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Preface 

The aim of this book is to interpret all the laws of classical electromagnetism 
in a modern coherent way. In a typical undergraduate course using vector 
analysis, the students finally end up with Maxwell's equations, when they 
are often exhausted after a very long course, in which full discussions are 
properly given of the full range of applications of individual laws, each 
of which is important in its own right. As a result, many students do not 
appreciate how limited is the experimental evidence on the basis of which 
Maxwell's equations are normally developed and they do not always appre-
ciate the underlying unity of classical electromagnetism, before they go on 
to graduate courses in which Maxwell's equations are taken as axiomatic. 
This book is designed to be used between such an undergraduate course and 
graduate courses. It is written by an experimental physicist and is intended 
to be used by physicists, electrical engineers and applied mathematicians. 
The main aim is to interpret Maxwell's equations and the laws of classical 
electromagnetism starting from the expressions for the electric and magnetic 
fields due to an accelerating classical point charge. It is also hoped that the 
book will be useful for long standing graduates, who missed out on such an 
interpretation. To help students in their formative years and readers in their 
rusty maturity, the reader is taken slowly through what at times are subtle 
arguments with summaries on the way and generally at the end. In many cases, 
topics are approached in different complementary ways. It is hoped that this 
overall approach will make the book suitable for individual study to com-
plement traditional courses. 

In Chapter 1, an account is given of a typical development of Maxwell's 
equations, that is devoid of applications so that the reader can see clearly 
what assumptions are made. Particular emphasis is given to the interpreta-
tions of what makes a conduction current flow and the role of the vacuum 
displacement current. Then in Chapter 2, the equations for the potentials (I) 
and A are developed from Maxwell's equations, leading up to the retarded 
potentials, which are then applied to determine the electric and magnetic fields 
due to an oscillating electric dipole. As an introduction to the approach we 
shall develop in Chapter 4, it is illustrated in Chapter 2 how Maxwell's equa- 

xvi 
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dons apply to the fields of the oscillating electric dipole. The Liénard-Wiechert 
potentials are derived in Chapter 3 and then applied to derive the standard 
expressions for the electric and magnetic fields due to an accelerating classical 
point charge, which will then be used as the bases of our interpretation of 
classical electromagnetism in Chapters 4-7. In Chapter 4 a modern interpre-
tation of Maxwell's equations is developed using the expressions for the electric 
and magnetic fields due to an accelerating classical point charge. In partic-
ular, we shall strip the vacuum displacement current of the last vestiges of 
the nineteenth century aether theories. In Chapter 5, a new approach is 
developed for the interpretation of the origin of the induction and radiation 
electric fields due to varying charge and current distributions. A similar 
approach is used in Chapter 6 to interpret the origin of the magnetic field 
due to a varying current distribution. Then in Chapter 7 we shall interpret 
the behaviour of AC circuits in terms of the electric and magnetic fields due 
to the conduction electrons responsible for the conduction current flow. Until 
Chapter 8 we shall generally avoid the use of methods based on energy, since 
the underlying physical principles are not always apparent in those methods. 
However, to complete the picture, we shall give a review of energy methods 
in Chapter 8, presented in a way that is consistent with the approach devel-
oped in earlier chapters. This will lead up to a discussion of the conservation 
laws for a system of spatially separated moving charges and to a critique of 
the Poynting vector hypothesis. Since the theory of the electric and magnetic 
fields due to dielectrics and magnetic materials is treated comprehensively 
in many excellent text books, we shall only give a brief review in Chapter 9 
of the extension of Maxwell's equations to field points inside dielectrics and 
magnetic materials, which will be presented and interpreted in a way that is 
consistent with the approach developed in earlier chapters. We shall avoid 
the use of special relativity until Chapter 10, so that readers do not get the 
impression that the new ideas presented in this book are exotic relativistic 
effects. Since special relativity and its applications are covered in detail in 
many text books, we shall concentrate in Chapter 10 on topics that illustrate 
the essential unity of classical electromagnetism and special relativity. 

The author would like to thank Mrs Val Barnes and Mrs Eileen Satterly 
for typing the manuscript. 





CHAPTER 1 

A typical conventional development of 
Maxwell's equation 

U. Introduction 

It will be assumed from the outset that the reader has already done an intro-
ductory course on classical electromagnetism leading up to Maxwell's 
equations, and that the reader is fully familiar with vector analysis. A summary 
of the relevant formulae of vector analysis is given in Appendix Al. In this 
chapter, a brief review is given of the way Maxwell's equations can be 
developed in an introductory course, so as to illustrate how limited is the exper-
imental evidence used to develop Maxwell's equations in introductory courses. 
Maxwell's equations will then be discussed in greater detail in later chapters 
and interpreted in a way consistent with the retarded potentials (Lorentz gauge). 
A reader, interested in the historical background to the development of clas-
sical electromagnetism, is referred to books such as Whittaker [1] Tricker 
[2] Schaffner [3] etc. The discussions in this book will be restricted to clas-
sical electromagnetism, and all quantum effects will be generally be neglected. 

The electric field intensity E and the magnetic induction, or magnetic flux 
density B at a field point in empty space will be defined in terms of the Lorentz 
force law 

F- d  ( 	" 1/2 ) - qE + qu x B 	 (1.1) 
dt k (1 - u2/c2) / 

acting on a test charge of magnitude q and rest mass mo, that is moving with 
velocity u at the field point. For the sake of brevity, we shall generally use 
the abbreviation 'electric field E' instead of the phrase 'electric field of 
intensity E'. Similarly we shall use the abbreviation 'magnetic field B' instead 
of the phrase 'magnetic field of magnetic induction (or magnetic flux density) 
B' 

Maxwell's equations for the fields due to macroscopic charge and current 
distributions made up of moving and accelerating atomic charges, such as 
electrons and positive ions will be developed in three stages. 

Stage  1.  In this chapter, Maxwell's equations will be developed first for 
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2 Chapter 1 

continuous charge and current distributions in otherwise empty space. This will 
lead up to equations (1.115), (1.116), (1.117) and (1.118). 

Stage 2. Following Lorentz, charged atomic particles will be treated as con-
tinuous charge distributions of exceedingly small but finite dimensions. It 
will be assumed that equations (1.115), (1.116), (1.117) and (1.118) hold at 
field points inside such classical point charges. This will lead up to equa-
tions (1.137), (1.138), (1.139) and (1.140) for the microscopic fields e and 
b. These equations will be called the Maxwell-Lorentz equations. 

Stage 3. Macroscopic charge and current distributions are made up of moving 
charged atomic particles such as electrons and positive ions. In atomic physics 
one is sometimes interested in the microscopic fields e and b, near and inside 
atoms and molecules. However, the scale of many electromagnetic phenomena 
is so large on the atomic scale that one only needs to know the macroscopic 
fields E and B, which are defined as the average values of the microscopic 
fields e and b, averaged over volumes large on the atomic scale, but kept small 
on the laboratory scale. The development of Maxwell's equations for the 
macroscopic fields E and B, for the case of charge and current distributions 
in empty space, in which case the relative permittivity Cr  and the relative 
permeability ix,. are both equal to unity everywhere, will be outlined in Section 
1.11 of this chapter. A brief discussion of Maxwell's equations for the macro-
scopic fields E and B inside stationary dielectrics and stationary magnetic 
materials will be given in Chapter 9. 

1.2. Electrostatics and the equation V • E — Pko 

1.2.1. Coulomb's law 

The equation V • E = p/e0  is generally developed from Coulomb's law of 
electrostatics, according to which, if there are two stationary point electric 
charges of magnitudes q and q1  at positions r and r 1  respectively, as shown 
in Figure 1.1, then the force F 1  on the charge q at r, due to the charge q1  at 
r 1 , is given by: 

qql (r — r 1 ) 	Wilt'  Fl  — 	 — 	 (1.2) 
47cc0ir — r 1 1 3 	47ce0R 

where R1  = (r — r 1 ) is a vector from the position of the charge q1  at r 1  to the 
position of the charge q at r and R 1  = 1r — r 1 1 is the magnitude of the vector 
R1  = (r — r 1 ). If the charges q and '7 1  are both positive, or both negative, the 
force given by equation (1.2) is a force of repulsion. If q1  and q have opposite 
signs, the force given by equation (1.2) is a force of attraction. According to 
equation (1.2) the force F1  is proportional to 1//?. Priestly was probably the 
first to develop the inverse square law. Priestly started from the observation 
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Figure 1.1. The electrostatic force on the stationary charge q due to the stationary charge q,. 

that there is no electrostatic force on a stationary charge inside a charged, 
hollow conductor. This approach was extended by Cavendish, Maxwell, 
Plimpton and Lawton and more recently in 1971 by Williams, Faller and Hill 
who showed that, if the force between two stationary point electric charges 
is proportional to 1/Rfz, where R 1  is the separation of the two charges, then 
experimentally n = 2 to one part in 10 15 . The inverse square law was checked 
directly by Coulomb in 1785. 

Equation (1.2) can be used to compare the magnitudes of two charges. 
The ratio q 1/q2  of the magnitudes of two charges is given by the ratio of 
the electrostatic forces the stationary charges q i  and q2  would give on a 
stationary test charge of magnitude q, when the experiment is repeated with 
first q 1  and then with q 2  at the same distance from the test charge q. If q2  is 
known, the magnitude of q 1  can then be determined. 

1.2.2. SI units 

The SI (or MKSA) system of units will be used throughout the text. In this 
system, the unit of mass is the kilogramme (denoted kg), the unit of length 
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is the metre (denoted by m) and the unit of time is the second (denoted by 
s). The unit of electric current is the ampere (denoted A). The ampere will 
be defined in Section 1.4.1. The unit of charge is the coulomb (denoted by 
C) and is equal to the total charge passing any cross section of a circuit per 
second, when the steady current in the circuit is 1A. The unit of force is the 
newton (denoted by N). 

If in equation (1.2), F 1  is expressed in newtons, q and q 1  in coulombs 
and R 1  in metres, then c o  has the numerical value of 8.854 187 817 . . . x 
10-12 F  m-1 where F rn-' stands for farad per metre. The constant co  is gener-
ally called the absolute permittivity of free space, though we shall prefer to 
call it the electric constant. 

Using [M], [L], [T] and [Q] to represent the dimensions of mass, length, 
time and electric charge respectively, it follows from equation (1.2) that the 
dimensions of the electric constant co  are [M-' L-3  T2  Q2]. Some readers, who 
are more familiar with cgs units, may think it strange to find that the electric 
constant co  has dimensions. This is not very different to the case of the 
gravitational constant G in Newton's law of universal gravitation. The 
gravitational constant G has the dimensions [M-1  L3  T-2] and the experimental 
value of 6.672 59 x 10-11  N m2  kg-2 . 

1.2.3. The principle of superposition 

Consider a system of N stationary point charges of magnitudes ql , q2, . 
qN  at positions  r,,  r2, . . . , rN  respectively in empty space. According to the 
principle of superposition the force on a test charge of magnitude q at r due 
to the charge q 1  are r l  is unaffected by the presence of the other charges q2 , 
q3, . . .  , q  and is still given by equation (1.2). The resultant force on the 
test charge q due to all the other N charges is given by the vector sum of 
the forces F1, F2, . . . , FN, on q due to ql , q2, . . . qN  respectively, that is 

N 
F = F1 + F2 + . . . + FN = E 

qq
i
(r — ri) 

; -1 4Tccoir — r il 3  • 
(1.3) 

A reader interested in a full discussion of Coulomb's law is referred to the 
article: "The teaching of Electricity and Magnetism at College Level", 
American Journal of Physics. Vol. 18, page 1, 1950. 

1.2.4. The electric field 

Equation (1.2) is often rewritten in the form: 

F 1  = qE, 	 (1.4) 

with 

El (r) = 	 
q i (r — 1. 1 ) 	q i Ri  

47ce0lr — r 113 - 47cc0R 
(1.5) 
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where R I  = (r — r 1 ). It is then said that the charge q 1  at r 1  in Figure 1.1 gives 
rise to an electric field, of intensity E 1  given by equation (1.5), at the position 
of the test charge q at r. If there are N stationary point charges of magni-
tudes ql , q2, . . , qN  at r 1 , r2, , rN  respectively, then, according to equation 
(1.3) which was derived using the principle of superposition, the resultant force 
on the test charge of magnitude q at r is 

F = qEi  + qE2  +. . . + qEN  = qE(r) 	 (1.6) 

where E(r) is the intensity of the resultant electric field at r. We have 

E(r) = E l  + E2 . . . EN = 
-i i 4ncoir — 1.113 	 (1.7)  

The contributions of the individual charges to the resultant electric field 
intensity E must be added vectorially. Instead of using the phrase electric 
field of electric intensity E we shall generally use the shorter phrase 'the 
electric field E', where the symbol E stands for the electric field intensity. 

Consider the continuous charge distribution shown in Figure 1.2. The total 
charge inside the volume element dV, = dx, dys  dzs , at the position rs  in 
Figure 1.2, will be treated as a point charge of magnitude p(r) dV„ where  p(r) 
is the charge density, that is the charge per cubic metre, at rs . It follows from 

o 	 X 

Figure 1.2. Determination of the electric field due to a continuous, electrostatic charge 
distribution. 
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equation (1.7) that the resultant electric field E(r) at the field point at r is given 
by 

1   
E(r) — 47re0 f 

p(r5) (r — rs)dV, . 
 Ir  — 1.5 13 (1.8) 

Notice that we are using the position vector r, to denote the position of the 
volume element difs  of the charge distribution at the position (x„ y5, zs), which 
we shall call the source point. The position vector r is used to denote the 
position of the field point at (x, y, z). This convention will be used throughout 
the book. 

If the test charge q placed at the field point at r were as large as one 
coulomb, the test charge q would give rise to enormous charge distributions 
on nearby conductors, which would change the value of the electric field at 
the field point at r. The force on the stationary test charge q would then be 
equal to q E', where E' would be the new value of the electric field resulting 
from both the original charge distribution and the new extra charge distribu-
tions. In order to measure the value the electric field E had before the test 
charge was introduced, we would have to make the magnitude of the test 
charge as small as possible, so that, in the general case, the electric field E 
at a field point in empty space is defined in terms of the force Felec  acting 
on a stationary test charge of magnitude q placed at the field point using the 
relation: 

E = Limit (  Felec ) 	 (1.9) 
q 

in the limit when the magnitude of the test charge q tends to zero. Notice E 
is parallel to Felec, so that the electric field E at a point is in the direction a 
stationary positive point charge would start to move, if it were placed at that 
point. Equation (1.9) is also used to define the electric field E in the general 
case when the charge distributions are varying with time. 

It is assumed in classical electromagnetism that, if the charge q is moving 
and accelerating in an electric field, the electric force on the moving charge 
is still given by 

Felec = qE- 

For example, if an electron of charge q is moving in the electric field E between 
the plates of a charged parallel plate capacitor, it is assumed in classical 
electromagnetism that the electric force on the electron is given by qE, 
whatever the position, velocity, acceleration and direction of motion of the 
electron. 

When equation (1.10) is applied to moving charges, it is assumed in clas-
sical electromagnetism that the magnitude q of the total charge on the charged 
particle is independent of the velocity of the particle. There is now direct 
experimental evidence in favour of this assumption. If the total charge on a 
particle did vary with the velocity u of the particle, for example, if q = 
q0(1 — u21c2) 1/2 , then, since on average the electrons move faster than the protons 

(1.10) 
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inside a hydrogen molecule, the hydrogen molecule would have a resultant 
electric charge and would be deflected by electric fields. In 1960 King [4] 
showed that the charges on the electrons and protons inside hydrogen 
molecules were equal in magnitude, but opposite in sign, to within one part 
in 1020. We therefore conclude that the total charge on a particle is indepen-
dent of its velocity. 

It follows from equation (1.10) that in the SI (or MKSA) system of units, 
if the force F is measured in newtons and the charge q is measured in coulombs, 
then the electric field E can be expressed in newtons per coulomb (denoted 
N C- '). It will be shown in Section 1.2.9 that E is related to the electrostatic 
potential (1) by the equation E = —V4> . Since the unit of (I) is the volt (denoted 
by V), the electric field E can also be expressed in volts per metre (denoted 
V m-'). 

The rate dW/dt at which the electric force, given by equation (1.10), is doing 
work on the charge q, when it is moving with velocity u, is 

dW E, 
dt — .12  elec . 11  = qE • u. 	 (1.11) 

1.2.5. Electric field lines 

It is convenient to represent the electric field at a given instant of time on a 
diagram using imaginary electric field lines, drawn such that the direction of 
the tangent to the electric field line at a point is in the same direction as the 
electric field vector E at that point. The number of electric field lines is 
generally limited such that, on field line diagrams, the number of electric 
field lines per square metre crossing a surface, that is at right angles to the 
direction of the field line, is equal to E, the magnitude of the electric field 
at that point. The electric field lines are closest together where the magni-
tude of the electric field is highest. The electric field lines due to a stationary 
positive point charge and a stationary negative point charge are shown in 
Figures 1.3(a) and 1.3(b) respectively. The electric field lines diverge from 
the positive charge and converge on the negative charge. In practice, depending 
on the magnitude of E, one often gets better electric field line diagrams by 
making the number of electric field lines proportional to, not equal to the 
magnitude of E. The concept of using diagrams of electric field lines to 
represent both the direction and magnitude of the electric field will be used 
extensively throughout the text, for example when we interpret Gauss' flux 
law of electrostatics in the next section. 

1.2.6. Gauss' flux law of electrostatics 

Consider the isolated, stationary, positive, point charge of magnitude q shown 
in Figure 1.4(a). Consider the arbitrary shaped surface So  that surrounds the 
charge, as shown in Figure 1.4(a). Such a surface drawn for the application 
of Gauss' flux law is often called a Gaussian surface. Consider the infinites-
imal element of area dS of the surface So  that is at a distance r from the 
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(a) 
	

(b) 

Figure 1.3. The electric fields due to (a) a stationary, positive, point hcarge (b) stationary negative 
point charge. 

charge q, as shown in Figure 1.4(a). The magnitude of the vector dS is equal 
to the magnitude dS of the element of the surface, and the direction of dS is 
the direction of the normal (perpendicular) to the element of surface pointing 
outwards from the surface So . According to Coulomb's law, the electric field 
E at a distance r from the charge q is qr/ 47c co  r3 . The scalar product E • dS 
is given by 

qr • dS 	qdS cos 0  

	

E • dS — 	 (1.12) 
47cc0r3 - 	47ce0r2 

where 0 is the angle between r and dS. Now dS cos 0 is equal to dS„, the 
projection of the area dS on to a surface perpendicular to r. Since dS,./r2  is 
equal to the solid angle dS2 subtended by dS at the position of the charge q, 
we have 

E • dS = (.-) dQ. 
47rco  

Integrating over the area of the arbitrary shaped surface So  in Figure 1.4(a) and 
remembering that fdil = 47c, we have 

J  E • dS = .--/ f (IQ = 
47cE0  

q 
Co • 

(1.13) 

Consider now the case shown in Figure 1.4(b), where the charge q is outside 
the arbitrary shaped surface So. Consider the two elements of area dS, and 
dS2  shown in Figure 1.4(b). Since the electric field lines point in a direction 
directly away from the positive, point charge q, then E • dS i  is negative whereas 
E • dS2  is positive. Since the magnitudes of E • dS i  and E - dS2  are both 
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dS 

dS= cos Et dS 

a) 

(b) 

Figure 1.4. Derviation of Gauss' flux law. (a) The charge is inside the Gaussian surface. (b) 
The charge is outside the Gaussian surface. 

equal (q/47cc0)d0 their contributions to  JE  • dS, evaluated over the surface 
So  in Figure 1.4(b), cancel each other. The other elements of area can be treated 
in pairs in a similar way, so that  JE  - dS, evaluated over the surface So  is 
zero, when the charge q is outside the surface So  in Figure 1.4(b). Summarizing: 

JE.   dS = --9-- 
Eo 

f E • dS  =0  

[q inside the surface So] 	 (1.13) 

[q outside the surface So] 	(1.14) 

This is Gauss' flux law of electrostatics. 
In the case of an isolated, stationary, point charge, Gauss' flux law can 

be illustrated using the concept of electric field lines. It will be assumed that 
the number of electric field lines per square metre crossing an area perpen- 
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dicular to E is equal to the magnitude of E. Assume that a spherical surface 
of radius r is drawn around the point charge in Figure 1.3(a), with the charge 
+q at the centre of the spherical surface. The total number of electric field lines 
crossing the spherical area 4nr 2  is given by the product of this area and the 
magnitude of the electric field E. This product is equal to q/c o. Hence the 
total number of electric field lines crossing the spherical surface is indepen-
dent of its radius r, so that in the special case of an isolated, stationary, point 
charge, whose electric field obeys Coulomb's inverse square law, the electric 
field can be represented by straight electric field lines going all the way from 
the isolated, stationary, point charge to infinity. 

Now consider the flux JE  - dS crossing the arbitrary shaped Gaussian surface 
So  in Figure 1.4(a), when the charge q is inside the Gaussian surface. If the 
number of electric field lines crossing each square metre of an area perpen-
dicular to E is equal to the magnitude of E, then the scalar product E - dS = 
E dS„ is equal to the number of electric field lines crossing dS. Hence the 
integral  JE  - dS is equal to the total number of electric field lines crossing 
the surface So  which, since the electric field lines carry on in straight lines 
to infinity is equal to q/c o  whatever the shape of the Gaussian surface. This 
illustrates Gauss' flux law of electrostatics. If the stationary charge q is outside 
the Gaussian surface, its electric field lines just cross the surface in straight 
lines. As many electric field lines leave the surface as enter it, so that in this 
case JE  • dS is zero. 

1.2.7. Gauss' flux law for a continuous charge distribution 

Consider first a system of N stationary point charges of magnitudes q l , q2 , 
. . . , qN• Applying equations (1.13) and (1.14) as appropriate to each of these 
charges and adding, we find that for any arbitrary Gaussian surface, 

J 
 E i  • dS + f E2 • dS + • - • + I EN • dS = E' 21- . 	(1.15) 

co  

The summation E' on the right hand side of equation ( 1.15) is only over 
those charges that are inside the Gaussian surface. Using the distributive 
rule, equation (A1.2) of Appendix A1.1, we have 

El  • dS + E2 • dS + . . . EN • dS = (Ei  + E2 + . . . + EN) • dS 
= E • dS 

where E is the resultant electric field at a point on the Gaussian surface due 
to all the N charges in the system. Substituting in equation ( 1.15) and using 
Gauss' integral theorem of vector analysis, which is equation (A1.30) of 
Appendix A1.7, we have 

f E•dS= .{V •EdV=E'S-1-. 	 (1.16) 
Eo 

For a continuous charge distribution, of charge density p, E'q i  is equal to 
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fp dV evaluated over the volume Vo  enclosed by the Gaussian surface. Hence 
for a continuous charge distribution 

f E•dS= fV-
EdV=fpdV . 	

(1.17) 
co 

If the volume Vo  enclosed by the Gaussian surface is inside the continuous 
charge distribution and if Vo  is made small enough for the variations of 
V • E and p inside Vo  to be negligible, then after cancelling Vo, equation 
(1.17) reduces to 

V • E(r) = P(r)  . 	 (1.18) 
60 

In equation (1.18), E(r) is the total electric field at the field point at r due 
to all the charge distributions in the system, and p(r) is the value of the 
charge density at the field point at r where equation (1.18) is applied. Equation 
(1.18) is one of Maxwell's equations. 

1.2.8. Generalization of the equation V • E = p/eo  to moving charge 
distributions 

Equation (1.18) was developed for a stationary, continuous charge distribution, 
that is for electrostatics. It is assumed in classical electromagnetism that 
equation (1.18) applies at a field point inside a moving and accelerating 
continuous charge distribution. Following Lorentz we shall use a simplified 
classical model for individual charged atomic particles such as protons and 
electrons, each of which will be treated as a continuous charge distribution 
of finite, but exceedingly small dimensions. Lorentz assumed that equation 
(1.18) held inside and outside such an accelerating classical point charge. Draw 
a Gaussian surface of finite extent to enclose such a moving and acceler-
ating classical point charge. Integrating equation (1.18) at a fixed time and 
applying Gauss' theorem of vector analysis, which is equation (A1.30) of 
Appendix A1.7, since fp dV evaluated at a fixed time is equal to q, we have 

J 
 V - E dV = f E - dS = —

1 
f pdV = --E . 	 (1.19) 

60 	 eo 

It will be shown in Section 3.4 of Chapter 3 that the electric field lines due 
to an accelerating point charge are curved and more complicated than in the 
case of the stationary point charge shown in Figure 1.3(a). However, if equation 
(1.19) is valid in the general case of an accelerating classical point charge 
of magnitude q then the total flux of E crossing the Gaussian surface 
surrounding the charge, which is also equal to the total number of electric field 
lines coming from the accelerating charge, is still equal to q180  whatever the 
speed and acceleration of the charge. This is an extremely important result, 
which will appear from time to time throughout our discussions of Maxwell's 
equations. 
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1.2.9. The electrostatic scalar potential 

In many cases it is easier to determine electrostatic fields by introducing the 
scalar electrostatic potential 4). Consider again the two stationary point charges 
of magnitudes q 1  and q that are at positions r 1  and r respectively in Figure 
1.1. It is straightforward for the reader to show using cartesian coordinates that 

( 	1 	) — V  ( Ir — r1I 	
1  

[(x — x1)2 	 2 	 1/2 + 07 _ y 0 + (oz — z1)1 ) V 

= 	
(r — r i ) 

 — 
Ir — r 1 I 3  

where the operator V is given by 

,  
v =1---F,--+ K aX 	ay 	aZ 

and i, 3 and ic are unit vectors pointing in directions parallel to the x, y and 
z axes respectively. Hence the expression for the electric field E l  due to the 
charge q 1  in Figure 1.1, which is given by equation (1.5), can be rewritten 
in the form 

E l  = —V(1) 1 	 (1.21) 

where 

qi  
+ C1 . 	 (1.22) 

4)1  = 47rE0lr — r11 

The zero of the electrostatic potential 4) 1  is generally specified by assuming 
that 41 1  is zero at an infinite distance Ir — r 1 I from the charge q 1  in which 
case the constant C 1  in equation (1.22) is zero. 

It follows from equation (1.21) that, for a system of N charges q l , q2 , 
. . . , qN  at positions r 1 , r2 , . . . , rN  respectively, the resultant electrostatic 
field at the field point at r is given by 

E = Ei  + E2  + • • • + EN  = —V41 1  — V4:12 — • • • — VIN 
=—V 
	

(1.23) 

where according to equation (1.22) 

= = E qi 	. 	 (1.24) 4)(r) 	
E4)i 
	

47cE0lr —  ri 

Notice that the electrostatic potential 4) can be determined by adding the 
numerical values of the contributions 4) ;  due to the individual charges, whereas 
the resultant electric field E is the vector sum of the contributions  E.  due to 
the individual charges. The electrostatic potential (1) is a scalar quantity. 

Consider the continuous volume charge distribution shown in Figure 1.2. 
By treating the charge inside the infinitesimal volume element d17, at T., in 
Figure 1.2 as a point charge of magnitude p (IV, where p is the charge density 

(1.20) 
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at r„ it follows from equation (1.24) that the total electrostatic potential 4)(r) 
at a field point at r, due to the continuous charge distribution shown in Figure 
1.2, is 

1 f p(r17,  
4)(r) 	•---- 	

)(1 	
(1.25) 

47re0 	ir — r31 . 

If there is a surface charge distribution of magnitude a coulombs per square 
metre, the charge 0(r5)dS3  on an infinitesimal element of area &Ss  at r3.  can 
be treated as a point charge. This leads to the expression 

1 	0(r )dS  4)(r) 	
f 	

(1.26)  
47rEo 	Ir — rs1 

for the contribution of the surface charge distribution to the electrostatic 
potential. 

Since according to equation (A1.26) of Appendix A1.6 the curl of the 
gradient of any scalar function of position is zero, it follows by taking the 
curl of both sides of equation (1.23) that 

—VxV4)=VxE=0. 	 (1.27) 

Integrating equation (1.27) over a finite surface and applying Stokes' theorem 
of vector analysis, which is equation (A1.34) of Appendix A1.8, we have 
for the electrostatic field 

IV x E • dS = fE - dl = O. 	 (1.28) 

The condition V x E = 0 (or its integral form fE • dl = 0) is a condition that 
the electrostatic field E must satisfy if it is a conservative field. In the more 
general case of varying charge distributions V x E is not zero but is equal 
to -arwat, where B is the magnetic field. When we come to discuss varying 
charge and current distributions in Section 2.2 of Chapter 2 we shall find 
that equation (1.23) must be replaced by equation (2.7) of Chapter 2. 

Putting E = —V4) in equation (1.18) and using the relation  V.  (VO = V24), 
we obtain for a system of continuous charge distributions in empty space 

vr2411  . _ ..E.  . 

CO 
(1.29) 

This is Poisson's equation of electrostatics. The solution of Poisson's equation 
is given by equation (1.25). At a field point in empty space, p = 0 and Poisson's 
equation reduces to Laplace's equation 

v24)  . 0. 	 (1.30) 

Laplace's equation can be solved using the methods of potential theory. No 
new physical principles are involved. The interested reader is referred to the 
standard text books such as Jeans [5], Smythe [6] and Jackson [7]. 
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1.2.10. The potential energy of a charge in an electrostatic field 

So far our development of the properties of the scalar electrostatic potential 
4) has been entirely mathematical. It is possible in the context of electro-
statics to give 4) an operational interpretation in terms of the potential energy 
of a test charge of magnitude q placed at the field point. To move a test 
charge q at zero speed in an electrostatic field, we must apply a force 

Fapp  = —qE 

equal and opposite to the electric force qE acting on the test charge. The 
difference dU in the potential energy U at two points a distance dl apart can 
be defined as the work done by the applied force Fapp  in an infinitesimal 
displacement dl of the test charge q against the electric force qE acting on 
the test charge, that is 

dU = Fapp  - dl = —qE - dl. 	 (1.31) 

Since for electrostatics E = —V4), equation (1.31) can be rewritten in the form 

dU = qV4) - dl = —qE - dl. 	 (1.32) 

Using equation (A1.9) of Appendix A1.2, we have 

dU = qd4) = —qE - dl 
	

(1.33) 

where di4) is the total change in 4) in the infinitesimal displacement dl. Using 
equation (1.33), we find that the total work done in moving the test charge 
q at zero speed from infinity, where by definition il) = 0 and U = 0, to the 
position r, where the electrostatic potential is 4 (r) and the potential energy 
is U(r), is given by 

U(r) = —qf E • dl = qf d4  = q4(r). 	 (1.34) 

It follows from equation (1.28) that  JE  • dl and hence U are independent of 
the path taken from infinity. Hence, the electrostatic scalar potential 4 can 
be defined in terms of the potential energy of a stationary test charge q by 
the relation 

4) = Limit ( —1
) q 

(1.35) 

as q tends to zero. According to equation (1.34), if the test charge q is at a 
field point where the electrostatic potential is 4(r), then the potential energy 
of the charge is q4(r). 

It follows from equation (1.33) that 

d4  = —E • dl. 

Integrating from position 1 where the electrostatic potential is 4 1 , to position 
2 where the electrostatic potential is 42, we find that 
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2 
4)2  - 4) 1  = -I E • dl. 

i 
(1.36) 

The quantity (4)2  — 4) 1 ) is called the potential difference between the positions 
2 and 1. The idea of an electrostatic potential difference, given by equation 
(1.36), will be used extensively in our discussions of Ohm's law and conduction 
current flow in Section 1.3 and in our discussions of quasi-stationary phe-
nomena in Chapter 7. 

Since the electric force on a test charge of magnitude q, which is in an 
applied electric field E, is equal to qE, the work done on the test charge by 
the applied electric field in a displacement dl of the test charge is qE • dl. If 
all this work goes into increasing the kinetic energy T of the test charge by 
dT, then 

dT = qE • dl. 

Integrating we find that, if the test charge q is released from rest at a point 
in empty space at the position r, where the scalar potential is 4)(r), then it 
will reach infinity, where its potential energy is zero, with a kinetic energy 
T given by 

r 
T = q fE • dl = —q f E • dl. 

r 	 œ 

But according to equation (1.34) 

—q Jr  E • dl = OW = U(r). 

Hence the test charge reaches infinity with a kinetic energy T given by 

T=  q4(r) = U(r). 	 (1.37) 

Using the relativistic expression for the kinetic energy T of a charged particle 
of (rest) mass mo  and velocity u we can rewrite equation (1.37) in the form 

1  
M0C2  ( (1 — /42/C2) 112 - 1  ) = 171) * 

In the zero velocity limit, equation (1.38) reduces to 

1 	2 
-2-  MOU = 01) . 

(1.38) 

If the test charge q is accelerated from position 1 to position 2 in the elec- 
trostatic field, the reader can show, by using different limits of integration, that 

2 	 1 
T2 - Ti  = f qE • di = —q f E • dl = 07(4)1 — 4)2) I 	2 

where T1  and T2 are the kinetic energies of the test charge at positions 1 and 
2 respectively, where the electrostatic potentials are 4), and 4)2• Rearranging 
we have 

00 
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T1  + 01  = T2 + 02 . 	 (1.39) 

Now q4) 1  and q4)2  are the potential energies U1  and U2 of the test charge at 
positions 1 and 2 respectively in the electrostatic field. Hence equation (1.39) 
can be rewritten in the form: 

Ti + Ut = T2 + U2 	 (1 .40)  

which is the law of conservation of energy for a charge moving in an elec-
trostatic field. 

1.2.11. Summary of electrostatics 

The basic equations of electrostatics, which we have derived from Coulomb's 
law for continuous charge distributions, can be summarized as follows 

V • E = L' . 	 (1.18) 
CO 

V X E = O. 	 (1.27) 

The solution of these equations is given in terms of the scalar electrostatic 
potential 01) by 

E = —V4) 	 (1.23) 

where 

(1)(r) — 	
1  f p(rs)dlis  

4ne0 	Ir — T.,' • 
(1.25) 

The differential equation for 4), which is generally called Poisson's equation 
is 

(1.29) 

In empty space, where p is zero, equation (1.29) reduces to Laplace's equation 

V2 =0. 	 (1.30) 

1.3. Conduction current flow in stationary conductors 

1.3.1. Introduction 

So far in this chapter, we have only considered charges at rest (electro-
statics). Before going on to discuss the electric and magnetic fields due to 
moving charges, which will lead up to Maxwell's equations, we shall make 
a few comments about conduction current flow in a stationary electrical con-
ductor. A fuller account of this important, but often neglected topic, is given 
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in  Appendix. B.  The reader should be thoroughly familiar with the contents 
of Appendix B, which should be read in conjunction with this section. 

1.3.2. The equation J = oE and Ohm's law 

The conduction current I flowing in a conductor is equal to the rate at which 
charge is crossing any cross section of the conductor. The conduction current 
density J is defined as the current per square metre crossing an area 
perpendicular to the direction of current flow, so that for uniform current 
flow J = IIA, where A is the area of cross section perpendicular to the 
direction of current flow. 

It is found experimentally that, when a source of emf maintains a steady 
electrostatic potential difference across a stationary metallic conductor, that 
forms part of a complete electrical circuit, a steady conduction current flows 
in the conductor. The ratio of the electrostatic potential difference sl) across 
the conductor to the current I flowing in the circuit is called the resistance R 
of the conductor. We have 

(1.41) 

Consider the uniform conductor of length 1 and of uniform cross sectional 
area A shown in Figure 1.5. The conductor forms part of a complete elec-
trical circuit carrying a steady current I. The emf maintains an electrostatic 
potential 4) across the conductor. According to the equation E = —V4), there 
is a steady electric field of magnitude E equal to 4)11 inside the conductor. 
Putting I = JA and 4) = El in equation (1.41) and rearranging, in vector form 
we have 

J=E  	 (1.42) 

I=L1 A 

Figure 1.5. An example to illustrate the relation J = oE. 
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where 

1 
a= 

 RA • 
(1.43) 

The electrical conductivity a can be defined as the ratio of the current density 
J at a point inside the conductor to the value of the total electric field E at 
that point. The resistivity of the conductor is equal to the reciprocal of the 
electrical conductivity. A conduction current, given by equation (1.42), flows 
in a stationary conductor, whenever there is an electric field E inside the 
conductor. 

When Ohm's law is valid, the electrical conductivity a and the resistance 
R of a circuit are constants, which are independent of the potential differ-
ence across the conductor, provided the external conditions, such as 
temperature, are kept constant. Ohm's law is not a universal law of nature, 
though it does hold for many metallic conductors over a wide range of values 
of the applied potential difference. In general, particularly for semiconduc-
tors, the electrical conductivity a = JIE is a function of the electric field E 
inside the conductor, as well as of the temperature of the conductor. For 
single crystals a may be a tensor. When a conductor is made up of a large 
number of such anisotropic crystals orientated at random, the average con-
ductivity is generally isotropic. 

The equation J = GE is not one of Maxwell's equations. It is called a 
constitutive equation. The value of a depends on the properties of the con-
ductor and on the experimental conditions. 

1.3.3. Classical model of conduction current flow 

There are in a metal a large number of electrons, generally called free or 
conduction electrons, that are able to move about inside the metal under the 
influence of an applied electric field. In a p-type semiconductor, most of the 
charge carriers are positive holes. Consider a conductor of cross sectional 
area A, and which is carrying a steady conduction current I. Let the number 
of moving charges per cubic metre, each of charge q, be equal to n. Since I 
is equal to the total charge passing any cross section of the conductor per 
second, we have 

/ = qnAv 	 (1.44) 

where v is the mean drift velocity of the moving charges. The current density 
J is given by 

I 
J= 71  = qnv. (1.45) 

When the conduction current is due to the drift of electrons, q is negative 
and v is in the direction opposite to the direction of the electric field E inside 
the conductor. For the conduction electrons in copper at room temperature 
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n= 8.5 x 1028  111-3  and q = —1.602 x 10-19 C. Consider a current of lA flowing 
in a copper wire of cross sectional area 1 mm2 . Substituting in equation 
(1.44), we find that y = 7.3 x 10 m s-1 . At this velocity it takes an electron 
3.8 hours to drift one metre. The conduction electrons in copper have kinetic 
energies of about 7eV. The corresponding velocity is about 1.6 x 106  m s-1 , 
or approximately c1200, where c is the speed of light in empty space. Thus, 
in the presence of the electric field inside a copper wire, the conduction 
electrons acquire a mean drift velocity of only about 10-4  m s-1  superimposed 
on their thermal velocities, which are in all directions and have magnitudes 
of about 1.6 x 106  m s-1 . The conduction electrons gain momentum and 
kinetic energy when they are accelerated by the electric field inside the 
conductor, but they lose this extra momentum and extra kinetic energy in 
the collisions they make with impurities, lattice defects and phonons, which 
reduce their mean drift velocity to the low value of about 10-4 m s-1 . According 
to the classical theory of electrical conductivity the electrical conductivity a 
is given by 

mf ' 

where f is the collision frequency. For copper at room temperatures a = 
5.8 x 107  S m-1 . Putting n = 8.5 x 1028  m-3 , q = —1.602 x 10-19  C and 
m = 9.108 x 10-31  kg in equation (1.46), we find that the collision frequency 
f is 4.10 x 10 13 , so that the mean time between collisions is about 2.4 x 
10-14  s. In this time interval, at a speed of c/200, a conduction electron 
will travel a distance of 3.6 x 10-8  m, which is approximately 150 atomic 
diameters. This shows that, on average, a conduction electron must pass 
through or pass very close to many atoms before making a collision. This 
illustrates how the use of quantum mechanics and the idea of quantum mechan-
ical tunnelling through potential barriers is essential in a full theory of electrical 
conduction in metals. An introduction to the theory of electrical conduction 
is given by Weisskopf [8]. 

1.3.4. Joule heating 

According to equation (1.11), the instantaneous rate at which the electric 
field E inside a stationary conductor is doing work on a charge q that is moving 
with velocity u inside the conductor is qE • u. The average rate at which the 
steady electric field E is doing work on a conduction electron is 

(qE - u) = qE • (u) = qE • y 

where y is the mean drift velocity. A conduction electron gains kinetic energy 
at this average rate, but loses this extra kinetic energy in collisions, leading 
to Joule heating. If there are n conduction electrons per cubic metre, the rate 
of generation of Joule heat per cubic metre inside a conductor is 

n(qE • v) = E • (qnv) = E • J 

(1.46) 
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where, according to equation (1.45), J = qnv is the conduction current density. 
If the conductor is of length 1 and of cross sectional area A, the rate of 
generation of Joule heat in the conductor is 1A(EJ). Since E = JI0 = //Acr, 
the rate of generation of Joule heat is equal to PR, where R = 110A is the 
resistance of the conductor and I is the current flowing through the con-
ductor. 

1.3.5. Origin of the electric fields inside current carrying conductors 

In electrostatics, when an electric field is applied to an isolated conductor a 
transient electric current flows in the conductor until a surface charge distri-
bution of such a magnitude is built up that the electric field inside the isolated 
conductor is zero and the conductor becomes an equipotential. However, 
according to equation (1.42), there is steady electric field inside a conductor 
that forms part of a stationary electrical circuit, when a steady conduction 
current flows in the circuit. A full account of how a source of emf can maintain 
such an electric field inside a stationary conductor is given in Appendix  Bi.   
The illustrative example of a source of emf given in Appendix B1 is that of 
a Van de Graaff generator, whose terminals are joined by a long conducting 
wire. When a state of dynamic equilibrium has been reached, the charges, 
that are moved mechanically by the belt of the Van de Graaff from one terminal 
to the other, replace the charges removed from the terminals of the Van de 
Graaff by the current flow into and from the wire connecting the terminals. 
In this way the Van de Graaff can maintain an electric field inside the 
connecting wire. It is shown in Appendix B1 that during the transient state, 
before the current in the connecting wire is constant, electric charge distrib-
utions are built up on the surfaces of the connecting wire and at boundaries 
where conductors of different conductivities are joined, that are of such 
magnitudes that the resultant electric field E inside the connecting wire is 
parallel to the wire and is of such a magnitude that it gives the same value 
of current in all parts of the connecting wire. The resultant electric field E 
inside the wire is equal to (E 0  + Es), where E0  is the electric field due to the 
charges on the terminals of the Van de Graaff and Es  is the electric field due 
to the surface and boundary charge distributions on the connecting wires. 
Well away from the Van de Graaff generator, it is these surface and boundary 
charge distributions that give the main contribution to the electric fields 
inside the conductors and the potential differences across the resistors in the 
distant parts of the circuit. It is shown in Appendix B3 that the magnitudes 
of these surface and boundary charge distributions are exceedingly small. 

An interesting query, often raised by students of geophysics is that, when 
we carry out a resistivity survey by putting two metallic probes into the ground 
and join them to a battery, such that a current flows in the ground from one 
probe to the other, how does the current that enters the ground through one 
probe know where the other probe is and how does the current get there? 
The answer is that, though individual conduction electrons have velocities 
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of about c1200 in all directions, on average they drift in the direction opposite 
to the direction of the local electric field. When the battery is first connected 
across the probes, there is an electric field associated with the potential 
difference between the probes. Initially this electric field is present in both 
the ground and in the air above ground. We can ignore the current flow in 
the air above ground, but the electric field will give a current flow in the 
conducting ground, which will build up charge distributions on the surface 
of the ground and in regions where the conductivity a and the relative 
permittivity Er  vary with position. These charge distributions are of such 
magnitudes that they give resultant electric field lines which join the two 
probes. It does not matter to a conduction electron how this local electric 
field is produced or where it comes from. The conduction electron just responds 
to the local resultant electric field E and drifts in the direction opposite to 
E. In this way current flows from one probe to the other along the resultant 
electric field lines due to the applied potential difference and the surface and 
boundary charge distributions. 

1.3.6. A moving conductor 

If a conductor (or plasma) is moving with velocity u in the laboratory refer-
ence frame in an electric field E and a magnetic field B, the force, measured 
in the laboratory reference frame, on a charge of magnitude q that is at rest 
relative to the conductor, but which is moving with velocity u in the labora-
tory reference frame, is given by the Lorentz force qE + qu x B and not by 
qE. This suggests that for a conductor moving with velocity u, the constitu-
tive equation J = aE must be changed to 

J = a(E + u x B). 	 (1.47) 

Equation (1.47) can be derived more rigourously using relativistic methods. 
Reference Rosser [9]. 

1.3.7. The continuity equation for a varying charge and current distribution 

Consider a closed surface So  that encloses part of a charge and current dis-
tribution. It is found experimentally that the total charge of a complete system 
is always conserved. The charge crossing the surface So  per second, due to 
the electric current flow, leads to a corresponding decrease in the total charge 
left inside the surface So, so that 

J dS = — 	pdV. a t 
Applying Gauss' theorem of vector analysis, which is equation (A1.30) of 
Appendix A1.7, to the left hand side and rearranging we obtain 

(V • J + 	dV = O. 	 (1.48) 
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Equation (1.48) must hold whatever the value of the volume enclosed by the 
surface So . If the volume enclosed by the surface So  is increased by an infin-
itesimal amount dV0  then (V • J + ap/at)dVo  must be zero if equation (1.48) 
is to be valid for the new total volume. Hence, we must have 

aP  V • J + 	0
• 

— = 	 (1.49) at  

This is the continuity equation for a charge and current distribution. 
When the current in a circuit is steady, the surface and boundary charge dis-

tributions, that give the appropriate value of electric field inside the conductors 
making up the circuit to give the same value of current in all parts of the circuit, 
do not vary with time, so that alp/at is zero for steady currents in complete 
circuits and equation (1.49) reduces to 

V • J = 0 
	

(steady currents). 	 (1.50) 

1.4. Magnetic fields due to steady current distributions (magnetostatics) 

1.4.1. Introduction 

Previously in Section 1.2, we only considered the forces between stationary 
electric charges. We shall now go on to consider the forces between moving 
and accelerating charges. No experiments have been carried out with moving 
atomic charged paricles, such as an electron, to determine the precise expres-
sion for the magnetic field due to a moving and accelerating classical point 
charge. (We shall return in Chapter 3 to derive the appropriate expressions after 
developing Maxwell's equations). Neither can we isolate part of an electrical 
circuit that is carrying a steady conduction current, to determine experimen-
tally the precise expression for the magnetic field due to a current element 
that forms part of the circuit. The most accurate experiments to start from 
are those using steady currents in rigid current balances of different geomet-
rical configurations. It will be assumed throughout this section that there are 
no magnetic materials, such as iron, present in the system, so that the relative 
permeability g,. = 1 everywhere. 

Consider two complete, rigid, stationary electrical circuits in empty space, 
which are carrying steady conduction currents I I  and /2 respectively, as shown 
in Figure 1.6. Experiments have confirmed, to an accuracy of about 1 part 
in 10, that the total magnetic force F2 on circuit 2 due to the current I flowing 
in circuit 1 can be calculated using the formula: 

go/1/2 	d12  x (dl l  x r i2) 
F2  - 	

41T 	2 1 	,12 
3 	 (1.51) 

In equation (1.51) dl i  is an element of length d/ i  of circuit 1 pointing in the 
direction that the current I I  is flowing in circuit 1, dI2  is an element of length 
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Figure 1.6. The forces between two stationary, rigid circuits carrying steady currents 1, 
and 12 . 

d/2  of circuit 2 in the direction of 4 and r12  is a vector from the position of 
dl i  to the position of dI2 , as shown in Figure 1.6. Equation (1.51) is some-
times called Grassmann's equation. There are other formulae, such as Ampère's 
original formula 

RA/2 	2 Ai Al 	3 r {-- (%.111 U1 • 	2) 	5 (Al  ual • r i2  ) (d12  r12  ) F2 — 4n f2f 1 12  42 	1 	r12 
(1.52) 

which give the same value for F2 for steady conduction currents in complete 
circuits. For a general discussion see Whittaker [10]. Equation (1.51) is 
however the traditional starting point in classical electromagnetism since it 
is the most convenient formula for the development of the concept of the 
magnetic field due to the current in a circuit. We shall return to discuss the 
general applicability of equation (1.51) in Chapter 6, after deriving the expres-
sion for the magnetic field due to an accelerating charge in Chapter 3. 

It is shown in elementary text books on electromagnetism that, according 
to equation (1.51), if there are two thin, infinitely long, straight, parallel 
wires at a distance r apart in empty space and carrying steady conduction 
currents I I  and 4 amperes, then the magnetic force f per metre length on 
either of the two conductors is given by 

1141 /2  
f  = 2nr • 

(1.53) 
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The ampere is defined as 'that unvarying current which, if present in each 
of two infinitely thin, straight, parallel conductors of infinite length and one 
metre apart in empty space, causes each conductor to experience a force of 
exactly 2 x 10-7  newtons per metre of length'. Putting /1  = /2 = 1, r = 1 and 
f = 2 x 10-7  in equation (1.53), we find that go  is equal to 4n x 10 henry 
per metre. This shows that the value of go  = 47t x 10' H rn- ' follows from 
the definition of the ampere. The constant go  is called the absolute permeability 
of free space, though we shall prefer to call it the magnetic constant. 

Equation (1.51) is generally divided into two parts. It is said that the steady 
current Ii  in circuit 1 in Figure 1.6 gives rise to a magnetic field B 1  at the 
position of the current element /2 dI2  of circuit 2, where B 1  is given by 

B 1  = ( 1-1,0/1 ) 
J 
 dli x r12  . 	 (1.54) 

\ 47c I 1 	,3 
' 12 

Equation (1.54) is generally called the Biot-Savart law, in honour of the 
contributions of Biot and of Savart to electromagnetism. Using equation (1.54) 
we can now rewrite equation (1.51) in the form 

F2 = /2 f dI2 X B i . 	 (1.55) 
2 

Equation (1.55) will be developed from the Lorentz force law in Section 
1.4.3. 

1.4.2. Definition of the magnetic induction (or magnetic flux density) B 

According to the Lorentz force law, equation (1.1), if a test charge of mag-
nitude q is at rest at a field point where there is an electric field of intensity 
E and a magnetic field of magnetic induction (or magnetic flux density) B 
the only force on the stationary test charge is the electric force 

Fdec = qE. 	 (1.56) 

Equation (1.56) was used to define the electric field intensity E in Section 
1.2.4. If the test charge q is moving with velocity u, according to the Lorentz 
force law, equation (1.1), there is an extra contribution to the total force on 
q, over and above the electric force Feie„ namely the magnetic force which 
is given by 

Fmag  = qu x B. 	 (1.57) 

The magnitude of the magnetic force Fmag  depends on the magnitude and 
direction of u the velocity of the test charge. The magnetic force is zero 
when u is parallel to B. It is a maximum when u is perpendicular to B. The 
strength of the magnetic field B can be defined in terms of the maximum 
measured magnetic force using the relation 

B = Limit . (Fmag)max  (1.58) 
qu 
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in the limit as the magnitude q of the test charge tends to zero. The direc-
tion of the magnetic field B can be defined as the direction in which the test 
charge q would be moving if it experienced no magnetic force. The sense of 
B is defined such that Fmag , B and u obey the left hand rule, according to which, 
if the thumb of the left hand points in the direction of Fmag  and the second 
finger points in the direction of u, then for a positive test charge the first finger 
of the left hand points in the direction of B. This direction for B is in 
agreement with the direction in which the north pole of a compass needle would 
point in empty space. In the SI (or MKSA) system of units, in which Fmag  is 
measured in newtons, q in coulombs and u in metres per second, the value 
of B given by equation (1.58) is expressed in tesla (denoted T), or alternatively 
in webers per square metre (denoted Wb m-2). The weber is the SI unit of 
magnetic flux. In some text books the magnetic vector B is called the magnetic 
induction, whereas in other text books it is called the magnetic flux density. 
To avoid the continued use of the long phrase: a magnetic field of magnetic 
induction (or magnetic flux density) B, we shall generally us the abbrevia-
tion 'a magnetic field B', where the symbol B stands for the magnetic induction 
(or magnetic flux density). 

It is convenient to represent magnetic fields on diagrams using imaginary 
magnetic field lines, drawn such that the direction of the tangent to the 
magnetic field line at a field point is in the direction of the magnetic field B 
at that point. The number of magnetic field lines is generally limited by spacing 
the lines, such that on the diagrams the number of lines per square metre 
crossing a surface perpendicular to the field line is equal to (or, if more 
convenient, is proportional to) the magnitude of the magnetic field B at that 
point. 

1.4.3. The force on a current element in an external magnetic field 

It will now be shown that the expression 

F = / dl x B 

for the magnetic force on a current element of length dl, that forms part of a 
stationary, rigid circuit which carries a steady conduction current I and which 
is in an external magnetic field B, can be derived using the Lorentz force 
law, equation (1.1). Let the area of cross section of the current element be equal 
to A and let the number of moving charges, each of charge q, be equal to n 
per cubic metre. Since the volume of the current element is A d/, the total 
number of moving charges in the current element is N = nA d/. According 
to equation (1.1), the magnetic force on a charge moving with velocity ui  
in a magnetic field B is equal to qui  x B. Summing over all the moving 
charges in the current element, we find that the total magnetic force on the 
N = nA d/ moving charges due to the external magnetic field B is 

dFmag  = Egli, x B = q(u) x B. 
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Since 

Eui  = Nv = nAv d/ 

where v is the mean drift velocity of the moving charges, and since according 
to equation (1.44) 

/ = qnAv 

we find that the total magnetic force on the moving charges inside I dl is 

dFmag = qnA d/vxB=/d1xB. 	 (1.59) 

Integrating equation (1.59) around the complete circuit, we find that the total 
magnetic force on the moving charges in the complete circuit is 

dFmag  = I f dl x B. 	 (1.60) 

This in agreement with equation (1.55). At this point it is generally assumed 
that equation (1.55) gives the resultant force on an electrically neutral current 
element in the external magnetic field B. A brief discussion will now be 
given of how the magnetic force on the moving charges is transmitted to the 
current element. 

Consider the stationary conductor of length 1 and of cross sectional area 
A, that lies parallel to the z axis in Figure 1.7(a). A simplified model will be 
used in which there are n free electrons per cubic metre, each of charge —e 
and all moving in the —z direction with the same velocity v in a uniform 
potential well. There is a uniform external magnetic field B in the +y 
direction in Figure 1.7(a). According to equation (1.59), the magnetic force 
on the conduction electrons inside the conductor in Figure 1.7(a) is 

Fmag  = Bll 	 (1.61) 

in the —x direction. The magnetic force on one of the free conduction elec-
trons is equal to evB in the —x direction. This force tries to move the conduction 
electrons in the —x direction. Initially, just after the current is switched on, there 
will be a drift of conduction electrons in the —x direction until negative and 
positive charge distributions are built up on the side surfaces of the con-
ductor, as shown in Figure 1.7(b). This is the Hall effect. These surface 
charge distributions are of such magnitudes that they give a Hall electric 
field EH in the —x direction of such a magnitude that the electric force —eE H  
on a moving conduction electron is in the +x direction and balances the 
magnetic force — ev x B in the —x direction. Hence, after the transient state 
is over 

EH = vB. 	 (1.62) 

Since the magnetic force on a moving conduction electron is balanced by 
the electric force on the conduction electron due the the Hall electric field, 
there is no resultant force on a moving conduction electron so that on our 
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Figure 1.7. Derviation of the magnetic force Bll on a conductor of length 1 which is carrying 
a conduction current I in a direction perpendicular to a magnetic field B. (a) The magnetic 
force on one of the conduction electrons. (b) The electric force on the conduction electron due 
to the Hall electric field. 

simplified model the resultant forces on the conduction electrons cannot give 
rise to the experimentally observed resultant force BIl on the stationary con-
ductor in Figure 1.7(a). It will now be assumed that there are n stationary 
positive ions per cubic metre each of charge +e. There is no magnetic force 
on the stationary positive ions. The positive and negative electrostatic charge 
distributions, that give rise to the Hall electric field EH, attract each other 
with equal and opposite electrostatic forces which add up to zero. In our low 
velocity limit the electric forces on the surface charge distributions due to 
the positive ions and the moving conduction electrons compensate each other. 
In our simplified model the forces between the positive ions and the conduction 
electrons give the cohesive forces holding the metallic conductor together, 
and the resultant of these forces is zero. The force we have not included so 
far is the force on the stationary positive ions due to the Hall electric field 
EH. Since EH  is in the negative x direction in Figure 1.7(a), the electric force 
on each positive ion is of magnitude eEH  = evB in the —x direction. Since 



28 Chapter I 

there are N = nAl stationary positive ions in a length 1 of the conductor, the 
total force on the positive ions is nAl evB = BIl in the —x direction in 
Figure 1.7(a). Hence on our simplified model, the resultant force BIl on the 
stationary current carrying conductor in Figure 1.7(a) comes from the unbal-
anced force on the stationary positive ions due to the Hall electric field EH. 

The model used so far is very much over simplified. First the mean drift 
velocity y of a conduction electrons in a metal, which is only of the order 
of 10 m s-1 , is superimposed on a velocity distribution, in which individual 
electrons have speeds up to about c1200. It is straightforward for the reader 
to show that equation (1.59) represents the average magnetic force on the 
conduction electrons. Secondly, the conduction electrons do not move in a 
uniform potential well, but in a periodic potential which leads to a band 
structure, which in turn affects the equation of motion of a conduction electron, 
leading to the introduction of the concept of effective mass. A reader inter-
ested in the application of this more refined model is referred to McKinnon, 
McAlister and Hurd [11], who show that the resultant force on the current 
carrying conductor in Figure 1.7(a) is still equal to B11. 

1.4.4. The Biot-Savart law for the magnetic field due to a steady current in 
a complete circuit 

According to equation (1.54), the magnetic field B at a field point at a position 
r due to steady current 1 in a stationary, rigid circuit can be calculated using 
the formula 

( _NO f dls(r) x (r — r)  B(r) = 47c ) 	Ir — rs 1 3 	• 
(1.63) 

where  d15(r5) is an element of the circuit at the source point at r, and (r — rs) 
is a vector from dl, to the field point at r. Equation (1.63) is known as the 
Biot-Savart law. 

Equation (1.63) has been checked in its integral form, to an accuracy of 
about 1 part in 107, by experiments with rigid current balances of different 
geometrical configurations. Since it is not possible to carry out experiments 
with isolated current elements carrying steady currents, equation (1.63) has not 
been confirmed directly by experiment in the differential form: 

go/ ) dis(r) x (r —  r5) . dB(r) = ( ve 	ir rs13  (1.64) 

It is not possible to go from the integral form of the Biot-Savart law to the 
differential form given by equation (1.64), since we can add a function, such 
as the gradient of a scalar function of position, to the right hand side of equation 
(1.64) and still obtain equation (1.63) when we integrate around the complete 
circuit, provided the contribution of the extra function to the magnetic field 
is zero when it is integrated around the complete circuit. Reference: Whittaker 
[101 We shall return in Chapter 6, after developing the full theory of elec- 
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tromagnetism, to discuss the validity of the Biot-Savart law in both the integral 
form given by equation (1.63) and the differential form given by equation 
(1.64). It will be sufficient for our initial development of the theory of the 
magnetic fields due to steady currents to assume that the Biot-Savart law is 
valid in the integral form given by equation (1.63). 

To generalize equation (1.63) to the case of the steady, continuous current 
distribution shown in Figure 1.8,*divide the current distibution into a number 
of filiamentary current loops. Equation (1.63) can then be applied to each of 
these. Let the current density at the position r„ having coordinates x„ ys  and 
z„ be J(r). The product J(r 5) dV, can be treated as a current element. It then 
follows from the Biot-Savart law, equation (1.63), that the magnetic field 
B(r) at a field point at r is given by 

B(r) = ( 1-41.--:—°7r ) f J(rs
) 	x (r — rs) dV,  

Ir — rs i 3 	• 

It is assumed in introductory courses that equation (1.65) holds both at a 
field point outside the current distribution and at a field point, such as P in 
Figure 1.8, which is inside the steady continuous current distribution. 

(1.65) 

o X 

Figure 1.8. Derivation of the equation V x 13 = NJ at a field point inside a steady, contin-

uous current distribution. 
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1.4.5. The equation V.  B = 0 

Consider the magnetic field B at a field point that can be either inside or outside 
the steady current distribution shown in Figure 1.8. According to equation 
(1.20) 

(r – ri) _ v  (  1 	\ 
Ir – r,1 3 	k Ir – rs 1 / 

where the operator 

w  ; a j_ 	i a 
v=iaxmi 	+ ay 	aZ 

(1.66) 

(1.67) 

involves partial differentiation with respect to the coordinates x, y, z of the 
field point, keeping the position r, of the source point fixed. Equation (1.65) 
can now be rewritten in the form 

B(r) = ( It-) f V ( 	ir  1  rsi  ) x J(r5) dVs . 	 (1.68) 

According to equation (A1.23) of Appendix A1.6, for any scalar function Iv 
of position and any vector function C of position 

VvxC=VxivC–w(VxC). 

Putting Air = 1/Ir – rs I and C = XI-) and then substituting in equation (1.68), 
we obtain 

( _go  If V x J(r5)  dv' 
	

(1.69)  B = ( IX' ) f V x ( * (11 '—.  ) ) dV – 47t 	Ir – rs I 	s 	4n / 	Ir – rs I  
Now V x J(r5) involves partial differentiation with respect to the coordinates 
x, y, z of the field point at r. The steady current density  J(r5) at the fixed source 
point at r., does not change, if the coordinates x, y, z of the field point at r 
are changed. Hence V x J(r5) is zero, so that the second integral on the right 
hand side of equation (1.69) is zero. Since integrating with respect to dy, = 
dxs  dys  dzs  and taking the curl by varying the coordinates x, y, z of the field 
point are independent linear operations, the order in which the operations 
are carried out can be reversed. Hence, for steady currents, equation (1.69) can 
be rewritten in the form 

go ) f 	dV j(r)  B(r) = V x ( — 47c 	Ir – r51 	s . (1.70) 

Since, according to equation (A1.25) of Appendix A1.6, the divergence of 
the curl of any vector is zero, it follows by taking the divergence of both 
sides of equation (1.70) that at field points both inside and outside the steady 
current distribution in Figure 1.8 

V • B = O. 	 (1.71) 
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Integrating equation (1.71) over a finite volume and applying Gauss' theorem 
of vector analysis, which is equation (A1.30) of Appendix A1.7, we obtain 

IV • B dV = .1"B • dS = 0. 	 (1.72) 

Since according to equation (1.72) IB • dS is zero, there is no net flux of 
the magnetic field B, due to a steady stationary current distribution, from 
any arbitrary closed surface. It is assumed in classical electromagnetism that 
equation (1.71) also holds for the magnetic field B due to a varying current 
distribution. 

It has been suggested, mainly on theoretical grounds, that magnetic 
monopoles might exist, and that magnetic field lines would diverge from 
such magnetic monopoles. The divergence of B would not be zero for a system 
of such magnetic monopoles. However, even if it were proved that magnetic 
monopoles do exist, they would be so rare that they would play no signifi-
cant role in classical electromagnetism and equation (1.71) would almost 
invariably be valid in practice. 

1.4.6. The vector potential A due to a steady current distribution 

Consider again the steady, continuous current distribution shown in Figure 1.8. 
Equation (1.70) can be rewritten in the form 

B=VxA 	 (1.73) 

where the value of the vector A at the field point at a position r is given 
by 

t go  \ f J(r) dy,  
A(r) = k v) j Ir - rs1 • 

(1.74) 

In equation (1.74), J(r) is the current dentsity at the source point at rs  having 
coordinates xs, y„ zs  and difs  = dxs  dys  dz., is a volume element at rs . The 
vector A is called the vector potential. 

Taking the divergence of both sides of equation (1.74) at the field point 
at r having coordinates x, y, z, we have 

V • A(r) = V • [( 41-4)  ) f  IrJ(r  s_  r  j ) dV 
s

] 

= (-11- c±) f V -( j(r)  ) dVs  \ 47c / j 	■ ir - rsi / 
(1.75) 

where the operator V is given by equation (1.67). Putting C = J(r) and 
Iv = 1/Ir - rs i in equation (A1.20) of Appendix A1.6, which is 

V • AvC = NtV • C + C • Vw 	 (1.76) 

and then substituting in equation (1.75), we obtain 
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V • A(r) = (t)fv . Prs)rscrs -t:°.).1' j(r) 	
i 

• V (Ir — rsl) dils.  
(1.77) 

Since, for a steady current distribution the value of the steady current density 
J(r3) at the fixed source point at rs  does not vary when the coordinates x, y 
and z at the field point are changed, then 

V • J(r5) = 0. 	 (1.78) 

Hence, the first integral on the right hand side of equation (1.77) is zero. 
The reader can check by carrying out the partial differentiations that 

V 
( 	

1  
1r — rs1) 	( {(x — xs) 2  + (Y — Ys) 2  + (z — zs) 2 )"2  ) 

. _v (  1   ) 
5 

 
'Ir — rs1 / 

(1.79) 

where the new operator 

Vs= i"5-; +j-ws  +k azs 
	 (1.80) 

is evaluated by keeping the coordinates x, y, z of the field point fixed and 
varying the coordinates xs, ys  and z, of the source point. Using equations 
(1.78) and (1.79), equation (1.77) becomes 

V. A(r) = — ( 3.1-70 f J(r5) • Vs  (  ir  1  rsi   ) dVs. 	 (1.81) 

Putting C = J(r5) and lif = 1/Ir — r,I in equation (1.76) and remembering that, 
according to equation (1.50), V s  • J(r5) is zero for steady currents, we have 

J(r5) • 
V5 ( 1r 1  rsl) — 

 y5. (1
111(rs)rs1) ' 

Substituting in equation (1.81) and applying Gauss' theorem of vector analysis, 
which is equation (A1.30) of Appendix A1.7, we obtain 

V. A(r) = — ( tr  ) f vs  . ( 
 J(r5) 

 ) 	
go  \ f J(r5) • dS, 

 ( Ir — rs I 	47c ) 
 

Ir—ri • 
(1.82) 

Provided the current distribution is not of infinite extent, which is true in all 
practical cases, we can always find a surface that is completely outside the 
current distribution such that J(r5) is zero at all points on that surface, in which 
case the right hand side of equation (1.82) is zero so that 

V • A = O. 	 (1.83) 

This shows that the divergence of the vector potential A, that is given by 
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equation (1.74), is zero. The expression for the vector potential A, given by 
equation (1.74), was derived from the integral form of the Biot-Savart law 
for a steady current distribution. 

1.4.7. The equation V x B = NJ and Ampère's circuital theorem 

Ampère's circuital theorem can be developed from the integral form of the 
Biot-Savart law, equation (1.63), using the magnetic scalar potential. Reference: 
Scott [12].  The alternative method we shall use will give the reader some useful 
practice using vector analysis. 

Consider again the stationary, steady, continuous current distribution shown 
in Figure 1.8. The field point P is inside the continuous current distribution, 
as shown in Figure 1.8. Taking the curl of both sides of equation (1.73) and 
using equation (A1.27) of Appendix A1.6, we have 

V xB= V x (V x A) = V(V • A) — V 2A. 

According to equation (1.83), V.  A is zero when A is given by equation (1.74). 
Substituting for A from equation (1.74), we have 

..2 [( go  \ f J(rs) dy, 1 	
(1.84) V x B(r) = —v Lk 4n / 	Ir — rs i I • 

Since integrating with respect to dV, = 4, dys  dz., and the application of the 
Laplacian 

a2  

°2 	

o2 4. o2 

— ax2 -1-  ay2 	az2 (1.85) 

are independent linear operations, the order in which the operations are carried 
out can be reversed, so that equation (1.84) can be rewritten in the form 

V x B(r) = — ( It) I V2  ( IrJ(rsr)si  ) dVs . 	 (1.86) 

Since for a steady current distribution the value of  J(r5) at the fixed source 
point at rs  is independent of changes in the coordinates x, y, z of the field 
point when the operator V2  is applied, equation (1.86) can be rewritten in 
the form 

V x B(r) = — ( 1-44) f J(r3)V2  ( ir  1  rsi  ) dVs . 	 (1.87) 

The reader can check by differentiating that, when r is not equal to r s  

•v2 (

1  ) _ ,, 2  (...,  1  
Ir — r s i v  {(x — xs)2 +Ys)2  + (Z — ZS)2  )

1/2  ) = 0.  

Hence the integral on the right hand side of equation (1.87) is zero except 
in the near vicinity of the point r = rs. Consider a very small spherical volume 
with its centre at the field point at r. The variation of  J(r5) inside this very 
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small volume can be neglected, so that very close to r we have  J(r5) = J(r). 
Hence, when equation (1.87) is applied to only the small spherical volume 
around the point r, equation (1.87) can be rewritten in the form 

V x B(r) = ILL4(r) 	• [ 	Ir  1  r
51 
  )1 dvs  47c 

= /4(r)  fv. ( 1Z—)dV 47c 	R 3 	s 
(1.88) 

where we have rewritten the Laplacian V2  as V V then used equation (1.20) 
and put r — rs  = R. The integration in equation (1.88) is only over the volume 
of the small spherical volume with centre at r. The integrand is zero elsewhere. 
Since aR/ax = —aR/ax„ we can rewrite the first terms in the expressions for 
V (R/R3 ) and Vs  • (R/R3) as follows: 

ax', R3  

	

3 \ aR \ 	1 .(x_x s)— IT) k 	+ R3 

( 
3 \ f 

(x— xs)- 1,7 4 	axs 	R3 
a ( x— x s 	 3 )( aR 	a (.1_= , w 	 .) - s 	= — Xs) — IT4 axs 	R3 	ax  R3  

with similar expressions for the other components. Hence 

V  • (RR3 ) = —Vs • (RR3 ) • 

Using this relation in equation (1.88) and applying Gauss' theorem of vector 
analysis, which is equation (A1.30) of Appendix A1.17, we find that 

11J VxB=— jV 	dV = — —11°T (r rs)  ) • dS 47t 	s 	R 	s 	47E 	k ir — rs I 3 	s 

= 11j  dS2 47c 
where 

= 
(rs  — r) •  dSs = (r —  rs) dSs  

— rI3 	ir — r5 1 3  

is the solid angle subtended at the field point at r by the element of area dSs  
at rs  of the small sphere with centre at r. Since IdS2 is equal to 4m, we finally 
find that at the field point P at the position r inside the steady, stationary, 
continuous current distribution in Figure 1.8, 

	

x B(r) = ii0J(r). 	 (1.89) 

Equation (1.89) relates the curl of the total magnetic field B(r) at the field 
point P at the position r in Figure 1.8 due to all the currents in the system, 
to the local value of the current density J(r) at the field point. Equation 
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(1.89) was derived from the integral form of the Biot-Savart law, which, for 
a steady, continuous current distribution, is given by equation (1.65). 

Integrating equation (1.89) over any arbitrary surface, we have 

JV x B • dS = gojJ • dS. 

Applying Stokes' theorem of vector analysis, which is equation (A1.34) of 
Appendix A1.8, we obtain 

fB • dl = go/ 	 (1.90) 

where I = IJ • dS is the total current crossing any surface bounded by the 
line integral on the left hand side of equation (1.90). Equation (1.90) is 
Ampère's circuital theorem. 

1.4.8. The differential equation for the vector potential due to a stationary, 
steady continuous current distribution 

Putting B=VxA in equation (1.89) and using equation (A1.27) of Appendix 
A1.6, we have 

V x (V x A) = V(V • A) — VA = NJ. 	 (1.91) 

Since according to equation (1.83), V • A is zero for the time independent 
vector potential A given by equation (1.74), it follows from equation (1.91) 
that, for steady, continuous current distributions, 

v2A  = NJ 	 (1.92) 

in the gauge in which 

V • A = O. 	 (1.93) 

Each cartesian component of A satisfies a differential equation of the form 
v2Ax  = po jx.  

This is similar to Poisson's equation of electrostatics, which is equation (1.29) 
and the solution of which is given by equation (1.25). Hence 

( 1,4..÷r, ) f  ./x(r) 	c117,  A 	= 	 . 
Ir —r5 1  

Combining the solutions of Ax, Ay  and A, leads to equation (1.74). Equations 
(1.92) and (1.74) will be extended to the case of a varying current distribu-
tion in Chapter 2. 
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1.5. Magnetic forces as a second order effect 

In electrostatics we had 

V • E = 12. • 	V x E = O. 
E0 ' 

For the magnetic fields due to steady currents (magnetostatics) we had 

V • B = 0; 	V x B = 1..t0J. 

The above equations of electrostatics and of magnetostatics are completely 
independent of each other, so that initially these two branches of electro-
magnetism can be developed independently. This often leaves students without 
any idea of the relative magnitudes of the electric and magnetic forces between 
moving charges. In this section we shall consider a simple example that 
shows that the magnetic forces between moving charges is of the order of 
(y2/c2) times the electric forces between the charges, where y is the velocity 
of the charges. 

Consider two infinitely long, straight, thin, uniformly charged, non-con-
ducting wires a distance r apart in empty space, as shown in Figure 1.9. The 

Figure  1.9. The calculation of the electric and magnetic forces between two parallel convec-
tion currents. 
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wires are in the xy plane of a cartesian coordinate system fixed in the 
laboratory frame, which will be referred to as the inertial reference frame E. 
Both wires are moving in the positive x direction with uniform velocity y in 
the laboratory system E, as shown in Figure 1.9. Let the electric charge on 
each wire be 2‘, coulombs per metre, measured in the laboratory frame E. 
Since the wires are moving with uniform velocity y, both charge distribu-
tions give electric convection currents of magnitudes I = Xy in E. If it is 
assumed that the equation V • E = p/co  holds for moving charge distribu-
tions, Gauss' flux law equation (1.17), can be used to determine the electric 
fields in E. By symmetry, the electric field due to the charge distribution on 
wire 1 must diverge radially from wire 1. Applying Gauss' flux law, equation 
(1.17), to the cylindrical Gaussian surface of radius r and height h, shown in 
Figure 1.9, we find that 

E • dS = 2nrhEr =
kit 

 . 
CO 

Hence the electric field Ey  = Er  at the position of wire 2 due to the electric 
charge on wire 1 is 

2L, 
E = Er —

2neor • 	
(1.94) 

Y   

According to the equation (1.10) this electric field gives rise to an electric force 
of repulsion on wire 2, which is the +y direction and is of magnitude 

X2  

Fei  — 	 newtons per metre length. 	 (1.95) 
2ncor 

Consider now the circular disk-shaped surface S of radius r that has wire 1 
at its centre as shown in Figure 1.9. Applying Ampère's circuital theorem, 
equation (1.90), we have 

fB • dl = go/ = 

By symmetry B has the same value at all points on the circumference of the 
surface S, so that 

2,7crB = 

Hence the magnetic field at the position of wire 2 in Figure 1.9 due to the 
convection current Xy due to the motion of wire 1 is 

RoXy 
B z 	2nr 

Comparing with equation (1.94) we see that in the present case 

B, 	 y 
Ey  = ve°14  = 	• 

(1.96) 
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According to equation (1.59), the magnetic force on wire 2 is 112d12  x B 1 , 
where /2 = Xy. Hence the magnetic force on wire 2 is an attractive force 
given by 

ilok2v2 
Fmai = 	 

2nr 
newtons per metre length. 	(1.97) 

Adding questions (1.95) and (1.97), we find that the total force F = Faiec 
 Fmag  on one metre length of wire 2, measured in the laboratory frame E, is 

Fy  — 
zEor 

(1 — p..0E0y2). 

Numerical substitution of Eo  = 8.85 x 10-12  F in-1  and Ito  = 47c x 1 0 H in-1  
shows that 110E0  = 1/c2 , where c = 3 x 108  m s-1  is the speed of light in empty 
space. Hence 

2 
2L 	( F — 	1 — 12 ) 	newtons per metre length. 	(1.98) 

Y 	27rEor 	c2  

In this simple example, the ratio of the magnetic force of attraction to the 
electric force of repulsion between the moving, charged wires in Figure 1.9 
is y21c2 , where y is the velocity of the charged wires in the laboratory frame 
E. This example illustrates how the magnetic forces between electric charges 
moving with velocity y are only of the order of -v2/c2  times the electric forces 
between the moving charges. Furthermore it can be shown that equation (1.98) 
can be derived from Coulomb's law of electrostatics and the transformations 
of the theory of special relativity, illustrating how the magnetic forces between 
moving charges are second order relativistic effects compared with the electric 
forces between the charges. References: Section 10.6 of Chapter 10 and Rosser 
[13]. This relativistic approach illustrates the essential unity of electrostatics 
and magnetostatics in a vivid way. 

It was shown in Section 1.3.3 that when a current of 1 A flows in a copper 
wire of cross sectional area 1 mm2  (10-6  m2), the mean drift velocity of the 
conduction electrons is only y = 7.3 x 10 m s-1 . If the charges on the 
wires in Figure 1.9 moved with this speed, according to equation (1.94) the 
ratio of the magnetic force to the electric force on wire 2 would be about 
5 x 10-26 . Why then are the magnetic forces between electric circuits so 
important? In practice, there is no resultant volume charge density inside a 
metallic conductor such as copper. The negative charges on the conduction 
electrons are compensated by the charges on the positive ions which are at 
rest in a stationary conductor as illustrated in Figure 1.10. (The exceedingly 
small surface and boundary charge distributions associated with conduction 
current flow, discussed in Section 1.3.5 and Appendix B, are being neglected). 
Let the total positive charge on the positive ions be equal to +X coulombs 
per metre length and let the total charge on the conduction electrons be equal 
to —X coulombs per metre length. 

According to equation (1.98), the force on the moving electrons in con- 
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Figure 1.10. The forces between two conduction currents /. In the simplified model used, the 
positive ions are at rest and the negative electrons all move with the same uniform velocity v. 
The positive charge per unit length is +X, and the negative charge per unit length —X. The 
electric forces cancel leaving only the second order magnetic forces between the charges. 

ductor 2 in Figure 1.10 due to the moving electrons in conductor 1 is a 
repulsive force (magnetic plus electric) given by 

F— 	
2 

	

k  27m0r ( 1 - 2  ) 	newtons per metre length. 	(1.99) 
c2  

Since the positive ions in conductor 2 are at rest, there is no magnetic force 
on them, so that the total force on the stationary positive ions in conductor 
2 due to the moving electrons in conductor 1 is an attractive electric force 
given by 

X2  

27re..or 

The force on the moving electrons in conductor 2 due to the stationary positive 
ions in conductor 1 is an attractive force given by 

X2  
F — +-- 	 newtons per metre length. 	(1.101) 

27ceor 

The force on the positive ions in conductor 2 due to the stationary positive 
ions in conductor 1 is a repulsive electric force given by 

k2 
F — 

2neor 	
newtons per metre length. 	(1.102) 

'  

Adding equations (1.99), (1.100), (1,101) and (1.102), we find that the resul- 
tant force per metre length on conductor 2 due to all the charges (positive 

newtons per metre length. 	(1.100) 
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ions and conduction electrons) in conductor 1 is an attractive force given by 

	

x2v2 	
/2 	„ r2 

P01  
2nEoc2r = — 2n 	

_ _ 
eoc2r 	27cr 

newtons per metre length. 	(1.103) 

where we have put  1/ 0c2  = go. Thus the electric forces between the electri-
cally neutral current carrying conductors in Figure 1.10 add up to zero, leaving 
only the second order attractive magnetic force po/ 2/2nr that is observed 
experimentally. 

1.6. The equation V x E = -aBiat and electromagnetic induction 

In electrostatics we had: 

	

xV•E= 1)- '-- 	V E=0. 
£0  

For the magnetic fields due to steady currents (magnetostatics), we had: 

V • B = 0; 	V x B = poJ. 

It can be seen that, when the charge density p and the current density J are 
both constant, that is for electrostatics and magnetostatics, the equations for 
E and the equations for B are independent of each other. Experiments will now 
be outlined which show that, when the charge and current distributions are 
varying with time, the vectors E and B at a field point are related. We shall 
start by considering electromagnetic induction in this section and then go on 
to introduce the displacement current in Section 1.7. 

It is important to separate two distinct phenomena that can both contribute 
to what is generally called the induced emf in a closed circuit. 

(a) Motional induced emf (or dynamo emf) 

A motional induced emf is generated when a conductor moves in a magnetic 
field as, for example, in a dynamo. The origin of motional emfs will be 
treated in detail in Section 7.7 of Chapter 7, where it will be shown that 
motional induced emfs arise from the magnetic forces acting on the conduc-
tion electrons that are moving with a conductor that is moving in a magnetic 
field. 

(b) Transformer induced emf 

Consider two stationary coils that are in a vacuum, as shown in Figure 1.11(a). 
Since both coils are at rest, there are no motional induced emfs. It is found 
experimentally that, when the current in the primary coil is varying with 
time, for example when the key K in Figure 1.11(a) is closed or opened, a 
current flows in the secondary coil. This current flow in the secondary coil 

F = — 
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Figure 1.11. (a) A stationary air-cored transformer; (b) a stationary iron-cored transformer. 

is only present when the current in the primary coil is varying. The current 
in the secondary coil depends on the resistance of the secondary, so that it is 
an emf that is induced in the secondary coil and not a fixed current. It is 
found experimentally that the emf, denoted esec,  induced in the secondary 
coil is proportional to the rate of change of the magnetic flux Cosec  passing 
through the secondary coil due to the current flowing in the primary coil, 
that is 

ao 	a 
esec = — at  = - --. --a7  f B - dS (1.104) 

where B is the magnetic field due to the current flowing in the primary coil 
and the integral is evaluated over a surface bounded by the secondary coil. 
This induced emf is an example of a transformer induced emf. Equation (1.104) 
is generally called Faraday's law of electromagnetic induction. If an alter-
nating current flows in the primary coil, an alternating current flows in the 
secondary coil. This is the principle of the air-cored transformer. Since there 
are no moving parts in the air-cored transformer in Figure 1.11(a), there are 
no motional induced emfs. According to the constitutive equation J = oE, 
the conduction current in the secondary coil in Figure 1.11(a) should be 
due to an electric field E inside the wire making up the secondary coil. The 
emf in the stationary secondary coil is equal to fE E .  dl, which is the line integral 
of the electric field E taken around the secondary coil, so that using equation 
(1.104) we have 

Esec = f E • dl = j---, f B • dS 	 (1.105) 
sec 	 Ot sec 

Using Stokes' theorem of vector analysis, which is equation (A1.34) of 
Appendix A1.8, equation (1.105) becomes 

fE•d1=1VxE•dS=1(-1-)•dS. 	 (1.106) 



as 
V x E = — at • 

(1.107) 
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If the area AS of the secondary coil is small enough for the variations of 
V x E and aBlat over AS to be negligible, then equation (1.106) becomes 

( 
as v x E - AS = ) • AS 

so that 

It is assumed in classical electromagnetism that, when the magnetic field due 
to the current in the primary coil is varying, there is an induction electric 
field, whose curl is given by equation (1.107), present at the position of the 
secondary coil in Figure 1.11(a) and in other parts of empty space, whether 
the secondary coil is present or not. Equation (1.107) is a relation between 
the field vectors E and B, which is valid at any field point. The full proper-
ties of induction electric fields will be developed later in Chapters 5 and 7. 

Even though equation (1.107) is normally developed from experiments on 
transformers carried out at mains frequency, it is assumed in classical elec-
tromagnetism that equation (1.107) holds at all frequencies, for example for 
the radiation fields due to high frequency radio transmitters. 

If there is a ferromagnetic material passing though the primary and sec-
ondary coils, as shown in Figure 1.11(b), the transformer induced emf in the 
secondary coil is increased. The ferromagnetic core increases both the total 
magnetic flux passing through the secondary coil and the emf induced in the 
secondary coil. It is found experimentally that equations (1.104) and (1.107) 
are still valid. 

1.7. The equation V x B = p.o(J + € 0k) and the displacement current 

In Section 1.4.7 we developed equation (1.89), which is 

V x B = NJ 	 (1.108) 

from the Biot-Savart law, equation (1.65), for the magnetic field due to a steady 
charge and current distribution. Since, according to equation (A1.25) of 
Appendix A1.6, the divergence of the curl of any vector is zero we must always 
have 

V • (V x B) = O. 	 (1.109) 

It follows by taking the divergence of both sides of equation (1.108) and 
using equation (1.109) that, when equation (1.108) is applicable, we must have 

V • J = O. 	 (1.110) 

Comparing equation (1.110) with equation (1.50) we see that equation (1.108) 
can only be valid for steady charge and current distributions. According to 
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the continuity equation (1.49), in the case of a varying charge and current 
distribution, instead of equation (1.110) we have 

y  a V • J +
p 

 - = 0. 	 (1.111) at 
According to equation (1.18) p is equal to E0V • E. Substituting for p in 
equation (1.111) we obtain 

a 
v • J + 	(E0V • E) = V • (J + coE) = O. 	 (1.112) 

A dot over a vector denotes partial differentiation with respect to time. The 
correct modified form of equation (1.108) must lead to equation (1.112) in 
the general case of a varying charge and current distribution. If instead of 
equation (1.108), we had 

V x 13 = go(J + cok) 	 (1.113) 

then, since the divergence of the curl of any vector is zero, we would have 

V.  (V x B) = NV - (J + 4)  = 0  

which would be in agreement with equation (1.112). It is assumed in clas-
sical electromagnetism that equation (1.113) holds in the general case of a 
varying charge and current distribution in empty space whatever the frequency 
of the variations in electric current. 

At a field point in empty space where J is zero, equation (1.113) reduces 
to 

V x B = poc.0E. 	 (1.114) 

Equation (1.114) relates the curl of the resultant magnetic field B at a field 
point in empty space due to all the current distributions in the system to the 
rate of change of the resultant electric field E at the same field point in 
empty space due to the same charge and current distributions. The eoE term 
in equations (1.113) and (1.114) is generally called the vacuum displacement 
current. Since it has the same dimensions of ampere per square metre as 
the current density J, the 60È term should strictly be called the vacuum 
displacement current density. 

Equation (1.113) was developed from equation (1.108) by intelligent 
guesswork by seeing how equation (1.108) must be modified such that, for 
varying charge and current distributions, it becomes consistent with the con-
tinuity equation (1.49). Another approach used in introductory courses is to 
develop equation (1.113) by seeing how Ampère's circuital theorem must be 
extended, when it is applied to the magnetic field between the plates of a 
parallel plate capacitor that forms part of an AC circuit. Maxwell's original 
development of the vacuum displacement current density was based on a 
very complicated mechanical model of the aether. A reader interested in the 
historical approach is referred to Maxwell [14] or Tricker [15]. 
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In the approach presented in this chapter, the evidence in favour of the 
Eok term in equations (1.113) and (1.114) is that predictions based on 
equations (1.113) and (1.114) are in agreement with the experimental results. 
For example, we shall shown in Section 1.9.2 that the prediction, based on 
Maxwell's equations, that there are electromagnetic waves, that travel at a 
speed c = 1/04E0) 112  in empty space, depends on the presence of the vacuum 
displacement current density term Eok in Maxwell's equations. 

If we take Maxwell's equations as axiomatic, then by taking the curl of 
equation (1.114) and using equation (1.18) we obtain the equation of continuity. 

1.8. Summary of Maxwell's equations for continuous charge and 
current distributions in empty space 

The experimental evidence used in our development of Maxwell's equations 
for continuous charge and current distributions in this chapter can be 
summarized as follows: 
1. Coulomb's law of electrostatics leads to the equation (1.18), which is 

V • E = . 12  . 	 (M1) 	 (1.115) 
co 

2. The Biot-Savart law for a steady current distribution leads to the equation 
(1.71) which is 

V • B = O. 	 (M2) 	 (1.116) 

3. Faraday's law of electromagnetic induction, which is generally developed 
on the basis of experiments carried out at mains frequency, leads to the 
equation (1.107), which is 

V x E = Al 	 (M3) 	 (1.117) 

4. The Biot-Savart law for steady currents leads to the equation V x B = 
NJ. This equation was then extended by adding the vacuum displace-
ment current density term eoE to the conduction current density J to give 
equation (1.113), which is then consistent with the continuity equation 
(1.49). According to equation (1.113) 

V x B = go(J + EUE). 	(M4) 	 (1.118) 

The field vectors E and B at a field point in empty space can be related to 
experiments by the Lorentz force law, equation (1.1), according to which 

F = qE + qu x B. 	 (1.119) 

The Lorentz force law gives the magnitude of the force on a charge of mag-
nitude q that is moving with a velocity u at a field point in empty space, 
where the electric field is E and the magnetic field is B. Equation (1.119) is 
only valid provided the charge q is not emitting electromagnetic radiation. 
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Maxwell's equations divide into two pairs. The first pair, namely equa-
tions (1.115) and (1.116), which are sometimes referred to as M1 and M2 
respectively are expressions for the divergences of the field vectors E and 
B. The second pair of equations, namely equations (1.117) and (1.118) which 
are sometimes referred to as M3 and M4 respectively, are expressions for 
the curls of the field vectors E and B. It is equations (1.115) and (1.118), 
that is equations M1 and M4, which bring in the sources p and J of the 
electromagnetic field. 

Maxwell's equations, equations (1.115), (1.116), (1.117) and (1.118), were 
developed in this chapter on the basis of very limited experimental evidence 
for very special cases only. It is assumed in classical electromagnetism that 
Maxwell's equations can be applied in a far wider context than this very limited 
experimental evidence. For example, it is assumed that Maxwell's equations 
are valid for the general case of rapidly varying charge and current distribu-
tions and for accelerating charged particles moving at relativistic speeds. In 
our approach, the validity of Maxwell's equations does not depend on whether 
or not each individual equation has been verified by experiments for all possible 
experimental situations, but rather on whether or not the predictions of the 
theory taken as a whole are in agreement with the experimental results. It is 
found experimentally that, provided all quantum effects can be neglected, 
Maxwell's equations do make predictions that are in agreement with the exper-
imental results. We have so far avoided a full discussion of the historical 
development of Maxwell's equations, so that we could go on directly to develop 
a modern interpretation of classical electromagnetism, not influenced by 
obsolete historical models such as the mechanical theories of the aether. We 
shall defer discussion of these obsolete historical models until Section 4.13 
of Chapter 4. 

1.9. The differential equations for the fields E and B 

1.9.1. Introduction 

According to the Maxwell equation (1.118) 

V x B = go(J + coE). 

Taking the curl of both sides of equation (1.120), we have 

aE V  x 	x B) = pV x J + 1.10E0V x 	. 

(1.120) 

Using equation (A1.27) of Appendix A1.6 to expand V x (V x B) and re-
arranging the right hand side, we obtain 

a v(v • B) — V2I3 = 	x J + 110E0 (Vx E). 
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According to the Maxwell's equations (1.116) and (1.117), V • B is zero and 
V x E = -A. Hence equation (1.121) reduces to 

a2B  
V2B – NE0 	= 	x J. 	 (1.122) 

It can be seen from equation (1.122) that the magnetic field B depends 
only on the current density J via the V  X J term in equation (1.122). The poEoil 
term in equation (1.122) comes from the eok term in equation (1.120). If 
Maxwell had not introduced the vacuum displacement current term E 0E, then 
instead of equation (1.122), we would have obtained 

V2B = 	x J 	 (1.123) 

which is only valid for steady currents (magnetostatics). To obtain equation 
(1.123) take the curl of both sides of equation (1.89). The reader can show 
that, if the Eok term were present in equation (1.120) but the  B term were 
absent from the Maxwell equation 

V x E = 	 (1.124) 

we would again obtain equation (1.123). Both the coE term in equation (1.120) 
and the –i3 term in equation (1.124) are necessary to give the licgoil term in 
equation (1.122). The operator 

( V2  – goE01) = (v2— —,17f2) 

is called the D'Alembertian. The operator V 2  on its own is called the Lapacian. 
Since the –11.3 term in the Maxwell equation (1.124) was known before Maxwell 
introduced the vacuum displacement current term into equation (1.120), 
historically, it was the addition of the vacuum displacement current term to 
Maxwell's equations that converted the Laplacian in equation (1.123) into 
the D'Alembertian in equation (1.122). It was this addition of the displace-
ment current term to Maxwell's equations that led to the prediction that the 
electromagnetic interaction was propagated at a finite speed, namely the 
speed of light in empty space. 

Taking the curl of both sides of the Maxwell equation (1.124), then using 
equation (A1.27) of Appendix A1.6 to expand V x (V x E) and finally sub-
stituting for V x B using equation (1.120), we obtain 

a 	a v (v • E) – V2E = – —
at 

x B) = – 	+ cot). 

Substituting p/E0  for (V • E) from equation (1.115), we finally obtain 

a2E 
V2E – goco  -57 	 (1.125) 

Eo 	at 
It can be seen from equation (1.125) that the electric field E depends on both 
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the charge density p and the current density J via the Vp and j terms respec-
tively in equation (1.125). 

The reader can show that we need both the displacement current density 
term e0E in equation(1.120) and the –it term in equation (1.124) to obtain 
the Ne0É term in equation (1.125). The reader can show that if the –it term 
were absent from equation (1.124), but the vacuum displacement current term 
Eok were still present in equation (1.120) then, instead of equation (1.125), 
we would obtain 

v2E  .  

Eo 
(1.126) 

which is only valid for electrostatics. 
If the –i3 term were present in equation (1.124) but the vacuum displace-

ment current term  E0E were absent from equation (1.120), which was the 
historical situation before Maxwell introduced the vacuum displacement current 
term, then, instead of equation (1.125), we would obtain 

V2E = V (- 12-) + 110,i. 	 (1.127) 
Eo 

In an electrical conductor where p is zero and J = aE, where a is the 
constant electrical conductivity, equation (1.127) reduces to 

aE V2E – i.t0a — = 0. 	 (1.128) at 
Equation (1.128) is used extensively in the quasi-stationary limit, that is at low 
frequencies, when the contribution of the It 0e0E term can be neglected. At high 
frequencies the 110E0E term must be included. Equation (1.128) is the same 
as the equation of diffusion. It is shown in text books on electromagnetism that 
in a conducting medium of infinite extent there are plane wave solutions of 
equation (1.128) propagation in the +x direction of the type 

E = E0  exp ( – --I) cos co ( t – —xc  ) (1.129) 
Y 	 8 

where 6 = (2/waii0) 1/2  is the skin depth. The waves described by equation 
(1.129) are attenuated. Such waves cannot propagate in empty space, where 
CY = 0. 

1.9.2. Electromagnetic waves in empty space 

In empty space where a = 0 and J = 0, equations (1.122) and (1.125) reduce 
to 

a2B „ 
v2B - 110e0 -a-t-2 = u, (1.130) 
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a2E v2E - it0E0 	=0.  

Full solutions of equations (1.130) and (1.131) are given in the standard test 
books on classical electromagnetism. Both equations (1.130) and (1.131) are 
wave equations. In both cases the velocity of the waves is 

1 
C - 	112 • 

0100 
(1.132) 

The electromagnetic waves in empty space are identified with light waves, 
so that the velocity c in equation (1.132) is the velocity of light in empty space. 
If Maxwell had not introduced the vacuum displacement current, then at a field 
point in empty space equations (1.122) and (1.125) would reduce to 

V2B = 0; 	V2E = O.  

These equations do not have propagating wave solutions in empty space. The 
existence of electromagnetic waves, whose properties can be predicted using 
Maxwell's equations,. is strong evidence in favour of the vacuum displace-
ment current term E0E in equation (1.120). 

1.9.3. Solution of the differential equations for E and B 

The fields E and B can be determined independently using the differential 
equations (1.125) and (1.122) respectively, provided the values of p and J 
and their spatial and temporal variations are given. The methods of solution 
and their interpretations are similar to the case of the retarded potentials, which 
will be described in detail in Section 2.3 of Chapter 2. Hence at this stage 
we shall only give a brief discussion. The reader should return to this section 
after reading Chapter 2. By analogy with the retarded potentials a solution 
of equation (1.122) giving the magnetic field B at a field point at a position 
r at the time of observation t is 

B(r, t) = 	
1    dvs  (1.133) 4iccoc2  J 	R 

where R = (r — r) is a vector from a source point at r„ where the current 
density is J(r), to the field point at r. Quantities measured at the retarded 
time t* = (t — Ric) are placed inside square brackets. Jefimenko [16] showed 
that equation (1.133) can be rewritten in the form 

B(r, t) — 	
1 	f [J(r)] 	1 [ awrs)]  ]) x 	dy, (1 .134) 47c 	 at coc2  J \ R2 	cR L  

where it is a unit vector in the direction from the source point at rs  to the 
field point at r, and Wry! is the current density at rs  at the retarded time 
(t — Ric). Equation (1.134) will be derived in Section 2.7 of Chapter 2 using 
the retarded potentials. We shall also derive equation (1.134) in Section 6.5 
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of Chapter 6 from the expression for the magnetic field due to a moving 
and accelerating classical point charge, where we shall show that equation 
(1.134) is valid in differential form. We shall apply equation (1.134) to the 
oscillating electric dipole in Section 2.7. It is of interest to note that the vacuum 
displacement current term c ot does not appear as one of the sources of the 
magnetic field in equation (1.134). 

Again by analogy with the derivation of the retarded potentials, we conclude 
that a solution of equation (1.125) giving the electric field E at a field point 
at r at the time of observation t is 

1  f [ ( [Vip] + 1 a =1) 	( dV, 	 1.135) E(r, 0 — — 47ceo  k R 	Rc2  at 
where the operation V s  is given by equation (1.80) of Section 1.4.6. Jefimenko 
[16] has shown that equation (1.135) can be rewritten in the form 

1  f coik 	R [ ap 1 	1  13J 1 \ 1) dys. E(r, t) — 4ite0  
R2  ± Rc L T 1 Rc2  or 

(1.136) 

where [p] and [J] are the charge and current densities at the source point at 
rs  at the retarded time (t — Ric). Equations (1.134) and (1.136) will be called 
Jefimenko's equations. Equation (1.136) will be derived using the retarded 
potentials in Section 2.7. An alternative expression for E, which, unlike 
equation (1.136), is also valid in differential form, will be derived in Section 
5.13 of Chapter 5 using the expression for the electric field due to a moving 
and accelerating classical point charge. 

1.10. The Maxwell-Lorentz equations for the microscopic fields 

Maxwell's equations were developed earlier in this chapter for continuous 
charge and current distributions in otherwise empty space. In practice, all 
macroscopic charge and current distributions are made up of large numbers 
of charged atomic particles such as electrons, protons and positive ions, whose 
charges are always on integral multiple of the electronic charge of 

e — ±1.602 x 10-19  C. 

It is now believed that atomic particles, such as protons, consist of tightly 
bound quarks, which have charges of ±e 13 and ±2e/3. It will require enormous 
energies to produce free quarks, so that it is safe to assume that free quarks 
play no significant role in classical electromagnetism. 

It will be assumed that individual atomic particles, such as protons and 
electrons, can be treated as classical point charges, that is as continuous charge 
distributions of finite but exceedingly small dimensions. As an example of a 
classical point charge we shall now assume that the charge distribution shown 
in Figure 1.8 is exceedingly small. Lorentz assumed that Maxwell equations 
(1.115), (1.116), (1.117) and (1.118) held for the microscopic electric field e 



50 Chapter 1 

and the microscopic magnetic field b at a field point, such as P in Figure 
1.8 that is inside such a classical point charge, as well as at field points in 
the spaces between such classical point charges. Hence, according to Lorentz, 
at a field point inside a classical point charge 

nmic 

V • e = 	 (1.137) 
CO 

V • b = 0 	 (1.138) 

ab 
V x e = — 	 (1.139) 

V x b = 	rcu + 60 —a—aet 	 (1.140) 

where e and b are the resultant microscopic fields due to all the charges in 
the system and prnic and jrnic = pmic  u are the microscopic charge and current 
densities at a field point inside a classical point charge, that is moving with 
velocity u. Equations (1.137), (1.138), (1.139) and (1.140) will be called the 
Maxwell-Lorentz equations. 

The Maxwell-Lorentz equations will be taken as axiomatic from now 
on. They are generally the starting point for the derivation of Maxwell's 
equations for the macroscopic fields E and B at field points inside stationary 
dielectrics and stationary magnetic materials. Until we reach Chapter 9, we 
shall only consider the electric and magnetic fields due to charge and current 
distributions in empty space for the special case when the relative permit-
tivity er  and the relative permeability 14 are both equal to unity everywhere. 
A brief outline of this special case will now be given. 

1.11. Maxwell's equations for the macroscopic fields for the special 
case when E, = 1 and FL,. = 1 everywhere 

When the scale of an electromagnetic phenomenon is very much greater than 
atomic dimensions, the enormous fluctuations in the microscopic fields e and 
b on the atomic scale average out and we often only need to know the 
values of the macroscopic variables, which are defined as the averages of 
the corresponding microscopic variables taken over a region of space that is 
much bigger than atomic dimensions, that is 10-10  m, but which is kept small 
on the laboratory scale, say less than one micron (104  m). For example, a 
sphere of a solid of diameter 10-6  m contains of the order of 1012  atoms. 

Consider the field point P at a distance r from the origin 0 in Figure 1.12. 
We shall start with a simplified method of averaging a microscopic variable 
f(x, y, z, t) to obtain the value of the corresponding macroscopic variable 
F(x, y, z, t) at the field point P. Initially a microscopic variable will be averaged 
over the volume of a sphere of radius a having its centre at the field point P 
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Figure 1.12. Determination of the macroscopic fields at the field point P by averaging the 
corresponding microscopic fields over a very small volume that surrounds P. 

in Figure 1.12, where a is large on the atomic scale but small on the labora-
tory scale. Initially equal weights will be given to all the volume elements 
inside the sphere of radius a and volume Vo  = 47ra 313. Let f(r + s) be the 
value of the microscopic variable f at a point at a distance s, having compo-
nents sx, sy  and s„ from the field point at r, at which the value of the 
macroscopic variable F is required. The value of the macroscopic variable 
F will be defined initially in terms of the microscopic variable f by the 
equation 

F(r, t) = (f) = —1 f f(x + sx , y + sy , z + sz , t)d3s 	 (1.141) 
Vo  

where d3s = ds., dsy  ds, and the integration is over the sphere of radius a, 
whose centre is at the field point P in Figure 1.12. 

In the case of the macroscopic charge density p, equation (1.41) gives 

irk  d3s 
Vo  P = (Pm1c) = (1.142) 

where pm'c is the value of the microscopic charge density at the point (r + s). 
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For a system of atomic point charges the integral reduces to Eqi, which is 
the sum of the charges of all the classical point charges inside the volume 
Vo , so that equation (1.142) becomes 

Eqi  
P = Vo  

Sometimes the macroscopic charge density p is defined using equation (1.143), 
as the average resultant charge per cubic metre. If the charge qi  inside Vc, is 
moving with velocity u i , the macroscopic current density J is given by 

— fr
ic u d3s 

J 	 VO  
EgiUi  

Vo  • 
(1.144) 

The macroscopic electric field E and the macroscopic magnetic field B are 
defined in terms of the corresponding microscopic fields e and b by the 
equations 

Je  d3s 
E = (e) — 	vo  , 	 (1.145) 

B = (13) — fb d3s (1.146) 
Vo  

The disadvantage of equation (1.141) when we come to dielectrics is that 
the surface of the sphere of radius a may cut through molecules. Russakoff 
[17] suggested using a spherically symmetric weighting function w(s) that 
was constant out to the surface of the sphere of radius a in Figure 1.12 but 
which, instead of going to zero at s = a, decreases smoothly to zero over a 
distance that is small on the laboratory scale, but which is large on the atomic 
scale. The value of the macroscopic variable F(r, t) is then defined by the 
equation 

F(r, t) = (f) = fw(s)f(r + s, Od3s 	 (1.147) 

where f(r + s, t) is the value of the microscopic variable f at a distance s 
from the field point P in Figure 1.12 at the time t. The weighting function 
w(s) is normalised such that 

f oo 
w(s) d's = 1. 	 (1.148) 

Comparing equations (1.141) and (1.147), we see that the weighting function 
used previously, in equation (1.141) was 

, 	 1 
W(S) = 

Vo 
for s a, 

w(s) = 0 	 for s > a. 

(1.143) 
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According to equation (A2.4) of Appendix A2 for any microscopic variable 
f we have 

i af\ a(f) 	aF 
\T x 1 = ax = ax (1.149) 

where F = (f) is the macroscopic variable determined from the corresponding 
microscopic variable  f using equation (1.147). Equation (1.149) can be sum-
marised by saying that the operations of first averaging the microscopic 
variable f to determine the macroscopic variable F and then differentiating F 
partially with respect to x gives the same result as first differentiating the 
microscopic variable f partially with respect to x to determine aflax and then 
averaging the differential coefficient a/lax to determine (aflax) . For the x 
component of the electric field, equation (1.149) gives 

/ aex  _ aEx  
\__ / ax 	7.--x • 	 (1.150) 

Similar results hold for aEjay, aEjaz, ak/ax etc., and for aEiat etc. 
According to the Maxwell-Lorentz equation (1.137) 

aex 	aey 	aez  _ pm' 
co  . 

Averaging both sides of equation (1.151) we have 

/ ae, \ 
\ ax / + 

(  aaeyy   ) ± ( aaezz  ) . (peomic) 

Applying the general result given by equation (1.149) we have 

aEx  aEy  aE, _ p 
a y  + -T"'" 	Tc-, • 

Hence, 

P 
CO • 

where E is the macroscopic electric field and p is the macroscopic charge 
density, determined using equation (1.147). Proceeding in a similar way, the 
reader can show that the Maxwell-Lorentz equations (1.138), (1.139) and 
(1.140) lead to 

V - B = 0 	 (1.153) 

V x E = —it 	 (1.154) 

V x B = go(J + e0E) 	 (1.155) 

where B is the macroscopic magnetic field and J is the macroscopic current 
density, determined using equation (1.147). This analysis shows that the 

V • E = (1.152) 
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Maxwell-Lorentz equations give Maxwell's equations as the appropriate 
relations between the macroscopic variables. E, B, J and p. A full discus-
sion of macroscopic electromagnetism is given by Robinson [18]. 
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CHAPTER 2 

The scalar potential (1) and the vector potential A 

2.1. Introduction 

Though it is possible to determine the electric and magnetic fields E and B 
due to varying charge and current distributions by solving the differential 
equations (1.125) and (1.122) for E and B, for example using the Jefimenko 
solutions given by equations (1.136) and (1.134), it is sometimes more con-
venient to solve problems and to interpret electromagnetism using the scalar 
potential 4) and the vector potential A. Our starting point in this chapter will 
be Maxwell's equations for continuous charge and current distributions in 
otherwise empty space. For these conditions, Maxwell's equations at a field 
point inside a charge and current distribution are 

V • E = 	 (2.1) 
EO 

V • B = 0 	 (2.2) 

V xE--fi 	 (2.3) 

V x B = 	+ e0E) 	 (2.4) 

where p is the charge density and J is the current density at the field point. 
One dot above a variable denotes partial differentiation once with respect to 
time, two dots above a variable denote partial differentiation twice with respect 
to time etc. It will be assumed throughout this chapter that there are no 
dielectrics or magnetic materials so that the relative permittivity er  and the 
relative permeability II,. are both equal to unity everywhere. 

2.2. The differential equations for of) and A 

The vector potential A was introduced in Section 1.4.6 of Chapter 1, where 
we showed, using the Biot-Savart law, that the magnetic field due to a steady 
current distribution (magnetostatics) could be expressed in terms of a vector 
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potential A by the equation 

B=VxA 	 (2.5) 

where A was given by equation (1.74). We shall now go on to consider varying 
charge and current distributions using Maxwell's equations as our starting 
point. It is consistent with equation (2.2) to assume that B can also be related 
to a vector potential A by equation (2.5) in the general case of a varying current 
distribution. To check this, take the divergence of both sides of equation 
(2.5) and then use the result that, according to equation (A1.25) of Appendix 
A1.6, the divergence of the curl of any vector is zero, to show that equation 
(2.5) leads to equation (2.2). The divergence of A has yet to be specified. 

The scalar potential 4) was first introduced in electrostatics in Section 1.2.9 
of Chapter 1, where, in the context of electrostatics, 4  was related to the 
electrostatic field E by equation (1.23), according to which 

E = —V4). 	 (1.23) 

According to equation (A1.26) of Appendix A1.6 the curl of the gradient of 
any scalar function of position is zero. Hence it follows by taking the curl 
of both sides of equation (1.23) that equation (1.23) can only be applied in 
conditions where V x E is zero, that is in electrostatics. According to equation 
(2.3), which expresses Faraday's law of electromagnetic induction, 

V x E = -k. 	 (2.3) 

Substituting for B using equation (2.5), we have 

a 	 OA V x E = — —
Dt 

(V x A) = —V x 	. 

Rearranging, 

V x (E + 	= O. 	 (2.6) 

Since, according to equation (A1.26) of Appendix A1.6, the curl of the gradient 
of any scalar function of position is zero it is consistent with equation (2.6) 
to try putting (E + A) equal to —V4) in the general case, when the charge 
and current distributions are varying, giving 

E = —V4) — atOA  . 	 (2.7) 

As a check, integrate equation (2.7) around any closed loop. Since, according 
to equation (A1.11) of Appendix A1.2, '`i74) • dl is always zero, we have 

f E • dl = — f V4) • dl — f t • dl = 	A • dl. 

Applying Stokes' theorem, equation (A1.34) of Appendix A1.8, to A • dl 
and putting V x A equal to B we obtain 
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f E•d1=-11VxA•dS=-11B•dS 	 (2.8) 

which is the same as equation (1.105), which is Faraday's law of electro-
magnetic induction. It can be seen that the contribution of the  –A term in 
equation (2.7) to the total field E represents the contribution of electro-
magnetic induction to the total electric field in the case of a varying current 
distribution. For static conditions, À is zero and equations (2.7) and (2.8) reduce 
to equations (1.23) and (1.28) of electrostatics respectively. 

So far, we have only used the Maxwell equations (2.2) and (2.3) to develop 
equations (2.5) and (2.7), which relate the fields B and E to the potentials 4) 
and A. The other two Maxwell equations, namely equations (2.1) and (2.4), 
will now be used to develop the differential equations which relate 4) and A 
to the charge and current distributions. According to equation (2.4), 

V x B = go(J + cok) 	 (2.4) 

Substituting for E and B using equations (2.7) and (2.5) respectively, we 
have 

a v x (v x A) = 110J + goec, (–V4) – À) 

( aq)
w  ) 
	 a2A 

= NJ — goeov k ) — Neo -57-2 -  • (2.9) 

Notice that the 1460 .À term in equation (2.9) comes directly from the vacuum 
displacement current term e ok in equation (2.4). From equation (A1.27) of 
Appendix A1.6 

V x (V x A) = V(V • A) – V2A. 

Substituting in equation (2.9), using !l oco  = 1/c2  and rearranging, we obtain 

a2A 	 1 a4) 
V2 
	1
A– 

c
–y--V( 	

c
V•A+ — )= -1-10,1. at2 	 at 

The divergence of A has yet to be specified. It will be shown in Section 2.8 
that there is flexibility in the choice of V • A. In this section we shall specify 
V • A using the equation 

1 al) 
 V • A + 2 - = 
A 
v. 	 (2.11) 

c at 

(2.10) 

Equation (2.11) is known as the Lorentz condition. This choice is some-
times called the Lorentz gauge or the covariant gauge. Using the Lorentz 
condition, equation (2.10) reduces to 

1 a2A 
e2 at2 

The reader can check that, if the vacuum displacement current term e ok 

(2.12) 
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were absent from equation (2.4), then equations (2.12) and (2.11) would reduce 
to 

v2A  = 	V A = 0 

which are equations (1.92) and (1.83) of magnetostatics. This shows that, 
just as was the case with the differential equation (1.122) for B, it is the 
presence of the vacuum displacement current term e ok in equation (2.4) 
which converts the Laplacian of magnetostatics into the D'Alembertian in 
equation (2.12). Taking the curl of both sides of equation (2.12) gives equation 
(1.122), which is the partial differential equation relating B to the current 
distributions. 

Substituting for E from equation (2.7) into equation (2.1), we obtain 

V • (V4) +)= - 	. 
CO 

Now 

a V. A= —at (v • A). 

Using the Lorentz condition to substitute for V • A, we have 

a 	ao 	a20 v . 	—at 	= --c2 

(2.13) 

Substituting in equation (2.13) for V A and putting V • (V4)) equal to V24), 
we find that equation (2.13) reduces to 

1 a v2,,,_ 	24) 	P 	 (2.14) 
Y 	c2at2 	co  

Collecting the other equations for 4) and A, in the Lorentz gauge we have 

2  v 	a2A 
= A — 7.   

1 al) • A + 7 	= O. 	(The Lorentz condition) 	(2.16) 

The electric field E and the magnetic field B are given in terms of 4) and A 
by the equations 

aA E = —V4) — 	. at 
B = V x A. 

(2.17) 

(2.18) 

The choice of the Lorentz gauge decouples the differential equations for 4) 
and A allowing us to solve the differential equations for 4) and A separately. 
Notice that in equation (2.14), the scalar potential 4) depends only on the charge 
density p and that in equation (2.12) the vector potential A depends only on 
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the current density J. The choice of the Lorentz gauge also gives equations 
that are relativistically invariant under a Lorentz transformation. 

2.3. The retarded potentials 

According to equation (2.14), in the Lorentz gauge the scalar potential 4:, due 
to a varying, continuous charge distribution is related to the charge density 
p by the partial differential equation 

1 a26 v2d, _ _ . = _ P 
• 	

(2.19) I' 	c2 ail 
CO  

Equation (2.19) is an example of D'Alembert's equation. In this section, a 
simplified derivation of the solution of equation (2.19) will be given, which 
illustrates how the solution of equation (2.19) can be applied in practice. 
Readers interested in more rigorous solutions are referred to Panofsky and 
Phillips [1], Ferraro [2], or Hauser [3]. 

Consider the finite continuous charge distribution shown in Figure 2.1(a). 
The charge distribution is moving and varying in an arbitrary way such that 
the charge density p(r) and the current density J(r) at the fixed source point 
at r5  are functions of time. Divide the charge distribution shown in Figure 2.1(a) 
into a large number of infinitesimal volume elements. Consider the varia-
tions in the charge, that is inside the volume element dVs  at the fixed position 
rs. in Figure 2.1(a), in isolation from the rest of the charge distribution, as shown 
in Figure 2.1(b). Choose a new coordinate system with a new origin 0' at 
the position of the volume element dy5  as shown in Figure 2.1(b). Let the 
distance from the volume element dV, at 0' to the field point P in Figure 2.1(b) 
be denoted by R. The total charge dQ = p dy, inside the volume element 
dV, will be treated as a point charge. For a system consisting of only the varying 
charge inside the fixed volume element di!, equation (2.19) becomes 

1 a24) 	p V2-4) _ __
P
__ _ __ 6(R) 

C2  a 	CO ‘ 

where the Dirac delta function 5(R) is zero unless R = 0 in which case 
8(R) = 1. Outside the volume element dy, in Figure 2.1(b), equation (2.20) 
reduces to 

, 	1 D241 	n . 	 (2.21) V2y — -- -- — V 
c2  at2  

In the case of a point charge of magnitude dQ = pdV„ the scalar potential 1:1) 
should be spherically symmetric, so that using equation (A1.42) of Appendix 
A1.10, equation (2.21) becomes 

1 a ( 7 ao) 	1 a24) 	„ 
R-  — – —, — = v. 	 (2.22) R2 aR 	aR 	c- at2 

(2.20) 
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VARYING CHARGE AND 
CURRENT DISTRIBUTION 

(a)  

0 

(b)  

Figure 2.1. (a) Determination of the retarded potentials at the field point P due to a varying 
charge and current distribution (b) Derviation of the contribution of the charge and current 
inside the volume element dlis  to the retarded potentials at the field point P. 

The solution of equation (2.22), that is valid at the field point P in Figure 2.1(b) 
at the time of observation t, is 

f(t — Ric) 	f2(t + RIc) 

wheref and f2  are, so far, unspecified functions of (t — Ric) and (t + Ric) respec-
tively. The reader can check this solution of equation (2.22) by substituting 
for (1) from equation (2.23) into equation (2.22). The solution (1/R)f2(t Ric) 
is normally rejected, since it corresponds to the advanced potentials. Hence 

— (2.23) 
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outside the element of charge inside dV, in Figure 2.1(b), the solution of 
equation (2.21) should be of the form 

fl (t  — Ric)  
(1)  — 	R 	

. 	 (2.24) 

To specify the function fl (t —  Ric)  consider what happens very close to the 
origin 0' in Figure 2.1(b). The solution given by equation (2.24) must satisfy 
equation (2.20) inside the volume element dlis. Since 4) is proportional to 
1/R, 4) tends to infinity as R tends to zero in Figure 2.1(b). Hence near the 
origin 0' in Figure 2.1(b), 4) varies much more rapidly with distance at a 
fixed time than 4) varies with time at a fixed value of R, so that near R = 0 

-  the (1)/c2  term in equation (2.20) can be neglected in comparison to the V24) 
term. Hence near R = 0, equation (2.19) can be approximated by 

(2.25) 

This is Poisson's equation. The solution of equation (2.25) in the case of a 
point charge is Coulomb's law. Hence when R tends to zero 

— f
i  (t — Ric) 	dQ 	pdV,  

R 	
—> 

4rce0R 	4neoR • 	 (2.26) 4)  

The general solution, given by equation (2.24), must go over to this form when 
R is very small. This suggests that in the general case 

p(t — R1c)dV, 
4) — 	4nEoR 

where p(t — Ric) is a function of (t — RIc). According to equation (2.27), the 
value of the scalar potential 4) at the time of observation t at the field point 
P, at a distance R from the origin 0' in Figure 2.1(b), depends on the 
magnitude of the charge inside the volume element &Vs  at the time (t — Ric), 
that is at a time Ric before the value of 4) is required at the field point P. 
The time (t — RI c) will be called the retarded time and denoted by t*. Quantities 
measured at the retarded time t* will be placed inside square brackets. For 
example the p(t — RI c) term in equation (2.27) will be denoted by [p], so 
that equation (2.27) can be rewritten in the form 

jp]dV, 

[p]dlis  d4) — 4.7re0R  

(2.27) 

4) — 4neoR • 

Consider now the finite varying charge distribution shown in Figure 2.1(a). 
According to equation (2.28) the contribution, now denoted by d4), of the 
element of charge [p]dlis  at rs  in Figure 2.1(a) to the total scalar potential 4) 
at the field point P at r at the time of observation t is 

(2.28) 
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where R = (r — r s). Summing over all the volume elements making up the 
charge distribution shown in Figure 2.1(a), we find that the total scalar 
potential 41) due to the continuous, varying charge distribution is given by 

4)(r, t) — 	
1 

4rEc0 	
[p(rs)]difs  (2.29) 

ir — rs i 	• 

Since the various volume elements in the integral in equation (2.29) are at 
different distances R = ir — rs i from the field point P in Figure 2.1(a), the 
appropriate retarded times are different for the various volume elements. 

The solution of the equation 

1 a2A v2A  _ 	Hioj.  
e2 

can be obtained by solving equation (2.12) for the cartesian components Ax, 
Ay  and A, separately and then combining them to give 

[J(rs)]dV,  
Ir — rd • 

where [Rt.)] is the value of the current density at r s  at the retarded time 
t* = (t — Ric). Equations (2.29) and (2.30) are known as the retarded poten-
tials. Notice that in the Lorentz gauge the vector potential A depends only 
on the current density J, showing that in the Lorentz gauge the vacuum dis-
placement current density c ot does not appear as one of the sources of the 
magnetic field in equation (2.30). 

It is sometimes useful, when applying the retarded potentials, to intro-
duce, for purposes of exposition only, an imaginary information collecting 
sphere whose centre is at the field point P in Figure 2.1(a) and which 
collapses with a velocity c in empty space, such that the information collecting 
sphere arrives at the field point P at the time of observation t, when the 
potentials 4) and A are required at the field point P. The information 
collecting sphere passes the various volume elements,dV, in equations (2.29) 
and (2.30) at the appropriate retarded times. It is useful to imagine that this 
information collecting sphere collects information about charge density, current 
density and position at the appropriate retarded times. The data collected in 
this way can then be used to calculate 4  and A using equations (2.29) and 
(2.30). The application of the retarded potentials will be illustrated in Section 
2.4 by solving the example of the oscillating electric dipole. 

So far in this section, we have only considered idealized continuous charge 
and current distributions in otherwise empty space. In practice all charge and 
current distributions are made up of moving atomic particles, such as electrons, 
protons and ions. In Section 1.11 of Chapter 1, the macroscopic variables E, 
B, p and J were defined in terms of the corresponding microscopic variables 
using equation (1.147). Maxwell's equations for the macroscopic fields E 
and B were derived from the Maxwell-Lorentz equations for the microscopic 

(2.12) 

A(r, t) = (2.30) 
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fields, namely from equations (1.137), (1.138), (1.139) and (1.140). This 
leads us to equations (1.152), (1.153), (1.154) and (1.155) of Chapter 1. 
These equations for the macroscopic fields have the same mathematical form 
as Maxwell's equations for an idealized continuous charge and current dis-
tribution, namely equations (2.1), (2.2), (2.3) and (2.4). It follows by the 
same mathematical steps as were used earlier in Sections 2.2 and 2.3 that 
the macroscopic fields E and B can be related to a macroscopic scalar 
potential 4) and a macroscopic vector potential A by the equations 

E = —V4) — ii; 	B=V x A 

where 4) and A are again given by the retarded potentials, namely equations 
(2.29) and (2.30) respectively, provided that p is now the macroscopic charge 
density and J is the macroscopic current density calculated using equation 
(1.147). 

2.4. The oscillating electric dipole 

2.4.1. Introduction 

To illustrate the application and interpretation of the retarded potentials, we 
shall now give an account of the calculation of the electric and magnetic 
fields due to a stationary, oscillating, electric dipole. We shall assume that 
the electric dipole consists of two varying point charge distributions of 
magnitudes +Q and —Q respectively at a fixed infinitesimal distance d/ apart, 
as shown in Figure 2.2. The instantaneous value of the electric dipole moment 
p is 

p = Qdl. 	 (2.31) 

The mid-point of the electric dipole is fixed at the origin of a co-ordinate 
system, with p and dl pointing in the +z direction from the negative to the 
positive charge as shown in Figure 2.2. The charges are joined by a straight 
conducting wire of infinitesimal length d/. If a charge +dQ flows along the 
wire in a time dt from the negative to the positive charge the charges are 
changed to +(Q + dQ) and —(Q + dQ) respectively, and the current flowing 
in the connecting wire is I = dQ/dt. Differentiating equation (2.31) with respect 
to time, for fixed d/ we have 

13  = ( dQ  ) d/ — — I d/. 
dt  

(2.32) 

It will be assumed that the electric dipole moment p varies sinusoidally with 
time, that is 

P = po  sin om 	 (2.33) 
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A 
z 

—Q 

Figure 2.2. Determination of the electric and magnetic fields at the field point P which is at a 
distance r from the oscillating electric dipole at the origin. The dipole moment points along 
the z axis. The orientation of the x axis is chosen such that the field point P is in the xz plane. 
The polar angle 0 of the spherical polar coordinate system is measured from the z axis. The 
directions of the unit vectors i and 0 at the field point P are shown. The unit vector cil is in 
the direction of i x 6, which is downwards into the paper. 

where co is the angular frequency. Using equation (2.32) we have 

1= E  	 
d/ 	d/ 

) cos cot = 4 cos cot (2.34) 

where 4 = (up/dl) is the maximum electric current that flows in the wire of 
length d/. 

Consider a field point P at a distance r from the electric dipole that is at 
the origin in Figure 2.2. If the time of observation of the fields E and B at 
the field point P in Figure 2.2 is t, then the corresponding retarded time at 
the oscillating dipole is t* = (t — rl c). The value [pi of the electric dipole 
moment at the retarded time t* is 

[p] = po  sin cot* = po  sin co ( t — -r—) . 	 (2.35) 
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We shall now derive some of the formulae for the partial differential coeffi-
cients of the value of [p] given by equation (2.35). Differentiating equation 
(2.35) partially with respect to time, we have 

[fil = copo  cos co ( t — Lc ) . 	 (2.36) 

Using equations (2.32) and (2.34), we have 

[fi] = [I]dl = 4 dl cos w(t — 
 i-). 
	 (2.37) 

Differentiating equation (2.36) and (2.37) partially with respect to time we 
obtain 

[P] = —ON sin co ( t 
— L) ' 	

(2.38) 
c  

[k] = [i] dl = —col °  d/ sin co ( t — -7i) . 	 (2.39) 

Differentiating equation (2.35) partially with respect to r we have 

a [IAco 	 r\  — c p o  cos 0.)(t — —
c ar 	 , 

(2.40) 
_ 	_ 

	

[fi] 	[i] d/  
C 	c 	• 

Differentiating equation (2.36) partially with respect to r and using equation 
(2.38) we have 

atfii [P] 	[i] dl 	 (2.41) 

	

ar = 	c — 	c • 

2.4.2. Determination of the magnetic field 

Consider again the field point P, that is at a distance r >> d/ from the electric 
dipole at the origin in Figure 2.2. According to the expression for the retarded 
vector potential, equation (2.30), the vector potential A at the field point P 
at the time of observation t is in the +z direction in Figure 2.2 and, since in 
this example [J] dV, = [I] dl and R = r, the magnitude of Az  is 

NU] d/ 	tto [fi]  
Az — 	47cr — 4rcr 

where [I] = 4  cos co(t — ?lc) is the value of the current in the oscillating electric 
dipole at the retarded time t* = (t — rIc). Notice that the vacuum displace-
ment current density cot at various points in space should not be included 
as one of the sources of the vector potential in the Lorentz gauge. 

Introduce spherical polar coordinates in Figure 2.2, measuring r from the 

(2.42) 
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origin, the polar angle 0 from the z axis and the azimuthal angle 4) from the 
x axis towards the y axis in the xy plane. Let i, ii and (I) be unit vectors in 
the directions of increasing r, 0 and 4) respectively. The use of the same symbol 
I) for both the scalar potential and the azimuthal angle in spherical polar 
coordinates should not lead to any confusion since it should be clear from 
the text which quantity the symbol 4) stands for. 

Resolving the value of A, given by equation (2.42) into components Ar, 
Ao  and Ao  in the spherical polar coordinate system we obtain 

pi: [i] d/ cos 0 	po[fi] cos 0 
A r  – 	 (2.43) 47cr 	47cr 

A o  – 
go[i] d/ sin 0 	go [fi] sin 0  

4nr 	 47cr 

A4, = O. 

(2.44) 

(2.45) 

The magnetic field B at the field point P in Figure 2.2 at the time of obser-
vation t is given by V x A, where in spherical polar coordinates V x A is given 
by equation (A1.41) of Appendix A1.10. It is straight forward for the reader 
to show that, since A  0 and A, and A o  are independent of the azimuthal angle 
4), then 

Br  = 0 

Bo  = 0 

1 a 	1 A Bo  = --7... (rile) – 7 76-  
go  1 a . 7177 -r  { 7-j;-.  Hfi] sin 0) – 1 a (  [A cos e  \} . 

7 a0 k 	r 	) 

From equation (2.41), a[ii]/ar = —uivc. Since  [pl is  independent of 0, then 
a[fiilao = O. Hence 

B = 
go  sin 0  ( [P] 	— [p..])4. + 	. 	 (2.46) 47r 	r2 	rc 

Using equation (2.36), (2.37), (2.38) and (2.39), the expression for B can be 
expressed in the alternative form 

poUl d/ sin 0 	
+ 

A,-, 	p.o[i]
4nrc 	' 
d/ sin 0  1 B – 	 (2.47) 

47cr2 	9' 	 .4.  

	

_ golo  cos co(t – rIc) d/ sin 0  -, 	gocgo  sin u)(t – rIc)  d/ sin 0  1 
9 47cr2 	9 	 4nrc 

(2.48) 

The first term on the right hand side of equation (2.48) is proportional to 
1/r2. Comparing equation (2.48) with equation (1.64), we see that the first term 
on the right hand side of equation (2.48) is equal to the magnetic field that 
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would be predicted by the differential form of the Biot-Savart law, if the 
value [I] = /0  cos co(t – rIc) of the current in the electric dipole at the retarded 
time (t – ?lc) is used in the differential form of the Biot-Savart law. The second 
term on the right hand side of equation (2.48) is proportional to 1/r and is 
called the radiation term. It predominates at large distances from the oscillating 
electric dipole in Figure 2.2. The maximum amplitudes of the two harmoni-
cally varying terms on the right hand side of equation (2.48) are numerically 
equal when 1/r = co/c, that is when the distance from the oscillating electric 
dipole to the field point is 

c 	X  r = -- = — = 
1 

— 	 (2.49) 
co 	2n 	k 

where A. is the wavelength of the electromagnetic variations and k = 2.7r/X is 
the wave number. The region, where r < X127c and the first term on the right 
hand side of equation (2.48) predominates, is called the near zone. The region 
where r>  X/27c and the second term on the right hand side of equation (2.48) 
predominates is called the far zone. When r is very much greater than X/27E, 
the second term on the right hand side of equation (2.48), namely the 
radiation term, is very much bigger than the first term. The region where 
r > X127c is called the radiation (or wave) zone. 

Notice that, since according to equation (2.48) the only component of the 
magnetic field due to the oscillating electric dipole is in the direction of (1), 
the magnetic field lines are closed circles having constant values of r and O. 

2.4.3. Determination of the electric field 

Now that we have derived the expressions for the magnetic field B due to 
the oscillating electric dipole in Figure 2.2 we could determine the electric 
field E using the Maxwell equation 

1E  
c- at 

in the way described later in Section 2.6.5. However, it will be useful in 
some of our discussions in later chapters, if we derive the expression for the 
electric field directly from the potentials 43, and A using the equation 

aA 
E = –VI) – 	. — 	 (2.17) at  

In addition to the expression for the vector potential A given by equations 
(2.43), (2.44) and (2.45), to determine E we must also derive the expression 
for the scalar potential (I) from the charge distributions using equation (2.29). 
To determine 4:1, we shall assume that the negative and positive charges are 
at distances 7- 1  = (r + V2c11 cos 0) and r2  = (r – 112d1 cos 0) from the field 
point P in Figure 2.2. We shall assume that, when the information collecting 
sphere passes the negative charge at the retarded time (t – ri/c), the magni- 
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tude of the negative charge is [—Q]. We shall also assume that the magni-
tude of the positive charge is varying at the rate [6] when the information 
collecting sphere is passing the oscillating electric dipole in Figure 2.2. 
Since the positive charge is at a distance (d/ cos 0) closer to the field point 
P than the negative charge, it takes the information collecting sphere a time 
(d/ cos 0)/c to cross the oscillating dipole so that the magnitude of the positive 
charge recorded by the information collecting sphere is [Q + 6(dl cos 0)/c]. 
Substituting in the expression for the retarded scalar potential, given by 
equation (2.29), we have 

[Q + (dl cos 0)/c] 	 [Q]  
4) — 47ce0r[l — (d/ cos 0)/2r] 	47re0r[l + (d/ cos 0)/2r] • 

Expanding [1 ± (d/ cos 0)2r)]-1  using the binomial theorem, then multiplying 
out and ignoring terms of order (d/) 2  we finally obtain 

[Q] dl cos 0 	[] d/ cos 0 
4) — 	 + 	 (2.50) 

4neor2 	47ccorc 	• 

From equations (2.31) and (2.32), [Q] dl = [p] and [] d/ = [I] d/ = [P]. 
Substituting in equation (2.50), we find that the scalar potential (13, is given 
by 

43.  _ cos 0  ( [p] + [13] 
47ce0  k r2 	rc ) • 

(2.51) 

Alternatively, the expression for (1) can be determined from the Lorentz con-
dition, equation (2.11), in the way described later in Section 2.5. It is left as 
an exercise for the reader to show, using the expression for VO given by 
equation (A1.39) of Appendix 1.10 and using equations (2.40) and (2.41), 
that 

A, 	cos 0  ( 2[p] 	2[fi] 	[p] \ , 	sin 0  ( [IA _, [13]) tĥ 
+ 

- 47re0  k r3 	r2c + rc2  ) r  ± 47cco  k r 3 	r2c u.  
(2.52) 

Differentiating equations (2.43) and (2.44) partially with respect to time and 
using the relation 14 = 1/e0c2  we find that 

aA. cos 	%pi  ... 	sin e[p]  4.  _ — = _  at 	4Tre0rc2 	4neorc2  

Adding equations (2.52) and (2.53) we finally obtain 

E  _ cos 0  ( 2[p] + 2[P]  it  + sin 0  ( [p] + 	) u. 4neo  k r3 	r2c ) 	4nEo  k r3 	r2c 	rc2  

(2.54) 

Notice that the term proportional to [i• ]lr in the 1. direction in equation (2.52) 
for —Vol) cancels the term in the i direction proportional to —[i• ]lr in equation 
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(2.53) for —A leaving only the component proportional to [ ]lr that is in the 
direction of 6, which is in a direction perpendicular the vector r from the 
electric dipole to the field point. It is useful to rewrite equation (2.54) in the 
form 

E = El  + E2 + E3 	 (2.55) 

where 

E l  — 

E2 — 

E3 — 

2[p] cos 0  A 

	

4ite0r3 	r  

2[P] cos 0  A 
47ceor2c r  

[jj] sin 0  4  

	

47reorc2 	• 

+ 

+ 

[p] sin 0  A 

47ceor
3 0 

[P] sin 0  
0 

4rceor2c 

(2.56) 

(2.57) 

(2.58) 

Notice that E l , E2 and E3 are proportional to 1/r 3 , 1/r 2c and 1/rc2  respec-
tively. 

Examples of the electric field due to an oscillating electric dipole at 
successive instants of time are shown in Figures 2.3. The E1  term, given by 
equation (2.56), is similar to the expression for the electrostatic field due to 
an electric dipole of dipole moment [p] = po  sin co(t — rIc). The El  term 
is proportional to 1/r 3  and predominates close to the oscillating electric dipole, 
where the electric field resembles the electric field due to an electrostatic 
dipole, as shown in the examples in Figure 2.3. The direction of the electric 
field reverses every half period. The E2 term, given by equation (2.57), is 
proportional to 1/r2 . It depends on [P] = [I] d/. It is the E2 contribution to E 
that gives rise to the induction electric field, that gives the main contribu-
tion to the induced emf in a stationary coil in the near zone (r < ?/27c). The 
E3 term, given by equation (2.58) is proportional to 1/r and predominates at 
very large distances from the oscillating electric dipole. It is the E3 term that 
gives the radiation electric field. 

It follows from equations (2.54), (2.38) and (2.46) that the expressions 
for E and B in the radiation zone where r >> X/27c are 

E = E0  sin (1) ( t — 	6. 

B = Bo  sin co ( t — 1c- .--, )4). 

where 
2 	• (0 po  sin 0 

Eo  = 
4rceorc2 '

• 	Bo = 

Notice that in the radiation zone E and B are in phase and that E and B are 
perpendicular to each other. Equations (2.59) and (2.60) represent electro- 
magnetic waves travelling outwards from the oscillating electric dipole with the 

oipo  sin 0 	E0  
= 

(2.59) 

(2.60) 

(2.61) 
4neorc3 	c 
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Figure 2.3. The electric field lines due to an oscillating electric dipole for rot = 0, 7r/2, 71 and 
37r/2. The dipole is situated at the centre. (Reprinted from Electromagnetic Fields and Waves 
by P. Lorrain and D. Corson with the permission of W. H. Freeman and Co. [4]) 

velocity of light. The Poynting vector N in the radiation zone is given by 

E x B 	OA; sin2  0 sin2  .o(t –  ?lc) .. 
N – 	– 	

167c2e0r2c3 	
r. 	 (2.62) 

Po  

The direction of the Poynting vector N in the radiation zone is radially outwards 
from the oscillating electric dipole. 

2.4.4. Relation of the fields E and B to experimental measurements 

The fields E and B at any field point in empty space, due to the oscillating 
electric dipole shown in Figure 2.2, could, in principle, be related to experi-
ments by using stationary and moving test charges. If the values of E and B 
were known then the forces on the test charges could be calculated using the 
Lorentz force law, which according to equation (1.1) is 

mou  F = 
d 

— (1 _ u2k2)1/2 ) = qE + qu x B 	 (2.63) 
dt 

where mo  is the rest mass and u is the velocity of a test charge of magnitude 
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q. Alternatively, if the values of E and B were unknown, their values could 
be determined from the forces on a stationary and on moving test charges, 
in the way described in Section 1.4.2 of Chapter 1, using equations (1.56) 
and (1.58). 

In practice, in the case of the oscillating electric dipole shown in Figure 2.2, 
it is generally easier experimentally to get observable effects by placing a 
stationary antenna at the field point in empty space, for example of the type 
shown in Figure 2.4(a), which is a simple dipole. Typically such a dipole 
antenna consists of a metal rod, split in the middle, and connected to a high 
resistance R as shown in Figure 2.4(a). If at a particular instant the electric 
field E due to the oscillating electric dipole is in the direction shown in 
Figure 2.4(a), the electric field E gives an electric force on each of the con-
duction electrons in the receiving antenna leading to a current flow in the 
antenna, which in turn gives rise to a potential difference V across the resistor 
R. This potential difference can be measured using electronic methods. It 
can be shown that, if the length 1 of the receiving dipole is much less than 

OSCILLATING 
ELECTRIC DIPOLE 

DIPOLE RECEIVING 
ANTENNA 

t LARGE 

DISTANCE 

(a) 

 

A 

E 

  

   

LOOP RECEIVING 
ANTENNA 

P 	

E 
LARGE 

DISTANCE 

X E----> 2 

Figure 2.4. Measurement of the electric field due to an oscillating electric dipole (a) using a 
dipole receiving antenna and (b) using a loop receiving antenna. 
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the wavelength X, the potential difference across the resistor R is approximately 
Epl, where Ep  is the component of E parallel to the dipole antenna. In practice, 
in order to increase the signal strength, the total length of the receiving dipole 
is generally made equal to X1 2, so that each half section is of length k/4. 
The full theory of a dipole antenna of finite length is rather complicated. The 
interested reader is referred to a text book such as Lorrain and Corson [4]. 

In the example shown in Figure 2.4(a), the oscillating electric dipole is 
equivalent to a radio transmitter and the receiving dipole antenna and asso-
ciated electronic circuits corresponds to a radio receiver. If the distance from 
the transmitter to the receiver is > X/27r, the receiver is in the radiation (or 
wave) zone, and responds mainly to the radiation electric field E3 given by 
equation (2.58). 

It is assumed in the idealized case shown in Figure 2.4(a) that there is 
nothing in the space between the transmitter and the receiver. If there were 
isolated metallic conductors present, the varying electric field due to the 
oscillating electric dipole would give varying conduction current flows in 
the conductors, which in turn would give rise to electric and magnetic fields 
which would be superimposed on the fields due to the oscillating electric 
dipole. Any dielectrics present would be polarized in the electric field and 
any magnetic materials present would be magnetized in the magnetic field 
due to the oscillating electric dipole and would also give contributions to 
the total electric and magnetic fields. 

Advantage can be taken of the effects of induced electric currents in 
conductors to improve the designs of receiving antennae. For example, in a 
Yagi type antenna a rod is placed at an appropriate distance behind the 
receiving dipole, but it is not connected electrically to the receiving dipole. 
This extra rod acts as a reflector. A series of rods, called directors, are some-
times placed at appropriate distances in front of the receiving dipole to increase 
the signal strength and to improve the directional properties of the antenna. 

Another type of receiving antenna is the loop antenna of the type shown 
in Figure 2.4(b). In this case the magnitude of the electrical signal in the 
receiving antenna circuit depends on the spatial variations of the electric 
field due to the transmitter. For example, if the two vertical sections in Figure 
2.4(b) were X/2 apart, the electric field would be in opposite directions on 
the two vertical sides of the receiving antenna, leading to a finite value for 

fE • dl, which gives rise to a voltage V across the resistor R. According to 
Faraday's law of electromagnetic induction, this emf is numerically equal to 
the rate of change of the magnetic flux through the loop antenna. 

The example of the oscillating electric dipole shown in Figures 2.4(a) and 
2.4(b) can be used to illustrate the retarded potentials. Assume that there is 
an oscillating electric dipole transmitter on a spaceship that is in the vicinity 
of the planet Jupiter. Experiments, for example using radio signals from the 
Pioneer 10 spaceship, have confirmed that it takes about 30 minutes for radio 
signals to reach the Earth from such a spaceship. This shows that the value 
of the electric field of a radio signal reaching the Earth from a spaceship 
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near Jupiter depends on the value of the electric current in the transmitting 
antenna on the spaceship at the retarded time, which is approximately 30 
minutes before the time the radio signal reaches the Earth. If there were a series 
of radio transmitters in space, we could imagine the radio signals coming in 
with the information collecting sphere to reach the radi6 receiver on the Earth 
at the time of observation. 

2.5. Use of the Lorentz condition to determine the scalar potential cf• 
from the vector potential A 

In practice we do not always need to know all four of the variables 4), Ax, Ay  
and A, to determine the fields E and B. In the Lorentz gauge which we have 
been using, 4) and A are related by the Lorentz condition, equation (2.11). In 
some problems it is possible to derive the scalar potential 4) from the vector 
potential A using the Lorentz condition. Integrating the Lorentz condition, 
equation (2.11), with respect to time, we have 

4) = –c2f V • A dt + 4)0(x, y, z) 	 (2.64) 

where 4)0(x, y, z) is a scalar function of x, y, z that is independent of time. When 
the electric field is determined using equation (2.7), the –V4)0  contribution gives 
rise to a time independent, that is an electrostatic contribution to the total 
electric field. By substituting the values of A„ A o  and  A by equations 
(2.43), (2.44) and (2.45) respectively into the expression for the divergence 
of A given by equation (A1.40) of Appendix A1.10, the reader can show 
that, in the case of the oscillating electric dipole shown in Figure 2.2, V • A 
is given by 

go   v • A = 	cos e  ( [fil 	[IA ) 
— + — 

4rc 	7-2 	rd  
(2.65) 

Substituting for V • A in equation (2.64), then integrating with respect to 
time and using go  = 1/e0c2  we find that 

	

4)  _ cos 0 ( [p] 	[fil ) + — 	 (2.66) 

	

4rce0  k r2 	rd + Cx, y, z) 

where 410  is the time independent constant of integration. Since there is no 
electrostatic field in the case of the oscillating electric dipole shown in Figure 
2.2, the 4)0  term is zero in equation (2.66), which then reduces to equation 
(2.51). This shows that in the case of an oscillating electric dipole that has 
no resultant total charge, the six components of E and B can all be deter-
mined from the three components of the vector potential A. If there were an 
additional electrostatic charge Q0  at the origin in Figure 2.2 there would be 
an additional electrostatic contribution 4) 0  = Q0/47cc 0r to 4), and the scalar 
potential 4) could not be determined completely from the vector potential A. 
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2.6. Application of Maxwell's equations to the electric and magnetic 
fields due to an oscillating electric dipole 

2.6.1. Introduction 

Since the four variables A x, Ay, A, and 4), given as functions of the variables 
x, y, z and t, are sufficient to specify the varying electromagnetic field at a 
field point in empty space, it is not necessary to use as many as the six 
variables Ex , Ey , Ez , Bx , By  and B z  to specify the electromagnetic field due to 
the oscillating electric dipole shown in Figure 2.2. Hence it is reasonable to 
find that there are relations between the six components that specify the 
fields E and B given by equations (2.54) and (2.46). 

Problem. A plane transverse wave, that is propagating in the +x direction 
and is linearly polarized in the y direction is described by the equation 

Y = ko  cos co ( t — 2-cc  ) 

where c is the velocity of the wave. A typical example would be an elastic 
S wave of seismology, in which case Y could stand for the displacement of 
a point from its equilibrium position. Now, for the fun of it, introduce new 
variables defined by 

F = —Y, 	G = V x Y. 

Show that it follows from the definitions of F and G that' 

V x F = —-. 

Also show that 

F = ju)Y0  sin w ( t — ...-) ; 	G = i ( (Lc), ) Yo  sin co ( t — 
C  

and that the new variables F and G are related by the equation 

	

1 DF 	-.. (  (02Yo 	 x VxG=— 	=i1— 	2  ) 	
c 

COS CO (t — —). 

	

c at 	c 

This is a relation between the new variables F and G. It illustrates how, if 
we use more variables than is necessary, we can end up with relations between 
the variables. 

One of the main aims of this book is to develop the interpretation of the 
roles of the various terms in Maxwell's equations, which we shall do in Chapter 
4, where we shall start from the expressions for the electric and magnetic fields 
due to an accelerating classical point charge. In this section we shall give a 
brief introduction to the ideas, that we shall develop more fully in Chapter 4, 
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by seeing how Maxwell's equations apply to the fields E and B due to the 
oscillating electric dipole in Figure 2.2. 

2.6.2. The equation V - E = 0 

According to equation (A1.40) of Appendix A1.10, in the spherical polar co-
ordinate system (r, 0, 4)) shown in Figure 2.2, the divergence of E is given 
by 

1 D 	 1 	D 	 1 	( DE0  ) 
V • E = .72- -. (r2Er) + 	ao  (Eo  sin 0) + 

r sin 0 	 r sin 0 k ao ) • 
(2.67) 

According to equation (2.54), for the oscillating electric dipole shown in Figure 
2.2 

Er  — 4 1  [ 3/4 ± M] cos 0 	 (2.68) 
Treo  r 

1 r F. . fi ± .i2 1 sin 0 	 (2.69) 
E0  —  47—TE-0 r3  t -7  - 1  - r2c 	rc 

E4) = 0. 	 (2.70) 

Throughout this section, all the quantities inside square brackets are measured 
at the retarded time t* = (t — rIc). The reader can show, using equations 
(2.68), (2.69) and (2.70), that 

1 	a r  2p ± 2/3 1 cos  0 
4neor2  Dr I. r 	c 

2 cos 0  r  p + 13 + ji 1 _ 
4w0  1.7 r3c 	r2c2  i 

 

- (2.71) 

1 	a 
in 0 a0 	

( 	1  \ 	n r s 	 j32  11 sin s 	
(E

9 
sin 0) — 	 0 k 47cE0  / 	i 0 [ 1/ 3" 3  ± rP2c ± rc   

(2.72) 

1  
r sin 0 W ' 

Adding equations (2.71), (2.72) and (2.73), we find that 

V • E=  0. 

In cartesian coordinates we have 

(2.73) 

aEy  + aEz  . 0.  
ax -77 az 

Equation (2.74) is a relation between the components Ex, Ey  and Ez. According 

(2.74) 
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to equation (2.74), the divergence of the electric field due to an oscillating 
electric dipole is zero at every field point in empty space. Integrating equation 
(2.74) over any arbitrary finite volume that does not enclose any part of the 
oscillating electric dipole, and applying Gauss' theorem of vector analysis, 
which is equation (A1.30) of Appendix A1.7, we find that at any fixed time 

JV • E dV =  JE.   dS = 0. (2.75) 

To illustrate equation (2.75), consider a Gaussian surface in any of the examples 
in Figure 2.3 that does not enclose any part of the oscillating electric dipole. 
At a fixed instant of time, as many lines of E enter such a Gaussian surface 
as leave it. The values of E at different points on the Gaussian surface are 
at different distances from the oscillating electric dipole and have different 
retarded times at the oscillating electric dipole. 

Well away from the oscillating electric dipole in Figure 2.2, that is in the 
radiation (wave) zone, the terms proportional to 1/r3  and 1/r2  are very much 
smaller than the term proportional to 1/r, and to an excellent approximation 
equation (2.54) reduces to 

[p] sin 0  
 E = Erad — 	

4. 	
(2.76) 

 4neorc2  
/ 

It is tempting to assume that equation (2.74) applies to Erad in the radiation 
zone. However if we apply equation (2.67) to the radiation field only, 
we find that, since Er  and  E  not contribute to Erad which only has a 
component in the 4 direction, then 

1 	a 	2[p] cos 0  
V • Erad — 	 (Erad sin 0) — 4ireor2c2 	 (2.77 

r Sin 0 	
) ae 

showing that the divergence of Erad is finite. The reader can check back that 
the contribution to V • E, given by equation (2.77), is cancelled in equation 
(2.74) by the third term inside the square brackets on the right hand side of 
equation (2.71), which arises from one of the contributions of the Er  term to 
V • E, where Er  is given by equation (2.68). Notice Er  does not contribute to 
the radiation electric field. This result illustrates how, in the general case, 
Maxwell's equations are only valid when they are applied to the total electric 
and the total magnetic fields, and cannot always be applied to only the radi-
ation fields even in the radiation zone. To illustrate this result consider one 
of the closed electric field lines, well away from the oscillating electric dipole 
in any one of the examples in Figure 2.3. According to equation (2.76), the 
radiation electric field has only a component in the direction of  O.  Hence if 
the radiation electric field given by equation (2.76) were the only contribu-
tion to the electric field, then the electric field lines would have to be circles 
of constant radii and, comparing equation (2.77) with equation (2.1) we see 
that there would have to be a volume charge distribution at field points in 
the radiation zone given by 
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co  2cos 0 [15]  
P = coV • Erad — (2.78) 

	

47cE0r2c2 	' 

There is no such charge distribution in empty space. It can be seen from Figure 
2.3 that the change in the magnitude of Eo  with 0 is not due to the termina-
tion of electric field lines on a charge distribution, but is due to the deviation 
of continuous electric field lines from circles due to the radial component Er  
given by equation (2.68). It can be seen from the examples in Figure 2.3 
that the electric field lines in the radiation zone are continuous so that 
V.  E, where E is the total electric field, is zero in this region. As r tends to 
infinity, the value of V • Erad, which according to equation (2.77) is propor-
tional to 1/r2 , tends to zero and, in the limit of the idealized case of a plane 
wave, the divergence of the radiation electric field is zero at field points in 
empty space. 

2.6.3. The equation V.  B = 0 

According to equation (2.46) the magnetic field B, due to the oscillating electric 
dipole shown in Figure 2.2, has only a B4, component which is independent 
of 4). Hence substituting in equation (A1.40) of Appendix A1.10 we find that 

I a (r 	1 	a 	 1 	aB4, _ 0  
- B = 72- 	2B r  ) + 	(B o  sin 0) + 

	

r sin 0 a0 	 r sin 0 .).4) - * 
V  

In cartesian coordinates we have 

aBr aB, 	aBz 0.  .. + 	, + _____ ax 	_ 
ay 	az (2.79) 

Equation (2.79) is a relation between the components B,, B y  and  B.  According 
to equation (2.79), the divergence of the magnetic field B due to the oscillating 
electric dipole in Figure 2.2 is always zero. Integrating equation (2.79) at a 
fixed instant of time and applying Gauss' theorem of vector analysis, we 
have 

JV • B dV = f B • dS = 0. 	 (2.80) 

According to equation (2.80), as many lines of B should enter a closed surface 
as leave it. In the case of the oscillating electric dipole in Figure 2.2, the 
magnetic field lines are closed circles having constant values of r and 0, so 
that as many magnetic field lines enter any closed surface in Figure 2.2 as 
leave it. 

2.6.4. The equation V X E = — il3 at a field point in empty space 

According to equation (2.54), in the case of the oscillating electric dipole shown 
in Figure 2.2, E4, is zero and Er  and Eo  are independent of 4). Hence the 
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expression for V x E, given by equation (A1.41) of Appendix A1.10, reduces 
to 

	

V x E = ( 7  KO 
r 
	 (2.81) 

Using equations (2.68) and (2.69) and remembering that, according to equation 
(2.40), a[p]/r = _[fi]ic etc., the reader can show that at any field point in 
empty space 

1 a 	sin o  arp + 1., + ii 1 7. -57.  KO – 

	

47ccor ar l r2 	rc 	c2  I 

= – 
sin 0  [ 2p 

+ 	+ 	+ 
2/3 	ii 	P 1 

	

— — — 	 (2.82) 

	

47re o  r4 	r3 c 	r2c2 	rc3  

i  Er  _ 	. ( iv 	1 	\ r  2p 4.  2131 
ra0 k 	r /k 47cco  /1. r3  r2c 

a (cos 0) ao 
sin 0  r  2p 	2131 _ 
47cco  1 r4  + r3c .1 • 

Adding equations (2.82) and (2.83), we find that 

(_  sin 0  )1.  ij 4.  y). .L.„- N7 x E = k 4aco  IL r2c2  ' rc3  i`v.  

According to equation (2.46), for an oscillating electric dipole 

B= 
 sin 0  [/3 	p ] I — + — ..p. zineoc2 r2 	rc 

Hence at any fixed field point 

aB_ sin 0  rj; + p 11  
at 	47cEo  1?? 	rc3  .1 w.  

Comparing equations (2.84) and (2.85) we see that at any field point 

V x E = – 
aB 
at • 

(2.83) 

(2.84) 

(2.85) 

(2.86) 

Equation (2.86) is a relation we have derived which relates the spatial varia-
tions of E evaluated at a fixed time to the time variations of B evaluated at 
a fixed field point. For example, the x component of equation (2.86) is 

aE, 	aEy 	aB,, 
ay 	aZ 	at 

which is a relation between the components Er  Ez  and  B.  
Integrating equation (2.86) over a finite area at a fixed time t and applying 

Stokes' theorem of vector analysis, we have 
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I. VxE•dS=4E•d1=1(—t") •dS 

a B • dS = — at 
	 (2.87) 

where (13 is the magnetic flux through the area. Equation (2.87) is valid at 
any instant of time and the values of E and B are their values at that instant 
of time. 

Consider one of the closed electric field lines, well away from the 
oscillating electric dipole in any one of the examples in Figure 2.3. It can 
be seen that fE • dl evaluated around the field line, which implies integrating 
at a fixed time, is finite, showing that V x E is finite. The magnetic field B, 
which is perpendicular to the paper in Figure 2.3, varies harmonically with 
time leading to finite values for  B and  J. According to equation (2.87) 

fE • dl evaluated around a closed electric field line in any one of the examples 
in Figure 2.3 is equal to minus the rate of change of the magnetic flux (I) = 
1.113 • dS that goes through the closed electric field line. Different points on 
the closed electric field line are at different distances from the oscillating 
electric dipole in Figure 2.3 and correspond to different retarded times at the 
oscillating electric dipole. The line integral fE • dl is evaluated at a fixed 
time of observation. 

Since equation (2.3) is a relation between the fields E and B, equation 
(2.3) can be used to determine B if E is known. Integrating equation (2.3) 
with respect to time we have 

B = V x E dt + Bo(x, y, z) 	 (2.88) 

where Bo(x, y, z) is a time independent, that is a magnetostatic contribution 
to the magnetic field, which is zero in the case of the oscillating electric dipole 
shown in Figure 2.2. To apply equation (2.88) to the oscillating electric dipole, 
take the curl of equation (2.54) to give equation (2.84). Then substitute in 
equation (2.88) and integrate with respect to time to obtain equation (2.46). 

2.6.5. The equation VxB=kc 2  at a field point in empty space 

According to equation (2.46), for the oscillating electric dipole in Figure 2.2 

B— sine 
 L 

fi  + 
(2.89) 4nE0c2  r2  rc 

Since B has only the B4, component, the expression for V x B given by equation 
(A1.41) of Appendix A1.10, reduces to 

1 a 	. 	la 
vxB- 

r sin 0 	
( 	1 n 0)r — — — (rB )4. 	 (2.90) 

DO 	(1)
/3 s 	

r 
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It is left as an exercise for the reader to show that 

1 	a 	2 cos 0  [ 
r sin 0 a0 

(B
43 

sin 0) - 	 — 47cEoc2  r3 + r2c 
(2.91) 

ia 	sin 0 	p 	P• 	p•• • 1 
(rB ) - 

r ar 	4ne0c2 L. 7- 3 	r2c 	rc2  I • 

Substituting in equation (2.90) using equations (2.91) and (2.92) we have 

V x B = 2cos0)173 	(  sine  Irfi 	p 	vi e  
47ce0c2 	r3 	r2c 	47reoc2 	r3   	rc2  

(2.93) 

Since according to equation (2.54) 

E  (  2 cos 0  )[ p — + 
47ceo 	r3  

it follows that 

l i+  
r2

C 	

(sinO\rp 	+ p2 14 

	

47ce0  / r3 	r2C 	rc 

(2.92) 

aE 2  cos  0  \ p ( sin 0 \ 
c2  at  = 4ne0c2  /  I. r3 	r2c 47rEoc2  / 

Comparing equation (2.93) and (2.94), we see that 

1 aE 	f E V x B = - -57 - = 	
eo -57) • 

•• 	••• 

+ 	+ -P-} 
r2c 	rc2  

(2.94) 

(2.95) 

Equation (2.95) is a relation we have derived between the electric and magnetic 
fields due to the oscillating electric dipole in Figure 2.2, which is valid at 
any field point in empty space. We shall go on in Section 4.8 of Chapter 4 
to show that in the general case, when there is a current distribution at the field 
point, we must add the NJ term to the right hand side of equation (2.95). 

Integrating equation (2.95) over any surface in Figure 2.3 at a fixed time 
of observation t, and applying Stokes' theorem of vector analysis we obtain 

fVxB•dS=fB•d1=-c1-2 14•dS=-c1T -g-ifE•dS 

(2.96) 

where IF =E • dS is the electric flux through the surface. The magnetic 
field lines due to the oscillating electric dipole are closed circles having 
constant values of r and 0, so that f13 • dl evaluated around one of these 
magnetic field lines is finite, showing that V x B is finite. Since the electric 
field E at all points on any surface bounded by the chosen magnetic field 
line varies harmonically with time, k and hence W are finite. According to 
equation (2.95) at any field point in empty space V x B is equal to kc 2 , 
and, according to equation (2.96), fB • dl evaluated around any closed loop 
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is equal to (1/c2) times the rate of change of the electric flux 111  through the 
loop. These are relations between the field vectors E and B. 

At large distances from the oscillating electric dipole in Figure 2.2, the 
radiation fields predominate and at these large distances the other contribu-
tions to E and B are often neglected. According to equations (2.54) and (2.46), 
the radiation fields due to the oscillating dipole are given by 

, 	[jj] sin 0  4; B  _ [A sin 0  ^ 
12'rad — 	 rad 	 4) . 47reorc2 	 4rceorc3 

It is straightforward for the reader to show, remembering that au5var is equal 
to —riAlc, that 

2[P] cos  0 ... 	[5] sin 0  A 
V X Brad — 	 0 	 (2.97) 

4rce0r2 	r  + c3 	47ce0rc4  

1 aErad [./.5] sin 0  A 
0 	 (2.98) c2  at = 47ceorc4  

Comparing equations (2.97) and (2.98), we see that V x Brad  is not equal to 
showing that equation (2.95) is a relation between the total fields B Èrad/ C2,  

and E due to the oscillating electric dipole and cannot be applied to the radi-
ation fields on their own. In the limit when r tends to infinity the component 
of V X Brad in the direction of i, which is proportional to 1/r2 , becomes very 
much smaller than the other terms in equations (2.97) and (2.98) so that in 
the limit of a plane wave equation (2.95) can be applied to the radiation 
fields. 

Integrating equation (2.95) with respect to time, we have 

E — c2  jV x B dt + E0(x, y, z) 	 (2.99) 

where E0(x, y, z) is a time independent, that is an electrostatic contribution 
to the electric field. The E0  term in equation (2.99) is zero in the case of the 
oscillating electric dipole, shown in Figure 2.2, since there is no resultant 
total electric charge to give an electrostatic field. To determine E from B for 
the oscillating electric dipole, we start by taking the curl of the expression 
for B, given by equation (2.46), to give equation (2.93). Then substitute for 
V x B in equation (2.99) and integrate with respect to time to obtain equation 
(2.54). Using this method, there is no need, in the case of the oscillating electric 
dipole shown in Figure 2.2, to determine the scalar potential 4 to determine 
E, since B can be determined from the vector potential A and E can then be 
determined using equation (2.99). If the oscillating electric dipole had a 
resultant electric charge we would have to include the E0  term in equation 
(2.99), which would arise from a —V4) contribution to the total electric field 
E. 
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2.6.6. Discussion of Maxwell's equations 

By deriving equations (2.74), (2.79), (2.86) and (2.95) from the expressions 
for the electric field E and the magnetic field B due to the oscillating electric 
dipole shown in Figure 2.2, both of which can be determine independently 
from the vector potential in the way described in Section 2.4, we have illus-
trated how, at a field point in empty space, Maxwell's equations are relations 
between the components Ex, Er  E„ B„ By , and B z  of the field vectors E and 
B. We shall defer until Chapter 4, our discussion of how equations (2.74) 
and (2.95) must be extended when there is a charge and current distribution 
at the field point. 

2.7. Derivation of the Jefimenko formulae for E and B from the 
retarded potentials 

Consider again the charge and current distribution shown previously in Figure 
2.1(a). Consider the field point P at position r having coordinates (x, y, z) 
and a source point at position r5  having coordinates (x„ y„ z5). Let 

R = (r — rs) 

ii = RIR 

R = {(x — x5)2  + (y — y 5)2  + (z — z 5)2)112. 

According to equation (2.17), the electric field at the field point P is given 
by 

	

E = —V4) — i.k. 	 (2.17) 

where 

a 	-. a 

	

'7  = i -a.Tc + i 	+ k -5Z.  ' 

According to equation (2.29) the retarded scalar potential at the field point 
P is 

4) .  i  f [r_21 dV 

	

47reo  R 	s 

where [p] = p(t — Ric) is the value of the charge density p at the retarded 
time t* = (t — Ric). Since differentiating partially with respect to x, y and z 
and integrating with respect to x„ y, and z, are independent linear operations 

vq) .  1   v f [P]  dV
s 
 —  1   I v (ia)  dV,

' 47ce0  R 	47cc0 	R  

(2.100) 
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Using equation (A1.17) of Appendix A1.6, we have 

V4) = 4,7tl
eo 

f [p ]y (-i-)dvs  +  1 	v[P]  dV . 	 (2.101) 4cj R 

According to equation (1.20) of Chapter 1 

V 	= RR3  = Rk2  • 

The x component of V[p] is 

ap(t - 	_ 	a[p] 	a(t - Ric) 	r 	_ Xs)  

	

a(t — Ric) 	 L at .1 	Rc 

Hence 
rp a' R 

v[P] = — 	Rc 

	

— 	at c 

(2.102) 

(2.103) 

Substituting from equations (2.102) and (2.103) into equation (2.101) we 
have 

Vs4) = - 	1  j" [P]k  + 	dy, 	 (2.104) 
4no 	R2 	at   

Differentiating equation (2.30) partially with respect to time, for fixed R we 
have 

aA 	1 	a 1 [J] dv 	1 	f r  4 1 dy, 
at = 4rce0c2 at 1 R - ' - 47cF..0c2  J L at 1 R ' 

Substituting from equations (2.104) and (2.105) into equation (2.17) we finally 
obtain 

E 	1 f [Pik 	k 

	

+ - 	- [I] 7,12-.2) dVs .  47rE0  \ R2 	at Rc 

This is the same as equation (1.136) of Chapter 1. 
Using equations (2.18) and (2.30) we have 

B=VxA- 
47reoc2

vxj R dVs - 	1 	V x ( 9-R-1  ) dVs . 
47rE oc2  

	

1 	[J] 

Using equation (A1.23) of Appendix A1.6, we find that 

B= 	1  fV( 1 )x[J] difs  + 	
1  

4neoc2 	 47re0c2 J
V x [J]  dV R 

The x component of V x [J] is 

a[.1 	a[J]  
(V x [J] = 	az  

(2.105) 

(2.106) 

(2.107) 
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where [J,.] amd [./y] are function of (t — Ric). Hence 

	

x  r IA\ = r  a 1,1( at* \ 	rN, i ( at*) 
LJ-ux 	at* ik ay 	az / 

_ (y -y)  [ 	(z — Zs)  [  aly   1 
Rc 	at 	Rc 	at .1 

= 	x R 	([ 'j  Rc x 	at x (2.108) 

with similar expressions for the other components of (V x [J]). Using 
equations (2.102) and (2.108) in equation (2.107) we finally obtain 

1 	[J  

	

B — 
4neoc2 

(r 	xî  dVs . 	 (2.109) 

	

kl 	Rc at 
This is the same as equation (1.134) of Chapter 1. 

For the example of the oscillating electric dipole shown in Figure 2.2, [j] 
is zero except at the dipole, where using equations (2.37) and (2.39) we have 

[J] dV., = [I] dl = a)] 

[ aj   

dV = [lid! = 
 [ii].  

Substituting in equation (2.109) we find that, for the oscillating electric dipole 
shown in Figure 2.2, 

B= 	1 	( 	+ 	x 	 (2.110) 
4rceoc2  R 2 	Rc 

This is in agreement with equation (2.46). Having derived equation (2.109), 
this is probably the quickest way of determining the expression for the magnetic 
field due to the oscillating electric dipole. Once we know B, we can deter-
mine E using the Maxwell equation (2.95) in the integral form given by 
equation (2.99). 

2.8. Gauge transformations and the Coulomb gauge 

So far in this chapter, we have only used the Lorentz gauge, in which the diver-
gence of A satisfies the Lorentz condition 

1 a4) 
V • A + 2 - = V. 	 (2.16) 

c at 
Among the advantages of the Lorentz gauge are that its choice decouples 
the partial differential equations (2.14) and (2.15) for 4) and A and leads to 
the retarded potentials, which are easy to interpret and apply. Furthermore, 
the equations for 4) and A in the Lorentz gauge are Lorentz covariant, that 
is they have the same mathematical form in all intertial reference frames, 
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when the coordinates and time are transformed using the Lorentz transfor-
mations. 

In classical electromagnetism, it is the field vectors E and B that appear 
in the expression (qE + qu x B) for the Lorentz force acting on a test 
charge of magnitude q moving with velocity u. The potentials 4) and A can 
be modified provided the values of E and B are unchanged. For example, 
consider the following transformation 

A' = A + VII; 	 (2.111) 

all" 
(1)'  = (1)  — at 

where Iv is a scalar function of position and of time. Since according to 
equation (A1.26) of Appendix A1.6, V x Vw is zero, using equations (2.17) 
and (2.18), we have 

VxA'=VxA+Vx(Vv)=VxA=B 	 (2.111) 

, aA' 
—V(1)  — —57-  — —V(1)  

aA 
= —v o — —5-t- = E. 

Hence the transformation given by equations (2.111) and (2.112) leaves the 
values of E and B unchanged. Such a transformation is called a gauge trans-
formation. Gauge transformations can be used to give flexibility in the choice 
of  V.  A. One popular choice is the Coulomb gauge, in which the divergence 
of the vector potential is put equal to zero. 

Let the scalar potential and the vector potential in the Coulomb gauge be 
denoted by 4)* and A* respectively. The discussion will again be confined to 
the case when Cr  = 1 and lit, = 1 everywhere. It will be assumed that the charge 
and current distributions are given as functions of position and time. Sub-
stituting for E in the Maxwell equation V • E = p/e0, using the relation 

E = —V4)* — A.* 
and using the result that V.  V(1)* = V24)*, we have 

aA 	2 * a v • E = —V • (Vr) — V • * —w- — —V 4) — w (V • A*) = -i-,-) .P  . 

(2.113) 

It is assumed in the Coulomb gauge that 

V • A* = O. 	 (2.114) 

Substituting in equation (2.113), we find that in the Coulomb gauge 

v24)*  = _ P . 	 (2.115) 
co 

(2.112) 
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Comparing equation (2.115) with equation (2.14) in the Lorentz gauge, we 
see that the –4.)/c2  term is absent from equation (2.115). Equation (2.115) is 
the same as Poisson's equation of electrostatics, which is equation (1.29) of 
Chapter 1. By analogy with equation (1.26), we conclude that the solution 
of equation (2.115) that gives the value of 4)* at a field point at position r at 
the time of observation t, is 

4)*(r, t) –  
	dv 

(2.116) 
47cco  J II' – I's' 	s  

where p(rs , t) is the charge density at the source point at rs  at the time of 
observation t. Equation (2.116) suggests that the scalar potential 4)* in the 
Coulomb gauge is propagated from the varying charge distributions at an 
infinite speed. Consequently the potential 4)* in the Coulomb gauge is often 
called the instantaneous scalar potential. 

Substituting B = V x A* into the Maxwell equation 

V x B = RAJ + eok) 

where J is the electric current density due to the motion of free charges, and 
cot is the vacuum displacement current density, we have 

V x (V x A*) = go(J + cot) = 1.10C 	 (2.117) 

where 

C = J + cot 	 (2.118) 

is what Maxwell called the "true current on which the electromagnetic 
phenomena depend". Using equation (A1.27) of Appendix A1.6 and putting 
V.  A* equal to zero we obtain 

V2A* – –NC = –N(J + eok). 	 (2.119) 

Maxwell [5] wrote the solution of equation (2.119), which is similar to 
Poisson's equation, in the form 

A*(r, t) = —
po  f {J(rs, t) + cot(rs, t)) 

	

dV . 	 (2.120) 
47c 	Ir – rsl 	s 

The integration in equation (2.120) is carried out over the whole of space at 
the time of observation t. To evaluate the integral, we must know the values 
of both gr„ t) and cot(rs , t) at all points of space at the time of observation 
t. 

Following Maxwell, equation (2.120) was interpreted in the nineteenth 
century by saying that both the conduction current density J and the dis-
placement current density c ot contributed to the magnetic field, and that the 
electromagnetic interaction was propagated at infinite speed from the source 
to the field point. The vector potential A*, given by equation (2.120), is 
sometimes called the instantaneous vector potential. In the nineteenth century, 
ideas based on equations (2.116) and (2.120) fitted in with the then pre- 
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vailing ideas of instantaneous action at a distance and Newtonian mechanics. 
The position at the end of the nineteenth century is illustrated by the fol-
lowing quotation from Poincaré [6]. 

In calculating A Maxwell takes into account the currents of conduction 
and those of displacement; and he supposes that the attraction takes place 
according to Newton's law i.e. instantaneously. But in calculating [the 
retarded potential] on the contrary we take account only of conduction 
currents and we suppose that the attraction is propagated with the velocity 
of  light. . . . It is a matter of indifference whether we make this hypoth-
esis [of a propagation in time] and consider only the induction due to 
conduction currents, or whether like Maxwell, we retain the old law of 
[instantaneous] induction and consider both conduction and the displace-
ment currents. 

This quotation illustrates how the use of different gauges in the nineteenth 
century lead to very different interpretations of the field equations of clas-
sical electromagnetism. 

Equation (2.120) is really a little bit of an illusion. In order to evaluate 
the integral in equation (2.120) to determined A*, we need to know both J 
and coE at all points of space at the time of observation t, when the vector 
potential A* is determined at the field point. In cases of practical impor-
tance, the vacuum displacement current term e ok is not given but has to be 
determined from the given charge and current distributions. In order to deter-
mine E using the equation 

E = —V4)* — 1.t* 	 (2.121) 

we need to know both the value of (I)*, obtained by solving equation (2.116), 
and the unknown vector potential A*. However, to determine A* using equation 
(2.120) we would have to know t, but to determine E to determine E we would 
have to know the value of A* to use in equation (2.121), but A* is what we 
are trying to determine using equation (2.120). This circular argument shows 
clearly that we cannot use equation (2.120) to determine A* from the charge 
and current distributions. Equation (2.120) can only be used if we have already 
solved the problem to determine E and hence coE from the charge and current 
distributions. When the Coulomb gauge is used nowadays, the vacuum dis-
placement current term is eliminated from equation (2.120) as follows. 
Differentiating equation (2.121) partially with respect to time, we have 

( 	_ aA* 	( a 4)* _ a2A* 

at 	at 	k at 	at2 • 

Eliminating eok from equation (2.119), we obtain 
, 

 V2A*
a2A* 

e2 at2 = 110.1  l'oeov  ( —E- ) 
 L 	  (2.122) 

Equation (2.122) can be solved after we have determined 4)* using equation 
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(2.116). Notice the presence of the —A*/c2  term in equation (2.122). This shows 
that the vector potential A* in the Coulomb gauge depends on the condi-
tions at the source point at the appropriate retarded time (t — ir — ri/c). A reader 
interested in a discussion of the solution of equation (2.122) is referred to 
Jackson [7]. A full analysis of the general case was given by Brill and 
Goodman [8], who showed that, when the contribution of the —V41* term to 
the total electric field E is combined with the contribution of the —À* term, 
where 4)* and A* are the solutions of equations (2.115) and (2.122) respec-
tively, the resultant electric field E depends on the values of the charge and 
current densities at the appropriate retarded times and the value of E is 
exactly the same as the value of E determined using the retarded potentials 
in the Lorentz gauge. The effect of a change of gauge is to change the 
magnitudes of the contributions of the —V4) and —À terms in equation (2.121), 
but to leave the sum of their contributions to the electric field E unchanged. 
Generally, the retarded potentials in the Lorentz gauge, are simpler to use in 
classical electromagnetism than the equations in the Coulomb gauge, but the 
Coulomb gauge has some advantages in the quantum theory of radiation. 
Reference: Heider [9]. 

Instead of using the potentials 4) and A we can introduce alternative 
mathematical functions, such as the Hertz vectors. References: Stratton [10] 
and Heading [11]. If we try to interpret what may happen in the space between 
the source and field point using different gauges for 4) and A, or using different 
mathematical functions such as the Hertz vectors, we can end up with appar-
ently very different models of how the various contributions to the resultant 
values of E and B arise. The important thing to realize is that, in the context 
of classical electromagnetism all the methods give the same values for the total 
electric field E and the total magnetic field B and hence for the observable 
force on a moving test charge. The attitude we have tried to cultivate is that, 
in the context of classical electromagnetism, there is no need in any of the 
methods to say anything about what may or may not happen in the empty space 
between the charge and current distributions and the field point. The choice 
of which method to use to solve a particular problem is a matter of mathe-
matical convenience. 
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CHAPTER 3 

The electric and magnetic fields due to an accelerating 
classical point charge 

3.1. The Liénard-Wiechert potentials 

The retarded potentials will now be used to derive the potentials (I) and A 
due to an accelerating classical point charge of magnitude q. We shall again 
assume that the classical point charge is a continuous charge of finite, but 
exceedingly small dimensions. Due to the finite dimensions of the classical 
point charge, when we apply the retarded potentials we must allow for the 
motion of its finite charge distribution, while the information collecting sphere 
is crossing the classical point charge. To simplify the discussion, we shall 
assume initially that the accelerating classical point charge is moving directly 
towards the field point P in Figure 3.1 with a velocity [II] at its retarded 
position. The information collecting sphere, that reaches the field point P in 

._...I3  
Pietas determined 

at the time t 

Figure 3.1. The calculation of the scalar and vector potentials (the Liénard-Wiechert 
potentials) at the field point P due to an accelerating classical point charge q moving with 
non-uniform velocity. In Figure 3.1, [u] is parallel to [r]. It is assumed that the classical point 
charge q has finite dimensions and is made up from a continuous charge distribution. 

90 
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Figure 3.1 at the time of observation t, is at a distance [r] from the field 
point at the retarded time t* = (t — ?lc). Consider the element of area 8S of 
the information collecting sphere, that is crossing the continuous charge dis-
tribution shown in Figure 3.1. Let the surface area 8S be at the position CBB'C' 
at the time (t — rIc) as shown in Figure 3.1. Let 8S be at the position EFF'E' 
at a time 8t = 8rIc later, where Sr is equal to the distance from C to E in 
Figure 3.1. The volume element 8V, swept out by the area 8S in the time 
interval 8t is given by 

8V, = (8S)(8r). 

The information collecting sphere will record a charge density [p] in this 
volume element 817, where [p] is the charge per unit volume measured at the 
fixed time (t — ;lc). Since the charge distribution is moving directly towards 
the field point P in Figure 3.1, the amount of charge actually passed by the 
element of area 8S of the information collecting sphere in a time 8t is less 
than [p] 8Vs . In the time the information collecting sphere takes to move 
from CBB'C' to EFF'E'. in Figure 3.1, charge on the surface RQQ'R' moves 
to EFF'E'. Hence the total quantity of charge, denoted 8q, actually passed 
by the element of area 8S of the information collecting sphere inside 8V, is 
equal to the charge, that at the time (t — rIc) was inside the volume between 
CBB'C' and RQQ'R' in Figure 3.1. Since the distance from R to E is equal 
to [u]St = [u]Sn/c, the distance from C to R is equal to Sr — [u]SrIc = 
8r[1 — u/c]. Hence the volume between CBB'C' and RQQ'R' is equal to 
(8S)(8r)[1 — u/c] = 81/1 — u/c]. Since the charge density at the time (t — rIc) 
is [p], the total quantity of charge 8q passed by the area 8S of the informa-
tion collecting sphere inside 817, is 

8q = [p] [ 1 — 1:-.-] 817,. 	 (3.1) 

In general, the direction of the velocity [u] of the classical point charge at 
its retarded position is not directly towards the field point P in Figure 3.1. 
In the general case, [u] must be replaced in equation (3.1) by the component 
of [u] in the direction of the field point, which can be expressed in the form 
[u • r/r], where r is a vector from the position of the volume element 8V, to 
the field point. Hence in the general case, equation (3.1) becomes 

8q = [p]8V, [ 1 	u  rc• r  j . 

Rearranging, we have 

8q  
[P]817s — [1 — u • rim] ' 

Substituting in equation (2.29), we obtain 

II 1 I VI dli, —  1  I  dq  
) — 47ceo  r 47re0  [r — r • u/c] ' 

(3.2) 

(3.3) 
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It will now be assumed that the dimensions of the charge distribution are 
exceedingly small, so that it corresponds to our model of a classical point 
charge. The variation of r in equation (3.3) over the dimensions of the 
classical point charge can then be neglected, so that equation (3.3) can be 
rewritten in the form 

1  dq 
431  — 4nEo[r — r u/c] 

where [r] is a vector from the retarded position of the classical point charge 
to the field point. The integral idq is the total quantity of charge passed by 
the information collecting sphere, which is equal to the total charge q of the 
classical point charge. Hence 

(i)  = 

 

(3.4) 4ne0[r — u r/c] 	zineos 

where 

[ u - r 
s =  r C I • 

(3.5) 

For the continuous charge distribution shown in Figure 3.1, the current density 
[J] at the retarded time (t — rIc) is equal to [pu]. Using equation (3.2), we 
have 

[MY, = [pu]8V, — [ 	uSq 	1 
1 — u • rlrc • 

Substituting in equation (2.30) and proceeding as for the determination of 
the scalar potential 4) we find that the vector potential A due to the acceler-
ating classical point charge is 

A — 110  r 	qu 	_ goq[u] 	 (3.6) 4irLn—u. r/cJ 	4its • 

Equations (3.4) and (3.6) are known as the Liénard-Wiechert potentials. They 
are valid in the Lorentz gauge. All the quantities inside the square brackets 
are measured at the retarded position of the charge at the appropriate retarded 
time. Alternative mathematical derivations of equations (3.4) and (3.6) are 
given by Jackson [1] and Hauser [2]. 

3.2. The formulae for the electric and magnetic fields due to an 
accelerating classical point charge 

The expressions for the electric and magnetic fields due to an accelerating 
classical point charge will now be derived from the Liénard-Wiechert poten-
tials. Consider the accelerating classical point charge shown in Figure 3.2. The 
expressions for the fields E and B will be determined at the field point P at 
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Figure 3.2. The retarded, present and projected positions of an accelerating classical point charge. 

the position (x, y, z) a the time of observation t. The accelerating charge q is 
at the retarded position R at (x*, y*, z*) in Figure 3.2 at the retarded time 
t* = (t — Mk). As in Section 3.1 we are again assuming that [r] is a vector 
from the retarded position R of the charge to the field point P in Figure 3.2. 
We shall assume that the velocity [u] and the acceleration [a] of the charge 
at its retarded position R at the retarded time t* are known. The Liénard-
Wiechert potentials are given by equations (3.4) and (3.6) and are 

— 

	

q  . 	A — il°q[u] 	q[111]  (I) 	4rrEos ' 	4rcs 	42te0c2s 

where according to equation (3.5) 

!Projected position, 
that is the position 
q would have had if 
[u] were constant 

s=  [r 	
r • u  1 

C  (3.5) 

The expressions for E and B can be determined using the relations 

aA E = —V4) — at  

B=VxA 
where in cartesian coordinates 

a v=1-5-; +.1 .5-; + k-az  

(3.7) 

(3.8) 

(3.9) 

and where i, j and fi are unit vectors in the directions of increasing x, y and 
z respectively. The partial differential coefficients in equations (3.7) and (3.8) 
are with respect to changes in the coordinates (x, y, z) of the field point P at 



[ 	
r • u s =  r 	 C I • 

(3.5) 
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the fixed time of observation t. However, the velocity [u] in the Liénard-
Wiechert potentials is given in terms of the coordinates (x*, y*, z*) of the 
retarded position of the charge at the retarded time t* = (t - MI c). This 
makes the calculation of E and B in terms of [r], [u] and [a] both long and 
tedious. The full calculation is given in Appendix C, where it is shown that 
the electric field E can be expressed in the form: 

E = Ev  + EA 	 (3.10) 

where according to equations (C.33) of Appendix C 

E - v 	
q 	[ r 	r u 1 [ 	u 2  1 - - -2- I 	 (3.11) 

4neos3  I. - - c 	c 

and according to equation (C.34) of Appendix C 

EA - 
4neoc2s

q 3 [r] x {[ r - 7-11-] x [a] } 	 (3.12) 
c 

where according to equation (3.5) 

The magnetic field B can be expressed in the form: 

B = Bv  + BA 	 (3.13) 

where according to equations (C.41), (C.42) and (C.43) 

q[u] x [r]  r 	u2 1  
By _  4nEoc2s3  L.  1  - c2  J 

q   BA = 	[r] x { u(
r•a)  

	

- sa ] 	 (3.15) 
4neoc3s3 	 c 

q  

 = 4ncoc3s3  L 
r  r ] 	 rcu x { [r] x ([ r - 	] )( [a]  )1 . 	(3.16)  r 

The quantities q, [u] and [a] are the values of the charge, velocity and accel-
eration of the classical point charge at its retarded position R in Figure 3.2, 
[r] is a vector from the retarded position R of the charge to the field point 
P, and s is given by equation (3.5). 

It can be seen from equations (3.11), (3.12), (3.14) and (3.16) that 

[r] x E  B - 	 (3.17) 
[rc] 	• 

According to equation (3.17), the resultant magnetic field B is perpendicular 
to both the resultant electric field E and the vector [r] from the retarded position 
R of the charge to the field point P in Figure 3.2. 

The Liénard-Wiechert potentials and equations (3.10) and (3.13), which give 
the electric and magnetic fields due to an accelerating classical point charge, 
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are the summit of our development of classical electromagnetism at the 
atomistic level. These results will be used in later chapters to interpret macro-
scopic classical electromagnetism in terms of the electric and magnetic fields 
due to moving and accelerating classical point charges. 

3.3. The electric and magnetic fields due to a classical point charge 
moving with uniform velocity 

Before going on to discuss the general case of an accelerating classical point 
charge, we shall consider first the special case of a classical point charge of 
magnitude q, that is moving with uniform velocity u as shown in Figure 3.3. 
We shall also assume that the charge q has always been moving with the 
same uniform velocity u throughout its past history. Since the acceleration 
[a] of the charge at its retarded position R in Figure 3.3 in zero, the expres-
sion for the total electric field E, given by equation (3.10), reduces to 

E = Ev  = 	 
47ceos3  

[r—  --1 [ (3.18) 

where 13 = u/c. In the time interval [r]lc it takes the information collecting 
sphere to go from R, the retarded position of the charge in Figure 3.3, to the 
field point P, the charge q moves a distance [u][rIc] = [uric] at uniform velocity 
u to reach 0, the position of the charge q at the time of observation t, when 

Retarded Present 
position position 
at ttrik at time t 

Figure 3.3. Geometric relations between the retarded position R, the projected position 0 and 
the field point P for a classical point charge moving with uniform velocity. 
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c 
(3.20) = S. 
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the fields are determined at the field point P. The position of the charge q at 
the time of observation t will be called the present position of the charge. 
Let ro  be a vector from 0, the present position of the charge, to the field 
point P in Figure 3.3. In the triangle RPO in Figure 3.3, the lengths of the sides 
RP, OP and RO are [r], ro  and [uric] respectively. It follows from the law 
of vector addition that 

ro  = [r]  — [ ur ] = [ r  _  L!]  . 
c 	 c 

(3.19) 

Draw a perpendicular OS to the line RP in Figure 3.3. Let 4) be the angle 
between the lines RP and RO in Figure 3.3. The distance from R to S 
in Figure 3.3. is equal to [uric] cos 4), which can be written in the form 
[u . r/c]. Hence the distance from S to P in Figure 3.3 is given by 

where s is defined by equation (3.5). In the triangle OSP in Figure 3.3, since 
s is equal to the distance from S to P and a is the angle between the lines 
RP and OP, we have 

s = ro  cos a = r0(1 — sin2 a)112. 	 (3.21) 

Applying the standard trigonmetrical result that A/sin a= B/sin b to the triangle 
ROP in Figure 3.3, we have 

r_ [P]r 
sin (7c — 0) sin a 

where 0 is the angle between ro  and u, as shown in Figure 3.3. Equation 
(3.22) gives 

sin a = [ 13] sin 0. 	 (3.23) 

Substituting for sin a from equation (3.23) into equation (3.21), we find 
that 

s  . ro(1  _ 132 sin2 0)1/2. 	 (3.24) 

Substituting for [r — ru/c] using equation (3.19) and for s using equation (3.24) 
into equation (3.18), we find that the total electric field E, due to the charge 
q in Figure 3.3, that has always been moving with uniform velocity u, is 
given by 

qr0(1 — 132)  E — 

	

	 (3.25) 
4rccor(?,(1 — 132  sin2  0)3/2  

where ro  is a vector from 0, the present position of the charge q at the time 
of observation t, to the field point P in Figure 3.3 and 0 is the angle between 
u and ro . 

When [a] is zero, the BA term in equation (3.13) is zero and equation 

(3.22) 
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(3.13) for the total magnetic field due to a classical point charge moving 
with uniform velocity u reduces to 

q[u] x [r](1 — 132)  B = By  = 	 (3.26) 
4neoc2s3  

Since [u] x [u] is zero the [u x r] term can be rewritten in form 

ru [u] x [r] = [u] x [ r — —

c

1 = u x ro . (3.27) 

where ro  is given by equation (3.19). Substituting in equation (3.26) and 
using equation (3.24) to substitute for s, we finally obtain 

qu x ro(1 	— 132)  B — 	 (3.28) 4ne0c2r(  1  _ 132 sin2 0)3/2 

where u is the uniform velocity of the classical point charge. Notice that in 
the special case of a classical point charge moving with uniform velocity u 

E  
B= 

 u x 
 • 	 (3.29) c` 

When u, the uniform velocity of the classical point charge in Figure 3.3, is 
zero, that is when 13 = 0, equation (3.25) reduces to 

E= 	q 	 (3.30) 
47ceor, 

in agreement with Coulomb's law. When u = 0, the electric field E is the 
same in all directions, as illustrated in Figure 3.4(a). The number of lines of 
E is limited in both Figures 3.4(a) and 3.4(b), such that the number of lines 
of E per square metre perpendicular to E is equal to (or proportional to) 
the magnitude of E. This gives a visual picture of both the strength and 
direction of E. The lines of E are closest together where the magnitude of 
the electric field is greatest. 

According to equation (3.25), provided the velocity u of a positive charge 
has been constant in the past, the electric field lines diverge radially from 
the present position of the charge, that is from the position of the positive 
charge at the time of observation, when E is determined at the field point. This 
is illustrated in Figure 3.4(b). According to equation (3.25), the magnitude 
of the electric field E is still proportional to 1/r, but unlike the electrostatic 
case given by equation (3.30) the magnitude of the electric field E is not the 
same in all directions when the charge is moving with uniform velocity, though 
E is still symmetric about 0 = 702, where 0 is the angle between u and ro . 
When 0 = 0 or 0 =  it,  equation (3.25) reduces to 

no  _ 132 
E—  ' 	

) • 

	
(3.31) 

4neorl,  

Thus the electric field E is reduced in the direction of u, the direction of motion 
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U :: 0 

(a) 

u iv 0.9 c 

(b) 
Figure 3.4. (a) The electric field of a stationary positive charge is spherically symmetric. (b) 
If the charge is moving with uniform velocity, the electric field diverges radially from the present 
position of the charge. The electric field is increased in the direction perpendicular to u, but 
decreased in the directions parallel to and antiparallel to u. 

of the charge, and in the direction opposite to u to (1 — [32) times the electro-
static value given by equation (3.30). When 0 =  7t/2, equation (3.25) reduces 
to 

E— 	17 	 (3.32) 
4neor(2,(1 — 132) 1 ' ' 

According to equation (3.32), the electric field E is increased in the direc-
tion perpendicular to u to 1/(1 — 32) 112  times the electrostatic value given by 
equation (3.30). It will be confirmed in Section 4.2 of Chapter 4, that the 
total flux of the electric field E from a classical point charge of magnitude q 
that is moving with uniform velocity u, is always equal to q/eo , so that the total 
number of electric field lines is the same as in the electrostatic case. 

As a typical example, the electric field due to a positive point charge, 
moving with uniform velocity u = 0.9c, is sketched in Figure 3.4(b). The 
diagram illustrates how, though the total number of lines of E is the same as 
in the electrostatic case, the lines of E are bunched towards the direction 
perpendicular to u, the uniform velocity of the charge. For 13 = 0.9, the 
electric field for 0 = 0 is 0.19 times the electrostatic value and for 0 — TE/2 it 
is 2.3 times the electrostatic value. For 13 = 0.99, the corresponding ratios 
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are 0.02 and 7.1 respectively. In the extreme relativistic case, when u tends 
to c, nearly all the lines of E are almost perpendicular to u. 

According to equation (3.29), for a classical point charge q moving with 
uniform velocity u, the magnetic field lines are perpendicular to both u and 
the lines of E, which diverge radially from the present position of the charge. 
Thus the lines of B are closed circles in the plane perpendicular to the direc-
tion of motion of the charge. These circles are concentric with the direction 
of u. The lines of B in two planes are sketched in Figure 3.5. The magni-
tude of B decreases as 1/rg. For a given value of 7-0 , the magnitude of B is 
the same for 0 = a and 0 = (7c — a) and, according to equation (3.29), the 
sense of rotation of the lines of B around the direction of u is the same in 
both cases. For a positive charge, the direction of B is the direction a right-
handed corkscrew would have to be rotated, if the corkscrew is to advance 
in the direction of u, the velocity of the charge. 

When u 4 c, [3 4 1, equations (3.25) and (3.28) reduce to 

qro 
 47mA 

qu x  1.0 
 47ce0c2r,3 • 

E — 

B — 

(3.33) 

(3.34) 

Figure 3.5. The magnetic field lines of a charge moving with uniform velocity are circles 
concentric with the direction of u. The direction of B is given by the right-handed corkscrew 
rule. The field is in the same direction for values of 0 = a and 0 = ir — a, where 0 is the angle 
between ro  and u. 
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Equation (3.33) is similar to Coulomb's law, but in the case of a charge moving 
with a uniform velocity u 4 c, ro  must be measured from the present position 
of the moving charge, which is the position of the charge at the time of 
observation. This position changes with time due to the motion of the charge. 
Because of its similarity to equation (1.64) of Chapter 1, the expression given 
by equation (3.34) is sometimes called the Biot-Savart approximation for the 
magnetic field due to a classical point charge that is moving with a uniform 
velocity u 4 c. 

Substituting for s from equation (3.24) into the Liénard-Wiechert potentials, 
namely equations (3.4) and (3.6), we find that the potentials (1) and A due to 
a classical point charge q that is and always has been moving with uniform 
velocity u are 

47ce0r0(1 — 132  sin2 0)1/2 
 

A — 	lloqu 
1/2 • 	 (3.36) 

4rcr0(1 — 132  sin 2 0)  

where ro  is the distance from the present position of the charge to the 
field point at the time of observation and 0 is the angle between u and ro . 
It is left as an exercise for the reader to show that application of the equa-
tions 

aA .E = -‘74) - 	' —• B VxA at  
leads to equations (3.25) and (3.28). (Hint: Use the equation (4.24) of Chapter 
4 to replace aiat by —u • V in the case of a charge moving with uniform 
velocity). 

3.4. Discussion of the electric and magnetic fields due to an 
accelerating classical point charge 

3.4.1. Introduction 

Consider again the accelerating classical point charge q, shown previously 
in Figure 3.2 and again in Figure 3.6. The fields E and B are determined at 
the field point P at the time of observation t. The accelerating charge is at 
the appropriate retarded position R, at a distance [r] from the field point P 
at the retarded time t* = (t — [r]lc). Draw a sphere of radius [r], with its 
centre at the retarded position R, as shown in Figure 3.6. The point R is the 
appropriate retarded position for all field points on the surface of the sphere 
of radius [r] at the time of observation t. 

According to equation (3.10) 

E = Ev  + EA 

q (1) -  (3.35) 
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Figure 3.6. A sketch of an electric field line of a classical point charge, that is accelerating in 
its direction of motion. The electric field line starts from N, the position of the charge, and curves 
to pass through P and P*. 

where according to equation (3.11) 

Ev  — 	[ r_  ru
J 
 _ u

2 
(3.37) 

4-ne.os3 	c 	c2 • 

It was shown in Section 3.3 that equation (3.37) leads to equation (3.25) for 
the electric field due to a charge moving with uniform velocity [u]. If the 
accelerating charge q were moving with uniform velocity [u] it would travel 
a distance [uric] to reach the point S in the time [r]lc it would take light to 
go from the retarded position R to the field point P in Figure 3.6. The point 
S will be called the projected position of the charge, which is the position 
the accelerating charge would have reached, if it had carried on with uniform 
velocity [u]. Since [u] is always less than c, the projected position S is always 
inside the sphere of radius [r] in Figure 3.6. Since equation (3.37) leads to 
equation (3.25), we conclude that the value of Ev  at all points on the surface 
of the sphere of radius [r] in Figure 3.6 at the time of observation t is given 
by the equation 

qr0(1 — 132)  
Ev 	zlitcor( 1 —  132  sin2  0)3/2  

(3.38) 
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where ro  is measured from the projected position S of the charge q and 0 is 
the angle between [u] and ro  in Figure 3.6. The contribution of Ev  to the 
total electric field at every point on the sphere of radius [r] in Figure 3.6, at 
the time of observation t, is in the direction radially outwards from S, the 
projected position of the charge. The magnitude of Ev  is proportional to 1/r1,, 
where ro  is the distance from the projected position S to the field point P. 
The magnitude of Ev  also depends on 0, the angle between [u] and ro. 

According to equation (3.12), the acceleration dependent contribution EA 
to the total electric field E at the field point P in Figure 3.6 at the time of 
observation t is given by 

q  EA
- 	47cc0c2s3 

[r] x [( r — 	x  a] 	 (3.39) 
c 

Since the direction of the vector product of two vectors is perpendicular to 
the plane containing the two vectors, it follows from equation (3.39) that EA 
is always perpendicular to the vector [r] from R, the retarded position of the 
charge, to the field point P which is on the surface of the sphere of radius 
[7 ]  in Figure 3.6. The direction of EA, at the time of observation t, is there-
fore trangential to the sphere of radius [r] in Figure 3.6, but in the general 
case EA is not necessarily in the plane of the paper. To simply the discus-
sion, we shall consider the special case when the acceleration [a] is uniform 
and when [u] and [a] are always in the same direction, so that the charge q 
moves in a straight line in Figure 3.6. In this special case [u x a] is zero, 
and equation (3.39) reduces to 

q  EA - 
47re0c2

5
3 [r] x [r x a]. 	 (3.40) 

Consider the field point P in Figure 3.6. Since the direction of [r x a] 
is downwards into the paper in Figure 3.6, the direction of the vector 
[r] x [r x a] is in the plane of the paper in Figure 3.6 in a direction perpen-
dicular to the line jointing R and P, which is in the direction of the tangent 
to the circle of radius [7 ] at the field point P. The resultant electric field E 
is the vector sum of Ev  and  EA,  as shown in Figure 3.6. We are assuming in 
Figure 3.6 that Ev  and EA have same magnitudes at the field point P. The vector 
E gives the direction of the resultant electric field line passing through the field 
point P in Figure 3.6. 

We shall now discuss the shape of the electric field line that goes through 
the field point P in Figure 3.6. If the accelerating charge q is at the position 
N at the time of observation t, then the electric field line must start from N. 
Near the accelerating charge the Ev  term predominates, and so the electric field 
line starts radially outwards from N. It then curves to the left to pass through 
the field point P in Figure 3.6 in the direction of the electric field at P. Now 
consider another field point P*, which is further from the accelerating charge 
than P. The retarded position of the charge corresponding to the measure-
ment of the total electric field at P* at the same time of observation t, is R*, 
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as shown in Figure 3.6. When the acceleration [a] is positive, the velocity 
of the charge is less at the retarded position R* than at the retarded position 
R so that S*, the projected position of the charge corresponding to the retarded 
position R* is to the left of S, as shown in Figure 3.6. The direction of the 
contribution of the Ev  term at the new field point P* is radially outwards 
from the appropriate projected position S*, as shown in Figure 3.6. The direc-
tion of the contribution of the EA term at the field point P* is perpendicular 
to the line jointing R* to P*, as shown in Figure 3.6. Since the directions of 
both the Ev  and EA contributions to the electric field are different at P and 
P*, the changes in both Ev  and EA contribute to the curvature of the electric 
field line when the charge is accelerating. The magnitudes of both Ev  and 
EA are less at P* than at P, but the acceleration dependent term EA decreases 
less rapidly with increasing distance from the accelerating charge than the 
Ev  term and at large distances from the charge the EA term predominates, in 
which case the electric field line is almost perpendicular to the vector from 
the appropriate retarded position to the field point. We shall consider a typical 
example in detail in Section 3.4.2. If the charge q were decelerating the electric 
field line starting from N would be curved in the opposite direction. 

According to equation (3.29), the magnetic field B due to the accelerating 
charge is given, at the field point P in Figure 3.6 at the time of observation 
t, by 

B— [r] x E  
[rc] 	• (3.41) 

The total magnetic field B at the field point P in Figure 3.5 is perpendicular 
to [r] and is therefore tangential to the surface of the sphere of radius [r] in 
a direction perpendicular to the total electric field E. In the special case when 
[a] and [u] are in the same direction, the electric field E is in the plane of the 
paper in Figure 3.6. Hence in this special case B, which is in the direction 
of [r] x E, is vertically upwards from the paper in Figure 3.6. When [a] and 
[u] have always been in the same direction, there is rotational symmetry around 
the direction of [u] and in this special case the lines of B, at the time of 
observation t, are closed circles with centres on the line of motion of the charge. 

In the case of a negative charge, the directions of both E and B are reversed. 

3.4.2. Example of the electric field due to an accelerating charge 

An example of a computer computation of the electric field due to an accel-
erating classical point charge is given in Figure 3.7. Reference: Hamilton 
and Schwartz [3]. The electric field lines in Figure 3.7 represent the magni-
tude and direction of the electric field at one instant of time. Different field 
points correspond to different retarded positions of the charge. In the example 
shown in Figure 3.7, a positive charge that has been moving from left to 
right with a uniform velocity of 0.9c in Figure 3.7 is brought to rest with 
uniform deceleration and then remains at rest. In the vicinity of the stationary 
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Figure 3.7. A classical point charge, which is moving with a velocity of 0.9c, is brought to 
rest with uniform deceleration. (References: Hamilton and Schwartz [3]. Reproduced by the 
permission of the American Journal of Physics.) 

charge in Figure 3.7, the electric field lines diverge isotropically from the 
charge and the electric field in this region is given by Coulomb's law. Moving 
outwards along an electric field line, we reach a kink in the electric field 
line corresponding to the time when the charge was finally brought to rest 
and the deceleration stopped. Next, moving outwards along the electric field 
line we come to a curved section of field line, which has a large non-radial 
component, and which is associated with the period when the charge was decel-
erating at its retarded positions and when both Ev  and EA contributed to the 
electric field. Continuing to move outwards along a field line we reach a second 
kink corresponding to the time when the charge started decelerating at its 
retarded position. Beyond this kink the charge was moving with a uniform 
velocity of 0.9c at its retarded positions. In this region the EA term is zero 
and the electric field E is given by the Ev  term. Since in this region all the 
projected positions coincide with the position that the charge would have 
reached if it had carried on with uniform velocity 0.9c, the electric field lines 
in this region diverge radially from the position the charge would have reached, 
if it had carried on with uniform velocity 0.9c, as shown in Figure 3.7. The 
electric field lines in this region are bunched towards a direction perpendic-
ular to the direction of the initial velocity of the charge. In this region, the 
electric field lines are the same as the appropriate section of the electric field 
lines due to a charge that is and always has been moving with uniform velocity 
as shown previously in Figure 3.4(b). 
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Figure 3.8. The directions of the acceleration dependent contributions EA and BA to the total 
electric and magnetic fields at the field point P due to the charge q which is moving with a 
velocity < c and which is accelerating in its direction of motion. 

3.4.3. Discussion of the radiation fields due to an accelerating charge 

Assume that the accelerating charge is at the origin of the spherical polar 
coordinate system shown in Figure 3.8. The polar angle,. 0 is measured 
from the direction of the acceleration of the charge. Let i, 0 and Cf• be unit 
vectors in the directions of increasing r, 0 and (1) at the field point P that is 
at the position r. Since 4) = x 4, it is probably easiest for the reader to 
determine the direction of the unit vector $ at the field point P from the 
direction i x  O.  In the zero-velocity limit the expressions for EA  and  BA,  given 
by equations (3.12) and (3.15) respectively, reduce to 

EA  . 44 _ qa sin 0  4  
4rceoc2r ' 

qa sin 0 1 BA  . B  1 . 
(1)9. 	47ce0c3r 

(3.42) 

(3.43) 
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Strictly r is the distance from the retarded position of the charge to the field 
point, but in the zero-velocity limit the change in the position of the charge 
in the time Mk it takes the radiation field to reach the field point P is very 
small and, to a good approximation, we can assume that r is the distance 
from the charge to the field point at the time of observation. The angle 0 in 
equations (3.42) and (3.43) is the angle between r and the acceleration a of 
the charge. According to equations (3.42) and (3.43), EA = CBA and EA and 
BA are proportional to 1/r, whereas Ey  and B y  are both proportional to 1/r2 . 
Hence the radiation fields EA and BA predominate at large distances from the 
charge. According to classical electromagnetism, the rate at which electro-
magnetic energy is crossing an area of 1 m2  perpendicular to the direction 
of energy flow at the field point P in Figure 3.8 is given by the Poynting vector 
N = E x B/p.o . Using equations (3.42) and (3.43) we find that at very large 
distances from the accelerating charge, where Ey  and B y  can be neglected, in 
the limit when 13 1 we have 

N E  A  x  BA 	
q2a2 sin2 

167c2coc3r2  

The Poynting vector is proportional to 1/r2 . Equation (3.44) gives the angular 
distribution of the radiation emitted, which in the zero velocity limit is sym-
metrical about 0 = 702, which is the direction perpendicular to a. The total 
rate of emission of electromagnetic radiation by an accelerating charge in 
the zero-velocity limit can be obtained by integrating equation (3.44) over 
the surface of the sphere of radius r, to give 

dW ea2  

dt 	67ceoc3  • 

Equation (3.44) and (3.45) must be modified when the charge is moving at 
a high velocity [u]. We shall consider again the special case when [a] is parallel 
to [u]. According to equations (3.40) and (3.41), 

q[r2] [a] sin 0  

	

4neoc2s3 	° 

q[r2] [a] sin 0  

	

4ne0c3s3 	ti)  

where [r] is now a vector from the retarded position of the charge to the 
field point and 0 is the angle between [r] and both [u] and [a]. The differ-
ence between equations (3.46) and (3.47) on the one hand and equations (3.42) 
and (3.43) on the other is the change of 1/r into r2/s3  in equations (3.46) and 
(3.47). 

According to equation (3.5), 

S = [r 	r•u]  
= [r][1 — 13 cos 01 	 [3.48] 

(3.44) 

EA = 

BA - 

(3.46) 

(3.47) 
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where [p] = [u]Ic and 0 is the angle between [u] and [r]. The effect of replacing 
1/r by r21s3  is to increase the value of EA in the forward direction, when 
0  <7r/2  and to decrease EA in the backward direction, when 0 > n/2. The 
Poynting vector N at large distances from the accelerating charge is 

E x  B 	(1,2 [r4]  [al sin2 0  

Po 	167E22.0c3s6  

The effect of the s6  = [r(1 — 13 cos 0)1 6  term in the denominator of equation 
(3.49) is to increase the amount of radiation emitted in the forward direction 
where 0 <t/2 and to decrease the amount of radiation emitted in the backward 
direction where 0 > 7c/2 compared with the zero velocity case given by equation 
(3.44). In the zero-velocity limit s tends to r and equation (3.49) reduces to 
equation (3.44). 

The case when the acceleration [a] of a charge at its retarded position 
is perpendicular to its velocity [u] at its retarded position is another very 
important example, as it gives the rate of emission of synchrotron radiation 
by a charge moving in a magnetic field. A reader interested in a full discus-
sion of the classical theory of the emission of radiation by an accelerating 
charge, is referred to text books on classical electromagnetism such as Panofsky 
and Phillips [4], Jackson [1] and Laud [5]. 
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CHAPTER 4 

Development of Maxwell's equations from the 
expressions for the electric and magnetic fields 
due to a moving classical point charge 

4.1. Introduction 

Before going on in later chapters to illustrate how individual macroscopic 
electromagnetic phenomena can be interpreted directly in terms of the electric 
and magnetic fields due to moving and accelerating classical point charges, we 
shall in this chapter develop Maxwell's equations from the expressions for 
the electric and magnetic field due to an accelerating classical point charge. 
Since we used Maxwell's equations to develop the differential equations for 
4) and A which were then used in Chapter 2 to derive the Liénard-Wiechert 
potentials and which were then used in turn in Chapter 3 to derive the fields 
E and B due to an accelerating charge, given by equations (3.10) and (3.13) 
respectively, it is only to be expected that these fields E and B due to an 
accelerating charge obey Maxwell's equations. However, by going in the 
reverse direction and starting with the fields E and B due to an accelerating 
charge and deriving Maxwell's equations as relations between these fields, 
we shall be able to interpret the origins and roles of the various terms in 
each of Maxwell's equations. We shall confine our discussions in this chapter 
to the special case where er  = 1 and p, = 1 everywhere. We shall go on to 
discuss the general case when er  > 1 and 14 > 1 in Chapter 9. 

To simplify the mathematics we shall confine most of our discussions to the 
simpler case of a classical point charge that is and always has been moving 
with uniform velocity, in which case the acceleration dependent contribu-
tions EA and BA to the electric and magnetic fields are zero and the total 
fields E and B are given by equations (3.25) and (3.28) of Chapter 3 respec-
tively. 

Consider an isolated classical point charge of magnitude q, that is and always 
has been moving with uniform velocity u along the x axis in Figure 4.1. The 
charge q is at the origin 0 at the time of observation t, when the fields are 
determined at the field point P. We shall use the spherical polar coordinate 
system, shown in Figure 4.1. The radial coordinate r is the distance from 
the origin 0 to the field point P. In the coordinate system used in Figure 4.1 
the polar 0 is the angle between the x axis (which is the direction of u) and 
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Figure 4.1. The charge q, which is moving with uniform velocity u along the x axis, is at the 
origin at the time t = O. The stationary circular disk shaped surface S is perpendicular to the 
x axis, with its centre on the x axis. In the spherical polar coordinate system shown, the polar 
angle 0 is the angle between u and the position vector r of the field point P and is measured 
from the x axis. The unit vectors i and 0 at the field point P are shown. The unit vector cil is 
in the direction of î x 4, which, with the choice of polar angle is in the directions upwards 
from the paper. 

the vector r from the origin 0 to the field point P. The azimuthal angle (1) is 
measured from the y, axis in the yz plane in the direction towards the z axis. 
The unit vector i, 0 and  43 at the field point P at (r, 0 and (0) are in the 
directions of increasing r, 0 and (1) in Figure 4.1. The determination of the direc-
tions of i, and 4 is straightforward. Since 43 = i x 0 it is probably easiest 
for the reader to determine the direction of the unit vector 43 at the field 
point P from the direction of ill x  O.  

Putting ro  = r in equation (3.25) and with 0 = uk, we find that when the 
charge q is at the origin 0 in Figure 4.1, the electric field E at the field point 
P at (r, 0, 0 is given by 

E = E ri + E 06 + Eit• 	 (4.1) 

where the components Er, EE, and  E 	given by 

q(1 — 
 2

2  Er  — 47reor20 	 • E9  = 0; E0  = 0. 	 (4.2) _ 13
13
sin2 0)3/2 

) 	
, 
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The electric field lines emanate radially from the present position of a charge 
moving with uniform velocity, that is from the position of the charge at the 
time of observation t when the fields E and B are determined at the field 
point P, as shown in Figure 3.4(b) of Chapter 3. 

According to equation (3.28) the magnetic field B at the field point P at 
(r, 0, 4)) in Figure 4.1, at the time of observation t, is given by 

B = Bri + Bo  + Bit) 	 (4.3) 

where the components B„ Bo  and  B 	given by 

[32) sin 0 
B r  = 0; Bo  = 0; B4, -  

47ce0c2r2(1 – [32  sin2  0)3/2  • 

The magnetic field lines, due to a classical point charge moving with uniform 
velocity, are closed circles concentric with the direction of motion of the 
charge, as shown in Figure 3.5 of Chapter 3. 

4.2. The equation V • E 

Consider the isolated, classical point charge of magnitude q, that is and has 
always been moving with uniform velocity u along the x axis in Figure 4.1. 
The charge is at the origin 0 at the time of observation t. According to equation 
(A1.40) of Appendix A1.10 the divergence of E is given in spherical polar 
coordinates by 

1 D 	 1 	D 	 1 	aE 
V • E = 	— (r2Er) + 

 sin 	a4) • (4.5) (E9  sin 0) + 
r sin 

---(2- 
r.  Dr 	r sin 0 ao 

According to equation (4.2), when the charge q is at the origin in Figure 4.1, 
EE, = 0,  E  0 and E,. is proportional to 1/r2 . Substituting in equation (4.5), 
we find that 

V • E = O. 	 (4.6) 

Equation (4.6) shows that the divergence of the electric field E due to a 
charge moving with uniform velocity is zero at any field point in empty 
space. Integrating equation (4.6) over a finite volume, that does not enclose 
the moving charge and then applying Gauss' theorem of vector analysis, which 
is equation (A1.30) of Appendix A1.7, we have 

V • E dV =  JE  • dS = 0. 	 (4.7) 

We shall now assume that the moving charge q, which is moving with uniform 
velocity u, is inside the Gaussian surface shown in Figure 4.2. We shall choose 
0, the position of the moving charge at the time of observation t, as the 
origin of the same spherical polar coordinate system as shown in Figure 4.1. 
Consider an element of area dS at a field point P at (r, 0, 4)) on the arbitrary 
Gaussian surface, as shown in Figure 4.2. Since, according to equations (4.2), 
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Figure 4.2. Calculation of the total electric flux from a classical point charge moving with 
uniform velocity u. 

E9  = 0 and  E 	0, the electric flux dill through dS at the time of observa- 
tion t is 

dill =  E.  dS = Er  dSr 	 (4.8) 

where dSr  is the component of the element of area dS in the direction of 
increasing r. The magnitude of dSr  is equal to the area of the projection of 
the element of surface area dS on to a sphere of radius r, with centre at O. 
Consider an element of area of part of the sphere of radius r which has 
dimensions r de by r sin 0 41 and is of area r2  sin 0 de d(1). Substituting for 
E,. from equations (4.2) into equation (4.8), we find that 

q(1 —132)  
&V = Er  dSr —

4neor2(1 
_ 	

2  sin2  0)"2 r
2  sin 0 dO d(1). 	(4.9) [3  

After cancelling r2 , we find that the expression for &If is independent of r. 
Similar expressions for dlif, which are all independent of r, are obtained for 
all the elements of area of the arbitrary Gaussian surface in Figure 4.2. To 
integrate (PP over the arbitrary Gaussian surface in Figure 4.2, we can inte-
grate equation (4.9) first with respect to 41) from 41) = 0 to (1) = 27t, and then 
integrate with respect to 0 from 0 = 0 to 0 = 7E. Since fd(I) = 27t integrating 
first over 43, and then over 0 we obtain 

_ q(1 — [3 2)  r 	sin 0 dO  
2e0 	j0 (1 — iv sin2  0) 3?'2  • (4.10) 
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Rewriting (1 — 132  sin2  0) as [(1 — 132) + 132  cos2  0] and making substitutions 
w = 0 cos 0, dw = - 13 sin 0 dO and (1 — 132) = a2 , the integral I in equation 
(4.10) can be rewritten in the form 

I = 1 

 

sin 0 dO 

 

dw  
13(a2 + 1412)312 

13 cos 0 

 

(a2  + 02  cos2  0) 3 I2  

  

w 

   

      

       

[3a2(a2 + w2)1/2 - - po _ 132)(1 _ 132 sin2 0) 1/2 • 

Substituting for the integral in equation (4.10), we finally find that 

IF =  JE.    dS = ----cL 	
cos 0 	1  e - lc 	

q = — . (4.11) 2E0  [ 0  _ 132  sin2 0)1/2  

According to equation (4.11), the total electric flux III =  JE  • dS from a clas-
sical point charge moving with uniform velocity is the same as the total electric 
flux from a stationary charge of the same magnitude, even though in the 
case of the moving charge the magnitude of the electric field E varies with 
direction. Equations (4.11) and (4.7) are also valid for the electric fields of 
accelerating charges, illustrating how Gauss' flux law is valid for moving 
and accelerating classical point charges. 

It was shown in Section 1.2.5 of Chapter 1 that, if the number of electric 
field lines per square metre is equal to the magnitude E of the electric field, 
then E • dS is equal to the number of electric field lines crossing the element 
of area dS of the Gaussian surface shown in Figure 4.2. It follows from 
equation (4.11), that in the case of the charge moving with uniform velocity 
inside the Gaussian surface in Figure 4.2, the total number of electric field 
lines crossing the Gaussian surface in an outward direction is equal to q/co. 
Since this is true whatever the shape and dimensions of the Gaussian surface, 
it follows that there are q/eo  electric field lines from a classical point charge 
moving with uniform velocity and and these electric field lines carry on radially 
outwards from the position of the charge to infinity as shown in Figure 4.3(a). 
If the moving charge q is outside the Gaussian surface as shown in Figure 
4.3(b), then as many electric field lines enter the Gaussian surface as leave 
it, in agreement with equation (4.7). The same results, leading up to equa-
tions (4.11) and (4.7) are true for the electric field lines due to an accelerating 
classical point charge, though in the case of an accelerating classical point 
charge the electric field lines are curved corresponding to periods when the 
charge was accelerating at its retarded position. 

We shall now consider a field point inside a moving, continuous, macro-
scopic charge distribution of the type shown previously in Figure 1.8 of 
Chapter 1. Equations (4.11) and (4.7) have the same mathematical forms as 
equations (1.13) and (1.14). Hence we can use the same mathematical steps 
as we used in Section 1.2.7 of Chapter 1. Consider a Gaussian surface of 
volume 170  inside the moving charge distribution. If we divide the moving, 
continuous charge distribution into infinitesimal volume elements we can 
treat the charge inside each volume element as the equivalent of a moving 

= - 
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Figure 4.3. (a) The flux of E through a Gaussian surface, due to a charge moving with uniform 
velocity, is equal to q/Eo  if the charge is inside the surface, and (b) equal to zero if the charge 
is outside the Gaussian surface. The lines of E for an isolated classical point charge, which is 
and always has been, moving with uniform velocity, continue radially outwards to infinity. 

classical point charge. Using equations (4.11) and (4.7) as appropriate and 
following the method we used in Section 1.2.7 of Chapter 1, we find that 
after applying Gauss' theorem of vector analysis we have for the volume 170  
inside the charge distribution 

fE•dS= fV•EdV= 
I pdV 

 
co 

where E is the resultant electric field due to the complete charge distribu-
tion. If we now make the volume 110  small enough for the variations of 
V • E and p inside 170  to be negligible then, after cancelling 170 , we have 

V • E = -- 

CO  
(4.12) 

where E is the total electric field at a field point inside the moving contin-
uous charge distribution where the charge density is p. 

We shall now assume that the dimensions of the moving continuous charge 
distribution are exceedingly small so that it corresponds to our model of a 
classical point charge. At a field point inside such a charge distribution we 
can rewrite equation (4.12) in the form. 
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V • e = 	 (4.13) 
co 

where e is the microscopic electric field and pmic is the microscopic charge 
density at the field point. After averaging, in the way described in Section 1.11 
of Chapter 1, we obtain 

V • E = 	 (4.14) 
co 

where in equation (4.14) E is the macroscopic electric field at a field point 
inside a macroscopic charge distribution made up of moving and acceler-
ating atomic particles and p is the macroscopic charge density at the field point, 
defined using equation (1.147) of Chapter 1. 

4.3. The equation V • B = 0 

4.3.1. A classical point charge moving with uniform velocity 

Consider the isolated classical point charge, of magnitude q, that is and always 
has been moving with uniform velocity u along the x axis in Figure 4.1 and 
is at the origin at the time of observation. Since, according to equations (4.4) 
Br  = 0, Bo  = 0 and Bo  is independent of 4), if follows from equation (A1.40) 
of Appendix A1.10 that, at any field point in empty space, 

V • B = O. 	 (4.15) 

For the special case of a classical point charge moving with uniform velocity, 
the magnetic field lines are closed circles concentric with the direction of 
motion of the charge, as shown in Figure 4.1. Since the magnetic field lines 
are closed, as many lines of B enter any closed surface as leave it. This is 
true whether the moving charge is inside or outside the closed surface. Hence, 
in general, for a classical point charge moving with uniform velocity 

IB • dS = 0. 	 (4.16) 

if the surface integral is evaluated, at a fixed time, over any closed surface, 
whether the moving charge is inside or outside the closed surface. Equations 
(4.15) and (4.16) are also valid for the magnetic field due to an accelerating 
classical point charge. 

4.3.2. A field point inside a moving continuous charge distribution 

It is straight forward for the reader to show, using equation (4.15) and the 
methods used in the case of the electric field in Section 4.2, that V • B is 
zero at a field point inside a moving, macroscopic, continuous charge distri-
bution. 

p MiC 
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The corresponding Maxwell-Lorentz equation at a field point inside a 
moving charged atomic particle is 

V • b = 0 	 (4.17) 

where b is the microscopic magnetic field. Averaging equation (4.17) at a field 
point inside a distribution of moving atomic charged particles in the way 
described in Section 1.11 of Chapter 1, we obtain 

V • B = 0 	 (4.18) 

where B is now the macroscopic magnetic field, defined using equation (1.147). 

4.3.3. Use of magnetic field lines 

Some authors conclude erroneously on the basis of equation (4.16), according 
to which fB • dS evaluated over any closed surface is zero, that all magnetic 
field lines are closed. This is true in the special case of an isolated classical 
point charge moving with uniform velocity, where the magnetic field lines 
are closed circles concentric with the direction of the velocity of the charge. 
The magnetic field lines are also closed in some of the idealized symmet-
rical examples treated in elementary text books. For example, the magnetic 
field lines representing the magnetic field due to the steady current in an 
extremely long, straight, thin wire are closed circles. If, however, there is 
also a magnetic field parallel to the long straight wire produced for example 
by the current in a circular coil with its centre on the wire, then the magnetic 
field lines representing the resultant magnetic field are helices which return 
to the other end of the very long straight wire at large distances from the 
wire. It is extremely unlikely that a particular magnetic field line will join 
up with itself, particularly if the small coil is not circular or if there are kinks 
in the wire connecting the two ends of the very long straight wire. This 
illustrates how in practical cases the magnetic field lines are not necessarily 
closed. In such cases, when the magnetic field lines are not closed, there are 
difficulties when using the density of magnetic field lines to represent the 
strength of the magnetic field quantitatively. A reader interested in a full dis-
cussion of this point is referred to Slepian [1] McDonald [2] and Iona [3]. 

4.4. Relation between the spatial and time derivatives of the fields of a 
classical point charge moving with uniform velocity 

Consider the electric field E due to the isolated classical point charge, of 
magnitude q, that is and always has been moving with uniform velocity u along 
x axis in Figure 4.4(a). The charge q is at the position shown in Figure 4.4(a) 
at the time of observation t of the electric field E at the field point P, which 
has coordinates (x, y, z). The electric field lines diverge radially from the 
position of the charge q at the time of observation t, as shown in Figure 
4.4(a). Let an experimenter at rest at the field point P in Figure 4.4(a) measure 



116 Chapter 4 

14-01 
mit 

Charge moving with 
	

Field point P is 
uniform velocity. 	 moved at a fixed 

Field point P is fixed 
	

time 

Figure 4.4. (a) The field point P is fixed and the change in the electric field E in a time At 
due to the motion of the charge is measured. (b) The field point P is moved a distance uAt to 
the left at a fixed time. The same change in E is measured in both (a) and (b). 

an increase AE in the electric field at the field point P in a short time interval 
At. Since x, y and z are constant 

AE = ( - ) At. 	 (4.19) at x ,  y ,  z 

If at a fixed time t, that is considering the charge q as fixed in space, the 
experimenter at P moved a distance Ax = u At to the left parallel to the x 
axis, as shown in Figure 4.4(b), the experimenter would measure the same 
increase AE in E. For the conditions shown in Figure 4.4(b) y, z and t are 
constant, so that 

AE = ( aE  \ 	Ax. 	 (4.20) k ax / y ,  z,  f 

Equating the right hand sides of equations (4.19) and (4.20) and putting 
Ax = —uAt, we find that for a charge moving with uniform velocity along 
the x axis 

(

E aat  ) 	. _ u  ( aa  Ex  ) 
I x, y, z 	 / y, z, t 

(4.21) 



If the uniform velocity u is not parallel to the x axis, then 

a = -u • v. at (4.24) 
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Similarly 

( as 	( as 
k 	/ 	k at x, y, z  

(4.22) 

In general, for the fields E and B due to a classical point charge moving 
with uniform velocity u along the x axis 

a 	a 
= 	 (4.23) 

4.5. The equation V x E = —it 

4.5.1. A classical point charge moving with uniform velocity 

Consider again the isolated classical point charge of magnitude q, that is and 
always has been moving with uniform velocity u along the x axis in Figure 
4.1, and is at the origin 0 at the time of observation t, when the fields E 
and B are determined at the field point P, which has coordinates (x, y, z) 
and is at a distance r from the origin O. Choose the spherical polar co-
ordinate system, shown in Figure 4.1, measuring the polar angle0 from the 
x axis, which is the direction of motion of the charge. Let i ,  0 and 40 be 
unit vectors in the directions of increasing r, 0 and 4, respectively, as shown 
in Figure 4.1. 

According to equations (4.2), the electric field E at the field point P in 
Figure 4.1 has the components 

q(1 — 13 2)  
47cE0r2(1 — 13 2  sin2  0)3/2  

; E0  = 0; E. = 0. 	 (4.25) 

Since Ee  = 0, E = 0 and aE,Iaso = 0, the expression for V x E in spherical 
polar coordinates, which is given by equation (A1.41) of Appendix A1.10, 
reduces to 

aE V xE= 
r ao (4.26) 

It can be seen from Figure 3.4(b) of Chapter 3 and from equations (4.25) 
that, for fixed values of r and 4), when 0 is less than 90°, E,. increases with 
increasing 0 so that aEao is positive. Hence, according to equation (4.26), 
for the position of the field point P in Figure 4.1, for which 0  <900,  V x E 
has a component in the direction of —Cts Substituting for E,. in equation (4.26) 
and carrying out the partial differentiation, we find that 
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3 ( q1 — 132)13 2  sin 0 cos 0  ,k̂ 
V x E — —  41tE0r3 (1 — [32  sin2  0)92  

The magnetic field at the field point P in Figure 4.1 is upwards out of the 
paper, that is in the direction of the unit vector ;:i). Since the magnitude of B 
at the fixed field point P increases with time as the charge gets closer to the 
field point, h is positive and is in the direction of 413. The value of h will 
now be determined. The magnetic field B at the field point P in Figure 4.1 
at the time of observation t has the components: 

qu(1 — 132) sin 0  
B4' — 4ire0c2r2(1 — 13 2  sin2  0)3/2  ' 

Since the field point P has coordinates (x, y, Z) and the distance form 0 to 
P in Figure 4.1 is r we have 

r2  = x2  + y2  + z2 . 	 (4.29) 

Since 0 is the angle between the x axis and the line joining 0 and P 

O 
	X 	 (y2 + z2) 1/2 

cos II = — • 	sin 0 = (1 — cos2 0) 1/2 _ k 	
i  . 	 (4.30) r ' 	 r 

Hence the expression for Bo  can be expressed in cartesian coordinates as 
follows 

B 	
qu(1 — 132)(y2 + z2)1/2 

(4 — 4, 47reoc2k2 + (1  _ 132)(y2 + z2)]3
1
2 	 . 3 1 )  

According to equation (4.23), for the classical point charge that is moving 
along the x axis with uniform velocity u in Figure 4.1 

as 	as 	a 	- — = - u — = - u 7, (BO). at 	ax 	 (4.32) 

The direction of the unit vector 3 does not change when the x coordinate of 
the field point P in Figure 4.1 is changed keeping y, Z and t constant. Hence 
equation (4.32) becomes 

as . 	( aB. \,- 	
(4.33) 

Substituting for Bo  from equation (4.31) and carrying out the partial differ-
entiation, we find that 

aB  _ 	3qu2(1  _ 132)(y2 + ,2 ). x 	„ 

- at - - 47ceoc2[x2 + (1  - 132)(y2 + z2)]5/2 

Using equation (4.29) and (4.30), equation (4.34) can be rewritten in the 
form 

B,. = 0; Be  = 0; (4.28) 

(4.34) 

as 	302(1 — 02) sin 0  cos  
— 
	 . 

 at - 	 47te0r3 [1 — 132  sin2  0]5/2 w.  
(4.35) 
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Comparing equations (4.27) and (4.35), we can see that the values of E and 
B at the field point P in Figure 4.1, which are given by equations (4.2) and 
(4.4) respectively, are related by the equation 

as v x E = — 	
. 	

(4.36) at  

Equation (4.36) is one of Maxwell's equations. It was derived in this section 
from the values for the electric and magnetic fields due to a classical point 
charge which is moving with uniform velocity, which we derived in Section 
3.3 of Chapter 3 using the Liénard-Wiechert potentials. Equation (4.36) is a 
relation between the field vectors E and B, that is valid at any field point. If 
we know how B is varying with time at a fixed field point, such as P in 
Figure 4.1, then the value of V x E at that field point can be calculated using 
equation (4.36). Conversely if the value of V  X E at any field point is known, 
then equation (4.36) gives the value of h at that field point. There is no need 
to enquire what the velocity and position of the moving charge are when we 
apply equation (4.36). 

Consider any closed curve in Figure 4.1. Integrating equation (4.36) over 
a surface bounded by the closed curve at a fixed time t, we have 

iVxE•dS=—f(t•dS=—CB•dS. 

Applying Stokes' theorem, which is equation (A1.34) of Appendix A1.8, we 
have 

where 

E • dl = — 	B • dS = — a(13  at 	at (4.37) 

(I) = fB • dS 	 (4.38) 

is the magnetic flux through the surface bounded by the closed curve. Equation 
(4.37) is an example of Faraday's law of electromagnetic induction. Equations 
(4.36) and (4.37) will now be illustrated by showing how a classical point 
charge that is moving with uniform velocity can give rise to an induced emf 
in a stationary circuit. 

4.5.2. Induced emf due to a classical point charge moving with uniform velocity 

Consider a positive classical point charge, of magnitude +q, that is moving 
with uniform velocity u, as shown in Figure 4.5. The line integral pE • dl 
will be evaluated around the closed curve ABCD in Figure 4.5 at the instant 
the charge q is at the point O. The electric field lines diverge radially from 
0, which is the present position of the moving charge at the time of obser-
vation t. The lines of E bunch towards a direction perpendicular to the velocity 
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Figure 4.5. The calculation of the curl of the electric field E due to a charge q moving with 
uniform velocity. Since the electric field is greater along BC than AD, fE • dl evaluated around 
ABCD is finite, so that V x E is finite. It is shown that V x E = —(aBiat). Both E and B arise 
from the moving charge. 

u of the charge, as shown in Figure 4.5. The arc AB is at a radial distance r 
from 0 and the arc CD is at a radial distance (r + Ar) from 0, where 
Ar < r. Since the electric field E is radial, the electric field has no compo-
nent along either of the sections AB or CD, so that fE • dl is zero along both 
of the sections A B and C D in Figure 4.5. For the conditions shown in Figure 
4.5, the value of E„ given by equation (4.2), at any point along the section 
BC is greater than the value of Er  at a point along the section AD at the same 
radial distance from 0, so that  JE  • dl evaluated from B to C is greater than 
evaluated from A to D by an amount {(aE,Jao)a}Ar. Using equation (4.2) 
for Er  and differentiating, the reader can show that it • dl evaluated from A 
to D to C to B to A in Figure 4.5 is given by 

J 
E • dl = — ( -a-Lr ) AOAr 	

q(1 — 13 2)  [  3132  sin 0 cos 0  1 
AOAr. 

ao 	 47cE0r2 L (1 - p2 sin2  0)"2  

(4.39) 
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We shall now assume that a stationary conducting coil of wire coincides with 
the closed curve ABCD in Figure 4.5, as shown in Figure 4.6. As the charge 
q approaches the coil ABCD from the left, as illustrated in Figure 4.6, the 
magnetic flux through the coil is in the direction upwards towards the reader 
and is increasing in magnitude. At the same time, when the charge q is 
approaching the coil ABCD in Figure 4.6, the electric field is greater along 
BC then along AD giving a finite value for the emf fE • dl, which is given 
by equation (4.39). It follows from the constitutive equation J = oE, that, 
for the experimental conditions shown in Figure 4.6, a conduction current 
will flow around the stationary coil ABCD from A to B to C to D to A. This 
conduction current flow in the stationary coil is due to the electric field due 
to the moving charge. According to the right-handed corkscrew rule, the con-
duction current flow from A to B to C to D to A gives rise to an extra 
contribution to the magnetic field in a direction that is downwards into the 
paper inside the coil ABCD in Figure 4.6. This is in such a direction as to "tend 
to oppose" the increase in the magnetic flux through the stationary coil ABCD 
as the classical point charge approaches the coil ABCD from the left in Figure 
4.6. This illustrates Lenz's law. 

The reader can show, using equations (4.22) and (4.35), that the rate of 
change of the magnetic flux 43 through the coil ABCD, which has area 
AS = r AO Ar due to the motion of the charge q in Figure 4.6 is given by 

-- 

	

_ at» 	( DB 
AS – (—aB• ) AS 

	

at 	 - k at) • 	 at 
= —(—aBo) rA0Ar – u (_____aBo ) rA0Ar at 	ax 

= 
q(1 – 132) r  3132  sin 0 cos 0  

47cE0r2  L (1 – 132 sin 2  0)92 
I AOAr. 	 (4.40) 

The right hand sides of equations (4.39) and (4.40) are the same in agree-
ment with Faraday's law of electromagnetic induction, according to which 

fE • dl is equal to –430. After the charge q has moved to the right of the 
stationary coil ABCD in Figure 4.6, the magnetic flux cl) through the coil 
due to the moving charge q is still upwards towards the reader in Figure 4.6, 
but the magnetic flux 43 through the coil is then decreasing in magnitude as 
q moves away from the coil ABCD. In this case the electric field E due to 
the moving charge q is less on the left hand side of the coil ABCD in Figure 
4.6 than on the right hand side of the coil, so that in this case the conduc-
tion current flows from A to D to C to B to A and gives a contribution to 
the magnetic flux through the coil ABCD in a direction upwards towards the 
reader. This extra magnetic flux in the upward direction "tends to oppose" 
the reduction in the magnetic flux in the upward direction through the coil 
ABCD in Figure 4.6, as the charge q moves away from the coil ABCD. This 
is again in agreement with Lenz's law. 
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Figure 4.6. The electric field due to the charge q, which is moving with uniform velocity, is 
stronger along BC than along AD, which drives a conduction current around the coil from B to 
C to D to A to B. This direction of current flow is consistent with Lenz's law. 

4.5.3. An accelerating classical point charge 

In the case of an accelerating classical point charge, the expressions for E 
and B, determined from the Liénard-Wiechert potentials, are given in  term§ 
of the velocity and acceleration of the charge at its appropriate retarded position 
by equations (3.10) and (3.13) of Section 3.2 of Chapter 3. According to 
Maxwell's equations, at any field point the curl of the electric field E due to 
an isolated accelerating classical point charge, is related to the rate of change 
of its magnetic field B by the relation 

V x E = — 
. 

aB 
(4.41) at  

An example of the electric field due to an accelerating classical point charge 
was shown in Figure 3.7 of Chapter 3. It can be seen from Figure 3.7 that 
the electric field lines are curved and have kinks in places, associated with 
periods when the charge was accelerating at its retarded position. The magnetic 
field in Figure 3.7 is in a direction perpendicular to the paper. The reader 
can see from the shape and number of electric field lines per square metre 
in Figure 3.7 that the value of the integral  JE  • dl evaluated around any 
closed curve in Figure 3.7 at a fixed time t is finite. The rate of change of 
the magnetic flux cico =1B • dS through that closed curve is also finite due to 
the motion of the accelerating classical point charge relative to the closed curve, 
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and according to Maxwell's equations is related to the line integral of E around 
the curve by the equation 

E • dl = — 	
. (4.42) at  

In the case of an isolated accelerating classical point charge, equation (4.41) 
is again a relation between the field vectors E and B, which in the case of 
an accelerating classical point charge are given by equations (3.10) and (3.13) 
respectively. 

4.5.4. A system of moving and accelerating classical point charges 

Consider a system of N moving and accelerating classical point charges, which 
build up a macroscopic charge and current distribution. Consider a field point 
in empty space. According to equation (4.36) the electric field E.  and the 
magnetic field Bi  at any field point in empty space due to the ith moving charge 
qi, are related by the equation 

as, v x Ei  = at  . 	 (4.43) 

An equation, such as equation (4.43) is valid at the field point in empty space 
for the fields due to every one of the classical point charges in the system at 
the time of observation, so that we can add up the contribution of all the N 
charges in the macroscopic charge and current distribution, to give at a field 
point outside the charge distribution 

aB 1  aB2 	as,/  
v x E i  + v x E2  + . . . + V x EN — 

at - at 	• • • --at--  

Since for any vectors C, D, . . . 

VxC+VxD+...=Vx(C+D+...) 

it follows that 

V x E i  + V x E2 + . . . + V X EN  = V x (Ei  + E2 + • • • + EN). 

Also 

as, as2  
+ • • • + 	= 	+ B2 + . . . + BN). 

Hence 

where E = (E 1  + E2 + . . . + EN) is the resultant electric field and B = 
(B 1  + B2 +. . . + BN) is the resultant magnetic field at the external field point 
due to all the N classical point charges in the charge and current distribu-
tion. 
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As a typical example of a macroscopic current distribution, consider a 
varying conduction current in a stationary arbitrarily shaped coil and consider 
an external field point in empty space. The stationary positive ions in the 
coil give rise to electrostatic fields which contribute to the resultant electric 
field E at an external field point, but the stationary positive ions give no 
contribution to the resultant magnetic field B. Since, according to equation 
(1.27), the curl of any electrostatic field is zero, the stationary positive ions 
make no contribution to either V x E or  B. The resultant values of V x E 
and 1.3 at the external field point are due to the moving and accelerating con-
duction electrons. Equation (4.43) is a relation between the values of the 
resultant total fields E and B at the external field point. If the accelerations 
of the conduction electrons in the coil were negligible, it could be assumed, 
as a first approximation, that the conduction electrons were moving with 
uniform velocities, in which case, each individual moving conduction electron 
in the coil would give, in this approximation, an electric field distribution of 
the type shown in Figure 4.3(b), except that for electrons the charge q would 
be negative and the electric field lines would converge on the individual con-
duction electrons. Each moving conduction electron would give a contribution 
to V x E at the external field point due to the bunching of its electric field 
lines towards a direction perpendicular to its velocity. Each of the conduc-
tion electrons would also give a contribution to i3 due to its motion relative 
to the fixed field point. In practice, the conduction electrons are continually 
accelerated and decelerated. They also have centripetal accelerations in regions 
where the coil is curved. When these accelerations are important, the electric 
field due to the individual accelerating conduction electrons are more com-
plicated than in Figure 3.4(b) of Chapter 3 and the electric field lines would 
be curved and have kinks in them, as shown for example in Figure 3.7 of 
Chapter 3. It is the sums of the electric and magnetic fields of this type due 
to individual moving and accelerating conduction electrons, that give the 
resultant values of V x E and  B at the external field point. We shall return 
in Chapter 5 to interpret the origin of the induced emf due to a varying 
current in an electrical circuit using equation (3.10), which gives the electric 
field due to an accelerating classical point charge. 

4.5.5. Critique of an obsolete interpretation of Faraday's law of 
electromagnetic induction 

The reader may find in many text books that the equation 

V x E = -k 	 (4.45) 

is interpreted by saying that a varying magnetic field produces an electric field. 
The following quotation, taken from Grant and Phillips [4] is typical: 

A changing magnetic field produces an electric field according to Faraday's 
law. 
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The integral form of equation (4.45), namely 

E.  dl = — at 
	 (4.46) 

is often interpreted by saying that a varying magnetic flux through a 
stationary coil produces an induced emf in the coil. Such interpretations are 
relics of the nineteenth century aether theories. The values of E and B in 
the general case can be derived independently from the values of  4  and A which 
can be determined using the retarded potentials. We have shown that equation 
(4.45) is just a relation between these values of E and B. That equation (4.45) 
is a relation between E and B can be illustrated by introducing the poten-
tials 4'  and A. According to equation (2.17) of Chapter 2 

E = —V4) — 	 (2.17) 

By taking the curl of both sides of equation (2.17) and using the result that 
the curl of the gradient of any scalar function of position is zero, we find 
that 

VxE=Vx 	 = -v x aA
• 	

(4.47) at  

According to equation (2.18) 

B = V x A. 	 (2.18) 

Differentiating equation (2.18) partially with respect to time, we have 

aB 	a 
- at = 	(v  x A). 	

(4.48) 
 

Notice immediately that both V x E and k can be determined from the vector 
potential A. Using equations (4.47) and (4.48) we can rewrite equation (4.45) 
in the form 

aA ) 	 a -v x (—at = --at (V x A). (4.49) 

Since the operations of taking the curl of a vector and differentiating par-
tially with respect to time are independent linear operations they commute, 
so that equation (4.49) is always valid for any vector. There is no need to inter-
pret equation (4.49) by saying that the right hand side produces the left hand 
side or vice versa. One side of equation (4.49) is just a rearrangement of the 
other. Hence it is best to interpret equations (4.45) and (4.49) as relations 
between the components of E and the components of B and not as cause-
effect relations, in which i3 is interpreted as the cause of E. 

When teaching electromagnetism, we can interpret equation (4.45) by saying 
that, if we set up the experimental conditions such that we get a varying 
magnetic field, then the same charge and current distributions that give rise 
to the varying magnetic field also give rise to an electric field whose curl is 
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equal to —B. When equation (4.46) is applied to a stationary electrical circuit, 
if we set up the experimental conditions to get a varying magnetic flux through 
the stationary circuit, then the varying charge and current distributions that 
give rise to the varying magnetic flux also give rise to an induction electric 
field, which gives rise to an induced emf fE • dl in the stationary circuit, which 
is numerically equal to minus the rate of change of the magnetic flux through 
the circuit. We shall show in Chapter 7 that we generally only need to know 
the value of the emf fE • dl in AC circuit theory and not the value of E at 
every point in the circuit. 

4.6. The equation V x B = k/c2  at a field point in empty space 

4.6.1. A classical point charge moving with uniform velocity 

Consider again the isolated classical point charge of magnitude q, that is and 
always has been moving with uniform velocity u along the x axis of 
Figure 4.1. Let p = uk. The charge q is at the origin 0 in Figure 4.1 at the 
time of observation t, when the fields E and B are determined at the field point 
P, which is at a distance r from the origin. Choose again the spherical polar 
coordinate system (r, 0, 4)) shown in Figure 4.1. The polar angle 0 is the 
angle between u and r, measured at the time of observation t. According to 
equations (4.4), 

qu(1 — 132) sin 0  
B = B 44) — 	 4.50 47teoc2r2(1 — 132  sin2  0)3/2  4) 

	

	 ( 	) * 

It can be seen from equation (4.50) and Figure 3.5 of Chapter 3 that, in the 
special case of a classical point charge moving with uniform velocity in Figure 
4.1, the magnetic field lines are closed circles with centres on the x axis, 
which is the direction of the uniform velocity u of the charge. Hence fB • dl 
evaluated around a magnetic field line is finite, showing that V x B is finite 
on a surface bounded by a magnetic field line. Since, according to equation 
(4.50) both B r  and Bo  are zero, the expression for V x B in spherical polar 
coordinates, given by equation (A1.41) of Appendix A1.10, reduces to 

1  	í a 	. 	ia 	- 17 x B — 	. 	— (B sin 0) r — 	 (4.51) 

	

r sin 0 ao 	 r ar (rB  

According to equation (4.50), Bo  varies with 0 at fixed values of r and 4) giving 
a component of V x B in the direction of is-, and Bo  varies with r at fixed values 
of 0 and 4:• giving a component of V x B in the direction of  0. Substituting 
for B. from equation (4.50) into equation (4.51) and carrying out the partial 
differentiations, the reader can show that 
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V x B — 

qu(1 — 132)  [ 2  cos 0(1 + V2 132  sin2  0) 

4nc0r2(1 — 132  sin2  0)3/2 
 r. 

The electric field E at the fixed field point P in Figure 4.1 varies in both 
magnitude and direction with time due to the motion of the charge q relative 
to the fixed field point. According to equation (4.24), for a classical point 
charge moving with uniform velocity u 

aE = —(u • V)E. at 

Expressing the velocity u of the charge q in Figure 4.1 in terms of the unit 
vectors F and 6' at the field point P we have 

u = (u cos 0)i — (u sin 0)6. 

According to equation (A1.39) of Appendix A1.10 

v.i a +4 1 a 	1 	a 
ar 	r ae w r sin 0 ao • 

Hence, since E = Eri, after using equation (A1.1) of Appendix A1.1 to expand 
u • V, we find that 

1 aE 	1 	u cos 0  a 	A 	u sin 0  a tr, 
72 .T.  = 	NI • )E = — e2 	(Err)  + 

c2r ae (Err).  
Since 

we have 

1 aE 	u cos o aEr 	u sin 0 aEr \ u 	sin 0 
 O . — c2r 	rV . 7 at = 	C2 	ar 	c2r ao 

By substituting for E,. from equation (4.53) and carrying out the partial 
differentiatons, the reader can show that the above expression for bc2  reduces 
to the right hand side of equation (4.52), showing that at a field point in 
empty space 

4ite0c2 	r3(1 — 132  sin2  0)512  

sin 0  
r3(1 — 132  sin2  0)3/2  

According to equation (4.2) 

If (1 — 132) 
E — 

(4.52) 

(4.53) 

1 E 	aE v x B = 7 7BT.- = goe0 at  (4.54) 
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where we have used c2  = 1/11060. Equation (4.54) is a relation we have derived 
from the expressions for the electric field E and the magnetic field B due to 
a classical point charge moving with uniform velocity, which we had previ-
ously derived in Chapter 3 using the Liénard-Wiechert potentials. 

In the case of an isolated accelerating classical point charge, the electric and 
magnetic fields are given by equations (3.10) and (3.13) of Chapter 3. These 
electric and magnetic fields are more complicated than is the case when the 
charge is moving with uniform velocity. For example the electric field lines, 
due to an accelerating classical point charge, can be curved and have kinks 
in them associated with periods when the charge was accelerating at its retarded 
position. However equation (4.54) is still valid at any field point in empty 
space. It is again a relation between the field vectors E and B. 

4.6.2. The low velocity approximation 

It is of interest to note that, whereas there is a factor (1/c2) on the right hand 
side of equation (4.54) relating V x B and k, there are no factors involving 
c in equation (4.36) which relates V x E and  B. Consider again the example 
of the charge q moving with uniform velocity u shown in Figure 4.1. 
Expanding the denominators in equations (3.25) and (3.28) using the binomial 
theorem, we find that at the field point P at the time of observation we have 

E — 43 qr  {1 + 02 (2  sin 2  0 — 1 + . . . , 	 (4.55) 2 

B 
= (4){ 

 quxr(l)fi 	3 sin2  0 — 1 + . . 	. (4.56) 
4rcE0r3  c2 	V2  2 

According to equation (3.29) 

x E B = u  	. 	 (4.57) c2  

In the low velocity limit when 13 << 1, the zero order terms are 

qr  qu  x r  ( 1 E0  — 	• 
4r3' 	Bo  — 47ce0r3 e2 ) • 	 (4.58) 

It is straightforward for the reader to show using the methods used in Section 
4.6.1 that when 13 	1 

_q (1. )(2u  cos 0  i  + u sin 0  6 ) V x B° — 4rcE0 c2 	 (4.59) 
r3 	1-3 

aE0 	q  ( 2u cos 0  .. u sin 0  - 
r

3 	r + 	r3 	0 ) . 	 (4.60) at — 47cco  k 

Comparing equations (4.59) and (4.60) we see that 

1 aE0  v 
x B° = 7 	 (4.61)  at 
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showing that equation (4.54) is valid for the zero order terms. The zero order 
contribution Bo  to the magnetic field gives a finite curl since the magnetic field 
lines are closed circles in the special case of the charge moving with uniform 
velocity shown in Figure 4.1. The zero order contribution E0  to the electric 
field gives a finite value for ko, due to the motion of the charge relative to 
the fixed field point. Since according to equations (4.58), Bo  is of order uEo/c2  
it is reasonable to find that we must multiply to  by (1/c2) to be equal to the 
value of V x Bo  given by equation (4.59). 

When we come to calculate the value of V x E at the field point P in 
Figure 4.1 at the fixed time t, V x E0  is zero since, at a fixed instant of time 
the expression for E0  is the same as Coulomb's law. Hence the first term 
that contributes to V x E in the low velocity limit is V x E2, where 

E2= 
 4rcEor3 

 qr 	 132  (2  sin2  0 — i ) .  
2 

Evaluating V x E2 using the methods used in Section 4.5.1, the reader can 
show that 

V X E2 = - 132 	q
47teor 

3 ) 3 cos 0 sin 0 (1). 	 (4.62) 

The zero order contribution Bo  to the magnetic field gives a finite contribu- 
tion to it due to the motion of the charge q relative to the field point in 
Figure 4.1. Using the method used in Section 4.5.1, the reader can show that 

as 	as 0 _ u 	0 	R2 ( 
47cEor3

q 	3 cos 0 sin 0 4). 	 (4.63) at 	ax  
Comparing equations (4.62) and (4.63) we see that, in the low velocity limit 

DB0  
V X E2 - at  . 	 (4.64) 

Since V x E depends on E2  not E0  in the low velocity limit and E2 is pro-
portional to E0/c2 , it is reasonable to find that we do not need any factors of 
c in equation (4.64) since, according to equation (4.58) Bo  is also proportional 
to Eo/c2  so that the factors of 132  in equations (4.62) and (4.63) cancel out in 
equation (4.64). 

4.6.3. A system of moving and accelerating classical point charges 

Consider the system of N moving and accelerating classical point charges 
that build up the macroscopic charge and current distribution, which we dis- 
cussed in Section 4.5.4. Corresponding to equation (4.43) we now have 

aE 
V x Bi  --= 7

1i 
 at  . 	 (4.65) 

Adding up the contributions of all the N charges we find that at a field point 
in empty space 
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aE v x B = at  (4.66) 

where B = (B 1  + B2 + . . . 	BN) is resultant magnetic field and E = 
(E 1  + E2 . . . EN) is the resultant electric field at the external field point 
in empty space. Equation (4.66) is a relation between the resultant electric 
and magnetic fields at a field point in empty space. We shall now go on to 
show that equation (4.66) must be extended by adding the NJ term to the right 
hand side when there is a current distribution of current density J at the field 
point. 

4.7. Application of the equation fB • dl = Air/c2  to the fields of a point 
charge of zero dimensions moving with uniform velocity 

In this section we shall assume that the moving charge, of magnitude q, in 
Figure 4.1 is an idealized point charge of zero dimensions, which is and always 
has been moving with uniform velocity u along the x axis of Figure 4.1. The 
charge q is at the origin of the spherical polar coordinate system at the time 
of observation t. Let i,  O and (13 be unit vectors in the directions of increasing 
r, 0 and (1) respectively. To simplify the discussions we shall assume that 
u < c so that 13 = u/c 	1. According to equation (3.34) of Chapter 3, when 
p 	1, the magnetic field at the field point P in Figure 4.1, at a distance r from 
the position of the charge at the time of observation t, is given to a good 
approximation by the Biot-Savart approximation, which is 

qu x r 	qu sin 0  
47cc0c2r3 	4nc0c2r2  93.  

The angle 0 in equation (4.67) is the angle between u and r. 
According to equation (3.33) of Chapter 3, when p 	I the electric field 

E at the field point P in Figure 4.1 at the time of observation t is given to a 
good approximation by 

E= qr 
	

q 	 (4.68) 
47cc0r3 	4ite0r2  

where r is again measured from the position of the point charge at the time 
of observation t. 

It is important for the reader to realize that there is an important differ-
ence between the electric field E and the magnetic field B due to a point charge 
moving with uniform velocity u. The electric field lines diverge radially from 
the position of the charge at the time of observation t as shown in Figure 3.4(b). 
The electric field lines on the x axis in Figure 4.1, which is the line of motion 
of the charge, are in opposite directions on either side of the moving charge. 
However, the magnetic field lines just off the x axis are in the same direc-
tion, given by the right handed corkscrew rule, on both sides of the moving 
charge, as shown in Figure 3.5. 
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Consider a circular disk shaped surface S of radius a, with its centre on 
the x axis at a distance x from the origin and with the field point P on its 
circumference as shown in Figure 4.1. We shall start by evaluating the line 
integral 03 • dl around the circumference of the surface S in the direction of 
the magnetic field due to the moving charge in Figure 4.1 at the instant the 
charge is at the origin. The positive direction for an element of area dS of 
the surface S is then the direction in which a right-handed corkscrew would 
advance if it were rotated in the direction of dl. This is in the +x direction from 
the right hand side of the surface S in Figure 4.1. Using equation (4.67) we 
have 

qua2 
B • dl = 2 	

4,  —_
naB 	

qua sin 0  
2E0C2r2 — 2e0c2

(a2 + x2)3/2 • (4.69) 

The electric flux  W  = fE • dS through the surface S, when the charge q is at 
the origin in Figure 4.1, can be obtained by evaluating the integral in equation 
(4.10) from 0 = 0 to 0 = O. Neglecting terms in 02 compared with unity in 
equation (4.10), we find that 

= 2E0 
q 

oe 
sin 0 dO = q (1 — cos 0) 	 (4.70) 

 2E0  

q 
- — (a2 :x2) 1/2) 	 (4.71) 

2E0  

Applying equation (4.23) to equation (4.71) we find that 

aw = — u aw 	qua2 
(4.72) at 	ax 	2c0(a2  + X2)312  

Comparing equations (4.69) and (4.72), we see that 

1 aw 
B • dl = 	. 	 (4.73) 

Equation (4.73) was derived from the values of E and B given by equations 
(4.68) and (4.67) respectively. It is left as an exercise for the reader to show 
that equation (4.73) can also be applied after the charge of zero dimensions 
has passed through the surface S in Figure 4.1. 

Problem. Use equation (4.11) to show that, if u tends to c, the electric flux 
through the surface S in Figure 4.1 is 

cos 0  
lif = --q— [ 1 — 	 (4.74) 

2E0 	(1 — 132  sin2  0) 1/2  

Express cos 0 and sin 0 in cartesian coordinates and apply equation (4.23) 
to determine W.  Use equation (4.4) to evaluate fl3 •  dito show that 

qu(1 	— 13 2) sin2  0 
B • dl = —1 aw 	 (4.75) C2 at — 2e0rc2(1 — 13 2  sin 2  0)3/2 
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where r is the distance from the charge to a point on the circumference of 
the surface S. This is in agreement with equation (4.73). 

We shall now show that equation (4.73) is not valid and must be extended 
when the idealized point charge is actually crossing the surface S in Figure 
4.1. According to equation (4.71), when the charge q of zero dimensions is 
approaching the surface S in Figure 4.1 from the left, the electric flux IP 
through the surface S increases continuously until, just before the charge 
reaches the surface S, the electric flux reaches the value +q/2e 0, as illustrated 
in Figure 4.7(a). After the point charge of zero dimensions has passed 
completely through the surface S, the electric field lines go through the surface 
S in the opposite direction to previously, as shown in Figure 4.7(b). According 
to equation (4.71), just after the charge has passed through the surface S, 

= —q12E0. The variation of IP =  JE  • dS through the stationary surface S is 
shown for various values of x0  in Figure 4.8, where x0  is the distance from 
the centre of the circular disk shaped surface S to the position of the moving 
charge in Figure 4.1. The distance x0  is negative for the position of the moving 
charge in Figure 4.1. It can be seen from Figure 4.8 that there is a disconti-
nuity of —q/E0  in the electric flux IP through the surface S in Figure 4.1, when 
the idealized point charge of zero dimensions and of magnitude q is crossing 
the surface S at x0  = 0, so that W is equal to —co at that instant. However, 

Before the charge passes 
through the surface S 

(o) 

The charge has passed 
through the surface S 

(b) 

Figure 4.7. (a) Just before the point charge q crosses the circular disk shaped surface S, the 
flux of E through the surface S is equal to -1-q/2E 0. The lines of E cross the surface from left to 
right. (b) After the charge has passed through the surface S, the lines of E pass through the surface 
from right to left. There is a discontinuity in the flux of E, when the point charge passes 
through the surface S, which is equal to —q/e 0, whatever the speed of the charge. There is however 
no discontinuity in the magnitudes and directions of B and V x B at a field point on the cir-
cumference of the surface S when the charge q crosses the surface S. 
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Figure 4.8. The variation of Ili the flux of E through the circular disk surface S in Figure 4.1 
with the position of the moving point charge, x0  is the distance of the charge from the surface 
S. There is a discontinuity of  —q/E 0  in 111  when the point charge crosses the surface. (For a 
charge of finite size the variation of 111  with x0  is similar to that in Figure 4.10.) 

according to equation (4.69) B • dl is still finite and equal to quI2E0c2a. 
Since the total flux of E from a moving point charge of magnitude q is equal 
to q/e0, whatever the speed and acceleration of the charge, the discontinuity 
in  W is —q/c o  wherever the idealized point charge of zero dimensions crosses 
the surface S in Figure 4.1. If the charge q passes outside the disk-shaped 
surface S in Figure 4.1, the electric flux through the surface S is zero when 
the charge q is in the plane of the surface S, so that there is no discontinuity 
in the electric flux 111  through the surface S, and equation (4.73) is valid at 
all times in this case. 

Following Lorentz, we have been assuming in the text that a classical 
point charge is a continuous charge distribution of finite but exceedingly 
small dimensions. To illustrate how equation (4.73) must be extended when 
a charge distribution is crossing the surface S in Figure 4.1, we shall now 
extend the analysis to a charge distribution of finite dimensions, by consid-
ering the example of a line of continuous charge, that is moving with a uniform 
velocity u < c and which crosses the surface S, as shown in Figure 4.9. We 
can then proceed to the limit of a moving line of charge of finite but exceed-
ingly small length. This will be a simplified version of our model of a moving 
classical point charge. 
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4.8. A moving line of charge 

4.8.1. A moving line of charge of finite length 

Consider a thin line of charge that is of finite length 2L and has a charge of 
X. coulombs per metre length. Let the line of charge move with a uniform 
velocity u < c in a direction parallel to its length along the x axis of the 
coordinate system shown in Figure 4.9, The field point P is on the y axis at 
a distance a from the origin 0, as shown in Figure 4.9. Consider a circular 
disk-shaped surface S of radius a in the x = 0 plane, with its centre at the 
origin 0 and with the field point P on its circumference, as shown in Figure 
4.9. Let the mid-point of the line of charge have coordinates (x0, 0, 0). Note 
that in this section the origin 0 is at the centre of the circular disk-shaped 
surface S in Figure 4.9 and not at the position of the charge. 

The magnetic field B at the field point P in Figure 4.9 can be derived 
using the Biot-Savart law, and is given by the standard expression derived 
in elementary text books for the magnetic field due to the current flowing in 
a thin straight wire of finite length. For the experimental conditions shown 
in Figure 4.9, with I = ?t,u we have from the Biot-Savart law 

A,u  
B — 

47c E0c2a 
(cos 9 1  + cos 92). 	 (4.76) 

The magnetic field lines due to the moving line of charge are closed circles 
with centres on the x axis and direction given by the right-handed corkscrew 
rule, as shown in Figure 4.9. Integrating around the circumference of the 

Figure 4.9. A line of charge, which is moving with a uniform velocity u 	c, is crossing the 
circular disk shaped surface S. 
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circular disk-shaped surface S in Figure 4.9 in the direction of B, we have 

B • dl = 27caB — 
Xu 

2  (cos 01 + cos 02). 	 (4.77) 
260c 

When the line integral is evaluated in the direction of the magnetic field, the 
positive direction for an element of area dS of the surface S is in the +x 
direction from the surface S in Figure 4.9. It follows from the right-handed 
corkscrew rule that the direction of the magnetic field lines are as shown in 
Figure 4.9, whatever the position of the moving line of charge. Equations (4.76) 
and (4.77) can be applied for all positions of the moving line of charge, 
provided 0 1  and 02 are chosen appropriately. 

The magnitude of the electric flux 111  through the surface S in Figure 4.9 
is sketched for various positions of the moving line of charge in Figure 4.10. 
Before the line of charge reaches the surface S from the left, the electric 
field lines go through the surface S in Figure 4.9 in the +x direction so that 

= fE • dS is positive and is increasing in magnitude as the line of charge 
approaches the surface S. The variation of III with x0, the x coordinate of the 
mid-point of the line of charge in the region x0  < —L  is given by the section 
RV of the curve in Figure 4.10. In this region, 111  is positive. By applying 

Figure 4.10. The variation of 111, the flux of E through the circular disk shaped surface S in 
Figure 4.9 for various positions of the moving line of charge. (Actually E0111/Xa is plotted 
against xola, where X = charge/unit length, and a, the distance of the field point from the 
x axis, is equal to the length of the charge.) 



is valid at the field point P, so that 

1 f  B.  d1 = f  c- at (4.79) 

136 Chapter 4 

equation (4.54) to each element of the line of charge, then summing and 
following the method of Section 4.6.3, the reader can show that before the 
line of charge reaches the surface S in Figure 4.9 and after the line of charge 
has passed completely through the surface S, the equation 

1 aE v x B = 	 (4.78) c- at 

When the line of charge is crossing the surface S, as shown in Figure 4.9, 
the charge to the left of the surface S still gives an electric field through the 
surface S in the +x direction and hence gives a positive contribution of the 
electric flux 111  through the surface S. However, the electric field due to the 
charge to the right of the surface S in Figure 4.9 is in the –x direction and gives 
a negative contribution to W. Hence W starts decreasing, when the line of 
charge starts crossing the surface S, reaching zero for the case when x0  = 0. 
The variation of W with x0, the position of the mid-point of the moving line 
of charge, when the line of charge is crossing the surface S in Figure 4.9 is 
given by the section VT of the curve in Figure 4.10. In this region * is 
negative. However, according to equation (4.77) fB . dl is still positive, 
showing that equation (4.79) is no longer valid and must be extended when 
the line of charge is crossing the surface S. 

The variation of III with x0  in the region x0  > L, that is after the line of charge 
has passed completely through the surface S in Figure 4.9, is given by the 
section TU of the curve in Figure 4.10. It can be seen that in this region IV 
is negative, but 111  is getting less negative with increasing x 0  so that * is 
positive and in this region equation (4.79) is valid again. 

Since we have shown earlier using equation (4.54) that equations (4.78) and 
(4.79) are valid before the line of charge has reached the surface S in Figure 
4.9 and after the line of charge has passed completely through the surface S, 
we need only consider in detail the case shown in Figure 4.9 when the line 
of charge is actually passing through the surface S. Let the line of charge move 
an infinitesimal distance dx = u dt in an infinitesimal time dt. The change in 
the electric flux through the surface S in Figure 4.9 in the time dt is the same 
as removing, at a fixed time, an infinitesimal section of length dx and of charge 
X dx from the left hand end of the line of charge and adding it to the right 
hand end. It follows from equation (4.70) that the change &Il i  in the electric 
flux through the surface S in Figure 4.9, when the element of charge X dx is 
removed from the left hand end of the line of charge is 

= – —
Xdx 

 (1 – cos 01) 	 (4.80) 
2E0  

where 0 1  is shown in Figure 4.9. When the element of charge X dx is added 
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to the right hand end of the line of charge in Figure 4.9, it gives an electric 
field in the -x direction and its contribution to the electric flux through the 
surface S is negative. According to equation (4.70) this change d 111 2  in the 
electric flux through the surface S is 

cliF2  = - —Xdx (1 - cos 02). 	 (4.81) 
2E0  

Adding equations (4.80) and (4.81), putting dx = u dt and then dividing by c 2dt 
we obtain 

alp 	xu  
c2 at 	2E0c2 (1 — 

cos 0 1  + 1 - cos 02) 

xu  
2 2 

(cos 0 1  + cos 02  - 2). 	 (4.82) 
60c 

According to equation (4.77), for the conditions shown in Figure 4.9 

Xu  
B • dl - 

	

	(cos 0 1  + cos 02). 	 (4.83) 
2E0c2  

Comparing equations (4.82) and (4.83), we see that, for the case shown in 
Figure 4.9, 

	

alp 	xu 

	

 
B • dl = --y — 	+ 	- { co  -Tr + I

} 

	

c at 	coc2 
(4.84) 

where I = Xu is the electric current crossing the surface S and 1/c2  = goeo . 
We see that if we start with equations (4.78) and (4.79) as relations between 
the field vectors E and B, then the need for consistency when there is a moving 
charge distribution crossing the surface S leads us to equation (4.84) which 
is the integral form of equation (1.118) of Chapter 1. 

The negative value of W1c2  in the region -L  < x0  < +L is due to the fact 
that, when an infinitesimal element of length dx and of charge dq = X dx crosses 
the surface S in Figure 4.9 in an infinitesimal time dt, its contribution to the 
total electric field changes from the +x to the -x direction and its contribu-
tion to the electric flux through the surface S changes from +dq/260  to -dq/2E0 . 
It was shown in Section 4.7 that when a point charge of magnitude q and 
zero dimensions crosses the surface S in Figure 4.1 there is no discontinuity 
in fB • dl, even though there is a discontinuity of -q/e0  in the flux of E 
through the surface. Hence, when the infinitesimal elements of charge 
dq = X dx cross the surface S in Figure 4.9, though the changes of -4E0  in 

contribute to the value of W/c 2  given by equation (4.82), the changes of 
-dq/e0  in W are not associated with any corresponding discontinuities in 
B. dl. Hence it is reasonable to find that, if the contributions of the successive 

changes of -dq/e0  in the electric flux IV, when successive elements of charge 
dq cross the surface S in Figure 4.9, are included in the values of W/c2 , to which 
they make a contribution of -dq/e 0  c2dt = -//e0c2  = - Xu/E0c2  then, since 
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the elements of charge dq crossing the surface S do not give corresponding 
changes in fit • dl, to get consistency we must compensate for the inclusion 
of their contributions to lif/c2  by adding +Xu/E0c2  to 41/c2  to give equation (4.84). 
The terms in equation (4.82) involving cos 0 1  and cos 02  arise from changes 
in the positions of the ends of the ends of the moving line of charge in Figure 
4.9, when the line of charge is crossing the surface S. 

As an exercise the reader can apply the method we used to determine the 
value of lif/c2  given by equation (4.82) to determine lif1c2  for the cases before 
the line of charge has reached the surface S in Figure 4.9 and after the line 
of charge has passed completely through the surface S. Then, by comparing 
the values obtained with the values of fl3 • dl the reader can confirm that 
equation (4.79) is valid in these cases. 

It will now be assumed that the moving line of charge in Figure 4.9 is 
accelerating and moving in an arbitrary direction when it is crossing the surface 
S. It was pointed out in Section 4.2 that the total flux of E from a classical 
point charge of magnitude q is always equal to q/E0, whatever the velocity 
and acceleration of the charge. Hence, it does not matter where the line of 
charge crosses the surface S in Figure 4.9 and what its velocity and acceler-
ation are at that instant, when the element of charge of magnitude dq crosses 
the surface S its contribution to III, the electric flux through the surface S, 
changes by —dq/E0 . This gives a contribution to W equal to —dq/Eo  dt = //co 

 where I = dq/dt is the current crossing the surface S. Hence the compensa-
tion term // 0c2  in equation (4.84) is the same wherever the line of charge is 
crossing the surface S and whatever the velocity and acceleration of the line 
of charge are at that instant. Hence in the general case, when the line of 
charge is crossing the surface S in Figure 4.9 

f it•d1= sift_ + _coic2 	{ 
 0 	

+/} 	 (4.85) 

where AV =  JE  • dS is evaluated over this surface S and I = 1,J dS is the 
total current crossing the surface S. If the line of charge does not cross the 
surface S 

B • dl = 7 at 	 (4.86) 

If the line of charge in Figure 4.9 were of infinite length, 'if would be zero 
and equation (4.85) would reduce to 

B • dl = go/ 

which is an example of Ampère's circuital theorem. 

Problem. Divide the moving line of charge in Figure 4.9 into infinitesimal 
elements of length. The electric flux due to each element of charge is given 
by equation (4.71). Integrate to show that for x0  <—L  
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= X  [ 2L - {(x0  - L)2 a2  }1/2  + ((x0 L)2 	a2  )1/2  
2E0 

and for x0  > L 

(4.87) 

{(x 0  + L)2 	a2 )1/2 	I 	f \2 	a2 1/2 
111  = - -- 2L - 	 lV40 4"/ 	 . 	(4.88) 

2E0  L. 

When -L  < x0  < L,  the contributions of the charge on opposite sides of the 
surface S to IV, the electric flux through S, have opposite signs. By adapting 
the expressions for 111  for x0  < -L  and x0  > L for the sections to the left and 
to the right of S and then combining the results, show that for -L  <x0  <L  

X 
 = - 	+a°  + {(x0  _ L)2 a21.1/2 	

° 

	

{(x + / )2 
a2)1/2 	(4.89) 

260   

Plot variation of 111  against x0  for the case when a = 2L to obtain Figure 4.10. 
Adapt equation (4.23) to determine the values of W/c2 . Then by comparing 
your values of W/c2  with the values of fit • dl given by equation (4.77), show 
that equation (4.79) is valid for x0  < L  and x0  > L and show that equation (4.84) 
is valid for -L < xo  <L. 

4.8.2. A moving classical point charge 

If the length of the moving line of charge in Figure 4.9 is kept finite but 
made exceedingly small, it corresponds to a special case of our model of a 
classical point charge. In the limit, when the length 2L of the moving line of 
charge tends to zero, the variation of  W with x0  in Figure 4.10 tends to the 
variation of 111  with x0  for a point charge of zero dimensions shown in Figure 
4.8. However, since, on our model of a classical point charge, 2L remains finite, 
the decrease of 111  between the points V and T in Figure 4.10 does not quite 
become discontinuous, whereas when an idealised point charge of zero dimen-
sions is crossing the surface S in Figure 4.1, W is equal to -00 at the instant 
the charge is crossing the surface. It can be seen that we have removed this 
infinity in W by treating a classical point charge as the limiting case of a 
line of charge of length 2L, when 2L is made exceedingly small but is kept 
finite to fit in with our model of a classical point charge. It is equation (4.85) 
that is valid when the classical point charge is crossing the surface S in Figure 
4.9. 

It is of interest to see why, in the absence of magnetic monopoles, it is 
not necessary to add any extra terms to the equations 

V x E = 	 (4.90) 

fE • dl = -4) 	 (4.91) 

when there is a charge and current distribution at the field point. Consider 
the idealized point charge of zero dimensions, that is approaching the surface 
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(a) 

q is above the surface S 
having passed through 
the surface 

(b) 

Figure 4.11. The charge q passes through the surface S. The magnetic field lines are upwards 

out of the surface both before and after the charge crosses the surface. 

S in Figure 4.11(a) with uniform velocity. The charge has passed completely 
through the surface S in Figure 4.11(b). Typical magnetic field lines before and 

after the charge has passed through the surface S are shown in Figures 4.11(a) 

and 4.11(b) respectively. It can be seen that the lines of B are closed circles 

which, according to the right-handed corkscrew rule, are in the same direc-

tion for field points in front of and behind the moving charge in Figures 4.11(a) 
and 4.11(b). Hence there is no change in the direction of the flux of B through 

the surface S, when the point charge of zero dimensions crosses the surface 
S and there is no discontinuity in the flux of B to compensate for when 

evaluating é, where (I) = fB • dS is the flux of B through the surface S. If 

magnetic monopoles played a significant role in classical electromagnetism, 
equations (4.90) and (4.91) would have to be extended. The interested reader 
is referred to Rosser [5]. 

4.8.3. A field point inside a macroscopic charge distribution 

Consider the continuous macroscopic charge distribution that is moving with 
uniform velocity u in Figure 4.12. Divide the current distribution into a number 

of lines of charge parallel to u. Consider an arbitrary surface S inside the 

moving charge distribution in Figure 4.12. By applying to the surface S, 

equation (4.85) for the lines of charge crossing S and equation (4.86) for the 

lines of charge not crossing S and then adding, we have 

4 Bi  dl = 	+ poeoEf E, dS 	 (4 .92) 
i s 

where E' means summing only over the lines of charge actually crossing the 

surface S. Equation (4.92) can be expressed in the form 
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MOVING MACROSCOPIC 
CHARGE DISTRIBUTION 

Figure 4.12. The continuous charge distribution, which is moving with uniform velocity u, is 
divided into a series of convection line currents parallel to u and used to develop the equation 
V x B = pica + Eok) at an internal field point. 

fB • dl = 1.10fJ • dS + goeolk • dS 

where B = EA is the resultant magnetic field E = EE1  is the resultant electric 
field and J is the current density. Applying Stokes' theorem of vector analysis 
to fB • dl and rearranging we have 

f(V x B — NJ — NE0E) - dS = O. 

If the surface S in Figure 4.12 is made small enough for the variations of B, 
J and E over the surface S to be negligible, then 

(V x B — go,1 — goec,E) • S = O. 	 (4.93) 

Since equation (4.93) must be true for all orientations of the surface S we 
conclude that at a field point inside a continuous charge and current distrib-
ution 

V x B = p„o(J + E0E). 	 (4.94) 

Thus if we start with equation (4.54) as a relation between the field vectors 
E and B at a field point in empty space, then the need for consistency, when 
there is a current distribution at the field point, leads us to equation (4.94) 
which is the same as equation (1.118). An alternative development of equation 
(4.94) from equation (4.54) is given in Appendix D. 
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4.8.4. The Maxwell-Lorentz equations 

We shall now assume that the moving, continuous charge distribution, shown 
in Figure 4.12 is exceedingly small so that it corresponds to our model of 
an atomic charged particle. If e is the microscopic electric field, b is the 
microscopic magnetic field and r = if icu is the microscopic current density 
at a field point inside the moving charged atomic particle then, if we assume 
that equation (4.94) is valid inside the moving charged atomic particle, we 
have 

x b = 	+ coi). 	 (4.95) 

This is the same as equation (1.140). We can now apply the method of 
averaging the microscopic fields given in Section 1.11 of Chapter 1 to derive 
equation (1.155) which is 

V x B = go(J + eok). 	 (4.96) 

where E is now the macroscopic electric field, B is the macroscopic magnetic 
field and J is the macroscopic current density at a field point inside a macro-
scopic current distribution made up of moving and accelerating charged atomic 
particles. The macroscopic vectors E, B and J are defined using equation 
(1.147) of Chapter 1. 

It follows from equation (4.90) that at a field point inside a moving charged 
atomic particle we have 

V x e = 	 (4.97) 

Following the method leading from equation (4.95) to equation (4.96), we now 
have 

V x E = 	 (4.98) 

where E and B are the macroscopic fields. 
Summarizing, equations (4.13), (4.17), (4.97) and (4.95) are the Maxwell-

Lorentz equations inside a moving and accelerating classical charged atomic 
particle and equations (4.14), (4.18), (4.98) and (4.96) are the corresponding 
Maxwell's equations relating the macroscopic fields at a field point inside a 
charge and current distribution made up of moving and accelerating classical 
charged atomic particles. 

4.9. A charging capacitor in the quasi-stationary approximation 

In order to illustrate the application of the Maxwell equation (4.96), we shall 
consider the example of the parallel plate capacitor shown in Figure 4.13. 
We shall assume that the capacitor plates are in a vacuum and that the plates 
are small enough for the fringing electric fields to be very significant, as shown 
in Figure 4.13. We shall assume that the frequency of the alternating current 
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I 

 

E 
Figure 4.13. The charging of a capacitor. In this case the fringing electric field is important. 

I is low enough for the quasi-stationary approximations to be valid, so that 
the current I at a given instant can be assumed to have the same value in all 
parts of the connecting leads. At large distances from the capacitor, the effects 
due to the presence of the capacitor are negligible and the magnetic field B 
at a perpendicular distance r from the long straight wire, calculated using 
the Biot-Savart law, is given, to a very good approximation, by 

B — 11°1  . 	 (4.99) 27tr 

As we approach the capacitor from the left in Figure 4.13, the effect of the 
presence of the parallel plate capacitor becomes more and more important, 
when we calculate the magnetic field outside the capacitor by applying the 
Biot-Savart law to all the currents in the system, including the currents in 
the capacitor plates that give rise to the changes in the charge densities on 
the distant parts of the capacitor plates, and the value of B deviates more 
and more from that given by equation (4.99). We shall now show how these 
results can be interpreted using equation (4.96). Applying equation (4.96) to 
the circular disk shaped surface S of radius r and then applying Stokes' theorem 
of vector analysis at a fixed time we have 

IV x B • dS = fB • dl =  4J.  dS + !loco* 	 (4.100) 

where Alf =  JE  • dS is the flux of E through the surface S due to the fringing 
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electric field due to the capacitor. Since by symmetry B has the same value 
at all points on the circumference of the surface S, evaluating fB - dl in the 
direction of the magnetic field B in Figure 4.13 we have 

2nrB = Rol + gocolif 

so that 

B – —14 27cr [I + Colin. 	 (4.101) 

As the current I charges up the capacitor, the magnitudes of E and 111  are 
increasing. However Ili is negative for the position of the surface S in Figure 
4.13, since E goes through the surface S in the direction opposite to the 
direction of a right-handed corkscrew would advance if it were rotated in 
the direction in which fB • dl is evaluated. Thus, when the capacitor in 
Figure 4.13 is charging up, * is negative so that according to equation (4.101) 

B < 114 • 	 (4.102) 27cr  

Well away from the capacitor, * tends to zero and equation (4.99) is a very 
good approximation. The nearer the surface S is to the capacitor the bigger 
the numerical values of ITI and I*1 and according to equation (4.101) the 
smaller the magnetic field B becomes. 

If the surface S in Figure 4.13 were between the plates of the capacitor 
the current density J would be zero everywhere on the surface S and equation 
(4.101) would reduce to 

B < Ne° 	 (4.103) 41  
27cr ' 

However in this case 111  and * would both be positive, when the current I in 
the connecting leads was increasing, and the direction of I and hence of B were 
as shown previously in Figure 4.13. As an example, we shall assume that 
the plates of the capacitor in Figure 4.13 are so big that the fringing electric 
field can be neglected. It is shown in text books on electromagnetism that, 
if Q is the total charge on the positively charged circular capacitor plate, which 
is of radius a and area A, then the electric field E between the capacitor 
plates is equal to Q/E0A. If the circular disk shaped surface S of radius r is 
between the plates and r > a, then the value of the electric flux 111  crossing 
the surface S is (Q1E0A) x A = Q/co, so that differentiating with respect to 
time we have 

colif  
dt 	• (4.104) 

Substituting in equation (4.103) we find that in this special case 

B=  l'14  27tr ' (4.105) 
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The effect of a finite fringing electric field would be to reduce the value of 
the electric flux 111  crossing the surface S which, according to equation(4.103) 
would give a lower value for B than given by equation (4.105). 

When the surface S in Figure 4.13 is on the right-hand side of the capac-
itor the current I crossing the surface S is finite in equation (4.101), but now 
111  and  W are negative again, when I is in the direction shown in Figure 4.13 
and I is increasing in magnitude, showing that equation (4.102) is again 
satisfied. 

So far we have assumed in this section that the frequency of the varying 
current I in Figure 4.13 is low enough for the quasi-stationary approxima-
tions to be valid. Equation (4.100) is still valid in the general case at a fixed 
time, when the current to and from the capacitor is varying at very high 
frequencies and whatever the shapes of the capacitor plates and the surface 
S. In these conditions we would have to use the retarded potentials or 
equation (1.134) of Chapter 1 to determine the magnetic field at a field point 
from the current distributions in the leads and the capacitor plates. 

4.10. The displacement current and the continuity equation 

Many text books still imply that the vacuum displacement current produces 
a magnetic field. The following quotation taken from Grant and Phillips [4] 
is typical: 

The inclusion of displacement current in the electromagnetic field equations 
restores a degree of symmetry to electricity and magnetism. A changing 
magnetic field produces an electric field according to Faraday's law. Now 
we see that a changing electric field produces a magnetic field. 

We showed in Section 1.9.3 of Chapter 1 that, despite its name, the vacuum 
displacement current density Eolk should not be included as one of the sources 
of the magnetic field when the Jefimenko equation (1.134), which is the 
solution of the differential equation (1.122) for B, is used to determine the 
magnetic field due to a varying current distribution. Neither should the vacuum 
displacement current be included as one of the sources of the magnetic field, 
when calculating the vector potential A in the Lorentz gauge using the retarded 
vector potential, namely equation (2.30). The values of the current density J 
at the appropriate retarded times are sufficient to determine A and hence B 
in the general case. Furthermore, if there is a current distribution, of current 
density J, in an external magnetic field B, there is a magnetic force 
(J x B) N M-3  on the current distribution, so that, if the vacuum displace-
ment current did behave like a conduction current, then by analogy we would 
expect that there would be a force equal to (Eok  X B) N 111-3  on empty space. 
However, it is assumed nowadays that there is no such force on empty space. 
Hence, unlike a conduction current, neither does the vacuum displacement 
current Eok produce a magnetic field nor is it acted upon by a magnetic field, 
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showing that the vacuum displacement current has none of the properties of 
an electric current. This shows that the roles of the J and Eot terms are com-
pletely different in classical electromagnetism. We showed in Section 2.6.5 
of Chapter 2 and in Section 4.6.1 that the equation 

V x B = pocoE 	 (4.106) 

at a field point in empty space can be interpreted as a relation between the 
field vectors E and B. We showed in Section 4.8.1 that the need for consis-
tency when interpreting equation (4.106) as a relation between the field vectors 
E and B requires the addition of the NJ term to the right hand side of 
equation (4.106), giving 

V x B = Ito  (J + coE) 	 (4.107) 

It was shown in Section 1.9.1 of Chapter 1 that it was the addition of the 
vacuum displacement current term Ecik to Maxwell's equations that converted 
the Laplacians of electrostatics and magnetostatics into D'Alembertians. For 
example, according to equation (1.122) 

V2B — gocoli = —110V x J. 	 (4.108) 

It can be seen from the Jefimenko equation (1.134) that the J term in equation 
(4.108) is the source of the magnetic field, whereas it follows from the deriva-
tion of equation (4.108) that the vacuum displacement current term is associated 
with the propagation of the electromagnetic interaction at the speed of light 
in empty space. 

In view of all the above evidence it is a little surprising to find that the 
vacuum displacement current term c ot is still treated in some text books as 
an electric current which produces a magnetic field. One reason is the his-
torical one. When Maxwell introduced the vacuum displacement current term 
the aether theories were generally accepted and Maxwell used a precise model 
of the aether. Maxwell also used the Coulomb gauge leading up to our equation 
(2.120) of Section 2.8. After the idea that the cot term in Maxwell's equa-
tions behaved like a current was introduced into the teaching of electro-
magnetism it has remained as such in the minds of many people and has not 
yet been thoroughly expurgated from some text books. Another reason why 
the cot term is still treated as a current is the way the cot term is intro-
duced. In our typical approach to electromagnetism in Chapter 1, the vacuum 
displacement current term was introduced in Section 1.7 by seeing how the 
equation 

V x B = 

of magnetostatics had to be modified if it was to become consistent with 
equation (1.49), the continuity equation of charge and current densities. This 
led to equation (1.113). In many introductory courses the vacuum displace-
ment current is introduced following a discussion of the example shown in 
Figure 4.13 for the special case when there is no fringing electric field. 
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Since according to equation (4.104) 

many authors conclude that the conduction current / in the input lead in Figure 
4.13 is carried on between the plates of the capacitor by a displacement current 
co* between the plates so that in their view the current is continuous. There 
is no need to assume that the displacement current c olif is an electric current 
to interpret equation (4.109). 

Consider the distribution of moving classical point charges shown in Figure 
4.14. Each charge has magnitude q. Consider the volume 110  shown in Figure 
4.14. According to the equation of continuity, equation (1.49) 

ap 
V  . J  ±  

Integrating equation (4.110) over the volume 1,0, and applying Gauss' theorem 
of vector analysis, which is equation (A1.30) of Appendix A1.7, we have 

J J dS = — t f pdV 
	

(4.111) 

Since the divergence of the curl of any vector is zero, it follows by taking 
the divergence of equation (4.107) that 

V • (J + Eok) =V -(Vx—
B

)= O. 	 (4.112) 
110 

(4.110) 

Figure 4.14. The system of moving classical point charges is used to illustrate the close relation 
between the displacement current and the continuity equation for charge and current densities. 
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Integrating equation (4.112) over the volume Vo  in Figure 4.14 and applying 
Gauss' theorem of vector analysis, we obtain 

J J - dS = —E0  /7f E - dS. 	 (4.113) 

Comparing equations (4.111) and (4.113) we see that 

a  f J - dS = — — 	
° a 

a 
at f pdV = —c — f  E.  dS. t (4.114) 

We can go directly from equation (4.111) to equation (4.113) by putting 
p = 60V. E in equation (4.111) and applying Gauss' theorem of vector analysis. 

To illustrate equation (4.114) we shall assume that N classical point charges, 
each of magnitude q, leave the surface of the volume Vo  in Figure 4.14 
per second. The total charge crossing the surface of the volume Vo  per second 
is 

fJ - dS = Nq. 	 (4.115) 

Assuming that the total electric charge in the system is conserved, it follows 
that the rate of increase of the total charge inside the volume Vo  in Figure 
4.14 is equal to —Nq. Hence 

a at  f pdV = —Nq. 	 (4.116) 

Every one of the N charges, each of magnitude q, leaving the surface of the 
volume Vo  in Figure 4.14 per second takes an electric flux of q/co  with it, so 
that the rate of increase of the total electric flux coming from the volume Vo  
in Figure 4.14 is equal to —N(qIE 0), so that 

a 
6077  f  E.  dS = —Nq. 	 (4.117) 

Comparing equations (4.115), (4.116) and (4.117) we see that 

J J.  dS = Nq = — 11.  pdV = —E0  f  E.  dS = —colif. 	(4.118) 

There is no need to assume that the vacuum displacement current is an electric 
current to interpret equation (4.109). Equations (4.118) merely show that we 
can equate the total electric current IJ - dS crossing the surface of the volume 
Vo  in Figure 4.14 to the rate of decrease of the total charge inside Vo  or, 
since each classical point charge of magnitude q takes a flux of q/co  with it, 
when it leaves the volume Vo, we can equate fJ - dS to co  times the rate of 
decrease of the total electric flux coming from the surface of the volume Vo, 
due to the decrease in the number of classical point charges left inside Vo . 

In the example of a capacitor in an AC circuit in Figure 4.13 we can 
interpret equation (4.109) as follows. We can either equate the conduction 
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current I in the connecting wire leading to the positive place of the capac-
itor in Figure 4.13 to dQ/dt the rate of increase of positive charge on the 
positive place, or to co  times the consequential rate of increase of the total 
electric flux between the plates of the capacitor, which arises from the changes 
in the total charge on the capacitor plates due to the conduction current in 
the connecting lead. 

The erroneous idea that the vacuum displacement current term always 
behaves like an electric current is reinforced in the minds of many students 
by the continued use of the phrase vacuum displacement current to label the 
coE term in Maxwell's equations. The author has tried for many years to 
have it called something else, such as the Maxwell term, but old habits die 
hard and so to avoid confusion we have followed standard practice in the 
text and used the phrase vacuum displacement current. 

Notice that we have always included the word vacuum in the phrase vacuum 
displacement current to stress that we have only been considering moving 
charge distributions in otherwise empty space. We shall show in Chapter 9 that, 
in the presence of dielectrics we must add a fo term to the current density J 
in equation (4.107) where P is the polarization vector. The varying polar-
ization vector f• arises from changes in the positions of atomic charges inside 
molecules and consequently behaves like an electric current and gives a con-
tribution to the magnetic field. 

4.11. Discussion of Maxwell's equations 

We have now completed our discussions of Maxwell's equations for the case 
of charge and current distributions in empty space, for which Er  = 1 and 
p., = 1 everywhere, though we shall return in Chapter 9 to discuss the form 
Maxwell's equations take at field points inside dielectrics and magnetic mate-
rials. In Chapter 1 we gave an account of how, in introductory courses, 
Maxwell's equations are developed on the basis of very limited experimental  
evidence. In Section 2.6 of Chapter 2, we showed how Maxwell's equations 
should be interpreted by applying them to the fields of an oscillating electric 
dipole. That interpretation was consolidated in this chapter by deriving 
Maxwell's equations from the expressions for the fields E and B due to a 
moving classical point charge. The equation 

V • E = -P-- 	 (4.14) 
co 

was interpreted in terms of the result that the total flux of E from a moving 
classical point charge of magnitude q is always equal to q/co . At field points 
in empty space, equation (4.14) means that there is no net flux of E from 
any surface that does not enclose an electric charge. The equation 

V - B = 0 	 (4.18) 
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can be interpreted by saying that there are no sources of B, such as magnetic 
monopoles, so that there is no net flux of B from any closed surface. 

We interpreted the equations 

V x E = — 
aB 

(4.44) at 
1 aE 

VxB= - .2.  at  (4.66) 

at a field point in empty space as relations between the vectors E and B and 
not as cause—effect relations. We showed in Section 4.8.3 that, for consistency, 
we must add the 1.1.0J term to the right hand side of equation (4.66) to give 

1 aE 
(4.96) c at 

when there is a current distribution at the field point. The reader can check 
back to show that it is the pj term in equation (4.96) that ends up as the source 
of the magnetic field B in equation (1.134) of Chapter 1 and as the source 
of the retarded vector potential A in equation (2.30) of Chapter 2. 

In elementary classical electromagnetism, Maxwell's equations are gener-
ally applied individually, but in more advanced work Maxwell's equations 
are often used collectively, for example to derive equations (1.125) and (1.122) 
of Chapter 1 which are 

a2E 	 ( n  )  

v2E _ goE07a2  = v -14 + go a.; 	 (1.125) 

a2B  
v2B _ goco ,2  = _i_Lov x J 	 (1.122) 

and are the partial differential equations for E and B respectively. It is these 
equations that are used to interpret electromagnetic waves and which lead to 
Jefimenko's equations (1.136) and (1.134) which relate the fields E and B 
to the charge and current distributions. 

It was pointed out in Section 1.9.1 that historically it was the addition of 
the displacement current term c ot to Maxwell's equations that converted the 
Laplacians of electrostatics and magnetostatics into the D'Alembertians in 
equations (1.125) and (1.122). It was the differential equations (1.125) and 
(1.122) which we used in Section 1.9.2 to predict the existence of electro-
magnetic waves in empty space. It is also the differential equations (1.125) 
and (1.122) which can be used to determine the fields E and B from the charge 
and current distributions, which are the sources of the electromagnetic field. 
Maxwell's equations were used in Chapter 2 to derive the differential equa-
tions for the potentials 4) and A, the solutions of which are given in the Lorentz 
gauge by the retarded potentials. 

When we have stressed that, in the context of classical electromagnetism, 
there is no need to say anything about what happens in the empty space 
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between moving charges, we were emphasising the fact that there is no need 
to introduce any mechanical aether models. We were trying to break the chain 
in which students are still taught these days by somebody who was taught 
by somebody. . . who was taught by somebody who was taught by somebody 
when the mechanical aether theories were in fashion. In emphasising that 
we need not say anything about what may or may not happen in the space 
between moving charges, we have probably gone too far, as we must remember 
that wherever there is a moving test charge in an electromagnetic field, it expe-
riences a force given by the Lorentz force law, equation (1.1). This shows 
that there is in the electromagnetic field a capacity to impart energy and 
momentum to test charges wherever they are. We shall therefore find it con-
venient in Chapter 8 to attribute energy and in some cases momentum to the 
electromagnetic field. For example, it is assumed in classical electromagnetism 
that the radio waves emitted by a transmitting antenna travel outwards in all 
directions and are present in empty space, whether there is a test charge there 
or not, and even if the transmitting antenna has been subsequently destroyed. 
We must also remember that there is a more comprehensive theory than 
classical electromagnetism, namely quantum electrodynamics in which the 
electromagnetic interaction is interpreted in terms of the exchange of real 
and virtual photons. 

Some readers may like to adopt a similar attitude to classical electro-
magnetism, to that which most people have towards quantum mechanics, where 
the wave function is treated as a quantity that can be determined by solving 
Schredinger's equation subject to the appropriate boundary and continuity 
conditions. The wave function can then be used to make predictions about 
observable quantities such as the energy and momentum of a particle. By 
analogy with quantum mechanics, we could, in the context of classical elec-
tromagnetism, treat the fields E and B as theoretical quantities that could be 
determined by solving equations (1.125) and (1.122) respectively. The values 
of E and B could then be related to observable quantities, for example using 
the Lorentz force law. However, unlike the wave function of quantum 
mechanics, we can give operational definitions for the field vectors E and B 
using the Lorentz force law, equation (1.1), which was used in Section 1.2.4 
of Chapter 1 to give an operational definition of E and in Section 1.4.2 of 
Chapter 1 to give an operational definition of B. Consequently many people 
prefer to interpret Maxwell's equations as relations between operationally 
defined quantities. However in this interpretation also, the operationally defined 
vectors E and B must ultimately be related back to experiments using the 
Lorentz force law or relations derived from it. At this stage it is worth 
reminding ourselves of the role of force laws in classical physics by consid-
ering a simple example based on Newton's law of universal gravitation. 

We shall only consider the low velocity limit, so that Newton's laws 
of motion can be applied. At first sight, Newton's second law in the form 
F = ma might appear to be no more than a definition of force. In practice, when 
F = ma is applied, it is assumed that the force F is known from a force law, 
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such as Newton's law of universal gravitation. As an example, consider two 
isolated particles 1 and 2 of known masses m 1  and m2  respectively, situated 
a distance r apart. The gravitational force of attraction between the particles 
accelerates the particles. These accelerations can be determined from the 
changes in the motions of the particles. If the masses of the particles are known, 
the force acting on each particle at the separation r can be calculated using 
F — ma. The experiment can be repeated for different values of r, the 
separation of the particles. A general pattern will emerge, which can be sum-
marized in Newton's law of universal gravitation, according to which the 
gravitational force of attraction between the two particles is given by 

F _ Gm 1 m 2  
r2  

where the gravitational constant G has the experimental value of 6.67 x 10-11 
 N m2  kg-2 . According to equation (4.119) every particle in the Universe attracts 

every other particle with a force given by this equation. If we are later pre-
sented with a gravitational problem, such as the motion of a particle in the 
Earth's gravitational field, then, on the basis of our previous experimental 
investigations, summarized in equation (4.119), we can use that equation to 
determine the total gravitational force F acting on a particle of mass m from 
the positions of the other particles. According to Newton's second law, the 
acceleration of the particle is equal to F/m, and the subsequent motion of 
the particle can be calculated. This illustrates how, when Newton's second 
law of motion is generally applied in practice, it is assumed that the force acting 
on the particle is known from a force law, such as Newton's law of universal 
gravitation. In the case of electrostatics, on the basis of previous experiments 
we can, if the charge distributions are known, use Coulomb's law, or equations 
derived from it, to make quantitative predictions of what the electric force 
on a test charge will be, which can then be used to predict the subsequent 
motion of the charge. Similarly, on the basis of previous experiments, we 
can, if the current distributions are given, determine B quantitatively, for 
example using equation (1.134) of Chapter 1, or using the retarded vector 
potential given by equation (2.30) of Chapter 2. This value of B can then be 
used in the Lorentz force law to predict the magnetic force on a moving charge, 
which can then be used to predict the subsequent motion of the charge. 

Up to radio frequencies, we can generally treat problems in electro-
magnetism using only classical electromagnetism, and the theory can be related 
to experiments using the Lorentz force law, or relations derived from it. 
However, when we reach optical frequencies it is best to interpret the inter-
action of electromagnetic waves with matter in terms of the absorption of 
individual photons from the electromagnetic wave, so that quantum theory must 
be applied to the interactions. For example, it is the absorption of individual 
photons that affects the silver bromide grains in a photographic plate such 
that the grains turn to silver when the plate is developed. However, even at 
optical frequencies, Maxwell's equations or the equations for the potentials 

(4.119) 
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4) and A can still be used to estimate the probabilities that photons will 
interact at various positions on a screen, for example in a diffraction experi-
ment. We shall return to discuss this probabilistic interpretation in Section 
4.13.5. 

4.12. Comparison of the use of the potentials cf• and A with the use of 
the fields E and B 

It is often more convenient to use the potentials 4) and A rather than E and 
B. In Chapter 2, we used Maxwell's equations to derive the equations: 

1 a24, 	p v24, _ 7 at2  __e_o_ 

1 a2A 	J 
v2A  7 at2 —14J 

for the scalar potential 4) and the vector potential A in the Lorentz gauge, in 
which the Lorentz condition 

1 a4) 
V. A+  

is used to specify V • A. It is more economic in the number of variables if 
we use the potentials 4) and A rather than E and B, since in the case of the 
potentials the four variables 4), A„ Ay  and A, suffice whereas we need six 
components when we use E and B. Hence a strong case can be made for taking 
the equations for the potentials rather than Maxwell's equations as our axioms 
for the theory of classical electromagnetism. For example we could assume 
that 4) and A are variables that are the solutions of the partial differential 
equations (4.120) and (4.121) respectively, the solutions of which are given 
by the retarded potentials. The potentials 4) and A can then be related to 
experiments using the Lorentz force equation (1.1) acting on a moving test 
charge q after defining E and B using the equations 

aA E = —V4) — 	 (4.122) at 
B = V x A. 	 (4.123) 

If we did not want to mention the fields E and B we could rewrite the Lorentz 
force law in the form 

F = q(—V4) — i) + qu x (V x A). 	 (4.124) 

Alternatively we could avoid the use of the field vectors E and B by using 
either Lagrange's equations or Hamilton's equations. It can be shown, see 
for example Rosser [6], that if the Lagrangian L of a classical point charge 
of magnitude q and (rest) mass mo, which is moving with a relativistic 

(4.120) 

(4.121) 
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velocity u in an electromagnetic field described by potentials 4  and A is defined 
to be 

L = MOC2  { 1 - 1 - ' 14 ) 1"  } - q$4) + q(u • A) 
	

(4.125) 

then the application of Lagrange's equations gives the Lorentz force law. In 
the low velocity limit when u c, we can use the Lagrangian 

1 
 L = —

2 
m °u2 

 – q4) + q(u • A). 

Similarly if the Hamiltonian H is defined to be 

H = q4) + c {mk2  + (P – 	}1/2 

(4.126) 

(4.127) 

where P is the generalized momentum, then application of Hamilton's equa-
tions also leads to the Lorentz force law. The use of equations (4.125) and 
(4.127) can simplify the solution of many problems. The expression for the 
Hamiltonian given by equation (4.127) is often used to set up the appropriate 
differential equation for the wave function in quantum mechanics. 

Summarizing, instead of taking Maxwell's equations as axiomatic, we could 
just as well choose the equations for the potentials 4) and A as our axioms 
which would be checked a posteriori by comparing the predictions of the theory 
based on the potentials with the experimental results. In such an approach 
we could treat the potentials 4) and A as theoretical quantities which are the 
solutions of equations (4.119) and (4.120) subject to the appropriate boundary 
and continuity conditions. These values of 4) and A can be related to experi-
ments using, for example, the Lorentz force law in the form given by equation 
(4.124) or using the Lagrangian given by equation (4.125) and Lagrange'g 
equations or using the Hamiltonian given by equation (4.127) and Hamilton's 
equations. On the other hand some readers may prefer to think of 4) and A 
as quantities that can be defined operationally. In Section 1.2.10 of Chapter 
1, we defined 4) operationally in terms of the potential energy of a test charge 
using equation (1.35). In Section 8.8.3 of Chapter 8 we shall show that when 
a charge q is at rest at a field point where the vector potential is A, there is 
a contribution of qA to the total "electromagnetic momentum" of the field. 
This "potential momentum" can appear as an increase in the momenta of the 
charges in the system, if the experimental conditions are changed. The vector 
potential will be defined operationally in Section 8.8.3 as the ratio of this 
"potential momentum" to the magnitude of the test charge q in the limit as 
q tends to zero. Reference: Konopinski [7]. The differential equations (4.120) 
and (4.121) can therefore be interpreted as relations between operationally 
defined quantities 4) and A if the reader so wishes, but again the operationally 
defined quantities 4) and A must ultimately be related back to experiments using 
equations (4.124), (4.125) or (4.127). 

If we did take the equations for the potentials 4) and A as our axioms, we 
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could then reverse the arguments of Section 2.2 to derive Maxwell's equa-
tions as follows. If we defined E and B in terms of  4  and A using equations 
(4.122) and (4.123) then, since the divergence of the curl of any vector is 
zero by taking the divergence of both sides of equation (4.123) we would 
have 

V • B = V • (V x A) = O. 	 (4.128) 

Taking the curl of both sides of equation (4.122) and using the fact that 
V x (V4) is always zero, we would have 

as 
VxE=—Vx(V(p)—Vx)i= 0 —1(VxA)=— at  . (4.129) 

Thus two of Maxwell's equations, namely equations (4.128) and (4.129) would 
follow directly from the definitions of E and B in terms of  4  and A. Using 
equation (A1.27) of Appendix A1.6 to substitute for V2A in equation (4.120) 
we would obtain 

a2A _v x (v x A) + V(V • A) — 	= -141 (4.130) 

From the Lorentz condition V • A = —ii)/c 2  and from equation (4.123) 
V x A = B. Hence equation (4.130) would become 

V xBV(- 1 a(1) 	a  ( = 
—cT -F) 	at k at + 

_ _waA) goj 	( Eow.aE j ) 
(4.131) 

Notice that the vacuum displacement current term would come out naturally 
from the Â1c2  term in equation (4.121) plus the Lorentz condition. Since 
V24) = V. (V(i)) and since by differentiating the Lorentz condition we would 
have 

a 
e2= —( ° A)  = —V  • Â  

then equation (4.120) could be rewritten in the form 

V • (—V4) — 	= V • E = --P-- . 
Eo 

(4.132) 

This would complete the derivation of Maxwell's equations, if the equations 
for the potentials 4  and A were taken as axiomatic. 

It does not matter, in the strict context of classical electromagnetism, 
whether we use the fields E and B and take Maxwell's equations as axiomatic 
or whether we use the potentials 4  and A and take the equations (4.120) and 
(4.121) for the potentials as axiomatic. The two approaches are just alterna-
tive ways of expressing the laws of classical electromagnetism. Whichever 
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set of axioms that is adopted can be used to derive the other set of axioms. 
However it has been argued on the basis of experiments on the Bohm-Ahranov 
effect that, in the wider context of quantum mechanics, the potentials 4) and 
A are more useful than the field vectors E and B. A reader interested in an 
introductory account of the Bohm-Ahranov effect is referred to Feynman, 
Leighton and Sands [8], who consider a two slit interference experiment 
using electrons. 

4.13. Historical note on the development of classical electromagnetism 
and the nineteenth century aether theories 

4.13.1. The luminiferous aether 

After the initial success of Newtonian mechanics, it seemed plausible to try 
to explain all natural phenomena in terms of Newtonian mechanics, particu-
larly as the concepts of mechanics were familiar to people in their daily lives. 
This approach proved very successful in the case of sound. Sound will not 
travel through a vacuum and must have a material medium to transmit it. Sound 
is now interpreted as an elastic wave propagating through a material medium 
which can be a solid, liquid or a gas. 

In the same way, attempts were made to interpret light in terms of mechan-
ical models, and two theories arose. One was the corpuscular theory, in which 
light was pictured as a stream of little corpuscles. It was assumed that these 
small corpuscles obeyed the laws of mechanics, and produced the sensation 
of light when they struck the eye. The other theory was the wave theory. 
The corpuscular theory remained pre-eminent until the beginning of the nine-
teenth century, when Young investigated the interference of two beams of light. 
Young and Fresnel were able to account for the newly observed phenomena 
of interference and diffraction on the wave theory, and from that time onwards 
the wave theory came to be accepted. Since sound will not travel through a 
vacuum and must have a material medium to transmit it, it seemed plausible 
in the early nineteenth century to assume that, if light was a form of wave 
motion, then there should be a light transmitting medium present in a vacuum, 
as well as inside a material medium, that was able to transmit the vibrations 
constituting light. This hypothetical light transmitting medium was called 
the aether. The idea of the aether arose originally in Greek science where it 
was introduced as an element in addition to the four elements of fire, earth, 
water and air. It was assumed in ancient cosmology that the aether filled the 
celestial regions. 

In 1828, Poisson showed that both longitudinal and transverse elastic waves 
can be propagated in a solid. The velocities of longitudinal and transverse 
elastic waves in a solid are RK + 4G/3)/p.1 1/2  and [G/p.] "2  respectively, 
where K is the bulk modulus, G is the rigidity modulus and pm  is the mass 
density of the solid. In order to account for the phenomenon of the polariza- 
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tion of light on the wave theory, light was pictured as a transverse wave motion. 
No longitudinal light waves have ever been observed. For transverse waves 
to exist in a solid, the rigidity modulus G must be finite. Since solids contract 
under pressure, the bulk modulus K is positive, so that if G is finite 
(K + 4G1 3) must be finite for a solid, so that longitudinal as well as trans-
verse waves should propagate in an elastic solid, Since no longitudinal light 
waves have ever been observed, it was concluded that the hypothetical aether 
could not be a normal elastic solid. Neither could the hypothetical aether be 
a perfect fluid, since the rigidity modulus G of a gas or a liquid is zero, in 
which case there would be no transverse waves in the hypothetical aether. It 
was concluded that the hypothetical aether had to be a new type of elastic 
medium. A large number of extremely complicated mathematical and mechan-
ical models were suggested in the nineteenth century. For example, in 1889 
Kelvin suggested a mechanical model for an element of the aether which 
consisted of rotating gyroscopes. This model was able to resist all rotatory dis-
turbances, but was unable to resist translatory movements. An aether 
constructed of such elements would be able to transmit transverse but not 
longitudinal waves. Reference: Schaffner [9]. 

4.13.2. The electromagnetic aether 

At the beginning of the nineteenth century, it was suggested that a type of 
aether transmitted the electric forces between electric charges and the magnetic 
forces between permanent magnets, though people were not sure whether or 
not this aether was the same as the light transmitting aether. For example, 
Young wrote: "Whether the electric aether is to be considered the same with 
the luminous aether, if such a fluid exists, may perhaps at some future time 
be discovered." 

Faraday pictured electric and magnetic forces in terms of lines of force. This 
picture was developed mathematically by Maxwell who used the concepts 
of electric and magnetic lines of force. A line of force was what we have called 
an electric or a magnetic field line. It was assumed that the electric lines of 
force were in a state of tension. On this model, it was assumed, for example, 
that the lines of force which started on a positive electric charge and ended 
on a negative charge behaved like stretched rubber bands pulling the charges 
towards each other. In order to satisfy the condition that the aether had to be 
in equilibrium under the influence of electrostatic forces, it was assumed that 
the electric field lines repelled each other in the transverse direction giving 
rise to a pressure at right angles to the lines of force. It was assumed that 
this pressure was transmitted by an aether. A similar interpretation was devel-
oped for the transmission of magnetic forces in terms of magnetic lines of 
force. This latter model is still often used in plasma physics where it is often 
assumed that the magnetic field lines are under a tension of (B2/1.1.0) newtons 
per square metre and that there is a magnetic pressure of (B2/21.10) pascals. 

Using a complicated model of the aether, in which he assumed that the aether 
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consisted of vortices, idler wheels etc, and using mechanical ideas, Maxwell 
concluded in 1862 that the vacuuin displacement current term c ot should be 
added to equation (1.89). References: Maxwell [10], Tricker [11] and Rosenfeld 
[12]. This in turn led Maxwell to the theory of electromagnetic waves in empty 
space. After the identification of electromagnetic waves with light waves, it 
was generally assumed that the same aether transmitted electric forces, 
magnetic forces and light. Interpretations of electromagnetism were developed, 
in which it was assumed that, according to Faraday's law of electromagnetic 
induction, varying magnetic fields in the aether generated electric fields in 
the aether and that varying electric fields, that is displacement currents in 
the aether, generated magnetic fields. It was assumed that in electromagnetic 
waves, varying magnetic fields generated varying electric fields which in 
turn generated varying magnetic fields which generated varying electric fields 
and so on leading to wave propagation in the aether. Many complicated models 
of the aether were developed during this period. The mechanical aether theories 
became more and more complicated as they tried to account for a wider and 
wider range of phenomena. For example, Kelvin went so far as to suggest 
that atoms might be vortices in the aether. The interested reader is referred 
to Whittaker [13] or Schaffner [9]. These complicated models of the aether 
gave rise to no observable effects other than the electromagnetic forces they 
were meant to interpret. To quote Born [14] 

If we were to accept them literally, the aether would be a monstrous mech-
anism of invisible toothed wheels, gyroscopes and gears intergripping in the 
most complicated fashion, and of all this confused mess nothing would 
be observable but a few relatively simple forces which would present 
themselves as an electromagnetic field. 

Towards the end of the nineteenth century, the view was beginning to arise 
that one should merely accept that the laws of electromagnetism describe 
the electromagnetic forces between moving charges, and one should not try 
to interpret the electromagnetic forces themselves in terms of a mechanical 
aether, whose properties could not be measured. For example, in his book 
on electric waves, Hertz [15] wrote 

To the question 'what is Maxwell's theory?' I know of no shorter or more 
definite answer than the following. Maxwell's theory is Maxwell's system 
of equations. 

To this concise statement, the author would just add the statement that the vari-
ables in Maxwell's equations can be related to observable effects using the 
Lorentz force law. 

4.13.3. The rise of the theory of special relativity 

By the year 1900, the mechanical theories of the aether had been largely 
abandoned, but one difficulty still remained. It was still generally believed that 
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the Galilean transformations, which were based on Newtonian mechanics 
and the concept of absolute time, were correct. Maxwell's equations and the 
laws of electromagnetism do not satisfy the principle of relativity, if the 
coordinates and time are transformed from one inertial reference frame to 
one that is moving with uniform velocity relative to the first using the Galilean 
transformations. It was concluded initially that Maxwell's equations could only 
be applied in one absolute reference frame, which was generally identified with 
the reference frame in which the hypothetical aether was at rest. This can be 
illustrated by considering the speed of light in empty space. For purposes of 
discussion we shall assume, by analogy with sound, that the speed of light 
is the same and equal to c in all directions in the reference frame in which 
the aether is at rest. Let the Earth move with velocity y relative to the aether. 
If the Galilean velocity transformations were applied the speed of light in empty 
space should vary in the laboratory frame, in which the Earth is at rest, from 
(c — v) in the direction in which the Earth is moving relative to the aether to 
(c + y)in the opposite direction. Hence, if the Galilean transformations could 
be applied to light waves then, by measuring the speed of light in different 
directions in the laboratory reference frame, it should have been possible to 
determine the velocity of the Earth relative to the aether. The most famous 
of the experiments was carried out by Michelson and Morley [16] in 1887. 
All such experiments failed to determine the speed of the Earth relative to 
any absolute reference frame. 

The way Einstein overcame this dilemma in 1905 was to assume that the 
laws of electromagnetism, namely Maxwell's equations, held in all inertial ref-
erence frames, even though this meant abandoning the Galilean transformations 
in favour of the Lorentz transformations. This in turn lead to a revision of 
the Newtonian concepts of absolute space and absolute time. Thus, according 
to special relativity there is no absolute reference frame in which and only 
in which Maxwell's equations are valid. The predictions of the theory of special 
relativity have been confirmed by experiments. Reference: Rosser [17]. We 
shall return to discuss special relativity in more detail in Chapter 10. 

The view that prevailed after the rise of the theory of special relativity 
can be summarized by the following quotation from a book written by Born 
[14] in 1924. 

Light or electromagnetic forces are never observable except in connection 
with bodies. Empty space free of all matter is no object of observation at 
all. All that we can ascertain is that an action starts out from one material 
body and arrives at another material body some time later. What occurs 
in the interval is purely hypothetical, or, more precisely expressed, arbitrary. 
This signifies that theorists may use their own judgement in equipping a 
vacuum with phase quantities (denoting state), fields, or similar things, with 
the one restriction that these quantities serve to bring changes observed with 
respect to material things into clear and concise relationship. 

This view is a new step in the direction of higher abstraction and in 
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releasing us from common ideas that are apparently necessary components 
of our world of thought. At the same time, however, it is an approach to 
the ideal of allowing only that to be valid as constructive elements of the 
physical world which is directly given by experience, all superfluous 
pictures and analogies which originate from a state of more primitive and 
more unrefined experience being eliminated. 

From now onwards aether as a substance vanishes from theory. In its 
place we have the abstract 'electromagnetic field' as a mere mathematical 
device for conveniently describing processes in matter and their regular 
relationship. 

This is the approach we have been trying to cultivate. The equations of elec-
tromagnetism give the electric and magnetic fields due to a system of moving 
charges. From these fields the force that would act on a moving test charge 
at any field point in empty space can be calculated using the Lorentz force 
law. In the context of classical electromagnetism, it is the effects of the forces 
on charges that are observed experimentally, for example the conduction current 
produced in a receiving antenna by a radio wave. 

4.13.4. Discussion of the mechanical models of the aether and their 
aftermath 

The mechanical models of the aether helped in the historical development of 
Maxwell's equations. For example, Maxwell was using a mechanical model 
of the aether when he developed the idea of the displacement current. These 
mechanical models have been compared to the scaffolding used when building 
a house. When the house is finished the scaffolding can be taken down and 
forgotten. It does not matter how Maxwell's equations were originally arrived 
at, the important thing is that they can be applied to make reliable predic-
tions in the context of classical electromagnetism. 

In our approach to classical electromagnetism, we have eliminated all 
hypotheses about what may or may not happen in the empty space between 
a charge distribution and a field point. If hypotheses, such as a mechanical 
aether theory, are introduced which lead to no extra experimental result other 
than the electromagnetic forces themselves, we cannot rule out these 
hypotheses on the basis of the experimental evidence. Our attitude is that 
such mechanical hypotheses are superfluous. To quote Schaffner [18]: 

the nineteenth-century aether has been relegated to that Ideal Realm 
populated by Caloric, Phlogiston, Epicycles, and other scientific concepts 
that have done their work so well as to have forced science beyond them. 

In retrospect the mechanical models of the aether introduced in the second half 
of the nineteenth century should not be viewed as attempts to produce exact 
replicas of the aether, reducing everything to the laws of mechanics. The 
prevailing attitude even then was that they were trying to devise possible 
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mechanical models (or analogues) that could be used to illustrate the laws 
of electromagnetism in terms of the laws of Newtonian mechanics, which 
had been so successful in interpreting so many of the phenomena they encoun-
tered in their daily lives. They felt that they had a feel for and understood 
the laws of mechanics. For example, Kelvin wrote: "I am never content until 
I have constructed a mechanical model of the object I am studying. If I succeed 
in making one, I understand; otherwise I do not'. After using a precise mechan-
ical model of the aether in the paper in which he first introduced the vacuum 
displacement current, Maxwell went on to comment later in his Treatise: 

The attempt which I then [in 1862] made to imagine a working model of 
this mechanism must be taken to be no more than it really is, a demon-
stration that mechanism may be imagined capable of producing a connexion 
mechanically equivalent to the actual connexion of the parts of the elec-
tromagnetic field. The problem of determining the mechanism required to 
establish a given species of connexion between the motions of the parts 
of a system always admits of an infinite number of solutions. 

In 1865 Maxwell wrote: 

I have on a former occasion attempted to describe a particular kind of motion 
and a particular kind of strain, so arranged as to account for the phenomena. 
In the present paper I avoid any hypothesis of this kind; and in using such 
words as electric momentum and electric elasticity in reference to the known 
phenomena of the induction of currents and the polarization of dielectrics, 
I wish merely to direct the mind of the reader to mechanical phenomena 
which will assist him in understanding the electrical ones. All such phrases 
in the present paper are to be considered as illustrative, not as explana-
tory. 

It is of interest to note that in the twentieth century there has been a complete 
reversal of roles. Nowadays, instead of trying to interpret electromagnetic 
forces in terms of mechanical models, we now try to interpret the mechan-
ical properties of solids and fluids in terms of atomic theory and quantum 
mechanics using electromagnetic forces. 

Some ideas based on the nineteenth century mechanical models of the aether 
are still prevalent in the teaching of some branches of classical electro-
magnetism, such as plasma physics. These models should now be looked 
upon simply as mechanical analogues. As an illustrative example, assume 
that a mechanical analogue of an oscillating LCR circuit is an oscillating simple 
pendulum with a damping term proportional to the velocity of the pendulum. 
The physical principles are completely different in the two cases, but both 
systems are described by the same mathematical equation, namely the dif-
ferential equation of damped harmonic motion. If the solutions of the 
mechanical case are known, or can be developed from mechanical insight or 
experience, then these solutions can often be adapted to the electrical case 
by interchanging the corresponding terms in the mathematical equations 
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describing the systems. It will be shown later in Section 8.2 of Chapter 8 
that, starting with the Lorentz force giving the electromagnetic force on a finite 
current distribution and using Maxwell's equations we can rewrite the total 
force on a current distribution in a mathematical form that is the same as if 
the magnetic field lines were in a state of tension equal to (B 2/110) newtons 
per square metre and as if there were a magnetic pressure equal to (B2/21.10) 
pascals. If we know the solutions of these mechanical analogues from the prop-
erties of rubber bands and fluids, these solutions can often be adapted to the 
electromagnetic case. The use of such analogues need not imply a reality to 
magnetic field lines, that behave like rubber bands. 

In the text, electric and magnetic fields are sometimes represented graph-
ically by imaginary field lines, drawn at a fixed time such that the direction 
of the tangent to the field line at a point is in the direction of the electric 
field E (or the magnetic field B) at that point at that instant. The number of 
field lines is generally limited such that the number of field lines per square 
metre crossing a surface at right angles to the field line is equal to, or if 
more convenient is proportional to, the value of the electric (or magnetic) field 
at that point. The field lines are closest together where the field strengths 
are greatest. In this way, all we have done is to give a graphical, pictorial 
representation of the magnitude and direction of the electric (or magnetic) field 
at every point of space at one given instant of time. Many people find this a 
more helpful way of thinking about electromagnetic problems than using 
tabulated values of the field vectors E and B. 

As an analogy consider an ordinance survey map that shows the contour 
lines. One could just as well use a table of geographic coordinates and their 
altitudes above sea level. This is all the information a walker needs to plan 
a suitable walk, but many walkers would prefer to have the same data pre-
sented in the form of a contour map, as, with experience, many walkers 
would find it easier to visualize and plan a walk using the contour map. In a 
similar way, many scientists find it easier to think about classical electro-
magnetism using electric and magnetic field line diagrams, rather than using 
tabulated values of the fields. Field line diagrams are used in the text whenever 
they help to illustrate the interpretation of Maxwell's equations etc, but we 
shall not attribute any independent reality, such as mechanical properties, to 
these field lines. Field line diagrams are just a convenient pictorial way of pre-
senting the data about the direction and magnitude of the electric (or magnetic) 
field at one instant of time. 

4.13.5. The advent of quantum theory 

In 1900, Planck introduced the quantum theory of radiation and in 1905 
Einstein interpreted the photoelectric effect in terms of the interactions with 
individual electrons of individual photons of energy hv, where h = 6.625 x 
10-34 J s is Planck's constant and v is the frequency of the light. Some readers 
may already like to think of a light beam as consisting of a stream of an 
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extremely large number of photons moving from the light source with the speed 
of light. This goes beyond classical electromagnetism, which must be extended 
to incorporate the effects of quantization. The starting point for the quanti-
zation of the electromagnetic field is generally the equations for the potentials 
(1) and A. Reference: Heitler [19]. 

Photons are the quanta (or carriers) of the electromagnetic interaction. 
Photons are emitted when electric charges are accelerated, and they give the 
main contribution to the electromagnetic interaction in the radiation zone. In 
the near zone, that is for radial distances r < k/2rc in the case of the oscil-
lating electric dipole, where the electric and magnetic field contributions given 
by equations (2.46), (2.56) and (2.57), predominate and the acceleration depen-
dent fields are negligible in comparison, the electromagnetic interaction 
between moving charges has been interpreted in terms of the exchange of 
virtual photons, which are the carriers of the electromagnetic interaction. 
In the case of a virtual photon, one electric charge emits a photon which is 
absorbed by another electric charge within a very short time interval At. 
According to the uncertainty principle, the uncertainty AE in energy in the time 
interval At can be of the order of h/(2n At). The theory of quantum electro-
dynamics is a more comprehensive theory than classical electromagnetism. 
Having pointed out the existence of quantum electrodynamics and made a 
few comments, we shall not consider the theory further and we shall ignore 
all effects arising from the finite value of Planck's constant. A reader inter-
ested in a fuller account of the roles of real and virtual photons is referred 
to Lawson [20]. A reader interested in quantum electrodynamics is referred 
to Mandl and Shaw [21]. 

Even though light beams are composed of photons, Maxwell's equations 
or the equations for the potentials (i) and A can still be used to give a com-
prehensive interpretation of physical optics. Reference: Born and Wolf [22]. 
The reason for this success is that photons are non-interacting bosons and obey 
Bose-Einstein statistics. There is no restriction on the number of photons 
that can be in a single-particle (photon) quantum state. In most laboratory 
experiments in optics and radio there are generally an exceedingly large number 
of photons in the same state. As an example, consider an idealized light 
source which emits 10W of monochromatic light of wavelength 600 nm. The 
energy of each photon is hv = hcl2t, = 3.3 x 10-19 J = 2.07 eV. At a distance 
of  1m from such a light source, there are 2.4 x 10 18  photons crossing 1 m2  
per second, which is an exceedingly large number. If such a monochromatic 
light source is used to produce an interference pattern on a screen, due to 
the persistence of vision of the eye we cannot see the effects of individual 
photons' hitting the screen, but we see what seems to the eye to be a complete 
interference pattern. If we photograph the interference pattern using a very 
weak source and a very short exposure time, we will not get a photograph 
of a complete, continuous interference pattern on the film but we will get a 
series of dots where individual photons have struck the photographic plate. 
The wave theory can be used to predict the probability that a photon will hit 
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a certain region of the screen. If the source is a radio transmitter emitting 
10W of radio waves of frequency 3 x 108  Hz and wavelength 1m, then at a 
distance of 100 km from the source there are still 4 x 10 ' photons crossing 
1 m2  per second. Thus in practice, radio detectors generally measure the super-
imposed contributions of a very large number of photons in the electromagnetic 
wave, which add up to give the radiation electric and magnetic fields in the 
electromagnetic wave. The response of the radio detector can be interpreted 
classically in terms of the radiation electric and magnetic fields of the elec-
tromagnetic wave. 

The reason why the laws of classical electromagnetism can be used to inter-
pret physical optics is summarized in the following quotation from Feynman, 
Leighton and Sands [23]. 

When we have the wave function of a single photon, it is the amplitude 
to find a photon somewhere. Although we haven't ever written it down there 
is an equation for the photon wave function analogous to the Schr&linger 
equation for the electron. The photon equation is just the same as Maxwell's 
equations for the electromagnetic field, and the wave function is the same 
as the vector potential A. The wave function turns out to be just the vector 
potential. The quantum physics is the same thing as the classical physics 
because photons are non-interacting Bose particles and many of them can 
be in the same state — as you know they like to be in the same state. The 
moment you have billions in the same state (that is, in the same electro-
magnetic wave), you can measure the wave function, which is the vector 
potential directly. Of course, it worked historically the other way. The first 
observations were on situations with many photons in the same state, and 
so we were able to discover the correct equation for a single photon by 
observing directly with our hands on a macroscopic level the nature of wave 
function. 

Thus Maxwell's equations or the equations for the potentials (I) and A can be 
used to interpret physical optics. Once (I) and A or E and B are calculated 
from the charge and current distributions, the energy density of photons in 
empty space is generally estimated using the expression (E 0E212 + B2121.10). That 
electric and magnetic radiation fields can be associated with individual photons 
is illustrated by the photo-disintegration of a deuteron by a high energy 
.y-ray. At photon energies a few keV above threshold, the photo-disintegra-
tion of the deuteron is due mainly to electric dipole absorption. The proton 
arising from the disintegration is emitted preferentially in the direction of 
the electric vector of the incident photon. Reference: Wilkinson [24]. It is 
the contributions of the large number of photons in an electromagnetic wave 
which add up to give the radiation electric and magnetic fields of classical 
electromagnetism. 

According to quantum mechanics, the wave properties of individual photons 
are interpreted in a similar statistical way to the wave properties associated 
with individual electrons. It is natural to accept that just as electrons can 
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travel through a vacuum, individual photons, such as  'y-rays can also travel 
through a vacuum without a light transmitting medium such as an aether. In 
the nineteenth century, it was believed that light was a continuous wave motion 
in a continuous medium. It was reasonable to postulate a mechanical aether 
in such circumstances. No mechanical aether is needed to let photons, such 
as y-rays, go through a vacuum. 
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CHAPTER 5 

Electric fields due to electrical circuits 

5.1. Introduction 

It is important to distinguish two different contributions to the total electric 
field due to the current flowing in an electrical circuit. First there are the 
electric fields, denoted Es  due to the surface and boundary charge distribu-
tions that give the appropriate value for the resultant electric field in the various 
parts of the circuit so as to give the same value of current in all parts of a series 
circuits when the current is steady or is varying at mains frequency. The 
properties of these electric fields due to surface and boundary charge distri-
butions are discussed in detail in Appendix B. Secondly there are the electric 
fields due to the moving and accelerating conduction electrons and stationary 
positive ions inside the conductors making up the circuit. The formulae for 
the electric fields due to the moving conduction electrons and stationary 
positive ions will be derived in this chapter using the expression for the electric 
field due to an accelerating classical point charge, which is given by equation 
(3.10). 

It is important to consider three frequency ranges, namely 
(a) DC or steady current flow. 
(b) AC variations at mains frequency when the quasi-stationary approxima-

tions are valid. 
(c) Frequencies much higher than mains frequency when the contributions 

of the radiation electric fields are important. 
If the mains frequency is 50 Hz, the wavelength of the electromagnetic vari-
ations is 6000 km so that X/27t is equal to about 1000 km. Hence, for laboratory 
experiments carried out at mains frequency, we are always in the near zone 
and we can generally ignore the radiation electric fields that arise from the 
EA term in equation (3.10), which gives the electric field due to an acceler-
ating classical point charge. Hence for DC circuits and at mains frequency 
we generally only need to use the Ev  contribution given by equation (3.11) 
to determine the electric field due to a current element. Before going on to 
do so, we shall derive the expression for the number of moving conduction 
electrons counted by the information collecting sphere inside a current element. 
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Figure 5.1. The counting of moving charges by the information collecting sphere that reaches 
the field point P at the time of observation t. 

5.2. The counting of moving charges by the information collecting sphere 

Consider the line of moving classical point charges shown in Figure 5.1. We 
shall determine the number of moving charges counted by the information 
collecting sphere that reaches the field point P at the time of observation t. 
Consider the section AB, which is of infinitesimal length d/. The distance 
from A, which is at the bottom end of d/, to the field point P is equal to R. 
We shall assume that all the charges are moving upwards with the same velocity 
[u] at the retarded time t* = (t — Ric) when the information collecting sphere 
passes the point A in Figure 5.1. It can be seen from Figure 5.1 that the 
point B, which is at the top end of the section of length d/ is at a distance 
d/ cos 0 closer to the field point P than the point A, where 0 is as shown in 
Figure 5.1. In the case when the charges are moving upwards 0 is equal to 
the angle between [u] and R. The information collecting sphere passes B a 
time (d/ cos 0)/c after it has passed A. In the time interval (d/ cos 0)/c, 
all the charges move upwards with a velocity [u] covering a distance of 
[u/c] d/ cos 0. Since d/ is infinitesimal, we can neglect the effect of any 
accelerations of the charges on the total distances the charges travel in the 
infinitesimal time (d/ cos 0)/c. A charge that was at the position C in Figure 
5.1 at a distance [u/c](dl)cos 0 below B at the time t* = (t — Ric), when the 
information collecting sphere passes A, reaches B at the instant the informa-
tion collecting sphere passes B. Charges which were at a distance less than 
[u/c](d/) cos 0 below B when the information collecting sphere passes A will 



168 Chapter 5 

have gone beyond B by the time the information collecting sphere reaches B 
and will not be counted by the information collecting sphere in the section 
d/. Hence, the total number of charges actually counted inside d/ is equal to 
the number of charges, that, at the time t* the information collecting sphere 
passes A, were in the section AC, which is of length d/ – [ulc](dl) cos 0 = 
d/ [1 – (u/c) cos 0]. If the number of charges per metre length, counted at 
the fixed time t*, is No, then 6N, the total number of charges counted by the 
information collecting sphere inside d/, is given by 

6N = No  d/ [ 1 – (-1:7) cos  0 ] . 	 (5.1) 

Since [uR cos 0] is equal [u R], we can rewrite [(u/c) cos 0] as [u • RIRc], 
so that equation (5.1) can be rewritten in the form 

where 

u R 8•N = [ 1 – —
Rc 

d/ = No  (—
R

) dl 

[ R  u•R1  
c 

(5.2) 

(5.3) 

is the same as the quantity s defined by equation (3.5) and which appears in 
the expressions for the Liénard-Wiechert potentials. 

Assume now that the charges are moving downwards with velocity [u] in 
Figure 5.1, and that the angle 0 is still as shown in Figure 5.1. In the time 
interval (d/ cos 0)/c it takes the information collecting sphere to cross d/, a 
charge that is at a distance [u/c] (d/) cos 0 above B at the time t* = (t – Ric), 
when the information collecting sphere passes A, will move downwards to 
reach B and be counted by the information collecting sphere when it passes B. 
In this case the number of charges counted by the information collecting sphere 
inside d/ is equal to the number of charges in a length d/ [1 + (u/c) cos 01 at 
the time t*, so that 

8A7 = No  [ 1 + (-14c7) cos 0 d/. 	 (5.4) 

When the charges are moving downwards, the angle between [u] and R is equal 
to (it – 0) so that 

[u] R = [14]1? cos (7c – 0) = –[uR cos 0]. 

Hence equation (5.4) can be rewritten in the form 

u • R  
= No  { 1 –

Rc 
 d/ = No  (7?-) d/ (5.5) 

which is the same as equation (5.2). 
Assume now that the moving charges in Figure 5.1 are distributed over 

an infinitesimal area of cross section dS. If n is the number of moving charges 



Electric fields 	169 

per cubic metre, counted at the retarded time t*, then the number of charges 
per metre length at the retarded time t* is 

No  = n dS. 

Substituting in equation (5.2), we obtain 

8N = n(Î)dV, 	 (5.6) 

where the volume element dy, is equal to (dS)(d/). Equation (5.6) will be 
used in Section 6.7 of Chapter 6 to derive the retarded potentials from the 
Liénard-Wiechert potentials. 

It will be assumed, that when equations (5.2), (5.5) and (5.6) are applied, 
the number of conduction electrons is so large that fluctuations in No  and n 
can be neglected. Since n is of the order of 8.3 x 1028  per cubic metre for a 
copper conductor, this assumption is reasonable for conduction current flow 
in a metallic conductor. 

5.3. Induction electric field due to a current element that forms part 
of a complete circuit 

5.3.1. A list of basic assumptions 

To illustrate the method we shall use in Chapters 5 and 6, the reader should 
start at the field point P in Figure 5.1 at the time of observation t and then 
work out the appropriate retarded positions of each of the moving classical 
point charges in Figure 5.1. The reader should find that these retarded 
positions are precisely the positions of the charges, when they were passed 
by the imaginary information collecting sphere that reaches the field point P 
in Figure 5.1 at the time of observation t. For example, the charge whose 
retarded position is at the point B in Figure 5.1 would have been at the position 
C at the earlier time t* = t — Ric when the information collection sphere 
passed A. Hence the number 8N of charges, whose retarded positions were 
between A and B in Figure 5.1, is equal to the number of charges that were 
between A and C, that is in a length d/(1 — (u/c) cos 0), at the time t* — 
t — Ric. If there are No  charges per unit length at the time t*, it follows that 

8N = No  d/ [ 1 — ( —u  ) cos 0 ] 
c 

which is the same as equation (5.1) and leads on to equation (5.6), which 
now gives the number of retarded positions in a volume element di7, at a 
distance R from the field point. We shall assume that the electric and magnetic 
fields due to each of the moving charges is given by equations (3.10) and (3.13) 
of Chapter 3 respectively. Writing out our assumptions explicitily, we shall 
assume that: 
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1. The number of moving and accelerating classical point charges, whose 
retarded positions are inside a volume element dy„ which is the same as 
the number of charges passed by the information collection sphere inside 
dV„ is given by equation (5.6). 

2. The electric and magnetic fields due to each of these accelerating charges 
are given by equations (3.10) and (3.13) respectively. 

3. The resultant force F on a test charge of magnitude q that is moving with 
velocity u at a field point in empty space is given by the vector sum of 
the Lorentz forces F i  on the test charge due to all the individual moving 
classical point charges making up the charge and current distributions 
that is 

F = EF1  = E(qE, + qu x B) 
= qEEi  + qu x (IB)= qE + qu x B 

where E = EE 1  and B = /B 1  are the resultant electric and magnetic fields 
at the field point, which can be determined by adding the fields due to indi-
vidual classical point charges vectorially. 

4. In practice there are interactions between the various charge and current 
distributions, which affect the values of the charge and current densities. 
We shall assume, for purposes of interpretation, that the charge and current 
densities at the appropriate retarded times are all known. 

5.3.2. The induction electric field due to the moving conduction electrons 
in a current element related to the retarded positions of the 
conduction electrons 

Consider the current element of length d/ that is at the position rs  in Figure 
5.2. The current element is not an isolated current element, but forms part 
of a stationary circuit carrying a conduction current I, so that there is no 
accumulation of electric charge at the ends of the current element. We shall 
determine the contribution to the electric field at the field point P, at a position 
r at a distance R = (r — rs) from the current element, at the time of observa-
tion t, due to the electric charges that were passed and counted by the 
information collecting sphere inside the current element I dl at the retarded 
time t* = (t — Ric). A simplified model of a current element will be used. 
We shall assume that, when they are counted at the same retarded time t*, there 
are No  stationary positive ions per metre length, each of charge +e, and A/0  
moving conduction electrons per metre length each of charge —e. In this 
idealized example there is no resultant electric charge on the current element. 
It will be assumed that at the retarded time t* all the conduction electrons have 
the same velocity [u] and the same acceleration [a], which are both in the 
direction opposite to the direction of current flow in Figure 5.2. 

It follows from equation (5.5) that the number of conduction electrons 
passed and counted by the information collecting sphere, while it is crossing 
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Figure 5.2. Calculation of the electric field at the field point P at the time of observation t 
due to the charges in a current element, that forms part of a complete circuit. The electric 
fields of the charges are related to the retarded positions of the charges, that is to the positions 
of the charges, when the information collecting sphere passed the current element at the retarded 
time (t — Ric). 

the current element I dl at the retarded time t* is 

81■1 = No ()dl. 	 (5.5) 

The electric field due to each of these conduction electrons is given by equation 
(3.10). Hence according to the principle of superposition of electric fields, 
the contribution of the moving conduction electrons, that were counted by 
the information collecting sphere inside the current element I dl at the retarded 
time t* = (t — Ric), to the electric field at the field point P in Figure 5.2, at 
the time of observation t, is 

dE_ = No  ( 21 ) (Ev  + EA)d/ 
	

(5.7) 

where Ev  and EA are given by equations (3.11) and (3.12) respectively. In 
laboratory experiments using DC or the electricity mains, that is in the quasi-
stationary approximation, we are invariably in the near zone, where the 
contribution of the E v  term is generally much greater than the contribution 
of the EA term which will be neglected for the moment. Using equation (3.11) 
with q = —e and retaining only the Ev  contribution we have 

(s \  (—e)[R — Ru/c][1 — 13 2]c11  
dE_ = No 

R 	
(5.8) 

4iteos3 
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where [13] = [u]/c and where according to equation (5.3) 

s.  { R  u•R] .  

Hence 

dE 
eN0  d/[It —  Ru/ c][ 1  — PI 	

9) — — 

	

	 (5. 
47ccoR3 [1 — u • RIRc] 2  • 

The conduction electrons in a metal generally have speeds of the order of c/200 
corresponding to kinetic energies in the electron volt range. The mean drift 
velocity of the conduction electrons is very much less than this. To simplify 
the discussion of the quasi-stationary limit it is reasonable as a first approx-
imation to neglect terms of the order 132 , 133  etc. Expanding equation (5.9) to 
the first order in 13 we find that 

eN 0  dl  f R  Ru if i  + 2u • R  

	

dE 	 1 ,---- 

	

- 	471E0R3  i. 	C 1 l 	Rc J 
„......, eN 0  dl  [ 

R 	— 2R ( 
u • R  + Rul . 

(5.10) 
47ccoR3 	 Rc 	c 1 

Since the positive ions in the current element in Figure 5.2 are at rest, the 
number of positive ions counted by the information collecting sphere inside 
I dl at the retarded time t* is equal to No  d/. The electric field due to each 
stationary positive ion is given by Coulomb's law, so that the contribution 
of the positive ions to the electric field at the field point P in Figure 5.2 
is 

dE, = No  d/ ( 	eR  \ k 4rceoR3  / ' (5.11) 

Adding equations (5.10) and (5.11) we find that the electrostatic field due to 
the stationary positive ions is cancelled by one of the terms in equation (5.10) 
leaving what we shall call the induction electric field denoted E nid . The 
value of the induction electric field at the field point P in Figure 5.2 due to 
the charges counted by the information collecting sphere inside I dl at the 
retarded time t* is 

eN 0  di 	 Rul 
dE,nd  = dE, + dE_ — 	[ 	( u 	. Rc  —2R 	R  ) 

+ 	
(5.12) 

4itcoR 3 	 c 1 • 

In practice, when a current flows in a conductor, the conduction electrons have 
a drift velocity y superimposed on an isotropic velocity distribution. Averaging 
equation (5.12) over the velocity distribution of the conduction electrons, we 
have 

eN0  dl  r 2R  (ui  • R)  + R(ui)  1 dEind 	 (5.13) 
4-rcEoR 3  L 	Rc 	c 1 

where ui  is the total velocity of the ith conduction electron. If y is the mean 

C  



drift velocity, then 

(u) = y 

and, since for moving electrons y is opposite to Id!, 

eN0  dl (10 = eN0  dlv = —I dl. 

Since R is a constant vector, 

(ui  • R) = (u) • R = y • R. 

Hence, using equation (5.15), we have 

eN 0  dl (ui  R) = eN 0  dl v • R = —/ dl • R. 
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(5.14) 

(5.15) 

(5.16) 

Substituting from equations (5.15) and (5.16) into equation (5.13), we finally 
obtain 

dEind 	
[I]  r  2R(R • dl) 	dl 1 

47ce0c  L 	R4 	R2  j .  (5.17) 

If 0 is the angle between the direction of the current flow and the vector 
R = (r — r) from the current element at rs  to the field point at r in Figure 
5.2, then 

[R • dl] = R cos 0 d/. 

Hence equation (5.17) can be rewritten in the form 

dE 	
2[/(r5)]R d/ cos 0 	[J(r)]d1 	

(5 18) , 	,„ (r t) d  — 
47cE0cR3 	4rce0cR2 	

. 
 

where dE(r, t) ind  is the contribution to the induction electric field at the field 
point P in Figure 5.2, at the time of observation t, due to the current [I] flowing 
in the current element [I] dl at rs  at the retarded time t* = (t — RIO. Equation 
(5.18) is valid for steady currents and for quasi-stationary conditions when 
the current is varying at mains frequency and the radiation electric fields are 
negligible. Equation (5.18) gives the electric field due to the moving elec-
trons and stationary positive ions in a current element that forms part of a 
complete circuit. In the case of an isolated current element, charge distribu-
tions would build up at its ends. (Reference: Section 5.12). For the conditions 
shown in Figure 5.2, the vector dl can be expressed in the form 

dl = d/ cos 0 - d/ sin 0 4 (5.19) 

where is a unit vector in the direction from the current element to the field 
point and 4 is a unit vector at the field point P in the direction of increasing 
0 in Figure 5.2. Substituting for dl in equation (5.18) we obtain 

d 	
[I] d/ cos 0  \ 	( [I] d/ sin 0  

d  - 	
) 

E in
• 	 (5.20) 

47cEocR2 	 47cEocR2  

The magnitude of the induction electric field given by equation (5.20) is 
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dE'ind = 
[I] d/ 	in  ( N oe di  

= P 	
\ 

41ce0cR2 	4rce0R2  / 
(5.21) 

where 13 = 
It is straight forward for the reader to show that the direction of dE md , 

given by equation (5.20), is at an angle 0 to the line joint the current element 
to the field point P in Figure 5.2 and at an angle 20 to the direction of current 
flow. Comparing equations (5.21) and (5.11), we see that the magnitude of 
the resultant electric field is 13 = vic times the magnitude of the electric field 
dE, due to the No  d/ stationary positive ions inside the current element I dl 
in Figure 5.2. 

If the conduction electrons in the current element in Figure 5.2 were at 
rest, the electric fields due to the stationary positive ions and stationary con-
duction electrons would compensate each other at external field points. The 
resultant induction electric field dE ind  given by equations (5.18) and (5.20) 
arises from 
(1) The change in the number of conduction electrons counted by the infor-

mation collecting sphere inside the current element when the conduction 
electrons are moving. 

(2) The changes in the electric field due to a conduction electron when it is 
moving, compared with the electrostatic field due to a stationary electron. 

5.3.3. Repeat calculation using the projected positions of the conduction 
electrons 

Some readers may get a better insight into the origin of the resultant electric 
field, given by equation (5.20), particularly the origin of the component in 
the direction of 4, if the electric field of a moving conduction electron is related 
to the projected position of the conduction electron, which is the position 

RETARDED 
POSITION S 

AT TIME (t-R/c) 

 

dE +  

  

DR  

	

PROJECTED 	I 

	

POSITION 	 
AT TIME t 

 

Figure 5.3. The contribution to the electric field due to the charges in a current element that 
forms part of a complete circuit. In this case the electric fields of the moving conduction elec-
trons are related to their projected positions, which are the positions they would have reached 
if they had carried on with uniform velocity until the time of observation t. 
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the electron would have reached by the time of observation t if it had carried 
on with uniform velocity [u] in Figure 5.2. Consider again the current element 
shown in Figure 5.2. The vector R from the current element to the field point 
P makes an angle 0 with the direction of current flow. A simplified model 
will be used, in which we shall assume that, at the retarded time t*, the positive 
ions are at rest and all the conduction electrons are moving with velocity 
[u]. Consider one conduction electron and one positive ion, as shown in Figure 
5.3. If it had carried on with uniform velocity [u], in the time Ric it takes 
the information collecting sphere to go from the current element to the field 
point P, the conduction electron would have moved downwards a distance 
[u]Rlc = I3R, where 13 = [uvc, from the current element at S to reach the 
projected position T as shown in Figure 5.3. The Ev  contribution of the con-
duction electron to the electric field at P at the time of observation t is related 
to the projected position T by equation (3.38) of Chapter 3. Expanding equation 
(3.38) to first order of 13 we have 

qt.°  
Ev  —  	 (5.22) 

47cE04, 

where ro  is a vector from the projected position T to the field point P in 
Figure 5.3. Equation (5.22) is similar to Coulomb's law, except that ro  is 
measured from the projected position T of the conduction electron in Figure 
5.3. It follows from equation (5.4) that the number of conduction electrons 
counted by the information collecting sphere inside the current element of 
length d/ is 

SN = (1 + p cos 0) No  d/ 	 (5.4) 

where No  is equal to both the number of conduction electrons and the number 
of stationary positive ions per metre length counted at the retarded time t*. 
If it is related to the projected position of the charge, the electric field due 
to each of these conduction electron is given by equation (5.22). Hence it 
follows that the electric field at P at the time of observation t, due to the 
conduction electrons counted by the information collecting sphere inside the 
current element at the retarded time t*, is given to a good approximation by 

dE_ = (1 + 13 cos 0) No  d/ ( 	e  2 ) 	 (5.23) 
47cEoro  

in the direction from the field point P to the projected position T, as shown 
in Figure 5.3. Since they are at rest, the number of positive ions, counted by 
the information collecting sphere inside the current element is equal to 
No  d/. Since the electric field due to each of these is given by Coulomb's 
law, the electric field due to the stationary positive ions is 

eN0  d/  
dE, — 

	

	 (5.24) 
47te0R2  

in the direction from the current element to the field point P, as shown in 
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Figure 5.3. Equations (5.23) and (5.24) do not compensate each other. It can 
be seen from Figure 5.3 that the resultant of dE+  and dE_ has a component 
in the direction of  O.  Resolving in the direction of the vector R from the current 
element to the field point, we have 

eN0  dl  (
1 + 13 cos 0) 

(  eN0  dl  

d  ER  — 4iCE0R2 	
2 47cEor 

cos a 	 (5.25)
o  

where a is the angle between the vectors R and 1.0 , as shown in Figure 5.3. 
Resolving in the direction of  O , that is in a direction perpendicular to R, 

we have 

dEe  = dE_ sin a  =(1  + 13 cos 0) 
eN 

° 
dl 

2 ) sin a 	 (5.26) 
47ccoro  

Since the distance from S to T in Figure 5.3 is [14121 c = I3R, it follows that 
the perpendicular distance from S to V is given by 

SV = 13R sin (0 — a). 

If 13 < 1, then 13R is very small and a < 0, so that to a very good approxi-
mation 

SV = 13R sin 0. 

It follows from Figure 5.3 that 

13R sin 0  
sin a = 	— 13 sin 0 

cos a = (1 _ sin2 a)"2 _ 32 sin2 0) 1/2 

ro  = R + I3R cos (0 — a). 

Since a < 0 and 13 	1, we have 

cos a 1 

ro  R(1 + 13 cos 0). 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

Substituting for sin a, cos a and ro  from equations (5.28), (5.29) and (5.30) 
into equations (5.25) and (5.26) we finally obtain 

eN0  dl 	(1 + 13 cos 0)eN0  dl 	eN0  dl  
dER  = 47ce0R

2  — 4iceoR 2(1 + 13 cos 0)2  — 4TrEoR2 
[1 — (1 + [3 cos 0)-1 

eN0  dl 	eNou dl cos 0 	I dl cos 0  

	

— 	 13 cos 0 — 	 — 	 (5.31) 
4rcEoR2 	 4iceocR 2 	4iC CoCR 2  

eN0  d/(1 + 13 cos 0)  ( c  u ) 	I d/ sin 0  

	

dEo  — 	 sin 0 — 	 (5.32) 
47cc0R 2  ( 1 + 13 cos 0)2 	 4-TC COCR 2  . 

Equations (5.31) and (5.32) are in agreement with equation (5.20). It is of 
interest to note that in the approach used in this section when 13 ‹ 1, we 
used the mathematical expression for Coulomb's law for both the positive ions 



Electric fields 	177 

and the conduction electrons, except that in the case of the moving conduc-
tion electrons we had to apply Coulomb's law relative to the projected positions 
of the conduction electrons, that is the positions they would have reached if 
they had carried on with uniform velocity [u] until the time of observation t. 
We also had to allow for the fact that the number of moving conduction elec-
trons counted by the information collecting sphere inside the current element 
in Figure 5.3, which is given by equation (5.5), is not equal to the number 
of stationary positive ions counted. 

5.4. The absence of a resultant induction electric field due to a steady 
conduction currect flowing in a complete circuit 

5.4.1. General case 

According to equation (5.18), the conduction current in a current element, 
which forms part of a complete electrical circuit, gives rise to an induction 
electric field at an external field point. In this section, we shall show that 
the resultant induction electric field due to the steady current in a complete 
circuit, that has no resultant charge distribution anywhere on the conductors, 
is zero. This result follows directly from conventional classical electro-
magnetism, since, if the charge density p is zero everywhere, the scalar 
potential (1) is zero and the electric field E is given by —À where A is the 
vector potential. When the conditions are steady À is zero showing that E 
should be zero. 

Consider the electric circuit shown in Figure 5.4. The vector R is a vector 
from the current element I dl at rs  to the field point P at r. The resultant 
induction electric field at the field point P will be determined when a steady 
current I flows in the circuit. Integrating equation (5.18) we have for a steady 
conduction current I in a complete circuit 

I I 	f R  cos  0 dl 
(5.33) Eind 	47te0c  R3 	— R2 

where 0 is the angle between dl and R. It is shown in Appendix A3 that 

2 
R cos 0 d/ 	dl 

R3 	1 R2  • 

Substituting in equation (5.33) we find that, when the current I is steady, 

Eind =  O. 	 (5.34) 

The currents in the various current elements forming the circuit in Figure 
5.4 do give rise to induction electric fields at the field point P, which are given 
by equation (5.18). It is the resultant induction electric field due to the complete 
circuit that is zero when the current is steady. This result will now be illus-
trated using a simple example. 

(A3.8) 
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0 

Figure 5.4. Calculation of the electric field at the field point P due to a complete circuit for 
both steady and varying currents. 

5.4.2. Example to illustrate that Eind = 0 when the conduction current in 
a circuit is constant 

Consider the small current carrying coil ABCD shown in Figure 5.5. We 
shall determine the resultant electric field at the field point P, at the time of 
observation t. A steady current I flows from A to B to C to D to A in Figure 
5.5. The sections AD and BC are arcs of circles with centres at the field point 
P and having radii r and (r + 8r) respectively, where r 	8r. The length 

t y  

I 

I 
b 0 1—  

(ÔE)AB  
(6E  ) CD 

I I 

 

r — 

A 	 (6E) AB + CD 
I  

X 

Figure 5.5. The calculation of the electric fields at the field point P due to both steady and 
varying currents in the coil ABCD. 
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of the sections AD and BC are equal to b and (b + 8b) respectively, where 
b 4 r. Since AD and BC are arcs of circles with centres at P 

b _ (b + 8b) 	b(1 + 8b/b)  
r 	(r + 8r) 	r(1 + 8r/r) 

It follows from equation (5.35) that (1 + 8b/b) is equal to (1 + 6r/r). Hence 
the length of the arc BC is equal to b(1 + 8r1r). Choose the directions of the 
x and y axes as shown in Figure 5.5. 

In the case of the section AB of the coil ABCD in Figure 5.5, the angle 0 
between I dl and a vector from the current element to the field point P is 
equal to 7C, so that cos 0 = —1 and sin 0 = 0 in equation (5.20), which reduces 
to 

(8ELB — 	
I 8r 	I 8r  

47cE0c(r + 8r/2) 2  — 47ccocr2  • 

This contribution is in the direction from P to A, as shown in Figure 5.5. In 
the case of the section CD, 0 = 0 so that cos 0 = 1 and sin 0 = 0 in equation 
(5.20), which reduces to 

I 8r  
0E6 — + (5.37) 

4ice0cr2  • 

This contribution is in the direction from D to P as shown in Figure 5.5. 
The resultant of (8E)AB  and (8E)a, is in the +y direction in Figure 5.5. 
Since the angle a between the lines AP and DP in Figures 5.5 is very small, 
sin (a/2) a/2 = bl2r. Hence 

21  Sr  sin (a/2) •: 	lb Sr  
(SE)AB  + CD = 	47cEocr2 	47ce0cr3 II 

where j is a unit vector in the +y direction. 
In the case of the section DA of the circuit ABCD in Figure 5.5 I dl is 

perpendicular to the vector from the current element to the field point P so 
that 0 = 7c/2, cos 0 = 0 and sin 0 = 1 in equation (5.20) which reduces to 

lb  (8E)AD  — 	 (5.39) 
4rcE0cr2  J  

This contribution to the electric field is in the —y direction in Figure 5.5. In 
the case of the section BC of the circuit, 0 = 7r.12 and equation (5.20) reduces 
to 

+ Sr/r) 	lb(1 — Sr/r)  (SE)BC  — (5.40) 
47cE0cr2(1 + 8r/r)2 J 	47ce0cr2  

This contribution is in the +y direction in Figure 5.5. Adding equations (5.39) 
and (5.40) we have 

(5.35) 

(5.36) 

(5.38) 

lb 8r  
(MAD+ BC - 4rce0cr3  J.  

(5.41) 
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Comparing equations (5.41) and (5.38), we see that (8E)AB  +  CD  is equal and 
opposite to (8E)AD  +  BC  so that, when the conduction current in the coil ABCD 
in Figure 5.5 is steady, the resultant induction electric field at the field point 
P is zero. This example illustrates how the conduction currents in the various 
current elements AB, BC, CD and DA of the circuit ABCD in Figure 5.5 do 
individually give rise to induction electric fields at the field point P. It is 
the resultant induction electric field due to the complete circuit that is zero, 
when the current is steady. We shall go on to consider the case when the current 
is varying in Section 5.5.1. 

Problem. The steady conduction current I flowing in a circular coil of radius 
b is due to AT0  conduction electrons per metre length each of charge —e and 
all moving at the same uniform speed u, plus No  stationary positive ions per 
metre length each of charge +e. Use equation (5.18) or equation (5.20) to show 
that, to first order of p = u/c, the electric field E at a field point on the axis 
of the circular coil at a distance x from the centre of the coil is zero. [Hint: 
For any current element / dl, 0 = 90° in equation (5.18) so that the contri-
bution in the direction of ik is zero. Show that the contributions of the 
components in the directions of —dl add up to zero]. It is straight forward in 
this example to show that E = 0 to all orders of p as follows. The centripetal 
accelerations of the electrons is u2/b. Use equation (5.5) plus the full expres-
sions for Ev  and EA given by equations (3.11) and (3.12) respectively to 
show that the resultant contributions of the Ev  terms due to the speeds of 
the electrons and the EA terms due to their centripetal accelerations are both 
numerically equal to 13 2N0ebx/260(b2  + x2)3/2 , but, since these contributions 
are in opposite directions, the resultant electric field is zero to all orders of 
p. (Comment: Notice that at the higher orders of p we must include the 
contributions of the acceleration dependent term EA to get the result E = 0. 
The first order theory given by equations (5.18) and (5.20) will however be 
sufficiently accurate for our interpretation of electromagnetic induction in 
the quasi-stationary limit.) 

5.5. The induction electric field due to a varying conduction current in 
a coil in the quasi-stationary limit 

5.5.1. Introductory example 

Before going on in Section 5.5.2 to consider the general case, we shall illus-
trate the role of retardation effects in giving a resultant induction electric 
field using the example of the coil ABCD in Figure 5.5. We shall assume 
that the conduction current flowing in the coil ABCD in Figure 5.5 is varying 
with time, but at such a slow rate that the quasi-stationary approximations 
are valid and equation (5.20) can be applied. We shall assume that the value 
of the conduction current in the coil ABCD in Figure 5.5. is equal to I when 



f al \( Sr  
b  

4rceocr2  

Adding equations (5.42) and (5.44) we have 

(SE)AD — 
A 

. 
(5.44) 
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the information collecting sphere, that reaches the field point P at the time 
of observation t, passes the section BC at the retarded time t — (r + 8r)/c. 
According to equation (5.40) 

Ib(1 — Sr/ri
(8E)Bc = 2 J 	 (5.42) 

4nEocr  

If the rate of change of the conduction current is  vat*, the value of the current 
in the coil ABCD when the information collecting sphere passes the section 
AD at a time (8rIc) after it has passed the section BC, is 

I AD = I + (1)(t1-1 ) • 

Hence, according to equation (5.39) 

(5.43) 

t aï w Sr  is  
lb   ( 8r \ 1 k at* 1k 7) u - (SE)BC  + (SE)AD — 	 J. 47ceocr2  k r )J 	4 	2  7ccocr 

The value of the conduction current in the circuit ABCD is varying continu-
ously from I to I + (aIlat*)(8rIc) as the information sphere passes along BA 
and CD. If Sr is infinitesimal, it is sufficiently accurate to use the mean value 
of current in equation (5.38), which then gives 

_ b 
Sr  { I + I. (f.* )( 1---C  )1 j.  

47ceocr 3  

Neglecting terms of order (802  we have 

b Sr I  -2 (SE)AB  + CD — 4nE0cr3  J.  
(5.46) 

Adding equations (5.45) and (5.46), we find that when the current / in the 
coil ABCD in Figure 5.5 is varying there is a resultant induction electric field 
Ernd  at the field point P in Figure 5.5, which at the time of observation t is 
given by 

b 8r  (al ),: 
Eind = — 47,ceoc2r2 at*  J. (5.47) 

The product b8r is equal to the area S of the coil ABCD. The magnetic moment 
m of the plane coil is defined as a vector of magnitude IS pointing in the +z 
direction in Figure 5.5. Using go  = 1/E0c2 , equation (5.47) can be rewritten 

(5.45) 

(8E)AB + CD 
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in the form 

S[/] 	 [iii] 	( 	[n] 
Eind - J — 	 (5.48) 

zliceoc2r2 	47ceoc2r2 	47c I r2  

We can now see the origin of the induction electric field due to a varying 
current in a coil in the quasi-stationary limit. When the current in the coil 
ABCD in Figure 5.5 is steady, the contributions of the various current elements 
making up the circuit to the induction electric field at P add up to zero. 
However, when the current in the coil is varying, the value of current to be 
used in equation (5.20) is different when the information collecting sphere 
passes the various current elements making up the circuit and the contributions 
of the various current elements no longer add up to zero. For example in the 
special case of the coil ABCD in Figure 5.5, the induction electric field, 
given by equation (5.47), is due to the fact that the conduction current is bigger 
by an amount (aIlat*)(8rIc) when the information collecting sphere passes 
AD compared with when it passes BC. This illustrates the essential role of 
retardation effects in giving a resultant induction electric field, even in the 
quasi-stationary limit when the overwhelming contribution to the induction 
electric field comes from the Ev  term in the expression for the electric field 
due to a moving conduction electron. Notice that there is a factor of 1/E 0c2 

 in equation (5.47) showing that the induction electric field due to the varying 
current in the coil ABCD in Figure 5.5 is very much less than the electro-
static field due to the stationary positive ions or the total electric field due 
to the moving conduction electrons. One factor of 1/c in equation (5.47) comes 
from equation (5.20) giving the induction electric field due to a current element. 
The other factor of 1/c comes from the fact that the resultant induction electric 
field at the field point P in Figure 5.5 is due to the difference of (8r1)lc in 
the current when the information collecting sphere passes AD compared with 
BC. Putting 1/60c2  equal to go  we see from equation (5.48) that the induction 
electric field has a similar mathematical form to the magnetic field go/S/47cr2  
due to a steady current I in the coil ABCD in Figure 5.5, which for a steady 
current can be obtained by putting tit and tit equal to zero in equation (6.49) 
of Chapter 6. (See also the problem at the end of Section 5.6.) 

5.5.2. General formula for the induction electric field due to the varying 
current in a complete circuit in the quasi-stationary limit 

Consider the current element I dl that forms part of the complete circuit 
shown previously in Figure 5.4. It will now be assumed that the current in 
the coil is varying, but at a low enough frequency for the quasi-stationary 
approximations to be valid. According to equation (5.18), the actual contri-
bution of the charges, that were counted by the information collecting sphere 
inside the current element I dl at rs  at the retarded time t* = (t – Ric), to the 
electric field at the field point P at r at the time of observation t is given in 
the quasi-stationary limit by 
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21(t*)R cos 0 dl 	I(t*) dl  
dEind  — (5.49) 47cE0cR3 	47ceocR2  

where R = (r — r) and 0 is the angle between dl and R. Since the different 
current elements, making up the circuit in Figure 5.4, are at different 
distances R from the field point, the value of /(t*) is different for the various 
current elements. If the rate of change of current is 1, then, in the quasi-
stationary limit, the change in the value of the current in the circuit in the 
time Ric it takes the information collecting sphere to go from the current 
element to the field point is (R1c)i . Hence, if I(t) is the value of the current 
in the circuit at the fixed time of observation t, we have to a very good 
approximation 

/(t*) = /(t) — (E) L 	 (5.50) 

We can ignore the change in  I in the time Ric in quasi-stationary limit, since 
for example, for a laboratory experiment of dimensions 3 m, Ric is only of 
the order of 10-8  s. Substituting for /(t*) in equation (5.49) and integrating 
around the complete circuit in Figure 5.4, we have 

E 	1  ( 1  [I(t) — (RIcAR cos 0 d/ 	[I(t) — (R1c)i] dl  (r Oind  — 	 ) ,  
47ceoc 	 R3 	 R2  

(5.51) 

The reader should note that we are allowing for retardation effects in equation 
(5.51). The value of the current I(t) at the time of observation t is the same 
for all the current elements. It follows from equation (A3.8) of Appendix 
A3 that, for a fixed circuit, we have at the time of observation t 

R cos 0 d/  
21(t) 	R3 	= I(t)f  f. 	 (A3.8) 

Hence equation (5.51) reduces to 

E(r, Oind  = 	 R cos 0 d/ 	Id! 
4rcEoc2 	R2  

According to equation (A3.9) of Appendix A3 we have 

—2 
R cos 0 d/ 	dl 

R2 	= 	R 	
(A3.9) 

Substituting in equation (5.52), we finally obtain for the quasi-stationary 
limit  f dl(r)  E(r, Oind  — — 

47ccoc
2 	

R • 
(5.53) 

(5.52) 

The finite value of Eind arises from equation (5.49) by retardation effects. 
The integrands (dl/R) and (R cos 0 d//R 2) in equation (A3.9) are not equal, 
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so that equation (A3.9) and hence equation (5.53) are only valid when they 
are integrated around a complete circuit. Equation (5.53) was derived from 
equation (5.18), which was developed from the Ev  contribution to the electric 
field due to a moving classical point charge. Hence equation (5.53) is only 
valid for complete circuits in the quasi-stationary limit, when the radiation 
electric fields can be neglected. 

For a stationary circuit, R and dl are time independent so that equation (5.53) 
can be rewritten in the form 

a f go/ t( dl 1 	DA 
Eind -4=  — at 1 47ciR1 =—  at 

where A is given in the present context by the equation 

A = 47c R ' 
NI f dl (5.55) 

Comparing equation (5.55) with equation (1.74) of Chapter 1, we see that 
the quantity A, defined by equation (5.55), is the same as the expression for 
the vector potential A at the field point P in Figure 5.4, when the current in 
the coil is constant. This shows that, when the scalar potential 4) is zero, the 
induction electric field due to the varying current in an electrically neutral 
statiOn4y circuit can be determined, in the quasi-stationary limit, by first deter-
mining the vector potential A assuming that the current in the coil is steady 
and then determining —À. There is no need to use the retarded vector poten-
tial in the quasi-stationary limit and allow for retardation effects, even though 
we showed in Sections 5.5.1 and 5.5.2 that retardation effects play a vital 
role in giving a resultant induction electric field, when we start with equation 
(5.18) for the electric field due to a current element, which we had deter-
mined using the expression for the electric field due to a moving classical point 
charge. Equations (5.18), (5.20) and (5.53) must be extended at high fre-
quencies, when the contribution of the acceleration dependent (radiation) 
term EA in the expression for the electric field due to an accelerating clas-
sical point charge is important. 

5.5.3. Application of equation (5.53) to the coil ABCD in Figure 5.5 

Consider again the coil ABCD in Figure 5.5. The current in the coil is varying 
slowly enough for the quasi-stationary approximations to be valid. The 
contribution of the current in the section AB of the coil ABCD in Figure 5.5 
to the right hand side of equation (5.53) is 

/ 8r  (AE)AB  = (5.56) 
47ccoc2(r + 8r/2) 

in the direction from the point A to the field point P. Notice that, to avoid 
confusion, we are now using AE and not 8E, as we did when we applied 
equation (5.20). This is because AE, which is the contribution of the section 

(5.54) 
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AB of the coil ABCD to the right hand side of equation (5.53), is not equal 
to the contribution SE to the resultant induction electric field at the field 
point P actually due to the moving conduction electrons and stationary positive 
ions in the section AB, which is given by equation (5.20). 

The contribution of the section CD to the right hand side of equation 
(5.53) is 

i 8r  
(Wm= (5.57) 47ce0c2(r + 8r/2) 

in the direction from the field point P to the point D in Figure 5.5. The resul-
tant of the contributions of the sections AB and CD to the right hand side of 
equation (5.53) is 

21(8r) sin (a12)  
(AE)AB  + CD - 47cE0c2(r + 8r/2) 

where j is a unit vector in the +y direction and a is the angle between the 
lines AP and DP in Figure 5.5. Since a is very small, sin (a/2) a/2 = bl2r. 
Hence 

lb(Sr)  (AE )AB + CD - 	 2 J• 41ceoc r-  

The contributions of the sections BC and DA to the right hand side of equation 
(5.53) are 

	

lb(1 + 8rIr)  ^; 	lb  
(AE)Bc (5.59) 

	

47ce0c2r(1 + 8rIr) J 	4rce0c2r 

lb  
(AE)DA = – 4itc0c2r 

Adding equations (5.58), (5.59) and (5.60), we find that the resultant electric 
field at the field point P in Figure 5.5 due to the varying conduction current 
in the coil ABCD is 

lb(Sr) 	is 	go[rh]  
Emd 	47ce0c2r2  — 47ce0c2r2 	47Er 2  

where S = b Sr  is the area of the coil and m = IS is the magnetic moment of 
the coil. Equation (5.61) is in agreement with equation (5.48). However, by 
comparing equations (5.56), (5.57), (5.59) and (5.60) with equations (5.36), 
(5.37), (5.40) and (5.39) respectively, the reader can see that equations (5.56), 
(5.57), (5.59) and (5.60) do not give the correct expressions for the induc-
tion electric fields due to the moving conduction electrons and positive ions 
in individual current elements, but they do give the correct resultant induc-
tion electric field in the quasi-stationary limit, when summed around a complete 
circuit. 

(5.58) 

(5.60) 

(5.61) 
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5.6. The induction electric field due to a varying current in a circular 
coil in the quasi-stationary limit: an example of detached electric 
field lines 

Consider the plane circular coil of radius b, shown in Figure 5.6. We shall 
assume that there are no resultant charge distributions anywhere on the coil, 
and that the conduction current I, that is flowing in the clockwise direction 
in Figure 5.6, is varying at such a slow rate that equation (5.53) can be applied. 
Consider a field point P at a distance r > b from the origin O at the centre 
of the coil and situated in the plane of the coil. Choose the line OP as the x 
axis with the -1-z axis pointing upwards from the paper in Figure 5.6. We 
shall also use the cylindrical coordinates r, z with measured from the x 
axis. Consider a current element of length d/ = b cht• at the position C in Figure 
5.6. The angle between the lines CO and OP is equal to (I). The distance R from 
the current element to the field point P is 

R = (r2  + 122  – 2rb cos 01/2 .  

To simplify the mathematics by avoiding elliptic integrals, we shall assume 
that r b. Expanding using the binomial theorem, we have 

1_1( 1 	bcosi4)\ 
R 	r 	+ 	r 	1 • 
	 (5.62) 

The contribution of the current I dl at C in Figure 5.6 to the right hand side 
of equation (5.53) is 

dl 	ldl   I 	b cos 0  \ 
AE, nd  = 

4ice0c2R — 47CE0C2r 	 r 	1 • 

Figure 5.6. Calculation of the induction electric field at the field point P due to the varying 
current in the circular coil in the quasi-stationary limit. 
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This contribution is parallel to —dl and is at an angle (Tc/2 — (1)) to the line 
OP (the x axis) in Figure 5.6. The component of AEind  parallel to the x axis 
in Figure 5.6 is compensated by the component parallel to the x axis of the 
contribution ACT,d  due to a current element of length b d(1) at the point D in 
Figure 5.6, where the angle between the lines DO and OP is equal to —1). 
The resultant of the contributions AEind  and .AE d  is in the +y direction in 
Figure 5.6 and is given by 

2ib d(j)  (. 	b cos 4) AE md  + AE nd  — 4ireoc 2 r 	 r 	) cos (1)j 

where we have put d/ = b 4. Summing around the complete circuit, we have 

Eind 	1 	dl 	2Ib ) 
4. (5.63) cos (1) ( 	b cos (1) 1 + 

47cE0c2  R 	4ne.oc2r o 

Evaluating the integral we find that 

ircb2  
E. = 

47cE0c2r2 	47E) r2  

where m = lnb2  is the magnetic moment of the circular coil. Equation (5.64) 
is valid at field points in the plane of the coil. Since according to equation 
(5.64) at distances r >> b from the centre of the circular coil in Figure 5.6, 
the electric field is in the plane of the coil and is always perpendicular to 
the line from the centre of the circular coil to the field point, the electric 
field lines are circles in the xy plane in Figure 5.6. In cylindrical coordinates 
we have 

tto  hcb2 	th  
4.7c 	r2 (1°  = 4.7cEoc2r2 tis  (5.65) 

where 4) is a unit vector in the direction of increasing cl). When the current I 
is flowing in the clockwise direction in the plan view shown in Figure 5.6, 
and I is increasing in magnitude, the electric field lines are in the anti-
clockwise direction, that is in the direction opposite to the direction of the 
current flow. This example illustrates how we can get detached electric field 
lines even though, when we derived equation (5.18), which was used to derive 
equation (5.53), we started with the expression for the electric field due to a 
moving classical point charge, according to which the electric field lines 
representing the contributions of individual classical point charges diverge 
from individual positive ions and converge on individual moving conduction 
electrons. 

It will now be assumed that the field point is a distance z directly above 
P in Figure 5.6. The distance R from the current element I  dito the new 
field point is now given by 

R = (r2  + b2  — 2rb cos ± z2p2.  

Again neglecting b2  compared with r2  and using the binomial theorem, we 
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now have 

1 	1 , 	rb cos 0  
17 --- (r2 + z2) 1/2 ( i + 

(
.2 ± ,2)  ) • 

Since the contribution of I  di to the right hand side of equation (5.53) is 
still parallel to —dl, it follows that the analysis given when the field point 
was in the plane of the coil is still valid, provided we replace the value of 
1/R given by equation (5.62) by the new value of 1/R. Equation (5.63) then 
gives 

,. 	21b 	
TE rb cos :1:1) 
	) Eind  := i  47cE0c2(r2  + z2)1/2 0 

1 

I + (r2  + z2) 
 cos 0 d4. 
 

Evaluating the integral we now find that 

14 ) 	ircb2r  I 	rim-  
Eind = (IT (r2 +  z2)312 '' 

 = 4rce0c2(r2  + z2)3/2 4:1)• 

The electric field lines are again closed circles in the plane containing the field 
point. 

We shall now go on to show that the electric field at the field point P in 
Figure 5.6 due to the current flowing in the circular current carrying coil obeys 
Faraday's law of electromagnetic induction. Evaluating the line integral of En.id 
around the circumference of a circular path of radius r >> b, using equation 
(5.65) we find that in the plane of the coil in Figure 5.6, in the quasi-
stationary limit we have 

f E • dl = 27tr Eind —2e0c2r 
	

(5.67) 
• 

According to classical electromagnetism, if we ignore all retardation effects 
in the quasi-stationary limit, then at a fixed time the magnetic field in the plane 
of the coil at a distance r >> b from the magnetic dipole in Figure 5.6 is 
equal to g0m/4nr3 . For example, take the quasi-stationary limit of equation 
(6.49) of Chapter 6. Since V • B is zero, the net magnetic flux through a 
circle of radius r in Figure 5.6 in the direction upwards towards the reader, 
is equal in magnitude to the magnetic flux in the downwards direction at radial 
distances > r, which is a region where the dipole approximation is valid. Hence 
the magnitude of the magnetic flux through the circle of radius r in Figure 
5.6 is given in the quasi-stationary limit by 

	

fo  p.om 	m  
.. 	 2nr dr — 

	

r 4rcr3 	2E0c2r • 

Hence 

2E0c2r • 

Comparing with equation (5.67) we see that Faraday's law 

(5.66) 

tit 
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fE • dl = —4) 

is valid for the induction electric field derived using equation (5.18) via 
equation (5.53). 

Problem. Apply equation (A1.37) of Appendix A1.9 to equation (5.65), which 
gives the induction electric field at the field point P in the plane of the 
circular current carrying coil in Figure 5.6, to show that at the field point P 
in Figure 5.6 

S[1] 	S[Ï]  

(V x E)
z2  

— — 	— 
zirceoCr3 	4Treoc3r2  • 

Comment on the relative magnitudes of the two terms on the right hand side 
when the current is varying harmonically with angular frequency co. 

According to classical electromagnetism the magnetic field at the field point 
P in Figure 5.6, when the current is flowing in the direction shown, is given 
in the dipole approximation by 

IS  
B z — 47tE0c2r3  * 

If we differentiating partially with respect to time, we have 

is  
Bz  — 

47cE0c2r3  • 

To satisfy the Maxwell equation (1.117) there must be an extra term on the 
right hand side. Explain the origin of the missing term. Hint: Have patience 
until you reach the derivation of equation (6.48) in Chapter 6. 

5.7. Induction electric field due to a varying current in a long solenoid 
in the quasi-stationary limit 

Consider the infinitely long solenoid whose axis is along the z axis in Figure 
5.7. The solenoid consists of n turns per metre length and carries a varying 
current I. If we neglect the pitch of the solenoid, we can treat each turn of 
the solenoid as a circle of radius b. The induction electric field will be 
determined at the field point P on the x axis at a distance r > b from the 
origin in the plane z = O. According to equation (5.66), the contribution of 
the n dz turns between z and z + dz to the induction electric field at the field 
point P is given in the quasi-stationary limit by 

, 	Ito 	 ITC b2r  
dEmd  n uz ) (r2 + z2)3/2 • 

By symmetry, the contribution of that part of the solenoid below the z = 0 plane 
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to the induction electric field at P is equal to the contribution of that part of 
the solenoid above the z = 0 plane. Hence the total induction electric field 
at P is given by 

L. 	0° 	dz  
E.  = 24, ( 411) niicti2r fo  (r2 + z2)312 

=4 ( 	14nib2r  )[ r2(r2  + 	1  : ) 	2 
gonib2  ., . 

2r 4).  (5 .68) 

The resultant induction electric field lines are again closed circles. When the 
current I flows in the clockwise direction in Figure 5.7 and is increasing in 
magnitude, the induction electric field lines are in the anticlockwise direc-
tion, that is in the direction opposite to the direction of current flow. The reader 
can check that we have derived equation (5.68) from the expression for the 
electric field due to a moving classical point charge. The steps are as follows. 

■''- 
'---7-/<r 

ndz ---..--  1 --"" 

1
, 	  

Long 
solenoid 

Î 
z 

Figure 5.7. Calculation of the induction electric field due to the varying current in a solenoid 
of infinite length in the quasi-stationary limit. 
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We derived equation (5.18) in Section 5.3.2 using the expression for the E v 
 contribution to the electric field due to a moving classical point charge which 

is given by equation (3.11). Then in Section 5.5.2 we used equation (5.18) 
to derive equation (5.53) which we then used to derive equations (5.66) and 
(5.68). An alternative derivation of equation (5.68), which is valid for all values 
of  r>  b, will be given at the end of Section 7.2.1 of Chapter 7. 

5.8. Detached electric field lines 

It was shown in Section 5.7 that the electric field lines that represent the 
resultant electric field due to the varying conduction current in the infinitely 
long solenoid, shown in Figure 5.7, are closed circles with centres on the z 
axis. These resultant electric field lines do not start on positive charges and 
end on negative charges, but are detached from the moving conduction elec-
trons and stationary positive ions that are in the windings of the solenoid. 
We derived equation (5.68) using equation (5.53), which had previously been 
derived from the expression for the electric field due to individual moving 
classical point charges. The contributions of individual classical point charges 
to the resultant electric field diverge from the individual stationary positive 
ions and converge on individual moving conduction electrons. It is the resul-
tant of these individual contributions that gives the detached electric field lines 
in the example shown in Figure 5.7. 

To illustrate how essential it is to include the electric fields due to the 
stationary positive ions in Figure 5.7 when determining the resultant electric 
field, we shall now assume that, instead of a conduction current in the solenoid 
in Figure 5.7, we have a convection current due to the rotation of a negative 
surface charge distribution, of magnitude —o coulombs per square metre which 
is on the surface of a hollow dielectric cylinder of outer radius b. The dielec-
tric cylinder rotates with a varying angular velocity co about its axis. The linear 
velocity of a point on the surface of the rotating cylinder is equal to bo). 
Hence the instantaneous value of the varying convection current is equal to 
obco amperes per metre length. We shall assume that the convection current 
is varying slowly enough for the quasi-stationary approximations we used in 
Section 5.7 to be valid. According to equation (5.68), which was derived 
from equation (5.53) in Section 5.7, there is an induction electric field outside 
the solenoid, given by 

goo6b3  ^ 
Eind — 	 (5.69) 

where we have replaced nI in equation (5.68) by obco. The negative charge 
distribution on the surface of the rotating cylinder also gives a contribution 
to the component of the electric field in the radial direction outside the rotating 
cylinder of charge. Applying Gauss' flux law, we find that, since the total 
charge per metre length of the cylinder is A. = 2nba, then outside the rotating 
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negative charge distribution on the cylinder, the radial component of the electric 
field is given by 

X, 	ab 
Er  — — „ 	 (5.70) 

LITEor 	Eor 

In this example of a convection current, the resultant electric field is given 
by the resultant of the contributions given by equations (5.69) and (5.70). 
Hence the electric field lines due to the rotating negative charge distribution 
are spirals, the direction of E being towards the rotating charge distribution. 

If we now add a stationary positive charge distribution of charge i-o 
coulombs per square metre, just outside the rotating negative charge distrib-
ution, then the stationary positive charge distribution gives a contribution to 
the resultant electric field outside the rotating cylinder, given by 

ob Er  = + 	. 
Eor 

(5.71) 

This contribution compensates the radial component of the electric field due 
to the rotating negative charge distribution, given by equation (5.70), which 
leaves only the resultant electric field given by equation (5.69). It is the electric 
field lines corresponding to the resultant macroscopic electric field, given 
by equation (5.69), that are detached from the charge distributions. 

Problem. The closed circuit shown in Figure 5.8 consists of concentric semi-
circles CB and DA of radii b and a respectively with b>  a, joined by straight 
sections CD and AB. The current in the circuit is equal to at were a is a 
constant and t is the time. The current varies slowly enough for the quasi-
stationary approximations to be valid. Apply equation (5.20) to show that 
the resultant induction electric field at the origin 0 at the time of observa- 

Figure 5.8. Calculation of the induction electric field at the origin 0 due to the varying current 
in the circuit shown. 
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tion t is given by 

a b 
Eind = — 

27cEoc
2 ln (72  

where i is a unit vector in the +x direction in Figure 5.8. Repeat the calcula-
tion using equation (5.53). 

(Hints: The appropriate value of current for CB and DA are a(t – blc) and 
a(t –  a/c)  respectively when you apply equation (5.20). The value for the 
current in AB is a(t – x/c) where x is the distance of the current element 
from the origin 0 in Figure 5.8). 

5.9. The electric field due to the accelerations of the conduction 
electrons in a conductor 

Consider again the current element that forms part of the stationary elec-
trical circuit, shown previously in Figure 5.2. The conduction current is equal 
to I. The current element is at the position r„ the field point P is at the position 
r and R = (r – r) is a vector from the current element to the field point. 
We shall again start with a simplified model and assume that at a fixed time 
there are No  stationary positive ions per metre length each of charge +e, and 
No  moving conduction electrons per metre length each of charge –e. We 
shall assume that, at the retarded time t* = (t – Ric), all the conduction 
electrons have the same velocity [u] and the same acceleration [a] in the 
downwards direction, opposite to the direction of current flow in Figure 
5.2. 

The stationary positive ions do not contribute to the radiation electric field. 
It follows from equation (5.5) that the number of moving conduction elec-
trons passed by the information collecting sphere inside the current element 
at the retarded time t* is 

8N = No (—
R

) dl 
	

(5.72) 

where s is given by equation (5.3). Multiplying equation (5.72) by the accel-
eration dependent contribution EA to the electric field due to an accelerating 
conduction electron, which is given by equation (3.12), we find that the 
contribution of the radiation electric field, denoted dErad, to the resultant electric 
field at the field point P in Figure 5.2 is 

dErad  = No  ( 	d/ 	 
R 	4TC:053  C2){ 

R x {(R 	x a }1 

We shall neglect the term (Rulc) x a which is of order Pa, and we shall 
neglect the term u • R/c in equation (5.3) and put s = R. Putting q = –e for 
a conduction electron and using equation (A1.6) of Appendix A1.1 we then 
have 
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eN0  dl  
dErad  = – 

4rceoc2R3 
[R x (R x a)] (5.73) 

eN0  dl 
 = – 47ce0c2R
3 , 

[R(R • a) – aR2]. 	 (5.74) 

A conduction electron can have both an acceleration a which leads to a change 
in the speed of the electron and a centripetal acceleration u2/p where the circuit 
is curved and has a radius of curvature p. The ratio of the magnitudes of the 
centripetal acceleration u2/p and the acceleration a is u2/pa. If we assume 
that the current varies as  4  cos cot, where co is the angular frequency, then 
the velocity u must vary as uo  cos cot so that the acceleration a is equal to 
Li – –couo  sin cot. Hence the ratio of the maximum centripetal acceleration to 
the maximum value of a is equal to uo/cop. In the case of a typical conduc-
tion current in a metallic conductor uo  is of the order of 10-4  m  s  in a 
typical laboratory experiment p may be of the order of 0.1 m. Hence at the 
mains frequency of 50 Hz the ratio uo/cop is of the order of 3 x  10.  This 
ratio is very much smaller at the microwave frequencies, say 109  Hz, when 
the radiation electric fields are important. Hence for conduction currents at 
mains frequencies it is generally safe to ignore the contributions of the cen-
tripetal accelerations of the conduction electrons in regions where the circuit 
is curved, and to include in equations (5.73) and (5.74) only the acceleration 
a that changes the speeds of the conduction electrons. (The centripetal accel-
erations of relativistic charged particles moving in helical paths in magnetic 
fields are important as these centripetal accelerations give rise to synchro-
tron radiation). 

We shall assume that the number of conduction electrons per cubic metre 
remains constant, and that all the changes in conduction current come from 
changes in the speeds of the conduction electrons. In these conditions 

eNo  a = —
d 

(eN0  u) = [1]. 	 (5.75) 
dt 

Since 0 is the angle between the direction of the current I and the vector R 
from the current element to the field point P in Figure 5.2, the angle between 
R and [a] is (7c – 0). Hence equation (5.74) can be rewritten in the form 

eN0  dl  - 
dErad  = – 

47tEoc
2
R 

[Ra cos (7c – 0) – a] 	 (5.76) 

where iz is a unit vector in the direction of R. It follows from Figure 5.2 
that, if ii is a unit vector at the field point P in Figure 5.2 in the direction of 
increasing 0, then the acceleration a of a conduction electron can be expressed 
in the form 

a = (–a cos 0)k + (a sin 0)6. 	 (5.77) 

Substituting for a in equation (5.76) and remembering that cos (7c – 0) = 
–cos 0, we find that equation (5.76) can be rewritten in the form 
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eN0  dl  
dE.d  = 	[—a sin 014. 

47ccoc2R 

Using equation (5.75) we finally find that 

[i] sin 0 d/  a  dErad  _ 	 (5.78) 47cE0c2R u " 

In practice the accelerations of individual conduction electrons are not always 
in the direction of their drift velocity, as was assumed in Figure 5.2, but the 
accelerations can be in any direction. If we put (al) equal to a, where a is 
now the average acceleration of the conduction electrons, then 

(R • a) = R • (a1) = R - a. 	 (5.79) 

Averaging equation (5.75), we have 

(—eNoai) dl = —eN 0  d/(ai) = —eNoa d/ = i dl. 	 (5.80) 

It is now straight forward for the reader to show, by averaging equation 
(5.74) over the distribution of accelerations and using equations (5.79) and 
(5.80), that equation (5.78) is valid in the general case in the limit when 
fi < 1. 

Averaging equations (5.73) and (5.75) over the velocities and accelera-
tions of the conduction electrons, and then using equation (5.80) we have 

dErad  - 	[i] 	[k. x (k.  
47CE0C2R 

[i]  [  k cos 0 d/ 	d 	 5 82 l 1 . dErad  - 4rceoc2  I. 	R 	
R 	 (.) 

Equations (5.81) and (5.82) are alternative forms of equation (5.78). We shall 
now go on to discuss applications of equations (5.78), (5.81) and (5.82), which 
are all equivalent to each other. 

5.10. Radiation electric field due to a varying conduction current in 
the coil ABCD in Figure 5.5 

Consider again the coil ABCD shown in Figure 5.5. We shall assume that at 
any fixed time the conduction electrons all have the same speed [u] and the 
same acceleration [a], which is in the direction of [u]. The radiation electric 
field at the field point P will be calculated using equation (5.78). 

In the case of the section AB of the coil ABCD in Figure 5.5 0 = n in 
equation (5.78), so that sin 0 = 0 and the contribution of the varying conduction 
current in the section AB to the radiation electric field at P is zero. For the 
section CD, 0 = 0 so that sin 0 = 0 and the contribution of the varying con-
duction current in the section CD to the radiation electric field at P is also 
zero. 
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For the sections BC and CD, 0 = n/2 and sin 0 = 1, so that according to 
equation (5.78) 

(dErad)Bc – 	
b(1 + 8rIr) 	[ al 1 	: 	b 	[ al 1 	(5 R ,,, 

47ceoc2r(1 + 6r/r) L at* i BC  j  — 47cc0c2r L at* i BC j•  ‘•• ' ••••- . ' / 

b  ran 
(dEradAD = — 47c 	

, 
Eoc2r L at* .1 AD j • 

(5.84) 

If [1], the rate of change of current is constant then  [I]BC  is equal to [flAD.  
Adding equations (5.83) and (5.84) and remembering that the contributions 
of the sections AB and CD are both zero we find that the resultant radiation 
electric field at the field point P in Figure 5.5 is zero. To show that this 
result is true in the general case, we shall integrate equation (5.82) around 
any arbitrary closed circuit. If i is constant, we have 

Erad — 	
j 	r([ iz di cos 0 	,( dl 1 

4c2 Li 	R 	– J7 .1 • 
(5.85) 

It follows from equation (A3.9) of Appendix A3, that the two integrals in 
equation (5.85) are equal showing that Erad is zero when i is constant, whatever 
the shape of the electrical circuit. 

To obtain a resultant radiation electric field at the field point P in Figure 
5.5, i must vary with time. If 8r is small, then in the time (8rIc) it takes the 
information collecting sphere to cross the coil ABCD 

[ ::
[ all 	

[02  1(-8cr  ) ' * 1  AD --= L at* I BC ± 

Substituting in equation (5.84) and then adding equations (5.83) and (5.84) 
we obtain 

b 8r  r a21- 1 , 	go [ii2]  1 
Erad — 47cc0c3r L Dt* 2  J .1  - 4ncr i  (5.86) 

where m = I b 8r is the magnetic moment of the coil ABCD in Figure 5.5. 
Notice the important role of retardation in giving a resultant radiation electric 
field at the field point P. Adding equations (5.48) and (5.86), we find that 
the total electric field at the field point P in Figure 5.5 is given by 

E = – I L- ° [ til  + ' 3  1 • ' 
47c r2  —rc 1  (5.87) 

Equation (5.87) is the standard expression for the electric field due to a 
magnetic dipole, when the field point is in the plane of the coil. 

The ratio of the radiation electric field given by equation (5.86) to the induc-
tion electric field given by equation (5.48) is rritl(nic). Due to the r term in 
the numerator of this expression, the ratio of the radiation to induction electric 
field increases with r and the Erad (radiation) contribution to the electric field 
predominates at very large distances from the coil. The two contributions 
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are equal when nit = nic. If the current in the coil varies as I = lo  cos cot, 
the maximum amplitudes of the two contributions are equal when r = clw or 
r = XJ2n. This is the same condition as for the case of the magnetic field of 
the oscillating electric dipole discussed in Section 2.4.2 of Chapter 2 and given 
by equation (2.49). In the quasi-stationary limit, say at 50 Hz, co = 100 TC 

and the two contributions are equal when r is about 1000 km. It is clear that 
the induction electric field, associated with the Ev  term, generally predomi-
nates in all laboratory experiments carried out at mains frequency. However, 
if the frequency were 50 MHz, then k127t would be approximately 1 m showing 
that the radiation electric fields are extremely important in laboratory exper-
iments carried out at microwave frequencies. 

5.11. Expressions for the total electric field due to a current element 
that forms part of a circuit 

So far we have considered the induction electric field and the radiation electric 
field separately. We shall now add the two contributions to give a single circuit 
equation. Consider again the current element I dl that forms part of the 
complete electrical circuit shown in Figure 5.2. Adding equations (5.20) and 
(5.78), we find that the total contribution of the charges counted by the infor-
mation collecting sphere inside the current element I dl at the retarded time 
t* = (t — Ric) to the electric field at the field point P in Figure 5.2 at the 
time of observation t is 

dE = dEind  + dErad 
cos 0 d/  [ 1 2 1k +  sin 	0 d/  [I 	ila 

_ 	
, 

-r 	u• 47cEo  L cR 1 	47ce0 	cR 2 	c2R (5.88) 

It was assumed when equation (5.78) was derived that the average accelera-
tion [a] and hence [i] were parallel to the wire. We also assumed that 
there were no resultant charge distributions. Since 4 sin 0 d/ is equal to 
R  x (ii x dl) and cos 0 d/ is equal to R.  dl, we can rewrite equation (5.88) 
in the vector form 

(R. dl)  / 1.6 fix(kxd1)  r / 	i 1 dE — 	 (5.89) 47cco  L cR 2  J ' + 	47TE0 	L cR 2  + c2R J ' 

An alternative form of equation (5.88) is obtained by adding equations (5.17) 
and (5.81) to give 

	

2k(k . dl)  [ I 1 	dl [ I 1 	it x  (it x dl)  [ j 
dE — 	 + 47cEo 	cR 2  .1 	47cco  1. cR 2 	47cE0 	L c2R 1 ' 

(5.90) 

Yet another form of equation (5.88) is obtained by adding equation (5.18) 
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and (5.82) to give 

	

dE  cos d/  21 	1 1 0̂ 	dl [ I 	1 1 
4 	

+
7cE0 	cR 2 	c2R J 	47cEo  cR 2 	c2R J 

(5.91) 

The electric field due to a complete electrical circuit is obtained by inte-
grating any one of the equations (5.88), (5.89), (5.90) or (5.91) around the 
complete circuit allowing for retardation effects. There is, in addition to this 
electric field an electric field due to any surface or boundary charge distrib-
utions of the type discussed in Section 1.3 of Chapter 1 and in Appendix B, 
and which are associated with conduction current flow. 

If we had an isolated current element, equations (5.88), (5.89), (5.90) or 
(5.91) would still give the contribution to the electric field of those charges 
counted by the information collecting sphere inside the current element at 
the retarded time, but in the case of an isolated current element, the current 
flowing in the current element would also give rise to varying charge 
distributions at the ends of the current element, which would also contribute 
to the total electric field. This would be similar to the example of the 
oscillating electric dipole, discussed previously in Section 2.4 of Chapter 2, 
and which we shall now solve using equation (5.88). 

5.12. The electric field due to an oscillating electric dipole 

Consider again the example of the oscillating electric dipole shown previ-
ously in Figure 2.2 of Chapter 2 and shown again in Figure 5.9. The mid-point 
of the electric dipole is at the origin 0 in Figure 5.9. The electric field will 
be determined at the field point P at a distance r from the origin 0 at the 
time of observation t. It was assumed, when equation (5.88) was derived, 
that the current element formed part of a complete electrical circuit, in which 
case there were no accumulations of charge at the ends of the current element. 
In the example of the oscillating electric dipole in Figure 5.9 there are 
accumulations of positive and negative charges, which also contribute to the 
total electric field at the field point P. In the example of the oscillating 
electric dipole, equation (5.88) only gives the contribution, denoted E 1 , of 
the moving and accelerating conduction electrons and stationary positive ions 
actually counted by the information collecting sphere at the retarded time t* 
inside the connecting wire of length d/ in Figure 5.9, to the electric field at 
the field point P at the time of observation t. Since the oscillating electric dipole 
is at the origin in Figure 5.9, R = r in equation (5.88). According to equa-
tions (2.32) and (2.39) we have 

[I] d/ = [fi] 	 (2.32) 

[1] d/ = [i3] 	 (2.39) 

where [p] = Q dl is the electric dipole moment at the retarded time t*. Hence 
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Figure 5.9. Calculation of the electric field due to an oscillating electric dipole. 

according to equation (5.88) we have 

E cos 0  r  sin 0  [ p 	p O.  — 	 92) ( 5 .  47cE0  L  cr2  J 	47(80  L  cr2 	c2r J 

Comparing equation (5.92) with equation (2.54) of Chapter 2, we see that 
not only are the terms proportional to 1/r3  missing from equation (5.92) but 
there is a factor of 2 missing in the term proportional to 1/r2  in the compo-
nent of E, in the direction of  î. We shall now show that these differences 
can be accounted for by the contributions of the varying charge distributions 
that accumulate at the ends of the current element shown in Figure 5.9. We 
shall assume that, when the information collecting sphere passes the lower end 
of the electric dipole, the charge on the lower end of the dipole is —Q, and 
when it passes the upper end at a time (d/ cos 0)/c later the charge on the upper 
end is Q + dQ. 

We have 

r  aQ 1(  d/ cos 0  ) 	[I] d/ cos  0 _ [/5] cos 0 
lat*Jk 	c 	 c 	 c 

(5.93) 
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We shall assume that, since the charges at the ends of the electric dipole 
are at rest, the electric fields due to the varying charge distributions —Q and 
(Q + dQ) are given by Coulomb's law, provided we use the retarded values 
of charge. This assumption is consistent with equation (5.101), which we 
shall derive in Section 5.13. Since the distance from the charge —Q to the 
field point P in Figure 5.9 is r + (d//2) cos 0, it follows from Coulomb's 
law that the electric field due to the charge [—Q] is of magnitude 

E 	 [Q] 	— [Q]  ( 1 — 	cos 0) _ — 4rceor2 {1 + (d//2r) cos 0)2 	4neor2 	r 

[Q] 	[Q] dl cos 0  
= + 47ce0r2  — 	4rcEor3  

and is in the direction from the field point P to the position of the negative 
charge [—Q] in Figure 5.9. According to Coulomb's law the electric field due 
to the positive charge [Q + dQ] is of magnitude 

E+  — 	
[Q + dQ] 	[Q + dQ]  (, 

7 	cos dl i + 	0 ) . 47ccor2 {1 — (d//2r) cos 0)2  — 4nEor2  

Neglecting terms of order (dQ)(d/) we have 

[Q] 	[Q] dl cos 0 	[dQ]  
E+ — 4nEor2  + 4rce0r3  + 47cc0r2  • 

This contribution to the electric field is in the direction from the positive charge 
[Q + dQ] to the field point P in Figure 5.9. Adding equations (5.94) and (5.95) 
we find that the contribution E2 to the electric field at P due to the charges 
at the ends of the oscillating electric dipole is given by 

E2 = E+  + E_ -- { E+  cos (I) — E_ cos (V} il 

+ {E+  sin (Lt  ) + E_ sin NI ii. 
2 	 2 	 (5.96) 

where a is the angle between r 1  and r2  in Figure 5.9. Since d/ is infinites-
imal, we have sin (a/2) --, (d/ sin 0)/2r and cos (a/2) .--. 1. Using the value 
of dQ given by equation (5.93), putting [Q] d/ = [p] in equations (5.94) and 
(5.95) before substituting in equation (5.96) and then neglecting terms of order 
(dQ)(d/) and (d/) 2  we finally obtain 

E2 - ( 
2[p] cos 0  + [fo] cos 0  \ i  + [p] sin 0  ii.  

(5.97) 
47cEor3 	47ccocr2  / 	47ccor3  

Adding equations (5.92) and (5.97), we find that the total electric field at 
the field point P in Figure 5.9 at the time of observation t is 

(  cos 0  y 2[p]
+ 

 2U3] ) :. + (  sin 0  )( [p] _L  [io] _L 
-I- 

[ii] ) a  
I 	 • \ 41mo  A r3 	cr2 	\ zircE 0 	r3 -r cr2 	

C
2r u 

(5.95) 

E — 

(5.98) 
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Equation (5.98) is the same as equation (2.54) of Chapter 2. When we derived 
equation (5.88) from the expression for the electric field due to an accelerating 
classical point charge, given by equation (3.10), we ignored higher order terms 
in p. If we had kept these higher order terms, the predictions we made in 
Section 2.4 of Chapter 2 using the vector potential A, would not be in agree-
ment with our new results to all orders of p, but the differences would be of 
no practical significance when the theories are applied to conduction currents 
in metallic conductors. The origins of these differences will be discussed in 
Section 6.8 of Chapter 6. There are in practice examples when the higher order 
terms in  are very important, for example when charged particles are moving 
at relativistic speeds in some astrophysical plasmas such as the Crab Nebula. 

Notice we had to allow for retardation effects when we derived equation 
(5.97) from the charge distributions, but not when we applied equation (5.88). 
This was because we had already allowed for retardation effects when we used 
equation (5.5) in the derivations of equations (5.20) and (5.78) which added 
up to give equation (5.88). 

5.13. The electric field due to a varying current distribution 

The example of the oscillating electric dipole shown in Figure 5.9 and dis-
cussed in Section 5.12 shows that equation (5.88) must be extended when there 
are resultant charge distributions in the system. Furthermore, when we derived 
equation (5.88) we assumed that I.  , the rate of charge of current, was parallel 
to the wire. In the general case of a varying charge and current distribution, 
that is not confined to electric wires, for example in a plasma, there may be 
resultant charge distributions and i is not necessarily parallel to J, as for 
example in a plasma that is in a strong magnetic field. Consider the macro-
scopic charge and current distribution that consists of moving and accelerating 
classical point charges shown in Figure 5.10. We shall assume in this section 
that all velocities are very much smaller than the speed of light. The electric 
field will be determined at the field point P at the position r in Figure 5.10 
at the time of observation t. Let ni  be the number of classical point charges 
per cubic metre that have charge qi, velocity [Ili], acceleration [ai] and are 
inside the volume element dV, at the position rs  in Figure 5.10 at the retarded 
time t* = (t — Ric), where R is equal to (r — rs). It follows from equation 
(5.5) that the number of charges of velocity [Ili] counted inside dlis  by the 
information collecting sphere that reaches the field point P at the time of 
observation t is 

(5.99) 

where 

(5.100) 
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Figure 5.10. Calculation of the total electric field due to a varying macroscopic charge and 
current distribution made up of moving and accelerating classical point charges. 

Multiplying equation (5.99) by the expression for the electric field due to a 
moving and accelerating classical point charge, which is given by equation 
(3.10), we have 

dE = ni  ( s  (Ev  + EA) d17, = dEh,d  + dErad. 

Using equation (3.11) for Ev  and making the same approximations as when we 
derived equations (5.10), (for example we can put (—e) = q i, No  dl = ni dV  
and u = ui  in equation (5.10)), we find that provided ui  < c 

dE 
qini  d17,  R 	2Ratii i] R) 	R[u1]  

ind
) 

— 

47T COR 3  k 	Rc 

Summing over all possible values of [u i] and using the relations 

Eq ini  = [p] 

Eqinjuil = [J] 
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we have 

I 	( [pi + 2k in  k 	[J] dEmd 	I 

	

47cco  \ 	cR 2
[ 	

— 	

1 dv 
 CR2 	s.  

(5.101) 

Notice that we are now allowing for the possibility of a finite resultant charge 
density [p]. Corresponding to equation (5.73), with (—e) = q•, No  dl = ni  dV„ 
u= ui  and a = ai, we have 

dV,  (R x (R x [aiD) . 

dErad — 
{ft x (k x [i])) dy,  

47cE0c2R 	• 
(5.102) 

Adding equations 

dE(r, t) 

(5.101) 

f 

and (5.102) gives 

[p] 	2k R- 2[J] ) c[Rj]2  x (ck2Rx [j])  471re 
 0 

dV, 

(5.103) 

where [p] and [J] are the charge and current densities at the source point at 
rs  in Figure 5.10 at the retarded time (t — Ric), R = (r — r) and k is a unit 
vector in the direction of R. Expanding the triple vector product using equation 
(A1.6) of Appendix A1.1 and then rearranging, we obtain 

[P] dE(r, 0 = 	
f( 

47-7jc, tk R2  
2ft • [J] 	it. • [i]  

cR2 	c2R 

[i]  dVi . 
c2R 

 

(5.104) 

Equations (5.103) and (5.104) are valid in differential form in the low velocity 
limit when ui  < c. It is straightforward for the reader to develop equations 
(5.103) and (5.104) for the more general case when there is more than one type 
of moving classical point charge in the system. The reader can also check 
that equations (5.103) and (5.104) lead to equations (5.90) and (5.91) respec-
tively in the case of the electrically neutral circuit shown in Figure 5.2. 

The differential form of Jefimenko's equation (1.136) is not equivalent 
to our equations (5.103) and (5.104), which are both valid in differential 
form in the low velocity limit. However, both our approach and that based 
on  Jefimenko's equation (1.136) give the same value for the resultant electric 
field when integrated over a complete charge and current distribution. To illus-
trate this we shall now solve the problem of the oscillating electric dipole 
shown in Figures 2.2 and 5.9 using Jefimenko's equation (1.136), which is 

dErad  — 
R 47cEoc23  

Summing over all possible values of [ai] and using the equation 

Eqini [ai] = [i] 

we find that 
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E = 
 1  f  [p]k  dV + 1 f  [O]k  dv  _ 1 f 111  dV 
47[80  j R2 	5 47CEO i cR 	s 47tE0  c2R 	5  

= VI  + E°2  + E°3 . (5.105) 

The contribution E?, which comes from the first integral on the right hand side 
of equation (5.105), arises from the charges –Q and (Q + dQ) at the ends of 
the oscillating electric dipole in Figure 5.9. This contribution is given by 
equation (5.97) which, with R = r, is 

E° 	cos  0  ( 2[p] 	[P] \ A 	[p] sin 0  a  
1 — 4te  k r3 	cr2  r 	47cE0r3  

By repeating the method used in the derivation of equation (5.97), it is straight-
forward for the reader to show that E°2  is given by 

E0 	cos 0  ( [P] 	[P] \  A 	[p] sin 0  6  
2  - 47cEo  cr2 	/ r 	47ce0cr2  • 

According to equation (2.39) 

[i]dVs  = i dl = [p]. 

After substituting in the third integral on the right hand side of equation (5.105) 
we find that 

0 	[P] 	[p] cos 0  A 	[P] sin 0  ^ E 3  - - 	- - 	 r + 	0. 	 (5.108) 

	

47ccoc2r 	4c r 7cc 2  o 	zinco  c2r 

Adding equations (5.106), (5.107) and (5.108) we obtain 

E – cos 0  — + 	+  sin 0  [ p — r 	— + P + –P--] 6. 	(5.109) 
47cE0 	r3 	cr2 	47cE0  r3 	cr2 	

C
2r 

This is agreement with equation (5.98). 
At first sight equation (5.105) due to Jefimenko might suggest that the 

radiation electric field due to the accelerating charges inside the wire con-
necting the two charge distribution in Figure 5.9 was proportional to and in 
the direction of [i] whereas, according to our equations (5.78) and (5.102) 
the radiation electric field is proportional to and in the direction of the com-
ponent of [j] perpendicular to the vector  i  from the oscillating electric dipole 
to the field point P, that is in the direction of the unit vector "è in Figure 
5.9. The reader can check that the contribution of the first term on the right 
hand side of equation (5.108), which is in the –  1 direction and which comes 
from the [i] term in equation (5.105), is compensated by the term proportional 
to [A cos 0 in +  i direction in equation (5.107) which comes from the [0] 
term in equation (5.105). This leaves only a component of the radiation electric 
field in the  O direction in equation (5.109), in agreement with equation 
(5.98). This result illustrates that we only get the correct radiation electric field 
when using the Jefimenko equation (5.105), if we allow for the variations in 
the charge distributions that accumulate at the ends of the connecting wire 

(5.106) 

(5.107) 
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in Figure 5.9. According to our equations (5.103) and (5.104) these charge 
distributions do not contribute to the radiation electric field. When a current 
element forms part of a complete electrical circuit carrying a varying current, 
no charge distributions accumulate at the end of the current element, so 
that unlike our equations (5.103) and (5.104) the differential form of the 
Jefimenko equation (5.105) would not give the correct contribution to the 
radiation electric field of those accelerating conduction electrons counted by 
the information collecting sphere inside the current element at the appro-
priate retarded time, but Jefimenko's equation (1.105) would give the correct 
value for the resultant radiation electric field when it is integrated over the 
complete circuit. 

Throughout this chapter, we have been assuming that all velocities are much 
less than c. We shall discuss examples, where the higher order terms are 
important, in Section 6.8 of Chapter 6. 



CHAPTER 6 

Magnetic fields due to electrical circuits 

6.1. Magnetic field due to a current element 

6.1.1. Use of the retarded positions of the moving charges 

Consider the stationary current element, that is of length dl and is at the 
position rs  in Figure 6.1. The field point P is a the position r at a distance 
R = (r — rs) from the current element. We shall determine the contribution 
to the magnetic field at the field point P, at the time of observation t, due to 
the moving classical point charges that were passed and counted by the 
information collecting sphere inside the current element at the retarded time 
t* = (t — Ric). We shall assume that, when they are counted at the fixed time 
t*, there are No  moving classical point charges per metre length inside the 
current element, each of charge q and all moving with the same velocity [u] 
and the same acceleration [a]. Since we shall find that there are differences 
in the higher order terms in 13 between positive and negative moving charges 
we shall consider both cases, starting with moving positive charges as shown 
in Figure 6.1. We shall assume that No  is so large that the fluctuations in the 
number of moving charges inside the current element can be neglected. 

According to equation (5.5) of Chapter 5, the number of moving charges 
counted by the information collecting sphere, while it is crossing the current 
element at the retarded time e is 

6N=  s  )No d/ 	 (6.1) 

where 

s=R[1— u•R1  
Rc 	• 

(6.2) 

According to equation (3.13), the magnetic field B due to each of these moving 
charges is given by 

B = By + BA 
	 (6.3) 

206 
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0 

Figure 6.1. The calculation of the magnetic field due to the moving charges in a current 
element in which the positive charges are moving with velocity [xi] at the retarded time 
(t — Ric) and the negative charges are at rest. 

where By  and BA are given by equation (3.14) and (3.15) respectively. 
According to the principle of superposition of magnetic fields, the resultant 
magnetic field dB due to the SN charges, counted by the information collecting 
sphere inside dl, is the vector sum of the contributions of the individual charges, 
so that 

s 1 
dB = ( -1-i) (N0  cli)(Bv  + BA). (6.4) 

Using equation (3.14), we find that the contribution of the Bv  term to dB, which 
will be denoted by dB v, is, with [13] = [u]/c, given by 

dBv  = P-) (No  di) ( 
go  \ q[u x Rill — 132]  

R 	47c I 	s3 

. ( go  \ Noq dl  [u  x  Rill  _ 021  
k 47c / Rs 2  

 

(6.5) 

Using the binomial theorem we have 

1 	[1 — u • R/Rc] -2 	11  1 + 
2u • R  

s R2 	— R2 2 — 	 Rc 

 

Substituting in equation (6.5) and neglecting terms involving 132  and remem- 
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bering that (u • RIRc) is of order 13, we obtain 

dBv  = ( 	
R 3  1

. 14° r°q  di  [u x R] [ 	
Rc 

1 + 2"  1 

	

n 	

. ( 4Ilon )[ I] dR1 3x R [ 1  + 	2u • R 1 
Rc .1 

(6.6) 

(6.7) 

where [I] = qN[ti] is the current in the current element at the retarded time 
t* due to the moving positive charges. Let 0 be the angle between the direc-
tion of current flow and R. In the case of the moving positive charges shown 
in Figure 6.1, u • RI Rc is equal to 13 cos 0. Hence equation (6.7) can be 
rewritten in the form 

go  ) [I] dl x R  
dB  = ( 47r 	R3 	 [1 + 213 cos 0]. (6.8) 

A more important practical example is that of a conduction current in a metal. 
In this case negatively charged conduction electrons move in the direction 
opposite to the direction of current flow. We shall still assume that 0 is the 
angle between the direction of current flow and R, so that in this case 

u - R  — 13 cos (7c — 0) = —13 cos 0. 
Rc 

Hence, for negative moving conduction electrons equation (6.7) becomes 

dB 	
tto  ) [I] dl x R

1  
r - 213 cos 0 1 . 	 (6.9) v  = ( 47c 	R3 	- 

The positive ions are generally at rest in a stationary metallic conductor and 
do not contribute to the magnetic field. 

In the absence of conduction current flow, the conduction electrons in a 
metal have velocities of the order of c1200 in all directions. When a conduc-
tion current flows, the conduction electrons have a drift velocity v of the 
order of 10' m s-1 , in the direction opposite to the direction of current flow, 
which is superimposed on their velocity distribution We shall now average 
equation (6.6) over the velocity distribution of the conduction electrons. Let 

(u1) = v 

where Il i  is the velocity of the ith conduction electron. Since R is a constant 
vector 

(ui  • R) = (u) • R = v • R = —vR cos 0. 	 (6.10) 

Similarly, 

(ui xR)=vxR 

so that, with q = —e, for conduction electrons we have 

qN0  dl (ui  x R) = —eN 0  dl(v x R) = / dl x R 
	

(6.11) 
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where dl is in the direction of current flow. Hence, for moving conduction 
electrons, after averaging equation (6.6) and using equations (6.10) and (6.11), 
we have 

( 	\ [I] dl x R  
dB  = 	 [1 — 2 3  cos 01  k 47c / 	R 3  (6.12) 

where I  in equation (6.12) is equal to v/c. It was shown in section 1.3.3 of 
Chapter 1 that, for a typical current in a typical metallic conductor p is of 
the order of 10-12 , so that 2 3  cos 0 < 1 and the second term inside the brackets 
in equation (6.12) is generally very much smaller than the first for conduc-
tion current flow in a metal. 

As we shall need the results when we come to discuss the Biot-Savart law 
in Section 6.2, we shall now derive the expression for the contributions of 
the accelerations of the charges, in the current element in Figure 6.1, to the 
magnetic field. According to equation (3.15), for a charge of magnitude q 
moving with velocity [u] and having an acceleration [a] at its retarded position, 
we have for the conditions shown in Figure 6.1. 

r 	R • a  \ 
BA= 

 47C C S 3 	k C 
+ sa x R. 	 (6.13) 

The first and second terms inside the square brackets are of order I3Ra and 
Ra respectively, where p = u/c. To the accuracy we shall generally work to 
with conduction currents in metals, we can neglect the first term inside the 
square bracket since it is much smaller than the second term. Using equation 
(6.4) we then find that the contribution, associated with the BA term in equation 
(6.4), is given, to a very good approximation, by 

dBA  = ( 21 ) No  d/ ( 	9-5- - [sa x R] 
4ic cs 

1.1,0  q.No  dl  [a x R]. 	 (6.14) 47c 	csR  

Since we shall generally only need the first order acceleration dependent term, 
we shall generally ignore terms of order 13 and put s = R in equation (6.14), 
which then reduces to 

dBA = (i..
_Lo )qNo  dl 

 cle [a x 12]. 47c  (6.15) 

It is left as an exercise for the reader to show that, if we did retain both 
terms inside the square brackets in equation (6.13) and expanded 1/s to first 
order of 13, we would have to add the terms 

( 	qN0  dl  [ 
Rc 

(a x R) u 	• R  /  cf 	
+ (u x R) 	)1

Rc  2   

to the right hand side of equation (6.15). The reader can show that, if we 
have a distribution of accelerations, equation (6.15) is still valid if a is now 
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the average acceleration (ai) of the conduction electrons in the current element 
in Figure 6.1. 

Adding equations (6.8) and (6.15), we find that the total contribution to 
the magnetic field due to the moving and accelerating positive classical point 
charges counted by the information collecting sphere inside the current element, 
shown in Figure 6.1, is 

dB =  dB  y  + dBA  

	

. ( 1.1.0  \ [I] dl x R 	
(E) gAr° 	di  [a x R]. [1 + 2 3  cos 01  + 4rc I 	R 3 	 zirc 	cR 2  

(6.16) 

For negative moving charges of charge q = —e, adding equations (6.9) and 
(6.15) we have 

	

( go  \ [I] dl x R 	 ( go  \ eNo  dl  [a x R[.  dB = 	 [1 2P cos 0] — 
47c i 	R 3 	 4 7 cl cR 2  

(6.17) 

where dl is in the direction of current flow, which for conduction electrons 
is in the direction opposite to their mean drift velocity y, [3 = vtc and 0 is 
the angle between the direction of current flow and the vector R from the 
current element to the field point. 

6.1.2. Use of the projected positions of the conduction electrons 

Some readers may prefer to derive equation (6.9) using the expression for 
the magnetic field related to the projected positions of the conduction 
electrons, for the conditions shown previously in Figure 5.3 of Chapter 5. 
We shall again assume that the conduction electrons move with the same 
velocity [u]. In the time Rlc it takes the information collecting sphere to go 
from the current element at S to the field point P in Figure 5.3, the conduc-
tion electrons would move downwards a distance uRIc = I3R to the projected 
position T, if they moved with velocity [u]. According to equation (6.1) the 
number of conduction electrons counted by the information collecting sphere 
inside the current element I d/ at the retarded time (t — Ric) is 

61‘1 = (1 + 13 cos 0) No  d/ 	 (6.18) 

where AT 0  is the number of conduction electrons per metre length and 0 is 
the angle between R and the direction of current flow. By analogy with the 
derivation of equation (3.38) relating the electric field of a moving charge 
to its projected position, we can relate the By  term in equation (3.13) to the 
projected position of a conduction electron using equation (3.28), which is 

q[u] x ro [l — r32]  	e[u] sin (0 — a)  ic  
By — 41.cEoczra 1  _ f32 sin2 (0  _ c)r/2 	— 	47ce0cs2r1,  

(6.19) 
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where ro, 0 and a are as shown in Figure 5.3. The vector ro  is measured 
from the projected position T of the moving charge and i is a unit vector 
in the direction of the vector product [u] x ro , which is in the upward 
direction from the paper in Figure 5.3. 

Multiplying equations (6.18) and (6.19), we find that the contribution to 
the magnetic field at the field point P in Figure 5.3, due to the moving con-
duction electrons counted by the information collecting sphere inside I d/ at 
the retarded time (t –  Ric),  is 

[1 + 0 cos 0]Noe[u]dl sin (0 – a)  A 
dB – – 	 k. 	 (6.20) 47ceoc2r(; 

According to equation (5.30) of Chapter 5, 

= (1 + P cos 0)2R2 . 

Using equations (5.28) and (5.29), we have 

sin (0 – a) = sin 0 cos a – cos 0 sin a = sin 0 (1 – 13 cos 0). 

Substituting in equation (6.20) and putting Ne[u] equal to I we find that the 
to first order in 13 

[I] d/ sin 0 [I] dl x R  
dB – – 

47cE0c2R2 
[1 – 2 3  cos O]ii – 4rce0c2R3 [1 – 2 3  cos 0]. 

(6.21) 

Equation (6.21) is the same as equation (6.9). It is left as an exercise for the 
reader to use the same method to derive equation (6.8) for positive moving 
charges. 

It is of interest to note that we were able to derive both equations (5.20) 
and (6.21), which are both valid in the quasi-stationary limit, using Coulomb's 
law equation (3.33) and the Biot-Savart expression, equation (3.34), for the 
magnetic field due to a moving charge in the low velocity limit, provided 
we measured all quantities from the projected positions of the moving charges 
and used equation (6.1) for the number of moving charges counted by the 
information collecting sphere inside the current element at the retarded time. 

6.2. The Biot-Savart law for steady currents 

On the basis of experiments on current balances of different geometrical con-
figurations, we concluded in Section 1.4.1 that the magnetic field due to a 
steady current I in a complete circuit, of the type shown in Figure 6.2, is 
given by the Biot-Savart law, according to which the magnetic field at the field 
point P at the position r is given by 

B(r) N = 1101  f dl x R  

	

— 	 (6.22) 

	

47c 	le 
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Figure 6.2. Calculation of the magnetic field due to the steady current in a complete circuit. 

where dl is an element of the circuit at the source position rs  and R = 
(r – rs) is a vector from  dito the field point at r. In this section we shall 
start by considering the contribution to the magnetic field of those charges that 
were counted by the information collecting sphere inside the current element 
I dl in Figure 6.2. We shall use a simplified model in which we shall assume 
that there are /s/0  classical point charges per metre length, each of charge q 
and moving with speed u in the current element dl, such that the magnitude 
of the current in dl is 

I = qN0u. 

According to equation 

dB(r) 	go/ 

(6.16), for moving 

( dl x  R  \ 	go/ 

positive charges we have 

( dl x R  1( 2u  cos  9  ) 

(6.23) 

(6.16) 

= —47c 

+ 

k 	R 3 	1 
goNoq d/ 

+ 47c 

( a  x  R  
k 
\ 

R3 	/k 	c 

• 47c k 	cR 2 	/ 

(According to equation (6.17), the second and third terms on the right hand 
side are both negative in the case of negatively charged moving particles 
such as conduction electrons). The first term on the right hand side of equation 
(6.16) is the differential form of the Biot-Savart law. Since the second and third 
terms are finite, it follows that the differential form of the Biot-Savart is 
not exact to all orders of [3, though since the second and third terms are much 
smaller than the first term, the differential form of the Biot-Savart law is a 
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very good approximation for the magnetic field due to the moving charges 
counted by the information collecting sphere inside the current element / dl 
when the conduction current / is steady or is varying at mains frequency. 
We shall now go on to consider the complete circuit shown in Figure 6.2. 
We shall allow for the possibility that the circuit is made up of wires of dif-
ferent electrical conductivities so that N o  and u may be different in different 
parts of the circuit, but the current I = q Nou is the same in all parts of the 
circuit. The charges are accelerated or decelerated where wires of different 
electrical conductivity are joined. Integrating equation (6.16) around the 
complete circuit, in the case of positive moving charges, when the current I 
is constant, we have 

110/ dl x R  B = 	 + AB 	 (6.24) 
4ic 	R 3  

where with I = qNou 

dl x R 	 (  a x R AB – —14  f 2 qNou R3  ) u cos 0 	+ 
too 

 R2 
cl/ 47cc 	 k  

(6.25) 

The first term on the right hand side of equation (6.24) is the integral form 
of the Biot-Savart law. It is shown in Appendix A4 that the value of AB 
given by equation (6.25) is zero when the current I in the circuit in Figure 
6.2 is steady. Hence for steady currents in the complete circuit in Figure 6.2, 
equation (6.24) reduces to equation (6.22), showing that the integral form 
of the Biot-Savart law, namely equation (6.22), is valid at the next level of 
approximation in p. To get AB = 0 in equation (6.25) we had to include the 
accelerations of the charges. Some examples of the deviations from the 
differential form of the Biot-Savart law will now be considered. 

6.3. Examples of deviations from the differential form of the 
Biot-Savart law 

6.3.1. A straight line section of finite length 

To illustrate the corrections to the differential form of the Biot-Savart law, 
given by equation (6.25), consider the section AD of the circuit shown in 
Figure 6.3. The current / in the circuit is constant. The section AD of the circuit 
lies along the x axis. We shall assume that there are Aro  positive classical 
point charges per metre length each of magnitude +q and all moving with 
the same uniform speed u in the direction of the current flow from D to A, 
that is in the –x direction in Figure 6.3. The magnetic field will be deter-
mined at the field point P on the y axis in Figure 6.3 at a distance b from 
the origin. We shall assume that the accelerations of the charges are zero, 
except possibly at the ends of the section AD, so that the dBA  term in equation 
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Figure 6.3. Calculation of the contribution to the magnetic field of the current in the section 
AD of a long straight wire carrying a steady current I. 

(6.16) is zero for the section AD. Consider an element of length dx between 
x and x + dx. Let 0 be the angle between u and the vector R from the element 
of length dx to the field point. Substituting in equation (6.8), we find that 
the contribution of the current element of length dx to the magnetic field at 
the field point P in Figure 6.3 is for positive moving charges 

= ( NI y  sin 0  ) dB 	 (1 + 213 cos 0)dx. 	 (6.26) 47c lk R 2  

This contribution is in the —z direction in Figure 6.3. Since in Figure 6.3, 
x = b cot 0 

dx = —b cosec 2  0 dO. 

Substituting in equation (6.26) and using R = b cosec 0, we find that 

dB = — 	sin 0(1 + 2 3  cos 0)d0. 

Integrating from 0 = 0 1  to 0 = 02  we obtain 

B = — ( 1-414) (cos 02  — cos OA — ( zli4) 3(COS2  02 - COS2  0 1 )k. 

(6.27) 

where ii is a unit vector in the +z direction in Figure 6.3. The first term on 
the right hand side of equation (6.27) is the standard expression obtained using 
the differential form of the Biot-Savart law. Since 

cos2  02  — cos2  0 1  = (cos 02  — cos 0 1 )(cos 02  + cos 01) 
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the second term on the right hand side of equation (6.27) is equal to 
13 (cos 02  + cos 0 1 ) times the first term. 

If the section AD in Figure 6.3 extended from x = –00 to x = +00, 0 1  and 
02  would be equal to n and 0 respectively and equation (6.27) would reduce 
to B = --110/112nb in agreement with the integral form of the Biot-Savart law. 

If the section AB extended from the origin O to x = +00, the limits of 0 in 
equation (6.27) would be from 0 1  = TE/2 to 02  = 0, and equation (6.27) would 
give 

B– 

 (

-11°1  ) (1 + 13)i 
47c12 

(6.28) 

which is not in agreement with the predictions of the differential from of the 
Biot-Savart law, according to which B should be equal to –goik/ 47E12. If the 
conductor AB in Figure 6.3 extended from x = –co to x = 0, 0 1  and 02  would 
be equal to 7C and 7c/2 respectively and equation (6.27) would give 

B = – ( 	 ) (1 – p)k. 	 (6.29) 47cb 

6.3.2. A circuit made up of two conductors of different electrical 
conductivities 

To illustrate equations (6.28) and (6.29), consider the example shown in Figure 
6.4. Two very long, straight conductors of different electrical conductivities 
lie along the x axis. They are joined at the origin 0 in Figure 6.4. A steady 
current I flows from right to left in the –x direction along the composite 
conductor in Figure 6.4. In conductor 1, there are N1  positive classical point 
charges per metre length, each of magnitude q and each moving with uniform 
velocity u 1  to the left, whereas in conductor 2 there are N2 positive classical 
point charges per metre length also of magnitude q, but moving with uniform 
velocity u2  to the left giving rise to a steady current flow in the –x direction 
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Figure 6.4. The magnetic field due to the current in an infinitely long conductor made up of 
two conductors of different electrical conductivities. The velocities of the moving positive charges 
increases fro u, to u2  in a small transition region at the origin. 
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in Figure 6.4. If we ignored the accelerations of the charges in the transition 
region in Figure 6.4 and then applied equations (6.28) and (6.29), we would 
find that the magnetic field at the field point P on the y axis, at a distance b 
from the origin in Figure 6.4, would be 

B 7.=  — ( 11—cL4rcb ) {2  ± (I31  — 2)}1c. 	
(6.30) 

This prediction is not in agreement with the integral form of the Biot-Savart 
law, according to which the magnetic field at the field point P in Figure 6.4 
should be 

B = — ( 11—cf) ic 
2rcb 	• 

However, we have neglected the accelerations of the charges when their 
velocities are changed from u 1  in conductor 1 to u 2  in conductor 2. To 
simplify the calculation, we shall assume that u 1  < u2  and that u2  < c. We shall 
also assume that the charges undergo uniform accelerations from u 1  to u2 

 over an extremely small distance L, in a thin transition region where the 
conductors are joined at the origin 0 in Figure 6.4. In the non-relativistic 
limit, since u 1  < u2  the acceleration a is given to an excellent approximation 
by 

2 u2  
a=  

2L ' 
(6.31) 

The velocity u of the charges, when they have travelled a distance 1 into the 
transition region, is given by 

u2  = t4 + 2a1 . 

Neglecting u 1  and substituting for a using equation (6.31) we find that 

u = (2a1)11 	2 2  = u ( 1L  ) 112 	 (6.32) • 

Since the current / is the same in conductors 1 and 2 and in the transition 
region, then if N is the number of moving charges per metre length at a distance 
/ into the transition region, we have 

I = qNi ul  = qNu = qN2u2 . 

Using equation (6.32), we have 

N2 2 . 
N u 

N— 	
( L  \ 1/2 

2 u 	1 ) 	' 	
(6.33) 

According to equation (6.15), the acceleration dependent contribution to the 
magnetic field at the field point P in Figure 6.4 due to a section of length d/ 
of the transition region is, for the conditions shown in Figure 6.4 where 
0 = 7c/2, given by 
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dBA  = -N d/ ( -41 ) ( 2;c 1-  ) i  ' 

Substituting for N and a from equations (6.33) and (6.31) respectively we 
find that 

dBA = - kr  ( L 1 1/2  
`" 2  k 7) 	47ccb k 2L / 

d/  ( /4 \ ii  .... 4.02u2)  ( 4i.tonb  ) r42  ( 	d/  \ t 
P k 2L"2/"2  / ' 

where 132 = Li2/C. Integrating from 1 = 0 to 1 = L, we obtain 

BA = -V 1 2 ( 
go/ 
4-Trij) 

ir
A'• 	(6.34) ' 

Since [3, is negligible compared with 132 , equation (6.30) becomes 

B  = - ( Tir—cb ) (2  - 132** 	 (6.35) 

Adding equations (6.34) and (6.35) we finally obtain 

B= 
 (2

1j--j )ii 70 • (6.36) 

This is in agreement with the predictions of the integral form of the Biot-Savart 
law. This illustrates how the two terms in equation (6.25) cancel each other 
so that, for a complete circuit, equation (6.24) reduces to the integral form 
of the Biot-Savart law, provided the current in the circuit is constant. 

6.3.3. Use of equation (3.28) which gives the magnetic field due to a 
charge moving with uniform velocity 

According to equation (3.28), the magnetic field due to a classical point charge 
moving with uniform velocity can be related to the position of the charge at 
the time of observation t. It is tempting to assume, as was done for example 
by Rosser [1] and Vybiral [2], that the magnetic field due to the moving charges 
that are actually inside the current element / dl in Figure 6.1 at the time of 
observation t is given by the product of the number of charges No  d/ counted 
at the time of observation t and the magnetic field due to each charge which 
is given by equation (3.28). We would then have 

goN0q(u x R)(1 -  13
2) d/ 

dB 
- 47ER 3(1 -  132 sin2  0)3l2  • 

Expanding to second order of  1 we would have 

dB = 
1101(d1 x R)  { 2 ( 3 • 1 + 13 —

2 
sin2  0 - 1 )1 . 	 (6.37) 

47cR' 

According to equation (6.37) the correction to the differential form of the 
Biot-Savart law would be of order 13 2  and not of order 13 as predicted by 
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equation (6.27) for the case of the straight section of wire in Figure 6.3. 
Equation (6.37) is a satisfactory approximation in the special case of an 
infinitely long, straight wire, but it breaks down when there is a bend in the 
wire. As an example, we shall assume that the wire DA in Figure 6.3 extends 
from x = +DO to the origin 0 in Figure 6.3 and that the wire turns through 
900  at the origin to lie along the y axis. The moving charges have an 
acceleration when they turn around the corner, and for the reasons given in 
Section 3.4.1 of Chapter 3, we must use equation (6.19) which is related to 
the projected positions of the moving charges, which are the positions the 
moving charges would have reached if they had carried on with uniform 
velocity u until the time of observation. It takes the information collecting 
sphere a time  bic  to go from 0 to P in Figure 6.3. In this time interval the 
positive moving charges would have moved a distance (ublc) = 13b to the 
left of the origin, if they had carried on with uniform velocity u. Hence if 
equation (6.19) is used, we must allow for all the projected positions up to a 
distance Pb on the x axis to the left of the origin in Figure 6.3. Thus, for positive 
moving charges we must add the contributions of NoPb charges to the left of 
the origin. Using equation (6.19) we find that the contribution of these NoPb 
charges is given to first order of p, where P < 1, by 

1 ( p4 AB = NoPb 	 = 
 j 

k  47cb ) • 

To first order of p, equation (6.37) is the same as the Biot-Savart law so that 
the contribution predicted by equation (6.37) for the magnetic field at P due 
to those moving positive charges that were inside the section AD, which goes 
from x = +DO to the origin in Figure 6.3, at the time of observation t is equal 
to 110//47cb. Hence the total magnetic field at P due to the current in the 
section AD in Figure 6.3 is given, to first order of r3 , by 

B — 	— p ( 	1 — ( 	1 + 
47cb 	47ch / 	4rcb 	

(6.38) =  

This is in agreement with equation (6.28). This example illustrates the care 
that must be exercised if equation (6.37) is used. It is safer in practice to use 
equation (6.17) in which the magnetic field is related to the charges that were 
in the current element I dl in Figure 6.2 at the appropriate retarded time. 

Problem. The steady conduction current I flowing in a circular coil of radius 
b is due to AT 0  conduction electrons per metre length each of charge —e and 
all moving at the same uniform speed u, plus Aro  stationary positive ions per 
metre length each of charge +e. Use equations (3.14) and (3.15) to show that 
to all orders p = u/c the magnetic field on the axis of the coil at a distance 
x from the centre of the coil is given by 

golb2  
B 	2(b2  + x2)"2  • 
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Show that the term in 13 2  that comes from equation (3.14) is cancelled by 
the contribution that comes from equation (3.15) due to the centripetal 
acceleration u2/b. 

6.4. The magnetic field due to an oscillating electric dipole 

To illustrate the application of equation (6.17), we shall consider once again 
the example of the stationary oscillating electric dipole, shown previously in 
Figure 2.2 of Chapter 2 and in Figure 5.9 of Section 5.12. We shall assume 
that the current flow in the wire of length d/ is due to .A/0  conduction elec-
trons per metre length, each of charge q = —e and each moving downwards 
with velocity [u] and acceleration [a] at the retarded time t* = (t — Ric). Let 
0 be the angle between the direction of current flow and the vector R from 
the oscillating electric dipole to the field point. Since in the present example 
the electric dipole is at the origin, R is equal to r in equation (6.17). The 
accelerations of the conduction electrons are parallel to the wire so that 
—eN 0  dl [a] is equal to [i] dl and equation (6.17) can be written in the 
form 

B= ( )LI' ) (d1 x r) [(1 — 213 cos 0) + 12 ] 
cr 47t  

=  ( 
144.dl){.

(1  — 213  cos 0) + 	sin  0 c1 r 	 cr 

where the unit vector (1) is in the direction of dl x r. 
From equations (2.32) and (2.39), we have 

[I] d/ = [fi]; 	[i] d/ = 

Hence equation (6.39) can be rewritten in the form 

B=  (1_1 ) [4(1_ 2r3 cos 0) I sin 0 
7L r cr 

(6.39) 

(6.40) 

For positive moving and accelerating charges the (1 — 213 cos 0) term in 
equation (6.40) must be replaced by (1 + 2 13  cos 0). 

To obtain agreement with equation (2.46), which we derived using the 
retarded potentials in Section 2.4.2 of Chapter 2, we must ignore the 213 cos 0 
term in equation (6.40) as well as all the higher order terms in p which we 
neglected when we derived equation (6.17). With these approximations, which 
are reasonable for conduction current flow, equation (6.40) becomes 

B= (

1-1-1 1± + sin 0 41 4ic r2  cri  
(6.41) 

The origin of the differences between equation (6.40) and equation (6.41) 
will be discussed in Section 6.8. 
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The electric field due to the oscillating electric dipole can now be derived 
from equation (6.41) using Maxwell's equations in the way described in Section 
2.6.5. 

6.5. The magnetic field due to a varying current distribution 

Consider a macroscopic charge and current distribution that consists of moving 
and accelerating classical point charges as shown previously in Figure 5.10. 
The magnetic field will be determined at the field point P at the position r 
in Figure 5.10 at the time of observation t. Let ni  be the number of classical 
point charges of type i per cubic metre that have charge qi, velocity [ui], 
acceleration [a i] and are inside the volume element dys  at the position rs  in 
Figure 5.10 at the retarded time t* = (t - Ric), where R is equal to (r — rs). 
It follows from equation (6.1) that the number of charges of velocity [ui] 
counted inside dy, by the information collecting sphere, that reaches the field 
point P at the time of observation t, is 

where 

8N- = 	dys, 
" R 

r 	R • u,  1 
s ' 	[ R 	Rc 	• 

(6.42) 

(6.43) 

Multiplying equation (6.42) by the expression for the magnetic field due to 
a moving and accelerating classical point charge, given by equation (3.13) then 
making the same approximations as when we derived equation (6.16), for 
example by putting (—e) = q i , No  dl = ni  dV„ [u] = uf  and [a] = ai  in 
equations (6.6) and (6.15) and ignoring the 13 cos 0 term we find that the 
total magnetic field at the field point P in Figure 5.10 due to the charges 
that have velocity [ti i] and acceleration [ai] and are counted by the informa-
tion collecting sphere inside dy, is 

go   dB = 	(  qini[10 R 	qini[ai] x R  dv  
i   

47c k 	R 3 	cR 2  

Summing over all values of [ui] and [ai] for particles of type i, and using 
the equations 

Eqin[ui] = [Ji] 

Eqini[al] = 

and then summing over all types of particles we finally obtain 

go 	(r 	ki(r)]  
dB(r, t) — 	

(  [J)] 
 + 	

x k dV, 	 (6.44) 47c k R 2  	cR 

where k is a unit vector in the direction of R, J is the current density and 
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is the rate of change of current density, which in the example shown in 
Figure 5.10 is not necessarily in the direction of J. Equation (6.44) is the 
differential form of equation (1.134) which was derived by Jefimenko [3] by 
solving the differential equation (1.122) for B, and which we derived in Section 
2.7 of Chapter 2 using the vector potential. This result shows that Jefimenko's 
equation (1.134) for the magnetic field due to a varying current distribution 
is valid in differential form, whereas the Jefimenko's equation (1.136) for 
the electric field due to a varying charge and current distribution is only 
valid in integral form. 

In the case of an electrical circuit, if we ignore the centripetal accelera-
tions of the moving charges where the circuit is curved, then the current flow 
and the rate of change of current are parallel to the wires making up the 
circuit and equation (6.44) gives 

dB(r, t) = —  :.1°Tf (V+ 	
dl x R 	 (6.45) 

The reader can check back that the term proportional to [I] in equation (6.45) 
arises from the velocity dependent term B y  in equation (3.13) and that the 
[ ]  term in equation (6.45) arises from the acceleration term BA in equation 
(3.13), which is the expression for the magnetic field due to an accelerating 
classical point charge. 

6.6. The magnetic field due to an oscillating magnetic dipole 

To illustrate the application of equation (6.45), we shall consider again the 
small current carrying coil ABCD shown previously in Figure 5.5 of Chapter 
5. A current / is flowing from A to B to C to D to A, as shown in Figure 
5.5. The sections AD and BC are arcs of circles, with centres at the field 
point P and have radii r and r + 8r respectively, where 8r < r. It follows 
from equation (5.35) that if the length of the section AD is equal to b, where 
b < r, then the length of BC is b(1 + 8rIr). The magnetic field at the field 
point P in Figure 5.5 will be determined at the time of observation t. 

According to equation (6.45) the contributions of the currents in the sections 
AB and CD to the magnetic field at P are both zero since dl x R is zero in 
both cases. If the current and the rate of change of current in the coil ABCD 
are / and i respectively, when the information collecting sphere is passing 
the section BC, then according to equation (6.45) the contribution of the charges 
counted by the information collecting sphere inside BC to the magnetic field 
at the field point P is 

	

(8B)Bc = 
iio  \[.  112(1 + 8rIr) 	ib(1 + 8r1r)1 

	

k 47c )1. r2( 1 + Sr/r)2 	cr(1 + 8rIr) 

where ic is a unit vector perpendicular to the paper in the direction directly 
upwards towards the reader in Figure 5.5. Since 8rIr < 1, using the binomial 
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theorem we have 

(813)Bc (t){f.k; k. (6.46) 1  _ Sr + 1.12 
ri 	cr J 

When the information collecting sphere passes AD at a time 8rIc after it has 
passed BC, the value of the current in AD is (I +  I  (Sr/c)) and the value of 
the rate of change of current in AD is (i + Ï (Sr/c)). Using equation (6.45) 
we find that the contribution of the current in the section AD to the magnetic 
field at the field point P in Figure 5.5 is 

(813)AB 
( 	1{ (I + i8rIc)b 	(I + Ï8r1c)blik.  

47E/ 	r2  cr 	
(6.47) 

Adding equations (6.46) and (6.47), we find that the resultant magnetic field 
at the field point P in Figure 5.5 is 

B. _( go  lb8r ib8r  ib8r it .  
4m it r3 	cr 2 	C

2r z' 

The magnetic moment m of a plane coil is defined as the product of the current 
in the coil and the area of the coil, so that for the coil ABCD 

m = IA = lb 8r. 

Equation (6.48) can now be written in the form 

B=— (A){ jLtn31+ 	± [24c 1 3( 
	

(6.49) 

Equation (6.49) is the standard expression for the magnetic field due to an 
oscillating magnetic dipole for the conditions shown in Figure 5.5, where 
the field point P is in the plane of the coil ABCD. If the current in the coil 
ABCD is steady, then in and  in are both zero in equation (6.49) and the 
expression for B is given by the Biot-Savart law. If the current in the coil ABCD 
is varying at a constant rate, then in is finite, but [A] is zero. The [M] term 
in equation (6.49) arises from the difference in the value of the current [I] 
when the information collecting sphere passes AD compared with BC and arises 
from the velocity dependent contribution By  to the magnetic field due to an 
accelerating classical point charge. The [in] term in equation (6.49) arises from 
the difference in the value of I, the rate of change of current, when the infor-
mation collecting sphere passes AD compared with BC and arises from the 
acceleration dependent term BA in the expression for the magnetic field due 
to an accelerating charge. 

(6.48) 
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6.7. Derivation of the retarded potentials from the Liénard-Wiechert 
potentials 

Consider the varying macroscopic charge and current distribution, consisting 
of moving and accelerating classical point charges, shown previously in Figure 
5.10 of Chapter 5. The resultant scalar potential 4) and the resultant vector 
potential A will be determined at the field point P at the position r in Figure 
5.10 at the time of observation t. It will be assumed in this section that there 
may be more than one type of moving classical point charge. We shall assume 
that there are ni  classical point charges of type i per cubic metre, each of charge 
el;  and each moving with velocity [u]  inside the volume element dys  at the 
position re  in Figure 5.10 at the retarded time t* = (t — Ric), where R is equal 
to (r — re). It follows from equation (6.1) that the number of charges of type 
i having velocity [ui] counted inside dVs  by the information collecting sphere, 
that reaches the field point P at the time of observation t, is 

8Ni  =  ni 
(i-) 

 dy, 	 (6.50) 

where 

si = R [ R — R.cui 1 • (6.51) 

According to the Liénard-Wiechert potentials, equation (3.4), the contribu-
tion of each one of the charges of type i having velocity [u1], that are counted 
inside dV„ to the scalar potential at the field point P at the time of observa-
tion t is 

(0i = 	ql 	 (6.52) 4nEosi  • 

Multiplying equations (6.50) and (6.52) we find that the resultant contribu-
tion to the scalar potential at the field point P in Figure 6.5 of those charges 
of type i having charge q •  and having velocity [u1], that are counted by the 
information collecting sphere inside dy, in Figure 5.10, at the retarded time 
t* = (t — Ric) is 

. qini  dVs  841;  = ni  (i) dV , (  47t/i  os i ) 	 (6.53) 47ccoR • 

Summing over all directions of ui  and over all values of ui  for all the types 
of classical point charges making up the charge and current distribution, we 
have 

d — ( "Eq.n. 	 — )  dy, 	[p] dy,  4)  47cE0R 	47ce0R (6.54) 
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where 

[p] = Eqini 	 (6.55) 

is the resultant macroscopic charge density at rs  at the retarded time t* = 
(t – Ric). Adding the contributions due to all the volume elements in the macro-
scopic charge distribution shown in Figure 5.10, we obtain 

1 
	
[p(r)] dV,  4•(r, t) – —47cE0 	R 	• 	 (6.56) 

Similarly using equations (6.1) and (3.6), we have for the volume element 
dVs  in Figure 5.10 

SAi  = ni 	dV, 
q jut i] 	q  in i[u i] dVs  

47ceoc2s1 	47cE0c2R • 

Summing over all directions of [Il i] for all values of [ui] and for all species 
of moving classical point charge and then using the equation 

[J] = Eqini[ui] 	 (6.57) 

where [J] is the macroscopic current density at rs  at the retarded time t*, we 
have 

[grs)]  dA(r, t) – 	dVs.  
47cEoc 2  R 

Adding the contributions due to all the volume elements in the macroscopic 
current distribution shown in Figure 5.10, we obtain for the field point P in 
Figure 5.10 at the time of observation t 

A(r, t) – 	

1 	[J(r5)]  dv  (6.59) 47ceoc2  J 	R 	s- 

Equations (6.56) and (6.59) are the same as equations (2.29) and (2.30) respec-
tively, which are the expressions for the retarded potentials for macroscopic 
charge and current distributions. These results show that if we start with the 
Liénard-Wiechert potentials for the potentials due to an accelerating clas-
sical point charge then, at external field points the resultant potentials 41 and 
A, due to a system of moving and accelerating classical point charges that build 
up a macroscopic charge and current distribution, are given by the retarded 
potentials. The most straightforward way of applying equations (6.56) and 
(6.59) is to use the methods we applied to equations (2.29) and (2.30) in 
Sections 2.4.2 and 2.4.3 of Chapter 2. 

6.8. Discussion of higher order effects 

We shall go on now to consider the differences between the microscopic 
approach of Section 6.4 and the macroscopic approach we used in Section 
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2.4, when we calculated the magnetic field due to an oscillating electric dipole. 
In Section 2.4 we used the retarded vector potential, given by equation (2.30) 
to determine the vector potential due to the current flowing in the wire 
connecting the charge distributions of the oscillating electric dipole in 
Figure 2.2. This led to equation (2.46). On the other hand, we derived equation 
(6.40) from the expression for the magnetic field due to an accelerating clas-
sical point charge. Comparing equations (2.46) and (6.40) we can see that 
they are not exactly the same, but there is an extra term proportional to 
p cos 0 in equation (6.40) as well as all the higher order terms in  1 , which 
we neglected when we derived equation (6.17). 

There is an important difference between the methods used when we derived 
equation (6.40) and the method based on classical electromagnetism which 
we used in Section 2.4. When we derived the expression for the magnetic 
field due to an accelerating charge in Appendix C we allowed for the effects 
of changes in the position of the charge when we determined the spatial 
variations of the vector potential at the field point at a fixed time to deter-
mine V x A. We then summed the contributions of individual charges using 
equation (6.1). On the other hand, in Section 2.4 we assumed that the con-
necting wire of length d/ was stationary and we only considered the values 
of the current and rate of change of current at a fixed point. 

When u/c < 1, which is generally true for conduction currents, the differ-
ences between the various predictions for B are small and can be neglected. 
However, if the moving atomic charged particles that make up a charge and 
current distribution are moving at speeds comparable to the speed of light there 
could be significant differences between the predictions of equation (2.46) and 
our method, which is expressed in the form of equation (6.4), which is 

s dB = qN0  d/ (—
R

) (B v  +BA ) (6.60) 

where B y  and BA are given by equations (3.14) and (3.16) respectively. 
Equation (6.60) should be valid in the relativistic limit. In practice many 
authors use our microscopic approach when they apply equations (3.10) and 
(3.13) to the motions of individual charged particles moving at relativistic 
speeds, but without using equation (6.1) to count the particles. This latter 
method has been applied for example to derive some of the properties of the 
synchrotron radiation emitted, when charged particles move at relativistic 
speeds in helical paths in magnetic fields. (References: Panofsky and Phillips 
[4] and Jackson [5]). The theory has been applied, for example, to the 
synchrotron radiation emitted by electrons of energies up to 1012  eV in the Crab 
nebula. Another example is the radiation emitted by relativistic electrons 
trapped in the Van Allen belts of Jupiter. Synchrotron radiation is also emitted 
by electrons accelerated in electron synchrotrons. Pulsars (neutron stars) are 
another example of where relativistic effects are important and our equation 
(6.60) might be the more appropriate method to use. 
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CHAPTER 7 

Quasi-stationary phenomena and AC theory 

7.1. The quasi-stationary approximation 

Most household and laboratory equipment works off the electricity mains, in 
which case the applied etnf varies sinusoidally with the mains frequency, which 
is generally 50 or 60 Hz. It only takes the information collecting sphere 
10-8  s to cross a piece of laboratory equipment of dimensions 3 m. At mains 
frequency the change in the emf in 10-8  s is less than 3 x 10-6  times the 
maximum variation in the emf. Since the surface and boundary charge 
distributions associated with conduction current flow can build up extremely 
quickly, it is reasonable to assume that at mains frequency the conduction 
current has the same value in all parts of a series circuit at a given instant. 
Since the surface and boundary charges are exceedingly small, the current flow 
associated with changes in their values can be ignored compared with the 
conduction current flowing in the circuit. Hence Kirchhoff's first law according 
to which the algebraic sum of the currents into the node of a network is zero 
is also valid in the quasi-stationary limit, for example at mains frequency. 

If the mains frequency is 50 Hz, the wavelength of the electromagnetic 
variations is 6000 km so that 2■127c is equal to about 1000 km. Hence for 
laboratory experiments carried out at mains frequency, we are always in the 
near zone, so that, when we are working at mains frequency we can gener-
ally ignore the radiation fields that arise from the EA and BA terms in equations 
(3.10) and (3.13), which give the total electric and magnetic fields due to a 
moving and accelerating classical point charge. Hence in the quasi-stationary 
limit, for example, at mains frequency, we need only use equations (3.11) 
and (3.14) which give the velocity dependent fields Ey  and By  and formulae 
we have derived using them, such as equations (5.18), (5.53) and (6.9). 

227 
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7.2. The interpretation of transformer induced emf 

7.2.1. A simple air cored transformer 

As a simple introduction to the origin of a transformer induced emf, we shall 
consider the air cored transformer shown in Figure 7.1. The primary of the 
air cored transformer is an infinitely-  long solenoid of the type shown 
previously in Figure 5.7 of Chapter 5 and shown again in plan view in 
Figure 7.1, looking downwards from z = +.0. We shall choose the cylindrical 
coordinate system (r, 4), z), whose z axis coincides with the axis of the solenoid 
and whose origin is in the plane of the paper in Figure 7.1. The solenoid 
(primary coil) consists of n turns per metre length each of radius b. The 
secondary of the transformer is a single turn going once around the solenoid, 
as shown in Figure 7.1. We shall assume that the current I I  in the primary 
coil is in the direction –4), that is in the clockwise direction in the plan view 
in Figure 7.1. According to equation (5.68) of Chapter 5, which was derived 
from the expression for the electric field due to a moving classical point charge, 
the moving conduction electrons and stationary positive ions inside the 
windings of the solenoid, the primary coil, give rise to a resultant induction 
electric field Ei  outside the solenoid, which at large distances r >> b from 
the axis of the solenoid is given in the quasi-stationary limit by 

E nb2  ( di,, 1 	go 	_L- E,. = .E., 09.• = 	—) W . 2r 	dt 
(7.1) 

INDUCED 
CURRENT I 

INDUCTION ELECTRIC 
FIELD LINE DUE 
TO THE VARYING CURRENT 
I i  IN THE LONG SOLENOID 

Figure 7.1. A simple transformer consisting of a secondary coil which goes once around a 
long solenoid. A typical induction electric field line due to the varying current in the long solenoid 
is shown. 
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It is left as a problem, given at the end of this section, for the reader to show 
that equation (7.1) is valid for all values of r > b. The induction electric 
field lines outside the solenoid are closed circles in the (r, 4)) plane as shown 
in Figure 7.1. To simplify our initial discussion, we shall assume in this 
section that the current I  in the primary coil varies at a constant rate so that 
according to equation (7.1) the induction electric field Ei  and hence the induced 
emf and current flowing in the secondary coil are constant so that, in this 
special case, there is no back emf due to the self inductance of the secondary 
coil. 

When the varying current I in the primary coil is first switched on, the only 
electric field inside the stationary wire making up the secondary coil in Figure 
7.1 is the induction electric field  E. given by equation (7.1), which is not, in 
general, parallel to the wire making up the secondary coil. The initial direc-
tion of conduction current flow in the wires making up the stationary secondary 
coil is in the direction of the induction electric field Ei. This leads to the 
build up of charge distributions on the surfaces of the wires making up the 
secondary coil and at boundaries between wires of different electrical con-
ductivities, as explained in Appendix B. The electric field due to these surface 
and boundary charge distributions will be denoted by E.  The necessary surface 
and boundary charge distributions build up very quickly and are of such a 
magnitude that, once the initial transient state is over, the resultant electric 
field E = (Ei  + E) inside the wires making up the secondary coil in Figure 
7.1 is always parallel to the wire and is of such a magnitude that, when the 
conduction current I in the primary coil is varying at a constant rate, the 
conduction current 12 in the secondary coil is steady and has the same value 
in all parts of the secondary circuit, whatever the resistances of the various 
sections of the secondary coil. 

The total emf £ —sec in the secondary circuit will be defined by the line integral 

F 1 
Es„ = 	 di2 (7.2) 

evaluated around the secondary circuit at a fixed instant of time, where in 
equation (7.2) F is the force on a test charge of magnitude q, that is at rest 
relative to the element of length dI2  of the secondary circuit. In the case of 
a stationary circuit, F/q is equal to the resultant total electric field E = 
(E1  + Es) inside the wire making up the secondary circuit in Figure 7.1. 
Putting F/q equal to E in equation (7.2) and integrating around the secondary 
circuit, we have 

Esec = E • d12  = (Ei  + E) • d12  = Ei  • d12  + Es  • d12 . 	(7.3) 

When the current 12 in the secondary coil has reached its final constant value, 
the surface and boundary charge distributions giving rise to Es  are steady 
and can be treated as electrostatic. In these conditions the Es  field is conser-
vative so that Es  • dI2  is zero and equation (7.3) reduces to 
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Esec = f E1 .  d12 . 	 (7.4) 

If d12  is in the direction of the current flow in the secondary coil in Figure 
7.1, then using equation (7.1) with i, 41) and i as unit vectors in the direc-
tions of increasing r, it, and z respectively, we have 

Esec = f Ei  • d12  = f (E44‘) • (dri + r 04  + dzii). 

4) Since 1 • i and 431) • ii are zero, using equation (7.1) we have 

Csec = f  Er  Clil) — 1"b2 ( —dli ) f d. 	 (7.5) 2 	dt 

For a single turn going around the primary f (10 = 2n, so that equation (7.5) 
gives 

Csec = f E • d12  = f Ei  • d12  = iti0n7tb2  (- c-fiLdi  ) . 	 (7.6) 

The induction electric field Ei  due to the varying current in the primary coil, 
which gives the transformer induced emf in the secondary coil is not local-
ized but is distributed all along the secondary coil in Figure 7.1. 

In a typical transformer, the secondary consists of more than one turn. If 
the secondary coil in Figure 7.1 goes around the primary (the long solenoid) 
N times, pil) is equal to 27rAT and equation (7.5) gives 

cui 
Esec = f Ei  • d12  = lionMcb2 ( 

w ) . 	 (7.7) 

The emf in the secondary coil of the air cored transformer in Figure 7.1 can 
be varied either by varying n the number of turns per metre length in the 
primary coil (the long solenoid) or by varying N the total number of turns in 
the secondary coil. The emf can also be increased substantially by placing a 
ferromagnetic core inside the long solenoid. 

Problem. It can be shown [1] using Maxwell's equations that the magnetic 
field due to the solenoid in Figure 7.1 is given by 

B = 0 	 (r > b), 	 (7.8) 

B = gon/i 	 (r < b). 	 (7.9) 

Use the equation 

j13 • dS = fN7 x A • dS = f A • dl 

to show that 

A- 
 (  gon/b2  

2r ) i?; * (r > b), 	 (7.10) 
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A— 	
tio2n/r  ) 4). 	 (r < b), 	 (7.11) 

Use equation (2.17) to show that, for quasi-stationary conditions the induc-
tion electric field is given by 

	

N2nrib2 ) 41. 
	 (r > b), 	 (7.12) 

Ei go2nir  43. 	 (r < b), 	 (7.13) 

Check equations (7.12) and (7.13) using equation (1.105). 

7.2.2. Calculation of the current flow in the secondary coil when 1 is constant 

The total electric field E = (E1  + E) inside the wire, making up the sec-
ondary coil in Figure 7.1, gives rise to a conduction current flow in the way 
described in Section 1.3 of Chapter 1. According to equation (1.42), the current 
density J2 at any point inside the wire making up the secondary coil in Figure 
7.1 is related to the total electric field E = (E1  + E) inside the wire making 
up the secondary coil by the constitutive equation 

J2 ="4  oE = o(Ei  + E) 	 (7.14) 

where o is the local value of the electrical conductivity, which depends on 
the properties of the conducting wire. When the current // in the primary 
coil is varying at a constant rate, the emf in the secondary coil, given by 
equation (7.6), is a constant so that the current /2 in the secondary coil is a 
constant. The current density J2 is then uniform across the wire making up 
the secondary coil, so that J2 =  12/A2, where A2 is the area of cross section 
of the wire, and equation (7.14) can be rewritten in the form 

E = Ei  + Es  = 12  
oA. • 

(7.15) 

We now form the scalar product of the total electric field E and an element 
of length d12  of the wire making up the secondary coil, where the vector d12  
points in the direction of current flow. Since in the steady state the resultant 
electric field E inside the wire is parallel to d1 2 , using equation (7.15) we have 

E d12  =Ed/2  = /2 0A 	1 2 4.111  

where, according to equation (1.43) of Chapter 1, d/2/oA 2  is equal to the 
resistance di? of the length d/2  of the secondary coil. Summing E d12  along 
the whole length of the secondary coil we have 

E d12  = /2E d/?. 	 (7.16) 
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Comparing equations (7.4) and (7.16), we conclude that 

Esec 
=

f (7.17) E • dI2  = f E 1  • dI2  =  12E dR. 

According to equation (7.17), the sum of the products /2 dR taken around 
the secondary circuit is equal to the emf in the secondary circuit. This is an 
example of Kirchhoff's second law, which we have derived using the consti-
tutive equation J2 = aE. If there is a high resistance R2 in the secondary 
circuit, provided the resistances of the wires making up the rest of the 
secondary coil in Figure 7.1 are negligible compared to R2, then I2E dR can 
be approximated by 12R2  in equation (7.17), which becomes 

Esec = f E • dI2  = f Ei  • dI2  = 12R2 . 	 (7.18) 

Substituting for ese, using equation (7.6) we find that the current /2 in the 
secondary coil in Figure 7.1 is 

ttonnb2  f  dj \ 
12 	R2 	k dt / • 

(7.19) 

We have shown by determining the induction electric field directly from the 
expression for the electric field due to a moving classical point charge using 
equations (3.10), (5.18), (5.53) and (5.68) that there is no need to mention 
the magnetic field, when determining and interpreting transformer induced 
emfs. Still less is it necessary to claim, as some books do, that it is the 
varying magnetic flux that generates the induction electric field. Our inter-
pretation of Faraday's law of electromagnetic induction is that the same moving 
and accelerating charges, that give the induction electric field also give a 
magnetic field whose rate of changed A is equal to —V x E . 

According to equation (7.18) we do not need to know the value of the 
electric field E at every point in the secondary circuit in order to determine 
the current /2 in the secondary circuit. All that we need is the emf, which is 
the line integral E • dI2  of the electric field around the secondary circuit. It 
is for this reason that Faraday's law of electromagnetic induction, namely 

at:1)  Esec  = f E • dl — 	

21 	 (7.20) 

works well in practice, if the magnetic field is known. The quantity 021 in 
equation (7.20) is the magnetic flux linking coil number 2 due to the current 
II  in coil number 1. As an example, consider the secondary coil that goes 
once around the long solenoid in Figure 7.1. Since the magnetic field is uniform 
and equal to tton/i  inside the solenoid and is zero outside 

4321 = (7c1,2)tion/. 	 (7.21) 

Using equations (7.20) and (7.18) we find that 
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=7"  — 7(b21" (--ddi.  ) 6sec 
	= 12R2 * 

(7.22) 

This is in agreement with equation (7.19). Since it is often easier to calcu-
late magnetic fields using the Biot-Savart law than to calculate the induction 
electric fields, Faraday's law, equation (7.20), is generally used in practice. 
It is also often easier to visualize and design an experiment to produce a 
known varying magnetic field than to design an experiment that produces a 
known induction electric field. Faraday's law can then be use to determine 
the transformer induced emf. 

7.2.3. Mutual inductance 

Consider the two stationary coils of arbitrary shape, which are labelled 1 
and 2 in Figure 7.2. According to equation (5.53) of Chapter 5, the induc-
tion electric field due to the varying current Ii  in coil number 1 in Figure 
7.2 at the position r2  of the element of length d12  of coil number 2 is given 

COIL 1 
	

COIL 2 

Figure 7.2. The mutual inductance of two spatially separated, rigid, stationary coils. 
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in the quasi-stationary limit by 

l (r i  
Ei(r2) = —

47c  ( 
	

) 
	

dl)  (7.23) 
dt 	1r2  — r / 1 • 

In equation (7.23), the element of length di, of coil number 1 is at the position 
r 1  as shown in Figure 7.2. Equation (7.23) was derived in Section 5.5.2 of 
Chapter 5 from the expression for the electric field due to a moving clas-
sical point charge, in the limit when the radiation electric field could be 
neglected. Using equations (7.4) and (7.23), we find that the total emf induced 
in coil number 2 by the varying current // in coil number 1 is 

E2 E• • d1 2  
2 	1 

NA 	( d  1
t 

— _32)f 
2 

di, • d12 (7 .2 4 ) 
LI TC 	(I r12  

where r12  = 1r 1  r21. Equation (7.24) is generally rewritten in the abbrevi-
ated form 

where 

E2 	E, • d12 = —M21  ( dd4) 

1110  11  dl • d12  
M21 	A „. 

—r■ s, 	2 	r12  

(7.25) 

(7.26) 

is called the mutual inductance of the two coils. Equation (7.26) is Neumann's 
expression for the mutual inductance of two air cored coils. The value of 
M21 depends on the shapes and separation of the two coils in Figure 7.2. 
According to equation (7.25) the mutual inductance M21, expressed in henries, 
is numerically equal to the emf induced in coil number 2 when the current 
in coil number 1 is varying at the rate of one ampere per second. It 
follows from equation (7.26) that M12 = M21 for the two air cored coils in 
Figure 7.2. 

The reader should remember that on our approach, when an induced emf 
is expressed as —M21 1 1 , it stands for the line integral Ei  • d12  of the induc-
tion electric field  E. around the secondary circuit. 

In introductory text books, mutual inductance is generally introduced and 
defined using Faraday's law of electromagnetic induction, which can be 
rewritten as follows 

where 

c1021 	(  C1021  V at 	_41/2  dit 
E2 	dt 	d/i  / dt / 	1  dt 

(7.27) 

C14321  
M21 - d/i 

is the mutual inductance. For two air cored coils, the magnetic flux 4321 through 
coil number 2 in Figure 7.2 due to the current I I  in coil number 1 is propor- 

(7.28) 
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tional to /1 , so that 4321 = kl" where k is a constant. Hence 

M21 = cui (k/i) = k 	. 

	

(1)2 	 (7.29) --L--/ 	 — 	1 
/1 

According to equation (7.29), the mutual inductance of the two air cored 
coils in Figure 7.2 is equal to the magnetic flux linking coil number 2, when 
a current of one ampere flows in coil number 1. As an example, consider 
the case shown in Figure 7.1 where the secondary consists of only one turn. 
Using equations (7.21) and (7.29) we find that 

021 
M21 = y 

....
i 	pionicb2 . 	 (7.30) 

The reader can check this result by comparing equations (7.25) and (7.6). 
When there are ferromagnetic materials present, the magnetic flux 021  is 

not proportional to Ii  and equations (7.29) is not valid. In this case, the 
mutual inductance is generally defined using equation (7.28). 

7.2.4. Example of Lenz's law 

According to Lenz's law, the direction of the induced emf in the secondary 
coil of a transformer, due to the varying current in the primary coil, is in 
such a direction that it tries to give a current flow in the secondary coil which 
would give a magnetic field in such a direction that it would tend to oppose 
the change in the magnetic flux through the secondary coil due to the varying 
current in the primary. 

Consider again the example shown in Figure 7.1, when the current /1  in 
the primary (the long solenoid) is in the clockwise direction in Figure 7.1 
and is increasing in magnitude. Since its magnetic field is downwards away 
from the reader inside the solenoid and is zero outside the solenoid, the total 
magnetic flux through the secondary coil due to the varying current in the 
primary coil is downwards away from the reader in Figure 7.1. According to 
equation (7.1) the induced field  E.  is in the anticlockwise direction in Figure 
7.1 and gives a current flow in the anticlockwise direction in the secondary 
coil. Such a current flow in the secondary coil gives a magnetic field which 
is upwards towards the reader in Figure 7.1 and thus opposes the increase in 
the magnetic flux through the secondary coil in the downward direction due 
to the increasing current in the primary coil. This direction of current flow 
in the secondary coil is in agreement with Lenz's law. 
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7.3. What a voltmeter measures in the presence of an induction 
electric field in the quasi-stationary limit 

7.3.1. What a voltmeter measures 

A typical laboratory voltmeter consists of a sensitive moving coil galvanometer 
in series with a high resistance. The moving coil galvanometer responds to 
the current lv  flowing through the galvanometer. The scale of the moving 
coil galvanometer is calibrated such that the scale gives the product lv  R v, 
where R v  is the total resistance of the voltmeter. Another example of a typical 
voltmeter is a cathode ray oscilloscope. In this case the scale is calibrated to 
read Iv  R i,,  where R v  is the input resistance of the oscilloscope. 

Assume that the voltmeter V in Figure 7.3 is connected by leads of negli-
gible resistance to the terminals A and B of a "black box", that gives rise to 
a time independent external induction electric field Ei . The total electric field 
inside the connecting wires and voltmeter outside the "black box" in Figure 
7.3 is E = (Ei  + Es), where Es  is the electrostatic field due to any resultant 
charge distributions inside the black box and due to the surface and boundary 
charge distributions on the leads and voltmeter. From the constitutive equation 
J = GE we have 

E = 
I_ = Iv 
o oA 0  (7.31) 

where A o  is the area of cross section of the conductor and Iv  is the current 
flowing through the voltmeter. We shall now form the scalar product of E 
and an element of length dl of the path from terminal A along the red lead, 
then through the voltmeter and finally along the black lead to terminal B in 
Figure 7.3. We have for the element dl 

E.  dl = E dl = (-17-1  ) dl = Iv  dR 
oA0  

where dR = dllaA o  is the resistance of the section of length d/. Integrate 
along the path from terminal A along the leads and through the voltmeter to 

Figure 7.3. The reading of a high resistance voltmeter, such as a CRO, in the presence of a 
steady induction electric field. 
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terminal B in Figure 7.3. Provided the resistances of the leads are negligible 
compared with R v , the resistance of the voltmeter, we have 

IA  B 	B 

E • dl = /v  f dR = Iv  R v . 
A 

(7.32) 

According to equation (7.32), provided the voltmeter is able to respond quickly 
enough, which an oscilloscope can do in the quasi-stationary limit, the reading 
of a voltmeter, that is calibrated to measure I v  Ri,,  measures the line integral 
JE  • dl of the total electric field E = (E i  + E) from terminal A through the 
red lead to the voltmeter, then through the voltmeter and finally through the 
black lead to terminal B in Figure 7.3. Notice that the voltmeter does not 
measure  JEs  • dl between A and B, so that in the presence of an induction 
electric field, the voltmeter does not measure an electrostatic potential dif-
ference. In the absence of an accepted term to describe  JE  • dl, the line integral 
of the total electric field, we shall call it the voltage measured by the volt-
meter. 

7.3.2. Example of the effect of the induction electric field on the reading of 
a voltmeter 

Consider now the example shown in Figures 7.4(a) and 7.4(b). The primary 
coil is an infinitely long solenoid consisting of n circular turns per metre length, 
each of radius b. It will be assumed that the current 1, in the primary coil is 
in the clockwise direction in Figures 7.4(a) and 7.4(b) and that II  is increasing 

VOLTMETER 
	

VOLTMETER 
POSITION 1 
	

POSITION 2 

BLACK LEAD 
	

B 
	

B 
	

BLACK LEAD 

(a) 
	

(b) 

Figure 7.4. Examples to illustrate the influence of an induction electric field on the reading 
of a voltmeter. 
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in magnitude at a constant rate  I so that, according to equation (7.1), the 
induction electric field which is in the anticlockwise direction outside the 
solenoid does not vary with time. According to equations (7.6) and (7.22) 
the emf in any coil of any shape going once around the outside of the long 
solenoid is 

c = E1  dl = gonnb21i 	 (7.33) 

which is constant if i  is constant. 
The secondary circuits in Figures 7.4(a) and 7.4(b) both consist of resis-

tors R 1  and R2 which are connected by leads of negligible resistances to the 
points A and B. The question we shall discuss is, what will a voltmeter, such 
as an oscilloscope, read when it is in position 1 in Figure 7.4(a) and position 
2 in Figure 7.4(b)? The lead from A to the positive terminal of the voltmeter 
in both Figures 7.4(a) and 7.4(b) is labelled red and the lead from the negative 
terminal of the voltmeter to B is labelled black. Experiments, such as those 
of Romer [2] have shown that, even though the voltmeter, is connected to 
the same points A and B in Figures 7.4(a) and 7.4(b), the readings of the 
voltmeter, which will be denoted by Vi  and V2 respectively, are not the same 
in the two cases. 

Assume that the current through the resistor R i  in Figure 7.4(a) is I and 
that the current through the voltmeter, when it is in position 1 in Figure 
7.4(a) is I. Since the emf given by equation (7.33) is constant, when the current 
in the primary coil is varying at a constant rate, the current in the secondary 
circuit is constant and Kirchhoff's first law can be applied so that the current 
through the resistor R2 in Figure 7.4(a) is (I + Iv). Since the secondary circuit 
in Figure 7.4(a) is completely outside the infinitely long solenoid the emf E, 
given by equation (7.33), is the same for both the loops ACBDA and AEBDA 
in Figure 7.4(a). Using the constitutive equation E = = //GA O  and integrating 
E • dl around the loop ACBDA in Figure 7.4(a) we have 

E = E • dl = E  / d/  — 	dR = /R i  + (/ + /v)R 2 	(7.34) 
oA0  

which is in agreement with Kirchhoff's second law. Similarly for the loop 
AEBDA in Figure 7.4(b) we have 

= E dl = Iv  R v  + (/ + /)R 2 . 	 (7.35) 

Solving equations (7.34) and (7.35), we find that the reading V1  of the volt-
meter in position 1 in Figure 7.4(a) is 

= ivRV - R 1  ± R2  ± (R IR2/R) • 
	 (7.36) 

The reading Vi  is positive since the current Iv  enters the voltmeter through 
the red lead, which is connected to the positive end of the voltmeter. If the 
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resistance R v  of the voltmeter is so big that R v  >> R i  and R v  » R2, which is 
generally true in the case when we use an oscilloscope to measure the voltage, 
then equation (7.36) reduces to 

ER1  

	

= IvR v  — 	 (7.37) (R i  + R2) 

Consider now the secondary circuit shown in Figure 7.4(b). Let the current 
through the resistor R i  now be equal to I'. We shall assume, for purposes of 
discussion that a current 4 enters the voltmeter in position 2 in Figure 7.4(b) 
via the positive terminal. According to Kirchhoff's first law the current through 
R2 is (I' + 4). The total emf E in the secondary circuit is still given by 
equation (7.33) and is still in the anticlockwise direction as shown in Figure 
7.4(b). Developing Kirchhoff's second law for the loops ACBDA and ACBFA 
in Figure 7.4(b), by using the constitutive equation E = Jlo we find that 

E = FR I  + (I' + i0R 2, 	 (7.38) 

E I'R i  — 4R v . 	 (7.39) 

Solving equations (7.38) and (7.39) we find that 4 is negative and the reading 
V2 of the voltmeter in position 2 in Figure 7.4(b) is 

V2 = 	= 	ER2 	 (7.40) R i  + R2 + (R1R2/Rv) 

If R v » R i  and R v  » R2, we have 

CR2  V2 = I'vR v  — (Ri  ± R2)  . 	 (7.41) 

We can see that, since 4 is negative, V2 is negative. This result should not 
be unexpected since the induced emf E is trying to drive current around the 
secondary circuit including the voltmeter in the anticlockwise direction in both 
Figures 7.4(a) and 7.4(b), so that, when the voltmeter is in position 2 in 
Figure 7.4(b), the current enters the voltmeter by the black lead. According 
to equation (7.37) and (7.41), in the presence of the induction electric field 
outside the long solenoid, not only are Vi  and V2 not numerically equal but 
they are of opposite sign. 

For example, if R i  = 2R2 , which is the case studied experimentally by Romer 
[2], then equations (7.37) and (7.41) become 

(7.42) 

V2 = — -- 
3 

(7.43) 

Equations (7.42) and (7.43) were confirmed experimentally by Romer [2]. 
The current through the voltmeter in Figures 7.4(a) and 7.4(b) is due partly 

to the induction electric field El  due to the varying current in the primary 
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coil (the solenoid) and partly due to the electrostatic field Es  due to the 
surface and boundary charge distributions, that give the correct value for the 
total electric field E = (E1  + Es) to give the appropriate values of current 
flow through the voltmeter. For example, if the points A and B in Figure 
7.4(a) are diametrically opposite each other, it follows by putting fd(I) equal 
to ic in equation (7.5) that fEi  • dl from A to B through the voltmeter in 
Figure 7.4(a) is equal to 6/2. According to equation (7.42) when R 1  = 2R2  
and R v  >> R 1 , the reading V1  of the voltmeter in position 1 in Figure 7.4(a) 
is equal to 26/3. Hence the contribution of JE s  •  dito JE  • dl evaluated from 
A to B through the voltmeter in Figure 7.4(a), is equal to +e6. For the case 
shown in Figure 7.4(b), the value of fEi  • dl evaluated from A to B through 
the voltmeter in the direction from A to B is equal to -e2. This is negative 
since the induction electric field  E. is in the anticlockwise direction in Figure 
7.4(b), which is in the direction opposite to dl. Since, according to equation 
(7.43), when R 1  = 2R2  and R v  >> R 1  we have 

V2 = E dl = Ei  • dl + Es  • dl = 

and since 1E, • dl is equal to —6/2, then fEs  • dl evaluated from A to B through 
the voltmeter in Figure 7.4(b) is again equal to +6/6. Notice that when 
R 1  = 2R2 , the direction of the electrostatic field Es  due to surface and boundary 
charge distributions, associated with conduction current flow, is such as to 
increase the magnitude of the total electric field inside the larger resistance 
R 1  and to decrease the magnitude of the total electric field inside the smaller 
resistance R2, such that in the limit as R v  tends to infinity and Iv  tends to 
zero in Figure 7.4(a), the current is the same in both the resistors R 1  and R2, 
despite their different resistances. 

If the terminals A and B in Figures 7.4(a) and 7.4(b) were not diametri-
cally opposite each other, the analysis leading to equations (7.37) and (7.41), 
which can be based on Kirchhoff's laws, would still be valid. When A and 
B are not diametrically opposite each other the value of 1E1  dl obtained 
using equation (7.5) for the path from A to B through the voltmeter in Figure 
7.4(a) would not be equal to 6/2. However, the surface and boundary charge 
distributions giving rise to Es  would be changed in the new situation such 
that the line integrals  JE  • dl of the total electric field from A to B through 
the voltmeters in Figures 7.4(a) and 7.4(b) would still be equal to 26/3 and 
—613 respectively and the voltmeters would read the same voltages V1  and 
V2, as was the case when A and B were diametrically opposite each other in 
Figures 7.4(a) and 7.4(b). 

The values of 171  = 261 3 and V2 = —6/3, which we determined for the case 
when R 1  = 2R2  in Figures 7.4(a) and 7.4(b) are the values of the line inte-
grals  JE  • dl of the total electric field from terminal A along the leads and 
through the voltmeter to terminal B in Figures 7.4(a) and 7.4(b) respectively. 
In the special case, when the secondary circuit in Figures 7.4(a) and 7.4(b) 
is in a region where the magnetic field is zero outside the solenoid, it follows 
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from Faraday's law of electromagnetic induction that  JE • dl is zero around 
the loop AEBCA in Figure 7.4(a). Hence for the special case shown in Figure 
7.4(a), JE • dl evaluated from A to B through the voltmeter, which is equal 
to Vi  = lv  R v  = 2c/3 is also equal to fE dl evaluated from A to B through 
the resistance R i  which is given by 

/  
EE d/ = d/ E—

aA0 
_ThdR= JR 1.  

Hence in the special case shown in Figure 7.4(a), V i  the reading of the volt-
meter is equal to the value of /R i . It should be stressed that /R i  is not equal 
to the line integral fEs  • dl of the electrostatic field from A to B through the 
resistor R, which is only equal to e16.  The extra contribution of  c12 comes from 
the line integral of the induction electric field. In the special case shown in 
Figure 7.4(b), when R v  R2 the reading V2 = –c.13 of the voltmeter is equal 
to (I' + IOR2 , where (I' + 10 is the current through the resistor R2, If the 
secondary circuit in Figures 7.4(a) were in a varying magnetic field, for 
example if it were completely inside the solenoid, there would be a varying 
magnetic flux through the loop AEBCA and JE • dl evaluated from A to B 
through the voltmeter would not be equal tolE • dl evaluated from A to 
B through the resistor R i  so that in the more general case Vi  would not be equal 
to /R i  in Figure 7.4(a) and V2 would not be equal to (I' + IOR2  in Figure 
7.4(b). 

7.4. Self inductance 

7.4.1. Example of self inductance 

Consider the isolated long solenoid consisting of n circular turns per metre 
length each of radius b, as shown in plan view in Figure 7.5. When the 
current in the solenoid is varying, the moving conduction electrons in the 
windings of the solenoid give rise to an induction electric field Ei  which, 
according to equation (7.12), is given in the quasi-stationary limit at the 
position r = b by 

Ei  = E4)  = ponb d/ 
2 k dt 

(7.44) 

If  I is increasing in magnitude the direction of E i  is opposite to the direction 
of current flow in the solenoid, as shown in Figure 7.5. The induction electric 
field Ei  given by equation (7.44), acts on the conduction electrons inside the 
windings of the isolated solenoid and tries to give a conduction current flow, 
which is in such a direction that it opposes the direction of current flow in 
Figure 7.5. If the conduction current in the isolated solenoid is decreasing in 
magnitude, i is negative and the direction of E o  is reversed. In this case the 
induction electric field Ei  =  E  to give a conduction current flow that 
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INDUCTION 
ELECTRIC 
FIELD E 1  

E 1  

Figure 7.5. Example of self induction. The varying current in the long solenoid gives an 
induction electric field E„ which gives a back emf in the long solenoid. 

opposes the decrease in current flow. Since the induced emf in the isolated 
solenoid always opposes the changes in conduction current flow, it is gener-
ally called a back emf. This is the phenomenon of self induction. Using 
equation (7.44) we find that the induced back emf per metre length of the 
solenoid is given, in the quasi-stationary limit, by 

di Ei  • dl = 27Enb  E 	b2 
(-- ) . 
	 (7.45) 

7.4.2. General case of the self inductance of an air cored coil 

Consider the general case of an isolated stationary coil of arbitrary shape. 
The conduction current in the coil is varying at a slow enough rate for the 
quasi-stationary approximations to be valid. According to equation (5.53) of 
Chapter 5, which was derived from the expression for the electric field due 
to a moving classical point charge, the induction electric field  E. at a position 
r due to the varying current in the isolated coil itself is given by 

go/ 	dl'  
E(r) – —470 Ir – 	 (7.46) 

where dl' is an element of length of the isolated coil at the position r'. The 
total induced back emf c in the isolated coil due to the varying current in 
the coil itself is obtained by evaluating the line integral  JE  i  • dl around the 
coil. We have 
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e = f Ei • dl= — 
{ go  ,f f dl'.  dl  lt d/ \ 

47c f Ir — el J k dt / (7.47) 

where dl and dl' are elements of length of the coil at the positions r and r' 
respectively. Equation (7.47) is generally written in the abbreviated form 

where 

6 = f Ei  • dl = —L ( 41- dt) (7.48) 

	

L  _ go  f f dl • dl' 	 (7.49) 
— 47c 	Ir — el 

is the self inductance of the air cored coil. The direction of the back emf 
due to self inductance is consistent with Lenz's law, and acts in such a direc-
tion as to oppose the changes in the conduction current flowing in the coil. 
According to equation (7.48), the self inductance of a coil, measured in henries, 
is numerically equal to the back emf, measured in volts, when the current in 
the coil is varying at the rate of one ampere per second. In practice the self 
inductance of a coil can be increased by winding the turns of the coil on a 
ferromagnetic core. 

In introductory courses, self inductance is generally introduced using 
Faraday's law of electromagnetic induction, according to which the back emf 
in the coil is 

(7.50) 

where 0 is the magnetic flux linking the coil due to the current in the coil 
itself. Equation (7.50) can be rewritten in the form 

( d0 V d/ \ 	d/ 
8  = — k ci )k Z- ) = —I" dt 

where the self inductance L of the coil is defined as 

L
do 

1., = — di • 

(7.51) 

(7.52) 

In the special case of an air cored coil, the magnetic flux 0 is proportional 
to the current I.  If 0 = kl where k is a constant, equation (7.52) reduces to 

L— 
 7_1(10 . cird (ki)  . k  . 	 (7.53) 

According to equation (7.53), the self inductance L of an air cored coil, 
measured in henries, is numerically equal to the magnetic flux 0 linking the 
coil, when the current in the coil is one ampere. When there are ferro-
magnetic materials present 0 is not proportional to I, so that equation (7.53) 
is no longer valid, but equation (7.52) can still be used to define L. The 
reader can show either by using equation (7.53) or by comparing equations 
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(7.48) and (7.45) that the inductance per metre length of a long solenoid is 
gonn2b2, where b is the radius of the solenoid and n is the number of turns 
per metre length . 

The reader should remember that, in our approach when the back emf due 
to self induction is written in the form —Li, the —Li term stands for JE,  • dl, 
the line integral of the induction electric field due to the varying current in 
the coil making up the inductor evaluated around the inductor coil. 

7.5. An air cored transformer working at mains frequency 

In Section 7.2, we assumed that the current in the primary coil in Figure 7.1 
was varying at a constant rate, so that the current in the secondary coil was 
constant and the back emf due to the self inductance of the secondary coil 
was zero. We shall now assume that the current /1  in the primary coil (the 
infinitely long solenoid) in Figure 7.1 varies at the frequency of the elec-
tricity mains, which is generally 50 or 60 Hz. The sign convention we shall 
adopt is that the positive direction for current flow, electric fields and emfs 
in Figure 7.1 is in the direction of increasing angle 4), which is in the anti-
clockwise direction in the plan view shown in Figure 7.1. According to 
equation (7.25) the emf, now denoted by e l , induced in the secondary coil in 
Figure 7.1 by the varying current I in the primary coil is given by 

c 1 =  f Ei  • d12  = —M 

	

—21 dt 	 (7.54) 

where Ei  is the induction electric field due to the moving charges in the primary 
coil. For the special case shown in Figure 7.1,  M21 is given by equation 
(7.30). When the current I I  in the primary coil is in the clockwise direction 
in Figure 7.1 and is increasing in magnitude  I is negative so that M — 214 and 
e l  are positive, that is e l  is in the anticlockwise direction in Figure 7.1. The 
emf e i  gives a current flow in the secondary coil in Figure 7.1 which, after 
the initial transient state after switching on is over, varies at mains frequency. 
It follows from the analysis given in Section 7.4 that, due to the inductance 
L2 of the secondary coil, the moving conduction electrons, whose motions give 
the varying current /2 in the secondary coil, also give rise to an induction 
electric field, which will be denoted by EL . This induction electric field EL  acts 
on the conduction electrons in the secondary coil. It follows from equation 
(7.48) that the back emf e2  in the secondary coil due to the self inductance 
L2 of the secondary coil is 

	

C2 = EL • d12 =  —L2  dI2 
 dt • 
	 (7.55) 

At mains frequency, there is sufficient time for the necessary quasi-stationary 
surface and boundary charge distributions to build up such that, at any instant, 
they give a contribution Es  to the electric field, that gives a resultant electric 
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field E = (E1  + EL  + Es) inside the wire making up the secondary coil in 
Figure 7.1, which is always parallel to the wire and is of such a magnitude 
that, at every instant, the conduction current /2 in the secondary coil has the 
same value in all parts of the secondary circuit. 

The total emf in the stationary secondary circuit is 

= E d12  = (E1  + EL  + Es) • d12 . (7.56) 
2 	J2   

The line integrals are evaluated in the positive (anticlockwise) direction in 
Figure 7.1. In the quasi-stationary limit, the small surface and boundary charge 
distributions that give rise to Es  vary at mains frequency, which is slow enough 
for them to be treated as electrostatic so that, to an excellent approximation, 
the E, field is conservative and 

E5 .  d12  = O. 
2 

Equation (7.56) for the total emf in the secondary circuit then reduces to 

Esec = fEi • (112 fEL • d12. = —M21 11 — L2/2 
	 (7.57) 

where we have used equations (7.25) and (7.48). 
The skin depth in copper is 9 mm at 50 Hz. Hence it is a reasonable approx-

imation to assume that the current density J2 is uniform across the thin wires 
making up the secondary coil, so that J2 = 12/A2, where A2 is the area of 
cross section of the wire. The constitutive equation can then be written in 
the form 

J2 	12  E = Ei  + EL  + Es  = — = 	 (7.58) 
a aA 2  

where a is the local value of the electrical conductivity. We shall now form 
the scalar product of E and the element of length d12  of the secondary coil 
pointing in the positive (anticlockwise) direction in Figure 7.1. Summing 
around the secondary circuit, since E, d12  and 12  are all parallel, using equation 
(7.58) we have 

di2  
— 

/2 EdR p = 	dl2 	GA2 —sec 	 — (7.59) 

where dR is the resistance of the length d12  of the wire. 
If there is a resistor of high resistance R2 in the secondary circuit, which 

is very much bigger than the resistances of the wires making up the 
secondary circuit, then /2 EdR is given to an excellent approximation by 
12 R2. Comparing equations (7.57) and (7.59) we see that 

Esec = Ei • d12 + EL • d12. =2  —M i —21-1 — L212 = /2 R2 f 	 (7.60) 

Esec 
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For the case shown in Figure 7 .1, 11  is negative on our sign convention. 
According to equation (7.60) the sum of the emfs in the secondary circuit in 
Figure 7.1 is equal to the sum of the products 12 dR taken around the circuit. 
This is another example of Kirchhoff's second law. 

The varying current 12 in the secondary coil in Figure 7.1 gives an emf of 
magnitude —M12/2  in the primary coil of the air cored transformer. It follows 
from equation (7.26) that M12 = M21. When the current 12 in the secondary coil 
is in the positive (anticlockwise) direction in Figure 7.1 and 12 is increasing 
in magnitude the emf —M12/2  induced in the primary coil by the varying current 
in the secondary coil is in the negative (clockwise) direction. The varying 
current Ii  in the primary coil gives a back emf —L 111  in the primary coil where 
L 1  is the self inductance of the primary coil. When ii  is negative this back 
emf is in the anticlockwise direction in Figure 7.1. If there is a resistor of 
resistance R 1  in the primary circuit and a generator of emf —Eo  cos cot to drive 
the current / 1  in the negative (clockwise) direction around the primary coil, 
then the reader can show using the methods leading to equation (7.60) that 
with our sign convention 

—co  cos cot — M1212  — L 111  — 41R 1 • 	 (7.61) 

The left hand side represents the sum of the emfs in the primary circuit and 
the right hand side is the sum of the IR drops. Equation (7.61) is in agree-
ment with Kirchhoff's second law. The reader will find that different books 
use different sign conventions. If co  cos cot, M21  = 1/112, L1, L2 9  R 1  and R2 are 
given, then equations (7.60) and (7.61) can be used to determine the currents 
/1  and 12 in the primary and secondary coils of the air cored transformer in 
Figure 7.1. 

7.6. AC theory 

7.6.1. Introduction 

In this section we shall develop the interpretation of the LCR circuit shown 
in Figure 7.6, which consists of an inductor of inductance L, a capacitor of 
capacitance C and a resistor of resistance R. We shall assume that the applied 
emf E = E0  cos  cot comes from the secondary of a transformer working at 
mains frequency, so that the quasi-stationary approximations discussed in 
Section 7.1 are valid. We shall assume that the circuit elements can be treated 
as idealized lumped elements. For example, we shall assume that when the 
current in the inductor L is varying, the induced electric field due to the varying 
current in the inductor is confined to the inside of the inductor. We shall assume 
that the inductance L of the inductor is very much bigger than the self induc-
tances of the other circuit elements. We shall assume that there is no leakage 
current between the plates of the capacitor and that the capacitance C of the 
capacitor is very much bigger than any stray capacitances. We shall also assume 
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E=  Eo  cos Wt 
	• ...., • 

I 

C 

I 	 
R 

ru--mr 	 

Figure 7.6. The LCR circuit. 

that the resistance R is very much bigger than the resistances of the leads, 
inductor and the internal resistance of the source of emf. 

7.6.2. The LR circuit 

Consider first the LR circuit shown in Figure 7.7. We shall assume that the emf 
applied to the LR circuit comes from a transformer connected to the elec-
tricity mains. When the current in the LR circuit is varying, according to 
equation (7.48) there is a back emf —Li in the inductor, which affects the 
value of the current flowing in the circuit. Let  E. be the induction electric 
field induced in the secondary coil of the transformer by the varying current 
in the primary coil of the transformer at the time t. The value of the emf applied 
to the LR circuit at the time t is given by e = fEi  • dl evaluated around the 
LR circuit. We shall ignore the self inductance of the secondary coil of the 
transformer. Let EL  be the electric field induced in the windings of the inductor 
L by the varying current in the inductor. According to equation (7.48), 

fEL  • dl evaluated around the circuit is equal to —Li. Evaluating the line integral 
of the total electric field around the circuit, remembering that, for quasi- 

E = Eo  cos Wt 
	• r•••0 • 

I 

L 	 R 
	fUNR5D 	> 	 r1JULP 	 

I 

Figure 7.7. The LR circuit. 
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stationary conditions, the electric field E, due to the surface and boundary 
charge distributions is, to an excellent approximation conservative, we have 

fE • dl = f(Ei  + EL  + E5) • d12  = fEi  • d12  + f EL  • d12  = e — Li. 

(7.62) 

Using the constitutive equation E = JIG = IIGA, we have 

f E • dl = f 	
f 

Edl = 	
_ 

I f dR = IR 	 (7.63) GA 

where I is the current in the circuit, a is the electrical conductivity, A is the 
area of the cross section and R is the resistance of the secondary circuit. 
Comparing equations (7.62) and (7.63), we see that 

Co  cos wt — Li = IR. 	 (7.64) 

The left hand side of equation (7.64) is the sum of the applied emf co  cos cot 
and the back emf —Li, whereas the right hand side was derived using the 
constitutive equation J = GE to evaluate fE • dl. Equation (7.64) is often 
rewritten in the form 

co  cos wt = Li + IR. 	 (7.65) 

Moving the Li term to the right hand side of equation (7.65) does not change 
the physical interpretation of the role of the Li term in equations (7.64) 
and (7.65). 

The steady state solution of equation (7.65), that is valid after the tran-
sient state is effectively over, which is after a few cycles after switching on, 
is 

where 

I — 	CO  
(R2 ± co2L2)112 cos (Wt — 11)) = 4 cos (cot  — 

coL 
tan 0 = R  . 

(7.66) 

(7.67) 

The current I varies at the same frequency as the applied emf. The effect of 
the back emf, due to the inductor L, is to reduce the maximum amplitude of 
the current in the circuit from the value of e/R it would have had if the inductor 
were absent to the value of e/(R2 4. 032L2 ■ 1/2 .  ) 	The wL term is called the 
reactance of the inductor. According to equation (7.66) the larger the value 
of coL, then the smaller is the current in the LR circuit. The presence of the 
inductor L also affects the phase of the current in the circuit. According to 
equation (7.66), after the transient state is over, the emf leads the current in 
the circuit by a phase angle (I) given by equation (7.67). When R is zero, 
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7.6.3. The CR circuit 

Consider now the CR circuit shown in Figure 7.8(a). For quasi-stationary 
conditions the electric fields due to the surface and boundary charges asso-
ciated with current flow, and the electric field due to the charges on the plates 
of the capacitor can be treated, to a good approximation, as electrostatic, so 
that fEs  • dl, evaluated around the complete circuit, is zero. Hence the integral 
of the total electric field around the CR circuit shown in Figure 7.8(a) reduces 
to 

fE • dl = f (Ei  + Es) • dl = fEi  . dl = e 	 (7.68) 

E =- E0  cos Wt 
	• ,-. • 	 

I I 

Figure 7.8. (a) The CR circuit (b) The electric fields in the leads to and from the capacitor 
and in the space between the plates of the capacitor. 
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where £ is the instantaneous value of the applied emf. 
To understand how the capacitor acts in the CR circuit, assume that, in 

the way described in Appendix B, the applied emf gives rise to surface and 
boundary charges which give a resultant electric field inside the wires leading 
to and from the capacitor, as shown in Figure 7.8(b). The conduction elec-
trons in the wires respond to the local resultant electric fields inside the wires 
and a conduction current will flow in the leads to and from the capacitor, as 
long as the emf can maintain electric fields inside the connecting wires 
in Figure 7.8(b). Even though there is an insulating gap between the plates 
of the capacitor, which would prevent DC current flow, the current in the 
connecting leads in Figure 7.8(b) will continue to flow as long as the applied 
emf is able to maintain an electric field in the connecting leads. For the 
conditions shown in Figure 7.8(b), the current flow in the connecting leads 
increases the positive charge on the positive plate of the capacitor and makes 
the charge on the negative plate more negative. This in turn increases the 
electric field between the plates of the capacitor and, as we shall see later, 
this in turn affects the electric fields inside the connecting wires in other 
parts of the circuit. If at any instant there are charges of +Q and –Q on the 
plates of the capacitor C in Figure 7.8(a), they will give a contribution 
V = QIC to the line integral  JE  • dl evaluated between the plates of the 
capacitor. The electric field in the wire leading to the capacitor is typically 
of the order of 0.01 V m-i . If there is a potential difference of 10 V across a 
capacitor whose plates are 1 mm apart, the electric field between the plates 
of the capacitor due to the charges on the capacitor plates is 104  V re, which 
is about 106  times the magnitude of the electric field due to the source of 
emf and the surface and boundary charge distributions on the connecting leads. 
Hence, to a very good approximation, the line integral  JE  • dl of the total 
electric field E evaluated from one plate of the capacitor to the other is equal 
to the line integral of the electric field due to the charges +Q and –Q on the 
capacitor plates, which is equal to QIC. Adding this contribution to the 
contribution of fE • dl = j(//cIA) d/ = /fdR evaluated along the rest of the circuit, 
excluding the capacitor, we have 

f E • dl = IR + Q 
• 	

(7.69) 
C  

Comparing equations (7.68) and (7.69) we see that 

e =  JR + —Q 
c ' 

Since, for quasi-stationary conditions, I = 6, this equation can be rewritten 
in the form 

dQ Q 
c = R—

dt 
+ --e-, ' (7.70) 
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We shall assume initially that the current in the primary of the air cored 
transformer in Figure 7.8(a) is varying at a constant rate so that the induced 
emf e in the secondary of the transformer, which is the emf applied to the 
CR circuit is constant. We shall also assume that there are no charges on the 
plates of the capacitor at the time t = 0. The capacitor cannot charge up 
instantaneously as the maximum current that can flow through the resistor R 
is FIR. Hence it takes a finite time for the capacitor to become fully charged. 
As the charges on the capacitor build up the contribution of QIC to  JE  • dl 
increases so that  JE  • dl =  JR evaluated around the rest of the circuit must 
decrease. Consequently I must decrease and the rate at which the capacitor 
is charging up decreases. The solution of equation (7.70) is 

t 
Q = EC { 1 — exp (— -e-R- )} . 	 (7.71) 

Hence 

/ = 1 = f?  exp (— ct,R  ) . 	 (7.72) 

According to equations (7.71) and (7.72), as the time t tends to infinity Q tends 
to EC and the current I tends to zero. 

Assume now that the emf e applied to the CR circuit in Figure 7.8(a) is 
equal to co  cos cot in equation (7.70). In this case also, the value of the 
potential difference QIC across the capacitor in equation (7.69) affects the 
current flowing in the CR circuit. The steady state mathematical solution of 
equation (7.70), that is valid when the transient state is effectively over after 
a few cycles, is 

where 

I - 	 CO  

(R2 4.  1/€020)1/2 cos (om + (I)) 

1  
tan (1) — 

wCR ' 

(7.73) 

(7.74) 

It can be seen from equation (7.73) that the presence of the capacitor in the 
CR circuit in Figure 7.8(a) reduces the current flowing in the circuit from 
the value of e/R when there is no capacitor to c/(R 2  + 1/co2C2) 1/2 . The smaller 
the value of coC the smaller is the current in the circuit. The quantity 1/wC 
is called the reactance of the capacitor. In the case of a CR circuit, the current 
leads the emf by a phase angle (I) given by equation (7.74). 

7.6.4. The LCR circuit 

It is now straight forward to interpret the LCR circuit shown in Figure 7.6. 
Evaluating the line integral of the total electric field around the LCR 
circuit at the time t, remembering that fE, • dl is zero for quasi-stationary 
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conditions, we have 

fE • dl = f(Ei  + EL  + Es) • dl = fEi  • dl + fEL  - dl = eo  cos cot — Li. 

(7.75) 

Evaluating fE - dl using the method, based on the constitutive equation E = 
Jla that led to equation (7.69), we again have 

f E • dl = IR + .--E-,.Q  . 	 (7.76) 

Comparing equations (7.75) and (7.76) we see that 

60  cos cot — Li =  JR + _g., . 	 (7.77) 

Equation (7.77) is another example of Kirchhoff's second law. The left hand 
side of equation (7.77) is the sum of the emfs in the circuit. The right hand 
side is the value of fE • dl evaluated around the circuit using the equation 
E = Jla = //cFA for the conductors and adding the contribution of the poten-
tial difference QIC across the capacitor. Since I = , equation (7.77) can be 
rewritten in the form 

, d2Q _ dQ Q 
L — ± K -- -I- — = Co  cos  wt. 	 (7.78) 

dt2 	dt 	C 

This is the same differential equation as the equation for forced damped 
harmonic motion. The steady state solution of equation (7.78), that is valid 
after the transient stage after switching on is effectively over after the first 
few cycles, is 

dQ  I = c-v  = 
eo 
7 cos (cot — (I)) = 4 cos (cot — 4)) 	 (7.79) 

where 
1 ) 2 

I 
1/2 

Z = [ R2  +  (L  — 	 (7.80) 
coC  

tan 4. = 
(coL, —

R
1/coC) 

 . 	 (7.81) 

The current I in the LCR circuit varies at the same angular frequency co as 
the applied emf, but there is a phase difference (1), given by equation (7.81), 
between the applied emf and the current I in the LCR circuit. If coL > lkoC, 
the applied emf leads the current in the LCR circuit in phase by an angle (1) 
given by equation (7.81). According to equation (7.81) if coL is equal to lkoC 
the current I and the emf e are in phase and, according to equations (7.79) 
and (7.80), the current has its maximum value. This condition is known as 
resonance. 
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7.6.5. The voltages across the circuit elements in an LCR circuit 

Kirchhoff's second law is sometimes stated in the form that the sum of the 
voltages across the circuit elements taken in order around a loop or mesh of 
an AC circuit is zero. An example of this alternative form of Kirchhoff's second 
law will now be given using the example of the LCR circuit shown in Figure 
7.9. We shall assume that AC voltmeters, such as cathode ray oscilloscopes, 
are connected across the various circuit elements of the LCR circuit as shown 
in Figure 7.9. We shall assume that the resistances of the voltmeters are all 
so large that the presence of the voltmeters has no significant effect on the 
current I flowing in the LCR circuit. The leads joining the circuit elements 
to the positive terminals of the voltmeters in Figure 7.9 are labelled the red 
leads. The leads leading from the negative terminals of the voltmeters will 
be called the black leads. We shall follow standard jargon and call the readings 
of the voltmeters the voltages across the circuit elements. It was shown in 
Section 7.3.1 that the reading of the voltmeter in Figure 7.3 is equal to the 
line integral of the total electric field from the terminal A in Figure 7.3 through 
the red lead to the voltmeter, then through the voltmeter and finally back 
through the black lead to terminal B. 

Consider first the reading of the voltmeter measuring the voltage 1/0  directly 
across the source of emf in Figure 7.9. We shall assume that at the instant 
of time under consideration, the induction electric field  E. inside the source 
of emf due to the varying current in the primary coil of the transformer is in 
the direction from B to A in Figure 7.9 and drives a current I around the 

Iv  

E L 
O  
Li 
cr 

Y 
	s —ÉDOOC)--*  

--> E 
L s  

W --->. E 
R s  

I 

Figure 7.9. Measurement of the voltages across the applied emf and the circuit elements in 
the LCR circuit. 
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LCR circuit in the anticlockwise direction as shown in Figure 7.9. The quasi-
static electric field due to the surface and boundary charge distributions 
associated with current flow and due to the charges on the plates of the 
capacitor will be denoted by E5 . At mains frequency the E, field is to an 
excellent approximation conservative and so we shall assume that fEs  • dl is 
zero for any closed path. If the internal resistance of the source of emf is 
zero, the total electric field E = (Ei  + E5) inside the source of emf must be 
zero, otherwise the current I would be infinite. Hence for a path from B to 
A through the secondary of the transformer (the source of emf) we have 

If  E. is in the direction from B to A inside the source of emf, then E, must 
be in the opposite direction, that is from A to B inside the source of emf. (In 
practice, the source of emf has some internal resistance so that, inside the 
source of emf, the component of Ei  parallel to the wire must be numerically 
greater than the component of E, in the opposite direction for current to 
flow). We are assuming in our idealized model of lumped circuit elements 
that the induction electric field  E.  in the secondary coil of the transformer, 
which is the source of emf for the LCR circuit, is zero outside the source of 
emf, so that if fEi  • dl is evaluated around the complete LCR circuit, 

A 

dl = I E1  • dl = co  cos cot. 	 (7.83) 

Substituting in equation (7.82) we find that in our idealized case when the 
internal resistance and self inductance of the source of emf are both zero 

JAB 
 E, • dl = —co  cos wt. 

Reversing the limits of integration we have 

E, • dl = co  cos cot. 	 (7.84) 
A 

The surface and boundary charge distributions, that give rise to the quasi-static 
field E, of magnitude (—E;) inside the source of emf also give rise to a quasi-
static electric field outside the source of emf, in a region where E. is zero. 
Since the E, field is conservative the line integral f Es  • dl from A to B is the 
same and according to equation (7.54) is equal to co  cos cot for any path 
from A to B outside the source of emf in Figure 7.9, including the path from 
A along the red lead to the voltmeter measuring Vo, through the voltmeter 
and back along the black lead to B, which we showed in Section 7.3.1 is 
equal to the reading of the voltmeter. Hence the reading of the voltmeter placed 
across the source of emf in Figure 7.9 is 

Vo = £0 cos Wt. 	 (7.85) 
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which is equal to the instantaneous value of the applied emf. 
Consider now the reading V L  of the voltmeter (oscilloscope) connected 

across the inductor L in Figure 7.9, when the current I in the LCR circuit is 
in the anticlockwise direction and is increasing in magnitude such that i is 
positive. For positive i the direction of the back emf in the inductor is opposite 
to the direction of current flow. Hence IEL  • dl evaluated from the point S in 
Figure 7.9 through the windings of the inductor L to the point T is negative. 
Since in our idealized case EL  is zero outside the inductor L, f EL  • dl 
evaluated around the complete LCR circuit is equal to fEL  - dl evaluated 
from S to T through the inductor L. Using equation (7.48) we have 

I 
'T 

EL . dl = —Li. 	 (7.86) 
s 

When 1 is positive the line integral on the left hand side of equation (7.86) 
is negative. If the resistance of the inductor is zero, it follows from the 
constitutive equation J = crE that the total electric field E = (EL  + E5) inside 
the wire making up the inductor must be zero, otherwise the current through 
the inductor L would be infinite. Hence for a path from S to T through the 
inductor L in Figure 7.9 

fTE • dl = f
T 

 EL  • dl + i-TE, • dl = O. 
s 	s 	S 

.1 -TEL • dl = --1.T  E, • dl. 	 (7.87) 
s 	s 

Substituting for fEL  - dl from equation (7.87) into equation (7.86), we find 
that the line integral of Es  from S to T through the inductor L is given by 

J-TEs  • dl = +Li. 
s 

The quasi-static electric field E, due to the surface and boundary charges is, 
to an excellent approximation, conservative. Since EL  is zero outside our 
idealized inductor L, for a path from S to T through the voltmeter (oscillo-
scope) measuring VL, we have 

j 	
. 

T 	
. 
T  

E • dl = 1 E, • dl = +Li. 	 (7.88) 
s 	s 

It was shown in Section 7.3.1 that the reading of a voltmeter is equal to the 
line integral of the total electric field evaluated along the red lead to the 
voltmeter, through the voltmeter and then back along the black lead. Hence 
it follows from equation (7.88) that 

VL  = +Li. 	 (7.89) 

Differentiating equation (7.79) with respect to time to determine 1, and then 
substituting in equation (7.89) we obtain 
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di 17,, = L—
dt 

= –cal, 4 sin (cot – (1)) = (coL) 4 cos ( cot — (1) + —rc ) . 
2 

(7.90) 

Comparing equations (7.90) and (7.79), we see that the voltage VL  across the 
inductor leads the current I through the inductor by it/2. 

Since in our idealized LCR circuit the induction electric fields Ei  and EL  
are zero in the vicinity of the capacitor C in Figure 7.9, the only electric 
field in the vicinity of the capacitor C is the quasi-static electric field E„ which, 
in the region between the plates of the capacitor, is due almost entirely to 
the charges on the plates of the capacitor so that  JE  • dl evaluated from U 
to W through the capacitor is equal to QIC. Since E, is, to a very good 
approximation, conservative the line integral fE • dl = f Es  • dl from the point 
U in Figure 7.9 along the red lead to the voltmeter (oscilloscope) measuring 
Vc, through the voltmeter and back along the black lead to the point W (which 
we showed in Section 7.3.1 is equal to the voltage Vc  measured by the volt- 
meter), is equal to fEs  • dl evaluated from U to W across the capacitor, which 
is equal to QIC, where Q is the charge on the capacitor. Hence, the reading 
of the voltmeter connected across the capacitor is 

Q vc  = -c, . 	 (7.91) 

Since I = 6, integrating equation (7.79) we have 

Q = f I dt = (. 20 sin (cot – cp). 

Hence 

vc  = 9e- = ( —wioc, ) sin (wt – (1)) = (-034c ) cos ( cot – (1) – 11) . (7.92) 

Comparing equations (7.92) and (7.79), we see that the current I through the 
capacitor C leads the voltage Vc  across the capacitor by ic/2. 

Since the induction electric fields Ei  and EL  due to the applied emf and 
the back emf in the inductor respectively are both zero in the vicinity of the 
resistor R, the line integral of the total electric field from the point Y in 
Figure 7.9 through the resistor R to the point Z reduces to 

.Z 	
z 	

. 
z 

.1E 
 

E.  dl = f 	 . (Ei  + EL  + E5) - dl = 1 E, • dl. 
J )' 	y 	 y 

We can also evaluate the line integral using the constitutive equation E = 
Jlo = IIGA. If the resistances of the leads are negligible, we have 

FE • dl . if _di . 
GA 

IR
. Y 
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Hence 

f
y  Z 
	Z 
E • dl = f Es  - dl = IR. 

y 
(7.93) 

Since the  E.  and EL  fields are zero in the vicinity of both the resistor R and 
the voltmeter (oscilloscope) measuring VR and since the E5  field is conserva-
tive, it follows that the value of fEs  • dl evaluated from the point Y in Figure 
7.9 to the point Z through the resistor R is equal to the value of the line integral 
JE - dl of the total electric field evaluated from the point Y in Figure 7.9 
along the red lead to the voltmeter, then through the voltmeter measuring VR 
and finally along the black lead to the point Z, which we showed in Section 
7.3.1 was equal to the reading VR of the voltmeter. Hence it follows from 
equation (7.93) that 

VR = IR. 

Substituting for I from equation (7.79), we have 

VR =  JR =  ICI?  cos (cot — 4». 	 (7.94) 

The voltage VR measured across the resistor R is in phase with the current / 
through the LCR circuit. 

Since in our idealized example, the induction electric fields Ei  and EL  are 
zero outside the source of emf and the inductor L respectively, there is only 
the quasi-static electric field E, along a continuous closed loop that goes in 
turn through the voltmeters measuring Vo, VL , Vc  and VR in Figure 7.9, and 
avoids the source of emf, the inductor and the capacitor. Since the Es  field 
is conservative and since each voltmeter measures fE s  • dl, by going around 
the circuit via the voltmeters in the anticlockwise direction we have 

VI., + Vc + VR — Vo = 0. 	 (7.95) 

This is the alternative form of Kirchhoff's second law. It is straight forward 
for the reader to check that the sum of the harmonic variations on the right 
hand sides of equations (7.90), (7.92) and (7.94) is equal to co  cos wt. 

7.6.6. Discussion 

In this chapter, we have tried to give the reader an insight into the physical 
principles underlying AC theory by interpreting the roles of electric fields in 
simple AC circuits. On the way we developed Kirchhoff's first law for 
quasi-stationary conditions in Section 7.1. Whenever we needed it, we derived 
Kirchhoff's second law by equating  JE . dl, the line integral of the total electric 
field taken around any loop to (a) the sum of the induced emfs in the loop 
and (b) to the sum of the products  JR plus the potential differences across 
the capacitors, for example leading to equation (7.77). The reader can apply 
this method in the general case to any loop of an AC circuit to derive the appro-
priate form of Kirchhoff's second law. On our approach we treated the back 
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emf —Li as a source of an induction electric field and hence as an emf. When 
solving problems it is sometimes mathematically more convenient to take 
the —Li term to the other side, for example in equation (7.77), and treat it as 
an impedance rather than an emf. In the complex number method of solving 
AC problems, an inductor of inductance L is treated as a complex imped-
ance jwL and capacitor is treated as a complex impedance 1/jwC where j = 
(....

.1 \
1)

I/2,  f is the frequency and w = 27cf is the angular frequency. Kirchhoff's 
second law is then rewritten in the form 

Ee = EIZ 	 (7.96) 

where Ee is the sum of the applied emfs in the loop and EIZ is the sum of 
the products of current and complex impedance in the loop. Applying equation 
(7.96) to the LCR circuit shown in Figure 7.8 we have 

/ 
e = I(jcoL) + 	+ IR = IZ 

where 

Z = (jcoL + Tiz,-) +R  

is the complex impedance. The current in the LCR circuit is then given by 
the real part of 

e  
/ = --= 	

co  exp (jwt) 	_  e0  exp {j(wt — 0)) 

	

Z R + j(wL — 11wC) 	[R2  + (wL — 11wC) 2] 
where 

(wL — 1/wC)  tan (I) — 	 . 
R 

This is in agreement with equations (7.79) and (7.81). 

7.7. Motional (dynamo) induced emf 

7.7.1. Introduction 

In the example of the transformer induced emf we discussed in Sections 7.2 
and 7.5, the varying current in the primary coil of the transformer gives rise 
to an induction electric field in the space outside the primary coil. It is this 
induction electric field that gives rise to a conduction current flow in the 
secondary of the transformer. There is no direct electrical contact between 
the primary and secondary coils of the transformer in Figure 7.1. There is 
another type of induced emf, which was mentioned in Section 1.6 of Chapter 
1 and which we called a motional (or dynamo) induced emf. A motional (or 
dynamo) induced emf is produced when part or all of a circuit moves in a 
magnetic field. If the magnetic field is steady A is zero and, according to 

1/2 
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Maxwell's equations, there is no induction electric field. A simple example 
of a motional emf is given in the next section. Motional (or dynamo) induced 
emfs are extremely important in the generation of electricity. 

7.7.2. A simple example of a motional induced emf 

Consider the isolated conductor RS that is moving with a velocity y c parallel 
to the x axis of the laboratory system E, as shown in Figure 7.10(a). There 
is a uniform magnetic field B in the —z direction, that is away from the reader 
in Figure 7.10(a). The magnetic field B does not vary with time so that there 
is no induction electric field in the laboratory system E. 

The conduction electrons and positive ions inside the conductor RS move 
with the velocity y of the moving conductor RS in the +x direction in Figure 
7.10(a). We shall start with a very simplified model. A charge of magnitude 
+q that is moving with the velocity y of the conductor experiences a magnetic 
force qv x B in the +y direction as shown in Figure 7.10(a). The positive 
ions are prevented from moving away from their lattice positions by the 
cohesive forces in the moving conductor, but the conduction electrons are fairly 
free to move. The magnetic force on a conduction electron of charge q = —e 
is equal to —ev x B, which is in the —y direction, that is towards R in Figure 
7.10(a). Under the influence of this magnetic force, conduction electrons will 
drift in the —y direction until charge distributions are built up on the surfaces 
of the isolated moving conductor RS, that are of such a magnitude that they 
give an electric field E, in the —y direction inside the moving conductor RS, 
which gives an electric force eEs  in the +y direction on each of the moving 
conduction electrons. This force is equal in magnitude, but opposite in direc-
tion, to the magnetic force —ev x B. The drift of the conduction electrons in 
the —y direction in the isolated conductor RS stops when 

E, = vB. 	 (7.97) 

The charge distributions on the top and bottom surfaces of the moving con-
ductor RS also give rise to an electric field E, that extends into the space outside 
the isolated moving conductor RS in Figure 7.10(a). When the moving con-
ductor RS slides on the conducting rails in Figure 7.10(a) making electrical 
contact with the rails, this external electric field due to the charges at the 
ends of the moving conductor RS gives rise to conduction current flow in 
the stationary conducting rails in the clockwise direction in Figure 7.10(a). 
Surface and boundary charge distributions are built up in the way described 
in Appendix B, such that the resultant electric field inside the stationary con-
ducting rails in Figure 7.10(a) is parallel to the rails. The current flow in Figure 
7.10(a) reduces the charge distributions at the ends of the moving conductor 
RS, which in turn reduces the electric field inside the moving conductor RS. 
The magnetic force of magnitude evB in the —y direction on each of the 
conduction electrons in the moving conductor then exceeds the reduced electric 
force of magnitude eE, in the +y direction, and the conduction electrons in 
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Figure 7.10. Motional emf. There is a magnetic force qv x B on the charges moving with the 
conductor RS which leads to a displacement of electric charge in the moving conductor RS 
which in turn gives rise to an electric field. (b) in E' the source of the external magnetic field 
also gives rise to an electric field which gives rise to the displacement of electric charge in the 
conductor RS, which is 'stationary' in E'. 

the moving conductor RS in Figure 7.10(a) start to drift again in the —y 
direction. This replenishes some of the charge removed from the ends of the 
moving conductor RS by the conduction current flow in the stationary rails. 
If the conductor RS is kept moving with uniform velocity y and if the changes 
in the electrical resistance of the rest of the circuit, associated with the 
movement of the conductor RS over the stationary conducting rails, is 
negligible, a state of dynamic equilibrium is reached and the current in the 
circuit is constant. Before the steady state is reached, the appropriate charge 
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distributions are built up on the surfaces of the conductors and at the bound-
aries between conductors of different electrical conductivities, in the way 
described in Appendix B, such that the conduction current has the same numer-
ical value in all parts of the circuit. 

The emf c of the complete circuit in Figure 7.10(a) will be defined as 

c = f (E) • dl 
q 

(7.98) 

where F is the electromagnetic force, measured in the laboratory system E, 
on a test charge of magnitude q, that is at rest relative to the section dl of 
the circuit. When the section dl has a velocity v relative to the laboratory 
system E the test charge q must have the same velocity v relative to the 
laboratory system E. According to the Lorentz force 

F = qE + qv x B 	 (7.99) 

where E and B are the local values of the resultant electric and magnetic 
fields in the laboratory system E. Since there is no external applied electric 
field in the laboratory system E, the only electric field is the Es  field due to 
the surface and boundary charge distributions on the conductors. After the state 
of dynamic equilibrium is reached, the surface and boundary charge distrib-
utions on the stationary conducting rails are constant and can be treated as 
electrostatic, in which case their contribution to fE • dl, evaluated around 
the complete circuit, is zero. If the velocity of the moving conductor RS were 
300 m s-1 , v/c would only be 10 -6  and, to an excellent approximation, the 
electric field due to the charges on the moving conductor RS could be 
calculated using Coulomb's law, in which case their contribution to fE • dl 
would also be zero. Hence fE • dl evaluated around the complete circuit in 
Figure 7.10(a) would be zero. Hence using equations (7.98) and (7.99) we 
have 

E = f (E + v x B) • dl =fvxB• dl. 

Applying equations (A1.5) of Appendix A1.1, we have 

B • (v x dl). 	 (7.100) 

This is the general expression for the emf generated by a dynamo in a time 
independent magnetic field. 

In the special case shown in Figure 7.10(a), when the moving conductor 
RS is moving over the stationary conducting rails, the only contribution to 
the integral in equation (7.100) is along the moving conductor RS, so that 
the magnitude of the integral —fB B. (v x dl) is equal to Bill, where / is the length 
of the conductor RS. The motional emf c = Bv1 is equal to the magnetic flux 
cut by the moving conductor RS per second. In the special case of the con-
tracting loop shown in Figure 7.10(a), the magnetic flux cut by the moving 

E = 
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conductor RS per second is equal to the rate of decrease of the magnetic flux 
(131 through the loop so that for the special case shown in Figure 7.10(a) 

dizI) 
(7.101) 

dt 

The direction of current flow in the clockwise direction in Figure 7.10(a) is 
consistent with Lenz's law, since a current flow in this direction gives a 
magnetic field in the downwards direction in Figure 7.10, which tends to 
oppose the decrease of the magnetic flux through the loop in the downward 
direction, as the conductor RS moves across the conducting rails. In the general 
case of a circuit of arbitrary shape y x dl is the area swept out by the section 
dl of the moving circuit per second. Hence B • (y x dl) is the rate at which 
the element of length dl of the moving circuit is cutting magnetic flux. In some 
special cases this is equal to rate at which the total magnetic flux through 
the circuit is varying due to the motion of the element dl. If this is true for 
all the elements dl, equation (7.100) reduces to equation (7.101). In other cases, 
equation (7.101) is inappropriate. For example, in the case of the Faraday 
disk generator the magnetic flux (130 through the circuit is constant. In this 
case, equation (7.100) must be used and interpreted as a magnetic flux cutting 
rule. Though equations (7.20) and (7.101) appear to be the same and Lenz's 
law can be applied, the agreement is largely fortuitous, since the underlying 
physical principles are different in the laboratory system E. The transformer 
induced emf given by equation (7.20) is due to an induction electric field inside 
the wire making up the stationary secondary coil in Figure 7.1, that is produced 
by the varying current in the primary coil. The motional induced emf, given 
by equation (7.100), is due to the motion of part of the circuit in Figure 7.10(a) 
through a time independent magnetic field. It is always best to interpret 
equation (7.100) as a magnetic flux cutting rule associated with the motion 
of a conductor in a time independent magnetic field. If a conductor is moving 
through a time dependent magnetic field there is both a motional and a trans-
former emf. It is straightforward for the reader to apply equation (7.100) to 
the case of a coil rotating in a uniform magnetic field and then to go on to 
interpret the action of a dynamo. 

7.7.3. The role of magnetic forces in motional induced emf 

In our simplified discussion of motional induced emf in the last section, we 
only considered the magnetic force —ev x B on a conduction electron, that is 
moving with the velocity y of the conductor RS in Figure 7.10(a). This analysis 
could leave the reader with the impression that it is the magnetic force 
—ev x B on each conduction electron that drives the conduction current around 
the circuit and that supplies the energy for the Joule heat generated in the circuit 
in Figure 7.10(a). Since the magnetic force on a charge moving in a magnetic 
field is always perpendicular to the velocity y of the charge the rate Fmag  • V 

at which the magnetic force is doing work on the moving charge is always 
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zero. What a magnetic field does is to change the direction of motion of the 
moving charge without changing either its speed, or the magnitudes of its 
momentum and kinetic energy. 

To illustrate the role of magnetic forces in motional induced emf, we shall 
follow the approach of Mosca [3]. We shall use a simplified model according 
to which free conduction electrons move inside a uniform potential well inside 
the moving conductor RS. 

When the state of dynamic equilibrium is reached in Figure 7.10(a), when 
the moving conductor RS is moving over the conducting rails the conduc-
tion electrons drift with a drift velocity, now denoted by V d, in the —y direction. 
Due to the motion of the conductor RS with velocity y in the laboratory system 
E in Figure 7.10(a), a conduction electron of mass m, that is at rest inside 
the conductor RS, has a momentum of mv in the +x direction. (In practice 
this momentum is added to the momentum the conduction electron has due 
to its random velocity inside the conductor RS). The applied magnetic field 
B tries to change the direction of the momentum of the conduction electron. 
In the absence of collisions and of the Hall potential difference, a conduc-
tion electron of total speed u in the laboratory system E would go around in 
a circle of radius p = muleB. For a typical conduction electron u = c1200, 
elm = 1.75 x 10" C kg-1  and B = 0.01T, so that p = 0.85 mm. At a temper-
ature of 300K the mean free path of a conduction electron in copper is 
X = 3 x 10-5  mm so that X/p = 3.4 x 10-5 . Hence collisions prevent the 
conduction electrons from going around in complete circles. 

To simplify the discussion of physical principles, we shall represent the 
average behaviour of the conduction electrons inside the moving conductor RS 
in Figure 7.10(a) by assuming that when the conductor RS is moving over 
the conducting rails, then on average the conduction electrons have just the 
velocity y of the conductor RS in the +x direction plus a drift velocity vd  in 
the —y direction from S to R in Figure 7.10(a). A reader familiar with special 
relativity can see the appropriateness of this approximation by transforming 
to the inertial reference frame E', that is moving with uniform velocity y 

relative to the laboratory system E, as shown in Figure 7.10(b). The con-
ductor RS is at rest in It follows from the field transformation, equation 
(10.80) of Chapter 10 that there is an electric field in the +y' direction of 
of magnitude vB/(1 — v 2/c2) 12 . This electric field acts on the conduction 
electrons in the conductor RS, which is at rest in and a conduction current 
flows in the stationary conductor RS under the influence of this electric field 
in the direction form R to S. In the magnetic deflection of the conduction 
electrons in the —x' direction in the magnetic field in E' is compensated by 
the Hall electric field in the way described in Section 1.4.3 of Chapter 1, 
such that, on average, the conduction electrons drift in the —y' direction in 
• with velocity vd. Since all velocities are much less than c we can use the 
Galilean velocity transformations to transform to the laboratory system E. 
Hence in the laboratory system E, shown in Figure 7.10(a), each of the 
conduction electrons inside the moving conductor RS has, on average, a 
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velocity vd  in the —y direction plus a velocity I,  in the +x direction giving a 
total velocity of (IT + vd) in the laboratory system E, when the conductor RS 
is moving over the conducting rails. In practice the conduction electrons have 
speeds of the order of c1200 in all directions. It is their average velocity that 
is equal to (y  + vd). 

Consider a conduction electron that starts with the velocity v of the moving 
conductor RS in Figure 7.10(a). This conduction electron has a momentum 
mv in the +x direction of the laboratory system E as shown in Figure 7.11. 
In the laboratory system E, the applied magnetic field changes the direction 
of this momentum a little before the conduction electron undergoes a collision, 
as shown in Figure 7.11. On our simplified model, after the collision on 
average, the electron moves again in the +x direction with velocity v in 
Figure 7.11. It is again deflected by the applied magnetic field until it collides 
again and so on, as shown in Figure 7.11. We can see that the effect of the 
applied magnetic field is to continually turn the momentum of such a con-
duction electron towards the —y direction in Figure 7.11, such that the 
conduction electron drifts in the —y direction in the laboratory system E, leading 
to current flow in the way described in Section 7.7.2. 

When a conduction electron that starts from S reaches the end of the moving 
conductor labelled R in Figure 7.10(a), it has gained a potential energy equal 
to —e4) compared to a conduction electron that is at the end labelled S where, 
if y < c, 4) is equal to 4E, • dl evaluated from S to R at a fixed instant of 
time. Notice that 4) is negative giving a positive value for —e4). In a vacuum 
an electron leaving R would reach S with a kinetic energy equal to —e(p. If a 

MAGNETIC FIELD B IS DOWNWARDS 
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Figure 7.11. The successive positions of the moving conducor RS in Figure 7.10(a), at the instants 
when the conduction electron undergoes successive collisions. 
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conduction electron drifts all the way from R to S through the external circuit 
in Figure 7.10(a), it will still gain a total kinetic energy equal to —e0, but it 
will loose this kinetic energy continuously in successive collisions leading 
to Joule heating, and the conduction electron will finally reach S with only 
the average drift velocity of about 10-4  m s-'. 

To discuss the average forces acting on a moving conduction electron, we 
shall again assume that the conduction electron moves along with the velocity 
y of the moving conductor in the +x direction in Figure 7.12 plus its drift 
velocity V d in the —y direction so that its total average velocity is (y + vd). 
The average magnetic force on such a conduction electron due to the applied 
magnetic field B is 

F = —e(v + v d) xB=Fi + F2 

where 

F1 = —ev x B; 	F2 = —ev d  x B. 

The contribution F1  = —evB is in the —y direction in Figure 7.12 and the con-
tribution F2 = —ev dB is in the —x direction. Since the rate at which the magnetic 
field does work is zero, we have 

F • (v + vd) = Fi  • v + F i  • vd  + F2 • V + F2 • Vd = O. 
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Figure 7.12. The magnetic forces on a conduction electron inside the moving conductor RS. 
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We can see from Figure 7.12 that v is perpendicular to F 1  so that F1  • v is 
zero. Since V d is perpendicular to F2 then F2 • Vd is zero. Hence 

F • (v + vd) = F 1  • Vd + F2 • V = O. 	 (7.102) 

Since F 1  and V d are both in the —y direction in Figure 7.12, F1  • vd  is a positive 
and equal to +evvdB, which means that the component F 1  of the magnetic force 
does work on a conduction electron when it is moved from S to R inside the 
moving conductor RS against the electric force —eE s  in the +y direction due 
to the electric field Es  which is in the —y direction and is due to the surface 
and boundary charges on the moving conductor RS and on the conducting 
rails in Figure 7.10(a). This increases the potential energy -4 of the conduction 
electron. Since v and F2 are in opposite directions in Figure 7.12, F2 • V is 
negative and equal to —evv dB. The negative sign means that the effect of the 
component F2 of the magnetic force is to try to reduce the component of the 
velocity of the conduction electron in the +x direction in Figure 7.12. If there 
are n conduction electrons per cubic metre and if / is the length and A is the 
area of cross section of the moving conductor RS in Figure 7.10(a) then the 
total magnetic force on all the conduction electrons due to the component F2 

is numerically equal to (nAl)F2  = (nAl)evdB = Bll in the —x direction, where 
I = nAev d  is the current. This force Bll on the conduction electrons is 
transferred to the moving conductor via the Hall electric field in the way 
outlined in Section 1.4.3 of Chapter 1 and will reduce the velocity v of the 
moving conductor RS unless an equal external force BIl is applied to the 
moving conductor in the +x direction. 

Summarizing, the net result is that the magnetic field in Figure 7.10(a) 
changes the direction of the momentum of each conduction electron, that is 
inside and is moving with the moving conductor, towards the —y direction in 
Figure 7.10(a). This would lead to a loss of momentum in the +x direction 
unless an external force BII is applied to the conductor RS to keep the con-
ductor RS moving with uniform velocity v. The rate at which electrical energy 
is dissipated as Joule heat in the circuit is equal to the product e/ of the emf 
e and the current I. Since E = Bvl, it follows that the rate of production of 
Joule heat el is equal to Bvil, which is equal to the rate at which the external 
force is doing work on the moving conductor RS in Figure 7.10(a). We have 
shown that by trying to change the direction of the momentum of the con-
duction electrons in the moving rod RS, even though the magnetic field itself 
does no work, the magnetic field helps to convert the mechanical work done 
on the moving rod into electrical energy. 
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CHAPTER 8 

Forces, energy and electromagnetic momentum 

8.1. Introduction 

In this chapter, we shall go on to discuss the concepts of the energy, the 
linear momentum and the angular momentum of the electromagnetic field. 
So far in this book, we have generally tried to avoid methods based on the 
concept of energy, except, for example, when we discussed electrostatic energy 
and the definition of the electrostatic scalar potential (1) in Section 1.2.10 of 
Chapter 1. We have been able to do most of what we have done so far using 
the Lorentz force law to relate the fields E and B to experiments. The Lorentz 
force law will again be the starting point for all of our developments in this 
chapter. This is similar to the position in Newtonian mechanics, where it is 
Newton's laws of motion that are the starting point for the development of 
the concepts of energy, linear momentum and angular momentum and the 
corresponding conservation laws. To quote French [1]: 

It is an interesting historical sidelight that in pursuing the subject of energy 
we are temporarily parting company with Newton, although not with what 
we may properly call Newtonian mechanics. In the whole of the Principia, 
with its awe-inspiring elucidation of the dynamics of the universe, the 
concept of energy is never once used or even referred to! For Newton, 
F = ma was enough. But we shall see how the energy concept, although 
rooted in F = ma, has its own special contributions to make. 

For example, in Newtonian mechanics it is Newton's laws of motion that 
are used to determine the expression for the kinetic energy of a particle. The 
importance of the concept of energy is that energy is conserved. The law of 
conservation of energy can often be used to solve problems. For example, if 
we let a particle fall from a height h in the Earth's gravitational field, we 
can determine the velocity with which it hits the ground, either by applying 
the law of conservation of energy by equating the gain in the kinetic energy 
of the particle to its loss of potential energy, or by applying Newton's law 
of universal gravitation and Newton's second law of motion to determine the 
acceleration of the particle, and then using the appropriate kinematic relation 
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to determine the velocity with which the particle hits the ground. It is impor-
tant to realize that the two approaches are alternatives. In this chapter, what 
we shall be doing is developing alternatives to the direct application of the 
Lorentz force law. 

Since we shall be going on to discuss the law of conservation of linear 
momentum for a system of moving classical point charges in empty space, 
it will be instructive to remind ourselves of some of the assumptions made 
when the law of conservation of linear momentum of Newtonian mechanics 
is derived from Newton's laws of motion. Consider the collision of two 
particles labelled 1 and 2 of linear momenta p i  and p2  respectively, which 
are moving in the same straight line before the collision. Let the particles 
move in this same straight line after the collision with momenta pf and 13 
respectively. If, during the collision, the force on particle 1 due to particle 
2 is F 1  and the force on particle 2 due to particle 1 is F2, then, since accord-
ing to Newton's third law of motion action and reaction are equal and 
opposite 

F 1  = —F2  

Using Newton's second law of motion, we have 

dp i  _ dp2 
 dt — 	dt • 

Integrating over the time of the collision, we find that 

f dp i  = —f dp2  

giving 

Pi — Pi  = — (i  — P2). 

Rearranging, 

Pi + 1;.  = Pi ± P2- 

This is an example of the law of conservation of linear momentum. Notice that 
we used both Newton's second and third laws of motion in its derivation, 
showing that the law of conservation of linear momentum is an alternative 
to using Newton's laws of motion directly. We also assumed that the forces 
F 1  and F2 were central forces when we assumed that F2 = -F1, which meant 
that, if the particles were spatially separated, the forces F 1  and F2 both acted 
along the line joining the particles. This is true of Newton's law of universal 
gravitation, but it is not true for the forces between moving charges, as will 
become clear in Section 8.8.2, where we shall show that Newton's third law 
is not valid for the forces between moving charges. Whereas it is assumed 
in Newton's law of universal gravitation that the gravitational force between 
two masses acts instantaneously, the changes in the electromagnetic forces 
between two moving charges take time to propagate from one charge to the 
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other at the speed of light c. Hence it will not be surprising to find that, 
when we consider what happens at one instant of time without allowing for 
retardation effects, and while there are changes in the electromagnetic inter-
action on their way between the moving charges we shall have to introduce 
some of the properties of the electromagnetic field, as for example, when 
we come to consider the law of conservation of momentum for spatially sep-
arated moving charges in Section 8.8.2. We shall show in Section 10.8 of 
Chapter 10 that for spatially separated charged particles, events that are simul-
taneous in one inertial reference frame are not simultaneous in any inertial 
reference frame moving relative to the first, so that we shall have to be par-
ticularly careful when we come to discuss some of the properties of a system 
of spatially separated charges in empty space at a fixed instant of time, such 
as the conservation laws of energy, momentum and angular momentum. If 
readers check their mechanics text books, they will also find that it is Newton's 
laws of motion and the assumption of central forces that are used in the deriva-
tion of the law of conservation of angular momentum in Newton mechanics, 
which is often simpler to apply in practice than using Newton's laws of motion 
directly. 

In Section 8.2 we shall start by showing how the electromagnetic force 
on a steady charge and current distribution, that is made up of moving clas-
sical point charges, can be determined using Maxwell's stress tensor, which 
we shall derive from the Lorentz force law. We shall then go on to consider 
varying charge and current distributions leading up to discussions of the energy, 
momentum and angular momentum of the electromagnetic field and the 
conservation laws of energy, momentum and angular momentum. We shall 
always start from the Lorentz force law, or relations derived from it. We 
shall assume throughout this chapter that the relative permittivity Cr  and the 
relative permeability It,. are both equal to unity everywhere. 

8.2. The Maxwell stress tensor 

8.2.1. Introduction 

Consider the finite charge and current distribution shown in Figure 8.1, which 
is due to a system of moving classical point charges in otherwise empty 
space. There are also external charge and current distributions, not shown in 
Figure 8.1, that are spatially separated from the charge and current distribu-
tion shown in Figure 8.1. The total magnetic field B is due partly to the 
magnetic field due to any external current distributions and due partly to the 
magnetic field due to the current distribution shown in Figure 8.1. There is 
also an electric field E that is also due partly to external contributions and 
due partly to the charge distribution shown in Figure 8.1. If the charge and 
current densities at a point inside the charge and current distribution shown 
in Figure 8.1, are p and J respectively, then, according to the Lorentz force 
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Figure 8.1. A charge and current distribution surrounded by an arbitrary closed surface of 
area Sc, and enclosed volume Vo. There are other charge and current distributions outside Vo. 

law, equation (1.1), the electric and magnetic forces per unit volume on the 
charge and current distribution are 

felec = PE, 
	 (8.1) 

finag  = J  X B. 	 (8.2) 

In the case of a plasma there can be a hydrostatic force per unit volume of 
magnitude 

fhyd = —VP 	 (8.3) 

where p is the fluid pressure. There may also be a gravitational force per 
unit volume given by 

fgrav = —PmV(I)g• 
	 (8.4) 

where prn  is the mass density and (Pg is the gravitational potential. The grav-
itational force given by equation (8.4) is important, for example, in stellar 
interiors, but it can be neglected in laboratory experiments on classical elec-
tromagnetism. 

8.2.2. The magnetic force on a current distribution 

Consider the charge and current distribution shown in Figure 8.1. The total 
magnetic force Fmag  on all the currents inside a volume Vo, which may be 
completely inside the current distribution, partly inside and partly outside 
the current distribution or completely outside the current distribution, as shown 
in Figure 8.1, is obtained by integrating equation (8.2) over the volume 170 
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to give 

Fmag  = ffmag  dV = fJ x B dV = —f13 x J dV. 	 (8.5) 

We shall assume in this section that the charge and current distributions both 
inside and outside the volume Vo  are steady, so that k and k are both zero, 
so that, from Maxwell's equations we have 

V x B = NJ. 	 (8.6) 

We shall now use equation (8.6) to eliminate J from equation (8.5) to obtain 

Finn  = go  
1 f 

B x (V x B) dV. (8.7) 

To show that for any vector A 

A 2  
A x (V x A) = V (T) — (A • V)A 	 (8.8) 

consider the x component of the right hand side, namely 

_L(A,2+12_Ay2++Az2) _ (Al+ A y  -g-; + Az t) A, 

aA 	aA 	aA z aA, 	ai el, 	aA x  
= Ax7.—;. + Ay  a;  + Az  --a-T  Ax  . 7 - Ay  77 Az az  

I  aA 	aA \ 	( aA 	aA \ 
= AY  a.; W) -Az k7t -a--; ) 
= Ay(V x A)z  — A z(V x A)y  = {A x (V x A)}, 

which is the x component of the left hand side of equation (8.8). Since similar 
results hold for the y and z components of equation (8.8), this proves equation 
(8.8). 

Putting A = B in equation (8.8), where B is now the magnetic field, and 
then substituting in equation (8.7) we find that 

Fmag  = f V ( —Tiro  ) dV + 1 110  f (B • V)B dV. 	 (8.9) 
B2  

According to equation (A1.32) of Appendix A1.7 for any scalar 

fv4' cw . j4) dS. 	 (8.10) 

Putting (1) equal to (—B 2/2110 we have 

J V (—v0B2  ) dV = f (—to  ) dS. 	 (8.11) 

According to equation (A1.31) of Appendix A1.7 for any vector A and scalar 

4:1  

40 
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JA.  Vq) dV = f VA • dS) - .1.4)(V • A) dV. 

Treating B, as a scalar and putting 4  = B, we obtain 

JA • VBx  dV = f Bx(A • dS) - f Bx(V • A) dV 

with similar results for By  and  B.  Combining the results, we have 

f (A • V)B dV = f B(A • dS) - f B(V • A) dV (8.12) 

where so far both A and B are arbitrary vectors. We shall now put A = B in 
equation (8.12) and assume that B is the magnetic field, in which case V • B 
is zero. Equation (8.12) then gives 

f (B • V)B dV = fB(B • dS). 	 (8.13) 

Using equations (8.11) and (8.13) to substitute for the integrals on the right 
hand side of equation (8.9) we finally obtain 

B2  
Fmag  = f ( - 217-to  ) dS + Ttol  f B(B • dS). 	 (8.14) 

Equation (8.14) gives the total magnetic force on the steady current distrib-
ution inside the volume Vo  in Figure 8.1. We have only proved equation 
(8.14) when the integration is over all of the closed surface  S. We have not 
derived it in a differential form that can be applied to individual elements of 
area on the surface So. Equation (8.14) is only valid for steady current dis-
tributions. The general case of varying charge and current distributions will 
be considered in Section 8.7. For steady currents (magnetostatics), the forces 
between the currents satisfy Newton's third law so that the internal magnetic 
forces inside Vo  in Figure 8.1 add up to zero, and the force given by equation 
(8.14) is equal to the force due to current distributions outside Vo . 

To illustrate the role of the first integral on the right hand side of equation 
(8.14), we shall now assume that the charge and current distribution is a plasma. 
In this case, there is a hydrostatic force on the plasma inside a volume Vo  
that is completely inside the plasm.a. Integrating equation (8.3) and then 
applying equation (8.10) we obtain 

Fhyd = J(-V) dV = J (-P) dS. 	 (8.15) 

Comparing equation (8.15) with the first integral on the right had side of 
equation (8.14), we see that we would get the correct value for the first integral, 
after integrating over the surface So, if we used the mechanical analogy of 
a "magnetic pressure" (B 2/214) on the surface So  acting in the direction of 
-dS, that is inwards into the volume Vo. 
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To interpret the second integral on the right hand side of equation (8.14), 
let b be a unit vector in the direction of the magnetic field in Figure 8.2. 
The second integral can then be rewritten in the form 

1  1 B2 
B(B dS) —

is, 
—  cos 0 dS (8.16) 

where 0 is the angle between B and dS and (dS)cos 0 is the magnitude of 
the projection of the area dS on to a plane perpendicular to the direction of 
the magnetic field line at the position of dS. It follows from equation (8.16) 
that, for the conditions shown in Figure 8.2, the contribution to the second 
integral on the right hand side of equation (8.14), that is associated with the 
area dS, is in the direction of the magnetic field B at the position of dS. 
Now consider the element of area dS' that is at the point where the magnetic 
field line, that passes through dS, enters the volume 1/0  in Figure 8.2. In this 
case, B • dS' is negative in equation (8.16), so that the contribution associ-
ated with the area dS' to the second integral on the right hand side of equation 

dS 

CURRENT DISTRI CHARGE AND 

BUATI°N  

vo ,  So  

dS I  

Figure 8.2. The magnetic "tension" along a magnetic field line. 
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(8.14) is in the direction opposite to the direction of the magnetic field at 
the position of dS', that is outwards from the volume 170 . Thus the contribu-
tions associated with the elements of area dS and dS' to the second integral 
on the right hand side of equation (8.14) are in opposite directions and are 
the same as if the magnetic field line were in a state of "tension" equal to 
(B2/110) per unit area perpendicular to the magnetic field line. It is straight-
forward for the reader to consider examples of magnetic field lines to show 
that the "tension" of (B 2/g0) per unit area perpendicular to B would only give 
a resultant contribution to the total force on the current distribution inside 
the volume 170  in Figure 8.1 when the magnetic field lines are curved. 

Our results show that the total magnetic force on the plasma inside the 
volume 170  in Figure 8.1 is the same, after integrating over the surface S0 , 
as that given by the mechanical analogy of a magnetic "pressure" (B2/2110) 
on the surface S0  plus magnetic field lines that are in a state of "tension" of 
magnitude (B211.1.0) per unit area perpendicular to B. We have not shown that 
there is a force on an individual element of area of the surface S0  which is 
the same as that would be given by a magnetic pressure (B2/40) and a magnetic 
"tension" (B2/14) per unit area perpendicular to B. For example such a result 
cannot be true if the surface S0  is in empty space, since, according to con-
temporary classical electromagnetism, there are no forces on empty space. 
To summarize, what we did in this section was to start with the magnetic 
force on a current distribution, given by equation (8.2) which follows from 
the Lorentz force law. We then substituted for J in the volume integral of 
J x B using Maxwell's equations. We then converted the volume integrals 
into surface integrals, ending up with equation (8.14). Looking at Figure 8.1, 
we find that we have expressed the sum of the forces J x B on all the currents 
inside the volume 170  in terms of surface integrals evaluated over the surface 
SO  of 170  using only the values of B on the surface  S. We have been assuming 
that J and the magnetic fields do not vary with time. 

If the volume 170  were completely inside the current distribution in Figure 
8.1, equation (8.14) would still give the magnetic force on the plasma inside 
170 . However, we should not assume that equation (8.14) gives the stress on 
the surface SO  of the volume 170 . The magnetic force on the plasma inside 170  
does not arise in this case from a stress, given by equation (8.14), which is 
then transmitted to successive surfaces inside 170  by contiguous action, but 
the magnetic force on the plasma inside 170  arises from the action of the 
resultant magnetic field on all the current distribution inside 170 , which can 
be evaluated by integrating J x B over the volume 170  at a fixed time. 

It follows from equation (8.14) that, if ii is a unit vector in the direction 
of dS, the contribution associated with the area dS to the integrals on the 
right hand side of equation (8.14) can be written in the form 

B2  
dFmag  = –ii ( —2110 ) dS + 4B(B cos 0) dS 

110 

where 0 is the angle between 11 and the magnetic field line crossing dS. If i 
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is a unit vector in the plane containing II and B, in a direction perpendicular 
to 11 and pointing towards the direction of the magnetic field line, then we 
can express B as follows 

B = B cos 0 + B sin 0 

Substituting for B in the expression for dFinag  and rearranging we have 

dFinag  = ( —B2  ){ (2 cos2  0 – 	+ 2 sin 0 cos 01 dS 
211.0  

= 

 (

B2 
 ) (cos 22011 + sin 201) dS. 	 (8.17) 

4 

Hence dlErnag  is of magnitude (B 2/211.0) dS and is in the plane containing 11 
and B at an angle 20 to ii and an angle 0 to B. Equation (8.14) can be rewritten 
as the integral of a tensor Tmag  as follows 

Fmag  = fTmag  - dS (8.18) 

where we can express Tmag  dS in the matrix form 

T,,,ag  - dS 

1 	( 	1/2B2 BxBy 	BB z  
BBy 	– 112B 2 	BB z  

dSx  
dSy  (8.19) = — 

BB z 	BB. 	B – 112B 2  dSz  

The product Tinag  • dS is a vector. The tensor Tinag  is the magnetic compo-
nent of the Maxwell stress tensor. When equation (8.18) is integrated over 
the surface So  in Figure 8.1, it gives the total magnetic force on the current 
distribution inside Vo . We have only derived equation (8.18) in its integral form. 

For the benefit of readers familiar with tensor notation we can express 
the tensor Tmag  in the form 

(Tmag )u  =  4 	– .11 8.B2 	 (8.20) 

where the indices i and j stand for the x, y and z coordinates respectively 
and  ö , is defined to be equal to 1 when i = j and equal to zero when i is not 
equal to j. It is left as an exercise for the reader to show that equation (8.20) 
gives the correct elements in the matrix in equation (8.19). In tensor notation 
equation (8.19) can be written in the form 

(Tmag  • dS);  = E (Tmadii  dSj 	 (8.21) 

where i can stand for x or y or z and the summation is over j equals x, y and 
z. 
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8.2.3. The electric force on an electrostatic charge distribution 

We shall now assume that the charge density of the steady charge and current 
distribution in Figure 8.1 is p. We shall calculate the total electric force on 
all the charge inside the volume Vc, in Figure 8.1. We shall assume that all 
the external charge distributions are steady so that k and k are zero. According 
to equation (8.1), the electrostatic force per unit volume is equal to pE, where 
the electric field E is due partly to the steady charge distributions outside Vo  
and partly to the steady charge distribution inside Vo. Integrating over the 
volume Vo, we find that the total electric force Feiec  on the charge distribu-
tion inside the volume Vo  in Figure 8.1 is 

Fei, = f pE dV. 	 (8.22) 

Since according to Maxwell's equations p is equal to coV - E, we can rewrite 
equation (8.22) in the form 

Felec = E0fE(V . E) dV. 	 (8.23) 

Putting A = E and B = E in equation (8.12) we can substitute for E(V - E) 
in equation (8.23) to give 

Felec = —Eof (E • )E dV + £0fE(E - dS). 	 (8.24) 

Putting A = E in equation (8.8), where E is now the electric field, we find that, 
since V x E is zero when ii is zero, 

EAE • V)E = V ( ef2  ) E0E X (V x E) — V ( ef2  ) . 

Substituting in equation (8.24), we get 

Felec = f (.5----E2-  ) dV + f E0E(E - dS). 	 (8.25) 
2 

Putting (1) = (—E0E2/2) in equation (8.10) and then substituting in equation (8.25) 
we can convert the first integral on the right hand side of equation (8.25) 
into a surface integral, giving finally 

_ 2 

Felec = .I" ( — ' 

0 

-°-'

F 

 ) dS + .1.  E0E(E • dS). 
so 	2 	so  

(8.26) 

Equation (8.26) has a similar mathematical form to the magnetostatic case 
given by equation (8.14). The reader can use similar methods and interpreta-
tions, as we used for the magnetostatic case in Section 8.2.2, to show that 
we get the correct value for the total electrostatic force on the charge distri-
bution inside the volume Vo  in Figure 8.1 after integrating over the surface 



Forces, energy and electromagnetic momentum 277 

So  of Vo  if we use the mechanical analogy of a "pressure" (E0E2/2) on the surface 
So  of the volume Vo  plus a "tension" along the electric field lines crossing 
the surface So  of magnitude (e0E2) per unit area perpendicular to the electric 
field. Summarizing, we started with equation (8.22) for the force on the 
steady charge distribution inside the volume Vo  in Figure 8.1. We then used 
Maxwell's equations to substitute coV • E for p, and used the result that 
V x E was zero for steady currents leading up to equation (8.25). We then con-
verted a volume integral into a surface integral ending up with equation (8.26), 
which gives the total force on all the charge distribution inside the volume 
Vo  in Figure 8.1 expressed only in terms of the value of the electric field on 
the surface So  of the volume 170 . In electrostatics, the Coulomb forces between 
the charges inside Vo  add up to zero, so that the force given by equation 
(8.26) is equal to the force due to the charge distributions outisde Vo . 

By analogy with the magnetic case given by equation (8.17), we can express 
the contribution associated with an element of area dS to the integrals in 
equation (8.16) in the form 

dFeiec  — ( EQE2 	2  ) (il cos 20 + i sin 20) 	 (8.27) 

where 0 is the angle between the direction of dS and the electric field line 
passing through dS. 

We can rewrite equation (8.26) in the form 

Feiec = f Telec  - dS 	 (8.28) 

where the tensor Telec  is the electrostatic counterpart of the magnetic tensor 
Tmag  given by equation (8.20). In tensor notation we have 

(Telec - dS )i = E (Telec)ii dS; 
i 

where 

(Telec)ij = 60 (E 1E i — + NE2 ) . 	 (8.30) 

It is left as an exercise for the reader to use equation (8.30) to express Telec  
in matrix form. 

8.2.4. The total electromagnetic force on a steady charge and current 
distribution due to steady electric and magnetic fields 

Adding equation (8.14) and (8.26), we find that the total electromagnetic 
force on the steady charge and steady current distribution inside the volume 
Vo  in Figure 8.1 can be expressed in terms of only the values of the steady 
total electric and magnetic fields on the surface So  of the volume Vo  as 
follows 

(8.29) 



278 Chapter 8 

F em  = Fei„ Fmag  

= 
 1(

8°E2  dS + E0E(E • dS) + — )) dS + I B(B • dS) 2 	 2, 

= (Telec Tmag) • dS = T • dS 
	

(8.32) 

where 

T = Telec Tmag 
	 (8.33) 

is the Maxwell stress tensor. In tensor notation we have 

(T dS)i  = E Tu  dS 	 (8.34) 

where i stands for x or y or z and the summation is over j equal to x, y and 
z and 

(T)u  = co  (EiEj  — 1 	2 ) + 1 	1 
B iBi  - 	si,B2 . 	 (8.35) 

It is left as an exercise for the reader to express T • dS in a matrix form 
similar to equation (8.19). The integrations in equations (8.31) and (8.32) 
are over the closed surface So  of the volume Vo  in Figure 8.1. The interpre-
tation of the Maxwell stress tensor is similar to the interpretation of the 
magnetic component we developed in Section 8.2.2. 

8.2.5. An electrostatic example of the application of Maxwell's stress tensor 

Consider first the example of two point charges of magnitudes +q and —q at 
a distance 2a apart, as shown in Figure 8.3(a). It can be seen from Figure 8.3(a) 
that the electric field lines diverge from the positive charge and converge on 
the negative charge. We shall calculate the force on the positive charge using 
Maxwell's stress tensor. Normally we would say that the negative charge gives 
an electric field of magnitude 

47re0(2a) 2 	16ne0a2  

at the position of the positive charge in Figure 8.3(a) and that the attractive 
force on the positive charge is given by 

F = qE0  — 	q . 	 (8.36) 
16rceoa2  

When using Maxwell's stress tensor we must apply equation (8.28) to a 
closed surface So  that surrounds the positive charge. As part of the closed 
surface So  we shall use the median plane, which is perpendicular to the line 
joining the charges and which intersects the line joining the charges at a 
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(e) 	 (b) 

Figure 8.3. Calculation of the electrostatic forces (a) between a positive and negative charge, 
(b) between two positive charges, using Maxwell's stress tensor. (Reproduced from: Electro-
magnetic Fields and Relativistic Particles, by E. J. Konopinski [6], with the permission of the 
McGraw-Hill Book Co.) 

point halfway between them. The rest of the closed surface So, that surrounds 
the positive charge, is at such a large distance from the charges that the electric 
field can be taken to be zero on that part of the surface so that, when equation 
(8.28) is integrated over the surface So, it reduces to 

Felec = fTelec ' dS. 	 (8.37) 

evaluated over the median plane only. 
Since the angle between any element of area dS of the median plane and 

the resultant electric field E at the median plane is zero, it follows from 
equation (8.27) that 

Teiec  dS = 11 ( ef2  ) dS 
	

(8.38) 

In this simple example it is straightforward to use the mechanical analogy. 
Inspection of Figure 8.3(a) shows that the contribution of the "tension" in 
the electric field lines is of magnitude (E0E2) per unit area of the median 
plane and is in a direction perpendicular to the median plane pointing to the 
left. The "pressure" (E0E2/2) acts inwards into the median plane, that is to 
the right in Figure 8.3(a), so that the resultant contribution to the integral in 
equation (8.37) is the same as if here were a force (2.0E2/2) per unit area pulling 
the median plane to the left in Figure 8.3(a). Consider an element of area of 
the median plane of magnitude 27cr dr situated between circles of radii r and 
r + dr, with centres at the mid point of the line joining the two charges. 
According to Coulomb's law the contribution of the negative charge to the 
electric field at this element of area is of magnitude q/4rce0(a2  + r2) in the 
direction towards the negative charge. The electric field due to the positive 
charge has the same magnitude but is in the direction radially outwards from 
the positive charge. The resultant electric field E at the position of the element 
of area is of magnitude 



280 Chapter 8 

E= 
2qa  

47180(a2  + r2) 312  

in a direction perpendicular to the median plane in the direction to the left 
in Figure 8.3(a). Substituting for E in equation (8.37) and putting dS = 
27cr dr, we find that 

F eke 

= 

Telec • 

,2„2 

e_ p2 

dS 	dS = 
A  

= n 

q 
2 

80E2 

27cr dr 

œ 	2r dr 

2  

\ 

8C0  Jo (a2  + r2) 3 
 — (8.39) 

16ne0a2  

This is in agreement with equation (8.36). According to equation (8.28) we 
would get the same result whatever the shape and position of the surface So 

 that surrounds the positive charge in Figure 8.3(a). These results show that 
we get the same result if we use Coulomb's law or Maxwell's stress tensor, 
which is not surprising since, when we derived equation (8.26) we started with 
equation (8.22) which is equivalent to starting with qE0  in the present example. 
This shows that Maxwell's stress tensor adds nothing new to classical elec-
tromagnetism and does not imply that there is a force on the empty space in 
the median plane in Figure 8.3(a), as was assumed in the nineteenth century 
aether theories. 

In the example of two positive charges of magnitude +q shown in Figure 
8.3(b), the electric field at the median plane is parallel to the median plane 
as shown in Figure 8.3(b). If we choose the same surface So  as previously, 
the "tensions" in the electric field lines at the median plane do not give a 
contribution to the integrals in equation (8.26) and we are left with only the 
"pressure" (e0E2/2) which acts into the surface So, that is to the right in 
Figure 8.3(b). The reader can check this result using equation (8.27). It is 
now straightforward for the reader to show that the magnitude of the repul-
sive force on the right hand positive charge in Figure 8.3(b) is equal to 
q2/16rce0a2  in agreement with Coulomb's law. To determine the repulsive 
force on the left hand side charge in Figure 8.3(b) consider the mirror image 
of the surface  S. In this case the "pressure" acting on the median plane is 
to the left in Figure 8.3(b). 

8.2.6. Magnetostatic example of the application of Maxwell's stress tensor 

Consider two infinitely long, thin, parallel wires a distance 2a apart in empty 
space as shown in Figures 8.4(a) and 8.4(b). In the example shown in Figure 
8.4(a), the two steady parallel currents, each of magnitude /, are upwards 
towards the reader. The resultant magnetic field lines are shown in Figure 
8.4(a). According to the Biot-Savart law the magnetic field Bo  at the position 
of the right hand side current due to the other current is 

114 	got  
B° 2742a) — 47ca 
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GP) 
	

(b ) 

Figure 8.4. Calculation of the magnetic forces between two parallel currents using Maxwell's 
stress tensor. (Reproduced from: Electromagnetic Fields and Relativistic Particles, by E. J. 
Konopinski [6], with the permission of the McGraw-Hill Book Co.) 

The magnetic force on unit length of the right hand side wire is 

Fmag  = Bll = ' 
4na ' 

(8.40) 

To apply equation (8.14), we shall consider a surface So  that surrounds unit 
length of the right hand side current and is made up of a section of unit 
width of the median plane in a direction perpendicular to the paper in Figure 
8.4(a), So  is completed by two planes perpendicular to the median plane 
which are joined in a region where the magnetic field is negligible to complete 
the surface So  enclosing unit length of the right hand side wire. The contri-
bution associated with the parallel plane surfaces to the integrals in equation 
(8.14) compensate each other so that we need only evaluate the integrals in 
equation (8.14) over the strip of unit width of the median plane. At a distance 
x from the line joining the charges, the resultant magnetic field due to both 
the currents in Figure 8.4(a) is 

go/x 
Bo  — 

2t(a2  + x2) • 

According to equation (8.17) for any point on the median plane we have 

B 2  
dFmag  = n ( ''1.)  dS 21. 0  

where Ii is a unit vector normal to the median plane pointing to the left. (The 
reader can check this result using the mechanical analogy). Substituting for 
B for a strip of width dx and integrating we find that 

F. = ii ( /2  ) 2 /4  	f (a2 	+ oe x2 dx 	( 	) g 	3t2 	__. 	x2)2 = 
__
47ca n ' 

(8.41) 
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Equation (8.41) is in agreement with equation (8.40), which shows that 
Maxwell's stress tensor gives the same result as the standard method using 
the magnetic field and the Lorentz force law. This is no surprise as we started 
with equation (8.2) to derive equation (8.14). The use of Maxwell's stress 
tensor is just an alternative way of deriving a standard result. It is left as an 
exercise for the reader to interpret and analyse Figure 8.4(b). 

8.3. The energy of the electromagnetic field 

It is difficult in the general case when there are static, induction and radia-
tion electric and magnetic fields to be explicit about where all the energy of 
the electromagnetic field resides. As an analogy consider a gravitational 
example. If we hold a mass m at a height h above the ground, we generally 
say that it has a potential energy mgh, where g is the acceleration due to gravity. 
Is this potential energy in the mass m, in the Earth or in the gravitational 
field? Generally it is only necessary to say that the system has potential energy, 
though, in the general theory of relativity, energy and momentum are attrib-
uted to the gravitational field. In the electromagnetic case, if we assemble 
an electrostatic charge distribution from its constituent charges, we do work 
against the electrostatic forces between the charges and the electrostatic charge 
distribution has a potential energy Uelec  which can be expressed in the form 

1 
Uelec = -i- f p4s dV (8.42) 

where p is the charge density and (1) is the electrostatic potential. The volume 
over which the integration in equation (8.42) is evaluated must include all 
the charge in the system including any test charge. Reference: Griffiths [2]. 

Since according to Maxwell's equations, p = c oV • E we can rewrite equation 
(8.42) in the form 

Uelec = e)  f (IN • E dV 
	

(8.43) 

Putting A = E in equation (A1.20) of Appendix A1.6, where E is the electric 
field, and then rearranging we have 

(I)V • E = V • (4)E) — E • V(I). 

Since VO = —E, after substituting for •:IN • E in equation (8.43) we find that 

&-'  Uelec = f V • (4)E) dV + f ( F4) dV. 2 

After applying Gauss' integral theorem, which is equation (A1.30) of Appendix 
A1.7, to the first integral on the right hand side we have 

Uelec = 1)  f 01:0E • dS + f (4E  ) dV. 	 (8.44) 
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Equation (8.44) is correct for any volume that contains all the electrostatic 
charge distributions. As we go to larger and larger distances from the elec-
trostatic charge distributions, (1) and E decrease at least as quickly as 1/r and 
1/r2  respectively so that OE goes down at least as quickly as 11r3 , whereas 
the area increases as r2 . Hence provided we integrate over the whole of space 
the first integral on the right hand side of equation (8.44) is zero and equation 
(8.44) becomes 

udec  . f (e04) dv. 	 (8.45) 

We have only derived equation (8.45) for an electrostatic charge distribu-
tion. To illustrate that equations (8.42) and (8.45) are alternative formulae 
for determining the same quantity, namely the total electrostatic energy, 
consider an idealized parallel plate capacitor of capacitance C = EA/d, where 
A is the area and d the separation of the plates. If Q is the total charge on 
the positive plate and 4, is the potential difference between the plates, then 
corresponding to equation (8.42) we can express the total electrostatic energy 
in the well known formula 

u  
 — 
Q

— 
4) 	Q2  

— elm 	2 	2C • (8.46) 

If the fringing field is zero, the electric field, which is then of magnitude Q/e0A, 
extends only over the volume Ad between the plates of the capacitor, so that, 
according to equation (8.45), 

0 	0Q2Ad  Q2d 	Q2  
Uelec = (

e 
°I'i ) 	e  

Ad — 	 8. )47 
2e02 A2 — 	 ( 2e0A 	2C • 

This shows that both equations (8.46) and (8.47) give the same value for the 
total electrostatic energy. Is the energy in the charges or is it in the electro-
static field? In practice we only observe the energy when the electromagnetic 
field interacts with charges. 

By considering the work that must be done against the back emfs when 
we set up a steady current distribution, it can be shown that, when i.t r  = 1 
everywhere, the total magnetostatic energy can be expressed in the form 

Umag  = f ( to  ) dV. (8.48) 

provided we integrate over the whole of space. Reference: Griffiths [3]. 
Alternatively, we can express the total magnetostatic energy in the form 

1 
Umag 	f J - A dV (8.49) 

where J is the current density and A is the vector potential. The integration 
must include all the current distributions and any moving test charge. As an 
example of the energy stored in an inductor, consider an LR circuit. When 
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the current is /, the total magnetic energy is L121 2. The current in the LR circuit 
does not decrease to zero instantaneously when there is no applied emf in 
the circuit, since, when the magnetic field is decreasing, there is an induc-
tion electric field which gives an induced emf which gives a current flow in 
the resistor leading to the production of observable Joule heating in the resistor. 
The total Joule heat produced is equal to L12/2. 

Adding equations (8.45) and (8.48) we find that the total electromagnetic 
energy of a steady charge and current distribution can be expressed in the form 

Uem  = Uelec + Umag = f ( 

coE2 	B2 A II  
2 	2 - ) LI Y + 14 	' (8.50) 

provided the integration is over the whole of space. Equation (8.50) is often 
rewritten in the form 

Uem  = f uem  dV 	 (8.51) 

where the expression defined by the equation 

tlem  = 
I eciE2 	B2 \ 

k 2 ± 21.t0  ) ' (8.52) 

is generally called the "energy density" of the electromagnetic field. When 
integrated over all of space the integral of the "energy density" gives the 
total electrostatic and magnetostatic energy. In the case of electrostatics and 
magnetostatics we could just as well define the "energy density" to be 

, 	1 	1 
uem = T PO + —2 J - A (8.53) 

which would be consistent with the alternative view that the energy is stored 
in the charge and current distributions. Hence in the context of magneto-
statics and electrostatics we cannot give a definitive answer to the question: 
"Where is the energy stored and what is the energy density?" In some cases 
at least, it is reasonable to attribute energy to the electromagnetic field. For 
example, radio waves move outwards from a transmitting antenna with the 
speed of light and exist independently of their source, and will continue 
outwards after the transmitter is switched off. The electric vector of the radio 
waves gives an electric force on the conduction electrons in a receiving antenna 
wherever it is placed, leading to an electrical signal in the receiving antenna. 
In this way the antenna takes energy from the electromagnetic field. In this 
example, the capacity to give energy to the receiving antenna must reside in 
the electromagnetic field and it is sensible to say that there is energy in the 
radio signal, though we shall find that, since we shall only need to work 
with integrals of the fields, there will be no need for us, in the context of 
classical electromagnetism, to be explicit about what the precise expression 
for the energy density of the electromagnetic field is, and where the energy 
is located. 
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So far in this book, we have avoided the use of methods based on energy 
as the underlying physical principles are often hidden in these methods. For 
example, if we applied the law of conservation of energy to the LCR circuit 
in Figure 7.6 of Chapter 7, then, by equating the rate e/ at which the emf e 
supplies energy to the circuit to the rate I2R at which Joule heat is generated 
in the resistor R plus the rates of change of the energy stored in the inductor 
L and in the capacitor C we would have 

cI 	
d 1 	1 Q2  \ 

= 12R  ± Tr 	
2 
 T 	• 

Carrying out the differentiation and cancelling I = dQ/dt we get 

d/ Q (8.54) 

d2Q 	dQ Q 
= 	+ 	+--. 	 (8.55) 

Equations (8.54) and (8.55) are the same as equations (7.77) and (7.78) of 
Section 7.6.4 of Chapter 7. Equation (8.55) can now be solved mathemati-
cally to determine the behaviour of a resistor, an inductor and a capacitor in 
an AC circuit without having to enquire why the inductor and the capacitor 
behave in the way that they do. The author would like to stress that the 
reader should continue to use methods based on energy whenever it is con-
venient to do so. It is just that in this book our aim is to interpret the underlying 
physical principles and not to get the results by the quickest method. 

8.4. The rate at which the electromagnetic field does work on a charge 
and current distribution 

Consider a system of moving and accelerating classical point charges, each 
of charge q, that build up a varying macroscopic charge and current distrib-
ution. Consider a volume element dV at a point inside the charge and current 
distribution, where the total electric and magnetic fields are E and B respec-
tively. According to the Lorentz force law, the force on the ith charge qi  is 

Fi  = qiE + qiui  x B. 

The rate at which the electromagnetic field is doing work on the charge qi  is 

Fi  • ui  = qiE • ui  + qi(ui  x B) • ui  = qiE ui. 

Notice that the magnetic field does no work. Summing over all the charges 
in the volume element dV we find that 

ai  • ui  = Eqiui  • E = E (Eqiui)• 	 (8.56) 

If (u,) is the mean velocity and n is the number of charges per unit volume, 
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then summing over all the charges in the volume element dV, we have 

Eqiui  = qn(ui) dV = J dV 

where J is the current density. Hence equation (8.56) can be rewritten in the 
form 

Fi  • ui  = E • J dV. 	 (8.57) 

Integrating over a finite volume Vo  at the fixed time of observation t, we 
find that the rate of doing work W on the charges inside Vo , which is the 
power P supplied to the charges in the volume Vo  at the time t is 

dW P ----- — --IE•JdV 	 (8.58) 
dt 

where the symbol W stands for the work done on the charges inside Vo . 
Equation (8.58) is valid for both static and varying charge and current dis-
tributions. Since we derived equation (8.58) using the Lorentz force law, 
whenever we use equation (8.58) we are using a formula based directly on 
the Lorentz force law. 

8.5. Energy transfer and the Poynting vector in DC circuits 

8.5.1. Theory 

Before going on to discuss the general case of varying charge and current 
distributions in Section 8.6.1, as an introduction we shall assume in this section 
that the charge and current distribution in Figure 8.1 is steady, corresponding 
to DC conditions and that the total electric and magnetic fields due to all 
the charge and current distributions are also steady so that both k and A 
are zero, and according to Maxwell's equations 

J — 
V x B 	

(8.59) 
I-to 

According to equation (8.58), which we derived using the Lorentz force law, 
the rate at which the electromagnetic field is doing work on the charges making 
up the charge and current distribution inside the volume Vo  in Figure 8.1 is 

W=JE•JdV. 	 (8.60) 

Substituting for J in the expression E - J we obtain 

EJ = 
E • (V x B)  

•  
I-to 

(8.61) 

Putting A = E and B = B in equation (A1.21) of Appendix A1.6, where E is 
now the total electric field and B is the total magnetic field, and remem- 
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bering that, according to Maxwell's equations, V x E is zero if ii is zero, 
we find that for DC conditions 

V • (E x B) = -E • (V x B) 

Hence 

E • J = -V •
( E x B 	

(8.62) 
go / 

Substituting for E - J from equation (8.62) into equation (8.61) and applying 
Gauss' theorem of vector analysis, we find that for DC conditions the rate 
at which the electromagnetic field is doing work on the charges inside the 
volume Vo  in Figure 8.1 is also given by 

Vii = - 
1 

f 
1  

f (E x B) 	• dS. (8.63) 
14 

x B) dV V 	• (E 	= - 
110 

To simplify the equations, we shall introduce a new vector N, 
Poynting vector, which we shall define by the equation 

E 	x B  
N = 	. 

110 

called the 

(8.64) 

In the general case, in the presence of dielectrics and magnetic materials, 
the Poynting vector is defined as 

N = E x H. 	 (8.65) 

In empty space H is equal to B/110  and equation (8.65) reduces to equation 
(8.64). 

Using equation (8.64) we can rewrite equations (8.60) and (8.63) in the 
forms 

14.7  =  JE  • J dV = -I(V - N) dV 
	

(8.66) 

14.7  = -f N • dS. 	 (8.67) 

which are valid for steady (DC) conditions only. By comparing equations (8.60) 
and (8.67) the reader can see that what we have done in this section is to 
express JE  - J dV in the alternative form -IN N. dS. We shall go on to the general 
case of varying charge and current distributions in Section 8.6.1. It is of interest 
to note that, according to equation (8.62) for DC conditions E - J = -V - N 
so that where E • J is positive there is a sink for the Poynting vector and where 
E - J is negative there is a source for the Poynting vector. In empty space where 
J is zero 

V ( E x B  ) = V - N = O. 	 (8.68) 
\ 	110 
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8.5.2. Application to a practical example 

As an example of the application of equation (8.67) to steady (or DC) con-
ditions, we shall consider the example of the Van de Graaff generator, which 
sustains a steady DC current in the circuit shown in Figure B 1 of Appendix 
B, and which is shown in simplified form in Figure 8.5. After the state of 
dynamic equilibrium is reached, the belt of the Van de Graaff moves charges 
against the electric force on them due to the charges on the terminals of the 
Van de Graaff. The charges on the terminals also give the external electric field 
that drives current around the circuit in the way described in Section B1 of 
Appendix B, where it is shown that surface and boundary charge distribu-
tions are built up on the conductors, such that the correct value of electric field 
E is sustained inside the conductors to give the same value of current in all 
parts of the circuit. It is this electric field inside the conductors that acts on 
the conduction electrons to give the current flow. According to equation (8.58) 
the rate at which this electric field is doing work on all the conduction elec-
trons inside a volume 1/0  is 

14.7  ----  JE.  J dV. 	 (8.58) 

According to equation (8.67), equation (8.58) can be rewritten in the alter- 

s i 	 s 2  

s i 	 s 2  

Figure 8.5. The Van de Graaff generator produces a steady current flow in a stationary external 
circuit. The directions of the resultant electric field E and the Poynting vector N outside the 
conductors are sketched in the region inside the circuit. 
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native form 

14.7  = —IN N. dS (8.67) 

where N is the Poynting vector and IN • dS is the Poynting flux out of the 
surface. 

We shall consider first a cylindrical section of the external circuit in Figure 
8.5, as shown in Figure 8.6. The wire is of circular cross section, of radius 
a and area of cross section A = ica2 . It is of length 1 and carries a steady con-
duction current I. According to equation (1.42) when the current is steady 
the electric field inside the conductor is 

J 	1 
E 

a GA 
(8.69) 

in a direction parallel to its length. It follows from Ampère's circuital theorem 
that the magnetic field at a point just inside the surface of the wire, at a distance 
a from the axis of the long, straight wire is 

B — 11°1 	 (8.70) 2na 

in a direction given by the right-handed corkscrew rule, as shown in Figure 
8.6. Notice that E and B are perpendicular to each other. Using equations (8.69) 
and (8.70) we find that the magnitude of the Poynting vector, just below the 
surface of the conductor in Figure 8.6, is 

EB  
N = 	— 	

12 	
(8.71) go  	2naGA 

and its direction is perpendicular to and into the conductor. To apply equation 
(8.67), consider a cylindrical surface So  of height 1 which is just inside the 
cylindrical conductor in Figure 8.6. Since the electric field inside the conductor 

0 	la 	 I, B 

I 	N  

0  
e 

Figure 8.6. A section of the external circuit in Figure 8.5. The electric field E inside the 
conductor is parallel to the direction of current flow, whereas the magnetic field B inside the 
conductor is perpendicular to the direction of current flow. The Poynting vector N inside the 
conductor is inwards towards the axis of the cylindrical conductor. 
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is parallel to the conductor, the Poynting vector has no component parallel 
to the conductor and the only contribution to IN . dS comes from the curved 
surface of So. Using equation (8.71) we find that 

14 .7  = – .1.  N.  dS = 27talN = I2 (-1 
' 	

(8.72) 
oA )  

In the conductor this energy is given to the conduction electrons, which sub-
sequently lose this extra kinetic energy in collisions leading to the production 
of Joule heat. Since (//oA) is equal to the resistance R, we find that the Joule 
heat predicted using equation (8.72) is equal to I2R. 

If we used equation (8.58) directly we would find, with E = //oA and 
J = IIA, that for the cylinder in Figure 8.6 

14.7  = f  E - J dV = A IEJ = 12(_1 ) 	.... 12R.  
oA 

This shows that equations (8.67) and (8.58) make the same predictions, which 
was only to be expected, since we derived equation (8.67) from equation (8.58). 

We return now to consider the complete circuit shown in Figure 8.5. We 
shall consider the two closed surfaces Si  and S2  shown in Figure 8.5. The 
surface Si  surrounds the Van de Graaff generator and part of the circuit. The 
surface S2  surrounds the rest of the circuit. It can be seen from the practical 
example given in Figure B2 of Appendix B that, in addition to the electric field 
inside the conductors, there is an electric field outside the conductors that 
has components both normal to and tangential to the surfaces of the conduc-
tors. The external electric field lines go from regions of high electrical potential 
to regions of lower potential, as shown in the simplified diagram in Figure 8.5. 
The conduction current in the external circuit is in a clockwise direction in 
Figure 8.5. According to the right handed corkscrew rule, the magnetic field 
B, due to the current in the circuit, is downwards into the paper everywhere 
inside the region bounded by the circuit in Figure 8.5. Inside the Van de Graaff, 
the electric field is from the positive to the negative terminal, so that just 
outside the Van de Graaff, the direction of the Poynting vector (E x B)/11 0, 
in the region bounded by the circuit, is predominantly to the right, away 
from the source of emf as sketched in Figure 8.5; but, since there is a com-
ponent of E tangential to the surface of the conductors, which is equal to 
the value of E inside the conductors, there is a component of the Poynting 
vector, perpendicular to and into the surfaces of the conductors, of magni-
tude given by equation (8.71). The electric and magnetic fields outside the area 
bounded by the circuit in Figure 8.5 are not shown. It is left as an exercise 
for the reader to sketch these fields and the direction of the Poynting vector 
in this region. 

Applying equation (8.67) to the surface Si  that surrounds the Van de Graaff 
in Figure 8.5 we have 

aw i  + aw2 - - f N • dS 	 (8.73) at 	at 
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where 14./ 1  and 14.72 are respectively the rates at which the electromagnetic 
field is doing work on the charges on the belt of the Van de Graaff and on 
the conduction electrons in those parts of the conductors that are inside S1  in 
Figure 8.5. It can be seen from Figure 8.5, that the general direction of the 
Poynting vector is outwards from the surface S1 , so that fN • dS evaluated over 
the surface S1  in Figure 8.5 is positive and, according to equation (8.67), 
(1,1(7 1  +  W2)  is negative. The rate 47 1  at which the electromagnetic field is 
doing work on the charges on the moving Van de Graaff belt is negative 
since, in this instance, it is the Van de Graaff that is doing work in moving 
the charges on the belt against the electric forces on them due to the charges 
on the terminals of the Van de Graaff so that E - J is negative in this region. 
The rate 14.7 2 at which the electromagnetic field is giving kinetic energy to 
the conduction electrons in the conductors inside S 1  is positive and this leads 
to the production of Joule heat in these conductors. Since (1,i7 1 + Iii72) is negative 
the Van de Graaff does more work in moving charges against the electro-
magnetic field than is given to the conduction electrons in the conductors inside 
the surface Si  in Figure 8.5. According to equation (8.67) the imbalance in 
the energy equation (8.73) between 11,i7 1 1 and 114.72 1 is equal to the flux of the 
Poynting vector out of the surface Si . This shows that it is this Poynting flux 
out of the surface S1  that balances the energy balance equation (8.67), when 
we only consider part of a circuit. 

Applying equation (8.67) to the surface S2 in Figure 8.5, we find that 

W3 = -f N • dS 	 (8.74) 

where Vi73 is the rate at which the electromagnetic field is doing work on the 
conduction electrons in the conductors that are inside the surface S2  in Figure 
8.5. In this case the direction of the Poynting vector is into the surface S2  so 
that IN - dS is negative in equation (8.74) and, it follows from equation 
(8.74), that 14.7 3 is positive and leads to the generation of Joule heat in the 
conductors inside S2. 

If we consider a surface, that surrounds the Van de Graaff and external 
circuit in Figure 8.7, and is so large that the fields E and B are zero on its 
surface, then equation (8.67) becomes 

Wi + W2 + W3 = 0 - 	 (8.75) 

According to equation (8.75) the rate (-14.7 1 ) at which Van der Graaff is 
doing work is equal to the rate at which work is done on all the conduction 
electrons in the external circuit. 

All we actually did in going from equation (8.58) to equation (8.67) was 
to derive an alternative way of determining the energy changes in parts of a 
steady charge and current distribution. We interpreted current flow in Appendix 
B in terms of the action of a local electric field on the conduction electrons 
and we used this approach to derive equation (8.58). Some people like to 
use the model that there is an actual flow of energy given by the Poynting 
vector. In this approach they visualise the energy as going from the emf in 
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Figure 8.5 through empty space following the direction of the Poynting vector 
N, as sketched in Figure 8.5. This approach gives the correct result when 
the values of the Poynting vector are substituted into equation (8.67) and 
then integrated over a closed surface. We shall return to discuss this inter-
pretation of the Poynting vector in Section 8.9. 

8.6. The propagation of energy and the Poynting vector for the general 
case of varying charge and current distributions 

8.6.1. Theory 

We shall assume now that the charge and current densities p and J and the 
fields E and B in Figure 8.1 are all varying with time. According to equation 
(8.58),which we derived using the Lorentz force law, in the general case 
also, the rate at which the electromagnetic field is doing work on the charge 
and current distribution inside the volume 1/0  in Figure 8.1 is given by 

DW 
– fE•JdV. 	 (8.58) at 

We shall now elmiminate J from equation (8.58) using the Maxwell equation 

1 
J= ---

Jo  V B
x – cot 

giving 

Now 

aw — —1 r
E • (V x B) dV — eo  f E • È dV. at 	go  i 

E • k. (Exkx  + EA + Ezkz) 
a f E2 \ 

= 2 at 

(8.76) 

(8.77) 

According to equation (A1.21) of Appendix A1.6 for any two vectors A and 
B 

V • (A x B) = B • (V x A) – A • (V x B). 	 (8.78) 

Putting A = E and B = B in equation (8.78), where E and B are now the electric 
and magnetic fields respectively, and then rearranging we have 

E • (V x B) = B • (V x E) – V • (E x B). 	 (8.79) 

Since according to Maxwell's equations, V x E = –1.3 we find that 

B•VxE= –B • k = - -2- ( -/---32- 	 (8.80) at 2 ) ' 
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Hence equation (8.79) becomes 

E . (V x B) = — t OA — V . (E x B). 	 (8.81) 

Substituting from equation (8.77) and (8.81) into equation (8.76) we get 

Dw 	a f ( e0E2 	B2 	1 + 7,0  ) dV — To  f V • (E x B) dV. 	(8.82) 
2 

Applying Gauss' mathematical theorem, which is equation (A1.30) of 
Appendix A1.7, to convert the second integral on the right hand side into a 
surface integral, we finally obtain 

aw 	a  I  - 1E0E2 	B 	f (E x B) 
- dS. 	(8.83) at - T iv°  k 2 + 

-2-i
2
— ) dV — to  

s. 	go 

The integrations in equation (8.83) are carried out over the volume Vo  in Figure 
8.1 at the time of observation t. We should not make any allowance for 
retardation effects, when we evaluate the integrals at the time t. 

It is convenient at this stage to introduce the Poynting vector N, which 
we defined by equation (8.64), and is given by 

N=  E x B 	
(8.84) 

1-to 

and to introduce the "energy density" uem  defined by equation (8.52) which 
is 

Uem = 

I e0E2 	B2 \ 
k 2 + 2iLto  ) ' 

(8.85) 

We shall denote the integral of the "energy density" over the finite volume 
Vo  in Figure 8.1 by Uem  so that 

Uem  = _rue. dV. 	 (8.86) 

Equations (8.82) and (8.83) can now be rewritten in the more concise forms 

Dw ——f (V - N) dV — t f uem  dV 	 (8.87) at 

aawt  _  _ J  N . dS — -aa-i f uem  dV 	 (8.88) 

at 
a 	f N • dS auem 	 (8.89) 
w —— 	at 

All the integrations in equations (8.87), (8.88) and (8.89) are over the volume 
Vo  and surface So  in Figure 8.1 at the time of observation t. Summarizing, 
we started with equation (8.58) which gives the rate 14.7  at which the electro-
magnetic field is doing work on the moving classical point charges making 
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up the macroscopic charge and current distribution that is inside the finite 
volume Vc, in Figure 8.1 at the time of observation t. We then used Maxwell's 
equations and some vector analysis to derive equations (8.87), (8.88) and (8.89) 
which express 14.7  =  JE  • J dV in terms of the values of the fields E and B 
on the surface So  and their values inside the volume Vo  in Figure 8.1 at the 
time t. This led up to equations (8.87), (8.88) and (8.89). The observable 
quantities arise from 14.7 , which can, for example, lead to Joule heating, 
acceleration of the charge distribution etc. According to equation (8.89), 
is equal to minus the rate of change of the total electromagnetic energy Uen, 
inside Vo  plus the flux of the Poynting vector into the surface So  of the volume 
Vo . When equations (8.87), (8.88) and (8.89) are applied to practical cases, 
we need only apply them in their integral forms so that at this stage we need 
only assume that uern , //ern  and N are functions that are defined in terms of 
E and B by equations (8.85), (8.86) and (8.84) respectively and whose 
introduction simplifies the mathematical form of equation (8.83). We shall 
return to discuss the role of the Poynting vector N in Section 8.9. 

If equation (8.88) is applied to an infinitesimal volume dV the variations 
over dV can be neglected. If umech is the total kinetic energy of the classical 
point charges per cubic metre, then equation (8.88) becomes 

_ auiantech  dv  = (V N) dV 	aaur  dV 
	

(8.90) 

where we can interpret V • N dV as the net Poynting flux coming from dV. 
If we cancel dV we can rearrange equation (8.90) in the form 

a V  • N + 	(unwell ± Um) = 0. 	 (8.91) 

This has the form of an equation of continuity. The reader should remember 
that when equation (8.91) is applied to a practical case it is equation (8.90) 
that must be integrated over a finite volume surrounding the detector, which 
brings us back to equation (8.88). 

8.6.2. A plane electromagnetic wave incident on a perfect absorber 

Consider a plane electromagnetic wave that is propagating in the +x direc-
tion in empty space, as shown in Figures 8.7(a) and 8.7(b). The plane wave 
is polarized with its electric vector E in the y direction, and can be repre-
sented by the equation 

x 
Ey = E0 cos w (t — —)

c 	
(8.92) 

where w is the angular frequency. The magnetic field of the plane wave is 
in the z direction and can be represented by 

B. = Bo  cos co (t — 	 (8.93) 
cl  
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Figure 8.7. Calculation of the radiation pressure due to a plane electromagnetic wave that is 
incident on a perfect absorber. 

where for a plane wave in empty space 

Ey  = cB z . 

There is an idealised, very thin, plane, perfect absorber of electromagnetic 
waves, which is of infinite dimensions in the x = 0 plane, as shown in Figure 
8.7. We shall consider first the cylindrical surface Si  shown in Figure 8.7(a) 
and which has two circular bases each of area 1 m2, which are just on either 
side of the perfect absorber. The height of the cylindrical surface Si  is negli-
gible. Since the volume Vi  enclosed by the surface Si  is negligible, the second 
integral on the right hand side of equation (8.88), which is only evaluated 
over the negligible volume Vi , can be neglected so that for the surface Si , 
equation (8.88) reduces to 

14 .7  = —f N - dS 	 (8.94) 
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evaluated over the surface S1 . The fields E and B are zero to the right of the 
perfect absorber in Figure 8.7(a) so that the Poynting vector N is zero on 
the right hand circular base of S1 . Since the area of the curved surface of S1  
is negligible IN - dS evaluated over the curved surface is zero. The contri-
bution of the left hand circular base of SI , which is of area 1 m2, to fIST • dS 
is equal to —N i  where Ni  is the Poynting vector of the incident plane wave at 
the position of the absorber. Hence, IN - dS evaluated over the surface S1  is 
equal to —N i  and equation (8.94) reduces to 

14.7  = —f N • dS = Ni . 	 (8.95) 

This shows that for a plane wave, incident on a perfect absorber at normal 
incidence, the power given to each square metre of the absorber is equal to 
the Poynting vector Ni  of the incident wave at the position of the absorber. 
Using equations (8.92) and (8.93) we have 

viT  . Ari.  E3,13, _ E0130  
	cos2  co (t —) . 	 (8.96) 

14 	110 	 c 

Using Bo  = Eo/c and goeo  = 1/c2  we find that 

x \ 	( e0E1, ± Bl, ) W = Ni  = cE0E1, cos2  wit—    — = c 	 cs2  0.) t — 	. 
c 	2 	214 	 c 

(8.97) 

For the example shown in Figure 8.7(a), when a maximum of the wavefront 
is reaching the absorber at the time t = 0, we find using equations (8.96) and 
(8.97) that equation (8.95) becomes 

p2 	p 2 
W  = Ni . c (i-

, 
 o—o ± "0 ) = CE0E(1. 	 (8.98) 2 	2g°  

Consider now the cylindrical surfaces S2  shown in Figure 8.7(b) at the instant 
t = 0 when a maximum of the wavefront reaches the absorber. The circular 
bases of S2  are each of area 1 m2 . One circular surface is just beyond the 
absorber in Figure 8.7(b) in a region where the radiation electric and magnetic 
fields are both zero, so that the Poynting vector N is zero all over that surface. 
The other circular surface is at a distance X/4 to the left of the absorber in a 
region where the radiation fields and hence the Poynting vector N are zero. 
The Poynting vector is parallel to the curved surface of S2  so that N - dS is 
zero all over the curved surface so that integrating over the  surface  S2 , we have 

f 

 

N.  dS = O. 

Hence equation (8.88) reduces to 
vfr  . 1  f ( eor + f ) dv. 	 (8.99) 



Forces, energy and electromagnetic momentum 297 

In an infinitesimal time dt the wavefront in Figure 8.7(b) moves an infini-
tesimal distance c dt to the right. The change in the integral of "energy density" 
in the time dt is the same as if we moved the surface S2 a distance c dt to 
the left at the fixed time t = 0. Since the fields E and B are zero on the left 
hand side circular base, the change in the integral of the "energy density" 
due to moving the left hand side circular base of the surface S2 an infinites-
imal distance c dt to the left is negligible. The change in the integral of 
energy density due to moving the right hand side circular base of S2 an 
infinitesimal distance c dt to the left is a loss of  (EE/2 + BP211.0)c dt. Dividing 
by dt and substituting in equation (8.99) we find that, since E0  = cB o, we 
have 

1, 	, 2 
W = C 	

/3
21.10  - CE0C0 (8.100) 

This is in agreement with equation (8.98). For the surface S2 in Figure 8.7(b), 
the rate at which the electromagnetic field is doing work on the electric charges 
in the perfect absorber is related to minus the rate of change of the integral 
of the "energy density" defined by equation (8.85). 

If the height of the cylindrical surface S2 is reduced such that the left hand 
side circular base of the surface S2 in Figure 8.7(b) is moved to the right to 
the position where E = E0/2 and B = Bd2, the integral of the Poynting vector 
over S2 is then equal to —ce0EP4. The change in the integral of the "energy 
density" in a time c dt is obtained by moving S2 a distance c dt to the left losing 
a contribution of (coE)c dt from the right hand side but gaining a contribu-
tion of (E0Ej/4)c dt from the left hand side giving a net contribution of 
—(360EP4)c to the integral of "energy density" which, when added to the 
contribution of the integral of the Poynting vector in equation (8.88), gives 
equation (8.100). These examples illustrate that, if we evaluate the right hand 
side of equation (8.88) at a fixed time, we get the same value for 14./ for all 
the surfaces considered and that in the general case both the surface integral 
of the Poynting vector and the rate of change of the volume integral of "energy 
density" contribute to the calculated value of 14.7  =  JE  • J dV in accordance 
with equation (8.88). These examples suggest that equation (8.88) is just a 
book keeping alternative to using equation (8.58) directly. 

8.7. The force on a varying charge and current distribution 

Equation (8.32) of Section 8.2.4, which expresses the force on a steady charge 
and current distribution inside a surface So  in terms of the resultant fields 
E and B on the surface So  using Maxwell's stress tensor is only valid for steady 
(or DC) conditions. We shall now assume that the charge and current distri-
butions both inside and outside the volume Vo  in Figure 8.1 are varying with 
time. We shall determine the total force F on the charge and current distrib-
ution inside the volume Vo  in Figure 8.1 at the time of observation t. Let 
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Pmech be the total momentum of the moving classical point charges that make 
up the varying charge and current distribution inside the volume Vo  in Figure 
8.1. Integrating equation (8.1) plus equation (8.2), which follow from the 
Lorentz force law, over the volume Vo  in Figure 8.1 at the time of observa-
tion t, we have 

F  . dP mech  

dt 
= f (pE + J x B) dV = f (pE – B x J) dV. (8.101) 

We can eliminate p and J using the Maxwell equations: 

p = coV • E, 	J = —1 V x B – cot 
110 

and since V • B is zero we can add the term (V. B)B/1.10  to equation (8.101) 
which then becomes 

F = f E0E (v . E) dV – f B x (V x B)  dV 
110 

+ f E0(B x t) dV + f B(V  •  B)  dV. 	 (8.102) 
14 

Differentiating (E x B) partially with respect to time gives 

a 	D w(ExB)=–w(BxE)=-1.3 xE–Bxt. 

Since from Maxwell's equation, -it is equal to V x E, after rearranging we 
have 

B x È = 4(E x B) + (V x E) x E = 4 (E x B) – E x (V x E) 

Substituting for B x E in equation (8.102) and rearranging we get 

F = f E0[(V • E)E – E x (V x E)] dV 

D 
+ f —

1 
[(V • B)B – B x (V x B)] dV – 

fExB 
at poc2 dV. 

110 
(8.103) 

We shall now apply the methods used in Section 8.2.2 to the second integral 
on the right side of equation (8.103). Putting A = B in equation (8.8) and 
substituting for B x (V x B) in the second integral, we obtain 

f 1  [(V • B)B – B x (V x B)] dV 
110 

= f 1  [ (V - B)B – V ( I.) + (B • V)B ] dV. 
110 	 2 	

(8.104) 

If we put A = B in equation (8.12), where B is now the magnetic field, after 
rearranging we have 
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f -1- [(V - B)B + (B • V)B] dV = if B(B - dS). 
14 110 

(8.105) 

Substituting in equation (8.104) and applying equation (8.11) to the volume 
integral of V(-B2/4.0), we have 

J  • B)B - B x (V x B)] dV 
110 

- — dS + —1 f B(B • dS) = f( f ) ,...0  (8.106) 

= f Tmag  - dS 	 (8.107) 

where Tinag  is the magnetic component of the Maxwell stress tensor, which 
we derived for the magnetostatic case in Section 8.2.2. 

Using the same method we can show that the first integral on the right 
hand side of equation (8.103) leads to iTelee  - dS. Hence equation (8.103), which 
gives the total force F on the varying charge and current distribution inside 
the volume Vc, in Figure 8.1 at the time of observation t can be written in 
the forms 

F = f (pE + J x B) dV 	 (8.108) 

= f ( - 64-) dS + f E0E(E • dS) + f ( - 5141,3 ) dS 

t f E xc2B  dv  + —1 f B(B - dS) - 
110 

_ _t  f E xc2B  dv  
- f (Teiec 4-  Tmag) • dS 

_ f E xc2B  d v  = f T - dS - 

= f T - dS - -,t: -  .1 .1-12-  dV 

(8.109) 

(8.110) 

where N is the Poynting vector defined by equation (8.64). The surface integral 
in equation (8.110) is evaluated over the surface So  and the volume integral 
is evaluated over the volume Vo  in Figure 8.1 at the time of observation t. 
No allowance should be made for any retardation effects when evaluating 
the integrals at the fixed time t. The tensor T = Tmag  + Tel„ is the Maxwell 
stress tensor we derived in Sections 8.2.2 and 8.2.3 for magnetostatic and 
electrostatic conditions and is given by equation (8.35). The values of the fields 
E and B that must be used in the Maxwell stress tensor are their values on 
the surface So  at the time of observation t. It can be seen from equation 
(8.110) that, when the charge density p and the current density J are varying, 
the integral of the Maxwell stress tensor over the surface So  is not equal to 
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the integral of the Lorentz force on the moving classical point charges inside 
the volume Vo  at the time of observation t. For the conditions shown in Figure 
8.1, the surface So  is outside and spatially separated from the charge and current 
distribution inside Vo . According to the retarded potentials, the changes in 
the electromagnetic interactions due to changes in the charge and current 
distributions outside So  take time to travel at the speed of light c from these 
external sources, so that these changes reach the surface So  in Figure 8.1 before 
they reach the charge and current distribution inside Vo  to effect changes in 
the Lorentz forces acting on the classical point charges making up the charge 
and current distribution inside Vo . Changes in the electromagnetic interac-
tion due to the changes in the charge and current distribution inside Vo  take 
time to travel outwards to reach the surface So  in Figure 8.1. Hence, due to 
the finite time it takes for changes in the electromagnetic interaction to 
propagate from its sources, it is reasonable to find that, when p and J are 
varying, the integral of the Maxwell stress tensor over the surface So  in Figure 
8.1 at the time t is not equal to the volume integral of the Lorentz forces acting 
on the moving classical point charges inside Vo  evaluated at the same time t. 
According to equation (8.110) the compensating term is equal to minus the 
rate of change of the integral of the Poynting vector N divided by c2  over 
the volume Vo  evaluated at the time t. We shall now introduce a new variable 
pem  defined by the equation 

E x B 	 N 	 (8.111) pem  = 	2 = coE x B = 
goc 	 c2 

where N is the Poynting vector. The vector pen, is generally called the elec-
tromagnetic "momentum density" of the electromagnetic field. The total 
"electromagnetic momentum" inside the volume Vo  at the time t, which will 
be denoted by Pem, iS 

N 	 B  Pen., = f pem  dV =  J4  dV = fEx  dv.  
c 	goc2 	• 

Equation (8.110) can now be rewritten in the form 

aPmed 	 aPem = f T • dS 	at  
at 

(8.112) 

(8.113) 

where Pmech -- is the total mechanical momentum of the moving classical point 
—  

charges inside the volume Vo  at the time t, due to the motions of these 
classical point charges. The integrations are all carried out at the time of 
observation t. 

It can be shown, using the extension of Gauss' theorem of vector analysis 
to tensors, that the first integral on the right hand side of equation (8.113) 
can be rewritten as follows: 

JT - dS = f (V - T) dV 
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where V - T is the divergence of the Maxwell stress tensor T. The com-
ponents of V • T are given in cartesian coordinates by 

(V . T);  = E viTii. 
i 

Equation (8.113) can now be rewritten as follows 

a 
F= fV-TdV–Tifpen,dV. 

If we consider a small volume dV we can ignore the variations of the vari-
ables over the dimensions of dV, so that if pineci, is the total mechanical 
momentum of the classical point charges per unit volume, we have 

(

aPmech  ) dV = V T dV (  aP-sem ) dV. 	 (8.114) at 	 dt 

Cancelling dV and rearranging, we have 

a 
V - (–T) + *Wi (Pima + Pe.) = 0 - 	 (8.115) 

Equation (8.115) has the mathematical form of a continuity equation. When 
it is applied to a practical situation, equation (8.115) must be integrated at a 
fixed time over a finite volume surrounding the detector, which leads us back 
to equation (8.110). 

To illustrate the application of equation (8.110), we shall consider again 
the example of the plane electromagnetic plane wave, that is incident on a thin, 
perfect absorber that is perpendicular to the direction of propagation of the 
plane wave shown previously in Figures 8.7(a) and 8.7(b). The properties of 
the plane wave are as described in Section 8.6.2. We shall only consider the 
time t = 0 when a maximum of the plane wave reaches the absorber and the 
electric and magnetic fields have magnitudes E0  and Bo  respectively at the 
absorber. In the example shown in Figure 8.7(a), the circular bases of the 
cylindrical surface Si , which are both of area 1 m2 , are just on either side of 
the perfect absorber. Since the height of the cylindrical surface Si  is negligible, 
the volume Vi  of the cylindrical surface is negligible and so we can neglect 
the integral of N/c2  over the volume Vi , and equation (8.110) reduces to 

F = f T • dS 	 (8.116) 

where the integration is over the closed surface Si . Since the angle between 
E and any element of area dS of the left hand side circular base of the surface 
Si  in Figure 8.7(a) is 90° and the angle between B and dS is also 90°, it follows 
from equations (8.27) and (8.17) that for the left hand side circular base 

	

( E0E 	B1 (; 
 + —

.1 
 ) T.  dS = 	 dS = –(E0E )  dS (8.117) 

	

2 	2110 
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where we have used the result that E0  = cB 0  for a plane wave in empty space. 
Due to the effect of the perfect absorber, the fields E and B are zero on the 
right hand side circular base so that T • dS is zero on that surface. It follows 
from equations (8.27) and (8.17) that there is a net contribution of (E0E2)dS 
to the integral in equation (8.116) associated with an element of area dS of 
the curved surface. These contributions from the curved surface add up to zero. 
Hence we are left with only a contribution from the left hand side circular base 
of the surface S1  in Figure 8.7(a). Since the area of the base is 1 m2 , using 
equations (8.117) and (8.98) we find that equation (8.116) gives 

L-2 N F coL. = i — 
c 

(8.118) 

where F is now the force per unit area, that is the pressure on the perfect 
absorber. The direction of this force is in the direction opposite to dS, which 
is to the right into the perfect absorber. This is an example of radiation pressure. 

Consider now the cylindrical surface S2  in Figure 8.7(b). There is no 
contribution to IT • dS from the right hand side circular surface, where the 
fields E and B are both zero and from the curved surface, where the resul-
tant contribution is zero. The left hand circular surface of S2 is at a node of 
the wavefront, where the fields E and B are both zero. Hence the integral of 
T dS over the surface of S2 in Figure 8.7(b) is zero, and equation (8.110) 
reduces to 

F = – --a-- 	d V
• 	

(8.119) at e2  

In this example, the force per unit area on the perfect absorber is related to 
the rate of change of the integral of the electromagnetic "momentum density" 
pem  = N/c2 . The change in the integral of N/c2  in a time dt is the same as moving 
the surface S2  a distance c dt to the left at a fixed time. Since the area of 
both the circular bases is 1 m2, the change in the integral of NIc 2  is equal to 
(Ni/c2)c dt, where N1  is the Poynting vector at the absorber at the time t = 0. 
Dividing by dt and substituting in equation (8.119), we obtain 

Ari 	E0130 	Ec; 
F 	— — – E 	 (8.120) 

c 	jioc 	g0c2  

where F is the force per unit area, which is the radiation pressure on the 
absorber in Figure 8.7(b). Equation (8.120) is in agreement with equation 
(8.118). In this example we did not get the correct value for the radiation 
pressure when we substituted the values of E and B on the surface S2  in 
Figure 8.7(b) into only Maxwell's stress tensor. This result is to be expected, 
since we used the values of E and B on the left hand circular surface at the 
time t = 0, which are the values of the fields that will reach the absorber at 
the time t = T/4, where T is the period of the plane wave. We compensated 
for this by including the rate of change of the integral of N/c2  over the volume 
V2 enclosed by the surface S2 evaluated at the time t = 0. 

If we reduce the height of the surface S2  in Figure 8.7(b), such that the values 
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of the fields on the left hand side circular surface are E0/2 and B0/2, it is 
straightforward for the reader to show that equation (8.110) becomes 

F=  T • dS – 417 	dV 

eoEô 	3 EoEci  _ coE/ = 	 , — + 	 (8. 121) 4 	4 

This result is consistent with equations (8.118) and (8.120) and illustrates 
how we get the same result for the radiation pressure on the perfect absorber 
in Figure 8.7(b) whatever the shape and dimensions of the closed surface 
used for the evaluation of the integrals in equation (8.110) at a fixed time. It 
also illustrates how, in the general case, there are contributions from both 
the integrals on the right hand side of equation (8.110), and suggests that 
equation (8.110) is a book keeping alternative to using the Lorentz force law 
directly. 

It will now be assumed that the absorber in Figure 8.7(a) is replaced by a 
perfect metallic reflector. It is shown in text books on electromagnetism that 
in this case the plane wave is reflected with a change of phase such that the 
total electric field at the boundary is zero and the magnetic field is of 
magnitude 2B0. If we apply equation (8.110) to the surface S1  in Figure 8.7(a) 
we find that the value of T dS on the left hand side circular surface is 

T.  dS = – — 
 60E2 + B2 \ ds 	(2B0) 2  ds  

2 	211.0  ) 	214 

2(B0)2  ds  
2E0E1, dS 

1-to 

Substituting in equation (8.116) we find that the force per unit area, which 
is the radiation pressure, is 

F = 260E(?,. 	 (8.122) 

This is double the value given by equation (8.118). We were able to deter-
mine the value of the radiation pressure by substituting the values of E and 
B at the surface of the reflector into equation (8.110) which we derived from 
the integral of J  X B evaluated over the volume V1  enclosed by S 1 . There 
was no need to enquire about the precise nature of the electromagnetic 
processes taking place in that portion of the reflector that is inside the volume 
V1  when we apply equation (8.110) to determine the radiation pressure. In 
the case of a metallic conductor the plane wave does penetrate into the con-
ductor but is attenuated. The electric field E of the plane wave inside the 
conductor gives a current flow given by J = GE. This current is then acted 
upon by the magnetic field of the plane wave giving a resultant force given 
by IJ x B dV which is directed into the conductor and gives rise to the 
radiation pressure given by equation (8.122). The full calculation is given 
by Lorrain and Corson [4], but there is no need to do this calculation as we 
can derive the result more quickly using equation (8.110). 
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8.8. Conservation laws for a system of moving charges in empty space 

8.8.1. The law of conservation of linear momentum 

Consider a system of moving classical point charges that build up macroscopic 
charge and current distributions in otherwise empty space. According to 
equation (8.113), instead of integrating the Lorentz force to determine the 
resultant force F on the charge and current distribution inside the finite volume 
Vo  in Figure 8.1 at the time of observation we can, as an alternative use the 
equation 

F = Pmed, = f T • dS — Pen, 	 (8.123) 

where 

Pmech — EPi 
	 (8.124) 

is the total linear momentum, which is the sum of the linear momenta of the 
moving charges inside the volume 170 , and Pem  is the total "electromagnetic 
momentum", which is defined as the integral of the electromagnetic 
"momentum density", over the volume Vo  at a fixed time and is given by 

B  Pen, = f N  dV = 	f E x 
 dV. 	 (8.125) 

c 	goc2  

The Maxwell stress tensor T is given by equation (8.35). If we make the 
volume 170, over which we are integrating, tend to infinity, the electric and 
magnetic fields will tend to zero on the surface of Vo, so that the stress tensor 
will tend to zero and equation (8.123) reduces to 

Pmech mm  —ilem 	 (8.126) 

showing that, instead of using the Lorentz force law to determine Pmech  the 
rate of change of the total mechanical momentum of all the charges in the 
system at a fixed time, we can determine Pmech  from the rate of change of 
the total electromagnetic "momentum" given by equation (8.125). 

Integrating with respect to time, we have 

Pmech + em 

	

= a constant 	 (8.127) P 
Equations (8.124) and (8.125) for Pmech  and Pem  are evaluated at the time of 
observation. The summation in equation (8.124) is now over all the moving 
charges in the complete system and the integral in equation (8.125) is now over 
the whole of space. Equation (8.127) is generally called the law of conser-
vation of linear momentum for a system of moving charges in empty space. 
If we only want to consider a part of the system we have to revert to equation 
(8.123) and the contribution of the Maxwell stress tensor is important. In 
fact in DC and quasi-stationary conditions, the integral of the Maxwell stress 
tensor over the surface of the volume Vo  in Figure 8.1 is the main contribu-
tion to the right hand side of equation (8.123). 
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To illustrate the interpretation of equation (8.126) we shall consider the 
simple, idealized example shown in Figure 8.8. A charge of magnitude q 1  is 
constrained to move with uniform velocity y along the x axis of the inertial 
frame E. It is at the origin of E at the time t = 0 in E. A second charge of 
magnitude q2  is constrained to move with uniform velocity u along the y axis 
in Figure 8.8. It is at a distance y from the origin at the time t = 0, when the 
charge q 1  is at the origin. According to equation (3.25) the electric field E l 

 at the position of q2  due to the charge q 1  is in the +y direction at the time 
t = 0 and is of magnitude 

E— 	q1  8 1 	4ireoy20  _ v2/c2)"22 • 	
(.128) 

According to the Lorentz force law, the electric force on the charge q 2  at the 
time t = 0 is 

q1q2  

(f2)y  = q2EI  — 47ccoy2(1 — V21C2) 112 • 

According to equation (3.28) the magnetic field at the position of the charge 

X 	Inertial frame at 
the time t=0 

u 

(8.129) 

Y 

., X 

 

Figure 8.8. Calculation of the electromagnetic forces between the charge q l , which is moving 
with uniform velocity y along the x axis and the charge q2, which is moving with uniform velocity 
u along the y axis. 
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q2  due to the charge q 1  at the time t = 0 is in +z direction and is of 
magnitude 

ql v 
c2y2(1 	

..2,.2 .. ) 1/2 • 
o 	i — v i c; 	

(8.130) B 1  — 
47ce 

 

It follows from the Lorentz force law that the magnetic force on the charge 
q2  is in the +x direction at t = 0 and is of magnitude 

q l q2vu  
(f2),x = 1q2u x Bl i — 

47ce0c2y2(
1 _ v2/c2) 1/2 • 	 (8.131) 

According to equation (3.25) the electric field at the position of the charge 
q 1  due to the charge q2  in Figure 8.8 is in the —y direction at the time t = 0 
and is of magnitude 

q2(1  _ u2ic2)  

The magnetic field at the position of the charge q 1  due to the charge q2  is 
zero at the time t = 0. Hence it follows from the Lorentz force law that the 
total electromagnetic force on the charge q 1  at t = 0 is an electric force given 
by 

(foy  _ q 1 q2(1 — u21c2)  
47ccoy2 	' 

Comparing equations (8.129) and (8.133) we see that the components of the 
forces on q 1  and q2  in the y direction at the time t = 0 in Figure 8.8 are not 
equal and opposite. Furthermore, there is a component of the total force on 
the charge q2  in the +x direction, given by equation (8.131), but there is no 
component of the force on the charge q 1  in the x direction. These results 
show that according to classical electromagnetism the force on the charge q2  
due to the charge q 1  is not equal to the force on q 1  due to q2  at the time 
t = 0, showing that action and reaction are not equal and opposite, though 
the deviations from equality are only of order  u2/c2, v2/c2  and uv/c 2. These 
results show that if p 1  and p2  are the momenta of charges q 1  and q2  respec-
tively, then 

1.:0 1 + I.:02 = timech # 0  

showing that the total linear momentum of the two particles is not conserved. 
To illustrate equation (8.126), we shall now assume that the charges q 1  and 
q2  are not constrained to move with uniform velocities and we shall consider 
it as a general electromagnetic interaction between the charges. The electro-
magnetic "momentum density" is 

N E x B (E 1  + E2) x (B 1  + B2) 
--/ — 

 C 	II0C2 _ 
	

NC2 

Ei  X  B 1 +  E I  X B2 + E2 X  B1+  E2 X B2  
— 

110C2 

E2—  
4rceoy2 	• (8.132) 

(8.133) 
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The two terms E l  x B 1/goc2  and E2 X B2/110C2  are responsible for the electro-
magnetic masses of the charges when they are accelerated. The other terms 
vary; for example we can visualize that when q 1  and q2  move in Figure 
8.8, the magnitudes of E l  and B2 vary at all points in space such that 

f(E 1  x B2/110c2) dV, integrated over the whole of space at a fixed time, varies 
with time. Similarly, f(E2  x B I/p,oc2) dV varies with time such that 

aPem  = a (E 1  x B2 + E2 X B1) dV  
at 	at 	goc2 

is equal to the difference between the forces between the charges at the time 
of observation, so that 

i'mech = —tjem  

giving after integrating with respect to time 

Pmech Pem  = a constant 

according to which it is the sum of the total mechanical momentum and the 
total "electromagnetic momentum" that is a constant. 

When the charges q 1  and q2  are far apart before and after the collision 
El  x B2 and E2 X B1 are negligible and it is not necessary to attribute any 
"momentum" to the electromagnetic field. Hence, the total linear mechan-
ical momentum of the charges, when they are far apart before the collision, 
should be equal to the total linear mechanical momentum of the charges 
when they are far apart after the collision. Provided that no radiation is emitted, 
the collision can be treated as an elastic collision and relativistic mechanics 
can be applied to the conditions before and after the collision. However during 
the collision whilst E l  x B2/c2  and E2 X B1/Iii0C2  are not negligible, the total 
linear momentum of the charges is not conserved. We shall return in Section 
10.7 of Chapter 10 to show that equations (8.129), (8.131) and (8.133) are 
consistent with the transformations of special relativity. 

Our discussion of the role of the "electromagnetic momentum" was only 
qualitative. A quantitative discussion of a similar example was given by Page 
and Adams [5] who considered the case of two isolated current elements. If 
we put stationary charges —q 1  and —q2  close to the charges +q 1  and +q2  respec-
tively in Figure 8.8, it would correspond, to a first rough approximation, to 
two isolated current elements. It is straightforward for the reader to show 
that all the electric forces between the charges would cancel out leaving only 
the magnetic force given by equation (8.131), which is only of order vu/c2 

 times the electric forces between the separated charges +q 1  and +q2 . This 
illustrates that the magnetic forces between current elements are of second 
order and do not obey Newton's third law. Page and Adams [5] showed that 
the unbalanced magnetic forces are equal to minus the rate of change of the 
"electromagnetic momentum" of the field such that equation (8.127) is satis-
fied. 



308 Chapter 8 

8.8.2. Critique of the law of conservation of momentum 

In our analysis of the example of the two moving charges in Figure 8.8, we 
found that, at a fixed time, the forces between the charges were not equal 
and opposite and did not act along the line joining the charges, though the 
deviations from Newton's third law were only of second order. Generalizing 
we conclude that the forces between the charges in a system of moving charges 
do not add up to zero at a fixed instant of time. It is assumed in special 
relativity, as well as in Newtonian mechanics, that force is equal to the rate 
of change of momentum. Hence, we conclude that for a system of moving and 
accelerating classical point charges at a fixed time, we have 

iimech = Ebi O 

According to the law of conservation of linear momentum of Newtonian 
mechanics, we should have 

This shows that the finite value of Pmech arises from deviations from Newtonian 
mechanics, and comparing with equation (8.126) we see that the contribu-
tion of these deviations from Newtonian mechanics is given by —Pem. We 
shall show in Chapter 10 that classical electromagnetism is consistent with 
the theory of special relativity and not with Newtonian mechanics, so that, 
when we interpret the laws of classical electromagnetism, we must be prepared 
to replace long held concepts and interpretations developed in Newtonian 
mechanics, by concepts and interpretations consistent with special relativity. 

In the theory of speical relativity, energy and momentum are closely asso-
ciated. For example, the energy and momentum of a single particle combine 
to form a 4-vector. Hence, it is reasonable in a relativistic theory, such as 
classical electromagnetism, to use potential energy as an example to help us 
to interpret the "momentum" of the electromagnetic field. In Newtonian 
mechanics, the potential energy of a system is a useful concept, since it leads 
to the law of conservation of energy, according to which the gain (or loss) 
of kinetic energy is equal to the loss (or gain) of the potential energy of the 
system. Everybody accepts, on the basis of their experiences in Newtonian 
mechanics that the total kinetic energy of a system of particles changes when 
the positions and velocities of the particles change under the influence of 
the gravitational forces between the particles. Why then does the total linear 
momentum of the particles not change also? The answer is that, in Newtonian 
mechanics, it is assumed that the forces between the particles obey Newton's 
third law and this leads to the law of conservation of linear momentum, in 
the way outlined in Section 8.1. We have already illustrated that Newton's third 
law is not valid for the forces between moving charges. Hence it should not 
be surprising to find that in classical electromagnetism, the law of conserva-
tion of linear momentum is not valid in its Newtonian form for the case of 
moving classical point charges. It is not unreasonable to find in classical 
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electromagnetism, which is consistent with special relativity where energy and 
momentum are closely associated, that, if the total kinetic energy of a system 
of moving charges varies, due to the motions of the charges due to the elec-
tromagnetic forces between them, the total linear mechanical momentum of 
the charges also varies due to deviations from Newtonian mechanics. The 
rate of change of the total linear mechanical momentum is given by the 
equation 

kech = Ef/i = 43em 
	 (8.126) 

where Pem  has been called the total electromagnetic "momentum" of the field, 
obtained by integrating equation (8.125) over the whole of space at one instant 
of time. By analogy with the law of conservation of energy, it is reasonable 
to interpret equation (8.126) by suggesting that the rate of gain of total mechan-
ical momentum is equal to the rate of loss of a potential momentum. In such 
an interpretation, there is no need to look for a Newtonian mechanical 
interpretation of electromagnetic field "momentum" any more than we need 
to look for a mechanical interpretation of, for example, the potential energy 
of an electrostatic system. Thus we can interpret equation (8.126) by saying 
that there is a capability in a system of moving classical point charges to 
increase or decrease their total linear mechanical momentum, when the charges 
move under the influence of the electromagnetic forces between them; this 
change in total linear mechanical momentum arises from the contribution of 
second order relativistic deviations from Newton's laws and from the finite 
time it takes changes in the electromagnetic interaction to propagate from 
charge to charge. Examples of the role of second order non-central forces 
in classical electromagnetism will be given in our discussion of the law of 
conservation of angular momentum in Section 8.9.5. From now on we shall 
refer to the electromagnetic field "momentum" obtained by integrating equation 
(8.125) over the whole of space as potential momentum, and treat it in a 
similar way to the conventional interpretation of potential energy. 

Integrating equation (8.126) with respect to time we obtained 

Pmech 4-  Pem  = a constant 	 (8.127) 

By analogy with potential energy, we can now interpret equation (8.127) as 
follows. When the (electromagnetic) potential momentum of a system of 
moving classical point charges is finite, there is a capacity in the electro-
magnetic system to increase the total linear momentum of the charges when 
they move under the influence of the electromagnetic forces between them, 
the (electromagnetic) potential momentum being reduced in the process. 
Conversely, if the charges have finite linear momentum, they have the capacity 
to move in such a way as to increase the (electromagnetic) potential momentum 
losing linear momentum in the process, subject in all cases to the condition 
that the total linear momentum of the charges plus (electromagnetic) poten-
tial momentum is conserved. 

Consider the equation 
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frivmech — 	
EXB 

 - at 	 (8.126a) 

where the integration is over the whole of space at a fixed instant of time. It 
is assumed nowadays that changes in the electromagnetic interaction between 
moving charges take a finite time to propagate at the speed of light. It is 
stretching the imagination to interpret equation (8.126a) by assuming that 
the rates of change of the fields E and B at a point well away from any of 
the moving charges in the system can contribute in a causal way to the rates 
of change of the linear momenta of distant charges at that precise instant. It 

is best to interpret equation (8.126a) as a book-keeping exercise carried out 
at a fixed time rather than as a causal relation between the fields and parti-
cles at a particular instant of time. By this we mean that to apply equation 
(8.126a) we must determine the rate of change of (E x B/goc2) dV at every 
volume element dV in the whole of space at the time of observation, and 
then add up these values to determine —i",„„ which is then equal to the value 
of Pmech  determined by integrating the Lorentz force law over the whole of 
space at the time of observation. This interpretation of conservation laws as 
book-keeping rules will be supported by arguments based on special rela-
tivity, which will be given later in Section 10.9 of Chapter 10, where we 
shall discuss the causal aspects of conservation laws. 

8.8.3. Operational definition of the vector potential 

To develop an operational definition of the vector potential, we shall consider 
a test charge q that is at rest in a steady magnetic field, at a point where the 
magnetic field is B and the vector potential is A. According to equation (8.125) 
the total "electromagnetic momentum" of the field is 

Pem  = 	dV = f  ,L0c2 	 (8.134) 
jc 	

E x B  dv  

where E is the electric field due to the stationary test charge q and the inte-
gration is over the whole of space. The electrostatic field E due to the stationary 
charge q can be expressed in the form —VO, where (I) is the electrostatic scalar 
potential due to the stationary charge q and is given by 

_ 
47ccor 

where r is the distance from the stationary test charge q to the volume element 
dV in equation (8.134). Putting E = —VO in equation (8.134), we get 

1 Pem  = 	—(VO) x B dV. 

It follows from equation (A1.23) of Appendix A1.6 that 

—VO x B = —V x (0B) + 41V x B. 

(8.135) 
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Hence, 

Pem  = – 1 
loc 2 

 f V x (4)13) dV + —14 4)(V x B) dV. 	(8.136) 
i 	 p.oc 

Using equation (A1.33) of Appendix A1.7, we find that 

fV x (03) dV = –f4)B x dS. 	 (8.137) 

Provided the integration is over the whole of space, the product 4)B tends to 
zero on the surface of the volume of integration and the integral in equation 
(8.137) is zero, so that the first integral on the right hand side of equation 
(8.136) is zero. Since for steady magnetic fields V x B = NJ, equation (8.136) 
can now be rewritten in the form 

1 
Pen, =44  W.  

Using equation (8.135) to substitute for 4), we find that the initial total elec- 
tromagnetic potential momentum of the field can now be expressed in the form 

pem  . q  ( tit  ) p rdV  . 
(8.138) 

Using equation (1.74) of Chapter 1, which is valid for magnetostatic condi-
tions, we can rewrite equation (8.138) in the form 

Pen, = qA 	 (8.139) 

where Pem  is the total (electromagnetic) potential momentum of the electro-
magnetic field, when the test charge q is at rest at a point in a steady magnetic 
field where the vector potential is A. According to equation (8.127), if the 
experimental conditions are changed the (electromagnetic) momentum qA 
can be associated with an increase of up to qA in the total momentum of the 
charges in the system. We can now define the magnetostatic vector potential 
A operationally as the ratio of the potential momentum qA of the system to 
the magnitude q of the test charge, in the limit as q tends to zero. We can 
see the reasonableness of interpreting qA as a potential momentum by con-
sidering what would happen if the magnetic field did go to zero quickly enough 
for the charge q not to move significantly while B was decreasing and while 
there was an induction electric field –Iti. The electric force on the test charge 
would be –qA. so that the total impulse given to the charge q, obtained 
by integrating from A = A to A = 0, would be +qA, which would lead to a 
corresponding change in the linear momentum of the charge q. 

In Section 1.2.10 of Chapter 1, we defined the electrostatic scalar poten-
tial 4) operationally in terms of the potential energy of a test charge q using 
equation (1.35). Thus both A and 4) could now, in principle, be defined oper-
ationally in terms of the potential momentum and potential energy of a test 
charge respectively, so that the equations for the potentials 4) and A could be 
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treated as relations between operationally defined quantities. The differences 
between the operational definitions of the field vectors E and B and the 
potentials .I) and A were summarized by Konopinski [6] as follows: 

Whereas E and B describe a field in terms of the forces the field can exert 
on charged matter, 4) and A describe the same field in terms of energies 
and momenta that the field makes available to matter. 

8.8.4. The law of conservation of energy 

Consider a system of moving classical point charges that build up macroscopic 
charge and current distributions in otherwise empty space. If we assume that 
the volume Vo, to which equation (8.89) is applied, is made large enough for 
the fields E and B to be zero on its surface, then equation (8.89) reduces to 

aW 	a ue m  
at = 	at 

where according to equation (8.86) the total electromagnetic energy of the 
electromagnetic field is 

	

E 	B2 
Uem  = f (

602
+ —21.10 ) dV. 	 (8.141) 2 

The integral in equation (8.141) is evaluated over the whole of space at one 
instant of time. If we equate the rate W at which the electromagnetic field 
is doing work on all the charges to the rate at which the total kinetic energy 
Umech of all the moving classical point charges is increasing, we can rewrite 
equation (8.140) in the form 

a Umech  
at 

_ a  Uem  

at - 

(8.142) 

In Section 8.6.1, we derived the –Om  term in equation (8.142) as an alterna-
tive to the JE  - J dV term in equation (8.58). Without changing this 
interpretation of the — Om, term, we can rewrite equation (8.142) in the 
form 

a 
(Uined, + Uem) = 0. 	 (8.143) 

Integrating with respect to time we get 

Umech + Uem = a constant. 	 (8.144) 

This is the law of conservation of energy for a system of moving charges. 
According to equation (8.144), at any instant of time the sum of the kinetic 
energies of all the moving charges in the complete system plus the total elec-
tromagnetic energy, determined by evaluating the integral in equation (8.141) 
over the whole of space at that instant, is a constant. There is a capacity in 
both the electric and magnetic fields to give energy to charges when the field 

(8.140) 
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conditions are changed. If we only want to consider the energy changes in a 
part of the system we have to revert to equation (8.89) and the contribution 
of the Poynting flux to the energy balance in equation (8.89) must be included. 
By analogy with our interpretation of equations (8.123) and (8.126) we could 
also treat equatios (8.89) and (8.140) as book-keeping rules carried out at a 
fixed time. 

We derived a special case of equation (8.144) when we derived equation 
(1.39) of Chapter 1, which is the law of conservation of energy for a charge 
moving in an electrostatic field. Consider a charge of magnitude q that is at 
rest in an applied electrostatic field of magnitude E. Let the electric field 
due to the charge q be denoted by Eq. According to equation (8.141) the total 
electromagnetic energy is 

Uen, = 	(E + Eq) • (E + Eq) dV 

= -;-° f E 2  dV + -?- f Eq2  dV + Eo f Eq  • E dV. 	(8.145) 

The charge q is allowed to go freely to infinity, without any significant changes 
in the applied electrostatic field E. Assuming that the applied electrostatic field 
E is zero at infinity, then, at infinity where Eq  is significant, E is zero and 
near the initial position of the charge q, where E is finite, Eq  is now negli-
gible so that Eq  • E is zero everywhere when the charge q is at infinity and 
the electromagnetic energy is then given by just the first two terms on the right 
hand side of equation (8.145). Hence the decrease in the total electro-
magnetic energy, when the charge q is at infinity, is given by the third term 
on the right hand side of equation (8.145). Hence the increase in the total 
electromagnetic energy when q goes to infinity is given by 

8Uein  = -Eof Eq  • E  dl" 	 (8.146) 

where E is the constant applied electrostatic field and Eq  is the electric field 
due to the charge q when it is at its initial position. If 4) is the electrostatic 
potential of the applied electrostatic field, then since E is equal to -V4) we 
can rewrite equation (8.146) in the form 

81/e„, = co  fEq  - V4) dV. 	 (8.147) 

Putting A = Eq  in equation (A1.20) of Appendix A1.6 we find that 

Eq  - V4) = V - ( 41)Eq) .. (1) (V  . Eq). 

Substituting in equation (8.147) 

Wem  = ColV • (4)Eq) dV - eof4)(V • Eq) dV. 	 (8.148) 

If we apply Gauss' theorem of vector analysis, which is equation (A1.30) of 
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Appendix A1.7, to the first integral, then, since the integration is over the whole 
of space 4) is zero on the surface we are integrating over, so that the first integral 
on the right hand side of equation (8.148) is zero and equation (8.148) reduces 
to 

W en, = —eof4)(V Eq) dV. 

Now V • Eq  is zero except at the charge. Draw a spherical surface of exceed-
ingly small radius to surround the classical point charge q at its initial position. 
The variation of the scalar potential 4) of the applied electrostatic field over 
such a small volume can be neglected and 4) can be taken outside the integral. 
Applying first Gauss' theorem of vector analysis, which is equation (A1.30), 
to convert the volume integral into a surface integral and then applying Gauss' 
theorem of electrostatics, which is equation (1.13), we obtain 

Wem  = —004) Eq  • dS = —e04) 	= —q4). 	 (8.149) 

where 4) is the value of the scalar potential of the applied electrostatic field 
at the initial position of the charge q. According to equation (8.144), 

8 Umech 8 Uem = 
	 (8.150) 

where 8Umech is the increase in the kinetic energy of the charge q, which, 
since the charge q starts from rest, is equal to the total kinetic energy T of 
the charge q when it reaches infinity. Hence equation (8.150) becomes 

T — q4) = 0. 	 (8.151) 

This is in agreement with equation (1.37) and shows that the gain of the kinetic 
energy of the charge q is equal to the decrease in the total electromagnetic 
energy of the system determined using equation (8.141). 

8.8.5. The conservation of angular momentum for an electromagnetic system 

It would go beyond the scope of this book to go into a full discussion of the 
law of conservation of angular momentum. Since the forces between moving 
charges are non-central forces, the law of conservation of angular momentum 
of Newtonian mechanics breaks down. We shall only give a brief outline of 
the general case avoiding the use of tensor analysis. A reader interested in 
fuller details is referred to Konopinski [7]. Consider a system of moving 
classical point charges, that build up macroscopic charge and current distrib-
utions. The forces on the moving charges, which are given by the Lorentz force 
law in the form of equations (8.1) and (8.2), have moments about any fixed 
point. The resultant torque F is equal to the rate of change of the angular 
momentum Lmech of the particle about that fixed point, that is 

F= Jr x (pE + J x B) dV — dLn, 
dt

ech 
	

(8.152) 



Forces, energy and electromagnetic momentum 315 

where r is the distance of the volume element dV from the fixed point. We 
now substitute for (pE ± J x B) dV using equation (8.114) to give 

dL„,„h  
dt 

= f r x ( aPmech  ) cw at 

= frx(V.T) cw —  Jr  x  ( ;m)  ) cw 	 (8.153) a 

where pem  is the (electromagnetic) potential momentum density of the field 
defined by equation (8.111). Konopinski [7] shows that we can convert the 
first integral on the right hand side of equation (8.153) into a surface integral 
that is zero if we integrate over the whole of space. Hence, provided we 
integrate over the whole of space we can combine equations (8.152) and (8.153) 
to give 

where 

imech = —L em 

Lem  = frxpem  dV = frx
2
N  dV 

c 

will be called the total potential angular momentum of the electromagnetic 
field. It is equal to the integral of the moment of the potential momentum 
density of the field about the fixed point, evaluated over the whole of space 
at a fixed instant of time. Equation (8.154) is just an alternative way of 
expressing equation (8.152), and shows that, instead of calculating the total 
torque using the Lorentz force law, we can, as an alternative, determine the 
torque from —L em, where L em  is the rate of change of the total potential 
angular momentum of the electromagnetic field. 

Integrating equation (8.154) with respect to time we find that 

Lmech + Lem = a constant. 	 (8.156) 

Equation (8.156) is generally called the law of conservation of angular 
momentum for an electromagnetic system of charge and current distribu-
tions. Examples of the applicability of the law were given, among many others, 
by Romer [8], Pugh and Pugh [9] and Johnson, Cragin and Hodges [10]. We 
shall return in Section 8.9.5 to discus two simple examples that will illus-
trate equations (8.154) and (8.156). 

8.9. Energy transfer and the Poynting vector 

8.9.1. The Poynting vector hypothesis 

The main results we derived in Sections 8.6 and 8.7 were obtained by applying 
equations (8.88) and (8.110) in their integral forms. Since we derived equa-
tions (8.88) and (8.110) from the equations 
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14.T =fE•J dV 
	

(8.58) 

F = f(pE + J x B) dV 	 (8.101) 

respectively by using Maxwell's equations and vector analysis, the use of 
equations (8.88) and (8.110) is entirely consistent with the approach we adopted 
in earlier chapters, where we related the fields E and B to experiments using 
the Lorentz force law. Since we only needed to apply equations (8.88) and 
(8.110) in their integral forms, there was no need in the approach we have 
developed so far to make any precise statements about what may or may not 
happen at a point in the empty space between moving charges, other than to 
comment that the electromagnetic field plays a key role in the propagation 
of the electromagnetic interaction at the speed of light c in empty space. There 
is also no need in the approach we have used so far, which is based on equa-
tions (8.88) and (8.110), to try and interpret what the variables N the Poynting 
vector, uem  the energy density and pem  the electromagnetic potential momentum 
density mean at a point in empty space other than to say that they are func-
tions of the fields E and B that enable us to simplify the mathematical forms 
of equations (8.88) and (8.110). It would be logical in our interpretation of 
classical electromagnetism to finish at this point. It is however traditional, 
particularly in the case of electromagnetic waves, to go beyond the applica-
tion of the Poynting vector in the integral forms we have derived and make 
the extra assumption, which we shall call the Poynting vector hypothesis, 
that, when the Poynting vector N is finite at a point in space, there is an 
actual local flow of energy that is given exactly by the Poynting vector N. 
We shall show in Section 8.9.2 that, in the case of electromagnetic waves, the 
Poynting vector hypothesis is a very plausible extension of classical electro-
magnetism. Then in Section 8.9.3 we shall present further evidence in favour 
of the Poynting vector hypothesis in the case of electromagnetic waves by 
considering the quantum theory of radiation, which lies outside the scope of 
classical electromagnetism. Then in Section 8.9.4 we shall return to discuss 
the role of the Poynting vector hypothesis in steady (DC) conditions, before 
returning to discuss the law of conservation of angular momentum in Section 
8.9.5. 

8.9.2. The role of the Poynting vector in electromagnetic waves 

To illustrate the plausibility of the Poynting vector hypothesis in the context 
of electromagnetic waves, we shall consider again the plane electromagnetic 
wave that is incident at normal incidence on the idealised perfect absorber 
in Figure 8.7(a). The properties of the plane wave were given in Section 
8.6.2. Applying equation (8.88) in its integral form to the closed surface SI  
in Figure 8.7(a) and assuming that E and B were zero beyond the absorber, 
we derived equation (8.95) which showed that the rate 41.7  at which the 
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electromagnetic wave was giving energy to unit area of the perfect absorber 
in Figure 8.7(a) was equal to the value the Poynting vector of the incident wave 
had at the surface of the absorber at x = 0 at that instant, so that 

14.7  =fE•JdV= Ni 	 (8.157) 

where Ni  was given by equation (8.97). 
On the basis of equation (8.157), it is not inconsistent with classical elec-

tromagnetism in the case of a plane electromagnetic wave to make the Poynting 
vector hypothesis and assume that the Poynting vector N gives the local rate 
at which the energy in the electromagnetic wave is actually flowing across 
1 m2 , measured perpendicular to the direction of propagation of the plane 
electromagnetic wave. Since the electromagnetic wave is travelling at a speed 
c in empty space, it is then reasonable to go on to postulate that the electro-
magnetic "energy density" uem  in the plane electromagnetic wave is equal to 
the rate of flow of energy per unit area divided by the speed c, which would 
give for a plane electromagnetic wave 

N 
Uem  

c 
(8.158) 

If pen, were the electromagnetic momentum per unit volume in the plane 
wave, then in a time dt a total momentum of pen,(c dt) would be absorbed by 
unit area of the perfect absorber in Figure 8.7(a). Hence the force per unit 
area on the absorber, which is equal to the rate of change of momentum, would 
be equal to cpem . Comparing with equation (8.118), we could conclude that 

N u 
Pem = 7 - em 	 (8.159) 

c 

The use of the Poynting vector to calculate the rate of energy flow works 
very well in the case of electromagnetic waves. For example, we used the 
Poynting vector hypothesis when we determined the angular distribution of the 
intensity of the radiation emitted by the oscillating electric dipole in Section 
2.4.3 of Chapter 2. The use of the Poynting vector hypothesis simplifies the 
interpretation of Physical Optics. The Poynting vector given by equations (8.64) 
and (8.65) can, for example, be used to determine the reflection and trans-
mission coefficients, when a plane electromagnetic wave is incident on a plane 
boundary between air and a refractive medium. There is no doubt that the 
assumptions made in equations (8.157), (8.158) and (8.159) are extremely 
helpful in the teaching of the properties of electromagnetic waves. However, 
when we use a device to measure the energy flow in an electromagnetic 
wave, the energy detector measures the net power flowing into the detector 
from all directions, which is related to the integral of the Poynting vector 
over a surface that surrounds the detector, which in practice leads us back from 
the Poynting vector hypothesis to the integral form of equation (8.88). Even 
when we derived equation (8.95), we had to use the information that E and 
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B were zero on the right hand side of the perfect absorber in Figure 8.7(a). 
The use of the Poynting vector hypothesis is, however, far more convenient 
in the teaching of electromagnetic waves than having to go every time through 
the type of analysis we gave of Figure 8.7(a). 

Since, in all practical cases, we have to integrate over a closed surface 
surrounding an energy detector when we apply the Poynting vector hypoth-
esis in classical electromagnetism, we could always add a divergence free 
vector field, such as the curl of a vector, to N without changing the predic-
tions of equation (8.88). A discussion of possible alternatives to the Poynting 
vector was given by Slepian [11]. Evidence in favour of the unique choice 
of the Poynting vector was given by Romer [12]. The choice of the Poynting 
vector as a teaching aid is probably the best and is universally chosen in the 
text books. It leads to correct results when equation (8.88) is applied to elec-
tromagnetic waves. 

8.9.3. Evidence in favour of the Poynting vector hypothesis from the 
quantum theory of radiation 

We can get supplementary evidence in favour of the Poynting vector hypoth-
esis in the case of electromagnetic waves by going outside the scope of classical 
electromagnetism and using the quantum theory of radiation. We shall assume 
that there are n photons per unit volume, each of energy hv, where h is Planck's 
constant and v is the frequency. We shall also assume that the photons are 
all moving with velocity c. The energy density uen, is 

uen, = n(hv). 	 (8.160) 

The number of photons crossing a unit area, that is measured perpendicular 
to c, per second is equal to nc, so that the energy flow per unit area, which 
we shall denote by N, is 

N = nc(hv) = uein  c 	 (8.161) 

so that 

ue  
m 	c 

(8.162) 

It has been confirmed by experiments, for example on the Compton effect, that 
a photon of energy hv has a linear momentum of hvIc. Since there are n photons 
per unit volume, the momentum density pen, in the radiation field is 

( hv \ N ue, 
Pem = n 	= c2 

 = 
C  

(8.163) 

Since the photons have linear momenta, they have an angular momentum 
about any fixed point. Equations (8.162) and (8.163) are in agreement 
with equations (8.158) and (8.159) respectively. Thus the quantum theory 
of radiation provides strong evidence in favour of the Poynting vector 
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hypothesis, when the Poynting vector hypothesis is applied to electromag-
netic waves. 

8.9.4. The Poynting vector hypothesis in steady (DC) conditions 

The question arises, should we extrapolate from the case of the radiation 
electromagnetic field and conclude that the Poynting vector hypothesis is valid 
in steady (DC) conditions and assume that there is an actual local flow of 
energy through empty space in steady conditions of a magnitude and direc-
tion given exactly by the Poynting vector, in conditions where the 
electromagnetic interaction is not due to real photons moving in one direction? 
The Poynting vector hypothesis certainly gives the correct results, if the 
Poynting vector is known and applied to real situations using equation (8.67) 
in its integral form. The choice of whether to use equation (8.58), which we 
derived using the Lorentz force law in Section 8.4, or to use the Poynting vector 
in equation (8.67) is generally settled by choosing whichever of the two alter-
native approaches that is the more convenient, which in the case of steady (DC) 
circuits is generally the approach based on circuit theory. In Appendix B, 
we interpreted the origin of the current flow in Figure 8.5 in terms of the setting 
up of surface and boundary charge distributions which sustain the steady 
electric field inside the conductors, which acts on the conduction electrons and 
gives rise to the rate of increase in the kinetic energies of the conduction 
electrons, given by equation (8.58). Kirchhoff's laws, which we derived in 
Chapter 7, can generally be used to determine the current flow if the emf 
and resistances in the circuit are know. The rate at which Joule heat is gen-
erated in a resistor R is then given by I2R. To use the Poynting vector approach, 
we could again use circuit theory to determine the current flow and hence 
the electric field inside the resistors. We could then apply the analysis of Figure 
8.6 to derive equation (8.72). In the Poynting vector approach, the surface 
and boundary charge distributions associated with current flow serve to give 
the appropriate electric field E in space, which together with B guides the 
direction of the energy flow given by the Poynting vector E x Witio  from the 
source of emf through space and into the connecting leads, as sketched in 
Figure 8.5. Since the electric field inside the connecting wires is parallel to 
the connecting wires in Figure 8.5, the Poynting vector is zero in the direc-
tion of current flow inside the connecting wires, so that, according to the 
Poynting vector hypothesis, there is no energy flow inside the wires. If we 
wanted to determine the value of the Poynting vector outside the connecting 
wires in Figure 8.5, we would generally have to solve a complicated boundary 
value problem to determine the external electric field. An early example was 
given by Marcus [13 ].  Due to its complexity, this approach is not used very 
often to determine quantitative Poynting flow diagrams. We only used qual-
itative ideas to sketch the Poynting flow from the source of emf in the example 
of the Van der Graaff generator shown in Figure 8.5, and which we discussed 
in Section 8.5.2. In Appendix B, we stressed the important role that the electric 
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field has in making a conduction current flow. This shows the importance of 
field concepts both in the traditional approach of Appendix B and in the 
Poynting vector method. Whether or not there is, in steady conditions, a local 
flow of energy in empty space given exactly by the Poynting vector is still a 
matter of debate, since we only observe changes in the energy of the elec-
tromagnetic field when it interacts with charges. Amusingly both sides of 
the debate have used the example of a stationary charge and a stationary 
magnetic dipole as evidence both for and against the Poynting vector hypoth-
esis in steady (DC) conditions. We shall now consider this example. 

8.9.5. Examples of the application of the law of conservation of angular 
momentum 

Consider the stationary electric charge and the stationary magnetic dipole 
shown in Figure 8.9. A typical example of a magnetic dipole would be a small 
coil carrying a steady current. Due to the crossed electric and magnetic fields 
in Figure 8.9, the Poynting vector given by E x Bilio  is finite. According to 
the Poynting vector hypothesis, there should be an energy flow associated with 
this finite Poynting vector so that, according to the Poynting vector hypoth-
esis energy should be going around in circles in Figure 8.9. If we put a 
stationary energy detector of some sorts near the charge and magnetic dipole 
in Figure 8.9, would it be able to perpetually absorb some of this predicted 
energy flow? The answer is clearly no! Some people treat this as conclusive 
evidence against the Poynting vector hypothesis. To estimate the energy that 
would be absorbed by such a detector, we must integrate equation (8.88) over 
a closed surface So  that surrounds the energy detector. Once static conditions 
prevail, after the introduction of the detector, equation (8.87) reduces to 

14.7 = JV • N dV = —fN • dS 
	

(8.164) 

Figure 8.9. Typical electric field lines due to a stationary electric charge and magnetic field lines 
due to a stationary magnetic dipole, such as a current carrying coil, are shown. The Poynting 
vector E x B/110  is upwards from the paper to the left of the charge and is downwards to the 
right of the charge. 
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where the integrations are over the volume Vo  and area S. To have a finite 
value of 14./ inside So, we would need a Poynting flux into S. To balance the 
books we would then need an energy source outside So  where V • N would 
be finite, but according to equation (8.68), in static conditions, V • N would 
be zero everywhere outside So. This means that the prediction of classical 
electromagnetism, based on equation (8.88), is that, once the transient state 
is over, the energy detector should not absorb any energy from the electro-
magnetic field, which is in agreement with experiment. 

Some people claim that when the law of conservation of angular momentum, 
which, we derived in Section 8.8.5, is applied to the experimental conditions 
shown in Figure 8.9, it provides definitive evidence in favour of the Poynting 
vector hypothesis. To quote Feynman, Leighton and Sands [14] when they 
comment on a similar example: 

This mystic circulating flow of energy, which at first seemed so ridicu-
lous, is absolutely necessary. There is really a momentum flow. It is needed 
to maintain the conservation of angular momentum in the whole world. 

Since, according to the Poynting vector hypothesis there should be a circular 
flow of energy in Figure 8.9, there should also be a circular flow of "elec-
tromagnetic momentum" which would give a finite value for the total 
"electromagnetic angular momentum" L em  defined by equation (8.155), which 
is 

Len, = r x (7) dV 
	

(8.165) 

We shall prefer to call L em, which is the integral of the moment of the poten-
tial momentum about a fixed axis integrated over the whole of space, the 
potential angular momentum. 

We shall now assume that the charge q in Figure 8.9 is moving with a 
velocity u. According to the Lorentz force law, the charge q is deflected by 
the magnetic force qu x B due to the magnetic field B due to the magnetic 
dipole. If u is small, the charge q may be trapped by the magnetic field of 
the magnetic dipole, just as charged particles are trapped in the Van Allen belts 
by the Earth's magnetic field. If u is large enough, the charge q will travel 
outwards in a spiral path to infinity. The moment of the momentum of the 
charged particle, that is its angular momentum about the original position of 
the dipole, is then finite. Notice that in this example, the charge q is deflected 
by a non-central magnetic force, so that the law of conservation of mechan-
ical angular momentum of Newtonian mechanics would not be applicable even 
in the low velocity limit. However, according to equations (8.152) and (8.154), 
if Lmec h is the sum of the angular momentum of the charge q and any angular 
momentum the magnetic dipole may have, then 

mech = Jr X  (pE + qu x B) dV 
	

(8.166) 
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Lmech 
	 (8.167) 

Integrating equation (8.167) with respect to time gave 

Lmech + Lem = a constant 
	

(8.168) 

where Lem , the total potential angular momentum of the electromagnetic field, 
is given by equation (8.165). Equation (8.168) is the law of conservation of 
angular momentum for an electromagnetic system made up of moving charges 
in empty space. The potential angular momentum of the field Lem  is finite 
initially in Figure 8.9, but it is zero when the charge q reaches infinity. Hence, 
according to equation (8.168), there should be a corresponding increase in 
the sum of the mechanical angular momenta of the charge q and the magnetic 
dipole after the charge q has reached infinity, showing that the changes in 
the mechanical angular momenta of the charge q and the magnetic dipole do 
not compensate each other. Just as in Newtonian mechanics, where we can 
either apply the laws of conservation of angular momentum, or use Newton's 
laws of motion directly, we can in this case calculate the increase in Lmech in 
two ways, either by attributing potential angular momentum to the electro-
magnetic field and applying the law of conservation of angular momentum 
in the form of equation (8.168) or by substituting the Lorentz forces (a) on 
the charge q due to the magnetic field of the magnetic dipole and (b) on the 
magnetic dipole due to the magnetic field of the moving charge q into equation 
(8.166), and then integrating with respect to time. When the Lorentz force 
law is used in equation (8.166), the increase in the total mechanical angular 
momentum in Figure 8.9 arises from the non-central magnetic forces. It will 
be illustrated in Section 10.7 of Chapter 10 that these non-central magnetic 
forces can be interpreted as second order relativistic effects. 

As a different type of electromagnetic process, we shall consider a simple 
example due to Boos [15 ]. Consider a very long solenoid of radius R of the 
type shown previously in Figure 5.7 of Chapter 5. The solenoid is of length 
1, where 1> R, and consists of n turns per metre length. Initially, the current 
in the solenoid is equal to 4. There are two cylindrical, dielectric tubes of 
negligible thicknesses, whose axes coincide with the axis of the solenoid. 
One of the cylindrical tubes is of radius a  <R,  it is inside the solenoid and 
has a charge +Q distributed uniformly over its surface. The other cylindrical 
tube is of radius b > R, it is outside the solenoid and has a charge —Q dis-
tributed uniformly over its surface. The cylindrical tubes and solenoid are 
free to rotate without friction about their common axis. Initially, they are all 
at rest so that initially the total mechanical angular momentum is zero. 

The current in the solenoid is reduced to zero slowly enough for the quasi-
stationary approximations to be valid. According to equations (7.10) and (7.11) 
of Chapter 7, provided we can ignore end effects, the magnitudes of the 
induction electric fields Ei  inside the solenoid and E0  outside the solenoid 
are given by 
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gonir 
= 2  ; 

goniR2  
1" °  – 2r 

where r is the distance from the axis of the solenoid. The electric field lines 
are circles concentric with the common axis, and, for decreasing current in 
the solenoid, the electric field lines are in the direction of current flow. 
According to the Lorentz force law, these induction electric fields give rise 
to forces on the charges +Q and –Q of magnitudes QEi  and –QE0  respec-
tively in the tangential direction. The torques QEia and –QE0b about the 
common axis give rise to rotations of the cylindrical, dielectric tubes. 
Integrating over the time it takes the current in the solenoid to go to zero 
and equating the time integral of the torque to the gain Li  in the mechanical 
angular momentum of the inner cylindrical tube, we have 

Li  = QEia dt = Q( 2  
gon/oa2  

The direction of rotation is in the direction of current flow. The gain Lo  in 
the mechanical angular momentum of the outer cylindrical tube is 

Lo  = – QE0b dt = –Q( 2   ) 
gonloR 2  

This rotation is in the direction opposite to the direction of current flow. The 
resultant total mechanical angular momentum L 	iS mech 

Lmech = (LO — Li) = -Q 
go2n/0 (R2 _ 

The origin of this mechanical angular momentum has been traced to the Lorentz 
force acting on the charged, dielectric cylindrical tubes due to the induction 
electric field due to the varying current in the solenoid. 

According to equation (8.156), instead of calculating the change in the 
mechanical angular momentum directly using the Lorentz force law, as we just 
did, we can calculate the gain in the total mechanical angular momentum 
from the loss of (electromagnetic) potential angular momentum. Initially the 
magnetic field due to the current in the solenoid is equal to gon/0  inside the 
solenoid and zero outside the solenoid. It follows from Gauss' flux law of elec-
trostatics that initially the electric field between the charged, dielectric, 
cylindrical tubes is equal to Q/2ne0ri. Initially, the electric and magnetic 
fields only overlap between the inner tube of charge and the surface of the 
solenoid. Substituting in equation (8.155) we find that the initial (electro-
magnetic) potential angular momentum of the system is 

Lem = 
1 

—
,,0,2 

fir x 	(E xB)1 dV = —
go1c2  r(27cQeorl)(11°

n1
°
) dV 

(8.169) 

pordo   ) (R2 a2) = 1113Qrli°  dV = 
27cl J 2 

(8.170) 
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When the current in the solenoid is zero, the magnetic field is zero so that 
the final (electromagnetic) potential angular momentum is zero. Hence the loss 
of potential angular momentum is equal to L em . Comparing equations (8.169) 
and (8.170) we see that, as an alternative to using the Lorentz force law directly, 
we can calculate the gain in mechanical angular momentum from the loss of 
(electromagnetic) potential angular momentum. So far we have only consid-
ered the main contributions to Lmech and Lem . If we did consider all the very 
much smaller effects, such as the end effects due to the finite lengths of the 
solenoid and dielectric tubes, it would complicate the analysis, but according 
to our derivation of equations (8.155) and (8.156), these equations would be 
valid to all orders in the general treatment at all instants of time. In this 
example, the non-central force that gives rise to the increase in the total 
mechanical angular momentum is associated with the induction electric field. 
We showed in Section 5.7 of Chapter 5 that the induction electric field due 
to the varying current in a very long solenoid can be derived from the expres-
sion for the electric field due to a moving classical point charge and arises 
partly from the changes in the electric field of the charge when it is moving, 
which leads up to equation (5.18) and partly from retardation effects, which 
leads on to the general equation (5.54) which was then applied to derive 
equation (5.68). 

The two examples we have considered have illustrated the role of magnetic 
fields and induction electric fields respectively in giving the second order non-
central forces that give rise to the changes in the total mechanical angular 
momentum of an electromagnetic system. By analogy with the case of the 
law of conservation of linear momentum discussed in Section 8.8.2, we can 
treat the use of the (electromagnetic) potential angular momentum in equations 
(8.154) and (8.156) as book-keeping rules, since we cannot imagine that the 
rates of change of the fields E and B at a distant point of space can influ-
ence in a causal way transmitted at infinite speed the rates of change of the 
momenta and angular momenta of distant charges at that precise instant. We 
can treat the (electromagnetic) potential angular momentum as a measure of 
the capability of the system to change the total mechanical angular momentum 
of the system when the charges move under the influence of the non-central 
electric and the magnetic forces between them. There is no need to demand 
a mechanical interpretation of (electromagnetic) potential angular momentum 
based on Newtonian mechanics and the concept of interactions propagated 
at infinite speed, anymore than we should demand a mechanical interpreta-
tion of potential energy. We can treat potential energy, potential momentum 
and potential angular momentum as measures of the capability of a system 
of moving and accelerating charges to change the total kinetic energy, the 
total mechanical linear momentum and the total mechanical angular momentum 
of a system of charges when the configuration, velocities and accelerations 
of the charges change under the influence of the electromagnetic forces between 
them. It is not necessary to specify precisely where the potential (electro-
magnetic) angular momentum of a system resides, since it only manifests itself 
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through the actions of second order non-central electric and magnetic forces 
on charges. Hence our use of the term potential angular momentum from 
the start of our discussions of the conservation of angular momentum. 

8.10. Summary 

Since the electromagnetic field is only observed when it acts on charges with 
a force given by the Lorentz force law, it is not necessary in the strict context 
of classical electromagnetism to try and make any precise conclusions of 
what may or may not happen in the empty space between moving charges, 
other than to acknowledge that the electromagnetic field plays a key role in 
the transmission of the forces between moving charges at the finite speed c. 
In this chapter, our starting point was always the Lorentz force, or equation 
(8.58) which was derived from it. In the strict context of classical electro-
magnetism, equations (8.88) and (8.110) and the conservation laws are as 
far as we need go, if we are only interested in predicting the results of exper-
iments, in which case we need only have treated the Poynting vector N, the 
energy density uen, and the (electromagnetic) potential momentum density 
pen, as abbreviations defined by equations (8.64), (8.85) and (8.111) respec-
tively. It would have been logical to finish this chapter at the end of Section 
8.8.5 with the occasional use of equations (8.153) and (8.154). We have 
suggested that equations (8.88) and (8.110) can be interpreted as book keeping 
rules evaluated at a fixed time, and which are alternatives to using the Lorentz 
force directly. Our approach does not preclude the Poynting vector hypoth-
esis or any other model that goes beyond classical electromagnetism, such 
as the photon model, and which leads to equations (8.88) and (8.110). The 
Poynting vector hypothesis works extremely well when it is applied to elec-
tromagnetic waves. If in addition it is assumed that the electromagnetic field 
has an energy density given by equation (8.85), then the use of the Poynting 
vector hypothesis leads to equation (8.88). In steady (DC) condi-
tions, we can rewrite E • J as (—V • N) using equations (1.89), (A1.21) and 
(1.117), so that the Poynting vector hypothesis can be used as an alternative 
to circuit theory. If a momentum density N/c 2  is attributed to the electro-
magnetic field, the Poynting vector can be used to set up equation (8.125) 
for the (electromagnetic) potential momentum which can then be substituted 
in equation (8.127), which is the law of conservation of momentum for a 
system of moving charges. However, care must be exercised if the Poynting 
vector hypothesis is applied to only that part of the system of moving charges 
inside I/0  in Figure 8.1, when it is equation (8.110) that must be used and 
the Maxwell stress tensor term is dominant. As an illustrative example from 
Newtonian mechanics, consider an isolated system of particles that move under 
the influence of the gravitational forces between them. If we only consider a 
part, of volume 1/0, of the system then, according to Newtonian mechanics, 
the rate of change of the total momentum of the particles inside 1/0  is equal 



326 Chapter 8 

to the resultant gravitational force on them due to the particles outside Vo. 
According to Newtonian mechanics, there is an equal and opposite gravita-
tional force on the particles outside Vo  due to the particles inside Vo. These 
forces cancel if we combine the two systems to form an isolated system, and 
momentum is then conserved. In the electromagnetic case the main contri-
bution to the resultant force on the charges inside Vo  in Figure 8.1 is due to 
the moving charges outside Vo, though there is a small internal contribution 
due to the fact that Newton's third law is not valid for the forces between 
the moving charges inside Vo . There is also a force on the charges outside 
Vo  due to the charges inside Vo. What we have is that both parts of the system 
of moving charges in Figure 8.1 transfer momentum to each other. (Such forces 
have been interpreted in terms of the exchange of virtual photons.) Such a 
result is predicted by equation (8.110), since the surface integral of the Maxwell 
stress tensor is a vector that can point in different directions on either side 
of the surface So  in Figure 8.1. An example was given in our discussion of 
Figure 8.3(a) in Section 8.2.5. If we combine the two systems of moving 
charges inside and outside Vo  in Figure 8.1 to form a composite isolated system, 
the forces between the two systems do not add up to zero and we are left 
with the second order electric and magnetic forces that arise from deviations 
from Newton's third law. Subsequent changes in the total mechanical 
momentum of the charges are consistent with equation (8.127). 
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CHAPTER 9 

Stationary dielectrics and stationary magnetic materials 

9.1. Introduction 

So far in this book we have always assumed that the relative permittivity Cr  
and the relative permeability gr  were both equal to unity everywhere. We 
shall now go on to discuss the form Maxwell's equations take at points inside 
stationary dielectrics and stationary magnetic materials. Dielectrics are polar-
ized in the presence of an applied electric field and make contributions to 
the total electric field. Magnetic materials are magnetized in the presence of 
an applied magnetic field and make contributions to the total magnetic field. 
The development of Maxwell's equations for field points inside dielectrics and 
magnetic materials from the Maxwell-Lorentz equations, namely equations 
(1.137), (1.138), (1.139) and (1.140) of Chapter 1 is covered comprehen-
sively in the literature, for example Russakoff [1] and in the text books such 
as Robinson [2]. Consequently we shall confine our remarks to a few head-
lines and comments to indicate how Maxwell's equations for field points inside 
dielectrics and magnetic materials can be interpreted in a way consistent with 
the approach we developed in Chapter 4. We shall not go through the full 
processes of averaging the microscopic variables using equation (1.147) of 
Chapter 1 to determine the corresponding macroscopic variables, but we shall 
just use simplistic arguments to illustrate the plausibility of the final results. 
We shall find it convenient to introduce two new macroscopic variables to 
describe the dielectric and magnetic properties of materials, namely the 
polarization vector P and the magnetization vector M. We shall illustrate 
how a knowledge of the vectors P and M is sufficient for us to determine 
the contributions of polarized dielectrics and magnetized bodies to the macro-
scopic electric and magnetic fields. We shall also develop the form Maxwell's 
equations take in a material medium that has both dielectric and magnetic 
properties. 

It is important for the reader to realize that, in the methods used by 
Russakoff [1] and Robinson [2], the macroscopic fields inside dielectrics and 
magnetic materials are derived from the Maxwell-Lorentz equations, so that, 
on the microscopic scale, the electromagnetic interaction inside dielectrics and 
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magnetic materials is propagated at the speed c of light in empty space, even 
though we shall find in Section 9.5.2 that the resultant macroscopic fields in 
a medium are transmitted at a speed cln where n is the refractive index. 

9.2. A stationary polarized dielectric 

9.2.1. The types of atomic electric dipoles 

Consider a stationary dielectric, which is polarized under the influence of an 
applied electric field. The electric forces on the positive and negative charges 
in a molecule inside the dielectric are in opposite directions. It goes beyond 
the limits imposed by the uncertainty principle to give a precise classical model 
for an atomic electric dipole. According to quantum theory, the wave function 
of a molecule can be used to determine the average charge distribution in 
the molecule. For a non-polar molecule, in the absence of an applied electric 
field, the "centre of the time averaged positive charge distribution", due to 
the positive nuclei in the molecules coincides with the "centre of the time 
averaged negative charge distribution" due to the electrons in the molecule. 
Under the influence of an applied electric field the two "centres of charge" 
are displaced in opposite directions giving rise to a resultant electric dipole 
moment. 

Polar molecules have a permanent electric dipole moment. For example, 
in a water molecule the nuclei of the hydrogen and oxygen atoms are not in 
a straight line, but the molecule is bent at an angle of 108°. The electrons 
tend to cluster around the oxygen nucleus, leaving, on average, net positive 
charge distributions in the vicinities of the hydrogen nuclei and a net negative 
charge distribution in the vicinity of the oxygen nucleus. This gives the water 
molecule a permanent electric dipole moment. Just as in the case of non-
polar molecules there is also a displacement of charge in polar molecules, when 
an electric field is applied. This gives a contribution to the total electric 
dipole moment of the polar molecule, which is generally much smaller than 
the permanent electric dipole moment. In the absence of an applied electric 
field the dipole moments of individual polar molecules point in random direc-
tions, and the resultant polarization of the dielectric is zero. When an external 
electric field E is applied there is a couple p  X E on each electric dipole, of 
dipole moment p, which tries to make the dipoles point in the direction of 
the electric field. Complete alignment is prevented by the thermal motions 
of the molecules, but the electric dipole moments of the polar molecules do 
point preferentially in the direction of the applied electric field giving a 
resultant polarization. 

The positive ions in crystals, such as sodium chloride, tend to be displaced 
in the direction of the applied electric field, whilst the negative ions tend to 
be displaced in the opposite direction giving a contribution to the polariza-
tion of the dielectric. 
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9.2.2. The electric dipole moment of a molecule 

The electric dipole moment p of a polarized molecule is given by 

p = fr, pm'c dVs 	 (9.1) 

where p' is the average microscopic charge density at a point at the position 
I-, inside the molecule. To simplify our discussions we shall use a simple 
classical model in which we shall assume that each electric dipole consists 
of two classical point charges of magnitudes +q and —q a small distance l apart, 
which gives an electric dipole moment p equal to ql. The direction of the vector 
p is from the negative to the positive charge. When an electric field is applied 
to a non-polar molecule, both the positive and negative charge distributions 
are displaced. Similarly, when polar molecules rotate towards the direction 
of the applied electric field both positive and negative charge distributions 
move. However, to simplify the discussions we shall assume that, when a 
dielectric is polarized, the positive charge +q in a molecule moves a distance 
/ in the direction of the electric field, but the negative charge —q does not move. 
It is a straightforward for the reader to show that the results that we shall derive 
are equally valid if both positive and negative charges inside a molecule moved, 
or if only the negative charges moved. 

9.2.3. The polarization vector P 

We shall find it useful to introduce a vector quantity to specify the macroscopic 
properties of a polarized dielectric. Due to the influence of the applied electric 
field a large number of atomic electric dipole moments are induced or aligned 
in the direction of the applied field (for isotropic dielectrics). Consider a 
small element of volume AV. Let 

N 	 1 	4%1, E pi  = PAV; or P — 
AV i '. 1  pi 	 (9.2) 

i - 1 

where the vector summation is carried out over all the N atomic electric dipoles 
in the volume element AV. Equation (9.2) is a simplistic definition of the 
polarization vector P, in terms of the microscopic atomic electric dipole 
moments. The volume element AV can be made small on the laboratory scale 
(say a 10 m cube). In a macroscopic theory P can be treated as a con-
tinuous function of position, and defined as the average resultant electric dipole 
moment per unit volume. 

9.2.4. The electric field due to a stationary polarized dielectric 

It can be shown that the electrostatic scalar potential at a distance R from 
an electric dipole consisting of point charges +q and —q a distance / apart (such 
that p = ql) is 
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p R  
11)  — 4rce0R3 

(9.3) 

provided R > 1. This is the dipole approximation. The direction of p is from 
the negative to the positive charge. Equation (9.3) follows from equation (2.51) 
of Chapter 2, if we assume that the dipole moment does not vary with time. 

The electric field due to the polarized dielectric shown in Figure 9.1 will 
be determined at the field point T at the position r. In this chapter we shall 
denote the position of the field point by T to avoid confusion with the polar-
ization P. Consider the volume element AV, that is at the position rs  inside 
the dielectric, where the polarization vector is P. The distance from AV, to 
T is R = (r — rs) as shown in Figure 9.1. 

Consider one atomic electric dipole, of dipole moment p i, inside the volume 
element AV,. According to equation (9.3), its contribution to the electrostatic 
scalar potential at the field point T is equal to p i  • RJ47tE0R 3 . The electro-
static scalar potential at T due to all the atomic electric dipoles inside AV,, 
which are all at distance R from T is equal to 

64  = E 4137; R  £0R3  . 

POLARIZED DIELECTRIC 

(9.4) 

 

o 
Figure 9.1. Calculation of the electric field due to a polarized dielectric. 
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The summation in equation (9.4) is over all N atomic electric dipoles inside 
AVs. It follows from equation (A1.2) of appendix A1.1 that 

• . PN • R = 	) i-1  

But from equation (9.2) 

E pi  = PAVs. 
i 	1 

Hence, equation (9.4) becomes 

P • RAVs  
47cE0R3  

Integrating, we have 

1 	P • R  
(9.5) 

(I) 	47cE0  vo  R3  
s  ) Since R is equal to {(x — xs)2  + 	y2 (z  z)2 }"2,  it follows that, if the 

position of AVs  is changed when the field point T is fixed, then 

p i  • R + p2  • R + . R. 

(9.6) 

where 

- a 
vs = ' —aïcs 	azs  • 

Hence equation (9.5) becomes 

1 
4nE0fk p 

 vs  (1) dvs.  

According to equation (A1.20) of Appendix A1.6 for any scalar Ni and vector 
A, 

V. (WA) = vV • A + A . Vv. 

Substituting A = P and v = 1/R, and rearranging 

P • Vs  (1) = V • (-IL — I V . P. 
\R/ 	s 	 R 

Substituting in equation (9.8), we obtain 

1  
1:0 — (-E) dV + 	1  r (—Vs  • P)  dVs. 

47cE0 	s  ‘Ri 	s 	47ce0  y 0 	R 

Applying Gauss' theorem of vector analysis, which is equation (A1.30) of 
Appendix A1.7, to the first integral on the right hand side, we finally find 
that 

(9.7) 

(9.8) 
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	f 	 P 	dS, + 	1  f 	 - P) 	 (9.9) 

	

47cE0 	R 	47ce0 	R 

when  fi  is a unit vector in the direction of the outward normal to the surface 
So. Comparing with equations (1.25) and (1.26) of Chapter 1, we see that, if 
we had a surface charge distribution P -  il and a volume charge distribution 
(—V, • P) in vacuo, the geometrical configuration of the surface and volume 
charge distributions being the same as that of the dielectric, then the scalar 
potential at the field point T would also be given by equation (9.9). Thus we 
have shown that for purposes of electric field calculation, the dielectric can 
be replaced by a surface charge distribution 

	

= P • n 	 (9.10) 

and a volume charge distribution 

Pp = —Vs P. 

Thus the problem of the polarized dielectric can be replaced, for purposes of 
field calculation, by a distribution of charges, given by equations (9.10) and 
(9.11), placed in vacuo. Coulomb's law, and equations derived from it can 
be applied to this charge distribution to calculate the electric field and 
potential. This method is valid provided the dipole approximation is valid 
for all the dipoles in the dielectric. It is therefore valid for a point outside a 
dielectric, or for a point in the middle of a cavity, large on the atomic scale, 
cut inside the dielectric. If one wishes to calculate the microscopic field near 
or inside a molecule in the dielectric, in a region of space where the dipole 
approximation breaks down, we must use a microscopic theory based on a 
particular atomic model. 

The microscopic electric field varies enormously on the atomic scale inside 
a polarized dielectric. One can have electric fields exceeding 108  V m-1  just 
outside atoms, and very much stronger fields inside atoms. It can be shown 
that inside a dielectric, the electric field calculated using equations (9.10) 
and (9.11) is equal to the local space average of the microscopic field, so 
that equation (9.9) gives the macroscopic electric field inside the dielectric. 
A rigorous proof is given by Lorrain and Corson [3]. As an example, the 
macroscopic and microscopic electric fields inside a uniformly polarized, 
cylindrical dielectric are sketched in Figures 9.2(a) and 9.2(b) respectively. 

So far, all we have had to say when interpreting equation (9.9) was that, 
for purposes of calculating the macroscopic electric field due to a polarized 
dielectric, we can replace the polarized dielectric by charge distributions given 
by equation (9.11) and then we can use Coulomb's law or equations derived 
using Coulomb's law such as Gauss' flux law. When the macroscopic theory 
of dielectrics is derived from the Maxwell-Lorentz equations, for example in 
the way given by Russakoff [1] using equation (1.147) of Chapter 1, the authors 
conclude that there are actual macroscopic charge distributions, of charge 
density given by equation (9.11), inside a polarized dielectric. We shall now 

(9.11) 
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Figure 9.2. (a) The macroscopic electric field E due to a polarized cylindrical dielectric. The 
uniform polarization P is parallel to the axis of the cylinder. The macroscopic electric field E 
can be calculated by replacing the dielectric by charge distributions P - h at each end of the dielec-
tric. (b) A magnified section of the dielectric showing a rough sketch of the electric field on 
the atomic scale. If these microscopic electric fields e are averaged over volumes large on the 
atomic scale, but small on the laboratory scale, we obtain the smoothly varying macroscopic 
(or local space average) electric field E shown in (a). 

use our simplified model of an atomic electric dipole to illustrate the plausi-
bility of this conclusion. 

9.2.5. The macroscopic charge density inside a polarized dielectric 

Consider the plane circular disk shaped surface AS that is inside a polarized 
dielectric as shown in Figure 9.3. The direction of the unit vector il normal 
to the surface AS is in the direction of the polarization vector P, which points 
to the right in the +x direction in Figure 9.3. On our simplified model of atomic 
electric dipoles, each positive charge +q in each atomic electric dipole moves 
a distance 1 when the dielectric is polarized whereas the negative charges do 
not move. The number of positive charges, that cross the surface AS when 
the dielectric is polarized, is equal to the number of positive charges that 
were within a distance 1 of the surface AS before the dielectric was polar-
ized. Hence if n is the number of atomic electric dipoles per cubic metre, 
the total charge AQ that crosses the surface AS when the dielectric is polar-
ized is 

AQ = (nlAS)q = npAS = PAS 	 (9.12)  

where p = ql is the electric dipole moment of each atomic electric dipole 
and P is the polarization vector. 

If the polarization vector P is at an angle 0 to the unit vector ii that is 
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Figure 9.3. A simplified model of a polarized dielectric. It is assumed that each positive charge 
is displaced a distance  I when the external electric field is applied, giving rise to a displace-
ment of electric charge across the surface AS, which is perpendicular to the direction in which 
the positive charges are displaced. 

normal to the surface AS, it is only those positive charges that were within a 
distance 1 cos 0 of the surface AS before the dielectric was polarized that 
cross the surface AS when the dielectric is polarized. Hence, in the general 
case, the charge that crosses the surface AS inside the dielectric when it is 
polarized is 

AQ =  (ni  cos 0 AS)q = PAS cos 0 = P • AS. 	 (9.13) 

We shall now assume that there is a second circular disk shaped surface of area 
AS at a small distance Ax to the right of and parallel to the surface AS in Figure 
9.3. The circular disk shaped surfaces are joined by a curved surface to form 
a small cylindrical surface of volume AV equal to (AS)(Ax) inside the dielec-
tric. We shall assume, for the moment, that the polarization vector P is in 
the +x direction, which is parallel to the axis of the cylinder. We shall assume 
that P increases with increasing x due to an increase in the separation of the 
charges in the atomic electric dipoles from 1 at the position of the first surface 
of area AS to (1 + Al) at the position of the second surface of area AS. In the 
case of the second surface of area AS, all the positive charges within a distance 
(1+ Al) of that surface cross it when the dielectric is polarized, so that according 
to equation (9.12) the total charge AQ2  that crosses the second surface AS is 

AQ2  = nq(1 + Al)AS = (P + AP)AS. 	 (9.14) 

Since the polarization vector P is parallel to the x axis, it follows from equation 
(9.13) that no charge crosses the curved surface of the small cylinder of 
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dielectric when the dielectric is polarized. Comparing equations (9.12) and 
(9.14) we see that more positive charges cross the second surface of area AS 
and leave the cylinder of dielectric than enter across the first surface AS. 
This leaves the cylinder of dielectric with a net charge Q given by Q 

— AQ). 
If pp  is the polarization charge density, then Q is equal to pp  AV. After 

substituting for AQ and AQ2  using equations (9.12) and (9.14) respectively 
we find that 

ppAV = —(AP)(AS) = — 
ap 

(Ax)(AS) =
ap

AV. 
ax 	 ax 

Hence 

aP 
P 
	aX • 

(9.15) 

This result shows that according to our simplistic model there is a net macro- 
scopic charge density given by equation (9.15) when the dielectric is polarized. 

We shall now go on to the general case by considering an arbitrary volume 
Vo  which is of surface area So  and which is completely inside a polarized dielec-
tric. We shall assume that the polarization vector P varies with position inside 
the dielectric. Integrating equation (9.13) over the surface So  of the volume 
Vo  that is inside the dielectric, we find that, on average, the total charge Q 
that crosses the surface So  and leaves the volume Vo  when the dielectric is 
polarized is 

Q = P • dS. 	 (9.16) 
so 

Using Gauss' mathematical theorem, which is equation (A1.30) of Appendix 
A1.7, we can rewrite equation (9.16) in the form 

Q.J.V•PdV. 

If the dielectric inside the volume Vo  was electrically neutral before it was 
pgarised, and if total charge is conserved, then the net charge left inside the 
volume Vo  after the dielectric is polarized is equal to —Q. If the polarization 
charge density is pp  then 

pp  dV = —Q = 	V P dV. 	 (9.17) 
vo 	 vo 

If we make the volume Vo  infinitesimal, we can ignore the variations of pp  
and V P inside Vo  and equation (9.17) reduces to 

pp  = —V • P. 	 (9.18) 

The quantity pl, is the macroscopic polarization (or bound) charge density. If 
the polarized dielectric also had a free (or true) charge density p, for example 
due to the removal of some electrons, the total macroscopic charge density 
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at a field point inside the polarized dielectric would be (p + p p), where pp  is 
given by equation (9.18). 

If we assumed that the surface AS in Figure 9.3 was on the surface of the 
dielectric, the charge that would cross the surface AS when the dielectric was 
polarized would appear as a surface charge distribution. Hence when the 
dielectric was polarized, in addition to the polarization charge density given 
by equation (9.18), we would also have a surface charge per unit area, denoted 
ap , which, according to equation (9.13), would be given by 

P 
	 (9.19) 

where  il  is a unit vector in the direction of the outward normal from the surface 
of the dielectric. 

For electrostatic conditions, the contributions of the macroscopic charge 
distributions p, pp  and op  to the macroscopic electrostatic field can be calcu-
lated using Coulomb's law or laws derived from it. Thus a knowledge of P 
and its spatial variations is sufficient to determine p p  and op  and hence the total 
macroscopic electric field, provided the free (true) charge density p is also 
given. 

9.2.6. The Maxwell equation V.  D = p 

According to the Maxwell equation (4.14) of Chapter 4, at a field point inside 
a macroscopic charge distribution made up of classical point charges, we 
have 

V - E = - 12— 
Co 

(9.20) 

where p is the free (or true) macroscopic charge density. Since the total macro-
scopic charge density inside a polarized dielectric is (p + pp), it follows that, 
at a field point inside the dielectric, equation (9.20) becomes 

V . E — (P  + PP)  . 	 (9.21) 
co 

Using equation (9.18) to substitute for pp  we obtain 

V . E — (P —  V  •  P)  . 
co 

(9.22) 

According to equation (9.22),  V.  E is related to both the free charge density 
p and the polarization vector P. It is assumed in classical electromagnetism 
that equation (9.22) is valid when both p and P are varying with time, whatever 
the frequency of the variations. 

The ratio P/e 0E is called the electric susceptibility and is denoted by L., 
so that 

P  = XecoE. 	 (9.23) 
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Equation (9.22) can be rearranged in the form 

V.  (E0E + P) = p. 	 (9.24) 

The quantity (E0E + P) appears so frequently in the theory of classical elec-
tromagnetism that it is worth giving it a special name, namely the electric 
displacement vector and the special symbol D, so that, by definition, 

D = E0E + P. 	 (9.25) 

Equation (9.24) can now be rewritten in the more concise form 

V • D = p 	 (9.26) 

where p is the macroscopic free (or true) charge density at a point inside a 
stationary dielectric where the displacement vector is D. Equation (9.26) is one 
of Maxwell's equations for the macroscopic fields inside a polarized dielec-
tric. It is assumed that equation (9.26) is valid when both D and p vary with 
time. One could just as well use equation (9.22) and never introduce the 
auxiliary vector D. However the introduction of the vector D is often conve-
nient and can help in the solution of problems. For example it follows from 
equation (9.26) that the flux of D from any surface is equal to the total free 
(true) charge inside that surface. 

Equation (9.25) is often rewritten in the form 

D = cE = ereoE 	 (9.27) 

where c is the permittivity. The ratio Er  = E/Eo  is called the relative permittivity. 
Substituting for D and for P from equations (9.27) and (9.23) into equation 
(9.25), we find that 

Cr  =  1+  Xe 
	 (9.28) 

where L. is the electric susceptibility. 
For a large class of dielectric, for electrostatic conditions, the relative per-

mittivity Er  and the electric susceptibility  Xe  are independent of the value of 
the electric field. Such dielectrics are called linear dielectrics. In these cases 
Cr  is sometimes called the dielectric constant. For single crystals it is some-
times easier to displace the atomic charges inside the molecules and ions in 
the crystal in some directions of space than others. In these cases Er  and Xe  
are tensors. Some dielectrics, for example electrets, exhibit remanence in which 
case Cr  and L. depend on the past history of the dielectrics. Electrets can 
retain a permanent polarization after the external field has been removed. In 
general, Cr  and Xe  depend on the temperature, on the applied electric field 
and, if the conditions are varying, they depend on the frequency. Equation 
(9.27) is one of the constitutive equations; the values of Er  and L. depend on 
the properties of the material at the field point inside the dielectric and on 
the experimental conditions. 
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9.3. Stationary magnetic materials 

9.3.1. The Amperian model 

In our interpretation of the origin of the magnetic fields due to magnetized 
bodies, we shall use the Amperian model according to which we can treat each 
atomic magnetic dipole as a small electric current system. The magnetic 
moment m of a current distribution is given by 

m = —1 f r x J(r) dV 	 (9.29) 
2 

where J(r) is the current density at the position r. It follows from equation 
(9.29) that, in the special case of a plane current carrying coil, the magnetic 
dipole moment m is numerically equal to the product of the area of the coil 
and the current in the coil. The direction of the magnetic dipole moment m 
is in the direction a right-handed corkscrew would advance if it were rotated 
in the direction of current flow. 

The Amperian model is a reasonable model for the contributions of the 
orbital motions of the electrons in a molecule to the resultant magnetic moment 
of the molecule. However, in practice, the magnetic moments associated with 
the spins of the particles can make a significant contribution to the resultant 
magnetic moment, particularly in the case of ferromagnetism. It would go 
beyond the uncertainty principle to attempt to give a classical model for 
electron spin. If one did treat an electron as a slowly rotating, uniformly 
charged sphere, the calculated gyromagnetic ratio, which is the ratio of the 
magnetic moment to the angular momentum of the electron, would only be 
one Bohr magneton whereas the value predicted by Dirac's relativistic wave 
equation is equal to two Bohr magnetons. Hence we shall consider our use 
of the Amperian model, particularly in the case of electron spin, as illustra-
tive rather than explanatory. 

9.3.2. Types of magnetic materials 

Diamagnetism: In the case of diamagnetic materials, when a magnetic field 
is applied to them, there is a weak magnetization in the direction opposite to 
the direction of the applied magnetic field, It follows from Faraday's law of 
electromagnetic induction, equation (4.46) of Chapter 4, that, when the applied 
magnetic field is switched on, there is also and induction electric field while 
the applied magnetic field is building up to its final value. This induction 
electric field changes the motions of the electrons in the molecules in such a 
way that, according to Lenz's law, the consequential changes in the magnetic 
field are in the direction opposite to the direction of the increasing applied 
magnetic field, thereby reducing the total magnetic field and giving a relative 
permeability ii, slightly less than unity. In the absence of any ohmic resis-
tance these changes in the current distributions inside the molecules persist 
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until the applied magnetic field is reduced to zero, when there is again a 
transient induction electric field, associated with the decreasing applied 
magnetic field, which reverses the changes in the electronic motions inside 
the molecules which brings the magnetic material back to its original state. 

Paramagnetism: In paramagnetic materials some of the molecules have a 
permanent, resultant, magnetic dipole moment associated with the orbital 
motions of the electrons and with electron spin. In an applied magnetic field, 
more of these permanent dipole moments point in the direction of the applied 
magnetic field than in the opposite direction. Complete alignment is pre-
vented by the thermal motions of the atomic magnetic dipole moments. The 
resultant magnetization due to paramagnetism can be calculated using the 
Boltzmann distribution. Reference: Rosser [4]. The resultant weak magneti-
zation in the direction of the applied magnetic field due to paramagnetism 
generally predominates over the weaker diamagnetic effect and gives an extra 
contribution to the magnetic field in the direction of the applied magnetic 
field so that the value for the relative permeability ii,. is slightly greater than 
unity. 

Ferromagnetism: In ferromagnetic materials the atomic magnetic moments 
within a macroscopic region, called a domain are parallel to each other. Before 
a ferromagnetic material is magnetized the resultant magnetic moments of 
the domains point in all directions so that the resultant magnetic moment of 
the ferromagnetic material is zero. When a weak external magnetic field is 
applied, the sizes of those domains whose resultant magnetic moments point 
in the direction of the applied magnetic field, grow in size at the expense of 
the other domains. When the external magnetic field is increased further, the 
directions of the magnetic moments of the domains are rotated such that they 
point preferentially in the direction of the crystal axis nearest to the direc-
tion of the applied magnetic field. This is the Barkhausen effect. At high 
magnetic fields of the order of 2T, the magnetization of a ferromagnetic 
material generally tends to its saturation limit. The relative permeabilities of 
ferromagnetic materials are typically of the order of 1500. Some ferromagnetic 
materials exhibit hysteresis effects, and some remanent magnetization can 
persist after the external applied magnetic field is removed; the material is then 
a permanent magnet. 

9.3.3. The magnetization vector M 

We shall find it useful to introduce a vector quantity to specify the macroscopic 
properties of a magnetized magnetic material. Due to the influence of the 
applied magnetic field a large number of atomic magnetic moments are aligned 
in the direction of the applied magnetic field. Consider a small volume element 
AV. Let 
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E m, 
E mi  = MAV, or M - 

AV 
	 (9.30) 

where the vector summation is carried out over all the N atomic magnetic 
dipoles in the volume element AV. Equation (9.30) is a simplistic definition 
of the magnetization vector M in terms of the microscopic magnetic dipole 
moments. In a macroscopic theory M can be treated as a continuous function 
of position and defined as the average resultant magnetic dipole moment per 
unit volume. 

9.3.4. The magnetic field due to a stationary magnetized body 

Consider a volume element AV, at a source point at a position rs  inside a 
stationary magnetized body. The vector potential will be determined at a field 
point T at the position r which is at a distance R = (r - rs) from AVE .  These 
are the same geometrical conditions as those shown in Figure 9.1 for the 
case of a polarized dielectric. It is shown in text books on electromagnetism 
that the vector potential A i  at the field point T due to a magnetic dipole of 
dipole moment mi  that is inside AV, is 

Ai  . 4tion  miRx3  R 	
(9.31) 

Summing over all the magnetic dipole moments inside the volume element AV, 
we have 

	

( 	E(mi 	 
- 

x R) 	(Emi) x R  
AA = 	\ 	

/ (9.32) 

	

47c / 	R 3 	47c 	R3 	• 

According to equation (9.30), Emi  is equal to MAV,. After substituting in 
equation (9.32), then integrating over the volume of the magnetized body 
and using equation (9.6) we find that the vector potential at the field point T 
due to the magnetized body is 

A = 	
(Mx R) 

 dV, = + 1-1-q M x Vs  (I) dV, 	(9.33) 

	

47c 	R3 	47c 

where V, is given by equation (9.7). 
According to equation (A1.23) of Appendix A1.6 

M x Vs  (Te- l ) 

= IV s  x M -V s  x (7-?M ) 

Substituting in equation (9.33) we have 

go  I V
s 	uv 	x M AT, 	

v x llo - dVs . 
4.7c 	R 	s 	47c 	s 

After applying equation (A1.33) of Appendix A1.7 to the second integral on 
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the right hand side we finally obtain 

A–  i.to jV xM AT, gofM 	
dS 

xri 
—  s 	uy + — 	 (9.34) 
47c 	R 	s 	47r 	R 	s' 

Comparing equation (9.34) with equation (1.74) of Chapter 1, we see that, 
for the purposes of magnetic field calculations we can replace the magne-
tized body by a surface current 

K=Mxri 	 (9.35) 

per metre length, where ii is a unit vector in the direction of the outward 
normal, plus a volume current distribution of current density 

Jm  = V., x M 	 (9.36) 

distributed throughout the volume of the magnetized body. The current density 
given by equation (9.36) will be called the magnetization (or bound) current 
density. The magnetic field due to the magnetized body can be obtained by 
taking the curl of the vector potential given by equation (9.34) or by applying 
the Biot-Savart law to the current distributions given by equations (9.35) and 
(9.36). So far we have only shown that this approach is correct when the dipole 
approximation leading up to equation (9.31) is valid for every one of the atomic 
magnetic dipoles. This is generally true at an external field point. It can be 
shown that, at a field point inside the magnetized body, the magnetic field 
calculated using equation (9.34) is equal to the macroscopic magnetic field 
B, which is the space average of the microscopic magnetic field b. Reference: 
Lorrain and Corson [5]. There is no need to use a precise atomic model when 
calculating the macroscopic magnetic field. A knowledge of M, the average 
resultant magnetic moment per unit volume is sufficient. We shall now 
interpret equations (9.35) and (9.36) using a simplistic Amperian model for 
the atomic magnetic dipoles. 

9.3.5. Example of the origin of a macroscopic magnetization current 

To illustrate equations (9.35) and (9.36) we shall consider a magnetostatic 
example using a simplistic Amperian model, in which we shall assume that 
the magnetic dipoles can be treated as square coils, each of side d and of 
area A = d 2  carrying a steady current. We shall assume that, in the presence 
of an applied magnetic field, the coils are aligned, such that more of their 
magnetic moments point in the +z direction than in the –z direction giving a 
resultant magnetization Mz  in the +z direction. The centres of the coils are at 
a distance d apart as shown in Figure 9.4. We shall assume that there are 
identical parallel rows of coils in the z = 0 plane, consisting of (N + 1) coils 
per row. The central lines of successive rows of coils are a distance d apart, 
as shown in Figure 9.4. We shall assume that there are identical layers of 
coils parallel to the z = 0 plane, the layers of coils being at a distance h 
apart, so that by analogy with crystal structure there is one square coil per 



342 Chapter 9 

Surface current 
I+N AI 

X 

M 
	

AI 
	

AI 	AI 

T 	1/  
Net volume currents 

Figure 9.4. A simplistic Amperian model is applied to illustrate the origin of the macroscopic 
current density inside a magnetized body in which the magnetization M varies with position 
within the magnetized body. 

volume of hd 2 . We shall assume that there is a uniform rate of increase of 
/1//, with increasing x, which in the real case would be due to the alignment 
of more and more atomic magnetic moments in the +z direction with increasing 
x. In our simplistic model, we shall represent this increase in the number of 
aligned magnetic moments by increasing the currents in the square coils in 
Figure 9.4 from I at the coil at the origin to (I + A/) in the next etc. . . . up 
to (/ +  NA!)  in the (N + 1)th coil where 

I al \ 
AI=  krx. ) d. 

(9.37) 

Thus each square coil represents the resultant of the atomic magnetic moments 
in a volume of hd 2 . We shall assume that the magnetization does not vary 
with y for fixed x and z and with z for fixed x and y. 

Consider first the currents in the y direction in Figure 9.4. On the left 
hand side of the row of coils along the x axis, that is at x =  —d1 2,  the current 
/ in the first coil is in the —y direction in Figure 9.4. This is true for the extreme 
left hand edge of all the rows of coils that are in the z = 0 plane, so that, 
for purposes of magnetic field calculation, we can assume that there is a 
continuous line current I in the —y direction at x = —d/2 in Figure 9.4. Moving 
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a distance d to the right to x = d/2 on the x axis in Figure 9.4, we have a current 
I in the +y direction in the first coil and a current of (/ + A/) in the —y direc-
tion in the second coil so that, when we average to get the macroscopic current 
density, these two currents give a resultant contribution of A/ in the —y 
direction. This is true at x = +d/2 for each of the rows of coils in the z = 0 
plane. These sections of current of magnitude A/ add up on the macroscopic 
scale to give the same magnetic field as a continuous line current of magni-
tude A/ in the —y direction at x = +d/2. Then at x = +3d/2 there is another 
current A/ in the —y direction. This pattern is repeated for every increment 
of d in x until we reach the right hand surface at x = (N + 112)d, where there 
is a current of magnitude (I + NAI) on the surface in the +y direction. The 
above analysis is true for every layer of square coils. Hence, for purposes of 
magnetic field calculation there is inside the magnetized body, an average 
current of A/ per area of cross section equal to hd. Using equation (9.37) to 
substitute for A/ and then averaging, we find that the y component of the macro-
scopic magnetization current density inside the magnetized body shown in 
Figure 9.4 is given by 

A/ 	1 (I \ 	1 ( 
hd ax ) " 	ax / • 

We can see from Figure 9.4 that the currents in the x direction in successive 
rows of square coils compensate each other so that the x component ./„. of 
the macroscopic magnetization current density is zero. Since on our model 
we are assuming that there are no atomic currents in the z direction, Jz  is 
also zero. Now Mz  is the average resultant magnetic moment per unit volume. 
The resultant magnetic moments of the atomic magnetic moments repre-
sented by the square coil at the origin in Figure 9.4 is equal to /d 2. By analogy 
with crystal structure, this is the resultant magnetic moment per volume of 
hd 2  in the vicinity of the origin. Hence the magnetization in the vicinity of 
the origin in Figure 9.4, which is the average magnetic dipole moment per 
unit volume at that position, is 

Mz  = Id2  hd2  = 
 f. 

 

Differentiating partially with respect to x, we have 

aMz  1 a/ 
ax 	ax • 

Comparing equations (9.38) and (9.40) we conclude that 

a M 
Jx —A. 	Jy  = 	Z. 	= O. 

(9.39) 

(9.40) 

(9.41) 

This result is in agreement with equation (9.36). 
We have shown that there is a line current of magnitude I on the left hand 

edges of the rows of coils in the z = 0 plane in Figure 9.4. This is true for 

(9.38) 
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each successive layer of coils, which are a distance h apart. After using 
equation (9.39), we find that, at the surface at x = —d/2 in Figure 9.4, the surface 
current per metre is given by 

1 
Ky  = — w = —M, (9.42) 

This result is in agreement with equation (9.35). 
These results illustrate how, according to the simplistic Amperian model we 

have used, when the magnetization varies with position the currents in the 
square coils do not average out to zero, but add up to give macroscopic current 
distributions given by equations (9.35) and (9.36). Since the Amperian model 
is a reasonable model when the atomic magnetic moments are due only to 
the orbital motions of electrons inside molecules, it is reasonable to find in 
these cases that there are macroscopic current distributions inside magne-
tized bodies, which arise from the non-cancellation of the currents in molecules, 
and whose magnitudes are given by equations (9.35) and (9.36). However, 
we pointed out in Section 9.3.1 that we cannot give an appropriate classical 
model for electron spin and so we cannot be sure how valid the Amperian 
model is for electron spin. Hence in the case of electron spin it is probably 
best to refer to the current density given by equation (9.36) as an equivalent 
macroscopic magnetization current distribution that would give the same 
magnetic field as the magnetic dipoles in the magnetized body. 

9.3.6. The magnetizing force (or magnetic field intensity) H 

Since in magnetostatic conditions we can use the Biot-Savart law to calcu-
late the magnetic field due to a magnetized body using the equivalent 
magnetization current J m  given by equation (9.36), it is straightforward for 
the reader to show, by following the steps we used in Section 1.4.7 of 
Chapter 1, that, if Bm  is the macroscopic magnetic field due to the magne-
tized body then, corresponding to equation (1.89), at a field point inside a 
magnetized body we have 

V x Bm  = NJ.. 	 (9.43) 

If there is also a free (true) current density J at the field point due, for example, 
to a conduction current, then, if Bc  is the macroscopic magnetic field due to 
all the free (true) currents, we have 

V x Bc  = NJ. 	 (9.44) 

Adding equations (9.43) and (9.44), we have 

V x B = (J + Jm) 

where B = (B c  + Bm) is the total macroscopic magnetic field at the field 
point. Using equation (9.36) to substitute for J,n  , we find that 

V x B = iLto(J + V x M). 	 (9.45) 
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Equation (9.45) can be rearranged in the form 

V x ( 1.! — M ) =J. 	 (9.46) 

The quantity (B/i.to  — M) appears so frequently in the theory of classical 
electromagnetism that it is worth giving it a special name and a special symbol. 
We shall call it the magnetizing force and denote it by the symbol H. It is 
sometimes called the magnetic field intensity. Hence by definition 

B 
H = -- — M. 	 (9.47) 

14 

Rearranging equation (9.47), we have 

B = go(H + M). 	 (9.48) 

Using equation (9.47) to substitute for B in equation (9.46) we find that 

VxH=J (9.49) 

where J is the free (true) current density at a point where the magnetizing force 
(magnetic field intensity) is H. Since the vectors B and M suffice in magne-
tostatics, we could always use equation (9.45) and leave H out of the theory 
of classical electromagnetism. 

Integrating equation (9.49) over a finite surface S and applying Stokes' 
theorem of vector analysis, which is equation (A1.34) of Appendix A1.8, we 
obtain 

fH - dl = IJ - dS = / 	 (9.50) 

where / is the total free (true) current, such as a conduction current, that crosses 
the surface S. The line integral fH • dl is sometimes called the magneto-
motive force. Equation (9.50) is often useful in solving problems, such as 
the magnetic circuit, details of which will be found in elementary text 
books. 

9.3.7. The relative permeability jur  and the magnetic susceptibility x n, 

Equation (9.48) is often rewritten in the form 

B = p,H = itirg0H 	 (9.51) 

where p. is the permeability of the medium and the ratio ii/go  which is denoted 
by gr, is called the relative permeability of the medium. Equation (9.51) is 
one of the constitutive equations. The value of the relative permeability gr  
depends on the material present at the field point and the experimental con-
ditions. (Reference: Section 9.3.2) 

As an alternative to equation (9.51) we can introduce the magnetic sus-
ceptibility xn, which is generally defined in terms of the magnetizing force 
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(or magnetic field intensity) H by the equation 

M = Xn,H. 	 (9.52)  

Putting B = jirlioH and M = x„,H in equation (9.48) and cancelling golf we 
find that 

	

= 1 + xm . 	 (9.53) 

Putting H = B/grgo  in equation (9.48) and rearranging, we find that 

m  = Oir 1 )  B  = 	Xm 	B  

	

Argo 	110( 1  + Xm) • 

Equation (9.54) is an alternative constitutive equation expressing M in terms 
of B, where B is the resultant macroscopic magnetic field. 

9.4. Maxwell's equations at a field point inside a magnetic dielectric 

9.4.1. The equation VxH=J+6 

We only derived the equation 

V x B = NCI + .1„,) = RAJ + V x M) 	 (9.45) 

for magnetostatic conditions. We shall now go on to consider how equation 
(9.45) must be modified when the conditions are varying. We shall assume that 
the magnetization current density J. is still given by equation (9.36). However 
when the conditions are varying, we must include the vacuum displacement 
current density eok in equation (9.44) so that equation (9.45) then becomes 

VxB=R3(E0k+J+VxM) (9.55) 

for a field point inside a magnetic material, for which the relative permit-
tivity Cr  = 1. If the material also has dielectric properties, such that Cr  > 1, there 
is also a contribution to the magnetic field due to the motions of charges inside 
molecules that lead to a varying polarization P. We assumed in Section 9.2. 
that, when a dielectric is polarized the negative charges in the molecules do 
not move but the positive charges are displaced a distance 1. According to 
equation (9.12) the total charge that crosses the surface AS, which is normal 
to the polarization vector P in Figure 9.3, when the dielectric is polarized, is 

AQ = PAS. (9.56) 

On our simplistic model, when the polarization P is varying positive charges 
go back and forth across the surface AS giving rise to a macroscopic current. 
Differentiating equation (9.56) with respect to time we have 

a(AQ)  ap 
JAS  = 	— — AS. 

	

at 	at 

(9.54) 
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Hence the polarization current density Jp  is given by 

J = ap 	
(9.57) 

Since the macroscopic current density, given by equation (9.57), is due to 
the motion of charges it gives a contribution to the magnetic field. Hence at 
a field point inside a stationary body that has both dielectric and magnetic 
properties we must add the varying polarization current density Jp  to the 
right hand side of equation (9.55) which finally becomes 

V x B = go(Ect + J + J„, + Jp) 	 (9.58) 

= go(e0E +J+ V xM+ i3) 	 (9.59) 

where B is the macroscopic magnetic field due to the free (true) current density 
J, the magnetization current density V x M and the varying polarization current 
density P. Equation (9.59) can be rearranged in the form 

a 
V x (—

B 
–  M)  = J + —

at 

(E0E + P). 	 (9.60) 
lio 

If we introduce the auxiliary vectors D and H defined by the equations 

D = e0E + P 	 (9.25) 

B H = -- – M. 	 (9.47) I-to  

we can rewrite equation (9.60) in the more concise form 

VxH=J+ h. 	 (9.61) 

It is of interest to note that h is equal to the sum of the vacuum displace-
ment current density eoE and the varying polarization current density P, 
which have completely different origins. It was the addition of the displace-
ment current term coE to Maxwell's equations that converted the Laplacians 
of electrostatics and magnetostatics into D'Alembertians and led to the pre-
diction that the electromagnetic interaction is propagated at the speed of light 
c in empty space. The P term arises from the motions of charges within 
molecules. We shall comment on its role in the propagation of the macroscopic 
field vectors E and B in a dielectric in Section 9.5.3. 

9.4.2. The equations V • B = 0 and V x E = –i3 

It was shown in Section 4.3.2 and 4.5.4 of Chapter 4 that in the absence of 
magnetic monopoles the equations 

V • B = 0 	 (9.62) 

V x E = –i3 	 (9.63) 



348 Chapter 9 

which relate to the macroscopic field vectors E and B, are valid at a field point 
inside a system of moving classical point charges that build up a macro-
scopic charge and current distribution. Since the polarization current density 
Jp  and according to our Amperian model the magnetization current density 
J„, are macroscopic currents arising from moving charge distributions, they 
should behave in the same way as a current distribution due to classical point 
charges. This shows that equations (9.62) and (9.63) need not be modified 
in the presence of the contributions due to the Jp  and J„, terms. The macro-
scopic fields E and B are then the resultant fields due to the contributions 
of all the p, pp, J, Jp  and Jn, terms. One cannot be sure how valid the Amperian 
model is for the contributions due to electron spin. The magnetic field 
associated with electron spin is a dipole field for which V • B is zero, so 
that equation (9.62) should be valid. We can appeal directly to experiments 
with transformers having ferromagnetic cores to show that equation (9.63) is 
also valid. Such experiments have confirmed that Faraday's law of electro-
magnetic induction, which is an integral form of equation (9.63), is valid. 

9.4.3. Summary of Maxwell's equations 

In this chapter we have only given a very simplistic insight into the roles 
and origins of the various terms in the form Maxwell's equations take at a field 
point inside a material medium, where the relative permittivity er  and the 
relative permeability gr  are both greater than unity. For example, we did not 
average the microscopic variables properly using equation (1.147) and the 
weighting function shown in Figure 1.12 of Chapter 1, to determine the cor-
responding macroscopic variables. A reader interested in a more rigorous 
development is referred to Russakoff [1] or Robinson [2]. The basic field 
vectors in our approach are the macroscopic field vectors E and B, which 
are the averages of the corresponding microscopic variables e and b. We 
found it convenient to introduce the properties of the material medium using 
the polarization vector P and the magnetization vector M, which we defined 
as the average electric dipole moment per unit volume and the average 
magnetic dipole moment per unit volume respectively. It follows from 
equations (9.22), (9.62), (9.63) and (9.59) that at a field point inside a material 
medium where Er  > 1 and II, > 1 Maxwell's equations take the form 

(P + Pp)  _ (P 	— V • P)  V • E — 	 (9.22) 

V - B = 0 	 (9.62) 

V x E = —it 	 (9.63) 

V x B = go(eok + J + Jp  + J„,) 	 (9.58) 

= tio(Eot +J+P +V x M) 	 (9.59) 

The above form of Maxwell's equations is the form that fits in best with the 

Co 	 CO 



Stationary dielectrics 349 

approach we developed in Chapter 4. In equations (9.22) both the free (true) 
charge density and the polarization charge density (–V • P) contribute to the 
flux of the macroscopic electric field E. In equation (9.59), in addition to 
the free (true) current density J, the varying polarization current density P 
and the magnetization current density V x M are also treated as sources of 
the macroscopic magnetic field B. Equations (9.22) and (9.59) show explicity 
the roles of all the contributing terms. The form of the constitutive equa-
tions that would fit in best with the above approach to Maxwell's equations 
would be 

P = XecoE 	 (9.23) 

M _ (11,r – 1 )  B  _ 	XM 	B 	 (9.54) 
Ilrgo 	I-to( 1  + X.) 

J = oE. 	 (9.64) 

There is no need in our approach to classical electromagnetism to introduce 
the auxiliary vectors D and H, defined by the equations 

D = coE + P 	 (9.25) 

H=  (— – M ) 
B 

where D is the electric displacement and H is the magnetizing force (or the 
magnetic field intensity). It is, however, both conventional and traditional to 
introduce D and H in which case Maxwell's equations can be expressed in 
the more concise form 

V • D = p 
	

(9.65) 

V • B = 0 
	

(9.66) 

V x E = 43 	 (9.67) 

VxH=J+I.) 
	

(9.68) 

where p is the free (true) charge density and J is the free(true) current density. 
The contributions of the polarization charge density in equation (9.65) and 
the varying polarization and magnetization current densities in equation (9.68) 
are hidden in the variables D and H. When the auxiliary vectors D and H 
are introduced, it is more convenient to express the constitutive equations in 
the form 

D = cE = c rcoE (9.27) 

B = jill = grii0H (9.51) 

J = GE (9.64) 

I-to 
(9.47) 

where c is the permittivity, Er  is the relative permittivity, ji is the perme- 
ability, 14 is the relative permeability and o is the electrical conductivity. It 
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is assumed in classical electromagnetism that the Maxwell equations (9.65), 
(9.66), (9.67) and (9.68) are valid for varying charge and current distribu-
tions whatever the frequency of the variations. 

By repeating the method used in Section 8.5.1 of Chapter 8 but using 
equations (9.65)—(9.68) the reader can show that the Poynting vector N inside 
a material medium is given by 

N=ExH 	 (9.69) 

9.5. Electromagnetic waves in a linear isotropic homogenous medium 

9.5.1. The wave equations 

Consider a linear, isotropic and homogenous medium, denoted by LIH, for 
which £ , p. and o are constants independent of position, of direction and of 
the magnitudes of the electric and magnetic fields. 

Taking the curl of both sides of equation (9.67) and using the relation B 
= p.H where p. is now a constant, we find that at a field point inside an LIH 
medium 

aB 	a v x (v x E) = —V x w = —p..T (V x H). 

Using equation (9.68) to substitute for V x H and then putting D = EE, where 
E is now constant, we find that 

a 	a2E  

Using equation (A1.27) of Appendix A1.6 to substitute for V x (V x E) and 
putting V • E = pie = Were° , where p is the free(true) charge density, after 
rearranging we obtain 

a2E 	n  ) 	 a  

v2E - tiE 	
(

w2- . v EE- + ii at  . 	 (9.70) 

This is the wave equation inside an LIH medium. 
Taking the curl of equation (9.68) and putting t• = Et we have 

a Vx(Vx11)=VxJ+ £ T.  (V x E). 

Using equation (A1.27) of Appendix A1.6 and using the relations 

V x E = —lii = —pil 

V • H — V •  B  — 0 
Il 

which are valid for an LIH medium, we find that equation (9.71) becomes 

(9.71) 
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a2H V2H – 	at2  = —v x J. (9.72) 

If we put H = Big in equation (9.72), after multiplying by the constant p. 
we obtain 

a2B 
v2B — 116--aT2  = —p.v x J. (9.73) 

If the LIH medium has a conductivity o and J is the conduction current we 
can put J = oE in equation (9.70). Also since the relaxation time is exceed-
ingly short we can generally assume that p is zero inside a good conductor. 
Equation (9.70) then becomes for a good conductor 

aE 	a2E 
v2E — 	– –57 =0.  

The reader can show that in these conditions equation (9.73) becomes 

aB 	a2B 
v2B — 	— 1.1.E 73-t-2  — o. 	 (9.75) 

The wave equations are more complicated in a non LIH medium. 

9.5.2. Plane waves in an LIH medium 

Consider a non-conducting medium for which o  = 0 and in which the charge 
density p is zero. Equations (9.74) and (9.72) become 

V2E 	 (9.76) 

v2H  uat2. (9.77) 

In an LIH medium of infinite extent the wave equations (9.76) and (9.77) 
for E and H have plane wave solutions corresponding to waves propagating 
with a velocity y given by 

1 	1  
–  •10 1/2 – (•) 1/2ErE0) 1/2 = (14) 1/2 • 	 (9.78)  

These waves propagate at a velocity less than c, the speed of light in empty 
space. If n is the refractive index, then 

v=  —. 	 (9.79) 

Comparing equations (9.78) and (9.79) we see that 

n = (i.trer) 112 . 	 (9.80) 

For most materials, other than ferromagnetic materials, Jr  is always very 

(9.74) 
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close to unity. In these cases we have, to an excellent approximation, 
n  . 0/2.  

The relative permittivity and refractive index of water are frequency depen-
dent. For example the static relative permittivity of water is about 80, in which 
case n = (E r) 1/2  is about 9. At radio frequencies the refractive index of water 
is about 8 corresponding to a value of C r  of about 64. At optical frequencies 
the experimental value for the refractive index of water is 1.33 corresponding 
to a value of 1.77 for the relative permittivity C r. 

Full details of the properties of electromagnetic waves in a refractive 
medium are given in all the standard text books on electromagnetism. It is 
straightforward to apply Maxwell's equations (9.65), (9.66), (9.67) and (9.68) 
to derive the appropriate boundary conditions before going on to consider 
topics such as Fresnel's equations for the reflection and refraction of elec-
tromagnetic waves etc. As full details of these topics are given in all the 
standard text books, we shall not repeat them here. A reader interested in a 
discussion of topics such as Maxwell's stress tensor, and energy and momentum 
in a material medium is referred to Stratton [6], where an account will also 
be found of the equations for the potentials in a medium that has finite values 
of Er, gr  and 0. 

9.5.3. The method of propagation of electromagnetic waves in a dielectric 

It was shown in Section 9.5.2 that, according to Maxwell's equations 
(9.65)—(9.68) the velocity of electromagnetic waves in a dielectric is equal 
to cl n where the refractive index n is equal to (0 1/2  and Er  is the relative 
permittivity of the dielectric. This change in velocity from c to cl n arises 
from the addition of the i) term to the vacuum displacement current term Eok 
to give the h term in equation (9.68). We shall illustrate qualitatively in this 
section how the varying polarization term P influences the speed of electro-
magnetic waves, even though on the microscopic scale the electromagnetic 
interaction is still propagated at the speed c. 

Consider a linearly polarized plane electromagnetic wave that is propagating 
in a direction parallel to the x axis and is incident on an LIH dielectric for 
which jur  = 1 and which fills the whole of that portion of space for which 
x>  0. We shall consider the problem using classical electromagnetism. The 
electric vector of the incident electromagnetic wave acts on the electrons and 
positive charges in the molecules in the dielectric which undergo forced 
harmonic motions and give rise to varying electric dipole moments which 
are represented on the macroscopic scale by the i) term in equation (9.59). 
The varying oscillating electric dipoles emit electromagnetic radiation, whose 
electric vector is given by equation (2.58) of Chapter 2. This radiation is 
emitted in all directions both in the forward and backward directions and it 
acts on all the other oscillating electric dipoles in the dielectric. It can be shown 
that the superposition of all the radiation fields of all the oscillating electric 
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dipoles in the dielectric gives a wave moving in the backward direction with 
a velocity c in the dielectric which, in a typical dielectric leads to the extinc-
tion of the incident electromagnetic wave in a distance of about 10-6  m into 
the dielectric, Fox [7], plus a wave in the forward direction having a velocity 
of cln. The full theory is given by Born and Wolf [8]. We shall only make a 
few qualitative comments. Consider a point T on the x axis inside the dielec-
tric. The various off axis oscillating electric dipoles are at different distances 
from T and their contributions to the resultant radiation electric field at T 
take different times to go at the speed c to T, so that their contributions to 
the resultant electric field at T have different phases corresponding to the 
different path lengths. Due to these differing phases the harmonic variations 
in the radiation electric field add up to give a resultant electromagnetic wave 
moving at the speed cl n in a direction, which by symmetry arguments is parallel 
to the x axis. We can imagine radiation going from one oscillator to another 
along a zig-zag path at the speed c, before reaching T. Due to this increased 
path length it is reasonable to find that the speed of the resultant electro-
magnetic wave in the dielectric is less than c. A point we wish to stress is 
that on the microscopic scale the electromagnetic interaction between oscil-
lators goes at the speed c. An introductory account of the theory is given by 
Rossi [9]. 

9.5.4. An example of the choice between the use of Maxwell's equations for 
the macroscopic and for the microscopic fields 

The choice of whether to use Maxwell's equations for the macroscopic fields 
or Maxwell's equations for the microscopic fields depends on the scale of 
the phenomenon under investigation. A typical case in which the use of 
Maxwell's equations is useful is the theory of the reflection of electromagnetic 
waves at the surface of a dielectric. In this case, one does not want to relate 
the electric field E and the magnetic field B, associated with the radiation, 
back to the source of radiation. One merely wants to find out what happens, 
at the boundary of the dielectric, to the electric and magnetic field vectors 
associated with the radiation. Maxwell's equations (9.65)—(9.68) are rela-
tions between the macroscopic electric field E and the macroscopic magnetic 
field B at the boundary, valid irrespective of the position of the source of 
the radiation. For visible radiation the wavelength is —500 nm which is much 
greater than atomic dimensions, which are —0.1 nm. There is no need to 
allow for the discrete structure of matter and for the microscopic fluctua-
tions in the electric and magnetic fields when discussing the reflection of visible 
radiation, since, over distances of —500 nm the irregularities in the fields 
and dielectric constants associated with atomic structure will average out. 
Maxwell's equations for the macroscopic fields give the appropriate boundary 
conditions, and in these boundary conditions the macroscopic (or local space 
average) values for E and B and the macroscopic values for dielectric constant 
and electrical conductivity can be used, treating the dielectric as a contin- 
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uous medium. However, if radiation in the x-ray region is used, the wavelength 
is —0.1 nm, which is comparable with atomic dimensions. The use of the macro-
scopic dielectric constant and electrical conductivity is no longer appropriate. 
To calculate the scattering of x-rays, one must use the microscopic theory 
taking into account the crystal structure of the scattering material. 
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CHAPTER 10 

Special relativity and classical electromagnetism 

10.1. Introduction 

Until now we have deliberately avoided the use of ideas based on special 
relativity so as to show that all our interpretations can be based on classical 
electromagnetism itself without any recourse to special relativity. In this chapter 
we shall give a brief survey of the intimate relationships between classical 
electromagnetism and special relativity, which will show that the interpreta-
tions we have developed are consistent with special relativity. We shall assume 
that the reader has done an introductory course on special relativity leading 
up to the Lorentz transformations and the other transformations of special 
relativity. A summary of the transformations of special relativity is given in 
Appendix E. Readers interested in a recent book which fits in with the approach 
we are adopting is referred to Rosser [1]. 

It was mentioned in Section 4.13.3 of Chapter 4 that Maxwell's equations 
do not obey the principle of relativity if the coordinates and time are trans-
formed from one inertial reference to another moving with uniform velocity 
relative to the first using the Galilean transformations, which were based on 
the assumption of an absolute time. In the nineteenth century it was assumed 
that Maxwell's equations could only hold in one absolute reference frame. It 
was pointed out in Section 4.13.3 that, if the Earth were moving with velocity 
y relative to the hypothetical absolute system, then, if the Galilean transfor-
mations were correct, it should have been possible to determine y by 
experiments such as the Michelson-Morley experiment. All such attempts 
failed. What Einstein did in his 1905 paper [2], which was called "On the 
electrodynamics of moving bodies", was to assume that the laws of classical 
electromagnetism obeyed the principle of relativity. This necessitated the 
abandonment of the concept of an absolute time. According to Einstein, it 
was the reinterpretation of the measurement of the time of distant events that 
was the key new idea in Einstein's 1905 paper. For example, in an account 
of some conversations he had with Einstein, Shankland [3] wrote: 

I asked Professor Einstein how long he had worked on the Special Theory 
of Relativity before 1905. He told me that he had started at age 16 and 
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worked for 10 years: first as a student when, of course, he could only 
spend part-time on it, but the problem was always with him. He aban-
doned many fruitless attempts, "until at last it came to me that time was 
suspect!" Only then, after all his earlier efforts to obtain a theory consis-
tent with the experimental facts had failed, was the development of the 
Special Theory of Relativity possible. 

Einstein could have shown that the transformations which transform Maxwell's 
equations into Maxwell's equations were the Lorentz transformations. This was 
the approach tried by Lorentz, but Lorentz did not reinterpret the measurement 
of time. For example in 1927, Lorentz [4] said: 

A transformation of the time was necessary so I introduced the concep-
tion of local time which is different for different systems of reference which 
are in motion relative to each other. But I never thought that this had 
anything to do with real time. This real time for me was still represented 
by the older classical notion of an absolute time, which is independent of 
any reference to special frames of coordinates. There existed for me only 
one true time. I considered my time-transformation only as a heuristic 
working hypothesis so the theory of relativity is really solely Einstein's 
work. And there can be no doubt that he would have conceived it even if 
the work of all his predecessors in the theory of this field had not been done 
at all. His work in this respect is independent of the previous theories. 

In his 1905 paper, in addition to the principle of relativity, Einstein chose 
the principle of the constancy of the speed of light as his second postulate. 
To quote from Einstein's 1905 paper: 

Examples of this sort, together with the unsuccessful attempts to discover 
any motion of the earth relatively to the 'light medium', suggest that the 
phenomena of electrodynamics as well as of mechanics possess no prop-
erties corresponding to the idea of absolute rest. They suggest rather that, 
as has already been shown to the first order of small quantities, the same 
laws of electrodynamics and optics will be valid for all frames of refer-
ence for which the equations of mechanics hold good. We will raise this 
conjecture (the purport of which will hereafter be called the 'Principle of 
Relativity') to the status of a postulate, and also introduce another postu-
late, which is only apparently irreconcilable with the former, namely, that 
light is always propagated in empty space with a definite velocity c which 
is independent of the state of motion of the emitting body. These two 
postulates suffice for the attainment of a simple and consistent theory of 
the electrodynamics of moving bodies based on Maxwell's theory for 
stationary bodies. 

The choice of the principle of the constancy of the speed of light enabled 
Einstein to define how to measure the times of distant events before he derived 
the Lorentz transformations. 
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10.2. The postulates of special relativity 

10.2.1. The principle of relativity 

According to the principle of relativity all the laws of physics including the 
laws of classical electromagnetism are the same in all inertial frames. What 
this means is that, if an isolated system is observed from two different inertial 
frames, one moving with uniform velocity relative to the other, though the 
observations on the system carried out in the two inertial systems yield dif-
ferent numerical values for some quantities, the laws developed on the basis 
of these observations should have the same mathematical form in both inertial 
frames. The laws of physics should not contain any terms referring to an 
absolute system. 

The definition of an inertial frame is the same in the theory of special 
relativity as in Newtonian mechanics. If in a reference frame a particle under 
the influence of no forces (e.g. a particle far away from any other particles 
capable of exerting forces) travels in a straight line with constant speed then 
Newton's first law (the principle of inertia) is valid in that frame, which is then 
considered suitable for the application of Newton's law of motion. Such a 
reference frame is called an inertial reference frame, or inertial frame or 
sometimes a Galilean reference frame. An experimenter at rest in an inertial 
reference frame is called an inertial observer. The same definition of an 
inertial frame is used in the theory of special relativity. Owing to the rotation 
of the Earth, the laboratory frame, that is a reference frame fixed to the Earth, 
is strictly not an inertial frame, and effects associated with the Earth's rotation 
are sometime important. For example, consider a spaceship coasting with 
uniform velocity relative to the fixed stars. There are no applied forces acting 
on the spaceship. If its position is plotted on a coordinate system fixed to 
the Earth then, owing to the Earth's rotation, the spaceship will appear to travel 
in a spiral path, going around through 360° every day. According to Newton's 
first law, since there are no forces acting on the spaceship, it should travel 
in a straight line in all inertial reference frames. This shows that the labora-
tory frame, i.e. a reference frame fixed to the Earth, is not an inertial frame, 
and effects associated with the Earth's rotation are sometimes important even 
in terrestrial experiments, such as long-range naval gunnery and Foucault's 
pendulum experiment. In these cases we get a better approximation to an 
inertial frame by taking a frame at rest relative to the solar system or the 
fixed stars. However, the angular velocity of rotation of the Earth is only 
7.3 x 10-5  rad  s Earth turns through 360° in 24 h), so that the effects 
associated with the Earth's rotation about its axis are generally very small 
and play no significant role in classical electromagnetism. Hence the labora-
tory system is a satisfactory approximation to an inertial frame for the 
application of the laws of classical electromagnetism. 
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10.2.2. The principle of the constancy of the speed of light 

According to the principle of the constancy of the speed of light, the speed 
of light in empty space has the same numerical value in all inertial frames, 
so that light should travel in straight lines and have the same speed in all 
directions of empty space in all inertial frames. We shall now show that, if 
we assume that Maxwell's equations obey the principle of relativity, then the 
principle of the constancy of the speed of light follows. 

It was shown in Section 1.9.2 of Chapter 1 that Maxwell's equations have 
wave solutions. In empty space the velocity of these electromagnetic waves, 
measured in the laboratory frame E, is 

c  = (gocor i/2 ,  

where Ro  is the magnetic constant (permeability of free space) and co  is the 
electric constant (permittivity of free space). This velocity is identified with 
the speed of light in empty space. It is independent of the velocities of the 
accelerating electric charges giving rise to the electromagnetic waves, illus-
trating how, according to Maxwell's equations, the velocity of light in empty 
space is independent of the velocity of the source of light. 

If we assume that Maxwell's equations obey the principle of relativity 
then in an inertial reference frame E' that is moving with uniform velocity y 
relative to E, according to the laws of electricity and magnetism, the velocity 
of electromagnetic waves measured in E' should be 

c, = woo-I/2 ,  

where pi; and K, are the values of the magnetic and electric constants in E'. 
It can be shown, using the Biot-Savart law, that the force of attraction per 

unit length on each of two infinitely long, thin, parallel wires a distance r apart 
in empty space and carrying currents / 1  and 12 is iu.0/1 /2/27Er. The ampere is 
defined as 

that unvarying current which, if present in each of two infinitely thin parallel 
conductors of infinite length and 1 m apart in empty space, causes each 
conductor to experience a force of exactly 2 x 10-7  newton per metre of 
length. 

Putting / 1  = 12 = 1 and r = 1 in the expression 110/ 1 12/27cr, we find that it 
follows from the definition of the ampere that, in SI units, i.to  = 47c x 10-7  
H m-1 . 

If Maxwell's equations are valid in both E and E' then the force between 
two parallel currents should be given by the Biot-Savart law in both E and 
E'. If the ampere is defined in the same way in E and E', this implies that go 

 = 14 = 47c x 10-7  by definition. For the velocity of light to have the same 
numerical value in E and E' one must also have co  = EP. In principle, according 
to classical physics, one could place two protons a known distance, say 1 m, 
apart in empty space and measure the force between them when they are at 
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rest in the inertial frame E. Similarly, one could place two protons 1 m apart 
and measure the force between them when they are at rest relative to the inertial 
frame E'. If Maxwell's equations are valid in both E and E' then Coulomb's 
law should be applicable in both cases. For E0  to be equal to e; it would require 
that the force between the protons at rest in E (measured in E) would have 
the same numerical value as the force between the two protons at rest in E' 
(measured in E'). Though it is not always stated specifically, it is generally 
assumed in the theory of special relativity, that, if two experiments are 
carried out under identical conditions in two inertial frames E and E' that 
are equivalent in every way then they give the same numerical results, within 
experimental error. If this assumption is made then eo  should equal E(') . Since 
ju,0  is equal to 14 by definition, then (NE0)-112  should be equal to (Ke0-1/2. 

According to Maxwell's theory, these latter expressions are equal to the 
velocities of electromagnetic waves in free space in E and E' respectively so 
that c = c'. Thus if it is assumed that Maxwell's equations are correct and 
obey the principle of relativity then the principle of the constancy of the 
velocity of light follows. The simultaneous measurement of the velocity of 
light in E and E' is not carried out under identical conditions in E and E', 
since the velocity of the source of light is not the same relative to inertial 
observers at rest in E and E' respectively, so that a priori there is no reason 
why the same numerical value for the velocity of light should be obtained; 
but according to Maxwell's equations, it should. 

At the time the theory was introduced, there was no direct experimental 
verification of the principle of the constancy of the speed of light. Since 
then, several direct experimental checks of the postulate have been performed. 
For example in 1964 Alvager, Farley, Kjellman and Wallin [5] determined 
the velocities of photons arising from the decay of neutral pions (70) into 
two photons each. The velocity of the 7C ° estimated using the equations of 
the theory of special relativity, was 0.99975 c. The measured velocity of the 
photons arising from rc° decays was (2.9977 ± 0.0004) x 10 8  m s-1 . This 
value is consistent with the accepted value of 2.9979 x 108  m s-1  for the 
velocity of light emitted by a stationary source. This result shows that the 
velocity of light does not add on to the velocity of the source, which according 
to the Galilean velocity transformations it should do. Thus there is now 
direct experimental evidence for the principle of the constancy of the speed 
of light. 

10.2.3. The principle of constant charge 

We shall now show that, if we assume that Maxwell's equations hold in all 
inertial frames, the principle of constant charge follows. Taking the divergence 
of the Maxwell equation 

VxH=J+15 

we find that, since the divergence of the curl of any vector is zero and, since 
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according to Maxwell's equations, the divergence of D is equal to p, then 

ap 
V  • J  + at = ° 	 (10.1) 

which is the continuity equation for charge and current densities. Integrating 
equation (10.1) over a finite volume and applying Gauss' mathematical theorem 
of vector analysis, we have 

a 	
dV = f J - dS. 	 (10.2) 

If the surface enclosing the system of moving charges is far away from all 
the charges, such that no charges cross the surface, then equation (10.2) reduces 
to 

a — --ji- f p dV = O. 	 (10.3) 

Thus if Maxwell's equations are correct, the rate of change of the total charge 
of a system of charges is zero and this holds independently of how the 
velocities of individual charges may vary. If the surface encloses one accel-
erating charge only, then the value of this charge should be invariant and 
independent of both the velocity and acceleration of the charge, and of course 
it should be equal to the value of the charge when it is at rest in the inertial 
frame E. 

If Maxwell's equations are also valid in an inertial frame E' moving with 
uniform velocity y relative to E, then proceeding as for E, it can be shown 
that in E' 

and the total charge of a system of charges in E' is also an invariant inde-
pendent of how the velocity of the charges may vary. For a single charge 
the charge is again an invariant, but it is now equal to the value of the charge 
when it is at rest in E'. Consider a single proton accelerating relative to the 
laboratory (E) and relative to a spaceship (E') that is moving with uniform 
velocity relative to the laboratory. In this case, for the principle of constant 
electric charge to hold, all that need now be assumed is that the proton has 
the same value of charge, when it is at rest relative to E, as it has when it is 
at rest relative to E', since if Maxwell's equations are valid both in E and E' 
the charge is independent of its velocity in both E and E'. In the theory of 
special relativity it is normal to make the assumption that fundamental 
particles at rest relative to an inertial frame E have the same properties and 
numerical values of mass, charge, lifetime etc. as the same fundamental 
particles would have when they are at rest, under the same conditions, relative 
to another inertial frame E', provided the units are defined in the same way 
in E and E'. If one makes this assumption, then the principle of constancy 
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of the electric charge of fundamental particles follows from Maxwell's 
equations, if Maxwell's equations obey the principle of relativity. 

It was pointed out in Section 1.2.4 of Chapter 1 that there is now experi-
mental evidence that shows that the total charge on a particle does not vary 
with its velocity. If the charge on a particle did vary with velocity, then, 
since on average electrons move faster than the protons inside a hydrogen 
molecule, the hydrogen molecule would have a resultant electric charge and 
would be deflected by electric fields. In 1960 King [6] showed that the charges 
on the electrons and protons inside hydrogen molecules were equal in 
magnitude, but opposite in sign to within 1 part in 102 0 , showing that the 
total charge on a particle is independent of its velocity. 

10.2.4. The other postulates of special relativity 

It must be pointed out that there are additional assumptions implicit in the 
theory of special relativity. For example, it is assumed that inertial frames exist 
and that, in such a reference frame, the motion of a body is uniform and 
rectilinear provided no forces act on the body. This definition is taken over 
from Newtonian mechanics. It is also assumed that in such a reference frame 
light is propagated rectilinearly and isotropiclly in free space. This assumes 
that all regions of space and all directions in space are equivalent. It is also 
assumed in the the theory of special relativity that Euclidean geometry can 
be used to calculate the relationships between geometrical quantities. It is 
assumed that all time intervals are equivalent. The validity of these extra 
postulates is not known a priori but has to be tested experimentally. In fact, 
some of these postulates must be modified within the context of the theory 
of general relativity. The refinements due to the general theory are generally 
very small, and need only be introduced when the accuracy of the measure-
ments make it necessary; they can be ignored in the context of classical 
electromagnetism. 

10.3. Measurement of the times of distant events 

Before going on to discuss the derivation of the Lorentz transformations, we 
shall follow Einstein's approach in his 1905 paper [2] and discuss the mea-
surement of the times of distant events. Einstein assumed that, in every inertial 
frame, there is an array of rulers and clocks at rest relative to each inertial 
frame such that the positions and times of events can be determined when 
and where they occur. The question that then arises is, how do we synchro-
nize the spatially separated clocks in a given inertial frame? The definition 
of the synchronization of spatially separated clocks chosen by Einstein [2] was: 

If at the point A of space there is a clock, an observer at A can determine 
the time values of events in the immediate proximity of A by finding the 



362 Chapter 10 

positions of the hands which are simultaneous with these events. If there 
is at the point B of space another clock in all respects resembling the one 
at A, it is possible for an observer at B to determine the time values of events 
in the immediate neighbourhood of B. But it is not possible without further 
assumption to compare, in respect of time, an event at A with an event at 
B. We have so far only defined an 'A' time' and a '13' time'. We have not 
defined a common time for A and B. The latter time can now be defined 
in establishing by definition that the 'time' required by light to travel from 
A to B equals the time it requires to travel from B to A. Let a ray of light 
start at the 'A time' tA  from A towards B, let it at the `B time' tB  be reflected 
at B in the direction of A, and arrive again at A at the 'A' time 't'A '. 

In accordance with definition the two clocks synchronize if 

tB  — tA  = t'A  — tB . 	 (10.4) 

Thus Einstein required that the time recorded by the clocks for light to pass 
from A to B in vacuo should be equal to the time for light to pass from B to 
A. This definition of synchronization is consistent with the principle of the 
constancy of the velocity of light, according to which the velocity of light 
in vacuo should have the same numerical value in all directions of space. 
Hence, Einstein's definition of synchronization is in accord with the postulates 
of the theory of special relativity and classical electromagnetism. 

Rearranging equation (10.4), we have 

1 
tB = -2 (tA  + t'A). 	 (10.5) 

According to equation (10.5), radar techniques can be used to measure the time 
of an event. If a radio pulse, emitted from a radar base at A at time tA , is 
reflected by the event at a point B, and returns to base at time t'A , then according 
to equation (10.5) the time of the event at B is equal to (112)(tA  + t'A ). In this 
way it is not necessary to have a second clock at B. One clock at the radar 
base A is sufficient. The distance of the event from the radar base is equal 
to (c/2)(t'A  — tA ). If directional antennae are used, the position of the event in 
space can be determined. This shows that the use of radar methods to deter-
mine the positions and times of events is consistent with special relativity, 
provided we assume that the speed of electromagnetic waves in empty space 
is the same in both directions. No radar operator ever queries this assump-
tion. 

The author's preferred way of deriving the Lorentz transformations is to use 
radar methods, as this approach makes clear the importance of the finite 
propagation time of signals. If we did have signals that could be transmitted 
at infinite speed, then an experimenter near an event could "press a button" 
and the information would arrive instantaneously at one master clock. This 
is not possible in practice. In the context of classical electromagnetism the 
fastest signals that can be transmitted travel at the speed of light in empty 
space. Since the principle of the constancy of the speed of light follows, if 
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we assume that Maxwell.s equations obey the principle of relativity, the use 
of radar methods is fully consistent with our approach to classical electro-
magnetism. A full account of the application of radar methods to derive the 
basic results of special relativity is given by Rosser [1]. 

10.4. The Lorentz transformations 

In this section we shall derive the Lorentz transformations which transform 
the coordinates and times of events from one inertial frame E to another inertial 
frame E', that is moving with uniform velocity y relative to E along their 
common x axis as shown in Figure 10.1(a). Let the coordinates of an event 
relative to E be represented by x, y and z, and the coordinates of the same event 
relative to E' by x', y' and z'. The times of the event relative to E and E' will 
be represented by t and t' respectively. It will be assumed that the origins of 
E and E' coincide at a time t = t' = 0, and that the directions of the y' and z' 
axes of E' coincide with y and z axes of E at t = 0 as shown in Figure 10.1(a). 

The Lorentz transformations will be developed for a simplified case. 
Consider a pulse of light emitted from the origins of E and E' at the instant 
t = t' = 0 when they coincide, as shown in Figure 10.1(a). Let the light reach 
a light detector at the point P. Let this event be measured, to be at the position 
x, y, z at a time t relative to E, using rulers and synchronized clocks at rest 
relative to E. An observer at rest in E would say that the light travelled along 
the path OP covering a distance (x2  + y2  + z2) 1 "2  in a time t at a speed c such 
that 

(X2  + y2  + Z2)
1/2 

— t. 
c 

Figure 10.1. The inertial reference frame E' moves with uniform velocity y relative to E along 
the common x axis. The origins 0 and 0' coincide at t = t' = O. The y and y' and the z and z' 
axes coincide at t = t' = O. Light emitted from the origins 0 and 0' at t = t' = 0 is detected at 
P. 
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Hence 

X2  + y2  + z2  — c2t2  = 0 	 (10.6) 

where c is the velocity of light. 
An observer at rest in E' would agree that the light did reach the light 

detector at P (which may be moving relative to both E and s'). Using rulers 
and synchronized clocks stationary in X', let an observer at rest in E' record 
the same event at a position x', y', z' at a time t' as shown in Figure 10.1(b). 
Relative to E' the light would appear to have travelled the path O'P, such 
that 

x'2  + y'2  + z'2  — c2e2  = 0 	 (10.7) 

where c is the velocity of light. 
Notice the same value is used for the speed of light in both E and E', so 

as to be in accord with the principle of the constancy of the speed of light. 
The coordinates x, y, z and t in E and x', y', z' and t' in E' refer to the same 
event, namely the detection of the light at P in Figure 10.1(b). The required 
transformations must transform x', y', z' and t' such that equation (10.7) is 
transformed into equation (10.6), since both equations refer to the same event. 
Direct substitution into equation (10.7) verifies that the appropriate transfor-
mations are 

where 
1  

'Y = (1 — v2/c2) 1/2 • (10.12) 

These are the Lorentz transformations 
alternative derivation based on radar 

The inverse transformations which 
(10.7) are 

x = y(x' + ye) 

Y = Y 
z = z' 

t  . 7  ( t, + vx' 
c2  ) • 

. A derivation is given by Rosser [7]. An 
methods is given by Rosser [1]. 
transform equation (10.6) into equation 

(10.13) 

(10.14) 

(10.15) 

(10.16) 

Notice the inverse transformations can be obtained from equations (10.8), 
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(10.9), (10.10) and (10.11) by interchanging primed and unprimed quantities 
and replacing y by —v. The inverses of all relativistic transformations can be 
obtained by this procedure. 

10.5. Applications of the Lorentz transformations 

10.5.1. Relativity of the simultaneity of events 

Let the two events occur at two separated points x1  and x2  in the inertial 
frame E. Let them be measured to occur at the same time t in I. According 
to the Lorentz transformations these events would be recorded at times t' l  
and 4 by clocks at rest in E' where t; and 4 are given by 

tç  . 7  ( t  ..... vx2,) , vx22 ) . 	. 
(10.17) 

Since x 1  is not equal to x2, t; cannot be equal to 4, so that, according to the 
Lorentz transformations, two spatially separated events which are simultaneous 
in I, would not be measured to be simultaneous in E'. Similarly, if two events 
occur simultaneously at two spatially separated points x; and 4in I', according 
to the Lorentz transformations, they would not be measured to be simultaneous 
in E. Thus, according to the theory of special relativity the simultaneity of 
spatially separated events is not an absolute property, as it was assumed to 
be in Newtonian mechanics. 

10.5.2. Time dilation 

Consider a clock at rest at the point (x', y' = 0, z' = 0) in I'. Let it emit ticks 
at times t; and 4 in I'. In E, the events, associated with the successive ticks 
emitted by the clock at rest in E', are recorded at 

The time interval between two events, taking place at the same point in an 
inertial reference frame and measured by one clock stationary at that point, 
is called the proper time interval between the events. In equation (10.20) 
t; — tÇ is the proper time interval between the events. The time interval 
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t2  — t1  in any other inertial frame is longer than the proper time interval. In 
equations (10.18) and (10.19), x 1  is not equal to x2  so that the two events 
are not at the same point in E and so t 1  and t2  must be measured by spatially 
separated synchronized clocks in E Time dilation has been confirmed by 
experiments on the decay of pions and muons (Rosser [8]). 

10.5.3. Length contraction 

Consider a body moving parallel to the x axis with velocity y relative to E. 
In E', which moves with velocity y relative to E, the body is at rest. Let the 
length of the body be measured relative to E, by recording the positions of 
its extremities at x1  and x2  at the same time t in E In E' the corresponding 
events are 

x'i  = y(xi  — vt), 	t'i  =y(r- 

4 = y(x2  - vo; 	t;=y(t- 

Subtracting 

(xÇ — 4) = 7(x 1  — x2). 

Though t'i  is not equal to t'2 , since the body is at rest in E', xÇ — .4 is equal to 
10 , the proper length of the body measured when it is at rest in E'. If 1 = 
(x 1  — x2) is the length of the moving body measured in E 

V2 
 ) 1/2 

- C2  
(10.21) 

Thus a body moving with velocity y relative to an observer is measured to 
be shorter by a factor of (1 — y2/c2 ) 1/2 in its direction of motion relative to 
the observer. 

A body of proper volume Vo , moving with velocity y relative to an observer, 
can be divided into thin rods parallel to v. Each one of these rods is reduced 
in length by a factor (1 — v2Ic2

)
112. Since y = y' and z = z', the area of cross-

section of each rod is unchanged. Hence the measured volume of the moving 
body is 

, 2 ) 1/2 

V = 1/0  ( 1 — -'-i-c. 	• (10.22) 

10.5.4. Discussion 

The results derived in Sections 10.5.1, 10.5.2 and 10.5.3, which predict non-
absolute simultaneity, time dilation and length contraction, illustrate how the 
theory of special relativity, which arose from the application of the principle 
of relativity to the laws of classical electromagnetism, has necessitated a 
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revision of the Newtonian ideas of absolute space and absolute time. These 
changes are entirely consistent with classical electromagnetism. A reader 
interested in a discussion of the physical implications and the experimental 
confirmations of these predictions of the theory of special relativity is referred 
to Rosser [1]. 

The Lorentz transformations can be used to develop the transformations 
for velocity, momentum and force (Reference: Rosser [1]). A summary of these 
transformations is given in Appendix E. 

10.6. Forces between two parallel convection currents derived using 
the theory of special relativity 

The example illustrated in Figure 1.9, and discussed in Section 1.5 using the 
laws of classical electromagnetism, will now be considered from the viewpoint 
of the theory of special relativity. It will be assumed that X,, the charge per 
unit length on the moving wires, measured in the laboratory frame E, is made 
up of n discrete charges per unit length of magnitude q each, as shown in Figure 
10.2(b). In E, 

X, = nq. 	 (10.23) 

According to the theory of special relativity, the laws of electromagnetism 
are the same in all inertial reference systems. Hence the problem can be con-
sidered in the reference frame E' moving with uniform velocity y relative to 
E along the common x axis. In E' the wires are at rest, as shown in Figure 
10.2(a). Let X', the charge per unit length measured in E', be made up n' charges 
per unit length of magnitude q each, so that 

?L' = n'q. 	 (10.24) 

The same value q is used for the total charge on a particle in E and E' so as 
to be in accord with the principle of constant electric charge (see Section 
10.2.3). The charge distributions are at rest in E'. According to the Lorentz 
length contraction, equation (10.21), a length 10  of the wire at rest in E' is 
measured to be 4(1 — y2/c2) 1/2 in E, since the wire is moving with velocity y 
relative to E. The number of charges in a length 10  of wire in E' which is 
equal to n'10, is measured to be in length /0(1 — y21c2) 1/2 relative to E, as 
illustrated in Figure 10.2(b). Hence the number of charges per unit length in 
E is n'/0//0(1 _ v2/c2)1/2 ,   so that 

n' 
n = (1  _ v2k2) 112 

showing that the charge per unit length is greater in E than E', as illustrated 
in Figure 10.2(a) and 10.2(b). Hence, using equation (10.23) 

n'q 	 k'  
(10.25) X  = nq — (1 — v 2/c2)"2 — (1 — v2/c2) 1/2 • 
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,t 	 P 

X = ni q =electric charge/metre 

The charge distributions are at rest in E' 

/7' =number of charges/metre length 

1+1+1+1+1+  1+1+1 + 	sr  x' 

(a) 

Y A r 	 fr 

	  Y  i- 2 0+1+1+1+1+j+1+1+1++1+1+1+1  
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Figure 10.2. The calculation of the electric and the magnetic forces between two convection 
currents using the theory of special relativity. (a) The charge distributions are at rest in E'; 
there is only an electric force between the charges in I'. (b) in E, the charge distributions move 
with uniform velocity v, and there are both electric and magnetic forces between the charges. 

In E', since the charge distributions are at rest, the laws of classical electro-
magnetism reduce to Coulomb's law of force between electrostatic charges. 
Using Gauss' flux law we find that the electric field at the position of wire 
2 due to wire 1 is 

X '  E' – (10.26) 
Y 	27cEor' • 

According to the Lorentz transformations, the separation of the wires is the 
same in I and I', as it is measured in the y direction, so that r = r'. The 
force on one of the charges (labelled P and of magnitude q) of wire 2 in Figure 
10.2(a) has components 

?L'q  fr  = 0; 	f' = 	• 	f = 0 	 (10.27) 

	

Y 	27ceor ' 

in I'. The force transformations quoted in Appendix E, will now be applied 
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to determine the force acting on the single charge P, measured in the inertial 
reference frame E shown in Figure 10.2(b). Since the velocity u' of the charged 
particle P is zero in E', the inverses of equations (E14), (E15) and (E16) reduce 
to 

f=1;; 

f=  4=tz(i 

 

(10.28) 

(10.29) 

(10.30) - 

v2 ) 1/2 

c2 

Since, according to equations (10.27) 

f'x = tz = 0 

it follows from equations (10.29) and (10.30) that in E 

f, = f = O. 

Substituting from equation (10.27) into equation (10.29), we have for the force 
on the charge P measured in E 

vg  ( . 	v2 ) 1/2 
(10.31) 	 1  — fY = 27tEor 	C2  

The force per unit length on wire 2, measured in E, is equal to the number 
of charges per unit length, measured in E, times the force on each charge, given 
by equation (10.31). Hence in E 

X'q   force/unit length = nfy  — n 
2&

( 1 
v2 1/2 

c2) • 

But, from equation (10.25), X' = k(1 — v2/c2) 1 ', and, from equation (10.23), 
nq = X, Hence in E 

A,2 ( 1  _ v2 \ 

27reor k 	c2 ) - 

This is in agreement with equation (1.98) derived in Section 1.5 by applying 
the laws of classical electromagnetism in the inertial frame E. This example 
illustrates how the magnetic forces produced by electric currents can be cal-
culated, in some cases, from Coulomb's law for the forces between electrostatic 
charges, if the principle of constant electric charge and the force transforma-
tions of the theory of special relativity are taken as axiomatic. One has to 
include all second-order relativistic effects, since the magnetic forces between 
moving charges are themselves of second order. For example, in the present 
case the effects associated with the Lorentz contraction had to be included, 
illustrating the intimate connections and consistency between special relativity 
and classical electromagnetism. 

force/unit length — (10.32) 
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10.7. The inequality of action and reaction in classical electromagnetism 

We shall return now to consider the example shown previously in Figure 8.8 
of Chapter 8 and shown again in Figure 10.3(a). The charge q 1  is moving along 
the x axis of the inertial frame E with uniform velocity v. It is at the origin 
of E at the time t = 0. The charge q2  is moving along the +y axis of E with 
uniform velocity u, and is at a distance y from the origin of E at the time 
t = 0. The inertial frame E' shown in Figure 10.3(b) is moving with uniform 
velocity y relative to E along their common x axis. The origins of E and E' 
coincide at the time t = t' = 0. The charge q 1  remains at rest at the origin of 
E'. Corresponding to the event when the charge q2  has coordinates (0, y, 0) 
at the time t = 0 in E, according to the Lorentz transformations in E' we 
have (0, y' = y, 0) at the time t' = 0. According to the principle of constant 
charge, q 1  and q2  have the same values in E' as in E. 

Since the charge q 1  is at rest in E', it follows from Coulomb's law that 
the electric field at the position of the charge q2  at if = 0 in E' is with y' = y 

E'= 	
q 1 	q 1  

Y 

 

4ne0y'2 - 47cE0y2 
(10.33) 

< 	 
V q 2 

 

x 
(

moves ----> 21\ 
relative to X) 

Time t i  =0 

y ' 
 

01.  
c11 

The charge q 1  is 
1 

at rest in X 

Figure 10.3. (a) In E the charge q i  is moving with uniform velocity v along the x axis and 
the charge q2  is moving with uniform velocity u along the y axis. (b) The charge q l  is at rest 
at the origin in E'. The velocity of the charge q 2  has components in the —x' and the +y' 
directions in E'. 
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According to the Lorentz force law, the force on q2  at the time t' = 0 in E' 
has the components 

 q1q2  . 
(Dx = 0; 	(f2 )v — A 	2 1 	(Dz = Cl • 

- 	 4+7cEoy 

We shall now use the force transformations of special relativity to determine 
the components of the force acting on q2  in E. Using equation (E16) of 
Appendix E we find that 

(f2)z — 0- 	 (10.35) 

Rearranging equation (E15), we have for the charge q2  

fY = 7 ( 1  — 7.2x )4. 
	 (10.36) 

Since the charge q2  is moving along the y axis of E, ux = 0 in E. Substituting 
for (Py from equation (10.34) we find that 

(f2)), - y(fD y  = 	q1q2 	 (10.37) 

	

471e0y2(1 	v2/c2)1 /2 • 

This is in agreement with equation (8.129) of Chapter 8. According to equation 
(E14) 

(10.34) 

For the charge q2  in E, we have ux  = 0, uy  = u. Using equations (10.37) and 
(10.35) for (f2)y  and (A)z, and using equation (10.34) to put (Dx = 0, we 
find that 

vuq i q2  
(,f2)x — 4nE0c2y2(1 — V2/C2)

1/2 • 

This is in agreement with equation (8.131) of Chapter 8. 
It is left as an exercise for the reader to show that the force on q 1  due to 

q2  is given by 

(foy  . q 1 q2(1 — v2/c2)  
47cEoy2  

Consider the inertial frame that is moving with velocity u relative to E along 
the y axis of E, and in which it is the charge q2  that is at rest. Apply Coulomb's 
law in the rest frame of q2  and then transform the force on the charge q 1  in 
the rest frame of the charge q2  to E to obtain equation (10.39). Hint. Remember 
that the separation of q1  and q2  is measured in this case in the direction in 
which one inertial reference frame is moving relative to the other, so that 
the reader must allow for length contraction. 

These results show that the fact that the forces between q i  and q2  are not 

(10.38) 

(f )x = 0; 9 

	 (.0z = 0. 	(10.39) 
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equal and opposite is entirely consistent with the force transformations of 
special relativity. It is left as an exercise for the reader to derive equations 
(10.37), (10.38) and (10.39) using the transformations for E and B which 
will be derived in Section 10.10.3. 

10.8. Electromagnetism via special relativity 

Consider again the two moving charges q 1  and q2  shown in Figures 10.3(a) and 
10.3(b). By applying Coulomb's law in the inertial frame E', shown in Figure 
10.3(b) to determine the force on the charge q 2  due to q 1  in E' and then using 
the principle of constant charge and the transformations of special relativity 
to transform the force on q 2  from E' to E, we derived the components of 
the force f2  on the charge q 2  at the time t = 0 in E, which are given by 
equations (10.38), (10.37) and (10.35). These components are consistent with 
the Lorentz force 

F2 = q2E 1  + q2u2  x B 1  

on the charge q 2 , where 

Ei — qi 	t (10.40) 
47ce0y2( — v2/c2)1/2 1 	J 

q1  y 
B1 — 4,7cEoc2y2( 1 _ v2/c2)1/2 ii 	 (10.41) 

are the electric field E l  and the magnetic field B 1  dus to the charge q 1  at the 
position of the charge q 2  at the time t = 0 in E and j and isi are unit vectors 
in the +y and +z directions respectively. Equations (10.40) and (10.41) are 
in agreement with equations (8.128) and (8.130) of Chapter 8, which are a 
special case of equations (4.2) and (4.4) of Chapter 4, which are the same 
as equations (3.25) and (3.28) of Chapter 3, and which are given by 

q 1 r(1 — 132)  
E — 

1 	4nE0r3(1 — 132  sin2  0)312 	
(10.42) 

q i v x r(1 — I32)  
1  

B — 	 (10.43) 
4nEoc2r3(1 — 

where 13 = v/c and r is the distance from the charge q 1  to the charge q 2  at 
the time t = 0 in E and 0 is the angle between v and r. We could derive 
equations (10.42) and (10.43) by assuming that the charge q 2  in Figure 10.3(a) 
is at the position (x, y, z) having a velocity u at the time t = 0 in E. By applying 
Coulomb's law in the inertial frame E' in which the charge q 1  is at rest and 
transforming the force on q 2  to E allowing for length contraction etc., it is 
straightforward to derive equations (10.42) and (10.43). References: Rosser 
[9] and [10]. After deriving equations (10.42) and (10.43) from Coulomb's law 
and the transformations of special relativity, we could use them to replace 

02  sin2  0)3/2  
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equations (4.2) and (4.4) of Chapter 4 and use them to develop Maxwell's 
equations for the special case of a classical point charge moving with uniform 
velocity in the ways described in Chapter 4. This approach, starting from 
Coulomb's law, the principle of constant charge and the transformations of 
special relativity illustrates the essential unity of classical electromagnetism 
and shows that classical electromagnetism and special relativity are entirely 
consistent with each other. 

10.9. Causality in classical electromagnetism 

After deriving the retarded potentials in Section 2.3 of Chapter 2, we have 
always stressed that it takes time for the changes in the electromagnetic 
interaction to propagate in empty space at the finite speed of light, which is 
also the maximum speed at which electromagnetic signals can propagate. We 
showed in Section 10.2.2 that the principle of the constancy of the speed of 
light follows if we assume that Maxwell's equations obey the principle of 
relativity, and it was the application of the principle of the constancy of the 
speed of light that led to the prediction of the non-absolute simultaneity of 
spatially separated events, expressed for example in equation (10.17). In this 
section we shall show that, despite non-absolute simultaneity, it is still the same 
events that contribute to the retarded potentials and fields E and B at any 
field point in empty space in both E and E'. We shall consider the determi-
nation of the retarded potentials and fields E and B at the origins of E and 
E' at the time t = t' = 0 when the origins of E and E' coincide. 

Let the information collecting sphere, that collapses with the speed c in E 
to reach the origin of E at t = 0, pass an accelerating charge at the position 
(x, y, z) at a radial distance r from the origin of E at the time t = — rl c in E. 
According to the Lorentz transformations, the coordinates and time of this 
event in the inertial frame E', that moves with uniform velocity y along the 
x axis of E, are given by 

x' = ry(x — vt) = 7(x + 13r) (10.44) 

Y' = Y (10.45) 

z' = z (10.46) 

(10.47) vcx2 	Ic  t' = .7 ( t — 	) = — 	(r + 13x) 

where 13 = IA.. Using equations (10.44), (10.45) and (10.46) we find that the 
distance r' of this event from the origin of E' is given by 

r'2  = x'2  + y'2  + z'2  = f(x + 1302  + y2  + z2. 

Using the relation 

r2  = x2  + y2  + z2. 
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we find that 

r" = 72 [,x2  + 213xr + 132r2  + (1 — 132)(y2  + z2)] 

r'2  = 72(r2  + 2r1ix + 13 2x2) = 72(r + I3x)2 . 

It follows from equation (10.47) that in E' 

C2t = 72(r + 

Comparing equations (10.48) and (10.49) we conclude that in E' 

= —ct'. 

(10.48) 

(10.49) 

(10.50) 

This shows that the event when the information collecting sphere, that reaches 
the origin of E at t = 0, passes the accelerating charge is also recorded by 
the information collecting sphere that reaches the origin of E' at t' = 0, when 
the origins of E and E' coincide. These events, when the information collecting 
sphere passes individual charges at their retarded positions at the appropriate 
retarded times recording their charges, velocities and accelerations so that 
the retarded potentials can be calculated, will be called the antecedent events 
or the antecedents. It follows from equation (10.50) that it is the same 
antecedent events that contribute to the retarded potentials and the fields E' 
and B' and hence to the force on a moving test charge q at the origin of E' 
at t' = 0 as contribute to the retarded potentials, and fields E and B and the 
force on the moving test charge q when it is at the origin of E at t = 0 when 
the origins of E and E' coincide. This shows that, in the general case, provided 
we allow for retardation, the force on the test charge q at the time t in E has 
the same antecedents as the force on the moving test charge q at the time t' 
in E', where t and t' are related by the Lorentz transformations. 

Another type of electromagnetic law is developed by integrating over a fixed 
volume at a fixed time without allowing for retardation. In this category we 
should, for example, place equation (8.113) of Section 8.7, which was derived 
by integrating the Lorentz force over the volume 1/0  in Figure 8.1 at a fixed 
time and then using Maxwell's equations to eliminate p and J. Equation (8.113) 
was then used to derive equations (8.126) and (8.127), which are two ways 
of expressing the law of conservation of linear momentum. In Section 8.8.2 
of Chapter 8 we suggested that we could treat both equation (8.126) and (8.127) 
as book-keeping rules carried out at a fixed time, which in addition to the 
momenta of the charges, bring in the values of the fields E and B at field points 
where there are no charges. This latter contribution was expressed in the 
form of the (electromagnetic) potential momentum. If Maxwell's equations 
and the Lorentz force law obey the principle of relativity then the analysis 
of Section 8.7 should be valid in all inertial frames so that, for example, the 
law of conservation of linear momentum should be valid at a fixed time such 
as t = 0 in E and at a fixed time such as t' = 0 in E'. We shall now consider 
how such laws, applied over a finite volume at a fixed time, behave under a 
Lorentz transformation. 

As an illustrative example, consider just two of the moving charges, namely 
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q 1  and q2 , of a system of moving and accelerating classical point charges. 
Let q 1  be at the origin of E at t = 0 and let q2  be on the x axis of E at x2  at 
t = 0. What we showed earlier in this section was that the force on q 1  in E 
and the force on q 1  in E', when q 1  is at the origins of E and E' when the 
origins coincide, have the same antecedents in both E and E'. However, 
according to the Lorentz transformations, the force on q2  in E', that is the same 
event and has the same antecedents as the force on q2  when it is at x2  at 
t = 0 in E, is at 4 = yx 2  at t'2  = --yvx 2I c2  in E'. Hence the force on q2  at t' = 
0 in E' is not the same event and does not have the same antecedents as the 
force on q2  at t = 0 in E. Hence, if we sum at t' = 0 in E', due to non-absolute 
simultaneity, the values of the forces and hence the rates of change of the 
momenta of the charges in E' are not the same events and do not have the same 
antecedents as the forces on and the rates of change of the momenta of the 
charges at the time t = 0 in E. In the general case the equation 

t)mech = —km 
at t = 0 in E and the equation 

111111  ech = —kI rn 

at t' = 0 in E' do not refer to the same events and do not have the same 
antecedents in E and E', and due to non-absolute simulaneity, do not trans-
form into each other under a Lorentz transformation. This result is consistent 
with our suggestion in Section 8.8.2 of Chapter 8 that we can treat the law 
of conservation of linear momentum as a book-keeping rule involving both 
fields and charges. Similar analyses apply to the laws of conservation of energy 
and of angular momentum and other laws obtained by integrating at a fixed 
time. It was shown earlier in this section that, however complicated these 
conservation laws become and, even if we treat them as book-keeping rules, 
the force on any individual moving and accelerating classical point charge 
has the same antecedents in all inertial frames provided the position and time 
of the event in E and E' are related by the Lorentz transformations. The other 
properties of the charge, such as velocity and momentum and the force on 
the charge, must be transformed using the appropriate transformations of 
special relativity. 

10.10. Transformation of Maxwell's equations 

10.10.1. Introduction 

Experiments have confirmed that the macroscopic electric and magnetic fields, 
both in empty space and inside stationary material bodies, are adequately 
described by Maxwell's equations, which in an inertial frame E', in which 
the materials are at rest, take the form 

V' • D' = p' 	 (10.51) 
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V' • B' = 0 	 (10.52) 

aw vi x E' = — 	 (10.53) at' 
aiy V'  x H' — --a7,- + J' 	 (10.54) 

where E' is the electric field, D' the electric displacement, B' the magnetic 
field, H' the magnetizing force, p' the (free) macroscopic charge density and 
J' the (true) macroscopic conduction current density. All the quantities 
appearing in equations (10.51), (10.52), (10.53) and (10.54) apply to the 
same point  x', y',  z' at a time t' in the inertial frame E'. All the differential 
coefficients in the equations are with respect to x',  y', z' or t', for example, 
equation (10.52) is 

aBx 	ir 	ff ' 	a y 	a, 	, ± --- u ax' + ay 	- az' 	• 
In order to solve problems these equations have to be supplemented by the 
constitutive equations relating D' and E', B' and H', and E' and the conduc-
tion current density J'. These constitutive equations depend on the properties 
of the materials present in the system. 

One of the postulates of the theory of special relativity is that the laws of 
physics have the same mathematical form in all inertial frames of reference. 
If Maxwell's equations are correct and obey the principle of relativity, then 
in the inertial frame E moving with velocity y in the negative Ox' direction 
relative to E', one should have 

V • D = p 	 (10.55) 

V • B = 0 	 (10.56) 

V x E = 43 	 (10.57) 

VxH=b+J. 	 (10.58) 

These equations should hold for a point x, y, z at a time t in E. If all the material 
bodies are stationary in E', then they are moving with uniform velocity y 
relative to E. The constitutive equations may take a different mathematical 
form for moving matter. The current density J in E includes the convection 
current density as well as the conduction current density. 

If Maxwell's equations do obey the principle of relativity, when the 
coordinates and time in equations (10.55), (10.56), (10.57) and (10.58) are 
transformed according to the Lorentz transformations, then equations 
(10.55)—(10.58) should be changed into equations (10.51)—(10.54). It will 
now be shown that this is so. Equations which have the same mathematical 
form in both E and E', when the coordinates and time are transformed according 
to the Lorentz transformations, are said to be Lorentz covariant. 
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10.10.2. Transformation of alax, a/ay, a/az and aiat 

Consider a function F of x', y', z' and t' in E'. The total differential of F is 

aF 	aFaF 	aF 
dF  = 	 dY1  Tz7 dz'  -57 de.  

Now for a given event, x', y', z' and t' are all functions of x, y, z and t. The 
total differential of x' can expressed as 

ax'  
(Ix' = 	- dx + 	dy + -a--z-dz + 	-dt. 	 (10.60) 

From the Lorentz transformations, 

x' = y(x vt) 
y' = y; 	= z 

t, 7 ( t 	vx2 ) 

where y = (1 - v2/c2)-  

ax' 	ax' 	ax' 	ax' 
= 0; 	az = 0; 	at = -7v  

and, substituting in equation (10.60) we obtain 

dx' = y dx - yv dt. 	 (10.61) 

Similarly, 

dy' = dy 	 (10.62) 

dz' = dz 	 (10.63) 

at' 	at' 	at' , 
dr = 	+ — ay + — az + — at = - A__ + dt. (10.64) ax 	ay 	az 	at 

Substituting for dx', dy', dz' and dt' from equation (10.61), (10.62), (10.63) and 
(10.64) respectively into equation (10.59), we have 

aF 	aF 	aF 	aF 
dF = 	(y dx - yv dt) + 	dy + 	dz + 	dt - fv2  dx 

Rearranging 

dF  7 'aF 	aaFt, dx aayF, dy aazF, dz  7  (aaf; v 	dt.  

(10.65) 

(10.59) 

112
•  Remembering that v and y are constants, we have 

But, if F is a function of x, y, z and t, the total differential of F can be written 
as 



378 Chapter 10 

aF 	aF 	aF, . aF 
d F 	dx 	dY Ti az + -57 at ' 

Comparing the coefficients of dx, dy, dz and dt, in equations (10.65) and (10.66) 
we conclude that 

(10.66) 

a 	(a 	v a\ 
=• 7  k — 7 -57 ) 

a 	a 
ay  = ay' 
a 	a 
rz = aZi  
a 	í a 	a 

-57 = 

10.10.3. Transformation of E and B 

The y component of equation (10.57) is 

aEx  aEz 	aBy  
az 	ax 	at • 

(10.67) 

(10.68) 

(10.69) 

(10.70) 

(10.71) 

Substituting for a/az, a/ax and al& from equations (10.69), (10.67) and (10.70) 
respectively, we have 

aEx 	aEz  v aEaBy 	aBy l 
az' 7  k ax' 72  at'i = 7  kW  

and rearranging 

aEx 	a 	a 
az, 	Tx7 ,y(Ez  + vB y ) = — at,7(B y  + *'2  Es ) . 	(10.72) 

If Maxwell's equations are to be Lorentz covariant, that is invariant in 
mathematical form in all inertial frames of reference, then in E' we must 
have 

aE 	aBi 
az' 

Equations (10.72) and (10.73) have the same mathematical form showing 
that the y-component of equation (10.57) is Lorentz covariant. In fact, if one 
puts 

E'x  = Ex  

E's = 7(E s + vBy) 

Ley =7(By  + -jci- Es ) 

(10.73) 
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then equations (10.72) and (10.73) are exactly the same. 
It is left as an exercise for the reader to show that the x and z compo-

nents of equations (10.57) transform into the x' and z' components of equation 
(10.53) respectively, and to show that equation (10.56) transforms into equation 
(10.52), if E and B transform according to the following equations. (Reference: 
Rosser [11]): 

gx  = Ex 	 Ex  = g 	 (10.74) 

E'y  = y(Ey  — vB z) 	 Ey  = y(E'y  + vBiz) 	 (10.75) 

E  = y(Ez  + vBy) 	Ez = y(Eiz — vBiy) 	 (10.76) 

B'x  = Bx 	 Bx  = Bix 	 (10.77) 

B; = y(By  + 71:2  Ez ) 	By  = y(B; — -17/2 Eiz ) 	(10.78) 

B= ?(B_ -c+2 Ey ) 	Bz  = y(13; + -ici E;) . 	(10.79) 

10.10.4. Transformation of charge and current densities 

Equations (10.55) and (10.58) include the charge density p and the current 
density J. Before showing that equations (10.55) and (10.58) obey the 
principle of relativity when the Lorentz transformations are used, we shall 
derive the transformations for p and J. 

We shall start with a simplified model and consider a "uniform" electric 
charge distribution of volume V in the inertial frame I, consisting of n discrete 
charges per unit volume of magnitude q each. It will be assumed that all the 
charges have the same velocity u relative to the inertial frame E. For this 
simplified case the charge density in E is 

p = nq. 	 (10.80) 

The current density, which is the current crossing unit area normal to the direc-
tion of current flow, is given in E by 

J = nqu, 	 (10.81) 

or in components form ./x  = nqux , Jy  = nquy, Jz  — nqu z . Let the same charge 
distribution have a volume V' when measured relative to an inertial frame r 
that is moving with uniform velocity y relative to E, and let it consist of n' 
discrete charges per unit volume moving with velocity u' relative to E'. We 
then have in E' 

p' = niq, 	 (10.82) 

J' = niqui. 	 (10.83) 

The principle of the invariance of total electric charge will be taken as 
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axiomatic in this section. According to this principle, the total charge on a body 
is independent of the velocity of the body, and the total charge has the same 
numerical value in all inertial reference frames. 

Consider an inertial frame E°  in which the charge distribution is at rest; 
E°  moves with velocity u relative to E. Let V0  be the proper volume of the 
charge distribution in E°, and let no  be the number of charges per unit volume 
measured in E°, such that the total number of charges is noVo . According to 
equation (10.22) owing to length contraction the volume of the charge dis-
tribution in E should be measured to be 

V = V ( 1 - II: ) "2  
C 

The total number of charges measured in E is nV , which is equal to 
nV0(1 – U2/C2) 1/2 . But the total number of charges is an invariant, since it is a 
pure number. Hence 

u2 1/2 
nV = nV 0 (1 – —2-

) 
= noVo  

c 

so that 

n – (1 – u21c2)in • 

Similarly, in E' 

no  
n' – (1 – U12/C2) 1/2 

so that 

(1 – u/2/c2)1/2 

Substituting in equation (10.84) we obtain 

n' = /yn (1 – 7) . 

Multiplying by q gives 

qn' = 7 (qn 	vq:211x) . 

Substituting from equations (10.82), (10.80) and (10.81), we have 

P,  . 7  ( p  – v c.12, ) 

no  

n' = n 
(1  – U2/C2)

1/2 

(1 - /4 '2/C2) 1/2  • 

From equation (E9) of Appendix E 

(1 – u2/c2) 1/2 
- 7(1 - VU)C 2). 

(10.84) 

(10.85) 

(10.86) 
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Now, from the x' component of equation (10.83), 

= qu'x n'. 

But from the velocity transformations, equation (E6) we have 

F —  
x 	1 — vux/c2  • 

Substituting for u'x , and for n' from equation (10.86), we find 

q(ux — v) 	vux ) 

x 	(1 — vuic 2)" 1 	C2  ) 

and, using equations (10.80) and (10.81), 

4 = 7V, — vP). 

Similarly, from equation (10.83) 

J'y  = qu'y nt. 

From the velocity transformations, equation (E7), 

- 

Y 	- VUA 2 ) • 

Substituting for u'y  and n' 

Y

vu qu 
7(1 — vYkic2)

Ity(1 — 	jy. 
 C2 J

.11  — 

Similarly, 

4 = 

Collecting the transformations, we have 

Uy  

J'x  = y(J,— vp)  

J=J 

4 = 

J  = 7(4 + vp') 

Jy  = 

= 

v 

(10.87) 

(10.88) 

(10.89) 

(10.90) 

It is left as an exercise for the reader to extend the treatment to systems 
containing both positive and negative charges and to show that equations 
(10.87)—(10.90) are valid in the general case. 
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10.10.5. Transformations for the fields D and H 

Consider the y component of the equation 

aD 
vxH=J+ —

at 

(10.58) 

which is 

aH aHz  j  aDy  
aZ 	ax 	Y  -DT • 

Substituting for a/az, a/ax and &at from equations (10.69), (10.67) and (10.70) 
and for Jy  from equation (10.88), 

aH 	(a 	1.a\ H  
az'x  

a 	a ..ry + T ( at,-v--a?)Dy  

or 

aHx  a 
az, 	ax, 	- vDy) = J; + 	Dy  – 	Hi ). 	(10.91) 

If Maxwell's equations are valid in E' then one must have in E' 

aH 
az' 

air 	aD' 
ax' 

_ 
Y 	at'  • (10.92) 

Equations (10.91) and (10.92) have the same mathematical form, and if one 
puts 

= Hx , 	H',= y(Hz  – vDy ) 

D; = DY  – *H ) ) 
 C 

then they are exactly the same. 
It is left as an exercise for the reader to show by similar methods that the 

x and z components of equation (10.58) transform into the x' and z' compo-
nents of equation (10.54) and that equation (10.55) transforms into equation 
(10.51), if J and p are transformed using equations (10.87)–(10.90) and if H 
and D satisfy the transformations: 

D; = Dx 	 Dx  =  D 	 (10.93) 

D; = Dy  — V H 	 Dy  = D; + 	r 	(10.94) cV2 z  C 2 
 z 

= ( D. + cv2  Hy  ) 
	

(10.95) 

Ifx  = Hx 	 Hx  = H; 
	

(10.96) 

H; = iy(Hy  + vDz) 
	

Hy  = ry(H; – vD;) 
	

(10.97) 

H;=1"(Hz  – vDy ) 
	

Hz = 7(H; + vD;) 
	

(10.98) 
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It has been shown that if Maxwell's equations are valid in E then, if the 
coordinates and time are transformed using the Lorentz transformations, and 
if one takes the principle of constant charge as axiomatic, the transformed 
equations have the same mathematical form as Maxwell's equations would 
have if they were valid in E'. This is true whether or not there are material 
bodies present at the point. Thus Maxwell's equations satisfy the principle 
of relativity when the coordinates and time are transformed according to the 
Lorentz transformations. 

Only the briefest insight into the relativistic invariance of Maxwell's 
equations has been given here. For more comprehensive accounts of relativistic 
electromagnetism, including the transformations for the potentials 4, and A and 
the electrodynamics of moving media, the reader is referred to Rosser [12] and 
[13] 

The covariance of Maxwell's equations and the equations for the poten-
tials is best illustrated using four-vectors and tensors: An introductory account 
is given by Rosser [14]. 
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APPENDIX A 

Mathematical methods 

Al. A summary of the formulae of vector analysis 

A1.1. Scalar and vector products 

In this appendix, the symbols A, B and C will be used to denote vector quan-
tities and the symbols (I) and v will be used to denote scalar quantities. The 
magnitude of the vector A will be denoted by A or lAl. 

The scalar (or dot or inner) product of two vectors A and B will be written 
as A • B. The magnitude of the scalar product A • B is given by 

A • B = AB cos(A, B) =  AB  A yBy  +  AB z 	 (A1.1) 

where Ax, Ay  and Az  are the components of the vector A in a cartesian 
coordinate system, Bx , By  and B z  are the components of the vector B and 
cos(A, B) is the cosine of the angle between the vectors A and B. The scalar 
product of two vectors is a scalar quantity. The order of the two vectors in a 
scalar product does not matter, since, according to equation (A1.1), A - B = 
B • A. The scalar product obeys the distributive law of addition. In general 
we have 

A • (B+C+...)=A-B+A•C+... 	 (A1.2) 

The vector (or cross) product C of two vectors A and B will be denoted by 
C = A x B. The magnitude of the vector product A x B is AB sin(A, B) 
where sin(A, B) is the sine of the angle between the vectors A and B. The 
vector product A x B is a vector in a direction perpendicular to the plane 
containing A and B and is in the direction a right-handed corkscrew would 
advance if it were rotated from A to B through the smaller of the two angles 
between the two vectors A and B. If i, j and k are unit vectors in the positive 
x, y and z directions of a cartesian coordinate system, then 

A x B = (A yB z  — A zB y)t + (A z  B x  — AB )j + (A xBy  — Ay/3x)k. (A1.3) 

384 
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It follows from equation (A1.3) that A x B = —B x A. Hence the order of 
the vectors in a vector product is important. The vector product obeys the 
distributive law of addition. In general we have 

Ax(B+C+...)=AxB+AxC+... 	 (A1.4) 

The triple scalar product is defined as (A x B) • C. It can be shown that 

(A x B) - C = (B x C) • A = (C x A) • B. 	 (A1.5) 

The triple vector product is defined as A x (B x C). It can be shown that 

A x (B x C) = B(A • C) — C(A • B). 	 (A1.6) 

The formulae of vector analysis are often expressed in terms of the vector 
operator V, which is called del or nabla or the gradient operator. In carte-
sian coordinates 

V =1-v-i-j;+ k-j. 	 (A1.7) 

A1.2. The gradient of a scalar 

The gradient of a scalar function 4) of position can be defined as V4), where 
V is given by equation (A1.7). The gradient of 4) is sometimes written as 
grad 4). In cartesian coordinates 

V4).(itl+jk+ fi-k)4)=tt +I] -Ftk. 	(A1.8) 

The gradient of a scalar is a vector. The total differential (14) of 4) can be written 
in the form of a scalar product as follows 

a4) 	a4) 	a4) d4) =..;-x- dx +-F,  dy + 	dz = V4) - dl. 	 (A1.9) 

where 

dl = dxii + dyi + dzk. 

Since d4) is the total change in 4) in an infinitesimal displacement dl, we have 

b 

J 	
b 

a 
V41) • dl =f 4 = 4)(b) — •1)(a) 

a 
(A1.10) 

where 4)(a) and 4)(b) are the values of 4) at the initial and final positions. For 
any closed loop, we have 

J V(1) - dl = f d4) = O.  
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A1.3. The divergence of a vector 

The divergence of a vector A can be defined as the scalar product V • A. It 
is sometimes written as divA. In cartesian coordinates 

ax ay 	az 
	 (A1.12) 

The divergence of a vector is a scalar quantity. 

A1.4. The curl of a vector 

The curl of a vector A can be defined by the vector product V x A. It is 
sometimes written as curl A. The curl of a vector is a vector quantity. In 
cartesian coordinates 

vxA  jaAz  aAy... ) 14. (2./L aAz ) 1± (aAt  
k ay az / 	\ az ax / 	k ax ay ) 

(A1.13) 

A1.5. The Laplacian operator 

The operator V.  V is generally called the Laplacian operator or the Laplacian 
and denoted V2 , so that 

V2  -= V • V. 	 (A1.14) 

In cartesian coordinates, if the Laplacian operates on a scalar function of 
position, we have 

41 a41 a(ok) v24)  = v  . v4)  = v ( Tv + Ty.., + -•Ji- 
a24, a24)  ± a24) 

 = a7c2  + ay2 az2 • (A1.15) 

A1.6. Some useful relations 

The reader can show using cartesian coordinates that, if (4) and v are scalar 
quantities and A, B and C are vector quantities 

V(4) + V) = V4) + Vkif (A1.16) 

V(4)0 = (INV + VV4)  (A1.17) 

V(A • B) = A x (V x B) + B x (V x A) + (A • V)B + (B • V)A (A1.18) 

V - (A + B)=V•A+V•B (A1.19) 

V.  (GA) = 	V.  A +  A. (V(I)) (A1.20) 
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V • (A x B) = B • (V x A) — A - (V x B) (A1.21) 

Vx(A+B)=VxA+VxB (A1.22) 

V x (4)A) = OV x A + (V40) x A (A1.23) 

V x (A x B) = A(V • B) — B(V • A) + (B • V)A — (A. V)B. (A1.24) 

Sometimes the operator V is applied more than once. The reader can show 
using cartesian coordinates that 

V.  (V x A) = 0 	 (A1.25) 

V x (V4)) = O. 	 (A1.26) 

A very important expression in electromagnetism is the curl of the curl of a 
vector, namely V x (V x A), which is used, for example, in Section 1.9.1 of 
Chapter 1 to go from Maxwell's equations to the wave equations. The reader 
can show that in cartesian coordinates 

V x (V x A) = V(V • A) — V2A 	 (A1.27) 

where in cartesian coordinates only V2A can be expressed in the form 
v2A  = v2Axi + v2A yi ± v2Azk 	 (A1.28) 

where the Laplacians of the scalar cartesian components Ax, Ay  and A, are 
each given by equation (A1.15). There are difficulties when applying the 
operator V2  to the vector A, when A is expressed in curvilinear coordinates 
such as spherical polars. The reader should remember that the unit vectors t, 
ii and el) in spherical polars change direction if we vary r, 0 and 4) so that 
aftic10 etc are not zero. It will be sufficient for our purposes when we use 
curvilinear coordinates such as spherical polars, to rewrite equation (A1.27) 
in the form 

V2A = V(V • A) — V x (V x A) 	 (A1.29) 

and to assume that V2A is a quantity defined by and to be determined using 
the right hand side of equation (A1.29). 

A1.7. Gauss' mathematical theorem 

According to Gauss' mathematical theorem, the volume integral of the diver-
gence of a vector A over any finite volume is equal to the surface integral 
of A evaluated over the surface of that volume, that is 

J (V .  A)dV =  JA.   dS.  

The element of area dS is equal to the magnitude dS of the area of the element 
times a unit vector ri in the direction of the outward normal to the surface at 
the position of the element of area, so that dS = dSil. 
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Integrating equation (A1.20) over a finite volume and applying Gauss' 
mathematical theorem we obtain 

J V.  (40A)dV = f  4A.  dS = f41) (V.  A)dV + f  A.  V4) dV.  

If A is a constant vector V . A = 0, and equation (A1.31) reduces to 

AtOdS=AJV(OdV. 

Hence, 

J 4  dS = f v(i) ay.  
If we integrate equation (A1.21) over a finite volume, and assume that A is 
a constant vector, so that V x A is zero, we find that 

J V.  (A x B)dV = —A JV xB dV. 

If we apply Gauss' integral theorem, equation (A1.30) to the left hand side and 
then apply equation (A1.5), we find that the left hand side becomes 

f V•(AxB)dV=I(AxB)•dS=A•fitxdS. 

Hence 

f lixdS=-1. V xBdV. 	 (A1.33) 

A1.8. Stokes' theorem 

According to Stokes' theorem, the surface integral of V x A over any finite 
area is equal to the line integral of A around the boundary of that area, so 
that 

J (V x A) - dS = f A • dl.  

The direction of the vector dS in equation (A1.34) is the direction a right-
handed corkscrew would advance if it were rotated in the direction of dl. 
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A1.9. Cylindrical coordinates 

In cylindrical coordinates r, (1), z if t, 4) and fc are unit vectors in the direc-
tions of increasing r, (i) and z, respectively and if Ar,  A  A, are the 
components of A in the directions of t, 4) and 11 respectively, then 

,., a 	,1 a 	a  V = r -57+ q37.  ,Tro+ 
't az  

a 	at4_, DAz  
V • A = - -a7. (rA) +-; a(i)  + 	 (A1.36) 

V A x 	= 
1 aAz 	aA4, 

[ 
[ aAr 	JA  

- 	— I r 571-; 	az  + I -----  a-z- 	ar  

a 	aAr  + 	(rA 0) — 7. 	- 	 (A1.37) 

When the Laplacian operator V • V is applied to a scalar function Iv, using 
equations (A1.35) and (A1.36) to evaluate V • V we find that in cylindrical 
coordinates 

„ a ( 	a2v  a2v  
v = 7-N-' ar/+r Faz2 • (A1.38) 

A1.10. Spherical polar coordinates 

In spherical polar coordinates r, 0, 4), if  1 ,  Ô and 4) are unit vectors in the direc-
tions of increasing r, 0, and 44) respectively and if Ar, A9, and A. are the 
components of A in the directions of t, 0 and  4)  respectively then 

	

a 	la ' 	1 	a 

	

=r -5; 	4- 1 r sin 0 ao 

V • A = 	(TA,.) + .1 	a 	. a 
r sin 0 ae (AG  sin 0) + r si 

1
n 0 

 aA (A1.40) a4) 

	

1 	[ a 	. 	aA 

	

VxA= . 	(A sin 0) - r sin 0 ae 

	

r 	1 	Ar  l a rl (rA,,,) I + 
r 	

(rAA) 
i. 

 

	

r sin 0 a4) 	dr 	1. 	r dr 	- 	r 

The Laplacian of a scalar function Air is 

	

1 a 	ao 	1 	a . akv1 
172W' y ' VW = -5;- r2-a-r- ) 	sin 0 DO k sin e  Tog ) 

l a  

r2  sin2  0 42 

(A1.41) 

(A1.42) 

(A1.39) 
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General reference 

Spiegal, M. R., Theory and Problems of Vector Analysis, Shaum Publishing Co., New York, 
1959. 

A2. The partial derivatives of macroscopic field variables 

Consider the microscopic variable f(x, y, z, t). According to equation (1.147) 
of Chapter 1, the value of the corresponding macroscopic variable F(x,y, z, t) 
at the field point P in Figure 1.12 is 

F(r, t) = f f(r + s, t)w(s) d3s. 

If we move the field point to the position (x + dr, y, z), taking the weighting 
factor w(s) with it, then the value of the macroscopic variable F is 

F(x + dx, y, z, t) = f f(x + dr + sx , y + sy , z + sz, t)w(s) d's. (A2.1) 

It follows from Taylor's expansion theorem that 

f(x + dx + sx , y + sy , z + sz, t) = f(r + s, t)  + f'  dx +. . . 	(A2.2) 

where 

f, _ afix + sx , y + sy , z + sz , t) _ af 
a(x ± sx) 	ax 

and where aflax is evaluated at the point (r + s). Substituting from equation 
(A2.2) into equation (A2.1) we find that 

F(x + dx, y, z, t) = F(x, y, z, t) + 
dx f  af(r + s, t) 

 w(s) d 3s ax 

af = F(x, y, z, t) + (—ax ) dx. 

Since 

aF F(x + dx, y, z, t) — F(x, y, z, t)  
ax — 	 dx 

using equation (A2.3) we find that 

aF 1 af\ 
ax = \ ax 

(A2.3) 

(A2.4) 
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A3. Some useful mathematical relations 

Consider 

12  d  (7-2r  ) dr = 
J
r: ddr ( xl  ± Y1  ± zik )  

r2 
dr i dr r  

2 

= [( 11 ) 1+ (L ) 31/4 ± (L ) 1C1  r 	r2 	r2 	-1 .  

If we integrate around the closed loop in Figure Al, the values of (x1r2) etc 
are the same at both limits, so that 

f d r 
cTr- (72  

Now 

d ( r ) 	dr 2r dr 
dr k 7 / dr  = -T -  r 	r3  • 

It follows from Figure A3.1 that 

dr = dl 

dr = cos (I) d/ 

(A3.1) 

(A3.2) 

(A3.3) 

(A3.4) 

0 

Figure Al. Derivation of some mathematical relations. 
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where 4) is the angle between r and dl. Integrating equation (A3.2) around 
the closed curve in Figure A3.1 and using equations (A3.1), (A3.3) and (A3.4) 
we find that 

so that 

f ' i ( 1.  ) dr = f dr r2  
dl , f r cos 4) d/  _ 0  
772  — 	 r3  

f dl — ,` f  r cos 4) d/  
7 	- 	r3 	• 

Similarly 

f 1- (I. ) dr = O. dr r 

(A3.5) 

(A3.6) 

Using equations (A3.3) and A3.4), we have 

dr 
—r dr =— —dr = 

d ( r ) 	dr r 	gi r cos 4) d/  . 
r — r2' 	r 	r2  

Substituting in equation (A3.6), we find that 

f dl f r cos 4) d/  
r 

When the electric and magnetic fields due to electric circuits are discussed 
in Chapters 5 and 6 it is the vector R, which goes from the current element 
at the source point at rs  to the field point at r, that is used. To apply equa-
tions (A3.5) and (A3.7) to these circuits, assume that the field point is at the 
origin in Figure A3.1 and then replace r by —R, r by R and 4) by (7c — 0) 
such that cos 4) = —cos 0 in equations (A.3.5) and (A3.7), where 0 is the 
angle between R and dl. Equations (A3.5) and (A3.7) then give 

f dl 	f R cos 0 d/  IT  = 2 	R3 	, 

f dl f R cos 0 d/  
R — 	R 2 	• 

(A3.8) 

(A3.9) 

A4. The corrections to the differential form of the Biot—Savart law for 
steady currents 

(A3.7) 

According to equation (6.25) the correction AB to the integral form of the 
Biot—Savart law for a steady current in the complete circuit in Figure 6.2 is 

AB  _ it_ (f q/Vo(a x R) d/  4. 2  f /(u x R) cos 0 d/  ) 
47cc k 	R2 	 R3  

where we have put udl equal to ud/ in equation (6.25). 

(A4.1) 
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dt = –u cos O. (A4.6) 
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We shall assume that in a given current element, there are No  moving 
positive charges per metre length each of charge q and all moving with the 
same velocity u and the same acceleration a. If the circuit is made up of dif-
ferent conductors in series, then N o, u and a may vary subject to the condition 
that the current I = qNou is the same in all parts of the circuit. The accelera-
tion a also varies in regions where the circuit is curved due to the contribution 
of the centripetal acceleration of the moving charges. 

For a constant current I = qN0u, we have 

d 	u x R 	 d (uxR  dR  (qNou { R2  1) dR – qNou dR R2  ) dR 

_qNou  ( .. x  dR ± du x R  ) dR 
 R2  \ ta  dR dR 

2qN0u(u x R)  dR.  
R 3  

(A4.2) 

It follows from Figure 6.2 that 

dR = –cos 0 d/ 	 (A4.3) 

dR = –dl. 	 (A4.4) 

If a charge q moves a distance dl in a time dt, then using equation (A4.4) 
we have 

dl 	dR 
u  = dt = – dt • 

Using equation (A4.3), 

d/ 	1 dR u – – – 	— dt 	cos 0 ( dt ) • 

Rearranging, 

(A4.5) 

Using equation (A4.6) we have 

dR dR dt u  
dR = dt dR – – u cos 0 . 

Since u x u is zero, it follows from equation (A4.7) that 

dR , 
u x dTz  = O. 

(A4.7) 

(A4.8) 

Using equation (A4.6), we find that 

du du dt_  a  _  
dR – dt dR 	u cos 0 • 

(A4.9) 
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Putting u x dR/dR equal to zero in equation (A4.2) and substituting for du/dR 
and dR from equations (A4.9) and (A4.3) respectively we find, that with I = 
qNou 

d (/(u x R)  \ dR  _ or°  R2  (  a xR 
 ) d/ + 

21(u x R) cos 0 d/  
dR k le I 	 R3  

Integrating around the complete circuit in Figure 6.2, we find that, since the 
integral of the left hand side is zero, 

0  _ f q/Vo(a x R) d/  4. 21  f (u x R) cos 0 d/  
R2 	 R3  

Substituting in equation (A4.1), we find that 

AB = O. 	 (A4.11) 

(A4.10) 
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APPENDIX B 

Conduction current flow in stationary conductors 

131. Example of the mode of action of a source of emf 

In electrostatics, the electric field inside a stationary isolated conductor is 
always zero, whereas, according to equation (1.42), when a conduction current 
flows in a stationary conductor, that forms part of a complete electrical circuit, 
there is an electric field inside the conductor. To illustrate how a source of 
emf can maintain a steady electric field inside a conductor, that forms part 
of a complete electrical circuit, consider the idealized Van de Graaff gener-
ator shown in Figure B1. When the Van de Graaff is operating on open 

Figure Bi.  The Van de Graaff generator gives rise to an external electric field E0, which in 
turn gives rise to a conduction current in the stationary conducting wire. When the conduction 
current is steady, surface charge distributions help to guide the current flow in a direction 
parallel to the wire. When the current is steady, the resultant electric field inside the wire is parallel 
to the wire. 
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circuit, there are electric charge distributions of opposite signs on the positive 
and negative terminals, which give rise to an electric field, which will be 
denoted by E0. This electric field extends into the space outside the Van de 
Graaff generator, as shown by the dotted lines labelled E0  in Figure Bl. For 
purposes of discussion, we shall assume that a long conducting wire is brought 
up, almost instantaneously, to join the terminals of the Van de Graaff. In 
practice, there will be transient electric currents in the wire as it is brought 
up to join the terminals of the Van de Graaff. We shall assume that eventu-
ally a state of dynamic equilibrium is reached when the Van de Graaff maintains 
a steady conduction current I in all parts of the connecting wire. Initially, 
the only electric field is E0  which is due to the charges on the terminals of 
the Van de Graaff. The electric field Et:, will act on the conduction electrons 
inside the connecting wire, and initially there will be a conduction current flow 
given by J = aE0  in a direction parallel to the direction of the electric field 
E0  due to the charges on the Van de Graaff terminals, which in general is 
not parallel to the connecting wire. This initial direction of current flow will 
lead to the build up of charge distributions on the surface of the connecting 
wire which, when the current I in the connecting wire is constant, give a 
contribution Es  to the total electric field E = (E0  + E.) which, firstly prevents 
current flow in a direction perpendicular to the connecting wire and secondly 
gives the appropriate value of total electric field E to give the same value of 
conduction current in all parts of the external circuit, whatever the topology 
of the connecting wires, even if they are tied into knots. 

Under the influence of the total electric field E = (E0  + E) inside the con-
necting wire, electrons flow from the connecting wire into the positive terminal 
of the Van de Graaff and from the negative terminal of the Van de Graaff 
into the connecting wire. This current flow tends to reduce the total charge 
on the terminals and hence tends to reduce E0 . If the Van de Graaff were 
not operating, the current flow in the connecting wire would reduce the charge 
distributions on the terminals of the Van de Graaff to zero. However, when 
the Van de Graaff is operating, the loss of charge from the Van de Graaff 
terminals, due to the conduction current flow in the connecting wire, is com-
pensated by the electric charge carried mechanically by the belt of the Van 
de Graaff from one terminal to the other against the electric forces on the 
charges on the moving belt due to the electric field inside the Van de Graaff, 
which is due mainly to the charges on the terminals of the Van de Graaff 
and is in the direction from the positive to the negative terminal. This con-
tinuous replenishment of the charge on the Van de Graaff terminals by 
mechanical means prevents the conduction current flow in the connecting wire 
from reducing the charges on the Van de Graaff terminals to zero and making 
the connecting wire an equipotential with zero electric field inside the con-
necting wire. After the transient state is over, a state of dynamic equilibrium 
is reached when the charge carried by the belt of the Van de Graaff per 
second from one terminal to the other is equal to the conduction current flowing 
in the connecting wire. When the current flow is steady, the surface charge 
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distributions giving rise to Es  do not change with time and they can be treated 
as electrostatic charge distributions, in which case M • dl is zero. 

The existence of electric fields due to the surface charge distributions 
associated with steady conduction current flow in a conductor was demon-
strated by the photographs due to Jefimenko [1]. A typical example is shown 
in Figure B2. Jefimenko used two dimensional printed circuits to demon-
strate the electric fields associated with current carrying conductors of different 
geometrical configurations connected to a Van de Graaff. The example shown 
in Figure B2 is similar to the experimental situation shown in Figure Bi. 
The photograph reproduced in Figure B2 confirms that, when the current is 
steady, the electric field inside the conductor is parallel to the conductor. 
The photograph also shows that there are electric fields in the space outside 
the conductors. Since the different parts of the circuit in Figure B2 are at 
different electrostatic potentials, it is only to be expected that there are electric 
fields associated with these potential differences, and that these electric fields 
extend into the space outside the conductors in Figure B2. 

According to the standard boundary conditions, derived from Maxwell's 
equations, the tangential component of E is continuous across the surfaces 
of the conductors in Figure B2. There is a discontinuity in the normal corn- 

Figure B2. An example of the electric fields associated with steady electric currents due to 
Jefimenko [1]. A Van de Graaff was used as the source of e.m.f., and grass seeds used to show 
the electric field. Notice that 'inside' the conductor the electric field is parallel to the con-
ductor. The electric field extends into the space outside the conductor. (Reproduced by permission 
of the American Journal of Physics.) 
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ponent of D at the surface of the conductor, which is equal to a the charge 
per unit area on the surface of the conductors. Since there is no conduction 
current flow in the direction of the normal to the conductors after the tran-
sient state is over, the normal component of E is zero just inside the conductor. 
Due to the surface charge distributions there is a normal component of E equal 
to a/co  outside the conductor. This shows that the electric field just outside 
the surface of the conductor should have both a normal and a tangential com-
ponent in agreement with Figure B2. 

The electric fields in the space outside the conductors are generally neglected 
in circuit theory, since the current flow associated with these electric fields 
is negligible due to the extremely low value of the electrical conductivity of 
air, which is generally only 10-20  times that of a typical metallic conductor. 
If the circuit in Figure B2 were placed inside a conducting fluid such as 
mercury, there would of course be a significant current flow in the space outside 
the original metallic conductors. 

In this section, the role of electric fields in conduction current flow was 
stressed, whereas in elementary courses on circuit theory it is the concept of 
potential differences that is invariably used. In terms of potential differences, 
one would say that the Van de Graaff generator in Figure B1 raises charges 
mechanically from the potential of one terminal to the potential of the other 
terminal, thus maintaining a potential difference across the terminals of the 
Van de Graaff. In elementary circuit theory, it is said that this external poten-
tial difference drives electric current around the external circuit and that the 
potential differences 4) across the various parts of the external circuit are 
consistent with Ohm's law in the form (I) = IR. We have probed deeper to 
see how these potential differences in the distant parts of the circuit arise. They 
arise from the surface charge distributions that give the appropriate value 
for the total electric field inside the conductors that acts on the conduction 
electrons to give the same steady current in all parts of the circuit. 

B2. Location of the charge distributions associated with conduction 
current flow 

According to Maxwell's equations, for a field point inside a material medium 

V • D = V - (E,.E0E) = p. 

Using equation (A1.20) of Appendix A1.6 to expand V • (E,E0E) we obtain 

p = E0E • VE,. ± ErE0V • E. 	 (B1) 

According to equation (1.50), when the conduction current in the circuit is 
steady, we have 

V • J = O. 	 (B2) 
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Since J = 0E, equation (B2) gives 

V • aE = O. 	 (B3) 

Using Equation (A1.20) of Appendix A1.6 to expand V (aE), equation (B3) 
becomes 

V • (aE) = aV • E + E • Va = O. 

Hence, 

• 
V • E - 

EVa 
 

a 

Substituting for V - E in equation (B1), we obtain 

p = eoE • VEr  — ( 1------EGE° ) E - Va. 

Substituting for E using E = J/a we have 

p = Co icjy- • VEr  — E'cy2 J • VG = Ecoi . V (--r-E  ) 	 (B4) 
a 

According to equation (B4), when the conduction current in the circuit is 
steady, we can have charge distributions wherever there are spatial varia-
tions of either the relative permittivity Er  or the electrical conductivity a. In 
electrical circuits this is generally where there are spatial variations of a 
which is generally at the surfaces of the conductors and at the boundaries 
where conductors of different electrical conductivities are joined. Since both 
Cr  and a are constant inside a homogenous conductor, according to equation 
(B4) there are no volume charge distributions inside a stationary homoge-
nous conductor. 

Problem: Assume that initially, at the time t = 0, there is a charge density 
Po inside a homogenous stationary conductor of conductivity a 
and relative permittivity Er. Show that the charge density decreases 
with time according to the equation 

p = po  exp [
0  

-2!-] 	 (B5) 
ErE 

Hint: 	Take the divergence of J = aE, then substitute in the continuity 
equation (1.49) and use V • E = p/ErEo . 

Comment: If we assume that for copper Er  = 1 and a = 5.7 x 107  S In-1  we 
find that the relaxation time ErEo/a for copper is -10-19 5. This 
suggests that any volume charge distributions in copper should 
disappear very quickly. 
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B3. Magnitudes of the surface and boundary charge distributions 
associated with conduction current flow 

As an example, consider the junction of a copper wire of conductivity al  = 
5.7 x 10' S in-1  and a nickel wire of conductivity 02  = 1.28 x 107  S m-1 , as 
shown in Figure B3. The wires have the same cross sectional area A and 
carry the same current /. Let E1  and E2 be the electric fields inside the copper 
and the nickel wires respectively. Since I = Jiii = J2A, where J1  = alEi  and 
J2 = 02E2 , we have 

I = csiElA = a2E2A. 	 (B6) 

Since the conductivity 01  = 5.7 x 10 S in-1  of copper is bigger than the con-
ductivity 02  = 1.28 x 10' S in-1  of nickel, it follows from equation (B6), 
that when a steady current flows in Figure B3, the electric field E2 inside 
the nickel wire must be bigger than the electric field E1  inside the copper 
wire, as sketched in Figure B3. To give the larger electric field inside the nickel 
wire, there must be a net positive charge distribution on the boundary between 
the two wires. From the standard boundary conditions, derived from Maxwell's 
equations, the charge per unit area on the boundary is equal to (D2  —D 1 ). Hence 
the total charge Q on the boundary is 

Q = A(D2  — D 1 ) = A(E2E0E2 — Ei EA ) 	 (B7) 

where e i  and E2  are the relative permittivities of copper and nickel respectively. 
Since from equation (B6), E1A =  1/01  and E2A = 1/02 , equation (B7) becomes 

For a rough order of magnitude calculation, assume that E2  = EI  = 1. With 
01  = 5.7 x 10' S m-1  and 02  = 1.28 x 107  S m-1 , we obtain 

Q = 8.85 x 10-121 
 [ 	1 	

1 	1 
1.28 x 107  5.7 x 107 

 1— 5.36 x 10-19/. 	(B8) 

COPPER 	 NICKEL 

Figure B3. The junction of copper and nickel conductors. Since J — GE, if G I  > a2  then 
El < E2 as shown. The change in the electric field arises from a charge distribution on the boundary 
between the condu  tors. 
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For a current of one ampere, Q is equal to 5.36 x 10-19  C, which is equal 
to the positive charge left if we remove an average of 3.3 electrons from 
the boundary. For / = 1 mA, we need only remove an average of 0.0033 
electrons. We can see that the average total charge, needed on the boundary 
between the copper and the nickel conductors in Figure B3 to give the 
necessary changes in the electric field inside both conductors in Figure B3, 
to give the same total current in both conductors, is exceedingly small. 

When a wire, that is carrying a steady conduction current, is bent, the electric 
field lines inside the wire must also turn around the corner so that the steady 
conduction current continues to flow in the wire. Consider the metal wire of 
cross sectional area A, which has a bend at the point M in Figure B4. The 
steady current in the wire is J. Inside the conductor, away from the bend at 
M, the electric field E inside the wire is parallel to the wire, as shown in Figure 
B4. The total flux of E in the section LM of the wire is equal to EA. Away 
from the bend at M, the flux of E in the section MN of the wire is also equal 
to EA. To change the direction of E inside the wire at the bend at M in Figure 
B4, we must have extra charge distributions near the bend. To obtain a rough 
estimate of the extra charges needed to change the direction of E inside the 

L 

‘ 	 

N 
Figure B4. The electric field giving rise to a conduction current flow in the wire LMN, which 
corresponds to the circled section on the top right hand side corner of the conductor in 
Figure Bi.  
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wire, we shall assume that the electric flux EA in the section LM of the wire 
terminates on a negative charge distribution near the corner at M and that 
the electric flux EA in the section MN of the wire starts from a positive 
charge distribution near the corner M, as shown in Figure B4. (The surface 
charge distributions away from the corner M are not shown.) Since from Gauss' 
flux law of electrostatics, the total electric flux from a charge of magnitude 
q is qleo , the magnitude Q_ of the charge needed to terminate the flux EA inside 
the section LM of the wire is —EA.  Since E = JI0 where J = IIA, we have 

Q_ = —EoPo. 	 (B9) 

Similarly, the positive charge that would give an electric flux EA inside the 
section MN of the wire is 

Q, = 
	 (B10) 

For a copper wire, a = 5.7 x 10 S m-1 . Since eo  = 8.85 x 10-12  F m-1 , 

Q = ±1.5 x 10-19/. 	 (B11) 

This result shows that we only need a separation of positive and negative charge 
of about 1.5 x 10-19/ to change the direction of the electric field inside the 
wire at the bend at M in Figure B4. For I = 1A, this would be approximately 
equal to the charge on one electron. For I < 1A, the average charge needed 
would be even less. It can be seen from Figure B2 that there are electric 
fields outside the wire. These external electric fields are also modified in the 
vicinity of the bend in the wire at M in Figure B4, and this requires appro-
priate charge distributions. Equations (B9) and (B10) only give the charges 
needed to modify the electric field that is inside the conductor in Figure B4. 
A quantitative example of the determination of the external electric field 
associated with conduction current flow is given by Marcus [2]. 

B4. Models of conduction current flow in a stationary conductor 

One type of electric current flow that is sometimes valid, for example for 
the beam current in a cathode ray oscilloscope, is that of individual elec-
trons going all the way from the cathode to the anode in a vacuum. If the 
potential difference between the anode and the cathode is 10 kV, the elec-
trons reach the anode with kinetic energies of 10 keV and velocities of about 
0.2c. This model is clearly not applicable to conduction current flow in a metal 
since, due to collisions, the mean drift velocities of the conduction electrons 
are only of the order of 10-4 m s-1 . Another type of current flow is a convection 
current due to a moving charge distribution. If the resultant charge density 
is p and the charge distribution moves with velocity u, then the convection 
current density J is equal to pu. This model does not apply to conduction 
current flow. 

An analogy for conduction current flow, sometimes uses in elementary 
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courses is that of the flow of a gas (or liquid) in a pipe. When gas enters 
one end of a pipe full of the gas, the new gas pushes some gas out from the 
other end of the pipe. The mechanical forces are transmitted through the gas 
with the speed of sound. In an ideal gas, the velocity of sound is equal to 
(rypIp 1) 112  where p is the pressure of the gas, pm  is the mass density and 'y is 
the ratio of the heat capacity at constant pressure to the heat capacity at constant 
volume. According to the kinetic theory of gases, p = i p„,v2 , where y is the 
root mean square speed of the gas molecules. Hence the speed of sound in 
an ideal gas is (iy/3) 1/2y. For a monatomic gas 'y = 5/3, in which case the speed 
of sound is 0.75y, illustrating that the speed of sound in a gas does not exceed 
the root mean square speed of the molecules of the gas. In a metallic conductor, 
the speeds of the conduction electrons are of the order of c/200, corresponding 
to kinetic energies of about 7 eV. If the fluid flow model were applicable to 
conduction current flow, one would not expect information about changes in 
the current in one part of a circuit to be transmitted along the connecting 
wires with a speed exceeding the velocities of the conduction electrons, which 
are typically about c/200. In practice, electrical signals can travel along metallic 
conductors with speeds close to the speed of light. This shows that the fluid 
flow analogy is not applicable to conduction current flow. 

In the fluid flow model for the propagation of sound in a gas, it is assumed 
that the information is transferred by the collisions of the gas molecules. It 
is assumed that gas molecules only interact when they collide at separations 
of the order of about 10-1 0  m. This is a reasonable approximation for an ideal 
gas since the van der Waals forces between neutral molecules vary as approx-
imately 1/r7 , where r is the separation of the molecules. These forces are 
only significant over short distances of the order of atomic dimensions. On 
the other hand, the forces between electric charges are given by Coulomb's 
law and vary as 1/7-2 . Electrons can interact over distances much greater than 
10-10  m and can affect more than their immediate neighbours. We have found 
it convenient to say that a charge gives rise to an electric field that can act 
on all other charges. If an electric charge is moved, its electric field is changed. 
According to the retarded potentials, which are developed in Section 2.3 of 
Chapter 2, this information is propagated in empty space, from the moving 
charge with the speed of light c. Thus, in principle, it is possible for infor-
mation about changes in the positions and velocities of charges to be 
transmitted from one end of a wire to the other, via changes in the electro-
magnetic field, with a speed c. In practice, there is a stringent limiting factor 
on the speed of propagation of electrical signals, namely the speed at which 
the appropriate changes in the surface and boundary charge distributions, 
that give the changes in conduction current flow, can take place. 

As an example, consider a square wave signal generator that produces square 
wave voltage pulses. The terminals of the signal generator are connected by 
long wires several kilometres long to a resistor of high resistance R, as shown 
in Figure B5. We shall assume that the period of the square wave voltage pulses 
is much longer than the time it takes for the conduction current to reach the 
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Figure B5. A square wave generator gives rise to a current flow in parallel conductors several 
kilometres long which are joined by the resistor R. 

same value in all parts of the circuit. We shall assume, for purposes of dis-
cussion, that when the output from the square wave generator goes positive, 
the potential difference across the generator terminals builds up almost instan-
taneously. One the scale of several kilometres, the initial electric field E0  
due to the potential difference across the terminals of the signal generator is 
approximately a dipole field and goes down as 1/r3 , where r is the distance 
from the generator. After the output from the square wave generator goes 
positive, the changes in the electric field E0  are propagated away from the 
generator with a speed c in empty space, and, after a time delay of rIc, the 
changes in E0  can affect the conduction electrons in the connecting wires at 
a distance r from the signal generator. However, since E0  decreases as 1/r3  
the effect of changes in E0  at distances of several kilometres from the signal 
generator, immediately after the time delay rIc, are generally negligible. The 
main influence of changes in the electric field E0, due to the potential dif-
ference across the signal generator is close to the signal generator, where 
changes in E0  give changes in the surface and boundary charge distributions 
on the connecting wires in the vicinity of the signal generator. The changes 
in the electric fields due to these changes in the charge distributions in the 
vicinity of the signal generator give changes in the surface and boundary 
charges further along the wires. In this way the appropriate surface and 
boundary charge distributions are built up progressively along the wires at a 
speed depending on how quickly the necessary charge distributions can be built 
up. This depends on the resistance, inductance and capacitance per metre length 
of the wires. For wires of finite resistance this speed is less than c, the speed 
of light, but is generally much greater than the speeds of individual conduc-
tion electrons. The above discussion of the build up of a steady DC current 
in the circuit shown in Figure B5 is similar in many respects to a transmis-
sion line problem, such as the low frequency limit of the Lecher two wire 
transmission line. 

The neglect of transient effects, that start at a distance r from the square 
wave signal generator in Figure B5, at a time ?lc after the output of the signal 
generator goes positive, is similar to the assumption made in transmission 
line theory that we can represent an ideal transmission line by a series of induc- 
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tors and capacitors with no mutual inductance effects between the spatially 
separated inductors. 

B5. Energy propagation in DC circuits 

In general we cannot say where the energy of a system is localised. We can 
obtain correct answers in classical electromagnetism by attributing energy to 
the electromagnetic field. The Poynting vector N=ExH is often used to 
calculate the rate of flow of electromagnetic energy per square metre in the 
electromagnetic field. At first sight the use of the Poynting vector might appear 
inappropriate for the steady conditions of DC current flow. It was, however 
shown in Section B4 that it was the resultant electric field inside the conductor 
due to both the source of emf and the surface and boundary charge distribu-
tions, and not the collisions of the conduction electrons, that accelerates the 
conduction electrons leading to Joule heating in the conductors. This suggests 
that the use of field concepts is appropriate. The role of the Poynting vector 
in DC circuits is discussed in detail in Sections 8.5 and 8.6 of Chapter 8. 
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APPENDIX C 

The electric and magnetic fields due to an accelerating 
classical point charge 

Cl. Introduction 

Consider the accelerating classical point charge of magnitude q, shown in 
Figure 3.2 of Chapter 3. The fields E and B will be determined at the field 
point P at the point x, y, z in Figure 3.2 at the time of observation t, using 
the Liénard-Wiechert potentials. The information collecting sphere passes 
the accelerating charge q at the retarded time t* = 0 - [ri/ c), where 

[1 ]  = c(t — t*) (Cl) 

is the distance from the retarded position of the charge at x*, y*, z* to the 
field point P at x, y, z in Figure 3.2. We have 

[r] = [(x — x*)2  + (y — y*)2  + (z — Z 4 )2]
1/2. 	 (C2) 

The fields E and B are given by 

aA 
E = —Vol) — at 	 (C3) 

B = V x A. 	 (C4) 

The differential operators in the operator V are with respect to changes in 
x, y, z, the coordinates of the field point at the fixed time of observation t. 
The partial derivative (a/at) is with respect to the time of observation t at 
the fixed field point at x, y, z. However the velocity [u] and the acceleration 
[a] of the charge are given as functions of the retarded time t* at the retarded 
position of the charge at x*, y*, z*. As some of the formulae in this Appendix 
are long and complicated, from now on we shall not always put quantities such 
as [r], [u] and [a], which are obviously determined at the retarded time t*, 
inside square brackets. 

Differentiating equation (C2) with respect to t*, keeping x, y and z fixed, 
we have 

( ar ) 	1 f 
\ at* lx,y,z 	r 1 

az* (x — x*)(-?--xl) + (y — y*) ( s2Y-1 + (z — z*)( -5F1,)} . at* 	 at* 

406 
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Since Dx*Iat* = [ux] etc, using equation (A1.1) of Appendix A1.1, we 
have 

( ar \ 	r • u 
k at* ) -- r x, y ,z ' 	 (C5) 

This relation can be seen geometrically. The rate of decrease of r with t*, 
for fixed x, y, z, is equal to the component of the velocity of the charge at 
its retarded position in the direction of the field point. 

For any function (1) of x, y, z and t* 

(I) ( '3,41 dx + (kr», 1 dy + (A., ) dz + (A) dt* (C6) d  - = ■ ax / y,z,t* 	\ ay /x,z,t* - 	 \ az /x, y ,t* 	\at*  / x,y,z 

If x, y and z are fixed, then dx = dy = dz = 0. Dividing by dt we have for 
fixed x, y and z 

(" 	( " )( at*  x y z at )x y z 
(C7) 

Putting (I) = r in equation (C7) and using equation (C5), we find that 

( ar ) 	far ) 	( at* ) 	r • u  ( at*) 
‘ at )x, y ,z 	at* / 	\ at /x,y,z 	r \ at  

Differentiating equation (C1) with respect to t, keeping x, y and z fixed we 
have 

. 	 (C8) 

f t-) =c { 1 - ( at*  ) k at / x,y,z  y (C9) 

Equating the right hand sides of equations (C8) and (C9) and rearranging, 
for fixed x, y, and z we have 

where, 

( at*) 	_ 	1 	_ r 
k at )x, y , z  [1 — r • ulrc] 	s (C10) 

s = [ 	ru r 	• 	l 
C  

(C11) 

Equation (C7) can now be rewritten in the form 

(a4\  = r ( a43. \ 	_ 	r 	( 4) (C12) k at /x, y,z s k at* I xz [r — r • ilk] k at* )x,y,z • 

Putting dy = dz = 0 in equation (C6) at a fixed t and dividing by dx, we 
obtain 

) 

( a(i) 	al) a4) 

	

± ...._ 	at* 
= ax y,z,t* 	at* x,y,z 	aX y,z,t • 

(C13) 
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The gradient of 4) due to changes in the coordinates x, y, z of the field point 
at the fixed time of observation t is 

+I(LI) )  +k (#) = 
...,x y , z , r 	ay x, z,/ 	 -Z , x,y,t • 

A new operator V* will be defined by the relation 

V*"(4a  )y,z,e +I (I)x,z,t* " (t)x,y,t* .  

(C14) 

(C15) 

The partial differentiations in equation (C15) are with respect to the coordi-
nates x, y and z of the field point at the fixed retarded time e. From equation 
(C13) and similar expressions for (a4)/ay), and (a(1)/az), y,1 , it follows that 

V4) = V*4) +  Vt*. (-14--?1, )x,y,z   

We now have to determine Vt*. It follows from equations (Cl) and (C14) 
that, at fixed t, 

Vr = —cVt*. 	 (C17) 

Putting 4) = r in equation (C16) and using equation (C5), we have 

u • r 	v., .4., 
Vr = V*r - ( —) v t-. r (C18) 

Differentiating equation (C2) partially with respect to x keeping y, z and e 
fixed, and remembering that if t* is fixed then x*, y* and z* are fixed we 

(Dr) 	. (x - x*) 
r 

Hence, 

V *r = -r  . r 

Equation (C18) now becomes 

vr _r (u•r\ ve.  
r 	r ) 

(C19) 

(C20) 

Equating the right hand side of equations (C17) and (C20), and rearranging 
we get 

Vt* = -
r 

 — . 

(C16) 

Sc 
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Substituting in equation (C16), we finally obtain 

r ( a 
) 

v = v* _ 
sc. at* x,y,z 

(C21) 

where V and V* are defined by equations (C14) and (C15) respectively. From 
equation (C12), for fixed x, y and z we have 

r ( a ) 
(ât) x,y,z S k at* ) x,y,z .  

(C22) 

C2. Calculation of the electric field 

The electric field E at the field point P in Figure 3.2 is given by 

aA 
(C3) 

where according to the Liénard-Wiechert potentials, namely equations (3.4) 
and (3.6) of Chapter 3 

(1)  = q 	 (C23) 
47cEos 

A=  q[u] 	 (C24) 
47ccoc2s 

where s is given by equation (C11). Substituting for 4) and A in equation 
(C3) we have 

q 
 47CE0E  ._v (7 ) _ -5-t- 

Using equation (C21), we have 

v  (1 ).A.vs 
= 
_ 	

•3
1[,1.74,s  r ( as ) 1 

	

3 	v l s / s 	s 

(C25) 

(C26) 

Applying equation (C22) to (u/s), since (Du/Dt*) = [a] we have 

1(\ 	 r [ 	:t* sa — u( s i. 
a u 	r a 	 (C27) 

c2  at k s / = 	
( [u] 

— c2s at* k s ) 	c2s3  

Substituting from equations (C26) and (C27) into equation (C25) 

	

47cE0 E . _71 [ sv*s  _1{ r  _ ru 	as 	rsa 

	

c 	at*) 
_— .c21 q 	s 	c 	 x,y,z 

(C28) 
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We now need V*s and (as/at*)x,y, z . Using equation (C11) 

V*s = V*r — V* ( 
 r • u 

 ). 
c 

(C29) 

If t* is constant, then x*, y*, z* and [it] are fixed so that if  J[u]/ax  etc are 
evaluated at a fixed retarded time they are zero. Hence 

V*(r • u) = i - (xux) + j ----(yu y) 
dx 	dY 	orz 

= Uxl + Uy  j + Uzit = U. 

According to equation (C19), V*r = r/r. Hence equation (C29) becomes 

v*s = r_u =  1 r r— ru 
r c r i. 	c 

 

(C30) 

giving, 

  

r • u 1 [ _ ru 
sV*s = [ 1 — — r — — I . 

rc 	c 

Differentiating equation (C11) with respect to t*, we have 

(C31) 

at* x,y,z 	at* x,y,z 	c 	at* )x,y,z — ( i
cl.  . aatr* xow  ( as ) 	= ( ar ) 	_ (L.  ) . ( all 

Since r is a vector from the retarded position of the charge to the field point, 
for fixed x, y and z we have 

( ar 
= —u; 

k at* )x,y,z 

( au 
k at*),,,y , z  

= a 
. 

According to equation (C5), (ar/at*)x ,y ,z  = —r - u/r. Hence 

( as 	r•u r•a u2 
_ 	+-.  \ at*) 	

=_ 
x, y ,z 	r 	c 	c 

(C32) 

Substituting from equations (C30), (C31), (C32) and (C11) into equation (C28), 
we have 

47/c° E=.1s[(1— r 	•u)( 	
ru ) r — —
c q 	s 	rc 

11 	ru)( r•u r•a_L u2 ) 	r • u ) a 
— 	-- 	 r  — — 	— 	..— 

C\ 	c 	r 	c 	c 	 c 	C2 1 • 
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The terms independent of [a] give 

q  [ 	ru 	, u2 
Ev  - 

LticEos3 
r - — 1 [ 	

c 
i - 2 

C I (C33) 

The terms containing [a] can be rewritten in the form 

EA — 	 n [( r - ni  ) r  . ., 21  - ( r2  _ r •  ru \ al .  

	

- 4ireos' 	c 	c` 	c ) c J 

Using equation (A1.6) of Appendix A1.1 we find that 

	

q 	 nil 
EA — 47ceos3c2 [r] x {[ r - 7] x [a] } . 

The total electric field is 

(C34) 

E = Ev  + EA 	 (C35) 

where Ev  and EA are given by equations (C33) and (C35) respectively. The 
quantities q, [u] and [a] are the magnitude of the charge, its velocity and its 
acceleration respectively at the retarded position of the charge in Figure 3.2 
of Chapter 3, [r] is a vector from the retarded position of the charge to the 
field point, and s is given by equation (C11). 

C3. Calculation of the magnetic field 

Using equations (C4), (C21) and (C24), we have 

B=VxA=  q  [V* 
LticEoc2 	Sc  at* )x,y,z 

47cE0c2 B v* x rul_ [r] x  a r u 1 	 (C36) 
q 	 l s J 	sc. at* l s 1 

Using equations (A1.23) of Appendix A.6 to expand V* x [u/s], we have 

1 V*x[—u ] -1 V*xu-uxV*(—s ). 	 (C37) 
s 	s 

The velocity of the charge does not vary if the coordinates x, y, z of the field 
point are varied at fixed t*, so that V* x u is zero. Using equations (C30) 
and (C11), we find that 

v* (1 	1 _) = ____ v*s  = _1 	ru 1 
s 	s2 	rs2

[r _
j c 	. 
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Substituting in equation (C37), and remembering that u x u is zero, we have 

Now, 

– 11 X2 r  . 
V* x [ 11 = 112 X [ r — ru  I 

s 	rs 	c 	rs (C38) 

a ( u ) 	a ( 1 ) 	1 ( au ) 	_ _ ( as ) 	a 
at* \ S /x,y,z = u at* \. —S lx,y,z + —S 	- - U2  \ at* lx,y,z s 	

+ —
S

. 

Substituting for (as/at*) from equation (C32), we obtain 

	

a I u \ 	urr•u r•a u2 1 a 

	

at* k ---: 5 ) 	= —1.5 1. ---  + — — — J +— - C 	c 	S x,y,z 

Substituting from equations (C38) and (C39) into equation (C36) 

(C39) 

47cEoc2 n  uxr  r uru  r•a U2 	r a 

	

sp, — 2 – X 2 	± - 	– — i--x — 

(C40) 
q 	rs 	sc s 	r 	cscs ' 

Picking out the terms independent of [a], we have 

2 
Bv  — 

qu x r  [ .1 +  r • u  _ 112  1 . 

4TCE0C2S3  r 	rc 	c 

Since, 

r • u 1 s=i r [ — 
C 

q,  _  [u] x [r]  r 1  _ u2 1  . 
Dv 	

47tE0C2S 3  l 	c2  J 

Picking out the terms containing [a], we have 

q 
3 3rx —u 

 r•a 
 B 	 — sa 1 . 

A  — 4rcEoc s 	 c 

(C11) 

(C41) 

(C42) 

Since r x r = 0 and rs = [r2  — r r • u/c] = r • [r — rulc], equation (C42) can 
be rewritten in the form 

111 q 	rrix r(u 

	

r _L--) 	) (r.a—a{r•(r-7. )}1. BA  – 410E0C3S 3  I. r j 1. 	C / 

Applying equation (A1.6) of Appendix A1.1 to the terms inside the large square 
brackets, we finally obtain 

BA –  4iteqc3s3 [ rr  1 X { [r] x a r —7 1 x [a] )1 . 	 (C43) 
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The total magnetic field is given by 

B = Bv  + BA 	 (C44) 

where Bv  and BA are given by equations (C41) and (C43) respectively. The 
quantities q, [u] and [a] are the values of the charge, velocity and accelera-
tion of the charge at its retarded position, [r] is a vector from the retarded 
position of the charge to the field point and s is given by equation (C11). 

It can be seen from equations (C33), (C34), (C41) and (C42) that 

[1] x  E B — 	 (C45) [rc] 

The resultant magnetic field B is perpendicular to both the resultant electric 
field E and the vector [r] from the retarded position of the charge to the 
field point. 



APPENDIX D 

Discussion of the equation V x B = !Joe,* + NJ using 
the field approach 

Some readers may prefer to see the need to add the extra term NJ to the 
right hand side of the equation 

1 aE 
V x B = 7  at  

when there is a moving charge distribution at the field point, interpreted in 
terms of the behaviour of the field vectors E and B at the field point, rather 
than using the integral methods given in Sections 4.8.1, 4.8.2 and 4.8.3. A 
fuller account is given by Rosser [1]. 

Figure Dl. The charged circular disk is moving with uniform velocity u. The values of 
V x B and k at the field point P are determined. 

414 
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Consider a thin, circular disk shaped charge distribution, that is moving with 
a uniform velocity u < c along the x axis of the coordinate system shown in 
Figure Dl. The axis of the moving disk coincides with the x axis. The radius 
of the disk is a and its thickness is L, where L < a. The disk has a uniform 
charge density p. We shall sometimes treat the disk as a surface charge dis-
tribution of surface charge density o = pL. When u < c, the expressions for 
the E and B fields due to a classical point charge moving with a uniform 
velocity u < c, reduce to equations (4.68) and (4.67) respectively. 

Consider first the case before the disk reaches the field point P, which in 
this example is in empty space. Divide the disk into infinitesimal volume 
elements. Each of these can be treated as a classical point charge moving 
with uniform velocity and equation (4.54) can be applied to the electric and 
magnetic fields due to each infinitesimal volume element. Adding the con-
tributions of all the various volume elements we find that, when the field 
point P is in empty space 

1 DE 
VxB=7 at  . (D1) 

X 

Figure D2. The charged circular disk is passing the field point P with uniform velocity u. 



= 	 2e0c2  [ (R2 	+ X )3/2 0 — 2e0c2(a2 	± 4)312 • 
GU 	R2 	a 	pLua2 

(D3) 
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Equation (DI) is valid before the charged disk reaches P and after it 
has completely passed P. Hence we need only consider in detail the case 
when the charged disk is actually passing the field point P, as shown in 
Figure D2. 

We shall start by determining the value of V x B on the x axis in Figure 
Dl. By symmetry, the only component of V x B at the field point P, which 
is on the x axis in Figure DI, is in the + x direction. Let the field point P be 
at a distance x0  from the disk, as shown in Figure Dl. Consider an infinites-
imal area dS of the moving disk, which has a total charge dq = a dS = pL dS 
and is at a distance R from the axis of the disk, as shown in Figure Dl. The 
distance from the element of charge dq to the field point P in Figure Dl is 
r, where r = (R 2 + 4.112 .  ) The angle between r and u is 0. The expression for 
the curl of the magnetic field due to a classical point charge moving with 
uniform velocity u is given by equation (4.52). Applying equation (4.52) to 
the element of charge dq = a dS in Figure DI, which is at a distance R from 
the x axis, and neglecting terms in 132  we find that 

(V x B)x  = (V x B),. cos 0 — (V x B),E, sin 0 

u dq  1 2  cos2  0 sin2  01  _  u(24)  — R 2) dq 	(D2) — 
4rce0c2  l 	r3 	— 

r3 j 	
47CE0C2(R2 + 45/2 • 

Now consider a circular hoop shaped element of area of the disk of internal 
radius R and outer radius (R + dR). The total charge on this element of area 
is 27cRa dR, where a = pL. Putting dq = 27cRa dR, in equation (D2) to obtain 
the contribution of the hoop to the x component of V x B at the field point 
P in Figure DI, and then integrating from R = 0 to R = a and using a = pL 
we find that 

.,„\
,,,x 	

au fa  (2x201?— R 3) ,i . 
(V x mo — 2E0c2 0 (R2 + 45/2 WI  

Equation (D3) can be interpreted qualitatively as follows. The magnetic field 
B due to the moving disk is zero on the axis of the disk, but B is finite just 
off the axis and is in a direction given by the right-handed corkscrew rule, 
which is in the same direction on either side of the moving disk. Hence 
(V x B)x  is finite and in the +x direction on both sides of the moving disk 
and according to equation (D3) has the same value for ±x0. When x0  = 0, 

pLu  
(V x B)x  — 

2E0ac2  • 	
(D4) 

Assume, for the moment, that the moving disk has zero thickness. As the 
moving charged disk in Figure DI approaches the field point P from the left, 
the electric field at P is in the +x direction and is increasing in magnitude 
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so that E is positive and equation (D1) is valid. However, when the disk 
passes the field point P the electric field reverses direction, changing from 
o/2E0  in the +x direction to — 0/2E 0  in the —x direction. However the direc-
tion of the magnetic field B is unchanged and the value of (V x B)., is the 
same and given by equation (D4), showing that there is no discontinuity in 
(V x B)x  associated with the discontinuity of —o/E0  in the electric field E, when 
the disk of zero thickness passes the field point P in Figure  Dl.  This shows 
that equation (D1) must be modified when the moving charged disk of zero 
thickness is passing the field point. To determine the modification of equation 
(DI) that is required to give consistency, we shall now assume that the moving 
disk is of finite thickness L, where L << a, as shown in Figure D2. 

As the moving charged disk of finite thickness approaches the field point 
P from the left in Figure D2, the electric field at P is in the +x direction and 
is increasing in magnitude so that E is positive and equation (D1) is valid. 
When the disk starts passing the field point P in Figure D2, the contribution 
of the charge to the right of the field point P to the electric field at the field 
point at P is in the —x direction and increases in magnitude as more and more 
charge passes the field point P, so that Êx/c2  is now negative and is not equal 
to (V x B), which is still positive and given by equation (D4). 

The change in the electric field at the field point P in a time dt, when the 
disk is passing the field point as shown in Figure D2, is the same as if we 
remove a slice of thickness dL = u dt from the left hand side and add it to 
the right hand side of the moving disk at a fixed time. Removing the slice from 
the left hand side decreases the electric field at the point P, so that the change 
dEi  in the electric field in the +x direction, which is given by the standard 
formula for the electric field on the axis of a charged disk, which is derived 
in most elementary text books, is 

P di dEi — 	2E0
d (1 — cos 0 1 ) (D5) 

where p dL is the charge per unit area on the slice of thickness dL. Adding 
a slice of thickness dL = u dt to the right hand side of the moving disk in Figure 
D2 also gives an electric field in the —x direction at field point P. The change 
dE2  in the electric field in the +x direction is 

P a   dE2 = 	(1 — cos 02). 2E0  (D6) 

Adding equations (D5) and (D6), we have 

P di- 
dEx = dE i ± dE2 — , (2 — cos 0 1  — cos 02) 

z E0 

where dEx  is the total increase in the electric field at P in the +x direction. 
Putting dL = u dt, then dividing by c2  dt and rearranging we have 
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1 aE 	pu  x _ 	(cos 0 1  + cos 02 — 2). 
e2 at — 2E 0c2 

(D7) 

If the field point P is at a distance 1 from the left hand side of the moving 
disk in Figure D2, since L < a we have 

/ 	1 	 (L — 1) 	(L — 1)  
cos el — (a2 + 12) 1/2 — a  9 	

cos 02 —  (a2  + (L — /)2) 112  — 	a 	• 

Hence when L < a 

L 
cos e l  + cos 02 7---  —

a

. 

Substituting in equation (D7), we have for the field point P 

1 aEx 	pu ( L 
 2I 

 puL 	pu _ 
c2  at —  2 0c2 k a 	2E0ac2  E0c2  • 

(D8) 

According to Equation (D4) when x0  = 0 we have for the field point P 

puL  
(V x B)., — (D4) 

2e0ac2  • 

Comparing equations (D8) and (D4) we see that for consistency, we must have 

1 aEx  pu 	( aEx  
(v x B)x  — 7  --5-17 + ---0-2-.2.  — Ito  Co + J ) 

	

-TT 		. (D9) 

This is the x component of equation (4.94). 
It is left as an exercise for the reader to consider a field point inside a moving 

continuous charge distribution. Divide the charge distribution into two parts. 
Apply equation (D9) to a moving disk shaped volume at the field point and 
equation (D1) to the rest of the moving charge distribution, which has a circular 
disk shaped hole at the field point. Adding the two contributions leads to 
equation (4.94) The moving charge distribution can then be treated as a clas-
sical point charge so that equation (D9) leads to the Maxwell-Lorentz equation 
(4.95). 

Reference 

1. Rosser, W. G. V., Amer. Journ. Phys., Vol. 43, p. 502 (1975). 
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The transformations of special relativity 

Consider the conditions shown in Figures 10.1(a) and 10.1(b). The inertial 
frame E' is moving with uniform velocity y relative to the inertial frame E 
along their common x axis. The origins of E and E' coincide at the times 
t = t' = 0 when the y and y' axes and the z and z' axes coincide as shown in 
Figure 10.1(a). Assuming the validity of the principle of relativity and the prin-
ciple of the constancy of the speed of light, we showed in Section 10.4 of 
Chapter 10 that, if an event is measured to be at the position (x, y, z) at the 
time t in E and the same event is measured to be at the position (x', y', z') at 
the time t' in E' then, according to the Lorentz transformations, 

x' = y(x — yt); 	x = y(x' + ye) 	 (El) 

Y = Y' 	 (E2) 

z' = z; 	z = z' 	 (E3) 

t' = y(t — yx/c 2), 	t = 7(t' + vx//c2) 	 (E4) 

where 

1  (E5) 
(1—  V2/C2)"2  . 

The inverse transformations can always be obtained by interchanging primed 
and unprimed quantities and replacing y by —v. We shall assume throughout 
this appendix that all the transformations refer to an event that is measured 
to be at (x, y, z, t) in E and at (x', y', z', t') in E'. If a particle has a velocity 
u having components (us, uy, u) in E and a velocity u' having components 
(u."„ u, u) at the same event at (x', y', z', t') in E' then 

	

, dx' 	ux  — y 
ux  — 	— 	 

	

dt' 	1 — yux/c2 	
(E6) 

, dy' 	u Y   u — - 

Y  dt' 70 — vu/c2) 	
(E7) 
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420 Appendix E 

, 	dz'_ 	uz  
uz  = 	— 

dt' 	y(1 — vu/c2) • 

It can be shown by direct substitution that 

(1 — te2/c2) 1/2 _ (1 —  V2/C2)
1/20 _ u2/c2)1/2 

E9 
(1 — vu/c2) 	

( ) 
 

If a particle has rest mass mo, its relativistic momentum p and total energy 
E are 

P — (1  _ u21c2) 1/2 , 

It can be shown that the transformations for the momentum p and the total 
energy E are 

• = y(px  — vElc 2) 

	

	 (El 0) 

 (Eli)  

P; = Pz 	 (E12) 

E' = y(E — vpx). 	 (E13) 

The transformations for force are 

f:  . dpx' . fx 	vu Y  

fY 	
Wiz 

	

 	* dt' 	c2(1 — vu/c 2) 	c2(1 — vu/c2) 
fZ 

 

f, _ dp; _ fy  

Y  de y(1 — vu/c2) 

f;  _ dp  fz  
; _  

dt' 	y(1 — vu/c 2) • 

Full accounts of the derivations and applications of these transformations are 
given by Rosser [1]. 

Reference 

(E8) 

mou 

(E14) 

(E15) 

(E16) 

1. Rosser, W. G. V., Introductory Special Relativity (Taylor and Francis, London, 1991). 
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