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PREFACE

This NATO Advanced Study Institute was the fourth in a series
devoted to the subject of phase transitions and instabilities with
particular attention to structural phase transformations. Beginning
with the first Geilo institute in 1971 we have seen the emphasis
evolve from the simple quasiharmonic soft mode description within
the Landau theory, through the unexpected spectral structure re-
presented by the "central peak" (1973), to such subjects as melting,
turbulence and hydrodynamic instabilities (1975). Sophisticated
theoretical techniques such as scaling laws and renormalization
group theory developed over the same period have brought to this
wide range of subjects a pleasing unity. These institutes have
been instrumental in placing structural transformations clearly in
the mainstream of statistical physics and critical phenomena.

The present Geilo institute retains some of the counter cul-
tural flavour of the first one by insisting whenever possible upon
peeking under the skirts of even the most successful phenomenology
to catch a glimpse of the underlying microscopic processes. Of
course the soft mode remains a useful concept, but the major em-
phasis of this institute is the microscopic cause of the mode
softening. The discussions given here illustrate that for certain
important classes of solids the cause lies in the electron phonon
interaction. Three major types of structural transitions are
considered. In the case of metals and semimetals, the electron
phonon interaction relies heavily on the topology of the Fermi
surface. In special situations the electronic ewiergy of the con-
duction band can be lowered by a greater amount than the energetic
cost of a lattice distortion, so that lattice distortion will in-
deed occur. As Professor Friedel has emphasized, instabilities
of this type are relatively more likely in band structures of lower
dimensionality because of the less severe requirements for "nesting"
of various portions of Fermi surface. Several of the papers herein
are devoted to the calculation, observation and consequences of
this type of electron phonon interaction.

One of the most striking manifestations of this interaction is
the so-called "charge density wave" instability, responsible for a
structural transformation to a "2Kp'" superlattice. Since 2Ky is
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most often not an integral submultiple of the reciprocal lattice
vector, the unit cell's new structure is not a simple multiple of
the o0ld unit cell. While such "incommensurable" structures have
been long known, (the spin density wave in chromium is perhaps

the most familiar example), their incorporation into the lore of
phase transitions is quite recent and still incomplete. Nor are
"incommensurable" structures confined to cases where mobile
carriers are present. The lectures of Drs. Axe, Di Salvo, Shirane
and Yamada highlight the wealth of anomalous physical properties
associated with incommensurate transitions in both metals and
insulators. Drs. Bak and Luther treat the formal and microscopic
theoretical aspects of these systems. Among the concepts that
they and Professor McMillan discuss are solitons, a subject that
we undoubtedly will hear more about in the future. And Professor
de Wolff presents an important systematic means of classifying the
symmetries of incommensurate transitions.

The second important class of electron-phonon driven struc-
tural transitions is represented by the Jahn Teller systems. The
relationsships among the symmetries of the interacting electronic
and vibrational states and the resulting lattice distortions are
ssstematized by Professor Thomas. And a variety of experimental
discussion of several examples are detailed in this volume by Drs.
Harley and Kjems. A quantitative description of many singular
properties may be obtained from the "pseudo spin" model of Jahn
Teller systems - as discussed here by Dr., Stinchcombe.

The third major area addressed by this institute concerns
structural phase transitions and high temperature superconductivity,
This subject perhaps epitomizes the meeting inasmuch as structural
transitions in the prototypical A-15's (NbzSn, etc.) have been
addressed from both the band Jahn Tellcr and the charge density
wave theoretical viewpoint. Professor McMillan's lectures provide
an admirable synthesis of both phenomenological and microscopic
theories for the charge density wave, the superconducting and
structural phase transitions. Dr. Testardi, in his experimental
lectures on the A-15 compounds emphasized the recent striking
effects which defects in unstable lattices have upon limiting the
realizable superconducting TO.

The lectures of Dr. Romestain called our attention to another
class of transition (the metal insulator) to which he has recently
applied very sophisticated optical techniques. The several seminars
generally provided an excellent complementarity to the subject
areas addressed by the main lecturers. In retrospect two of the
most exciting and stimulating topics addressed in this institute
were the new class of structural transitions represented by "in-
commensurate" super structures and the beginning of progress in
understanding more fully the role of structural transitions in
high Tc superconductors,
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As in the past, the atmosphere of the setting provided the
opportunity for vigorous intellectual and physical activity, so
that the participants departed with the clear impression that
ideas had not only been exchanged but that new understanding was
generated and the beginnings of some new research directions were
established at Geilo.

The programme committee joins the other participants in ex-
pressing their sincere thanks to Mr. Eigil Andersen, Mrs. Gerd
Jarrett and the staff of the Institutt for atomenergi, Kjeller,
Norway for their careful planning and creative assistance, upon
which largely rested the success of this conference.

J. D. Axe
J. Feder
P. A. Fleury
A. Luther
T. Riste

June, 1977
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PHASE CHANGES AND ELECTRON PHONON COUPLINGS IN PERFECT CRYSTALS.

MODULATED STRUCTURES. AN INTRODUCTION.

J. Friedel

Physique des Solides, Université Paris Sud, Orsay

LA du CNRS

The purpose of this introduction is to place the field of
this meeting in the general frame work of phase changes and the
nature of the interatomic forces involved,then to discuss the pos-—
sibility of small amplitude phase changes arising in perfect crys-
tals as a weak modulation of the simpler structure. This modula-
tion can be viewed as due to a phonon mode of the simpler structu-
re becoming soft ; and conditions for this to occur through
strong electron—-phonon coupling are recalled.

I - THE FRAMEWORK
A. Phase changes in perfect crystals

We consider phases in thermal equilibrium, neglecting all pro-
blems of nucleation and growth kinetics involved in most phase
changes. Each phase is then defined by a free enthalpy

F=H-TS,

a continuous function of temperature T, pressure p. It might invol-
ve also composition ; but we only consider here perfect crystals
with fixed composition. H = U + pV is the enthalpy, and variations
of the volume V involved in phase changes of condensed phases only
introduce small and trivial effects.

A phase change arises for a transition temperature T_ (or a
pressure p,) where two possible phases have the same free enthal-
py. The phdse change is said of the first or second order, depen-
ding on whether the two curves FA (T or p) and FB( T or p) cross
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with an angle or are tangent at the transition €igure la,b).
predict the transition temperature Tt of a phase change, one must

:
]
]
B ! B
[}

Tt,F’t Top TtaPt hp

Figure 1 : Phase transitions : a first order ; b second order.

therefore know the difference in enthalpy H and in entropy S bet-
ween the two phases, and how they vary with temperature. Only the

relative stability of phases at zero degree can be discussed ne-
glecting entropy.

In most crystalline phase changes, the difference in internal
energy U, -U, of the two phases is much less than the latent heat
of sublimation, which measures the total stability of the conden-
sed phases. Furthemore in most of these changes, large structural
changes occur. As a result, only a limited study of the relative

stability of typical simple crystal phases has been made in this
general case.

In phase changes by crystal structure modulations however,
there is a contlnuous or nearly continuous transition from phase
B to phase A (U - = 0). Some phonon modes of phase B become
soft at or near to tﬁe transition temperature Tt or pressure p .
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Such transitions are usually described 'd la Landau', in

terms of the amplitude u and the phase ¢ of the soft modes :
2
FA - FB=a u2 + B u4 + y(grad u)2 + 6(grad ¢)” + ...

This description assumes u and ¢ to be the relevant order parame-
ters. Even when applicable, it is purely formal in that it hides
the computation of the coefficients of a, B, Y, § in terms of
the enthalpy and entropy changes as deduced from a microscopic
model.

A special case of crystal modulation is that of a uniform
distortion.

B. Interatomic forces

Microscopic models require an analysis of the atomic and elec-
tronic structure.

One starts from the two usual fundamental approximations:

- The adiabatic approximation (Born Oppenheimer) uncouples
the motion of the atoms from that of the electrons around the
atoms, assumed at rest.

- The mean field one electron approximation (Hartree) uncou-
ples the relative motions of the electrons. It takes two extreme
selfconsistent forms, between which one nowadays believes there is
necessarily a first order cooperative transition at low temperatu-
re (Mott transition ).

1 - Localized valence electrons
Each electron is assumed to be localized on a small building
block of the structure - atom or molecule. The structure is then

necessarily an insulator.

This is probably a good description of the stable state in
rare gases and most ionic solids or molecular solids.

The building blocks are held together by various forces which
correspond to successive refinements in the description of the
electronic structure :

- Long range Coulomb interactions. These can be between sta-
tic monopoles (ionic solids, figure 2.a), static dipoles (ferro or
antiferroelectrics, figure 2.b,c) or static multipoles (molecular
crystals such as Cl,, figure 2.d) as described in the stable state
of the Hartree approximation.
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— > > —>

Figure 2 : Three types of Coulomb forces between static mono or
multipoles : a monopoles ; b and ¢ dipoles ; d higher multi-
poles.

- Short range exchange interactions : magnetic couplings
between incompletely filled atomic shells or repulsions between
filled shells ; medium range magnetic couplings by superexchange.
These come in the Hartree Fock scheeme when respectively stable
states or virtually excited states of the Hartree scheeme are
considered.

- Short range dispersion interactions. These arise through
the virtual excitation of Hartree state by long range Coulomb
correlation forces between electrons in different building blocks.
It can be considered as due to interactions between dynamic dipo-
les (Van der Waals and more general dispersion forces).

- H bonds, coming from quantum tunnelling of light nuclei.

It is worth pointing out that static Coulomb forces tend to
aggregate unlike blocks together (+ with -, up dipole parallel to
down dipole in case of figure 2.b, quadrupoles at right angles ...
cf figure 2). Contrary wise, dispersion forces tend to aggregate
like blocks together (figure 3, cf Appendix A).

One can list a number of phase changes with crystal modula-
tions or small crystal distortions:

- Ferroelectric and antiferroelectric transitions, with the
apparition or change of orientation of permanent dipoles.,

- Magnetic phases (including cooperative Jahn Teller effects)

i? spin-orbit coupling and thus magnetostrictive effects are con-
sidered.
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--—— AAAA_.._BBBB---

--.- BABABABABABAB...
b

Figure 3 : Tendency to aggregation by dispersion forces : a pre-
ferred to b.

- 'Plastic' phases, where molecules rotate around their center
of gravity.

- Insulator metal transitions (Mott transition) ...

Except in the ferroelectric case, the small lattice modula-
tions are but a shadow of a larger change in ordering of an elec-
tronic or molecular parameter, and fall therefore really outside
the scope of this discussion. The ferro (antiferro) electric cases
themselves are made more difficult to study by the ambivalent na-
ture of the interactions of dipoles (cf figures 2.b,c), by the mo-
re or less covalent nature of interatomic bondings and, in some
cases, by the difficulty of describing correctly the H bonds. Thus
if much experimental work has been done in that field, the theore-
tical analysis remains elementary in many cases. This is especial-
ly true for the displacive ferroelectrics where dipoles are crea-
ted by a small crystal modulation of the non ferromagnetic phase,
and which therefore fall most directly within the field of inte-
rest here.

It is also worth pointing out that, because electrons are
localized, each phonon mode possibly involved in a phase transi-
tion interacts necessarily with all the valence electrons. Cou-
pling of individual electrons with phonons are only involved in
states excited above or near the conductibility gap, thus in exci-
ted conductive electrons or valence holes or in excitons. These
couplings are well known both in polar and non polar crystals, They
change the effective mass of the carriers, can lead to their self-
trapping and to hopping conduction processes. Such processes only
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involve strongly excited electronic states of no importance in
phase changes, except near to a Mott transition.

Two examples of modulated structures with short range inter-
actions

The magnetic helical structures provide historically the
first example of modulated structure, with a wave length that can
vary continuously and thus can be incommensurate with the period
of the lattice. Although actually found in metallic structures,
they were first analyzed in terms of short range (magnetic) inter-
actions valid for insulators(2). It is worth recalling this ana-
lysis and point out a direct extension to non magnetic modulations.

a) Helical magnetism

One considers a 3 dimensional lattice made of a stacking of
parallel and identical planes of magnetic atoms. We assume a fer-
romagnetic coupling between atoms in each plane, and a strong ma-
gnetic anisotropy which forces the atomic moments to lie in the
corresgonding Xy plane. Let 3, be the magnetic moment per atom in
the nth plane. The coupling between atoms of different planes is
limited to interactions between first and second neighbouring pla-
nes. The coupling energy U per atom is given by

N

NU =} [ Ay izil A LI Y }

n=1 j=t2

If one Fourier analyses the components S X, Sny of én in the xy
planes (within the first Brillouin zone = O < k < K= 27/a),

b'e
S, =) S cos (kR + )
k
y - :
Sn X Sk sin (k Rn + ¢k)
k
with R = na
n

one finds
: 2
Uu=2 Z S (A, cos ka)
' k 1
The different Fourier components are thus additive and their ener-

gy is phase independent.

2)1/2

At T = OK, (X Sk = S, length of the magnetic moment.

The minimum energy U is obtained for one mode k, which, depending
on the values of A1 and AZ’ is (figure 4)
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F : ferromagnetic (ka = 2m ).
A : antiferromagnetic (ka = (2m+1)7).
H : helical (cos ka = —A1/4 AZ)'

Ay

Ar=-LAy H |or M A= LA,

0
ForU \\/&mo A

Figure 4 : Magnetic couplings of layered structures with in-
teractions between nearest and second nearest neighbouring planes.
Also elastic distortion of layered structures.

At T # OK, magnetic entropy coupled with excitation of spin
waves introduces terms in S_ for the free energy which reduce the
average atomic spin moment %S > and couple the modes k. At high
enough temperatures, it leadsn<Sn> to disappear.

b) Modulated crystal structures

Let a 3 dimensional layered structure have elastic interac-
tions between first and second neighbouring planes so that the
energy of distortion is expressed in terms of the displacement u
of each n plane by n

NU=I§q A T w02+ T w02 eosuP?)
MOS U L 2j=12 n n+j’ | n

>2 . . . . .
where 0(Su P ) describes corrective anharmonic terms in relative
displacements Su_ = u -u_,.

n n n
Taking

u = E U cos(k Rn+ ¢k)
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leads to the same analysis at OK. Depending on the values of A

b
A2, the most stable state is (figure 4) 1

U undistorted (k = 2 m w)
O : optically distorted (k =(2m+1)m)
M : modulated sinusoidally (cos ka = - A1/4 AZ)'

The amplitude u  of the distortion must now be limited at OK
by a supplementary " factor : it is the role of the anharmonic
terms O(Su p>2) in NU_, which also actually couple somewhat the
modes k. AY finite temperature, entropy terms must be taken into
account, which can make the average <un> go to zero.

2 - Delocalized valence electrons

Barring complications such as ionocovalent structures or rare
earth metals, which are somewhat on the borderline with the pre-
ceeding case, three types of bonding belong to this class

- covalent structures (figure 5.a), where the atomic struc-
ture respects the highly directional conditions for building over-
lapping atomic s p® hybrids. This opens a gap between the valence
and conductive band, for interatomic distances d smaller than the
critical hybridizing distance dc' Insulators correspond to equi-
librium distances d << d_ ; semiconductors and semimetals to

c
d<d ord >4d.
o ¢ ) c

- normal metals (figure 5.b), where the atomic structure does
not respect covalent sp bonding conditions, but is as closepacked
as possible. Near d , the lower part of the broad sp band looks
like that of a nearly free electron gas.

- transition metals : the broad s band overlaps a narrow d
band. The atomic structure is again fairly closepacked.

Because in b, ¢ there is no energy gap near the Fermi level,
these structures are necessarily conductors.

Linear combinations of atomic orbitals (i.e. tight binding)
are a possible starting point on the two extremes a (sp®) and c
(d 8) ; nearly free electrons is more adapted to b. More exact
computations require the full panapherlia of muffin tin and
computers.

General features of cohesion can again be understood using
successive approximations for the electronic structure (cf Appen-
dix B).

L . . . 3
= In the Hartree approximation, and in a Wigner Seitz apprgagh
which uses for computing the energy band the same atomic potential
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Figure 5 : Schematic band structures : a covalent; b normal me-
tal; ¢ transition metal - Shaded areas : allowed regions;
crosshatched areas : regions occupied by valence electrons for a
given number of electrons per atom. d interatomic distance.

as seen by an electron in free atoms, cohesion comes from the fact
that the broadening of atomic states into bands is essentially
symmetrical in energy : for an incompletely filled s, sp or sd
shell, the electrons then gain energy by going into the condensed
phase ; maximum cohesion occurs for half filled band systems,when
the 'bonding' states are full and the 'antibonding' ones empty.

The total band width is related to the frequency of escape of
an electron from one atomic orbital, thus both to the strength of
the overlap with the orbital on a neighbouring atom and to the
number of bonds this orbital takes part in. In covalent structu-
res, bonds are few but very effective (strong overlap, and energy
gap lowering the average energy of valence electrons); in metals,
cohesion is maximum for maximum number of neighbours : compact
and little directional bonding is favoured.

A more refined study in the Hartree scheeme introduces an ave-
rage electron-electron repulsion which destabilizes somewhat the
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condensed phase, especially for normal metals(A)(S). Hartree Fock
and Coulomb corrections are then essential in normal metals to com-
pute the absolute cohesive energy. They also lead to significant
corrections in the middle of transitional series (Appendix C).

They should however play only a reduced role in the latent heats

of phase changes, as they are mostly sensitive to the atomic vo-
lume more than to the crystal structure. This is not quite true

of long range Coulomb corrections, which come in when all the a-
toms do not play equivalent roles in at least one of the phases.

If now crystal modulation is made on one of the structures of
figure 5, it will induce 'virtual excitations' or a 'polarization'
of the valence electrons. There is therefore a strong relation

with the problem of electron-phonon coupling, especially in conduc-
tors.

IT - ELECTRON-PHONON COUPLINGS (FOR DELOCALIZED ELECTRONS)
A. Soft Modes at OK. Adiabatic and kinematic approximations
1 - General (crystals)
We consider a time independent real perturbation

v = z v_ exp(igg)+ C.C.
q 8

To first order in (non degenerate) perturbation, each Bloch func-
tion |n,k> becomes

i
o dggen e g e ng

n' g "

K Ptk

T
o' lg<ntskgrkle k>

ln’&> + 2 v S
9 q

+§V*§

8 p E™ - B
8 kKR
K is a period of the reciprocal lattice . In reduced zone schee-

me, one chooses such that k and E' =th%+§ are in the first
Brillouin zone (figure 6).

If v represents the effect of a (static) phonon mode, 9 is
restricted to

84 K

with ]6' < }SRL'
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Figure 6 : Convention for & : a normal (K=0); b umklapp (K#0).

To second order in this non degenerate perturbation scheeme,
v introduces then an electron |nm%> phonon R0 coupling energy

1(g,*K")x

,<n,k|V% +§, e © |n',kt80+5>|2
n (o]
éEk (%o)=<n,&|v|n,k>+g' gD _ En'
,6' }\S }§+'%o+}\<4
“i(g,*K "%

|<n,k|v* ) © n',k-q + >[2

) QL ; kK 1)
n

E " B}

2 TR

To this order of perturbations, the various Fourier components
introduce in the energy terms that are additive and independent of
the phase in v.

The total energy change for the electron is

SEM =V SE T(q) .
b gupee b o

The total energy change for the phonon is

SE. = Y SENg) (2)
o n,kocc k %o

2 - Energy change for the phonon

- First order term. It is zero except ifq@o = 0, thus except
for a uniform distortion.
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Example : if a degenerate strong Van Hove anomaly is lifted
by a uniform shear € without much change in form (figure 7), and
if the Fermi level falls initially on the anomaly, the distortion
will lower the average (Hartree) energy of the valence electrons
by an amount proportional to the lifting of the energy degeneracy,
itself proportional to v thus to €. This negative linear term
SE = - Ac in the energy must be balanced by an elastic reaction of
the® lattice E (e) =(1/2)E 82, associated with the rest of the elec-
tronic and iofiic structure :

Eo(e) + GEo(e) = - Ae +(1/2)E €2

This results necessarily in a spontaneous distortion € =
can be termed a band Jahn Teller effect.

%, which

- Second order term. Terms where |n,&> and |n',k'> are both
occupied cancel out two by two. Only unoccupied |n' &'> states
need thus be considered.

n n

oc £

7

Em E

m

M E
a

b
Figure 7 : Band Jahn Teller effect : a v=0;b v#0.

They also provide negative contributions : the second order

electron-phonon coupling necessarily lowers the phonon energy.
1

In an insulator' , the denominator E, " - E 'n is always fini-
te (larger in amplitude than the energy gap between the valence
and conduction band). GE% is therefore a correction that varies
continuously with . It remains small everywhere, being of the
second order in the small phonon amplitude. Explicit estimates of
v_ later on will show that the total perturbed energy Egq + GE% of
all phonons are then expected to remain positive : the mode softe-
ning due to electron phonon coupling is much too small to become
catastrophic. Crystal modulation is therefore expected not to take
place normally in covalent crystals. This is after all reasonable:
the strongly directional covalent bonds are not expected to lead
normally to several structures of comparable energy and differing
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only little from each other.

In conductors, a large contribution is expected for pairs

In,k> , |n' k'> of states both near to the Fermi level. With

"= & + K, such points are near to lines such as L, figure 8.a
where thé Fermi Surface S_ cuts a surface S'  obtained by a trans-
lation of § by * g +K. When, for a given direction, % oF in-
creases in Size, L decreases to a point (figure 8.b), then disap-
pears (figure 8.c). One then expects the special contribution from
the neighbourhood of L to vary stromgly near to the critical values
of * go+§ such that SM and S'M just touch.

Figure 8 : Critical region L of integration and its variation with
* %o+§, near a critical value of that vector.

Figure 9, 10 describe schematically four general cases in
three dimensions.

o . SM and S'M touch on a conical point.

B .S, and S', have in common a point and a tangent plane, but
different curvatures.

Yy . S, and S' have in common a point, a tangent plane and
one common curvature.

§ . S, and S'M have in common a point and the two principal
curvatures.

Case B is the normal three dimensional one. o arises if the
Fermi level happens to fall on a Van Hove anomaly, and %o is such
that S, and S', touch on that point. Cases Y and § are possible if
the Fermi surface has a complex geometry ; they are traditionally
called nesting conditions. Inspecting the immediate neighbourhood
of L, one sees that the general two dimensional case (where in
three dimensions Fermi surfaces are parallel cylinders) corresponds
to case Y; the general one dimensional case (in three dimensions,
Fermi surfaces are parallel planes) corresponds to case §.
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ol

;illl"lllllsv Su i::;’L
s *
p ®

Figure 9 : Four cases of contact between SM and S'M.

éeqo Jqu
Q} i Ol
& qu ' .
6Eq0 6qu
0|
$ %
0
p N j q,

Figure 10 = Corresponding Kohn anomalies.

Figure 10 gives the corresponding behaviour of GE%O in the
immediate neighbourhood of the critical value for q, *
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inflextion point.

inflexion point with infinite tangent.

: discontinuous change of slope.

o <X W R

: negative infinity.

In the 3 dimensional case B for instancg, one can choose sui-
table axes KL’ K, (figure 8.b) such that EJQ and Ek— +§ can be
developped near L as B

n 2 2
= = +
EJé E1 EM a KL + b KW

n _ _ _ _ 2 2
E}§ K =E, =E, -a (kK)+bEK

The integral in (1), (2) can be written

- £(k) - 1

GE%O— E-F d3k = const + & ko 1n |k0|
172

where k measures the distance or the overlap between SM ans S'M,

figure 8.

Because of the contribution to integration in (1), (2) of the
neighbourhood of the Fermi surface, the negative correction in
SE is larger in conductors than in (band) insulators. It has
furthermore an anomalous behaviour when this contribution disap-
pears : this is the Kohn anomaly predicted initially for nearly
free electrons(®) and observed in the phonon dispersion curves of
many normal and transition metals.

The discussion below on v_ will show that v, < q , thus
8Eg vanishes with q and is ugually too small to®produce soft
phogons. The generalo form of 8Eq pictured figure 10 takes into
account the variation in q 2 of © 8Eq_near the origin. This form
predicts that soft modes ©

~ should always occur at the critical value of q 1in the 3 di-
mensional case § of complete nesting (or in general in one dimen-
sion).

~ might occur at the critical value of q_ in the 3 dimensio-
nal case Yy of partial nesting (or in general in two dimensions).

- might occur, for q, near to the critical value, in the gene-
ral 3 dimensional case B .

- are unlikely to be associated with a Van Hove anomaly at the
Fermi surface (case a).
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3 - Classical examples
a) Nearly free electrons in 3 dimensions

The first application of these ideas can be said to date from
the 1930's. It refers to the explanation by Jones(7) of the regular
succession of crystal phases noticed by Hume Rothery 8) in 'normal’
metals and alloys when one varies their electron per atom ratio.

In such crystals where the valence electrons are omrly weakly scat-
tered by the atoms, the scattering by the crystal structure can be
Fourier analyzed, and each Fourier component acts on the nearly
free electrons as a (static) phonon mode. This mode has a stabili-
ty that varies rapidly when its wave vector is near to one of
the critical values defined figure 8.b, and the whole crystal
structure has a stability very sensitive to the electron per atom
ratio (or the size of the Fermi sphere) when the critical condition
is fullfilled for a maximum number of Fourier components.As the g
are here reciprocal lattice vectors, it is the same to say that
the structure is such that the Fermi sphere touches a maximum
number of Brillouin zone boundaries. Figure 11 pictures the beha-
viour of the contribution of SE%O to cohesion versus electron per
atom ratio in two such structures. It is here the whole atomic

T
A A+B B+C C
0 electrons/atom
a
dEq,
T
\ B /I
A+B*\ ,'IB +C C
A R .\_vl_ _____
A+C
0 electrons /atom
b
6Eq°

Figure 11 : Two possible cases of Hume Rothery- Jones phases in

normal metals and alloys, and the corresponding phases diagrams at
OK.
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potentials which scatter the electron, and not their displacements
from a periodic arrangement. As a result v, and 6Eq_do not vanish
at small values of q_ (for a fixed number of electrons) or at lar-.
ge electron per atom ratio (for fixed q and thus crystal structu-
re). As stressed figure 11, the successive Hume Rothery Jones
structures met at increasing electron per atom ratio will be ac-
tually observed at OK only if their corresponding stabilities are
increasing (case a). Even then, one should distinguish two types
of conditions for the phase diagram at OK of a solid solution
between two elements M M2 : the extremal phases (such as A, C fi-
gure 1la) should extené to near the critical electron per atom ra-
tio ; and the intermediary phases (B, figure 11.a) should have a
narrow range of stability near the corresponding critical electron
per atom ratio. One does not expect much change in the phase
boundaries with temperature at low temperatures (because the elec-
tron entropy is near to that of free electrons in any case) except
that the lattice entropy might stabilize at high temperatures 9) a
phase such as B, figure 11.b, which is unstable at OK. A famous
example is the BCC B phase of Cu Zn alloys.

The same condition of Brillouin zone boundary tangent to the
Fermi sphere has been used to explain more complex alloy structu-
res where superstructures modulate a fundamental simple crystal
structure(log. The modulation can either be a concentration modu-
lation, thus producing a special kind of ordering (Au Cu alloys)
or a periodic succession of stacking faults (Ag Cd alloys).

b) Narrow d bands in three dimensions

The conditions for soft modes by critical Kohn anomaly can be
expressed explicitely for transitional metals in a tight binding
(LCAO) description of the d band (11), They are usually complex,
owing to the complexity of the Fermi surface.

c) Narrow d bands in 2 dimensions (planes)

This case was first seriously considered for the layered 3
dimensional structures of transition dichalcogenides(12 , where
the transition elements build up close packed planes which are
separated by rather insulating layers of S, Se or Te. To first
order at least, each plane has a two dimensional d band with an
electronic structure which can be treated separately (figure 12.a).

d) Narrow bands in one dimension (chains)

This Ca??&YaS first considered theoretically by Peierls(13)
and Frohlich (figure 12.b) : Kohn anomalies appear very clear-
ly in compounds with parallel conducting chains separated by more
or less insulating material :
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o

el e

el e

el e [

e e oo

B
a b c

Figure 12 : Three types of two dimensional cases : a parallel
planes ; b parallel chains ; ¢ 3 orthogonal sets of parallel
chains.

- KCP (chains of Pt atoms)(ls).
- TTFTCNQ (organic chains)(16).

e) Band Jahn Teller

The first application of Band Jahn Teller effects was made on
Al5 transition compounds (V3 Si, Nbj Sn ..), which have three or-
thogonal sets of parallel chains of transition atoms (figure 12.c).
The first studies considered the lifting of degeneracy by shear of
the edges of the d bands of the linear chains, assumed independent
(17); further studies considered the lifting of degeneracy of in-
termediary peaks possibly connected with the interactions between
the chains(18)(19),

NB : In the historical development of these concepts, there is
an intimate relation with metal magnetism. Thus

- ferromagnetism is the analogous of the Band Jahn Teller
effect.

- antiferromagnetism and helical magnetism are modulated
structures.

Conditions for the stability of these magnetic phases were
in all cases expressed in terms of Coulomb and exchange interac-
tions, sometimes before the corresponding conditions, for crystal
modulation (Stoner's criterion for ferromagnetism 20), Slater for
antiferromagnetism , Lomer for helical and modulated structu-
res(zz)) The quantitative differences involved will be discussed
below.
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- In all the low dimensional cases, there exist interplane or
interchain couplings which actually make the substance a three-
dimensional one, at least at low temperature.

B. Discussion of the approximations
1 - The meaning of v

We must define more precisely the meaning of the effective
potential v which describes the effect of a phonon on the elec-—
trons. We shall show on two extreme simple cases that it is not
actually a proper potential. We shall also see that v_ it propor-
tional to q and has necessarily an order of magnitude’which makes
an 1instability condition only possible near a Kohn anomaly.

- Nearly free electrons (one atom per unit ce11)(23). If we
assume each weak atomic potential V.({v%») to be bodily shifted
by the phonon without change of form, we have

v% exp i g x = g [Vi(£ - 51'¥i)'vi(£'5i)]:%“i VR, V. &R;)
Assuming

%1 = &%0 exp i '%0 ‘%1 (3)

and if V}é is the Fourier transform of Vi(£),
igx
<k|v e k'> = - i( YV S(k'-k+g).
vg, ¢ | B0 By ) Vg Sk -k v A,

This goes to zero w1th q,- For free electrons, there are no
umklapp terms, and no Coupllng of electrons with shear waves.

NB :-The assumption of rigid displacement of V will be dis-
cussed and somewhat corrected later on.

- V is a pseudopotential(za), thus as operator, such
that <k|V1| + K> =V _is a function of K = k'-k but also of k.
Thus the Continuous vadriation of V, with k will distort Eq ,
without changing however the mathematical form of the Kohn anoma-
ly ; and the value of V, appearing near to Kohn anomaly refers
specifically to states E and k' near to the Fermi level.

- In the undistorted crystal structure, the Fermi surface
is distorted from a sphere by the scattering by the undisplaced
pseudopotentials V.. However in the approximation so far used,
these distortions are of second order in V.. To take them into
account in computing Gqu would introduce correction of higher
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order than qu.(ZS)

~ Tight binding (one atomic orbital per unit cell)(zs)(26).
With the energy of an atomic orbital |i> in a free atom taken as
zero of energy, the tight binding hamiltonian for a non degenera-
te band reads

Ho= ] B;5 1i><il
i
j near to i

if one neglects the electrostatic crystal field term, an approxi-
mation valid in pure metals.

In the same spirit as for free electrons, one can assume that
the displacement R given by (3) bodily displaces the atoms and
their atomic orbitils |1> without otherwise changing the atomic
potentials and orbitals. With these shifted orbitals |i'> , the
change in hamiltonian produced by the displacements X; reads

~ LN ) b |
6H = X (SBIJll ><] |
j near to 1
where
= ' = ' -
GBij R i Gdij B ij(uj ui) cos eij .

ei. is the angle made by R. - ﬁi = %i' with the direction
Eq of alsplacement (figure 13)J J
)

0ij
Ri dij Rj

Figure 13 : Definition of 0,., d.. .
- 1] 1]

To first order in u, [i'> can be replaced by li> . Hence
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i(k'ng% gi)és,

ij

) Se
. : . N
j near to i

<n, )§|v|n }6'>

' 1 ki
= z B'i. u_ cos eij[l-exp(-igoéij)Je ¥

j near to i o
60" gy

This goes again to zero with g . In general, shear waves are now
coupled with electrons. There are umklapp processes. Finally, as
for free electrons, this expression is not only a function of

'-k=gq +Ko > but also a function of k : v is an operator and not
a s1mp?e potential function. Only near to k = O can one neglect
this variation.

- Orders of magnitude for soft modes. Both expressions of Vqo
are similar in order of magnitude : u o 9o qu, where qu is the
derivative or the Fourier transform og an electronic energy term,

In expression (2), the denominator of G&E n(& ) is larger than
the energy gap g, if one considers an insulator . In that case,
the second order correction is

8Eqo = X, |v, |?
q,' 9,
with -1
qu =8

and the mode would be soft only if

40 9
or
2
v )
45 1
>—X—:g
Eq, q,
with
E = % M2 wz u2
9 o Yo

M atomic mass, w_ pulsation of the phonon without electron-phonon
coupling. o

Hence the condition :
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As Mw_ >> 1 atomic unit, and g 4, Vq ~ a fraction of atomic

) )
unit, this condition cannot usually be fullfilled, except perhaps
for very small gap semiconductors (g = 0).

The same applies to metals, with x—l of the order of the Fer-
mi energy, except near a Kohn anomaly o where the soft mode con-
dition can possible be realized.

In conclusion, although v is not exactly a potential, simple
estimates applicable respectively to normal or transition metals
show that only modes connected with a Kohn anomaly can usually
become soft.

2- Self consistency (to first order)

This point has some general interest, and will therefore be
developped in some detail.

In the same approximation used so far, a perturbing potential

V(E) produces in the valence electrons a local change in electro-
nic density

gkl @Bl

So(p)= 1 v, ] ; w(p) w, ()
a %ok EJ@“— E£+%+}é K KK
n'k',
inocc

where, as before, C*is deduced from the first term by changing
el in -q and v% in v

a) Asymptotic perturbation, far away from a localized pertur-
bation v.

For insulators, all terms in (4) are regular. The ,integrals
are obviously dominated by the regions where EP' and En are near-
ly stationary, i.e. the neighbourhood of Van H5Ve andﬁalles. If
the perturbation v acts near to the origin, the main contribution
for r > @ w111 come from the couple of Van Hove singularities for
which ER - EI , is a minimum, i.e. the top E_, of the valence band
and th lsbott Ec of the conduction band, figure l4. A regular
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E

b ———

ky ke k
Figure 14 : Energy gap in a band insulator.

development of E and E near to the corresponding points k
Ec in the rec1pr5ca1 spa%e gives ea511y(27)

Sp - Z oscill (K x) oscill (k_~k,)x exp(:%?
r > ®© §QERL

where oscill (x) means a sinusoidal function of x. One can show
that
. 2n
T % 1/2
bn (EC EV)]
where the effective mass m' is itself proportional to EC-EV. Hence
a « (Ec_EV)-l'

The interband terms thus give rise to a rapid exponential
degrease of Gp(a) outside the perturbed region where v # O.

For conductors, the contributions(ggefzghe Fermi level give
one or several further intraband terms . The asymptotic
behaviour is dominated by the neighbourhood of lines such as L,
figure 8. And the main contributions will arise when the phase

of the matrix element of exp i qx is nearly stationmary. This
requires L to reduce to a p01nt (figure 8.b and 15) where the nor-
mal to the Fermi Surface Sy is parallel to k. 1f there are only
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a b

Figure 15 : Value of q dominating the asymptotic behaviour of
50(&) in a metal : a simple case ; b more complex case.

two such values of q = ¢ q. (figure 15.a), an integration near the
them gives '

§p > () oscill Kp) r " oscill (g_ x)
Kekp, ‘

r > ©

with n =4, 3, 2, 1 depending on whether the contact
of S, and S' on L is of the type a, B, Y,8 respectively (figure
9). %n more complex cases (figure 15.b), there are interference
terms between these various p01nts P Qe T all the possible

= ' '
L1 LJ(L1 Ll’ 29 3, Ll’ L2, L! ) (flgure 15.b).

b) Screening to an external potential.

Let Ve( ) be an external perturbing potential applied to the
system. It will produce a displaced charge dp(a) which itself pro-
duces a supplementary internal screening potent1a1 V. (E)’ so that
the total potential acting on the electrons is

vi(g) = v (x) + v (x)
Poisson's equation gives*
2
Bv.(x) = - 4 me" Sp(x)
and Ap is related to v by equation (4).

Fourier transforms give

¥ As usual, v is the potential energy of an electron.
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V. =V o+ v,
8 4 1§

q2 v. =41 e2 Sp

] !

s~ § xS
4 ke 1 LK
K KRL

where the general susceptibility ¥ X which relates charge to po-

tential is a tensor. This set of equgtions allows in principle to

compute the selfconsistent perturbing potential v and perturbed
electronic density Sp for a given external potential ve(a).

Thus, introducing the general dielectric tensor

2
K 4T e K
€ = §(K) -
q ( 8(K) q2 Xq )
such that K
X €0 Va+K " Ve
g 44 q
one obtains 9
q
) € 8p = ) BK) -€) v
K99 452 k . 4

c) Screening of a phonon wave. Charge density wave.

v _is now the perturbation potential due to a phonon. The
preceeging equations show that each Fourier component v__ of the
phonon potential produces a charge density wave (30) with? various
Fourier components §p, at q'= q + K__. This wave screens the ex-
ternal potential v, into a total potential v with Fourier compo-
nents v_,. Thus in general the charge density wave has a somewhat
complex’structure ; and it couples the various Fourier components
of the total potential v, so that the dielectric constant eX is a
tensor. q

The consequence of this screening on the stability of the
phonon will only be discussed in the two extreme cases where these
formulae simplify.

- Nearly free electrons. The umklapp terms K # O disappear ;
and the susceptibility takes a simple form (figure 16):
qz(l—eq) ; 1 4kM2-q2
X = — = -— o - [1 <+
q 4 1 K Ek Ek+q 4 qu
occ

2kM+q

2n
ZkM—q

._} (<0)
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0 q

Figure 16:Susceptibility Xq for free electrons.

In the second order terms in v for SE q,> equations (1), (2),
one must distinguish the contributions of v and v., and not count
twice the Coulomb interactions of 8p with ifself. As a result,

|v |2 should be replaced b Jv v | = €_1|v |2. Hence the second
S/( nd eq

order term in qu reads(24 q eq
X 2 _
68 = _€&|Veq|z=(_l _4ﬂ§)1|ve'2.
q Xq q q

Thus the Kohn anomaly due to X 1is reduced but not suppressed by
that in eq. 4

The instability condition of the phonon mode becomes

2
vl
—ea 1 5
€

q q
The production of a charge density wave coupled with the phonon
?nd screening its potential thus introduces a reduction factor
= <1, for x < 0. The charge density wave stiffens the phonon,
Eq q

1
Xq

and thus makes its instability less easy to produce.

Tight binding

- For half filled bands and elementary alternate structures,
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there is no charge density wave coupled with a phonon mode (26) ,
Alternate structures are such that only closed circuits with an
even number of interatomic jumps between neighbouring sites are
possible (figure 17.a).

B A B
X X x X
A X X x

A X By xg

x X —— X x
B x At"_jB XA X \\i// x

Figure 17 : Two types of crystal structures : a alternate ; b non
alternate.

In such structures, one can define two interpenetrating latti-
ces A,B such that each A site has only B nearest neighbours, and
vice versa. To each electron function

lv> =] ajln,a> + ] ag|m,B>
nA mB
with energy
nm n¥ m mn m¥ n
BE= ] (Byp @y 23 * Bgy ap 2p)

nA
mB near nA

there corresponds a function

lpr>= 7 a¥|n,A> - ) a%|m,B>
nA A mB B

with energy - E, symmetrical with respect to the middle of the
band ; andnthese two wave functions give equal electronic densi-
ties (} laA|2 or 2,35,2) on each (A or B) site. Thus, whathever

the diStortion and as long as the alternate topology is preserved,
such structures with half filled bands have the same number of
electrons on each site, equal to the number of atomic orbitals
involved.

For less than half filled bands, such structures have an
accumulation of electrons in the compressed regions, where the
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transfer integrals B.. are larger in amplitude, thus the band ef-
fectively larger but'd still symmetrical ; the converse is true
in extended regions ; there should thus be a charge density wave
associated with the phonon, providing a repulsive correction in
the compressed regions and an attractive one in the extended re-
gions (figure 18.a). The converse should hold for more than half
filled bands (figure 18.b), where it is justifiable to talk in .,
terms of positive holes.

b

Figure 18 : Longitudinal phonons in alternate structures : a
electrons ; b positive holes.

In non alternate structures, the same distinction between
electrons and holes respectively for nearly empty and nearly
full bands ; but the transition from one type of behaviour to
the other, thus the exact filling for which no charge density wave
is produced, will depend on the type of phonon considered. The
condition for no charge density wave will still occur near the
middle of the band.
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- If one considers only the intraatomic contribution to
screening due to the charge density wave, this again can but
stiffen the phonon(32). Let U be the average Coulomb interaction
between valence electrons on the same site. To a local change 6p.
in electronic density there would correspond a local change GV In
the atomic potential of site i such that

cSVi =U 6pi

This replaces Poisson's equation in the preceeding analysis. And,
in the extreme case of nearly full or nearly empty non degenerate
bands, where a simple geometry of the Fermi surface prevents
umklapp processes to occur, the unstability condition reads
[veql?
eq
E

—us>-L

q Xq
The addition of U indeed makes a soft mode less easy to produce.

- One should however also consider interatomic contributions
of the screening to the stability of the mode(29) . This Madelung
energy can lower the energy of suitable modes. A historical exam-—
ple is the special stability of Kohn anomalies along parallel
chains when neighbouring chains are in phase opposition, which was

Figure 19 : Coupling in antiphase of Kohn anomalies along parallel
chains, stabilized by long range electrostatic interactions.

predicted by Barisic(26) and later observed in linear chain com-—

pounds such as KCP 15

A general study of the tight binding case, combining the intra
and interatomic contributions of screening has not been made so far.
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It is conceivable that in some cases the overall effect could make
the phonon mode softer. It is however very unlikely, because U is
a large positive quantity. Indeed the electrostatic correction is
most favourable for stabilization if modulation is at wave lengths
such that neighbouring atoms have opEosite ch&rges * q. The total
electrostatic correction then reads = U 2 - & per atom where R
is the interatomic distance and a thé ¢ Made%ung constant. With
a/R = 1/4 Atomic unit, and U = 1/4 to 1/2 At. unit, the correction
is negative but small. Furthermore we have seen that at such wave
lengths, the amplitudes of a charge density wave produced by a
phonon is small.

Conclusion

- The screening changes the strength, but not the nature of
the Kohn anomaly.

It corresponds usually (but not always) to a charge density
wave which is coupled with the phonon ; this usually stiffens the
phonon, thus making soft mode conditions less easy.

- Indeed the production of a charge density wave without a
phonon 30) would require 8p # O for v. = 0, or, according to the
analysis above, the dielectric constant € going to zero. This is
clearly impossible for free electrons, whére X. < 0, and very unli-
kely in tight binding, except perhaps for mode$ with short wave
lengths which are but weakly coupled with the phonons. It is thus
unfortunate, to say the least, that the fashion is nowadays to
call a soft phonon mode by the name 'charge density wave' which
actually is the part in the mode that fights against its instabi-
lity!

- The situation would be quite different for a spin density
wave, because there the positive U term is replaced by a negative
term describing intraatomic exchange effects : a spin density wave
can soften into a magnetically modulated stable structure, without
necessarily being coupled with a structural distortion. Coupling
between spin density waves and phonons by spin orbit coupling can
lead indeed to weak but non zero magnetostrictive lattice modula-
tions.

—~ For nearly free electrons, the second order term in SE
can be thought of as due to the modulation by the displacemen% u
of the pair interactions between the atomic pseudopotentials, each
treated to second order as the interactions of two impurities

in a free electron gas. Taking E_llve |2 is the same as conside-
ring the interaction of the scredned potential of one atom
acting on the maked charge of the other im the pair.
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- The (screened) Kohn anomaly can be considered as a resonan-
ce between the phonon and the Fermi electrons responsible for the
long range oscillations of the screening. It is also an interfe-
rence effect of the long range oscillating (screened) interatomic
forces. Indeed if the Fermi electrons have a long but finite mean
free path %, due to say scattering by imperfections, this will
dampen exponentially the long range oscillations of the inter-
atomic forces (in exp - L) and corrdlatively broaden the Kohn
anomaly over a width &k™= 2 m/&. But it will pratically not chan-
ge the nature and the stability of the possible soft modes.

3 - Other correlation effects

- Magnetism : exchange effects lead to possible ferromagne-
tism or soft spin density waves, thus various modulated magnetic
structures, which will not be considered here.

~ Energy : Coulomb correlations introduce corrections in the
energy. As stressed above, they are important for evaluating the
absolute value of cohesion, but play only a reduced role in the
relative stability of crystal phases (cf Appendix D).

- Damping : electron-electron collisions are only active at
finite temperatures. They introduce resistive terms which are u-
sually at most comparable with those due to imperfections (impu-
rities, phonons). In all cases, electron phonon coupling seem to
dominate on electron-electron scattering ; this last term can be
treated as a fairly small correction, ana}ogous to that just men-
tioned for scattering by imperfections

4 - Degeneracy of electronic states

- First order terms. If the lattice structure has degenerate
Van Hove anomalies at different points kr’ ... in the first
Brillouin zone, a phonon mode v_ with g = k= k. *+K # 0 can
. . . s r RL
lift their degenerary to first drder :

<k, |y Inkg>#0

This is a natural extension of the effect possibly associated with
uniform distortions, and can thus be termed an extended Band Jahn
Teller effect.

- Second order terms. The one beam (kinematic) approximation
used until now is not valid, strictly speaking, near the lines L,
figure 8, where it is used to analyse the Kohn anomaly. In such a
region, one Bloch function 1n',&i&o + K> takes an amplitude com-
parable with |n,k> . It is then better to develop the perturbed
function |w> in these two wave functions, neglecting the contri-
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butions of the other Bloch functions |n",k"> , which will be small
and regular.

|
1
]
|
]
|
|
!
|
1

L
-+ <

[ A

| )

o

i A
ktqg+k ) k ke tqy-k k
Figure 20 : Two beams approximation (in the case n' = nj.

Thus we reduce the hamiltonian

H= ) Elfnko<nkl + 7 [nko<k|v]k'><n'k'|
kK Kk’

- i

to
H = % [Eg‘n,k><n,k| * E£|H,k><ﬁ,k|
+ v |n,&><;,k| + C.C!‘
- %O
where E£ = E}g;’(\{loJr}6 (figure 20).

The well known solutions of this (nearly) degenerate problem is

n 1 ["n
Ek(%o) =2 _E&+E

+ n_ ;1 2 2
. /m& 57+ v, | ] (5)

n
kK
with

|¢k>= ukln’k> + Vkla’k>
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lE“—E“»/ )+41v|

2 T " B O

where the sign + refers to the upper continuous curve B, the sign
- to the lower one A, which replace the crossing point.

This two beams approximation supresses the divergencies in one
electron energy E (% ), densities - of electronic states n(E), and
eventually Kohn anomalies which arise in the one beam approxima-
tions.

Thus, in three dimensions, figure 21 pictures schematically
the differences arising for n(E) and the corresponding (non self
consistent) Kohn anomaly for nearly free electrons. The anomaly
is split into two successive anomalies, corresponding to the two

n 7 55%

9%

IR |
-4

Figure 21 : Three dimensional free electrons scattered by a phonon
in the two beams approximation : a density of electronic states ;
b Kohn anomaly.

Van Hove anomalies A, B induced by the phonon at the extremi-
ties of the energy gap, figure 20. The special stability can thus
be viewed as due to the fact that, over a fairly large part of the
reciprocal space, the scattering by the phonon lowers the energy
of the occupied electronic states and lifts the energy of the
empty states. The total effect is clearly less marked than as
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computed in the one beam approximation. But it can be shown(34)
that, when developped to second order in v _, the results for
cohesion of the two beams approximation are‘identical with those
of the one beam approximation, in the general 3 dimensional case
(cases 0, B of figure 9).

In one or two dimensions, no such equivalence exists between
one beam and two beams approximations. This last one systematical-
ly gives less marked Kohn anomalies.

Thus, in one dimension, figure 22 gives the density of sta-
tes and the (non selfconsistent) Kohn anomaly. It is first clear
that there is a total energy gap between A and B, figures 20 and

SEq o

a

Figure 22 : Effect of a phonon on one dimension electrons : a
density of electronic states ; b Kohn anomaly.

22, so that when the Fermi level falls within that gap, one pro-
duces an insulator, at least as long as the phonon is static.
From equation (5), one deduces, with n(E) « dk/dE"k(qo),

v, |?
n(E) = # o (B) V1 + —1 for E <E, or E > Ey
(E-E)
d
= < E <
0 for EA E EB.
where E = L (E,+E_) is the center of the energy gap, and n (E) is
2 B o

the eletronic éensity of states in the absence of the phonon
(figure 22.a).
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Also "
1 [ M n n)
SE = = (E; (q) - E, )dk
94 T K k
With _
n n
d Ek L d Ek ) k - kc
dk dk mn (E)
o' ¢

where n (E ) is the unperturbed density of electronic states at
energy E , this gives

L [ /k—kc)z , K-k
SE == I--z———z———"' |Vql -TT——H—(_E—)} dk
o 0O -~ 7 n “(E) o' ¢
(o] C
[v |* - 2 2 1k, ~k
.. 4 (a4 /i, .a e _ _a” I'MTe
= T——-g-argsh T__T -
2 m’n_(E)) L [Vq{ Vq' Yq Vql%-kc

2 - 2 - 3
~ qul 2 kc kM kc 2 kM kc
Yo n - + = —_—

2 mn ™T™m Vv Tn Vv mTn V

o o) o o)

+0 kM - kc ]
4 i no Vq

The anomaly is very peaked (because |v | << k /7 n_, which is of
the order of the electronic band width?. But if rem3ins finite,
as soon as vq is finite (figure 22.b).

It must also be stressed that a proper selfconsistent descrip-
tion in the two beams approximations has not yet been developped.
It is however not expected to lead to fundamentally different re-
sults.

5 — Anharmonic terms

There are various terms higher than second order in the ampli-
tude of the phonons that must be taken into account.

- Terms in u" with n > 2 must be considered to study the equi-
librium amplitude of a soft mode. Such terms should be screened
selfconsistently, and this has not been studied completely so far.

- Phonon-phonon couplings arise from such anharmonic terms.
This leads to various effecéts :
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- Strong attenuation of the nearly soft mode, just above the
transition conditions. As a result, such a nearly soft mode with
large amplitude might loose its physical meaning near the tran-
sition.

- Star of soft modes with equivalent q's : thesg ?gft be
treated together, and their couplings considered(33)( .

- Phase modulation and phase 1ocking(37)(38). Only a few re-
marks will be made on this topic, which will be treated fully la-
ter at this Institute.

Consider a (sinusoidal) longitudinal mode of distortion
produced in a crystal, with a wave vector g. This will usually
set up a charge density wave which will in turn produce a sinu-
soidal (or nearly sinusoidal) potential with wave vector q- The
lattice will react in turn to this potential : the atomic planes
will tend to avoid the top of the sinusoid and concentrate in
the lower parts.

- To first order, this reaction can be described by a supple-
mentary sinusoidal distortion which, for nearly free electrons
or holes, will certainly be in antiphase with the intial distor-
tion, as stressed above.

- If the initial distortion is large, one must however consi-
der the non linear response of the crystal. This is very similar
to the problem of the reaction of a periodic elastic chain ?gg)
?£8Ti4?T a rigid periodic substrate, as a model for epitaxy

(fig. 23).

— The first deviation from linearity can be described as if
the medium was continuous. It will distort the sinusoidal distor-
tion (or introduce harmonics) in such a way that the phase of the
initial simusoid will be modulated. By analogy with a classical
hydrodynamical problem, each period in the modulation has been
called a soliton.

As the lattice is assimilated to a continuous medium, the
initial sinusoidal distortion could be shifted with respect to
the lattice without change in energy. In fact, one must distin-
guish two cases

- g is commensurate with a lattice period. When one shifts
the sinusoidal wave with respect to the lattice, one necessarily
goes through different configurations, such as a, b figure 22,
with different energies. One of them must be more stable than the
others, and the wave must have its phase locked in that position
at OK. The locking is obviously more effective for large amplitude
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sinusoids, and for short period sinusoids, with wave lengths
small multiples of the crystal period.

Q /—\/—\
b /‘\/\
PP P

Figure 23: Phase locking. a, b commensurate wave, c uncommensu-—
rate wave.

- if q is not commensurate with the lattice, the continuous
non linear solution mentioned above leads to atomic planes being
distributed all over the top of the sinusoidal potential so that,
when the wave is shifted, its energy is not changed : the phase of
the distortion wave is not locked ; the wave could in principle
be a travelling one, and has thus been called a phason. It is
however most probable that it is pinned down by stationary defects
or slowed down by anharmonic interactions with normal phonons. But
if the amplitude of the initial sinusoidal distortion increases,
there will necessarily be a moment when the phase of this uncom-
mensurate wave will also become locked. One is sure this has hap-
pened when the negative curvature at the top T of the sinusoidal
potential, figure 23.c, becomes larger than the elastic constant
that keeps the atomic planes PP'P" more or less equidistant. The
plane P' at the top of the sinusoid will then become unstable
and be locked on the left or the right of T ; a finite energy will
be necessary to move it across T. This is the analogue of the
Peierls friction against the 'epitaxial dislocations' whose glide
allows the glide of the epitaxial layer. As in epitaxy, and depen-
ding on the exact conditions of the problem, the phase locking can
lead to commensurate or uncommensurate phase locked structures. '

Finally it must be stressed that a selfconsistent description
of the phase modulation would require a modulation of the initial
sinusoidal screening potential. This is not expected to lead to
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new physical effects.
6 — Adiabatic approximation

A travelling phonon has a finite frequency w_ which should be
taken into account in the exact description of thé electron-phonon
coupling (14

A phonon now couples strongly electronic states with energies
E.' and ED, differing by Ww . But as this is usually much smaller
tﬁhn the“electronic energigs involved, this only rounds off slight-
ly the central part of the Kohn anomaly, without altering its es-
sential characteristics. The effect is furthermore vanishing in
the limit of soft modes, where qu tends to zero.

The only cases where the adiabatic approximation is not suf-
ficient for the study of Kohn anomalies is when the slow electrons
near a Van Hove anomaly are considered

The adiabatic approximation is of course also insufficient
to compute the indirect attractive electron-electron coupling res-
ponsible for supraconductivity, although once the form of this
coupling is obtained, a time independent treatment is sufficient.

7 - Entropy at finite temperature

The discussion has centred so far on OK phase changes, indu-
ced for instance by a variation of pressure.

If a crystal modulation is stable at OK, one usually observes
it to disappear above a sufficient temperature. This is due to
entropy effects, which can be complex.

There are indeed a priori several possibilities and only a
study case by case can show which of several possible factors is
predominant.

The entropy can arise EE?T electrons excited across the (first
or second order) energy gap It can also be due to phonons.
If it is due to phonons, it can be due mainly to the soft mod?33)
renormalized by its anharmonic interaction with other phonons

(44) ;3 or it can be due to other modes.

In one or two dimensions, critical fluigg?E§gys of the soft
mode should be dominant at low temperatures They are
however usually kept down in that range by three dimensional cou-
plings.
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APPENDIX A - SHORT RANGE ORDER DUE TO DISPERSION FORCES

Let A, B be two atoms or molecules interacting at long range
by dispersion forces. Let [0A>, |IA>, [0B>, |IB>be the fundamen-
tal and main excited states of the two molecules involved in the

dispersion forces, with energies Eg, E?, Eg, E?. The development

of the long range Coulomb interaction between A and B gives rise
to a pair interaction between electric dipoles on A and B. If A
and B have no permanent dipoles, only dipoles induced by mutual
polarization interact. Thus if C is the Coulomb correlation term
in the hamiltonian describing the pair, its only matrix elements
different from zero are <A_ B, | C | A B >= <A B |C| AB >,
c, . . L B | 11 0o

and it is proportionnal to Uy U, with

ui=<iolxlil>.

A perturbation development
> = > >
| v> = dag> + a |a>)( [By> +8 [B)>)

then gives

A B
Ey + Ej - E <AyBy[C|A B >
A _B =0
< > -
A, 31| C IAO B, E, +E/ - E
Hence the dispersion interaction
< 2 2 .2
=E—EA—EB=AOBO,CIAIBI> « - A"B
YAB 0~ "0 A B A B GA + 6B

E]+E1-EO-Eo

i i
where Gi = EI E0 >0
Considering now three pairs AB, AA, BB at the same relative

distance. One can define a short range order energy as

2 2 Y 4 N2 - 2
5w=..].(w . ) u, ug _.‘l_.l.l.B._«- (uA uB) 6A6B+(uA6B uBGA) ©
2V"AA BB ""AB’ SA+6B 28A 26B (SA+8B) GASB

The negative sign of 8w for dispersion forces can be constras-—
ted with its positive sign for Coulomb forces between ions, where

2
o - >
hence Sw (Z ZB) 0

A negative sign of 6w favours segregation in pure A and B pha-
ses ; a positive sign of 8w favours ordered compounds (cf figure 3,
a and b respectively).
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APPENDIX B -- LCAO STUDIES OF THE BAND STRUCTURES OF METALS AND COVALENTS

In the LCAO approximation, the one electron wave functions
are analyzed in terms of atomic functions |i, m> (site i, wave
function of type m), assumed nearly orthogonal

m o .
> a. i m>
|y >=] a |i
i,m

<i, m|j, no>= %j S

With a suitable origin of energies, the hamiltonian reduces to one
site and two sites terms

mn . . mn . .
H = Z Ay |im> <in| + . Z . Bij | im><jn|
1 i,j near to 1
. m,n, .. . .
The transfer integrals R allow interatomic jumps. The intraatomic
terms A come from electrostatic crystal field interactions (for

m = n) and from atomic promotion energies if the ]i,m> functions
are hybrids made with atomic functions of different energies.

1 — H broadens the atomic states into bands without changing
the average energy. This can be seen by computing the first moment
of the density of states (per unit energy and per atom) in the
bands ; using the |i,m> set as a (pseudo) complete set :

M, = [n(E)EdE = Trace H :'113 ) <i,m| H |]i,m > =0
(ﬁatom@ i,m

A rough estimate of the band width can then be deduced from
the second moment (4

H

h (E)E’dE = Trace H? = 1 <i m [H| jn><j,n |[H| i,m >
N . ,
b
b

i,m
1,n
1 mn . nm 1 1
N [. Z . Bij Bji * Z Amn nm)
i,j near to 1 1
m, n m,n

with usually [A| << |B|, at least in elementary structures, the
effective band width is finally given by an average value of the
B; multiplied by the square root of the average number of nearest

neighbours. Hence large cohesion for strong bands (large B8's)or many
bonds (large p's).

2 - In sp metals or covalents, the lower limit of the valence
band is obtained with pure atomic s states, and coefficients a$S of
constant sign (minimum number of nodal surfaces). In crystals with
one atom per unit cell, the solution is a? = const. and
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_ 1 ss _
Epin © W g Bi;=p<B>
j near to i
As p >pl/2, this estimate of the band width is larger than the pre-

vious one, but of the same order of magnitude.

3 - In sp covalents, the ]im> functions can be taken as sp
hybrids such that only functions |in> and |jn> pointing along the
same covalent bond between two neighbourin% sites 1, j have a non
vanishing (negative) transfer integral 8 (45) | There are then non
vanishing one site terms Z%n M = A associated with the atomic

(negative) promotion energy ES - E . Thus (figure B.1)

H= B ) lin><gn | +A ) lin><m |
i, j near to i i,m#n
n

Writing H |y> = E]w> and projecting on |in:>gives

AZ ar.n+8 al = E a

min ] i
or m n n
Angai + B a; = (E+4) a
J
m
n
p
i
Figure B.1 : Notation of sites and bonds in an sp covalent
structure
Similarly
AZaP + 8 al = (E + A) al
J 1 J
p
n _ B n
Hence (E + A) a; = Aci + TR (Aoj + Bai)
and
(B + )% - 82 - pA(E + 1))o, - BA] o, =0 (B-1)

J
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with o, =) a®
i i
m
Equation (B-1) is the LCAO equation for an s band on the same

atomic structure, with transfer integral BA and energy

€=(E+ M2 - B2 - pA(E + A). General theorems tell us that such
an s band has limits g & such that

- p BA= €, e g5+ pBA

The symmetry in energy pointed out in the text shows that €2

is equal to pBA for alternate structures ; a variational procedure
shows that €, is lower than pBA for non alternate structures, as

defined in the text.
Hence for | B |> %-‘ A,

B+ (p-DALEZLB-A or B+ (p-NDALEL=-B-A
for |8l <Z]al,

B+(p - NDASKEE-B+(p-1DA or + B-ALEZL=-8=-A.

Figure B.2 schematizes the results, taking into account an expo-
nential variation of 8 with the interatomic distance d(47)(48),

E
E
B
B
P
P
S s
A A
d d
a b

Figure B.2 : Allowed regions of energy for an sp covalent band in

the LCAO approximation : a alternate structures ;
b non alternate ones (NB : for sp® bands with n > 1,
the lines pA, pB are allowed pure p states not

discussed here).
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3 - More exact details about n(E) are necessary to compute
the relative stability of different condensed ghases. This can be
obtained from a study of higher moments

- q
M = n(E) E* dE
LI

and from a development of the Hilbert transform of n(E) as a conti-

nuous fraction(so)(Sl)(sz)

n(E') [ o
f E-E' dE b
E-a. - ._.:.I'_.._
1 b
E-a,- 2
2 .

where the ai's and bi's can be expressed in terms of the Mq's, and
have an asymptotic behaviour dominated in crystals by the van Hove
anomalies of n(E).

APPENDIX C - PHASE STABILITY FOR NEARLY FREE ELECTRONS

Treating the scattering of a free electron gas by the atomic
pseudopotentials vi (r-R; ) as sma11 the total energy of the valen-
ce electrons can be wrltten( 5

= +E, +E_ +

E=Ey +E + B+ 030

The zero order term Ej is the cohesive energy of a free elec-
tron gas in a uniform background of positive charge that neutrali-
zes the system. It is a function of the electron density or of the
Fermi wave number ky. It contains exchange and Coulomb correlations,
essential to stabilize this 'jellium'.

The first order term E; corresponds to first order (Born)
scattering of the free electrons by the pseudopotentials v;. Each
site scatters independently as an impurity, and the Born approxima-
tion is only meaningful if screening of each v; by the valence
electrons is included : in E;, the v; are 'clothed', the relation
with the 'naked' v;'s being, for each Fourier component K

c
ik

(eK dielectric constant of the free electron gas).

v =T /e
iK'"K

The second order terms Ej have two different origins :
- double scatterings on single sites.
- successive scatterings on two different sites.

E| and the first terms in Ej are only a function of the
nature and density of atoms. Only the second terms in Ej depend on
the relative arrangement of the atoms, i. e. on the atomic structu-
re. They can be written as a sum of central pair interactions Eij
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between two atoms i and j, acting as if they were an isolated pair
of impurities in a free electron—gas. General theorems tell us
that to this lowest order, Ej; is the Coulomb interaction of the
clothed potential of one atom on the naked charge of the other.
Thus, using Poisson's equations(55)(56)

. _ 12 st -
KGR K e15 x-R:)

c J '
E;; [ vix e d K o d.K

i% 5..
e 1] d K
2 € 3

[}

Owing to the logarithmic anomaly of €g for K = ZkM

oscillating function of 2kMRij’ with an amplitude decreasing as

, this is an

RE? at long range. It is the change in z E.. between different
i,j#i

lattice structures which gives rise to the latent heat of phase

change. In crystals, the integral reduces to the periods KRL of the

reciprocal lattice :

vn n
JoE.. - kK2 Vik Vik
i, 741 1 KEK,,, 4me” €k

Owing to the logarithmic decrease of €k for K > 2kM, this term

increases suddenly, for increasing electron per atom ratios, when
2kM = KRL’ or for the Fermi sphere tangent to Brillouin zone

Boundaries.

Third order terms in v would introduce directional forces and
possibly finite mean free path effects. They are however difficult
to analyze in a convincing way

APPENDIX D - COHESION IN TRANSITIONAL METALS

Considering only the d band and within the LCAO approximation,
this can be written as
E=E +E +E, 6+ ....
0 1 2
The zero order terms is the Hartree one electron term when one
neglects interactions between valence electrons (or uses the Wigner
Seitz approximation referred to in the text) 57)
J' EM

E0 = n(E)E dE

where the zero of energy is taken as the energy of a d state in
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the atom. The Fermi level EM is related to the number z of d elec-
trons per atom :
E
z = f M n(E) dE
= - 2 2 .1
From dEo/dz En and d EO/dz n(En) , one deduces that Eo(z)

has a single maximum for a half filled band (E, = 0 or, as the
first moment of the band is zero, z = 5). Indeed it does not de-
viate much from the parabola obtained if n(E) was a constant over

an energy - ¥<E <¥ (figures D.1)

) 7
~ 2z (10-2)
Ey 20 ¥

And the (small) deviations with crystal structures are coherent
with the succesion FCC, HCP, BCC, HCP, FCC observed in the transi-
tional series

The first order correction originates from the Coulomb and
exchange interactions between valence electrons, as computed in
the Hartree Fock approximation i. e. for valence electrons random-
ly distributed over the lattice sites, taking only into account
the exclusion principle 38) | If one only cornsiders the average
intraatomic terms Unm = U and Jn#m = J, the differences in popula-

tion of the 10 d orbitals in atoms and in the paramagnetic metals
gives

_2(10-z) = J
By = m7p0 U~ wu- D g - s
where T z for z < 5
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Figure D.l : Contribution to cohesion in a transitional series :
(schematic) :a - Eo;b,c tEj ;d-Ey; e - Total.
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The term in U reduces the amplitude of cohesion ; the term in J,
due to the special stability of half filled magnetic d shells,
introduces a secondary minimum in cohesion near the middle of
the transitional series (figure D.1).

The second order contribution E, is the first correction
for electron-electron correlations. As U >> J, only the term in
V2 need be considered. As U induces virtual transitions between

occupied and unoccupied valence states, with number Z_ and 1- Z_
1

. 10
per atomic orbital, an estimate neglecting conservation of momen-

tum in electron-electron collisions gives

- fEM IEM w/2 w/2 Un(E )n(E,))n(E,)n(E,)dE dE,dE.dE,
2 E +E, -E, - E

¥ ¥ g g 1T B TR TR,

2 2 M M
This is approximately (for rectangular d bands) )

3 3
B501 - 2pv)2
E2: 7 A 10 10
W
The numerical factor A is of the order of 50.

This is a small positive correction, which does not play a
large role in the cohesive energy but explains the secondary mini-
ma observed in the surface tension and the elastic constants, near
the middle of the transition series

Cohesive energies, elastic constants and surface tensions are
coherent with the set of values of the parameters involved as gi-
ven in the following table(3), As stated in the text, the first
order Coulomb interaction (term in U) decreases cohesion by a term
independent of crystal structure. The second order correlation
correction increases but a little cohesion, by a term somewhat
structure sensitive.

TABLE I - Values of parameters in eV

J u w A
3d 0.7 (3) (6) 0.05
44 0.55 3 9 0.15
5d 0.55 <3 12 0.40
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NEUTRON SCATTERING STUDIES OF ELECTRON-PHONON INTERACTIONS

J.D. Axe
Institute Laue-Langevin, Grenoble, France, and

Brookhaven National Laboratory, Upton, N.Y., U.S.A.

This review is an attempt to summarize the areas in which
neutron scattering has been used in studying electron-phonon inter-
actions, and to display some of the key results. The examples
chosen reflect the interests of the author and represent in no way
a complete survey of the subject.

I. PHONON DISPERSION IN METALS

The most obvious and direct way in which electron phonon in-
teraction manifests itself is in the phonon dispersion of metals.
When phonon dispersion curves of simple metals are analyzed by
Born-von Karman theory typically force constants between fifth
nearest or even more distant neighbors are needed.l>? Furthermore
the magnitude of the successive force constants is often oscillat-
ory,29 reflecting the rather long ranged oscillatory character of
electronic screening. Born-von Karman models are both unweildy
and unphysical, and it is now generally recognized that it is more
satisfactory to formulate models in which conduction electron
-phonon interactions are explicitly dealt with.

In the harmonic approximation phonon frequencies and eigen-—

vectors are obtained by diagonalizing a dynamical matrix R(Q).
For our purposes a sufficiently general form is

_1 —> >y, > _ 2 >\ >
D (@) = T 1 ((G+a) o(Gra)(E+a), - C (BT (1)
G
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Fig. 1 The effective electron screening potential for sodium
metal. The solid curve is deduced from phonon dispersion measure-
ments (Ref. 5). The crosses represent calculations by Toya (Ref.

6).

where ¢(K) is the Fourier transform of an appropriate ion pair
potential, v is the volume of a unit cell and the sum is over all
reciprocal vectors G. For metals it is convenient to write the
potential as the sum of three terms,

o(%) = ¢C(%) + oT(K) + ¢5(F) (2)

representing a) Coulomb interactions between ions, b) core repul-
sion of ions and c¢) ion-electron-ion interactions, respectively.

Figure 1 shows a comparison of the potential for sodium de-
rived by Cochran® from experimental phonon dispersion curves,l
compared with an early calculation by Toya® which attempted to
deal in a fundamental way with tEe conduction electrons. & (K) is
normalized by the coulomb term ¢ (K) = Lwe2/K2. Although the agree-
ment is remarkably good, the further comparison of the measured
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and calculated dispersion curves, while impressive, was not com-
pletely aatlsfaﬁtory. This is the resylt of the near cancellation
of the ¢~ and ¢ terms in eq. (2). (¢ is nearly negligible in
sodium.) As a result phonon dispersion in metals generally pro-
vides a very stringent test of our understanding both of electron
-ion potentials and of many body screening effects within the elec-—
tron gas itself. It is fair to conclude that much of the stimulus
for developments in pseudopotential theories | over the last decade
came with the availability of reliable inelastic neutron scattering
measurements of phonons in metals.

The additional comment that must be made concerning Figure 1
is that it is not in general possible to uniquely deduce interionic
potentials from phonon dispersion curves. There are two distinct
difficulties. The first is that both the phonon frequencies and
eigenvectors are needed to reconstruct the dynamical matrix D(q)
Although the eigenvectors can in very favorable cases be deduced
from inelastic scattering intensities, in simple structures the
problem is best resolved by measuring along those directions in
reciprocal space where the eigenvectors are fixed by symmetry.

The second problem is that the structure of eq. (1), which in prin-

ciple involves reclprocal lattice vectors, G of arbitrarily large
value, is such that no unique value of ¢( ) can be deduced from a

knowledge of %&a) This reflects the fact that in a real space
formulation D(q) depends only upon 34¢/dr and 82¢/8r2 evaluated at
dtstances of interatomic separation. Cochran was able to derive

¢ (K) shown in Figure 1 only by assuming physically plausible con-
straints on its behavior.

II. KOHN SINGULARITIES

Kohn singularities arise because of the abrupt changes 1n
electronic screening which occur when the phonon wavevector q,
spans the Fermi surface of a metal.10 The effect is most simply
discussed in the case where the electron wavefunctions are sufﬁ
ficiently planewave-like over most of the unit cell to allow ¢ (K)
to be approximately factorized in the form

87(K) = =] v(K)| X0 () /{1 + v_(0X0(K)} (3)

Here v(K) is the effective ion-electron potential and ve(K) is
the electron coulomb plus exchange potential.ll xO0(K) iS the fam-
iliar one electron susceptibility
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f - f
X0(k) = § A ()
K k+k 'k

The magnitude of the Kohn singularity depends greatly on how
well pieces of Fermi surface separated by the wavevector K are
matched. For simple ellipsoidal surfaces where the matching is
poor x9(K) is regular, but there is a logarithmic_singularity in
the derivative 3x°(K)/3K.12 Brockhouse, et. al.l3 were the first
to find phonon anomalies with these expected properties in a study
of lead. Lead is favorable because of the large electron-ion po-
tential, v(K). In most other simple metals the effects are too
small to be obvious by direct inspection of the dispersion curves.
Nevertheless, Stedman and coworkers, by making very careful measure-
ments (v0.2% precision) and by examiniﬁg Aw/Aq have identified 2
large number of other anomalies in All and Cul® as well as PLiP.
(It is important to realize that while the first moment of the
line shape can be determined with such precision, the lines typi-
cally have a width 5% due to instrumental resolution.) A sub-
stantial fraction of the anomalies have been assigned to known
features of the Fermi surface with reasonable certainty. Ng and
Brockhousel” have followed the changes in the size of the Fermi
surface that occurs when Pb is alloyed with Tl.

In the event that a substantial portion of the Fermi gurface
"nests" into a matching portion displaced by a wavevector K, the
singularity in x°(K) becomes stronger. In the limit of perfect
nesting there is a logarithmic singularity in x°(K) rather than in
3x9/8K.12 When the nesting is less than mathematically perfect it
is still possible to have strong cusp-like singularities in x9(X)
itself.12515 such cusps are seen in the phonon dispersion in
Cr, Mo,l and W,2O and are believed to result from nesting of
electron and hole pockets in the rather complex Fermi surfaces of
these materials. A particularly strong example occurs in Cr, as
shown in Figure 2. Nb and Nb-Mo alloys also have suspected Kohn
anomalies at wavevectors that can be reasonably correlated with a
rigid band model of the Fermi surface.?1s22 yhile it is often
possible to find qualitative correlations, it is a common obser-
vation that anomalies predicted by simple considerations of Fermi
surface topology are in some cases too weak to be observed and in
other cases relatively strong. There has been little effort to
understand the shape and strength of the anomalies in a quantitat-
ive way.l

It is a very striking fact that many high T superconductors
exhibit rather broad anomalous dips in their dispersion relations
which are not seen in their neighboring low T counterparts.i0
For example, (Figure 3) Nb has such features Which are not seen in
Mo, and similiar relationships are observed in the V,Cr and Ta,W
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Fig. 2 A portion of the phonon dispersion of chromium near the N
symmetry point at two temperatures. (Ref. 19).
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pairs. Similar features have been pointed out by Smith and his
coworkersll for the transition metal carbides. These features are
too broad to be Kohn anomalies and furthermore, as has been shown
for the Nb-Mo system, do not scale with the size of the Fermi sur-
face. Sinha and Harmonl2 have proposed a model in which collective
charge fluctions within the localized d-states softens the lattice
response. They suggest that a large density of d-states at the
Fermi surface is required. It is not clear whether the correlation
with high T superconductivity, which undoubtedly exists, is or is
not a causal one.

III. NEUTRON SPECTROSCOPY OF SUPERCONDUCTORS

Thus far we have been concerned with the electronic screening
effects of the phonon frequencies. These can be adequately de-
scribed in the adiabatic approximation. In order to discuss the
influence of the electrons on phonon linewidths, it is necessary
to consider the damping due to excitation of electron-hole pairs.
This is accomplished by replacing the static susceptibility x°(K)
in eq. (3) by

£ - f
o oy v kT Mkex
X(K,L\)"’ll’])"}i — 1
K Ckekg g T @t AIn (5)

The electronic damping is introduced via Im x°(XK,w), and is in
most cases small enough to be completely masked by phonon-phonon
scattering. In a neutron scattering experiment this in turn is
usually masked by instrumental resolution!

Nevertheless in strong coupling superconductors in the vicin-
ity of T there are abrupt changes in electronic damping which are
sufficiently strong to be studied by neutron scattering.2®:2T
This behavior arises because phonons with energy less than that of
the temperature-dependent superconducting energy gap, 2A(T), are
energitically incapable of decaying by excitation of electron-
hole quasiparticle pairs.

Although the theory of this effect dates from the early BCS
period28, the effect was first seen in neutron scattering some ten
years later in Nb3Sn.26 Recently more refined measurements have
been performed in Nb. 27T Figure 4 summarises some of these latter
measurements. When 2A(T) equals the phonon energy, hwy, an abrupt
change occurs in the linewidth. Certain qualitative features,
such as the displacement of the curves to lower temperature with
increasing phonon energy, are obvious from the sketch included in
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the Figure. The rounding of the discontinuity can be partly ac-
counted for by resolution effects. All three sets of data in Fig-
ure L show that when hw_ slightly exceeds 2A(T) the phonon line-
widths are greater than%their values far above T . This effect,
which is due to an increased density of electron®states at the gap
energy, is in qualitative agreement with theory. Since the real
and imaginary parts of x0(K,w) are related by Kramers-Kronig re-
lations, we expect29 and find anomalies in the phonon frequencies
in the vicinity of T  as well (see Figure 5).

Measurements of this type are of course of interest because
they provide an alternate means for direct determination of the
temperature dependence and anisotropy of the gap energy. In ad-
dition, they measure that part of the phonon linewidth, ygp, which
is due to electron-phonon interaction. Allen30 has pointed out that
it is very closely related to quantities of interest in strong
coupling superconductivity by deriving a simple explicit relation
between Yep and the electron-phonon spectral function o?F(w).

Obviously neutron scattering measurements of this sort are
successful only if the electron-~phonon interaction is sufficiently
strong that the quenching of the interaction when 2A(T) > hwy pro-
duces a measureable effect. Given presently available spectrometer
resolution, the technique is unfortunately restricted to a small
handful of strong coupled superconductors.

IV. MAGNETIC FIELD EFFECTS

In the preceding section we saw how the presence of an energy
gap in the conduction electrons can be manifested in the phonon
spectrum. Another way of introducing energy gaps in the conduction
electrons is by application of an external magnetic field, and
under suitable conditions this too may produce interesting effects
in the phonon spectrum.

When a magnetic field is applied to a metal the energies of
the conduction electrons are quantized into a series of Landau
levels. In momentum space this quantization is represented by the
condensation of the electron energy states into a series of tubes,
each having a constgnt cross section in a plane perpendicular to
the applied field, H, as shown in Figure 6. The cross sectional
area of each tube is proportional to H. The energy of an electron
lying on the n'th tube is

.h2k2
Z

(6)

e (k) =(n+ %)h-wc"-gmll
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Fig. 6 Free electron Fermi surface and tubes onto which electron
states condense in a magnetic field along k. (Ref. 34).

Xhere kz is the component of the electron wavevector parallel to
H, m[] Is an effective mass and ws is the cyclotron frequency.

In the free electron case, as discussed by Cowley,31 and by
Sham,3? there are two distinct kinds of effects depending upon
whether the phonon propagation vector, is parallel or perpendicular
to H. For q || H there are Kohn-like singularities in x%(q,w,H)
whenever q equals the length, 2k , of the portion of the n'th tube
that lies within the Fermi surface.33 However even for 100-KG
there are %103 Landau levels below the Fermi energy, so that the
tubes are very closely spaced relative to the available momentum
resolution of a neutron spectrometer and the strong field induced
singularities are greatly smoothed out.

> > 0 . 33 .
When q | H, x%(q,w,H) has a different structure~> reflecting
the fact that phonons can now scatter electrons from the n'th to
the (n + p)'th tube, subject to the conditions
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Fig. 7 Im x(Q,w) is finite in the shaded area with a magnetic
field perpendicular to the phonon propagation. (Ref. 3k).

(k) = e (k) = phu, = Buy (7a)
and
k -k =q (o)

where w_ and q are the frequency and wavevector of the phonon and
kn is tHe component of the electron wavevector lH for the n'th
tube. This is Jjust the cyclotron resonance condition, and we con-
sequently expect the electron-phonon interaction to contribute to
the lifetimes of only those phonons whose frequencies are integral
multiples of the cyclotron frequency.

A more detailed consideration of the possibility of observing
the effect of a transverse magnetic field on phonon lifetimes by 3
conventional neutron spectroscopy has been given by Pynn and Axe.
Figure T shows the effgct of a small component of phonon wavevec-—
tor, AQ_, parallel to H on the energy quantization of electrons.
w_ = (efi/mc) v 1 meV for H = 100 kG, which is well within the cap-
ability of a neutron spectrometer to resolve. The major difficulty
that occurs is that typical spectrometer momentum resolution ex-—
tends well beyond the value AQ?aX in this Figure, at least in the
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case of free electrons. No anomalous effects can then be observed
as the smeared value of Im xo(q,w) is the same with and without
the applied field.

Pynn and Axe suggested that only if there were flat sections
of Fermi surface which could be aligned parallel to H could the
momentum resolution be sufficiently relaxed to make a neutron
scattering experiment feasible. They tested these ideas by measur-
ing the effect of a 50 kG field on phonons near the A, Kohn anomaly
in Nb.2> 1Instead of measuring the width of the phonons directly,
they monitored the peak intensity as a function of H and found a
small oscillatory component with a period consistent with the
cyclotron mass deduced from deHaas—van Alphen measurements.

It is clear that neutrons are potentially very useful to in-
vestigate Fermi surfaces, both through Kohn anomalies and cyclo-
tron resonance effects. A distinct advantage, in principle, is
that these studies could be extended to impure metals and alloys,
which are difficult to study by conventional methods. Similar re-
marks pertain to the potential of neutron spectroscopy of super-
conductors. It is fair to conclude, however, that substantial
technical improvements will be necessary to make these techniques
broadly useful. Order of magnitude increases in reactor fluxes
might go a long way toward affecting the necessary resolution,
but this is not a likely short term prospect. Unconventional high
resolution spectrometers exist, 5535 put have not as yet been
adapted to phonon spectroscopy. It is sobering to recognize that
we will often require simultaneous improvements in energy and mo-
mentum resolution.

V. CHARGE DENSITY WAVE INSTABILITIES

The charge density wave (CDW) state occurs as the result of
a Fermi surface instability, which in the absence of electron
phonon coupling would be manifested in a divergent susceptibility,
x%(q _..) > =, at some critical wavevector. The actual instability
is a coupled mode which causes a simultaneous modulation of the
electron density as well as a distortion of the lattice, i.e. a
structural phase transformation. The neutrons couple to the nu-
clear distortions only. As might be supposed, simple theories
predict that CDW phase transformations are accompanied by a soft
phonon mode whose frequency is driven to zero by a "giant" Kohn
anomaly.3T The possibility of such an instability is greatly en-—
hanced in lower dimensional systems because of the possibilities
for favorable Fermi surface nesting.
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Fig. 8. Inelastic scattering intensity. Contours for KCP showing
sharp Kohn anomaly in the acoustic branch near z 4 0.3c* (from
Ref. 11). :

In the past few years very spectacular examples of giant Kohn
anomalies have been stgd&ed with neutrons in the quasi one-dimen-
sional conductors Kcp38—70 and TTF—TCNQ.hl'hQ As is demonstrated
in Figure 8 the anomaly in KCP is extremely sharp. It occurs
whenever q)|, the component of the phonon wavevector along the
one-dimensional axis, equals 2k_. The strength of the anomaly is
nearly independent of components of momentum perpendicular to the
one-dimensional axis. There is a large quasi-elastic central peak
revealing the presence of long lived short ranged correlations
over a wide range of temperatures, but no actual transition tem-
perature can be defined. It is possible that impurity pinning
rather than the effect of one—dimensionﬁl fluctuations is respon-
sible for the lack of long range order.*3

The layered dl—metal compounds NbX, and TaX, (X = S, Se, or
Te) show a variety of structural transformations“which are ralated
to Permi surface instabilities and CDW formation. Inelastic neu-
tron scattering studies of 2H-NbSe, and TaSe2 show large Kohn-like
anomalies in the LA phonons at wavevectorsh£0£ which Bragg sattelite
peaks occur at the onset of the CDW state. ™» 5 However, the
softening of the phonon is incomplete near T , the divergent be-
havior occuring instead in a quasi-elastic central peak as T > T .
The Fermi surface geometry is rather complex in these materials
and alternative models of Fermi surface nesting have been proposed.
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Fig. 9 Temgerature dependence of the incommensurate

wavevector ¢ = (1-8)a*/3 in TaSe,. and NbSe,.. A "lock-in"
transformatidn (to ¢ = 0) occurs In Ta892 but not NbSez.
L6

These systems have been extensively reviewed by Wilson et al.

One curious feature of CDW transformations is that the wave-
vector of the modulation, g .., is in general not an integral sub-
multiple of a reciprocal la%%%ge vector of the undistorted parent
structure. The resulting structures are termed "incommensurate",
and since they lack translational periodicity, they are not strictly
speaking crystalline phases. However, the periodic potential of
the underlying lattice causes non-sinusoidal distortions of the
condensed planewave displacements and may lead to subsequent trans-
formations which "lock-in" the period of the displacements with
that of the lattice. These effects show up clearly in the neutron
scattering resultstS on the layered chalcogenides shown in Figure
9. The most striking feature is the abrupt change of the satellite
wavevector from (1—6)a1/3 to the commensurate value a. /3 which oc-
curs at T~ 0.76 T . NbSe, does not achieve the commensurate
state even at the Towest at%ainable temperatures, but as in TaSe
the satellite wavevector shows a pronounced temperature dependence,
whose origin is closely related to the lock-in phenomenon itself.
Moncton et. al., > using a phenomenological Landau theory, showed
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that this behavior could be understood by allowing additional sec-—
ondary distortions with wavevectors chosen to take advantage of
the periodic lattice potential. They were also able to directly
verify the non-sinusoidal nature of the incommensurate state by
observing secondary Bragg satelliteﬁ at the postulated wavevec-—
tors. McMillam)47 and Bak and Emery 8 have recently given more
detailed discussions of the nature of the incommensurate ground
state.
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PHASE TRANSITIONS IN QUASI ONE-DIMENSIONAL METALS (TTF-TCNQ AND

KCP)

Per Bak

NORDITA, Blegdamsvej 17, Copenhagen, Denmark

1. INTRODUCTION

Quasi one-dimensional conductors are characterized by their
very anisotropic conductivity which takes place almost entirely
along one particular direction. Most of these systems are organic
chain systems. The best one-dimensional organic conductor known
is tetrathiafulvalene-tetracyanoquinodimenthane (TTF-TCNQ). The
present activity in this field started by the observation of Cole-
man, Cohen, Sandman, Yamagishi, Garito and Heegerl that samples of
TTF-TCNQ exhibit an anomalous peak in conductivity at T=60K but at
lower temperatures the conductivity drops sharply and the material
becomes an insulator. Although it was widely believed that this
behaviour was related to a phase transition it took rather long
time before such a transition was actually observed.

Of particular interest in this respect is the coupling between
the electron system and the lattice which may lead to at least two
different types of phase transformations: either into a supercon-
ducting state or into a Peierls state? characterized by a static
charge density wave (CDW) and an accompanying periodic lattice
distortion. Careful theoretical estimates, however, indicate that
for an almost one-dimensional system the dielectric Peierls tran-
sition will occur before the superconducting phase transition may
take place. The physical mechanism behind the Peierls transition
is the decay of phonons into electron-hole pair. Because of ener-
gy and momentum conservation the phonon wavevector must connect two
points on the Fermi surface. The interaction creates a dip in the
phonon energy - the Kohn anomaly. For this process to be important,
there should be a large density of states at points on the Fermi
surface separated by the phonon wavevector. Clearly this condition

66
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is fulfilled for one-dimensional, or nearly one-dimensional systems
where the entire Fermi surface is two planes separated by 2kp. At
lower temperatures it may become energetically favourable to have
static phonons at this wavevector — the Peierls transition takes .
place. Energy gaps are formed at the Fermi surface, and the con-
ductivity decreases.

For the theorist, one-dimensional systems are of interest in
themselves, since they may exhibit many characteristic and unusual
properties, and because one-dimensional models are more amenable
to exact theoretical calculations than the three-dimensional coun-
terparts. The most important property of purely one-dimensional
systems is that fluctuations prevent them from undergoing phase
transitions at all. This leads to an apparant paradox since we
have just argued that one-dimensionality is required for a Peierls
distortion to take place. Clearly, three dimensional effects,
however weak, are bound to be of crucial importance when dealing
with "one-dimensional systems'". The phase transformation in a
real physical 3-d system takes place as a consequence of a subtle
interplay between large one-dimensional fluctuations and weak
interchain coupling. The transition will set in at a temperature
which is significantly lower than the mean field transition tempe-
rature

T, = €5 €XP (— E%) , 1.1)
where v and €p are the velocity and energy at the Fermi surface
and g is the electron phonon coupling. It is this transition which
destroys the possibility of having a very high conductivity in
TTF-TCNQ at temperatures below 50K. The Kohn anomaly and the
Peierls distortion may be seen by x-ray and neutron scattering ex-—
periments which provide the most direct evidence of the phase
transition.

In addition to allowing the phase transition to take place,
the three dimensional coupling has another important effect. If
one ignores the periodic potential from the underlying atomic lat-
tice ("Umklapp terms") the phase of the CDW is free to move along
the 1-d direction. However, in the presence of interchain coupling
the relative phases on different chains, as specified by q, , the
component of § perpendicular to the chain, are fixed. The value of
qy 1is mainly determined by the Coulomb interaction which attracts
regions of opposite excess charge. We shall see that in TTF-TCNQ
q, varies with temperature to accomodate different ordering of
the two types of chain. If there is coupling to the underlying
lattice, the overall phase X may be "pinned". This coupling can
cause q) to lock at a commensurate value to take advantage of the
extra free energy. This appears to happen in TTF-TCNQ3. If 4 has a
component which is almost commensurate —either along or perpendicu-
lar to the chain- the CDW state may consist of large commensurate
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regions with constant X separated by comparatively narrow regions
-"solitons"- where X changes rapidly.

As the temperature is lowered below Tg, the electrons in-
teract over longer and longer distances, and the effective interac-
tion between chains is enhanced. Ultimately, this brings out the
true three dimensional phase transition. In section 2 the effects
of weak interchain coupling are calculated by means of a systematic
perturbation theory developed in ref. 5. The zeroth order term is
not the mean field solution of the system as a whole, but an "exact"
solution of the one-dimensional system. The expansion parameter is
1 or, equivalently, 1 where 7 is an effective number of interact-
Tng chains. In secti%n 3 the Bak-Emery theory3 of the phase trans-
formations in TTF-TCNQ will be reviewed. An important feature is
that the theory does not depend upon any microscopic model of the
system, but makes use of the space group symmetries of the crystal
above T, and theobserved symmetry of the ordered state below Te..
The perturbation theory presented in section 2 will provide a pre-
scription of how actually to estimate the numerical coefficients
entering the Landau-Ginzburg theory, in addition to providing phy-
sical insight into the nature of the phase-transition. We emphasize,
however, that the theory of TTF-TCNQ is based upon an expansion of
the free energy around the true phase transition, and not the tran-
sition temperature as given by any approximative theory. No attempt
will be made to actually identifying the details of the microscopic
mechanisms involved. The most striking consequence of the theory is
the prediction of a new phase transition. This transition has now
been confirmed by several experimental groups, and was found to
occur at T=W8K. This is one of the very rare cases that the existence
of a phase transition has actually been predicted before it was ob-
served.

Recently, charge density waves6’7 and Kohn anomalies8 with
wavevector components hkF along the chains have been observed, and
theoretical explanations have been proposed9-12, The possibility to
form these waves can be included in the Landau expansion3. This
does not give rise to additional phase transitions since the sym-
metry is not lowered further. In section 3.L an alternative mecha-
nism for the Ukp modes will be suggested, and in section 3.5 the
critical properties near the phase transitions are studied from a
theoretical point of view.

No one-dimensional system is ideal. Three dimensional coupling
is of crucial importance, but also imperfections or impurities are
always present. In particular, random impurities are almost neces-
sarily of importance in non-stoichiometric systems such as KCP
(Ko Pt (CN)y Brg. 3, 3H20) where there is a non-integer average
amount of Br atoms in the unit cell. The Br atoms are probably ful-
ly ionized and may act as a random potential on the CDW and in turn
induce large fluctuations of the phase and possibly destroy long
range order. It has been suggested that impurities are responsible
for the absense of a CDW transition in KCP13,14,5,
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In section 4 the theory of Bak and Brazovsky5 on the effects of
impurities on quasi-one dimensional systems will be described.

The field is assumed to interact linearly with the derivative of
the phase of the CDW and not with the phase itself. In the case
of a purely one-dimensional system the dynamical structure factor
(which can be measured in a neutron scattering experiment) includes
a central peak in addition to the phason branches which are also
present for the pure system. When the interchain coupling is in-
cluded, the actual phase transition is determined by an interplay
between impurity effects which tend to destroy correlations and
prevent long range order and 3-d effects which tend to enhance the
susceptibility. It turns out that if the impurity correlation
length becomes less than a certain threshold value, then the corre—
lation length is finite at any temperature and no dielectric phase
transition can take place. This may explain the saturation of the
transverse correlation length in KCP at T~100K13. Of course there
is the possibility that some other kind of ordering may occur. We
suggest that there is a "spin-glass" like ordering where the phases
of CDW's on different chains freeze in a random way relative to
each other.

2. INTERCHAIN COUPLING

In this section we shall study the effects of weak interchain
coupling following closely the systematic perturbation theory de-
rived in ref. 5. A static CDW can be described by the periodic
function

n(x) = p cos(2kFx +x) 2.1)

where p and X are order parameters. For a one dimensional system
the average value of n(x), <n(x)>, is zero, but its amplitude is
sharply peaked around its "mean field" value. At temperatures in
the region

T << T, 2.2)
only long wavelength fluctuations are essential. The fluctuations
of the whole system are phase fluctuations (phasons). To include
the effects of these excitations we shall allow X to be a space
and time dependent function, ¥(x,t). To second order in the deri-
vatives of X, the phase fluctuations are described by the Lagran-
gian

02
=L X_.+ l2
L, & ffdxdr( S5 * X ) 2.3)
where T is the Matsubara time (0<T< B). This Lagrangian does not
include terms dependent upon ¥ itself since the system is invari-
ant to a uniform shift of X. u is the phason velocity. Brazovsky
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and Dzyaloshinski] have calculated the dynamic structure factor
S(q,w) corresponding to L 16,33, 1f we are interested in the
static integrated correlaglon function, S(q), only we may restrict
ourselves to considering time independent phase fluctuations, with
energies

F =g _{dx 12 2.4)

Before introducing the interchain coupling, let us show how
the phasons destroy long-range order in a one dimensional system.
The static charge-charge correlation function, or structure factor,
is

S(x) = <n(0)n(x)>

p2<exp i {x(0) - x(x)}> cos kpX 2.5)

It is essentially this function which is measured in any diffraction
experiment. In this paper we shall drop the trivial factor cos 2kpx,
i.e. all momenta will be measured relative to 2kp. The correlation
function can be calculated using Feynman integral approach:

: _ -BF
s(x) - B2 L) = xe)) el 2.6)

where be is the functional integral over all possible phase fluc-—
tuations. By introducing Fourier transforms Xq we find

2 2
. ) v .aqXx
be exp = 2 fﬁq{(l—exp 1qx)1xg - “g}iﬂ } 2.7)
2v 2
v <X
-1 A
—J-qu SXP T on dq 8nT

exp - th T (1 - ;os(qx))
v q

S(x) =

1x| _.v _1
exp (- g5, R =55 Y

We have used a standard formula for Gaussian functional integrals.
Hence the correlation length is finite at any finite temperature
and no long range order exists.

The three dimensional coupling will be taken to be of the form

ZIdx Kij cos (xi(x) - XJ.(X)) 2.8)
i
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The summation is over interacting chains. This term may represent
the Coulomb interactionlT. The interaction is local, i.e. the
phase at position x at chain 1 interacts with the other chains at
the same position only. The thermodynamic average of any quantity,
0, is given by the functional integral

_ JDx 0 (%) exp -B(Fg+F1)
<0> .Irx oxp — (ForFy) 2.9)

The exponentials in both the denominator and the nominator are now
expanded in B:

<0> = <0> -R(<OF.> - <0> < .
> = <0>, B(< F.>0 0 F1>O) 2.10)

2
B (<oF?s -
+ 5 (OF1>O <0> <FZ> ) + ...

2
0 l

0

where < >4 denotes the average with respect to Fo. These averages
are all Gaussian functional integrals which can be evaluated. To
calculate the structure factor we insert O = exp i {Xl(O) —Xi(x)}:

Sll(X) = <exp i {xl(o) - xl(x)}>0 2.11)

+ BQXI: Kiiffdxldxvmexp i {Xl(O)—Xl(X)+Xl(xv )_Xl(xu)}>o

X <exp i {Xi(x")—xi(x') b

- Bzzi: Kiiﬁdx'dx"<exp i {Xl(O)—Xl(x)}>O

X <exp i {Xl(x')—xl(x")}>o

The averages are evaluated using the formula

< i > = 3 - .
exp 1 Zn\)x(xv) | S =0 = €XP3 nn, Do(X\) XU) 2.12)
vV oV VU
where n_ = + or - and D _(x) -I-}—{-l-
AV o} R
Introducing K| % Z )2 ( 0)° and performing the inte-
grations we obtaln ij
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exp(- égéL) (:Lﬁl) 2.13)

e
16
2

n

Z 1s an effective number of interacting neighbours. The correla-
tion between chains can be calculated in a similar way. The Fou-
rier iLransform of the correlation function is

2
“ _ .2y _ k(o) 2y _y2 , K7 (0) 2Y 33
Sla) = 55— Ty <o) T )
Y *a Y +q Y +q
_ K(0)? [F R . o 11)
ZTQ Y2+q.2 16 25Y2+q 2+q2 .l
(2y?-1247)y R
(#02)3 Y2+q )2y

where g 1s the wavevector component along the chain.

To first order in PB( %) this result is equivalent to the mean-
field approximation. To second order in f the corrections to the
mean—-field theory are given by the last term of eq. 2.14). To find
the transition temperature, let us find the temperature where the
correlation function diverges, i.e. 1/S(o) vanishes:

2.2

1 Y ., 2K(O)R . K(0)"R™ _ 1k
s(oy =2 (- Ty T <) 2.15)
To first order in ?,
- _ K(O)v
T, = 2K(O)R = or 2.16)
(6]

0
or p 2 - KO 2.17)

C m

This is 1n agreement with the result of Scalapino, Imry and Pin-
cuslB, but in distinct disagreement with a theory of Lee, Rice and
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Anderson19 which in fact ignores phase fluctuations and leads to a
T, which is only weakly dependent upon K(o). To second order,

T2=Ké1cT>)v [\/1‘%“1-.‘ 2.18)

[¢]

Hence, as could be expected the transition temperature is lowered
relative to the "mean-field" theory. The T. and the susceptibility
Xq = 1/T S(q) as calculated here give an indication of the parame-
ters entering phenomenological calculations, as for example the
Bak-Emery theory of TTF-TCNQ3 which is described in the next section.

3. LANDAU-GINZBURG THEORY OF STRUCTURAL PHASE TRANSFORMA-
TIONS AND CHARGE DENSITY WAVES IN TTF-TCNQ

Since the discovery of the anomalous peak in the resistivity
of TTF-TCNQL, there has been much speculation about the possibility
of a structural "Peierls" transition. However, bulk measurements
gave no definite information on this question, and it took surpris-
ingly long time before this very fundamental question was solved by
means of obvious diffraction techniques. The first direct evidence
of a phase transition in TTF-TCNQ was X-ray diffraction photographs
taken at Orsay2o, but recent neutron scattering experiments at
Brookhaven have provided a much more detailed picture of the low
temperature transitions2l,22, In these experiments it appeared
that there were two transitions, one at 38K, the other at 54K. At
low temperatures there is a 48 x 3.48 x ¢ modulation of the lattice.
és the temperature was raised above 38K the modulation period along
a changes, abruptly at first, then more gradually until it reaches
2a near 51K. These experiments have been explained by Bak and
Emery3 in terms of a Ginzburg-Landau theory. The most striking con-
sequence of this theory is that there should in fact be a third tran-
sition between those already observed. The proof of the new tran-
sition is based upon symmetry considerations only, whereas the na-
ture of the underlying physical mechanisms plays no role at all for
this purpose. The phase transition has now been observed by seve—
ral experimental g;roups23_25 and seems to take place at T=L8.5K.

In this section the theory for the three phase transformations
will be reviewed, and we shall also study the critical properties
at the transitions. In addition, a new mechanism for the 2kp ano-
maly recently observed will be proposed. TFigure 1 indicates
schematically the CDW's at the different phases.

3.1 The S5LK Transition
The space group of TTF-TCNQ is the monoclinie group P 23/c

with the b axis as the unique axis?®. The structure consists of
chains of TTF molecules and chains of TCNQ molecules arranged in
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sheets in the bc plane. The x-ray and neutron scattering experi-
ments have shown a second order structural phase transformation at
54K. The ordered phase at this temperature is described by an in-
commensurate wavevector §1 = (ag, ap, q.) = (&¥/2, 0.2955%,0)
where a¥, v® and ¢ are reciprocal lattice constants. Phrased in
terms of a Peierls transition, the b*® component is twice the Fermi
wavevector, 2kp.

According to the theory of Landau and Lifshitz27 the order
parameter describing a second order phase transition should trans-
form as a basis of an irreducible representation of the high sym-—
metry (high temperature) space group of the crystal. The repre-
sentations are labelled by the wavevector describing the ordered
unit cell and by the representation of the group of this wavevec-
tor. The wavevector is known from the neutron scattering experi-
ments. The group of d; consists simply of the two-fold axis, which
has only two representations described by basis functions which
transform into themselves or into minus themselves, respectively.
When the order parameter is subject to such a screw axis transfor-
mation (x, y, z) > (-x, 2+y, 3-z) it should therefore transform
either as

WEI - exp(iﬂ2kF)wgl 3.1la)
or wal +—exp(iﬁ2kF)wEl 3.1b)

We note that the symmetry considerations tells us nothing about
which intra-molecular modes are involved. For a detailed discus-
sion of the possible order parameters, see ref. 3. An important
point is that it is possible to use optical CDW's on the two chain
systems as order parameters. The charge distributions associated
with these modes are

=

pX(7) = + Yo expliq,-r), i = 1,2 3.2)
4 1

where the + sign applies to one sublattice of type i molecules

and the - sign to the other sublattice of type 1 molecules. Since
Coulomb forces tend to favour opposite excess charges on neigh-
bouring chains it is very likely that the optical modes are domi-
nant. In general, however, we are of course free to use any order
parameter (as for example the accompanying lattice distortion)
which has the correct symmetry properties. The optical CDW's on
the two chain systems transform as 3.la) and 3.1b), respectively.
Since the order parameter should transform as one of these basis
functions, we may conclude that only one chain system developes

an optical CDW at the 54K transition. It is in principle possible
that there is an acoustic CDW on the other chain system which trans-—
form according to the same representation.
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To find the temperature dependence of the order parameters,
we expand the free energy close to the phase transitions in terms
of the complex order parameters Wal and wag . This free energy
should be real and invariant under transla%ions, inversion and the
two-fold screw-axis transformation, which are the symmetry ele-
ments of the high temperature phase. Since the two order para-
meters transform like two different representations, there are no
cross terms of second order.

_ 2
F—rllpa.] +bl[wa, + ... 3.3)

r1 and rp are effective inverse susceptibilities l/x'q'l and l/XE2
of the two chain systems, respectively. These quantl%ies may b%
estimated using the theory of section 2. We found that each set
is expected to order at a finite temperature. The phase transition
occur when the smallest of the parameters r1 and rp passes through
zero. Let us assume that it is rjy, linearize around T; = 54K, and

minimize F for T not too far from T;.

-7, T<T 3.1)

and lwafl2 remains zero at this transition. Here ry=aj(T-Ty). This
describes the first phase transition in TTF-TCNQ. Experiments seem
to indicate that it is mainly the TCNQ molecules that order28,2k,

3.2 The LTK Transition

Let us investigate the question as to when an optical transi-
tion is driven on the second type of chain, following closely the
derivation of ref. 3. Since the single chain susceptibility diver-
ges at T=0 on both types of chains, we expect this to happen at fi-
nite temperature. It will be shown that this transition is in
fact related to the observed shift of the a¥* component of the wave-
vector describing the distortions. To study the possibility of
forming a charge4densit¥ wave with qz # a%/2 we expand the free en-
ergy in both Y71 and Ygq=. Of course, any possible state with pe-
riodicity described by § can be formed from linear combinations of
these modes. To simplify the notation we introduce Y. i =
wl(af/2+q, 2kp, 0)- We shall keep § 1.exactly since 1t may not
remain small over the whole region of interest. To second order
in ¢q2 we have
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qu,wq,q) £ (ly

(w17 Qw8 v Yo 2 3.5)

When the twofold screw axis is applied to the order parameter,
wq wq -y gw_ and lw 12 > Iw q|2 Therefore, f and B are
even in q ang A 1s odd in q.

We now expand F in powers of q in the neighbourhood of q = 0;
and minimize with respect to Iw%l. We find

2
q

In principle the coefficient c could vanish at some temperature
below 5LK indicating a g-deviation within the l-system only. How-
ever, since there is always some coupling between the two systems,
a phase transition involving the 2-system would already have taken
place before then. Moreover, there is no obvious physical reason
for a temperature dependence of c. Near Ty, the coefficients b and
¢ are positive, otherwise the type 2 chains would already have or-
dered, contrary to assumption, or g = 0 would not be a minimum
contrary to experiment. DNow, F is minimized with respect to q

WS s a) = aaul] o+ olui]® e Ll 3.6)

2
q = -(a/2c) |w \ + o[lpq l3 3.7)
and, when this is substituted into 3.6) F becomes
2 2,2 2,4
F=(b-a"/he)y “|° +Dly ] 3.8)
q q
to fourth order in \w . Equation 3.7) shows how the moving wave-

vector 1s associated w1th the development of order in type 2 chains.
When D > 0, there is a second-order transition at the temperature
T5, for which b - 8% vanishes. This is higher than the temperature
at which b = 0, because ¢ > 0. Thus the coupling helps to drive
the transition of wq . Minimizing F in eq. 3.8) with respect to
wq gives

2

lwq2[2 = -(b - %Z)/2D = a(TQ—T), T < T, 3.9)

after expanding about Tp. From Egs. 3.7) and 3.9) the variation of
q is given by
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< T<
0 . Tl T2

a2u/hx2(T -T), T T

2 2

Hence, g5 stays at a */2 in a finite temperature interval below Tq,
and the deviation of g, away from this value should occur at a
separate phase transition, the "L7K transition". Since we first
reported our result, several experiments have shown unequivocally
the existence of the predicted transition. In a recent neutron
scattering experiment, Ellenson et.al.23 found the transition to
occur at T = 48.5K (Fig. 2). Knight shift measurements seem to
indicate that the transition is indeed associated with the TTF
chains24, Specific heat measurements2> show a clear anomaly at
U8K. In the discussion of the UTK transition the existence of the
underlying lattice has been ignored. In reality, the CDW is sub-
ject to a periodic potential from this lattice. Since 2kp is not
close to any simple rational value the effect of such "Umklapp"
terms is probably small.

3.3 The 38K Transition

It now remains to understand the transition at 38K and the
reason that qg locks to a value of a*/b at low temperature. We
suggest that this "pinning" is due to extra terms in the free
energy, which are allowed only when q = *a*/43. The simplest
possible Umklapp terms are of the form

8F = K(q;a,,/h Yory Voaxgy Voawp t cc) 3.10)
as suggested by Bak29 and by Bjelis and Barisic30. SF is depen-
dent upon the phases 6 and 8' of ¥ */h and Y —a¥ /)y respectively

F = 2K|Wax/hl2 lw—a*/h! s(20-20") 3.11)

It is always possible to make this term negative by adjusting the
phases. If |K is large enough then it becomes favourable for
the system to jump to the "symmetric" state con51st1ng of equal
amounts of !Wa*/hT and |W—a¥/h” when the g, value mlnlmlzlng the
remaining free energy gets close enough to aX/4. This is what
happens at the 38K transition3. (See fig. 1.) An interesting
point can be made here. In principle Umklapp terms may exist at
any rational value of the wavevector3l. This opens a possibility
of having phase locking at different wavevectors in the tempera-
ture range 38K < T < L7TK. 1In an experiment, it may be difficult
to distinguish such behaviour from a continuous T dependence of

qa.
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\y,b 54K> T>49K

Fig. 1 Schematic diagram of phase transitions in TTF-TCNQ. The
full curves indicate the 2ky modulation along the chains. The
dotted curves indicate hkF modulation below 38K. The overall sym-
metry is monoclinic except for the intermediate phase (L8K > T >38K)
where the symmetry is triclinic (ref. 29).
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3.4 The hkF Anomaly
Recently a "Kohn" anomaly °>° and charge density waves7 with
wavevector component hkF along the chain direction have been ob-—
served in TTF-TCNQ. The hkF anomaly is present at room temgera—
tures whereas there is nothing to be seen at 2kp until 150KO.

This seems to indicate that the Lkp anomaly is not a simple anhar-
monic effect but is indeed generated by a separate mechanism.
Torrancel? attribute the "2kp" scattering to spinwaves, the "Lkp"
scattering to the usual Kohn anomaly. Fmery” explains the 4kp ano-
maly within the Luttinger model by assuming a large and positive
intra molecular Coulomb repulsion, U, Sham proposes that anharmo-
nic phonons are responsiblell, and Weger and Friedel guess that it
is simply due to higher order diffraction from libration modes for
vhich the "2kp" scattering (approximately) vanishes'?.

Even if all these explanations are in principle possible, I
shall now use this opportunity to confuse the situation further.
The usual charge transfer mechanism can be understood by means of
figure 3a. A valence (TTF) band and a conduction (TCNQ) band are
overlapping, and because of one dimensionality and charge conser-
vation the Fermi level is at the intersection between these bands.
This picture is based upon an assumption that there is only one
available orbital on each molecule. However, let us assume that
there are two (almost) degenerate orbitals on one type of molecule.
These orbitals could be associated with the nitrogen atoms situated
at each end of the TCNQ molecule. The situation 1is then described
by figure 3b: a charge transfer of hkFx?/b* electrons from the TTF
molecule will fill the two TCNQ bands up to 2ky only. Clearly, the
usual Peierls mechanism might then give rise to Kohn anomalies and
lattice distortions with wavevector 2kp on the TCNQ chains and lkp
on the TTF chains. Another possibility is that there exisi a con-
duction (valence) band with minimum (maximum) at ap = 0, b Then,
because of inversion symmetry, there should exist another extremum
at -qy, as shown in figure 3c. Again, the bands corresponding to
one type of molecules would be filled only up to half the Fermi
wavevector of the other type of molecules. Clearly, more theore-
tical and experimental work on the band structure of TTF-TCNQ is
required. The possibility of forming UYkp modes can be included in
the Landau Ginzburg theory3. Al all temperatures there should
exist waves with periodicity given by the wavevector 235(2qa,hkF,O).
Above LUTK this mode is acoustic, and below 38K it is associated
with one chain system only in analogy with the 2k mode above LTK.
An interesting consequence of our theory of the 38K transition3 isg
that there should also exist a CDW with wave vector (0, bk, 0)
below 38K. This mode is induced by terms like

OF = V(at, oxp, 0) V(-a¥/, 2y, 0) Y(0, -lkp, 0)
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in the expansion of the free energy. We predict that this mode
should be acoustic. According to symmetry this mode is forbidden
when measuring around (0,2n+1,0) reflections. This is in agree-—
ment with the experiment by Kagoshima et.al.T: the "Ukp" peak at

S = (O,3—O.59,0)=(O,g&O.hl,O) vanishes at temperatures bolow 38K
whereas the peak at S = (0,3-0.59,1) is very sharp. We find that
there is no obvious reason that this behaviour is due to an acci-
dental polarization of the mode. The allowed hkF peaks disappear
abruptly at 38K as it should.

3.5 Critical Behaviour

Because of universality, the critical behaviour is believed to
depend upon very few properties of the system, namely the dimensio-
nality of the order parameter and the space group of the crystal.
For TTF-TCNQ the star of the wave vector»associated with the 54K
transition consists of the two vectors tq;. Since the order para-
metgr transforms as a one dimensional representation of the group
of g7, the dimensionality of the order parameter is two, correspon-
ding for example to the amplitude and phase degrees of freedom, and
one should expect three dimensional XY(n=2) exponents. Close to
the transition, the temperature dependence wa therefore should be

1
Iwil2 %8, 8 = 0.33 3.12)

= (Tl T
In the case where the phase transition takes place at a non-symme-
tric § value with qg # 3, the star of 4 would consist of four vec-
tors, *(qg,4y,0) and *(-q4,qy,0), and one would expect n=b critical
behaviour. At the 47K transition the "CDW lattice" distorts so
that the twofold axis is destroyed, as shown in figure 1. It is
this distortion that manifest itself as a shift of the § vector in
a diffraction experiment. A possible order parameter is a homoge-
neous strain of the CDW:

4 uy(x)

' =
€y dx

where u.{(x) is the displacement of the CDW in the b-direction at
position . The symmetry of this transition is exactly the same as
that of a homogeneous g=0 structural phase transition in a mono-
clinic atomic lattice, where the order parameter is an e} (eg) strain.
Hence the critical behaviour for these two systems should also be
the same. Just as the phase transition in an atomic crystal is
triggered by a soft phonon mode the 47K phase transition is trigge-
red by a soft transverse phason mode?9. Recently, Cowley32 found
that the critical behaviour for the monoclinic system is classical
so no corrections to the mean field exponents are expected. Since
€), and €) have the same symmetry, a spontaneous €}, strain should
develope at the phase transition. Again it should be stressed that
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Umklapp terms, i.e. the periodic potential from the underlying
lattice, has been ignored and could change the critical behaviour
at the UTK transition.

L. IMPURITIES

In real physical systems there are always some imperfections
or random impurities. In KCP the non-integer amount of Br-ions
in the formula unit may act like an external Coulomb potential on
the CDW. To investigate the effects of impurities, both in the
strictly one-dimensional system and in the quasi three-dimensional
case, we shall extend the Feynman integral method of section two,
following closely the work by Bak and Brazovsky5. The most impor-
tant contribution to the Coulomb interaction on a CDW is due to
backward scattering of electrons and may be written

fdx V(x) x'(x) 4.1)

where V(x) ~ E ui(x—li) -c ﬁi_

U:'L:_ET?

Here ui(x—li) is the Coulomb potential from an impurity ion at
site_1j. These ions are randomly distributed with concentration
c. U; is the "average" potential of one impurity. Note that the
random field acts linearly with the derivative of the order para-
meter and not with the phase itself as in the model studies by

Sham and Pattonl®,35.
4.1 One Dimensional Random Systems

We consider a one dimensional conductor with random impuri-
ties described by the Lagrangian

2,2 2 v
L=gv1—T-ffdxdT(x/u + x' —;—x') h.2)

It turns out to be convenient to transform the phason field X to a
new unconstrained field Y through the relation

x(x) = x(x) + P(x) 4.3)
X '
where x(x) = f gy%x—)dx'.

The Lagrangian becomes

L(p) = g’;[fdxdf( Wl + ) b.4)

plus a constant term which does not affect thermodynamic averages.
To calculate an observable quantity one should first calculate it
for any possible impurity configuration and then average over the
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impurity distribution function. For the structure factor we find,
using 4.3):

S(x) = << <exp i{x(0,0) - x(x,t)} > >> = 8, (x)8 (x) h.5)
= <exp i {¥(0,0) - P(x,t)} > x <<exp i{ x(0) - x(x)} >>
where the double brackets denote averages over impurity configura-

tion., The averages can thus be performed independently. In the
small concentration, small potential limit it can be shown that

5;(x) = << exp 10 X(0) = X(x)} >> = exp(- 2] b.6)
i
or in Fourier space,
(a) e
s.(q) = ——
1 q2+Y~2

where &;=1/Y; is the impurity correlation length. For KCP, &; is
probably comparable to the correlation length Rp = l/Yp for the
pure system. The first factor in 4.5) has been calculated by Bra-—
zovsky33. In (q,w) space
2Yp
S _(q,w) = A L.7)
P {loran)®+(wy )7 1+ {(umqu)®s(uy )? )

The dynamical structure factor is obtained as a convolution of the
Fourier transform of the pure structure factor with the impurity
correlation function 4.6):

-1 -
S(q,w) = o ].Si(k) Sp(q k,w)dk
k
Y 4.8)
= A X .
2 200, 2 2,2
(w YU ) (q Y5 Ju
2 o, 2 2 2
+ 2q (Yp+Yi)—Yi{w /u +(yp+yi) 97}

{(w+uq)2+(Yp+Yi)2u2} {(w_uq)2+(yp+Yi)2u2 (q2+Y§)

The second term gives the contribution from phason modes at w=*uq.
The first term describes a central peask not present in the pure
systems, and the g-width is the inverse impurity correlation length.
A very accurate neutron diffraction is required to resolve the
spectrum since there is considerable overlap between the various
terms. The expression should be valid for KCP at temperatures far
above the "three dimensional™ phase transition at T = 100K13.
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L,2 Combined Effects of Random Impurities and Interchain coupling5

The model that we shall investigate is the combination of the
random 1-d model and the three dimensional model studied in section
2. The random potentials are assumed to act within each chain and
not affect the coupling between chains. The corresponding free
energy functional is then
v 2V;(x) 5
= (v - - -
we get a new effective free energy

v
Applying the transformation 4.3)
V42 y Y

F(y) = fax (& Eﬁw! - X K.. cos(y.(x)-x.(x) + ¥.(x) -y.(x))) L4.10)
5 iy ij i J i J

We note that F is not independent of x(x), as it was in the case of
the one dimensional system, and the averages < > and << >> do not
commute any more. Hence, first the thermodynamic average < >
should be performed for any possible impurity configuration, and
then averaged over the impurity distribution function.

The expansion 2.10), therefore, should be modified in the fol-
lowing way

<< <0> >> = << <O>O>> 4.11)
- << <OF_> >> - << <0> <F_> >>
B ( Fl 0 0 F1 0 )
@2 2 2
+ << OF-> >> = << <> <F™> >> )+ ...
ot 1”0 0F 170>

where F, is the interacting part of L4,10).

To calculate the structure factor we insert

0]

exp i{xi(O) - xj(x)} h.12)

exp i{)_<i(0) - X;(x)} exp iy, (0) - ¥, (x)}

The bookkeeping of the various terms can be performed in a diagram-
matic way®. FEach term in the expansion for the pure system is re-

placed by a product of this term and an impurity term. The Fourier
transform of 4.11) has been evaluated. To estimate the transition

temperature the inverse correlation function is expanded in %. To

second order

o)R2 pUN K(O)2R2 f(i 1 4.,13)

1 X -
s50) 2 ¢ 11 T 212 5 2712 Rp 77
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where the function f is dependent upon temperature through Rp. For
example, F(«)=0, £(1)=0.375, £{0.1)=1.Tk.

Again, to first order in % we find the mean field result

T
c _ 1 _2mTe 1
R = 2K(0) , 2 ot £

Te is lowered by the impurities but remains finite. To second
order

h.1k)

2+ 2))

5 5 4.15)

—_— = + -_

R K(0) (1 1- 7
For small Z, therefore, a large impurity concentration will tend
to suppress the phase transition.

At low temperatures the high temperature expansion will break
down. In this region, the structure factor can be calculated
using a continuum representation in the transverse direction too-.
For not too large concentrations of impurities the dynamical struc-
ture factor will consist of three different features: 1) A Bragg
peak which indicates that long range order exists. 2) An elastic
impurity induced peak with finite width in momentum space and 3)
two phason branches originating from phase fluctuations. However,
when the impurity concentration exceeds a certain 1limit, the con-
tinuum representation breaks down, indicating that no long range
order can exist due to a "melting" of the CDW lattice. This seems
to be the case for KCP. As the temperature is lowered below 100K,
the transverse correlation length increases rapidly but saturates
rather abrubtly around 100K. This relative sharp saturation indi-
cates that some other ordering may occur. We suggest that there
develops a "spin glass'"-like ordering, where the CDW's at distant
positions freeze in a random way relative to each other, but where
near neighbours are correlated. In fact, our model of KCP is very
similar to the three dimensional rotator considered by Edwards
and Anderson3%, (which is believed to exhibit spin-glass ordering)
since both models are formally three dimensional random xy-models.
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35.

The term 4.1) may represent forward scattering of conduction
electrons by the impurity potential, whereas the coupling
considered by Sham and Patton may represent backward scatter-
ing across the Fermi surface. We expect this latter coupling
to be comparatively weak since it involves the 2kp component
of a long range Coulomb potential.
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1. Abstract

The microscopic physics underlying the sine-Gordon equation
in quasi-one-dimensional conductors and two dimensional layered
structures is explored.

An interesting parallel between these two systems is discussed,
and the quantum nature of the former, involving the time variable,
is found to be equivalent to the second space dimension of the lat-
ter. The soliton spectrum of both are studied and the implications
of these discrete states for real physical systems, with three-di-
mensional couplings, are developed.

2. Introduction

The study of charge density waves in lower dimensional systems
has been advanced beyondlthe stage of speculation due to experi-
ments in both quasi-one ~ and quasi-two 2 dimensional systems.
While it is by no means clear that the special properties of one
and two dimensional models can explain these phenomena, it seems
appropriate to understand the predictions of these models, keeping
in mind a healthy skepticism about the ultimate outcome.

There appears to be much in common between the quasi-one-di-
mensional and some of the quasi-two-dimensional charge density
structures. In the former, time appears as an important dynamical
variable. Obviously, renaming this variable a second space var-
iable, one arrives at a classical two dimensional problem. To the
extent that quantum fluctuations are unimportant in the layered

88
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structures, the two are equivalent.

An interesting consequence of this equivalence concerns the
existence of soliton states 3. Propagating wave-type solutions
along a one dimensional chain have a direct correspondence to
stationary domain-like excitations in the classical two dimensional
system. These domain structures, in turn, have consequences for the
thermodynamics and static correlation functions. This paper is in-
tended to explore the types of soliton states which can be of in-
terest, and to deduce some observable consequences of these states,
if they exist.

If the reader has sensed skepticism about solitons solving all
problems of lower dimensional systems, it is not unfounded. There
can be no doubt about the importance of these states in the purely
one or two dimensional case. But when interactions are turned on
between the strings, or between the layers, the effects of these
must be included in the original soliton solution. At present, a
good understanding of the destruction of solitons, or perhaps only
slight damping of solitons due to these interactions, is lacking.

On a heuristic level, the problem could be phrased in terms of
energy scales. If the energies of interaction within, say, the
string, are much stronger than the interactions between the
strings, it is a good approximation to apply the solutions to the
string problem, and treat the interactions between them as a per-
turbation. This will be a good approximation for temperatures
larger than the mean interaction between strings, which is roughly
the mean field transition temperature for the strings. The same
words obviously apply in the layered case as well.

3. Change Density Waves and the Sine-Gordon Equation

With these introductory hedges in mind, let us turn to a study
of charge density waves in lower dimensions. Not surprisingly,
the close relation between charge density waves and the solitons
is one of the first points to be encountered. The mathematics
literature is filled with various equations which exhibit non-
linear wave propagation b oor these, the sine-Gordon equation
is the most relevant for the physical applications of interest
here. Before discussing this equation, it is important to under-
stand where it came from, what assumptions went into it, and why
it might be of interest.

An example from the one dimensional conductor problem consists
of a filled Fermi sea of electrons moving in a potential capable
of causing transitions from one side of the Fermi line, at momen-
tum plus kp , to minus kg , the usual charge density wave in-
stability. To analyze this situation, we focus attention on those
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states at the Fermi energy. These are described by the free par-
ticle Hamiltonian,

+ +
- (k+
ap ey 7 (ktkg) a) e (1)

0

H = v, ) (k-k
F L F

where v_, 1is the Fermi velocity, 8, (a,. ) describes the elec—
trons moving to the right (left). To this, is added the mixing

with the charge density wave potential,

+ +
= +
Hopyw = Vo L %1 % 1 ¥ Bk F1kok (2)
k F F
where is the strength of the interaction. In a more realistic

\
model, tge electron-electron interactions should be included, as
well as a description of the phonon degrees of freedom. The present
model, however oversimplified, does contain the essential physics,
and can be generalized to the more complicated situations without
undue hardship.

One of the fundamental simplifications of the one dimensional
electron gas starts with the recognition © that Eq. (1) can be
transformed into a simple harmonic oscillator, or one dimensional
phonon problem. While much of our intuition about metals is based
on electron Hamiltonians, results for soliton problems are based
on phonon-type fields, or fields describing a phase variable. The
flexibility to view the problem from either vantage point is ex-
ceedingly insightful.

The equivalent phonon problem is given by the Hamiltonian,
HO = -—L E [pl(k)pl(_k) + 02('k)02(k)] (3)

where L 1is the length of the string of electrons, and the phonon
operators satisfy the commutation relations

-1
kL (2m)

[, (-k),p, (x")] = [p,(k"),p,(-k) = 6

k,k'

lo 50,1 =0 (L)

In terms of the electron operators, the phonon operators are given
by
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+
py (k) = E ®1x+p “1p

+
p2(k) E) a2k+p a'2p

The key to understanding the soliton-charge density wave equivalence
is contained in the H written in terms of the phonon variables.
It is_here necessary t0 make use of the so-called phase representa-
tion T of electron operators, given by

ikFx + ¢1(x)

Y &), kx (L/ZWS)% e
k
and ‘ ; -ikFx + ¢2(x)
ikx = (L/2ms)? e (6)
2 a2k
k

where s 1is a cut-off length, equal to a lattice constant, and
the phase variables ¢1(x) and ¢2(x) are, in turn, related to
the phonon operators through

X
¢1(x) =2mi J dy pl(y)

x (7)
0,(x) =21 i | ay o, (y)

when substituting these into Eq. (2), one obtains the simple an-
swer,

VOL
HCDW = >ns J dx cos ®(x) (8)

.
where the total phase ®(x) = i(u4m)? (¢, (x) + ¢,(x)) has been in-
troduced. Now it is possible to write ﬁq. (3) in a slightly more
familiar form, if we use the additional operators, ®&(x) and

m(x) = i [&(x), HO] , where
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. 1T -ipx
o) = 1§ o, oy(0)| S
F . (9)
-1 e PX
) =3 12, (o) - 0,(p)| =5

e |

with the simple result that the charge density wave problem can be
written in the form

A
H = J dx %{ﬂz(x) + V;(Vw)z] + —Q; cos VI @ (10)

which is recognized as the quantum mechanical sine-Gordon equation,
and, at the same time, from Egs. (1) and (2), is the equation for
an electron moving in the potential of a 2 kp density wave.

The essential ingredient leading to this result is the phase
representation of the charge density wave, which lead to Eq. (8).
Any interaction which permits such a representation will lead to
the same equation. It is interesting to note the many seemingly
complicated interactions which can be written in this form. In-
cluding electron-electron interactions leads to two modifications.
The first is trivial, a renormalization of the Fermi velocity.

The second is a replacement of the (L4m)2 by another constant,

B . This constant determines the nature of the soliton state solu-
tions, and is itself determined by the strength of the electron-
electron interaction If U  represents this interaction strength,
then B = VLm (1-Up)z (1+Up)~2 . (We might imagine U to be a
screened Coulomb interaction, which can be comparable to the recip-
rocal bandwidth p .) These solutions will be discussed below.

It is worth a brief mention of other interactions which re-
duce to this sine-Gordon form. - Obviously, the phase variable was
constructed from two electron states - moving in opposite direc-—
tions in the above example. But any combination of two phases will
lead to an identical result. We might imagine a phase associated
with the up spin electrons, and another associated with the down.
This creates a phase field for the spin density, and we would ex-—
pect a sine-Gordon equation for these degrees of freedom 8. a
further - but more complicated situation - concerns the electron-
phonon interaction. When the temperature is very low, and the
electron-phonon system is strongly coupled, the phase of the dis-
placement becomes a good variable 7, and the motion of a charge
density wave is governed by the free phonon part of Eq. (10). If
there is an impurity present, the interaction with the charge den-
sity wave is given by
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H = %J ax [1T2 + cz(ch)z] + A z cos &p(xi) (11)
1

where ¢ 1is a phonon velocity, A the interaction strength, and
the sum runs over the impurity sites, x. . It is this, modified
slightly from Eq. (10), which is the sliéing conductivity problem.
Except for the free particle case, B = /Im , little is known
about Eq. (11). This problem will be studied below.

4, Solitons and Charge Density Waves

From a mathematical viewpoint, the problem is now well-posed -
namely, what are the eigenvalues and eigenfunctions of the
Hamiltonian Eq. (10), for general values of B ? But the physics
is not so simple. Even with this complete (but nonexistent) in-
formation, the questions of transport, impurity scattering, etc.
would remain. These are well beyond the scope of this paper.

Rather, a simple physical picture of these states is the goal
of this paper, and it is hoped that the mathematical details can be
kept to a minimum. It is possible for the reader interested in
such questions as rigor and completeness to satisfy herself as to
the current state of the art in the relevant literature.

Ehere is substantial information about the eigenvalue spec-=
trum *»10 of the sine-Gordon equation, but little else. There are
several limiting cases which are quite helpful in understanding
the additional questions, such as matrix elements, selection rules
and the like, but here the situation is far from satisfactory.

The triyial limiting case is one good example to keep in mind.
Consider B%= 4w . From Eq. (1), Eq. (2), and Eq. (10), it is
clear that this case is a one-electron problem, which is immediate-
ly solved. The eigenvalue spectrum is

0

E = VK, Vg [(K—KF)2 + (;%g)z]% (12)

and the new feature of the problem is the appearance of a gap at
the Fermi energy, a gap required to create a particle-hole pair
excitation. From the equivalence to the sine-Gordon equation,
there comes the identification of the single electron states with
a propagating solition. That is, through the miracles of modern
science, the highly complicated non-linear equation involving the
phase variables becomes a simple free electron problem when viewed
from another vantage point.
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, Another interesting limiting case concerns the region

" > 0 . In this situation, it is permissable to expand the co-
sine, and retain the lowest order correction. The resulting equa-
tion is

'
dx 2 2 2,0 2 2
H - J 5 [(Vw) Vet T +5—B 0 ] (13)

which is very similar to the one dimensional optical phonon prob-
lem, with the eigenvalue spectrum given by:

2

2 V0B %

E, = VF [K + ——————75]
2ms VF

As found above, the characteristic feature is the gap in the spec-
trum, of magnitude:

g = B[E—F (15)

but the reader should recognize the rather profound difference be-
tween the two cases. The former was explicitly a fermion-type
gap, while the latter is a boson gap! In a peculiar manner, the
Hamiltonian changes continuously from a free fermion problem to a
free boson problem, with complications in between.

It is possible to offer a plausible interpretation of this
gap, regardless of its fermi-bose schizophrenia. If a static cor-
relation function is calculated, such as the phase-phase correla-
tion function at large distance between the phase measurement
points, there will be an exponential fall-off, while at shorter
distances the effects of the gap will be negligible. When divided
by the Fermi velocity, the gap thus determines a wave number scale
of local ordering.

The complicated behaviour of the spectrum has been studied by
the WKB approximation * and by the device of finding another
equivalence to a solved model in statistical mechanics 10. The
results of these investigations have found
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2—A2 2K2
Be =8, * Vg
2 oy
An = A sin (l6 ) (16)
xf
= (9
A= (2ﬂs
2 2 1 8% -1

where y' =8 (1 -87/8m) , 2v=(1-%)", n=0,1,2,---

and n 1is a new quantum number, which has an interpretation as
labelling bound solitons. Again, a heuristic interpretation of
these states is possible, and it compares them to excitons forming
within the gap of a semiconductor. Since B2 < 4w , the interac-
tion implied by the result under Eq. (10), is particle-hole attrac-
tive when bound solitons appear.

A few words about the rigor of this solution one in order.
The WKB results have been demonstrated to be exact for the eigen-
value spectrum, by studying the relationship to the spin 3 x-y-2z
spin chain in one dimension 0. This relationship was used not
only to study the eigenvalue spectrum, but to provide an intuitive
picture for the soliton states. Without an overwhelming mass of
mathematics, the full justification of this relationship is not
possible - but some observations are of interest.

The x-y-z model is given by the Hamiltonian

o o
H --gJa S; S:,, (17)

where o = X,y, Or 2 , Sq is a spin 1 operator at site i , and
the sum is over N sites of a chain. Again, the study of a few
limiting cases helps establish the physics of Eq. (17). When all

J are equal, the Heisenberg ferromagnetic case, we know that Eq.
(I7) should have spin waves. Comparison to Eq. (15), for B° =0 ,
shows the similar behaviour. Now for the case B8° = km . It has
been known that the x-y model, with J_ = 0 , can be transformed
into a free electron problem, and indeed, the equivalence between
these two cases has been rigorously established.

But more has been established. In the entire region with
JX =J_, and IJZ[ <J_ , it is intuitively clear that the rota-
tlonal’ degeneracy about the z-axis, within the x-y plane can be
described by a phase variable. A spin wave, corresponding to pre-
cession about the z-axis, corresponds to the phonon propagation of
Eq. (3), corresponds to a potential tending to "orient" the phase
in the x-y plane, along a particular direction, analogous to ori-
entation of the spin along the x axis, if J_ 1is larger than
Jy . In this view, a soliton is a spin wave propagating along the
chain. Bound solitons are spin wave bound states.
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In addition to this simple physical picture, some new results
can be derived from this equivalence. A geculiar instability in
the sine-Gordon equation, at the value B¢ 2 87 , has led to confu-
sion about the meaning of charge density waves in these circum-
stances.

It is easy to recognize 82 = 8T as a special point, from
the result states in Eq. (16). The exponent V , in the relation
between the observed gap and the applied field, goes to infinity
at this point, then becomes negative. Has something gone wrong in
the solution? It is instructive to consider this question from
the spin chain viewpoint.

Recall that 62 = 0 corresponds to the Heisenberg ferromagnet,
J, = JX = J_ , and the phase of the sine-Gordon equation, in gener-
al, has theyinterpretation as a phase variable of a basal plane
spin. As Jy, is decreased to zero, and then downward to
J, = -Jy = -J,, , the Heisenberg antiferromagnetic point is reached.
For more nega%ive J, , the spin no longer lies in the basal plane.
Indeed this marks the crossover to a spin problem of Ising symme-—

try, and the phase variable cannot be defined as before.

This spin equivalence suggests that a new type of gap appears
when B° > 87 , a gap analogous to the appearance of an Ising gap
as the J, exchange becomes large in magnitude. Obviously, in
the spin problem, the equilibrium direction of the spin simply ro-
tates to accommodate the new ground state symmetry. Once the spin
operators are rotated to recognize the new equilibrium direction,
we may again view the soliton as a spin wave. The B° 2 8m prob-
lem is simply the requirement that the phase variable must be de-
fined about the new equilibrium direction.

To state this resolution more grecisely, the sine-Gordon equa-
tion assumes that the parameters 8 and Vo have been defined
such that, in the corresponding spin problem, IJZI is the smal-
lest interaction. If this is not the case, the spins must be ro-
tated to new axes, such that the new variables, denoted by a prime,
do have ]JZ'] the smallest. If this prescription is followed,

B2 < 8m is always satisfied.

Collecting these results leads to the following simple pic-
ture of chgrge density waves in the one-dimensional conductor.
For 0 < B < 8m , that is -1 < Up < 1/2 , there is a gap in the
excitation spectrum caused by the appearance of 2kF charge den-
sity waves, and for -1 < Up < 0 , there are bound soliton states,
representative of charge bunching, which may propagate. For Up
outside this region, it is necessary to recognize the equivalence
to an Ising-like spin problem, with a preferential orientation.
Solitons, in this case, are analogous to the Ising-like spin flip
excitations of the chain.
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5. Solitons in Disordered Systems

A question of recurring interest, both in the quantum one-di-
mensional systems, and in the classical two-dimensional system,
concerns the role of impurities. One hears repeatedly the common
view, that since all electron states are localized in a random po-
tential in one dimension, localization dominates the problem. It
is helpful to analyze this situation from a slightly broader view-
point, which recognizes the random potential as simply another
type of interaction, in addition to the many others which are
present.

This attitude is well-known from studies of phase transitions
in disordered compounds. The random variable, for example a local
transition temperature which varies randomly throughout a ferro-
magnetic alloy, can be considered as a new type of "interaction"
which competes with the usual exchange, to give new physics, such
as a spin glass. But the question about which phase dominates,
spin glass or ferromagnetism, can only be answered if both random
and exchange fields are considered simultaneously. Statements
about localized states in the one-dimensional electron gas have
been based on non-interacting electrons, and the question about
the relevance of localization for the interacting system, is both
interesting and important.

There emerges an interesting picture for this phenomena when
considered from the soliton viewpoint, and the problem can be
posed in the language of localized versus uniform solitons. Con-
sider first the situation of a one-dimensional electron gas with
a single impurity present. If we include an electron-electron in-
teraction, the problem is described by Eq. (11), but for a single
impurity only.

Perhaps it is worth emphasizing that, in this view, the im-
purity is trying to induce a local gap at 2Kp , while in the ori-
ginal electron variables, the impurity is simply scattering the
electron from +Kmp to -Kp . The equivalence of these two pic-
tures follows from the fermion-boson duality. While it may seem
arbitrary to choose either viewpoint, it is possible to use the
soliton picture to derive a relation of this problem to another,
namely, the Kondo problem of a magnetic impurity in a metal. This
problem has been understood, and it is this understanding which
can be applied to solve the localization problem.

It might seem surprising at first glance that these two prob-
lems are equivalent. But there is a simple plausibility argument
that, while not rigorous, is convincing. The rigorous equivalence
will be given later. The Kondo problem involves a spin 3 im-
purity which scatters electrons with a matrix element that de-
pends on the electron spin, in the form:
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Heompo = He

H -3, 8% 0"(0) - T (" 07(0) + n.c.) (18)
> >

where S 1is the impurity spin operator and 0(0) is the spin den-

sity of the electrons at the impurity site, the origin x =0 ,

He the free electron Hamiltonian, and J, and J, refer to the

longitudinal (spin non-flip) and transverse (spin flip) processes.

But why is this relevant here?

First of all, the Kondo model is also one-dimensional, be-
cause we need work with only one partial wave, the s-wave, which
depends on a one-dimensional wave vector |k| . There are, in fact,
two types of one-dimensional electrons in this problem, spin up or
spin down. These correspond to the two types of electrons in the
one-dimensional conductor problem (remember that these are
"spinless" electrons), namely, moving to the right, a "1" state, or
moving to the left, a "2" state.

From this basis, we see that a spin flip at the impurity in
the Kondo model is the same as a reflection of an electron from a
static impurity in the one-dimensional conductor problem. Both
drive an electron from one type to the other, do it locally, and
repeatedly. There are a few subtle points which complicate the
picture, such as the equivalence of the longitudinal part of the
Kondo interaction, J, , to the forward scattering part of the one
dimensional conductor system, which serves only to complicate mat-
ters, but can be included satisfactorily.

The important parameters in this problem, are A of Eq.
(11) and the spin-flip amplitude, J; , in the Kondo problem. The
parameter B , arising from electron-electron interactions in Eg.
(11), is related to the longitudinal coupling, J, . The rela-
tions are

A= I,
2

B~ = 2n (2-€)

Here € 1is the scattering phase shift for Ez as in ll. From the
solution of the Kondo impurity problem, it is possible to "solve"

this one as well.

The current understanding of the Kondo problem revolves
around the issue whether the ground state is a singlet, with a con-
stant magnetic susceptibility as the temperature goes to zero, or
a triplet with a Curie law 'l. The former implies a gap of sorts,
namely a gap between the singlet and triplet excited states. The
latter has degeneracy. The scaling law arguments 11 indicate that

the ground state is a singlet when IJl| > -J, , and a triplet for
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J = -J, . The latter case is viewed as being adequately de-
scribed by ordinary perturbation theory, while the former involves
a complicated many body ground state, which is treated by sophis-
ticated renormalization group methods.

Application of the analogy to the one-dimensional conductor
says that, for attractive interactions which satisfy
g2 < km(1-A/2) (for small A) , there is no interesting local cor-
relations or behaviour. The scattering is adequately described by
perturbation theory in that the scattering rate goes to zero, that
is an infinite conductivity, as in the Kondo problem for ferro-
magnetic coupling.

For the other sign of the inequality, which includes the
case of no electron-electron interactions, the situation is more
interesting. There the analogy suggests the build-up of a local-
ized highly correlated state which corresponds to a resonance in
the scattering. This resonance develops for the temperature less
than a characteristic "Kondo" temperature, T , which can be de-
termined for the special case B2 = 2m(2-p) t& be To Vv Ep VA e"l/x,
a special case which correspongs to the isotropic Kondo problem.
For other values of A and B  the estimates of T, are compli-
cated and will not be discussed here.

The build-up of this localized correlation, corresponding to
a local 2Ky gap, can be extended to the case of many impurities,
the case normally considered. If the separation between impurities
is much larger than the correlation length implied by T, , namely
Vg (To)-! at T =0 , the properties will be determined by single
impurity characteristics and the analogy here is applicable. In
the other limit, the high concentration limit, no conclusion can be
drawn, although it is plausibly related to the "Kondo necklace"
model 13 studied for high concentrations of Kondo spins in metals.

We complete the discussion by deriving the equivalence be-
tween the Kondo impurity model and the one-dimensional conductor
problem. It is easy to show the equivalence of the free energy
for the system described by a single impurity described by Eq. (11),
and the formula for the Kondo problem,

. B T_l t, %n __i—j . ti—t.
- E L 2n-1 i<j< )" (2-e)n(—1)
e = E\Er‘s'} l dtlmJ dtzn e (20)

where T 1is the temperature in the Kondo problem, € 1is related
to a scattering phase shift, and for small J, is € = 2d, p , F
the change in free energy due to the presence of an impurity, and
s 1is a cutoff parameter, introduced according to the prescrip-

tions [ of the Luttinger-Tomanaga models. The same method used to
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to derive Eq. (20), applied to the single impurity version of Eq.
(11) leads to

2n - B2 t.-t.
2n-1 ] (57—
at, e (21)
2n

oz , e T
= 1z J )
n
0

o

where s 1is the same, cutoff parameter. Obviously the identifica-

tions A = J, and B2 = 21 (2-g) follow immediately.

6. Classical Solitons in Two Dimension

One of the recurring problems in the theory of charge density
waves for the two dimensional layered structures involves the clas-
sical solution to the sine-Gordon free energy. It arises whenever
a local phase variable can describe the relevant degrees of free-
dom, and in addition, an interaction with a lattice seeks to im-
pose a particular phase relationship on these variables. While a
microscopic derivation of this free energy expression is not in-
tended here, it is helpful to consider a phenomenological motiva-
tion for it.

Suppose a charge density wave exists and can be described by
a Ginzburg-Landau free energy expression, which fixes its amplitude
according to the usual mean field theory. The phase is still left
undetermined, and inversion symmetry would require a contribution
to the free energy of the form

F, =C J a’x (Vo - 1)2 (22)

where C 1is a microscopic parameter characterizing the energy re-
quired to cause a phase distortion, and the period of the CDW is
taken equal to unity.

If a periodic potential generated by the lattice is included,
the CDW would prefer to arrange its phase field to be commensurate
with the lattice to minimize this additional interaction, and there
results a contribution of the form:

FCDW = J d2x a(cos B - 1) (23)

where B 1is an integer, and 0 is another microscopic parameter
characterizing the underlying lattice interaction, typically an
Umklapp process. Obviously FCDW prefers a phase multiple of

2m/B , while F, prefers a phase increase proportional to distance.
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In a rough physical sense, the solution might be expected to
have phase jumps between the allowed multiples, in such a way as
to maintain a stair step approximation to the straight line in-
crease. From another viewpoint the phase increases linearly with
distance with the Fopy Pasically introducing harmonics. As the
contributions from Fopy become dominant, there ceases to be a
linear increase of the phase with distance, and a type of transi-
tion, the commensurate-incommensurate transition occurs. It is
believed this transition is continuous, a conclusion based on
numerical studies. It is interesting to consider this problem in
light of the known solutions to the quantum sine-Gordon equation.

The beginning of our analysis is the total free energy given
by Eq. (22) and Eq. (23). But the phase variables which appear
in these expressions are just that: variables. They must be
integrated out in order to find the observable free energy. The
situation here is perfectly analogous to the familiar Ginzburg-
Landau free energy applied to the theory of a second order phase
transition. In that case, one has an order parameter variable,
and two possible interpretations of the meaning of that variable.
The first, and historically first as well, simply minimizes the
free energy expression to solve for the mean field version of the
transition. After Wilson, it became clear that the second, which
treated the order parameter as a thermodynamic variable, was cor-
rect. In the same manner, by the same arguments, the phase vari-
able of the sine-Gordon free energy must be integrated.

With this understanding about the meaning of the phase
variable, the expression for the partition function is:

7 = [sp o BFLO} (21)

where the 8¢ stands for the density of states available to the
system which is

dg, (25)

b8

I5¢=1T
k

and the product is over all wave numbers in the Fourier transform
of the phase field. The object in the partition is conventionally
called the free energy functional which simply gives the energy of
a particular configuration specified by ¢(x) . The density of
states then insures that all functions are included in the parti-
tion function. The observable, or thermodynamic, free energy is
then F = —KBT In Z , as usual.

The solution of the sine-Gordon classical phase problem is
constructed directly from the solution to the corresponding



102

quantum problem.

been discussed previously 1
briefly here again.
correlation function for the special case
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The principles underlying this equivalence have
, but it is helpful to recall them

Consider first the calculation of the angle
0 =0 . This correla-

tion function is given by:

> ip(x) -i
c(x) = <t ¥/ ¢ 10, (26)
where the slanted brackets denote an average in the weighting
functional of Eq. (24). Since the integrals are just
Gaussian, and the result is simply:
> ! BF{¢} + ip(x) - i
c(x) =2 J 8¢ e ¢ 1PLx i
(21)
> 2
= <o(x)o - ¢7>
= e
The phase correlation function is given by
L >
> 1 1 Kex
<9(x)p> == ] e <Gy Opr” (28)
L k,k'
2
where L is the area of the layer. This leads to
K, TC 2 g
> 2 B d K Kex
<p(x)p-¢"> = — { = (e - 1)
U K
(29)
_B (X
8'”2 1S
where S 1is the same type of cut-off as in Eq. (7). Finally, the

angle correlation function is given by

KB TC

82 8ﬂ2
2 2

X ty

c(x) (30)

This result, long known in the literature of the planar model, not
only illustrates the meaning of the free energy functional, but
provides the clue to use the gquantum result if we calculate the
quantum phase-phase correlation function using Eq. (10), the an-
swer is essentially the same, with the exception that t - iy ,
that is, the time variable becomes the other space dimension, and
the temperature in this classical problem becomes related to the
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coupling constant B 1in the quantum problem.

The corresponding angle correlation function in the quantum
problem is calculated by precisely the same methods, for the cor-

responding case V = 0 , giving the result:
2
. . 2 \T =
<e1¢(x,t) e—1¢> - ( 28 2>hﬂ (31)
x -t

Such an equivalence between the angle correlation functions
alone would not be very helpful. But this equivalence holds for
all correlation functions, which can be built up from products of
operations el¢ at arbitrary space-time points. In particular,
the correlation functions involving an arbitrary product of
cos ¢ , are identical in the quantum and classical theories. Con-
sequently, we can conclude that all matrix elements of the interac-
tion, Hopy ©F Fopy » are identical. Therefore the two problems
are the same.

This means the solution to the quantum sine-Gordon equation
provides the solution to the classical problem, in the sense that
the ground state energy of the quantum problem is the thermodynamic
free energy in the classical one. Correlation functions are also
equivalent, after t = iy .

What features of the quantum solution are interesting here?
The first qualitative feature is the gap in the excitation spec-
trum for the region 0 < B2 < 8m . A gap in the excitation spec-
trum implies a correlation length in the classical problem, corre-—
sponding to this gap. The behaviour of the gap, as a function of
coupling constant, describes the behaviour of the correlation
length as a function of temperature.

Some of the features of the quantum solution are, unfor-
tunately, not sufficiently clear at present to resolve the obvious-
ly interesting question about a "phase transition" at B2 = 8m ,
that is Ky CT, = .16 . At this value,, the gap vanishes, but the
precise manner in which it vanishes as B~ = 8T has not been
elucidated yet. There is a scaling argument that this gap, A ,
vanishes as

1
Tt
Anv vVt e (32)
where t 1s the temperature in reduced units, 1 - %— . This 1is
a continuous transition, and it is characterized by an infinite
length, as t > 0O
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The construction of this argument is roundabout, but it is
perhaps of sufficient interest to state the general features. It
relies, first of all, on the equivalence of the backward scattering
model of 1-d fermions to the sine-Gordon equation. The re-
normalization group has been applied to the fermion problem, and
through that equivalence, it implies the exponential dependence of
gap on coupling constant. There is, as yet, no equivalent calcula-
tion for the ground state energy in the region B2 - 8m , that is
t > 0 , but it is probably logarithmic, which would imply logarith-
mic temperature dependences in the specific heat.

Of particular interest, and some puzzlement, is the role
played by the soliton bound states, which can occur for small B~
that is well away from T. . Presumeably, these correspond to
phase jumps, and their juxtaposition must correspond to an excited
state. It is tempting to identify these with the discommensura-
tion of McMillan 15, for these appear as excited states of the
free energy functional, and a correspondingly more rapid decay of
correlations in space.

7.Three Dimensional Ordering

The obvious physics underlying much of the discussion here,
is that it does make sense to consider the purely one and two di-
mensional systems independently of the three dimensional aspects
of the problem. There is a 1limit when this view point makes phys-
ical sense, and a few remarks concerning the nature of this limit
might help to put this question in perspective.

The characteristic energies of the one (or two) dimensional
system in comparison with the interactions between these lower
dimensional subunits is the determining consideration. In some cir-
cumstances, it is rather obvious which energies determine this
ratio, but in those of interest in the real lower dimensional
systems, it is not obvious.

Some qualitative remarks are of interest. Consider the prob-
lem from the mean field viewpoint. There are several ways to de-
fine what we mean by mean field. The obvious one, treating all
interactions on an equal footing, predicts an ordering temperature
determined by the divergence of a three dimensional susceptibility.
For the CDW state, this is given by

>
> x (Q)
X(Q) = —— (33)
1-v
g X(Q)
where ¥, 1is a 3-dim, non-interacting susceptibility, and V5 1is
a 3-d screened Coulomb interaction. Compare this with the
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equivalent problem viewed from a layered mean field theory view-
point, given by

N X.n (Q)
x(Q) = 2D . (3k)
1 -V cos(QZS) XZD(Q)

where 6 =(q , Qz) has been used. Here V 1is the interaction
between layers, and all complications non-essential to the com-
parison between the two types of mean field theory have been
neglected.

In the former result, the ordering is determined by a non-
interacting susceptibility. 1In the latter, it is the interacting
susceptibility in the lower dimensional subdivision which appears.
Obviously, the latter approach makes physical sense when the corre-
lation length within a layer becomes much longer than the correla-
tion length perpendicular to it. The correlation lengths play an
important role in this approach. One length involves essentially
one {or two) dimensional considerations. An estimate of this
length is easy to obtain, it is just the soliton or charge density
correlation length, §& .

This length is to be compared with the perpendicular correla-
tion length. Phenomenologically, we might suppose the susceptibili-
ty for the charge density wave is

() %o
X g\Q) =757
d 1 + ngz

where X, is the static susceptibility. Expanding the cos Q,S
gives rise to the determination of the correlation length ratio to
be (V XO)5 S/& . To the extent that Xo * 52 » this ratio is un-
affected by the specific nature of excitations.

However, the ordering temperature, determined by equating the
perpendicular length with the layer separation, is most sensitive
to the nature of the excitations. With the expectation that Xo
is proportional to the gap in the soliton spectrum, the greater the
gap, the lower the ordering temperature. Strong interactions with-
in a layer can therefore lead to a lower temperature than would be
expected within a more conventional approximation, since Xo 1is
typically divergent at low temperatures when interactions are ig-
nored.
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CHARGE DENSITY WAVES IN LAYERED COMPOUNDS

F. J. Di Salvo
Bell Laboratories

Murray Hill, New Jersey OT79T7L USA

The work I will describe was performed in collaboration
with many others including J. D. Axe, S. Mahajan, D. E. Moncton,
J. A. Wilson and J. V. Waszczak. While it is impossible to
cover all the interesting phenomena observed in layered compounds,
I will reference these phenomena where appropriate.

Let me outline what we will talk about. We'll start by
studying the structure of those layered compounds which are
expected to be metallic conductors. The physical properties,
such as electrical transport, show clear anomalies that I will
assert are associated with charge density wave (CDW) formation
and/or changes in the CDW structure. At this point I will
describe what a CDW is and how it comes about using a simple
model, thus introducing the parameters that characterize the
CDW. Next we'll come back to the layered compounds to get a
feel for the magnitude and temperature dependence of the CDW
parameters. Then we will discuss some of the effects of
impurities on the CDW. We'll see, by comparison to experiments
and band calculations, that the simple model first presented
for CDW formation is not adequate to explain all the data. While
more complicated models have been proposed, detailed microscopic
theories are still lacking. A number of review articles have
been written concerning the CDW properties of these compounds,<l’2’3)
including one similar to this given at the 1976 NATO conference
on one dimensional conductors. (L)

1. STRUCTURE AND PROPERTIES

The layered transition metal dichalcogenides (5) have the
chemical formula MX,, where X = S, Se, or Te and M can be any
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Figure 1. A schematic of the structure of MX, layered compounds
shows the three atom thick sandwiches held together by relatively
weak forces between adjacent sheets of X atoms.

one of a large number of metals from the periodic table. Here

we will discuss primarily M = V, Nb, Ta (group Vb) and Ti (from
group IVb). Since the anions are divalent, the electron configu-
ration of the group Vb metals is dl and of IVb is 4°. The
structure of the compounds, schematically illustrated in Fig. 1,
is formed from 3 atom thick sandwiches. The top and bottom sheet
of the sandwich is comprised of close packed chalcogenide (X)
atoms, while the middle sheet is comprised of metal atoms. The
bonding within a sandwich is strong (covalent or ionic), but
between sandwiches (between adjacent X sheets) it is weak -
usually labeled van der Waal's bonding. Consequently the physical
properties of these compounds are anisotropic or "quasi-two
dimensional". For example, these materials cleave easily, parallel
to the sandwiches (or layers) much like graphite or mica. Many
of the compounds are polymorphic, for two reasons: (a) The M
atoms in a given sandwich are either all octahedrally coordinated
(0) by X atoms or all trigonal prismatically coordinated (TP)

(b) the layers can be stacked on top of one another in several
different ways due to the weak interlayer forces. The unit cells,
however, can all be described in the hexagonal system with the
a-axis equal to the intralayer M-M distance and the c¢ axis some
multiple of the layer thickness. We will concern ourselves
primarily with the two simplest polytypes: 1T - in which all the
M atoms are O coordinated, and 2H - in which all M atoms are TP
coordinated.

Other metals and many organic molecules (% wis bases) can be
inserted between the layers, i.e. intercalated. -10 Partly
because of the weak interlayer bonding, intercalation usually

proceeds rapidly at or near room temperature. The driving force



CHARGE DENSITY WAVES IN LAYERED COMPOUNDS 109

for intercalation appears to be electron donation to the
conduction band of the layers. Those layered compounds that

form the most intercalation compounds have the largest electron
affinity (i.e. work function), while the more active guest

species are stronger electron donors. While these general
principles of intercalation chemistry are empirically true, an
adequate microscopic picture of how organic molecules bind

to the layers is not available. Later we will talk about possible
interactions between the CDW and the intercalated species.

Since the group Vb compounds are dl, we expect them to be
metallic because of the moderately close M-M distance (a v 3.3A)
and the largely covalent nature of the bonds. More sophisticated
theory, such as the APW band calculations of L. F. Mattheiss (11),
leads to the same conclusion. The uppermost filled bands are
primarily based on M d states, the density of states at the Fermi
level for the group Vb compounds being 5 to 20 times that of Cu,
for 1T and 2H polytypes respectively. Consequently we expect
these materials to be metallic conductors with conductivities
that are approximately one order of magnitude smaller than that
of Cu metal.

Some of the group Vb layered compounds are superconductors.
2H-NbSe, has the highest transition temperature (12) (7.2 K),
while for most others T, is below 1.0°K (2H-TaSp T = 0.8°K (13),
2H-TaSep T, = 0.2 K (133). The transition temperafure is
changed by intercalation. For example, the T, of 2H-TaSp can
be increased to v 5 K. (6,7) The occurrence of superconductivity
leads one to expect that reasonably large electron phonon
coupling occurs in these systems. The McMillan.A obtained from
the T, and other physical properties of 2H-NbSe, is 1.0. (14)

The large oscillator strengths of the optically active lattice
modes observed by infrared reflectivity in the group IVb
compounds also lead one to expect a large electron-phonon
coupling (15).

The resistivities (current parallel to the layers) of the
1T and 2H polymorphs of TaSp and TaSep are shown in Fig. 2. The
original investigators of the transport properties are given in
the references: 1T-TaSy (16), 1T-TaSe, (17), 2H-TaS, (18), and
PH-TaSe, (19). While the resistivity (p) of the 2H-polytypes has
a metallic like slopes there is a sharp decrease at low
temperatures. The resistivity of the 1T polytypes, however, does
not look like that of a simple metal, and there are sharp dis-
continuities at first order transitioms.

The anomalous properties of these chalcogenide compounds
were first noted in a magnetic susceptibility study by Quinn
et al. 20) As might be expected, the anomalies seen in Fig. 2
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Figure 2. The electrical resistivity parallel to the layers of
several layered compounds from 4.2K to 500K.

are observed in almost a?X)other physical pr?gegty; such as, (22)
magnetic susceptibility, Young's modulus 1 heas capacity,
and in miciggcgg%c measurements such as NMR 23,2h,25 or in some
cases XPS. ?

At this point let me just assert that these anomalies in the
physical properties (Fig. 2) are due to CDW formation and proceed
to discuss what a CDW is and how it occurs, before attempting to
explain these measurements.

Charge Density Wave instabilities were theoretically proposed
by A. W. Overhauser in 1968 28 , where he placed an emphasis on the
correlation energy as the source of the instability. The source
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of the instability in these compounds appears to be somewhat dif-
ferent as outlined below.

A CDW is a static, coupled, periodic distortion of both the
conduction electron density and the lattice. One is not the
consequence of the other, but they are intimately tied together.
We can see why, using a simple one dimensional model of a metal
(Fig. 3). We consider a row of uniformly spaced positive ions
and a uniform conduction electron density to preserve overall
charge neutrality. If a sinusoidal perturbation of the conduction
electrons occurs, the net charge, including the ions, oscillates
from negative to positive at maxima and minima in the wave. The
Coulomb energy of such a state is large. In fact,such an
excitation is a plasmon, one quantum of which, in normal metals,
costs on the order of 10 eV. However, if the positive ions move
toward the maxima and away from the minima, the Coulomb energy
can be greatly reduced and such a coupled distortion may become
the stable ground state of the system. Consequently, a CDW is
more likely to occur in systems with large electron-phonon
(electron-lattice) coupling. Below the onset temperature of the
CDW, Ty, the charge density and atomic displacements would be
given by (for this simple model)

o(r) = p_(r)[1+$ cos q * r] (1)

pP(T)

Z//{ “"4°OF'“
IONS, +e

Figure 3. One dimensional model of a metal - used to show why
electron phonon coupling is important and the CDW is a coupled
distortion of the lattice and the conduction electron density.
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> >
sinq * r (2)

>

]
]
=y

>
where ¢ and A are the amplitude in charge density and atomic
displacement respectively.

We further expect that lattice waves with this wave vector

E and displacements parallel to a (longitudinal phonon) will be
lowered in energy above T,, becuase of the effective screening
of the ionic charge by the electrons. Thus a dip, called a Kohn
anomaly, will appear in the phonon dispersion curve (phonon
energy vs. wave vector). Simple one dimensional models for this
effect are published (29); some examples for the layered
compounds will be given below.

Beside a large - electron phonon coupling, the shape of the
Fermi surface (E.S.) is also important. In particular the F.S.
determines the g of the distortions, and whether the CDW can
be the ground state of the system. We can see what kind of F.S.
is needed by considering a simple linear response model of theg
conduction electrons to a static perturbation of wave vector q.
First, we consider free electrons; later we will include inter-
actions. In order to determine if an instability»pccurs, we
use the following principle: If the yesponse Ao(q) to an
infinitesimally small perturbation V{q), becomes macroscopic,
the system will spgntangously move to a distorted state. That
is, if Ap(q) = X°(q) V(q), a static distortion will spontaneously
occur if X°(4) + .

->
For free electrons Xo(q) is calculated in second order
fertqug ion theory to be: (neglecting the matrix element

e x: S, el

K|elT +3>|2)

o ( 1-p )

o,
X (@) o 3 S5 (3)
k k+q k
where
->
SE = energy of state with wave vector k
f2> = Fermi occupation factor
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We can see that XO(E) will become large for a given E,which
connects many filled states to empty states of the same energy.
This can only occur if the two stat?s re on the F.S. Figure U
shows XO(J) for several situations.'30) F.s. with plane
parallel sections, or equivalently, nesting electron and hole
surfaces, will produce a X°(q) that diverges as &n (Ep/kT) when
4 spans (or connects) the F.S. Other cases, such as saddle
points in the band structure at the Fergi level, will also

lead to a similar divergence in Xo(ﬁ).( ) We see, then, that a
free electron gas can be unstable only a T = O.

If electron - phonon and electron - electron interactions are
included, instabilities may occur at finite temperatures. When
interactions are included, we consider the generalized suscepti-
bility, X(q). 1In the simplest approximation (the random phase
approximation) we have

x(@) = x2(@)/1 - x(@) x°@), (1)

where X(E) represents all the physics - i.e., the interactions.3?
Now we see that an instability will occur at the E where

X(E)X °(d) = 1. (Note that the RPA expression is only valid where
the denominator is close to 1, we take some license here in letting
it decrease to zero in order to obtain some feel for the true
physics). Consequently if the F.S. has parallel (or nearly so)
sections, X°(q) will increase as T decreases, so that at some
temperature, T,, the denominator equals zero and the system
becomes unstable. It is also true that X(g§) will have some
structure, possibly also peaking when ¢ spans the F.S. We

will see later some calculations of X®(q) for some of the

layered compounds.

Overhauser's original suggestion was that a CDW might occur
when X°(q) had no peaks or was essentially free electron like (3 DIM-
Fig. 4a). 1In that case, using Eq. LI as a model, the divergence
comes from X(d). Indeed, Overhauser showed that the correlation
energy for unscreened Coulomb potentials in a Hartree-Fock
calculation diverges at q = 2kF.33 We return later to some
discussion of the role of X(d) and X°(d) in determining the
instability. Note, however, that whichever term dominates in
these models, the divergence in ¥(d) will occur at a F.S. spanning
vector.
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Figure L. O(E) for a number of free electron Fermi surfaces is
shown vs. Iq . 1, 2, and 3 DIM. refer to electrons with no
periodic potential from the lattice in the given dimension. For
real solids, some species of the band structure may have one
dimensional dispersion. Two examples are shown : parallel and
nesting pieces of Fermi surface, where the filled states are
shaded.

Within the spirit of eq. L4, CDW instabi&it% ogecurs
if the electron-phonon coupling dominates X(q), 32 ag suggested
by the simple one dimensional model of Fig. 3. If X(q) is
dominated i?st?ad by the exhange, a spin ?%ﬂ?ity wave (SDW)
will result!32 , as in the metal Chromium .
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Since E is determined by the F.S., the wavelength of the
CDW, 2ﬂ/|§|, will usually be incommensurate with the lattice;
that is, the wavelength will not equal a lattice translation.
However, in many layered compounds a first order transition to
the commensurate state (CCDW) occurs at Tg < T,. It is the
incommensurate CDW (ICDW) that is the mark of a F S. driven
instability, at least in a metal where magnetic moments or
permanent electric dipoles do not occur. In cases where only a
commensurate distortion exists below Ty, it is more difficult to
assess the role of the F.S. in "driving" the transition.

What happens below T,? The instability produces a lattice
distortion of wave vector a and a new lattlce potentlal This
potential connects the states at the F.S. at 14 and.K+q in first
order perturbation, splitting the states away from the Fermi
level. That is, gap is produced at the F.S., just over those
reglons spanned by §. Consequently these states contribute to
x with the gap energy A as a denominator, not zero as above To-
Consequently, Xo decreases in magnitude below T,. Within simple
models, the gap is expected to increase with decreasing temper-
ature in exactly the same way as the BCS superconducting gap (29).

While this theoretical description of a CDW may be lacking,
our purpose was mainly to introduce the parameters T,, Ty, E, ¢,
» and A; the last fcur of which are expected to be temperature
dependent. We now return to the layered compounds and consider

some of these parameters in more detail.

The CDW state below T, can best be observed by diffraction
techniques. Elastic scattering Wlll occur at points in
reciprocal space given by E=01= nq where G is any one of the
reciprocal lattic vectors of the undistorted lattice that exists
above T, and n is any integer. 35,36) Thus, each main Bragg peak
will have a series of satellite peaks about it with an 1nten31ty
given from s1mgle kinematic scattering theory by I, v (k- x)2 n/n
(Eq. (5)) for k R << 1. 1In fact,in the layered compounds,K
usually quite small, and the satellite peaks have only 1073 or
less of the intensity of the strongest main Bragg peak. This
made the CDW's very difficult to find by simple power X-ray
diffraction techniques. They were first discovered by electron
diffraction, since the intensity of the satellite peaks can be
greatly enhanced over has expected from the kinematic formula by
dynamical scattering. While the position of the satellite
peaks is easy to obtain by electron diffraction (thus obtaining
4), the intensity cannot be easily used to obtain lattice dis-
placements. The latter are obtained from X-ray or neutron diffrac-
tion measurements.
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Table I lists a number of layered compounds with the CDW
onset temperature, Ty, the lock-in temperature, Ty, and CDW wave-
length in multiples of the a-axis. In all cases the CDW consists
of a superposition of three CDW's with q vectors that are related
by a 120° rotation about the c-axis (the normal to the layers).

No ditellurides are listed in Table I. Thes? Sompounds frequently
show strong distortions at room temperature, >) ana t eg? is some
indication of phase transitions at high temperatures. 3 However,
the ditellurides have a wide range of nonstoichiometry and are
difficult to prepare at the exact MXo composition. This intro-
duces another "parameter" in the problem, and we have not yet
undertaken detailed study of these compounds.

A large variation of T, is seen both with a change in poly-
type and between different compounds. A CDW has not been
detected in 2H-NbS,, but this particular compound is difficult
to prepare, usually Nb +xS is obtained. We will later see that
this non-stoichiometry frequently lowers or eliminates T,. Note
also that the CDW wavelength is short - betweenh 3 and 4 lattice
parameters (or only 10 to 1k R.)

Table I
Material 7o (K) T4 () Acow Ref.
1T-TaSe, 600 473 n3.5a 1, 17
2H-TaSe, 122 95 n3.0a 1, 39
17-TasS, R600 200 n3.5a 1, 2, 4o
2H-TaS, 80 ? n3.0a 1, b1
2H—NbSe2 32 no "3, 03 39
1T-VSe, 112 80 W, 0a 2, ko

2H~NbSep, has the lowest T, and the CDW remains
incommensurate down to L.2K. The CDW wavevector
3 = (1-8)3%/3, where Z* is a reciprocal lattice vector in the
plane and § decreases smoothly from 0.02 at 32K to approximately
0.01 at L4.2K. The intensity of a first order satellite peak
(n=1) in 2H-NbSe, as measured by neutron diffraction is shown in
Fig. 5 vs. temperature (39). The transition at T, is seen to be
second order, since the intensity smoothly drops to zero. The
atomic displacements at 4.2K calculated from this data are
approximately 0.05 R for M (parallel to the layers) and half that
for the Se atoms (some component perpendicular to the layers.)
The amplitude in charge density ¢ at 4.2K is estimated from NMR
measurements to be 5% to 10% of the conduction electron density
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(19, 202. Measurements of the specific heat(l8) and Young's
modulus (17) near T, show that the density of states at the Fermi
level is not significantly lowered by the presence of the CDW
(i.e. the F.S. area is not significantly reduced by the presence
of the CDW).

Next we consider the CDW transition jn 2H-TaSep. The
results of neutron scattering measurements 2) are shown in
Fig. 6. The inset in the upper left shows the scattering peaks
in the (HKO) plane. The open circles are the main Bragg peaks
and the dark circles are the satellite peaks. If we look in the
main part of the figure about the position labeled 4 (pogition U4
is at UE /3), ve see just below T, = 122K that § = (1-8)a’/3 and
§ v 0.02. As T decreases, § decreases until it discontinuously
goes to zero at Ty ™~ 95K. Note also that a weak secondary peak
appears on the other side of 4 /3 by 28. This peak occurs at the
same position as the secondyorder satellite coming from the Bragg
peak at 6 (i.e. 2% -2§ = &= (4+28)). However, the intensity
calculated from Eq. (5) is much too small to be the source of
this peak. Consequently, this is due to a second periodic
distortion &26 = (1+26) 3?3. A Landau free energy model has been
developed by D. E. Moncton et al. (32) that shows how this
secondary distortion occurs _and its role in "pulling" § towarad
the commensurate value of a /3. W. L. McMillan has also developed
more complicated Tandan models to explain this behavior and other
related phenomena, 3,b44) which he will discuss at this meeting.
The main point of these measurements and models is that the CDW
lattice distortions are not purely sinusoidal, but include higher
harmonics that are mixed in by anhagmonic terms in the free
energy. The displacement grows to A n 0.1 for Ta and "0.05
for Se at 4.2K. If we scale by the ratio of atomic displacements
from the 2H-NbSep, data, we estimate ¢ (4.2K) ~ 0.2 (e/a).

At present, the most data concerning CDW properties has been
obtained with 2H-TaSep. Figure T shows the Kohn anomaly seen
in the longtitudinal acoustic phonon at 300K. 39 The softening
occurs over a wide region of this branch, and the minimum né?£
q_ decreases with decreasing temperature as shown in Fig. 8. 5)
Tﬁe simpler models predict a soft mode with w(qo) = 0 at TO.(29)
Instead a central peak develops as T approaches To. Below T, new
modes appear, one of which is the "stiffening" phonon seen in
Fig. 8. his and other modes have been observed by Raman scattering
below T, 7ah8), and will be discussed at this meeting by
E. Steigmeyer. Infrared reflectivity measuremﬁggs below T, show
weak gap-like features with A (4.2K) ~ 25kTO.( This n bir is
much too large, since the BCS like theories give A N hk’I‘O 29),
McMillan has shown that these difficulties can be resolved by
ineluding the phonon entropy (this conference).
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Figure 5. The satellite intensity vs. temperature for 2H-NbSep
below T, = 32K. The intensity is proportional to the lattice dis-
placement squared. The lattice displacement may be used as an
order parameter in a Landau theory.
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Figure 6. Elastic neutron scattering measurements of the
satellite peak intensity and position in 2H-TaSe2 vs. temperature.
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Figure 7. The longtitudinal acoustic phonon dispersion curves
for 2H-TaSep and 2H-NbSe, show pronounced but very broad dips
near qo = 0.33 a . The curves are obtained by the constant Q
method, the resolution functions shown are swept up parallel
to the energy axis to obtain this data.
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Figure 8. The energy of the longtitudinal acoustic phonon
(squared) at qo = 0.33 a* in 2H-TaSe, decreases as Ty is
approached from above or below. However,this energy does not
decrease to zero and Ty, as simple models would suggest.
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The CDW behavior of the 1T polytypes of the Ta dicholcogenides
is quite different from that of the 2H. In 1T-TaSeo electron
diffraction patterns of the (HKO) plane show a commensurate super-
lattice at room temperature (Fig. 9a) and an incommensurate CDW
(Fig. 9b) above the first order transition apparent in the resis- _,
tivity (Fig. 2) at Tq = 473K. In the incommensurate state q=0.285a
(i.e. q is parallel to the line joining main Bragg peaks). Also,
strong diffuse scattering, in the form of circular rings is seen
above Tyq. This scattering is most likely*due to CDW excitations
involving the transverse displacement of q. We expget that
excitations of this sort will be soft, since at Tq g rotates by
13°54" and shrinks slightly (v2%) to produce the 3%X1 superlattice
apparent in Fig. 8a. This transition then involves primarily a
rotation of a. At room temperature and below,the atomic dis-
placements are quite large, Y0.25 for Ta. Further, the amplitude
¢ is about 1 e/a! This might be expected if we scale ¢
from 2H-NbSep by the ratio of the onset temperatures. With such
a large charge oscillation, the binding of the Ta core electrons
shifts enough to be observable in ESCA (26,27,19). Splittings in
the 4f binding energies of "0.5 eV are clearly observed at room
temperature. This means that at room temperature and below, the
CDW is not a weak perturbation of the F.S. Rather the commenﬁgrate
phase may be thought of as a valence disproportionation of Ta
into Ta’*, Tah+, Ta3*. Summarizing the behavior of 1T-TaSe,, we
see that as the temperature is reduced from above Ty, the material
passes through a number of states: a normal undistorted metal,
then a second order transition to an incommensurgte CDW state
where, at least close to Ty, the amplitude ¢ or A is small, and
finally, this state evolves through the transition at T, to a
valence disproportionation. As yet there are no adequate
theories to explain the overall behavior of 1T-TaSe,, although
Landau models are able to qualitatively predict the sequence of
transitions (43).

1T-TaS, is even more complicated than 1T-TaSep, as is
apparent from the two first order transitions seen in the resis-
tivity (Fig. 2). Below 200K the CDW shows the same commensurate
state as lT—TaSe2 (2). Above the transition at Té = 350K, the
CDW is incommensurate with § = 0.2883% and strong diffuse
scattering is seen, very much as that shown for 1T-TaSep in
Fig. 9b (1,40). At 350K, 4 rotates by v129 but stops 20 short
of becoming commensurate! § continues to rotate with decreasing
temperature, until at V200K it jumps the last fraction of a degree
to become commensurate. This intermediate state between 200K and
352K (quasi commensurate state as we call it) appears to be
stabilized by the presence of secondary distortions. 50 The
physics of this situation is similar to that of 2H-TaSe, where
secondary distortions appear immediately below Toe In
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Figure 9. (a) The basal plane diffraction pattern of the CCDW in
1T-TaSep shows the V13 a superlattice. Many of the main Bragg
peaks appear very bright, or overexposed; the remainder of these

peaks are easily found by "extending" the hexgonal pattern of
these spots.

1T-TaSep, however, the amplitude of the CDW must be larger than
some minimum value for the secondary distortions to occur. Again
it is clear from ESCA and X-ray diffraction that the CDW amplitude
at low temperatures is as large in 1T-TaSp as in lT—TaSez.

We have talked about transitions to the CCDW, but have not
tried to indicate why they occur. A hint to their origin can be
obtained from a correlation between T3 and the crystallographic
c¢/a ratio discovered by A. H. Thompson (51). TFigure 10 shows the
almost linear relation between Tgq and c/a for 12 different com-
pounds (or polytypes) that I will not bother to identify in detail.
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Figure 10. Tg is plotted vs. the crystallographic (normalized to a
specific value) from Thompson (24). Each point represents a differ-
ent layered compound or a different polymorph.

Previously, F. R. Gamble had shown that the c/a ratio in these
compounds was related to the ionicity difference between the
cation and anion (52). Consequently, we see that Tq is related to
an ionicity difference. This result suggests that the driving
force toward the commensurate state involves local ionic Coulomb
or covalent bonding forces. One might see how these forces arise
by considering a simple case. Suppose an incommensurate CDW exists
in a two dimensional hexagonal packed sheet of metal atoms. Since
the CDW is incommensurate, in general the charge will be increased
at some nonsymmetrical position. ITonic or covalent energies will
be maximized by placing this charge at a center of symmetry;

such as, (a) on a metal atom, (b) half-way between two atoms

to maximize the bonding charge, (c) at a geometrical center,
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like the center of a triangular set of three atoms, to make a
bonded metal cluster, (d) etc. In the real compounds we must
also consider the metal-nonmetal bonds, but this simple model
gives the qualitative idea. Note that these bonding interactions
can be expressed in terms of large electron phonon interactions.
Consequently it is somewhat artificial to separate the drivin%
forces for the ICDW and the CCDW, as pointed out by Thompson. 3)
Rather in these materials a proper description of the conductign
electrons is between the traditional covalent bond and metallic
bond models, as pointed out by McMillan.(l"3 Apparently in
these systems at small CDW amplitude the F.S. determines the
nature of the distortions, while at larger amplitudes the
bonding energies dominate.

So far we have talked about the CDW as a single layer
phenomena. The CDW's interact from one layer to the next producing
a given stacking sequence. This sequence is consistent with that
obtained by minimizing interlayer Coulomb interactiéns (1,53).

Fgr example, if we consider the simplest CDW Ap = 3 x

> >
igl cos q:Tr, the contours of Ap have hexagonal symmetry as shown

in Fig.1la. The maxima (or minima, depending upon the sign of ¢)
are at the cell edges, with minima at the center of each triangle.
Using hexagonal notation, we label the maxima A and the two minima
B and C as shown. In the incommensurate phase, the origin of the
CDW can be placed arbitrarily at any point in the layer. If we
choose point A in the first layer, then the Coulomb interaction

is minimized with the next layer by placing its charge maxima over
point B in the first layer. The third layer minimizes its

Coulomb energy with both the first and second layer by putting its
maxima over point C. This stacking sequence leads to a three
layer repeat for the CDW as is found in the 1T polytypes. The
interaction energy in the 2H polytypes is modified by the screw
symmetry between adjacent layers and the CDW repeat appears to be
two layers. In the commensurate phase, the origin of the CDW
cannot be arbitrarily chosen. Rather, it appears that the CDW

cell origin lies at a Ta site. Figurellb shows that the CDW in
the second layer can minimize its interaction energy with the
first by translating the CDW origin by 2. By continuing this
sequence, the overall interaction energy is minimized. The origin
of the CDW repeats itself every 13 layers. However, the true
wnit. cell is triclinic with a = v13a, b = v13a and c¢ = |é+23| ( 3).
In order to have long range stacking order both near neighbor and
next -near-neighbor layer interactions must be included. In
lT—Tal_ Zr Se, the random impurity potential of Zr ca?5d?minate
the next nedr neighbor interactions in the CCDW state, 3 pro-
ducing a random stacking of near neighbor layers on the three
sites near the B position shown in Fig. 1llb.
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3 > >
Figure 11. (a) The CDW pattern created by p = I cos q;T with the
i=1
3 CDW wavelengths Xi = 2m/ shown. (b) The CDW pattern and metul
atom positions expected for the CCDW in lT-TaSe/Sez.

Having discussed in some detail the magnitude of the CDW
parameters of some layered compounds, we briefly consider the
resistivity. It is apparent from Fig. 2 that below the onset of
the CDW the 1T polytypes become more resistive and the 2H polytypes
less resistive. The simple picture introduced in discussing the
driving force of the CDW leads one to expect the behavior observed
for 1T-TaSep ; that is, below T, the resistivity should increase
(compared to the normal metal) as T decreases due to the formation
of gaps at the F.S. At T3 the gaps increase discontinuously,
further increasing the resistivity. Finally at low temperatures
we expect metallic-like conductivity from those portions of the
F.S. not destroyed by CDW gaps.
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The resistivity of the 2H polytypes of TaXp rises slightly
then decreases rapidly below T,. A plausible model for this
behavior is to assume that the sections of the F.S. eliminated by
the CDW gaps are characterized by large effective masses. Above
Tys these carriers do not contribute much to the conductivity
because of their large mass, but they do act as effective
scattering sinks for lighter electrons on the F.S. Below T, then,
with the large mass states removed, the scattering rate can
decrease leading to a decrease in resistivity even when some
carriers are lost. This model is consisgent with the nesting model
of the CDW or the saddle point model and the complex shape of
the two sheeted F.S., 1,11) vyt definite proof of its validity does
not exist.

Finally we come to 1T-TaS,. At each transition toward the
commensurate state we expect the gaps to increase in size and the
resistivity to increase. However, in the commensurate state the
resistivity is very high and not at all metallic-like. Recent
data show that the, oy temperature increase in resistivity (below
LOK) is extrinsic.! The resistivity below 2K is described by
variable range hopping and fits p = pgy exp (TO/T)1/3. This form c
is due to Anderson localization by random impurities or defects.(SJ)
Just why 1T-TaS, should be so sensitive to these impurities, and
not lT—TaSeg,is not clear; but the high resistivity of 1T-TaSo
just below 200K indicates that the remaining cafﬁ%ers have a very
low mobil%tx. Suggestions of Mott localization 56) and polaron
formation'l) have been made, but these are untested hypotheses.

Also note from Fig. 1 that the resiﬁtivity of all of these
compounds above Ty is on the order of 107" Q/em. This leads to an
effective scattering time for the carriers of N 2x10-1% sec.

We expect the average Fermi velocity to be less than that of (Cu),
for example, so Vp < 1.6X10° cm/sec. Consequently, the mean

free path, is less than 30 X. These small numbers indicate that the
treatment of scattering by the usual Boltzman equation is question-
able. A similar observation has been made for other transition
metal compounds, in particular, the high superconducting transition
temperature B-W compounds. > These difficulties are probably
related to the large electron phonon interactions and the CDW
instability of the layered compounds.

Next, we consider the effects of impurities. In particular,
we consider the random substitution of the cation by other
transition metals and the effect of this substitution on the
transport properties and on CDW formation. This substitution
causes randomness in the lattice potential and may also change the
average conduction electron density, z. Each of these effects is
related in different ways to changes in the CDW behavior.
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First,consider the effect of changing z: The calculated F.S.
for the undistorted 1T polyt;peshas the shape of an ellipsoid in
the plane of the layer with near perpendicular walls along c¥. 1,11)
This F.S. then has sections that are near to parallel, leading to
the CDW instability. If Ti is substituted for Ta, z decreases,
and in the rigid band approximation the F.S. will shrink but
remain an ellipsoidal cylinder. Consequently, in the ICDW phase
we expect that q/a* will decrease with increasing x in 1T-Taj_y
TixSo. The results of such measurements are shown in Fig. 12
(1,58). The solid line is a fit to the data which is close to that
expected from the rigid band approximation. Also in Fig. 10 gq/a
is shown for 1T-Taj._xNbySo, and 1T-Taj_4VxS2. In these two cases
q/a* is close to constant, as expected, since Nb and V are
isoelectric with Ta and z is constant. In the 1T polytypes, the
effect of changing z is to smoothly change the F.S. and con-
sequently q/a*. The data shown in Fig. 12 are obtained at or
above room temperature. Consequently T, remains greater than
300K even for x A 0.7. It appears from magnetic susceptibility
that Ty is reduced, but slowly, with increasing x. This is an
expected effect of disorder (U43) and occurs with Ti, Nb or V
substitution (or indeed any cation disorder).

The disorder reduces T,, but more rapidly suppresses the
commensurate state. This can be seen in the resistivity of
1T-Taj _xTixSes (Fig. 13). With increasing x, both the transition
temperature from the incommensurate to the commensurate state, Tg,
and the magnitude of the resistive anomaly at Tq decrease. This
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Figure 13. The electrical resistivity of 1T—Tal_xTixSe2 shows the
decrease in Td with increasing x.

data, combined with measurements of the enthalpy of transition
(58), show that for x > x_ " 0.10 the CCDW does not occur. We can
see why this occurs with a simple chemical model. Consider a one
dimensional string of atoms A and B that are randomly placed on
lattice sites. We wish to compare the free energy of the CCDW and
ICDW. Let us consider B to be the dilute species and assume that
B is more electronegative than A. (We could assume it is more
electropositive, but will obtain the same result). Because the B
atoms are more electronegative, the free energy will be a minimum
when the CDW charge maxima lie at B sites. If there is a CCDW and
the alloy is random, many of the B atoms will not lie at maxima
and we must pay some free energy proportional to the ionicity
difference (X If there is an ICDW, the CDW can change its
phase (or equlvaﬁently its local wavevector q) so that each B atom
lies at charge maxima. In this case, we must pay some elastic
energy to distort the CDW - but this turns out to be small. (The
elastic energy to change the wave vector q from its commensurate
to incommensurate value, must be relatively small for the CCDW to
even exist in the pure material.) Consequently, we expect the
increase in free energy with cation substitution to be larger in
the CCDW than the ICDW,and thus the ICDW becomes stable (i.e.
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Td is suppressed and for x R X, the CCDW does not exist.)
McMillian's free energy model reaches the same conclusions (43).

Figure 1L4. The electrical resistivity of lT—-Tal_x’I‘iXS2 shows that

both first order transitions toward the CCDW state are suppressed
with increasing x, but the commensurate state is suppressed for
x & 0.002.

Similar effects are seen in 1T-Ta, Ti S, (Fig. 14). The
transition at 200K to the commensurate State is suppressed for
x ] 0.002, while the transition at Tj (into the "quasi-commensu-
ra;e" state) is slowly suppressed and is finally lost when
x % 0.15.

Fewer doping studies have been made for the 2H polytypes,
because most cation substitution favors growth and retention of the
1T prototype. Rather, studies of the effects of anion mixing, as in
2H-TaSep_ySy, and of intercalation on the CDW are more common. (9)
These studies show that disorder and intercalation (which at least
in some cases causes both disorder and a change in the conduction
electrodensity) reduce the CDW amplitude and/or To. Further,
since the onset temperature is lower in these 2H polymorphs than in
the 1T polymorphs, lower concentrations of "dopants" are
necessary to suppress Tg or T . Such is also the case for the 1T
polytypes, sy %n comparing 18-vses (T, = 112K)(42) ana 1T-TaSe,
(To ¥ 600K). (58
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We have discussed in some detail the magnitude and temperature
dependence of the CDW in several layered compounds. Other studies
of the properties of layered compounds will be mentioned shortly,
but first we discuss the applicability of the simple model we will
introduce to present the CDW parameters.

We focus on two aspects of the model: the bare susceptibility,
and ghg spatial range of the interactions. Several calc?lat%ogs
of X (q) for 1T-TaSy/Seo and 2H-NbSe, have been reported 59,60
and the results are reproduced in Fig. 15. These results are
obtained from nonrelativistic, nonselfconsistentobgnd calculations
using muffin tin potentials, and therefore the ¥ (q) obtained
should be taken as suggestive rather than definitive. First,
consider 1T-TaSep, where a peak is seen in X°(q) at the same
wave vector as observed in the ICDW state. This peak is only
3 times the value that would be obtained from a three dimensional
free electron gas of the same density at q = 2kF. However, even
in the three dimensional electron gas ¥ (q) is large compared to,
Cu, for example because the electron density is lower than in an
elemental metal. The calculated temperature dependence of this
peak is small. This would suggest, in the language of Eq. U4, that
the interaction term X(q) has some temperature dependence in it and
that Ty is not primarily determined by the temperature dependence
of the bare susceptibility X (q). Unfortunately no microscopic
calculations of X(g) of these compounds exists; we do not kpow,
for example, if X(q) also has a peak at the same place as X (q).
The extreme limit of this possibility, namely that ¥°(q) is free
electron like, has been considered in explaining the phonon
anomalies in Nb, NbC and NbN (ref. 61 & J. Hafner in this conference).
These theories conclude that X(q) is entirely responsible for the
phonon anomalies, but these materials are not known to show CDW
formation.

x°(q) for 1T-TaSo shows two weak humps at wavevectors larger
than the observed wavevector of the ICDW. It is not clear if Ehis
is an artifact of the calculation or represents the "true" Xo(q).
Again X (q) does not have logarithmic like peaks and little
temperature dependence is calculated.

The situation for the 2H polymorphs is even less clear.
Here the obtained band structure is more sensitive to calculational
details, since the conduction band is only about 1 vo%t wide and
the F.S. is two sheeted. In any cage, % Salculated ¥ (q) shows
only a broad maximum near q = 0.33a , (60 whose value is about 10
times that of a free electron gas of the same density. As in the
1T polymorphys the calculated X (q) shows little temperature
dependence. While Ricco et al.(60) argue that the electron
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Figure 15. (top right) - The calculated X°(q) for 1T-TaSe2 with
q along the I'M direction shows a weak peak at the observed ICDW
wavevector.

(top left) - The calculated X°(q) for 1T-TaSy with q along the
I'M direction shows even weaker peaks, but these do not occur

at the ICDW wavevector. o

(bottom) - The calculated X (q) for 2H-NbSep along the I'M
direction shows a broad maximum near q,. The calculated
temperature dependence is very small. o

These three figures suggest that while x (q) is relatively
large, prominent features expected from the simple model
embodied in eg. L are not visible.
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phonon interaction along with the large value of XO(QRF) is
sufficient to explain the instability, they do not explain what
determines the CDW onset temperature Tg.

These calculations of xo(q) suggest that the interactions,
X(q), are more important than the simple model implies in
determining the appearance of the CDW. At present our under-
standing of the magnitude and of the energy and wave vector
dependence of these interactions is limited. A more serious
difficulty with the simple theory has been pointed out by McMillan
(Conference proceedings). McMillan has developed a model for the
2H-TaSep CDW that takes into account the phonon entropy.
Significant contributions to the entropy due to phonon softening
is expected since such a large region of phonon states in the LA
acoustic phonon branch are temperature dependent. (see Fig. 7).
The inclusion of this term markedly modifies the instability
condition (to determine To), and consequently a discussion of the
instability in terms of eq. L4 may be misleading. This model,
when compared with experimental data, leads to the prediction of
a short coherence length for the CDW of about 10 R, a value close
to the mean free path above T, and to the super lattice wavelength.
This length is somewhat larger than found in antiferromagnetic
transitions or in superfluid liquid He, but is much shorter than
found in superconductors, where a mean field treatment of the
thermodynamics is adequate.

These calculations of Xo(q) and of the coherence length
make the role of the F.S. less apparent than in the simple
model. Yet is seems clear that the F.S. plays a role in
determining the wave vector of the ICDW, but the microscopic
details are still lacking: It is also clear, particularly for
1T-TaS» and TaSep, that weak coupling models of the CDW will be
inadequate to describe the l%§§e amplitude of the CCDW. As has
been emphasized by Thompson, the general occurence of the CDW
phenomena in these compounds makes it seem unlikely that the CDW
is based on a subtle property of the band structure. It seems
reasonable that the occurrance of the CDW is based on more general
features, such as the large values of Y (q) and of the electron
phonon interaction.(3a58s

Before closing this article, I would like to point out that
I have only discussed a few of the layered compounds. I would
like to briefly mention other phenomena that are connected with
CDW formation or other phenomena that are of interest, at least
to me. (1) 4Hb polymorphs, in which the layers alternate between
octahedral and trigonal prismatic coordination, show separate
uncoupled CDW transitions in the different symmetry layers 2)
(2) the 2H polymorphs of group Vb are superconductors.
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Several papers show that T. increases as the CDW amplitude and/or
T, is suppressed (9,24,63) ?3 the semi metal TiSeo, has a phase
transition near 200K in which the hexagonal a and c axis
double(54,65) (L4) cation substitution in 1T-TaSy and 1T-TaSeo
by Fe, Co, or Ni produces electron localization by the ran?g
impurity potential, even when the CCDW state is eliminated

In the case of Fe a low spin to high spin conversion occurs as
the temperature is increased 67) (5) Tng shows an unusual T2
resistivity from 10K to LOOK 68 . %gast Swo models have
been proposed to explain this behav1or (6) There

may be technological use of layered and related compounds in
rechargeable battery systems(71,72,73),

In conclusion, there now exists a large, but not
exhaustive, body of empericial knowledge about CDW's in layered
compounds. Largely through Landau models the data is at
least qualitatively and some cases quantitatively connected.
However, our understanding of this phenemona, particularly at
the microscopic level is less well developed.

Finally, I wish to point out that this was not intended to
be an exhaustive review of work on layered compounds. In
particular, I have chosen to mainly emphasize points from my own
work, and therefore the references used may not adequately give
credit to many others who have contributed to this field.
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LANDAU THEORY OF CHARGE DENSITY WAVES

W. L. McMillan
Dept. of Physics and Materials Research Lab

University of Illinois, Urbana, Ill. 61801 USA

A. THE LANDAU FREE ENERGY

The two theoretical methods which have proved so fruitful in
the study of superconductivity have been applied to the charge
density wave (CDW) phase transitions in the transition metal
dichalcogenides. I will discuss the (Ginzburg-) Landau theory in
this lecture and microscopic mean field theory in the next lecture.
The Landau theory is due to Dave Moncton and rnyself.z’3 The
Landau theory approach is especially powerful in the discussion of
position-dependent or time-dependent properties. We don't have an
adequate dynamical theory yet and I will discuss only the static
Landau theory.

In order to write down a Landau theory one must choose the
proper order parameter and write down an expansion of the free
energy in powers of the order parameter and the gradient of the
order parameter. In the CDW phase one has a static periodic
lattice distortion, a band gap in the electronic band structure,
and an electronic charge density wave present simultaneously.
Near the onset transition the three quantities are proportional
to each other and we can choose any one as the order parameter.
We choose the electronic charge density and since there are three
CDW's present (thinking now of our canonical material, 2H-TaSe,)
we write

p(@® = p, () [1 + a®] (1)

where
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a(T) = Re[;j)l(_f) + ¢2(‘r‘) + ¢3(‘r’)] (2)

and the ¢.(?) are three complex order parameters, one for each
CDW. For the energy of one layer we write an expansion in powers
of the order parameters, keeping all terms allowed by symmetry.

P = [rfa@a’ - b@®d + <@
+ d(’ﬂ(!zplwzlz + izbza/)3|2 + Izb3zb1|2)] (3

where a(¥), b(r), c(¥) and d(Y) exhibit the periodicity of the
crystal lattice. We will write, for example,

c(®) = c + ¢ 2 eiRi T (%)

i
where the six Kj are the six shortest reciprocal lattice vectors.
We next include a random potential U(r), due to impurities

F, = [ & U@p Hal@) . (5)

The gradient terms are chosen so that the free energy of the three
CDW's is minimum when they lie in the right directions and have
the right wavelengths; any distortion from this optimal condition
costs free energy.

. L 2
F, = f a%r [}(r)zgjl(qi * V- iqi)¢il

1
s 1@ 13 <7 8, 7] ®
i

where |q.| = 2m/A, A is the wavelength of the incommensurate CDW,
and the three Ei vectors lie in the I'M directions 120° apart.
The total free energy of one layer is the sum of these three terms

= + .
F=F +F,+F, (7
We could also include the coulomb interaction of CDW's in
different layers. We assume that a, changes sign at the onset
transition

= ! -
a =a (T TIN) (8)
and that the other parameters are constant. The Landau theory is

a phenomenological theory and the parameters are to be determined
from experiment.
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B. PHASE TRANSITIONS

The simplest thing to discuss is the state of lowest free
energy. One assumes that the order parameters are plane waves
with definite amplitudes, phases and wave vectors, and one varies
these quantities to minimize F. For T > Tyy the amplitudes
vanish and one has the normal metal phase. For T somewhat less
than Ty the quadratic term is negative and one finds a finite
amplitude of all three CDW's and wave vectors determined by
minimizing the distortion energy F3. The wave vectors are
incommensurate with the lattice and only the uniform terms in the
free energy (i.e., agy, by, ¢y, and dgy) contribute. The lock-in
energy

C .
Sull e 2]
i

averages to zero. One can take advantage of the lockin energy to
lower the free energy by setting the CDW wave vector equal to

Ki/3. This costs elastic energy and the transition temperature to
the commensurate phase is governed by this energy balance. As we
‘'will see later on this treatment of the commensurate-incommensurate
transition using uniform plane waves is oversimplified.

C. FLUCTUATION MODES

Small phase and amplitude distortions of the order parameters
are the collective modes of the system. Since the periodic lattice
distortion is proportional to the order parameter these modes
appear in the lattice dynamic structure factor and can be measured
by neutron scattering. For 2H-TaSe2 there are three amplitude and
three phase modes and these have been observed by Raman scatter-
ing.4 The static Landau theory predicts the energy versus ampli-
tude of these modes (but not the frequencies); one simply expands
the free energy about the minimum for small distortions. Long
wavelength phase distortions correspond locally to a translation
of the CDW which costs very little energy in the incommensurate
phase; the energy of the '"phason' is proportional to k2 where K
is the phason wavenumber. In the commensurate phase the lock-in
energy opposes translation of the CDW and the phason energy is
proportional to a constant plus k2. For the amplitude modes the
energy is proportional to a constant plus k2 with the constant
proportional to lT - TIN! (within mean field theory). Thus one
expects soft mode behavior near the onset phase transition with
the amplitude modes stiffening in the incommensurate phase and the
phase modes stiffening in the commensurate phase. Qualitatively
this does happen; however the detailed behavior of the soft modes
and the central peak near the phase transition are not well under-
stood.
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D. IMPURITY EFFECTS

Impurity effects may be calculated simply within Landau
theory. 1In the normal phase a charged impurity attracts elec-
tronic charge and the system responds by dressing an impurity
with a CDW cloud. The size of this cloud grows larger as the
phase transition is approached and the correlation length of the
CDW increases. A second impurity feels the potential of the CDW
and there is an impurity-impurity interaction which tends to space
impurities apart by one CDW wavelength. Since the impurities
drive the CDW order parameter the incommensurate-normal metal
phase transition is not sharp. In the incommensurate phase a
phase distortion of the CDW is not costly and the CDW can lower
its energy by distorting to place charge density peaks near
impurities. This effectively pins the CDW to the impurities. 1In
the commensurate phase the CDW is locked in to the lattice and
cannot easily distort to take advantage of the impurity potential.
Thus the incommensurate phase is favored energetically in the
presence of impurities and the incommensurate-commensurate tran-
sition temperature is strongly depressed.

E. CDW DISLOCATIONS

In the incommensurate phase the cubic term in the free energy
(proportional to c,) fixes the relative phase of the three CDW's.
The sign of this term is such that positively charged regions of
the 3 CDW's add up on lattice sites of a hexagonal "lattice'.

The lattice spacing of this CDW '"lattice'" is approximately three
times the crystal lattice spacing. The phason modes are just the
phonon modes of the CDW "lattice'. Vacancies or interstitials in
the CDW "lattice'" are not possible because the units making up the
lattice are not discrete. However a CDW dislocation is possible
and is closely analogous to the vortex line in superconductors or
superfluid helium. We emphasize that the host crystal is assumed
to be perfectly uniform and that only the CDW is distorted into a
"dislocation". 1In order to introduce a dislocation we insert a
vortex solution into two of the three CDW order parameters, with
the phase of the order parameter changing by 2m as one encircles
the dislocation. If one then examines the charge density map one
row of charge peaks has been removed leaving a '"lattice'" dis-
location.

F. DISCOMMENSURATIONS

The last concept I want to discuss is the discommensuration.
For simplicity consider a single incommensurate CDW whose wave-
length is 27 greater than three times the lattice spacing. If we
take a uniform plane wave for our CDW then for 25 lattice spacings
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the CDW will be in phase with the lattice and the lock-in energy
will be negative; then for the next 25 lattice spacings the CDW
will be out of phase with the lattice and the lock-in energy will
be repulsive. The spatial average of the lock-in energy will be
zero. However, we can distort the CDW in two ways to take ad-
vantage of the lock-in energy. We can amplitude modulate the CDW
making it larger in the in-phase region and smaller in the out-of-
phase region. Or we can phase modulate the CDW making the in-
phase region larger and the out-of-phase region smaller. Both
distortions buy lock-in energy at the expense of distortion energy,
with phase-modulation costing less distortion energy. If one
considers phase modulation only (the weak coupling limit) the
nonlinear problem is simple enough to solve exactly. Far from the
lock-in phase transition one finds a weak phase modulation with
the in-phase region slightly larger than the out-of-phase region.
As one moves toward the phase transition the in-phase region
expands and the average wavelength of the CDW shifts toward
commensurability. Finally, very near the phase transition one has
large in-phase regions which are locked in to the lattice and
narrow out-of-phase regions which appear to be defects called
discommensurations. The phase of the CDW relative to the crystal
changes by 2n/3 as one crosses the discommensuration. As one
continues to lower the temperature the number of discommensurations
decreases and vanishes in a continuous way at the commensurate-
incommensurate phase transition. One interprets the transition as
a defect melting transition in contrast to the more common order
parameter type of continuous phase transition. Experimentally,
the lock-in phase transition in 2H-TaSej exhibits hysteresis and
is first order; however the transition is very semnsitive to
impurities and super pure crystals are not available yet.
Additional Bragg scattering from the distortion was predicted and
observed by Moncton et. al.
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The ultimate goal of the theoretician in studying a particular
phenomenon is to produce a quantitative microscopic theory from
which one can calculate anything. That goal has been pretty well
achieved in superconductivity. We are still struggling with the
theory of charge density waves. The way that one progresses in
solid state physics is to compute the properties of a theoretical
model, compare the predictions with experiment, and modify the
model when it fails. I want to discuss one iteration of this
process today.

Our present underi/ﬂndlng of CBW s in metals follows the
early work of Peierls,= Frohllch Overhauser,é/ and Chan and
Heine%/ and is based on the following physical picture: one starts
with a normal metal and introduces a periodic lattice distortion (a
static phonon distortion of finite amplitude and wavevector q). The
new periodicity introduces a new Brillouin zone boundary and creates
a band gap in the one-electron band structure near the zone boundary.
If the zone boundary is near the Fermi surface (that is, if q spans
nested portions of Fermi surface) the energy of many occupied elec-
tronic states will decrease and the total electronic energy will
decrease. If the gain in electronic energy more than offsets the
increase in elastic energy the distorted state will be the ground
state. The occupied electronic states are nonuniform and there is

a charge density wave with wavevector q which screens the lattice
potential. Thus the three physical properties go together, the
periodic lattice distortion, the energy gap in the band structure,
and the charge density wave. I believe that this physical picture

is correct for the layered compounds. However in order to calcu-
late the properties of the CDW state at finite temperature the
conventional approach is to include the entropy of electrons
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excited across the energy gap and to minimize the free energy.
This is the right thing to do if the zero temperature correlation
length £, (of the CDW)is long; it turns out to be incorrect for
2H-TaSe,. What one must do at finite temperature is to include
the lattice entropy; the electron energy gap is quite large and
the electronic entropy is negligible.

I want to discuss three simple calculations and compare them
to experiment.5 The first is a model calculation of various
energies at T = 0 and a prediction of lattice dynamics in the
distorted state; the lattice frequencies have been measured by
Raman scattering®/ and we can determine the magnitude of various
contributions to the energy by fitting the Raman data. Next we
examine the electronic energy model which, with some approximations,
turns out to be identical to the BCS theory of superconductivity.
A comparison of this model with experiment yields some large
discrepancies. Finally, we treat a lattice entropy model, which
assumes a short coherence length, which is in semi-quantitative
agreement with experiment.

th

At T = 0 we begin by writing for the dlsplacement of the i—

Ta atom in the gth layer from its lattice site R

(1

Mw
H
Nal
.
=
-

uz(ii) = Im qJ¢£(Rl)e
j=1

where q; is the nesting vector of the J—-tl CDW and ¢£(K ) is the
local complex amplitude of the CDW. The three q: form a star in
the [M directions. We assume that the band gap |2W] is propor-
tional to the lattice distortion.

Wj (x) = arcbj(x) (2)

Only a portion of the Fermi surface is affected by the energy gap
wl and we assume a simplified band structure for this nested
portion: we assume perfect nesting with a Fermi velocity vy and
an electronic density of states (of onme spin) of N (0) (for each
CDW). Then the electronic energy is

EZ
2 j 2 B
E = E d“x[-N_(0)|W,(x)|” log ——
el : f t L IWJ(X)IZ
4] £
2, 2
+NT(0)§0|VW2(X)| ] (3)
where is the electronic band width and is of order hv_/2W.

Electrons near .the gap edge cannot respond to lattice vibrations
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with wave vectors further than 1/€  from the nesting vector and
we assume that ¢J(x) is a slowly varying function with a momentum

space cutoff of K, = 1/€,. We rewrite (3) using phonon coordinates
and include several other energies.

2
1 Z d z j2 )2 )2
L A

. 3 1(3q,-G)-x
+ C§§|V¢1[2-Re(BZ¢J e J )

i 3
+F Re(cbz %H)]

122, ,.132,,.232
+D(|¢z¢2| +]¢£¢£| +|¢z°z| )

123
+Re(E¢£¢ %)} (4)

= N

where () is the area of the normal state unit cell in one plane.
The first term is the unscreened elastic constant and the second
and third terms are the electronic contributions from (3). The
fourth term is the lock-in term and the fifth is the interlayer
Coulomb interaction. The sixth term is a CDW interaction which
arises when two CDW's compete to open an energy gap on the same
portion of Fermi surface and the seventh is a weak CDW interaction
permitted by symmetry.

The lattice kinetic energy is

* 2 203 ()
_M d™x A 2
KE = z :I 0 | dt | )
£3

where the Se atoms are assumed to adiabatically follow the Ta
atoms with the same ratio of Se displacement to Ta displacement
observed at low temperature; this yields M = 206 au. Equations
(4) and (5) constitute a nonlinear dynamical model for the longi-~
tudinal acoustic phonons modes near ﬁj.

To find the equilibrium distortion at T = 0 in the commen-
surate phase we substitute
; i(ez + 44-%)
%(X) = 0e (6)
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where A = G./3 - q, and 62 = -% phase (BE) and minimize PE with
respect to ¢, to fiﬂd b

In order to find the phonon frequencies we add a small phase
or amplitude distortion to the static distortion.

; k, fc i(9£+ iAq-X)

¢£(x)= [¢o+-(ak+15k)cos(k-x-+ > ) Je ()

and expand PE to second order in ¢ and By. The equations of
motion are then harmonic and are simple to solve; for the amplitude
modes we find

* 2
M wk k ¢
2 = b4 2.2
Z =4C - 3|B|o_+8Do_ +E¢_+2F - 2F cos( 5) +CE k (8a)
and
* 2
M w k c
— K _4c-3|B|o_-4pe> - 2E6_+ 2F - 2F cos(—2—) +CE2k . (8b)
4 o o o 2 (o} :
where E = Re[Eexp(i39°)]. For the phase modes we find
M K
w c
kK = z 2.2 (8¢)
7 _9|B|<|>o - 3E¢_ + 2F - 2F cos(——) + CEk
and
Mfmi kzc 2 2
- =9|Blo_ + 2F - 2F cos(—~) + CE k™ . (8d)

The (8b) and (8d) modes are doubly degenerate giving six modes.
These six modes are observed in Raman scattering and from the
Raman data we find

o o o
F=.03 ev/A%; [Blo_ = .053 ev/A”; |Eo | = .036 ev/A’;
o o
C = .29 ev/A®, Do% = .031 eV/A%; A/C+E20q" - Tog|ey /o | P = -.90.

There are enough parameters in the theory to fit the data and there
is no consistency check on the theory.

For the second calculation we include the entropy of electrons
excited across the Peierls energy gap and calculate the transition
temperature, heat capacity and magnetic susceptibility. If we
neglect the CDW interactions the theory is equivalent to the BCS
theory and we can borrow the following results from BCS. The
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energy gap at T = 0 is

2W(T = 0) = 3.52 kBTIN 9

where TI is the incommensurate-normal metal transition temper-
ature. %he heat capacity jump at TIN is

.
ACy = 3 X 9.4 NT(O)kB Ty (10)

and the change in susceptibility due to the band gap is

AX = 1.3*4112NT(0) (11)

including jn electron-electron enhancement factor of 1.3. From
DiSalvo's®/ value AX = 55-107° emu/mole we find N,(0) = .33 states/
eV/Ta atom. Using (10) the model predicts a specific heat jump of
0.8 joules/mole K. Craven)/ finds a specific heat jump of 4
joules/mole K. Including the CDW interaction increases this
discrepancy. The theory predicts a Peierls gap of 2W(0) = .037 eV
whereas Barker gE_gl.lQ find an energy gap of .25 eV. We conclude

that the electronic entropy model doesn't work for 2H—TaSe2.

For the third calculation let's do the theory in the opposite
limit, that of small correlation length. For small §, the phonon
frequencies are modified over a large region of momentum space and
the phonon entropy is large. The phonon entropy depresses the
transition temperature so that 2W(0) >> 3.52 kBTIN; then, the
electronic entropy is negligible and one can forget about the
electrons altogether. The electronic ground state energy provides
the energy surface for the motion of the atoms; the Born-Oppenheimer
or adiabatic approximation is valid. Therefore all we need to know
is the nonlinear Hamiltonian (4) and the theory is completely
specified. Unfortunately, in spite of the recent progress in
understanding critical behavior, there are no theoretical tools
which allow us to compute either the static or dynamic behavior
of (4) assuming either classical or quantum statistics for the
lattice. For the moment we will have to be satisfied with a
rather primitive mean field theory. We first transform to a
lattice model with the number of lattice sites equal to the number
of modes of the continuum model with its cutoff ke, = 1/8,. We
take a square lattice in one layer with a lattice spacing of mE, -
We define the lattice order parameter by the value of the continuum
order parameter at the lattice site

b _ J

Y = %7 o) (12)
Replacing the gradient term in (4) by the finite difference we
find
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(m€, )

PE=-§- {2[A|¢ -c|¢ Ilog|¢/¢ ]2
£ | I L 43
+ TT2 (l¢£m ¢£m+1n, + |¢£m ¢ n+1I )]
2 3 2 3 .1 2
+ D(I%mn mnl ]%m pnl l%nn%mnl )3 (13)

where we have neglected small terms in the energy.

We now make the mean field approximation in which each local
mode moves in a potential due to its neighbors.

(Tr§ %
V(q,)-l CAlol? - clo]® m |oy/0]?
+-‘% (o2 - 26" (on + 20 [o]? ([e]?) 1 (14)
m

Near the phase transition k,T is greater than the phonon fre-
quencies and we can use classical statistics. The self consistency
conditions for the order parameters are then

-V, (¢) /T -V, () /T
(6 = [ % se VU dPee 1 (15)

and

-V () /T -V, () /T
<[¢12>= fdch [¢|2e 1 /jdzcbe 1 (16)

which we can solve numerically and predict the temperature depen-
dence of the order parameters, the thermodynamic properties and
the lattice dynamics. The predicted heat capacity jump is 1.67 kB
per mode and the transition temperature is

Tiy = -296 C(mE o ) /ZQ (17)

From the observed heat capacity jump of .48 k, per Ta atom and

TNy = 1223K we find m€, ~ 10 A and ¢5 = .16 A. The length

nE_ = 10 A is equal to the superlattice unit cell size and is the
shortest correlation length which is physically reasonable. This
correlation length is consistent with the extent_in k-space of the
Kohn anomaly in the longitudinal acoustic branch ——/ and with the
fluctuation heat capacity observed by Craven so that it is safe to
conclude that 2H-TaSe2 is the short go limit. Moncton has measured
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(-]
L directly by neutron crystallography and finds ¢, between .05 A
and .09 A.

With such a short correlation length the energy gap is the
same order of magnitude as the Fermi energy. We can estimate the
magnitude of the energy gap very crudely as follows. From
Matthiess'l&/ band structure the Fermi energy is .35 eV and the
(isotropically averaged) basal plane band mass is about 5 electron
masses. From § ~ hv /2W we estimate 2W ~ .3 eV which is in
order of magnitude agreement with the weak absorption edge (at
.25 eV) observed by Barker et al.

The phonon entropy model works well in semi-quantitative
comparisons with experiment. However it does not quantitatively
reproduce Monctons measurement of {(¢) versus temperature and the
phonon dynamics appear to be more complicated than that predicted
by the mean field calculation. Both of these discrepancies may
be due to the mean field approximation and we need to develop
more powerful theoretical techniques to treat the nonlinear
Hamiltonian.

The physical picture of the normal state is more complicated
in the phonon entropy model because the order parameter fluctuations
are quite large. The mean displacement (¢) and the mean energy
gap (W) vanish at the phase transition. However, the mean square
local displacement <[¢ 2% and the mean square local energy gap
(]W|2> are almost as large at the phase transition as at T = O.

The strongly fluctuating energy gap modifies one's physical picture
of the normal state and the implications for resistivity, suscep-
tibility, etc., have not been explored. Another important theo-
retical problem which has not been attacked yet is the derivation
of the electronic energies in (4) from a realistic band structure
in the distorted state.
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LIGHT SCATTERING BY CHARGE DENSITY WAVE MODES IN KCP AND 2H-TaSe2

E.F. Steigmeier, G. Harbeke and H. Auderset

Laboratories RCA Ltd., Ziirich, Switzerland

Charge density waves (CDW's) are known to occur in both quasi
one- and two-dimensional materials the best studied examples of
which are KpPt(CN)4Brg,3.3.2Hy0 (KCP)and 2H-TaSe,, respectively (1).
For studying the dynamic excitations of the CDW's, called CDW modes,
light scattering turns out to be a most useful technique. Its wave-
vector resolution is of the order of 5x10-5871, which is 103 times
better than inelastic neutron scattering; such a high resolution is
needed for an unambiguous analysis of the eigenfrequencies because
of the considerable dispersion near the distortional wavevector.

Raman measurements on KCP (2) and KCP* (deuterated KCP) (3)
show a sharp line at 44 cm~l and 38 cm™l (4K), respectively, of Aq
symmetry (xx=yy =0, zz# 0). It is attributed to the amplitude mode
of the CDW. This mode is observed at all temperatures and its fre-
quency never tends to zero (it rather increases slightly with tem-
perature) suggesting that KCP is distorted at all accessible tempe-
ratures. The linewidth of the mode increases strongly with increa-
sing temperature. The light scattering results are in good agree-
ment with inelastic neutron scattering measurements (4) if the
limited wavevector resolution of the latter are taken into account.

One of the most important findings of Raman scattering in KCP
is the strong isotope effect of the amplitude mode frequency (3).
This evidences that the water, situated in between the Pt chains,
participates considerably in the eigenvector of the CDW mode, which
therefore, by no means is of purely one-dimensional character. From
the behaviour of the water stretching mode with temperature, it
appears that the water may be crucially involved also in the tempe-
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rature dependence of the interchain correlation.

In the hexagonal layer structure material 2H-TaSe) the light
scattering measurements (5) show several modes clearly associated
with the CDW tramsitions which occur at Tipc. = 122K, from the
normal to the incommensurate, and at T,op = 90K, from the in-
commensurate to the commensurate phase. Three of these modes are
observed only below T.,y, namely the one of Aj, symmetry at 43 cm'l,
of EZg at 63 cm ! and of Ay, at 82 em~1 (4K va%ues) (Figure 1). One
mode of Egp, symmetry at 49 cm~l (4K) persists in the incommensurate
phase and gisappears only at Tj,c. Based on the fact that in the
incommensurate phase the phase mode can be of zero frequency while
the amplitude mode cannot, we have reason to believe this Eyg 49 cm”l

T T T T T T T T
I z(xx)z 2H-TaSe, 4+ 4 350
- 300
M/\/\j\w 1=
i
- 35.K 4200 3
~N
(2]
€
3
- 02k 4150 =
2
B
5
4 50

Raman Shift (cm)

Figure 1: Raman spectrum of 2H-TaSe) at various temperatures.
(Note that in ref. 5 overheating was less than 0.2 deg,
while in the present figure the increased resolution
was obtained at the cost of an overheating of about
5-10 deg above the stated nominal temperature.)
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mode to be an amplitude mode (6). All four modes soften and
broaden with increasing temperature. These results represent the
first observations of a softening of CDW modes in a distorted
phase.

The damping constant of the Eog (49 em™l) mode increases
quite drastically in approaching Tipc, approximately as (Tinc-T)-l,
while the damping constants of the other three modes behave the same
way in approaching T.op, approximately as (Tcom-T)'l. Increases of
this extent are quite unusual.

Of particular interest is the detailed temperature dependence
of the E;, (49 cm-l) mode frequency which varies as (Tinc—T)1/3.
Further, it is proportional to the order parameter, for which the
coupling coefficient of the light to the CDW mode is a direct
measure (7). This non-classical value of the exponent suggests
that there exists quite a large region near Tj,. where the simple
meanfield theory (8), despite its qualitative success, is of limited

use for describing quantitatively the thermodynamics of the CDW's.
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SYMMETRY CLASSIFICATION OF MODULATED STRUCTURES

P.M. de Wolff
Technische Hogeschool Delft, Lab. v. Techn.Nat.

Lorentzweg 1, Delft (the Netherlands)

1. DEFINITION OF MODULATED STRUCTURES

In a normal crystal, symmetry is defined by a group of
operations, each of these belonging to the much larger group of
all proper and improper movements. The symmetry translations

T =T +n (1)

> -> -> . . .
where n = nja + nég + n3c (n; = integer, i = 1,2,3) constitute an
invariant subgroup of every crystal symmetry group.

We shall now try to find similar operations for modulated
crystals. In an earlier paper (De Wolff, 1974, to be referred to
as (I) from now), the possible point groups for such crystals have
been derived from a description in four-dimensional space; the
actual crystal is a section of this model, lying in the hyperplane
which is constituted by the physical three-dimensional space. The
same approach can very well be followed for the present purpose,
viz. the derivation of symmetry operations and lattice types. We
shall not do so (apart form an occasional reference) but rather
emphasize the description both of the crystal and of the operations
in direct three-dimensional space. The reason for choosing this
alternative approach is firstly, that it is more convincing and
easier to follow, the more so since the basis for the point group
enumeration will be derived in passing so that (I) need not
necessarily be consulted. Secondly, it is better adapted to a
precise definition of the symmetry operations and of the modulated
crystals themselves.

The latter are characterized by two properties: a) To each
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modulated structure corresponds a basic structure, that is, a
"normal" crystal structure from which the modulated one can be
derived by finite modifications, which are periodically ordered.
We take displacive modulation as an example - other types of
modulation yield the same results, and the displacive case is the
more complicated one since here the modifications.gave vector
character. In fact they consist of a displacement u of each atom,
which depends upon:
= the kind of atom, each atom in the unit cell of the basis
structure being considered as a separate kind so that the relevant
index i runs from | to N, if N is the number of those atoms.
= the p031t10n of the atom in the basic structure, defined by a
vector rg where the index p symbollzes the integers py, pp and p3
numbering” the unit cell from an origin in a fixed cell. Thus if the
fractlonal coordinates of the i-th atom in the basic structure are
(j = 1,2,3), the components of r are x9: + ps
- i fixed vector k in reciprocal spacg with components ki, ko and
k3 with respect to the reciprocal basis of the basic structure.
It is conceivable that structures exist modulated with more than
one k-vector simultaneously. Here we shall restrict ourselves to
the case of a single k-vector. The more general case is treated
e.g. by Janner & Janssen (1977).
- N periodic and continuous vector functions ul(a), each with unit
period, that is, invariant for an integer shift in a. These functions
define the displacement of the atom at position rgp in the basic
structure by

3
u(i,p) = ﬁ.(ﬁ-??p) = 3.{2k.(x‘.’. + p.)} (2)

For convenience's sake we shall normalize the functions u by the
condition that the average displacement vanishes:

[R.() da =0, i=1...N (2a)
01
so that the xgj define the average position of the i-th atom.

b) At least one of the components k s k and k, depends
in a continuous manner upon external parameters such as the
temperature. It can therefore be considered as an irrational number,
in contrast with the rational k-components of superstructures.

Property b was introduced as such in (I). Property a corres-
ponds to the assumed existence of a lattice of "main reflections"
in (I). The latter, however, are the diffraction image of the
average structure (smeared atoms), not of the basic structure.
Another competing structure is that of the solid phase without
modulation, usually prevailing in a higher temperature range. It
may be isostructural with the basic structure but again is not
identical to it, since the temperature difference changes both
unit cell and position parameters. Relations between these several
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structures will be given in section 3.

2. SYMMETRY OPERATIONS AND -TRANSLATIONS

A symmetry operation is usually defined as a movement of the
crystal, which brings it into coincidence with itself. An alternative
definition leaves the crystal where it is and defines as a symmetry
operation each mapping r - t' for which

¢(r') = ¢(r) for all =, (3)

¢ being any local function, such as the electron density. For sym-
metry translations, the mapping is given by (1). This ''mapping
definition" is so obviously equivalent to the "movement definition'
that the distinction is hardly ever made.

For modulated structures, however, the "movement definition"
leads nowhere, but the definition (3) can readily be extended. To
begin with, (2) is replaced by

u(i,p) = Ki(k’-ﬁ’p +t). (4)

Ihe new parameter t is an overall phase parameter for all

u.-functions simultaneously. For an infinite crystal, the introduc-
tlon of t - or, more generally, a change At in t - is no more than
an infinitesimal structural change. This fact follows from property
b : Indeed the change At is equlvalent to a mere change of the
origin cell by a vector nja + n2b + n3c, provided that Ken = At
(mod 1). Because of the irrationality of at least one kJ, this
equation can be fulfilled to any desired degree of accuracy by a
judicious choice of the integers n:. Stated in less mathematical
terms: the environment of a given atom is of course modified if t -
changes, but the new environment could have been found before the
change for an atom elsewhere - not exactly, but with any desired
degree of precision. Therefore it is plausible to extend (3) as
follows: An "MS (modulated structure-)symmetry operation" is a
mapping Tz , t > t' such that

o(F',t") = ¢(¥,t) for all ¥ and t. (5)
A mathematically exact symmetry translation can now be derived for

modulated crystals, starting from (1) and adding a "compensating"
change in t:

'=%Y+n (6a)
t' = t - Ren. (6b)

= basic structure lattice vector.
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In the sen3e of symmetry definition (5), this operation can be
interpretated most easily by looking first at (6b). Writing

g(l,p,T) for_ the leplacementapf the atom at r° for t = 1, we find
u(i,p,t') = u. (k(ro -n)+t) = u(i,p-n,t). Hence %6b) signifies that
all dlsplacements are carried over to atoms removed by a shift &
from the atom to which they referred originally, the shift of course
being performed on the corresponding atoms in the basic structure.
Then it is obvious that (6a) indeed relates a site T before the
execution of (6b), to a site at ¥' with identical ¢ after that
operation, cf. fig.l. Because of the periodicity of the 3i—functions,
adding an integer to t is also a symmetry operation. Therefore we
can now write down the complete set of MS-symmetry translations:

T'=%+8 t'=t-Kd+s (7)

R = basic structure lattice vector; s = integer.

Though the set (7) clearly defines a group of translations in
four-dimensional (¥, t)-space, we shall continue to use words like
"space'" and '"'vector" in the three-dimensional sense. Moreover, we
shall drop the term '"pseudosymmetry'" used in (I), since the approxi-
mative nature suggested by that term applies neither to translations
(7) nor to the operations which will be discussed in the next
sections. Instead, the term 'MS-symmetry translations, MS—-symmetry
operations'" etc. will be used for operations which include a
specified mapping t >~ t' (even if t' should be equal to t) in order
to distinguish these from normal symmetry operations.

3. PROPERTIES OF MS-SPACE GROUP OPERATIONS

Besides translations (7), a modulated crystal may have other
symmetry operations. In our extended concept of symmetry, defined
by (5), we §ha11 have to spec1fy the general nature of these
operations r >~ r' and t ~ t'. Beginning with t', we observe that
this parameter can depend only upon the former value t — not on r,
because both t and t' are defined by (4) as overall phase parameters
constant in space. The actual form of this dependence has to pre-
serve the symmetry translations consisting of integer shifts in t,
hence they must be of the form t' = ¢t + §, where ¢ = +1 and § is
a constant.

fig.l. Operation t' = t - 1 moves each displacement of the modulated
chain (thick line) to the next atom, e.g. from P to Q.



SYMMETRY CLASSIFICATION OF MODULATED STRUCTURES 157

The other part T>r' of a symmetry operation has to be a
normal space group operation. As a matter of fact it belongs to the
space group of the average structure. This follows if we take the
average of both sides of (5) over one period of t (which according
to the above is also a period of t'):

¢av(?') = ¢’av(;‘r)'

Accordingly a MS-symmetry operation has the general form

' =St +p (8)
t' = et - kp + n (9

where (8) is an element of the space group of the average struc-
ture. In (9) we have replaced the above constant & by -kp + n, in
analogy with (7), and in order to simplify further relations.

Finally it should be noted that (8) is also an element of the
space group of the basic structure. This follows from the fact that,
just as with symmetry translations (7), equation (8) connects
points with identical electron density before and after the appli-
cation of (9). Hence, it also connects corresponding atomic centra,
which means that an atom at ¢ (t) is imaged by (8) in some atom
at . (t') see fig.1b. P

Jq
> ' _ o -
rjq(t ) Srip(t) + 5

i

or

+ U(j,q,t") = SE.  + SU(i,p,t) + p. (10)

20 =0
T, r,
Jq 1p
Since by (2a) the average of J; and therefore of SuU as well, is
zero, we obtain by averaging (10) over t and t'

20 20
Tiq = STip * e (11)

which establishes the operation (8) as a normal symmetry operation
of the basic structure.

Moreover, by substituting (11) in (10) we obtain
a(j’q,t') = Sg(ispat), (]2)

an important starting point for the derivation of the relation
between symmetry-equivalent Gi's which will be given in section 5.

Now that both the average and the basic structure have been
shown to possess the symmetry elements (8), the question may arise
what the relation is between the space group G evidently formed by
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these elements, and the space groups G__ and G, of the average and
basic structure, respectively. Since th€ centr@ of an atom in the
basic structure is the centre of gravity of the corresponding
smeared atom in the average structure, each symmetry operation of
the latter applies to the former as well. Combining this result
with those derived above we obtain

Ge6,, <6, (13)

In most of the structures which are known the three groups are
identical.

4, REDUCED FORM OF POINT GROUP OPERATIONS

Obviously the homogeneous parts of (8) and (9) taken together
form an element of a finite group K,, which plays the same role as
the point group of normal crystals. We shall number these elements
with an index m=1...g, where g is the group order:

' =57t t' = e t (14)
m m

On the other hand, the operators S_ clearly constitute a normal
point group K. The question then arises to what extent K is
different from K,. It was shown in (I) that the one-dimensional
representation € of K, is contained in S_. Hence K and K, are
. m . m .
isomorphous. Moreover the corresponding reduction of Sm to

am bm o
S = < dm o (15)
o o €
m

occurs for a suitably chosen basis of basic structure lattice
vectors. The proof of (15) will be repeated hgre in terms of a new
approach, using the properties of the vector k.

5. EQUIVALENCE AND INVARIANCE OF K—VECTORS

So far, the vector % has been considered as a constant not
changed by the action of a symmetry operation. However, it is
clearly not a unique vector. We may guess that more or less
equivalent k-vectors can be derived in three ways from a §iven k:
a) by adding a basic structure reciprocal lattice vector n
b) by inversion, yielding -k
c) by letting the point group operations S act on it.

- a) The first procedurg will now be shown to iead to what we
shall call "t-equivalent" k-vectors. Two vectors k and k' are
t-equivalent if there exist functions ui such that the description
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of the structure by (4), based on &k, can be replaced by a cor-
responding one based on k':

> o = 20
ui(ﬁ Tt t) = u(k Tt t). (16)
Hence the new functions ai(a) have to obey
—>' _ > _ —>' _ > >0
ui(a) = ui{a (k k)rip} (17)
>

for all unit cells p. Since u, is periodic with period 1, two

. . . . >
different unit cells, ;ylng*a §.S. lattice vector n apart, can
satisfy (17) only if (k'+- k)*n = integer; and this has to be true
for all lattice vectors n. Such a Laue-type condition has the
well-known consequence

> > %

>
k' -k =n (18)

where 3: is a reciprocal lattice vector of the basic structure.
Hence, k' and k are t-equivalent only if they obey (18). Conversely,
substitution of (18) in (17) yields the phase correction —3*.?9 to
be applied to d. in order to accomodate a shift (18), so (18) i
both a sufficiefit and a necessary condition for t-equivalence of

k' and %.

b) The second of the above three procedures, inversion, never
yields a t-equivalent vector, since for inversion (18) requires
2k = 7* which is impossible for the incommensurate K's considered
here. This result may seem strange because % and -k are obviously
equivalent vectors e.g. in the description of the diffraction
image. However, t-equivalence is a mathematical concept, not a
physical one. (The inversion k' = -k can be accomodated by a
condition like (16) but only with reversed sign of t on the
right-hand side of that equation. Indeed t-equivalence would be
physically significant if modulation were a wave phenomenon, with
t proportional to the time, which would make a distinction between
k and -k meaningful.)

c) Finally we invesgigate the kind of equivalence which arises
from the action of S on k. We shall show that there is t-equivalence
between k and € S k (not Sk!), where the index m numbers the point
group operations as in (14), for m = 1...g. Starting from (12) and
letting Sm act on both sides we obtain

> > >0 -1 »>0
u.(ker, + t) =8 ‘u.(ker. +t'). 19
T+ ) = s T E v ) (19)

The right-hand side of U. in (19) is now brought in the form
required by (16) first b} substitution of (11) and (9)

kT +t' =k (st
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Since ﬁ(S;) = (S—]§)°; we obtain

F.20 v -1 .20
k rjq + t sm{(emSm k) rip + t} + n.
Substitution in (19) leads to
> > 30 1= -l», >0
. = N Y. +
ui(k rip + t) S uJem{(emSm k) r1p t} + n
in which equation we recognize (16) with
>y -1 T '
k' = (e8) 'k, or k emsmIE (20)
>, _ -1 > - ot _
u:;(a) =S uj(ema +n), or uj(a) Su;{e (a = n)} 21

so any two k-vectors related by (20) are indeed t-equivalent. Ac-
cording to (18) this means that

*
eSk-k=n. (22)
m m g
We now consider the "projection opergtor" 1 ZemSm = P. Applied
to any vector v, the result is a vector Pv & . invariant
under all operations ¢ S (m = l...g). Such vectors Pv constitute

a linear vector space "(1line, plane or whole space) and P actually
performs the geometric projection of v onto L_. The one thing we do
not yet know is whether L_ is not of zero+dimension, that is,
whether there exists a vector v so that Pv is not zero. The answer

. F . . . . ..

is that k is such a vector. This is readily found by writing down
the identity:

g
k = Pk - (1/g)z(emsmﬁ - %). (23)
1
From (22) it follows tha& the second term is a rational vector.
Hence, the first term, Pk, cannot be zero since that would make the
left-hand side k rational as well. So k is a vector for which

Pk # 0.

If K is in L , (20) reduces to k' = k and (16) to u.(g) = ﬁ!(a).
Then (21) immediaEely yields the important relation (de holff, 1§77)

[OREERNERCIER W (24)

between displacements of symmetry-related atoms.

If k is not in L , it can be written
k= Pk + %,

From (23) and (22) we conclude that k. is a rational vector, It will
be shown in section 8 that k, can be Qisregarded - so that k becomes
a vector in Lt - by introducing a new type of symmetry translations
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as well as the corresponding new Bravais lattice types.

The proof that every S _ of the point group K can be written

in the form (15) is obvious now: we only have to choose the c basis
vector among (multiples of) the rational vectors Pn left invariant
by each emS » that is, in L_. If L_ is three-dimensional, (15)
reduces to ?IL s i1f not, the other basis vectors can,always be
chosen to obtain a form of (15) as well, because if n is a lattice
Xectog clearly both the mutually perpendicular vectors PR3 and

n - Pn are rational vectors.

6. POINT GROUPS

It follows from (15) that there is just one € -value possible
for each S_ within a given group K, of operators (T4), that is, K
is isomorpﬁous with K. The notation for groups K, can therefore
be made unambiguous by using the Hermann-Mauguin symbols for the
corresponding point group K, adding a prime (') to those symmetry
elements which are generated by an operation for which ¢ = -1. The
possible elements are enumerated below, with indices // and _|_
denoting their position with regard to L.

Generating operation has: € = 1 e = -1
L, = whole space 1 1

L, = plane m, /ot 1 2) or 1
L, = line m//,l,Z//, 2),1",m'

] 1] 1
210400 Sy 3)4y oF 8y
In order to enumerate the point groups K,, one can start by
looking at the possible groups K and use the isomorphism between
K and K, to arrive at groups K4 afterwards. Regarding the groups
K we observe that any normal point group which has a reducible
vector representation (that is one, which leaves at least one line
invariant) may occur as a group K. As a matter of fact, if this line
is inverted by an element S of such a group, then the corresponding
element of K, will have € = -1, and otherwise € = +1, so that €S
leaves the vectors along the line invariant and the line will serve
as (part of) L_. In this way for each of these groups, a cor-
responding group K4 can be constructed.

Since all point groups except the 5 cubic groups fulfill the
above condition, the group K can be any of the 27 non-cubic point
groups. However a given group among these 27 can lead to more than
one group K, if there are several inequivalent choices possible for
the invariant line(s). There is no problem in the groups with 3-,
4= or 6-fold axes, which have just this axis as the invariant line,
nor with the triclinic system. The orthorhombic groups have three
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Table 1. Point Groups

System Normal Magnetic Modulated Group
(Kl;) of €S
Triclinic 1 1 1 1
1 1’ 1
Monoclinic 2 2! 2" m
II m m' m m
2/m 2'/m' 2'/m m
Monoclinic 2 2 2 2
ITI m m m' 2
2/m 2/m 2/m' 2
Orthorhombic 222 2'2'2 2'2'2 mm2
(Lt//c) mm2 m'm'2 mm2 mm2
mmm m'm'm mmm ' mm2
m2m m'2'm m2'm' m2m
Trigonal 3 3 3 3
3 3 3! 3
32 32" 32! 3m
3m 3m' 3m 3m
3m 3m’ 3'm 3m
Tetragonal 4 4 4 4
4 4 4' 4
4/m 4/m 4/m' 4
422 42'2' 42'2" 4m
4mm 4m'm’ 4mm 4mm
42m 42'm' 4'2'm 4mm
4 {mmm 4/mm'm’ 4 /m'mm 4mm
Hexagonal 6 6 6 6
6 6 6' 6
6/m 6/m 6/m 6
622 62'2' 62'2" 6mm
6mm 6m'm’ 6mm 6mm
62m 62'm' 6'2'm 6mm
6 /mmm 6/mm'm' 6/m"mm 6mm

invariant lines, but only for mm2 the axes are inquivalent. This
leads to Ka-groups mm2 and m2'm' for Lt parallel to c.

A much more fundamental distinction can be made for monoclinic

groups K, depending on the choice of invariant line(s) perpendicular
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to the binary axis, or parallel to that axis. There is good reason
to distinguish two systems of monoclinic groups K4 correspondingly,
viz.
system "monoclinic II" (L, = plane): point groups 2', m and
2'/m
system "monoclinic ITII" (Lt = line): point groups 2, m' and
2/m'.

The roman numerals stem from the numbers of the corresponding
four-dimensional groups, cf. (I). The reason for having two dif-
ferent monoclinic systems is that different types of lattice obtain
for each, cf. table 2. There is no such complication for the other
systems so that K,-groups can be classified conventionally in those.
In total we find 27+1+3 = 31 groups K4. They have been listed in
(I). These groups are in a 1-1 correspondence with the 31 "admissible
magnetic groups' (Opechowski and Guccione, 1965), consisting of
combined time- and space operations which leave a magnetic moment
vector invariant. Indeed the time inversion is formally equivalent
to our € = -1, and the difference between the positions of primes
in the two lists is caused by the axial character of the magnetic
vector as compared with our polar k-vector.

7. RATIONAL AND IRRATIONAL NON-ZERO COMPONENTS OF k&

The vector Pk, lying in L_, has essentially more than one
non-zero coordinate in two sysEems, viz. two in monoclinic II, and
three in the triclinic system. In these cases it should be noted
that our definition of a moculated structure requires at least
one irrational coordinate. The remaining one(s) can be rational,
though that is not plausible from a physical point of view except
for e.g. structures with a strong layer—like character.

The component k. of k perpendicular to L,_, if not zero, has to
be a rational vector in order to satisfy (22). It is easily deter-
mined in most systems merely by substituting for €S the generating
rotation about the unique axis, if any. The result often depends on
the kind of Bravais lattice of the structure. Firstly, sincg*(ZZ)
is valid for a description on a primitive base, the vector n in it
has to be a reciprocal lattice vector not extinguished by gentring
conditions for a non-primitive base. Secondly, a solution k, of
(2%) is not significant if there exists a reciprocal lattice vector
n, w%th the same projection along Lt' (As a matter of fact, the
equations

3*=Pﬁ>*+i€ and k =Pk + k

1 1 0 0
yield ¥-3.%- P(K -n *) as a vector which can replace k since
according to (18) it is a t-equivalent vector, and which lies in Lt.)
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This restriction invalidates many solutions for centred
lattices. For instance, in system monoclinic II the solution (040)
for k, is easily found, but when applied to a C-centred lattice,
the corresponding vector (now written conventionally as (010))
coincides with (110) in the projection along L_ which in this case
is the projection on b. The various possibilities for all systems
will now be enumerated in full, they are shown in fig.2.

For the hexagonal system one finds that (22) with ¢S = R /3
already+excludes any fractional vector k.. In the tetragonal
system k (440), and in the trlgonal system (§30) fulfill the
condition, but they are both significant only for P- type Bravais
lattices. In menoclinic III, with €S = R about the unique b-axis,
(300), (40}) and (00}) are equivalent p0551b111t1es, the latter two
are valid for both P- and C-lattices. Monoclinic II, with €S =
mirror with respect to the a, c-plane, yields (030) for P-, but no
signifigant golutlon gor C-lattices as shown above. In the triclinic
gystem k 0 since Pk = k for any vector. Finally, with L_ along
c the orghorhomblc system yields (300) for P, A, C- and F-lattices,
(140) for P-lattices only and no solution for I-lattices, where it
must be stressed that the coordinates refer to an orthogonal base
(100), (010) of the p- or c-net of non-extinct points of the
reciprocal net 1=0 (for the centred lattices this differs from the
convention which e.g. for a C-lattice would call this base: (200),
(020)).

Both table 1 and the drawings of fig.2 are easily inter-
preted if one remembers that the operations €S leave a vector in-
variant. For each group K, therefore, they form one of the
"pyro-electric groups', as indicated in the last column in table 1.

8. NECESSITY OF INTRODUCTION OF BRAVAIS LATTICE TYPES WITH
IMPROPER TRANSLATIONS

, In this section it will be shown that it is possible to assign
a k-vector lying in L_ to any given modulated structure notwith-
standing the just-menEioned possibility of non-vanishing perpen-
dicular components, by accounting for such components through the
introduction of a new type of symmetry translations. We shall begin
by showing that such a seemingly complicated procedure is necessary
for the enumeration of inequivalent MS space groups.

The MS space groups are to a large extent similar to those of
normal crystals. Equations (8) and (9) indicate clearly the recipe
for enumeration one shog d follow : each generator of the basic
structure's space group (given by S and p) must be completed with
*)We use this term in a loose sense. Actually the group G is meant,
which in theory may be of lower symmetry than Gb’ cf.(13).
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MONOCLINIC I MONOCLINIC 1
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fig.2. The k-vectors not in L s corresponding to the 10 new types

of Bravais lattices in table 2. In each case L_ is normal to the

paper; it is a plane for the system monoclinic II and a line other-

wise. The dotted line shows the component k.1 L,  of the k-vector.
. . . . . t

® X basic structure reciprocal lattice p01n%s at levels 0 and }.

0,8 satellites, at levels Pk and Pk+}.

some indication of the corresponding ¢ and n, and the lattice symbol
of the basic structure must be added. For € , the prime convention
has been borrowed from magnetic groups already in (I), as an in-
dication of ¢ = -1.

However, the results of the foregoing section show that one
more distinction has to be made, namely between the possible
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values of k.. This rational component of % may well influence the
number of inequivalent choices for the shift n in t in the rotational
generators. For instance if is the system monoclinic III the space
group of the basic structure ’ is P2, the rotation over m (g = +1)
may or may not be accompanied by a shift n = } in t, so that we
obtain two MS-space groups when ko = 0.

On the other hand, if %k, = {3* the product of the same rotation
with the translation 3 alreagy yieldg such+§ combined operation of
Ry and a shift of } in t. Hence for k, = ja there is only one
MS-space group, while there are two for k, = G. The situation is
entirely comparable to normal space groups for a monoclinic struc-
ture: we have P2, P2, and CZ* but C2] is equivalent with C2. Indeed
it can be shown that k, = }3 corresponds to a centring in four-

dimensional space.

The effect of E can be accounted for entirely and unambiguous-
ly by an extension 09 the lattice types, This_ is particularly simple
. % .

for the non-trigonal systems. The case k, = }a  for instance,
signifies according to (7) that the translation 3 increases t by }.
The alternative way of lqoking at such translations yhich we now
propose is a) to ignore k., so that k - k_ replaces k; b) to agggunt
for the t-shift by allowing s in (7) to equal } when n, is odd "/,
The t-shift is thereby incorporated in the lattice type. In itself
it is an operation of order 2, and it commutes with all symmetry
translations of the basic structure. Therefore it offers the same
extension of lattice types as that other external binary element:
time inversion, well known in magnetic symmetry.

The difference with the magnetic case is, that t-shifts of }
have to be considered only for the axes perpendicular to L_. None-
theless we can make full use of the existing enumeration of magnetic
lattice types and their nomenclature, as given by Opechowski and
Guccione (1965), cf. section 10. In the trigonal system, the case
k., = (330) obviously calls for a different approach. It leads to
only one new type of lattice, shown in fig.7, which has a primitive
hexagonal lattice of the basic structure, and a shift of $+in t
along #. In analogy with the above-mentioned nomenclature, we propose
the symbol P, for this lattice. The ensuing list of MS-lattice
types is givén in table 2, cf. section 10.

9. TWO-DIMENSIONAL EXAMPLE OF IMPROPER TRANSLATIONS

In order to elucidate the foregoing sections, we discuss the
two—dimensional MS-plane groups plm and p blm illustrated in fig.3a
and 3b. Both are derived from a basic stricture with plane group pm.

*)

We use this term in a loose sense. Actually the group G is meant,
hich in theory may be of lower symmetry than Ga, cf.(13).

**)Such translations are termed "improper" by de Wolff (1977).
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[

fig.3. Plane groups derived from the normal group pm. a) plm
b) p,. Im c) reciprocal lattice of p b]m; left: overall picture,
right: enlarged portion. Large dots”are main reflections.
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The more elaborate notation (plm means m perpendicular to b) is not
absolutely necessary but it helps to prevent confusion. The fact

that there is no prime in either symbol means that m has ¢ = +1,
hence the vectors in L are those parallel to m. The simplest case,
therefore, is the one with k parallel to m, that is, in the direction
of a: MS-plane group plim.

Just as in the three-dimensional case, the fact that L_ is the
site of a twofold symmetry element allows a second possibility for
the k-vector, called k', with a component %, = ib" normal to L_.
This is rendered by the lattice type oy Tge diffraction image
in fig.3c clearly shows that the remaining k parallel to L,k is
unique and is _in agreement with the orthogonal symmetry, whereas
the original k'-vector is ambiguous (its image k' with respect to
m is an equivalent choice) and clashes with the point group symmetry.
The lattice type Poy, eliminates these drawbacks. It does so at the
cost of an unusual”extinction rule, viz. presence of m-th order
satellites for

2k + m = even
where one has to admit half-integer values of the k-index.

As explained in section 6, there is no choice if one wants to

express the influence of k, on MS-space groups available for a
given basic structure. In ghis respect the situation for basic

structure space group P2 sketched there is exactly as in the present
case: apart from plm and pyplm there existst just one further

extension, viz. plm, (cf. fig.4; m, is a mirror coupled with a shift
1/2 in t), and no separate group "nglml" (the corresponding symbols

Pob

in (I), table 2, are Pm for plm, Am for Im and Pc for plml).

fig.4. The plane group plm]
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fig.5. Reciprocal centred net, L _is parallel to b. The vector K,
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when chosen in Lt’ extends beyon& the first Brillouin zone shown in

the figure.

10. ENUMERATION OF LATTICE TYPES

The last three sections have made it clear that among the
possible criteria for normalizing k, the choice of a vector
belonging to L_ is by far the most prompting in order to avoid
complications. It should be stressed that such a choice is by no

means equivalent to a preference for the first Brillouin zdne. To

illustrate this, fig.5 shows a two-dimensional reciprocal get of
the centred, type. With orthogonal axes a > b and L

finds that k vectors lying within Lt for which

along b, one

fig.6. Two magnetic Bravais lattice types which are equivalent when

applied to modulated structures.
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Table 2

MS-system vectors Lattice types %k for lattice of
in Lt basic structure
(irr=irrational)

basic modulated k k k

struc— structure 1 2 3

ture

triclinic all P P irr irr irr
monoclinic b P P irr 0 irr
II P P2b irr § irr
C C irr 0 irr

monoclinic //b P P 0 irr 0

III P P, 0 irr i

C C 0 irr 0

: 1

C C2C 0 irr 3
orthorhombic //c P P 0 0 irr
P Poa i 0 irr
P P, i i irr
A A 0 0 irr
A A2a ! 0 irr
C C 0 0 irr
C CP 1 0 irr
I I 0 0 irr
F F 0 0 irr
F FA 1 0 irr
hexagonal /lc P P 0 0 irr
trigonal //c P P 0 0 irr
P P3a 1/3 1/3 irr
R R 0 0 irr
tetragonal /lc P P 0 0 irr
P P i i irr
I I 0 0 irr

H1+ (/)% <ky< 1, k =0
fall outside the first Brillouin zOne. Preference for the latter
would lead to an oblique vector k' not in Lt'

. . > . . .

Cases in which k, is essentially non-zero (section 7) have
recently been found to occur among actual modulated structures. An
example is the monoclinic III-structure of TTF-TCNQ between 54K and
47K which has k = (4, 0.295,0) so that it corresponds - after imter-
changing a and ¢ - with the case P, in fig.2 (Bak, 1977). Hence,
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£)

fig.7. The lattice type P3a: symmetry translations perpendicular to
c. The shift in t is 4 of 3 in going from a black dot to a circle
or an asterisk, respectively.

enumeration of lattice types including all such cases is of more
than academic interest.

The types listed in table 2 have been derjved in three ways:
a) As in section 7, from the possible vectors k., including zero.
b) for the non-trigonal systems: by studying the type or types
corresponding to each magnetic lattice. Some of these lead to more
than one MS-type. For instance, if L_ in an orthorhombic lattice
is along c, then clearly the lattices C and A are not equivalent.
On the other hand, many magnetic lattices are superfluous as an
MS-type. An example is CI’ illustrated in fig.6. It has C-centring
with a shift { in t accompanying the centrigg translation as well
as the c-translation. With L_ again in the c-direction, however,
the latter shift mergly changes k, into 1 - k,. Though this may
in some cases bring k within the Iirst Brillolin z0ne, we prefer to
disregard that criterion as we have done above, and to replace C
by the simpler type Cp which has a t-shift for the centring trans-—
lation only.
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SUPERSPACE GROUPS FOR THE CLASSIFICATION OF MODULATED CRYSTALS
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I. Introduction

During this meeting one has heard a lot about crystals with an
incommensurate phase. Characteristic for these is the absence of
space group symmetry. However, as de Wolff explained already (ref.l),
it is possible to extend the notion of symmetry. Our approach differs
somehow from his and originates from a study of the space-time
symmetry of vibrating crystals. The symmetry of a vibration mode is,
in general, irrelevant, unless this mode plays a predominant role,
e.g. if it is a softening mode. However, we will see that the symmetry
considerations can also be applied to modulated crystals, both static
and dynamic.

Consider a crystal vibrating in a single mode. For simplicity
we take a one-dimensional Bravais crystal (fig. 1). The displace-
ment of the n-th atom in the chain is given by u_= u sin(qna-wt).
The pattern of world lines in the x~t-plane shows invariance under
a lattice of translations denoted by I. A basis of I is formed by

= (a,qa/w) and a, = (0,2m/w). For fixed t the positions of the

aéoms do not have translation symmetry, but form a crystal with a
displacive modulation. The difference between the structures at
two different times is just an overall phase shift.
Hence, if we identify wt with the phase ¢, one can see the modulated
crystal as a section of a periodic pattern in the x¢-plane. In this
way we have imbedded the crystal in position space (denoted by V )
into a larger space (called superspace) which is the sum of VE
and an internal space V *

In the superspace 6 the reciprocal lattice I has a basis
with a* = (2r/a,0) and a; = (-q,w). The projection of £ on V
con51s{s of the vectors k ="n(27/a) + mq (n,m integers). This meéans
that the diffraction peaks of the modulated crystal belong to this
projection: the points n(2n/a) are the main reflections, the other

172
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ones (with m # 0) the satellites. If we denote the lattice of the
undistorted crystal by A, the lattice in V_ spanned by (0,2m/w) by
D, their reciprocal lattices by A* and D*, the projections on V
and V_ by 7 and Trs Tesp., then one has the following importan%
properties:

Inv, =Dp, ¥ o vE=A*,1r

Apart from the translatigns there is another symmetry element
of the pattern in V_: the 180 rotation which is a combination of
the reflection x * =x (which is a symmetry element of the undistor-
ted crystal) and the operation t + -t (which is a transformation in
V.). The symmetry group of the pattern is the space group p2. The
elements of this group are combinations of space group elements in
V. with transformations of the internal space. This extension of the
cfass of considered transformations is not uncommon. In the theory
of non-rigid molecules, e.g., the symmetry elements are also combi-
nations of orthogonal transformations with internal transformations.
As an example, the symmetry group of C_H_ has 36 elements (fig.2)
and is generated by i) a 120  rotation of the whole molecule, ii)

a 120" rotation of the top part with respect to the bottom part

(an internal transformation) and iii) a reflection followed by an
intgrnal rotation., The only Euclidean transformations are the rigid
120”7 rotations.

One can generalize the concepts introduced above. The displace-
ment is not necessarily sinusoidal, but is described by a periodic
function: u_ = u(qna-¢) with u(x+2n) = u(x).

A modulatedncrystal with such a modulation in n dimensions (usually
n=3) can be imbedded into a (n+l)~dimensional superspace. For a
superposition of modulation waves the modulated crystal can be im-

I=A, L =D (1.1)

E I
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bedded into (n+d)-dimensional superspace, when d is determined as
follows. The diffraction pattern of such a crystal consists of k-
vectors with

n d
kK = n,a + I m b (1.2)
- . i-i . =]

i=1 j=1

where a% are main reflections and §t basic satellites. Finally, not
only di%placive modulation can be ddscribed in this way, but also
a continuous density distribution for which the spectrum is given
by eq. (1.2), The different more general cases are discussed in ref.

II. Superspace groups

All the cases mentioned at the end of the first section can be
described by superspace groups, generalisations of the two-dimensio-
nal space groups, found for the simple n=1, d=1 example. The mathe-
matical definition is as follows. A superspace group G is

a) a subgroup of E(n) x E(d) such that

b) the translations in G form an (n+d)-dimensional lattice I,and

c) the intersection of the reciprocal lattice I* with V_ is an

. . . % E
n-dimensional lattice A",
Condition a) means that the elements g of G are pairs (gE,gI) of
Euclidean transformations in, resp., n and d dimensions.
Condition b) implies that G is a space group. Condition c) gives the
space group additional structure. It implies that one can choose
standard bases for I and I* . A standard basis for I is one for which
the last d basis vectors a seceyd belong to V_. A standard basis
for I* is one where a* M3 belond'fo v I
EERENL S g B

Fig.2
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Because the satellites of the zero vector belong to the projection
of the lattice spanned by a* ,eeesa’ _on V_, the property that
. . . +1 +d ey s

the modulation is incommensiirate can"bé formilated by the condition:

d) the intersection of £ with V_ is the zerovector.
Condition d) is not essential for the consequences and is not inclu-
ded in the definition. For convenience, however, we shall assume
only the incommensurate case in the following.

A superspace group is given by its lattice translations, its
point group and the nonprimitive translations v(R), whereR=(RE,R )
belongs to the point group K. A standard basis for I is given by

ai = (éiy "__A_@i) ’ (i= l9°°’n)’§i€ A, é_ai e VI (2.1)
an+j = (o, _t_’j) ,» (G = l’“sd)!l’j €D

1f gﬁ (i=1,..,n) form the reciprocal basis of A and gf that of D*,
the reciprocal basis of I’ is J

* * P

ai = (éi’%o) ’ (i l,..,n) i (2.2)
* = 3* f = E T

an+j (_K_I_JJ9 bJ) » (3 1,.0,d),4 bj € VE

Because D and A* span V_ and V_, resp., one can express Aa. and
(P 1 E -1
A bj as

d
ééi = I o.ib.

j=1 J17]

n (2.3)
£, = = o.igi .

* . .
An arbitrary k = (BE’BI) of £ with k = Zniai has a projection on
VE given by

d
. *
k.= L na.+ L n_.ABb, (2.4)
~-E . 171 . n+] /]
i=] =1
. x ¥ .

Comparing this with eq. (1.2), one finds that the A'b. are the basic
satellites. Hence the entries of the dxn matrix o in éq. (2.3) are
the coordinates of these basic satellites with respect to the basis
g?,..,gg of A*.

For an incommensurate modulation it is easy to show that the
point group K is isomorphic to the group of elements RE. With
respect to a standard basis the point group elements R are represen-
ted by matrices

FE(R) 0
r'(R) = PM(R) FI(R) , Re€ K (2.5)

The matrices T' (R) form the group KE’ the matrices I'_(R) the group
K.. They are n-, resp. d-, dimensional point groups. The dxn matrix
FM(R) is given by
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PM(R) = OPE(R) - FI(R)O R (2.6)

Because T(R) (hence also FE(R), FI(R) and PM(R)) are integral ma-

trices, eq. (2.6) puts strong restrictions on the possible o's

(i.e. possible modulation vectors) for given and K_. Two matrices

0 can give rise to the same FM(R), i.e.ito the same point .group.

Tgere is a uniqueidecomposition o= 0o +o0 suchithat

o T (R) -T_(R) o° =0, (all R € K). The matrices o~ for given

FE(E) and T_(R) form a real vector space, corresponding to L_ in

de Wolffs talk (ref.l1). The matrices o have rational coefficients.
Starting from the knowledge of the point groups in n and d

dimensions, one can determine all possible o's, i.e. all possible

point groups of superspace groups. Then one can determine all super-

space groups using a method discussed in ref.3.

III, Equivalence classes

In the usual crystallography one identifies isomorphic space
groups. In this way one obtains 219 nonequivalent space groups.
Superspace groups have an additional structure. Therefore, one
defines: two superspace groups G and G' are equivalent if and only
if a) they are isomorphic with an isomorphism that b) maps a standard
basis for the lattice I of G on a standard basis for G'. Just as
for usual crystallography this implies an equivalence relation for
lattices: the lattices I and I' belong to the same Bravais class if
and only if there are standard bases for both I and L' such that
the holohedries (the symmetry point groups of the lattices) have
the same g?trices. This means that these point groups are related by
F'(R) = S T(R)S (all R in K) with

s - SE 0
S S ’

M I

where S_, and S_ are integral matrices. With this equivalence
relation the number of Bravais classes is finite. To give an idea,

in table I is given the number of Bravais classes for n=3,d=0,1,2,3.
Since the matrices I' (R) of the holohedry form an n-dimensional point
group which belongs Eo an n-dimensional (usual) Bravais class, one
can assign each Bravais class in superspace to a Bravais class in

n dimensions. To this correspond the different columns in table I:

Tr = triclinic, M = monoclinic, O = orthorhombic, T = tetragonal,

Tg = trigonal, H = hexagonal, C = cubic.

A Bravais class is characterized by its holohedry, i.e. by the
elements ' _(R), FI(R) and T, (R) or equivalently by the corgesponding
arithmetic point groups K., K. and the matrix ¢ . Since o is
rational a lattice can be considered as a centering (denoted by C)
of a lattice with 0 = 0 ( a P lattice). For n=3, d=1 the Bravais
classes with KE in the primitive monoclinic Bravais are given in
table II.
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Table I: Number of Bravais classes; n=3
d Tr M 0 Tg H T c total
] 2 34 ] 1 2 3 14
1 1 7 10 2 | 3 - 24
1 16 39 8 4 15 - 83
1 26 | 122 | 18 4 30 14 215
Table II: P-monoclinic Bravais classes; n=3;d=I
System| Bravais o-matrix| centering| generators holohedry
class
2/m | P2/ a0 | - Tooo 1000
T1 0100 0100
0010 00To
0001 0001
CP%/‘;‘ B} 004} 000 1000
0100 0100
0010 0070
0011 0011
2/m | PT/T 00y - 1000 1000
1T 0700 0100
0010 0010
0001 0001
cpf/i'l'-‘ joy }00} To0o00 1000
0100 0100
0010 0010
1001 1001
The symbol for an arithmetic point group (in this case a holohedry)
consists of 3 parts., The topline gives the point group K.. To each
element of corresponds an element of K.. The bottom line gives

K, (for d=1 consisting of elements :}2. In front is a symbol
cﬁaracterizing the centering, i.e. o .

The elements g_ form, if g = (g ,gI) belongs to. a superspace
group, an n-dimensional space group EE' The symbol for a super-
space group consists also of 3 parts. The top line gives G_. In the
bottom line are the corresponding elements g_. These do no§ form a
space group. For d=1 the possible elements are 1, -1 and s (denoting
a nonprimitive translation in V_). The superspace groups for n=3,
d=1 with G belonging to the primitive monoclinic Bravais class are
given in table III.

The superspace groups are space groups in n+d dimensions.
However, because of the additional structure, the equivalence classes
are different from those of ordinary space groups.
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Table III: Superspace groups for the primitive monoclinic Bravaig
class, n=3, d=I
Bravais class
G P2/m P2/m P2/m P2/m
E 11 11 P €
Pm pt™, pfm ctm prm cfm
1 s 1 1 1
Pb pfP P P2 cf®
1 1 1 1
P2 PPg CPZ PPZ, PP2 cP2
] 1 1 s 1
P2 pP2 pF2 cta
! 1 1 |
P2/m _P2/m |[.P2/m P2/m _P2/m P2/m
P2/m Py PTs Fi AFI LA | i1
P}l/m Pg./ P2, /m P2./g
P2, /m R S Py €1
P2/b P2/b P2/b _P2/b P2/b
P2/b P €31 PP sT ¢
P2, /b P P €

This means that one can not use the knowledge of space groups in
dimension 2,3 (Tables of X-ray crystallography) and 4 (as determined
by Fast and myself and by Wondratschek, Neubuser and Brown). Up to
now superspace groups have been determined for n=2,3 and d=1.

Iv. Examgles

As examples we consider two compounds discussed earlier during
this conference. The structure of Y-Na,CO, has been determined by
de Wolff and co-workers (ref.4). One has a case n=3, d=I.

space group of basic structure: C2/m;
wave vector of modulation: g = a(§1+ §;)+ ng,or o=(aaB),

where a® 0.091 and B< 0.318;

C2/m
superspace group 1 s
The 4-dimensional pattern is left invariant by
i) the translations (gl,-Zﬂa),(32,-2na),(§3,-2w6),(0,2w), where
2ra = Aa.,, etc.;
ii) a two-fold rotation along the unique axis combined with in-
version of the phase;
iii) the mirror in the perpendicular plane combined with a phase
shift 7m: nonprimitive translation iaa.
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The data for lT--TaS2 can be found in ref.5:

space group of basic structure: P3ml;

there are 3 modulation waves: (a01/3),(0al/3),(aal/3) with

ax 0.285; since the third is a linear combination of the first

two and ag,one has d=2 and
0 al/3
a 01/3 _

the lattice in superspace belongs to the Bravais class Ci:ﬁ H

this is a centering 001/3 1/3 1/3 of Pyg{xﬁm

the only superspace_group with G = P3ml belonging to this
Bravais class is CP3lm
| "P6Im
This group has a 5-dimensional lattice: the translation a, in position
space is combined with a shift-ab, in internal space, a, with abz,
with (b +b.)/3; the modulation function as a_whole Can be

sglfted over b and over b,. The roto-inversion 3 is combined with

a 6-fold rotation in internial space, the mirror which interchanges

3, and a, is to be combined with a mirror which interchanges Pl and
b,. Of cOurse, one cannot determine the superspace group from only

the g-vectors. A precise analysis must give an answer to the question
i CP3/m
P6/m
V. Conclusions

Like the ordinary space groups, superspace groups can be used for
the classification of structures, for selection rules and for the
characterisation of excitations. The description of structures has
been discussed in section IV. Selection rules follow from the proper-
ties of the Fourier components of a distribution invariant under a
superspace group. If the functlon p(r) in superspace is invariant
under g = {RIvV(R)}, then B(Rk) = p(k) exp {i(Rk)v(R)}. This has
consequences for the intensities of diffraction spots: they have
point group symmetry and $(k) = O if Rk = k and kv(R) # 2mn.

In this way one can explain systematic extinctions in structures not
having space group symmetry.

The excitations of modulated crystals can be characterized with
irreducible representations of the superspace group. As an example,
phasons transform indeed according to such an irreducible represen-
tation. Phonons in modulated crystals should be characterized by
irreducible representations of the superspace group G, not by the
space group of the basic structure, which is no longer a symmetry
group. However, one can show that the lattice D is an invariant sub-
group of G and that G/D is isomorphic to G_. Hence representations of
the (ordinary) space group G_ are also representations of G. More-
over since K and are isomorphic, often labels corresponding to
G, can be used. However, one has to use another k-vector labelling,
because in position space there is no Brillouin zone left.

g =

9

or only a subgroup is the superspace group.
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The results presented above have been obtained in a research
together with prof. A. Janner. We have profited very much from
stimulating discussions with prof. P.M. de Wolff,
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STRUCTURAL PHASE TRANSITIONS AND SUPERCONDUCTIVITY IN A-15 COMPOUNDS

L. R. Testardi
Bell Laboratories

Murray Hill, New Jersey OT79Th4

I. INTRODUCTION

Ten years after the discovery by Hardy and Hulml of high
superconducting transition temperatures in A-15 structure materials
evidence of their structural instability emerged. Shull? in
neutron diffraction work, and Batterman and Barrett in more exten-
sive x-ray studies found that V3Si underwent a structural trans-
formation at temperatures not far above the superconducting T,

(Tc ~ 17K). The transition from cubic to tetragonal structure

shown by the x-ray data of Fig. 1 begins at Tm ~ 20.5K and pro-
gresses rapidly (though apparently continuously) on cooling down

to ~17K where the onset of superconductivity arrests the progress

of the transformation. The tetragonal distortions are relatively
small, (c/a-1) ~ 2.2 x 10~-3 and with Ac/c ~ -2Aa/a so that there

is little change in volume from the cubic state. Structural domains
(of differing ¢ axes orientations) occur below Tm‘

Mailfert et al.3 and Vieland et al.} 1ater reported a cubic
to tetragonal transformation in Nb3Sn (Tc ~ 18K) similar to that
in V4Si but_with the important differences of i) (a/c-1)
~ 5.2 x 1073 (opposite tetragonality though still with approxi-
mately no volume change), ii) a (first order type) discontinuity
in tetragonality at Tp (but no observable latent heat), and iii)
Tm = U5K.

The (apparent) thermodynamic second order nature of the trans-
formation in V35i was noted by Anderson and Blount’ who showed
that a cubic to tetragonal transformation should be first order in
the absence of a new internal order parameter. A sublattice dis-
tortion has been observed in Nb3Sn from neutron diffraction studies

181
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Fig. 1 The lattice parameters of V3Si vs T showing the cubic to
tetragonal transformation (after Batterman and Barrettz).

by Shirane and Axe.” (Problem steming from V make a comparable
determination in V3Si too difficult.) In the undistorted A-15
structure (compound formula A3B) the transition metal atoms, A,
from the orthogonal linear chains (see Fig. 2). The sublattice
distortion observed by Shirane and Axe in Nb3Sn involves (along two
of the chains) a pairing of Nb atoms in a manner similar to that
expected for a Peierls distortion in a one dimensional system (see
Fig. 3).

The structural transformation has now been observed in at
least some samples of almost all of the high Tq (€ 15K) A-15 super-
conductors but has never been seen in the isostructural compounds
having relatively low (S 10K) T,'s. (For further references and
data see the review articles of references 6-8, herein.) These
experimental findings constitute part of the correlation and the
conjectured causal relation between structural instability and high
temperature superconductivity. We present other evidence below.

IT. Instabilities and Transformation Effects on the Physical
Behavior

There are numerous "anomalous'" temperature dependences for the
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Fig. 2 The A-15 structure for compound formula A3B. A atoms are
transition metals and form 3 linear orthogonal chains. B atoms
are usually nontransition metals (in high T compounds) and occur
at the bec sites (center position not showns:.

behavior of A-15 compounds, many of which are now reviewed as mani-
festations of the instability and precursors of the transformation
(see ref. 6 to 8 for futher details).
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Fig. 3 The sublattice distortion due to the structural transforma-
tion in Nb3Sn. (After Shirane and Axe5.)

In V3Si the elastic modulus (cjq-cy5)/2, which defines the
shear restoring force for [110] transverse waves with [llO] polari-
zation, shows a positive temperature coefficient. This modulus
softens so greatly on cooling that it would appear (by extrapola-
tion) ready to vanish between 10K and 20K (see Fig. 4). For samples
which exhibit the Batterman-Barrett transformation the softening
is arrested at Ty but the occurrence of domains complicates the
ultrasonic experiments in which these data were obtained.

Not all samples exhibit the transformation (The metallurgical
factors are complicated but experiments show that transforming
samples have higher resistance ratios and some second phase inclu-
sions compared to nontransforming ones.). For V3Si samples not
exhibiting the transformation it is superconductivity which arrests
the softening and, presumably, the need for the structural trans-
formation. A theoretical discussion of this observation has
recently been made by Ting and Birman.10

The deformation associated with soft shear modulus (cll-cl2)/2
is consistent with the (tetragonal) symmetry of the transformed
phase and with the lack of volume change associated with the trans-
formation. In this sense it is a specific precursor as well as a
driving force for the transformation.

The observations that superconductivity arrests the growing
structural transformation in a transforming sample, and arrests the
softening in a nontransforming sample, shows the similarity of the
interactions responsible for the structural instability and the
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Fig. 4 Elastic modulus (cjj-c12)/2 vs T for transforming and non-
transforming V3Si (after Testardi et al.9).

high temperature superconductivity.

Keller and Ha.nak,ll and Rehwaldl2:13 observed a similar soften-
ing of (c11~c12)/2 in Nb3Sn. Again, several distinctive differences
occurred. The modulus (c37- clg)/2 was found to recover its stiff-
ness below Ty, (and above T,) in Nb3Sn (it does not in V3Si where
Tm and T, differ by only'wﬁ K), and the modulus cl), shows con-
s1derably greater softening on cooling to 4L°K in Nb3Sn (Ac/c ~ —507)
than in V3Si (Ac/c ~ -6%). The latter is not a trivial observation.
Many theoretical treatments of the A-15 compounds assume noninter-
acting chains of transition metal atoms. Such a model will produce
no anomalous temperature dependence for the c)), cubic face shear
modulus.

Correlations of mode softening with superconductivity are
observed. Shear mode softening is observed at least qualitatively
(i.e. in polycrystalline samples) in all high Te A-15 compounds
(where investigated) but in none of the low T, compounds . 9

The occurrence of a near vanishing modulus in the ultrasonic
experiments indicates that the basic instability for these com-
pounds is macroscopic (q=0) rather than microscopic (g>0). Never-
theless our present ideas on the microscopic source of supercon-
ductivity require knowledge of the behavior of high frequency
phonons to indicate some relationships of the structural instability
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and the superconductivity. Shirane and Axed obtained the phonon
dispersion relation for the soft (g=0) mode in Nb,Sn shown in

Fig. 5. They find significant softening for q > 8 but considerably
less than that observed in the ultrasonic measurements. A "central
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Fig. 5 Acoustic phonon dispersion curves for [llO] waes with [lib]
polarization in Nb3Sn (after Shirane and Axe2).
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peak" is also observed on approaching the structural transforma-
tion from above.

The Karlsruhe group:Lh (N. Niicker, W. Reichardt, H. Rietschel,
E. Schneider, P. Schweiss, and V. Tripadus) have obtained the total
phonon density of states F for V3Si, V3Ge, V3Ga, Nb3Al, and Nb3Sn
at room and low temperatures. Some (but not considerable) mode
softening is found in the total density of states (7/8ths of which
is from optic modes) with evidence of optic as well as acoustic
mode scftening. The results for Nb3Sn as well as a2F from tunneling
and a2 (derived) are shown in Fig. 6. Note that the electron-phonon
interaction a2 shows considerable variation with energy and is
strongest for the low frequency acoustic modes.

IIT. More on the Relation of Structural Instability and High
Temperature Superconductivity

It has been suggested7’8’9 that structural instability - those
microscopic conditions which make a change in phase imminent -
promotes high temperature superconductivity. The structural trans-
formation, however, since it relieves these conditions, causes a
reduction in the T, otherwise achievable. While a microscopic
theoretical justification in terms of soft modes and enhanced
electron-phonon interactions (a2) is lacking, several experimental
tests support the empirical relation.

One such test is the relative variations of T, and Ty with
chemical changes or stress. The former is more complicated and
limited results are available. Vieland and Wicklundl5 found that
~L% Al added to transforming NbgSn prevented the transformation and
caused Te to increase by V.5K. Chu and Testardil6 find that for
V3Si hydrostatic pressure decreases Ty (while increasing T,). In
Nb3Sn pressure increases Ty while decreasing T,. If instability
favors superconductivity one expects that whatever causes Ty
(always > To) to decrease/increase such that the instability is
greater/smaller at Te will consequently cause T, to increase/
decrease. The experimental observations are at least consistent
with this conjecture. Other data, including the pressure dependence
of the soft shear modulus and the strong anharmonic behavior of
these solids, is discussed in refs. 6 and 8.

IV. Instabilities, Unstable Phases, and Superconductivity

It is possible, then, that the structural instabilities which
occur at solid state phase transformations may be attended by con-
ditions favorable to high temperature superconductivity. If these
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Fig. 6 Total phonon density of states, a2F (from tunneling) and
a2 (derived) for Nb3Sn (after Karlsruhe grouplh).

conditions can be frozen in, rather than the transformation products
which relieve the instability, higher T.'s may result. The first
deliberate test of this was achievedl8 by sputtering (as a function
of temperature) through the eutectoidal transformation temperature
(v1100°C) in a portion of the Mo-Re phase diagram (see Fig. T).
Sputtering at the eutectoidal boundary has frozen in a metastable
structure with enhanced T,. Similar though less dramatic effects
have been seen in a large number of alloys.17 GavalerlS was able

to form metastable high T, Nb3Ge by hot substrate sputtering in
high argon atmosphere.

V. Defects, Instabilities, and Superconductivity

The complexity of the A-15 compounds and the difficulty of
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Fig. T T, vs film deposition temperature for Mo.38Re_62 (after
Testardi et al.lT).

achieving near exact reproducibility in the physical properties of
these materials has caused a number of investigators to consider
the role of defects (see, for example, Hein,l9 and Testardi?0 for
further references). '"Defects" are generally described as i) non-
stoichiometry, ii) antisite defects (A atoms on B sites and vice
versa in the ALB structure), iii) vacancies, interstitials, and
impurities, iVv) second phase inclusions, and V) strains.
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Nonstoichiometry is often considered a crucial "defect"
although recent work?l indicates that, while important, these
defects may not be as extremely detrimental to T, as expected.

Blaugher et al.22 showed from x-ray measurements that the unit
cell compressibility of V3S5i at room temperature was considerably
greater than that calculated from sound velocity data for pressures
0-10 kbar but was in agreement with expectations at higher
pressures. The failure to agree with the ultrasonic predictions,
which should apply near zero pressure, indicates that the physical
process responsible for the additional mechanical compliance must
require times too long to be observed at ultrasonic frequencies
(20 MHz). Varma et al.?23 suggested that the result was due to a
pressure dependent vacancy concentration.

A correlation between T, (as-grown) and the electrical resis-
tance ratio p(300K)/p (25K) has been found in a number of A-15
compounds®l (see Fig. 8 for Nb3Ge data similar results obtain for
other A-15's). This correlation, more general than that between T,
and composition, suggests that a key factor responsible for the
wide range in T, for these materials is the occurrence of a defect
with universal character in A-15 compounds. Good evidence for this
comes from the behavior of an initially high T, film irradiated by
2 MeV “He particles where we find we can reproduce the as-grown
correlation by varyin% the defect concentration only at constant
chemical composition. b (The L‘He particles do not stop in the film.)

Sweedler et al.25 have found that neutron radiation damage
causes a large reduction in Te to occur in a universally similar
manner for all A-15 superconductors. They deduce from Bragg peak
intensities that the effect is due to antisite defects. Similar
reductions of T, have been found with Lge damage by Poate et al.2h
but it is concluded that the crucial defect lies, in part, in small
bond distortions.

The defects have significant effect on the electrical resisti-
vity and the lattice parameter as well. Increasing defect concen-
tration causes not only a reduction in T, and an increase in
residual resistance but a reduction in the thermal part of the
electrical resistivity as well.2h Thus the defects strongly
influence not only the superconducting properties but also the
normal state properties which reflect the electron-phonon inter-
action responsible for the superconductivity.

The exact nature of the defect has not yet been established.
Channelling measurements on V3Si before and after defect formation
indicate a strong tendency for bond distortions and quasi-amorphous
structure. This behavior is more reminiscent of the covalently
bonded group IV semiconductors rather than metallic bonding.
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Fig. 8 T, vs electrical resistance ratio for about 200 samples
(shaded band) of V 35i. Also ﬁhown is an initially high T, fﬁlm
after various doses of 2 MeV “He damage (after Poate et al

The ready tendency of the A-15 materials to form defects is
another manifestation of their structural instability. The defect
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problem, however, appears to be a deterrent to achieving the more
unstable A-15 compounds having, perhaps, T.'s higher than any
presently available.
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SUPERCONDUCTIVITY AND MARTENSITIC TRANSFORMATIONS IN A-15

COMPOUNDS

W. L. McMillan

Department of Physics and Materials Research Laboratory
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

I would like to discuss the current theories of the martensitic
transition in Al5 compounds and our understanding of the interplay
between the martensitic transition and superconductivity. Labbe
and Friedekf/ proposed that the martensitic transjtion is driven by
an electronic band Jahn-Teller effect. Gorkov223L proposed an
alternative model in which the martensitic transition is driven by
the Peierls mechanism of an energy gap opening up near the Fermi
energy. Both models are based on one-dimensional or quasi-one-
dimensional energy hand models which are inconsistent with APW
band calculations.®’ Bhatt®/ has developed a very successful Lan-
dau theory which is based on the Gorkov model and which is, of
course, free of any microsc?pic assumptions about the nature of
the band structure. Bhatt®’ has also developed a microscopic
theory using a band structure model based on the APW band structure.
This model includes both the band Jahn-Teller effect and the
Peierls effect and is therefore a synthesis of the Labbe-Friedel
and Gorkov models. The effects on 7uperconductivity are illus-
trated in a calculation by Bilbro,z- based on the Gorkov model, in
which both a Peierls energy gap and the BCS energy gap are in-
cluded in the theory. I want to discuss the physical assumptions
that go into the various theoretical models, without presenting
much of the mathematics, and then discuss the predictions of the
models and the comparison with experiment.

The most widely studied Al5 compounds are Nb,.Sn and V,Si. In
Nb,.Sn there is a cubic to tetragonal structural transition at 46°K;
the superconducting transition is at 18°K. In V_Si these transi-
tions occur at 21°K and 17°K. In the cubic phasé of Nb_Sn the Sn
atoms sit on body-centered cubic lattice sites and the Nb atoms
are on the cube faces at, for example, (%,%,0) and (3/4,%,0) on

194
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the xy face. The transition metal atoms form linear chains with
equally spaced atoms and with the chains running in the three ortho-
gonal directions on the three faces. This linear chain picture is
central to both the Labbe-Friedel and Gorkov models. At the mar-
tensitic transition the cubic cell distorts to a tetragonal one
with less than 1% distortion and the transition metal atoms on

two of the three sets of linear chains pair up as in a Peierls
transition. There is a drastic softening of one elastic constant
(Cll-Clz) as one approaches the transition from above.

_ The corresponding phonon, the transverse (110) phonon with
(110) polarization, goes soft at long wavelengths and is the soft
mode of the transition.

The Labbe-Friedel model is based on a one-dimensional band
structure for electrons moving along one linear chain. Consider
one atomic orbital of a particular symmetry on each atom. The
energy band for an x-direction chain is

X
EK =+ ZBX cos(kxa/Z)

where B is the x-chain transfer integral and "a'" is the cubic
latticexspacing. The zone boundary is at w/a so that the two por-
tions of the band are degenerate at this point. 1In the cubic
phase 8 = B_ = B_ so the band structures of the three types of
chains 3re idential except for a rotation of the momentum space
axes. In the tetragonal phase this degeneracy of the electronic
energy bands is broken. Suppose the unit cell dimension is de-
creased in the z direction and increased in the x and y directions
to maintain constant volume, then 8 > B_=B_ and the bottom of
the z-chain band is lower than the Bottom of’the x and y-chain
bands. If the Fermi level lies near the bottom of the bands in
the cubic phase electrons will be transferred in the tetragonal
phase from the x and y chains into the z chain and the total elec-
tronic energy will be lowered. If the electronic energy decrease
more than offsets the increased elastic energy the tetragonal phase
will be the observed phase at low temperature. Since the elec-
tronic entropy favors the cubic phase there will be a phase tran-
sition to the cubic phase at finite temperature. Thus the Labbe-
Friedel model qualitatively explains the martensitic transition in
Al5 compounds although the quantitative fit to experiment is not
particularly good. Note the particular type of degeneracy which
is broken in this band Jahn-Teller effect. The degeneracy is the
equivalence of the band structure at different places in the
Brillouin zone required by cubic symmetry. Breaking the cubic
symmetry allows the bands to move and a redistribution of elec-
trons can lower the electronic energy. This effect occurs with
any band structure and is not a special property of one-dimension-
al bands. In order for this contribution to the energy to be im-
portant there must be a large density of states at the Fermi level
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and the "electron phonon coupling constant'" for splitting these
levels must be large enough.

The original Gorkov model assumed the one dimensional band
structure of equation (1) but concentrated on the degeneracy of
the energy bands at the zone boundary. 1In the tetragonal phase
the pairing of the transition metal atoms introduced a potential
with a periodicity of "a" and opened a Peierls energy gap at the
zone boundary. If the band is half full the Fermi level lies in
the Peierls gap and the electronic energy is lowered. The physics
is the same as the charge density wave models applied to the layer-
ed compounds. The degeneracy of energy levels at the zone bound-
ary (more particularly at the x point at the center of the face
of the cubic Brillouin zone) is a property of the Al5 crystal
symmetry and }s not a special property of the one-dimensional
bands. Gorkov3/ has treated a band structure model including inter-
chain coupling to produce quasi-one dimensional bands. It is
necessary to assume that the bands are quite flat on the zone face
in order that the density of states affected by the Peierls gap
be large enough to explain the data.

Both the Labbe-Friedel and the Gorkov movels are electronic
models based on particular band structure assumptions. The prin-
cipal criticism of the models, it seems to me, is that the band
structure models are unrealistic. Matthiessﬁ] has calculated APW
band structures for several Al5 compounds and there are no bands
in Matthiess' calculation which resemble the one-dimensional or
quasi-one-dimensional bands used in the models.

One way of avoiding unrealistic band structure assumptions
while retaining the physical assumptions of the Gorkov model is to
work with a Landau theory similar to that applied to the layered
compounds. We assume that the electronic order parameters are the
amplitudes of three CDW's in the (100) directions. The CDW's are
locked in to the lattice with the wavelength equal to the cubic
lattice spacing and there are no phase fluctuations; the order
parameters are real. We write down the usual expansion of the free
energy in powers of the order parameters and gradients of the order
parameters. The theory is dynamical and we assume that the domi-
nant dissipation is electronic and arises from the redistribution
of electrons as the energy gap changes. The electronic order pa-
rameters are directly coupled to the amplitudes of the three opti-
cal phonons (at ') which modulate the transition metal atom separa-
tion. In the Al5 structure these optical modes are bilinearly
coupled to elastic strain and we must include the three acoustic
phonon modes; we have a nonlinear dynamical problem with nine cou-
pled modes. We use the mean field approach and find the static mode
amplitudes which minimize the free energy. We then expand the free
energy around this minimum to find the mode frequencies. Since
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dissipation is included the phonon modes have lifetimes and we
actually calculate the dynamical structure factor. This type of
theory can predict central peaks arising from the coupling of the
phonons to the overdamped electronic mode; however, for the Al5's
no central peak is predicted.

The qualitative predictions of the theory fall into two cate-
gories. The first concerns the behavior of the soft mode. The
model predicts that the elastic constant C._-C goes to zero
at an extrapolated critical temperature T* sli%ﬁtly below the first
order structural transformation temperature. This means that the
velocity of the long wavelength (110) transverse phonon with
polarization (110) goes to zero at T*. As one moves out in momen-—
tum space the phonon mode starts to recover its stiffness, and the
phonon softens dramatically only near I'. A two-parameter fit pro-
duces quantitative agreement with the elastic constant versus
temperature and with the transverse phonon frequency versus tem-—
perature and momentum. From this fit we find a correlation length
ngo % 2a where a is the cubic lattice spacing.

The second group of qualitative predictions concerns the
behavior of the cubic terms in the free energy. Within the Gorkov
model the structural transition temperature is maximum if the
Fermi energy is equal to the x-point energy E_ of the relevant
energy band. Since the x-point energy is strain sensitive strain
(either compressive or tetragonal) changes the transition tempera-
ture Tm and there are cubic terms (proportional to the strain and
to the CDW amplitude squared) in the free energy which change sign
as E_ crosses E_ (say in an alloy series). The cubic terms con-
trol the sign of the tetragonality (c/a - 1) but are weak enough
that they do not affect the magnitude of the tetragonality at low
temperature. Thus one expects (c/a - 1) to change sign at con-
stant magni?ude as EF crosses Ex' This is observed in
Nb, Sb sn®’ alloys.” The sign of the pressure dependence of T is
control¥ed by the cubic terms and the pressure dependence of the
superconducting transition temperature is opposite to that of T
These quantities should correlate with the sign of the tetra-
gonality and this correlation is observed to hold.

There are some quantitative cross checks of the Landau theory.
One uses up several experiments in determining parameters of the
theory and can only check the theory if there are more experiments
than parameters. The heat capacity jump in V,Si is predicted to
be 0.7 joules/mole K and observed to be 0.4-075 joules/mole K,ETLQ/
which is satisfactory.

There are problems in trying to predict Landau theory param-
eters from microscopic models. From the Gorkov or Peierls models
the electronic energy terms can be predicted from the electronic
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density of states N (0). The change in susceptibility is also pro-
portional to N (0). The values of N+(0)required to explain the
two results digfer by a factor of three to five.

Now for Bhatt's microscopic calculation. Since the predict-
ions of the microscopic theory depend critically on the band
structure chosen, it is important to work with the most realistic
band structure model available. It is not possible to super-
impose the CDW calculation on the full APW calculation and one is
forced to work with simplified models. Fortunately, the density
of states nea EF }n Matthiess' calculation is dominated by two
bands of §_(x“ -"y”) character. These bands appear not to hy-
bridize strongly over much of the Bril}ouin zone. Bhatt's model
is a tight binding model with one &, (x~ - y”) orbital per transi-
tion metal atom, with nearest and néxt-nearest neighbor hopping
integrals which reproduce these two bands of Mattheiss' calcu-
lation. The hopping integrals are assumed to vary linearly with
interatomic spacing as the lattice distorts. Bhatt calculates the
band structure of the distorted lattice and computes the electronic
free energy which he then minimizes with respect to distortion
amplitude. There is essentially only one free parameter, the ratio
of the two hopping integrals, which he chooses to fit the ob-
served electronic density of states. The Gorkov energy term from
the Peierl's energy gap near the x-point is included in the cal-
culation; however there is insufficient phase space for this con-
tribution to be large enough to explain the phase transition.
There is, however, an electronic Jahn-Teller contribution from
non-degenerate bands far from the X-point which makes up the
deficit. Bhatt's model, therefore, includes both a Gorkov-
Peierls contribution and a Jahn-Teller contribution to the sta-
bility of the tetragonal phase. The agreement with a wide variety
of experiments on Nb3Sn and V_Si is nearly quantitive with dis-
crepancies typically between %5% and 50%. The correlation lengths
are large enough that the phonon entropy is not dominant but could
cause substantial corrections. In addition to providing a better
quantitative fit to experiment than the Labbe-Friedel or Gorkov
models, Bhatt's calculation contains important contributions from
both mechanisms and represents a synthesis of the earlier micro-
scopic models.

The effects of the martensitic transition on superconductivity
can be understood qualitatively very simply. As one approaches the
martensitic transition by lowering the temperature, by changing
pressure or by alloying, the lattice softens as the structure nears
the instability. This softening is most pronounced in the trans-
verse acoustic modes near I' but it does extend over an appreciable
fraction of the Brillouin zone and the optic modes may be affected
as well. This lattice softening increases the electron-phonon
coupling constant and enhances the superconducting transition tem-—
perature Tc' After passing through the martensitic transition the
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lattice stiffens and T is reduced. I do not know how important
this effect is quantitatively. The second effect is that,within
the Gorkov model, there is a competition between the Peierls
energy gap and the BCS energy gap. Bilbro has carried out de-
tailed calculations for the Al5 compounds. He finds that when the
martensitic transition occurs at higher temperature the super-
conducting transition temperature is reduced (but only by 0.3 K
for V_Si) and that the martensitic transformation is arrested at

T . goth of these effects are observed for V_Si. The theory
p%edicts that when the superconducting transi%ion occurs first

the martensitic transition is completely suppressed and the cubic
phase is stabilized. Quantitatively the effect of the Pererls gap
on T 1is small and the effect of the lattice softening is un-
known. The theoretical models predict a peak in T near struc-
tural transitions and this behavior is observed incmany systems.
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