

In calculating A Maxwell takes into account the currents of conduction
and those of displacement; and he supposes that the attraction takes place
according to Newton’s law i.e. instantaneously. But in calculating [the
retarded potential] on the contrary we take account only of conduction
currents and we suppose that the attraction is propagated with the velocity
of light . . . . It is a matter of indifference whether we make this hypoth-
esis [of a propagation in time] and consider only the induction due to
conduction currents, or whether like Maxwell, we retain the old law of
[instantaneous] induction and consider both conduction and the displace-
ment currents.

This quotation illustrates how the use of different gauges in the nineteenth
century lead to very different interpretations of the field equations of clas-
sical electromagnetism.

Equation (2.120) is really a little bit of an illusion. In order to evaluate
the integral in equation (2.120) to determined A*, we need to know both J
and &,E at all points of space at the time of observation ¢, when the vector
potential A* is determined at the field point. In cases of practical impor-
tance, the vacuum displacement current term €E is not given but has to be
determined from the given charge and current distributions. In order to deter-
mine E using the equation

E = -V* — A* (2.121)

we need to know both the value of ¢*, obtained by solving equation (2.116),
and the unknown vector potential A*. However, to determine A* using equation
(2.120) we would have to know E, but to determine E to determine E we would
have to know the value of A* to use in equation (2.121), but A* is what we
are trying to determine using equation (2.120). This circular argument shows
clearly that we cannot use equation (2.120) to determine A* from the charge
and current distributions. Equation (2.120) can only be used if we have already
solved the problem to determine E and hence &,E from the charge and current
distributions. When the Coulomb gauge is used nowadays, the vacuum dis-
placement current term is eliminated from equation (2.120) as follows.
Differentiating equation (2.121) partially with respect to time, we have

2. (_yge - a_Aﬂ;>=_V(a¢*)_ PA*

- ot ot or or
Eliminating EOE from equation (2.119), we obtain
oas L PA* (2°)
VA"‘—C2 37 = — UoJ + MgV i (2.122)

Equation (2.122) can be solved after we have determined ¢* using equation
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(2.116). Notice the presence of the —A*/c* term in equation (2.122). This shows
that the vector potential A* in the Coulomb gauge depends on the condi-
tions at the source point at the appropriate retarded time (# — |r —r J/c). A reader
interested in a discussion of the solution of equation (2.122) is referred to
Jackson [7]. A full analysis of the general case was given by Brill and
Goodman [8], who showed that, when the contribution of the —Vq)*. term to
the total electric field E is combined with the contribution of the —A* term,
where ¢* and A* are the solutions of equations (2.115) and (2.122) respec-
tively, the resultant electric field E depends on the values of the charge and
current densities at the appropriate retarded times and the value of E is
exactly the same as the value of E determined using the retarded potentials
in the Lorentz gauge. The effect of a change of gauge is to change the
magnitudes of the contributions of the —V¢ and —A terms in equation (2.121),
but to leave the sum of their contributions to the electric field E unchanged.
Generally, the retarded potentials in the Lorentz gauge, are simpler to use in
classical electromagnetism than the equations in the Coulomb gauge, but the
Coulomb gauge has some advantages in the quantum theory of radiation.
Reference: Heitler [9].

Instead of using the potentials ¢ and A we can introduce alternative
mathematical functions, such as the Hertz vectors. References: Stratton [10]
and Heading [11]. If we try to interpret what may happen in the space between
the source and field point using different gauges for ¢ and A, or using different
mathematical functions such as the Hertz vectors, we can end up with appar-
ently very different models of how the various contributions to the resultant
values of E and B arise. The important thing to realize is that, in the context
of classical electromagnetism all the methods give the same values for the total
electric field E and the total magnetic field B and hence for the observable
force on a moving test charge. The attitude we have tried to cultivate is that,
in the context of classical electromagnetism, there is no need in any of the
methods to say anything about what may or may not happen in the empty space
between the charge and current distributions and the field point. The choice
of which method to use to solve a particular problem is a matter of mathe-
matical convenience.
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CHAPTER 3

The electric and magnetic fields due to an accelerating
classical point charge

3.1. The Liénard-Wiechert potentials

The retarded potentials will now be used to derive the potentials ¢ and A
due to an accelerating classical point charge of magnitude q. We shall again
assume that the classical point charge is a continuous charge of finite, but
exceedingly small dimensions. Due to the finite dimensions of the classical
point charge, when we apply the retarded potentials we must allow for the
motion of its finite charge distribution, while the information collecting sphere
is crossing the classical point charge. To simplify the discussion, we shall
assume initially that the accelerating classical point charge is moving directly
towards the field point P in Figure 3.1 with a velocity [u] at its retarded
position. The information collecting sphere, that reaches the field point P in

Positions of the ‘information
collecting sphere’

t-[rVc  t-[r)Vc +[8r)/c

Continuous
char
distribut

-_.P

-
Fielas determined
at the time ¢

The ‘point charge ¢ \!
has finite dimensions

Figure 3.1. The calculation of the scalar and vector potentials (the Liénard-Wiechert
potentials) at the field point P due to an accelerating classical point charge ¢ moving with
non-uniform velocity. In Figure 3.1, [u] is parallel to [r]. It is assumed that the classical point
charge g has finite dimensions and is made up from a continuous charge distribution.

90
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Figure 3.1 at the time of observation ¢, is at a distance [r] from the field
point at the retarded time #* = (¢ — r/c). Consider the element of area 85 of
the information collecting sphere, that is crossing the continuous charge dis-
tribution shown in Figure 3.1. Let the surface area 85 be at the position CBB'C’
at the time (¢ — r/c) as shown in Figure 3.1. Let 8§ be at the position EFF'E’
at a time o6t = 8r/c later, where dr is equal to the distance from C to E in
Figure 3.1. The volume element 8V, swept out by the area dS in the time
interval &t is given by

dV, = (dS)(or).

The information collecting sphere will record a charge density [p] in this
volume element &V, where [p] is the charge per unit volume measured at the
fixed time (¢ — r/c). Since the charge distribution is moving directly towards
the field point P in Figure 3.1, the amount of charge actually passed by the
element of area 8§ of the information collecting sphere in a time &¢ is less
than [p] 8V.. In the time the information collecting sphere takes to move
from CBB’C’ to EFF’E’. in Figure 3.1, charge on the surface RQQ’R’ moves
to EFF’E’. Hence the total quantity of charge, denoted 8¢, actually passed
by the element of area dS of the information collecting sphere inside 8V, is
equal to the charge, that at the time (¢ — r/c) was inside the volume between
CBB’C’ and RQQ’R’ in Figure 3.1. Since the distance from R to E is equal
to [u)dt = [u)dr/c, the distance from C to R is equal to 8r — [u]dr/c =
or[1 — u/c]. Hence the volume between CBB’C’ and RQQ’R’ is equal to
BS)(@NI[1 — u/c] = dV,[1 — w/c]. Since the charge density at the time (¢ — r/c)
is [p], the total quantity of charge dq passed by the area dS of the informa-
tion collecting sphere inside 8V, is

8q = [p] [ 1- -‘Ci] V.. (3.1)

In general, the direction of the velocity [u] of the classical point charge at
its retarded position is not directly towards the field point P in Figure 3.1.
In the general case, [#] must be replaced in equation (3.1) by the component
of [u] in the direction of the field point, which can be expressed in the form
[u - r/r], where r is a vector from the position of the volume element 8V, to
the field point. Hence in the general case, equation (3.1) becomes

u-r
g = [o3ov, [ 1- LI,
Rearranging, we have

dq

PV = T -

(3.2)

Substituting in equation (2.29), we obtain

q,___l__JLg]_dVS__I__J dg___ (33)

Cdme, | r "~ 4me, | [r—r - u/c]
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It will now be assumed that the dimensions of the charge distribution are
exceedingly small, so that it corresponds to our model of a classical point
charge. The variation of r in equation (3.3) over the dimensions of the
classical point charge can then be neglected, so that equation (3.3) can be
rewritten in the form

1
¢ = 41t£0[r—r-u/c]qu

where [r] is a vector from the retarded position of the classical point charge
to the field point. The integral j dq is the total quantity of charge passed by
the information collecting sphere, which is equal to the total charge g of the
classical point charge. Hence

_ q __q
= Aneylr —u - r/ic]  4meys (3.4)

where

s= [r- 2] (3.5)

For the continuous charge distribution shown in Figure 3.1, the current density
[J] at the retarded time (¢ — r/c) is equal to [pu]. Using equation (3.2), we
have

_ _ udq ]

ey, = puis¥, = [ =]

Substituting in equation (2.30) and proceeding as for the determination of
the scalar potential ¢ we find that the vector potential A due to the acceler-
ating classical point charge is

_ uo[ qu _ boglu]
A_41t r—u-ricl  ~4ms (3.6)

Equations (3.4) and (3.6) are known as the Liénard-Wiechert potentials. They
are valid in the Lorentz gauge. All the quantities inside the square brackets
are measured at the retarded position of the charge at the appropriate retarded
time. Alternative mathematical derivations of equations (3.4) and (3.6) are
given by Jackson [1] and Hauser [2].

3.2. The formulae for the electric and magnetic fields due to an
accelerating classical point charge

The expressions for the electric and magnetic fields due to an accelerating
classical point charge will now be derived from the Liénard-Wiechert poten-
tials. Consider the accelerating classical point charge shown in Figure 3.2. The
expressions for the fields E and B will be determined at the field point P at
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(x5 2,t)
Field
point
[rl
sent position
R at time ¢
----- X
9 |
} Projected position,
that is the position
gg;?{ i%%d g would have had if
at t-[r]/ [u] were constant

Figure 3.2. The retarded, present and projected positions of an accelerating classical point charge.

the position (x, y, z) a the time of observation ¢. The accelerating charge q is
at the retarded position R at (x*, y*, z*) in Figure 3.2 at the retarded time
t* = (t — [r)/c). As in Section 3.1 we are again assuming that [r] is a vector
from the retarded position R of the charge to the field point P in Figure 3.2.
We shall assume that the velocity [u] and the acceleration [a] of the charge
at its retarded position R at the retarded time t* are known. The Liénard-
Wiechert potentials are given by equations (3.4) and (3.6) and are

oo 4. o ol _ _alul_
"~ 4meys T 4ms T 4dmecls

where according to equation (3.5)

r-u
s=|r- 222 (3.5)
The expressions for E and B can be determined using the relations
oA
E=-V¢ - 5 (3.7)
B=VXxA (3.8)
where in cartesian coordinates
~d 2 0

2 d
V"ax”ay“‘az (3.9)
and where ; j and k are unit vectors in the directions of increasing x, y and
z respectively. The partial differential coefficients in equations (3.7) and (3.8)
are with respect to changes in the coordinates (x, y, z) of the field point P at
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the fixed time of observation ¢. However, the velocity [u] in the Liénard-
Wiechert potentials is given in terms of the coordinates (x*, y*, z*) of the
retarded position of the charge at the retarded time #* = (¢ — [r]/c). This
makes the calculation of E and B in terms of [r], [u] and [a] both long and
tedious. The full calculation is given in Appendix C, where it is shown that
the electric field E can be expressed in the form:

E = EV + EA (3.10)
where according to equations (C.33) of Appendix C
-4 [ _rn [ _ _zf_]
E, Imes r- — 1 2 (3.11)
and according to equation (C.34) of Appendix C
9 __ [ _ L‘_‘_] }
E, pror [r] x { r-—| x [a] (3.12)
where according to equation (3.5)
r-u
s—[r— p ] (3.5)
The magnetic field B can be expressed in the form:
B=B,+B, (3.13)
where according to equations (C.41), (C.42) and (C.43)
glu] x [r] u? 1
= e u_ 14
By 4mte s’ [1 - c2] G19
- e [0(522) -]
B, Ime, 05 [r] X | —u - sa (3.15)
- g [ < {mx (e 2 xm)}
yrspcrl = X qa[rl x{|r p X [a] )¢ . (3.16)

The quantities ¢, [u] and [a] are the values of the charge, velocity and accel-
eration of the classical point charge at its retarded position R in Figure 3.2,
[r] is a vector from the retarded position R of the charge to the field point
P, and s is given by equation (3.5).

It can be seen from equations (3.11), (3.12), (3.14) and (3.16) that

_[rI xE
B = el

According to equation (3.17), the resultant magnetic field B is perpendicular
to both the resultant electric field E and the vector [r] from the retarded position
R of the charge to the field point P in Figure 3.2.

The Liénard-Wiechert potentials and equations (3.10) and (3.13), which give
the electric and magnetic fields due to an accelerating classical point charge,

(3.17)
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are the summit of our development of classical electromagnetism at the
atomistic level. These results will be used in later chapters to interpret macro-
scopic classical electromagnetism in terms of the electric and magnetic fields
due to moving and accelerating classical point charges.

3.3. The electric and magnetic fields due to a classical point charge
moving with uniform velocity

Before going on to discuss the general case of an accelerating classical point
charge, we shall consider first the special case of a classical point charge of
magnitude g, that is moving with uniform velocity u as shown in Figure 3.3.
We shall also assume that the charge g has always been moving with the
same uniform velocity u throughout its past history. Since the acceleration
[a] of the charge at its retarded position R in Figure 3.3 in zero, the expres-
sion for the total electric field E, given by equation (3.10), reduces to

[r_ _”;—‘] [1- B (3.18)

4me,ys®

where B = u/c. In the time interval [r]/c it takes the information collecting
sphere to go from R, the retarded position of the charge in Figure 3.3, to the
field point P, the charge ¢ moves a distance [u][r/c] = [ur/c] at uniform velocity
u to reach O, the position of the charge g at the time of observation ¢, when

P(x52)t)

Field
point

i |
Retarded Present
position position
at t-[r]/c attimet

Figure 3.3. Geometric relations between the retarded position R, the projected position O and
the field point P for a classical point charge moving with uniform velocity.
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the fields are determined at the field point P. The position of the charge g at
the time of observation ¢ will be called the present position of the charge.
Let r, be a vector from O, the present position of the charge, to the field
point P in Figure 3.3. In the triangle RPO in Figure 3.3, the lengths of the sides
RP, OP and RO are [r], r, and [ur/c] respectively. It follows from the law
of vector addition that

ur ru

r,=[r] - [T] = [r— ?] . (3.19)
Draw a perpendicular OS to the line RP in Figure 3.3. Let ¢ be the angle
between the lines RP and RO in Figure 3.3. The distance from R to §
in Figure 3.3. is equal to [ur/c] cos ¢, which can be written in the form
[u - r/c]. Hence the distance from S to P in Figure 3.3 is given by

[r] - [“'r]=[r_“"']=s. (3.20)

c c

where s is defined by equation (3.5). In the triangle OSP in Figure 3.3, since
s is equal to the distance from S to P and a is the angle between the lines
RP and OP, we have

s =1, cos o = ry(l — sin? a)"2. (3.21)

Applying the standard trigonmetrical result that A/sin a = B/sin b to the triangle
ROP in Figure 3.3, we have

r _ [BIr (3.22)

sin(m-0)  sina

where 0 is the angle between r, and u, as shown in Figure 3.3. Equation
(3.22) gives

sin o = [B] sin . (3.23)

Substituting for sin a from equation (3.23) into equation (3.21), we find
that

s = ry(1 — B? sin® 0)"2, (3.24)

Substituting for [r — ru/c] using equation (3.19) and for s using equation (3.24)
into equation (3.18), we find that the total electric field E, due to the charge
q in Figure 3.3, that has always been moving with uniform velocity u, is
given by

= qu(l — B2) 3.25

dneyrd(1 — B? sin? 9)*? (3.25)

where r, is a vector from O, the present position of the charge ¢ at the time
of observation ¢, to the field point P in Figure 3.3 and 0 is the angle between

u and r,.
When [a] is zero, the B, term in equation (3.13) is zero and equation
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(3.13) for the total magnetic field due to a classical point charge moving
with uniform velocity u reduces to

_n _ glu]l x[r]1d - B
B=B,= yrpc (3.26)

Since [u] % [u] is zero the [u X r] term can be rewritten in form

[u] X [r] = [u] X [r— Ig— =Uu XTr, (3.27)

where r, is given by equation (3.19). Substituting in equation (3.26) and
using equation (3.24) to substitute for s, we finally obtain

_ qu x ry(1 - B* 3.28

dre,ri(l — B2 sin® 0) (3.28)

where u is the uniform velocity of the classical point charge. Notice that in

the special case of a classical point charge moving with uniform velocity u
ux E

B-—7. (3.29)

When u, the uniform velocity of the classical point charge in Figure 3.3, is
zero, that is when B = 0, equation (3.25) reduces to

__ 4

 4meyr? (3.30)
in agreement with Coulomb’s law. When u = 0, the electric field E is the
same in all directions, as illustrated in Figure 3.4(a). The number of lines of
E is limited in both Figures 3.4(a) and 3.4(b), such that the number of lines
of E per square metre perpendicular to E is equal to (or proportional to)
the magnitude of E. This gives a visual picture of both the strength and
direction of E. The lines of E are closest together where the magnitude of
the electric field is greatest.

According to equation (3.25), provided the velocity u of a positive charge
has been constant in the past, the electric field lines diverge radially from
the present position of the charge, that is from the position of the positive
charge at the time of observation, when E is determined at the field point. This
is illustrated in Figure 3.4(b). According to equation (3.25), the magnitude
of the electric field E is still proportional to 1/r3, but unlike the electrostatic
case given by equation (3.30) the magnitude of the electric field E is not the
same in all directions when the charge is moving with uniform velocity, though
E is still symmetric about ® = ®/2, where 0 is the angle between u and r,,
When 0 = 0 or 0 = &, equation (3.25) reduces to

_q(1-PBY»
E= ok (3.31)

Thus the electric field E is reduced in the direction of u, the direction of motion
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u=0

b

u~ 09¢
(a) (b)

Figure 3.4. (a) The electric field of a stationary positive charge is spherically symmetric. (b)
If the charge is moving with uniform velocity, the electric field diverges radially from the present
position of the charge. The electric field is increased in the direction perpendicular to u, but
decreased in the directions parallel to and antiparallel to u.

of the charge, and in the direction opposite to u to (1 — B?) times the electro-
static value given by equation (3.30). When 0 = n/2, equation (3.25) reduces
to

q

Arera(l — BH? (3.32)
According to equation (3.32), the electric field E is increased in the direc-
tion perpendicular to u to 1/(1 — B%)"? times the electrostatic value given by
equation (3.30). It will be confirmed in Section 4.2 of Chapter 4, that the
total flux of the electric field E from a classical point charge of magnitude ¢
that is moving with uniform velocity u, is always equal to g/€,, so that the total
number of electric field lines is the same as in the electrostatic case.

As a typical example, the electric field due to a positive point charge,
moving with uniform velocity u = 0.9c¢, is sketched in Figure 3.4(b). The
diagram illustrates how, though the total number of lines of E is the same as
in the electrostatic case, the lines of E are bunched towards the direction
perpendicular to u, the uniform velocity of the charge. For B = 0.9, the
electric field for 8 = 0 is 0.19 times the electrostatic value and for 8 = ©/2 it
is 2.3 times the electrostatic value. For B = 0.99, the corresponding ratios
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are 0.02 and 7.1 respectively. In the extreme relativistic case, when u tends
to ¢, nearly all the lines of E are almost perpendicular to u.

According to equation (3.29), for a classical point charge ¢ moving with
uniform velocity u, the magnetic field lines are perpendicular to both u and
the lines of E, which diverge radially from the present position of the charge.
Thus the lines of B are closed circles in the plane perpendicular to the direc-
tion of motion of the charge. These circles are concentric with the direction
of u. The lines of B in two planes are sketched in Figure 3.5. The magni-
tude of B decreases as 1/r;. For a given value of r,, the magnitude of B is
the same for 6 = o and 8 = (n — ) and, according to equation (3.29), the
sense of rotation of the lines of B around the direction of u is the same in
both cases. For a positive charge, the direction of B is the direction a right-
handed corkscrew would have to be rotated, if the corkscrew is to advance
in the direction of u, the velocity of the charge.

When u < ¢, B < 1, equations (3.25) and (3.28) reduce to

qry
47'C€0r8 (3.33)
_ quXxr,
drectry (3-34)

- - >

-~
~ e e .

Figure 3.5. The magnetic field lines of a charge moving with uniform velocity are circles
concentric with the direction of u. The direction of B is given by the right-handed corkscrew
rule. The field is in the same direction for values of 8 = & and 8 = T — @, where 0 is the angle
between r, and u.
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Equation (3.33) is similar to Coulomb’s law, but in the case of a charge moving
with a uniform velocity # <€ c, r, must be measured from the present position
of the moving charge, which is the position of the charge at the time of
observation. This position changes with time due to the motion of the charge.
Because of its similarity to equation (1.64) of Chapter 1, the expression given
by equation (3.34) is sometimes called the Biot-Savart approximation for the
magnetic field due to a classical point charge that is moving with a uniform
velocity u < c.

Substituting for s from equation (3.24) into the Liénard-Wiechert potentials,
namely equations (3.4) and (3.6), we find that the potentials ¢ and A due to
a classical point charge ¢ that is and always has been moving with uniform
velocity u are

_ q
¢= drer(1 — B2 sin? 0)12 (3.33)

= Hoqu
A= 4nr,(1 — B? sin? 9)12 (3.36)

where r, is the distance from the present position of the charge to the
field point at the time of observation and 0 is the angle between u and r,.
It is left as an exercise for the reader to show that application of the equa-
tions

9A
ot ’
leads to equations (3.25) and (3.28). (Hint: Use the equation (4.24) of Chapter

4 to replace d/0t by —u - V in the case of a charge moving with uniform
velocity).

3.4. Discussion of the electric and magnetic fields due to an
accelerating classical point charge

3.4.1. Introduction

Consider again the accelerating classical point charge g, shown previously
in Figure 3.2 and again in Figure 3.6. The fields E and B are determined at
the field point P at the time of observation ¢. The accelerating charge is at
the appropriate retarded position R, at a distance [r] from the field point P
at the retarded time * = (¢t — [r]/c). Draw a sphere of radius [r], with its
centre at the retarded position R, as shown in Figure 3.6. The point R is the
appropriate retarded position for all field points on the surface of the sphere
of radius [r] at the time of observation ¢.
According to equation (3.10)

E=E, +E,
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Figure 3.6. A sketch of an electric field line of a classical point charge, that is accelerating in
its direction of motion. The electric field line starts from N, the position of the charge, and curves
to pass through P and P*,

where according to equation (3.11)

sl 22
E, 4n80s3[r c]l = |- (3.37)

It was shown in Section 3.3 that equation (3.37) leads to equation (3.25) for
the electric field due to a charge moving with uniform velocity [u]. If the
accelerating charge ¢ were moving with uniform velocity [u] it would travel
a distance [ur/c] to reach the point S in the time [r]/c it would take light to
go from the retarded position R to the field point P in Figure 3.6. The point
S will be called the projected position of the charge, which is the position
the accelerating charge would have reached, if it had carried on with uniform
velocity [u]. Since [«] is always less than c, the projected position S is always
inside the sphere of radius [r] in Figure 3.6. Since equation (3.37) leads to
equation (3.25), we conclude that the value of E, at all points on the surface
of the sphere of radius [r] in Figure 3.6 at the time of observation ¢ is given
by the equation

_ gro(1 - Bz)
E, = dne,r3(1 — B? sin® 9)*2 (3.38)
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where r, is measured from the projected position § of the charge g and 0 is
the angle between [u] and r, in Figure 3.6. The contribution of E, to the
total electric field at every point on the sphere of radius [r] in Figure 3.6, at
the time of observation ¢, is in the direction radially outwards from S, the
projected position of the charge. The magnitude of E, is proportional to 1/rZ,
where r, is the distance from the projected position § to the field point P.
The magnitude of E, also depends on 0, the angle between [u] and r,,

According to equation (3.12), the acceleration dependent contribution E,
to the total electric field E at the field point P in Figure 3.6 at the time of
observation ¢ is given by

By = gz (1% [(r- 22) xa]. (3:39)
Since the direction of the vector product of two vectors is perpendicular to
the plane containing the two vectors, it follows from equation (3.39) that E,
is always perpendicular to the vector [r] from R, the retarded position of the
charge, to the field point P which is on the surface of the sphere of radius
[r] in Figure 3.6. The direction of E,, at the time of observation ¢, is there-
fore trangential to the sphere of radius [r] in Figure 3.6, but in the general
case E, is not necessarily in the plane of the paper. To simply the discus-
sion, we shall consider the special case when the acceleration [a] is uniform
and when [u] and [a] are always in the same direction, so that the charge ¢
moves in a straight line in Figure 3.6. In this special case [u X a] is zero,
and equation (3.39) reduces to

q
4rec

A= P [r] x [r x a]. (3.40)
Consider the field point P in Figure 3.6. Since the direction of [r X a]
is downwards into the paper in Figure 3.6, the direction of the vector
[r] X [r x a] is in the plane of the paper in Figure 3.6 in a direction perpen-
dicular to the line jointing R and P, which is in the direction of the tangent
to the circle of radius [r] at the field point P. The resultant electric field E
is the vector sum of E, and E,, as shown in Figure 3.6. We are assuming in
Figure 3.6 that E, and E, have same magnitudes at the field point P. The vector
E gives the direction of the resultant electric field line passing through the field
point P in Figure 3.6.

We shall now discuss the shape of the electric field line that goes through
the field point P in Figure 3.6. If the accelerating charge g is at the position
N at the time of observation ¢, then the electric field line must start from N.
Near the accelerating charge the E, term predominates, and so the electric field
line starts radially outwards from N. It then curves to the left to pass through
the field point P in Figure 3.6 in the direction of the electric field at P. Now
consider another field point P*, which is further from the accelerating charge
than P. The retarded position of the charge corresponding to the measure-
ment of the total electric field at P* at the same time of observation ¢, is R*,
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as shown in Figure 3.6. When the acceleration [a] is positive, the velocity
of the charge is less at the retarded position R* than at the retarded position
R so that $*, the projected position of the charge corresponding to the retarded
position R* is to the left of S, as shown in Figure 3.6. The direction of the
contribution of the E, term at the new field point P* is radially outwards
from the appropriate projected position $*, as shown in Figure 3.6. The direc-
tion of the contribution of the E, term at the field point P* is perpendicular
to the line jointing R* to P*, as shown in Figure 3.6. Since the directions of
both the E, and E, contributions to the electric field are different at P and
P*, the changes in both E, and E, contribute to the curvature of the electric
field line when the charge is accelerating. The magnitudes of both E, and
E, are less at P* than at P, but the acceleration dependent term E, decreases
less rapidly with increasing distance from the accelerating charge than the
E, term and at large distances from the charge the E, term predominates, in
which case the electric field line is almost perpendicular to the vector from
the appropriate retarded position to the field point. We shall consider a typical
example in detail in Section 3.4.2. If the charge q were decelerating the electric
field line starting from N would be curved in the opposite direction.

According to equation (3.29), the magnetic field B due to the accelerating
charge is given, at the field point P in Figure 3.6 at the time of observation
t, by

_ [r] X E
— re]

The total magnetic field B at the field point P in Figure 3.5 is perpendicular
to [r] and is therefore tangential to the surface of the sphere of radius [r] in
a direction perpendicular to the total electric field E. In the special case when
[a] and [u] are in the same direction, the electric field E is in the plane of the
paper in Figure 3.6. Hence in this special case B, which is in the direction
of [r] X E, is vertically upwards from the paper in Figure 3.6. When [a] and
[u] have always been in the same direction, there is rotational symmetry around
the direction of [u] and in this special case the lines of B, at the time of
observation ¢, are closed circles with centres on the line of motion of the charge.

In the case of a negative charge, the directions of both E and B are reversed.

(3.41)

3.4.2. Example of the electric field due to an accelerating charge

An example of a computer computation of the electric field due to an accel-
erating classical point charge is given in Figure 3.7. Reference: Hamilton
and Schwartz [3]. The electric field lines in Figure 3.7 represent the magni-
tude and direction of the electric field at one instant of time. Different field
points correspond to different retarded positions of the charge. In the example
shown in Figure 3.7, a positive charge that has been moving from left to
right with a uniform velocity of 0.9¢ in Figure 3.7 is brought to rest with
uniform deceleration and then remains at rest. In the vicinity of the stationary
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Figure 3.7. A classical point charge, which is moving with a velocity of 0.9¢, is brought to
rest with uniform deceleration. (References: Hamilton and Schwartz [3]. Reproduced by the
permission of the American Journal of Physics.)

charge in Figure 3.7, the electric field lines diverge isotropically from the
charge and the electric field in this region is given by Coulomb’s law. Moving
outwards along an electric field line, we reach a kink in the electric field
line corresponding to the time when the charge was finally brought to rest
and the deceleration stopped. Next, moving outwards along the electric field
line we come to a curved section of field line, which has a large non-radial
component, and which is associated with the period when the charge was decel-
erating at its retarded positions and when both E, and E, contributed to the
electric field. Continuing to move outwards along a field line we reach a second
kink corresponding to the time when the charge started decelerating at its
retarded position. Beyond this kink the charge was moving with a uniform
velocity of 0.9c at its retarded positions. In this region the E, term is zero
and the electric field E is given by the E, term. Since in this region all the
projected positions coincide with the position that the charge would have
reached if it had carried on with uniform velocity 0.9c¢, the electric field lines
in this region diverge radially from the position the charge would have reached,
if it had carried on with uniform velocity 0.9c, as shown in Figure 3.7. The
electric field lines in this region are bunched towards a direction perpendic-
ular to the direction of the initial velocity of the charge. In this region, the
electric field lines are the same as the appropriate section of the electric field
lines due to a charge that is and always has been moving with uniform velocity
as shown previously in Figure 3.4(b).
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Figure 3.8. The directions of the acceleration dependent contributions E, and B, to the total
electric and magnetic fields at the field point P due to the charge ¢ which is moving with a
velocity <€ ¢ and which is accelerating in its direction of motion.

3.4.3. Discussion of the radiation fields due to an accelerating charge

Assume that the accelerating charge is at the origin of the spherical polar
coordinate system shown in Figure 3.8. The polar angle 0 is measured
from the direction of the acceleration of the charge. Let T, 0 and ¢ be unit
vectors in the directions of i 1ncreas1ng r, 6 and ¢ at the field point P that is
at the position r. Since d) £ x 0, it is probably easiest for the reader to
determine the direction of the unit vector d) at the field point P from the
direction T X 0. In the zero- -velocity limit the expressions for E, and B,, given
by equations (3.12) and (3.15) respectively, reduce to

ga sin O »
E :
E0 4mte,cr (3.42)
2 a sin 0 1
B, = B,d = "1 (3.43)
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Strictly r is the distance from the retarded position of the charge to the field
point, but in the zero-velocity limit the change in the position of the charge
in the time [r)/c it takes the radiation field to reach the field point P is very
small and, to a good approximation, we can assume that r is the distance
from the charge to the field point at the time of observation. The angle 6 in
equations (3.42) and (3.43) is the angle between r and the acceleration a of
the charge. According to equations (3.42) and (3.43), E, = ¢B, and E, and
B, are proportional to 1/r, whereas E, and B, are both proportional to 1/7%.
Hence the radiation fields E, and B, predominate at large distances from the
charge. According to classical electromagnetism, the rate at which electro-
magnetic energy is crossing an area of 1 m? perpendicular to the direction
of energy flow at the field point P in Figure 3.8 is given by the Poynting vector
N = E x B/u,. Using equations (3.42) and (3.43) we find that at very large
distances from the accelerating charge, where E, and B, can be neglected, in
the limit when B < 1 we have
E,xB, ¢dsin’0 .

N=— = Towecr =

(3.44)

The Poynting vector is proportional to 1/72. Equation (3.44) gives the angular
distribution of the radiation emitted, which in the zero velocity limit is sym-
metrical about 8 = /2, which is the direction perpendicular to a. The total
rate of emission of electromagnetic radiation by an accelerating charge in
the zero-velocity limit can be obtained by integrating equation (3.44) over
the surface of the sphere of radius r, to give

_aw q’a’
dt — 6me,

(3.45)

Equation (3.44) and (3.45) must be modified when the charge is moving at
a high velocity [u]. We shall consider again the special case when [a] is parallel
to [u]. According to equations (3.40) and (3.41),

q[r*] [a] sin O

Es = e (3.46)
_ g[”1[a] sin © »
Bm e (.47

where [r] is now a vector from the retarded position of the charge to the
field point and O is the angle between [r] and both [u] and [a]. The differ-
ence between equations (3.46) and (3.47) on the one hand and equations (3.42)
and (3.43) on the other is the change of 1/r into r*/s® in equations (3.46) and
(3.47).

According to equation (3.5),

s = [r— r'C“] = [71[1 - B cos 0] [3.48]
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where [B] = [u)/c and 0 is the angle between [u] and [r]. The effect of replacing
1/r by /s’ is to increase the value of E, in the forward direction, when
0 < /2 and to decrease E, in the backward direction, when 0 > m/2. The
Poynting vector N at large distances from the accelerating charge is

E xB _ ¢’[r'][d] sin’ O

N= Ho 16m%g,cs°

[F]. (3.49)

The effect of the s° = [r(1 — B cos 6)]° term in the denominator of equation
(3.49) is to increase the amount of radiation emitted in the forward direction
where 0 < /2 and to decrease the amount of radiation emitted in the backward
direction where 0 > 1/2 compared with the zero velocity case given by equation
(3.44). In the zero-velocity limit s tends to r and equation (3.49) reduces to
equation (3.44).

The case when the acceleration [a] of a charge at its retarded position
is perpendicular to its velocity [u] at its retarded position is another very
important example, as it gives the rate of emission of synchrotron radiation
by a charge moving in a magnetic field. A reader interested in a full discus-
sion of the classical theory of the emission of radiation by an accelerating
charge, is referred to text books on classical electromagnetism such as Panofsky
and Phillips [4], Jackson [1] and Laud [5].
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CHAPTER 4

Development of Maxwell’s equations from the
expressions for the electric and magnetic fields
due to a moving classical point charge

4.1. Introduction

Before going on in later chapters to illustrate how individual macroscopic
electromagnetic phenomena can be interpreted directly in terms of the electric
and magnetic fields due to moving and accelerating classical point charges, we
shall in this chapter develop Maxwell’s equations from the expressions for
the electric and magnetic field due to an accelerating classical point charge.
Since we used Maxwell’s equations to develop the differential equations for
¢ and A which were then used in Chapter 2 to derive the Liénard-Wiechert
potentials and which were then used in turn in Chapter 3 to derive the fields
E and B due to an accelerating charge, given by equations (3.10) and (3.13)
respectively, it is only to be expected that these fields E and B due to an
accelerating charge obey Maxwell’s equations. However, by going in the
reverse direction and starting with the fields E and B due to an accelerating
charge and deriving Maxwell’s equations as relations between these fields,
we shall be able to interpret the origins and roles of the various terms in
each of Maxwell’s equations. We shall confine our discussions in this chapter
to the special case where €, = 1 and n, = 1 everywhere. We shall go on to
discuss the general case when €, > 1 and p, > 1 in Chapter 9.

To simplify the mathematics we shall confine most of our discussions to the
simpler case of a classical point charge that is and always has been moving
with uniform velocity, in which case the acceleration dependent contribu-
tions E, and B, to the electric and magnetic fields are zero and the total
fields E and B are given by equations (3.25) and (3.28) of Chapter 3 respec-
tively.

Consider an isolated classical point charge of magnitude g, that is and always
has been moving with uniform velocity u along the x axis in Figure 4.1. The
charge q is at the origin O at the time of observation ¢, when the fields are
determined at the field point P. We shall use the spherical polar coordinate
system, shown in Figure 4.1. The radial coordinate r is the distance from
the origin O to the field point P. In the coordinate system used in Figure 4.1
the polar 0 is the angle between the x axis (which is the direction of u) and

108
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E

Figure 4.1. The charge g, which is moving with uniform velocity u along the x axis, is at the
origin at the time ¢ = 0. The stationary circular disk shaped surface § is perpendicular to the
x axis, with its centre on the x axis. In the spherical polar coordinate system shown, the polar
angle O is the angle between u and the position vector r of the field point P and is measured
from the x axis. The unit vectors r and O at the field point P are shown. The unit vector ¢ 1s
in the direction of T x ©, which, with the choice of polar angle is in the directions upwards
from the paper.

the vector r from the origin O to the field point P. The azimuthal angle ¢ is
measured from the y axis in the yz plane in the direction towards the z axis.
The unit vector £, 6 and ¢ at the field point P at (r, 0 and ¢) are in the
directions of increasing r, 8 and ¢ in Figure 4.1. The determination of the direc-
tions of T, and  is straightforward. Since d) T x @ it is probably easiest
for the reader to determine the direction of the unit vector ¢ at the field
point P from the direction of T x 0.

Putting r, = r in equation (3.25) and with B = w/c, we find that when the
charge g is at the origin O in Figure 4.1, the electric field E at the field point
P at (r, 0, ¢) is given by

E=Ef +E® +Ed (4.1)

where the components E,, Ey and E, are given by

q(1 - BY , .
"7 el —Bzﬁsinz g7 =0 E=0. (4.2)
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The electric field lines emanate radially from the present position of a charge
moving with uniform velocity, that is from the position of the charge at the
time of observation ¢ when the fields E and B are determined at the field
point P, as shown in Figure 3.4(b) of Chapter 3.

According to equation (3.28) the magnetic field B at the field point P at
(r, 0, ¢) in Figure 4.1, at the time of observation ¢, is given by

B = B,f + By + B,b (4.3)
where the components B,, By and B, are given by

qu(l — B*) sin 0
dme,c’r’(1 — B2 sin? 6)*?
The magnetic field lines, due to a classical point charge moving with uniform

velocity, are closed circles concentric with the direction of motion of the
charge, as shown in Figure 3.5 of Chapter 3.

B,=0; By=0; B,= (4.4)

4.2. The equation V . E = p/e,

Consider the isolated, classical point charge of magnitude ¢, that is and has
always been moving with uniform velocity u along the x axis in Figure 4.1.
The charge is at the origin O at the time of observation ¢. According to equation
(A1.40) of Appendix A1.10 the divergence of E is given in spherical polar
coordinates by

1 o

10 1 9 1 ©OE
V.E=r28r(rlE,)+ o

7 sin 6 9 (Lo sin ) + rsin ® o

According to equation (4.2), when the charge ¢ is at the origin in Figure 4.1,
Ey =0, E, =0 and E, is proportional to 1/r%. Substituting in equation (4.5),
we find that

V.E=0. (4.6)

Equation (4.6) shows that the divergence of the electric field E due to a
charge moving with uniform velocity is zero at any field point in empty
space. Integrating equation (4.6) over a finite volume, that does not enclose
the moving charge and then applying Gauss’ theorem of vector analysis, which
is equation (A1.30) of Appendix Al.7, we have

. (4.5)

JV»EdV=JE~dS=O. 4.7)

We shall now assume that the moving charge ¢, which is moving with uniform
velocity u, is inside the Gaussian surface shown in Figure 4.2. We shall choose
O, the position of the moving charge at the time of observation ¢, as the
origin of the same spherical polar coordinate system as shown in Figure 4.1.
Consider an element of area dS at a field point P at (r, 6, ¢) on the arbitrary
Gaussian surface, as shown in Figure 4.2. Since, according to equations (4.2),
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Figure 4.2. Calculation of the total electric flux from a classical point charge moving with
uniform velocity u.

E, = 0 and E, = 0, the electric flux d¥ through dS at the time of observa-
tion ¢ is

d¥ =E . dS =E, dS, (4.8)

where dS, is the component of the element of area dS in the direction of
increasing r. The magnitude of dS, is equal to the area of the projection of
the element of surface area dS on to a sphere of radius r, with centre at O.
Consider an element of area of part of the sphere of radius r which has
dimensions r dO by r sin 8 d¢ and is of area r* sin 6 dO d¢. Substituting for
E_ from equations (4.2) into equation (4.8), we find that

1-p° .

A = £, d5, = 5o (‘{(_ BzBsi)nz Gy 1 sin © d0 do (4.9)
After cancelling r*, we find that the expression for d¥ is independent of r.
Similar expressions for d¥, which are all independent of r, are obtained for
all the elements of area of the arbitrary Gaussian surface in Figure 4.2. To
integrate d¥ over the arbitrary Gaussian surface in Figure 4.2, we can inte-
grate equation (4.9) first with respect to ¢ from ¢ = 0 to ¢ = 2x, and then
integrate with respect to 6 from 6 = 0 to 6 = ©. Since f d¢ = 2n integrating
first over ¢ and then over 6 we obtain

_q(1-B) J" sin O dO
v= 2¢, o (1 — B?sin® B)** - (4.10)
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Rewriting (1 — B* sin? 0) as [(1 — B*) + B* cos® 8] and making substitutions
w =B cos 0, dw = —B sin 0 d0 and (1 — B = &’, the integral I in equation
(4.10) can be rewritten in the form

[ J sin 0 do _ J dw
- ((12 + BZ COSZ 0)3/2 == B(aZ + W2)3/2
_ w _ B cos 6
- = BaZ(aZ + W2)1/2 = B(l _ BZ)(I _ B2 SinZ 0)1/2 .

Substituting for the integral in equation (4.10), we finally find that

_ e 4 cos 0 ]9"‘ q
p J E-ds = [ o .

N> (4.11)
According to equation (4.11), the total electric flux ¥ = f E . dS from a clas-
sical point charge moving with uniform velocity is the same as the total electric
flux from a stationary charge of the same magnitude, even though in the
case of the moving charge the magnitude of the electric field E varies with
direction. Equations (4.11) and (4.7) are also valid for the electric fields of
accelerating charges, illustrating how Gauss’ flux law is valid for moving
and accelerating classical point charges.

It was shown in Section 1.2.5 of Chapter 1 that, if the number of electric
field lines per square metre is equal to the magnitude E of the electric field,
then E - dS is equal to the number of electric field lines crossing the element
of area dS of the Gaussian surface shown in Figure 4.2. It follows from
equation (4.11), that in the case of the charge moving with uniform velocity
inside the Gaussian surface in Figure 4.2, the total number of electric field
lines crossing the Gaussian surface in an outward direction is equal to g/€,.
Since this is true whatever the shape and dimensions of the Gaussian surface,
it follows that there are g/g, electric field lines from a classical point charge
moving with uniform velocity and and these electric field lines carry on radially
outwards from the position of the charge to infinity as shown in Figure 4.3(a).
If the moving charge g is outside the Gaussian surface as shown in Figure
4.3(b), then as many electric field lines enter the Gaussian surface as leave
it, in agreement with equation (4.7). The same results, leading up to equa-
tions (4.11) and (4.7) are true for the electric field lines due to an accelerating
classical point charge, though in the case of an accelerating classical point
charge the electric field lines are curved corresponding to periods when the
charge was accelerating at its retarded position.

We shall now consider a field point inside a moving, continuous, macro-
scopic charge distribution of the type shown previously in Figure 1.8 of
Chapter 1. Equations (4.11) and (4.7) have the same mathematical forms as
equations (1.13) and (1.14). Hence we can use the same mathematical steps
as we used in Section 1.2.7 of Chapter 1. Consider a Gaussian surface of
volume V, inside the moving charge distribution. If we divide the moving,
continuous charge distribution into infinitesimal volume elements we can
treat the charge inside each volume element as the equivalent of a moving
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Figure 4.3. (a) The flux of E through a Gaussian surface, due to a charge moving with uniform
velocity, is equal to g/g, if the charge is inside the surface, and (b) equal to zero if the charge
is outside the Gaussian surface. The lines of E for an isolated classical point charge, which is
and always has been, moving with uniform velocity, continue radially outwards to infinity.

classical point charge. Using equations (4.11) and (4.7) as appropriate and
following the method we used in Section 1.2.7 of Chapter 1, we find that
after applying Gauss’ theorem of vector analysis we have for the volume V,
inside the charge distribution

JE-dS=JV»EdV=Jp§V

0

where E is the resultant electric field due to the complete charge distribu-
tion. If we now make the volume V, small enough for the variations of
V . E and p inside V,, to be negligible then, after cancelling V,, we have

_ P
V.E : (4.12)
where E is the total electric field at a field point inside the moving contin-
uous charge distribution where the charge density is p.

We shall now assume that the dimensions of the moving continuous charge
distribution are exceedingly small so that it corresponds to our model of a
classical point charge. At a field point inside such a charge distribution we
can rewrite equation (4.12) in the form.



114 Chapter 4

V.e< P (4.13)
€

where e is the microscopic electric field and p™° is the microscopic charge
density at the field point. After averaging, in the way described in Section 1.11

of Chapter 1, we obtain

V.E=P (4.14)
€
where in equation (4.14) E is the macroscopic electric field at a field point
inside a macroscopic charge distribution made up of moving and acceler-
ating atomic particles and p is the macroscopic charge density at the field point,
defined using equation (1.147) of Chapter 1.

4.3. The equation V- B =0

4.3.1. A classical point charge moving with uniform velocity

Consider the isolated classical point charge, of magnitude g, that is and always
has been moving with uniform velocity u along the x axis in Figure 4.1 and
is at the origin at the time of observation. Since, according to equations (4.4)
B, =0, By = 0 and B, is independent of ¢, if follows from equation (A1.40)
of Appendix A1.10 that, at any field point in empty space,

V.B=0. (4.15)

For the special case of a classical point charge moving with uniform velocity,
the magnetic field lines are closed circles concentric with the direction of
motion of the charge, as shown in Figure 4.1. Since the magnetic field lines
are closed, as many lines of B enter any closed surface as leave it. This is
true whether the moving charge is inside or outside the closed surface. Hence,
in general, for a classical point charge moving with uniform velocity

J'B . dS = 0. (4.16)

if the surface integral is evaluated, at a fixed time, over any closed surface,
whether the moving charge is inside or outside the closed surface. Equations
(4.15) and (4.16) are also valid for the magnetic field due to an accelerating
classical point charge.

4.3.2. A field point inside a moving continuous charge distribution

It is straight forward for the reader to show, using equation (4.15) and the
methods used in the case of the electric field in Section 4.2, that V . B is
zero at a field point inside a moving, macroscopic, continuous charge distri-
bution.
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The corresponding Maxwell-Lorentz equation at a field point inside a
moving charged atomic particle is

V.-b=0 (4.17)

where b is the microscopic magnetic field. Averaging equation (4.17) at a field
point inside a distribution of moving atomic charged particles in the way
described in Section 1.11 of Chapter 1, we obtain

V.B=0 (4.18)

where B is now the macroscopic magnetic field, defined using equation (1.147).

4.3.3. Use of magnetic field lines

Some authors conclude erroneously on the basis of equation (4.16), according
to which (B - dS evaluated over any closed surface is zero, that all magnetic
field lines are closed. This is true in the special case of an isolated classical
point charge moving with uniform velocity, where the magnetic field lines
are closed circles concentric with the direction of the velocity of the charge.
The magnetic field lines are also closed in some of the idealized symmet-
rical examples treated in elementary text books. For example, the magnetic
field lines representing the magnetic field due to the steady current in an
extremely long, straight, thin wire are closed circles. If, however, there is
also a magnetic field parallel to the long straight wire produced for example
by the current in a circular coil with its centre on the wire, then the magnetic
field lines representing the resultant magnetic field are helices which return
to the other end of the very long straight wire at large distances from the
wire. It is extremely unlikely that a particular magnetic field line will join
up with itself, particularly if the small coil is not circular or if there are kinks
in the wire connecting the two ends of the very long straight wire. This
illustrates how in practical cases the magnetic field lines are not necessarily
closed. In such cases, when the magnetic field lines are not closed, there are
difficulties when using the density of magnetic field lines to represent the
strength of the magnetic field quantitatively. A reader interested in a full dis-
cussion of this point is referred to Slepian [1] McDonald [2] and Iona [3].

4.4. Relation between the spatial and time derivatives of the fields of a
classical point charge moving with uniform velocity

Consider the electric field E due to the isolated classical point charge, of
magnitude g, that is and always has been moving with uniform velocity u along
x axis in Figure 4.4(a). The charge ¢ is at the position shown in Figure 4.4(a)
at the time of observation ¢ of the electric field E at the field point P, which
has coordinates (x, y, z). The electric field lines diverge radially from the
position of the charge g at the time of observation ¢, as shown in Figure
4.4(a). Let an experimenter at rest at the field point P in Figure 4.4(a) measure
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E
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E
Charge moving with Field point P is
uniform velocity. moved at a fixed
Field point P is fixed time

Figure 4.4. (a) The field point P is fixed and the change in the electric field E in a time At
due to the motion of the charge is measured. (b) The field point P is moved a distance uAt to
the left at a fixed time. The same change in E is measured in both (a) and (b).

an increase AE in the electric field at the field point P in a short time interval
At. Since x, y and z are constant
- ()

AE = ( 3 ”'ZAt. (4.19)
If at a fixed time ¢, that is considering the charge g as fixed in space, the
experimenter at P moved a distance Ax = u At to the left parallel to the x
axis, as shown in Figure 4.4(b), the experimenter would measure the same
increase AE in E. For the conditions shown in Figure 4.4(b) y, z and ¢ are
constant, so that

- ()

AE = ( ), .., Ax. (4.20)
Equating the right hand sides of equations (4.19) and (4.20) and putting
Ax = —uAt, we find that for a charge moving with uniform velocity along
the x axis
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Similarly

(%_l:)x.y.z =—u(%—l;)y'z". (4.22)

In general, for the fields E and B due to a classical point charge moving
with uniform velocity u along the x axis

d d

%= 43 (4.23)
If the uniform velocity u is not parallel to the x axis, then

2 _ —u-V (4.24)

at - . .

4.5. The equation V x E = -B
4.5.1. A classical point charge moving with uniform velocity

Consider again the isolated classical point charge of magnitude ¢, that is and
always has been moving with uniform velocity u along the x axis in Figure
4.1, and is at the origin O at the time of observation ¢, when the fields E
and B are determined at the field point P, which has coordinates (x, y, z)
and is at a distance r from the origin O. Choose the spherical polar co-
ordinate system, shown in Figure 4.1, measuring the polar angle 6 from the
x axis, which is the direction of motion of the charge. Let T, 8 and & be
unit vectors in the directions of increasing r, 0 and ¢ respectively, as shown
in Figure 4.1.

According to equations (4.2), the electric field E at the field point P in
Figure 4.1 has the components

_ g(1 - B* B o— 0 _

Er - 47'5807'2(1 _ BZ Sin2 9)3/2 ’ Ee - 09 E¢ = 0. (425)
Since Eg = 0, E; = 0 and JE/d¢$ = 0, the expression for V x E in spherical
polar coordinates, which is given by equation (Al.41) of Appendix Al.10,
reduces to

1 0E,\ z
%)% (429

It can be seen from Figure 3.4(b) of Chapter 3 and from equations (4.25)
that, for fixed values of » and ¢, when 0 is less than 90°, E, increases with
increasing 0 so that dE,/d0 is positive. Hence, according to equation (4.26),
for the position of the field point P in Figure 4.1, for which 6 < 90°, V X E
has a component in the direction of —¢ Substituting for E, in equation (4.26)
and carrying out the partial differentiation, we find that

VxE=(
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3g(1 — B>PB?* sin 6 cos O 2

VXE-=- dne, (1 — B? sin® )7 2

(4.27)

The magnetic field at the field point P in Figure 4.1 is upwards out of the
paper, that is in the direction of the unit vector ¢. Since the magnitude of B
at the fixed field point P increases with time as the charge gets closer to the
field point, B is positive and is in the direction of ¢. The value of B will
now be determined. The magnetic field B at the field point P in Figure 4.1
at the time of observation ¢ has the components:

3 qu(l — B?) sin 0
* " dmectr’(1 — B2 sin? 9)*2

Since the field point P has coordinates (x, y, z) and the distance form O to
P in Figure 4.1 is r we have

r=xX+y+2z (4.29)

(4.28)

Since 0 is the angle between the x axis and the line joining O and P

2 172
cos 0 = —f—; sin @ = (1 — cos? 9)"? = % (4.30)

Hence the expression for B, can be expressed in cartesian coordinates as
follows

B - qu(l — B + 2H)'?
P dne 'l + (1 - PO + AP

According to equation (4.23), for the classical point charge that is moving
along the x axis with uniform velocity u in Figure 4.1

®__ u%% -1 B, (4.32)

(4.31)

The direction of the unit vector &) does not change when the x coordinate of
the field point P in Figure 4.1 is changed keeping y, z and ¢ constant. Hence
equation (4.32) becomes

ob ( % ) d. (4.33)

Substituting for B, from equation (4.31) and carrying out the partial differ-
entiation, we find that

0B 3gi(1-PY +Hx s
ot dAme, X+ (1 - BAG + DI b.

Using equation (4.29) and (4.30), equation (4.34) can be rewritten in the
form

(4.34)

9B 3gB*1 —P?) sin 6 cos 0 »
o 4rer[1 — B? sin 0] ¢. (4.35)
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Comparing equations (4.27) and (4.35), we can see that the values of E and
B at the field point P in Figure 4.1, which are given by equations (4.2) and
(4.4) respectively, are related by the equation
oB
VXE=- 3 (4.36)
Equation (4.36) is one of Maxwell’s equations. It was derived in this section
from the values for the electric and magnetic fields due to a classical point
charge which is moving with uniform velocity, which we derived in Section
3.3 of Chapter 3 using the Liénard-Wiechert potentials. Equation (4.36) is a
relation between the field vectors E and B, that is valid at any field point. If
we know how B is varying with time at a fixed field point, such as P in
Figure 4.1, then the value of V X E at that field point can be calculated using
equation (4.36). Conversely if the value of V X E at any field point is known,
then equation (4.36) gives the value of B at that field point. There is no need
to enquire what the velocity and position of the moving charge are when we
apply equation (4.36).
Consider any closed curve in Figure 4.1. Integrating equation (4.36) over
a surface bounded by the closed curve at a fixed time ¢, we have

[VxE-dS=—J(%—l:)-dS=—-§;[B-dS.

Applying Stokes’ theorem, which is equation (A1.34) of Appendix Al.8, we
have
__9 __92
%E-dl——atj'B-dS——at (4.37)

where
® = f B . dS (4.38)

is the magnetic flux through the surface bounded by the closed curve. Equation
(4.37) is an example of Faraday’s law of electromagnetic induction. Equations
(4.36) and (4.37) will now be illustrated by showing how a classical point
charge that is moving with uniform velocity can give rise to an induced emf
in a stationary circuit.

4.5.2. Induced emf due to a classical point charge moving with uniform velocity

Consider a positive classical point charge, of magnitude +¢, that is moving
with uniform velocity u, as shown in Figure 4.5. The line integral ffE . dl
will be evaluated around the closed curve ABCD in Figure 4.5 at the instant
the charge g is at the point O. The electric field lines diverge radially from
0, which is the present position of the moving charge at the time of obser-
vation t. The lines of E bunch towards a direction perpendicular to the velocity
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X 4

E«——-0 u-+E

Figure 4.5. The calculation of the curl of the electric field E due to a charge ¢ moving with
uniform velocity. Since the electric field is greater along BC than AD, ¢E - dl evaluated around
ABCD is finite, so that V x E is finite. It is shown that V X E = —(dB/d?). Both E and B arise
from the moving charge.

u of the charge, as shown in Figure 4.5. The arc AB is at a radial distance r
from O and the arc CD is at a radial distance (r + Ar) from O, where
Ar < r. Since the electric field E is radial, the electric field has no compo-
nent along either of the sections AB or CD, so that [ E - dl is zero along both
of the sections A B and C D in Figure 4.5. For the conditions shown in Figure
4.5, the value of E,, given by equation (4.2), at any point along the section
BC is greater than the value of E, at a point along the section AD at the same
radial distance from O, so that |E - dl evaluated from B to C is greater than
evaluated from A to D by an amount {(dE/d0)AO }Ar. Using equation (4.2)
for E, and differentiating, the reader can show that JE - dl evaluated from A
to D to C to B to A in Figure 4.5 is given by

JE 1 — B2 [ 3P sin O cos O
jEE Ldl = —( < ) AOAF = — q(‘mofz ) [ (1B_ S[;‘; Sinﬁ";)s,z] AOAY.

(4.39)
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We shall now assume that a stationary conducting coil of wire coincides with
the closed curve ABCD in Figure 4.5, as shown in Figure 4.6. As the charge
q approaches the coil ABCD from the left, as illustrated in Figure 4.6, the
magnetic flux through the coil is in the direction upwards towards the reader
and is increasing in magnitude. At the same time, when the charge g is
approaching the coil ABCD in Figure 4.6, the electric field is greater along
BC then along AD giving a finite value for the emf §E - dl, which is given
by equation (4.39). It follows from the constitutive equation J = oE, that,
for the experimental conditions shown in Figure 4.6, a conduction current
will flow around the stationary coil ABCD from A to B to C to D to A. This
conduction current flow in the stationary coil is due to the electric field due
to the moving charge. According to the right-handed corkscrew rule, the con-
duction current flow from A to B to C to D to A gives rise to an extra
contribution to the magnetic field in a direction that is downwards into the
paper inside the coil ABCD in Figure 4.6. This is in such a direction as to “tend
to oppose” the increase in the magnetic flux through the stationary coil ABCD
as the classical point charge approaches the coil ABCD from the left in Figure
4.6. This illustrates Lenz’s law.

The reader can show, using equations (4.22) and (4.35), that the rate of
change of the magnetic flux @ through the coil ABCD, which has area
AS = r AO Ar due to the motion of the charge g in Figure 4.6 is given by

2@ (0B _ 0B, )
o T ( ot ) AS ( ot AS

B, 0B,

——( = )rAGA = u( > )rABAr

q(1 - B%» [ 3B sin 6 cos 0
dne? L (1 - B? sin? 0)°?

The right hand sides of equations (4.39) and (4.40) are the same in agree-
ment with Faraday’s law of electromagnetic induction, according to which
ffE - dl is equal to —®. After the charge g has moved to the right of the
stationary coil ABCD in Figure 4.6, the magnetic flux ® through the coil
due to the moving charge q is still upwards towards the reader in Figure 4.6,
but the magnetic flux @ through the coil is then decreasing in magnitude as
q moves away from the coil ABCD. In this case the electric field E due to
the moving charge ¢ is less on the left hand side of the coil ABCD in Figure
4.6 than on the right hand side of the coil, so that in this case the conduc-
tion current flows from A to D to C to B to A and gives a contribution to
the magnetic flux through the coil ABCD in a direction upwards towards the
reader. This extra magnetic flux in the upward direction “tends to oppose”
the reduction in the magnetic flux in the upward direction through the coil
ABCD in Figure 4.6, as the charge ¢ moves away from the coil ABCD. This
is again in agreement with Lenz’s law.

] ABAr. (4.40)
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c /
D »
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Charge moving
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Figure 4.6. The electric field due to the charge g, which is moving with uniform velocity, is
stronger along BC than along AD, which drives a conduction current around the coil from B to
C to D to A to B. This direction of current flow is consistent with Lenz’s law.

4.5.3. An accelerating classical point charge

In the case of an accelerating classical point charge, the expressions for E
and B, determined from the Liénard-Wiechert potentials, are given in terms
of the velocity and acceleration of the charge at its appropriate retarded position
by equations (3.10) and (3.13) of Section 3.2 of Chapter 3. According to
Maxwell’s equations, at any field point the curl of the electric field E due to
an isolated accelerating classical point charge, is related to the rate of change
of its magnetic field B by the relation
JB

VXE=_8t . (4.41)
An example of the electric field due to an accelerating classical point charge
was shown in Figure 3.7 of Chapter 3. It can be seen from Figure 3.7 that
the electric field lines are curved and have kinks in places, associated with
periods when the charge was accelerating at its retarded position. The magnetic
field in Figure 3.7 is in a direction perpendicular to the paper. The reader
can see from the shape and number of electric field lines per square metre
in Figure 3.7 that the value of the integral IE - dl evaluated around any
closed curve in Figure 3.7 at a fixed time ¢ is finite. The rate of change of
the magnetic flux @ = [B - dS through that closed curve is also finite due to
the motion of the accelerating classical point charge relative to the closed curve,
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and according to Maxwell’s equations is related to the line integral of E around
the curve by the equation

oD
§E dl = - S5 (4.42)
In the case of an isolated accelerating classical point charge, equation (4.41)
is again a relation between the field vectors E and B, which in the case of
an accelerating classical point charge are given by equations (3.10) and (3.13)
respectively.

4.5.4. A system of moving and accelerating classical point charges

Consider a system of N moving and accelerating classical point charges, which
build up a macroscopic charge and current distribution. Consider a field point
in empty space. According to equation (4.36) the electric field E; and the
magnetic field B, at any field point in empty space due to the ith moving charge
q;, are related by the equation

JB;

V x E —-——a-l;- (4.43)

An equation, such as equation (4.43) is valid at the field point in empty space
for the fields due to every one of the classical point charges in the system at
the time of observation, so that we can add up the contribution of all the N
charges in the macroscopic charge and current distribution, to give at a field
point outside the charge distribution

V><E1+V><E2+...+V><EN=—@—‘——8—112-—...—%BTN.

Since for any vectors C, D, . . .
VXC+VXD+...=VXC+D+..).)

it follows that
VXE +VXE,+... +VXE,=VX(E, +E,+...+E)).

Also
3B, = 3B, By _ 9
—a-t—+—a—t-+ +T (B]+B2 .. + By).
Hence
JB
VxE= T (4.44)
where E = (E, + E, + . . . + E,) is the resultant electric field and B =

(B, + B, + . . . + B,) is the resultant magnetic field at the external field point
due to all the N classical point charges in the charge and current distribu-
tion.
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As a typical example of a macroscopic current distribution, consider a
varying conduction current in a stationary arbitrarily shaped coil and consider
an external field point in empty space. The stationary positive ions in the
coil give rise to electrostatic fields which contribute to the resultant electric
field E at an external field point, but the stationary positive ions give no
contribution to the resultant magnetic field B. Since, according to equation
(1.27), the curl of any electrostatic field is_zero, the stationary positive ions
make no contribution to either V x E or B. The resultant values of V x E
and B at the external field point are due to the moving and accelerating con-
duction electrons. Equation (4.43) is a relation between the values of the
resultant total fields E and B at the external field point. If the accelerations
of the conduction electrons in the coil were negligible, it could be assumed,
as a first approximation, that the conduction electrons were moving with
uniform velocities, in which case, each individual moving conduction electron
in the coil would give, in this approximation, an electric field distribution of
the type shown in Figure 4.3(b), except that for electrons the charge g would
be negative and the electric field lines would converge on the individual con-
duction electrons. Each moving conduction electron would give a contribution
to V x E at the external field point due to the bunching of its electric field
lines towards a direction perpendicular to its velocity. Each of the conduc-
tion electrons would also give a contribution to B due to its motion relative
to the fixed field point. In practice, the conduction electrons are continually
accelerated and decelerated. They also have centripetal accelerations in regions
where the coil is curved. When these accelerations are important, the electric
field due to the individual accelerating conduction electrons are more com-
plicated than in Figure 3.4(b) of Chapter 3 and the electric field lines would
be curved and have kinks in them, as shown for example in Figure 3.7 of
Chapter 3. It is the sums of the electric and magnetic fields of this type due
to individual moving and accelerating conduction electrons, that give the
resultant values of V X E and B at the external field point. We shall return
in Chapter 5 to interpret the origin of the induced emf due to a varying
current in an electrical circuit using equation (3.10), which gives the electric
field due to an accelerating classical point charge.

4.5.5. Critique of an obsolete interpretation of Faraday’s law of
electromagnetic induction

The reader may find in many text books that the equation
V xE =-B. (4.45)

is interpreted by saying that a varying magnetic field produces an electric field.
The following quotation, taken from Grant and Phillips [4] is typical:

A changing magnetic field produces an electric field according to Faraday’s
law.
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The integral form of equation (4.45), namely

ad
45 . 1= -2 (4.46)
is often interpreted by saying that a varying magnetic flux through a
stationary coil produces an induced emf in the coil. Such interpretations are
relics of the nineteenth century aether theories. The values of E and B in
the general case can be derived independently from the values of ¢ and A which
can be determined using the retarded potentials. We have shown that equation
(4.45) is just a relation between these values of E and B. That equation (4.45)
is a relation between E and B can be illustrated by introducing the poten-
tials ¢ and A. According to equation (2.17) of Chapter 2

E=-Vj- Al 2.17)

By taking the curl of both sides of equation (2.17) and using the result that
the curl of the gradient of any scalar function of position is zero, we find
that

24)_ g, A
VxE—Vx(—Vq)— 3 =-V X R (4.47)
According to equation (2.18)
B=VxA. (2.18)
Differentiating equation (2.18) partially with respect to time, we have
dB d
- a_t = —31‘- (V X A). (4-48)

Notice immediately that both V X E and B can be determined from the vector
potential A. Using equations (4.47) and (4.48) we can rewrite equation (4.45)
in the form

-V x (%}) =—a%(VxA). (4.49)
Since the operations of taking the curl of a vector and differentiating par-
tially with respect to time are independent linear operations they commute,
so that equation (4.49) is always valid for any vector. There is no need to inter-
pret equation (4.49) by saying that the right hand side produces the left hand
side or vice versa. One side of equation (4.49) is just a rearrangement of the
other. Hence it is best to interpret equations (4.45) and (4.49) as relations
between the components of E and the components of B and not as cause-
effect relations, in which B is interpreted as the cause of E.

When teaching electromagnetism, we can interpret equation (4.45) by saying
that, if we set up the experimental conditions such that we get a varying
magnetic field, then the same charge and current distributions that give rise
to the varying magnetic field also give rise to an electric field whose curl is
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equal to —B. When equation (4.46) is applied to a stationary electrical circuit,
if we set up the experimental conditions to get a varying magnetic flux through
the stationary circuit, then the varying charge and current distributions that
give rise to the varying magnetic flux also give rise to an induction electric
field, which gives rise to an induced emf §E - dl in the stationary circuit, which
is numerically equal to minus the rate of change of the magnetic flux through
the circuit. We shall show in Chapter 7 that we generally only need to know
the value of the emf §E - dl in AC circuit theory and not the value of E at
every point in the circuit.

4.6. The equation V x B = E/c? at a field point in empty space
4.6.1. A classical point charge moving with uniform velocity

Consider again the isolated classical point charge of magnitude g, that is and
always has been moving with uniform velocity u along the x axis of
Figure 4.1. Let B = u/c. The charge q is at the origin O in Figure 4.1 at the
time of observation ¢, when the fields E and B are determined at the field point
P, which is at a distance r from the origin. Choose again the spherical polar
coordinate system (r, 0, ¢) shown in Figure 4.1. The polar angle 0 is the
angle between u and r, measured at the time of observation t. According to
equations (4.4),

qu(l — B sin 0 é
e, (1 - P2 sin? 0)2

It can be seen from equation (4.50) and Figure 3.5 of Chapter 3 that, in the
special case of a classical point charge moving with uniform velocity in Figure
4.1, the magnetic field lines are closed circles with centres on the x axis,
which is the direction of the uniform velocity u of the charge. Hence ng -dl
evaluated around a magnetic field line is finite, showing that V X B is finite
on a surface bounded by a magnetic field line. Since, according to equation
(4.50) both B, and B, are zero, the expression for V x B in spherical polar
coordinates, given by equation (A1.41) of Appendix A1.10, reduces to

- Siln 5 (%(B¢ sin 9))f - —};% (rB,9. (4.51)

B=B0b = (4.50)

VXxB-=

According to equation (4.50), B, varies with 0 at fixed values of r and ¢ giving
a component of V x B in the direction of I, and B, varies with r at fixed values
of 0 and ¢ giving a component of V X B in the direction of 9. Substituting
for B, from equation (4.50) into equation (4.51) and carrying out the partial
differentiations, the reader can show that
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vxpo 21 -B)[2 cos 0(1 + /,p? sin? 0) .
4meyc’ r’(1 - B? sin® )
1 - Sﬁig s?nz 0)" 6] (4.52)
According to equation (4.2)
q(1 - B?) A s

~ dme, (1 - B sin? 0)2 r

The electric field E at the fixed field point P in Figure 4.1 varies in both
magnitude and direction with time due to the motion of the charge g relative
to the fixed field point. According to equation (4.24), for a classical point
charge moving with uniform velocity u

L)
ot
Expressmg the velocity u of the charge ¢ in Figure 4.1 in terms of the unit
vectors T and @ at the field point P we have
= (u cos O)T — (u sin (-))0.
According to equation (A1.39) of Appendix A1.10

8 ~1 0 1 a9
Tor +0_§3 ¢rsm(~) 90

Hence, since E = E, I, after using equation (A1.1) of Appendix Al.1 to expand
u - V, we find that

=—(u - V)E.

V=

10E 1 _ ucos(-) usin® 0 . a4
e R (u- VE =~ c? (E r) + c*r 90 (E,T).
Since
o _, O _;
3 0; 39 =0
we have

1 JdE ( ucos O 0E, usme BE) +usin9E6
ot c? o T T & 99 ccr re

By substituting for E, from equation (4.53) and carrying out_the partial
differentiatons, the reader can show that the above expression for E/c? reduces
to the right hand side of equation (4.52), showing that at a field point in
empty space

1 JE OE

VXB=c2W=u°e°W

(4.54)
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where we have used ¢ = 1/p,€,. Equation (4.54) is a relation we have derived
from the expressions for the electric field E and the magnetic field B due to
a classical point charge moving with uniform velocity, which we had previ-
ously derived in Chapter 3 using the Liénard-Wiechert potentials.

In the case of an isolated accelerating classical point charge, the electric and
magnetic fields are given by equations (3.10) and (3.13) of Chapter 3. These
electric and magnetic fields are more complicated than is the case when the
charge is moving with uniform velocity. For example the electric field lines,
due to an accelerating classical point charge, can be curved and have kinks
in them associated with periods when the charge was accelerating at its retarded
position. However equation (4.54) is still valid at any field point in empty
space. It is again a relation between the field vectors E and B.

4.6.2. The low velocity approximation

It is of interest to note that, whereas there is a factor (1/ c*) on the right hand
side of equation (4.54) relating V X B and E, there are no factors involving
¢ in equation (4.36) which relates V x E and B. Consider again the example
of the charge ¢ moving with uniform velocity uw shown in Figure 4.1.
Expanding the denominators in equations (3.25) and (3.28) using the binomial
theorem, we find that at the field point P at the time of observation we have

E - 4nq:r3{1+32(%sin29—1)+...}, (4.55)
0

B=%’%(%){Hﬂz(%sinm—l)+...}. (4.56)
0

According to equation (3.29)

B="Y Z(ZE . (4.57)

In the low velocity limit when B <€ 1, the zero order terms are

__gr _ M(l)
E, Are,r B, dnegr> \ c*/° (4.58)

It is straightforward for the reader to show using the methods used in Section
4.6.1 that when B < 1

__4 L)(Zucos()A usinOA)
VxB,= ane, (cz 5 T+ 5 0 (4.59)
JE, ¢ (2ucose n usinen)
d "I\ oS T 9) (4.60)
Comparing equations (4.59) and (4.60) we see that
VXxB,= lz_a_@g (46D)

c* ot
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showing that equation (4.54) is valid for the zero order terms. The zero order
contribution B, to the magnetic field gives a finite curl since the magnetic field
lines are closed circles in the special case of the charge moving with uniform
velocity shown in Figure 4.1. The zero order contribution E, to the electric
field gives a finite value for E,, due to the motion of the charge relative to
the fixed field point. Since according to equations (4.58), B, is of order uE/c*
it is reasonable to find that we must multiply E, by (1/¢%) to be equal to the
value of V x B, given by equation (4.59).

When we come to calculate the value of V X E at the field point P in
Figure 4.1 at the fixed time z, V X E, is zero since, at a fixed instant of time
the expression for E is the same as Coulomb’s law. Hence the first term
that contributes to V X E in the low velocity limit is V X E,, where

3[32(—S1n 9—1)

Evaluating V X E, using the methods used in Section 4.5.1, the reader can
show that

— _R2 q
VxE = (47t8

E, = 4reyr

r3) 3 cos O sin O (f) (4.62)

The zero order contribution B, to the magnetic field gives a finite contribu-
tion to B due to the motion of the charge g relative to the field point in
Figure 4.1. Using the method used in Section 4.5.1, the reader can show that

By B ( )
5 = =P dncy 3 cos O sin 0 &. (4.63)
Comparing equations (4.62) and (4.63) we see that, in the low velocity limit
JoB
V x E2=_Tt0' (4.64)

Since V x E depends on E, not E, in the low velocity limit and E, is pro-
portional to Ey/c? it is reasonable to find that we do not need any factors of
c in equation (4.64) since, according to equation (4.58) B, is also proportional
to Ey/c so that the factors of B? in equations (4.62) and (4.63) cancel out in
equation (4.64).

4.6.3. A system of moving and accelerating classical point charges

Consider the system of N moving and accelerating classical point charges
that build up the macroscopic charge and current distribution, which we dis-
cussed in Section 4.5.4. Corresponding to equation (4.43) we now have
1 OE,
V x B,- =2 7 .
Adding up the contributions of all the N charges we find that at a field point
in empty space

(4.65)
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19E
VXxB= 2 (4.66)
where B = (B, + B, + . . . + B,) is resultant magnetic field and E =

(E, + E, + ... + E,) is the resultant electric field at the external field point
in empty space. Equation (4.66) is a relation between the resultant electric
and magnetic fields at a field point in empty space. We shall now go on to
show that equation (4.66) must be extended by adding the p,J term to the right
hand side when there is a current distribution of current density J at the field
point.

4.7. Application of the equation 5§B . dl = W/c to the fields of a point
charge of zero dimensions moving with uniform velocity

In this section we shall assume that the moving charge, of magnitude g, in
Figure 4.1 is an idealized point charge of zero dimensions, which is and always
has been moving with uniform velocity u along the x axis of Figure 4.1. The
charge g is at the origin of the spherical polar coordinate system at the time
of observation ¢. Let r, 8 and ¢ be unit vectors in the directions of increasing
r, 0 and ¢ respectively. To simplify the discussions we shall assume that
u < ¢ so that B = w/c < 1. According to equation (3.34) of Chapter 3, when
B < 1, the magnetic field at the field point P in Figure 4.1, at a distance r from
the position of the charge at the time of observation ¢, is given to a good
approximation by the Biot-Savart approximation, which is

quxr  qusin@ »
Ame,c’rt T Ame,cir?

(4.67)

The angle 0 in equation (4.67) is the angle between u and r.

According to equation (3.33) of Chapter 3, when B < 1 the electric field
E at the field point P in Figure 4.1 at the time of observation ¢ is given to a
good approximation by

_ g __4q .
T dmeyr’  Amey? r (4.68)

where r is again measured from the position of the point charge at the time
of observation ¢.

It is important for the reader to realize that there is an important differ-
ence between the electric field E and the magnetic field B due to a point charge
moving with uniform velocity u. The electric field lines diverge radially from
the position of the charge at the time of observation ¢ as shown in Figure 3.4(b).
The electric field lines on the x axis in Figure 4.1, which is the line of motion
of the charge, are in opposite directions on either side of the moving charge.
However, the magnetic field lines just off the x axis are in the same direc-
tion, given by the right handed corkscrew rule, on both sides of the moving
charge, as shown in Figure 3.5.
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Consider a circular disk shaped surface S of radius a, with its centre on
the x axis at a distance x from the origin and with the field point P on its
circumference as shown in Figure 4.1. We shall start by evaluating the line
integral ﬁﬂB - dl around the circumference of the surface § in the direction of
the magnetic field due to the moving charge in Figure 4.1 at the instant the
charge is at the origin. The positive direction for an element of area dS of
the surface S is then the direction in which a right-handed corkscrew would
advance if it were rotated in the direction of dl. This is in the +x direction from
the right hand side of the surface § in Figure 4.1. Using equation (4.67) we
have

qua sin 6 qua®
2e,¢7r? 2e,ci (@ + )

The electric flux ¥ = f E . dS through the surface S, when the charge ¢q is at
the origin in Figure 4.1, can be obtained by evaluating the integral in equation
(4.10) from 6 = 0 to © = 0. Neglecting terms in B* compared with unity in
equation (4.10), we find that

fB - dl = 2naB, = (4.69)

0
=4 | g =9 q_
= 7 J . sin © dO T (1 —cos 6) (4.70)
X
- (- ) 7D
Applying equation (4.23) to equation (4.71) we find that
v 8\1’ qua’
o =" x T e+ 7 (4.72)
Comparing equations (4.69) and (4.72), we see that
§B e 4.73)

Equation (4.73) was derived from the values of E and B given by equations
(4.68) and (4.67) respectively. It is left as an exercise for the reader to show
that equation (4.73) can also be applied after the charge of zero dimensions
has passed through the surface § in Figure 4.1.

Problem. Use equation (4.11) to show that, if u tends to c, the electric flux
through the surface § in Figure 4.1 is

q cos 6
2¢, [ - (1 — B? sin? 0)"? ] ' (4.74)

Express cos 0 and sin 0 in cartesian coordinates and apply equation (4.23)
to determine ¥. Use equation (4.4) to evaluate ﬁB dl to show that

g _L1o¥ _ qu(1-PB*sin’6
fB dl = ot 2grcXl — B sin’ 0)2 (4.75)
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where r is the distance from the charge to a point on the circumference of
the surface S. This is in agreement with equation (4.73).

We shall now show that equation (4.73) is not valid and must be extended
when the idealized point charge is actually crossing the surface S in Figure
4.1. According to equation (4.71), when the charge g of zero dimensions is
approaching the surface S in Figure 4.1 from the left, the electric flux W
through the surface S increases continuously until, just before the charge
reaches the surface S, the electric flux reaches the value +q/2¢,, as illustrated
in Figure 4.7(a). After the point charge of zero dimensions has passed
completely through the surface S, the electric field lines go through the surface
S in the opposite direction to previously, as shown in Figure 4.7(b). According
to equation (4.71), just after the charge has passed through the surface S,
¥ = —q/2¢,. The variation of ¥ = f E - dS through the stationary surface S is
shown for various values of x, in Figure 4.8, where x, is the distance from
the centre of the circular disk shaped surface § to the position of the moving
charge in Figure 4.1. The distance x, is negative for the position of the moving
charge in Figure 4.1. It can be seen from Figure 4.8 that there is a disconti-
nuity of —g/¢, in the electric flux W through the surface S in Figure 4.1, when
the idealized point charge of zero dimensions and of magnitude g is crossing
the surface S at x, = 0, so that W is equal to —o at that instant. However,

—_— —>
Before the charge passes The charge has passed
through the surface S through the surface S

(a) (b)

Figure 4.7. (a) Just before the point charge g crosses the circular disk shaped surface S, the
flux of E through the surface § is equal to +¢/2€,. The lines of E cross the surface from left to
right. (b) After the charge has passed through the surface S, the lines of E pass through the surface
from right to left. There is a discontinuity in the flux of E, when the point charge passes
through the surface S, which is equal to —g/€,, whatever the speed of the charge. There is however
no discontinuity in the magnitudes and directions of B and V x B at a field point on the cir-
cumference of the surface § when the charge ¢ crosses the surface S.
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b 4

+q/2¢

Position of the
circular surface S
used to calculate ¥V

x/a

-q/2 L))

Figure 4.8. The variation of ¥ the flux of E through the circular disk surface S in Figure 4.1
with the position of the moving point charge, x, is the distance of the charge from the surface
S. There is a discontinuity of —g/¢, in ¥ when the point charge crosses the surface. (For a
charge of finite size the variation of ¥ with x, is similar to that in Figure 4.10.)

according to equation (4.69) 3§B - dl is still finite and equal to qu/2gyc’a.
Since the total flux of E from a moving point charge of magnitude ¢ is equal
to g/g,, whatever the speed and acceleration of the charge, the discontinuity
in ¥ is —g/€, wherever the idealized point charge of zero dimensions crosses
the surface § in Figure 4.1. If the charge g passes outside the disk-shaped
surface § in Figure 4.1, the electric flux through the surface S is zero when
the charge ¢ is in the plane of the surface S, so that there is no discontinuity
in the electric flux ¥ through the surface S, and equation (4.73) is valid at
all times in this case.

Following Lorentz, we have been assuming in the text that a classical
point charge is a continuous charge distribution of finite but exceedingly
small dimensions. To illustrate how equation (4.73) must be extended when
a charge distribution is crossing the surface § in Figure 4.1, we shall now
extend the analysis to a charge distribution of finite dimensions, by consid-
ering the example of a line of continuous charge, that is moving with a uniform
velocity 4 < ¢ and which crosses the surface S, as shown in Figure 4.9. We
can then proceed to the limit of a moving line of charge of finite but exceed-
ingly small length. This will be a simplified version of our model of a moving
classical point charge.
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4.8. A moving line of charge
4.8.1. A moving line of charge of finite length

Consider a thin line of charge that is of finite length 2L and has a charge of
A coulombs per metre length. Let the line of charge move with a uniform
velocity u <€ ¢ in a direction parallel to its length along the x axis of the
coordinate system shown in Figure 4.9, The field point P is on the y axis at
a distance a from the origin O, as shown in Figure 4.9. Consider a circular
disk-shaped surface S of radius a in the x = 0 plane, with its centre at the
origin O and with the field point P on its circumference, as shown in Figure
4.9. Let the mid-point of the line of charge have coordinates (x,, 0, 0). Note
that in this section the origin O is at the centre of the circular disk-shaped
surface S in Figure 4.9 and not at the position of the charge.

The magnetic field B at the field point P in Figure 4.9 can be derived
using the Biot-Savart law, and is given by the standard expression derived
in elementary text books for the magnetic field due to the current flowing in
a thin straight wire of finite length. For the experimental conditions shown
in Figure 4.9, with I = Au we have from the Biot-Savart law

Au
B = ineca (cos 0, + cos 0,). (4.76)
The magnetic field lines due to the moving line of charge are closed circles
with centres on the x axis and direction given by the right-handed corkscrew
rule, as shown in Figure 4.9. Integrating around the circumference of the

Figure 4.9. A line of charge, which is moving with a uniform velocity 4 < ¢, is crossing the
circular disk shaped surface S.
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circular disk-shaped surface S in Figure 4.9 in the direction of B, we have

Au
2e,c?

§B - dl = 2naB = (cos 6, + cos 6,). 4.77)
When the line integral is evaluated in the direction of the magnetic field, the
positive direction for an element of area dS of the surface § is in the +x
direction from the surface S in Figure 4.9. It follows from the right-handed
corkscrew rule that the direction of the magnetic field lines are as shown in
Figure 4.9, whatever the position of the moving line of charge. Equations (4.76)
and (4.77) can be applied for all positions of the moving line of charge,
provided 0, and 0, are chosen appropriately.

The magnitude of the electric flux W through the surface S in Figure 4.9
is sketched for various positions of the moving line of charge in Figure 4.10.
Before the line of charge reaches the surface S from the left, the electric
field lines go through the surface S in Figure 4.9 in the +x direction so that
Y = J’ E . dS is positive and is increasing in magnitude as the line of charge
approaches the surface S. The variation of ¥ with x,, the x coordinate of the
mid-point of the line of charge in the region x, < —L is given by the section
RV of the curve in Figure 4.10. In this region, ¥ is positive. By applying

V £03

e e = w— D coer S Gy = oo . —

-0-3L T

Figure 4.10. The variation of ¥, the flux of E through the circular disk shaped surface S in
Figure 4.9 for various positions of the moving line of charge. (Actually €,%/Aa is plotted
against x,/a, where A = charge/unit length, and q, the distance of the field point from the
x axis, is equal to the length of the charge.)
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equation (4.54) to each element of the line of charge, then summing and
following the method of Section 4.6.3, the reader can show that before the
line of charge reaches the surface § in Figure 4.9 and after the line of charge
has passed completely through the surface S, the equation

13E
Vx B= 2 (4.78)
is valid at the field point P, so that
1w
%B ~dl = 2 or - (4.79)

When the line of charge is crossing the surface S, as shown in Figure 4.9,
the charge to the left of the surface S still gives an electric field through the
surface § in the +x direction and hence gives a positive contribution of the
electric flux W through the surface S. However, the electric field due to the
charge to the right of the surface S in Figure 4.9 is in the —x direction and gives
a negative contribution to W. Hence W starts decreasing, when the line of
charge starts crossing the surface §, reaching zero for the case when x, = 0.
The variation of ¥ with x,, the position of the mid-point of the moving line
of charge, when the line of charge is crossing the surface S in Figure 4.9 is
given by the section VT of the curve in Figure 4.10. In this region ¥ is
negative. However, according to equation (4.77) §B - dl is still positive,
showing that equation (4.79) is no longer valid and must be extended when
the line of charge is crossing the surface S.

The variation of ¥ with x, in the region x, > L, that is after the line of charge
has passed completely through the surface S in Figure 4.9, is given by the
section TU of the curve in Figure 4.10. It can be seen that in this region ¥
is negative, but W is getting less negative with increasing x, so that ¥ is
positive and in this region equation (4.79) is valid again.

Since we have shown earlier using equation (4.54) that equations (4.78) and
(4.79) are valid before the line of charge has reached the surface S in Figure
4.9 and after the line of charge has passed completely through the surface S,
we need only consider in detail the case shown in Figure 4.9 when the line
of charge is actually passing through the surface S. Let the line of charge move
an infinitesimal distance dx = u dr in an infinitesimal time d¢. The change in
the electric flux through the surface § in Figure 4.9 in the time d¢ is the same
as removing, at a fixed time, an infinitesimal section of length dx and of charge
A dx from the left hand end of the line of charge and adding it to the right
hand end. It follows from equation (4.70) that the change dW¥, in the electric
flux through the surface S in Figure 4.9, when the element of charge A dx is
removed from the left hand end of the line of charge is

dw, = _%‘g (1 - cos 0)) (4.80)

where 0, is shown in Figure 4.9. When the element of charge A dx is added
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to the right hand end of the line of charge in Figure 4.9, it gives an electric
field in the —x direction and its contribution to the electric flux through the
surface S is negative. According to equation (4.70) this change d¥, in the
electric flux through the surface S is

dw, = "dx Se (1 = cos ). (4.81)

Adding equations (4.80) and (4.81), putting dx = u dt and then dividing by ¢’d¢
we obtain

—(};aa\f =—22L::2 (1 -cos© +1-cos9,)
0
Au
= 26 (cos 8, + cos 0, — 2). (4.82)

According to equation (4.77), for the conditions shown in Figure 4.9

Au
%B -dl = 26, (cos 0, + cos 0,). (4.83)

Comparing equations (4.82) and (4.83), we see that, for the case shown in
Figure 4.9,

fB-d1=—1;a‘p+ }”"=uo{eoaa‘f+1} (4.84)

¢’ ot 806'2

where I = Au is the electric current crossing the surface S and 1/¢* = p,g,.
We see that if we start with equations (4.78) and (4.79) as relations between
the field vectors E and B, then the need for consistency when there is a moving
charge distribution crossing the surface S leads us to equation (4.84) which
is the integral form of equatlon (1.118) of Chapter 1.

The negative value of W/c? in the region —L < x, < +L is due to the fact
that, when an infinitesimal element of length dx and of charge dg = A dx crosses
the surface S in Figure 4.9 in an infinitesimal time dz, its contribution to the
total electric field changes from the +x to the —x direction and its contribu-
tion to the electric flux through the surface S changes from +dg/2¢, to —dq/2¢,.
It was shown in Section 4.7 that when a point charge of magnitude ¢ and
zero dimensions crosses the surface S in Figure 4.1 there is no discontinuity
in 5§B - dl, even though there is a discontinuity of —g/g, in the flux of E
through the surface. Hence, when the infinitesimal elements of charge
dg = A dx cross the surface S in Figure 4.9, though the changes of —dg/¢, in
¥ contribute to the value of W/c? given by equation (4.82), the changes of
-dqg/e, in ¥ are not associated with any corresponding discontinuities in
3§B - dl. Hence it is reasonable to find that, if the contributions of the successive
changes of ~dqg/g, in the electric flux ¥, when successive elements of charge
dq cross the surface S in Figure 4.9, are included in the values of ¥/c?, to which
they make a contribution of —dg/e, + c’dt = —I/g,c* = — Auleyc® then, since



138  Chapter 4

the elements of charge dg crossing the surface S do not give corresponding
changes in ¢B - dl, to get conS1stency we must compensate for the inclusion
of their confributions to W/c? by adding +Au/e,c? to W/ to glve equation (4.84).
The terms in equation (4.82) involving cos 0, and cos 0, arise from changes
in the positions of the ends of the ends of the moving line of charge in Figure
4.9, when the line of charge is crossing the surface S.

As an exercise the reader can apply the method we used to determine the
value of ¥/c? given by equation (4.82) to determine W/c? for the cases before
the line of charge has reached the surface S in Figure 4.9 and after the line
of charge has passed completely through the surface S. Then, by comparing
the values obtained with the values of fﬁB - dl the reader can confirm that
equation (4.79) is valid in these cases.

It will now be assumed that the moving line of charge in Figure 4.9 is
accelerating and moving in an arbitrary direction when it is crossing the surface
S. It was pointed out in Section 4.2 that the total flux of E from a classical
point charge of magnitude g is always equal to g/€,, whatever the velocity
and acceleration of the charge. Hence, it does not matter where the line of
charge crosses the surface S in Figure 4.9 and what its velocity and acceler-
ation are at that instant, when the element of charge of magnitude dg crosses
the surface S its contribution to W, the electric flux through the surface S,
changes by —dg/e,. This gives a contribution to ¥ equal to —dg/g, + dt = I/g,
where I = dq/dt is the current crossing the surface S. Hence the compensa-
tion term I/e,c® in equation (4.84) is the same wherever the line of charge is
crossing the surface § and whatever the velocity and acceleration of the line
of charge are at that instant. Hence in the general case, when the line of
charge is crossing the surface S in Figure 4.9

1 0¥ 1 v
fB-dl 2 5 E‘(;Cj=uo{80§+1} (4.85)

where W = fE . dS is evaluated over this surface S and I = fJ . dS is the
total current crossing the surface S. If the line of charge does not cross the
surface S

%B dl = %%—‘Ii (4.86)

If the line of charge in Figure 4.9 were of infinite length, ¥ would be zero
and equation (4.85) would reduce to

JB-dl=uOI

which is an example of Ampeére’s circuital theorem.

Problem. Divide the moving line of charge in Figure 4.9 into infinitesimal
elements of length. The electric flux due to each element of charge i3 given
by equation (4.71). Integrate to show that for x, < —L
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= —2); [ZL —{(xy— LY + &Y% + {(x, + L)* + az}"z] (4.87)
0
and for x, > L

1y=_li[up-m%+Lf+a%W+{uy-D2+fP“l (4.88)
2g,

When -L < x, < L, the contributions of the charge on opposite sides of the
surface S to W, the electric flux through S, have opposite signs. By adapting
the expressions for ¥ for x, < —L and x, > L for the sections to the left and
to the right of S and then combining the results, show that for —-L < x, < L

Y = —-2—%0 [+2xo + {(x, — L + a&®¥? — {(x, + L)* + az}uz] . (4.89)
Plot variation of ¥ against x, for the case when a = 2L to obtain Figure 4.10.
Adapt equation (4.23) to determine the values of W/c*. Then by comparing
your values of W/c* with the values of §B - dl given by equation (4.77), show
that equation (4.79) is valid for x, < L and x, > L and show that equation (4.84)
is valid for -L < x, < L.

4.8.2. A moving classical point charge

If the length of the moving line of charge in Figure 4.9 is kept finite but
made exceedingly small, it corresponds to a special case of our model of a
classical point charge. In the limit, when the length 2L of the moving line of
charge tends to zero, the variation of ¥ with x, in Figure 4.10 tends to the
variation of ¥ with x, for a point charge of zero dimensions shown in Figure
4.8. However, since, on our model of a classical point charge, 2L remains finite,
the decrease of ¥ between the points V and T in Figure 4.10 does not quite
become discontinuous, whereas when an idealised point charge of zero dimen-
sions is crossing the surface S in Figure 4.1, ¥ is equal to —co at the instant
the charge is crossing the surface. It can be seen that we have removed this
infinity in W by treating a classical point charge as the limiting case of a
line of charge of length 2L, when 2L is made exceedingly small but is kept
finite to fit in with our model of a classical point charge. It is equation (4.85)
that is valid when the classical point charge is crossing the surface S in Figure
4.9.

It is of interest to see why, in the absence of magnetic monopoles, it is
not necessary to add any extra terms to the equations

VXxE=-B (4.90)
§E dl=-d (4.91)

when there is a charge and current distribution at the field point. Consider
the idealized point charge of zero dimensions, that is approaching the surface
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q is below the surface S q is above the surface S

having passed through
the surface

(a) (>

Figure 4.11. The charge g passes through the surface S. The magnetic field lines are upwards
out of the surface both before and after the charge crosses the surface.

S in Figure 4.11(a) with uniform velocity. The charge has passed completely
through the surface § in Figure 4.11(b). Typical magnetic field lines before and
after the charge has passed through the surface § are shown in Figures 4.11(a)
and 4.11(b) respectively. It can be seen that the lines of B are closed circles
which, according to the right-handed corkscrew rule, are in the same direc-
tion for field points in front of and behind the moving charge in Figures 4.11(a)
and 4.11(b). Hence there is no change in the direction of the flux of B through
the surface S, when the point charge of zero dimensions crosses the surface
S and there is no discontinuity in the flux of B to compensate for when
evaluating ®, where ® = J'B . dS is the flux of B through the surface S. If
magnetic monopoles played a significant role in classical electromagnetism,
equations (4.90) and (4.91) would have to be extended. The interested reader
is referred to Rosser [5].

4.8.3. A field point inside a macroscopic charge distribution

Consider the continuous macroscopic charge distribution that is moving with
uniform velocity u in Figure 4.12. Divide the current distribution into a number
of lines of charge parallel to u. Consider an arbitrary surface S inside the
moving charge distribution in Figure 4.12. By applying to the surface S,
equation (4.85) for the lines of charge crossing § and equation (4.86) for the
lines of charge not crossing S and then adding, we have

2<§ B, - dl = u 21 + uoeozj ].SJ,- - dS (4.92)
M M

where ¥’ means summing only over the lines of charge actually crossing the
surface S. Equation (4.92) can be expressed in the form
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MOVING MACROSCOPIC
CHARGE DISTRIBUTION

Figure 4.12. The continuous charge distribution, which is moving with uniform velocity wu, is
divided into a series of convection line currents parallel to u and used to develop the equation
V x B = ny(J + ¢,E) at an internal field point.

%B -dl = u(,JJ - dS + uoeojl'*} . dS

where B = 2B, is the resultant magnetic field E = XK, is the resultant electric
field and J is the current density. Applying Stokes’ theorem of vector analysis
to §B - dl and rearranging we have

J(VxB—qu—uoeol'iJ)-dS=0.

If the surface S in Figure 4.12 is made small enough for the variations of B,
J and E over the surface S to be negligible, then

(VX B - o — pgE) - S =0. (4.93)

Since equation (4.93) must be true for all orientations of the surface § we
conclude that at a field point inside a continuous charge and current distrib-
ution

V x B = p(J + &F). (4.94)

Thus if we start with equation (4.54) as a relation between the field vectors
E and B at a field point in empty space, then the need for consistency, when
there is a current distribution at the field point, leads us to equation (4.94)
which is the same as equation (1.118). An alternative development of equation
(4.94) from equation (4.54) is given in Appendix D.
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4.8.4. The Maxwell-Lorentz equations

We shall now assume that the moving, continuous charge distribution, shown
in Figure 4.12 is exceedingly small so that it corresponds to our model of
an atomic charged particle. If e is the microscopic electric field, b is the
microscopic magnetic field and j™ = p™u is the microscopic current density
at a field point inside the moving charged atomic particle then, if we assume
that equation (4.94) is valid inside the moving charged atomic particle, we
have

V X b = p(J™ + gee). (4.95)

This is the same as equation (1.140). We can now apply the method of
averaging the microscopic fields given in Section 1.11 of Chapter 1 to derive
equation (1.155) which is

V x B = po(J + &K). (4.96)

where E is now the macroscopic electric field, B is the macroscopic magnetic
field and J is the macroscopic current density at a field point inside a macro-
scopic current distribution made up of moving and accelerating charged atomic
particles. The macroscopic vectors E, B and J are defined using equation
(1.147) of Chapter 1.

It follows from equation (4.90) that at a field point inside a moving charged
atomic particle we have

V xe=-b. (4.97)

Following the method leading from equation (4.95) to equation (4.96), we now
have

VXE=-B (4.98)

where E and B are the macroscopic fields.

Summarizing, equations (4.13), (4.17), (4.97) and (4.95) are the Maxwell-
Lorentz equations inside a moving and accelerating classical charged atomic
particle and equations (4.14), (4.18), (4.98) and (4.96) are the corresponding
Maxwell’s equations relating the macroscopic fields at a field point inside a
charge and current distribution made up of moving and accelerating classical
charged atomic particles.

4.9. A charging capacitor in the quasi-stationary approximation

In order to illustrate the application of the Maxwell equation (4.96), we shall
consider the example of the parallel plate capacitor shown in Figure 4.13.
We shall assume that the capacitor plates are in a vacuum and that the plates
are small enough for the fringing electric fields to be very significant, as shown
in Figure 4.13. We shall assume that the frequency of the alternating current
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Figure 4.13. The charging of a capacitor. In this case the fringing electric field is important.

I is low enough for the quasi-stationary approximations to be valid, so that
the current 7 at a given instant can be assumed to have the same value in all
parts of the connecting leads. At large distances from the capacitor, the effects
due to the presence of the capacitor are negligible and the magnetic field B
at a perpendicular distance r from the long straight wire, calculated using
the Biot-Savart law, is given, to a very good approximation, by

_ M
B= oy (4.99)
As we approach the capacitor from the left in Figure 4.13, the effect of the
presence of the parallel plate capacitor becomes more and more important,
when we calculate the magnetic field outside the capacitor by applying the
Biot-Savart law to all the currents in the system, including the currents in
the capacitor plates that give rise to the changes in the charge densities on
the distant parts of the capacitor plates, and the value of B deviates more
and more from that given by equation (4.99). We shall now show how these
results can be interpreted using equation (4.96). Applying equation (4.96) to
the circular disk shaped surface S of radius r and then applying Stokes’ theorem
of vector analysis at a fixed time we have

foB.dS=j§B-d1=uofJ-dS+pﬂeotif (4.100)

where ¥ = j E . dS is the flux of E through the surface S due to the fringing
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electric field due to the capacitor. Since by symmetry B has the same value
at all points on the circumference of the surface S, evaluating 3§B - dl in the
direction of the magnetic field B in Figure 4.13 we have

so that

- Ho '
B= 52 (I +6¥). (4.101)

As the current I charges up the capacitor, the magnitudes of E and W are
increasing. However W is negative for the position of the surface S in Figure
4.13, since E goes through the surface S in the direction opposite to the
direction of a right-handed corkscrew would advance if it were rotated in
the direction in which ¢B - dl is evaluated. Thus, when the capacitor in
Figure 4.13 is charging up, ¥ is negative so that according to equation (4.101)

Hof

Well away from the capacitor, ¥ tends to zero and equation (4.99) is a very
good approximation. The nearer the surface S is to the capacitor the bigger
the numerical values of |¥| and |¥| and according to equation (4.101) the
smaller the magnetic field B becomes.

If the surface S in Figure 4.13 were between the plates of the capacitor
the current density J would be zero everywhere on the surface S and equation
(4.101) would reduce to

Ho€oW

However in this case ¥ and ¥ would both be positive, when the current I in
the connecting leads was increasing, and the direction of I and hence of B were
as shown previously in Figure 4.13. As an example, we shall assume that
the plates of the capacitor in Figure 4.13 are so big that the fringing electric
field can be neglected. It is shown in text books on electromagnetism that,
if Q is the total charge on the positively charged circular capacitor plate, which
is of radius a and area A, then the electric field E between the capacitor
plates is equal to Q/e,A. If the circular disk shaped surface S of radius r is
between the plates and r > a, then the value of the electric flux ¥ crossing
the surface S is (Q/e,A) X A = Q/g,, so that differentiating with respect to
time we have

g, ¥ = ‘:i—? =1 (4.104)

Substituting in equation (4.103) we find that in this special case

B= (4.105)

T 2nr
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The effect of a finite fringing electric field would be to reduce the value of
the electric flux W crossing the surface S which, according to equation(4.103)
would give a lower value for B than given by equation (4.105).

When the surface S in Figure 4.13 is on the right-hand side of the capac-
itor the current I crossing the surface § is finite in equation (4.101), but now
W and ¥ are negative again, when [ is in the direction shown in Figure 4.13
and / is increasing in magnitude, showing that equation (4.102) is again
satisfied.

So far we have assumed in this section that the frequency of the varying
current / in Figure 4.13 is low enough for the quasi-stationary approxima-
tions to be valid. Equation (4.100) is still valid in the general case at a fixed
time, when the current to and from the capacitor is varying at very high
frequencies and whatever the shapes of the capacitor plates and the surface
S. In these conditions we would have to use the retarded potentials or
equation (1.134) of Chapter 1 to determine the magnetic field at a field point
from the current distributions in the leads and the capacitor plates.

4.10. The displacement current and the continuity equation

Many text books still imply that the vacuum displacement current produces
a magnetic field. The following quotation taken from Grant and Phillips [4]
is typical:

The inclusion of displacement current in the electromagnetic field equations
restores a degree of symmetry to electricity and magnetism. A changing
magnetic field produces an electric field according to Faraday’s law. Now
we see that a changing electric field produces a magnetic field.

We showed in Section 1.9.3 of Chapter 1 that, despite its name, the vacuum
displacement current density SOE should not be included as one of the sources
of the magnetic field when the Jefimenko equation (1.134), which is the
solution of the differential equation (1.122) for B, is used to determine the
magnetic field due to a varying current distribution. Neither should the vacuum
displacement current be included as one of the sources of the magnetic field,
when calculating the vector potential A in the Lorentz gauge using the retarded
vector potential, namely equation (2.30). The values of the current density J
at the appropriate retarded times are sufficient to determine A and hence B
in the general case. Furthermore, if there is a current distribution, of current
density J, in an external magnetic field B, there is a magnetic force
(J x B) N m™ on the current distribution, so that, if the vacuum displace-
ment current did behave like a conduction current, then by analogy we would
expect that there would be a force equal to (€;E X B) N m™ on empty space.
However, it is assumed nowadays that there is no such force on empty space.
Hence, un}ike a conduction current, neither does the vacuum displacement
current €,E produce a magnetic field nor is it acted upon by a magnetic field,



146  Chapter 4

showing that the vacuum displacement current has none of the properties of
an electric current. This shows that the roles of the J and €,E terms are com-
pletely different in classical electromagnetism. We showed in Section 2.6.5
of Chapter 2 and in Section 4.6.1 that the equation

V x B = e E (4.106)

at a field point in empty space can be interpreted as a relation between the
field vectors E and B. We showed in Section 4.8.1 that the need for consis-
tency when interpreting equation (4.106) as a relation between the field vectors
E and B requires the addition of the p,J term to the right hand side of
equation (4.106), giving

VxB =y, J+ k) (4.107)

It was shown in Section 1.9.1 of Chapter 1 that it was the addition of the
vacuum displacement current term €,E to Maxwell’s equations that converted
the Laplacians of electrostatics and magnetostatics into D’ Alembertians. For
example, according to equation (1.122)

V2B — pgB = -1V x J. (4.108)

It can be seen from the Jefimenko equation (1.134) that the J term in equation
(4.108) is the source of the magnetic field, whereas it follows from the deriva-
tion of equation (4.108) that the vacuum displacement current term is associated
with the propagation of the electromagnetic interaction at the speed of light
in empty space.

In view of all the above evidence it is a little surprising to find that the
vacuum displacement current term €,E is still treated in some text books as
an electric current which produces a magnetic field. One reason is the his-
torical one. When Maxwell introduced the vacuum displacement current term
the aether theories were generally accepted and Maxwell used a precise model
of the aether. Maxwell also used the Coulomb gauge leading up to our equation
(2.120) of Section 2.8. After the idea that the gE term in Maxwell’s equa-
tions behaved like a current was introduced into the teaching of electro-
magnetism it has remained as such in the minds of many people and has not
yet been thoroughly expurgated from some text books. Another reason why
the €,E term is still treated as a current is the way the ¢ E term is intro-
duced. In our typical approach to electromagnetism in Chapter 1, the vacuum
displacement current term was introduced in Section 1.7 by seeing how the
equation

VXxB=p,J

of magnetostatics had to be modified if it was to become consistent with
equation (1.49), the continuity equation of charge and current densities. This
led to equation (1.113). In many introductory courses the vacuum displace-
ment current is introduced following a discussion of the example shown in
Figure 4.13 for the special case when there is no fringing electric field.
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Since according to equation (4.104)

I= % - f (&,K) - dS = ¥ (4.109)

many authors conclude that the conduction current 7 in the input lead in Figure
4.13 is carried on between the plates of the capacitor by a displacement current
e,¥ between the plates so that in their view the current is continuous. There
is no need to assume that the displacement current €,¥ is an electric current
to interpret equation (4.109).

Consider the distribution of moving classical point charges shown in Figure
4.14. Each charge has magnitude g. Consider the volume V;, shown in Figure
4.14. According to the equation of continuity, equation (1.49)

V.-J+ —aa%=0. (4.110)
Integrating equation (4.110) over the volume V|, and applying Gauss’ theorem

of vector analysis, which is equation (A1.30) of Appendix Al.7, we have

0
[5-as=-2 ] pav (4.111)

Since the divergence of the curl of any vector is zero, it follows by taking
the divergence of equation (4.107) that

V-(J+EOE)=V-(VX%)=O. (4.112)

Figure 4.14. The system of moving classical point charges is used to illustrate the close relation
between the displacement current and the continuity equation for charge and current densities.
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Integrating equation (4.112) over the volume V,, in Figure 4.14 and applying
Gauss’ theorem of vector analysis, we obtain

[3.05-c2[E s (4.113)
Comparing equations (4.111) and (4.113) we see that
0 0
[J-dS——atjpdV——eoath-dS. (4.114)

We can go directly from equation (4.111) to equation (4.113) by putting
p = &V - E in equation (4.111) and applying Gauss’ theorem of vector analysis.

To illustrate equation (4.114) we shall assume that N classical point charges,
each of magnitude g, leave the surface of the volume V| in Figure 4.14
per second. The total charge crossing the surface of the volume V, per second
is

JJ . dS = Ng. (4.115)

Assuming that the total electric charge in the system is conserved, it follows
that the rate of increase of the total charge inside the volume V| in Figure
4.14 is equal to —Ngq. Hence

ai f odV = _Na. (4.116)
t

Every one of the N charges, each of magnitude ¢, leaving the surface of the
volume V, in Figure 4.14 per second takes an electric flux of g/g, with it, so
that the rate of increase of the total electric flux coming from the volume V,

in Figure 4.14 is equal to —-N(g/¢,), so that

SO%JE - dS = -Ng. (4.117)
Comparing equations (4.115), (4.116) and (4.117) we see that
JJ~dS=Nq=—%fpdV=—eOJE-dS=-—eolif. (4.118)

There is no need to assume that the vacuum displacement current is an electric
current to interpret equation (4.109). Equations (4.118) merely show that we
can equate the total electric current j J - dS crossing the surface of the volume
V, in Figure 4.14 to the rate of decrease of the total charge inside V or,
since each classical point charge of magnitude g takes a flux of g/g, with it,
when it leaves the volume V,, we can equate jJ - dS to g, times the rate of
decrease of the total electric flux coming from the surface of the volume V,
due to the decrease in the number of classical point charges left inside V.
In the example of a capacitor in an AC circuit in Figure 4.13 we can
interpret equation (4.109) as follows. We can either equate the conduction
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current / in the connecting wire leading to the positive place of the capac-
itor in Figure 4.13 to dQ/dt the rate of increase of positive charge on the
positive place, or to €, times the consequential rate of increase of the total
electric flux between the plates of the capacitor, which arises from the changes
in the total charge on the capacitor plates due to the conduction current in
the connecting lead.

The erroneous idea that the vacuum displacement current term always
behaves like an electric current is reinforced in the minds of many students
by the continued use of the phrase vacuum displacement current to label the
gE term in Maxwell’s equations. The author has tried for many years to
have it called something else, such as the Maxwell term, but old habits die
hard and so to avoid confusion we have followed standard practice in the
text and used the phrase vacuum displacement current.

Notice that we have always included the word vacuum in the phrase vacuum
displacement current to stress that we have only been considering moving
charge distributions in otherwise empty space. We shall show in Chapter 9 that,
in the presence of dielectrics we must add a P term to the current density J
in equation (4.107) where P is the polarization vector. The varying polar-
ization vector P arises from changes in the positions of atomic charges inside
molecules and consequently behaves like an electric current and gives a con-
tribution to the magnetic field.

4.11. Discussion of Maxwell’s equations

We have now completed our discussions of Maxwell’s equations for the case
of charge and current distributions in empty space, for which ¢, = 1 and
i, = 1 everywhere, though we shall return in Chapter 9 to discuss the form
Maxwell’s equations take at field points inside dielectrics and magnetic mate-
rials. In Chapter 1 we gave an account of how, in introductory courses,
Maxwell’s equations are developed on the basis of very limited experimental
evidence. In Section 2.6 of Chapter 2, we showed how Maxwell’s equations
should be interpreted by applying them to the fields of an oscillating electric
dipole. That interpretation was consolidated in this chapter by deriving
Maxwell’s equations from the expressions for the fields E and B due to a
moving classical point charge. The equation

v.E-F 4.14

e, (4.14)

was interpreted in terms of the result that the total flux of E from a moving

classical point charge of magnitude g is always equal to g/e,. At field points

in empty space, equation (4.14) means that there is no net flux of E from
any surface that does not enclose an electric charge. The equation

V.B=0 (4.18)
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can be interpreted by saying that there are no sources of B, such as magnetic
monopoles, so that there is no net flux of B from any closed surface.
We interpreted the equations

9B
VxE=-5" (4.44)
1 JoE
VxB=5S (4.66)

at a field point in empty space as relations between the vectors E and B and
not as cause—effect relations. We showed in Section 4.8.3 that, for consistency,
we must add the poJ term to the right hand side of equation (4.66) to give

VxB-= c2 aE + 1Y = o + &) (4.96)

when there is a current distribution at the field point. The reader can check
back to show that it is the ,J term in equation (4.96) that ends up as the source
of the magnetic field B in equation (1.134) of Chapter 1 and as the source
of the retarded vector potential A in equation (2.30) of Chapter 2.

In elementary classical electromagnetism, Maxwell’s equations are gener-
ally applied individually, but in more advanced work Maxwell’s equations
are often used collectively, for example to derive equations (1.125) and (1.122)
of Chapter 1 which are

J’E p dJ

2

VE - neg, 372 —V( 0) il vy (1.125)
2

VB — g, aat]? =V xJ (1.122)

and are the partial differential equations for E and B respectively. It is these
equations that are used to interpret electromagnetic waves and which lead to
Jefimenko’s equations (1.136) and (1.134) which relate the fields E and B
to the charge and current distributions.

It was pointed out in Section 1.9.1 that historically it was the addition of
the displacement current term eOE to Maxwell’s equations that converted the
Laplacians of electrostatics and magnetostatics into the D’ Alembertians in
equations (1.125) and (1.122). It was the differential equations (1.125) and
(1.122) which we used in Section 1.9.2 to predict the existence of electro-
magnetic waves in empty space. It is also the differential equations (1.125)
and (1.122) which can be used to determine the fields E and B from the charge
and current distributions, which are the sources of the electromagnetic field.
Maxwell’s equations were used in Chapter 2 to derive the differential equa-
tions for the potentials ¢ and A, the solutions of which are given in the Lorentz
gauge by the retarded potentials.

When we have stressed that, in the context of classical electromagnetism,
there is no need to say anything about what happens in the empty space
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between moving charges, we were emphasising the fact that there is no need
to introduce any mechanical aether models. We were trying to break the chain
in which students are still taught these days by somebody who was taught
by somebody . . . who was taught by somebody who was taught by somebody
when the mechanical aether theories were in fashion. In emphasising that
we need not say anything about what may or may not happen in the space
between moving charges, we have probably gone too far, as we must remember
that wherever there is a moving test charge in an electromagnetic field, it expe-
riences a force given by the Lorentz force law, equation (1.1). This shows
that there is in the electromagnetic field a capacity to impart energy and
momentum to test charges wherever they are. We shall therefore find it con-
venient in Chapter 8 to attribute energy and in some cases momentum to the
electromagnetic field. For example, it is assumed in classical electromagnetism
that the radio waves emitted by a transmitting antenna travel outwards in all
directions and are present in empty space, whether there is a test charge there
or not, and even if the transmitting antenna has been subsequently destroyed.
We must also remember that there is a more comprehensive theory than
classical electromagnetism, namely quantum electrodynamics in which the
electromagnetic interaction is interpreted in terms of the exchange of real
and virtual photons.

Some readers may like to adopt a similar attitude to classical electro-
magnetism, to that which most people have towards quantum mechanics, where
the wave function is treated as a quantity that can be determined by solving
Schrodinger’s equation subject to the appropriate boundary and continuity
conditions. The wave function can then be used to make predictions about
observable quantities such as the energy and momentum of a particle. By
analogy with quantum mechanics, we could, in the context of classical elec-
tromagnetism, treat the fields E and B as theoretical quantities that could be
determined by solving equations (1.125) and (1.122) respectively. The values
of E and B could then be related to observable quantities, for example using
the Lorentz force law. However, unlike the wave function of quantum
mechanics, we can give operational definitions for the field vectors E and B
using the Lorentz force law, equation (1.1), which was used in Section 1.2.4
of Chapter 1 to give an operational definition of E and in Section 1.4.2 of
Chapter 1 to give an operational definition of B. Consequently many people
prefer to interpret Maxwell’s equations as relations between operationally
defined quantities. However in this interpretation also, the operationally defined
vectors E and B must ultimately be related back to experiments using the
Lorentz force law or relations derived from it. At this stage it is worth
reminding ourselves of the role of force laws in classical physics by consid-
ering a simple example based on Newton’s law of universal gravitation.

We shall only consider the low velocity limit, so that Newton’s laws
of motion can be applied. At first sight, Newton’s second law in the form
F = ma might appear to be no more than a definition of force. In practice, when
F = ma is applied, it is assumed that the force F is known from a force law,
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such as Newton’s law of universal gravitation. As an example, consider two
isolated particles 1 and 2 of known masses m, and m, respectively, situated
a distance r apart. The gravitational force of attraction between the particles
accelerates the particles. These accelerations can be determined from the
changes in the motions of the particles. If the masses of the particles are known,
the force acting on each particle at the separation r can be calculated using
F = ma. The experiment can be repeated for different values of r, the
separation of the particles. A general pattern will emerge, which can be sum-
marized in Newton’s law of universal gravitation, according to which the
gravitational force of attraction between the two particles is given by

Gm,m,

r2

where the gravitational constant G has the experimental value of 6.67 x 107™"!
N m? kg™. According to equation (4.119) every particle in the Universe attracts
every other particle with a force given by this equation. If we are later pre-
sented with a gravitational problem, such as the motion of a particle in the
Earth’s gravitational field, then, on the basis of our previous experimental
investigations, summarized in equation (4.119), we can use that equation to
determine the total gravitational force F acting on a particle of mass m from
the positions of the other particles. According to Newton’s second law, the
acceleration of the particle is equal to F/m, and the subsequent motion of
the particle can be calculated. This illustrates how, when Newton’s second
law of motion is generally applied in practice, it is assumed that the force acting
on the particle is known from a force law, such as Newton’s law of universal
gravitation. In the case of electrostatics, on the basis of previous experiments
we can, if the charge distributions are known, use Coulomb’s law, or equations
derived from it, to make quantitative predictions of what the electric force
on a test charge will be, which can then be used to predict the subsequent
motion of the charge. Similarly, on the basis of previous experiments, we
can, if the current distributions are given, determine B quantitatively, for
example using equation (1.134) of Chapter 1, or using the retarded vector
potential given by equation (2.30) of Chapter 2. This value of B can then be
used in the Lorentz force law to predict the magnetic force on a moving charge,
which can then be used to predict the subsequent motion of the charge.

Up to radio frequencies, we can generally treat problems in electro-
magnetism using only classical electromagnetism, and the theory can be related
to experiments using the Lorentz force law, or relations derived from it.
However, when we reach optical frequencies it is best to interpret the inter-
action of electromagnetic waves with matter in terms of the absorption of
individual photons from the electromagnetic wave, so that quantum theory must
be applied to the interactions. For example, it is the absorption of individual
photons that affects the silver bromide grains in a photographic plate such
that the grains turn to silver when the plate is developed. However, even at
optical frequencies, Maxwell’s equations or the equations for the potentials

F = (4.119)
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¢ and A can still be used to estimate the probabilities that photons will
interact at various positions on a screen, for example in a diffraction experi-
ment. We shall return to discuss this probabilistic interpretation in Section
4.13.5.

4.12. Comparison of the use of the potentials ¢ and A with the use of
the fields E and B

It is often more convenient to use the potentials ¢ and A rather than E and
B. In Chapter 2, we used Maxwell’s equations to derive the equations:

2 Lﬂ _ P
Vi -5 --2 (4.120)
1 A J

2 1LO0A o J
vA_c2 o MoJ £

0c2

(4.121)

for the scalar potential ¢ and the vector potential A in the Lorentz gauge, in
which the Lorentz condition

19y _
V. A+ o2 '—aT =0

is used to specify V - A. It is more economic in the number of variables if
we use the potentials ¢ and A rather than E and B, since in the case of the
potentials the four variables ¢, A,, A, and A, suffice whereas we need six
components when we use E and B. Hence a strong case can be made for taking
the equations for the potentials rather than Maxwell’s equations as our axioms
for the theory of classical electromagnetism. For example we could assume
that ¢ and A are variables that are the solutions of the partial differential
equations (4.120) and (4.121) respectively, the solutions of which are given
by the retarded potentials. The potentials ¢ and A can then be related to
experiments using the Lorentz force equation (1.1) acting on a moving test
charge g after defining E and B using the equations

E=-_Vo- aa—‘? (4.122)

B=VxA. (4.123)

If we did not want to mention the fields E and B we could rewrite the Lorentz
force law in the form

F =gV - A) + qu x (V x A). (4.124)

Alternatively we could avoid the use of the field vectors E and B by using
either Lagrange’s equations or Hamilton’s equations. It can be shown, see
for example Rosser [6], that if the Lagrangian L of a classical point charge
of magnitude g and (rest) mass m,, which is moving with a relativistic
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velocity u in an electromagnetic field described by potentials ¢ and A is defined
to be

u2 172
L=m0c2{1—(1—?) }—q¢+q(u-A) (4.125)
then the application of Lagrange’s equations gives the Lorentz force law. In
the low velocity limit when u < ¢, we can use the Lagrangian

L= %molﬁ — g + q(u - A). (4.126)

Similarly if the Hamiltonian H is defined to be
H = g + c{mic* + (P — qgA)*}? (4.127)

where P is the generalized momentum, then application of Hamilton’s equa-
tions also leads to the Lorentz force law. The use of equations (4.125) and
(4.127) can simplify the solution of many problems. The expression for the
Hamiltonian given by equation (4.127) is often used to set up the appropriate
differential equation for the wave function in quantum mechanics.

Summarizing, instead of taking Maxwell’s equations as axiomatic, we could
just as well choose the equations for the potentials ¢ and A as our axioms
which would be checked a posteriori by comparing the predictions of the theory
based on the potentials with the experimental results. In such an approach
we could treat the potentials ¢ and A as theoretical quantities which are the
solutions of equations (4.119) and (4.120) subject to the appropriate boundary
and continuity conditions. These values of ¢ and A can be related to experi-
ments using, for example, the Lorentz force law in the form given by equation
(4.124) or using the Lagrangian given by equation (4.125) and Lagrange’s
equations or using the Hamiltonian given by equation (4.127) and Hamilton’s
equations. On the other hand some readers may prefer to think of ¢ and A
as quantities that can be defined operationally. In Section 1.2.10 of Chapter
1, we defined ¢ operationally in terms of the potential energy of a test charge
using equation (1.35). In Section 8.8.3 of Chapter 8 we shall show that when
a charge q is at rest at a field point where the vector potential is A, there is
a contribution of gA to the total “electromagnetic momentum” of the field.
This “potential momentum” can appear as an increase in the momenta of the
charges in the system, if the experimental conditions are changed. The vector
potential will be defined operationally in Section 8.8.3 as the ratio of this
“potential momentum” to the magnitude of the test charge ¢ in the limit as
q tends to zero. Reference: Konopinski [7]. The differential equations (4.120)
and (4.121) can therefore be interpreted as relations between operationally
defined quantities ¢ and A if the reader so wishes, but again the operationally
defined quantities ¢ and A must ultimately be related back to experiments using
equations (4.124), (4.125) or (4.127).

If we did take the equations for the potentials ¢ and A as our axioms, we
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could then reverse the arguments of Section 2.2 to derive Maxwell’s equa-
tions as follows. If we defined E and B in terms of ¢ and A using equations
(4.122) and (4.123) then, since the divergence of the curl of any vector is
zero by taking the divergence of both sides of equation (4.123) we would
have

V.B=V.(VxA)=0. (4.128)

Taking the curl of both sides of equation (4.122) and using the fact that
V x (V¢) is always zero, we would have

B
ot ’
Thus two of Maxwell’s equations, namely equations (4.128) and (4.129) would
follow directly from the definitions of E and B in terms of ¢ and A. Using

equation (A1.27) of Appendix A1.6 to substitute for V’A in equation (4.120)
we would obtain

V><E=—V><(V¢)—V><A=O—%(V><A)=— (4.129)

—V><(V><A)+V(V-A)—i2a—t2 —UoJ. (4.130)
From the Lorentz condition V - A = —¢/c® and from equation (4.123)
V x A = B. Hence equation (4.130) would become
_ 1 9¢ ) 1 d ( JdA )
VXB_V(_CZ_BT “2or\or )t
v B ma-n(s3)
=27 Vo - + Uod = Wl &= Y +J (4.131)

Notice that the vacuum displacement current term would come out naturally
from the A/c® term in equation (4.121) plus the Lorentz condition. Since
V¢ = V . (V¢) and since by differentiating the Lorentz condition we would
have

, 3 '
%=_a—t(V.A)=_V.A
then equation (4.120) could be rewritten in the form

v.(-V¢-A)=V-E=—§-. (4.132)
0

This would complete the derivation of Maxwell’s equations, if the equations
for the potentials ¢ and A were taken as axiomatic.

It does not matter, in the strict context of classical electromagnetism,
whether we use the fields E and B and take Maxwell’s equations as axiomatic
or whether we use the potentials ¢ and A and take the equations (4.120) and
(4.121) for the potentials as axiomatic. The two approaches are just alterna-
tive ways of expressing the laws of classical electromagnetism. Whichever
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set of axioms that is adopted can be used to derive the other set of axioms.
However it has been argued on the basis of experiments on the Bohm-Ahranov
effect that, in the wider context of quantum mechanics, the potentials ¢ and
A are more useful than the field vectors E and B. A reader interested in an
introductory account of the Bohm-Ahranov effect is referred to Feynman,
Leighton and Sands [8], who consider a two slit interference experiment
using electrons.

4.13. Historical note on the development of classical electromagnetism
and the nineteenth century aether theories

4.13.1. The luminiferous aether

After the initial success of Newtonian mechanics, it seemed plausible to try
to explain all natural phenomena in terms of Newtonian mechanics, particu-
larly as the concepts of mechanics were familiar to people in their daily lives.
This approach proved very successful in the case of sound. Sound will not
travel through a vacuum and must have a material medium to transmit it. Sound
is now interpreted as an elastic wave propagating through a material medium
which can be a solid, liquid or a gas.

In the same way, attempts were made to interpret light in terms of mechan-
ical models, and two theories arose. One was the corpuscular theory, in which
light was pictured as a stream of little corpuscles. It was assumed that these
small corpuscles obeyed the laws of mechanics, and produced the sensation
of light when they struck the eye. The other theory was the wave theory.
The corpuscular theory remained pre-eminent until the beginning of the nine-
teenth century, when Young investigated the interference of two beams of light.
Young and Fresnel were able to account for the newly observed phenomena
of interference and diffraction on the wave theory, and from that time onwards
the wave theory came to be accepted. Since sound will not travel through a
vacuum and must have a material medium to transmit it, it seemed plausible
in the early nineteenth century to assume that, if light was a form of wave
motion, then there should be a light transmitting medium present in a vacuum,
as well as inside a material medium, that was able to transmit the vibrations
constituting light. This hypothetical light transmitting medium was called
the aether. The idea of the aether arose originally in Greek science where it
was introduced as an element in addition to the four elements of fire, earth,
water and air. It was assumed in ancient cosmology that the aether filled the
celestial regions.

In 1828, Poisson showed that both longitudinal and transverse elastic waves
can be propagated in a solid. The velocities of longitudinal and transverse
elastic waves in a solid are [(K + 4G/3)/p,]'* and [G/p,]"* respectively,
where K is the bulk modulus, G is the rigidity modulus and p,, is the mass
density of the solid. In order to account for the phenomenon of the polariza-
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tion of light on the wave theory, light was pictured as a transverse wave motion.
No longitudinal light waves have ever been observed. For transverse waves
to exist in a solid, the rigidity modulus G must be finite. Since solids contract
under pressure, the bulk modulus K is positive, so that if G is finite
(K + 4G/3) must be finite for a solid, so that longitudinal as well as trans-
verse waves should propagate in an elastic solid, Since no longitudinal light
waves have ever been observed, it was concluded that the hypothetical aether
could not be a normal elastic solid. Neither could the hypothetical aether be
a perfect fluid, since the rigidity modulus G of a gas or a liquid is zero, in
which case there would be no transverse waves in the hypothetical aether. It
was concluded that the hypothetical aether had to be a new type of elastic
medium. A large number of extremely complicated mathematical and mechan-
ical models were suggested in the nineteenth century. For example, in 1889
Kelvin suggested a mechanical model for an element of the aether which
consisted of rotating gyroscopes. This model was able to resist all rotatory dis-
turbances, but was unable to resist translatory movements. An aether
constructed of such elements would be able to transmit transverse but not
longitudinal waves. Reference: Schaffner [9].

4.13.2. The electromagnetic aether

At the beginning of the nineteenth century, it was suggested that a type of
aether transmitted the electric forces between electric charges and the magnetic
forces between permanent magnets, though people were not sure whether or
not this aether was the same as the light transmitting aether. For example,
Young wrote: “Whether the electric aether is to be considered the same with
the luminous aether, if such a fluid exists, may perhaps at some future time
be discovered.”

Faraday pictured electric and magnetic forces in terms of lines of force. This
picture was developed mathematically by Maxwell who used the concepts
of electric and magnetic lines of force. A line of force was what we have called
an electric or a magnetic field line. It was assumed that the electric lines of
force were in a state of tension. On this model, it was assumed, for example,
that the lines of force which started on a positive electric charge and ended
on a negative charge behaved like stretched rubber bands pulling the charges
towards each other. In order to satisfy the condition that the aether had to be
in equilibrium under the influence of electrostatic forces, it was assumed that
the electric field lines repelled each other in the transverse direction giving
rise to a pressure at right angles to the lines of force. It was assumed that
this pressure was transmitted by an aether. A similar interpretation was devel-
oped for the transmission of magnetic forces in terms of magnetic lines of
force. This latter model is still often used in plasma physics where it is often
assumed that the magnetic field lines are under a tension of (B%,) newtons
per square metre and that there is a magnetic pressure of (B%2p,) pascals.

Using a complicated model of the aether, in which he assumed that the aether
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consisted of vortices, idler wheels etc, and using mechanical ideqs, Maxwell
concluded in 1862 that the vacuum displacement current term €,E should be
added to equation (1.89). References: Maxwell [10], Tricker [11] and Rosenfeld
[12]. This in turn led Maxwell to the theory of electromagnetic waves in empty
space. After the identification of electromagnetic waves with light waves, it
was generally assumed that the same aether transmitted electric forces,
magnetic forces and light. Interpretations of electromagnetism were developed,
in which it was assumed that, according to Faraday’s law of electromagnetic
induction, varying magnetic fields in the aether generated electric fields in
the aether and that varying electric fields, that is displacement currents in
the aether, generated magnetic fields. It was assumed that in electromagnetic
waves, varying magnetic fields generated varying electric fields which in
turn generated varying magnetic fields which generated varying electric fields
and so on leading to wave propagation in the aether. Many complicated models
of the aether were developed during this period. The mechanical aether theories
became more and more complicated as they tried to account for a wider and
wider range of phenomena. For example, Kelvin went so far as to suggest
that atoms might be vortices in the aether. The interested reader is referred
to Whittaker [13] or Schaffner [9]. These complicated models of the aether
gave rise to no observable effects other than the electromagnetic forces they
were meant to interpret. To quote Born [14]

If we were to accept them literally, the aether would be a monstrous mech-
anism of invisible toothed wheels, gyroscopes and gears intergripping in the
most complicated fashion, and of all this confused mess nothing would
be observable but a few relatively simple forces which would present
themselves as an electromagnetic field.

Towards the end of the nineteenth century, the view was beginning to arise
that one should merely accept that the laws of electromagnetism describe
the electromagnetic forces between moving charges, and one should not try
to interpret the electromagnetic forces themselves in terms of a mechanical
aether, whose properties could not be measured. For example, in his book
on electric waves, Hertz [15] wrote

To the question ‘what is Maxwell’s theory?’ I know of no shorter or more
definite answer than the following. Maxwell’s theory is Maxwell’s system
of equations.

To this concise statement, the author would just add the statement that the vari-
ables in Maxwell’s equations can be related to observable effects using the
Lorentz force law.

4.13.3. The rise of the theory of special relativity

By the year 1900, the mechanical theories of the aether had been largely
abandoned, but one difficulty still remained. It was still generally believed that
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the Galilean transformations, which were based on Newtonian mechanics
and the concept of absolute time, were correct. Maxwell’s equations and the
laws of electromagnetism do not satisfy the principle of relativity, if the
coordinates and time are transformed from one inertial reference frame to
one that is moving with uniform velocity relative to the first using the Galilean
transformations. It was concluded initially that Maxwell’s equations could only
be applied in one absolute reference frame, which was generally identified with
the reference frame in which the hypothetical aether was at rest. This can be
illustrated by considering the speed of light in empty space. For purposes of
discussion we shall assume, by analogy with sound, that the speed of light
is the same and equal to ¢ in all directions in the reference frame in which
the aether is at rest. Let the Earth move with velocity v relative to the aether.
If the Galilean velocity transformations were applied the speed of light in empty
space should vary in the laboratory frame, in which the Earth is at rest, from
(¢ — v) in the direction in which the Earth is moving relative to the aether to
(c + v)in the opposite direction. Hence, if the Galilean transformations could
be applied to light waves then, by measuring the speed of light in different
directions in the laboratory reference frame, it should have been possible to
determine the velocity of the Earth relative to the aether. The most famous
of the experiments was carried out by Michelson and Morley [16] in 1887.
All such experiments failed to determine the speed of the Earth relative to
any absolute reference frame.

The way Einstein overcame this dilemma in 1905 was to assume that the
laws of electromagnetism, namely Maxwell’s equations, held in all inertial ref-
erence frames, even though this meant abandoning the Galilean transformations
in favour of the Lorentz transformations. This in turn lead to a revision of
the Newtonian concepts of absolute space and absolute time. Thus, according
to special relativity there is no absolute reference frame in which and only
in which Maxwell’s equations are valid. The predictions of the theory of special
relativity have been confirmed by experiments. Reference: Rosser [17]. We
shall return to discuss special relativity in more detail in Chapter 10.

The view that prevailed after the rise of the theory of special relativity
can be summarized by the following quotation from a book written by Born
[14] in 1924.

Light or electromagnetic forces are never observable except in connection
with bodies. Empty space free of all matter is no object of observation at
all. All that we can ascertain is that an action starts out from one material
body and arrives at another material body some time later. What occurs
in the interval is purely hypothetical, or, more precisely expressed, arbitrary.
This signifies that theorists may use their own judgement in equipping a
vacuum with phase quantities (denoting state), fields, or similar things, with
the one restriction that these quantities serve to bring changes observed with
respect to material things into clear and concise relationship.

This view is a new step in the direction of higher abstraction and in
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releasing us from common ideas that are apparently necessary components
of our world of thought. At the same time, however, it is an approach to
the ideal of allowing only that to be valid as constructive elements of the
physical world which is directly given by experience, all superfluous
pictures and analogies which originate from a state of more primitive and
more unrefined experience being eliminated.

From now onwards aether as a substance vanishes from theory. In its
place we have the abstract ‘electromagnetic field’ as a mere mathematical
device for conveniently describing processes in matter and their regular
relationship.

This is the approach we have been trying to cultivate. The equations of elec-
tromagnetism give the electric and magnetic fields due to a system of moving
charges. From these fields the force that would act on a moving test charge
at any field point in empty space can be calculated using the Lorentz force
law. In the context of classical electromagnetism, it is the effects of the forces
on charges that are observed experimentally, for example the conduction current
produced in a receiving antenna by a radio wave.

4.13.4. Discussion of the mechanical models of the aether and their
aftermath

The mechanical models of the aether helped in the historical development of
Maxwell’s equations. For example, Maxwell was using a mechanical model
of the aether when he developed the idea of the displacement current. These
mechanical models have been compared to the scaffolding used when building
a house. When the house is finished the scaffolding can be taken down and
forgotten. It does not matter how Maxwell’s equations were originally arrived
at, the important thing is that they can be applied to make reliable predic-
tions in the context of classical electromagnetism.

In our approach to classical electromagnetism, we have eliminated all
hypotheses about what may or may not happen in the empty space between
a charge distribution and a field point. If hypotheses, such as a mechanical
aether theory, are introduced which lead to no extra experimental result other
than the electromagnetic forces themselves, we cannot rule out these
hypotheses on the basis of the experimental evidence. Our attitude is that
such mechanical hypotheses are superfluous. To quote Schaffner [18]:

the nineteenth-century aether has been relegated to that Ideal Realm
populated by Caloric, Phlogiston, Epicycles, and other scientific concepts
that have done their work so well as to have forced science beyond them.

In retrospect the mechanical models of the aether introduced in the second half
of the nineteenth century should not be viewed as attempts to produce exact
replicas of the aether, reducing everything to the laws of mechanics. The
prevailing attitude even then was that they were trying to devise possible
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mechanical models (or analogues) that could be used to illustrate the laws
of electromagnetism in terms of the laws of Newtonian mechanics, which
had been so successful in interpreting so many of the phenomena they encoun-
tered in their daily lives. They felt that they had a feel for and understood
the laws of mechanics. For example, Kelvin wrote: “I am never content until
I have constructed a mechanical model of the object I am studying. If I succeed
in making one, I understand; otherwise I do not’. After using a precise mechan-
ical model of the aether in the paper in which he first introduced the vacuum
displacement current, Maxwell went on to comment later in his Treatise:

The attempt which I then [in 1862] made to imagine a working model of
this mechanism must be taken to be no more than it really is, a demon-
stration that mechanism may be imagined capable of producing a connexion
mechanically equivalent to the actual connexion of the parts of the elec-
tromagnetic field. The problem of determining the mechanism required to
establish a given species of connexion between the motions of the parts
of a system always admits of an infinite number of solutions.

In 1865 Maxwell wrote:

I have on a former occasion attempted to describe a particular kind of motion
and a particular kind of strain, so arranged as to account for the phenomena.
In the present paper I avoid any hypothesis of this kind; and in using such
words as electric momentum and electric elasticity in reference to the known
phenomena of the induction of currents and the polarization of dielectrics,
I wish merely to direct the mind of the reader to mechanical phenomena
which will assist him in understanding the electrical ones. All such phrases
in the present paper are to be considered as illustrative, not as explana-
tory.

It is of interest to note that in the twentieth century there has been a complete
reversal of roles. Nowadays, instead of trying to interpret electromagnetic
forces in terms of mechanical models, we now try to interpret the mechan-
ical properties of solids and fluids in terms of atomic theory and quantum
mechanics using electromagnetic forces.

Some ideas based on the nineteenth century mechanical models of the aether
are still prevalent in the teaching of some branches of classical electro-
magnetism, such as plasma physics. These models should now be looked
upon simply as mechanical analogues. As an illustrative example, assume
that a mechanical analogue of an oscillating LCR circuit is an oscillating simple
pendulum with a damping term proportional to the velocity of the pendulum.
The physical principles are completely different in the two cases, but both
systems are described by the same mathematical equation, namely the dif-
ferential equation of damped harmonic motion. If the solutions of the
mechanical case are known, or can be developed from mechanical insight or
experience, then these solutions can often be adapted to the electrical case
by interchanging the corresponding terms in the mathematical equations



162  Chapter 4

describing the systems. It will be shown later in Section 8.2 of Chapter 8
that, starting with the Lorentz force giving the electromagnetic force on a finite
current distribution and using Maxwell’s equations we can rewrite the total
force on a current distribution in a mathematical form that is the same as if
the magnetic field lines were in a state of tension equal to (B%1,) newtons
per square metre and as if there were a magnetic pressure equal to (B*/2),)
pascals. If we know the solutions of these mechanical analogues from the prop-
erties of rubber bands and fluids, these solutions can often be adapted to the
electromagnetic case. The use of such analogues need not imply a reality to
magnetic field lines, that behave like rubber bands.

In the text, electric and magnetic fields are sometimes represented graph-
ically by imaginary field lines, drawn at a fixed time such that the direction
of the tangent to the field line at a point is in the direction of the electric
field E (or the magnetic field B) at that point at that instant. The number of
field lines is generally limited such that the number of field lines per square
metre crossing a surface at right angles to the field line is equal to, or if
more convenient is proportional to, the value of the electric (or magnetic) field
at that point. The field lines are closest together where the field strengths
are greatest. In this way, all we have done is to give a graphical, pictorial
representation of the magnitude and direction of the electric (or magnetic) field
at every point of space at one given instant of time. Many people find this a
more helpful way of thinking about electromagnetic problems than using
tabulated values of the field vectors E and B.

As an analogy consider an ordinance survey map that shows the contour
lines. One could just as well use a table of geographic coordinates and their
altitudes above sea level. This is all the information a walker needs to plan
a suitable walk, but many walkers would prefer to have the same data pre-
sented in the form of a contour map, as, with experience, many walkers
would find it easier to visualize and plan a walk using the contour map. In a
similar way, many scientists find it easier to think about classical electro-
magnetism using electric and magnetic field line diagrams, rather than using
tabulated values of the fields. Field line diagrams are used in the text whenever
they help to illustrate the interpretation of Maxwell’s equations etc, but we
shall not attribute any independent reality, such as mechanical properties, to
these field lines. Field line diagrams are just a convenient pictorial way of pre-
senting the data about the direction and magnitude of the electric (or magnetic)
field at one instant of time.

4.13.5. The advent of quantum theory

In 1900, Planck introduced the quantum theory of radiation and in 1905
Einstein interpreted the photoelectric effect in terms of the interactions with
individual electrons of individual photons of energy hAv, where & = 6.625 X
107*J s is Planck’s constant and Vv is the frequency of the light. Some readers
may already like to think of a light beam as consisting of a stream of an
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extremely large number of photons moving from the light source with the speed
of light. This goes beyond classical electromagnetism, which must be extended
to incorporate the effects of quantization. The starting point for the quanti-
zation of the electromagnetic field is generally the equations for the potentials
¢ and A. Reference: Heitler [19].

Photons are the quanta (or carriers) of the electromagnetic interaction.
Photons are emitted when electric charges are accelerated, and they give the
main contribution to the electromagnetic interaction in the radiation zone. In
the near zone, that is for radial distances r < A/27 in the case of the oscil-
lating electric dipole, where the electric and magnetic field contributions given
by equations (2.46), (2.56) and (2.57), predominate and the acceleration depen-
dent fields are negligible in comparison, the electromagnetic interaction
between moving charges has been interpreted in terms of the exchange of
virtual photons, which are the carriers of the electromagnetic interaction.
In the case of a virtual photon, one electric charge emits a photon which is
absorbed by another electric charge within a very short time interval Az.
According to the uncertainty principle, the uncertainty AE in energy in the time
interval At can be of the order of A/(2r At). The theory of quantum electro-
dynamics is a more comprehensive theory than classical electromagnetism.
Having pointed out the existence of quantum electrodynamics and made a
few comments, we shall not consider the theory further and we shall ignore
all effects arising from the finite value of Planck’s constant. A reader inter-
ested in a fuller account of the roles of real and virtual photons is referred
to Lawson [20]. A reader interested in quantum electrodynamics is referred
to Mandl and Shaw [21].

Even though light beams are composed of photons, Maxwell’s equations
or the equations for the potentials ¢ and A can still be used to give a com-
prehensive interpretation of physical optics. Reference: Born and Wolf [22].
The reason for this success is that photons are non-interacting bosons and obey
Bose-Einstein statistics. There is no restriction on the number of photons
that can be in a single-particle (photon) quantum state. In most laboratory
experiments in optics and radio there are generally an exceedingly large number
of photons in the same state. As an example, consider an idealized light
source which emits 10W of monochromatic light of wavelength 600 nm. The
energy of each photon is Av = hc/A = 3.3 x 107 J =2.07 eV. At a distance
of 1m from such a light source, there are 2.4 X 10'® photons crossing 1 m?
per second, which is an exceedingly large number. If such a monochromatic
light source is used to produce an interference pattern on a screen, due to
the persistence of vision of the eye we cannot see the effects of individual
photons’ hitting the screen, but we see what seems to the eye to be a complete
interference pattern. If we photograph the interference pattern using a very
weak source and a very short exposure time, we will not get a photograph
of a complete, continuous interference pattern on the film but we will get a
series of dots where individual photons have struck the photographic plate.
The wave theory can be used to predict the probability that a photon will hit



164  Chapter 4

a certain region of the screen. If the source is a radio transmitter emitting
10W of radio waves of frequency 3 X 10°® Hz and wavelength 1m, then at a
distance of 100 km from the source there are still 4 x 10'* photons crossing
1 m? per second. Thus in practice, radio detectors generally measure the super-
imposed contributions of a very large number of photons in the electromagnetic
wave, which add up to give the radiation electric and magnetic fields in the
electromagnetic wave. The response of the radio detector can be interpreted
classically in terms of the radiation electric and magnetic fields of the elec-
tromagnetic wave.

The reason why the laws of classical electromagnetism can be used to inter-
pret physical optics is summarized in the following quotation from Feynman,
Leighton and Sands [23].

When we have the wave function of a single photon, it is the amplitude
to find a photon somewhere. Although we haven’t ever written it down there
is an equation for the photon wave function analogous to the Schrédinger
equation for the electron. The photon equation is just the same as Maxwell’s
equations for the electromagnetic field, and the wave function is the same
as the vector potential A. The wave function turns out to be just the vector
potential. The quantum physics is the same thing as the classical physics
because photons are non-interacting Bose particles and many of them can
be in the same state — as you know they like to be in the same state. The
moment you have billions in the same state (that is, in the same electro-
magnetic wave), you can measure the wave function, which is the vector
potential directly. Of course, it worked historically the other way. The first
observations were on situations with many photons in the same state, and
so we were able to discover the correct equation for a single photon by
observing directly with our hands on a macroscopic level the nature of wave
function.

Thus Maxwell’s equations or the equations for the potentials ¢ and A can be
used to interpret physical optics. Once ¢ and A or E and B are calculated
from the charge and current distributions, the energy density of photons in
empty space is generally estimated using the expression (€,E%2 + B%/2)1,). That
electric and magnetic radiation fields can be associated with individual photons
is illustrated by the photo-disintegration of a deuteron by a high energy
v-ray. At photon energies a few keV above threshold, the photo-disintegra-
tion of the deuteron is due mainly to electric dipole absorption. The proton
arising from the disintegration is emitted preferentially in the direction of
the electric vector of the incident photon. Reference: Wilkinson [24]. It is
the contributions of the large number of photons in an electromagnetic wave
which add up to give the radiation electric and magnetic fields of classical
electromagnetism.

According to quantum mechanics, the wave properties of individual photons
are interpreted in a similar statistical way to the wave properties associated
with individual electrons. It is natural to accept that just as electrons can



Development of Maxwell’s equations 165

travel through a vacuum, individual photons, such as y-rays can also travel
through a vacuum without a light transmitting medium such as an aether. In
the nineteenth century, it was believed that light was a continuous wave motion
in a continuous medium. It was reasonable to postulate a mechanical aether
in such circumstances. No mechanical aether is needed to let photons, such
as y-rays, go through a vacuum.
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CHAPTER 5

Electric fields due to electrical circuits

5.1. Introduction

It is important to distinguish two different contributions to the total electric
field due to the current flowing in an electrical circuit. First there are the
electric fields, denoted E, due to the surface and boundary charge distribu-
tions that give the appropriate value for the resultant electric field in the various
parts of the circuit so as to give the same value of current in all parts of a series
circuits when the current is steady or is varying at mains frequency. The
properties of these electric fields due to surface and boundary charge distri-
butions are discussed in detail in Appendix B. Secondly there are the electric
fields due to the moving and accelerating conduction electrons and stationary
positive ions inside the conductors making up the circuit. The formulae for
the electric fields due to the moving conduction electrons and stationary
positive ions will be derived in this chapter using the expression for the electric
field due to an accelerating classical point charge, which is given by equation
(3.10).
It is important to consider three frequency ranges, namely

(a) DC or steady current flow.

(b) AC variations at mains frequency when the quasi-stationary approxima-

tions are valid.
(c) Frequencies much higher than mains frequency when the contributions
of the radiation electric fields are important.

If the mains frequency is 50 Hz, the wavelength of the electromagnetic vari-
ations is 6000 km so that A/2x is equal to about 1000 km. Hence, for laboratory
experiments carried out at mains frequency, we are always in the near zone
and we can generally ignore the radiation electric fields that arise from the
E, term in equation (3.10), which gives the electric field due to an acceler-
ating classical point charge. Hence for DC circuits and at mains frequency
we generally only need to use the E, contribution given by equation (3.11)
to determine the electric field due to a current element. Before going on to
do so, we shall derive the expression for the number of moving conduction
electrons counted by the information collecting sphere inside a current element.
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Figure 5.1. The counting of moving charges by the information collecting sphere that reaches
the field point P at the time of observation ¢.

5.2. The counting of moving charges by the information collecting sphere

Consider the line of moving classical point charges shown in Figure 5.1. We
shall determine the number of moving charges counted by the information
collecting sphere that reaches the field point P at the time of observation t.
Consider the section AB, which is of infinitesimal length d/. The distance
from A, which is at the bottom end of d/, to the field point P is equal to R.
We shall assume that all the charges are moving upwards with the same velocity
[u] at the retarded time #* = (t — R/c) when the information collecting sphere
passes the point A in Figure 5.1. It can be seen from Figure 5.1 that the
point B, which is at the top end of the section of length d/ is at a distance
dl cos O closer to the field point P than the point A, where 0 is as shown in
Figure 5.1. In the case when the charges are moving upwards 0 is equal to
the angle between [u] and R. The information collecting sphere passes B a
time (d/ cos 0)/c after it has passed A. In the time interval (d/ cos 0)/c,
all the charges move upwards with a velocity [u] covering a distance of
[u/c]) dI cos 0. Since dl is infinitesimal, we can neglect the effect of any
accelerations of the charges on the total distances the charges travel in the
infinitesimal time (d! cos 0)/c. A charge that was at the position C in Figure
5.1 at a distance [u/c](dl)cos 6 below B at the time t* = (¢t — R/c), when the
information collecting sphere passes A, reaches B at the instant the informa-
tion collecting sphere passes B. Charges which were at a distance less than
[u/c](d]) cos B below B when the information collecting sphere passes A will
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have gone beyond B by the time the information collecting sphere reaches B
and will not be counted by the information collecting sphere in the section
dl. Hence, the total number of charges actually counted inside dl is equal to
the number of charges, that, at the time #* the information collecting sphere
passes A, were in the section AC, which is of length dl — [w/c](d]) cos 0 =
dl [1 — (u/c) cos 0]. If the number of charges per metre length, counted at
the fixed time r*, is N,, then ON, the total number of charges counted by the
information collecting sphere inside dl, is given by

SN = N, dl[l— (%)cose]. 5.1)

Since [uR cos 0] is equal [u - R], we can rewrite [(u#/c) cos 0] as [u - R/Rc],
so that equation (5.1) can be rewritten in the form

o1 452 aen 3
8N—N0[1— Re dl = N, R dl (5.2)

where

LR R] (5.3)

s=[R—
c

is the same as the quantity s defined by equation (3.5) and which appears in
the expressions for the Liénard-Wiechert potentials.

Assume now that the charges are moving downwards with velocity [u] in
Figure 5.1, and that the angle 0 is still as shown in Figure 5.1. In the time
interval (d/ cos 0)/c it takes the information collecting sphere to cross dl, a
charge that is at a distance [w/c] (dl) cos 6 above B at the time t* = (¢t — R/c),
when the information collecting sphere passes A, will move downwards to
reach B and be counted by the information collecting sphere when it passes B.
In this case the number of charges counted by the information collecting sphere
inside dl is equal to the number of charges in a length d/ [1 + (#/c) cos 0] at
the time #*, so that

8N=N0[1 + (%) cos e]dz. (5.4)
When the charges are moving downwards, the angle between [u] and R is equal
to (1t — 0) so that

[u] - R = [u]R cos (mt — 6) = —[uR cos 0].
Hence equation (5.4) can be rewritten in the form

u-R )
8N=N0[1 - Re ]dl=N0 (E)dl (5.5

which is the same as equation (5.2).
Assume now that the moving charges in Figure 5.1 are distributed over
an infinitesimal area of cross section dS. If #n is the number of moving charges
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per cubic metre, counted at the retarded time #*, then the number of charges
per metre length at the retarded time #* is

No =n dS.
Substituting in equation (5.2), we obtain

s
ON =n (—R—) dv, (5.6)
where the volume element dV, is equal to (dS)(d/). Equation (5.6) will be
used in Section 6.7 of Chapter 6 to derive the retarded potentials from the
Liénard-Wiechert potentials.

It will be assumed, that when equations (5.2), (5.5) and (5.6) are applied,
the number of conduction electrons is so large that fluctuations in N, and »
can be neglected. Since 7 is of the order of 8.3 X 10%® per cubic metre for a
copper conductor, this assumption is reasonable for conduction current flow
in a metallic conductor.

5.3. Induction electric field due to a current element that forms part
of a complete circuit

5.3.1. A list of basic assumptions

To illustrate the method we shall use in Chapters 5 and 6, the reader should
start at the field point P in Figure 5.1 at the time of observation ¢ and then
work out the appropriate retarded positions of each of the moving classical
point charges in Figure 5.1. The reader should find that these retarded
positions are precisely the positions of the charges, when they were passed
by the imaginary information collecting sphere that reaches the field point P
in Figure 5.1 at the time of observation t. For example, the charge whose
retarded position is at the point B in Figure 5.1 would have been at the position
C at the earlier time #* = t — R/c when the information collection sphere
passed A. Hence the number 8N of charges, whose retarded positions were
between A and B in Figure 5.1, is equal to the number of charges that were
between A and C, that is in a length di(1 — (#/c) cos 0), at the time r* =
t — R/c. If there are N, charges per unit length at the time #*, it follows that

8N=N0dl[1— (%)cose]

which is the same as equation (5.1) and leads on to equation (5.6), which
now gives the number of retarded positions in a volume element dV, at a
distance R from the field point. We shall assume that the electric and magnetic
fields due to each of the moving charges is given by equations (3.10) and (3.13)
of Chapter 3 respectively. Writing out our assumptions explicitily, we shall
assume that:
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1. The number of moving and accelerating classical point charges, whose
retarded positions are inside a volume element dV,, which is the same as
the number of charges passed by the information collection sphere inside
dV,, is given by equation (5.6).

2. The electric and magnetic fields due to each of these accelerating charges
are given by equations (3.10) and (3.13) respectively.

3. The resultant force F on a test charge of magnitude g that is moving with
velocity u at a field point in empty space is given by the vector sum of
the Lorentz forces F; on the test charge due to all the individual moving
classical point charges making up the charge and current distributions
that is

F = 3F, = X(gE, + qu X B)
=q3E; + qu X ZB)=gE + qu X B

where E = 2E; and B = XB, are the resultant electric and magnetic fields
at the field point, which can be determined by adding the fields due to indi-
vidual classical point charges vectorially.

4. In practice there are interactions between the various charge and current
distributions, which affect the values of the charge and current densities.
We shall assume, for purposes of interpretation, that the charge and current
densities at the appropriate retarded times are all known.

5.3.2. The induction electric field due to the moving conduction electrons
in a current element related to the retarded positions of the
conduction electrons

Consider the current element of length d/ that is at the position r, in Figure
5.2. The current element is not an isolated current element, but forms part
of a stationary circuit carrying a conduction current /, so that there is no
accumulation of electric charge at the ends of the current element. We shall
determine the contribution to the electric field at the field point P, at a position
r at a distance R = (r — r,) from the current element, at the time of observa-
tion ¢, due to the electric charges that were passed and counted by the
information collecting sphere inside the current element I dl at the retarded
time t* = (t — R/c). A simplified model of a current element will be used.
We shall assume that, when they are counted at the same retarded time #*, there
are N, stationary positive ions per metre length, each of charge +e, and N,
moving conduction electrons per metre length each of charge —e. In this
idealized example there is no resultant electric charge on the current element.
It will be assumed that at the retarded time #* all the conduction electrons have
the same velocity [u] and the same acceleration [a], which are both in the
direction opposite to the direction of current flow in Figure 5.2.

It follows from equation (5.5) that the number of conduction electrons
passed and counted by the information collecting sphere, while it is crossing
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Figure 5.2. Calculation of the electric field at the field point P at the time of observation ¢
due to the charges in a current element, that forms part of a complete circuit. The electric
fields of the charges are related to the retarded positions of the charges, that is to the positions
of the charges, when the information collecting sphere passed the current element at the retarded
time (¢ — R/c).

the current element 7 dl at the retarded time #* is

SN = N, (%) di. (5.5)

The electric field due to each of these conduction electrons is given by equation
(3.10). Hence according to the principle of superposition of electric fields,
the contribution of the moving conduction electrons, that were counted by
the information collecting sphere inside the current element / dl at the retarded
time t* = (¢t — R/c), to the electric field at the field point P in Figure 5.2, at
the time of observation ¢, is

dE_= N, ( %) (E, + E,)dl (5.7)

where E, and E, are given by equations (3.11) and (3.12) respectively. In
laboratory experiments using DC or the electricity mains, that is in the quasi-
stationary approximation, we are invariably in the near zone, where the
contribution of the E, term is generally much greater than the contribution
of the E, term which will be neglected for the moment. Using equation (3.11)
with g = —e and retaining only the E, contribution we have

(—e)[R — Ru/c][1 — B*1d!
4mte s’

(3

(5.8)
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where [B] = [u}/c and where according to equation (5.3)
u-R

o[-

Hence

i N dIR - Rw/c[1 -32]

" 4neR%[1 - u - R/RC) (5:9)

The conduction electrons in a metal generally have speeds of the order of ¢/200
corresponding to kinetic energies in the electron volt range. The mean drift
velocity of the conduction electrons is very much less than this. To simplify
the discussion of the quasi-stationary limit it is reasonable as a first approx-
imation to neglect terms of the order B2, B* etc. Expanding equation (5.9) to
the first order in B we find that

_ eNodl Ru][ 2u~R]
~eNodl[ (u-R) Ru]
=~ -R-2R Re |t o | (5.10)

Since the positive ions in the current element in Figure 5.2 are at rest, the
number of positive ions counted by the information collecting sphere inside
I dl at the retarded time t* is equal to N, dl. The electric field due to each
stationary positive ion is given by Coulomb’s law, so that the contribution
of the positive ions to the electric field at the field point P in Figure 5.2
is
eR

y 80R3) : (5.11)
Adding equations (5.10) and (5.11) we find that the electrostatic field due to
the stationary positive ions is cancelled by one of the terms in equation (5.10)
leaving what we shall call the induction electric field denoted E ;. The
value of the induction electric field at the field point P in Figure 5.2 due to
the charges counted by the information collecting sphere inside 7 dl at the
retarded time #* is

dE, = N, dl(

dE_, = dE, + dE_ =

eN, dl —ZR(u . R) N Ru]. (5.12)

4me R* Rc c
In practice, when a current flows in a conductor, the conduction electrons have
a drift velocity v superimposed on an isotropic velocity distribution. Averaging

equation (5.12) over the velocity distribution of the conduction electrons, we
have

dijd

(5.13)

eNo dl [ R (uRCR) R(u)

where u, is the total velocity of the ith conduction electron. If v is the mean
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drift velocity, then

u)=v (5.14)
and, since for moving electrons v is opposite to Idl,

Since R is a constant vector,
(u;-R)=C@)-R=v-R
Hence, using equation (5.15), we have
eNygdl (u;,- R)y=eN,dlv-R=-Idl-R (5.16)

Substituting from equations (5.15) and (5.16) into equation (5.13), we finally
obtain

[ [ 2RR - dD) dl

ABny = 4ne,c R* - R*1

(5.17)

If 0 is the angle between the direction of the current flow and the vector
R = (r — r,) from the current element at r, to the field point at r in Figure
5.2, then

[R-dl] =R cos 06 dl

Hence equation (5.17) can be rewritten in the form

2[I(r,)]R dl cos 6 B [I(r)]dl
4ne,cR’ 4ne,cR?

dE(r, 0,4 = (5.18)
where dE(r, 1),,4 is the contribution to the induction electric field at the field
point P in Figure 5.2, at the time of observation ¢, due to the current [/] flowing
in the current element [/] dl at r, at the retarded time #* = (¢ — R/c). Equation
(5.18) is valid for steady currents and for quasi-stationary conditions when
the current is varying at mains frequency and the radiation electric fields are
negligible. Equation (5.18) gives the electric field due to the moving elec-
trons and stationary positive ions in a current element that forms part of a
complete circuit. In the case of an isolated current element, charge distribu-
tions would build up at its ends. (Reference: Section 5.12). For the conditions
shown in Figure 5.2, the vector dl can be expressed in the form

dl=dlcos® R—dlsin6 0 (5.19)

where R is a unit vector in the direction from the current element to the field
point and @ is a unit vector at the field point P in the direction of increasing
0 in Figure 5.2. Substituting for dl in equation (5.18) we obtain

1 dlcose)ﬁ+ ([1] d/ sin O)A.

AEs, = ( 4ne cR? 4rte,cR?

(5.20)

The magnitude of the induction electric field given by equation (5.20) is
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[ di (Noe di )
dE, = % _ 21
" Ame,cR? B 4rte,R? (5.21)

where B = v/c.
It is straight forward for the reader to show that the direction of dE
given by equation (5.20), is at an angle 0 to the line joint the current element
to the field point P in Figure 5.2 and at an angle 20 to the direction of current
flow. Comparing equations (5.21) and (5.11), we see that the magnitude of
the resultant electric field is B = v/c times the magnitude of the electric field
dE, due to the N, dl stationary positive ions inside the current element 7 dl
in Figure 5.2.
If the conduction electrons in the current element in Figure 5.2 were at
rest, the electric fields due to the stationary positive ions and stationary con-
duction electrons would compensate each other at external field points. The
resultant induction electric field dE; ; given by equations (5.18) and (5.20)
arises from
(1) The change in the number of conduction electrons counted by the infor-
mation collecting sphere inside the current element when the conduction
electrons are moving.

(2) The changes in the electric field due to a conduction electron when it is
moving, compared with the electrostatic field due to a stationary electron.

5.3.3. Repeat calculation using the projected positions of the conduction
electrons

Some readers may get a better insight into the origin of the resultant electric
field, given by equation (5.20), particularly the origin of the component in
the direction of 0, if the electric field of a moving conduction electron is related
to the projected position of the conduction electron, which is the position

dkE,

RETARDED
POSITION S 7~
AT TIME (t-R/<)

BR
PROJECTED
POSITION _
AT TIME t

Figure 5.3. The contribution to the electric field due to the charges in a current element that
forms part of a complete circuit. In this case the electric fields of the moving conduction elec-
trons are related to their projected positions, which are the positions they would have reached
if they had carried on with uniform velocity until the time of observation .
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the electron would have reached by the time of observation ¢ if it had carried
on with uniform velocity [u] in Figure 5.2. Consider again the current element
shown in Figure 5.2. The vector R from the current element to the field point
P makes an angle 0 with the direction of current flow. A simplified model
will be used, in which we shall assume that, at the retarded time ¢*, the positive
ions are at rest and all the conduction electrons are moving with velocity
[u]. Consider one conduction electron and one positive ion, as shown in Figure
5.3. If it had carried on with uniform velocity [u], in the time R/c it takes
the information collecting sphere to go from the current element to the field
point P, the conduction electron would have moved downwards a distance
[ulR/c = PR, where B = [u])/c, from the current element at S to reach the
projected position T as shown in Figure 5.3. The E, contribution of the con-
duction electron to the electric field at P at the time of observation ¢ is related
to the projected position 7 by equation (3.38) of Chapter 3. Expanding equation
(3.38) to first order of B we have

. 9%

E, = pr (5.22)
where r, is a vector from the projected position 7 to the field point P in
Figure 5.3. Equation (5.22) is similar to Coulomb’s law, except that r, is
measured from the projected position T of the conduction electron in Figure
5.3. It follows from equation (5.4) that the number of conduction electrons
counted by the information collecting sphere inside the current element of
length dl is

ON = (1 + P cos 0) N, dI (5.4

where N, is equal to both the number of conduction electrons and the number
of stationary positive ions per metre length counted at the retarded time t*.
If it is related to the projected position of the charge, the electric field due
to each of these conduction electron is given by equation (5.22). Hence it
follows that the electric field at P at the time of observation ¢, due to the
conduction electrons counted by the information collecting sphere inside the
current element at the retarded time #*, is given to a good approximation by

dE_ = (1 + B cos ) N, di ( 4n§0rg) (5.23)
in the direction from the field point P to the projected position 7, as shown
in Figure 5.3. Since they are at rest, the number of positive ions, counted by
the information collecting sphere inside the current element is equal to
N, dl. Since the electric field due to each of these is given by Coulomb’s
law, the electric field due to the stationary positive ions is

_ eNydl
* 4me,R?

in the direction from the current element to the field point P, as shown in

(5.24)
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Figure 5.3. Equations (5.23) and (5.24) do not compensate each other. It can
be seen from Figure 5.3 that the resultant of dE, and dE_ has a component
in the direction of 0. Resolving in the direction of the vector R from the current
element to the field point, we have

eN, d! eN, dl
R = 4n20R2 — (1 + B cos 6) (471;: ! ) cos o (5.25)
070

where a is the angle between the vectors R and r,, as shown in Figure 5.3.
Resolving in the direction of 0, that is in a direction perpendicular to R,
we have

di ) sin Q. (5.26)

ofo

. eN,
dE, = dE_sin o = (1 + P cos 9)(471:::
Since the distance from S to T in Figure 5.3 is [u]R/c = PR, it follows that
the perpendicular distance from § to V is given by
SV = BR sin (0 — o).

If B < 1, then PR is very small and o < 0, so that to a very good approxi-
mation

SV = BR sin 0. (5.27)
It follows from Figure 5.3 that
sin o = B—R%l—l—g =B sin 0 (5.28)

cos o = (1 —sin®> @)'? = (1 — B? sin® )2
ro=R + PR cos (6 — o).
Since o < 0 and B < 1, we have
cos oL = 1 (5.29)
ro = R(1 + B cos 0). (5.30)

Substituting for sin a, cos o and r, from equations (5.28), (5.29) and (5.30)
into equations (5.25) and (5.26) we finally obtain

eNogdl (1 +Bcos B)eN,dl  eN, di

_ _ -1
dE = 471380R2 4meR*(1 + P cos 0)2  4me,R> [1 - (1 + cos 6)7]
_ eNo _eNwdlcos® [dlcos@
" 4 R s 6= dne,cR?  — 4mecR? (5-31)
_ eNodl(1+Bcose) (ﬁ) . o 1dlsin@
AEo = el + Boos 8)F ke ) " = “ame,cr? (5.32)

Equations (5.31) and (5.32) are in agreement with equation (5.20). It is of
interest to note that in the approach used in this section when B < 1, we
used the mathematical expression for Coulomb’s law for both the positive ions
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and the conduction electrons, except that in the case of the moving conduc-
tion electrons we had to apply Coulomb’s law relative to the projected positions
of the conduction electrons, that is the positions they would have reached if
they had carried on with uniform velocity [«] until the time of observation ¢.
We also had to allow for the fact that the number of moving conduction elec-
trons counted by the information collecting sphere inside the current element
in Figure 5.3, which is given by equation (5.5), is not equal to the number
of stationary positive ions counted.

5.4. The absence of a resultant induction electric field due to a steady
conduction currect flowing in a complete circuit

5.4.1. General case

According to equation (5.18), the conduction current in a current element,
which forms part of a complete electrical circuit, gives rise to an induction
electric field at an external field point. In this section, we shall show that
the resultant induction electric field due to the steady current in a complete
circuit, that has no resultant charge distribution anywhere on the conductors,
is zero. This result follows directly from conventional classical electro-
magnetism, since, if the charge density p is zero everywhere, the scalar
potential ¢ is zero and the electric field E is given by —A where A is the
vector potential. When the conditions are steady A is zero showing that E
should be zero.

Consider the electric circuit shown in Figure 5.4. The vector R is a vector
from the current element 7/ dl at r, to the field point P at r. The resultant
induction electric field at the field point P will be determined when a steady
current I flows in the circuit. Integrating equation (5.18) we have for a steady
conduction current / in a complete circuit

1 [ R cos 0 d! % d
Eus = s 2{ bl i (5.33)
where 0 is the angle between dl and R. It is shown in Appendix A3 that
R cos 6 dI dl
2§;—R3— = %F (A3.8)

Substituting in equation (5.33) we find that, when the current / is steady,
Eyy = 0. (5.34)

The currents in the various current elements forming the circuit in Figure
5.4 do give rise to induction electric fields at the field point P, which are given
by equation (5.18). It is the resultant induction electric field due to the complete
circuit that is zero when the current is steady. This result will now be illus-
trated using a simple example.
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v

Fs r

V

0 X

Figure 5.4. Calculation of the electric field at the field point P due to a complete circuit for
both steady and varying currents.

5.4.2. Example to illustrate that E, 4 = 0 when the conduction current in
a circuit is constant

Consider the small current carrying coil ABCD shown in Figure 5.5. We
shall determine the resultant electric field at the field point P, at the time of
observation t. A steady current / flows from A to B to C to D to A in Figure
5.5. The sections AD and BC are arcs of circles with centres at the field point
P and having radii r and (r + dr) respectively, where r > dr. The length

(OF) sg + co
_ QC — ((5E) AB ‘ _(_(SE)KCD_-
- P X

Figure 5.5. The calculation of the electric fields at the field point P due to both steady and
varying currents in the coil ABCD.
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of the sections AD and BC are equal to b and (b + 8b) respectively, where
b < r. Since AD and BC are arcs of circles with centres at P

b (b+3b)  b(1 + 5b/b)

r - GEon) - HiEonn (5.35)
It follows from equation (5.35) that (1 + 3b/b) is equal to (1 + &r/r). Hence
the length of the arc BC is equal to b(1 + 8r/r). Choose the directions of the
x and y axes as shown in Figure 5.5.

In the case of the section AB of the coil ABCD in Figure 5.5, the angle 6
between I dl and a vector from the current element to the field point P is
equal to T, so that cos 6 =—1 and sin 6 = 0 in equation (5.20), which reduces
to

_ I 3r I
Arec(r + dr/2)? are,cr’

This contribution is in the direction from P to A, as shown in Figure 5.5. In
the case of the section CD, 6 = 0 so that cos 8 = 1 and sin 6 = 0 in equation
(5.20), which reduces to

I or
Ane,cr’

This contribution is in the direction from D to P as shown in Figure 5.5.
The resultant of (3E),; and (8E)., is in the +y direction in Figure 5.5.
Since the angle o between the lines AP and DP in Figures 5.5 is very small,
sin (0/2) = /2 = b/2r. Hence

21 drsin (W/2):  Ibdr 2
Arecr’ 4re cr’ ! (5-38)

(SE)AB =

(5.36)

(OE)cp = + (5.37)

(SE)AB +CD =

where i is a unit vector in the +y direction.

In the case of the section DA of the circuit ABCD in Figure 5.5 I dl is
perpendicular to the vector from the current element to the field point P so
that 6 = /2, cos 6 = 0 and sin 8 = 1 in equation (5.20) which reduces to

Ib 2

(OE)wp = - Are,cr? ]

(5.39)

This contribution to the electric field is in the —y direction in Figure 5.5. In
the case of the section BC of the circuit, 0 = n/2 and equation (5.20) reduces
to

Ib(1 + dr/r) 2 - Ib(1 — 3r/r) 2
4ne,er¥(1 + drir)? dme,crt

BE)yc = (5.40)
This contribution is in the +y direction in Figure 5.5. Adding equations (5.39)
and (5.40) we have

Ib dr =

r s 4
Amegcr® (5.41)

(SE)AD +BC T —
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Comparing equations (5.41) and (5.38), we see that (OE),;, p is equal and
opposite to (OE),p . pc so that, when the conduction current in the coil ABCD
in Figure 5.5 is steady, the resultant induction electric field at the field point
P is zero. This example illustrates how the conduction currents in the various
current elements AB, BC, CD and DA of the circuit ABCD in Figure 5.5 do
individually give rise to induction electric fields at the field point P. It is
the resultant induction electric field due to the complete circuit that is zero,
when the current is steady. We shall go on to consider the case when the current
is varying in Section 5.5.1.

Problem. The steady conduction current / flowing in a circular coil of radius
b is due to N, conduction electrons per metre length each of charge —e and
all moving at the same uniform speed u, plus N, stationary positive ions per
metre length each of charge +e. Use equation (5.18) or equation (5.20) to show
that, to first order of B = w/c, the electric field E at a field point on the axis
of the circular coil at a distance x from the centre of the coil is zero. [Hint:
For any current element / dl, 6 = 90° in equation (5.18) so that the contri-
bution in the direction of R is zero. Show that the contributions of the
components in the directions of —dl add up to zero]. It is straight forward in
this example to show that E = 0 to all orders of B as follows. The centripetal
accelerations of the electrons is #*/b. Use equation (5.5) plus the full expres-
sions for E, and E, given by equations (3.11) and (3.12) respectively to
show that the resultant contributions of the E, terms due to the speeds of
the electrons and the E, terms due to their centripetal accelerations are both
numerically equal to B°Nyebx/2e,(b* + x*)*?, but, since these contributions
are in opposite directions, the resultant electric field is zero to all orders of
B. (Comment: Notice that at the higher orders of B we must include the
contributions of the acceleration dependent term E, to get the result E = 0.
The first order theory given by equations (5.18) and (5.20) will however be
sufficiently accurate for our interpretation of electromagnetic induction in
the quasi-stationary limit.)

5.5. The induction electric field due to a varying conduction current in
a coil in the quasi-stationary limit

5.5.1. Introductory example

Before going on in Section 5.5.2 to consider the general case, we shall illus-
trate the role of retardation effects in giving a resultant induction electric
field using the example of the coil ABCD in Figure 5.5. We shall assume
that the conduction current flowing in the coil ABCD in Figure 5.5 is varying
with time, but at such a slow rate that the quasi-stationary approximations
are valid and equation (5.20) can be applied. We shall assume that the value
of the conduction current in the coil ABCD in Figure 5.5. is equal to / when
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the information collecting sphere, that reaches the field point P at the time
of observation ¢, passes the section BC at the retarded time ¢t — (r + &r)/c.
According to equation (5.40)

Ib(1 — dr/r) 2

(OE)pc = 41reocr2

(5.42)
If the rate of change of the conduction current is d//dr*, the value of the current

in the coil ABCD when the information collecting sphere passes the section
AD at a time (8r/c) after it has passed the section BC, is

Lp=1+ (%)(%) (5.43)

Hence, according to equation (5.39)

[ @)

OE),p = — 5.44
(OB prm (5.44)
Adding equations (5.42) and (5.44) we have
(5 )(F)
3 b (or ) 2 \ot*/\c ) 2
(OE)pc + (OE)p = — pry— ( r - J- (5.45)

4neycr?

The value of the conduction current in the circuit ABCD is varying continu-
ously from 7 to I + (3I/9r*)(8r/c) as the information sphere passes along BA
and CD. If &r is infinitesimal, it is sufficiently accurate to use the mean value
of current in equation (5.38), which then gives

var{re (55NN

dne,cr’

(SE)AB +CD T

Neglecting terms of order (8r)* we have

borl »

W J (5.46)

(OE)ap 4 cp =
Adding equations (5.45) and (5.46), we find that when the current 7 in the
coil ABCD in Figure 5.5 is varying there is a resultant induction electric field
E,. at the field point P in Figure 5.5, which at the time of observation ¢ is
given by

__bor ( ol ) 2
dne,c’r’ \orx )
The product bdr is equal to the area S of the coil ABCD. The magnetic moment

m of the plane coil is defined as a vector of magnitude IS pointing in the +z
direction in Figure 5.5. Using p, = 1/g,c?, equation (5.47) can be rewritten

E..= (5.47)
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in the form

_SU s ml s (mo\Iml:
 4me,ctr? J=- 47C8062r2‘] T ( ) J- (5.48)

ind = 47 r2

We can now see the origin of the induction electric field due to a varying
current in a coil in the quasi-stationary limit. When the current in the coil
ABCD in Figure 5.5 is steady, the contributions of the various current elements
making up the circuit to the induction electric field at P add up to zero.
However, when the current in the coil is varying, the value of current to be
used in equation (5.20) is different when the information collecting sphere
passes the various current elements making up the circuit and the contributions
of the various current elements no longer add up to zero. For example in the
special case of the coil ABCD in Figure 5.5, the induction electric field,
given by equation (5.47), is due to the fact that the conduction current is bigger
by an amount (91/0t*)(8r/c) when the information collecting sphere passes
AD compared with when it passes BC. This illustrates the essential role of
retardation effects in giving a resultant induction electric field, even in the
quasi-stationary limit when the overwhelming contribution to the induction
electric field comes from the E, term in the expression for the electric field
due to a moving conduction electron. Notice that there is a factor of 1/g,c?
in equation (5.47) showing that the induction electric field due to the varying
current in the coil ABCD in Figure 5.5 is very much less than the electro-
static field due to the stationary positive ions or the total electric field due
to the moving conduction electrons. One factor of 1/¢ in equation (5.47) comes
from equation (5.20) giving the induction electric field due to a current element.
The other factor of 1/c comes from the fact that the resultant induction electric
field at the field point P in Figure 5.5 is due to the difference of (8r7)/c in
the current when the information collecting sphere passes AD compared with
BC. Putting 1/g,c* equal to p, we see from equation (5.48) that the induction
electric field has a similar mathematical form to the magnetic field p,/S/4nr*
due to a steady current / in the coil ABCD in Figure 5.5, which for a steady
current can be obtained by putting m and m equal to zero in equation (6.49)
of Chapter 6. (See also the problem at the end of Section 5.6.)

5.5.2. General formula for the induction electric field due to the varying
current in a complete circuit in the quasi-stationary limit

Consider the current element / dl that forms part of the complete circuit
shown previously in Figure 5.4. It will now be assumed that the current in
the coil is varying, but at a low enough frequency for the quasi-stationary
approximations to be valid. According to equation (5.18), the actual contri-
bution of the charges, that were counted by the information collecting sphere
inside the current element 7 dl at r, at the retarded time #* = (¢ — R/c), to the
electric field at the field point P at r at the time of observation ¢ is given in
the quasi-stationary limit by
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3 3
g @R cos8dl I dl

ind = 4ne,cR’ ~ 4meycR? (5.49)

where R = (r — r,) and 0 is the angle between dl and R. Since the different
current elements, making up the circuit in Figure 5.4, are at different
distances R from the field point, the value of I(#*) is different for the various
current elements. If the rate of change of current is 7, then, in the quasi-
stationary limit, the change in the value of the current in the circuit in the
time R/c it takes the information collecting sphere to go from the current
element to the field point is (R/c)I. Hence, if I(¢) is the value of the current
in the circuit at the fixed time of observation ¢, we have to a very good
approximation

(%) = I(t) — (%) i (5.50)

We can ignore the change in I in the time R/c in quasi-stationary limit, since
for example, for a laboratory experiment of dimensions 3 m, R/c is only of
the order of 107 s. Substituting for I(#*) in equation (5.49) and integrating
around the complete circuit in Figure 5.4, we have

1 (# [I(®) — (R/)IR cos 6 dI { () — (RIo)] dl )
4me,c R’ B R? '

E(r’ t)ind =
(5.51)

The reader should note that we are allowing for retardation effects in equation
(5.51). The value of the current I(¥) at the time of observation ¢ is the same
for all the current elements. It follows from equation (A3.8) of Appendix
A3 that, for a fixed circuit, we have at the time of observation ¢

R cos 0 d! dl

2I(t) %T = I(t) %F . (A3.8)

Hence equation (5.51) reduces to
I Rcos0dl [d

B s = e (2§ Reosdl, fd ). (5.52)

According to equation (A3.9) of Appendix A3 we have
Rcos 6dl [}
-2{ R’ =-2 { R (A3.9)

Substituting in equation (5.52), we finally obtain for the quasi-stationary
limit

1 dl
E(, Dt =~ o7 % —-% . (5.53)

The finite value of E, , arises from equation (5.49) by retardation effects.
The integrands (dVR) and (R cos 6 dI/R*) in equation (A3.9) are not equal,
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so that equation (A3.9) and hence equation (5.53) are only valid when they
are integrated around a complete circuit. Equation (5.53) was derived from
equation (5.18), which was developed from the E, contribution to the electric
field due to a moving classical point charge. Hence equation (5.53) is only
valid for complete circuits in the quasi-stationary limit, when the radiation
electric fields can be neglected.

For a stationary circuit, R and dl are time independent so that equation (5.53)
can be rewritten in the form

_ 2w ifﬂ} _ oA
Bos =3\ YRS = o (5.54)
where A is given in the present context by the equation
Iy ifﬂ
A= an TR (5.55)

Comparing equation (5.55) with equation (1.74) of Chapter 1, we see that
the quantity A, defined by equation (5.55), is the same as the expression for
the vector potential A at the field point P in Figure 5.4, when the current in
the coil is constant. This shows that, when the scalar potential ¢ is zero, the
induction electric field due to the varying current in an electrically neutral
stationdry circuit can be determined, in the quasi-stationary limit, by first deter-
mining the vector potential A assuming that the current in the coil is steady
and then determining —A. There is no need to use the retarded vector poten-
tial in the quasi-stationary limit and allow for retardation effects, even though
we showed in Sections 5.5.1 and 5.5.2 that retardation effects play a vital
role in giving a resultant induction electric field, when we start with equation
(5.18) for the electric field due to a current element, which we had deter-
mined using the expression for the electric field due to a moving classical point
charge. Equations (5.18), (5.20) and (5.53) must be extended at high fre-
quencies, when the contribution of the acceleration dependent (radiation)
term E, in the expression for the electric field due to an accelerating clas-
sical point charge is important.

5.5.3. Application of equation (5.53) to the coil ABCD in Figure 5.5

Consider again the coil ABCD in Figure 5.5. The current in the coil is varying
slowly enough for the quasi-stationary approximations to be valid. The
contribution of the current in the section AB of the coil ABCD in Figure 5.5
to the right hand side of equation (5.53) is
I8r
(ABss = dre,c*(r + 8r/2)

(5.56)

in the direction from the point A to th