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PREFACE 

This NATO Advanced Study Institute was the fourth in a series 
devoted to the subject of phase transitions and instabilities with 
particular attention to structural phase transforma~ions. Beginning 
wi th the first Geilo institute in 19'(1 we have seen the emphasis 
evolve from the simple quasiharmonic soft mode description within 
the Landau theory, through the unexpected spectral structure re
presented by the "central peak" (1973), to such subjects as melting, 
turbulence and hydrodynamic instabilities (1975). Sophisticated 
theoretical techniques such as scaling laws and renormalization 
group theory developed over the same period have brought to this 
wide range of subjects a pleasing unity. These institutes have 
been instrumental in placing structural transformations clearly in 
the mainstream of statistical physics and critical phenomena. 

The present Geilo institute retains some of the counter cul
tural flavour of the first one by insisting whenever possible upon 
peeking under the skirts of even the most successful phenomenology 
to catch a glimpse of the underlying microscopic processes. Of 
course the soft mode remains a useful concept, but the major em
phasis of this institute is the microscopic cause of the mode 
softening. The discussions given here illustrate that for certain 
important classes of solids the cause lies in the electron phonon 
interaction. Three major types of structural transitions are 
considered. In the case of metals and semimetals, the electron 
phonon interaction relie6 heavily on the topology of the Fermi 
surface. In special situations the electronic energy of the con
duction band can be lowered by a greater amount than the energetic 
cost of a lattice distortion, so that lattice distortion will in
deed occur. As Professor Friedel has emphasized, instabilities 
of this type are relatively more likely in band structures of lower 
dimensionality because of the less severe requirements for "nesting" 
of various portions of Fermi surface. Several of the papers herein 
are devoted to the calculation, observation and consequences of 
this type of electron phonon interaction. 

One of the most striking manifestations of this interaction is 
the so-called "charge density wave" instability, responsible for a 
structural transformation to a "2KF" superlattice. Since 2KF is 

v 



vi PREFACE 

most often not an integral submultiple of the reciprocal lattice 
vector, the unit cell's new structure is not a simple multiple of 
the old unit cell. While such "incommensurable" structures have 
been long known, (the spin density wave in chromium is perhaps 
the most famili.ar example), their incorporation into the lore of 
phase transitions is quite recent and still incomplete. Nor are 
"incommensurable" structures confined to cases where mobile 
carriers are present. The lectures of Drs. Axe, Di Salvo, Shirane 
and Yamada highlight the wealth of anomalous physical properties 
associated with incommensurate transitions in both metals and 
insulators. Drs. Bak and Luther treat the formal and microscopic 
theoretical aspects of these systems. Among the concepts that 
they and Professor McMillan discuss are solitons, a subject that 
we undoubtedly will hear more about in the future. And Professor 
de Wolff presents an important systematic means of classifying the 
symmetries of incommensurate transitions. 

The second important class of electron-phonon driven struc
tural transitions is represented by the Jahn Teller systems. The 
relationsships among the symmetries of the interacting electronic 
and vibrational states and the resulting lattice distortions are 
s..;Tstematized by Professor Thomas. And a variety of experimental 
discussion of several examples are detailed in this volume by Drs. 
Harley and Kjems. A quantitative description of many singular 
properties may be obtained from the "pseudo spin" model of Jahn 
Teller systems - as discussed here by Dr. Stinchcombe. 

The third major area addressed by this institute concerns 
structural phase transitions and high temperature superconductivity~ 
This subject perhaps epitomizes the meeting inasmuch as structural 
transitions in the prototypical A-l~'s (Nb3Sn, etc.) have been 
addressed from both the band Jahn Teller and the charge density 
wave theoretical v:LejlJPoint. Professor McMillan's lectures provide 
an admirable synthesis of both phenomenological and microscopic 
theories for the charge density wave, the superconducting and 
structural phase transitions. Dr. Testardi, in his experimental 
lectures on the A-1S compounds emphasized the recent striking 
effects which defects in unstable lattices have upon limiting the 
realizable superconducting Tc' 

The lectures of Dr. Romestain called our attention to another 
class of transition (the metal insulator) to which he has recently 
applied very sophisticated optical techniques. The several seminars 
generally provided an excellent complementarity to the subject 
areas addressed by the main lecturers. In retrospect two of the 
most exciting and stimulating topics addressed in this institute 
were the new class of structural transitions represented by "in
commensurate" super structures and the beginning of progress in 
understanding more fully the role of structural transitions in 
high T superconductors. 

c 



PREFACE 

As in the past, the atmosphere of the setting provided the 
opportunity for vigorous intellectual and physical activity, so 
that the participants departed with the clear impression that 
ideas had not only been exchanged but that new understanding was 
generated and the beginnings of some new research directions were 
established at Geilo. 

The programme committee joins the other participants in ex
pressing their sincere thanks to Mr. Eigil Andersen, Mrs. Gerd 
Jarrett and the staff of the Institutt for atomenergi, Kjeller, 
Norway for their careful planning and creative assistance, upon 
which largely rested the success of this conference. 

J. D. Axe 
J. Feder 
P. A. Fleury 
A. Luther 
T. Riste 

June, 1977 
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PHASE CHANGES AND ELECTRON PHONON COUPLINGS IN PERFECT CRYSTALS. 

MODULATED STRUCTURES. AN INTRODUCTION. 

J. Friedel 

Physique des Solides, Universite Paris Sud, Orsay 

LA du CNRS 

The purpose of this introduction is to place the field of 
this meeting in the general frame work of phase changes and the 
nature of the interatomic forces involved,then to discuss the pos
sibility of small amplitude phase changes arising in perfect crys
tals as a weak modulation of the simpler structure. This modula
tion can be viewed as due to a phonon mode of the simpler structu
re becoming soft ; and conditions for this to occur through 
strong electron-phonon coupling are recalled. 

I - THE FRAMEWORK 

A. Phase changes in perfect crystals 

We consider phases in thermal equilibrium, neglecting all pro
blems of nucleation and growth kinetics involved in most phase 
changes. Each phase is then defined by a free enthalpy 

F = H - TS, 

a continuous function of temperature T, pressure p. It might invol
ve also composition ; but we only consider here perfect crystals 
with fixed composition. H = U + pV is the enthalpy, and variations 
of the volume V involved in phase changes of condensed phases only 
introduce small and trivial effects. 

A phase change arises for a transition temperature Tt (or a 
pressure p ) where two possible phases have the same free enthal
py. The ph~se change is said of the first or second order, depen
ding on whether the two curves FA (T or p) and FB( T or p) cross 
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with an angle or are tangent at the transition ~igure la,b). To 
predict the transition temperature Tt of a phase change, one must 

F 
F 

B B 

T t, '1 
a b 

Figure I Phase transitions a first order b second order. 

therefore know the difference in enthalpy H and in entropy S bet
ween the two phases, and how they vary with temperature. Only the 
relative stability of phases at zero degree can be discussed ne
glecting entropy. 

In most crystalline phase changes, the difference in internal 
energy UB-U/A of the two phases is much less than the latent heat 
of sublimat~on, which measures the total stability of the conden
sed phases. Furthemore in most of these changes, large structural 
changes occur. As a result, only a limited study of the relative 
stability of typical simple crystal phases has been made in this 
general case. 

In phase changes by crystal structure modulations however, 
there is a continuous or nearly continuous transition from phase 
B to phase A (UB - U ~ 0). Some phonon modes of phase B become 
soft at or near to t~e transition temperature Tt or pressure Pt. 
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Such transitions are usually described 'a la Landau', in 
terms of the amplitude u and the phase ¢ of the soft modes 

2 4 2 2 
FA - FB=a u + S u + y(grad u) + 6(grad ¢) + ••• 

This description assumes u and ¢ to be the relevant order parame
ters. Even when applicable, it is purely formal in that it hides 
the computation of the coefficients of a, S, y, 6 in terms of 
the enthalpy and entropy changes as deduced from a microscopic 
model. 

A special case of crystal modulation is that of a uniform 
distortion. 

B. Interatomic forces 

3 

Microscopic models require an analysis of the atomic and elec
tronic structure. 

One starts from the two usual fundamental approximations: 

- The adiabatic approximation (Born Oppenheimer) uncouples 
the motion of the atoms from that of the electrons around the 
atoms, assumed at rest. 

The mean field one electron approximation (Hartree) uncou
ples the relative motions of the electrons. It takes two extreme 
selfconsistent forms, between which one nowadays believes there is 
necessarily a first order cooperative transition at low temperatu
re (Mott transition(l». 

I - Localized valence electrons 

Each electron is assumed to be localized on a small building 
block of the structure - atom or molecule. The structure is then 
necessarily an insulator. 

This is probably a good description of the stable state in 
rare gases and most ionic solids or molecular solids. 

The building blocks are held together by various forces which 
correspond to successive refinements in the description of the 
electronic structure : 

- Long range Coulomb interactions. These can be between sta
tic monopoles (ionic solids, figure 2.a), static dipoles (ferro or 
antiferroelectrics, figure 2.b,c) or static mUltipoles (molecular 
crystals such as C12' figure 2.d) as described in the stable state 
of the Hartree approximation. 
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t ~ , + t 
b 

+ + -1-1-

a ---;. 

d 
-;. 

c 

Figure 2 : Three types of Coulomb forces between static mono or 
multipoles : a monopoles ; band c dipoles; d higher multi
poles. 

- Short range exchange interactions : magnetic couplings 
between incompletely filled atomic shells or repulsions between 
filled shells ; medium range magnetic couplings by superexchange. 
These come in the Hartree Fock scheeme when respectively stable 
states or virtually excited states of the Hartree scheeme are 
considered. 

- Short range dispersion interactions. These arise through 
the virtual excitation of Hartree state by long range Coulomb 
correlation forces between electrons in different building blocks. 
It tan be considered as due to interactions between dynamic dipo
les (Van der Waals and more general dispersion forces). 

- H bonds, coming from quantum tunnelling of light nuclei. 

It is worth pointing out that static Coulomb forces tend to 
aggregate unlike blocks together (+ with -, up dipole parallel to 
down dipole in case of figure 2.b, quadrupoles at right angles •.• 
cf figure 2). Contrary wise, dispersion forces tend to aggregate 
like blocks together (figure 3, cf Appendix A). 

One can list a number of phase changes with crystal modula
tions or small crystal distortions: 

- Ferroelectric and antiferroelectric transitions, with the 
apparition or change of orientation of permanent dipoles. 

- Magnetic phases (including cooperative Jahn Teller effects) 
if spin-orbit coupling and thus magnetostrictive effects are con
sidered. 



PHASE TRANSITIONS AND ELECTRON-PHONON COUPLINGS 

___ AAAA ____ BBBB __ _ 

a 

BA BABABABABAB __ _ 

b 

Figure 3 : Tendency to aggregation by dispersion forces 
ferred to b. 

5 

a pre-

- 'Plastic' phases, where molecules rotate around their center 
of gravity. 

- Insulator metal transitions (Mott transition) ... 

Except in the ferroelectric case, the small lattice modula
tions are but a shadow of a larger change in ordering of an elec
tronic or molecular parameter, and fall therefore really outside 
the scope of this discussion. The ferro (antiferro) electric cases 
themselves are made more difficult to study by the ambivalent na
ture of the interactions of dipoles (cf figures 2.b,c), by the mo
re or less covalent nature of interatomic bondings and, in some 
cases, by the difficulty of describing correctly the H bonds. Thus 
if much experimental work. has been done in that field, the theore
tical analysis remains elementary in many cases. This is especial
ly true for the displacive ferroelectrics where dipoles are crea
ted by a small crystal modulation of the non ferromagnetic phase, 
and which therefore fall most directly within the field of inte
rest here. 

It is also worth pointing out that, because electrons are 
localized, each phonon mode possibly involved in a phase transi
tion interacts necessarily with all the valence electrons. Cou
pling of individual electrons with phonons are only involved in 
states excited above or near the conductibility gap, thus in exci
ted conductive electrons or valence holes or in excitons. These 
couplings are well known both in polar and non polar crystals. They 
change the effective mass of the carriers, can lead to their self
trapping and to hopping conduction processes. Such processes only 
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involve strongly excited electronic states of no importance in 
phase changes, except near to a Mott transition. 

Two examples of modulated structures with short range inter
actions 

The magnetic helical structures provide historically the 
first example of modulated structure, with a wave length that can 
vary continuously and thus can be incommensurate with the period 
of the lattice. Although actually found in metallic structures, 
they were first analyzed in terms of short range (magnetic) inter
actions valid for insulators(2). It is worth recalling this ana
lysis and point out a direct extension to non magnetic modulations. 

a) Helical magnetism 

One considers a 3 dimensional lattice made of a stacking of 
parallel and identical planes of magnetic atoms. We assume a fer
romagnetic coupling between atoms in each plane, and a strong ma
gnetic anisotropy which forces the atomic' moments to lie in the 
corresponding xy plane. Let ~n be the magnetic moment per atom in 
the nth plane. The coupling between atoms of different planes is 
limited to interactions between first and second neighbouring pla
nes. The coupling energy U per atom is given by 

If one Fourier analyses the components S x, S Y of ~ in the xy 
planes (within the first Brillouin zone n 0 <nk < K=n 2n/a) , 

S x L Sk cos (k R + <Pk ) n 
k 

n 

S y L Sk sin (k R + <Pk ) n k n 

with R na n 
one finds 

\' 2 U = 2 L Sk (Al cos ka) 
k 

The different Fourier components are thus additive and their ener
gy is phase independent. 

\ 2 1/2 At T = OK, (L Sk ) = S, length of the magnetic moment. 

The m1n1mum energ~ U is obtained for one mode k, which, depending 
on the values of Al and A2 , is (figure 4) 
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F ferromagnetic (ka = 2m ~). 
A antiferromagnetic (ka = (2m+l)~). 
H helical (cos ka = -Al /4 A2). 

H or M 

Figure 4 : Magnetic couplings of layered structures with in
teractions between nearest and second nearest neighbouring planes. 
Also elastic distortion of layered structures. 

At T f OK, magnetic entropy coupled with excitation of spin 
waves introduces terms in S for the free energy which reduce the 
average atomic spin moment ~S > and couple the modes k. At high 
enough temperatures, it leadsn<S > to disappear. 

n 

b) Modulated crystal structures 

Let a 3 dimensional layered structure have elastic interac
tions between first and second neighbouring planes so that the 
energy of distortion is expressed in terms of the displacement u 

n of each n plane by 

N liM= I [AI L (u -u .)2 +A2 I (u -u .)2 J1+o(eup>2) 
n=l . i=±l n n+1 j=±2 n n+J n 

where O(eu p>2) describes corrective anharmonic terms in relative 
displacemeNts eu = u -u ,. n n n 

Taking 

u 
n 

7 
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leads to the same analysis at OK. Depending on the values of AI' 
A2 , the most stable state is (figure 4) 

U undistorted (k = 2 m n) 
o optically distorted (k =(2m+l)n) 
M modulated sinusoidally (cos ka = - AI/4 A2). 

The amplitude u of the distortion must now be limited at OK 
by a supplementary kfactor : it is the role of the anharmonic 
terms O(ou p>2) in NUM, which also actually couple somewhat the 
modes k. A~ finite temperature, entropy terms must be taken into 
account, which can make the average <u > go to zero. 

n 

2 - Delocalized valence electrons 

Barring complications such as ionocovalent structures or rare 
earth metals, which are somewhat on the borderline with the pre
ceeding case, three types of bonding belong to this class : 

- covalent structures (figure 5.a), where the atomic struc
ture respects the highly directional conditions for building over
lapping atomic s pn hybrids. This opens a gap between the valence 
and conductive band, for interatomic distances d smaller than the 
critical hybridizing distance d . Insulators correspond to equi
librium distances d «d ; se~iconductors and semimetals to 
d ~ d or d > d • 0 c 

o c 0 c 

- normal metals (figure 5.b), where the atomic structure does 
not respect covalent sp bonding conditions, but is as closepacked 
as possible. Near d , the lower part of the broad sp band looks 
like that of a nearYy free electron gas. 

- transition metals : the broad s band overlaps a narrow d 
band. The atomic structure is again fairly closepacked. 

Because in b, c there is no energy gap near the Fermi level, 
these structures are necessarily conductors. 

Linear combinations of atomic orbitals (i.e. tight binding) 
are a possible starting point on the two extremes a (spn) and c 
(d s) ; nearly free electrons is more adapted to b. More exact 
computations require the full panapherlia of muffin tin and 
computers. 

General features of cohesion can again be understood using 
successive approximations for the electronic structure (cf Appen
dix B). 

I h H .. d· W· S . (3)h - n t e artree approx~mat~on, an ~n a ~gner e~tz approac 
which uses for computing the energy band the same atomic potential 
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E 

0 do 

a 
de 

E 

o 

P 

5 

E 

d 
0 do 

d 

5 

d 

c 

p 

5 

d 

b 

Figure 5 : Schematic band structures : a covalent; b normal me
tal; c transition metal - Shaded areas: allowed regions; 
crosshatched areas : regions occupied by valence electrons for a 
given number of electrons per atom. d interatomic distance. 

as seen by an electron in free atoms, cohesion comes from the fact 
that the broadening of atomic states into bands is essentially 
symmetrical in energy: for an incompletely filled s, sp or sd 
shell, the electrons then gain energy by going into the condensed 
phase; maximum cohesion occurs for half filled band systems,when 
the 'bonding' states are full and the 'antibonding' ones empty. 

The total band width is related to the frequency of escape of 
an electron from one atomic orbital, thus both to the strength of 
the overlap with the orbital on a neighbouring atom and to the 
number of bonds this orbital takes part in. In covalent structu
res, bonds are few but very effective (strong overlap, and energy 
gap lowering the average energy of valence electrons); in metals, 
cohesion is maximum for maximum number of neighbours compact 
and little directional bonding is favoured. 

A more refined study in the Hartree scheeme introduces an ave
rage electron-electron repulsion which destabilizes somewhat the 

9 
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condensed phase, especially for normal metals(4)(5). Hartree Fock 
and Coulomb corrections are then essential in normal metals to com
pute the absolute cohesive energy. They also lead to significant 
corrections in the middle of transitional series (Appendix C). 
They should however play only a reduced role in the latent heats 
of phase changes, as they are mostly sensitive to the atomic vo
lume more than to the crystal structure. This is not quite true 
of long range Coulomb corrections, which come in when all the a
toms do not play equivalent roles in at least one of the phases. 

If now crystal modulation is made on one of the structures of 
figure 5, it will induce 'virtual excitations' or a 'polarization' 
of the valence electrons. There is therefore a strong relation 
with the problem of electron-phonon coupling, especially in conduc
tors. 

II - ELECTRON-PHONON COUPLINGS (FOR DELOCALIZED ELECTRONS) 

A. Soft Modes at OK. Adiabatic and kinematic approximations 

I - General (crystals) 

We consider a time independent real perturbation 

v = L v exp(i~)+ C.C. 
~ ~ 

To first order in (non degenerate) perturbation, each Bloch func
tion In,~> becomes 

i~ 
In' ,~+~+~><n',~ +~+~ I e I n,~> 

E n _ n' 
~ E~+~+~ 

~ is a period of the reciprocal lattice ~R . In reduced zone schee
me: one,chooses ~,such that ~ and~' =~k±~~~ are in the first 
Br11lou1n zone (f1gure 6). 

If v represents the effect of a (static) phonon mode, ~ is 
restricted to 

~ ~o + ~' 

with r '=. ~RL" 
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Figure 6 

»'" 
,," q , 

,-
o k 

a 

Convention for ~ 

K ...-------------......... 
k· ............. 

,-----: 
o 

b 

a normal (K=O); b umklapp (K+O). 

To second order in this non degenerate perturbation scheeme, 
v introduces then an electron In,~> phonon ~o coupling energy 

i(~ +~').t 
l<n,~lv~o+~' e 0 In',k+~0+~>12 

n n' 
E - E 
~ ~+~o +~ 

-i(~ +~').t 
l<n,k1v:tE , e 0 In"~-~0+~>12 

+ I --
n' E n_ En' 

~ ~-~o+~ 

OEkn(~ )=<n,klvln,k>+L 
~ 0 ~ ~ n' 

~' 

(1) 

11 

To this order of perturbations, the various Fourier components ~' 
introduce in the energy terms that are additive and independent of 
the phase in v. 

The total energy change for the electron is 

"i oEk n(~o) 
~oocc 'I:i 

The total energy change for the phonon is 

OE 
.%0 

2 - Energy change for the phonon 

- First order term. It is zero except if~o 
for a uniform distortion. 

(2) 

0, thus except 
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Example : if a degenerate strong Van Hove anomaly is lifted 
by a uniform shear £ without much change in form (figure 7), and 
if the Fermi level falls initially on the anomaly, the distortion 
will lower the average (Hartree) energy of the valence electrons 
by an amount proportional to the lifting of the energy degeneracy, 
itself proportional to v thus to £. This negative linear term 
OE = - A£ in the energy must be balanced by an elastic reaction of 
thg lattice E (£) =(1/2)E £2, associated with the rest of the elec
tronic and io&ic structure : 

E (£) + OE (£) 
o 0 

- A£ +(l/2)E £2 

This results necessarily in a spontaneous distortion £ 
can be termed a band Jahn Teller effect. 

A 
E' which 

- Second order term. Terms where In,~> and In"~'> are both 
occupied cancel out two by two. Only unoccupied n' ~'> states 
need thus be considered. 

n n 

E 

Q 

Figure 7 : Band Jahn Teller effect : a v 

EM 

b 

o 

E 

b v'; 0 • 

They also provide negative contributions : the second order 
electron-phonon coupling necessarily lowers the phonon energy. 

. . n n' . . . In an ~nsulator', the denom~nator Ek - E, ~s always f~n~-
te (larger in amplitude than the energy gap befween the valence 
and conduction band). OE~ is therefore a correction that varies 
continuously with ~ . It ~emains small everywhere, being of the 
second order in theOsmal1 phonon amplitude. Explicit estimates of 
v later on will show that the total perturbed energy E~ + OE~ of 
a~l phonons are then expected to remain positive ': the m8de so~te
ning due to electron phonon coupling is much too small to become 
catastrophic. Crystal modulation is therefore expected not to take 
place normally in covalent crystals. This is after all reasonable: 
the strongly directional covalent bonds are not expected to lead 
normally to several structures of comparable energy and differing 
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only little from each other. 

In conductors, a large contribution is expected for pairs 
In,~> , In' ~.> of states both near to the Fermi level. With 
~. = ± ~ +~, such points are near to lines such as L, figure 8.a 
where thg Fermi Surface SM cuts a surface S'M obtained by a trans
lation of ~ by ± ~ +~. When, for a given direction, ±~ +~ in
creases in size, L ~ecreases to a point (figure 8.b), thenod~sap
pears (figure 8.c). One then expects the special contribution from 
the neighbourhood of L to vary stro~lynear to the critical values 
of ± ~o+~ such that SM and S'M just touch. 

a b c 

Figure 8 Critical region L of integration and its variation with 
± ~o+~, near a critical value of that vector. 

Figure 9, 10 describe schematically four general cases in 
three dimensions. 

a . SM and S'M touch on a conical point. 

S . SM and S'M have in common a point and a tangent plane, but 
different curvatures. 

y . SM and S'M have ~n common a point, a tangent plane and 
one common curvature. 

o . SM and S'M have ~n common a point and the two principal 
curvatures. 

Case S is the normal three dimensional one. a arises if the 
Fermi level happens to fallon a Van Hove anomaly, and ~ is such 
that SM and S'M touch on that point. Cases y and 0 are p8ssible if 
the Fermi surface has a complex geometry ; they are traditionally 
called nesting conditions. Inspecting the immediate neighbourhood 
of L, one sees that the general two dimensional case (where in 
three dimensions Fermi surfaces areparallel cylinders) corresponds 
to case y; the general one dimensional case (in three dimensions, 
Fermi surfaces are parallel planes) corresponds to case o. 
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s' 
M 
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Figure 9 Four cases of contact between SM and S'M' 

Figure 10 ~ Corresponding Kohn anomalies. 

Figure 10 gives the corresponding behaviour of 6E~ ~n the 
immediate neighbourhood of the critical value for q : 0 

o 
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a inflextion point. 

S inflexion point with infinite tangent. 

y discontinuous change of slope. 

o negative infinity. 

15 

In the 3 dimensional case S for instance, one can choose sui-
n n 

~.:~!~o:;:~ ~~~r K£ a~figure 8. b) such that E,It and E,It_.q,o +~ can be 

E n 
,It 

n 2 2 
E = E = E - a (Ie -K ) + b Kz'/ 

,It -.q,o"~ 2 M I'(jo 1 

The integral ~n (1), (2) can be written 

Ik I o 

where k measures the distance or the overlap between SM ans S'M' 
. °8 f~gure - . 

Because of the contribution to integration in (1), (2) of the 
neighbourhood of the Fermi surface, the negative correction in 
oE.q, is larger in conductors than in (band) insulators. It has 
fur~hermore an anomalous behaviour when this contribution disap
pears : this is the Kohn anomaly predicted initially for nearly 
free electrons(6) and observed in the phonon dispersion curves of 
many normal and transition metals. 

The discussion below on v will show that Vq cr q , thus 
OE~o vanishes with q and is u~ually too small toOprod8ce soft 
phonons. The generalo form of oEq pictured figure 10 takes into 
account the variation in q 2 of 0 oEq near the origin. This form 
predicts that soft modes 0 0 

- should always occur at the critical value of ~o ~n the 3 di
mensional case 0 of complete nesting (or ~n general ~n one dimen
sion). 

- might occur at the critical value of q in the 3 dimensio
nal case y of partial nesting (or in general ~n two dimensions). 

- might occur, for q near to the critical value, in the gene
ral 3 dimensional case S ? 

- are unlikely to be associated with a Van Hove anomaly at the 
Fermi surface (case a). 



16 J. FRIEDEL 

3 - Classical examples 

a) Nearly free electrons in 3 dimensions 

The first application of these ideas can be said to date from 
the 1930's. It refers to the explanation by Jones(7) of the regular 
succession of crystal phases noticed by Hume Rothery(8) in 'normal' 
metals and alloys when one varies their electron per atom ratio. 
In such crystaffiwhere the valence electrons are only weakly scat
tered by the atoms, the scattering by the crystal structure can be 
Fourier analyzed, and each Fourier component acts on the nearly 
free electrons as a (static) phonon mode. This mode has a stabili
ty that varies rapidly when its wave vector ~ is near to one of 
the critical values defined figure 8.b, and tRe whole crystal 
structure has a stability very sensitive to the electron per atom 
ratio (or the size of the Fermi sphere) when the critical condition 
is fullfilled for a maximum number of Fourier components.As the ~ 
are here reciprocal lattice vectors, it is the same to say that 0 

the structure is such that the Fermi sphere touches a maximum 
number of Brillouin zone boundaries. Figure 11 pictures the beha
viour of the contribution of OE~ to cohesion versus electron per 
atom ratio in two such structureg. It is here the whole atomic 

a 

b 

T 

A 

o r--........ ~~'-o:::-~--L-......,..-+--- electrons! atom 

T 

o 

6EQo 

A 

\ B " A+8'. ,'8 + C C 
, I 
, I ____ v _____ _ 

r--"",=::::---+-_~-__ =--L--- electrons! atom 

Figure 11 : Two possible cases of Hume Rothery- Jones phases in 
normal metals and alloys, and the corresponding phases diagrams at 
OK. 
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potentials which scatter the electron, and not their displacements 
from a periodic arrangement. As a result Vq and oEq do not vanish 
at small values of q (for a fixed number o~ electrogs) or at lar-. 
ge electron per atomOratio (for fixed q and thus crystal structu
re). As stressed figure 11, the success~ve Hume Rothery Jones 
structures met at increasing electron per atom ratio will be ac
tually observed at OK only if their corresponding stabilities are 
increasing (case a). Even then, one should distinguish two types 
of conditions for the phase diagram at OK of a solid solution 
between two elements MIM2 : the extremal phases (such as A, C fi
gure lla) should extend to near the critical electron per atom ra
tio ; and the intermediary phases (B, figure ll.a) should have a 
narrow range of stability near the corresponding critical electron 
per atom ratio. One does not expect much change in the phase 
boundaries with temperature at low temperatures (because the elec
tron entropy is near to that of free electrons in any case) except 
that the lattice entropy might stabilize at high temperatures(9) a 
phase such as B, figure ll.b, which is unstable at OK. A famous 
example is the BCC 8 phase of Cu Zn alloys. 

The same condition of Brillouin zone boundary tangent to the 
Fermi sphere has been used to explain more complex alloy structu
res where superstructures modulate a fundamental simple crystal 
structure(lO). The modulation can either be a concentration modu
lation, thus producing a special kind of ordering (Au Cu alloys) 
or a periodic succession of stacking faults (Ag Cd alloys). 

b) Narrow d bands in three dimensions 

The conditions for soft modes by critical Kohn anomaly can be 
expressed explicitely for transitional metals in a tight binding 
(LCAO) description of the d band(ll). They are usually complex, 
owing to the complexity of the Fermi surface. 

c) Narrow d bands in 2 dimensions (planes) 

This case was first seriously considered for the layered 3 
dimensional structures of transition dichalcogenides(12) , where 
the transition elements build up close packed planes which are 
separated by rather insulating layers of S, Se or Te. To first 
order at least, each plane has a two dimensional d band with an 
electronic structure which can be treated separately (figure l2.a). 

d) Narrow bands in one dimension (chains) 

This caZI4yas first considered theoretically by Peierls(13) 
and Frohlich (figure l2.b) : Kohn anomalies appear very clear-
ly in compounds with parallel conducting chains separated by more 
or less insulating material : 
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• • • • 
• • • • 
• • • • 
• • • • 
• • • • 

a b c 

Figure 12 : Three types of two dimensional cases : a parallel 
planes b parallel chains ; c 3 orthogonal sets of parallel 
chains. 

- KCP (chains of Pt atoms) (15) . 

- TTFTCNQ (organic chains) (16) . 

e) Band Jahn Teller 

The first application of Band Jahn Teller effects was made on 
A15 transition compounds (V3 Si, Nb 3 Sn .. ), which have three or
thogonal sets of parallel chains of transition atoms (figure l2.c). 
The first studies considered the lifting of degeneracy by shear of 
the edges of the d bands of the linear chains, assumed independent 
(17); further studies considered the lifting of degeneracy of in
termediary peaks possibly connected with the interactions between 
the chains(18)(19). 

NB : In the historical development of these concepts, there is 
an intimate relation with metal magnetism. Thus 

- ferromagnetism is the analogous of the Band Jahn Teller 
effect. 

- antiferromagnetism and helical magnetism are modulated 
structures. 

Conditions for the stability of these magnetic phases were 
in all cases expressed in terms of Coulomb and exchange interac
tions, sometimes before the corresponding conditions)for crystal 
modulation (Stoner's criterion for ferromagnetism(20 , Slater for 
antiferromagnetism (21), Lomer for helical and modulated structu
res(22)} The quantitative differences involved will be discussed 
below. 
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- In all the low dimensional cases, there exist interplane or 
interchain couplings which actually make the substance a three
dimensional one, at least at low temperature. 

B. Discussion of the approximations 

1 - The meaning of v 

We must define more precisely the meaning of the effective 
potential v which describes the effect of a phonon on the elec
trons. We shall show on two extreme simple cases that it is not 
actually a proper potential. We shall also see that v it propor
tional to q and has necessarily an order of magnitudeqwhich makes 
an instability condition only possible near a Kohn anomaly. 

- Nearly free electrons (one atom per unit cell) (23) • If we 
assume each weak atomic potential V.(~~~.) to be bodily shifted 
by the phonon without change of fo~, we~have 

v exp i ~ ~ 
~ 

Assuming 

~i = ~~o exp i ~o ~i 

and if V~ is the Fourier transform of Vi(~)' 

i~ 
<klv elk'> 

.q,o 

(3) 

This goes to zero with q • For free electrons, there are no 
umklapp terms, and no couplin~ of electrons with shear waves. 

NB :-The assumption of rigid displacement of V. will be dis-
cusse~and somewhat corrected later on. ~ 

- v. is a pseudopotential(24) , thus as operator, such 
that <klv. I~~+ ~> = V i~ a function of K = k'-k but also of k. 
Thus the ~ontinuous viriation of VK with k will distort Eq, 
without changing however the mathematical form of the Kohn gnoma
ly ; and the value of VK appearing near to Kohn anomaly refers 
specifically to states K and k' near to the Fermi level. 

- In the undistorted crystal structure, the Fermi surface 
is distorted from a sphere by the scattering by the undisplaced 
pseudopotentials V .• However in the approximation so far used, 
these distortions are of second order in V .• To take them into 
account in c9mputing oEqo would introduce~correction of higher 
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order than v 2. (25) 
q 
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- Tight binding (one atomic orbital per unit ce11)(2S)(26). 
With the energy of an atomic orbital Ii> in a free atom taken as 
zero of energy, the tight binding hamiltonian for a non degenera
te band reads 

H '" I 
i 
j near to i 

s.. I i><j I 
1J 

if one neglects the electrostatic crystal field term, an approxi
mation valid in pure metals. 

In the same spirit as for free electrons, one can assume that 
the displacement ~. given by (3) bodily displaces the atoms and 
their atomic orbit~ls Ii> without otherwise changing the atomic 
potentials and orbitals. With these shifted orbitals Ii'> , the 
change in hamiltonian produced by the displacements ~i reads 

i 
j near to i 

where 

oS .. = S' .. od .. 
1J 1J 1J 

oS .. Ii' ><j , I 
1J 

S' .. (u. -u.) cos 8.. . 
1J J 1 1J 

8 .. is the angle made by ~. - ~i = ~ij with the direction 
u of1Jisplacement (figure 13)J 
'Vqo 

Ri 

Figure 13 

dij Rj 

Definition of 8 .. , d .. 
1J 1J 

U' J 

To first order 1n u, Ii'> can be replaced by Ii> . Hence 
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<n, {;Ivln {;'> 

[' J i~ .. L S' .. u cos 8 .. l-exp(-i~~ .. ) e ~ 
j near to i 1J ~o 1J _ 0 1J 

This goes again to zero with ~ . In general, shear waves are now 
coupled with electrons. There ~re umklapp processes. Finally, as 
for free electrons, this expression is not only a function of 
~'-~=~ +~RL' but also a function of ~ : v is an operator and not 
a s1mp~e potential function. Only near to k = 0 can one neglect 
this variation. 

- Orders of magnitude for soft modes. Both expressions of Vqo 
are similar in order of magnitude : uqo qo VqO ' where VqO is the 
derivative or the Fourier transform of an electronic energy term. 

the 
the 

In expression (2), the denominator of OEkn(~ ) is larger than 
energy gap g, if one considers an insulator .oIn that case, 
second order correction is 

OE '" X Iv 12 qo q q 
o 0 

with X -1 
qo g 

and the mode would be soft only if 

E + OE < 0 
qo qo 

or 

(v )2 
qo 

> - 1 
'" g 

Eq Xq 
0 0 

with 
l M2 2 2 

E w u 
qo 2 qo qo 

M atomic mass, w pulsation of the phonon without electron-phonon 
coupling. qo 

Hence the condition 
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Iqo Vq I 
____ 0_ > 

/g/2 

As M w »1 atomic unit, and g~ 
qo 

qo Vq ~ a fraction of atomic 
o 

unit, this condition cannot usually be 
for very small gap semiconductors (g ~ 

fullfilled, except perhaps 
0) . 

-1 
The same applies to metals, with Xq 

mi energy, except near a Kohn anomaly 0 

dition can possible be realized. 

of the order of the Fer
where the soft mode con-

In conclusion, although v is not exactly a potential, simple 
estimates applicable respectively to normal or transition metals 
show that only modes connected with a Kohn anomaly can usually 
become soft. 

2-· S.elf consistency (to first order) 

This point has some general interest, and will therefore be 
developped in some detail. 

In the same approximation used so far, a perturbing potential 
v(~) produces in the valence electrons a local change in electro
nic density 

op(~)= L L 
<n' ,~+~+;lS1 ei~ln,~> nl!' n' 

v n' u~ (~) u~+ +;lS(~)+ C 
q ~ n,kocc 

E n_ 
E~+~+;lS ~ (4) ~ 

n'k' . lnocc 

where, as before, Cl!'is deduced from the first term by changing 
~ in -~ and v~ in v~ 

a) Asymptotic perturbation, far away from a localized pertur
bation v. 

For insulators, all terms in (4) are regular. The,integrals 
are obviously dominated by the regions where E~ and E~, are near
ly stationary, i.e. the neighbourhood of Van H~e andMalies. If 
the perturbation v acts near to the origin, the main contribution 
for r ~ 00 will come from the couple of Van Hove singularities for 
which E~ - E~, is a minimum, i.e. the top EV of the valence band 
and the bott~ E of the conduction band, flgure 14. A regular 

c 
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E 

Ec __________ _ 

k 

Figure 14 Energy gap ~n a band insulator. 

n n' development of Ek and Ek , near to the corresponding points !V' 
k in the recipr~cal sp~e gives easily(27) 
-c 

where oscill (x) means a sinusoidal function of x. One can show 
that 

23 

* where the effective mass m is itself proportional to Ec-EV. Hence 
a oc (Ec-EV)-l. 

The interband terms thus give rise to a rapid exponential 
degrease of op(~) outside the perturbed region where v ~ o. 

For conductors, the contributions n~rt29he Fermi level give 
one or several further intraband terms(2 ). The asymptotic 
behaviour is dominated by the neighbourhood of lines such as L, 
figure 8. And the main contributions will arise when the phase 
of the matrix element of exp i ~ ~ is nearly stationary. This 
requires L to reduce to a point (figure 8.b and 15) where the nor
mal to the Fermi Surface SM is parallel to ~. If there are only 
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L' 
3 

a b 

Figure IS Value of q dominating the asymptotic behaviour of 
op(~) in a metal : a simple case; b more complex case. 

two such values of q ± qc (figure IS. a) , an integration near the 
them gives 

op (y oscill J&f,) -n 
oscill (~c ~) -+ r 

r -+ 00 
KG.KEL 

with n 4, 3, 2, 1 depending on whether the contact 
of Sand S'M on L is of the type a, S, y,o respectively (figure 
9). ¥n more complex cases (figure lS.b), there are interference 
terms between these various points : ~ = all the possible 
Li Lj(Li= Ll , L2 , L3 , Li, LZ' L3) (figQre lS.b). 

b) Screening to an external potential. 

Let v ({) be an external perturbing potential applied to the 
system. Itew~ll produce a displaced charge op(~) which itself pro
duces a supplementary internal screening potential v.(~), so that 
the total potential acting on the electrons is ~ 

Poisson's equation 

v(~) = ve(~) + vi(~) 

. * g~ves 

2 
~vi(~) = - 4 TI e op(~) 

and ~p is related to v by equation (4). 

Fourier transforms give 

* As usual, v is the potential energy of an electron. 
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v v + v. 
Ii eli ~Ii 

2 
4 

2 
op q v. 'IT e 

~Ii Ii 

op I x16 v 
q 

K"KRL Ii 1i+16 

where the general susceptibility X J& which relates charge to po
tential is a tensor. This set of equations allows in principle to 
compute the selfconsistent perturbing potential v and perturbed 
electronic density op for a given external potential ve(~). 

Thus, introducing the general dielectric tensor 

K 4'IT e 
2 

K 
£ ( o(K) - --2- Xq ) 

q 
q 

such that 
K I £ V V 

K q q+K eq 

one obtains 
2 

I K op = -q- I (o(K) 
K £ - £ ) v 

K q q 4'IT e 
2 

K q eq 

c) Screening of a phonon wave. Charge density wave. 

v is now the perturbation potential due to a phonon. The 
precee~ing equations show that each Fourier comp'onent v of the 
phonon potential produces a charge density wave(30) witfiq various 
Fourier components op, at q'= q + K L. This wave screens the ex
ternal potential v into a total po~ential v with Fourier compo
nents v ,. Thus inegeneral the charge density wave has a somewhat 
complexqstructure ; and it couples the various Fourier components 
of the total potential v, so that the dielectric constant £K is a 

q tensor. 
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The consequence of this screening on the stability of the 
phonon will only be discussed in the two extreme cases where these 
formulae simplify. 

and 

X = 
q 

- Nearly free electrons. The umklapp terms K ~ 0 disappear 
the susceptibility takes a simple form (figure 16): 
222 

q (l-£q) 1 ex: _ [1 + 4kM -q 

4 'IT { Ek - Ek +q 4 ~q 
occ 

tnl ~:::: I J «0) 
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o q 

Figure l6:Susceptibility X for free electrons. 
q 
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In the second order terms in v for oE q, equations (1), (2), 
one must distinguish the contributions of v ~nd v., and not count 
twice the Coulomb interactions of op with itself. As a result, 
Iv 12 should be replaced by Iv v I = E-llv 12. Hence the second 
or8er term in 6E reads (24)(3l)q eq q eq 

6E 
q 

q 

Xq Iv 12 
E eq 

q 

Thus the Kohn anomaly due to X 1S reduced but not suppressed by 
that in E . q 

The 

tnd 
- < 
E 

q 

q 

The instability condition of the phonon mode becomes 

E 
q 

production of a charge density wave coupled with the phonon 
screening its potential thus introduces a reduction factor 
1, for X < o. The charge density wave stiffens the phonon, 

q 
and thus makes its instability less easy to produce. 

Tight binding 

- For half filled bands and elementary alternate structures, 
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there is no charge density wave coupled with a phonon mode(26). 
Alternate structures are such that only closed circuits with an 
even number of interatomic jumps between neighbouring sites are 
possible (figure 17.a). 

B A B 
x x x x 

A x x x 
B A 

AX x-x xB 

Ai_iB 

x x-x x 

Bx xA 
\/ 

x x x 

Ax x x x x x x iC 
B A B 

a b 
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Figure 17 : Two types of crystal structures a alternate b non 
alternate. 

In such structures, one can define two interpenetrating latti
ces A,B such that each A site has only B nearest neighbours, and 
vice versa. To each electron function 

with energy 

E I 
nA 
mB near nA 

there corresponds a function 

I~'>= I a~ln,A> - I a~lm,B> 
nA mB 

with energy - E, symmetrical with respect to the middle of the 
band ; and these two wave functions give equal electronic densi
ties (I la~12 or Ila~12) on each (A or B) site. Thus, whathever 

the di~tortion an~ as long as the alternate topology is preserved, 
such structures with half filled bands have the same number of 
electrons on each site, equal to the number of atomic orbitals 
involved. 

For less than half filled bands, such structures have an 
accumulation of electrons in the compressed regions, where the 
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transfer integrals S .. are larger in amplitude, thus the band ef
fectively larger but~J still symmetrical ; the converse is true 
in extended regions ; there should thus be a charge density wave 
associated with the phonon, providing a repulsive correction in 
the compressed regions and an attractive one in the extended re
gions (figure l8.a). The converse should hold for more than half 
filled bands (figure l8.b), where it is justifiable to talk in . 
terms of positive holes. 

Figure 18 
electrons 

Q 

+ 

b 

Longitudinal phonons ~n alternate structures 
b positive holes. 

a 

In non alternate structures, the same distinction between 
electrons and holes respectively for nearly empty and nearly 
full bands ; but the transition from one type of behaviour to 
the other, thus the exact filling for which no charge density wave 
is produced, will depend on the type of phonon considered. The 
condition for no charge density wave will still occur near the 
middle of the band. 
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- If one considers only the intraatomic contribution to 
screening due to the charge density wave, this again can but 
stiffen the phonon(32). Let U be the average Coulomb interaction 
between valence electrons on the same site. To a local change cp. 
in electronic density there would correspond a local change cv. tn 
the atomic potential of site i such that ~ 

cv. = U cp. 
~ ~ 

This replaces Poisson's equation in the preceeding analysis. And, 
in the extreme case of nearly full or nearly empty non degenerate 
bands, where a simple geometry of the Fermi surface prevents 
umklapp processes to occur, the unstability condition reads 

The addition of U indeed makes a soft mode less easy to produce. 

- One should however also consider interatomic contributions 
of the screening to the stability of the mode(26). This Madelung 
energy can lower the energy of suitable modes. A historical exam
ple is the special stability of Kohn anomalies along parallel 
chains when neighbouring chains are in phase opposition, which was 

+ + + 

+ + 

+ + + 

Figure 19 : Coupling in antiphase of Kohn anomalies along parallel 
chains, stabilized by long range electrostatic interactions. 

predicted by Barisic(26) and later observed in linear chain com
pounds such as KCp(15). 

A general study of the tight binding case, combining the intra 
and interatomic contributions of screening has not been made so far. 
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It is conceivable that in some cases the overall effect could make 
the phonon mode softer. It is however very unlikely, because U is 
a large positive quantity. Indeed the electrostatic correction is 
most favourable for stabilization if modulation is at wave lengths 
such that neighbouring atoms have op~osite char~es ± q. The total 
electrostatic correction then reads 2 U 2 - aq per atom where R 
is the interatomic distance and a the q Made~ung constant. With 
aiR ~ 1/4 Atomic unit, and U ~ 1/4 to 1/2 At. unit, the correction 
is negative but small. Furthermore we have seen that at such wave 
lengths, the amplitudes of a charge density wave produced by a 
phonon is small. 

Conclusion 

- The screening changes the strength, but not the nature of 
the Kohn anomaly. 

It corresponds usually (but not always) to a charge density 
wave which is coupled with the phonon ; this usually stiffens the 
phonon, thus making soft mode conditions less easy. 

- Indeed the production of a charge density wave without a 
phonon(30) would require op ~ 0 for v = 0, or, according to the 
analysis above, the dielectric consta~t E going to zero. This is 
clearly impossible for free electrons, wh~re X < 0, and very unli
kely in tight binding, except perhaps for mode~ with short wave 
lengths which are but weakly coupled with the phonons. It is thus 
unfortunate, to say the least, that the fashion is nowadays to 
call a soft phonon mode by the name 'charge density wave' which 
actually is the part in the mode that fights against its instabi
lity! 

- The situation would be quite different for a spin density 
wave, because there the positive U term is replaced by a negative 
term describing intraatomic exchange effects : a spin density wave 
can soften into a magnetically modulated stable structure, without 
necessarily being coupled with a structural distortion. Coupling 
between spin density waves and phonons by spin orbit coupling can 
lead indeed to weak but non zero magnetostrictive lattice modula
tions. 

- For nearly free electrons, the second order term in oE 
can be thought of as due to the modulation by the displacemen~ u 
of the pair interactions between the atomic pseudopotentials, each 
treated to second order as the interactions of two impurities 

in a free electron gas. Taking E-llv 12 is the same as conside
ring the interaction of the scre~nedeq potential of one atom 
acting on the maked charge of the other in" the pair. 
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- The (screened) Kohn anomaly can be considered as a resonan
ce between the phonon and the Fermi electrons responsible for the 
long range oscillations of the screening. It is also an interfe
rence effect of the long range oscillating (screened) interatomic 
forces. Indeed if the Fermi electrons have a long but finite mean 
free path ~,due to say scattering by imperfections, this will 
dampen exponentially the long range oscillations of the inter
atomic forces (in exp - P and correlatively broaden the Kohn 
anomaly over a width ok ~ 2 n/~. But it will pratically not chan
ge the nature and the stability of the possible soft modeS:-

3 - Other correlation effects 

- Magnetism : exchange effects lead to possible ferromagne
tism or soft spin density waves, thus various modulated magnetic 
structures, which will not be considered here. 

- Energy : Coulomb correlations introduce corrections in the 
energy. As stressed above, they are important for evaluating the 
absolute value of cohesion, but play only a reduced role in the 
relative stability of crystal phases (cf Appendix D). 

Damping : electron-electron collisions are only active at 
finite temperatures. They introduce resistive terms which are u
sually at most comparable with those due to imperfections (impu
rities, phonons). In all cases, electron phonon coupling seem to 
dominate on electron-electron scattering ; this last term can be 
treated as a fairly small correction, analogous to that just men
tioned for scattering by imperfections(33). 

4 - Degeneracy of electronic states 

- First order terms. If the lattice structure has degenerate 
Van Hove anomalies at different points ~ ,~ ... in the first 
Brillouin zone, a phonon mode v with ~ ~ ~ ~ ~ + ~RL f 0 can 
lift their degenerary to first 8rder : s r 

<n k I v In k > f 0 
I'\jr "-'q s 

This is a natural extension of the effect possibly associated with 
uniform distortions, and can thus be termed an extended Band Jahn 
Teller effect. 

- Second order terms. The one beam (kinematic) approximation 
used until now is not valid, strictly speaking, near the lines L, 
figure 8, where it is used to analyse the Kohn anomaly. In such a 
region, one Bloch function In' ,~±~ + ~> takes an amplitude com
parable with In,~> • It is then be~ter to develop the perturbed 
function I~> in these two wave functions, neglecting the contri-
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butions of the other Bloch functions I nil ,)(> , which will be small 
and regular. 

E 

k 

~igure_20 Two beams approximation (in the case n' n). 

Thus we reduce the hamiltonian 

to 

H = 2 E~ln,k><n,~1 + 2 In,k><klvlk'><n'k'i 
n,~ kk' 

H ~ [E~ln,~><n,~1 + E~I~,~><~,~I 

+ v In,~><~,~1 + c.c:j 
"!o 

(figure 20). 

The well known solutions of this (nearly) degenerate problem is 

(5) 

with 
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where the sign + refers to the upper continuous curve B, the sign 
to the lower one A, which replace the crossing point. 

33 

This two beams approximation supresses the divergencies in one 
electron energy En(~ ), densities of electronic states neE), and 

k 0 1 . h· h . . h b . eventually Kohn anoma ~es w ~c ar~se ~n t e one earn approx~ma-
tions. 

Thus, in three dimensions, figure 21 pictures schematically 
the differences arising for neE) and the corresponding (non self 
consistent) Kohn anomaly for nearly free electrons. The anomaly 
is split into two successive anomalies, corresponding to the two 

n 

b 
a 

Figure 21 : Three dimensional free electrons scattered by a phonon 
in the two beams approximation : a density of electronic states ; 
b Kohn anomaly. 

Van Hove anomalies A, B induced by the phonon at the extremi
ties of the energy gap, figure 20. The special stability can thus 
be viewed as due to the fact that, over a fairly large part of the 
reciprocal space, the scattering by the phonon lowers the energy 
of the occupied electronic states and lifts the energy of the 
empty states. The total effect is clearly less marked than as 
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computed in the one beam approximation. But it can be shown(34) 
that, when developped to second order in v, the results for 
cohesion of the two beams approximation areqidentical with those 
of the one beam approximation, in the general 3 dimensional case 
(cases n, a of figure 9). 

In one or two dimensions, no such equivalence exists between 
one beam and two beams approximations. This last one systematical
ly gives less marked Kohn anomalies. 

Thus, in one dimension, figure 22 gives the density of sta
tes and the (non selfconsistent) Kohn anomaly. It is first clear 
that there is a total energy gap between A and B, figures 20 and 

n 

Or-ooor:::-----~--

E 
b 

Q 

Figure 22 : Effect of a phonon on one dimension electrons a 
density of electronic states ; b Kohn anomaly. 

22, so that when the Fermi level falls within that gap, one pro
duces an insulator, at least as long as the phonon is static. 
From equation (5), one deduces, with n(E) ex: dk/dE\(q ), 

I Iv 12 0 

n(E) ~ ± no(Ec) 11 + q for E < EA or E > EB 
(E - E )2 

c 

o for EA < E < EB• 

where E ~ (E +EB) is the center of the energy gap, and n (E) is 
the eleEtronic ~ensity of states in the absence of the phon8n 
(figure 22.a). 
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Also 

With 

d En d En k - k 
__ k_ '" ___ k_ = __ =-"c ... 

dk dk n n (E ) 
o c 

where n (E ) is the unperturbed density of electronic states at 
energy ~ ,c this gives 

c 

2 k 
[ .Q,n ___ c_ 

nn v 
o q 

k - k ] 
__ -:=-c.:.... dk 
n n (E ) 

o c 

2 2 jkM-k q q q c 
+ ~12-argsh TV:T - TV:T 

q q q-k 
c 

o I kM - kc I ] 
+ 4 n n v I 

o q 

The anomaly is very peaked (because Iv I « k In n , which is of 
the order of the electronic band width~. But i~ remgins finite, 
as soon as v is finite (figure 22.b). 

q 
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It must also be stressed that a proper selfconsistent descrip
tion in the two beams approximations has not yet been developped. 
It is however not expected to lead to fundamentally different re
sults. 

5 - Anharmonic terms 

There are various terms higher than second order in the ampli
tude of the phonons that must be taken into account. 

- Terms in un with n > 2 must be considered to study the equi
librium amplitude of a soft mode. Such terms should be screen~ 
selfconsistently, and this has not been studied completely so far. 

- Phonon-phonon couplings arise from such anharmonic terms. 
This leads to various effects 
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- Strong attenuation of the nearly soft mode, just above the 
transition conditions. As a result, such a nearly soft mode with 
large amplitude might loose its physical meaning near the tran
sition. 

- Star of soft modes with equivalent q's : thesy mg~t be 
treated together, and their couplings consioered(35 (3 . 

- Phase modulation and phase locking(37) (38) . Only a few re
marks will be made on this topic, which will be treated fully la
ter at this Institute. 

Consider a (sinusoidal) longitudinal mode of distortion 
produced in a crystal, with a wave vector ~. This will usually 
set up a charge density wave which will in turn produce a sinu
soidal (or nearly sinusoidal) potential with wave vector ~. The 
lattice will react in turn to this potential : the atomic planes 
will tend to avoid the top of the sinusoid and concentrate in 
the lower parts. 

- To first order, this reaction can be described by a supple
mentary sinusoidal distortion which, for nearly free electrons 
or holes, will certainly be in antiphase with the intial distor
tion, as stressed above. 

- If the initial distortion ~s large, one must however consi
der the non linear response of the crystal. This is very similar 
to the problem of the reaction of a periodic elastic chain ~~9) 
t~8~r4~Y a.rigid periodic substrate, as a model for epitaxy 

(hg. 23). 

- The first deviation from linearity can be described as if 
the medium was continuous. It will distort the sinusoidal distor
tion (or introduce harmonics) in such a way that the phase of the 
initial simusoid will be modulated. By analogy with a classical 
hydrodynamical problem, each period in the modulation has been 
called a soliton. 

As the lattice ~s assimilated to a continuous medium, the 
initial sinusoidal distortion could be shifted with respect to 
the lattice without change in energy. In fact, one must distin
guish two cases : 

- ~ is commensurate with a lattice period. When one shifts 
the sinusoidal wave with respect to the lattice, one necessarily 
goes through different configurations, such as a, b figure 22, 
with different energies. One of them must be more stable than the 
others, and the wave must have its phase locked in that position 
at OK. The locking is obviously more effective for large amplitude 
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sinusoids, and for short period sinusoids, with wave lengths 
small mUltiples of the crystal period. 

• • 
Q 

b 

p p' p" . . . 
c 

37 

Figure 23: Phase locking. a, b commensurate wave, c 
rate wave. 

uncommensu-

- if q is not commensurate with the lattice, the continuous 
non linear solution mentioned above leads to atomic planes being 
distributed allover the top of the sinusoidal potential so that, 
when the wave is shifted, its energy is not changed : the phase of 
the distortion wave is not locked ; the wave could in principle 
be a travelling one, and has thus been called a phason. It is 
however most probable that it is pinned down by stat10nary defects 
or slowed down by anharmonic interactions with normal phonons. But 
if the amplitude of the initial sinusoidal distortion increases, 
there will necessarily be a moment when the phase of this uncom
mensurate wave will also become locked. One is sure this has hap
pened when the negative curvature at the top T of the sinusoidal 
potential, figure 23.c, becomes larger than the elastic constant 
that keeps the atomic planes pp'p" more or less equidistant. The 
plane p' at the top of the sinusoid will then become unstable 
and be locked on the left or the right of T ; a finite energy will 
be necessary to move it across T. This is the analogue of the 
Peierls friction against the ~pitaxial dislocations' whose glide 
allows the glide of the epitaxial layer. As in epitaxy, and depen
ding on the exact conditions of the problem, the phase locking can 
lead to commensurate or uncommensurate phase locked structures. . 

Finally it must be stressed that a selfconsistent description 
of the phase modulation would require a modulation of the initial 
sinusoidal screening potential. This is not expected to lead to 
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new physical effects. 

6 - Adiabatic approximation 

A travelling phonon has a finite frequency w which should be 
taken into account in the exact description of th~ electron-phonon 
coupling(l4) • 

A phonon now couples strongly electronic states with energies 
En and E~: differing by ~w . But as this is usually much smaller 
t~an the-electronic energi~s involved, this only rounds off slight
ly the central part of the Kohn anomaly, without altering its es
sential characteristics. The effect is furthermore vanishing in 
the limit of soft modes, where ~w tends to zero. 

q 

The only cases where the adiabatic approximation is not suf
ficient for the study of Kohn anomalies is when the slow electrons 
near a Van Hove anomaly are considered(42). 

The adiabatic approximation is of course also insufficient 
to compute the indirect attractive electron-electron coupling res
ponsible for supraconductivity, although once the form of this 
coupling is obtained, a time independent treatment is sufficient. 

7 - Entropy at finite temperature 

The discussion has centred so far on OK phase changes, indu
ced for instance by a variation of pressure. 

If a crystal modulation is stable at OK, one usually observes 
it to disappear above a sufficient temperature. This is due to 
entropy effects, which can be complex. 

There are indeed a priori several possibilities and only a 
study case by case can show which of several possible factors is 
predominant. 

The entropy can arise {2~T el~ctrons excited across the (first 
or second order) energy gap • It can also be due to phonons. 
If it is due to phonons, it can be due mainly to the soft mod{33 
renormalized by its anharmonic interaction with other phonons ) 
(44) ; or it can be due to other modes. 

In one or two dimensions, critical flu{3~rt~gys of the soft 
mode should be dominant at low temperatures . They are 
however usually kept down in that range by three dimensional cou
plings. 
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APPENDIX A - SHORT RANGE ORDER DUE TO DISPERSION FORCES 

Let A, B be two atoms or molecules interacting at long range 
by dispersion forces. Let lOA>, I)A>, lOB>, I),B>be the fundamen
tal and main excited states of the two molecules involved in the 
dispersion forces, with energies E~, Et, E~, E~. The development 

of the long range Coulomb interaction between A and B gives rise 
to a pair interaction between electric dipoles on A and B. If A 
and B have no permanent dipoles, only dipoles induced by mutual 
polarization interact. Thus if C is the Coulomb correlation term 
in the hamiltonian describing the pair, its only matrix elements 
different from zero are <AO BO I C I A B, > = <A)B) ICI AOBO> , 
and it is proportionnal to Uo u)' with' 

ui = < iO I X Ii) > . 

A perturbation development 

I ljJ> = (lAO> + alA) > ) ( IBO> +13 IB) » 

then gives 
A EB - E < AO BO I C A) B) EO + 0 > 

< A Bll CiAO BO > E~ + EB - E 
1 ) 

o 

Hence the dispersion interaction 
<AO BO I C I A) B >2 u2 u2 

EA _ EB ) A B 
wAB = E - 0:: 

0 0 E~ + EB A EB OA + oB - E -
) 0 0 

where 

Considering now three pairs AB, AA, BB at the same relative 
distance. One can define a short range order energy as 

) ul u~ ul u~ (uA-UB)20AOB+(uAOB-uBOA) 2 

ow-2 (w AA +wBB -2w AB) 0: oA+oB - 20A - 20B 0:: - (OA+oB) OAoB <0 

39 

The negative sign of ow for dispersion forces can be constras
ted with its positive sign for Coulomb forces between ions, ~l1here 

wAB 0:: ZA ZB 

hence oW 0:: (Z - Z )2 > 0 
A B 

A negative sign of ow favours segregation in pure A and B pha
ses a positive sign of ow favours ordered compounds (cf figure 3, 
a and b respectively). 



40 J. FRIEDEL 

APPENDIX B .- LCAO STUDIES OF THE BAND STRUCTURES OF IffiTALS AND COVALENTS 

In the LCAO approximation, the one electron wave functions 
are analyzed in terms of atomic functions Ii, m> (site i, wave 
function of type m), aRsumed nearly orthogonal: 

m a. 
1 

I i m> , 

< i, m I j, n >'" 0.. 0 1J mn 
With a suitable origin of energies, the hamiltonian reduces to one 
site and two sites terms 

H '" r 6~n lim> <inl + . ~ 
1 1,] 

mn I' . I 8.. 1m><Jn 
near to i 1J 
mn 

The transfer integrals 8 allo~ interatomic jumps. The intraatomic 
terms 6 come from electrostatic crystal field interactions (for 
m = n) and from atomic promotion energies if the li,m> functions 
are hybrids made with atomic functions of different energies. 

1 - H broadens the atomic states into bands without changing 
the average energy. This can be seen by computing the first moment 
of the density of states (per unit energy and per atom) in the 
bands; using the li,m> set as a (pseudo) complete set 

tIJ = !n(E)EdE = Trace H '" 4 L <i,ml H li,m > = 0 
(N atoms) i ,m 

A rough estimate of the band width can then be deduced from 
the second moment(45) 

M2 = ~ (E)E 2dE = Trace H2 '" 4 L <i m IHI jn><j,n IHI i,m> 
i,m 
l,n 

8~~ 8~~ + 
1J J 1 L 

i 
~i 

mn 
~i ) 

nm 

m, n m,n 

with usually I~I « 181, at least in elementary structures, the 
effective band width is finally given by an average value of the 
8' multiplied by the square root of the average number of nearest s 
neighbours. Hence large cohesion for strong bands (large B's)or many 
bonds (large p's). 

2 - In sp metals or covalents, the lower limit of the valence 
band is obtained with pure atomic s states, and coefficients a~ of 
constant sign (minimum number of nodal surfaces). In crystals ~ith 
one atom per unit cell, the solution is a~ = const. and 

1 
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E . mIn N L 
i 

j near to i 

S~~ = p < S > 
1J 

41 

As p >pI/2, this estimate of the band width is larger than the pre
vious one, but of the same order of magnitude. 

3 - In sp covalents, the lim> functions can be taken as sp 
hybrids such that only functions lin> and Ijn> pointing along the 
same covalent bond between two neighbouring sites i, j have a non 
vanishing (negative) t~ansfer integralS (40). There are then non 
vanishing one site terms 6.. n~m = I::, associated with the atomic 

1 

(negative) promotion energy E - E • Thus (figure B.t) 
s p 

H'" S L lin ><jn I + I::, L lin ><im I 
i, j near to i i,m~n 

n 

Writing H 11/1> = E 11/1> and projecting on lin>gives 

or 

a~ = E a~ 
J 1 

I::, L an: + S a~ 
m 1 J 

m 

n 
(E +1::,) a. 

1 

Figure B.l Notation of sites and bonds in an sp covalent 
structure 

Similarly 

I::,La~ + S 
n (E + 1::,) 

n a. a. 
p J 1 J 

(E + 1::,) 
n S (I::,cr. + n Hence a. I::,cr i + E+I::, Sa. ) 
1 J 1 

and 
(E + 1::,)2 - S2 - pl::,(E + I::,))cr. - SI::,L cr. 0 (B-1) 

1 • J 
J 
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with 0. = I a1!l 
1 1 

m 

Equation (B-1) is the LCAO equation for an s band on the same 
atomic structure, with transfer integral 8~ and energy 

£ = (E + ~)2 - 82 - p~(E + ~). General theorems tell us that such 
an s band has limits £1 "2 such that 

- p 8~ = £ I ~ £ ~ £2 ~ + p8~ 

The symmetry in energy pointed out in the text shows that £2 

is equal to p8~ for alternate structures ; a variational procedure 
shows that £2 is lower than p8~ for non alternate structures, as 

defined in the text. 

Hence for I 8 I>! I ~ I, 
8 + (p - I)~ ~ E ~ 8 - ~ 

for 181 < 1 I ~ I , 

or -8 + (p - l)~ { E ~ - 8 - ~ 

8+(p - I)~ ~ E ~ - 8 +(p - I)~ or + 8 - ~ ~ E ~ - 8 - ~. 

Figure B.2 schematizes the results, taking into account an expo
nential variation of 8 with the interatomic distance d(47)(48). 

E 

Figure B.2 

E 

A 

d d 
Q b 

Allowed regions of energy for an sp covalent band in 
the LCAO approximation : a alternate structures ; 
b non alternate oneS (NB : for spn bands with n > I, 
the lines pA, pB are allowed pure p states not 
discussed here). 
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3 - More exact details about n(E) are necessary to compute 
the relative stability of different condensed phases. This can be 
obtained from a study of higher moments(45)(49). 

M fn(E) Eq dE q 

43 

and from a development of the Hilbert transform of n(E) as a conti-
f t · (50)(5)(52) nuous rac 10n 

f n(E') dE' 
E-E' 

E-a -
1 

a 
o 

where the ai's and bi's can be expressed in terms of the Mq's, and 
have an asymptotic behaviour dominated in crystals by the van Hove 
anomalies of n(E). 

APPENDIX C - PHASE STABILITY FOR NEARLY FREE ELECTRONS 

Treating the scattering of a free electron gas by the atomic 
pseudopotentials vi(r-Ri ) as small~ the total energy of the valen
ce electrons can be written(53) (54) 

E = EO + E) + E2 + 03(v) 

The zero order term EO is the cohesive energy of a free elec
tron gas in a uniform background of positive charge that neutrali
zes the system. It is a function of the electron density or of the 
Fermi wave number kM• It contains exchange and Coulomb correlations, 
essential to stabilize this 'jellium'. 

The first order term E) corresponds to first order (Born) 
scattering of the free electrons by the pseudopotentials vi' Each 
site scatters independently as an impurity, and the Born approxima
tion is only meaningful if screening of each vi by the valence 
electrons is included: in E), the vi are 'clothed', the relation 
with the 'naked' vi's being, for each Fourier component K 

c n 
v iK = viK/E K 

(E K dielectric constant of the free electron gas). 

The second order terms E2 have two different origins 
double scatterings on single sites. 

- successive scatterings on two different sites. 

E) and the first terms in E2 are only a function of the 
nature and density of atoms. Only the second terms in E2 depend on 
the relative arrangement of the atoms, i. e. on the atomic structu
re. They can be written as a sum of central pair interactions Eij 
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between two atoms i and j, acting as if they were an isolated pair 
of impurities in a free electron-gas. General theorems tell us 
that to this lowest order, Eij is the Coulomb interaction of the 
clothed potential of one atom on the naked charge of the other. 
Thus, using Poisson's equations (55) (56) 

iK(r-R. ) K,2 iK' (r-~.) 
E .. If 

c e '\.0 '\.0 '\.or d3K v jK ' e '\.0 '\.0 J d K' v iK 
~J 4ne2 3 

n n iK R .. 
f 

K2 v iK vjK '\.0 '\.o~J d3K e 
4ne 2 EK 

Owing to the logarithmic anomaly of EK for K ~ 2~, this is an 

oscillating function of 2kt1ij' with an amplitude decreasing as 
-3 R .. at long range. It is the change in 
~J 

. ~~. Eij between different 
~ .Jr~ 

lattice structures which 
change. In crystals, the 
reciprocal lattice : 

gives rise to the latent heat of phase 
integral reduces to the periods ~ of the 

E •. 
~J 

Owing to the logarithmic decrease of EK for K > 2~, this term 

increases suddenly, for increasing electron per atom ratios, when 
2~ ~ ~L' or for the Fermi sphere tangent to Brillouin zone 

Boundaries. 

Third order terms in v would introduce directional forces and 
possibly finite mean free path effects. They are however difficult 
to analyze in a convincing way(25). 

APPENDIX D - COHESION IN TRANSITIONAL METALS 

Considering only the d band and within the LCAO approximation, 
this can be written as 

The zero order terms is the Hartree one electron term when one 
neglects interactions between valence electrons (or uses the Wigner 
Seitz approximation referred to in the text)(57) : 

EM 
EO = - f n(E)E dE 

where the zero of energy is taken as the energy of a d state in 
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the atom. The Fermi level EM is related to the number z of d elec
trons per atom 

EM 
z = f n(E) dE 

I 
From dEO/d z = - E~ and d 2EO/d z 2 = - n(En) , one deduces that EO(z) 

has a single maximum for a half filled band (En = 0 or, as the 
first moment of the band is zero, z = 5). Indeed it does not de
viate much from the parabola obtained if n(E) was a constant over 

W w (fO ) an energy - 2' < E < 2' 19ures D. I 

~ z (I0-z) 
EO - 20 w 

And the (small) deviations with crystal structures are coherent 
with the succesion FCC, HCP, BCC, HCP, FCC observed in the transi
tional series(49). 

The first order correction originates from the Coulomb and 
exchange interactions between valence electrons, as computed in 
the Hartree Fock approximation i. e. for valence electrons randomr 
ly distributed over the l~ttice sites, taking only into account 
the exclusion principle(58). If one only considers the average 
intraatomic terms U = U and J ~ = J, the differences in popula-

nm nrm 
tion of the 10 d orbitals in atoms and in the paramagnetic metals 
gives(5) 

where 

EI ~ - Z(~g-Z) U - ~(~ - I) i - ALS 

~ 

E 

z for z < 5 

IO-z for z > 5 

I 
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Figure 0.1 : Contribution to cohesion in a transitional series 
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The term in U reduces the amplitude of cohesion; the term in J, 
due to the special stability of half filled magnetic d shells, 
introduces a secondary minimum in cohesion near the middle of 
the transitional series (figure 0.1). 

The second order contribution E2 is the first correction 
for electron-electron correlations. As U » J, only the term in 
V2 need be considered. As U induces virtual transitions between 
occupied and unoccupied valence states, with number ~ and 1- ~ 

10 10 
per atomic orbital, an estimate neglecting conservation of momen-
tum in electron-electron collisions gives 

EM EM w/2 w/2 Un(El)n(E2)n(E3)n(E4)dEldE2dE3dE4 
E2 ""'. f f f f E +E -E -E 

w w 
EM 

E I 2 3 4 -"2 -"2 M 

This is approximately (for rectangular d bands)(5) 

w 
The numerical factor A is of the order of 50. 

This is a small positive correction, which does not playa 
large role in the cohesive energy but explains the secondary mini
ma observed in the surface tension and the elastic constants, near 
the middle of the transition series(59). 

Cohesive energies, elastic constants and surface tensions are 
coherent with the set of values of the parameters involved as gi
ven in the following table(5). As stated in the text, the first 
order Coulomb interaction (term in U) decreas~ cohesion by a term 
independent of crystal structure. The second order correlation 
correction increases but a little cohesion, by a term somewhat 
structure sensitive. 

TABLE I - Values of parameters in eV 

J U w A 

3d 0.7 (3) (6) 0.05 

4d 0.55 3 9 0.15 

5d 0.55 < 3 12 0.40 
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NEUTRON SCATTERING STUDIES OF ELECTRON-PHONON INTERACTIONS 

J.D. Axe 

Institute Laue-Langevin, Grenoble, France, and 

Brookhaven National Laboratory, Upton, N.Y., U.S.A. 

This review is an attempt to summarize the areas in which 
neutron scattering has been used in studying electron-phonon inter
actions, and to display some of the key results. The examples 
chosen reflect the interests of the author and represent in no way 
a complete survey of the subject. 

I. PHONON DISPERSION IN METALS 

The most obvious and direct way in which electron phonon in
teraction manifests itself is in the phonon dispersion of metals. 
When phonon dispersion curves of simple metals are analyzed by 
Born-von Karman theory typically force constants between fifth 
n€arest or even more distant neighbors are needed. l ,2 Furthermore 
the magnitude of the successive force constants is often oscillat
ory,2,3 reflecting the rather long ranged oscillatory character of 
electronic screening. Born-von Karman models are both unweildy 
and unphysical, and it is now generally recognized that it is more 
satisfactory to formulate models in which conduction electron 
-phonon interactions are explicitly dealt with. 

In the harmonic approximation phonon frequencies and eigen
vectors are obtained by diagonalizing a dynamical matrix Q(q). 
For our purposes a sufficiently general form is4 
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Fig. 1 The effective electron screening potential for sodi11m 
metal. The solid curve is deduced from phonon dispersion measure
ments (Ref. 5). The crosses represent calculations by Toya (Ref. 
6). 

where <p(K) lS the Fourier transform of an appropriate ion pair 
potential, v is the volume of a unit cell and the S11m is over all 
reciprocal vectors G. For metals it is convenient to write the 
potential as the sum of three terms, 

(2 ) 

representing a) Coulomb interactions between ions, b) core repul
Slon of ions and c) ion-electron-ion interactions, respectively. 

Figure 1 shows a comparison of the potential for sodium de
rived by Cochran 5 from experimental phonon dispersion curves,l 
compared with an early calculation by Toya6 which attempte~ to 
deal in a fundamental way with tee conduction electrons. ¢ (K) is 
normalized by the coulomb term ¢ (K) = 4ne2/K2. Although the agree
ment is remarkably good, the further comparison of the measured 
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and calculated dispersion curves, while impressive, was not com
pletely aatisfaEtory. This is the resHlt of the near cancellation 
of the ~ and ~ terms in eq. (2). (~ is nearly negligible in 
sodium.) As a result phonon dispersion in metals generally pro~ 
vides a very stringent test of our understanding both of electron 
-ion potentials and of many body screening effects within the elec
tron gas itself. It is fair to conclude that much of the stimulus 
for developments in pseudopotential theories7 over the last decade 
came with the availability of reliable inelastic neutron scattering 
measurements of phonons in metals. 8 ,9 

The additional comment that must be made concerning Figure 1 
is that it is not in general possible to uniquely deduce interionic 
potentials from phonon dispersion curves. There are two distinct 
difficulties. The first is that both the phonon frequencies and 
eigenvectors are needed to reconstruct the dynamical matrix D(q). 
Although the eigenvectors can in very favorable cases be ded~ced 
from inelastic scattering intensities, in simple structures the 
problem is best resolved by measuring along those directions in 
reciprocal space where the eigenvectors are fixed by symmetry. 
The second problem is that the structure of eq. (1), which in prin
ciple involves reciprocal lattice vectors G of arbitrarily large 
value, is such that no unique value of ~(q) can be deduced from a 
knowledge of ~(q). This reflects the fact that in a real space 
formulation DTq) depends only upon d~/dr and d2~/dr2 evaluated at 
d~stances of~interatomic separation. Cochran was able to derive 
~ (K) shown in Figure 1 only by assuming physically plausible con
straints on its behavior. 

II. KOHN SINGULARITIES 

Kohn singularities arise because of the abrupt changes in 
electronic screening which occur when the phonon wavevector q, 
spans the Fermi surface of a metal. 10 The effect is most simply 
discussed in the case where the electron wavefunctions are sufE 
ficiently planewave-like over most of the unit cell to allow ~ (K) 
to be approximately factorized in the form 

Here v(K) is the effective ion-electron potential and v (K) is 
the electron coulomb plus exchange potential. ll XO(K) i~ the fam
iliar one electron susceptibility 
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(4 ) 

The magnitude of the Kohn singularity depends greatly on how 
well pieces of Fermi surface separated by the wavevector K are 
matched. For simple ellipsoidal surfaces where the matching is 
poor XO(K) is regular, but there is a logarithmic singularity in 
the derivative aX O(K)/aK. 12 Brockhouse, et. al. 13 were the first 
to find phonon anomalies with these expected properties in a study 
of lead. Lead is favorable because of the large electron-ion po
tential, v(K). In most other simple metals the effects are too 
small to be obvious by direct inspection of the dispersion curves. 
Nevertheless, Stedman and coworkers, by making very careful measure
ments (~O.2% precision) and by examining ~w/~q have identified a 
large number of other anomalies in Al14 and Cul5 as well as Pblb . 
(It is important to realize that while the first moment of the 
line shape can be determined with such precision, the lines typi
cally have a width ~5% due to instrumental resolution.) A sub
stantial fraction of the anomalies have been assigned to known 
features of the Fermi surface with reasonable certainty. Ng and 
Brockhousel7 have followed the changes in the size of the Fermi 
surface that occurs when Pb is alloyed with TI. 

In the event that a sUbstantial portion of the Fermi ~urface 
"nests" into a matching portion displaced by a wavevector K, the 
sineularity in XO(K) becomes stronger. In the limit of perfect 
nesting there is a logarithmic singularity in XO(K) rather than in 
aXo/aK.12 When the nesting is less than mathematically perfect it 
is still possible to have strong cusp-like singularities in XO(K) 
itself. 12 ,15 Such cusps are seen in the phonon dispersion in 
Cr,le Mo,19 and W,20 and are believed to result from nesting of 
electron and hole pockets in the rather complex Fermi surfaces of 
these materials. A particularly strong example occurs in Cr, as 
shown in Figure 2. Nb and Nb-Mo alloys also have suspected Kohn 
anomalies at wavevectors that can be reasonably correlated with a 
rigid band model of the Fermi surface. 21 ,22 Hhile it is often 
possible to find qualitative correlations, it is a common obser
vation that anomalies predicted by simple considerations of Fermi 
surface topology are in some cases too weak to be observed and in 
other cases relatively strong. There has been little effort to 
understand the shape and strength of the anomalies in a quanti tat
lve way.18 

It is a very striking fact that many high T superconductors 
exhibit rather broad anomalous dips in their dispersion relations 
which are not seen in their neighboring low T counterparts. IO 
For example, (Figure 3) Nb has such features *hich are not seen in 
MO, and similiar relationships are observed in the V,Cr and Ta,W 
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pairs. Similar features have been pointed out by Smith and his 
coworkersll for the transition metal carbides. These features are 
too broad to be Kohn anomalies and furthermore, as has been shown 
for the Nb-Mo system, do not scale with the size of the Fermi sur
face. Sinha and Harmon12 have proposed a model in which collective 
charge fluctions within the localized d-states softens the lattice 
response. They suggest that a large density of d-states at the 
Fermi surface is required. It is not clear whether the correlation 
with high T superconductivity, which undoubtedly exists, is or is 
not a causal one. 

III. NEUTRON SPECTROSCOPY OF SUPERCONDUCTORS 

Thus far we have been concerned with the electronic screening 
effects of the phonon frequencies. These can be adequately de
scribed in the adiabatic approximation. In order to discuss the 
influence of the electrons on phonon linewidths, it is necessary 
to consider the damping due to excitation of electron-hole pairs. 
This is accomplished by replacing the static susceptibility XO(K) 
in eq. (3) by 

fk - f k+K 

~ Ek+K - Ek + W + in 

The electronic damping is introduced via 1m XO(K,w), and is in 
most cases small enough to be completely masked by phonon-phonon 
scattering. In a neutron scattering experiment this in turn is 
usually masked by instrumental resolution! 

Nevertheless in strong coupling superconductors in the vicin
ity of T there are abrupt changes in electronic damping which are 
sufficiegtly strong to be studied by neutron scattering. 26 ,27 
This behavior arises because phonons with energy less than that of 
the temperature-dependent superconducting energy gap, 2~(T), are 
energitically incapable of decaying by excitation of electron
hole quasiparticle pairs. 

Although the theory of this effect dates from the early BCS 
period28 , the effect was first seen in neutron scattering some ten 
years later in Nb 3sn. 26 Recently more refined measurements have 
been performed in Nb. 27 Figure 4 summarises some of these latter 
measurements. When 26(T) equals the phonon energy, nwq , an abrupt 
change occurs in the linewidth. Certain qualitative features, 
such as the displacement of the curves to lower temperature with 
increasing phonon energy, are obvious from the sketch included in 
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the Figure. The rounding of the discontinuity can be partly ac
counted for by resolution effects. All three sets of data in Fig
ure 4 show that when hoo slightly exceeds 2~(T) the phonon line-

. a . . 
wIdths are greater than~helr values far above T. ThIS effect, 
.. . . c 

WhICh IS due to an Increased densIty of electron states at the gap 
energy, is in qualitative agreement with theory. Since the real 
and imaginary parts of XO(K,oo) are related by Kramers-Kronig re
lations, we expect29 and find anomalies in the phonon frequencies 
In the vicinity of T as well (see Figure 5). 

c 

Measurements of this type are of course of interest because 
they provi'de an alternate means for direct determination of the 
temperature dependence and anisotropy of the gap energy. In ad
dition, they measure that part of the phonon linewidth, Ye ' which 
is due to electron-phonon interaction. Allen30 has pointe~ out that 
it is very closely related to quantities of interest in strong 
coupling superconductivity by deriving a simple explicit relation 
between y and the electron-phonon spectral function a2F(w). ep 

Obviously neutron scattering measurements of this sort are 
successful only if the electron-phonon interaction is sufficiently 
strong that the quenching of the interaction when 2~(T) ~ ~Wq pro
duces a measureable effect. Given presently available spectrometer 
resolution, the technique is unfortunately restricted to a small 
handful of strong coupled superconductors. 

IV. MAGNETIC FIELD EFFECTS 

In the preceding section we saw how the presence of an energy 
gap in the conduction electrons can be manifested in the phonon 
spectrum. Another way of introducing energy gaps in the conduction 
electrons is by application of an external magnetic field, and 
under suitable conditions this too may produce interesting effects 
in the phonon spectrum. 

When a magnetic field is applied to a metal the energies of 
the conduction electrons are quantized into a series of Landau 
levels. In momentum space this quantization is represented by the 
condensation of the electron energy states into a series of tubes, 
each having a constant cross section in a plane perpendicular to 
the applied field, H, as shown in Figure 6. The cross sectional 
area of each tube is proportional to H. The energy of an electron 
lying on the n'th tube is 

£ (k ) 
n z = (n + ~ }h.w 

c 
(6) 
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n 

Fig. 6 Free electron Fermi surface and tubes onto which electron 
states condense in a ma~netic field alone k . (Ref. 34). 

z 

where k is the comnonent of the electron wavevector parallel to -+ z ~ 

H, ml I lS an effective mass and wi is the cyclotron frequency. 

In the free electron case, as discussed by Cowley,3l and by 
Sham,32 there are two distinct kinds of effects depending upon 
whe1her the-+phon~n propagation vector, is parallel or perpendicular 
to H. For q I I H there are Kohn-like singularities in XO(q,w,H) 
whenever q equals the length, 2k , of the portion of the n'th tube 
that lies within the Fermi surfaBe. 33 However even for lOO·KG 
there are ~l03 Landau levels below the Fermi energy, so that the 
tubes are very closely spaced relative to the available momentum 
resolution of a neutron spectrometer and the strong field induced 
singularities are greatly smoothed out. 

When q 1 H, XO(q,w,H) has a different structure33 reflecting 
the fact that phonons can now scatter electrons from the n'th to 
the (n + p)'th tube, subject to the conditions 
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6Qz 

Fig. 7 1m X(Q,w) is finite in the shaded area with a magnetic 
field perpendicular to the phonon propagation. (Ref. 34). 

£ (k) - £ (k ) - p~wc = nWq n+p z n z 

and 

k - k = q 
n+p n 
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where wand q are the frequency and wavevector of the phonon and 
k is t~e component of the electron wavevector lH for the n'th 
tUbe. This is just the cyclotron resonance condition, and we con
sequently expect the electron-phonon interaction to contribute to 
the lifetimes of only those phonons whose frequencies are integral 
multiples of the cyclotron frequency. 

A more detailed consideration of the possibility of observing 
the effect of a transverse magnetic field on phonon lifetimes by 34 
conventional neutron spectroscopy has been given by pynn and Axe. 
Figure 7 shows the effect of a small component of phonon wavevec
tor, ~Q , parallel to H on the energy quantization of electrons. 
w = (ea/mc) ~ 1 meV for H = 100 kG, which is well within the cap
aEility of a neutron spectrometer to resolve. The major difficulty 
that occurs is that typical spectrometer momentum resolution ex
tends well beyond the value ~Qmax in this Figure, at least in the 

z 
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case of free electrons. No anomalous effects can then be observed 
as the smeared value of 1m XO(q,w) is the same with and without 
the applied field. 

Pynn and Axe suggested that only if there were flat sections 
-+ 

of Fermi surface which could be aligned parallel to H could the 
momentum resolution be sufficiently relaxed to make a neutron 
scattering experiment feasible. They tested these ideas by measur
ing the effect of a 50 kG field on phonons near the Al Kohn anomaly 
in Nb. 25 Instead of measuring the width of the phonons directly, 
they monitored the peak intensity as a function of H and found a 
small oscillatory component with a period consistent with the 
cyclotron mass deduced from deHaas-van Alphen measurements. 

It is clear that neutrons are potentially very useful to in
vestigate Fermi surfaces, both through Kohn anomalies and cyclo
tron resonance effects. A distinct advantage, in principle, is 
that these studies could be extended to impure metals and alloys, 
which are difficult to study by conventional methods. Similar re
marks pertain to the potential of neutron spectroscopy of super
conductors. It is fair to conclude, however, that substantial 
technical improvements will be necessary to make these techniques 
broadly useful. Order of magnitude increases in reactor fluxes 
might go a long way toward affecting the necessary resolution, 
but this is not a likely short term prospect. Unconventional high 
resolution spectrometers exist,35.36 but have not as yet been 
adapted to phonon spectroscopy. It is sobering to recognize that 
we will often require simultaneous improvements in energy and mo
mentum resolution. 

V. CHARGE DENSITY WAVE INSTABILITIES 

The charge density wave (CDW) state occurs as the result of 
a Fermi surface instability, which in the absence of electron 
phonon coupling would be manifested in a divergent susceptibility, 
XO(q "t) -+ 00, at some critical wavevector. The actual instability 
" cr1 " " " 1S a coupled mode Wh1Ch causes a slmultaneous modulat10n of the 
electron density as well as a distortion of the lattice, i.e. a 
structural phase transformation. The neutrons couple to the nu
clear distortions only. As might be supposed, simple theories 
predict that CDW phase transformations are accompanied by a soft 
phonon mode whose frequency is driven to zero by a "giant" Kohn 
anomaly.37 The possibility of such an instability is greatly en
hanced in lower dimensional systems because of the possibilities 
for favorable Fermi surface nesting. 
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Fig. 8. Inelastic scattering intensity. Contours for KCP showing 
sharp Kohn anomaly in the acoustic branch near ~ % O.3c* (from 
Ref. ll). 

In the past few years very spectacular examples of giant Kohn 
~omalies have been st~~~ed with neutrons in the q~asi one-dimen
slonal conductors KCp3b 0 and TTF-TCNQ.4l-42 As lS demonstrated 
in Figure 8 the anomaly in KCP is extremely sharp. It occurs 
whenever qll, the component of the phonon wavevector along the 
one-dimensional axis, equals 2kF. The strength of the anomaly is 
nearly independent of components of momentum perpendicular to the 
one-dimensional axis. There is a large quasi-elastic central peak 
revealing the presence of long lived short ranged correlations 
over a wide range of temperatures, but no actual transition tem
perature can be defined. It is possible that impurity pinning 
rather than the effect of one-dimension~l fluctuations is respon
sible for the lack of long range order. 43 

The layered dl-metal compounds NbX2 and TaX2 (X = S, Se, or 
Te) show a variety of structural transformations which are ralated 
to Fermi surface instabilities and CDW formation. Inelastic neu
tron scattering studies of 2H-NbSe2 and TaSe2 show large Kohn-like 
anomalies in the LA phonons at wavevectors4~ot which Bragg sattelite 
peaks occur at the onset of the CDW state. ' 5 However, the 
softening of the phonon is incomplete near T , the divergent be
havior occuring instead in a quasi-elastic c~ntral peak as T + T 
The Fermi surface geometry is rather complex in these materials 0 

and alternative models of Fermi surface nesting have been proposed. 
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Fig. 9 Tem~erature dependence of the incommensurate 
wavevector q ::: (1-c5)a*/3 in TaSe 2 and NbSe 2 . A "lock-in" 
transformati8n (to ~ ::: 0) occurs ln TaSe 2 but not NbSe 2 . 

These systems have been extensively reviewed by Wilson et al. 46 

One curious feature of CDW transformations is that the wave
vector of the modulation, q 't' is in general not an integral sub
multiple of a reciprocal lattice vector of the undistorted parent 
structure. The resulting structures are termed "incommensurate", 
and since they lack translational periodicity, they are not strictly 
speaking crystalline phases. However, the periodic potential of 
the underlying lattice causes non-sinusoidal distortions of the 
condensed planewave displacements and may lead to subsequent trans
formations which "lock-in" the period of the displacements with 
that of the lattice. These effects show up clearly in the neutron 
scattering result s 45 on the layered chalcogenides shown in Figure 
9. The most striking {eature is the abrupt change of*the satellite 
wavevector from (1-o)al /3 to the commensurate value al /3 which oc
curs at T 'V 0.76 T. HbSe does not achieve the commensurate 
state even.at the ~owest attainable temperatures, but as in TaSe2 
the satelllte wavevector shows a pronounced temperature dependence, 
whose origin is closely related to the lock-in phenomenon itself. 
Moncton et. al.,45 using a phenomenological Landau theory, showed 
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that this behavior could be understood by allowing additional sec
ondary distortions with wavevectors chosen to take advantage of 
the periodic lattice potential. They were also able to directly 
verifY the non-sinusoidal nature of the incommensurate state by 
observing secondary Bragg satellite~ at the postulated wavevec
tors. McMillan47 and Bak and Emery48 have recently given more 
detailed discussions of the nature of the incommensurate ground 
state. 
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PHASE TRANSITIONS IN QUASI ONE-DIMENSIONAL METALS (TTF-TCNQ AND 

KCP) 

Per Bak 

NORD ITA , Blegdamsvej 17, Copenhagen, Denmark 

1. INTRODUCTION 

Quasi one-dimensional conductors are characterized by their 
very anisotropic conductivity which takes place almost entirely 
along one particular direction. Most of these systems are organic 
chain systems. The best one-dimensional organic conductor known 
is tetrathiafulvalene-tetracyanoquinodimenthane (TTF-TCNQ). The 
present activity in this field started by the observation of Cole
man, Cohen, Sandman, Yamagishi, Garito and Heegerl that samples of 
TTF-TCNQ exhibit an anomalous peak in conductivity at T~6oK but at 
lower temperatures the conductivity drops sharply and the material 
becomes an insulator. Although it was widely believed that this 
behaviour was related to a phase transition it took rather long 
time before such a transition was actually observed. 

Of particular interest in this respect is the coupling between 
the electron system and the lattice which may lead to at least two 
different types of phase transformations: either into a supercon
ducting state or into a Peierls state2 characterized by a static 
charge density wave (CDW) and an accompanying periodic lattice 
distortion. Careful theoretical estimates, however, indicate that 
for an almost one-dimensional system the dielectric Peierls tran
sition will occur before the superconducting phase transition may 
take place. The physical mechanism behind the Peierls transition 
is the decay of phonons into electron-hole pair. Because of ener
gy and momentum conservation the phonon wavevector must connect two 
points on the Fermi surface. The interaction creates a dip in the 
phonon energy - the Kohn anomaly. For this process to be important, 
there should be a large denslty of states at points on the Fermi 
surface separated by the phonon wavevector. Clearly this condition 

66 
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is fulfilled for one-dimensional, or nearly one-dimensional systems 
where the entire Fermi surface is two planes separated by 2kF. At 
lower temperatures it may become energetically favourable to have 
static phonons at this wavevector - the Peierls transition takes 
place. Energy gaps are formed at the Fermi surface, and the con
ductivity decreases. 

For the theorist, one-dimensional systems are of interest in 
themselves, since they may exhibit many characteristic and unusual 
properties, and because one-dimensional models are more amenable 
to exact theoretical calculations than the three-dimensional coun
terparts. The most important property of purely one-dimensional 
systems is that fluctuations prevent them from undergoing phase 
transitions at all. This leads to an apparant paradox since we 
have just argued that one-dimensionality is required for a Peierls 
distortion to take place. Clearly, three dimensional effects, 
however weak, are bound to be of crucial importance when dealing 
with "one-dimensional systems". The phase transformation in a 
real physical 3-d system takes place as a consequence of a subtle 
interplay between large one-dimensional fluctuations and weak 
interchain coupling. The transition will set in at a temperature 
which is significantly lower than the mean field transition tempe
rature 

TO = E:F exp (- 1TgV2) 1.1 ) 

where v and E:F are the velocity and energy at the Fermi surface 
and g is the electron phonon coupling. It is this transition which 
destroys the possibility of having a very high conductivity in 
TTF-TCNQ at temperatures below 50K. The Kohn anomaly and the 
Peierls distortion may be seen by x-ray and neutron scattering ex
periments which provide the most direct evidence of the phase 
transition. 

In addition to allowing the phase transition to take place, 
the three dimensional coupling has another important effect. If 
one ignores the periodic potential from the underlying atomic lat
tice ("Umklapp terms") the phase of the CDW is free to move along 
the l-d direction. However, in the presence of interchain coupling 
the relative phases on different chains, as specified by q~ , the 
component of ~ perpendicular to the chain, are fixed. The value of 
q~ is mainly determined by the Coulomb interaction which attracts 
regions of opposite excess charge. We shall see that in TTF-TCNQ 
q~ varies with temperature to accomodate different ordering of 
the two types of chain. If there is coupling to the underlying 
lattice, the overall phase X may be "pinned". This coupling can 
cause ~ to lock at a commensurate value to take advantage of the 
extra free energy. This appears to happen in TTF-TCNQ3. If q has a 
component which is almost commensurate -either along or perpendicu
lar to the chain- the CDW state may consist of large commensurate 
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regions with constant X separated by comparatively narrow regions 
-"solitons"- where X changes rapidly. 

As the temperature is lowered below TO, the electrons in
teract over longer and longer distances, and the effective interac
tion between chains is enhanced. Ultimately, this brings out the 
true three dimensional phase transition. In section 2 the effects 
of weak interchain couFling are calculated by means of a systematic 
perturbation theory developed in ref. 5. The zeroth order term is 
not the mean field solution of the system as a whole, but an "exact" 
solution of the one-dimensional system. The expansion param~ter is 
lor, equivalently,! where Z is an effective number of interact
Ing chains. In secti~n 3 the Bak-Emery theory3 of the phase trans
formations in 'I'TF-TCNQ wiD be reviewed. An important feature is 
that the theory does not depend upon any microscopic model of the 
system, but makes use of the space group symmetries of the crystal 
above Tc and the observed symmetry of the ordered state below Tc' 
The perturbation theory presented in section 2 will provide a pre
scription of how actually to estimate the numerical coefficients 
entering the Landau-Gin7.burg theory, in addition to providing phy
sical insight into the nature of the phase-transition. We emphasize, 
however, that the theory of TTF-TCNQ is based upon an expansion of 
the free energy around the true phase transition, and not the tran
sition temperature as given by any approximative theory. No attempt 
wilJ be made to actually identifying the details of the microscopic 
mechanisms involved. The most striking consequence of the theory is 
the prediction of a new phase transition. This transition has now 
been confirmed by se;e~al experimental groups, and was found to 
occur at Td I8K. This is one of the very rare cases that the existence 
of a phase transition has actually been predicted before it was ob
served. 

R 1 . 6,[ . 8 . 
ecent y, charge denslty waves and Kohn anomalles wlth 

wavevector components 4kF along the chains have been observed, and 
theoretical explanations have been proposed9-l ? The possibility to 
form these waves can be included in the Landau expansion3 . This 
does not give rise to additional phase transitions since the sym
metry is not lowered further. In section 3.4 an alternative mecha
nism for the 4kF modes will be suggested, and in section 3.5 the 
critical properties near the phase transitions are studied from a 
theoretical point of view. 

No one-dimensional system is ideal. Three dimensional coupling 
is of crucial importance, but also imperfections or impurities are 
always present. In particular, random impurities are almost neces
sarily of importance in non-stoichiometric systems such as KCP 
(K2 Pt (CN)4 BrO.3' 3H20) where there is a non-integer average 
amount of Br atoms in the unit cell. The Br atoms are probably ful
ly ionized and may act as a random potential on the CDW and in turn 
induce large fluctuations of the phase and possibly destroy long 
range order. It has been suggested that impurities are responsible 
for the absense of a CDW transition in KCp13,14,5. 
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In section 4 the theory of Bak and Brazovsky5 on the effects of 
impurities on quasi-one dimensional systems will be described. 
The field is assumed to interact linearly with the derivative of 
the phase of the CDW and not with the phase itself. In the case 

69 

of a purely one-dimensional system the dynamical structure factor 
(which can be measured in a neutron scattering experiment) includes 
a central peak in addition to the phason branches which are also 
present for the pure system. When the interchain coupling is in
cluded, the actual phase transition is determined by an interplay 
between impurity effects which tend to destroy correlations and 
prevent long range order and 3-d effects which tend to enhance the 
susceptibility. It turns out that if the impurity correlation 
length becomes less than a certain threshold value, then the corre
lation length is finite at any temperature and no dielectric phase 
transition can take place. This may explain the saturation of the 
transverse correlation length in KCP at T~lOOK13. Of course there 
is the possibility that some other kind of ordering may occur. We 
suggest that there is a "spin-glass" like ordering where the phases 
of CDW's on different chains freeze in a random way relative to 
each other. 

2. INTERCHAIN COUPLING 

In this section we shall study the effects of weak interchain 
coupling following closely the systematic perturbation theory de
rived in ref. 5. A static CDW can be described by the periodic 
function 

2.1) 

where p and X are order parameters. For a one dimensional system 
the average value of n(x), <n(x», is zero, but its amplitude is 
sharply peaked around its "mean field" value. At temperatures in 
the region 

T « TO 2.2) 

only long wavelength fluctuations are essential. The fluctuations 
of the whole system are phase fluctuations (phasons). To include 
the effects of these excitations we shall allow X to be a space 
and time dependent function, X(x,t). To second order in the deri
vatives of X, the phase fluctuations are described by the Lagran
gian 

If '2 2 
L 0 = ~ dxd T ( 2C_ + X' ) 

81T u 2 
2.3) 

where T is the Matsubara time (O<T< B). This Lagrangian does not 
include terms dependent upon X itself since the system is invari
ant to a uniform shift of X. u is the phason velocity. Brazovsky 
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and Dzyaloshinskij have calculated the dynamic structure factor 
S(q,w) corresponding to L 16,33. If we are interested in the 
static integrated correla~ion function, Seq), only we may restrict 
ourselves to considering time independent phase fluctuations, with 
energies 

F = 8~ f dx X,2 2.4) 

Before introducing the interchain coupling, let us show how 
the phasons destroy long-range order in a one dimensional system. 
The static charge-charge correlation function, or structure factor, 
lS 

Sex) <n(O)n(x» 

2 
p <exp i {X(O) - x(x)}> cos 2kFx 

It is essentially this function which is measured in any diffraction 
experiment. In this paper we shall drop the trivial factor cos 2kFx, 
i.e. all momenta will be measured relative to 2kF. The correlation 
function can be calculated using Feynman integral approach: 

Sex) = JDX exp i {XeD) - x(x)} exp(-SFo) 
JDX exp (-SF 0) 

2.6) 

where JDX lS the functional integral over all possible phase fluc
tuations. By introducing Fourier transforms X we find 

q 

S( x) = 
JDX exp q 21 }dq{ (l-exp iqx)iX 

n q 

JDX exp q 

-fdq 2T (1 - ~os(qx)) = exp 
v q 

= exp (- 121) 
R 

2 2 
v q X 
------:;;--:::-,,"q } 

8nT 

We have used a standard formula for Gaussian functional integrals. 
Hence the correlation length is finite at any finite temperature 
and no long range order exists. 

The three dimensional coupling will be taken to be of the form 

F =-
1 

lJ 

K .. cos (X·(x) - X·(x)) 
lJ l J 

2.8) 
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The summation is over interacting chains. This term may represent 
the Coulomb interaction17 . The interaction is local, i.e. the 
phase at position x at chain i interacts with the other chains at 
the same position only. The thermodynamic average of any quantity, 
0, is given by the functional integral 

The exponentials In both the denominator and the nominator are now 
expanded in S: 

<0> = <0> -S«OF > - <0> <F > ) 
o 10 0 10 

2.10) 

2 
+ ~ «OF2> - <0> <F2> ) + 2 10 010 ... 

where < >0 denotes the average with respect to Fo. 
are all Gaussian functional integrals which can be 
calculate the structure factor we insert 0 = exp i 

These averages 
evaluated. To 
{xl ( 0) -Xi (x)} : 

2.11 ) 

+ S2L;:: Kii!!dx'dx"<exp i {Xl(O)-Xl(x)+Xl(x' )-Xl(x")}>o 
I 

x <exp i {X·(x")-X·(x') }>o I I 

s2~ K~iJJ dx'dx"<exp i {Xl(O)-Xl(x)}>o 
I 

The averages are evaluated using the formula 

<exp i L n X (x ) > I '5' n = 0 = 
VV V \IV 

where n 
V 

+ or - and Do(x) = I~I . 

exp ~ L n n D (x -x ) 
~v 0 V ~ 

V~ 

2.12) 

2 1 ~ 2 1 )2 .Introducing.Kii = Z(L. K .. ) = ZK(O and performing the inte-
gratIons we obtaIn ij IJ 
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exp t ¥) 
51xl _Ix I 

exp(- ~)- exp(~) 
R R 2.13) 

Z is an effective number of interacting neighbours. The correla
tion between chains can be calcu]ated in a similar way. The Fou
rler transform of the correlation function lS 

S(q) = ~ _ K(O) 
2 2 T Y +q 

2.14) 

where q lS the wavevector component along the chain. 

'1'0 first order in S(=-~) this result is equivalent to the mean
field approximation. To second order in B the corrections to the 
mean-field theory are r,i ven by the last term of eq. 2.14). 'I'o find 
the transition temperature, let us find the temperature where the 
correlrltion function diverges, i.e. l/S(o) vanishes: 

1 
S( 0) 

To first order In 1 'I' , 

or 

T 
c 

T 2 = 
c 

2.15) 

2K( O)R .!S.L0)v 
TIT 

2.16) 
c 

K(O)v 
TI 

This is in agreement with the result of Scalapino, Imry and Pin
cus18 , but in distinct disagreement with a theory of Lee, Rice and 
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Anderson19 which in fact ignores phase fluctuations and leads to a 
Tc which is only weakly dependent upon K(o). To second order, 

T 2 
c 

K(o)v 
2n 

2.18) 

Hence, as could be expected the transition temperature is lowered 
relative to the "mean-field" theory. The Tc and the susceptibility 
Xq = liT S(q) as calculated here give an indication of the parame
ters entering phenomenological calculations, as for example the 
Bak-Emery theory of TTF-TCNQ3 which is described in the next section. 

3. LANDAU-GINZBURG THEORY OF STRUCTURAL PHASE TRANSFORMA
TIONS AND CHARGE DENSITY WAVES IN TTF-TCNQ 

Since the discovery of the anomalous peak in the resistivity 
of TTF-TCNQl, there has been much speculation about the possibility 
of a structural "Peierls" transition. However, bulk measurements 
save no definite information on this question, and it took surpris
ingly long time before this very fundamental question was solved by 
means of obvious diffraction techniques. The first direct evidence 
of a phase transition in TTF-TCNQ was X-ray diffraction photographs 
taken at Orsay20, but recent neutron scattering experiments at 
Brookhaven have provided a much more detailed picture of the low 
temperature transitions21 ,22. In these experiments it appeared 
that there were two transitions, one at 38K, the other at 54K. At 
low temperatures there is a 4a x 3.4t x 6 modulation of the lattice. 
As the temperature was raised above 38K the modulation period along 
-+- • • • 
a changes, abruptly at flrst, then more gradually untll lt reaches 
2a near 51K. These experiments have been explained by Bak and 
Emery3 in terms of a Ginzburg-Landau theory. The most striking con
sequence of this theory is that there should in fact be a third tran
sition between those already observed. The proof of the new tran
sition is based upon symmetry considerations only, whereas the na
ture of the underlying physical mechanisms plays no role at all for 
this purpose. The phase transition has now been observed by seve
ral experimental groups23-25 and seems to take place at T~48.5K. 

In this section the theory for the three phase transformations 
will be reviewed, and we shall also study the critical properties 
at the transitions. In addition, a new mechanism for the 2kF ano
maly recently observed will be proposed. Figure 1 indicates 
schematically the CDW's at the different phases. 

3.1 The 54K Transition 

The space group of TTF-TCNQ is the monoclinic group P 2l/c 
with the b axis as the unique axis26 The structure consists of 
chains of TTF molecules and chains of TCNQ molecules arranged in 
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sheets in the bc plane. The x-ray and neutron scattering experi
ments have shown a second order structural phase transformation at 
54K. The ordered phase at this temperature is described by an In
commensurate wavevector ql = (qa' qb' qc) = (a~/2, O.295b*,O) 
where a¥, b~ and c are reciprocal lattice constants. Phrased In 
terms of a Peierls transition, the b* component is twice the Fermi 
wavevector, 2kF. 

According to the theory of Landau and Lifshitz27 the order 
parameter describing a second order phase transition should trans
form as a basis of an irreducible representation of the high sym
metry (high temperature) space group of the crystal. The repre
sentations are labelled by the wavevector describing the ordered 
unit cell and by the representation of the group of this wavevec
tor. The wavevector is known from the neutron scattering experi
ments. The group of ql consists simply of the tWo-fold axis, which 
has only two representations described by basis functions which 
transform into themselves or into minus themselves, respectively. 
When the order parameter is subject to such a screw axis transfor
mation (x, y, z) ~ (-x, ~+y, ~-z) it should therefore transform 
either as 

3.1a) 

or 3 .lb) 

We note that the symmetry considerations tells us nothing about 
which intra-molecular modes are involved. For a detailed discus
sion of the possible order parameters, see ref. 3. An important 
point is that it is possible to use optical CDW's on the two chain 
systems as order parameters. The charge distributions associated 
with these modes are 

i ~ i ~ ~ 
p (r) = ± ~~ exp(iql'r), i = 1,2 

ql 
3.2) 

where the + sign applies to one sublattice of type i molecules 
and the - sign to the other sublattice of type i molecules. Since 
Coulomb forces tend to favour opposite excess charges on neigh
bouring chains it is very likely that the optical modes are domi
nant. In general, however, we are of course free to use any order 
parameter (as for example the accompanying lattice distortion) 
which has the correct symmetry properties. The optical CDW's on 
the two chain systems transform as 3.1a) and 3.lb), respectively. 
Since the order parameter should transform as one of these basis 
functions, we may conclude that only one chain --;;Ystem developes 
an optical CDW at the 54K transition. It is in principle possible 
that there is an acoustic CDW on the other chain system which trans
form according to the same representation. 
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To find the temperature dependence of the order parameters, 
we expand the free energy close to the phase transitions. in terms 
of the complex order parameters ~~i and ~q~. This free energy 
should be real and invariant under translations, inversion and the 
two-fold screw-axis transformation, which are the symmetry ele
ments of the high temperature phase. Since the two order para
meters transform like two different representations, there are no 
cross terms of second order. 

F = rllwq~12 + bl!~~!4 + ... 
I I 

+ r21~q2!2 + b 1~214 + ... 
I 2 ql 

rl and r2 are effective inverse susceptibilities l/X~l and I/X;2 
of the two chain systems. respectively. These quantlties may D~ 
estimated using the theory of section 2. We found that each set 
is expected to order at a finite temperature. The phase transition 
occur when the smallest of the parameters rl and r2 passes through 
zero. Let us assume that it is rl, linearize around TI = 54K, and 
minimize F for T not too far from TI . 

3.4) 

O. T > TI 

and l~qil2 remains zero at this transition. Here rl=al(T-TI ). This 
describes the first phase transition in TTF-TCNQ. Experiments seem 
to indicate that it is mainly the TCNQ molecules that order28 ,24. 

3.2 The 47K Transition 

Let us investigate the question as to when an optical transi
tion is driven on the second type of chain. following closely the 
derivation of ref. 3. Since the single chain susceptibility diver
ges at T=O on both types of chains. we expect this to happen at fi
nite temperature. It will be shown that this transition is in 
fact related to the observed shift of the a* component of the wave
vector describing the distortions. To study the possibility of 
forming a charge.densit~ wave with ~ t a~/2 we expand the free en
ergy in both ~~l and ~q. Of course. any possible state with pe
riodicity described by q can be formed from linear combinations of 
tQese modes. To simplify the notation we introduce ~qi = 
~1(a~/2+q. 2kF • 0). We shall keep ~ I exactly since lt may not 
remain small over the whole region o~ interest. To second order 
in ~q2 we have 



76 P. BAK 

F (", 1 ,I, 2 ) = 'l'q , 'l'q , q f (1", 1\2 ) ,'I'q ,q 

When the twofold screw axis is applied to the order parameter, 
1/.Iq21/.1 ql + -1/.I_q21/.1_ql and l1/.l-~\2 + \1/.1_~\2. Therefore, f and Bare 
even in q and A 1S odd 1n q. 

We now expand F in powers of q 1n the neighbourhood of q = 0; 
and minimize with respect to \1/.1~\. We find 

F (1/.1! ' q) = aql1/.l!1 + bI1/.l!\2 + cq2 + •• , 3.6) 

In principle the coefficient c could vanish at some temperature 
below 54K indicating a q-deviation within the l-system only. How
ever, since there is always some coupling between the two systems, 
a phase transition involving the 2-system would already have taken 
place before then. Moreover, there is no obvious physical reason 
for a temperature dependence of c. Near T], the coefficients band 
c are positive, otherwise the type 2 chains would already have or
dered, contrary to assumption, or q = ° would not be a minimum 
contrary to experiment. Now, F is minimized with respect to q 

q = -(a/2c) 11/.I q2 \ + o\1/.I q2 13 

and, when this 1S substituted into 3.6) F becomes 

F = (b - a2 /4c)\1/.1 212 + DI1/.I 2\4 3.8) 
q q 

to fourth order in \1/.1 2 j • Equation 3.7) shows how the moving wave
vector is associated ~ith the development of order in type 2 chains. 
When D > 0, there is a second-order transition at the temperature 
T2 for which b - ~ vanishes. This is higher than the temperature 
at which b = 0, because c > O. Thus the coupling helps to drive 
the transition of 1/.I q2 . Minimizing F in eq. 3.8) with respect to 
1/.I q2 gives 

2 
11/.1 212 = -(b - 4a )/2D = aCT -T) 

q c 2' 

after expanding about T2' From Eqs. 3.7) and 3.9) the variation of 
q is given by 
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2 
q = 

77 

Hence, qa stays at a-/2 in a finite temperature interval below Tl , 
and the deviation o~ away from this value should occur at a 
separate phase transition, the "47K transition". Since we first 
reported our result, several experiments have shown unequivocally 
the existence of the predicted transition. In a recent neutron 
scattering experiment, Ellenson et.al. 23 found the transition to 
occur at T ~ 48.5K (Fig. 2). Knight shift measurements seem to 
indicate that the transition is indeed associated with the TTF 
chains24 . Specific heat measurements 25 show a clear anomaly at 
48K. In the discussion of the 47K transition the existence of the 
underlying lattice has been ignored. In reality, the CDW is sub
ject to a periodic potential from this lattice. Since 2kF is not 
close to any simple rational value the effect of such "Umklapp" 
terms is probably small. 

3.3 The 38K Transition 

It now remains to understand the transition at 38K and the 
reason that qa locks to a value of a*/4 at low temperature. We 
suggest that this "pinning" is due to extra terms in the free 
energy, which are allowed only when qa = ±a~/43. The simplest 
possible Umklapp terms are of the form 

3.10) 

29 . . .. 30 so . 
as suggested by Bak and by BJells and Barlslc . uF lS depen-
dent upon the phases 8 and 8' of ~a~/4 and ~-a~/4' respectively 

of = 2KI~a~/412 1~_a.l(/412 cos(28-28') 3.ll) 

It is always possible to make this term negative by adjusting the 
phases. If IKI is large enough, then it becomes favourable for 
the system to jump to the "symmetric" state consisting of equal 
amounts of l~a~/41 and 1~-a~/41, when the ~ value minimizing the 
remaining free energy gets close enough to ~/4. This is what 
happens at the 38K transition3 . (See fig. 1.) An interesting 
point can be made here. In principle Umklapp terms may exist at 
any rational value of the wavevector31. This opens a possibility 
of having phase locking at different wavevectors in the tempera
ture range 38K < T < 47K. In an experiment, it may be difficult 
to distinguish su~h behaviour from a continuous T dependence of 

<la' 
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y,b 54K> T > 49K 

) 

x 

Fig. 1 Schematic diagram of phase transitions in TTF-TCNQ. The 
full curves indicate the 2kF modulation along the chains. The 
dotted curves indicate 4kF modulation below 38K. The overall sym
metry is monoclinic except for the intermediate phase (48K > T >38K) 
where the symmetry is triclinic (ref. 29). 
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a) c) 

Fig. 3 a) Overlapping valence and conduction bands giving rise to 
2kF Peierls distortions. b),c) Band structures which allow both 
2kF abd 4kF Kohn anomalies and distortions. 
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3.4 The 4kF Anomaly 

Recently a "Kohn" anomaly6,8 and charge density waves7 with 
wavevector component 4kF along the chain direction have been ob
served in TTF-TCNQ. The 4kF anomaly is present at room tem~era
tures whereas there is nothing to be seen at 2kF until l50Kb. 
This seems to indicate that the 4kF anomaly is not a simple anhar
monic effect but is indeed generated by a separate mechanism. 
Torrancel2 attribute the "2kF" scattering to spinwaves, the "4kF" 
scattering to the usual Kohn anomaly. Emery9 explains the 4kF ano
maly within the Luttinger model by assuming a large and positive 
intra molecular Coulomb repulsion, U, Sham proposes that anharmo
nic phonons are responsiblell , and Weger and Friedel guess that it 
is simply due to higher order diffraction from libration modes for 
which the "2kF" scatterine; (approximately) vanishesl2 . 

Even if all these exp1anations are in principle possible, I 
shal1 now use this opportunity to confuse the situation further. 
The usual charge transfer mechanism can be understood by means of 
figure 3a. A valence (TTl") band and a conduction (TCNQ) band are 
overlapping, and because of one dimensionality and charge conser
vation the Fermi level is at the intersection between these bands. 
This picture is based upon an assumption that there is only one 
available orbital on each molecule. However, let us assume that 
there are two (almost) degenerate orbitals on one type of molecule. 
These orbitals could be associated with the nitrogen atoms situated 
at each end of the TCNQ molecule. The situation is then described 
by figure 3b:a charge transfer of 4kF X?/b* electrons from the TTF 
molecule will fill the two TCNQ bands up to 2kF only. Clearly, the 
usual Peierls mechanism mie;ht then give rise to Kohn anomalies and 
lattice distortions with wavevector 2kF on the TCNQ chains and 4kF 
on the TTl" chains. Another possibility is that there exis~ a con
duction (valence) band with minimum (maximum) at qb = 0, ~ . Then, 
because of inversion symmetry, there should exist another extremum 
at -qb' as shown in figure 3c. Again, the bands corresponding to 
one type of molecules would be filled only up to half the Fermi 
wavevector of the other type of molecules. Clearly, more theore
tical and experimental work on the band structure of TTF-TCNQ is 
required. The possibility of forming 4kF modes can be included in 
the Landau Ginzburg theory3. Al all temperatures there should 
exist waves with periodicity given by the wavevector 2~=(2qa,4kF'0). 
Above 47K this mode is acoustic, and below 38K it is associated 
with one chain system only in analogy with the 2kF mode above 47K. 
An interesting consequence of OUI theory of the 38K transition3 is 
that there should also exist a CDW with wave vector (0, 4kF, 0) 
below 38K. This mode is induced by terms like 
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in the expansion of the free energy. We predict that this mode 
should be acoustic. According to symmetry this mode is forbidden 
when measuring around (0,2n+l,0) reflections. This is in agree-
~ent with the experiment by Kagoshima et. al. 7: the "4kF" peak at 
S = (0,3-0.59,0)=(0,~+0.41,0) vanishes at temperatures bolow 38K 
whereas the peak at S = (0,3-0.59,1) is very sharp. We find that 
there is no obvious reason that this behaviour is due to an acci
dental polarization of the mode. The allowed 4kF peaks disappear 
abruptly at 38K as it should. 

3.5 Critical Behaviour 

Because of universality. the critical behaviour is believed to 
depend upon very few properties of the system. namely the dimensio
nality of the order parameter and the space group of the crystal. 
For TTF-TCNQ the star of the wave vector associated with the 54K 

• •• -+ • 
transltlon conslsts of the two vectors ±ql. Slnce the order para-
met~r transforms as a one dimensional representation of the group 
of ql. the dimensionality of the order parameter is two, correspon
ding for example to the amplitude and phase degrees of freedom, and 
one should expect three dimensional XY(n=2) exponents. Close to 
the transition. the temperature dependence ~ 1 therefore should be 

ql 

1~~12 ~ (TI -T)28. 8 ~ 0.33 3.12) 

In the case where the phase transition takes place at a non-symme
tric q value with ~ + ~, the star of q would consist of four vec
tors, ±(qa.qb'O) and ±(-qa.qb'O), and one would expect n=4 critical 
behaviour. At the 47K transition the "CDW lattice" distorts so 
that the twofold axis is destroyed. as shown in figure 1. It is 
this distortion that manifest itself as a shift of the q vector in 
a diffraction experiment. A possible order parameter is a homoge
neous strain of the CDW: 

E:' = 4 

where uyC x) is the displacement of the CDW in the b-direction at 
position~. The symmetry of this transition is exactly the same as 
that of a homogeneous q=O structural phase transition in a mono
clinic atomic lattice, where the order parameter is an E4 (E6) strain. 
Hence the critical behaviour for these two systems should also be 
the same. Just as the phase transition in an atomic crystal is 
triggered by a soft phonon mode the 47K phase transition is trigge
red by a soft transverse phason mode29 Recently. Cowley32 found 
that the critical behaviour for the monoclinic system is classical 
so no corrections to the mean field exponents are expected. Since 
£4 and E:4 have the same symmetry, a spontaneous £4 strain should 
develope at the phase transition. Again it should be stressed that 
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Umklapp terms, i.e. the periodic potential from the underlying 
lattice, has been ignored and could change the critical behaviour 
at the 47K transition. 

4. IMPURITIES 

In real physical systems there are always some imperfections 
or random impurities. In KCP the non-integer amount of Br-ions 
in the formula unit may act like an external Coulomb potential on 
the CDW. To investigate the effects of impurities, both in the 
strictly one-dimensional system and in the quasi three-dimensional 
case, we shall extend the Feynman integral method of section two, 
following closely the work by Bak and Brazovsky5. The most impor
tant contribution to the Coulomb interaction on a CDW is due to 
backward scattering of electrons and may be written 

U. = 
1 

1 
27T J dx V(x) X' (x) 

where V(x) - r u.(x-l.) - cUi. 
ill 

4.1) 

Here ui(X-li) is the Coulomb potential from an impurity ion at 
site Ii. These ions are randomly distributed with concentration 
c. ui is the "average" potential of one impurity. Note that the 
random field acts linearly with the derivative of the order para
meter and not with the phase itself as in the model studies by 
Sham and Patton15~35. 

4.1 One Dimensional Random Systems 

We consider a one dimensional conductor with random impuri
ties described by the Lagrangian 

v If ·2 2 L = 87T dxdT (X lu 
2 4v 

+ X' - - X' ) 
v 

4.2) 

It turns out to be convenient to transform the phason field ~ to a 
new unconstrained field $ through the relation 

4.3) 

where 

The Lagrangian becomes 

L(1/I) = 8v7T JJdXdT ( ;llu2 + 1/1 ,2 ) 4.4) 

plus a constant term which does not affect thermodynamic averages. 
To calculate an observable quantity one should first calculate it 
for any possible impurity configuration and then average over the 
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impurity distribution function. For the structure factor we find, 
using 4.3): 

S(x) = « <exp i{X(O,O) - X(x,t)} > » = S.(x)S (x) 4.5) 
1 p 

= <exp i {~(O,O) - ~(x,t)} > x «exp i{ x(O) - X(x)} » 

where the double brackets denote averages over impurity configura
tion. The averages can thus be performed independently. In the 
small concentration, small potential limit it can be shown that 

S.(x) = « exp i{ x(O) - X(x)} » = exp(- ~) 
1 S. 

or in Fourier space, 

S. ( q) 
1 

2y. 
1 

2 2 

1 

4.6) 

q +y. 
where Si=l/Yi is the impurity correlation length. For KCP, si is 
probably comparable to the correlation length Rp = l/yp for the 
pure system. The first factor in 4.5) has been calculated by Bra
zovsky33. In (q,w) space 

S (q,w) 
p 

2y 

= A { 2 2: { 2 2} (w+qu) +(uy) + (w-qu) +(uy ) 
p p 

The dynamical structure factor is obtained as a convolution of the 
Fourier transform of the pure structure factor with the impurity 
correlation function 4.6): 

+ 

1 S(q w) = -, 27f 

= A x 
1 

S (q-k,w)dk 
P 

G y. 

222 222 (w +y u )(q +y. )u 
P 1 

4.8) 

The second term gives the contribution from phason modes at w=±uq. 
The first term describes a central peak not present in the pure 
systems, and the q-width is the inverse impurity correlation length. 
A very accurate neutron diffraction is required to resolve the 
spectrum since there is considerable overlap between the various 
terms. The expression should be valid for KCP at temperatures far 
above the "three dimensional" phase transition at T '" lOOK13. 
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4.2 Combined Effects of Random Impurities and Interchain coupling5 

The model that we shall investigate is the combination of the 
random l~ model and the three dimensional model studied in section 
2. The random potentials are assumed to act within each chain and 
not affect the coupling between chains. The corresponding free 
energy functional is then f V 2V.(x) 2 

F = dxE{-(X! - -~--) - IK .. cos(X'-X.)} 
i 81T ~ V j ~J ~ J 

4.9) 

Applying the transformation 4.3) we get a new effective free energy 

F(IjJ) =fx (I b8 !2_ I K .. cos(X'(x)-X'(x) + 1jJ.(x) -1jJ.(x))) 4.10) 
• 1T ~ •• ~J ~ J ~ J 
~ ~J 

We note that F is not independent of X(x), as it was in the case of 
the one dimensional system, and the averages < > and « » do not 
commute any more. Hence, first the thermodynamic average < > 
should be performed for any possible impurity configuration. and 
then averaged over the impurity distribution function. 

The expansion 2.10), therefore. should be modified ~n the fol
lowing way 

« <0> » == « <0> » 
0 4.11) 

- (3 (<< <OF1>0» - « <0> <F > ») o 1 0 
2 

< 0> <F2> »)+ + ~(<< <OFi>o» - « 
o 1 0 

where Fl is the interacting part of 4.10). 

To calculate the structure factor we insert 

o = exp i{ X . ( 0) - x. ( x )} 
~ J 

4.12) 

= exp i{X'(O) - X.(x)} exp i{IjJ.(O) - 1jJ.(x)} 
~ ~ ~ ~ 

The bookkeeping of the various terms can be performed in a diagram
matic way5. Each term in the expansion for the pure system is re
placed by a product of this term and an impurity term. The Fourier 
transform of 4.11) has been evaluated. To estimate the transition 
temperature the ~nverse correlation function ~s expanded in~. To 
second order 
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where the function f is dependent upon temperature through Rp. For 
example, F(oo)=O, f(1)=0.375, f(0.1)=1.74. 

Again, to first order 1n ~ we find the mean field result 

Tc 1 21TTc 1 
R = 2K( 0) , R = -v- + ~ 

1 

4.14) 

Tc is lowered by the impurities but remains finite. 
order 

To second 

Tc = K(O) (1+ Vl- 1:.(14 +!) ) 
R Z 5 2 

4.15) 

For small Z, therefore, a large impurity concentration will tend 
to suppress the phase transition. 

At low temperatures the high temperature expansion will break 
down. In this region, the structure factor can be calculated 
using a continuum representation in the transverse direction to05. 
For not too large concentrations of impurities the dynamical struc
ture factor will consist of three different features: 1) A Bragg 
peak which indicates that long range order exists. 2) An elastic 
impurity induced peak with finite width in momentum space and 3) 
two phason branches originating from phase fluctuations. However, 
when the impurity concentration exceeds a certain limit, the con
tinuum representation breaks down, indicating that no long range 
order can exist due to a "melting" of the CDW lattice. This seems 
to be the case for KCP. As the temperature is lowered below lOOK, 
the transverse correlation length increases rapidly but saturates 
rather abrubtly around lOOK. This relative sharp saturation indi
cates that som~ other ordering may occur. We suggest that there 
develops a "spin glass"-like ordering, where the CDW's at distant 
positions freeze in a random way relative to each other, but where 
near neighbours are correlated. In fact, our model of KCP is very 
similar to the three dimensional rotator considered by Edwards 
and Anderson34 , (which is believed to exhibit spin-glass ordering) 
since both models are formally three dimensional random xy-mode1s. 
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35. The term 4.1) may represent forward scattering of conduction 
electrons by the impurity potential, whereas the coupling 
considered by Sham and Patton may represent backward scatter
ing across the Fermi surface. We expect this latter coupling 
to be comparatively weak since it involves the 2kF component 
of a long range Coulomb potential. 
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1. Abstract 

The microscopic physics underlying the sine-Gordon equation 
in quasi-one-dimensional conductors and two dimensional layered 
structures is explored. 

An interesting parallel between these two systems is discussed, 
and the quantum nature of the former, involving the time variable, 
is found to be equivalent to the second space dimension of the lat
ter. The soliton spectrum of both are studied and the implications 
of these discrete states for real physical systems, with three-di
mensional couplings, are developed. 

2. Introduction 

The study of charge density waves in lower dimensional systems 
has been advanced beyondlthe stage of speculation due to experi
ments in both quasi-one and quasi-two 2 dimensional systems. 
While it is by no means clear that the special properties of one 
and two dimensional models can explain these phenomena, it seems 
appropriate to understand the predictions of these models, keeping 
in mind a healthy skepticism about the ultimate outcome. 

There appears to be much in common between the quasi-one-di
mensional and some of the quasi-two-dimensional charge density 
structures. In the former, time appears as an important dynamical 
variable. Obviously, renaming this variable a second space var
iable, one arrives at a classical two dimensional problem. To the 
extent that quantum fluctuations are unimportant in the layered 

88 
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structures, the two are equivalent. 

An interesting consequence of this equivalence concerns the 
existence of soliton states 3 Propagating wave-type solutions 
along a one dimensional chain have a direct correspondence to 
stationary domain-like excitations in the classical two dimensional 
system. These domain structures, in turn, have consequences for the 
thermodynamics and static correlation functions. This paper is in
tended to explore the types of soliton states which can be of in
terest, and to deduce some observable consequences of these states, 
if they exist. 

If the reader has sensed skepticism about solitons solving all 
problems of lower dimensional systems, it is not unfounded. There 
can be no doubt about the importance of these states in the purely 
one or two dimensional case. But when interactions are turned on 
between the strings, or between the layers, the effects of these 
must be included in the original soliton solution. At present, a 
good understanding of the destruction of solitons, or perhaps only 
slight damping of solitons due to these interactions, is lacking. 

On a heuristic level, the problem could be phrased in terms of 
energy scales. If the energies of interaction within, say, the 
string, are much stronger than the interactions between the 
strings, it is a good approximation to apply the solutions to the 
string problem, and treat the interactions between them as a per
turbation. This will be a good approximation for temperatures 
larger than the mean interaction between strings, which is roughly 
the mean field transition temperature for the strings. The same 
words obviously apply in the layered case as well. 

3. Change Density Waves and the Sine-Gordon Equation 

With these introductory hedges in mind, let us turn to a study 
of charge density waves in lower dimensions. Not surprisingly, 
the close relation between charge density waves and the solitons 
is one of the first points to be encountered. The mathematics 
literature is filled with various equations which exhibit non
linear wave propagation 4. Of these, the sine-Gordon equation 5 
is the most relevant for the physical applications of interest 
here. Before discussing this equation, it is important to under
stand where it came from, what assumptions went into it, and why 
it might be of interest. 

An example from the one dimensional conductor problem consists 
of a filled Fermi sea of electrons moving in a potential capable 
of causing transitions from one side of the Fermi line, at momen
tum plus kF , to minus kF ' the usual charge density wave in
stability. To analyze this situation, we focus attention on those 
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states at the Fermi energy. These are described by the free par
ticle Hamiltonian, 

(1) 

where vF 1S the Fermi velocity, a1k (~2k). describes th~ ~lec
trons moving to the right (left). To th1S, 1S added the m1x1ng 
with the charge density wave potential, 

(2 ) 

where V is the strength of the interaction. In a more realistic 
model, tRe electron-electron interactions should be included, as 
well as a description of the phonon degrees of freedom. The present 
model, however oversimplified, does contain the essential physics, 
and can be generalized to the more complicated situations without 
undue hardship. 

One of the fundamental simplificatiogs of the one dimensional 
electron gas starts with the recognition that Eq. (1) can be 
transformed into a simple harmonic oscillator, or one dimensional 
phonon problem. While much of our intuition about metals is based 
on electron Hamiltonians, results for soliton problems are based 
on phonon-type fields, or fields describing a phase variable. The 
flexibility to view the problem from either vantage point is ex
ceedingly insightful. 

The equivalent phonon problem is given by the Hamiltonian, 

where L is the length of the string of electrons, and the phonon 
operators satisfy the commutation relations 

(4 ) 

In terms of the electron operators, the phonon operators are given 
by 
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PI (k) I + 
= a a 

p Ik+p Ip 

P2 (k) I + 
= a a 

p 
2k+p 2P 

The key to understanding the soliton-charge density wave equivalence 
is contained in the HCDW written in terms of the phonon variables. 
It is here necessary to make use of the so-called phase representa
tion 7 of electron operators, given by 

ikx 
, ikFx + <PI(x) 

I a lk e = (L/2ns)2 e 
k 

and -ik x + <P 2 (x) , 
ikx (L/2ns)2 F (6 ) I = e a2k e 

k 

where s is a cut-off length, equal to a lattice constant, and 
the phase variables <PI(x) and <P 2 (x) are, in turn, related to 
the phonon operators through 

x 

<PI(x) = 2n i f dy PI (y) 

x (7) 

<P (x) =-2n i 2 f dy P2 (y) 

when sUbstituting these into Eq. (2), one obtains the simple an
swer, 

(8) 

, 
where the total phase ~(x) = i(4n)2 (<Pl(x) + <P2 (x)) has been in
troduced. Now it is possible to write Eq. (3) in a slightly more 
familiar form, if we use the additional operators, ~(x) and 
n(x) = i [~(x), H ] , where o 
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I ~Pl(P) + P2(p)] 
-ipx 

~(x) = i e 

p lrrvF 
pL 

I ~Pl(P) - P2(p)] 
-ipx 

7f(X) i 
e 

= L 
P lrrvF 

with the simple result that the charge density wave problem can be 
written in the form 

(10) 

which is recognized as the quantum mechanical sine-Gordon equation, 
and, at the same time, from Eqs. (1) and (2), is the equation for 
an electron moving in the potential of a 2 kF density wave. 

The essential ingredient leading to this result is the phase 
representation of the charge density wave, which lead to Eq. (8). 
Any interaction which permits such a representation will lead to 
the same equation. It is interesting to note the many seemingly 
complicated interactions which can be written in this form. In
cluding electron-electron interactions leads to two modifications. 
The first is trivial, a renormalization 9f the Fermi velocity. 
The second is a replacement of the (47f)2 by another constant, 
S. This constant determines the nature of the soiiton state solu
tions, and is itself determined by the strength of the electron
electron interaction~ If U ,represents this interaction strength, 
then S = I4TI (1-Up)2 (1+Up)-2. (We might imagine U to be a 
screened Coulomb interaction, which can be comparable to the recip
rocal bandwidth p:) These solutions will be discussed below. 

It is worth a brief mention of other interactions which re
duce to this sine-Gordon form. " Obviously, the phase variable was 
constructed from two electron states - moving in opposite direc
tions in the above example. But any combination of two phases will 
lead tOo an identical result. We might imagine a phase associated 
with the up spin electrons, and another associated with the down. 
This creates a phase field for the spin density, and we would ex
pect a .sine-Gordon equation for these degrees of freedom 8. A 
further - but more complicated situation - concerns the electron
phonon interaction. When the temperature is very low, and the 
electron-phonon system is strongly coupled, the phase of the dis
placement becomes a good variable 9, and the motion of a charge 
density wave is governed by the free phonon part of Eq. (10). If 
there is an impurity present, the interaction with the charge den
sity wave is given by 
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(ll ) 

where c is a phonon velocity, A the interaction strength, and 
the sum runs over the impurity sites, x. . It is this, modified 
slightly from Eq. (10), which is the sliaing conductivity problem. 
Except for the free particle case, S = I4TI , little is known 
about Eq. (11). This problem will be studied below. 

4. Solitons and Charge Density Waves 

From a mathematical viewpoint, the problem is now well-posed -
namely, what are the eigenvalues and eigenfunctions of the 
Hamiltonian Eq. (10), for general values of S? But the physics 
is not so simple. Even with this complete (but nonexistent) in
formation, the questions of transport, impurity scattering, etc. 
would remain. These are well beyond the scope of this paper. 

Rather, a simple physical picture of these states is the goal 
of this paper, and it is hoped that the mathematical details can be 
kept to a minimum. It is possible for the reader interested in 
such questions as rigor and completeness to satisfy herself as to 
the current state of the art in the relevant literature. 

There is substantial information about the eigenvalue spec~ 
trum 4,10 of the sine-Gordon equation, but little else. There are 
several limiting cases which are quite helpful in understanding 
the additional questions, such as matrix elements, selection rules 
and the like, but here the situation is far from satisfactory . 

. The tri~ial limiting case is one good example to keep.in.mind. 
Cons1der i3 = 4n. From Eq. (1), Eq. (2), and Eq. (10), 1t 1S 
clear that this case is a one-electron problem, which is immediate
ly solved. The eigenvalue spectrum is 

(12) 

and the new feature of the problem is the appearance of a gap at 
the Fermi energy, a gap required to create a particle-hole pair 
excitation. From the equivalence to the sine-Gordon equation, 
there comes the identification of the single electron states with 
a propagating solition. That is, through the miracles of modern 
science, the highly complicated non-linear equation involving the 
phase variables becomes a simple free electron problem when viewed 
from another vantage point. 
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Another interesting limiting case concerns the region 
S2 + O. In this situation, it is permissable to expand the co
sine, and retain the lowest order correction. The resulting equa
tion is 

which is very similar to the one dimensional optical phonon prob
lem, with the eigenvalue spectrum given by: 

(14) 

As found above, the characteristic feature 1S the gap in the spec
trum, of magnitude: 

but the reader should recognize the rather profound difference be
tween the two cases. The former was explicitly a fermion-type 
gap, while the latter is a boson gap! In a peculiar manner, the 
Hamiltonian changes continuously from a free fermion problem to a 
free boson problem, with complications in between. 

It is possible to offer a plausible interpretation of this
gap, regardless of its fermi-bose schizophrenia. If a static cor
relation function is calculated, such as the phase-phase correla
tion function at large distance between the phase measurement 
points, there will be an exponential fall-off, while at shorter 
distances the effects of the gap will be negligible. When divided 
by the Fermi velocity, the gap thus determines a wave number scale 
of local ordering. 

The complicated behaviour of the spectrum has been studied by 
the WKB approximation 4 and by the device of finding another 
equivalence to a solved model in statistical mechanics 10 The 
results of these investigations have found 
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2 2 2 2 
EK = /J. + VF K 

n 
/J.2 = ~ /J. sin (16 ) (16 ) 

n 
V 

/J. = (_0_) V 
2ns 

2 
I 2 2 -1 S -1 

where y = S (1 - S 18n) , 2v = (1 - s-) , n = 0,1,2,··· 
and n is a new quantum number, which ha~ an interpretation as 
labelling bound solitons. Again, a heuristic interpretation of 
these states is possible, and it compares them to excitons forming 
within the gap of a semiconductor. Since S2 < 4n , the interac
tion implied by the result under Eq. (10), is particle-hole attrac
tive when bound solitons appear. 

A few words about the rigor of this solution one in order. 
The WKB results have been demonstrated to be exact for the eigen
value spectrum, by studying the relationship to the spin ~ x-y-z 
spin chain in one dimension 10. This relationship was used not 
only to study the eigenvalue spectrum, but to provide an intuitive 
picture for the soliton states. Without an overwhelming mass of 
mathematics, the full justification of this relationship is not 
possible - but some observations are of interest. 

The x-y-z model is given by the Hamiltonian 

H 
s - I 

1 

where a = x,y, or z , S~ is a spin ~ operator at site i , and 
the sum is over N sites10f a chain. Again, the study of a few 
limiting cases helps establish the physics of Eq. (17). When all 
J are equal, the Heisenberg ferromagnetic case, we know that Eq. 
(~7) should have spin waves. Comparison to Eq. (15), for S2 = 0 , 
shows the similar behaviour. Now for the case S2 = 4n. It has 
been known that the x-y model, with J = 0 , can be transformed 
into a free electron problem, and indeed~ the equivalence between 
these two cases has been rigorously established. 

But more has been established. In the entire region with 
J = J , and IJ I < J , it is intuitively clear that the rota-

::¥: y Z X ••• 
tlonal degeneracy about the z-axls, wlthln the x-y plane can be 
described by a phase variable. A spin wave, corresponding to pre
cession about the z-axis, corresponds to the phonon propagation of 
Eq. (3), corresponds to a potential tending to "orient" the phase 
in the x-y plane, along a particular direction, analogous to ori
entation of the spin along the x axis, if J is larger than 
Jy . In this view, a soliton is a spin wave p~opagating along the 
chain. Bound solitons are spin wave bound states. 
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In addition to this simple physical picture, some new results 
can be derived from this equivalence. A ~eculiar instability in 
the sine-Gordon equation, at the value a ~ 8TI , has led to confu
sion about the meaning of charge density waves in these circum
stances. 

It is easy to recognize S2 = 8TI as a special point, from 
the result states in Eq. (16). The exponent V , in the relation 
between the observed gap and the applied field, goes to infinity 
at this point, then becomes negative. Has something gone wrong in 
the solution? It is instructive to consider this question from 
the spin chain viewpoint. 

Recall that S2 = 0 corresponds to the Heisenberg ferromagnet, 
Jz = J = J ,and the phase of the sine-Gordon equation, in gener
al, ha~ theY interpretation as a phase variable of a basal plane 
spin. As Jz is decreased to zero, and then downward to 
Jz = -Jx = -J ,the Heisenberg antiferromagnetic point is reached. 
For more nega~ive Jz , the spin no longer lies in the basal plane. 
Indeed this marks the crossover to a spin problem of Ising symme
try, and the phase variable cannot be defined as before. 

This spin equivalence suggests that a new type of gap appears 
when S2 > 8TI , a gap analogous to the appearance of an Ising gap 
as the Jz exchange becomes large in magnitude. Obviously, in 
the spin problem, the equilibrium direction of the spin simply ro
tates to accommodate the new ground state symmetry. Once the spin 
operators are rotated to recognize the new equilibrium direction, 
we may again view the soliton as a spin wave. The S2 ~ 8TI prob
lem is simply the requirement that the phase variable must be de
fined about the new equilibrium direction. 

To state this resolution more ~recisely, the sine-Gordon equa
tion assumes that the parameters a and Vo have been defined 
such that, in the corresponding spin problem, IJzl is the smal
lest interaction. If this is not the case, the spins must be ro
tated to new axes, such that the new variables, denoted by a prime, 
do have IJz'l the smallest. If this prescription is followed, 
S2 < 8TI is always satisfied. 

Collecting these results leads to the following simple pic
ture of ch~rge density waves in the one-dimensional conductor. 
For 0 < S < 8TI , that is -1 < Up < 1/2 , there is a gap in the 
excitation spectrum caused by the appearance of 2kF charge den
sity waves, and for -1 < Up < 0 , there are bound soliton states, 
representative of charge bunching, which may propagate. For Up 
outside this region, it is necessary to recognize the equivalence 
to an Ising-like spin problem, with a preferential orientation. 
Solitons, in this case, are analogous to the Ising-like spin flip 
excitations of the chain. 
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5. Solitons in Disordered Systems 

A question of recurring interest, both in the quantum one-di
mensional systems, and in the classical two-dimensional system, 
concerns the role of impurities. One hears repeatedly the common 
view, that since all electron states are localized in a random po
tential in one dimension, localization dominates the problem. It 
is helpful to analyze this situation from a slightly broader view
point, which recognizes the random potential as simply another 
type of interaction, in addition to the many others which are 
present. 

This attitude is well-known from studies of phase transitions 
in disordered compounds. The random variable, for example a local 
transition temperature which varies randomly throughout a ferro
magnetic alloy, can be considered as a new type of "interaction" 
which competes with the usual exchange, to give new physics, such 
as a spin glass. But the question about which phase dominates, 
spin glass or ferromagnetism, can only be answered if both random 
and exchange fields are considered simultaneously. Statements 
about localized states in the one-dimensional electron gas have 
been based on non-interacting electrons, and the question about 
the relevance of localization for the interacting system, is both 
interesting and important. 

There emerges an interesting picture for this phenomena when 
considered from the soliton viewpoint, and the problem can be 
posed in the language of localized versus uniform solitons. Con
sider first the situation of a one-dimensional electron gas with 
a single impurity present. If we include an electron-electron in
teraction, the problem is described by Eq. (11), but for a single 
impurity only. 

Perhaps it is worth emphasizing that, in this view, the im
purity is trying to induce a local gap at 2KF , while in the ori
ginal electron variables, the impurity is simply scattering the 
electron from +KF to -KF . The equivalence of these two pic
tures follows from the fermion-boson duality. While it may seem 
arbitrary to choose either viewpoint, it is possible to use the 
soliton picture to derive a relation of this problem to another, 
namely. the Kondo problem of a magnetic impurity in a metal. This 
problem has been understood, and it is this understanding which 
can be applied to solve the localization problem. 

It might seem surprising at first glance that these two prob
lems ate equivalent. But there is a simple plausibility argument 
that, while not rigorous, is convincing. The rigorous equivalence 
will be given later. The Kondo problem involves a spin ~ im
purity which scatters electrons with a matrix element that de
pends on the electron spin, in the form: 
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= H 
e 

- J z 
z z - + -

S 0 (0) - J~(S 0 (0) + h.c.) (18) 

-+ 
where S is the impurity spin operator and 
sity of the electrons at the impurity siie, 
He the free electron Hamiltonian, and Jz 
longitudinal (spin non-flip) and transverse 
But why is this relevant here? 

-+ 
0(0) is the spin den-

the o~igin x = 0 , 
and J refer to the 
(spin tlip) processes. 

First of all, the Kondo model is also one-dimensional, be
cause we need work with only one partial wave, the s-wave, which 
depends on a one-dimensional wave vector Ikl . There are, in fact, 
two types of one-dimensional electrons in this problem, spin up or 
spin down. These correspond to the two types of electrons in the 
one-dimensional conductor problem (remember that these are 
"spinless" electrons), namely, moving to the righ~"l" state, or 
moving to the left, a "2" state. 

From this basis, we see that a spin flip at the impurity in 
the Kondo model is the same as a reflection of an electron from a 
static impurity in the one-dimensional conductor problem. Both 
drive an electron from one type to the other, do it locally, and 
repeatedly. There are a few subtle points which complicate the 
picture, such as the_equivalence of the longitudinal part of the 
Kondo interaction, Jz ' to the forward scattering part of the one 
dimensional conductor system, which serves only to complicate mat
ters, but can be included satisfactorily. 

The important parameters in this problem, are A of Eq. 
(11) and the spin-flip amplitude, J~, in the Kondo problem. The 
parameter ~ , arising from electron-electron interactions in Eq. 
(11), is related to the longitudinal coupling, Jz. The rela
tions are 

A = J~ 

~2 = 2TT (2-e:) 

11 Here £ is the scattering phase shift for Jz as in From the 
solution of the Kondo impurity problem, it is possible to "solve" 
this one as well. 

The current understanding of the Kondo problem revolves 
around the issue whether the ground state is a singlet, with a con
stant magnetic susceptibility as the temperature goes to zero, or 
a triplet with a Curie law 11. The former implies a gap of sorts, 
namely a gap between the singlet and triplet excited states. The 
latter has degeneracy. The scaling law arguments 11 indicate that 
the ground state is a singlet when IJ~I > -Jz ' and a triplet for 
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J~ ~ -Yz • The latter case is viewed as being adequately de
scribed by ordinary perturbation theory, while the former involves 
a complicated many body ground state, which is treated by sophis
ticated renormalization group methods. 

Application of the analogy to the one-dimensional conductor 
says that, for attractive interactions which satisfy 
82 ~ 4~(1-A/2) (for small A) , there is no interesting local cor
relations or behaviour. The scattering is adequately described by 
perturbation theory in that the scattering rate goes to zero, that 
is an infinite conductivity, as in the Kondo problem for ferro
magnetic coupling. 

For the other sign of the inequality, which includes the 
case of no electron-electron interactions, the situation is more 
interesting. There the analogy suggests the build-up of a local
ized highly correlated state which corresponds to a resonance in 
the scattering. This resonance develops for the temperature less 
than a characteristic "Kondo" temperature, T ,which can be de
termined for the special case 82 = 2~(2-p) tg be Tc ~ EF Ir e-l / A, 
a special case which correspon~s to the isotropic Kondo problem. 
For other values of A and 8 the estimates of Tc are compli
cated and will not be discussed here. 

The build-up of this localized correlation, corresponding to 
a local 2KF gap, can be extended to the case of many impurities, 
the case normally considered. If the separation between impurities 
is much larger than the correlation length implied by Tc ' namely 
VF (Tc)-l at T = 0 , the properties will be determined by single 
impurity characteristics and the analogy here is applicable. In 
the other limit, the high concentration limit, no conclusion can be 
drawn, although it is plausibly related to the "Kondo necklace" 
model 13 studied for high concentrations of Kondo spins in metals. 

We complete the discussion by deriving the equivalence be
tween the Kondo impurity model and the one-dimensional conductor 
problem. It is easy to show the equivalence of the free energy 
for the system described by a single impurity described by Eq. (11), 
and the formula for the Kondo problem, 

e (20) 

where T is the temperature in the Kondo problem, £ is related 
to a scattering phase shift, and for small Jz is £ = 2Jz P , F 
the change in free energy due to the presence of an impurity, and 
s is a cutoff parameter, introduced according to the prescrip
tions 7 of the Luttinger-Tomanaga models. The same method used to 
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to derive Eq. (20), applied to the single impurity version o~ Eq. 
(11) leads to 

-1 t 
2n .. e2 t.-t. 

F T 2n-1 L (_)l-J( __ )~n(~) 
-T 

L(2;S) 
2n 

f dt 1 •.. f i<j 2~ s 
e = dt2n e (21) 

n 
0 0 

where s is the same cuto~~ parameter. Obviously the identi~ica
tions A = J~ and e2 = 2~ (2-£) ~ollow immediately. 

6. Classical Solitons in Two Dimension 

One o~ the recurring problems in the theory o~ charge density 
waves ~or the two dimensional layered structures involves the clas
sical solution to the sine-Gordon ~ree energy. It arises whenever 
a local phase variable can describe the relevant degrees o~ ~ree
dom, and in addition, an interaction with a lattice seeks to im
pose a particular phase relationship on these variables. While a 
microscopic derivation o~ this ~ree energy expression is not in
tended here, it is help~ul to consider a phenomenological motiva
tion ~or it. 

Suppose a charge density wave exists and can be described by 
a Ginzburg-Landau ~ree energy expression, which ~ixes its amplitude 
according to the usual mean ~ield theory. The phase is still le~t 
undetermined, and inversion symmetry would require a contribution 
to the ~ree energy o~ the ~orm 

(22) 

where C is a microscopic parameter characterizing the energy re
quired to cause a phase distortion, and the period o~ the CDW is 
taken equal to unity. 

I~ a periodic potential generated by the lattice is included, 
the CDW would pre~er to arrange its phase ~ield to be commensurate 
with the lattice to minimize this additional interaction, and there 
results a contribution o~ the ~orm: 

FCDW = f d2x a(cos e~ - 1) (23) 

where e 1S an integer, and a is another microscopic parameter 
characterizing the underlying lattice interaction, typically an 
Umklapp process. Obviously FCDW pre~ers a phase multiple o~ 
2~/e ,while Fo pre~ers a phase increase proportional to distance. 
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In a rough physical sense, the solution might be expected to 
have phase jumps between the allowed multiples, in such a way as 
to maintain a stair step approximation to the straight line in
cre~se. From another viewpoint the phase increases linearly with 
distance with the FCDW basically introducing harmonics. As the 
contributions from FCDW become dominant, there ceases to be a 
linear increase of the phase with distance, and a type of transi
tion, the commensurate-incommensurate transition occurs. It is 
believed this transition is continuous, a conclusion based on 
numerical studies. It is interesting to consider this problem in 
light of the known solutions to the quantum sine-Gordon equation. 

The beginning of our analysis is the total free energy given 
by Eq. (22) and Eq. (23). But the phase variables which appear 
in these expressions are just that: variables. They must be 
integrated out in order to find the observable free energy. The 
situation here is perfectly analogous to the familiar Ginzburg
Landau free energy applied to the theory of a second order phase 
transition. In that case, one has an order parameter variable, 
and two possible interpretations of the meaning of that variable. 
The first, and historically first as well, simply minimizes the 
free energy expression to solve for the mean field version of the 
transition. After Wilson, it became clear that the second, which 
treated the order parameter as a thermodynamic variable, was cor
rect. In the same manner, by the same arguments, the phase vari
able of the sine-Gordon free energy must be integrated. 

With this understanding about the meaning of the phase 
variable, the expression for the partition function is: 

z = fO<jJ e 
-(3F{<jJ} (24) 

where the O<jJ stands for the density of states available to the 
system which 1S 

()() 

and the product is over all wave numbers in the Fourier transform 
of the phase field. The object in the partition is conventionally 
called the free energy functional which simply gives the energy of 
a particular configuration specified by <jJ(x). The density of 
states then insures that all functions are included in the parti
tion function. The observable, or thermodynamic, free energy is 
then F = -KBT In Z , as usual. 

The solution of the sine-Gordon classical phase problem 1S 

constructed directly from the solution to the corresponding 
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quantum problem. The principles underlying this equivalence have 
been discussed previously 14, but it is helpful to recall them 
briefly here again. Consider first the calculation of the angle 
correlation function for the special case a = o. This correla
tion function is given by: 

where the slanted brackets denote an average in the weighting 
functional of Eq. (24). Since the integrals are just 
Gaussian, and the result is simply: 

+ 
C(x) 

The phase correlation function is given by 

++ 

<~(~)~> = 12 I e1 K·x <~K ~K'> 
L k,k' 

2 
where L is the area of the layer. This leads to 

(26) 

(28) 

where S is the same type of cut-off as in Eq. (7). Finally, the 
angle correlation function 1S given by 

KB TC 

C(~) = ( 2S2 2)8TI2 

x +y 
(30 ) 

This result, long known in the literature of the planar model, not 
only illustrates the meaning of the free energy functional, but 
provides the clue to use the quantum result if we calculate the 
quantum phase-phase correlation function using Eq. (10), the an
swer is essentially the same, with the exception that t + iy , 
that is, the time variable becomes the other space dimension, and 
the temperature in this classical problem becomes related to the 
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coupling constant 6 in the quantum problem. 

The corresponding angle correlation function in the quantum 
problem is calculated by precisely the same methods, ~or the cor
responding case V = 0 , giving the result: 

62 

<ei~(x,t) e-i~> = ( 2S22)4~ (31) 
x -t 

Such an equivalence between the angle correlation functions 
alone would not be very helpful. But this equivalence holds for 
all correlation functions, which can be built up from products of 
operations ei~ at arbitrary space-time points. In particular, 
the correlation functions involving an arbitrary product of 
cos ~ , are identical in the quantum and classical theories. Con
sequently, we can conclude that all matrix elements of the interac
tion, HCDW or FCDW ' are identical. Therefore the two problems 
are the same. 

This means the solution to the quantum sine-Gordon equation 
provides the solution to the classical problem, in the sense that 
the ground state energy of the quantum problem is the thermodynamic 
free energy in the classical one. Correlation functions are also 
equivalent, after t + iy 

What features of the quantum solution are interesting here? 
The first qualitative feature is the gap in the excitation spec
trum for the region 0 < 62 < 8~. A gap in the excitation spec
trum implies a correlation length in the classical problem, corre
sponding to this gap. The behaviour of the gap, as a function of 
coupling constant, describes the behaviour of the correlation 
length as a function of temperature. 

Some of the features of the quantum solution are, unfor
tunately, not sufficiently clear at present to resolve the obvious
ly interesting question about a "phase transition" at 62 = 8~ , 
that is KB CTc =.16n2 At this value'2the gap vanishes, but the 
precise manner in which it vanishes as 6 + 8~ has not been 
elucidated yet. There is a scaling argument that this gap, ~, 
vanishes as 

I 
t 

where t 1S the temperature in reduced units, I - ~ This is 
a continuous transition, and it is characterized by ~ infinite 
length, as t + 0 . 
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The construction of this argument is roundabout, but it is 
perhaps of sufficient interest to state the general features. It 
relies, first of all, on the equivalence of the backward scattering 
model of l-d fermions to the sine-Gordon equation. The re
normalization group has been applied to the fermion problem, and 
through that equivalence , it implies the exponential dependence of 
gap on coupling constant. There is, as yet, no equivalent calcula
tion for the ground state energy in the region 82 + 8n , that is 
t + 0 , but it is probably logarithmic, which would imply logarith
mic temperature dependences in the specific heat. 

Of particular interest, and some puzzlement, is the role 
played by the soliton bound states, which can occur for small ~2 
that is well away from Tc. Presumeably, these correspond to 
phase jumps, and their juxtaposition must correspond to an excited 
state. It is tempting to identify these with the discommensura
tion of McMillan 15, for these appear as excited states of the 
free energy fUnctional, and a correspondingly more rapid decay of 
correlations in space. 

7. Three Dimeqsional Ordering 

The obvious physics underlying much of the discussion here, 
is that it does make sense to consider the purely one and two di
mensional systems independently of the three dimensional aspects 
of the problem. There is a limit when this view point makes phys
ical sense, and a few remarks concerning the nature of this limit 
might help to put this question in perspective. 

The characteristic energies of the one (or two) dimensional 
system in comparison with the interactions-between these lower 
dimensional subunits is the determining consideration. In some cir
cumstances, it is rather obvious which energles determine this 
ratio, but in those of interest in the real lower dimensional 
systems, it is not obvious. 

Some qualitative remarks are of interest. Consider the prob
lem from the mean field viewpoint. There are several ways to de
fine what we mean by mean field. The obvious one, treating all 
interactions on an equal footing, predicts an ordering temperature 
determined by the divergence of a three dimensional susceptibility. 
For the CDW state, this is given by 

+ 
+ X (Q) 

X(Q) = ----+-
VQ X(Q) 1 

where Xo is a 3-dim, non-interacting susceptibility, and VQ lS 
a 3-d screened Coulomb interaction. Compare this with the 
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equivalent problem viewed ~rom a layered mean ~ield theory view
point, given by 

lOS 

-+ X2D (Q) 
X( Q) = ------"=-------::,,

I - V cos(~S) X2D (Q) 
(34 ) 

where Q = (Q Qz) has been used. Here V is the interaction 
between layers, and all complications non-essential to the com
parison between the two types o~ mean ~ield theory have been 
neglected. 

In the ~ormer result, the ordering is determined by a non
interacting susceptibility. In the latter, it is the interacting 
susceptibility in the lower dimensional subdivision which appears. 
Obviously, the latter approach makes physical sense when the corre
lation length within a layer becomes much longer than the correla
tion length perpendicular to it. The correlation lengths play an 
important role in this approach. One length involves essentially 
one (or two) dimensional considerations. An estimate o~ this 
length is easy to obtain, it is just the soliton or charge density 
correlation length, ~ 

This length is to be compared with the perpendicular correla
tion length. Phenomenologically, we might suppose the susceptibili
ty ~or the charge density wave is 

where ~o 1S the static susceptibility. Expanding the cos QzS 
gives r1se,to the determination o~ the correlation length ratio to 
be (V XO)2 S/~ To the extent that Xo tt ~2 , this ratio is un
a~~ected by the specific nature of excitations. 

However, the ordering temperature, determined by equating the 
perpendicular length with the layer separation, is most sensitive 
to the nature of the excitations. With the expectation that XOI 
is proportional to the gap in the soliton spectrum, the greater the 
gap, the lower the ordering temperature. Strong interactions with
in a layer can therefore lead to a lower temperature than would be 
expected within a more conventional approximation, since Xo is 
typically divergent at low temperatures when interactions are ig
nored. 
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CHARGE DENSITY WAVES IN LAYERED COMPOUNDS 

F. J. Di Salvo 

Bell Laboratories 

Murray Hill, New Jersey 07974 USA 

The work I will describe was performed in collaboration 
with many others including J. D. Axe, S. Mahajan, D. E. Moncton, 
J. A. Wilson and J. V. Waszczak. While it is impossible to 
cover all the interesting phenomena observed in layered compounds, 
I will reference these phenomena where appropriate. 

Let me outline what we will talk about. We'll start by 
studying the structure of those layered compounds which are 
expected to be metallic conductors. The physical properties, 
such as electrical transport, show clear anomalies that I will 
assert are associated with charge density wave (CDW) formation 
and/or changes in the CDW structure. At this point I will 
describe what a CDW is and how it comes about using a simple 
model, thus introducing the parameters that characterize the 
CDW. Next we'll come back to the layered compounds to get a 
feel for the magnitude and temperature dependence of the CDW 
parameters. Then we will discuss some of the effects of 
impurities on the CDW. We'll see, by comparison to experiments 
and band calculations, that the simple model first presented 
for CDW formation is not adequate to explain all the data. While 
more complicated models have been proposed, detailed microscopic 
theories are still lacking. A number of review articles have 
been written concerning the CDW properties of these compounds,(1,2.3) 
including one similar to this given at the 1976 NATO conference 
on one dimensional conductors. (4) 

1. STRUCTURE AND PROPERTIES 

The layered transition metal dichalcogenides (5) have the 
chemical formula MX2 , where X = S, Se, or Te and M can be any 
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Figure 1. A schematic of the structure of MX2 layered compounds 
shows the three atom thick sandwiches held together by relatively 
weak forces between adjacent sheets of X atoms. 

one of a large number of metals from the periodic table. Here 
we will discuss primarily M = V, Nb, Ta (group Vb) and Ti (from 
group IVb). Since the anions are divalent, the electron configu
ration of the group Vb metals is dl and of IVb is dO. The 
structure of the compounds, schematically illustrated in Fig. 1, 
is formed from 3 atom thick sandwiches. The top and bottom sheet 
of the sandwich is comprised of close packed chalcogenide (X) 
atoms, while the middle sheet is comprised of metal atoms. The 
bonding within a sandwich is strong (covalent or ionic), but 
between sandwiches (between adjacent X sheets) it is weak -
usually labeled van der Waal's bonding. Consequently the physical 
properties of these compounds are anisotropic or "quasi-two 
dimensional". For example, these materials cleave easily, parallel 
to the sandwiches (or layers) much like graphite or mica. Many 
of the compounds are polymorphic, for two reasons: (a) The M 
atoms in a given sandwich are either all octahedrally coordinated 
(0) by X atoms or all trigonal prismatically coordinated (TP) 
(b) the layers can be stacked on top of one another in several 
different ways due to the weak interlayer forces. The unit cells, 
however, can all be described in the hexagonal system with the 
a-axis equal to the intralayer M-M distance and the c axis some 
multiple of the layer thickness. We will concern ourselves 
primarily with the two simplest polytypes: IT - in which all the 
M atoms are a coordinated, and 2H - in which allM atoms are TP 
coordinated. 

Other metals and many organic molecules (tgwis bases) can be 
inserted between the layers, i.e. intercalated. -10) Partly 
because of the weak interlayer bonding, intercalation usually 
proceeds rapidly at or near room temperature. The driving force 



CHARGE DENSITY WAVES IN LAYERED COMPOUNDS 

for intercalation appears to be electron donation to the 
conduction band of the layers. Those layered compounds that 
form the most intercalation compounds have the largest electron 
affinity (i.e. work function), while the more active guest 
species are stronger electron donors. While these general 
principles of intercalation chemistry are empirically true, an 
adequate microscopic picture of how organic molecules bind 
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to the layers is not available. Later we will talk about possible 
interactions between the CDW and the intercalated species. 

1 Since the group Vb compounds are d , we expect them to be 
metallic because of the moderately close M-M distance (a ~ 3.3A) 
and the largely covalent nature of the bonds. More sophisticated 
theory, such as the APW band calculations of L. F. Mattheiss (11), 
leads to the same conclusion. The uppermost filled bands are 
primarily based on M d states, the density of states at the Fermi 
level for the group Vb compounds being 5 to 20 times that of Cu, 
for IT and 2H polytypes respectively. Consequently, we expect 
these materials to be metallic conductors with conductivities 
that are approximately one order of magnitude smaller than that 
of Cu metal. 

Some of the group Vb layered compounds are superconductors. 
2H-NbSe2 has the highest transition temperature (12) (7.2 K), 
while for most others T~ is below 1.OoK (2H-TaS2 T = 0.8°K (13), 
2H-TaSe2 Tc = 0.2 K (13)). The transition temperature is 
changed by intercalation. For example, the Tc of 2H-TaS2 can 
be increased to ~ 5 K. (6,7) The occurrence of superconductivity 
leads one to expect that reasonably large electron phonon 
coupling occurs in these systems. The McMillan A obtained from 
the Tc and other physical properties of 2H-NbSe2 is 1.0. (14) 
The large oscillator strengths of the optically active lattice 
modes observed by infrared reflectivity in the group IVb 
compounds also lead one to expect a large electron-phonon 
coupling (15). 

The resistivities (current parallel to the layers) of the 
IT and 2H polymorphs of TaS2 and TaSe2 are shown in Fig. 2. The 
original investigators of the transport properties are given in 
the references: IT-TaS2 (16), IT-TaSe~ (17), 2H-TaS2 (18), and 
2H-TaSe2 (19). While the resistivity (p) of the 2H-polytypes has 
a metallic like slope, there is a sharp decrease at low 
temperatures. The resistivity of the IT polytypes, however, does 
not look like that of a simple metal, and there are sharp dis
continuities at first order transitions. 

The anomalous properties of these chalcogenide compounds 
were first noted in a magnetic susceptibility study by Quinn 
et al.(20) As might be expected, the anomalies seen in Fig. 2 
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Figure 2. The electrical resistivity parallel to the layers of 
several layered compounds from 4.2K to 500K. 

are observed in almost afl)other physical pr9~erty; such as, (22) 
magnetic susceptibility, Young's modulus \ 1) heat capacity, 
and in mic~o5co~tc measurements such as NMR(23,24,25J or in some 
cases XPS. ~2 ,2"{) 

At this point let me just assert that these anomalies in the 
physical properties (Fig. 2) are due to CDW formation and proceed 
to discuss what a CDW is and how it occurs, before attempting to 
explain these measurements. 

Charge Density Wave instabilities were theoretically proposed 
by A. W. Overhauser in 1968(28), where he placed an emphasis on the 
correlation energy as the source of the instability. The source 
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of the instability in these compounds appears to be somewhat dif
ferent as outlined below. 

A CDW is a static, coupled, periodic distortion of both the 
conduction electron density and the lattice. One is not the 
consequence of the other, but they are intimately tied together. 
We can see why, using a simple one dimensional model of a metal 
(Fig. 3). We consider a row of uniformly spaced positive ions 
and a uniform conduction electron density to preserve overall 
charge neutrality. If a sinusoidal perturbation of the conduction 
electrons occurs, the net charge, including the ions, oscillates 
from negative to positive at maxima and minima in the wave. The 
Coulomb energy of such a state is large. In fact, such an 
excitation is a plasmon, one quantum of whic~in normal metals, 
costs on the order of 10 eV. However, if the positive ions move 
toward the maxima and away from the minima, the Coulomb energy 
can be greatly reduced and such a coupled distortion may become 
the stable ground state of the system. Consequently, a CDW is 
more likely to occur in systems with large electron-phonon 
(electron-lattice) coupling. Below the onset temperature of the 
CDW, To, the charge density and atomic displacements would be 
given by (for this simple model) 

p(r) 

--l 21Tlq f--

E 

IONS, +e 

Figure 3. One dimensional model of a metal - used to show why 
electron phonon coupling is important and the CDW is a coupled 
distortion of the lattice and the conduct'ion electron density. 
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-+ -+ -+-+ 
~x = A sin q r (2) 

-+ 
where ~ and A are the amplitude in charge density and atomic 
displacement respectively. 

We further expect that lattice waves with this wave vector 
-+ -+ 
q and displacements parallel to q (longitudinal phonon) will be 
lowered in energy above To, becuase of the effective screening 
of the ionic charge by the electrons. Thus a dip, called a Kohn 
anomaly, will appear in the phonon dispersion curve (phonon 
energy vs. wave vector). Simple one dimensional models for this 
effect are published (29); some examples for the layered 
compounds will be given below. 

Beside a large - electron phonon coupling, the shape of the 
Fermi surface (~.S.) is also important. In particular the F.S. 
determines the q of the distortions, and whether the CDW can 
be the ground state of the system. We can see what kind of F.S. 
is needed by considering a simple linear response model of th~ 
conduction electrons to a static'perturbation of wave vector q. 
First,we consider free electrons; later we will include inter
actions. In order to determine if an instability-+occurs, we 
use the following principle: If the ~esponse ~p(q) to an 
infinitesimally small perturbation V(q), becomes macroscopic, 
the system-+will sp~ntan~ously move to a distorted state. That 
is, if ~p(q) = XO(q) V(q), a static distortion will spontaneously 
occur if XO(q) -+ 00. 

o -+ 
For free electrons X (q) is calculated 

f~tur~~i~~theOry to be: (neglecting the 
<kleIq·~ Ik+q>12) 

in second order 
matrix element 

where 

f-+ (l-f-+ -+) 
k k+q 
E:-+ +-e:-+ 
k+q k 

-+ 
E:-+ = energy of state with wave vector k 

k 
fk = Fermi occupation factor 
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0+ + 
We can see that X (~) will become large for a given ~,which 
connects many filled states to empty states of the same energy. 
This can only occur if the two stat~s ~re on the F.S. Figure 4 
shows XO(q) for several situations.~30) F.S. with plane 
parallel sections, or e~uivalently, nesting electron and hole 
surfaces,will produce a X~(q) that diverges as in (EF/kT) when 
q spans (or connects) the F.S. Other cases, such as saddle 
points in the band structure at the Fe~wi level, will also 
lead to a similar divergence in XO(q).~j) We see, then, that a 
free electron gas can be unstable only a T = O. 
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If electron - phonon and electron - electron interactions are 
included, instabilities may occur at finite temperatures. When 
interactions are included, we consider the generalized suscepti
bility, X(q). In the simplest approximation (the random phase 
approximation) we have 

(4) 

where x(~) represents all the physics - i.e., the interactions. 32 
Now we see that an instability will occur at the q where 
X(q)X o(q) = 1. (Note that the RPA expression is only valid where 
the denominator is close to 1, we take some license here in letting 
it decrease to zero in order to obtain some feel for the true 
physics). Consequently if the F.S. has parallel (or nearly so) 
sections, XO(~) will increase as T decreases,so that at some 
temperature, To, the denominator e~uals zero and the system 
becomes unstable. It is also true that X(q) will have some 
structure, possibly also peaking when q spans the F.S. We 
will see later some calculations of XO(~) for some of the 
layered compounds. 

Overhauser's original suggestion was that a CDW might occur 
when XO(q) had no peaks or was essentially free electron like (3 DIM
Fig. '4a'). In that case, using E~. 4 as a model, the divergence 
comes from X(q). Indeed, Overhauser showed that the correlation 
energy for unscreened Coulomb potentials in a Hartree-Fock 
calculation diverges at q = 2kF.33 We return later to some 
discussion of the role of X(q) and xO(1) in determining the 
instability. Note, however, that whichever term dominates in 
these model~ the divergence in X(q) will occur at a F.S. spanning 
vector. 
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Figure 4. 40(q) for a number of free electron Fermi surfaces is 
shown vs. \q\. 1,2, and 3 DIM. refer to electrons with no 
periodic potential from the lattice in the given dimension. For 
real solids, some species of the band structure may have one 
dimensional dispersion. Two examples are shown: parallel and 
nesting pieces of Fermi surface, where the filled states are 
shaded. 

Within the spirit of eq. 4, CDW instability o}curs 
if the electron-phonon coupling dominates X(q),l32 a~ suggested 
by the simple one dimensional model of Fig. 3. If X(q) is 
dominated icstjad by the exhange, a spin ~~ll~ity wave (SDW) 
will result 32 , as in the metal Chromium • 
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-+ 
Since q is determined by the F.S., the wavelength of the 

CDW, 2~/lql, will usually be incommensurate with the lattice; 
that is, the wavelength will not equal a lattice translation. 
However, in many layered compound~ a first order transition to 
the commensurate state (CCDW) occurs at Td < To' It is the 
incommensurate CDW (ICDW) that is the mark of a F.S. driven 
instability, at least in a metal where magnetic moments or 
permanent electric dipoles do not occur. In cases where only a 
commensurate distortion exists below To, it is more difficult to 
assess the role of the F.S. in "driving" the transition. 

What happens below To? The instability produces a lattice 
distortion of wave vector q, and a new lattice potential. This 
potential connects the states at the F.S. at Rand R+Q in first 
order perturbation, splitting the states away from the Fermi 
level. That is, gap is produced at the F.S., just over those 
regions spanned by q. Consequently these states contribute to 
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Xo with the gap energy ~ as a denominator, not zero as above To' 
Consequently, XO decreases in magnitude below To. Within simple 
models, the gap is expected to increase with decreasing temper
ature in exactly the same way as the BCS superconducting gap (29). 

While this theoretical description of a CDW may be lacking, 
our purpose was mainly to introduce the parameters To' Td , q, ¢, 
t, and ~; the last fcur of which are expected to be temperature 
dependent. We now return to the layered compounds and consider 
some of these parameters in more detail. 

The CDW state below To can best be observed by diffraction 
techniques. Elastic scattering will occur at points in 
reciprocal space given by t = IT ± nq where G is anyone of the 
reciprocal lattic vectors of the ungistorted lattice that exists 
above To and n is any integer. (35,3 ) Thus,each main Bragg peak 
will have a series of satellite peaks about it with an intensity 
given from sim~le kinematic scattering theory by In ~ ([·t)2n/n ! 
(Eq. (5)) for R·t «1. In fact, in the layered compound~ t is 
usually quite small, and the satellite peaks have only 10-3 or 
less of the intensity of the strongest main Bragg peak. This 
made the CDW's very difficult to find by simple power X-ray 
diffraction techniques. They were first discovered by electron 
diffraction, since the intensity of the satellite peaks can be 
greatly enhanced over that expected from the kinematic formula by 
dynamical scattering. ~37) While the position of the satellite 
peaks is easy to obtain by electron diffraction (thus obtaining 
q), the intensity cannot be easily used to obtain lattice dis
placements. The latter are obtained from X-ray or neutron diffrac
tion measurements. 
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Table I lists a number of layered compounds with the CDW 
onset temperature, To, the lock-in temperature, Td , and CDW wave
length in multiples of the a-axis. In all c'ases the CDW consists 
of a superposition of three CDW's with q vectors that are related 
by a 1200 rotation about the c-axis (the normal to the layers). 
No ditellurides are listed in Table I. Thesr 5ompounds frequently 
show strong distortions at room temperature, 5 and tber~ is some 
indication of phase transitions at high temperatures. (3~) However, 
the ditellurides have a wide range of nonstoichiometry and are 
difficult to prepare at the exact MX2 composition. This intro
duces another "parameter" in the problem, and we have not yet 
undertaken detailed study of these compounds. 

A large variation of To is seen both with a change in poly
type and between different compounds. A CDW has not been 
detected in 2H-NbS2 , but this particular compound is difficult 
to prepare, usually Nbl + S2 is obtained. We will later see that 
this non-stoichiometry f~equently lowers or eliminates To' Note 
also that the CDW wavelength is short - between 3 and 4 lattice 
parameters (or only 10 to 14 ~.) 

Table I 

Material T (K) 
0 

Td (K) ACDW 

IT-TaSe2 %600 473 '\.o3.5a 

2H-TaSe2 122 '\.095 '\.o3.0a 

IT-TaS2 %600 %200 '\.o3.5a 

2H-TaS2 '\.080 ? '\.o3.0a 

2H-NbSe2 32" no '\.o3.0a 

IT-VSe 2 ll2 '\.080 '\.o4.0a 

2H-NbSe2 has the lowest To and the CDW remains 
incommensurate down to 4.2K. The CDW wavevector 

Ref. 

1, n 
1, 39 

1, 2, 40 

1, 41 

39 

2, 42 

~ = (1-o)~/3, where a* is a reciprocal lattice vector in the 
plane and 0 decreases smoothly from 0.02 at 32K to approximatelY 
0.01 at 4.2K. The intensity of a first order satellite peak 
(n=l) in 2H-NbSe2 as measured by neutron diffraction is shown in 
Fig. 5 vs. temperature (39). The transition at To is seen to be 
second order, since the intensity smoothly drops to zero. The 
atomic displacements at 4.2K calculated from this data are 
approximately 0.05 i for Nb (parallel to the layers) and half that 
for the Se atoms (some component perpendicular to the layers.) 
The amplitude in charge density ~ at 4.2K is estimated from NMR 
measurements to be 5% to 10% of the conduction electron density 
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(19, 20). Measurements of the specific heat(18) and Young's 
modulus(17) near To show that the density of states at the Fermi 
level is not significantly lowered by the presence of the CDW 
(i.e. the F.S. area is not significantly reduced by the presence 
of the CDW). 

Next we consider the CDW transition tn ~H-TaSe2' The 
results of neutron scattering measurements~32) are shown in 
Fig. 6. The inset in the upper left shows the scattering peaks 
in the (HKO) plane. The open circles are the main Bragg peaks 
and the dark circles are the satellite peaks. If we look in the 
main par~ of the figure about the position labeled 4 (position 4 
is at 4! /3), we see just below To = 122K that q = (1-0)a*/3 and 
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o ~ 0.02. As T decreases, 0 decreases until it discontinuously 
goes to zero at Td ~ 95K. Note also that a weak secondary peak 
appears on the other side of 4t*/3 by 20. This peak occurs at the 
same position as the second*order satellite coming from the Bragg 
peak at 6 (i.e. 2a* -2q =; (4+20)). However, the intensity 
calculated from Eq. (5) is much too small to be the source of 
this peak. Consequently, this is due to a second periodic 
distortion Q20 = (1+20) !'3. A Landau free energy model has been 
developed by D. E. Moncton et al. (32) that shows how this 
se.::ondary distortion occurs and its role in "pulling" q toward 
the commensurate value of a*/3. W. L. McMillan has also developed 
more complicated T'l'ln(4r1 1'l11 models to explain this behavior and other 
related phenomena, 3,44) which he will discuss at this meeting. 
The main point of these measurements and models is that the CDW 
lattice distortions are not purely sinusoidal, but include higher 
harmonics that are mixed in by anha~monic txrms in the free 0 
energy. The displacement grows to A ~ 0.1 ~ for Ta and ~0.05 A 
for Se at 4.2K. If we scale by the ratio of atomic displacements 
from the 2H-NbSe2 data, we estimate ¢ (4.2K) ~ 0.2 (e/a). 

At present,the most data concerning CDW properties has been 
obtained with 2H-TaSe2' Figure 7 shows the K~hn anomaly seen 
in the longtitudinal acoustic phonon at 300K. 39) The softening 
occurs over a wide region of this branch, and the minimum ne(4 ) 
q decreases with decreasing temperature as shown in Fig. 8. 5) 
Tge simpler models predict a soft mode with w(qo) = 0 at To ·(29 
Instead a central peak develops as T approaches To. Below To new 
modes appear, one of which is the "stiffening" phonon seen in 
Fig. 8. This and other modes have been observed by Raman scattering 
below To (47,48), and will be discussed at this meeting by 
E. Steigmeyer. Infrared reflectivity measuremtg)s below To show 
weak gap-like features with ~ (4.2K) ~ 25kTo'( This nf2ber is 
much too large, since the BCS like theories give ~ ~ 4kTo 29). 
McMillan has shown that these difficulties can be resolved by 
including the phonon entropy (this conference). 
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Figure 5. The satellite intensity vs. temperature for 2H-NbSe2 
below To = 32K. The intensity is proportional to the lattice dis
placement squared. The lattice displacement may be used as an 
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Figure 6. Elastic neutron scattering measurements of the 
satellite peak intensity and position in 2H-TaSe2 vs. temperature. 
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(squared) at qo = 0.33 a* in 2H-TaSe2 decreases as To is 
approached from above or below. However,this energy does not 
decrease to zero and To, as simple models would suggest. 
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The CDW behavior of the IT polytypes of the Ta dicholcogenides 
is quite different from that of the 2H. In IT-TaSe2 electron 
diffraction patterns of the (HKO) plane show a commensurate super
lattice at room temperature (Fig. 9a) and an incommensurate CDW 
(Fig. 9b) above the first order transition apparent in the ~esis- +* 
tivity+(Fig. 2) at Td = 473K. In the incommensurate state q=0.285a 
(i.e. q is parallel to the line joining main Bragg peaks). Also, 
strong diffuse scattering, in the form of circular rings is seen 
above Td . This scattering is most likely+due to CDW excitations 
involving the transverse displacement of q. We exp~ct that 
excitations of this sort will be soft, since at Td q rotates by 
13°54' and shrinks slightly (~2%) to' produce the 3xl superlattice 
apparent in Fig. 8a. This transition then involves primarily a 
rotation of q. At room temperaturx and below, the atomic dis
placements are quite large, %0.25 ~ for Ta. Furthe~the amplitude 
<P is about 1 e/a! This might be expected if we scale <P 

from 2H-NbSe2 by the ratio of the onset temperatures. With such 
a large charge oscillation, the binding of the Ta core electrons 
shifts enough to be observable in ESCA (26,27,h9). Splittings in 
the 4f binding energies of ~0.5· eV are clearly observed at room 
temperature. This means that at room temperature and below, the 
CDW is not a weak perturbation of the F.S. Rather the commenturate 
phase may be thought of as a valence disproportionation of Ta + 
into Ta5+, Ta4+, Ta3+. Summarizing the behavior of IT-TaSe2' we 
see that as the temperature is reduced from above To, the material 
passes through a number of states: a normal undistorted metal, 
then a second order transition to an incommensur~te CDW state 
where, at least close to To' the amplitude <p or A is small, and 
finall~ this state evolves through the transition at Td to a 
valence disproportionation. As yet there are no adequate 
theories to explain the overall behavior of IT-TaSe2 , although 
Landau models are able to qualitatively predict the sequence of 
transitions (43). 

IT-TaS2 is even more complicated than IT-TaSe2' as is 
apparent from the two first order transitions seen in the resis
tivity (Fig. 2). Below 200K the CDW shows the same commensurate 
state as IT-TaSe2 (2). Above the transition at Td = 350K, the 
CDW is incommensurate with q = 0.288~* and strong diffuse 
scattering is seen, very much as that shown for IT-TaSe2 in 
Fig. 9b (1,40). At 350K, q rotates by ~12~ but stops 20 short 
of becoming commensurate! q continues to rotate with decreasing 
temperature, until at ~200K it jumps the last fraction of a degree 
to become commensurate. This intermediate state between 200K and 
352K (quasi commensurate state as we call it) appears t) be 
stabilized by the presence of secondary distortions. (50 The 
physics of this situation is similar to that of 2H-THSP2 where 
secondary distortions appear immediately below To. In 
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A 

B 

Figure 9. Ca) The basal plane diffraction pattern of the CCDW in 
IT-TaSe2 shows the I:l:3 a superlattice. Many of the main Bragg 
peaks appear very bright, or overexposed; the remainder of these 
peaks are easily found by "extending" the hexgonal pattern of 
these spots. 

IT-TaSe2' however, the amplitude of the CDW must be larger than 
some minimum value for the secondary distortions to occur. Again 
it is clear from ESCA and X-ray diffraction that the CDW amplitude 
at low temperatures is as large in IT-TaS2 as in IT-TaSe2 . 

We have talked about transitions to the CCDW, but have not 
tried to indicate why they occur. A hint to their origin can be 
obtained from a correlation between Td and the crystallographic 
cia ratio discovered by A. H. Thompson (51). Figure 10 shows the 
almost linear relation between Td and cia for 12 different com
pounds (or polytypes) that I will not bother to identify in detail. 
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Figure 10. Td is plotted vs. the crystallographic (normalized to a 
specific value) from Thompson (24). Each point represents a differ
ent layered compound or a different polymorph. 

Previously, F. R. Gamble had shown that the cia ratio in these 
compounds was related to the ionicity difference between the 
cation and anion (52). Consequently, we see that Td is related to 
an ionicity difference. This result suggests that the driving 
force toward the commensurate state involves local ionic Coulomb 
or covalent bonding forces. One might see how these forces arise 
by considering a simple case. Suppose an incommensurate CDW exists 
in a two dimensional hexagonal packed sheet of metal atoms. Since 
the CDW is incommensurate, in general the charge will be increased 
at some nonsymmetrical position. Ionic or covalent energies will 
be maximized by placing this charge at a center of symmetry; 
such as, (a) on a metal atom, (b) half-way between two atoms 
to maximize the bonding charge, (c) at a geometrical center, 
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like the center of a triangular set of three atoms, to make a 
bonded metal cluster, (d) etc. In the real compounds we must 
also consider the metal-nonmetal bonds, but this simple model 
gives the qualitative idea. Note that these bonding interactions 
can be expressed in terms of large electron phonon interactions. 
Consequently it is somewhat artificial to separate the driving 
forces for the ICDW and the CCDW, as pointed out by Thompson.~3) 
Rather in these materials a proper description of the conduct.iQn 
electrons is between the traditional cOVRlp~t bond and metallic 
bond models, as pointed out by McMillan. (43) Apparently in 
these systems at small CDW amplitude the F.S. determines the 
nature of the distortions, while at larger amplitudes the 
bonding energies dominate. 

So far we have talked about the CDW as a single layer 
phenomena. The CDW's interact from one layer to the next producing 
a given stacking sequence. This sequence is consistent with that 
obtained by minimizing interlayer Coulomb interactions (1,53). 
F~r example, if we consider the simplest CDW ~p = 3 x 

++ 
i~l cos qi r , the contours of ~p have hexagonal symmetry as shown 

in Fig.lla. The maxima (or minima, depending upon the sign of ~) 
are at the cell edges, with minima at the center of each triangle. 
Using hexagonal notation, we label the maxima A and the two minima 
Band C as shown. In the incommensurate phase, the origin of the 
CDW can be placed arbitrarily at any point in the layer. If we 
choose point A in the first layer, then the Coulomb interaction 
is minimized with the next layer by placing its charge maxima over 
point B in the first layer. The third layer minimizes its 
Coulomb energy with both the first and second layer by putting its 
maxima over point C. This stacking sequence leads to a three 
layer repeat for the CDW as is found in the IT polytypes. The 
interaction energy in the 2H polytypes is modified by the screw 
symmetry between adjacent layers and the CDW repeat appears to be 
two layers. In the commensurate phase, the origin of the CDW 
cannot be arbitrarily chosen. Rathe~ it appears that the CDW 
cell origin lies at a Ta site. FigurelIb shows that the CDW in 
the second layer can minimize its interaction energy with the 
first by translating the CDW origin by 2~. By continuing this 
sequenc~the overall interaction energy is minimized. The origin 
of the CDW repeats itself every 13 layers. However, the true 
unit. cell is triclinic with a = ll3a, b = ll3a and c = 1!+2!1 ( 3). 
In order to have long range stacking order both near neighbor and 
next-near-neighbor layer interactions must be included. In 
IT-Tal _ Zr Se2 the random impurity potential of Zr c~~Qminate 
the next ne~r neighbor interactions in the CCDW state,~ 3) pro
ducing a random stacking of near neighbor layers on the three 
sites near the B position shown in Fig. Ilb. 
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(6) 

Figure 11. (a) The CDW pattern created by p = 
3 
E 

i=l 
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-+-+ 
cos q.r with the 

l 

3 CDW wavelengths A. = 2TI/~ shown. (b) The CDW pattern 
atom positions expe~ted for the CCDW in IT-TaS2/Se2. 

and metCl.l 

Having discussed in some detail the magnitude of the CDW 
parameters of some layered compounds, we briefly consider the 
resistivity. It is apparent from Fig. 2 that below the onset of 
the CDW the IT polytypes become ~ resistive and the 2H polytypes 
less resistive. The simple picture introduced in discussing the 
driving force of the CDW leads one to expect the behavior observed 
for IT-TaSe2; that is, below To the resistivity should increase 
(compared to the normal metal) as T decreases due to the formation 
of gaps at the F.S. At Td the gaps increase discontinuously, 
further increasing the resistivity. Finally at low temperatures 
we expect metallic-like conductivity from thoreportions of the 
F.S. not destroyed by CDW gaps. 
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The resistivity of the 2H polytypes of TaX2 rises slightly 
then decreases rapidly below To. A plausible model for this 
behavior is to assume that the sections of the F.S. eliminated by 
the CDW gaps are characterized by large effective masses. Above 
To,these carriers do not contribute much to the conductivity 
because of their large mass, but they do act as effective 
scattering sinks for lighter electrons on the F.S. Below To then, 
with the large mass states removed, the scattering rate can 
decrease leading to a decrease in resistivity even when some 
carriers are lost. This model is consistent with the nesting model 
of the CDW or the saddle p~int model (31) and the complex shape of 
the two sheeted F.S.,(l,ll) but definite proof of its validity does 
not exist. 

Finally we come to IT-TaS2' At each transition toward the 
commensurate state we expect the gaps to increase in size and the 
resistivity to increase. However, in the commensurate state the 
resistivity is very high and not at all metallic-like. Recent 
data show that the,~v temperature increase in resistivity (below 
40K) is extrinsic. t ) The resistivity below 2K is described by 
var.iable range hopping and fits P = Po exp (To/T)1/3. This form c 

is due to Anderson localization by random impurities or defects. (5/ ) 
Just why IT-TaS2 should be so sensitive to these impurities, and 
not IT-TaSe2, is not clear; but the high resistivity of IT-TaS2 
just below 200K indicates that the remaining ca~rjers have a very 
low mobil~ty. Suggestions of Mott 10calization t56 ) and polalOn 
formation tl ) have been made, but these are untested hypotheses. 

Also note from Fig. 1 that the resi~tivity of all of these 
compounds above To is on the order of 10- Q/cm. This leads to an 
effective scattering time for the carriers of ~ 2xIO-15 sec. 
We expect the average Fermi velocity to be less than that of (Cu), 
for example, so VF < 1.6xl08 cm/sec. Consequently, the mean 
free path, is less than 30~. These small numbers indicate that the 
treatment of scattering by the usual Boltzman equation is question
able. A similar observation has been made for other transition 
metal compounds, in particular, the high superconducting transition 
temperature'S-W compounds. (54 ) These difficulties are probably 
related to the large electron phonon interactions and the CDW 
instability of the layered compounds. 

Next, we consider the effects of impurities. In particular, 
we consider the random substitution of the cation by other 
transition metals and the effect of this substitution on the 
transport properties and on CDW formation. This substitution 
causes randomness in the lattice potential and may also change the 
average conduction electron density, z. Each of these effects is 
related in different ways to changes in the CDW behavior. 
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* Figure 12. q/a, the wavelength o~ the CDW in the ICDW state 
divided by the reciprocal lattice vector, is shown vs. x ~or 
IT-Tal M S2 where M = Tl.· Nb V -x x ' ,or . 

First,consider the e~~ect o~ changing z: The calculated F.S. 
~or the undistorted IT polyt.\:pes has the shape o~ an ellipsoid in 
the plane o~ the layer with near perpendicular walls along c*. (I,ll·) 
This F.S. then has sections that are near to parallel, leading to 
the CDW instability. I~ Ti is substituted ~or Ta, z decreases, 
and in the rigid band approximation the F.S. will shrink but 
remain an ellipsoidal cylinder. Consequently, in the ICDW phase 
we expect that q/a* will decrease with increasing x in IT-Tal_x 
TixS2' The results o~ such measurements are shown in Fig. 12 
(1,58). The solid line is a ~it to the data which is close to that 
expected ~rom the rigid band approximation. Also in Fig. 10 q/a* 
is shown ~or IT-Tal_xNbxS2 and IT-Tal_xVxS2. In these two cases 
q/a* is close to constant, as expected, since Nb and V are 
isoelectric with Ta and z is constant. In the IT polytypes,the 
e~~ect o~ changing z is to smoothly change the F.S. and con
sequently q/a*. The data shown in Fig. 12 are obtained at or 
above room temperature. Consequently To remains greater than 
300K even ~or x ~ 0.7. It appears ~rom magnetic susceptibility 
that To is reduced, but slowly, with increasing x. This is an 
expected e~~ect o~ disorder (43) and occurs with Ti, Nb or V 
substitution (or indeed any cation disorder). 

The disorder reduces To. but more rapidly suppresses the 
commensurate state. This can be'seen in the resistivity o~ 
IT-Tal~xTixSe2 (Fig. 13). With increasing x, both the transition 
temperature from the incommensurate to the commensurate state, Td, 
and the magnitude of the resistive anomaly at Td decrease. This 
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Figure 13. The electrical resistivity of IT-Tal Ti Se2 shows the -x x decrease in Td with increasing x. 

data, combined with measurements of the enthalpy of transition 
(58), show that for x > x ~ 0.10 the CCDW does not occur. We can 
see why this occurs with ~ ;imple chemical model. Consider a one 
dimensional string of atoms A and B that are randomly placed on 
lattice sites. We wish to compare the free energy of the CCDW and 
ICDW. Let us consider B to be the dilute species and assume that 
B is more electronegative than A. (We could assume it is more 
electropositive, but will obtain the same result). Becau~e the B 
atoms are more electronegative, the free energy will be a minimum 
when the CDW charge maxima lie at B sites. If there is a CCDW and 
the alloy is random, many of the B atoms will not lie at maxima 
and we must pay some free energy proportional to the ionicity 
difference (XB-X )2. If there is an ICDW, the CDW can change its 
phase (or .equlva1ently its local wavevector q) so that each B atom 
lies at charge maxima. In this case, we must pay some elastic 
energy to distort the CDW - but this turns out to be small. (The 
elastic energy to change the wave vector q from its commensurate 
to incommensurate value, must be relatively small for the CCDW to 
even exist in the pure material.) Consequently, we expect the 
increase in free energy with cation substitution to be larger in 
the CCDW than the ICDW,and thus the ICDW becomes stable (i.e. 
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Td is suppressed and for x ~ Xc the CCDW does not exist.) 
McMillian's free energy model reaches the same conclusions (43). 

Figure 14. 
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The electrical resistivity of IT-Tal Ti 82 shows that 
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both first order transitions toward the CCDW state are suppressed 
with increasing x, but the commensurate state is suppressed for 
x ~ 0.002. 

Similar effects are seen in IT-Tal Ti S2 (Fig. 1 4). The 
transition at 200K to the commensurate st~teXis suppressed for 
x ~ 0.002, while the transition at Ta. (into the "quasi-commensu
rate" state) is slowly suppressed and is finally lost when 
x ~ 0.15. 

Fewer doping studies have been made for the 2H polytypes, 
because most cation substitution favors growth and retention of the 
IT prototype. Rather, studies of the effects of anion mixing, as in 
2H-TaSe2_xSx' and of intercalation on the CDW are more common. (9) 
These studies show that disorder and intercalation (which at least 
in some cases causes both disorder and a change in the conduction 
electrodensity) reduce the CDW amplitude and/or To' Further, 
since the onset temperature is lower in these 2H polymorphs than in 
the IT polymorphs, lower concentrations of "dopants" are 
necessary to suppress Td or T. Such is also the case for the IT 
polytypes, sa~ in comparing 1~-VSe2 (To = 112K)(42) and IT-TaSe2 
(To % 600K). ( ) 8 ) 
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We have discussed in some detail the magnitude and temperature 
dependence of the CDW in several layered compounds. Other studies 
of the properties of layered compounds will be mentioned shortly, 
but first we discuss the applicability of the simple 'model we will 
introduce to present the CDW parameters. 

We focus on two aspects of the model: the bare susceptibility, 
and ~h~ spatial range of the interactions. Several calc~atioQs 
of X (q) for IT-TaS2/Se2 and 2H-NbSe2 have been reported(59,60) 
and the results are reproduced in Fig. 15. These results are 
obtained from nonrelativistic, nonselfconsistent b~nd calculations 
using muffin tin potentials, and therefore the XU(q) obtained 
should be taken as suggestive rather than defi~itive. First, 
consider IT-TaSe2, where a peak is seen in XO(q) at the same 
wave vector as observed in the ICDW state. This peak is only 
3 times the value that would be obtained from a three dimensional 
free electron gas of the same density a~ q = 2kF• However, even 
in the three dimensional electron gas X (q) is large compared to, 
Cu, for example because the electron density is lower than in an 
elemental meta~. The calculated temperature dependence of this 
peak is small. This would suggest, in the language of Eq. 4, that 
the interaction term X(q) has some temperature dependence in it and 
that To is not primarily detBrmined by the temperature dependence 
of the bare susceptibility X (q). Unfortunately no microscopic 
calculations of X(q) of these compounds exists; we do not kgow, 
for example, if X(q) also has a peak at the same place as X (q). 
The extreme limit of this possibility, namely that XO(q) is free 
electron like, has been con-sidered in explaining the phonon 
anomalies in Nb, NbC and NbN (ref. 61 & J. Hafner in this conference). 
These theories conclude that X(q) is entirely responsible for the 
phonon anomalies, but these materials are not known to show CDW 
formation. 

XO(q) for IT-TaS2 shows two weak humps at wavevectors larger 
than the observed wavevector of the ICDW. It is not clear if this 
is an aEtifact of the calculation or represents the "true" XO (q) . 
Again X (q) does not have logarithmic like peaks and little 
temperature dependence is calculated. 

The situation for the 2H polymorphs is even less clear. 
Here the obtained band structure is more sensitive to calculational 
details, since the conduction band is only about 1 volt wide and 
the F.S. is two sheeted. !n any c~ie,(~ ~alculated XO(q) shows 
only a broad maximum near q = 0.33a, 60) whose value is about 10 
times that of a free electron g~s of the same density. As in the 
IT polymorphys the calculated X (q) shows little temperature 
dependence. While Ricco et al.(60) argue that the electron 
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Figure 15. (top right) - The calculated XO(q) for IT-TaSe2 with 
q along the rM direction shows a weak peak at the observed ICDW 
wavevector. 
(top left) - The calculated XO(q) for IT-TaS2 with q along the 
rM direction shows even weaker peaks, but these do not occur 
at the ICDW wavevector. ° 
(bottom) - The calculated X (q) for 2H-NbSe2 along the rM 
direction shows a broad maximum near qo' The calculated 
temperature dependence is very small. 
These three figures suggest that while XO(q) is relatively 
large, prominent features expected from the simple model 
embodied in ~ are not visible. 
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phonon interaction along with the large value of xO(2kF) is 
sufficient to explain the instability, they do not explain what 
determines the CDW onset temperature To. 
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+ These calculations of XO(q) suggest that the interactions, 
X(q), are more important than the simple model implies in 
determining the appearance of the CDW. At present our under
standing of the magnitude and of the energy and wave vector 
dependence of these interactions is limited. A more serious 
difficulty with the simple theory has been pointed out by McMillan 
(Conference proceedings). McMillan has developed a model for the 
2H-TaSe2 CDW that takes into account the phonon entropy. 
Significant contributions to the entropy due to phonon softening 
is expected since such a large region of phonon states in the LA 
acoustic phonon branch are temperature dependent. (see Fig. 7). 
The inclusion of this term markedly modifies the instability 
condition (to determine To), and consequently a discussion of the 
instability in terms of eq. 4 may be misleading. This model, 
when compared with experimental data, leads to the prediction of 
a short coherence length for the CDW of about 10 ~, a value close 
to the mean free path above To and to the super lattice wavelength. 
This length is somewhat larger than found in antiferromagnetic 
transitions or in superfluid liquid He, but is much shorter than 
found in superconductors, where a mean field treatment of the 
thermodynamics is adequate. 

These calculations of XO(q) and of the coherence length 
make the role of the F.S. less apparent than in the simple 
model. Yet is seems clear that the F.S. plays a role in 
determining the wave vector of the ICDW, but the microscopic 
details are still lacking; It is also clear, particularly for 
IT-TaS2 and TaSe2, that weak coupling models of the CDW will be 
inadequate to describe the 1~3~e amplitude of the CCDW. As has 
been emphasized by Thompson, the general occurence of the CDW 
phenomena in these compounds makes it seem unlikely that the CDW 
is based on a subtle property of the band structure. It seems 
reasonable that the occurrance of the CDW is based on more general 
features, such as the large values of XO(q) and of the electron 
phonon interaction. (3,58) 

Before closing this article, I would like to point out that 
I have only discussed a few of the layered compounds. I would 
like to briefly mention other phenomena that are connected with 
CDW formation or other phenomena that are of interest, at least 
to me. (1) 4Hb polymorphs, in which the layers alternate between 
octahedral and trigonal prismatic coordination, show separate) 
uncoupled CDW transitions in the different symmetry layers(62 
(2) the 2H polymorphs of group Vb are superconductors. 
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Several papers show that T9 increases as the CDW amplitude and/or 
To is suppressed(9,24,63) t3) the semi metal TiSe2 has a phase 
transition near 200K in which the hexagonal a and c axis 
double(54,65) (4) cation substitution in IT-TaS2 and IT-TaSe2 
by Fe, Co, or Ni produces electron localization by the ran~g~) 
impurity potential, even when the CCDW state is eliminated . 
In the case of Fe a low spin to high spin conversion occurs as 
the temperature is increased(67) (5) TiS2 shows an unusual T2 
resistivity from 10K to 400K(68). At l~ast two models have 
been proposed to explain this behavior t b9, (0) . (6.) There 
may be technological use of layered and related compounds in 
rechargeable battery systems(71,72 ,73). 

In conclusion, there now exists a large, but not 
exhaustive, body of empericial knowledge about CDW's in layered 
compounds. Largely through Landau models the data is at 
least qualitatively and some cases quantitatively connected. 
However, our understanding of this phenemona, particularly at 
the microscopic level is less well developed. 

Finally, I wish to point out that this was not intended to 
be an exhaustive review of work on layered compounds. In 
particular, I have chosen to mainly emphasize points from my own 
work, and therefore the references used may not adequately give 
credit to many others who have contributed to this field. 
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A. THE LANDAU FREE ENERGY 

The two theoretical methods which have proved so fruitful in 
the study of superconductivity have been applied to the charge 
density wave (CDW) phase transitions in the transition metal 
dicha1cogenides. I will discuss the (Ginzburg-) Landau theory in 
this lecture and microscopic mean field theory in the next lecture. 
The Landau theory is due to Dave Moncton and myse1f. 2,3 The 
Landau theory approach is especially powerful in the discussion of 
position-dependent or time-dependent properties. We don't have an 
adequate dynamical theory yet and I will discuss only the static 
Landau theory. 

In order to write down a Landau theory one must choose the 
proper order parameter and write down an expansion of the free 
energy in powers of the order parameter and the gradient of the 
order parameter. In the CDW phase one has a static periodic 
lattice distortion, a band gap in the electronic band structure, 
and an electronic charge density wave present simultaneously. 
Near the onset transition the three quantities are proportional 
to each other and we can choose anyone as the order parameter. 
We choose the electronic charge density and since there are three 
CDW's present (thinking now of our canonical material, 2H-TaSe2) 
we write 

p (r) = Po (r) [1 + a{r) ] (1) 

where 
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(2) 

and the I/J. (r) are three complex order parameters, one for each 
CDW. For \he energy of one layer we write an expansion in powers 
of the order parameters, keeping all terms allowed by symmetry. 

~2 - 2 - 3 - 4 Fl = Jd rra(r)a - b(r)a + c(r)a 

+ drr)(11P 1 1b 2 12 + 11P2 1P 3 12 + 11b 3 1P 112)] (3) 

where arr), b(r), c(r) and d(r) exhibit the periodicity of the 
crystal lattice. We will write, for example, 

crr) =, Co + cl 2: e iKi •r (4) 

i 

where the six Ki are the six shortest reciprocal lattice vectors. 
We next include a random potential U(r), due to impurities 

J 2 - r.::. -F2 = d r U(r)po~r)a(r) • (5) 

T.he gradient terms are chosen so that the free energy of the three 
CDW's is minimum when they lie in the right directions and have 
the right wavelengths; any distortion from this optimal condition 
costs free energy. 

r 2 [-I/- - 2/2 F3 = d r e(r) (q .• 'i1 - iq.)'/" 
• 1. 1.'1'1. 

i 

+ fer) 2:)Cii X ~ ~i/ ~ (6) 

i 

where /q./ = 2n/A, A is the wavelength of the incommensurate CDW, 
and the Ehree qi vectors lie in the fM directions 120 0 apart. 
The total free energy of one layer is the sum of these three terms 

We could also include the coulomb interaction of CDW's in 
different layers. We assume that ao changes sign at the onset 
transition 

(7) 

(8) 

and that the other parameters are constant. The Landau theory is 
a phenomenological theory and the parameters are to be determined 
from experiment. 
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B. PHASE TRANSITIONS 

The simplest thing to discuss is the state of lowest free 
energy. One assumes that the order parameters are plane waves 
with definite amplitudes, phases and wave vectors, and one varies 
these quantities to minimize F. For T > TIN the amplitudes 
vanish and one has the normal metal phase. For T somewhat less 
than TIN the quadratic term is negative and one finds a finite 
amplitude of all three CDW's and wave vectors determined by 
minimizing the distortion energy F3 • The wave vectors are 
incommensurate with the lattice and only the uniform terms in the 
free energy (i.e., ao ' bo ' co' and do) contribute. The lock-in 
energy 

L Re [C81 J dZr Ib ~ e iKi .r] (9) 

i 

averages to zero. One can take advantage of the lockin energy to 
lower the free energy by setting the CDW wave vector equal to 
Ki f3. This costs elastic energy and the transition temperature to 
the commensurate phase is governed by this energy balance. As we 
will see later on this treatment of the commensurate-incommensurate 
transition using uniform plane waves is oversimplified. 

C. FLUCTUATION MODES 

Small phase and amplitude distortions of the order parameters 
are the collective modes of the system. Since the periodic lattice 
distortion is proportional to the order parameter these modes 
appear in the lattice dynamic structure factor and can be measured 
by neutron scattering. For ZH-TaSeZ there are three amplitude and 
thre~ ~hase modes and these have been observed by Raman scatter
ing.~ The static Landau theory predicts the energy versus ampli
tude of these modes (but not the frequencies); one simply expands 
the free energy about. the minimum for small distortions. Long 
wavelength phase distortions correspond locally to a translation 
of the CDW which costs very little energy in the incommensurate 
phase; the energy of the "phason" is proportional to kZ where K 
is the phason wavenumber. In the commensurate phase the lock-in 
energy opposes translation of the CDW and the phason energy is 
proportional to a constant plus k2 • For the amplitude modes the 
energy is proportional to a constant plus k2 with the constant 
proportional to IT - TINI (within mean field theory). Thus one 
expects soft mode behavior near the onset phase transition with 
the amplitude modes stiffening in the incommensurate phase and the 
phase modes stiffening in the commensurate phase. Qualitatively 
this does happen; however the detailed behavior of the soft modes 
and the central peak near the phase transition are not well under
stood. 
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D. IMPURITY EFFECTS 

Impurity effects may be calculated simply within Landau 
theory. In the normal phase a charged impurity attracts elec
tronic charge and the system responds by dressing an impurity 
with a CDW cloud. The size of this cloud grows larger as the 
phase transition is approached and the correlation length of the 
CDW increases. A second impurity feels the potential of the CDW 
and there is an impurity-impurity interaction which tends to space 
impurities apart by one CDW wavelength. Since the impurities 
drive the CDW order parameter the incommensurate-normal metal 
phase transition is not sharp. In the incommensurate phase a 
phase distortion of the CDW is not costly and the CDW can lower 
its energy by distorting to place charge density peaks near 
impurities. This effectively pins the CDW to the impurities. In 
the commensurate phase the CDW is locked in to the lattice and 
cannot easily distort to take advantage of the impurity potential. 
Thus the incommensurate phase is favored energetically in the 
presence of impurities and the incommensurate-commensurate tran
sition temperature is strongly depressed. 

E. CDW DISLOCATIONS 

In the incommensurate phase the cubic term in the free energy 
(proportional to co) fixes the relative phase of the three CDW's. 
The sign of this term is such that positively charged regions of 
the 3 CDW's add up on lattice sites of a hexagonal "lattice". 
The lattice spacing of this CDW "lattice" is approximately three 
times the crystal lattice spacing. The phason modes are just the 
phonon modes of the CDW "lattice". Vacancies or interstitials in 
the CDW "lattice" are not possible because the units making up the 
lattice are not discrete. However a CDW dislocation is possible 
and is closely analogous to the vortex line in superconductors or 
superfluid helium. We emphasize that the host crystal is assumed 
to be perfectly uniform and that only the CDW is distorted into a 
"dislocation". In order to introduce a dislocation we insert a 
vortex solution into two of the three CDW order parameters, with 
the phase of the order parameter changing by 2n as one encircles 
the dislocation. If one then examines the charge density map one 
row of charge peaks has been removed leaving a "lattice" dis
location. 

F. DISCOMMENSURATIONS 

The last concept I want to discuss is the discommensuration. 
For simplicity consider a single incommensurate CDW whose wave
length is 2% greater than three times the lattice spacing. If we 
take a uniform plane wave for our CDW then for 25 lattice spacings 
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the CDW will be in phase with the lattice and the lock-in energy 
will be negative; then for the next 25 lattice spacings the CDW 
will be out of phase with the lattice and the lock-in energy will 
be repulsive. The spatial average of the lock-in energy will be 
zero. However, we can distort the CDW in two ways to take ad
vantage of the lock-in energy. We can amplitude modulate the CDW 
making it larger in the in-phase regIon and smaller in the out-of
phase region. Or we can phase modulate the CDW making the in
phase region larger and the out-of-phase region smaller. Both 
distortions buy lock-in energy at the expense of distortion energy, 
with phase-modulation costing less distortion energy. If one 
considers phase modulation only (the weak coupling limit) the 
nonlinear problem is simple enough to solve exactly. Far from the 
lock-in phase transition one finds a weak phase modulation with 
the in-phase region slightly larger than the out-of-phase region. 
As one moves toward the phase transition the in-phase region 
expands and the average wavelength of the CDW shifts toward 
commensurability. Finally, very near the phase transition one has 
large in-phase regions which are locked in to the lattice and 
narrow out-of-phase regions which appear to be defects called 
discommensurations. The phase of the CDW relative to the crystal 
changes by 2n/3 as one crosses the discommensuration. As one 
continues to lower the temperature the number of discommensurations 
decreases and vanishes in a continuous way at the commansurate
incommensurate phase tr~nsition. One interprets the transition as 
a defect melting transition in contrast to the more common order 
parameter type of continuous phase transition. Experimentally, 
the lock-in phase transition in 2H-TaSe2 exhibits hysteresis and 
is first order; however the transition is very sensitive tq 
impurities and super pure crystals are not available yet. 
Additional Bragg scattering from the distortion was predicted and 
observed by Moncton et. al.lI 
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The ultimate goal of the theoretician in studying a particular 
phenomenon is to produce a quantitative microscopic theory from 
which one can calculate anything. That goal has been pretty well 
achieved in superconductivity. We are still struggling with the 
theory of charge density waves. The way that one progresses in 
solid state physics is to compute the properties of a theoretical 
model, compare the predictions with experiment, and modify the 
model when it fails. I want to discuss one iteration of this 
process today. 

Our present under~tfonding of CDW's in metals follows the 
early work of Peier1s,!/ Frgh1ich,11 Overhauser,~/ and Chan and 
Hein~/ and is based on the following physical picture: one starts 
with a normal metal and introduces a periodic lattice distortion (a 
static phonon distortion of finite amplitude and wavevector q). The 
new periodicity introduces a new Brillouin zone boundary and creates 
a band gap in the one-electron band structure near the zone boundary. 
If the zone boundary is near the Fermi surface (that is, if q spans 
nested portions of Fermi surface) the energy of many occupied elec
tronic states will decrease and the total electronic energy will 
decrease. If the gain in electronic energy more than offsets the 
increase in elastic energy the distorted state will be the ground 
state. The occupied electronic states are nonuniform and there is 
a charge density wave with wavevector q which screens the lattice 
potential. Thus the three physical properties go together, the 
periodic lattice distortion, the energy gap in the band structure, 
and the charge density wave. I believe that this physical picture 
is correct for the layered compounds. However in order to calcu
late the properties of the CDW state at finite temperature the 
conventional approach is to include the entropy of electrons 
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excited across the energy gap and to minimize the free energy. 
This is the right thing to do if the zero temperature correlation 
length ~ (of the CDW) is long; it turns out to be incorrect for 
2H-TaSe2. What one must do at finite temperature is to include 
the lattice entropy; the electron energy gap is quite large and 
the electronic entropy is negligible. 

I want to discuss three simple calculations and compare them 
to experiment.21 The first is a model calculation of various 
energies at T = 0 and a prediction of lattice dynamics in the 
distorted state; the lattice frequencies have been measured by 
Raman scatterin~ and we can determine the magnitude of various 
contributions to the energy by fitting the Raman data. Next we 
examine the electronic energy model which, with some approximations, 
turns out to be identical to the BCS theory of superconductivity.ZI 
A comparison of this model with experiment yields some large 
discrepancies. Finally, we treat a lattice entropy model, which 
assumes a short coherence length, which is in semi-quantitative 
agreement with experiment. 

At T = 0 we begin by writing for the displacement of the ith 
Ta atom in the ~ layer from its lattice site R. 

1 

3 

1m L (1) 

j=l 

where qj is the nesting vector of the jth CDW a~d $l(Ri ) is the 
local complex amplitude of the CDW. The three qj form a star in 
the DM directions. We assume that the band gap 12WI is propor
tional to the lattice distortion. 

Wj (x) = Ct $j (x) (2) 
1, 1, 

Only a portion of the Fermi surface is affected by the energy gap 
wj and we assume a simplified band structure for this nested 
p&rtion: we assume perfect nesting with a Fermi velocity v F and 
an electronic density of states (of one spin) of Nt(O) (for each 
CDW). Then the electronic energy is 

(3) 

where EB is the electronic band width and So is of order hv F/2W. 
Electrons near.the gap edge cannot respond to lattice vibrations 
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with wave vector~ further than l/~ from the nesting vector and 
we assume that ~J(x) is a slowly varying function with a momentum 
space cutoff of ~c = l/So. We rewrite (3) using phonon coordinates 
and include several other energies. 

PE = ~ L f d~X [2: [AI4>~12- cl4>~12 logl4>B/4>~12 
1, j 

(4) 

where 0 is the area of the normal state unit cell in one plane. 
The first term is the unscreened elastic constant and the second 
and third terms are the electronic contributions from (3). The 
fourth term is the lock-in term and the fifth is the interlayer 
Coulomb interaction. The sixth term is a COW interaction which 
arises when two COW's compete to open an energy gap on the same 
portion of Fermi surface and the seventh is a weak COW interaction 
permitted by symmetry. 

The lattice kinetic energy is 

(5) 

where the Se atoms are assumed to adiabatically follow the Ta 
atoms with the same ratio of Se displacement to Ta displacement 
observed at low temperature; this yields M* = 206 au. Equations 
(4) and (5) constitute a nonlinear dynamical model for the longi
tudinal acoustic phonons modes near qj. 

To find the equilibrium distortion at T = 0 in the commen
surate phase we substitute 

(6) 
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I 
where ~ = G-/3 - q- and et = -3 phase (B t ) and minimize PE with 
respect to ~~ to firtd ~o. 

In order to find the phonon frequencies we add a small phase 
or amplitude distortion to the static distortion. 

. k £,c i ( e + i llq • x) 
~~(x) = [~o + (Q'k+i13k)cOS(k.x++)]e p, (7) 

and expand PE to second order in ~ and 13k. The equations of 
motion are then harmonic and are simple to solve; for the amplitude 
modes we find 

* 2 M (l) kz c 2 2 
+= 4C - 31 BI ~o + 8D~~ + E¢o + 2F - 2F cos(T) + CSok (8a) 

and 

* 2 
M (l)k 2 kz c 2 2 

= 4C - 31BI ¢ - 4D¢ - 2E¢ + 2F - 2F cos(-2 ) + Cgok (8b) 4 0 0 0 

where E = Re[Eexp(i3eo)]. For the phase modes we find 

* 2 k c M (.Qk 
=9IBI~ - 3E~ 2F - 2F 

z cg2k2 
4 + cos (-2-) + 

0 0 0 

(8c) 

and 

* 2 k c M (l)k 
= 91 BI <t> + 2F - 2F z + Cg2k2 

4 0 
cos(T) 

0 
(8d) 

The (8b) and (8d) modes are doubly degenerate giving six modes. 
These six modes are observed in Raman scattering and from the 
Raman data we find 

°2 
F = .03 eV/A ; 

°2 
IBI<t> = .053 eV/A ; o 

°2 
IE¢ I = .036 eV/A ; o 

There are enough parameters in the theory to fit the data and there 
is no consistency check on the theory. 

For the second calculation we include the entropy of electrons 
excited across the Peierls energy gap and calculate the transition 
temperature, heat capacity and magnetic susceptibility. If we 
neglect the CDW interactions the theory is equivalent to the BCS 
theory and we can borrow the following results from BCS. The 
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energy gap at T = 0 is 

(9) 

where TIN is the incommensurate-normal metal transition temper
ature. The heat capacity jump at TIN is 

and the change in susceptibility due to the band gap is 

b.X = 1.3*4p 2N t (0) 

(10) 

(11) 

including i e1ectron-e1ectrog enhancement factor of 1.3. From 
DiSa1vo'~ value b.X = 55·10- emu/mole we find Nr(O) = .33 states/ 
eVjTa atom. Using (10) the model predicts a spec1fic heat jump of 
0.8 joules/mole K. craven21 finds a specific heat jump of 4 
joules/mole K. Including the CDW interaction increases this 
discrepancy. The theory predicts a Peier1s gap of 2W(0) = .037 eV 
whereas Barker et a1.lQ/ find an energy gap of .25 eVe We conclude 
that the e1ectr~i~entropy model doesn't work for 2H-TaSe2 • 

For the third calculation let's do the theory in the opposite 
limit, that of small correlation length. For small So the phonon 
frequencies are modified over a large region of momentum space and 
the phonon entropy is large. The phonon entropy depresses the 
transition te~erature so that 2W(0) »3.52 kBTIN ; then, the 
electronic entropy is negligible and one can forget about the 
electrons altogether. The electronic ground state energy provides 
the energy surface for the motion of the atoms; the Born-Oppenheimer 
or adiabatic approximation is valid. Therefore all we need to know 
is the nonlinear Hamiltonian (4) and the theory is completely 
specified. Unfortunately, in spite of the recent progress in 
understanding critical behavior, there are no theoretical tools 
which allow us to compute either the static or dynamic behavior 
of (4) assuming either classical or quantum statistics for the 
lattice. For the moment we will have to be satisfied with a 
rather primitive mean field theory. We first transform to a 
lattice model with the number of lattice sites equal to the nl~ber 
of modes of the continuum model with its cutoff kc = l/So. We 
take a square lattice in one layer with a lattice spacing of "So. 
We define the lattice order parameter by the value of the continuum 
order parameter at the lattice site 

(12) 

Replacing the gradient term in (4) by the finite difference we 
find 
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1 
PE = -

2 ~ [AI~1mnI2 - cl¢1mnI210gl¢B/~1mnI2 
j 

j 2 j j 2 
~trn+1nl + l¢~n - ~~n+11 )] 

where we have neglected small terms in the energy. 
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(13) 

We now make the mean field approximation in which each local 
mode moves in a potential due to its neighbors. 

+ 4~ (1~12 _ 2~* <~» + 2D 1~12 <1~12) ] (14) 
IT 

Near the phase transition ~T is greater than the phonon fre
quencies and we can use classical statistics. The self consistency 
conditions for the order parameters are then 

2 -V1 (~»)T 2 -V1 (~»)T 
< ~ > = f d ~ ¢e / f d ~e (15) 

and 

(16) 

which we can solve numerically and predict the temperature depen
dence of the order parameters, the thermodynamic properties and 
the lattice dynamics. The predicted heat capacity jump is 1.67 ~ 
per mode and the transition temperature is 

(17) 

From the observed heat capaci~y jump of .48 ~B per Ta atom and 
TIN = 122~K we find TTSo ~ 10 A and ¢o = .16 A. The length 
1T~ = 10 A is equal to the super1attice unit cell size and is the 
shortest correlation length which is physically reasonable. This 
correlation length is consistent with the extentlt~ k-space of the 
Kohn anomaly in the longitudinal acoustic branch~ and with the 
fluctuation heat capacity observed by Craven so that it is safe to 
conclude that 2H-TaSe 2 is the short So limit. Moncton has measured 
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~o direc~ly by neutron crystallography and finds ~o between .05 A 
~nd .09 A. 

With such a short correlation length the energy gap is the 
same order of magnitude as the Fermi energy. We can estimate the 
magnitude of the energy gap very crudely as follows. From 
Matthiess'!bI band structure the Fermi energy is .35 eV and the 
(isotropically averaged) basal plane band mass is about 5 electron 
masses. From So ~ hvF/2W we estimate 2W ~ .3 eV which is in 
order of magnitude agreement with the weak absorption edge (at 
.25 eV) observed by Barker et al. 

The phonon entropy model works well in semi-quantitative 
comparisons with experiment. However it does not quantitatively 
reproduce Monctons measurement of <~) versus temperature and the 
phonon dynamics appear to be more complicated than that predicted 
by the mean field calculation. Both of these discrepancies may 
be due to the mean field approximation and we need to develop 
more powerful theoretical techniques to treat the nonlinear 
Hamiltonian. 

The physical picture of the normal state is more complicated 
in the phonon entropy model because the order parameter fluctuations 
are quite large. The mean displacement <~) and the mean energy 
gap <W) vanish at the ~hase transition. However, the mean square 
local displacement </~12) and the mean square local energy gap 
</W/2) are almost as large at the phase transition as at T = O. 
The strongly fluctuating energy gap modifies one's physical picture 
of the normal state and the implications for resistivity, suscep
tibility, etc., have not been explored. Another important theo
retical problem which has not been attacked yet is the derivation 
of the electronic energies in (4) from a realistic band structure 
in the distorted state. 
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LIGHT SCATTERING BY CHARGE DENSITY WAVE MODES IN KCP AND 2H-TaSe2 

E.F. Steigmeier, G. Harbeke and H. Auderset 

Laboratories RCA Ltd., ZUrich, Switzerland 

Charge density waves (CDW's) are known to occur in both quasi 
one- and two-dimensional materials the best studied examples of 
which are K2Pt(CN)4BrO.3.3.2H20 (KCP)and 2H-TaSe2' respectively (1). 
For studying the dynamic excitations of the CDW's, called CDW modes, 
light scattering turns out to be a most useful technique. Its wave
vector resolution is of the order of 5xlO-5R-l, which is 103 times 
better than inelastic neutron scattering; such a high resolution is 
needed for an unambiguous analysis of the eigenfrequencies because 
of the considerable dispersion near the distortional wavevector. 

Raman measurements on KCP (2) and KCP* (deuterated KCP) (3) 
show a sharp line at 44 cm- l and 38 cm- l (4K), respectively, of Al 
symmetry (xx=yy =0, zzf 0). It is attributed to the amplitude mode 
of the CDW. This mode is observed at all temperatures and its fre
quency never tends to zero (it rather increases slightly with tem
perature) suggesting that KCP is distorted at all accessible tempe
ratures. The linewidth of the mode increases strongly with increa
sing temperature. The light scattering results are in good agree
ment with inelastic neutron scattering measurements (4) if the 
limited wavevector resolution of the latter are taken into account. 

One of the most important findings of Raman scattering in KCP 
is the strong isotope effect of the amplitude mode frequency (3). 
This evidences that the water, situated in between the Pt chains, 
participates considerably in the eigenvector of the CDW mode, which 
therefore, by no means is of purely one-dimensional character. From 
the behaviour of the water stretching mode with temperature, it 
appears that the water may be crucially involved also in the tempe-
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rature dependence of the interchain correlation. 

In the hexagonal layer structure material 2H-TaSe2 the light 
scattering measurements (5) show several modes clearly associated 
with the CDW transitions which occur at Tinc = l22K, from the 
normal to the incommensurate, and at Tcom = 90K, from the in
commensurate to the commensurate phase. Three of these modes are 
observed only below Tcom' namely the one of Alg symmetry at 43 cm-l , 
of E2g at 63 cm- l and of A1g at 82 cm- l (4K values) (Figure 1). One 
mode of E2g symmetry at 49 cm-l (4K) persists in the incommensurate 
phase and disappears only at Tinc. Based on the fact that in the 
incommensurate phase the phase mode can be of zero frequency while 
the amplitude mode cannot, we have reason to believe this E2g 49 cm-l 
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Figure 1: Raman spectrum of 2H-TaSe2 at various temperatures. 
(Note that in ref. 5 overheating was less than 0.2 deg, 
while in the present figure the increased resolution 
was obtained at the cost of an overheating of about 
5-10 deg above the stated nominal temperature.) 
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mode to be an amplitude mode (6). All four modes soften and 
broaden with increasing temperature. These results represent the 
first observations of a softening of COW modes in a distorted 
phase. 

The damping constant of the E2g (49 cm-l ) mode increases 
quite drastically in approaching Tinc, approximately as (Tinc-T)-l, 
while the damping constants of the other three modes behave the same 
way in approaching Tcom' approximately as (Tcom-T)-l. Increases of 
this extent are quite unusual. 

Of particular interest is the detailed temperature dependence 
of the E2~ (49 cm- l ) mode frequency which varies as (Tinc-T)1/3. 
Further, ~t is proportional to the order parameter, for which the 
coupling coefficient of the light to the COW mode is a direct 
measure (7). This non-classical value of the exponent suggests 
that there exists quite a large region near Tinc where the simple 
meanfield theory (8), despite its qualitative success, is of limited 
use for describing quantitatively the thermodynamics of the COW's. 
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SYMMETRY CLASSIFICATION OF MODULATED STRUCTURES 

P.M. de Wolff 

Technische Hogeschool Delft, Lab. v. Techn.Nat. 

Lorentzweg I, Delft (the Netherlands) 

I. DEFINITION OF MODULATED STRUCTURES 

In a normal crystal, symmetry is defined by a group of 
operations, each of these belonging to the much larger group of 
all proper and improper movements. The symmetry translations 

~, -+ -+ 
r + n (I) 

-+ -+ -T -+ (. • where n nla + n2b + n3c ni = 1nteger, 1 = 1,2,3) constitute an 
invariant subgroup of every crystal symmetry group. 

We shall now try to find similar operations for modulated 
crystals. In an earlier paper (De Wolff, 1974, to be referred to 
as (I) from now), the possible point groups for such crystals have 
been derived from a description in four-dimensional space; the 
actual crystal is a section of this model, lying in the hyperplane 
which is constituted by the physical three-dimensional space. The 
same approach can very well be followed for the present purpose, 
viz. the derivation of symmetry operations and lattice types. We 
shall not do so (apart form an occasional reference) but rather 
emphasize the description both of the crystal and of the operations 
in direct three-dimensional space. The reason for choosing this 
alternative approach is firstly, that it is more convincing and 
easier to foilow, the more so since the basis for the point group 
enumeration will be derived in passing so that (I) need not 
necessarily be consulted. Secondly, it is better adapted to a 
precise definition of the symmetry operations and of the modulated 
crystals themselves. 

The latter are characterized by two properties: ~) To each 
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modulated structure corresponds a basic structure, that is, a 
"normal" crystal structure from which the modulated one can be 
derived by finite modifications, which are periodically ordered. 
We take displacive modulation as an example - other types of 
modulation yield the same results, and the displacive case is the 
more complicated one since here the modifications.have vector 
character. In fact they consist of a displacement ~ of each atom, 
which depends upon: 
- the kind of atom, each atom in the unit cell of the basis 
structure being considered as a separate kind so that the relevant 
index i runs from I to N, if N is the number of those atoms. 
- the position of the atom in the basic structure, defined by a 
vector ~~ where the index p symbolizes the integers PI, P2 and P3 
numberingPthe unit cell from an origin in a fixed cell. Thus if the 
fractional coordinates of the i-th atom in the basic structure are 
x9. (j = 1,2,3), the components of t~ are X~j + Pj' 
_11 fixed vector k in reciprocal spac&, with components k l , k2 and 
k3 with respect to the reciprocal basis of the basic structure. 
It is conceivable that structures exist modulated with more than 
one k-vector simultaneously. Here we shall restrict ourselves to 
the case of a single k-vector. The more general case is treated 
e.g. by Janner & Janssen (1977). 
- N periodic and continuous vector functions ~i{a), each with unit 
period, that is, invariant for an integer shift in a. These functions 
define the displacement of the atom at position t~ in the basic 
structure by p 

3 
+ • + ~ +0 U{1,p) = u. (k·r. ) 1 1p 

+ { 0 u. Ek.{x .. + p.)} 
1 I J 1J J 

(2) 

For convenience's sake we shall normalize the functions ~i by the 
condition that the average displacement vanishes: 

i = 1 ••• N. (2a) 

so that the x~. define the average position of the i-th atom. 
1J 

. ~) A: least one of the components k l , k2 and k3 depends 
1n a cont1nuous manner upon external parameters sucfi as the 
temperature. It can therefore be considered as an irrational number, 
in contrast with the rational k-components of superstructures. 

Property ~ was introduced as such in (I). Property A corres
ponds to the assumed existence of a lattice of "main reflections" 
in (I). The latter, however, are the diffraction image of the 
average structure (smeared atoms), not of the basic structure. 
Another competing structure is that of the solid phase without 
modulation, usually prevailing in a higher temperature range. It 
may be isostructural with the basic structure but again is not 
identical to it, since the temperature difference changes both 
unit cell and position parameters. Relations between these several 
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structures will be given in section 3. 

2. SYMMETRY OPERATIONS AND -TRANSLATIONS 

A symmetry operation is usually defined as a movement of the 
crystal, which brings it into coincidence with itself. An alternative 
definition leaves the crys~al where it is and defines as a symmetry 
operation each mapping t + t, for which 

+ 
<jl(r' ) 

+ 
cp(r) 

+ 
for all r, (3) 

cp being any local function, such as the electron density. For sym
metry translations, the mapping is given by (I). This "mapping 
definition" is so obviously equivalent to the "movement definition" 
that the distinction is hardly ever made. 

For modulated structures, however, the "movement definition" 
leads nowhere, but the definition (3) can readily be extended. To 
begin with, (Z) is replaced by 

+ + + +0 
u(i,p) = u.(k·r. + t). 

~ ~p 
(4) 

The new parameter t is an overall phase parameter for all 
~.-functions simultaneously. For an infinite crystal, the introduc
tion of t - or, more generally, a change ~t in t - is no more than 
an infinitesimal structural change. This fact follows from property 
b : Indeed the change ~t is equivalent to a mere change of the 
-.. 11 b + E" + . ~ + or~g~n ce y a vector n)a + nZu + n3c, prov~ded that k.n = ~t 
(mod I). Because of the irrationality of at least one kj, this 
equation can be fulfilled to any desired degree of accuracy by a 
judicious choice of the integers nj' Stated in less mathematical 
terms: the environment of a given atom is of course modified if t 
changes, but the new environment could have been found before the 
change for an atom elsewhere - not exactly, but with any desired 
degree of precision. Therefore it is plausible to extend (3) as 
follows: An "MS-(modulated structure-)symmetry operation" is a 

. + +, , 
mapp~ng r + r , t + t such that 

cp(t',t') + cp(r,t) for all t and t. (5) 

A mathematically exact symmetry translation can now be derived for 
modulated crystals, starting from () and adding a "compensating" 
change in t: 

t' 

+ + 
r + n 

t - It·ri. 

ri basic structure lattice vector. 

(6a) 

(6b) 
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In the senSe of symmetry definition (5), this operation can be 
interpretated most easily by looking first at~(6b). Writing 
~(i,p,T) for~th~ iisplacement of the atom at r~ for t = T, we find 
u(i,p,t') = ui(k(r~p-n)+t) = ~(i,p-n,t). Hence ~6b) signifies that 
all displacements are carried over to atoms removed by a shift n 
from the atom to which they referred originally, the shift of course 
being performed on the corresponding atoms in the basic structure. 
Then it is obvious that (6a) indeed relates a site t before the 
execution of (6b), to a site at t' with identical ~ after that 
operation, cf. fig.l. Because of the periodicity of the !i-functions, 
adding an integer to t is also a symmetry operation. Therefore we 
can now write down the complete set of MS-symmetry translations: 

t' = t - Itt + S (7) 

n basic structure lattice vector; s = integer. 

Though the set (7) clearly defines a group of translations in 
four-dimensional (r, t)-space, we shall continue to use words like 
"space" and "vector" in the three-dimensional sense. Moreover, we 
shall drop the term "pseudosymmetry" used in (I), since the approxi
mative nature suggested by that term applies neither to translations 
(7) nor to the operations which will be discussed in the next 
sections. Instead, the term "MS-symmetry translations, MS-symmetry 
operations" etc. will be used for operations which include a 
specified mapping t ~ t' (even if t' should be equal to t) in order 
to distinguish these from normal symmetry operations. 

3. PROPERTIES OF MS-SPACE GROUP OPERATIONS 

Besides translations (7), a modulated crystal may have other 
symmetry operations. In our extended concept of symmetry, defined 
by (5), we ~hall have to specify the general nature of these 
op:rations r ~~, and t ~ t'. Beginning with t', we observe that~ 
th1s parameter can depend only upon the former value t - not on r, 
because both t and t' are defined by (4) as overall phase parameters 
constant in space. The actual form of this dependence has to pre
serve the symmetry translations~consisting of integer shifts in t, 
hence they must be of the form t' = £t + 0, where £ = ±I and 0 is 
a constant. 

P Q 

fig.l. Operation t' = t - moves each displacement of the modulated 
chain (thick line) to the next atom, e.g. from P to Q. 
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The other part i + i' of a symmetry operation has to be a 
normal space group operation. As a matter of fact it belongs to the 
space group of the average structure. This follows if we take the 
average of both sides of (5) over one period of t (which according 
to the above is also a period of t'): 

~ (i') = ~ (i) • av av 

Accordingly a MS-symmetry operation has the general form 

t' 
++ 

e:t - kp + n 

(8) 

(9) 

where (8) is an element of the space group of the avera~ struc
ture. In (9) we have replaced the above constant a by -kp + n, in 
analogy with (7), and in order to simplify further relations. 

Finally it should be noted that (8) is also an element of the 
space group of the basic structure. This follows from the fact that, 
just as with symmetry translations (7), equation (8) connects 
points with identical electron density before and after the appli
cation of (9). Hence, it also connects corresponding atomic centra, 
which means that an atom at i. (t) is imaged by (8) in some atom 
at i. (t') see fig. lb. ~p 

or 

Jq 

t. (t') = St. (t) + ; Jq ~p 

-to r. 
Jq 

+(. ') s-tO + u J,q,t = r. 
~p 

Since by 
zero, we 

(2a) the average of 
obtain by averaging 

t'? = St'? Jq ~p 
+ + p 

+ sti (i , p , t) + ;. (10) 

+ + u, and therefore of Su as well, is 
(10) over t and t' 

(11 ) 

which establishes the operation (8) as a normal symmetry operation 
of the basic structure. 

Moreover, by substituting (11) in (10) we obtain 

ti(j,q,t') = Stl(i,p,t), (12) 

an important starting point for the derivation of the relation 
between symmetry-equivalent tl. 's which will be given in section 5. 

~ 

Now that both the average and the basic structure have been 
shown to possess the symmetry elements (8), the question may arise 
what the relation is between the space group G evidently formed by 
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these elements, and the space groups G and Gb of the av·erage and 
basic structure, respectively. Since tR~ centre of an atom in the 
basic structure is the centre of gravity of the corresponding 
smeared atom in the average structure, each symmetry operation of 
the latter applies to the former as well. Combining this result 
with those derived above we obtain 

In most of the structures which are known the three groups are 
identical. 

4. REDUCED FORM OF POINT GROUP OPERATIONS 

(13) 

Obviously the homogeneous parts of (8) and (9) taken together 
form an element of a finite group K4 , which plays the same role as 
the point group of normal crystals. We shall number these elements 
with an index m=I ••• g, where g is the group order: 

-;, = S -; 
m 

t' = £ t 
m 

(14) 

On the other hand, the operators S clearly constitute a normal 
point group K. The question then arisesmto what extent K is 
different from K4• It was shown in (I) that the one-dimensional 
representation £ of K4 is contained in S • Hence K and K4 are 
isomorphous. Mor~over the corresponding r~duction of S to 

m 

Sm - (:= ;= :) (15) 

m 
occurs for a suitably chosen basis of basic structure lattice 
vectors. The proof of (IS) will be repeated h~re in terms of a new 
approach, using the properties of the vector k. 

+ 
5. EQUIVALENCE AND INVARIANCE OF k-VECTORS 

So far, the vector k has been considered as a constant not 
changed by the action of a symmetry operation. However, it is 
clearly not a unique vector. We may guess that more or less 
equivalent k-vectors can be derived in three ways from a ~ven k: 
a) by adding a basic structure reciprocal lattice vector n 
b) by inversion, yielding -k 
c) by letting the point group operations S act on it. 

a) The first procedure will now be shown to lead to what we 
shal1 cal1 "t-equivalent" k-vectors. Two vectors k and k' are 
t-equivalent if there exist functions tii such that the description 
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of the structure by (4), based on 1, can be replaced by a cor
responding one based on l' : 

t. (ko;'? + t) = ti~ (k't:' + t). 
~ ~p ~ ~p 

Hence the new functions ~~(a) have to obey 
~ 

+ + + + ," 
'( ) { (k' - k)"""'r. } u. a = u. a -
~ ~ ~p 

+ 
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(16) 

(17) 

for all unit cells p. Since u. is periodic with period I, two 
different unit cells, lying a~B.S. lattice vector ri apart, can 
satisfy (17) only if (k' - k)o~ = integer; and this has to be true 

. + .. 
for all latt~ce vectors n. Such a Laue-type cond~t~on has the 
well-known consequence 

(18) 

+* . where n+ is a ~ec~procal lattice vector of the basic structure. 
Hence, k' and k are t-equivalent only if they obey (18). COiversely, 
substitution of (18) in (17) yields the phase correction -ri ot~ to 
be applied to~. in order to accomodate a shift (18), so (18) t~ 
both a sufficieht and a necessary condition for t-equivalence of 
k' and k. 

b) The second of the above three procedures, inversion, never 
yields a t-equivalent vector, since for inversion (18) requires 
2k = rill! which is impossible for the incommensurate -K' s considered 
here. This result may seem strange because k and -k are obviously 
equivalent vectors e.g. in the description of the diffraction 
image. However, t-equivalence is a mathematical concept, not a 
physical one. (The inversion k' -k can be accomodated by a 
condition like (16) but only with reversed sign of t on the 
right-hand ,side of that equation. Indeed t-equivalence would be 
physically significant if modulation were a wave phenomenon, with 
t proportional to the time, which would make a distinction between 
-+ d -+ • ) k an -k mean~ngful. 

c) Finally we investigate the kind of equivalence which arises 
from the action of S on k. We shall show that there is t-equivalence 
between k and £ S k (not Sk!), where the index m numbers the point 
group ope!ftion~ in (14), for m = I ... g. Starting from (12) and 
letting S act on both sides we obtain 

m 
+ -+ +0 -1+ -;)- +0 , 
u.(kor. + t) = S u.(Kor. + t ). 
~ ~p m J Jq 

The right-hand side of ~. in (19) is now brought in the form 
required by (16) first b1 substitution of (II) and (9) 

(I9) 

ko-;~ + t' 
Jq 

+ +0 + =l-+ 
k o (S r. + p) + £ t - kp + n 

m ~p m 
koS t~ + £ t + n. 

m ~p m 
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+ -+ -1+ + . 
Since k(Sr) = (S k)or we obta~n 

+ +0 -1+ +0 
kor. + t' = € {(€ S k)or. + t} + n. 

Jq m m m ~p 

Substitution in (19) leads to 

+ -+ +0 -1+ -1+ +0 
u.(kor. + t ) = S u.e {(e S k)or. + t} + n 
~ ~p J m m m ~p 

in which equation we recognize (16) with 

k' = (e S ) -lk 
m m ' 

+ -1+ 
u~(a) = S u.(e a 
~ J m 

or k = e S It, 
mm 

or ii. (a) 
J 

(20) 

(21 ) 

so any two k-vectors related by (20) are indeed t-equivalent. Ac
cording to (18) this means that 

-+ -+ +* 
€ S k - k = n • 
mm 

(22) 
g 

We now consider the "projection operator" 1.. Ee S = Po Applied 
+ hI' p+ gl mm •• to any vector v, t e resu t ~s a vector v ~nvar~ant 

under all operations e S (m = 1 ••• g). Such vectors ~ constitute 
a linear vector space ~tm(line, plane or whole space) and P actually 
performs the geometric projection of ~ onto L . The one thing we do 
not yet know is whether Lt is not of zero dim~nsion, that is, 
whether there exists a vector ~ so that p~ is not zero. The answer 
is that k is such a vector. This is readily found by writing down 
the identity: 

-+ 7- g 7--+ 
k = PK - (l/g)E(e S K - k). 

1 m m 
(23) 

From (22) it follows that the second term is a rational vector. 
Hence, the first term, Pk, cannot be zero since that would make the 
left-hand side k rational as well. So k is a vector for which 
Pk .; O. 

If k is in L , (20) reduces to k' = k and (16) to ii.(a) = ti~(a). 
Then (21) immediately yields the important relation (de ~olff, 1~77) 

+ + 
u.(a) = S u.{e (a - n)} 

J m ~ m 

between displacements of symmetry-related atoms. 

If k is not in Lt , it can be written 

k = Pk + kO• 

(24) 

From (23) and (22) we conclude that k is a rational vector. It will 
be shown in section 8 that kO can be ~isregarded - so that k becomes 
a vector in L - by introduc~ng a new type of symmetry translations 

t 
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as well as the corresponding new Bravais lattice types. 

The proof that every S of the point group K can be wri~ten 
in the form (15) is obviousmnow: we only have to c~oose the c basis 
vector among (multiples of) the rational vectors Pn left invariant 
by each E S , that is, in Lt' If Lt is three-dimensional, (15) 
reduces t~ ¥1L3 ; if not, the other basis vectors can~always be 
chosen to obta1n a form of (15) as well, because if n is a lattice 
vector clearly both the mutually perpendicular vectors Prt and 
rt - Prt are rational vectors. 

6. POINT GROUPS 

It follows from (15) that there is just one E -value possible 
for each S within a given group K4 of operators ('4), that is, K4 
is isomorpWous with K. The notation for groups K4 can therefore 
be made unambiguous by using the Hermann-Mauguin symbols for the 
corresponding point group K, adding a prime (') to those symmetry 
elements which are generated by an operation for which E = -1. The 
possible elements are enumerated below, with indices II and JL 
denoting their position with regard to Lt' 

Generating operation has: E = 1 E = -1 

Lt whole space l' 
Lt plane mllor 21 or l' 
Lt line mll ,I,211 , 2' l' , ~, ,m..l. 

311 ,411 or 611 3; I ,4; I or 6; I 
In order to enumerate the point groups K4 , one can start by 

looking at the possible groups K and use the 1somorphism between 
K and K4 to arrive at groups K4 afterwards. Regarding the groups 
K we observe that any normal point group which has a reducible 
vector representation (that is one, which leaves at least one line 
invariant) may occur as a group K. As a matter of fact, if this line 
is inverted by an element S of such a group, then the corresponding 
element of K4 will have E = -1, and otherwise E = +1, so that ES 
leaves the vectors along the line invariant and the line will serve 
as (part of) L • In this way for each of these groups, a cor
responding groSp K4 can be constructed. 

Since all point groups except the 5 cubic groups fulfill the 
above condition, the group K can be any of the 27 non-cubic point 
groups. However a given group among these 27 can lead to more than 
one group K4 if there are several inequivalent choices possible for 
the invariant line(s). There is no problem in the groups with 3-, 
4- or 6-fold axes, which have just this axis as the invariant line, 
nor with the triclinic system. The orthorhombic groups have- three 
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Table 1. Point Groups 

System Normal Magnetic Modulated Group 
(K4) of e:S 

Triclinic 1 
I 1 I' 

Monoclinic 2 2' 2 ' m 
II m m' m m 

2/m 2'/m' 2' /m m 

Monoclinic 2 2 2 2 
III m m m' 2 

2/m 2/m 2/m' 2 

Orthorhombic 222 2'2'2 2'2'2 mm2 
(L t / / c) mm2 m'm'2 mm2 mm2 

mmm m'm'm mmm' mm2 
m2m m'2'm m2'm' m2m 

Trigonal 3 3 3 3 
3 3 3' 3 
32 32' 32' 3m 
3m 3m' 3m 3m 
3m 3m' 3'm 3m 

Tetragonal 4 4 4 4 
4 4 4' 4 
4/m 4/m 4/m' 4 
422 42'2' 42'2' 4mm 
4mm 4m'm' 4mm 4mm 
42m 42'm' 4'2'm 4mm 
4/mmm 4/mm'm' 4/m'mm 4mm 

Hexagonal 6 6 6 6 
6' 6' 6' 6 
6/m 6/m 6/m 6 
622 62'2' 62'2' 6nun 
6mm 6m'm' 6nun 6mm 
6'2m 62'm' 6'2'm 6mm 
6/mmm 6/nun'm' 6/m'mm 6nun 

invariant lines, but only for mm2 the axes are inequivalent. This 
-+ leads to K4-groups nun2 and m2'm' for Lt parallel to c. 

A much more fundamental distinction can be made for monoclinic 
groups K, depending on the choice of invariant line{s) perpendicular 
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to the binary axis, or parallel to that axis. There is good reason 
to distinguish two systems of monoclinic groups K4 correspondingly, 
viz. 

system "monoclinic II" (Lt = plane): point groups 2', m and 
2' 1m 

system "monoclinic III" (L = line) : point groups 2, m' and t 21m' • 

The roman numerals stem from the numbers of the corresponding 
four-dimensional groups, cf. (I). The reason for having two dif
ferent monoclinic systems is that different types of lattice obtain 
for each, cf. table 2. There is no such complication for the other 
systems so that K4-groups can be classified conventionally in those. 
In total we find 27+1+3 = 31 groups K4 . They have been listed in 
(I). These groups are in a \-1 correspondence with the 31 "admissible 
magnetic groups" (Opechowski and Guccione, 1965), consisting of 
combined time- and space operations which leave a magnetic moment 
vector invariant. Indeed the time inversion is formally equivalent 
to our € = -1, and the difference between the positions of primes 
in the two lists is caused by the ~xial character of the magnetic 
vector as compared with our polar k-vector. 

7. RATIONAL AND IRRATIONAL NON-ZERO COMPONENTS OF k 

The vector Pk, lying in L , has essentially more than one 
non-zero coordinate in two systems, viz. two in monoclinic II, and 
three in the triclinic system. In these cases it should be noted 
that our definition of a moculated structure requires at least 
one irrational coordinate. The remaining one(s) can be rational, 
though that is not plausible from a physical point of view except 
for e.g. structures with a strong layer-like character. 

The component kO of k perpendicular to Lt , if not zero, has to 
be a rational vector in order to satisfy (22). It is easily deter
mined in most systems merely by substituting for €S the generating 
rotation about the unique axis, if any. The result often depends on 
the kind of Bravais lattice of the structure. Firstly, since*(22) 
is valid for a description on a primitive base, the vector ri in it 
has to be a reciprocal lattice vector not extinguished by centring 
conditions for a non-primitive base. Secondly, a solution kO of 
(2~) is not significant if there exists a reciprocal lattice vector 
til with the same projection along L . (As a matter of fact, the 

. t 
equat~ons 

and k = Pk + k o 
+ +* + +* + 

yield k - n l P(k - n l ) as a vector which can replace k since 
according to (18) it is a t-equivalent vector, and which lies in Lt.) 
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This restriction invalidates many solutions for centred 
lattices. For instance, in system aonoclinic II the solution (OlO) 
for kO is easily found, but when applied to a C-centred lattice, 
the corresponding vector (now written conventionally as (010)) 
coincides with (110) in the projection along L which in this case 
is the projection on b. The various possibilittes for all systems 
will now be enumerated in full, they are shown in fig.2. 

For the hexagonal system one finds that (22) with ES = R 3 
. + TTl already+excludes any fractional vector kO' In the tetragonal 

system kO = (!lO), and in the trigonal system (~~O) fulfill the 
condition, but they are both significant only for P-type Bravais 
lattices. In monoclinic III, with ES = R about the unique b-axis, 
(iOO), (!ol) and (OO!) are equivalent po~sibilities; the latter two 
are valid for both P- and C-lattices. Monoclinic II, with ES = 
mirror with respect to the a, c-plane, yields (OlO) for P-, but no 
signifi~ant ~olution lor ~-lattices as shown above. In the triclinic 
~ystem k = 0 since Pk = k for any vector. Finally, with L along 
c the or~horhombic system yields (!OO) for P, A, C- and F-tattices, 
(!!O) for P-lattices only and no solution for I-lattices, where it 
must be stressed that the coordinates refer to an orthogonal base 
(100), (010) of the p- or c-net of non-extinct points of the 
reciprocal net 1=0 (for the centred lattices this differs from the 
convention which e.g. for a C-lattice would call this base: (200), 
(020)). 

Both table 1 and the drawings of fig.2 are easily inter
preted if one remembers that the operations ES leave a vector in
variant. For each group K4 therefore, they form one of the 
"pyro-electric groups", as indicated in the last column in table 1. 

8. NECESSITY OF INTRODUCTION OF BRAVAIS LATTICE TYPES WITH 
IMPROPER TRANSLATIONS 

In this section it will be shown that it is possible to assign 
a k-vector lying in L to any given modulated structure notwith
standing the just-mentioned possibility of non-vanishing perpen
dicular components, by accounting for such components through the 
introduction of a new type of symmetry translations. We shall begin 
by showing that such a seemingly complicated procedure is necessary 
for the enumeration of inequivalent MS space groups. 

The MS space groups are to a large extent similar to those of 
normal crystals. Equations (8) and (9) indicate clearly the recipe 
for enumeration one sho~yd follow : each generator of the basic 
structure's space group (given by Sand p) must be completed with 

*)We use this term in a loose sense. Actually the group G is meant, 
which in theory may be of lower symmetry than Gb , cf.(13), 
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MONOCLINIC II MONOCLINIC III 

• . .... " • •...•. x • 
¥ 

Lt • 0 • 0 
x 

• • x • • x • 
P2b P2c C2c 

ORTHORHOMBIC ......• .... • . ..... " • .·····x • . ...... • '. '. '. 
\, 0 • 0 x • x .. 0 • 

• • • K • • x • • x • 
Pc A2~ Cp FA 

TETRAGONAL TRIGONAL 

• • e. • 
x . ..... x 

'x • .. , • 
• • x 

Pc • • 
P3~ 

-+ 
fig.2. The k-vectors not in L , corresponding to the 10 new types 
of Bravais lattices in table 2. In each case Lt is normal to the 
paper; it is a plane for the system monoclinic II and a line other
wise. The dotted line shows the component k JL L of the k-vector • 
• ,~ basic Structure reciprocal lattice poin~s attlevels 0 and !. 
0,8 satellites, at levels Pk and Pk+!. 

some indication of the corresponding £ and n, and the lattice symbol 
of the basic structure must be added. For £ , the prime convention 
has been borrowed from magnetic groups already in (I), as an in
dication of £ = -I. 

However, the results of the foregoing section show that one 
more distinction has to be made, namely between the possible 
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values of k O' This rational component of k may well influence the 
number of inequivalent choices for the shift n in t in the rotational 
generators. For instance if ij the system monoclinic III the space 
group of the basic structure is P2, the rotation over ~ (E = +1) 
mayor may not be accompanied by a shift n = I in t, so that we 
obtain two MS-space groups when kO = O. 

On the other hand, if 1 = ~t· the product of the same rotation 
with the translation A alrea9y yield~ such+i combined operation of 
Rn and a shift of ~ in t. Hence for kO =+~a lhere is only one 
MS-space group, while there are two for kO = O. The situation is 
entirely comparable to normal space groups for a monoclinic struc
ture: we have P2, P2] and C~ but C2J is equivalent with C2. Indeed 
it can be shown that [0 =!a corresponds to a centring in four
dimensional space. 

+ 
The effect of koD can be accounted for entirely and unambiguous-

ly by an extension f the lattice types~ This is particularly simple 
for the non-trigonal systems. The case kO = !~ for instance, 
signifies according to (7) that the translation A increases t by ~. 
The alternative way of l~oking at such translations ~hich we now 
propose is a) to ignore kO' so that k - kO replaces k; b) to aii~unt 
for the t-shift by allowing s in (7) to equal ! when n 1 is odd • 
The t-shift is thereby incorporated in the lattice type. In itself 
it is an operation of order 2, and it commutes with all symmetry 
translations of the basic structure. Therefore it offers the same 
extension of lattice types as that other external binary element: 
time inversion, well known in magnetic symmetry. 

The difference with the magnetic case is, that t-shifts of I 
have to be considered only for the axes perpendicular to L • None
theless we can make full use of the existing enumeration of magnetic 
lattice types and their nomenclature, as given by Opechowski and 
Guccione (1965), cf. section 10. In the trigonal system, the case 
kO = (-1 i 0) obviously calls for a different approach. It leads to 
only one new type of lattice, shown in fig.7, which has a primitive 
hexagonal lattice of the basic structure, and a shift of t in t 
along t. In analogy with the above-mentioned nomenclature, we propose 
the symbol P3 for this lattice. The ensuing list of MS-lattice 
types is give~ in table 2, cf. section 1~. 

9. TWO-DIMENSIONAL EXAMPLE OF IMPROPER TRANSLATIONS 

In order to elucidate the foregoing sections, we discuss the 
two-dimensional MS-plane groups plm and P2b1m illustrated in fig.3a 
and 3b. Both are derived from a basic structure with plane group pm. 

*) h" " We use t 1S term 1n a loose sense. Actually the group G is meant, 
yhich in theory may be of lower symmetry than G , cf.(13) • 

•• Such translations are termed "improper" by de ~olff (1977). 
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t1 --l- -......... a· 
•••• 
•••• • 

••••• •••• ..... 
• ••• 

• •••• 

• • 

• • 

• • 

• • 

• 

• 

• 

• 

fig.3. Plane groups derived from the normal group pm. a) plm 
b) P2b1m c) reciprocal lattice of P2b1m; left: overall picture, 
right: enlarged portion. Large dots are main reflections. 

167 



168 P. M. de WOLFF 

The more elaborate notation (plm means m perpendicular to b) is not 
absolutely necessary but it helps to prevent confusion. The fact 
that there is no prime in either symbol means that m has € = +1, 
hence the vectors in Lt are those parallel to m. The simplest case, 
the~efore, is the one with k parallel to m, that is, in the direction 
of a: MS-plane group plm. 

Just as in the three-dimensional case, the fact that Lt is the 
site of a twofold symmetry element allows a seconi possibil1ty for 
the k-vector, called k', with a component k = ~b normal to Lt' 
This is rendered by the lattice type P2b' TRe diffraction image 
in fig.3c clearly shows that the remain1ng k parallel to L is 
unique and is in agreement with the orthogonal symmetry, w~ereas 
the original k'-vector is ambiguous (its image k" with respect to 
m is an equivalent choice) and clashes with the point group symmetry. 
The lattice type P2b eliminates these drawbacks. It does so at the 
cost of an unusual extinction rule, viz. presence of m-th order 
satellites for 

2k + m = even 

where one has to admit half-integer values of the k-index. 

As explained in section 6, there is no choice if one wants to 
express the influence of k on MS-space groups available for a 
given basic structure. In 2his respect the situation for basic 
structure space group P2 sketched there is exactly as in the present 
case: apart from plm and P2b1m there existst just one further 
extension, viz. plm1 (cf. fig.4; m1 is a mirror coupled with a shift 
1/2 in t), and no separate group "P2b1ml" (the corresponding symbols 
in (I), table 2, are Pm for plm, Am for P2b1m and Pc for plml ). 

fig.4. The plane group plml 
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• • • 
• • 

• b- • tf\ 
• • 

• • • 
-+ -+ 

fig.S. Reciprocal centred net, Ltis parallel to b. The vector k, 
when chosen in Lt , extends beyond the first Brillouin zone shown in 
the figure. 

10. ENUMERATION OF LATTICE TYPES 

The last three sections have ~ade it clear that among the 
possible criteria for normalizing k, the choice of a vector 
belonging to L is by far the most prompting in order to avoid 
complications. tIt should be stressed that such a choice is by no 
means equivalent to a preference for the first Brillouin zone. To 
illustrate this, fig.S shows a two-dimensional reciprocal ~et of 
the centred+type. With orthogonal axes a > band Lt along b, one 
finds that k vectors lying within Lt for which 

fig.6. Two magnetic Bravais lattice types which are equivalent when 
applied to modulated structures. 
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Table 2 

MS-system vectors Lattice types 1 for lattice of 
in Lt basic structure 

(irr=irrational~ 

basic modulated kl k2 k3 
struc- structure 
ture 

triclinic all P P irr irr irr 

monoclinic b P P irr 0 irr 
II P P2b irr ~ irr 

C C irr 0 irr 

monoclinic lib P P 0 irr 0 
III P P 0 irr ~ 

C C2c 0 irr 0 
C C2c 0 irr ~ 

orthorhombic Ilc P P 0 0 irr 
P P2a 1 0 irr 2 

P Pc ! ~ irr 
A A 0 0 irr 
A A ! 0 irr 
C C2a 0 0 irr 
C Cp I 0 irr 
I I 0 0 irr 
F F 0 0 irr 
F FA I 0 irr 

hexagonal Ilc P P 0 0 irr 

trigonal Ilc P P 0 0 irr 
P P 1/3 1/3 irr 
R R3a 0 0 irr 

tetragonal Ilc P P 0 0 irr 
P Pc ! ! irr 2 

I I 0 0 irr 

fall outside the first Brillouin zone. Preference for the latter 
would lead to an oblique vector k' not in Lt' 

Cases in which kO is essentially non-zero (section 7) have 
recently been found to occur among actual modulated structures. An 
example is the monoclinic III-structure of TTF-TCNQ between 54K and 
47K which has k = (!, 0.295,0) so that it corresponds - after inter
changing a and c - with the case P2c in fig.2 (Bak, 1977). Hence, 
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tig.7. The lattice type P3 : symmetry translations perpendicular to 
c. The shift in t is t ora4 in going from a black dot to a circle 
or an asterisk, respectively. 

enumeration of lattice types including all such cases is of more 
than academic interest. 

The types listed in table 2 have been derived in three ways: 
a) As in section 7, from the possible vectors kO' including zero. 
b) for the non-trigonal systems: by studying the type or types 
corresponding to each magnetic lattice. Some of these lead to more 
than one ~S-type. For instance, if Lt in an orthorhombic lattice 
is along c, then clearly the lattices C and A are not equivalent. 
On the other hand, many magnetic lattices are superfluous as an 
MS-type. An example is CI ' illustrated in fig.6. It has C-centring 
with a shift ! in t accompanying the centring translation as well 
as the c-translation. With Lt again in the ~-direction, however, 
the latter shift mer~ly changes k3 into 1 - k3 . Though this may 
in some cases bring k within the first Brillouin zone, we prefer to 
disregard that criterion as we have done above, and to replace CI 
by the simpler type Cp which has a t-shift for the centring trans
lation only. 
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I. Introduction 
During this meeting one has heard a lot about crystals with an 

incommensurate phase. Characteristic for these is the absence of 
space group symmetry. However, as de Wolff explained already (ref. I), 
it is possible to extend the notion of symmetry. Our approach differs 
somehow from his and originates from a study of the space-time 
symmetry of vibrating crystals. The· symmetry of a vibration mode is, 
in general, irrelevant, unless this mode plays a predominant role, 
e.g. if it is a softening mode. However, we will see that the symmetry 
considerations can also be applied to modulated crystals, both static 
and dynamic. 

Consider a crystal vibrating in a single mode. For simplicity 
we take a one-dimensional Bravais crystal (fig. I). The displace
ment of the n-th atom in the chain is given by u - u sin(qna-~t). 
The pattern of world lines in the x-t-p1ane showR invariance under 
a lattice of translations denoted by t. A basis of t is formed by 
a l c (a,qa/~) and a 2 - (O,2w/~). For fixed t the positions of the 
atoms do not have translation symmetry, but form a crystal with a 
disp1acive modulation. The difference between the structures at 
two different times is just an overall phase shift. 
Hence, if we identify ~t with the phase ~, one can see the modulated 
crystal as a section of a periodic pattern in the x~-p1ane. In this 
way we have imbedded the crystal in position space (denoted by VE) 
into a larger space (called superspace) which is the sum of VE 
and an internal space VI' 

In the superspace Vs the reciprocal lattice t· has a basis 
with a~ - (2w/a,O) and a~ - (-q,~). The projection of t on VE 
consists of the vectors k - n(2w/a) + mq (n,m integers). This means 
that the diffraction peaks of the modulated crystal belong to this 
projection: the points n(2w/a) are the main reflections, the other 

172 
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Fig. I 

ones (with m ~ 0) the satellites. If we denote the lattice of the 
undistorted crystal by A, the lattice in VI spanned by (O,2w/w) by 
D, their reciprocal lattices by A~ and D~, the projections on VE 
and VI ~y wE and wI' resp., then one has the following important 
propert1es: 

(J .1 ) 

Apart from the translations there is another symmetry element 
of the pattern in VS: the 1800 rotation which is a combination of 
the reflection x ~ -x (which is a symmetry element of the undistor
ted crystal) and the operation t ~ -t (which is a transformation in 
V ). The symmetry group of the pattern is the space group p2. The 
elements of this group are combinations of space group elements in 
VE with transformations of the internal space. This extension of the 
class of considered transformations is not uncommon. In the theory 
of non-rigid molecules, e.g., the symmetry elements are also combi
nations of orthogonal transformations with internal transformations. 
As an example, the symmetry §roup of C2H6 has 36 elements (fig.2) 
and is generated by i) a 120 rotation of the whole molecule, ii) 
a 1200 rotation of the top part with respect to the bottom part 
(an internal transformation) and iii) a reflection followed by an 
internal rotation. The only Euclidean transformations are the rigid 
1200 rotations. 

One can generalize the concepts introduced above. The displace
ment is not necessarily sinusoidal, but is described by a periodic 
function: u - u(qna-~) with u(x+2w) - u(x). 
A modu1atedncrysta1 with such a modulation in n dimensions (usually 
n-3) can be imbedded into a (n+I)-dimensiona1 superspace. For a 
superposition of modulation waves the modulated crystal can be im-
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bedded into (n+d)-dimensional superspace, when d is determined as 
follows. The diffraction pattern of such a crystal consists of k
vectors with 

k 
n 

= 1: 
i=1 

( 1.2) 

where a~ are main reflections and ~ basic satellites. Finally, not 
only dilp1acive modulation can be d~scribed in this way, but also 
a continuous density distribution for which the spectrum is given 
byeq. (1.2). The different more general cases are discussed in ref. 
2. 

II. Superspace groups 
All the cases mentioned at the end of the first section can be 

described by superspace groups, generalisations of the two-dimensio
nal space groups, found for the simple n-I, d-I example. The mathe
matical definition is as follows. A superspace group G is 

a) a subgroup of E(n) x E(d) such that 
b) the translations in G form an (n+d)-dimensiona1 lattice 1:,and 
c) the intersection of the reciprocal lattice 1:* with VE is an 

n-dimensional lattice A~. 
Condition a) means that the elements g of G are pairs (gE,gI) of 
Euclidean transformations in, resp., nand d dimensions. 
Condition b) implies that G is a space group. Condition c) gives the 
space group additional structure. It implies that one can choose 
standard bases for 1: and 1:~ • A standard basis for 1: is one for which 
the last d basis vectors a +I, ••• ,a ~ belong to VI. A standard basis 

-- • h *' n. b 1 n+ V for 1: 1S one w ere al, ••• ,a~ e ong 0 E. 

5()J6 
2 1 

4 

60." :()16 
J 2 5 

5 J 2 
mE 4 

~ 0': '.!l()14 
J 5 J 

2 2 6 
5 

Fig.2 
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Because the satellites of the zero vector belong to the projection 
of the lattice spanned by a"* I"" ,a* d on VE, the property that 
the modulation is incommensUfate cann&e formulated by the condition: 

d) the intersection of E with VI is the zerovector. 
Condition d) is not essential for the consequences and is not inclu
ded in the definition. For convenience, however, we shall assume 
only the incommensurate case in the following. 

A superspace group is given by its lattice translations, its 
point group and the nonprimitive translations v(R), whereR=(~,RI) 
belongs to the point group K. A standard basis for E is given by 

a. = (a., -t.a.) 
1 -1 -1 

a . = (0, b.) 
n+J -J 

(i 

(j 

I, •• ,n),a." A , t.a. (:. VI 
-1 ·-1 (2.1) 

I, •• ,d),b. Eo D 
-J 

If a*. (i=I, •• ,n) form the reciprocal basis of It and b~ that of r! , 
the -~eciproca1 basis of tl' is -J 

iI a. 
1 

a-lrr • 
n+J 

(a~, 0) 
-1 

O:.r., It.) 
-J -J 

(i = I, .• ,n) 

, ( j = I, .. , d) , A" blt• to VE -J 

(2.2) 

Because D and 
t." 11. as 

tt span VI and VE, resp., one can express t.a i and 

-J d 
1: 

j=1 
n 
E 

i=1 
• a • . a. 

(2.3) 

J1-1 

An arbitrary 
VE given by 

k = (~E,!s.I) of t with k En.a. has a projection on 
1 1 

n 
k = E -E iel 

d 
t 

j=1 
~b" n . Ii. • 

n+J -J 
(2.4) 

Comparing this with eq. (1.2), one finds that the t.Ofrb". are the basic 
satellites. Hence the entries of the dxn matrix a in ~q. (2.3) are 
the coordinates of these basic satellites with respect to the basis 
a*., .. ,al- of A.IJo. 
-1 F~P an incommensurate modulation it is 
point group K is isomorphic to the group ~ 
respect to a standard basis the point group 
ted by matrices 

( r E(R) 
r(R) = rM(R) 

easy to show that the 
of elements ~. With 

elements Rare represen-

(2.5) 

The matrices rE(R) form the group ~, the matrices rI(R) the group 
KI • They are n-, resp. d-, dimensional point groups. The dxn matrix 
rM(R) is given by 
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(2.6) 

Because r(R) (hence also rE(R), rI(R) and rM(R» are integral ma
trices, eq. (2.6) puts strong restrictions on the possible a's 
(i.e. possible modulation vectors) for given KE and KI • Two matrices 
a can give rise to the same rM(R), i.e •. to the same point group. 
T'" •• d •• 1 r hh were 1S a un1que. ecompos1t10n a - a + a suc.t at 
a1 r (R) - rI(R) a1 - 0, (all R E K). The matrices a1 for given 
rE(I) and rI(R) form a real vector space, corresponding to Lt in 
de WOlffs talk (ref.t). The matrices ar have rational coefficients. 

Starting from the knowledge of the point groups in nand d 
dimensions, one can determine all possible a's, i.e. all possible 
point groups of superspace groups. Then one can determine all super
space groups using a method discussed in ref.3. 

III. Equivalence classes 
In the usual crystallography one identifies isomorphic space 

groups. In this way one obtains 2t9 nonequivalent space groups. 
Superspace groups have an additional structure. Therefore, one 
defines: two superspace groups G and G' are equivalent if and only 
if a) they are isomorphic with an isomorphism that b) maps a standard 
basis for the lattice E of G on a standard basis for G'. Just as 
for usual crystallography this implies an equivalence relation for 
lattices: the lattices E and E' belong to the same Bravais class if 
and only if there are standard bases for both E and E' such that 
the holohedries (the symmetry point groups of the lattices) have 
the same !ftrices. This means that these point groups are related by 
r'(R) - S r(R)S (all R in K) with 

S - ( ~ 
where SE' ~ and SI are integral matrices. With this equivalence 
relation the number of Bravais classes is finite. To give an idea, 
in table I is given the number of Bravais classes for n=3,d=0,t,2,3. 
Since the matrices rE(R) of the holohedry form an n-dimensional point 
group which belongs ~o an n-dimensional (usual) Bravais class, one 
can assign each Bravais class in superspace to a Bravais class in 
n dimensions. To this correspond the different columns in table I: 
Tr ~ triclinic, M • monoclinic, 0 = orthorhombic, T - tetragonal, 
Tg - trigonal, H • hexagonal, C • cubic. 

A Bravais class is characterized by its holohedry, i.e. by the 
elements rE(R), rI(R) and r~~R) or equivalently by the corresponding 
arithmetic point groups KE,-IeI and the matrix ar. Since ar is 
rational a lattice can be considered as a centering (denoted by C) 
of a lattice with ar - ° ( a P lattice). For n-3, dDt the Bravais 
classes with ~ in the primitive monoclinic Bravais are given in 
table II. 
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Table I: Number of Bravais classes; n-3 

d Tr M 0 Tg H T C total 

0 I 2 34 I I 2 3 14 

I I 7 10 2 I 3 - 24 

2 I 16 39 8 4 15 - 83 

3 I 26 122 18 4 30 14 215 

-
Table II: P-monoclinic Bravais classes; n-3;d-1 

System Bravais a-matrix centering generators holohedry 
class 

21m pP~/m aBO - 1 0 0 0 I 000 
T I I I o I 0 0 o I 0 0 

001 0 o 0 T 0 
o 0 0 I 000 I 

CPym aBI ooH 1 000 100 0 I I 01 0 0 o I 0 0 
o 0 I 0 001 0 
001 1 o 0 1 I 

21m pP2/~ OOy - 1 000 I 000 
I 1 I I o I 0 0 o I 0 0 

001 0 001 0 
000 I o 0 0 T 

cP2/~ lOy 6001 100 0 100 0 I I o 1 0 0 o I 0 0 
o 0 I 0 o 0 i 0 
100 I 1001 

The symbol for an arithmetic point group (in this case a holohedry) 
consists of 3 parts. The topline gives the point group ~. To each 
element of ~ corresponds an element of KI • The bottom l1ne gives 
KI (for d~1 ,consisting of,elem~nts ~I~. In front is a symbol 
cnaracter1z1ng the center1ng, 1.e. a. 

The elements gE form, if g - (g ,gl) belongs to. a superspace 
group, an n-dimensional space group ~E' The symbol for a super
space group consists also of 3 parts. The top line gives G • In the 
bottom line are the corresponding elements gl' These do no~ form a 
space group, For d-I the possible elements are I, -I and s (denoting 
a nonprimitive translation in VI)' The superspace groups for n-3, 
d-I with GE belonging to the pr1mitive monoclinic Bravais class are 
given in table III. 

The superspace groups are space groups in n+d dimensions. 
However, because of the additional structure, the equivalence classes 
are different from those of ordinary space groups. 
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Table III: Superspace groups for the primitive monoclinic Bravais 
class, n=3, d-I 

Brava18 class 

GE pPym (,P2/m pP2/,!}! cP2/~ 
I I l. 1 I I I I I 

Pm pPm pPm 
l' s 

('Pm 
l. I P~ 

I 
C~ 

I 

Pb pPb (,Pb pP!? CP~ 
1 \. I I I 

P2 pP~ (,P2 pP2 pP2 CP2 
l. -I 1 I ' s I 

P2. pP~1 
I 

pP2, 
I 

CP2• 
I 

P2/m pPym pPym ,(,P2/m pP2/~ pP2/,!! cP2/! 
I l' I s ~ 1 1 I I' s I I I 

P2./m pp~, 1m pP~1 ITI 
I I ' I s 

pP2. If!! 
1 I 

cP2• / ! 
1 I 

P2/b pPyb rP2/b pP2/!? pP2/~ CP2/~ 
I 1 '" i I I I' s I I I 

P2, Ib pP~./b 
1 I 

pP2, I'E. 
I 1 

cP2,1'E. 
I 1 

I 

This means that one can not use the knowledge of space groups in 
dimension 2,3 (Tables of X-ray crystallog~aphy) and 4 (as determined 
by Fast and myself and by Wondratschek, Neubuser and Brown). Up to 
now superspace groups have been determined for n=2,3 and d-I. 

IV. Examples 
As examples we consider two compounds discussed earlier during 

this conference. The structure of r-Na2C03 has been determined by 
de Wolff and co-workers (ref.4). One has a case n-3, d-I. 

The 

space group of basic structure: C2/m; 
wave vector of modulation: 9 - a(~+ ~;)+ B!;,or o-(aaB), 

where a~ 0.091 and B~ 0.318; 
[ C2/m I superspace group Pis 

4-dimensional pattern is left invariant by 
i) the translations (!I,-2~a)'(!2,-2~a)'(!3,-2~B),(0,2w), where 

2~a - Aa, etc.; 
ii) a two-folA rotation along the unique axis combined with in

version of the phase; 
iii) the mirror in the perpendicular plane combined with a phase 

shift ~: nonprimitive translation la4 • 
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The data for IT-TaS2 can be found in ref.S: 

space group of basic structure: P3ml; 

179 

there are 3 modulation waves: (aOI/3),(OaI/3),(aaI/3) with 
a~0.28S; since the third is a linear combination of the first 

two and ~;,one has d-2 and 

(J = a 1/3) 
o 1/3 > 

the lattice in superspace belongs to 

this is a centering 001/3 1/3 1/3 of 

the Bravais 
pP6/mnnn • 

class c P3m 
p6m 

the only superspace.group with GE 
Bravais class isfcP3lm 

p61mm ' 
= P3ml belonging to this 

I P61m 
This group has a S-dimensiona1 lattice: the translation ~I in position 
space is combined with a shift-ag l in internal space, ~2 with - aQ 2' 
~3 with -(21+92)/3; the modulation function as a_whole can be 
sfiifted over QI and over P2' The roto-inversion 3 is combined with 
a 6-fold rotat~on in internal space, the mirror which interchanges 
~I and ~2 is to be combined with a mirror which interchanges PI and 
Q • Of course, one cannot determine the superspace group from only 
tfie g-vectors. A precise analysis must give an answer to the question 

if c:~j: or only a subgroup is the superspace group. 

V. Conclusions 
Like the ordinary space groups, superspace groups can be used for 

the classification of structures, for selection rules and for the 
characterisation of excitations. The description of structures has 
been discussed in section IV. Selection rules follow from the proper
ties of the Fourier components of a distribution invariant under a 
superspace group. If the function per) in superspace is invariant 
under g = {Rlv(R)}, then ~(Rk) = p(k) exp {i(Rk)v(R)}. This has 
consequences for the intensities of diffraction spots: they have 
point group symmetry and a(k) = 0 if Rk = k and kv(R) ~ 2nn. 
In this way one can explain systematic extinctions in structures not 
having space group symmetry. 

The excitations of modulated crystals can be characterized with 
irreducible representations of the superspace group. As an example, 
phasons transform indeed according to such an irreducible represen
tation. Phonons in modulated crystals should be characterized by 
irreducible representations of the superspace group G, not by the 
space group of the basic structure, which is no longer a symmetry 
group. However, one can show that the lattice D is an invariant sub
group of G and that G/D is isomorphic to GE• Hence representations of 
the (ordinary) space group GE are also representations of G. More
over since K and ~ are isomorphic, often labels corresponding to 
GE can be used. However, one has to use another k-vector labelling, 
because in position space there is no Brillouin zone left. 
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The results presented above have been obtained in a research 
together with prof. A. Janner. We have profited very much from 
stimulating discussions with prof. P.M. de Wolff. 
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STRUCTURAL PHASE TRANSITIONS AND SUPERCONDUCTIVITY IN A-15 COMPOUNDS 

L. R. Testardi 

Bell Laboratories 

Murray Hill, New Jersey 07974 

I. INTRODUCTION 

Ten years after the discovery by Hardy and Hulml of high 
superconducting transition temperatures in A-15 structure materials 
evidence of their structural instability emerged. Shul12 in 
neutron diffraction work, and Batterman and Barrett in more exten
sive x-ray studies found that V3Si underwent a structural trans
formation at temperatures not far above the superconducting Tc 
(Tc ~ 17K). The transition from cubic to tetragonal structure 
shown by the x-ray data of Fig. 1 begins at Tm ~ 20.5K and pro
gresses rapidly (though apparently continuously) on cooling down 
to ~17K where the onset of superconductivity arrests the progress 
of the transformation. The tetragonal distortions are relatively 
small, (cia-I) ~ 2.2 x 10-3 and with ~c/c ~ -2~a/a so that there 
is little change in volume from the cubic state. Structural domains 
(of differing c axes orientations) occur below Tm' 

Mailfert et al. 3 and Vieland et al. 4 later reported a cubic 
to tetragonal transformation in Nb3Sn (Tc ~ 18K) similar to that 
in V3Si but with the important differences of i) (a/c-l) 
~ 5.2 x 10-3 (opposite tetragonality though still with approxi
mately no volume change), ii) a (first order type) discontinuity 
in tetragonality at Tm (but no observable latent heat), and iii) 
Tm ~ 45K. 

The (apparent) thermodynamic second order nature of the trans
formation in V3Si was noted by Anderson and Blount 5 who showed 
that a cubic to tetragonal transformation should be first order in 
the absence of a new internal order parameter. A sublattice dis
tortion has been observed in Nb3Sn from neutron diffraction studies 
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Fig. 1 The lattice parameters of V3Si vs T showing the cubic to 
tetragonal transformation (after Batterman and Barrett2 ). 

by Shirane and Axe. 5 (Problem steming from V make a comparable 
determination in V3Si too difficult.) In the undistorted A-15 
structure (compound formula A3B) the transition metal atoms, A, 
from the orthogonal linear chains (see Fig. 2). The sublattice 
distortion observed by Shirane and Axe in Nb 3Sn involves (along two 
of the chains) a pairing of Nb atoms in a manner similar to that 
expected for a Peierls distortion in a one dimensional system (see 
Fig. 3). 

The structural transformation has now been ~served in at 
least some samples of almost all of the high Tc (~ 15K) A-15 super
conductors but has never been seen in the isostructural compounds 
having relatively low (~lOK) Tc's. (For further references and 
data see the review articles of references 6-8, herein.) These 
experimental findings constitute part of the correlation and the 
conjectured causal relation between structural instability and high 
temperature superconductivity. We present other evidence below. 

II. Instabilities and Transformation Effects on the Physical 
Behavior 

There are numerous "anomalous" temperature dependences for the 
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Fig. 2 The A-15 structure for compound formula A3B. A atoms are 
transition metals and form 3 linear orthogonal chains. B atoms 
are usually nontransition metals (in high T~ compounds) and occur 
at the bcc sites (center position not shown). 

behavior of A-15 compounds, many of which are now reviewed as mani
festations of the instability and precursors of the transformation 
(see ref. 6 to 8 for futher details). 
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Fig. 3 The sublattice distortion due to the structural transforma
tion in Nb3Sn. (After Shirane and Axe5.) 

In V3Si the elastic modulus (cll-c12)/2, which defi~es the 
shear restoring force for [110] transverse waves with [110] polari
zation, shows a positive temperature coefficient. This modulus 
softens so greatly on cooling that it would appear (by extrapola
tion) ready to vanish between 10K and 20K (see Fig. 4). For samples 
which exhibit the Batterman-Barrett transformation the softening 
is arrested at Tm but the occurrence of domains complicates the 
ultrasonic experiments in which these data were obtained. 

Not all samples exhibit the transformation (The metallurgical 
factors are complicated but experiments show that transforming 
samples have higher resistance ratios and some second phase inclu
sions compared to nontransforming ones.). For V3Si samples not 
exhibiting the transformation it is superconductivity which arrests 
the softening and, presumably, the need for the structural trans
formation. A theoretical discussion of this observation has 
recently been made by Ting and Birman. 10 

The deformation associated with soft shear modulus (cll-c12)/2 
is consistent with the (tetragonal) symmetry of the transformed 
phase and with the lack of volume change associated with the trans
formation. In this sense it is a specific precursor as well as a 
driving force for the transformation. 

The observations that superconductivity arrests the growing 
structural transformation in a transforming sample, and arrests the 
softening in a nontransforming sample, shows the similarity of the 
interactions responsible for the structural instability and the 
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Fig. 4 Elastic modulus (Cll-c12)/2 vs T for transforming and non
transforming V3Si (after Testardi et al. 9 ). 

high temperature superconductivity. 

Keller and Hanak,ll and Rehwald12 ,13 observed a similar soften
ing of (Cll-C12)/2 in Nb3Sn. Again, several distinctive differences 
occurred. The modulus (cll-c12)/2 was found to recover its stiff
ness below Tm (and above Tc) in Nb3Sn (it does not in V3Si where 
Tm and Tc differ by only ~4°K), and the modulus c44 shows con
siderably greater softening on cooling to 4°K in Nb3Sn (~c/c ~ -50%) 
than in V3Si (~c/c ~ -6%). The latter is not a trivial observation. 
Many theoretical treatments of the A-15 compounds assume noninter
acting chains of transition metal atoms. Such a model will produce 
no anomalous temperature dependence for the c44 cubic face shear 
modulus. 

Correlations of mode softening with superconductivity are 
observed. Shear mode softening is observed at least qualitatively 
(i.e. in polycrystalline samples) in all high Tc A-15 compounds 
(where investigated) but in none of the low Tc compounds.9 

The occurrence of a near vanishing modulus in the ultrasonic 
experiments indicates that the basic instability for these com
pounds is macroscopic (q=O) rather than microscopic (q)0). Never
theless our present ideas on the microscopic source of supercon
ductivity require knowledge of the behavior of high frequency 
phonons to indicate some relationships of the structural instability 
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and the superconductivity. Shirane and Axe5 obtained the phonon 
dispersion relation for the soft (q=O) mode in Nb3Sn shown in 
Fig. 5. They find significant softening for q > 0 but considerably 
less than that observed in the ultrasonic measurements. A "central 
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Fig. 5 Acoustic phonon dispersion curves for [llOJ waves with [110J 
polarization in Nb3Sn (after Shirane and Axe 5). 
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peak" is also observed on approaching the structural transforma
tion from above. 
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The Karlsruhe group14 (N. NUcker, W. Reichardt, H. Rietschel, 
E. Schneider, P. Schweiss, and V. Tripadus) have obtained the total 
phonon density of states F for V3Si, V3Ge, V3Ga, Nb1Al, and Nb3Sn 
at room and low temperatures. Some (but not considerable) mode 
softening is found in the total density of states (7/Sths of which 
is from optic modes) with evidence of optic as well as acoustic 
mode softening. The results for Nb3Sn as well as a 2F from tunneling 
and a 2 (derived) are shown in Fig. 6. Note that the electron-phonon 
interaction a 2 shows considerable variation with energy and is 
strongest for the low frequency acoustic modes. 

III. More on the Relation of Structural Instability and High 
Temperature Superconductivity 

It has been suggested7 ,S,9 that structural instability - those 
microscopic conditions which make a change in phase imminent -
promotes high temperature superconductivity. The structural trans
formation, however, since it relieves these conditions, causes a 
reduction in the Tc otherwise achievable. While a microscopic 
theoretical justification in terms of soft modes and enhanced 
electron-phonon interactions (a 2 ) is lacking, several experimental 
tests support the empirical relation. 

One such test is the relative variations of Tc and Tm with 
chemical changes or stress. The former is more complicated and 
limited results are available. Vieland and Wicklund1 5 found that 
~4% Al added to transforming Nb 3Sn prevented the transformation and 
caused Tc to increase by ~.5K. Chu and Testardi16 find that for 
V3Si hydrostatic pressure decreases Tm (while increasing Tc). In 
Nb3Sn pressure increases Tm while decreasing Tc' If instability 
favors superconductivity one expects that whatever causes Tm 
(always> Tc) to decrease/increase such that the instability is 
greater/smaller at Tc will consequently cause Tc to increase/ 
decrease. The experimental observations are at least consistent 
with this conjecture. Other data, including the pressure dependence 
of the soft shear modulus and the strong anharmonic behavior of 
these solids, is discussed in refs. 6 and S. 

IV. Instabilities, Unstable Phases, and Superconductivity 

It is possible, then, that the structural instabilities which 
occur at solid state phase transformations may be attended by con
ditions favorable to high temperature superconductivity. If these 
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Fig. 6 Total phonon density of states, a 2F (from tunneling) and 
a 2 (derived) for Nb3Sn (after Karlsruhe group14). 

conditions can be frozen in, rather than the transformation products 
which relieve the instability, higher Tc's may result. The first 
deliberate test of this was achieved18 by sputtering (as a function 
of temperature) through the eutectoidal transformation temperature 
(~llOOOC) in a portion of the Mo-Re phase diagram (see Fig. 7). 
Sputtering at the eutectoidal boundary has frozen in a metastable 
structure with enhanced Tc' Similar though less dramatic effects 
have been seen in a large number of alloys.17 Gavaler18 was able 
to form metastable high Tc Nb3Ge by hot substrate sputtering in 
high argon atmosphere. 

V. Defects, Instabilities, and Superconductivity 

The complexity of the A-15 compounds and the difficulty of 
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achieving near exact reproducibility in the physical properties of 
these materials has caused a number of investigators to consider 
the role of defects (see, for example, Hein,19 and Testardi 20 for 
further references). "Defects" are generally described as i) non
stoichiometry, ii) antisite defects (A atoms on B sites and vice 
versa in the A3B structure), iii) vacancies, interstitials, and 
impurities, iv) second phase inclusions, and v) strains. 
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Nonstoichiometry is often considered a crucial "defect" 
although recent work21 indicates that, while important, these 
defects may not be as extremely detrimental to Tc as expected. 

Blaugher et al. 22 showed from x-ray measurements that the unit 
cell compressibility of V3Si at room temperature was considerably 
greater than that calculated from sound velocity data for pressures 
0-10 kbar but was in agreement with expectations at higher 
pressures. The failure to agree with the ultrasonic predictions, 
which should apply near zero pressure, indicates that the physical 
process responsible for the additional mechanical compliance must 
require times too long to be observed at ultrasonic frequencies 
(20 MHz). Varma et al. 23 suggested that the result was due to a 
pressure dependent vacancy concentration. 

A correlation between Tc (as-grown) and the electrical resis
tance ratio p(300K)/p (25K) has been found in a number of A-15 
compounds 21 (see Fig. 8 for Nb3Ge data similar results obtain for 
other A-15's). This correlation, more general than that between Tc 
and composition, suggests that a key factor responsible for the 
wide range in Tc for these materials is the occurrence of a defect 
with universal character in A-15 compounds. Good evidence for this 
comes from the behavior of an initially high Tc film irradiated by 
2 MeV 4He particles where we find we can reproduce the as-grown 
correlation by varYin~ the defect concentration only at constant 
chemical composition. 4 (The 4He particles do not stop in the film.) 

Sweedler et al. 25 have found that neutron radiation damage 
causes a large reduction in Tc to occur in a universally similar 
manner for all A-15 superconductors. They deduce from Bragg peak 
intensities that the effect is due to antisite defects. Similar 4 
reductions of Tc have been found with 4He damage by Poate et al. 2 
but it is concluded that the crucial defect lies, in part, in small 
bond distortions. 

The defects have significant effect on the electrical resisti
vity and the lattice parameter as well. Increasing defect concen
tration causes not only a reduction in Tc and an increase in 
residual resistance but a reduction in the thermal part of the 
electrical resistivity as well. 24 Thus the defects strongly 
influence not only the superconducting properties but also the 
normal state properties which reflect the electron-phonon inter
action responsible for the superconductivity. 

The exact nature of the defect has not yet been established. 
Channelling measurements on V3Si before and after defect formation 
indicate a strong tendency for bond distortions and quasi-amorphous 
structure. This behavior is more reminiscent of the covalently 
bonded group IV semiconductors rather than metallic bonding. 
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The ready tendency of the A-15 materials to form defects is 
another manifestation of their structural instability. The defect 
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problem, however, appears to be a deterrent to achieving the more 
unstable A-15 compounds having, perhaps, Tc'S higher than any 
presently available. 
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SUPERCONDUCTIVITY AND MARTENSITIC TRANSFORMATIONS IN A-IS 

COMPOUNDS 

W. L. McMillan 

Department of Physics and Materials Research Laboratory 
University of Illinois at Urbana-Champaign 
Urbana, IL 61801, USA 

I would like to discuss the current theories of the martensitic 
transition in AlS compounds and our understanding of the interplay 
between the martensitic transition and superconductivity. Labbe 
and Friedell / proposed that the martensitic trans,tion is driven by 
an electronic band Jahn-Teller effect. Gorkov~ proposed an 
alternative model in which the martensitic transition is driven by 
the Peierls mechanism of an energy gap opening up near the Fermi 
energy. Both models are based on one-dimensional or quasi-one
dimensional energy ~and models which are inconsistent with APW 
band calculations.~ Bhatt~/ has developed a very successful Lan
dau theory which is based on the Gorkov model and which is, of 
course, free of any microsc~pic assumptions about the nature of 
the band structure. Bhatt~ has also developed a microscopic 
theory using a band structure model based on the APW band structure. 
This model includes both the band Jahn-Teller effect and the 
Peierls effect and is therefore a synthesis of the Labbe-Friedel 
and Gorkov models. The effects on ,uperconductivity are illus
trated in a calculation by Bilbro,2 based on the Gorkov model, in 
which both a Peierls energy gap and the BCS energy gap are in
cluded in the theory. I want to discuss the physical assumptions 
that go into the various theoretical models, without presenting 
much of the mathematics, and then discuss the predictions of the 
models and the comparison with experiment. 

The most widely studied A15 compounds are Nb 3Sn and V3Si. In 
Nb 3Sn there is a cubic to tetragonal structural transition at 46°~ 
the superconducting transition is at 18°K. In V3Si these transi
tions occur at 2l o K and l7°K. In the cubic phase of Nb Sn the Sn 
atoms sit on body-centered cubic lattice sites and the ~b atoms 
are on the cube faces at, for example, (~,~,O) and (3/4,~,O) on 

194 
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the xy face. The transition metal atoms form linear chains with 
equally spaced atoms and with the chains running in the three ortho
gonal directions on the three faces. This linear chain picture is 
central to both the Labbe-Friedel and Gorkov models. At the mar
tensitic transition the cubic cell distorts to a tetragonal one 
with less than 1% distortion and the transition metal atoms on 
two of the three sets of linear chains pair up as in a Peierls 
transition. There is a drastic softening of one elastic constant 
(Cll-C12 ) as one approaches the transition from above. 

The corresponding phonon, the transverse (110) phonon with 
(110) polarization, goes soft at long wavelengths and is the soft 
mode of the transition. 

The Labbe-Friedel model is based on a one-dimensional band 
structure for electrons moving along one linear chain. Consider 
one atomic orbital of a particular symmetry on each atom. The 
energy band for an x-direction chain is 

EX = ± 2S cos(k a/2) 
K x x 

where S is the x-chain transfer integral and "a" is the cubic 
latticexspacing. The zone boundary is at w/a so that the two por
tions of the band are degenerate at this point. In the cubic 
phase S = S = S so the band structures of the three types of 
chains ~re i~enti~al except for a rotation of the momentum space 
axes. In the tetragonal phase this degeneracy of the electronic 
energy bands is broken. Suppose the unit cell dimension is de
creased in the z direction and increased in the x and y directions 
to maintain constant volume, then S > S = S and the bottom of 
the z-chain band is lower than the 50tto~ ofYthe x and y-chain 
bands. If the Fermi level lies near the bottom of the bands in 
the cubic phase electrons will be transferred in the tetragonal 
phase from the x and y chains into the z chain and the total elec
tronic energy will be lowered. If the electronic energy decrease 
more than offsets the increased elastic energy the tetragonal phase 
will be the observed phase at low temperature. Since the elec
tronic entropy favors the cubic phase there will be a phase tran
sition to the cubic phase at finite temperature. Thus the Labbe
Friedel model qualitatively explains the martensitic transition in 
A15 compounds although the quantitative fit to experiment is not 
particularly good. Note the particular type of degeneracy which 
is broken in this band Jahn-Teller effect. The degeneracy is the 
equivalence of the band structure at different places in the 
Brillouin zone required by cubic symmetry. Breaking the cubic 
symmetry allows the bands to move and a redistribution of elec
trons can lower the electronic energy. This effect occurs with 
any band structure and is not a special property of one-dimension
al bands. In order for this contribution to the energy to be im
portant there must be a large density of states at the Fermi level 
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and the "electron phonon coupling constant" for splitting these 
levels must be large enough. 

The original Gorkov model assumed the one dimensional band 
structure of equation (1) but concentrated on the degeneracy of 
the energy bands at the zone boundary. In the tetragonal phase 
the pairing of the transition metal atoms introduced a potential 
with a periodicity of "a" and opened a Peierls energy gap at the 
zone boundary. If the band is half full the Fermi level lies in 
the Peierls gap and the electronic energy is lowered. The physics 
is the same as the charge density wave models applied to the layer
ed compounds. The degeneracy of energy levels at the zone bound
ary (more particularly at the x point at the center of the face 
of the cubic Brillouin zone) is a property of the A15 crystal 
symmetry and ~s not a special property of the one-dimensional 
bands.Gorkov~1 has treated a band structure model including inter
chain coupling to produce quasi-one dimensional bands. It is 
necessary to assume that the bands are quite flat on the zone face 
in order that the density of states affected by the Peierls gap 
be large enough to explain the data. 

Both the Labbe-Friedel and the Gorkov movels are electronic 
models based on particular band structure assumptions. The prin
cipal criticism of the models, it seems to me is that the band 
structure models are unrealistic. Matthiess~' has calculated APW 
band structures for several A15 compounds and there are no bands 
in Matthiess' calculation which resemble the one-dimensional or 
quasi-one-dimensional bands used in the models. 

One way of avoiding unrealistic band structure assumptions 
while retaining the physical assumptions of the Gorkov model is to 
work with a Landau theory similar to that applied" to the layered 
compounds. We assume that the electronic order parameters are the 
amplitudes of three CDW's in the (100) directions. The CDW's are 
locked in to the lattice with the wavelength equal to the cubic 
lattice spacing and there are no phase fluctuations; the order 
parameters are real. We write down the usual expansion of the free 
energy in powers of the order parameters and gradients of the order 
parameters. The theory is dynamical and we assume that the domi
nant dissipation is electronic and arises from the redistribution 
of electrons as the energy gap changes. The electronic order pa
rameters are directly coupled to the amplitudes of the three opti
cal phonons (at r) which modulate the transition metal atom separa
tion. In the A15 structure these optical modes are bilinearly 
coupled to elastic strain and we must include the three acoustic 
phonon modes; we have a nonlinear dynamical problem with nine cou
pled modes. We use the mean field approach and find the static mode 
amplitudes which minimize the free energy. We then expand the free 
energy around this minimum to find the mode frequencies. Since 
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dissipation is included the phonon modes have lifetimes and we 
actually calculate the dynamical structure factor. This type of 
theory can predict central peaks arising from the coupling of the 
phonons to the overdamped electronic mode; however, for the A15's 
no central peak is predicted. 

The qualitative predictions of the theory fall into two cate
gories. The first concerns the behavior of the soft mode. The 
model predicts that the elastic constant Cll-C22 goes to zero 
at an extrapolated critical temperature T* sligntly below the first 
order structural transformation temperature. This means that the 
velocity of the long wavelength (110) transverse phonon with 
polarization (110) goes to zero at T*. As one moves out in momen
tum space the phonon mode starts to recover its stiffness, and the 
phonon softens dramatically only near r. A two-parameter fit pro
duces quantitative agreement with the elastic constant versus 
temperature and with the transverse phonon frequency versus tem
perature and momentum. From this fit we find a correlation length 
n~ % 2a where a is the cubic lattice spacing. 

o 

The second group of qualitative predictions concerns the 
behavior of the cubic terms in the free energy. Within the Gorkov 
model the structural transition temperature is maximum if the 
Fermi energy is equal to the x-point energy E of the relevant 
energy band. Since the x-point energy is str~in sensitive strain 
(either compressive or tetragonal) changes the transition tempera
ture T and there are cubic terms (proportional to the strain and 
to themCDW amplitude squared) in the free energy which change sign 
as EF crosses E (say in an alloy series). The cubic terms con
trol the sign or the tetragonality (c/a - 1) but are weak enough 
that they do not affect the magnitude of the tetragonality at low 
temperature. Thus one expects (c/a - 1) to change sign at con
stant magniyude as EF crosses E. This is observed in 
Nb 3 Sb suR alloys. The sign ~f the pressure dependence of T is 
contfolted by the cubic terms and the pressure dependence of tWe 
superconducting transition temperature is opposite to that of T . 
These quantities should correlate with the sign of the tetra- m 
gonality and this correlation is observed to hold. 

There are some quantitative cross checks of the Landau theory. 
One uses up several experiments in determining parameters of the 
theory and can only check the theory if there are more experiments 
than parameters. The heat capacity jump in V3Si is predicted to / 
be 0.7 joules/mole K and observed to be 0.4-0.5 joules/mole K,~ 
which is satisfactory. 

There are problems in trying to predict Landau theory param
eters from microscopic models. From the Gorkov or Peierls models 
the electronic energy terms can be predicted from the electronic 
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density of states N (0). The change in susceptibility is also pro
portional to N iO). t The values of Nt (0) required to explain the 
two results differ by a factor of three to five. 

Now for Bhatt's microscopic calculation. Since the predict
ions of the microscopic theory depend critically on the band 
structure chosen, it is important to work with the most realistic 
band structure model available. It is not possible to super
impose the CDW calculation on the full APW calculation and one is 
forced to work with simplified models. Fortunately, the density 
of states nea2 EF ~n Matthiess' calculation is dominated by two 
bands of QI(x - y ) character. These bands appear not to hy
bridize strongly over much of the Bril2ouin2zone. Bhatt's model 
is a tight binding model with one QI(x - y ) orbital per transi
tion metal atom, with nearest and next-nearest neighbor hopping 
integrals which reproduce these two bands of Mattheiss' calcu
lation. The hopping integrals are assumed to vary linearly with 
interatomic spacing as the lattice distorts. Bhatt calculates the 
band structure of the distorted lattice and computes the electronic 
free energy which he then minimizes with respect to distortion 
amplitude. There is essentially only one free parameter, the ratio 
of the two hopping integrals, which he chooses to fit the ob
served electronic density of states. The Gorkov energy term from 
the Peierl's energy gap near the x-point is included in the cal
culation; however there is insufficient phase space for this con
tribution to be large enough to explain the phase transition. 
There is, however, an electronic Jahn-Teller contribution from 
non-degenerate bands far from the X-point which makes up the 
deficit. Bhatt's model, therefore, includes both a Gorkov-
Peierls contribution and a Jahn-Teller contribution to the sta
bility of the tetragonal phase. The agreement with a wide variety 
of experiments on Nb 3Sn and V Si is nearly quantitive with dis
crepancies typically between 15% and 50%. The correlation lengths 
are large enough that the phonon entropy is not dominant but could 
cause substantial corrections. In addition to providing a better 
quantitative fit to experiment than the Labbe-Friedel or Gorkov 
models, Bhatt's calculation contains important contributions from 
both mechanisms and represents a synthesis of the earlier micro
scopic models. 

The effects of the martensitic transition on superconductivity 
can be understood qualitatively very simply. As one approaches the 
martensitic transition by lowering the temperature, by changing 
pressure or by alloying, the lattice softens as the structure nears 
the instability. This softening is most pronounced in the trans
verse acoustic modes near r but it does extend over an appreciable 
fraction of the Brillouin zone and the optic modes may be affected 
as well. This lattice softening increases the electron-phonon 
coupling constant and enhances the superconducting transition tem
perature T. After passing through the martensitic transition the 

c 
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lattice stiffens and T is reduced. I do not know how important 
this effect is quantit~tively. The second effect is that,within 
the Gorkov model, there is a competition between the Peierls 
energy gap and the BCS energy gap. Bilbro has carried out de
tailed calculations for the A15 compounds. He finds that when the 
martensitic transition occurs at higher temperature the super
conducting transition temperature is reduced (but only by 0.3 K 
for V3Si) and that the martensitic transformation is arrested at 
T. Both of these effects are observed for V Si. The theory 
pfedicts that when the superconducting transiiion occurs first 
the martensitic transition is completely suppressed and the cubic 
phase is stabilized. Quantitatively the effect of the Pererls gap 
on T is small and the effect of the lattice softening is un
knowa. The theoretical models predict a peak in T near struc
tural transitions and this behavior is observed inCmany systems. 
However, it is not clear that these effects "explain" the high 
T 's of the A15 compounds. At the present time it appears to be 
m8re correct to state that the structural instability and the high 
Tc are both produced by the large density of states. More quanti
tative work on this question is highly desirable. 
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p-d HYBRIDIZATION, INCIPIENT LATTICE INSTABILITIES 

AND SUPERCONDUCTIVITY IN TRANSITION METAL COMPOUNDS 
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Max-Planck-Institut fur Festkorperforschung 

D 7 Stuttgart - SO, Germany 

Neutron-scattering studies /1/ revealed the existen
ce of anomalies in the phonon dispersion curves (Fig.1) 
of superconducting transition metal compounds such as the 
carbides and nitrides, thus establishing an empirical 
correlation between actual or incipient lattice instabi
lities and high superconducting transition temperatures. 
These instabilities are usually associated with a rela-

Fig.1: Acoustic phonon dispersion curves in transition 
metal compounds with NaCl structure. Solid li
nes with anomalies (NbC T =ll o K, NbN 16.S o K, 
TiN S.SoK), broken lines go anomalies (ZrC,TiC 
T <O.OSoK, TiO <1 0 K, NbC 79<0.OSoK) 

c O. 
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of state (solid lines metal d , broken lines 
nonmetal p states) for the tr~Xsition metal 
carbides, nitrides and oxides (schematical, 
after Neckel et al./2/). The approximate po
sition of the Fermi level for different num
bers of valence electrons is indicated. 
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tively high density of d-states at the Fermi level. How
ever, this is in direct contradiction to the fact that 
both the superconductivity and the phonon anomalies dis
appear when we go from the carbides and nitrides to the 
oxides, or introduce vacancies, whereas the d-electron 
density of states further increases. 

Band-structure calculations of the superconducting 
carbides and nitrides of Schwarz and co-workers /2/, 
which are confirmed by the X-ray emission spectra /3/, 
show a strong p-d hybridization near the Fermi level 
(Fig.2). The hybr!dization may be described as a cova
lent-ionic bonding with the most important contributions 
coming from planar (p-d)TI interactions between nonmetal 
and metal ions. The "p"- and "d"-type band complexes 
(r 15 and r 25 , at the center of the Brillouin zone) are 
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constructed of linear combinations of bonding (d+p)v and 
antibonding (d-p) hybrides. For one specific transition 
metal the band-st~ucture calculations show a decrease in 
the hybridization when we go from the carbides and nitri
des to the oxides, although the total density of states 
increases. Similarly, in the substoichiometric carbides 
the empty p-states near the Fermi-level which are essen
tial for the hybridization mechanism are no longer avai
lable /4/. If we compare the carbides of the group Vb 
and group IVb metals (with 9 and 8 valence electrons re
spectively) we see that the IVb carbides have a low den
sity of states and very weak hybridization. Correspon
dingly, TiC, ZrC and HfC are non-superconducting,whereas 
for VC T =8.7 0 K, for NbC T =11.1 0 K and for TaC T =lO.4 0 K. 
For the gitrides of both gfouPS6 the p and d-staEes are 
strongly hybridized (TiN T =5.5 K, ZrN T =10.0 0 K, HfN 

o 0 c 0 c 0 
T =8.8 K, VN T =8.5 K, NbN T =16.8 K, TaC T =14.3 K). 

c The aim of this paper isCto demonstrateCthat in the 
superconducting materials the formation of covalent bonds 
due to the hybridization of metal-d and nonmetal-p sta
tes leads to a resonance-like incre~~e in the nonlocal 
dielectric response. The anomalous increase in the scree
ning enhances the electron-phonon coupling, thus produces 
the phonon anomalies. Furthermore, it explains the high 
super conducting transition temperatures as resulting from 
a simultaneous increase of the electron-phonon coupling 
and a lowering of the phonon frequencies /5/. 

The inverse dielectric screening matrix is the solu
tion of the integral equation 

-1 
E 

-1 
1 + v X E ( 1 ) 

where v is the electron-electron interaction. In a loca
lized-orbital representation the polarizability X is of 
a separable form /6-8/ 

-+ -+ -+ -+ 
X(q+G,q+G' ) L 

ss' 

-+ + -+-+ 
(q) As' (q+G' ) 

hence eqn. (1) is readily solved to yield 

-1 
E 

-1 + 
A 

(2 ) 

( 3 ) 

The A may be interpreted as the form factor of a gene
raliz~d charge density wave, the index s=(v,~ ,e) stan
ding for the set of quantum numbers of the localized 
orbitals Ijlv,<j>~. 
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-+ -+ -+ 
A (q+G) 

s = J (r) 
3 

d r. (4 ) 

N is the bare polarizability, 

-+ 
Nss ' (q) I 

k,n,n, , 

-+ -+ 
f (k) -f ,(k+q) 

n n -+ , , 
E (k) -E ,(k+q) 

n n 

-+ -+ -+ -+ 
-i(k+q)·(R -R ) 
ell ' 

-+ -+ -+ -+ -+ * x e 
v 

-+ * (n,k)e]J (n',k+q)e (n',k+q)e '(n,k) 
]J v 

-+ -+ 
where f (k) is the Fermi o~cup~tion factor, E (k) the 
one-par~icle energi~r and e(n,k) is an eigenv~ctor of 
the band-complex. N may be viewed as the kinetic ener-
gy of the charge density waves, whereas V 

-+ 
Vss,(q) I 

G' , 

* -+ -+ -+ -+ -+ -+ 
A (q+G" )v(q+G")A (q+G") 

s s' 
(6 ) 

represent~1their coulomb energy. Hence the screening ma
trix S=(N -V) coupling two charge density waves has the 
form of an energy denominator. In a metal it is conveni
ent to separate out a diagonal (in G and G') part X = 
-(E -1)/v from the polarizability. The inverse diel~ctric 
mat~ix then becomes 

-1 
E 

-1 -1 { 
E + VE A 

o 0 

- 1 } N - V 

-1 
+ -1 

A E 
o 

(7 ) 

Note that the interaction between the electrons in the 
lo~tlized states is ~?w screened by the diagonal part 
£ . The solution E provided by equ. (7) allows for an 
e~plicit inclusion of local-field effects, which are im
portant whenever localized electrons participate in the 
screening. In the approximation of a local electron-ion 
potential the local-field correlation, i.e. the second 
term in equ. (7) gives the following contribution to the 
dynamical matrix /6-9/ 

-+ 
I 

s -+ 
{N- 1 (q) V (q) } 

-1 s' -+ 
E (q) F (q) - ss' FS (q) (8 ) 

as ss' a 

where 
s 

Fa(q) is the component of the force in direction a 
experienced by an ion due to the coupling to the charge 
density wave. 

There are two different schools of thought as to the 
interrelation between the dips in the phonon dispersion 
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-1 
cu~yes ~yd the str~rture of the screening matrix S = 
(N -V) = N (l-VN) • Band-theorists have pointed out 
that the intraband contribution to the bare susceptibili
ty N(q) from the bands crossing the Fermi level shows ma
xima at the positions of the phonon anomalies, attributed 
to a "nesting" of the Fermi surface /10,11/. However, the 
interband contributions are larger and to some extent an
ti-correlate with the intraband contributions. Furthermo
re, recent work /12/ has established the importance of the 
matrix-elements which again diminish the structure in the 
polarizability. On the other side it has been proposed to 
ascribe the phonon-dips to a resonance-like increase of 
the screening matrix (N- -vf l which becomes large when the 
kinetic energy of the charge den~tty waves is nearly 
equal to their Coulomb energy, N ~ V /13/. The diffe
rence between both interpretations is most easily demon
strated by conside~ing the schematic diagram expansion in 
Fig. 3. 

Fig. 3: Diagram expansion for the polarizability. 

- 1 
The band-theorists point of view corresponds to S ~ N, 
i.e. only the simple electron-hole loop diagram is con
sidered. Our ~yterpretation is a many-body theorists 
standpoint: S =N/(l-VN) corresponds to a summation over 
the infinite series of polarization diagrams. This is 
a random-phase approximation for the local field effects, 
plus local corrections for exchange and correlation,which 
are incorporated in the electron-electron interaction v. 
In our theory the driving mechanism for promoting the 
phonon anomalies is the increase in the screening matrix. 
The structure in the "bare" polarizability may be helpful, 
but is not of decesive importance. 

It is interestin~1 to point out that, in a nonadia
batic formulation, II N -vii =0 corresponds to a plasmon 
condition. This means that we can interpret the softening 
mechanism as a tendency of the localized electrons to 
move collectiv~ty. A coupling between a bare phonon 
(screened by E only) and a plasmon mode can cause an in
stability of tRe lattice. This coupling would be very 
effective, provided an "acoustical" plasmon /14/ exists. 
In our case, the plasmon frequency remains finite and 
corresponds to the energy required to make a rigid trans
lation of the localized electrons. 
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Using metal-d on-site interactions only in a para
metrized version of the screening theory, Sinha and Har
mon /15/ have been able to reproduce the anomalies in the 
longitudinal dispersion branches. In their work the most 
important role is assigned to the density of d-states at 
the Fermi level - in striking disagreement with the trends 
outlined in the introduction. The transverse anomalies, 
which are decisive for the superconductivity and for the 
lattice instabilities, cannot be reproduced by d-d inter
actions alone /16/. In our study we consider a simple 
band model based in the self-consistent band calculations 
of Schwarz et al. /2/. The "p" and "d" band complexes 
are described by linear combinations of bonding (d+p)nand 
antibonding (d-p)n hybrids. The physical mechanism is 
illustrated in Fig. 4 at the example of the anomalous lon
gi tudinal phonon at (0.5,0,0). In this direction al terna
ting Nb and C atoms form (pd)n bonds (Fig.4a). The phonon 
moves only the Nb atoms, the C atoms are at rest. The 
covalent bonds from the C atoms to its Nb neighbours are 
alternatively strengthened and weakened. Thus this dis
placement pattern creates an electronic superstructure 
(a charge density wave) which has just twice the perio
dicity of the lattice (Fig.4c). These charge density fluc
tuations are strongly coupled to the lattice and give ri
se to the phonon anomalies. Of course this happens only if 

(0) 

(b) 

(c) 

Fig. 4: 

C Nb C Nb C Nb C Nb C Nb C 

~ 
0 -I 

~ +-0 0-+ - 0-+ 

~ ./'T"-... 
~ 

-/'+ 
£7" ~ 

14 
20 -I 

(a) (p,d ) bonds along a chain of Nb and C 
atom~Yin the (100) direction. 

(b) Displacement pattern of a (0.5,0(0)-L 
phonon. 

(c) Charge fluctuation induced by the displacements. 
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the formation of this electronic superstructure is ener
getically favourable. This is the case only if the kine
tic and the Coulomb en~lgies nearly cancel, i.e. when the 
resonance condition (N -V)~O is satisfied. The dominant 
p-d contribution to the polarizability stems from the 
diagonal term A N A+, which is proportional to the phase 

~ -+ -+!:i SS S -+ 
factor sin (q.R/2) wnere R stands for the distance bet-
ween two hybrids in the plane n .The diagonal part of 
the local field factor V - A v A has essentially the 

. t h ss s s d" (-I) 0 same symme ry. Hence t e resonance con ~tLon ~ -+-~ -

may be 2approximated very roughly by ~E ff- sin (q.R/2) 
xlA 0 1 v ~O, where ~E ff stands for ~ome effective ener
gy a~fference between tfie bonding and anti-bonding hybri
des. To satisfy this condition ~E £f must be small (i.e. 
there must be bonding states justeoelow and anti-bonding 
ones just above the Fermi level) and the form factorlA d l 
must be large enough. Because of the phase factor, theP 
concellation will occur at positions qa =0.5 in reduced 
units. The same phase factor occurs in the corresponding 
contribution to the dynamical matrix (Eq. (8)), which 
peaks at qu=0.5. Higher overlap tends to shift the 
peaks toward the zone boundary. 

The validity of our concept is illustrated by a mo
del calculation for the acoustical vibrations in NbC. 
This model is based on an LCAO-description of the p- and 
d-states, nearest-neighbour ~ybrid overlap, an effecti
ve-mass approximation for N(q) and a local pseudopoten
tial for the electron-ion interaction. Our model calcu
lation, for which a quantitative agreement with experi
ment is hardly to be expected, yields local minima in the 
transverse as well as in the longitudinal dispersion 
branches (Fig.5). The depth of the minima is reduced by 
dehybridization and the non-locality of the (d-p) inter-

7 9 
u 
cu 

~III 

~6 .... 
>. 
u 
~3 
~ 
CT 
cu ... 

.. .. 

u.. <100) (110) <1m 
Q2 04 06 as 1.0 as 0604 02 0 01 Q2 03 04QS 

- q/qmax--
Fig.5: Dispersion curves for acoustic phonon branches in 

NbC. Circles and triangles show the exp.results/l/. 
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action is essential: if in the screening matrix eN-I_v) 
the local-field factor V is neglected, the phonon dips 
vanish at the scale of our figure. 

To study the interrelation between the phonon-ano
malies and the high superconducting transition tempera
tures, we express the phonon-induced electron-electron 
attraction in the strong-coupling formulation by the non
local screening function. The screened electron-phonon 
coupling is determined by the gradient of the effective 
electron-ion potential, which we obtain by nonlocal 
screening of the bare electron-ion potential. The b 2sic 
quantitiy is the electron-phonon spectral function a F(w) 
which is given by /17/ 

-+-+ -+ -+ -+ 

const. L eikRl eik+q)R l , 

II' tt' k,q 

-1 -+t -+ -+ -+t' -+ -+ -1 
x(I-VS )It(F (q)e(q» (F (q)e(q» (I-VS )t'l' 

O(E(k+q)-E ) O(w-w(q» 
F 

(9 ) 

Here q stands for momentum and polarization of a phonon 
with frequency w(q) and polarization vector e(q), k is 
short for electron momentum and band index. It is imme
diately apparent that the resonance in the screening 
matrix lea~s to a selective enhancement of the spectral 
function:a is no longer a constant or a slowly decaying 
function. As a first step we hav~ calculated the electron
phonon coupling parameter A=2!(a F(w)/w)dw . Using our 
NbC model we have calculated for three different cases: 
(a) the local-field effects are neglected, )..=0.4, (b) 
they are included in evaluating the phonon frequencies, 
)..=0.5 and (c) they are taken into account both in the 
dynamical matrix and in the electron-phonon matrix-ele
ments,A=0.6. This corresponds (via the McMillan equation 
with a Coulomb repulsion ofv x=O.1 and an adjusted pre
factor) to a relative change from T =11.l o K to 6.2 K 
(neglecting V in the matrix element~) and further down to 
T =2.7 o K (neglecting V in the dynamical matrix too).Thus, 
tHe phonon anomalies are not alone responsible for the 
superconducting properties, the essential thing is to 
take the local-field effects in the spectral Eunction in
to account. 

In summary we have shown that covalent bond forma
tion due to (d-p) hybridization leads to an electronical-
ly driven incipient lattice instability resulting from a 
resonance-like increase of the nonlocal inverse scree
ning matrix. This incipient instability produces a sof-
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tening of the phonon frequencies and an increased elec
tron-phonon coupling. Both effects together are respon
sible for the high superconducting transition tempera
tures. 
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PSEUDO-SPIN APPROACH TO STRUCTURAL PHASE TRANSITIONS 

R. B. Stinchcornbe 
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ABSTRACT 

Systems undergoing structural phase transitions and 
describable in a pseudo-spin fonnalism are reviewed, with 
particular emphasis on spin-phonon systems, Jahn-Teller systems 
and order-disorder and tunnelling ferroelectrics. Models for 
these systems are introduced, and their static and dynamical 
properties developed and compared to experiment. Mixed and 
diluted systems, and some aspects of the central peak problem and 
of critical behaviour are also discussed. 

1. INTRODUCTION 

This section begins with an extremely brief review of various 
types of lattice instability to put against a broader background 
the subset of inter-related systems to be discussed subsequently. 
Those systems will be ones for which a pseudo-spin description 
applies. 

We list below examples of the various instabilities, roughly 
in order of decreasing applicability of the pseudo-spin 
description, giving for each type what drives the transition and 
the order parameter which develops below the transition temperature 
Tc· 

A spin description obviously <partly) applies for linearly 
coupled spin-phonon systems; there the exchange of phonons can 
give rise to an effective spin-phonon interaction causing 
spontaneous ordering of the spin system for T < T with possibly c 
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an accompanying distortion of the latticea In this case the order 
parameter is the thermodynamic average <S > of the component a of 
spin which couples to the phonons, or the average displacement <Q> 
of the phonon mode to which it couples. 

A completely analogous situation occurs inthe cooperative Jahn
Teller transition, where the discrete levels of different ions are 
coupled by phonons so that in the ordered regime the levels split 
and again an appropriate phonon mode becomes macroscopically 
occupied. The order parameter is <Q> for the phonon mode, or the 
related electronic energy splitting, which can be written in tenns 
of <8> where 8 is an appropriate operator for the electronic states 
of the ion, in simple cases just a (pseudo) spin operator. 

Some transitions are driven by highly anharmonic phonon effects 
and accompanied by an ordering of some constituents among various 
positions of equilibrium. A simple example of such order-disorder 
transitions is Na N0 2 where the equilibrium positions relate to the 
rotational configurations of the NO; ions. These can be 
represented by a pseudo spin operator SZ in an effective Ising 
Hamiltonian , with order parameter <Sz>. 

The hydrogen-bonded ferroelectrics, typified by KDP, share 
some of these characteristics: in these systems the equilibrium 
positions arethose of the protons in their double well. The 
pseUdo-spin states SZ = ± 1 then represent the two positions for 
each proton, or in a more sophisticated picture (developed in § 2) 
they can refer to some symmetrised coordinate for all the protons 
around a phosphate group. The order parameter is <Sz>, or the 
average of the symmetrised coordinate, or the spontaneous electric 
polarisation associated with the ferroelectric transition 
triggered by the proton motion. Other hydrogen-bonded materials 
like the isomorphs of KDP and also TGS and Rochelle Salt can be 
described similarly. 

The Peierls transition has some similarities to the Jahn
Teller transition: the continuum of conduction band electron 
states develops a gap at the fermi wave vector, for a half filled 
band, as the (one dimensional) lattice doubles its unit cell. The 
order parameter is the energy gap, or the distortion coordinate, or 
the occupation of the q = 2kF longitudinal acoustic phonon mode. 
In the simplest (Frohlich) model for these systems, the analogue 
of the pseudo-spin is the local conduction electron density. It 
would be inappropriate to represent this by a spin operator, but 
some of the formal treatments of the Frohlich Hamiltonian parallel 
those for pseudo-spin-phonon coupled systems. The structural 
transition in the A-1S high temperature superconducting systems 
is similar in origin to the Peierls transition but differs from it 
in being intrinsically three dimensional because of the role played 
by the weak coupling between chains. 
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Anharmonic phonon effects are responsible for the properties 
of displacive ferroelectrics such as K Ta 03, in which the order 
parameter is the distortion coordinate corresponding to the q = 0 
soft mode; also for the behaviour of cell-multiplying structural 
transitions such as the cell-doubling transition in Sr Ti 0 3 where 
the distortion coordinate has q = (~,~,~)~a; and for the 
incommensurate transition in for example Ba Mn F4 • In all these 
cases a pseudo-spin picture is not obviously applicable. 

To the extent to which the special properties of the super
ionics can be regarded as due to a sublattice melting, they are 
in a rather special class. The pseUdo-spin picture could at best 
apply only in some sort of lattice-gas picture of the melting 
sublattice. 

Despite the wide variety of these systems, and whether or not 
the pseudo-spin picture applies, the lattice instability is 
normally associated with some instability in the system to which 
the phonons are coupled - for example, other phonons (as in for 
example KDP) or conduction electrons (Peierls transition) or 
pseUdo-spins (Jahn-Teller) and so on. And the distortion 
coordinate (or average of the soft mode eigenvector) is always one 
of the possible order parameters. 

In the rest of this paper the discussion is confined to spin
phonon systems, Jahn-Teller systems and order-disorder and 
tunnelling ferroelectrics: these are the most strongly inter
related systems and also those describable by a pseUdo-spin 
formalism. Occasional references will be made to parallel 
features of some of the other systems for which, though a different 
formalism may be more appropriate, some basic ideas are similar. 

Reviews dealing with the systems listed above and particularly 
those not considered further here are: Jahn-Teller systeml ,2, 

order-disorder and hydrogen bonded ferroelectrics 3 ,4, structural 
phase transitions 5-9 , improper ferroelectrics lo , Peierls 
transition and A15 compounds ll - l8 , superionics l9 • The present 
volume, and reports of previous Geilo conferences 2o ,2l give 
comprehensive treatments of most of these topics. 

The next section discusses models for the selected systems; 
it is followed by a section (§3) on general static and dynamical 
properties of the models; section 4 discusses mixed and dilute 
systems, while the final section (§5) considers some aspects of the 
central peak problem and critical properties, in an attempt to 
provide some background to current developments. 
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2. MODELS 

(i) Spin-Phonon Systems 

As an illustrative example we consider a spin ~ system with 
linear coupling of the z-component of spin Siz at site i to a 
particular phonon branch. Considering only that branch, the 
Hamiltonian has the form 

H :: .Erv i\ W'i- (at Q", -+!) +.~tf, S~ A 'f,(i.) ('It -+ t!q..) 
where A~~p.) :: AI\- (i.) ::. AIj. e'" ~.!".: . 

(1) 

The last term can be ~itten in the alternative form i~ sf Aq(i) Qq, 
where IIq (i) = (2rnwc/1\) 2' Aq (i), and represents a couplmg of spin to 
lattice displacement Q. The exact canonical transformation 

£AI\-~ octj,.. = ti4 .,.. f AC\- (i.) S~~ /'t\w+ 
S.- ~ S~ (2) .. ... 

which corresponds to a shift of phonon coordinates, takes the 
Hamiltonian to the form 

where 

H - _.1. I:.r: s~c-~ :s, - 2. ij ij &...:)j ) 

( 3) 

This separation of the spin and phonon parts leaves the spins with 
an effective Ising interaction , resulting from exchange of phonons. 
The Ising model is perhaps the simplest exhibiting a phase 
transition, and straightforward extensions provide descriptions of 
Jahn-Teller systems (§2 (ii)) and tunnelling ferroelectrics 
(§2(iii)) . 

The consequences of (3 ~ and (4) are that the phonon frequencies 
are unshifted, and that <S > becomes non zero+below the Ising 
transition temperature and so, since <a.> = <a. > = 0 ~ 

<q ) == _ ~ ,\.(i)~ <S~e;> = _ 1l\f <.s:~). (5) 
4- &.. V"\O ""t.v2.. c;.. 

1- + 
This corresponds to a spin ordering and a lattice distortion, at 
the value of q at which the Fourier transform J(q) of Jij, equation 
( 4), has its maximum. This is normally at q = 0, thOUgh 
exceptions analogous to the anti ferromagnet or spin spiral can 
occur22 ,23 
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An important case is when the spin coupling is to strain, £. 

This is usually treated separately from the phonons because of 
difficulties in applying boundary conditions to a strained 
crystal. 2" , 2 5 For uniform strain, the corresponding strain 
coupling term, and elastic energy terms (replacing or 
supplementing the phonon terms in (1)) are 

~ S,,~ ACi.) ~ + J.. c..£.~ (6) 
~ ~. 

This leads to the development of a macroscopic strain below the 
transition. § 3 will refer to approximate methods for obtaining 
quantities like <Sz>, such as molecular field theory which is exact 
for strain coupling. 

The above discussion actually applies more properly to pseudo
spin than to true spin systems : since the coupling to phonons is 
restricted by time-reversal invariance the linear coupling of a 
true spin operator to displacement as written in (1) could not 
actually occur, though coupling to the lattice momentum operator 
in principle could. A more interesting example of the spin-
phonon system is single ion-lattice magnetostriction 26 - 28 where H 
is as above but with Sf typically a quadrupole operator. The 
coupling as written in (1) applies when SZ is a pseUdo-spin operator, 
as it will be in all the subsequent discussions. 

(ii) 1 2 Jahn-Teller Systems ' 

The simplest situation occurs in Tm VO", and Tm As 0", where 
(in zero field) a degenerate low lying doublet is linearly coupled 
to a non-degenerate phonon mode. All other electronic levels can 
be neglected as long as the Jahn-Teller splitting is sufficiently 
small. The two states SZ = ± ~ of a pseudo-spin-~ operator can be 
used to represent the two levels of the crystal field doublet for 
the ion at site i. The ion is coupled to a local lattice 
distortion through a Jahn-Teller energy term of the form i~ siA(i)Qq' 
which leads to a Hamiltonian of the same form (1) (or eqUlvalently 
(3), (4)) as previously. As before, a lattice distortion <Qq> 
develops below the transition at which <Sf> becomes non-zero. 

In the molecular field approximation the Hamiltonian takes the 
form 

H ~ - ~ ~L Si~ -t .. ' 
l. 

where the molecular field experienced by the 'spin' at site i lS 

",. = ~ :r, .. <S.~~ 
" j l.J J /. 
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This can be interpreted as the level splitting. 

Care has to be taken with the Jii term in (4) if molecular 
field theory is being used. Since (Sr)2 = ~, the Jii term is a 
constant and without significance in an exact treatment. In 
molecular field approximation (which replaces (S~) 2 by 2 <S~> Sf) 
it would appear as a spurious contribution unless subtracted out2~'29 
and similar considerations apply if random phase approximations are 
used. It is therefore convenient to take J .. as zero or, 

. II eqUlvalently 

(8) 

In Tm VO~ and Tm As O~, the strain tenns (6) play an important 
role and have to be included in a straightforward generalisation of 
the above discussion. 

Various additional generalisations of the model are required 
for other Jahn-Teller systems: 

Coupling to a two-dimensional distortion gives rise to an 
inTeraction term of which the simplest form is L A(Sz Ql + SX Q2), 
leading to an X-Y Hamiltonian in place of (4)25,30. This 
description applies to Pr C£331 and Pr Eth SO~32. Outside of mean 
field approximation, the X-Y form of the transformed Hamiltonian is 
only approximate (c.f. the discussion under (10), below). 

Most systems have splitting in the high temperature phase, 
which corresponds to an additional term - i risa in the original 
Hamiltonian (1). If a = z, the splitting acts like a longitudinal 
field in the resulting Hamiltonian (4), and no (sharp) transition 
occurs. This is the situation33'3~ in Ce Eth SO~. In general 
the additional term prevents the transition unless a = x. In this 
case, the 'transverse field' term is 

(9) 

This applies to Dy V0 4 which, having two Kramers doublets, is 
effectively a two-level system. The same term arises in Tm VO~ if 
a (true) magnetic field r is applied since the otherwise degenerate 
doublet is magnetic. Spin and phonon parts cannot be exactly 
separated for this case, since the transformation accompliShing 
(2) is, for any operator A, 

(10) 
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. ( ) is x -is w""';ch The transverse fleld term 9 transforms to - L reS e , III 

still illvolves phonon terms sillce [Sx, S] 'f. o. This can be 
approximately simplified3s ,1, ill a manner analo~ous to the treatment 
of Debye-Waller factors to yield a Ham quenched 6 effective transverse 
field. In molecular field approximation these complications do not 
appear, and the resul tillg Hamiltonian involves an unperturbed 
(shifted) phonon part and a spill part of 'transverse Ising' form 

H -_~rS)(_.1.00;" -.-.. S~S~ 
S2 - t I.. ~ 1) "'L,\ " j . (11) 

This model, which also applies for rare-earth group V compounds with 
the NaCJI, structure 3 7 and the tunnelling ferroelectrics 3 , .. , 3 8, has 
been rather fully treated ill the theoretical literature 38-" 3 and its 
properties will be discussed in § 3. The fact that the observed 
phonon frequencies ill for example Dy VO .. ap~ar to be almost 
unaffected by the Jahn-Teller interaction" indicates that the 
rrolecular field approximation holds well there, implyillg long 
range effective illteractions. 

Other generalisations of the model are required for example 
for the four level system Tb VO .. , which can be represented by two 
pseUdo-spin ~ operators .. s ' .... , or for triplet ground state systems .. 6 • 

The pseUdo-spin method is rrost useful when only a limited 
number of low lyillg levels is involved. The next subsection 
considers its use for ferroelectrics, particularly of the 
tunnellillg type. 

(iii) Order-disorder and Tunnellillg Ferroelectrics3- 6 ,29,3S,47 

The pseudo-spill method was first used for order-disorder 
ferroelectrics with well-defined positions of equilibrium 
(eg Na N0 2 .. 8 ,49). A generalisation of this type is the KDP class 
of (hydrogen-bonded) ferroelectrics, for which the descriptions 
have evolved from simple pseudo-spin models to rrore sophisticated 
models so , .. which illclude pseudo-spill phonon couplillg and make 
evident the relationship to soft mode behaviour. 

The crucial feature of all these models is the existence of a 
double well (for the coordinate of a single proton in simple 
rrodels, or more generally for some coordinate related to the 
collective proton displacement which freezes in below T ). 

c 

The simple spin mode1 3 , .. 7 is developed as 
representing the coordillate of a single proton 
simplest double well potential is 

~2.. 'b 4 V = - t Q. 50' 4 A r· .. .,. .. 

follows. With s· 
at site i, the 1 

(12) 
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, 

with minima at 0 = ± (a/b)2. The two values sf = ± ! refer to 
which well the proton at i occupies. Tunnelling between the two 
wells causes a splitting r, which is accommodated by the follcwing 
term in the Hamiltonian 

-~ rSi.". 
L. 

Coupling between displacements of different protons, through a 
h~nic potential Vij(~i - ~j)2 then leads to the spin inter
actlon term 

il- ~ -i?; .Ti.~ Si. SJ' , 
L.J 

and we recover the transverse Ising Hamiltonian (11). 

(13) 

(14) 

This development is inadequate in several respects. First, 
all but the lowest two states in the well were neglected. This 
approximation will fail s1 if the separation of the higher levels 
becomes comparable to J, r, where a displacive situation more 
correctly treated in an anharmonic phonon picture will occur. 

Secondly, in the case of a specific example such as KDP, the 
nature of the coupling between different protons around the sarre 
P04 group has to be more carefully considered for two related 
reasons: (a) the soft mode for the system is a particular 
(B2 symmetry) mode involving all the protons S2 , as shown in 
Figure 1(a), and (b) certain configurations of the protons around 
a P0 4 group are energetically favoured over others s3 ,s4. In order 
of increasing energy the configurations are: the B2 type 
displacement with two protons "in" (adj acent to the PO 4 group) and 
two "out", other displacements (E 1 , E2 syrrmetry) with two protons 
in and two out, arrangements with three in and one out or one in 
and three out, and least favoured of all is that (A2 syrrmetry) with 
four in or out. 

Both of these points can be overcome 29 ,4 by using symmetrized 
local normal coordinates ~a. for the four protons, rather than a 
single proton coordinate, and corresponding to the B2, A2 and E 
modes shewn in Figure 1(b). The ~a.(a. = B2 , A2 , El or E2) are 
appropriate linear combinations of the four proton coordinates 
qn' n = 1, ... 4. The effective potential of the four protons 
surrounding the PO 4 group in the centre of cell i can then be 
written as a power series in the ~-variables. The quadratic terms 
are 

(15) 
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(a) 

Figure 1. (a) Soft mode of KDP (after Cochran 52 ) 
(b) Symmetrised proton displacements in KDP. 

mode corresponds to the soft mode depicted in (a). 
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where AE = AE . By putting each qn equal to ± 0 it should be 
possible Ito match the Au to the energies of the Slater-Takagi 
model 53 ,54. This model, however , involves one more parameter 
than so far appears in (15). This can be accOJIllrodated by adding 
to (15) symmetry - allowed quartic terms of the form 

(16) 

Additional terms arise from considering the same types of 
quadratic and quartic coupling between protons (lying in different 
cells) which are adj acent to a PO 4 group at the boundary of the 
unit cell. These contributions, which involve the same para
meters as in (15), (16) generate terms of the form •.• ~(i) ~(j), 
and ... ~(i) ~(j) ~(k) ~(~), where cells i, j, k, ~ are all adjacent 
to the same P04 group. 

The energies of the Slater-Takagi model make it plausible that 
in the resulting combined Hamiltonian the coefficient of ~~2(i) is 
negative, and all other ~&(i) terms have large positive 
coefficients. 

Since (16) gives rise to a term 

i(S- tW) 14(~) 
82. 

(17) 
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a double well then arises for the ~B2 coordinate provided B > ~W, 
while all other ~o. are stable and do not play an important role in 
the phase transition. A pseudo-spin Si can then be associated with 
the ~B2 (i) of each unit cell and the tunnelling term (13) is 
recovered. Of the quadratic and quartic intercell terms referred 
to earlier, the quadratic terms in ~B2 (i) ~B2 (j) then give the 
usual Ising coupling (14), where i and j label adjacent cells; 
the quartic terms ~B2 (i) ... ~B2 (~) give an additional four-spin 
coupling proportional to 

S.D S~S*"Si!: 
"J It:t· 

(18) 

The above discussion depends on arguing that coupling terms between 
~B2 and the other ~o. are either small by symmetry (e.g. for low k 
modes) or can be accommodated as small correction terms to the 
coefficients by 'decouplings' of the random-phase type 4 • 

In addition to the near-neighbour pseudo-spin couplings 
arising above, longer range pair interactions arise from the dipole
dipole interactions with more distant protons. 

Only proton motion was so far considered. The spontaneous 
polarisation arises from the resulting largely harmonic motion of 
other atoms in the unit cell. Their coupling to the proton soft 
mode will give additional terms in the Hamiltonian of the form50 ,4 

(19) 

where the AX term is small and unimportant for KDP, and will be 
neglected in the remainder of this discussion. In addition, strain 
coupling terms can arise, as in (6). 

The transformation (10) can again be applied to approximately 
uncouple 'spin' and phonon parts , resulting in a transverse Ising 
model with a quartic term, coming from (18) and a quadratic term 
arising from three sources: (a) the ~B2 (i) ~B2 (j) terms, (b) the 
dipole-dipole interaction, and (c) the phonon exchange term 
(analogous to (8)). 

( . ) D· I . Fl· 5,6,55-57 lV lSP aClve erroe ectrlcs 

Up to a point, the development would be similar for a 
displacive ferroelectric. The crucial difference occurs at the 
introduction of the pseudo-spin, which is appropriate provided a 
double well arises and that the mean square fluctuation in the soft 
mode local coordinate ~o. (i) remains large even above the 
transition. If this is not the case, an anharmonic ~icture would 
seem more suitable. The following simple discussion 5,56 gives 
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the main characteristics of this picture. The lattice vibrational 
energy is expanded in terms of displacements from the high 
temperature configuration, using appropriate nonnal coordinates 
(and, for simplicity, considering only fourth order anhanronic 
terms) : 

(20) 

The effective Hamiltonian resulting from averaging pairs of ~'s in 
the anhanronic term is 

He~ =!: L iAl4,1. 1; 
w;- = .0.; +!: V(1-' k)(r J > = Jt.. -+~ VC~,k) cot" f~Wk 
"... k ) Ie k k .2~1( 

(21) 

where V is a coupling constant appropriately related to W. 

If, for a particular mode and wave vector (qc)' Q2 is so 
negative that zero point fluctuations alone are not su~ficient to 
stabilize it (Qqc < -~ L V/w) , the displacive transition occurs at 
T = To such that ~c = o. 

For T > To, w2 > 0 and the reference configuration is stable. 

For T < To, a non-zero <~qc> freezes in to stabilize a 
distorted lattice having w2 > IT, and the averaging used to obtain 
Heff has to be modified to include the additional non-vanishing 
averages. 

In not requiring spin-like behaviour for the local soft mode 
coordinate, this is more general than the pseudo-spin approach 
(but less easy to approximate to obtain spin-model behaviour where 
it is appropriate). 

(v) Hamiltonians 

This section gathers together the basic Hamiltonians for the 
principal pseudo-spin systems discussed above, omitting strain 
terms 

(22) 

(simple spin-phonon, or simplest Jahn-Teller system: TIm V0 4 in 
zero field). (22) becomes, after exact canonical transfonnation 
(10) , 
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H ::: H p + Hs, :: ~ t\Wtt (ott ol", +:i) - f tr J"~j stsj (23) 

with the Ising interaction given by (4) and (8). 

(24) 

(cooperat i ve J alm-Teller systems Dy VO,+, or Tm VO,+ with applied 
field). Canonical transformation (10) takes (24) approximately 
to the form 

which involves the Transverse Ising Hamiltonian with exchange again 
given by (4) and (8). 

(c) H =~i\. W4.(~!Q. +1.) -2: r Sl( - *- Z" L" S· ~ S".~ 
\- -y~... ~ i. L- .. i.j I.J I,.. J 

-~~t K':jkt stst~I<"f.St~ T~ A'vS:(Q~ +~) (26) 

(Hydrogen-bonded ferroelectrics. .The Ising pair interaction Lij 
includes the dipole-dipole part). The canonical transformation 
again approximately uncouples spin and phonon terms: 

H~ Hp+l-k3 =Z~w","(4~+f)-Trst -!~ Ji,;S"Z,S/ 
'"" K Sac-I! I! i! J (27) -fjltt ijkt i.;>.j 51( S( 

where 

(28) 

The properties of all these rrodels are considered in the next 
section (see also the papers by H. Thomas, R.T. Harley, and J.K. 
Kjems in this volume). 

3. PROPERTIES OF MODELS 

The simples t model listed is (22), applying to Tm VO,+ and 
Tm As 0,+, in zero field. From (23) and (7) the order parameter 
<Sz> is that for an Ising model and it should show up in experiment 
as the splitting of the ground state electronic doublet. For 
Tm VO,+ the measured splitting58 agrees well with Ising rrodel 
molecular field theory for <Sz>, as shown in Figure 2, and the 
specific heat anomaly (Figure 3) also fits extremely well to the 
Ising rrodel rrolecular field theory curve 59 • The validity of 
rrolecular field theory is due to the dominance of the very long 
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o 1-0 z-o 
Temperature l Kl 

JO 4-0 

Figure 2. GroW1d state splitting y in 'I'm VO 4 (r = 0), and a 
comparison with molecular field theory (solid line)58. 

range exchange interaction produ~ed by strain coupling. No 
interesting dynamics is left in the Hamiltonian (23). 
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A related example is completely deuterated KDP. To the extent 

C/R 

1.2 

08 

% 
'OOOQlODoo 00000 0000 

3 4 5 
T K 

2 

Figure 3. Experimental and mean-field (solid line) values for 
Specific Heat of 'I'm V0 4 (r = 0)59. 
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to which it is described by (26), it is usual to place r _ 0, since 
the heavier deuteron will tunnel less than a proton. The 
transformation to (27), without the tunnelling term, is then exact 
and the dynamics again become trivial. In particular3 the pseudo
spin wave mode observed in KDP below the transition (§3 (iii» 
should not be seen in deuterated KDP. The models (24), (26) with 
non-zero r have both interesting static and dynamic behaviour. 
The next three subsections briefly consider these aspects. 

(i) Statics 

The simplest approximation is molecular field theory3,4o,47. 
Since molecular field theory for (24) is the same as for (25), it 
is sufficient to apply it to (25), concentrating on the effective 
spin Hamiltonian 

Heff = Hs2. = -:r rsi.~ -t, ~ J.Lj st Sj (29) 

Each spin experiences a mean field 

r = r R +J"(o)(S:)g (30) 

as depicted in Figure 4. The average spin vector is of magnitude 
R = ~ tanh ~ By and makes an angle e with the z-direction. The 

z 

Zl 

J(O)<SZ>~---_~ 
I 
I 
I 

<Sz>rl __ ~ 

o 

~ Tanh ~ ~y 

*----X 
r 

Xl 

Figure 4. Molecular field and average spin for the transverse 
Ising model. 
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equation of state is therefore given by 

(31) 

Provided the transverse field is sufficiently small (r < J(O)) the 
order parameter <Sz> will become non-zero at temperatures less than 
the transition temperature T (r) given by c 

r/J"(o) = ~ ta.~'" tf3c.r. (32) 

This relationship between Tc and r is shown in Figure 5. 
T < T , Y (and hence <sz»and <SX> are given by 

c 

't=~J"(o) b.~"'i:(!'i, <S)(> = f1/:rto). 

For T :> T c 

(Sa.> =0 , 

For 

The molecular field specific heat 42 is of the form of a usual 

(33) 

(34) 

r = 0 molecular field contribution superimposed on a Schottky 
anomaly. The experiments on 1'm V0 4 and 1'm As 0 4 with no applied 
field (r = 0) agree well with the molecular field form59 ,6o. 

Experiments 59 with an applied field (r # 0) ~e satisfactorily 
with the relationships (33), (34) for y and <S >. In addition (32) 
accounts well for the observed dependence 59 ,61 of T on r. 

c 

, 
4.----

Figure 5. Mean field relationship between critical temperature 
and transverse field. 
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The decrease of Tc with r can also be seen in KDP, since r can 
be varied by applying press~62, which increases overlap and there
fore the tunnelling fre~uency. The observed dependence of transition 
temperat~ on press~ 3 is shown in Fi~ 6 and has a form similar 
to part of the curve (Fig~ 5) resulting from (32). Though the 
coupling (28) also changes slightly with press~ (enough to cause 
Tc to decrease slightly with press~ for deuterated KDP, as is also 
shown in Fi~ 6), the result for KDP appears to provide strong 
support 6 4 for the tunnelling pict~, and is difficult to explain 
in an anhanronic phonon approach. 

In discussing KDP with the transverse Ising model, we have 
ignored the four spin coupling term in the Hamiltonian HS 3 of (27). 
Its main effects, in a molecular field discussion4, are that it 
yields the first order transition actually seen65 ; it also allows 
a satisfactory fit to the data65 for the spontaneous polarization 
Po <Sz> with roughly the same va+ues of the parameters (e.g. Po) as 
are required for the high temperat~ Curie-Weiss law, which 
supports the picture of one pseUdo-spin per unit cell. 

Static aspects of the transverse field Hamiltonian (29) have 
also been treated by series methods 66 - 68 or by controlled 
extensions 42 ,43,69 of molecular field theory. The serles method is 

4" 
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Fi~ 6. Relationship between critical temperat~ and press~ 
for KDP and DKDp6 3 
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well suited to the treatment of critical properties, which are 
discussed in § 5 . The other IIEthod is useful away from the critical 
region. In this approach the leading corrections can be seen to 
arise from spin wave and spin fluctuation effects 42 • These include 
zero point and linear spin wave effects, as well as effects arising 
(in for example the low temperature specific heat) from the 
temperature and field dependence of the spin wave energies (§3 (iii)). 
These last effects are important near Tc(r) where the spin wave 
energy gap vanishes. Similar considerations apply to the 
Hamiltonian HS3 of (27). It should, however, be noted that, to 
the extent to which corrections to molecular field theory are being 
considered, if riO, models (24) and (25) (or (26) and (27)) are 
not equivalent. 

(ii) Formalism for Dynamics 

The models are all included in the following general form 

H = ~-k~,\- (qtq.,., -+~) -+f A4 S; (at -ttf-1-) T HsCol 

=t [~~'P~ -+ill\w;-ql\-G>_~] +?;A'tS:q~ 1- H~o) (35) 

(compare (22), (24), (26)) where the spin Hamiltonian H~O) is in the 
case of Jahn-Teller systems the crystal field IIamiltonian for the 
undistorted phase or, in the case of KDP, the Hamiltonian 
- L r SX - ~ L L SZ SZ - L L SZ SZ SZ Sz. Only phonon coupling 
to the z-component of pseudo-spin has been considered, but the 
subsequent discussion applies to the more general Jahn-Teller case 
involving coupling to a single electronic operator not represented 
as pseUdo-spin ~, or to the Frohlich Hamiltonian for the Peierls 
transition problem where S~ is to be re~laced by the electron 
den~ity ?perator Pq = ~ a~+q aK and H~O becomes the electron 
Harrultonlan. 

The use of 

w:l~<\)Q» = ~ ~ 1'9»= ~ +w;«q~» + ~I\~ «seQ», (36) 

w'1«S~» = w1.«G'~i!» = w'i-'l.~Q~a» -+~A~«Si!-~~» (37) 

leads to the following exact result 70 - 72 relating the phonon and 
spin Green functiom (momentllin labels omitted, for simplicity): 

(38) 
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There now remains the calculation of «SZ SZ», hereafter called 
X(qw) . 

For the special case where H~O) commutes with the generator S 
of the canonical transformation (10) (i.e. where r = 0 in the 
ferroelectric or simple Jahn-Teller cases, or where H(,O) contains 
only the electronic operator to which the lattice cou~les in more 
complicated Jahn-Teller cases) the transformation takes the 
Hamiltonian H to the form 

Here, ~ is the free phonon form, and HS (= HS1, or HS2 or HS3, ... ) 
is an elf'fective spin Hamiltonian containing no phonon term, as in 
§2(v). Since the spin operator is unchanged in the transformation, 
the special case has 

(40) 

where Xs is «Sz Sz» evaluated with Hamiltonian HS' In the 
situation (e.g. model (22» where this procedure is exact, X is, 
however, static. 

The more interesting cases, discussed for the remainder of this 
subsection, are where [S, HS(O)] ~ O. These cases are normally 
dealt with by introducing approximations within Green function 
formalisms71'7~'44 or in diagrammatic formalisms 40 ,41,74,7S,34. 

If X(q w) is represented by diagrams using q An S~ Qq as the 
interaction, the diagrams represent the processes of production and 
absorption of phonons. Some diagrams have intermediate states 
corresponding to the free propagation of a single phonon with wave 
vector and frequency having the external values. q, w. All other 
diagrams constitute the "irreducible" part II(q w) of X(q w). X 
is given in terms of II by the Dyson equationS, 34,74 

IT 
, + rr»O A 2-

1-

where DO is the free phonon propagator 

(41) 

(42) 

The obvious approximation (of RPA type) is now to replace II by 
the value corresponding to «Sz Sz» evaluated with HS(O). This, 
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however, is not adequate for the more delicate aspects of the 
dynamics 71 ,76 essentially because the resulting X does not reduce 
to the correct limit when [HS ( 0), S] -+ 0, where Xs should be 
recovered. 

Instead, a satisfactory approximation for X can be obtained 
using the effective spin Hamiltonian HS. The approximation is 
obtained by exploiting the contact between X and Xs when 
[HS(O), S] -+ 0, and the fact that Xs can be written in a form 
analogous to (41): if HS is separated into a 'tractable part' Ho, 
and a remainder of pair interaction form, 

(43) 

Xs can be developed in terms of diagrams 77 ,4o,41 having the same 
topology as the diagrams for X, but with the phonon propagators 
replaced by interactions v. Thus 40 ,70,77-80 

(44) 

where TIS denotes the irreducible part of x£ containing no v(q)'s 
with external label q. In the limit [H~07, S] -+ 0 (denoted by 
asterisk) where Xs becomes static and X -+ XS' 

(45) 

No approximations have been made so far. The approximation now 
introduced is that, away from the limit, the same relationship holds 
between the frequency-dependent irreducible parts, so that TI(q, w) 
can be written in terms of the simpler quantity TIS(q, w). That 
results in 7 1 , 7 6 

(46) 

TIs is evaluated using HS. The separation indicated in (43) is 
obvious for the HS arislng from (22) and from (24) provided K = o. 
Then 

Ho= -~T"Si.~ 
~ 

'\1"(1\-) = J"~) (47) 
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with J(q) given In (8), (28) respectively. The case K # 0 can be 
accommodated in the scheme by approximating the four spin term by 
an effective pair interaction so that in (28), L ~ L + 6 L K <SzSz>. 

Quite crude approximations for TIS(q, w) are satisfactory in 
some circumstances. Among the simplest is mean field approximation. 
(This will give the correct mixed modes, but will not be adequate 
for subtler effects like damping, or the Peierls transition at 
T = 0). TIS is then the single site susceptibility 76,73,72, in 
mean field theory for the system (43), (47). This approximation 
yields 4o ,72,7o,7s 

(48) 

with R, y, cos 8, <Sx> as in §3 (i). The zero-frequency part of 
ITS vanishes at and above the transition but has important 
consequences below. It corresponds to longitudinal spin 
fluctuations and arises because below the transition z SZ has a 
component along the molecular field direction. 

For more complicated situations, e.g. Jahn-Teller systems 
with many levels, the corresponding approximation for TIS is 
obtained by diagonalising the full single ion Hamiltonian HS 
treating in the mean field approximation the term bilinear in the 
electronic operator76 ,S2,Sl. In cases with degenerate levels, 
the zero frequency part of TIS need not vanish at the transition if 
SZ (or more generally the operator to which the distortion mode 
couples) has non-zero matrix elements between the degenerate 
levels, as in Tb V0 4 or in the singlet ground state system Pr3T£. 
In such cases the zero frequency part of TIS can cause a divergence 
as the transition is approached 76 ,s3,s4, leading to a "central 
peak" at discussed in Section S. 

(iii) Dynamic Properties 

In a Raman experiment in which the coupling to the light lS 

through the operator 

(49) 

(with P1 , P2 polarizability coefficients) the scattered intensity 
is proportional to 

Ilw} =, _'.e:-liW r", ['PI:l«~~~'i-l:» of p.r~{«S(lV".» +~94~~»} 
+ 12). «q44>~» J. 
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In the Raman case, q is effectively zero. Similar Green functions, 
but at finite q, occur for inelastic neutron scattering where in 
the Jahn-Teller case the corresponding Pi is very small unless the 
pseudo-spins have an associated magnetic moment. 

In a coupled system all these Green functions share the same 
poles (where the denominator of (46) vanishes) which determine the 
mode frequencies and Raman and neutron response. Inserting ITS 
as given by (48) gives zero frequency modes below the transition 
(associated with Order-~arameter fluctuations) and also coupled 
spin-phonon modes~~'5o, 5 whose frequencies satisfy 

If the mixing is small, one mode is phonon-like and the other mode 
(the 'vibron' in Jahn-Teller systems) is close to the uncoupled 
'spin wave' solution 

(51) 

(except where the modes cross). The wave-vector, and temperature
dependence of the 'spin wave' frequency38 is shown schematically 
in Figure 7. The q - 0 vibron for Dy va ~, Tb va ~ has been 
identified in Raman scattering~~. If only coupling to acoustic 
phonons is considered Wq goes to zero at small q and the vibron 
solution of (50) is, for q = 0 

q 
(0) 

Tc 
(b) 

(52) 

T 

Figure 7. The (uncoupled) spin wave or tunnelling mode frequencyws 
as a function of (a) wave vector,(b) temperature. 
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where A arises from the self-energy term in J(q) (the other part 
being cancelled by 2~/ Wei fran the right hand side); optic phonon 
contributions can also occur in A. The temperature-dependence 
resulting from <Sx> above the transition is seen in the experiments. 

Inelastic neutron scattering8S,S3,84 on Pr A£ 03,Tb V0 4 and 
Tm V0 4 shows important characteristics of the dispersion relations 
given by (50), including the vibron-phonon mixing at finite q, and 
the acoustic mode softening near the transition, as depicted for 
Pr AR- 03 in Figure 8. 

The Raman spectra 87-92 for KDP and its isomorphs show the 
corresponding coupled spin-phonon modes (at q _ 0), and the coupled 
spin-phonon model allows a satisfactory fit 4 to the peak positions 
below Tc. In deuterated KDP (r - 0), the spin (proton) mode is 
not seen: from (46) and (48) it can be seen that it should have 
zero intensity for r - o. 

The influence of pressure allows a clear identification of 
the spin mode in tunnelling ferroelectrics 93 - 97 • Since r 
increases with pressure in a roughly linear way62, the pressure
dependence of the Raman spectra also allows a test of results such 
as (50). For KDP it has been shown 9 6 ,9 B that the observed 
pressure-dependence is in rough agreement with the model (allowing 
also for the fact that J decreases slightly with pressure). In 
particular the uncoupled spin mode frequency at fixed T < Tc falls 
with increasing r (i.e. decreasing Tc(r)) in the way expected from 
(51). However, the pressure-dependence of the spin mode frequency 
in both phases appears to be less than is required for consistency 

EXPANDED 
SCALE 

REDUCED Q 

0.04 

> 
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~ 
~ 
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UJ 

Figure 8. Inelastic neutron scattering results S S for Pr A£ 03 
showing the mixed modes and the acoustic mode softening as T +'Tc 



PSEUDO-SPIN APPROACH TO PHASE TRANSITIONS 

with static measurements. The temperature-dependence of the 
uncoupled spin mode frequency in the paraelectric regime also 
agrees with the model result (51), as can be seen from Figure 9. 
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An important aspect of the pressure-dependence which makes it 
possible to obtain accurate spin mode frequencies in the para
electric phase is that while the response is overdamped in the 
paraelectric phase for all KDP-type crystals at atmospheric 
pressure, application of moderate pressures makes the spin mode 
underdamped in KDP. Similar behaviour is seen in Rb D p93 , 94 and 
in KDA99. The reason for the reduction of damping with increased 
r will be briefly discussed in §3 (iv). 

The application of a magnetic field to Tm V0 4 or Tm As 04 
gives rise to the otherwise absent transverse field term. The 
field-dependence of the frequency and intensity of the resulting 
coupled mode response (analogous to its pressure-dependence in 
KDP) has been investigated by Raman and neutron methods 1oo ,86. 

One important effect of the coupling is on the elastic constants. 
From (46) and (44 ) it is straight forward to obtain 
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Figure 9. Raman results 96 for the temperature-dependence of the 
uncoupled mode frequencies in KDP. The lower full line is a 
fit using (51). 
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w'l. 
-2.-

W'" 
(53) 

where ]Jq = 2~~/Wq, and Xs is the dynamic susceptibility for the 
effective spirt system. Assuming that Aq represents coupling to an 
acoustic phonon such that ]J is the limit of llq as q goes to zero, 
[1 + ]J Xs(1,w)J-1 then gives the modification 101 and frequency 
dependence 02 of the elastic anomaly. 'This has been used to fit 
the elastic anomaly both in KDPl03'~ and in Dy VO~ and Tb VO~102. 
In the case of Tb VO~ the (damped) zero-frequency part of ITS appears 
to distinguish its behaviour from that of Dy VO~, though this 
explanation is not supported by experiments 1 0 ~ on Pr AR. 0 3. 

For simple considerations it is sometimes adequate to treat 
the dynamics starting from the approximately transformed 
Hamiltonians (25), (27). The excitations are then the uncoupled 
phonon and pseUdo-spin wave modes, whose frequencies Wq and Ws(q) 
can be obtained directly from the approximate Hamiltonlans or, as 
was used to obtain (51) above, by ignoring the right hand side of 
(50). The approximate Hamiltonians also give rise to the zero 
frequency longitudinal spin fluctuations referred to below (48). 

(i v) Damping 

The theoretical discussion so far given has led to undamped 
modes. Though some damping effects are lost in the approximation 
used to get (46), the more severe approximation was the use of rrean 
field approximation for ITS. A proper evaluation of ITS can include 
all the dominant damping effects other than those that rely on 
resonant spin-phonon aspects. For the simpler Jahn-Teller cases, 
or for KDP when the four spin term is approximated by an effective 
pair interaction, HS is the transverse Ising Hamiltonian. For 
this model, 1m ITS' which gives the damping, has been considered 
using the Blume-Hubbard technique ~ 3, by diagrammatic methods ~ 0 , ~ 1 ,78 , 
or within a phenomenological approach3. In situations where rrean 
field theory is a suitable first approximation the leading 
corrections which yield damping are associated with the break up 
of an excitation into (i) a ~seudo-spin wave and a spin fluctuation 
or (ii) a pair of spin waves 1,78. Only the first process 
contributes to ITS above the transition, but both contribute below 
because of the mixed character of the excitations. 

The resulting expressions are very complicated but simplify in 
various regimes. For example, for T > T c and w near the spin wave 
frequency ws(q) , the Green function Xs for the transverse Ising 
model (that is to say, neglecting the mixing term in ~ in (46» 
becomes~1 
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(54) 

where 

2. 

A~= ~ J"l1-) sec.J • .1f~r L I: J"(t;.'JS(WS(1-')-w,l1-J). (55) 
.2 Ws (~ ) '2. ,.' 

~q is a complicated function of w for w not near ws(q). 

In the underdamped situation where these results apply, the 
ratio of damping ~q to frequency is, above the transition, of order 
(J(o)/z r) coth ~ ~ r (with z the cocrdination number), so that 
underdamping occurs for large r, in agreement with the pressure 
dependences 87 ,87,92 referred to in §3 (iii). The reason is that 
for r large 'spin precession about the external field' (i.e. 
tunnelling) dominates the interaction processes produced by J. 
The increase of damping with temperature (from the coth ~ B r 
factor) is due to the increase with temperature of the density of 
states into which the excitation can decay: that density of states is 
determined by the inverse of the spin wave band width, and at high 
temperatures the band width is proportional to <Sx>, from (51). 

In the more strongly damped situations which occur at higher 
T or lower r it is necessary to allow for the damping of the 
excitations into which the mode decays, and the self-consistent 
treatment of such effects~3 leads to a high temperature width 
typically of order J(O)/4 d when r and J(O) are comparable. The 
first principles theory of overdamping in the pseudo~pin model is 
still at a somewhat primitive stage but it would clearly be 
desirable to compare a more detailed analysis with the most 
reliable experimental parameter -c1 :::; w2 / ~. 

For situations where the mode mixing has important (e.g. 
resonant) effects on the damping it is not possible to consider the 
damping within the transverse Ising model. Phenomenological 
discussions have been given 102 ,105, and also perturbation 
analyses 74 , 7 5 , 3 ~ starting from the Hamiltonian (24). The damping 
for the Hamiltonian (26) has been treated with the Blume-Hubbard 
method 1 0 6 and also by a diagrarrmatic perturbation method 7 8 , 

omitting the four spin term. 

The above discussion applies only to damping intrinsic in the 
model. Damping can also arise from random strains, from domain 
boundaries, or from various types of substitutional disorder. We 
briefly discuss the first and last of these sources in the next 
section. 
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4. MIXED AND DILUI'E SYSTEMS 

Substitutionally disordered ferroelectrics and cooperative 
Jahn-Teller systems have been the subject of recent study. 
Consideration has been given to the effects of both dilution 
(partial substitution of an active component by an inactive one) 
and of mixing (partial substitution by another active component, 
with a different transverse field and interaction). Examples 107 ,108 

of the dilute systems are Tbc Gd1- c V04 , Dyc Y1- c V04 , and an 
example 109 ,11U of the mixed system is K(Hc D1-c)2 P04 (partly 
deuterated KDP). 

The simplest approach to such systems is the virtual crystal 
approximation, which is the disorder analogue of mean field theory 
for thermodynamics. For the transverse Ising model that allows 
an immediate treatment of static quantities in mean field theory 
(§3 (i)) by the replacements 

(56) 

where the configurational average < >c denotes the weighted mean, 
with probabilities c, 1-c of the values for pure systems composed 
solely of one or other of the two components. Quite simple 
prescriptions allow virtual crystal approximation to be extended 
to discuss the dynamic behaviour108 ,111. These results can be 
recovered within a simple scheme 72 for the transverse Ising model 
which automatically includes the dynamics and which can be readily 
generalised to deal with the coupled spin phonon system, or to 
allow more sophisticated treatments, such as CPA, of the disorder. 

For simplicity we consider the case T > Tc (deferring until 
the end the generalisation to T ~ Tc )' 

In the Hamiltonian (29) r is now taken to be site dependent 
(r ~ ri) and the exchange to depend in the following way on the 
types of spins occupying sites i, j (i.e. through Wi, Wj only): 

.Ttl -+ 4lJ· ::.P.: J'ij fAj . (57) 

This re~lacement is exact for the dilute case, and appears to 
be adequate 9 for partially deuterated KDP. Wi is like an 
effective dipole moment in the ferroelectric case. 

The equation of motion for the Green function X - «Wi sf; Wj sj» 
can be decoupled in random phase approximation 38 above the 
transition to yield 
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where 

(59 ) 

This is precisely equivalent to (44), with ITS replaced by -~i' 
which is the mean field approximation (48), T > Tc , with the 
allowance of site-dependence. The disorder now occurs entirely 
through the site-diagonal parameter ~i. The replacement of this 
by its mean value ~ is virtual crystal approximation: 

~~ -+ +(w) = <4>~)c-
r. 2..L TI ~ (60) = c_ A,M" ~ ht"'~ f{1rA + (\-,) I afAs tt-4 .... I.. ~(\rB 

wL-r: w~-rl 
where c is the concentration of species A, with parameters ~A' r A 
and (1 - c) is the concentration of species B. This gives 

(i) Statics 

The transition is located by the divergence of the q = 0 static 
susceptibility, that is, where 72 ,111-113 

0= \ -t'J{o) <i>lo) (62) 

with ~ given by (60). The shape of the resulting curve of 
transition temperature versus concentration depends on whether 
ordering is possible in both or just one of the two pure systems 
(pure A system, pure B system)72. The theory gives a satisfactory 
fit to the concentration-dependence of the transition temperature 
of Dy c y 1-c V04, apart from its neglect of percolation effects, and 
the appropriate generalisation of the theory to the four level 
system appropriate to Tb V04 accounts well108 for Tbc Gd1-c V04, 
as shown in Figure 10. In these cases ~B = 0 since the Gd and Y 
ions are not Jahn-Teller active. 

In the corresponding description of the static behaviour of 
partially deuterated KDP, rB can be taken as effectively zero. 
The theoretical results 98 for Tc(c) and C(c) (where C is the Curie 
constant) agree satisfactorily with experiment 1 09. 
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Figure 10. t1easured concentration dependence of the transition 
temperature in Tb Gd1 V04. The full line is from virtual 
crystal theory 1 08: -c 

(ii) Dynamics 

Virtual crystal approximation as set out above also gives the 
dynamic behaviour: the excitation frequencies are given by 

(63) 

Provided none of c, (1 - c), ~A' ~B' rA' r B CL~ zero, (63) is a 
quadratic equation in w2 with solutions wq1+)2 and wg(-)2 (with 
wq(+) > wq(-)). In virtual crystal approximation tnese excitations 
are undamped, and 1m X is then a sum of 0- functions centred at 
± Wq(+), ± Wq(-). Defining the integrated intensities Iq ± of 
these modes to be the residues at the poles gives 

I ± 
t{, -

±1T (rA1 - ,->~1}~)(w~(:!:)2._ rB'.!.) 

2.J'(4\-) w~:!)'1. (w~+)'1. _ w~-) '.1.) 
(64) 

It is easy to check that in the limit c + 0 the mode frequencies 
become W - wB,w - rA where wB is the pseudo-spin wave frequency for 
the pure B system, and that their respective intensities are 0(1), 
O(c); analgous results apply near c = 1. 

For rB = 0 or ~B = 0 (as apply for deuterated KDP, or in diluted 
cases) only the A-like excitation occurs, and its intensity varies 
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roughly like c. Related behaviour is seen in the experimentslOS,llO. 

(iii) Generalisations 

For a more complete understanding particularly of the dynamic 
behaviour ll ° in partially deuterated KDP, the phonon coupling has 
to be introduced into (58) in a manner analogous to the way (46) 
generalises (44). The resulting generalisation9S ,111 gives a more 
complete understanding of the observed concentration dependences of 
the Raman datal 10, including the combined pressure and deuteration 
dependences. An example of this is shown in Figure 11 where the 
resulting theoretical expressions are compared to the concentration 
dependences of,the observed logarithmic pressure derivatives of Lhe 
low temperature mixed mode frequencies. 

Intrinsic damping of the excitations can also be included72 , 
through a generalisation of ¢.(w) in (58), (59). 

l 

In order to treat damping caused by the disorder the CPA 
generalisation72'11~ of virtual crystal approximation is required. 
Tha! leads to the replacement of ¢(w) in the preceding discussion 
by ¢(w) where 

¢ = < 1'i I [ I -+ (cf>" - f) j J >c. 
(65) 

1.0r------------. 

Figure 11. Experimental 1 10 , and theoretica19S results (full lines), 
for the logarithmic pressure-derivatives a~n w±/ap of the 
frequencies of the low temperature q = 0 mixed modes in 
K(Hc D1- c )2 P04· 
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g is small (0 ( 1/z» in mean field-like systems, and 
gives back the virtual crystal approximation (60). 
to first order in g yields the leading contribution 
fluctuations to the damping, through 

I M ~ - - < ( ~ ~ - cf> )"1. >c IM j (<I» 

R. B. STiNCHCOMBE 

its neglect_ 
Expanding <P 

of configurational 

(66) 

(As w~s noted earlier, the damping arises from 1m IT, which is here 
- 1m <P). The result (66) is proportional to the density of virtual 
crystal states (whose energies wet) were discussed above). This 
simple extension of the virtual crystal approximation can give a 
satisfactory account of disorder damping where it is small. In 
other cases the self consistent CPA equations (65) have to be solved. 

The above discussion considered the disorder resulting from 
substitution. Random strains also have similar effects, in that 
they lead to a transverse field r varying from site to site, and a 
resulting damping. That can be treated as above, but with < >c 
interpreted as an averaging over the probability distribution for r. 
In particular (66) will then yield the damping arising from this 
source. 

To generalise the results of this section to T ~ Tc ' <Pi has to 
be replaced by98,11S 

(67) 

where 

(68) 

(compare (48». Virtual crystal approximation is then 

(69) 

which is equivalent in the static case to (56). 

5. THE CENTRAL PEAK; CRITICAL BEHAVIOUR 

(i) The Central Peak 

In the discussion after (48) it was stated that when 
degenerate levels contribute to ITS, a zero frequency response can 
arise; that implies76'81'83,8~ an elastic peak in the Raman or 
neutron response, or a dynamic one if the levels are weakly 
broadened by residual interactions. Such a central peak appears 
to have been seen in Tb V0483,8~. 
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Another mechanism for the occurrence of a central component 
is exhibited by the zero-frequency part of (48), which is due to 
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the z-component of spin having a longitudinal component (with respect 
to the mean field direction) below the transition. Beyond molecular 
field theory that longitudinal component will relax and give rise 
to a central peak of finite width. However, this central peak only 
occurs in X below the transition. (It could also appear in the 
Raman response above the transition if the operator SX were also 
involved in the Raman operator (49) or in the phonon coupling in 
the Hamiltonian). 

There remains the question how narrow such a peak would be. 
The pseudo-spin longitudinal mode just considered actually relaxes 
through decay into two pseudo-spin waves (§3 (iv)), which at low 
frequency and wave vector corresponds to a fluctuation in spin wave 
density. This process is analogous to the origin of the 
relaxational mode proposed for the anharmonic phonon model by 
Cowley ll6-ll8 which relies on coupling to fluctuations in phonon 
density and can occur in piezoelectric non-pyroelectric crystals 
above Tc' In both models damping and dispersion of the decay 
modes (spin waves or phonons respectively) will normally give a 
relatively large relaxational mode damping, though this a~pears to 
be consistent with the broader peaks sometimes observed ll • 

A central mode can also occur in the pseudo-spin model from 
non-linear fluctuations in the order parameter 3 (analogously to 
proposals for the anharmonic phonon modeI 120 ,l21), and indeed from 
most mechanisms applying in the anharmonic phonon model. Among 
the most clearly established of these appears to be entropy 
fluctuations, which is consistent with the magnitude and wave
vector dependence of the width of some very narrow peaks l19 , and 
appears to be responsible for the narrow but resolved central peak 
recently seen in KDpl22. In addition, some types of defect 
structure 123 ,l24 seem to playa role in some central peaks l19 ,125 

(both static and dynamic) at low temperature and near Tc' 

(ii) Critical Behaviour 

z The dependence of, for example, the order parameter <S > on 
T - Tc near a second order phase transition is usually described by 
critical indices 126 such as S in 

(S"> 0( (T-Tc..)fJ. (0) 

For the transverse Ising model, the static indices are known 
from series expansions 127 ,68. Some exact results are also known. 
For example, for the transverse Ising model the critical behaviour 
with respect to the field r of the thermodynamic functions at T = 0 
in a lattice of dimensionality d, is the same as the critical 
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behaviour of the corresponding functions wi th res~ct to T in the 
d + 1 dimensional Ising model : this was pruved 12 -1 30 for d = 1, 
and indicated for d = 2, 3 by series 6 6,67 and subsequently 
con finned 1 3 1 using standard renonnalization grDup methods 32. 

Thus for T = 0 the transverse Ising model has rrean field exponents 
for d > 3. In addition it can be seen that for T 1- 0, the 
transverse Ising model has the same critical indices as the Ising 
model with the same dimensionality l31. 

The crussover near T = 0 is a quantum effect arising for non
commuting operators frum the usual thermodynamic frec;uency sum 
becoming an integral for T = 0, and acting like an additional 
wave-vector component integral in the theory. It would be 
interesting to see some aspects of the crussover behaviour 
exhibited experimentally. The above discussion applies, however, 
only to the transverse Ising model with short range interactions, 
while most real transverse Ising-like systems have also long range 
interactions produced by strain coupling or dipole-dipole effects. 
This would result in mean field exponents sufficiently close to 
TC 133 , as appears to have been verified by observations of a for 
Pr A9v a 1 ~.. and for Tb va 1 3 5 thougn' not for Dy va 1 3 5 

3 4 ' 4 
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THEORY OF JAHN-TELLER TRANSITIONS 

H. Thomas 

Institut fur Physik, Universitat Basel 

Klingelbergstrasse 82, CH-4056 Basel, Switzerland 

1. INTRODUCTION 

In crystals containing ions with orbitally degenerate ground 
state, the interactions of the electron orbitals with the ligand 
displacements have a destabilizing effect on the ionic configura
tion: Jahn-Teller (JT) effect. This provides a mechanism for struc
tural phase transitions in crystals which would be stable in the 
absence of electron-ion interaction. We give an introduction into 
the theory of such JT-induced transitions, with particular empha
sis on a classification of the various types of JT-coupling and 
their dynamic characteristics. The dynamics of the cooperative 
JT effect manifests itself in bands of collective vibronic modes 
arising from transitions between low-lying vibronic levels of the 
JT complexes, and an analysis of the collective dynamic behaviour 
requires a thorough understanding of the vibronic excitations of 
a single JT complex. 

Surveys of experimental and theoretical work on the JT effect 
can be found in Refs /1-4/. As a mechanism for structural phase 
transitions, the JT effect was first considered by Dunitz and 
Orgel /5/. Transitions of this type have been found in a number 
of compounds containing transition-metal or rare-earth JT ions. 
References to earlier work, notably on spinels and perovskites 
containing Cu2+, Ni 2+, Cr2+ and Mn3+ ions, are given in Refs /6,7/. 
As more recent examples we mention the transitions observed in 
the Cu2+-hexanitro compounds /8-11/, in CsCuCi3 /12-14/, in the 
rare-earth vanadates and arsenates with zircon structure /15-19/, 
in PrAi03 /19-21/, and in the intermetallic compound TmCd /22/. The 
theory of such JT transitions has been treated by various authors 
/6,7,16,18,23-29/. 
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~lectron config. d l d2 d l d4 d5 d6 d7 d8 d' 

~plitting of free E ,~ \E 
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~ ~ 
ion term 25+1L by 2~ 5~ ~ 5~ ~ Fubic crystal field T ' 
(intermediate field) I 

Filling of single- _t __ ...1t..- -Lt....- .ll.-
electron crystal- .1ll.-- ..t..t..L-~ UW-

field levels eg , 
B Al T2 TI eg _ -- -- ...Lt- ...u..L.-

t2g (strong field) t2g~ -ll...- ...t.t..t...- .1illll. Ullll. 

High 5: T2 TI A2 A2 B upper row -- -- - ...1...-
Low 5: lower row .till.- .1.UU.. .t..t..t..&U. w.t.U. 

Tl T2 Al B 

y4+ cr4+ Mn4+ Co4+ 

Examples of Ti l + yl+ Crl + Mnl+ Fel + col + Nil + cul + 

ld-ions Ti2+ y2+ Cr2+ Mn2+ Fe2+ co2+ Ni2+ cu2+ 

Cr+ Mn+ Fe+ Co+ Ni+ 

Table 1: Orbital ground states of d-ions in octahedral crystal 
field. The ground states in tetrahedral crystal field 
can be obtained by the following procedure: 
Second row: Reverse order of levels, or interchange 
dn +-+ d lO - n 
Third row: Reverse order of levels, interchange 
dn +-+ d IO- n , interchange electrons +-+ holes. 

2. DYNAMICS OF JT-SYSTEMS 

2.1. Electronic Configuration 

Our starting point is the electronic structure of a JT ion in 
the crystal field of the ligands fixed in their symmetric reference 
configuration. We consider specifically the case of a transition 
metal ion in a crystal field of cubic symmetry with 

crystal-field energy> spin-orbit coupling 

(intermediate or strong crystal field). Table 1 shows the orbital 
ground states for octahedral coordination. In tetrahedral crystal 
field, the order of the levels is reversed, and the ground states 
are related to those of the octahedral case by 

Idn , tetrahedral> = Id lO- n , octahedral >. 

For intermediate crystal field (crystal-field energy ~ intraatomic 
Coulomb energy), the ground state is found from the splitting of 
the free-ion term 2S+lL by the crystal field (Table 1, second row). 
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Spin state 
Synnnetry of 

E doublet Tl or T2 triplet crystal field 

Octahedral d'+,d 9 d 1,d2 ,d6,d7 
High-Spin 

d 1 ,d6 d 3,d'+,d 8,d9 Tetrahedral 

Octahedral d 7,d9 d 1,d2 ,d'+,d 5 
Low-Spin 

d I,d 3 d5,d6,d8,d 9 Tetrahedral 

Table 2: JT configurations of d-ions in cubic crystal field 
(small spin-orbit coupling). 

JT ions are expected for the configurations listed in the first 
two rows of Table 2. 
For strong crystal field (crystal-field energy > intraatomic Cou
lomb energy), the crystal-field splitting of the single-electron 
d level into a t2 triplet and an eg doublet has to be taken into 
account before th~ Coulomb interact~on. These levels are then fil
led successively under observation of Hund's maximum-spin rule: For 
(crystal-field energy < intraatomic exchange energy), Hund's rule 
holds for the whole d shell: High-spin case (Table 1, upper part 
of third row). In this case, one finds the same ground states as 
for intermediate crystal field (first two rows of Table 2). For 
(crystal-field energy> intraatomic exchange energy), Hund's rule 
holds only within each subshell: Low-spin case (Table 1, lower 
part of third row). In this case, JT-ions are expected for the 
configurations listed in the last two rows of Table 2. 

In crystal fields of lower than cubic symmetry, the levels 
are generally split further. Twofold orbital degeneracy still oc
curs in tetragonal, trigonal and hexagonal synnnetry. In lower sym
metry, all orbital states are split into singlets. 

We disregard spin-orbit interaction and consequently spin de
generacy, which is justified if (JT-coupling > spin-orbit interac
tion). In the opposite case (JT-coupling < spin-orbit interaction), 
the spin-orbit splitting of the crystal-field ground-state multi
plet has to be taken into account before the coupling to the li
gand motion. The situation is then qualitatively similar to the 
case of weak crystal field (crystal-field energy < spin-orbit in
teraction): For non-Kramers ions (even number of electrons) one 
can apply the same considerations to the total-angular momentum 
ground-state, and one finds the same types of ground-state degene
racies as in the orbital-momentum case. For Kramers ions (odd num
ber of electrons), on the other hand, the ground-state degeneracy 
in the crystal field is usually reduced to that of a Kramers doub
let, which shows no JT-coupling. The only exception is the case of 
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a G3/ 2 quartet state in cubic crystal field. 

2.2. Vibronic Coupling 

Next, we consider the coupling of the electrons orbitals at 
the JT-ion with the distortions of the ligand configuration. The 
dynamics of the complex are described by the electron-ion Hamilto
nian: 

H H .1.. + H. ·1 + Vex Q) ef/, l.on l."on ef/, , (2.la) 

H. = l. P2/2M . 
l.on 

(2.lb) 

Here, (x,p) stand for the coordinates and momenta of the electrons 
in unfilled shells, and (Q,P) for the ionic normal coordinates of 
the complex and their conjugate momenta, with effective mass M. 

The electronic operators are expressed as matrices in a fixed 
basis consisting of states I~i> belonging to the reference confi
guration Q = 0: 

<~·IH 0.1. + V(x,Q)lw.> = V .. (Q) l. eN l.on J l.J 
(2.2) 

The vibrational amplitudes Xi(Q) of the total vibronic wave func-
tion 

~(x,Q) = { xi(Q)I~i> (2.3) 
l. 

are approximately determined by the matrix Schrodinger equation 

(2.4) 

in which Y(Q) serves as an effective potential-energy matrix for 
the ionic-motion (generalized Born-Oppenheimer approximation). The 
electronic motion can in good approximation be restricted to the 
n-dimensional subspace spanned by the states I~i> with e~citation 
energies ~ kTc ' Usually, the cubic crystal-field splitting is lar
ger than kTc (for d-ions typically of the order 104cm-l), such 
that in cubic symmetry only the ground-state mUltiplet has to be 
taken into account. In crystal fields of lower than cubic symmetry, 
on the other hand, the further splitting of the ground state can 
be comparable to kTc ' especially if the distortion from cubic sym
metry is small. In such cases, the lowest excited states have to 
be included. 

We introduce a complete set of n x n matrices 
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!o = ~eR, , ~ 1 ' ~ 2 (2.5) 

with 

(2.6) 

acting on the electronic states (electronic pseudospin operators), 
and express the electronic operators as linear combinations of the 

~ v, 

Y(Q) (2.7) 

such that 

(2.8) 

We obtain thus a separation of ¥(Q) into a part VO(Q)~eR, which is 
independent of the electronic state (vibrational part), and a part 
YJT(Q) which vanishes on averaging over the electronic states (JT
part) . 

An expansion in powers of Q gives rise to the following clas
sification of terms: 
Vibrational part v = 0: 

V (Q) = yeO) - F·Q + Vh (Q) + V h(Q) . o 0 arm an (2.9) 

The zeroth-order term is a constant and may be dropped. The second
order term is the harmonic part, and the higher-order terms are 
the anharmonic parts of the vibrational potential of the JT-com
p1ex. We further include a linear coupling to an external field F 
which will later be identified with the molecular field due to 
lattice-dynamical interactions with neighbouring complexes. 

JT-parts v of 0: 

( ) + v(l)(Q) + non1in(Q) 
¥JT Q = X~ =JT XJT • (2.10) 

The zeroth-order term describes the electronic ground-state split
ting; it occurs only when excited electronic states have to be ta
ken into account, and is thus not a JT term in the strict sense. 
The first-order term is the linear JT effect which plays the deci
sive role for the transitions considered, because it favours a 
distorted ligand configuration. The JT theorem states that for 
every reference configuration with a degenerate ground state (ex
cept for linear molecules and for Kramers degeneracy), there exists 
a vibrational mode Q for which symmetry permits 
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(2.11) 

The higher-order terms describe nonlinear JT interactions. 

We introduce symmetry-adapted vibrational coordinates Q~ trans
forming as the irreducible representations r of the symmetry group 
of the JT complex, and the corresponding electronic operators ~~, 
such that 

v (Q) = Y ! M 002 L (Qr)2 
harm r 2 r y y 

(2.l2a) 

V(l) (Q) = -2 A 2 Qr E r 
=JT r r y y =y 

(2.l2b) 

According to the JT theorem, at least one coupling constant Ar is 
allowed by symmetry. The possible types of JT coupling which can 
occur in crystals are listed in Table 3. Figure 1 shows the ligand 
configurations corresponding to the symmetry-adapted coordinates 
appearing in the linear JT effect. In the following, only the JT
active modes with a nonvanishing JT coupling will be taken into 
account. 

Site Electronic Vibrational Vibronic 
Symmetry State Coordinate Coupling 

tetragonal 2-fold: E I-fold: I3 lg ,13 2g E II (131+13 2) 

trigonal 
hexagonal 2-fold: E 2-fold: £ E II £ 
cubic g 

cubic 3-fold: 2-fold: £g 
Tl or T2 3-fold: T II (£+'2) 

'2g 

cubic 4-fold: G3/2 2-fold: £g 
(£+'2) (spin-orbit) 3-fold: '2g 

G3/ 2 II 

Table 3: The four types of linear Jahn-Teller coupling. The repre
sentations of the electronic states and of the vibrational 
coordinates are denoted by upper-case Roman letters and 
lower-case Greek letters, respectively. 

The eigenvalues of Y(Q) form a potential-energy surface in Q
space consisting of n sheets, and the vibrational motion can be vi
sualized as a motion in this surface. From the linear JT term to
gether with the harmonic vibrational term, one obtains minima at 

(2.13) 
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~ -mode 
tetragonal symmetry 

E-mode 
trigonal symmetry 

E-mode 
cubic symmetry 

1:2 -mode 
cubic symmetry 

Figure 1: Ligand modes coupling to JT ions 

with depth 

(2.14) 

Thus, the JT effect favours a distorted state Q = QJT over the un
distorted state Q = 0 by an energy EJT (JT destabilization energy). 
We are interested here in the case of strong JT effect where the 
JT destabilization energy is large compared with the vibrational 
zero-point energy, or equivalently, where the JT distortion is 
large compared with the vibrational zero-point amplitude: 

E »1. ii.w • 
JT 2 ' 

(2.15) 

In all cases, the vibronic ground state has the same degeneracy 
as the orbital crystal-field multiplet: The JT interaction cannot 
split the ground state, but can only mix electronic and vibratio
nal motion because it has the full symmetry of the crystal field. 

There exist two cases with basically different dynamic beha
viour: If Y(Q) is simultaneously diagonal for all values of Q, vi
brational motion leaves the electronic orbitals fixed. This occurs 
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for E B Sand T B e coupling. If the eigenstates of Y(Q) depend on 
Q, then vibrational motion will cause the electronic-orbitals to 
follow, and one obtains dynamically coupled vibronic motion. This 
occurs for E B E and T B '2 coupling. 

The eigenvalues En of ~JT determine the vibronic excitations 
of the JT complex. The dynamic properties are conveniently descri
bed by the dynamic susceptibility·Xs(w) to an external force F at .. 
frequency w, 

1 
X (w) = -_s Z 

(2.16) 
mn 

It shows with which strength the various vibronic transitions can 
be excited by a given force ~. 

2.3. Collective Behaviour, Mean-Field Approximation (MFA) 

If coupling to all other modes is neglected, the crystal is 
described by a model Hamiltonian of the form 

'I Hint . 
~ = L ~JT 2 + 

2 ' 
(2.17) 

We assume ordinary lattice-dynamical bilin~ar interactions between 
the coordinates 92 in different cells: 

int 1 'I' 
~ = - '2 L 92 ' ',:;'22' • 92 , le2· 

22' 
(2.18) 

The matrix v22' together with the force constants of Vharm of the 
single cell~(Eq. 2.9) form that part of the dynamic matrix which 
describes the phonon bands constructed from the local normal co
ordinates 92' If the ligands of a given JT ion belong to different 
lattice cells, there arise problems with the orthogonality of the 
Q2 for different 2 /30/. These problems have been discussed in de
tail in Ref. /31/; they will be disregarded in the present context. 
The collective response to an external field can be decomposed in
to the single-cell response to the molecular field and the res
ponse of the molecular field, 

(2.19) 

and one obtains after Fourier transformation the usual feedback re
sult of MFA /30,32/ 

X (w) = X (w) • (1-v 'X (w))-l 
",q "'s '" ",q "'s 

(2.20) 



THEORY OF JAHN-TELLER TRANSITIONS 

where 

v = II~~~, exp(iq'R~~,) 
I¥q ~,_ 

(2.21) 

is the Fourier transform of the interaction v~~'. The collective 
modes are found from the poles of ~q(w), i.e: from the zeros of 

~q • ~s(w) 1. 

Since 

y. ~q = ~~~ = 0 , 
q 

(2.22) 

(2.23) 

253 

the eigenvalues of ~q take o~ positive and neg~tive values i~ the 
Brillouin zone. As F~gure 2 ~llustrates, the s~ngle-cell exc~ta
tions give thus rise to bands of collective modes consisting of 
linear superpositions of single-cell excitations with phases 
exp(iq·R~). Of particular interest is the possibility of critical 
slowing down of a collective mode due to the feedback effect of 
the molecular field. One of the main objects of the theory is the 
study of the nature of the soft mode associated with the transi
tion. This requires a thorough understanding of the underlying 
single-cell excitations. It is important to note that the collec
tive modes. originating from vibronic excitations of the single 
complex are not optical-phonon modes of the crystal, but are modes 
of vibronic character occurring in addition to the phonon modes 
in JT crystals. 

The type of phase trans~t~on is determined by that mode which 
yields the largest feedback enhancement, i.e. by the maximum eigen-

w 

Figure 2: Single-cell exci tatio.n at frequency Ws 81v~ng risa to 
band of collective excitations with frequencies w . 

q 
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value of ~q. If this occurs at q = 0, the transition will be fer
rodistortive; for q = V2 x (reciprocal lattice vector), it will be 
antiferrodistortive; and for other values in the Brillouin zone, 
one finds transitions to more complicated commensurate or incommen
surate phases. In the ferrodistortive case, the only candidate for 
a continuous phase transition is the E B 8 coupling, as is easily 
seen from the Landau criteria: Both the E and the '2 mode have 
third-order invariants, and yield therefore necessarily disconti
nuous transitions. In the antiferrodistortive case, on the other 
hand, no third-order invariants exist, and continuous transitions 
are possible for all types of coupling. 

In the low-symmetry phase, there exists a static molecular 
field. For this reason, it is important that we study the behaviour 
of the JT complex in the presence of a static field, 

v(O) = - F • 9 (2.24) 
1 --

as indicated in Eq. (2.9). 

It should be noted that in MFA in its proper sense only the 
correlations between coordinates in one cell and the molecular 
field arising from the interactions with different cells are neg
lected, but the vibronic correlations between the electron orbi
tals and the ligand modes of the same complex, which play an im
portant role in JT transitions /7,26-28,33/, are fully taken in
to account. Neglect of these intracell correlations by a factori
zation of correlation functions <Q ~ > /6,24/ yields unphysical re
sults such as a phase transition fOr non-interacting JT complexes 
and a decreasing Tc with increasing interaction strength unless 
spurious so-called "self-energy" terms are subtracted out /6,16, 
25/. In the MFA as used here, no such ad hoc corrections are re
quired. 

2.4. Coupling to Elastic Strain 

The model considered so far does not contain elastic deforma
tions because the JT-active coordinates 9t leave the center of gra
vity of each cell at rest. Coupling of the 9t to elastic strain 
will however play an important role, especially in the ferrodistor
tive case: There exist strain components of the same symmetry 81 2' 
E, and '2 as the JT-active modes for all types of JT coupling, , 
which gives rise to bilinear piezodistortive coupling. 

We assume a crystal structure in which the ligand modes Qt 
are true intracell distortions. The elastic deformation is des-
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cribed by a displacement field consisting of rigid translations 
~i of cells i which are assumed to vary slowly with i. Then, the 
elastic strain tensor £i can be defined in analogy to the conti
nuum case as the symmetrized gradient of the displacement vector, 
i.e. 

(2.25) 

where A describes an infinitesimal rotation. In terms of symmetry
adapted strain components £~,i' the elastic Hamiltonian has the 
form /24/ 

I {i Ms;i + L Cr Y. (£r i)2} 
i r y y, 

(2.26) 

where the cr are the bare elastic constants per cell volume for 
strain of symmetry r. The strain is coupled to the distortions Qi 
of the JT complexes by a piezodistortive coupling term /26,28,29/ 

\' \' \' r r 
L. L. gr t. Qy i £y i 
i r y , , 

H' = (2.27) 

assumed to be local. Equations (2.26) and (2.27) are reasonable 
descriptions in the long-wavelength limit. Since the elastic ener
gy (2.26) together with compatibility requirements for the strain 
field makes short-wavelength strain components unfavourable, pie
zodistortive coupling is most effective for ferrodistortive and 
small q modes. 

This coupling has important consequences even in the absence 
of JT coupling: It leads to an intracell distortion 

Qind _ 
r - Xr gr Er (2.28) 

induced by a uniform strain ("internal strain"), and gives rise 
to a renormalization of elastic constants 

(2.29) 

Here, Xr is the ferrodistortive static susceptibility of mode Qr 
in the absence of piezodistortive coupling. On the other hand, a 
ferrodistortive distortion Qr induces a uniform strain of magni
tude 

ind -1 
gr Qr (2.30) Er cr 

and leads to a renormalized ferrodistortive susceptibility 

* (1-C~\rg2) X = Xr . (2.31) r 



256 H. THOMAS 

From Equations (2.29) and (2.31) there follows the interesting re
lation 

(2.32) 

between the renormalized and the unrenormalized quantities /29/. 

For a ferrodistortive transition, Eq. (2.29) shows that there 
occurs an elastic instability (c~=O) before the phase transition 
of the uncoupled system (Xr=oo) is reached: Because of piezodistor
tive coupling, the soft vibronic Q-mode pushes the acoustic mode 
of the appropriate symmetry down until the sound velocity vanishes 
at the elastic instability c~ = O. In the ordered phase, there 
exists a strain Er given by Eq. (2.30) proportional to the order 
parameter Qr' Such elastic instabilities associated with a soft 
acoustic mode have been observed in a number of rare-earth com
pounds /15,17,22/, even for systems where the structural transi
tion coincides with a magnetic transition /34,35/, as well as in 
nickel chromite /36/. The coupling strength gr can be determined 
by fitting the experimental results to an equation of the form 
(2.29). The results show that strain coupling is very important 
in the rare-earth systems investigated. 

By qualitative arguments it may be expected that the piezo
distortive coupling in transition-metal compounds is generally 
smaller than in rare-earth compounds. Equation (2.28) shows that 
the coupling constant gr measures the amount of distortion of the 
ligand configuration induced by a given strain. In transition
metal compounds, covalent bonding by the d-orbitals makes the li
gand complex very stable, thus preventing large distortions by 
strain. In rare-earth compounds, on the other hand, covalent bon
ding by the f-orbitals in much weaker, the ligand complexes will 
be less stable and will therefore more readily adjust to strain. 

For antiferrodistortive transitions, the piezodistortive 
coupling (2.27) still has important effects if the distortion 
has a ferrodistortive component (secondary order parameter). This 
is to be expected in the case of E and T2 modes for which confi
gurations 9 and -Q are not equivalent. Consequences of this coup
ling for antiferrodistortive E B E systems are discussed in Refs. 
/28,29/ (see Section 3.2). In a purely antiferrodistortive struc
ture as it may occur in the EBB case, on the other hand, bili
near coupling to uniform strain is ineffective, and one has to con
sider higher-order piezodistortive couplings like 

rr'r" r r' r' 
H" = - 1. gyy'y" Qy Qy' Ey" (2.33) 
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Up to this point it was assumed that JT coupling occurs only 
with intracell distortions Qr of the ligand configuration. In prin
ciple, there exists also a direct JT coupling to strain of the 
form 

, = - \ A' \ £r Er (2.34) 
YJT ~ r ~ y =y 

as has been considered in Refs. /6,24/. This coupling is due to 
the crystal field at the JT ion produced by displacements of neigh
bouring complexes, with all ligands kept fixed in their undistorted 
symmetric configuration. Since this contribution to the crystal 
field will be much smaller than the contribution produced by the 
distortion of the ligand configuration, the intracell coupling 
(2.12b) is expected to be the dominant one if an intracell ligand 
distortion exists at all in the crystal structure under considera
tion. If, on the other hand, the distortion of the ligand configu
ration is the strain coordinate itself, as is the case in the pe
rovskite structure /6/ and in the CsC~ and NaC~ structures /22,35/, 
then only the strain-JT coupling (2.34) exists, and the model of 
Ref. /24/ which takes only acoustic modes into account applies 
without modification. In the general case, it will however be dif
ficult to distinguish experimentally a direct strain-JT coupling 
(2.34) from an indirect coupling via the piezodistortive effect 
(2.27), i.e. to distinguish A' from AXg. 

3. SPECIFIC CASES 

3.1. E x 8 Coupling 

This coupling which occurs in tetragonal symmetry represents 
the simplest case. Disregarding anharmonic and nonlinear-JT terms, 
the single-cell JT Hamiltonian has the form 

H = (~p2 + l M w2 Q2) '1 AQ" - FQ'l 
=JT 2M 2 8 =e~ - ~ 3 =e~ 

(3.1) 

where ~ 3 is the Pauli matrix (6 ~V. The potential energy "surface" 
consists of two displaced parabola 

V(Q) = l M w2 Q2 - (± A + F ) Q 
2 8 

(3.2) 

displayed in Figure 3a. Since there is only one electronic opera
tor, the eigenvalue problem separates into two independent harmo
nic oscillators (s = ±l), and one finds the eigenvalues 

(3.3) 
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Via) 

a b 

Figure 3: E H S coupling 
a: Potential energy V(Q) 
b: Shift of vibronic energy levels with field 

shown in Figure 3b. Here, QJT = A/Mw~ is the JT displacement and 
EJT AQJT/ 2 is the JT stabilization energy. 

We now turn to the important question, by what type of experi
ment can the various transitions be induced, i.e. which type of co
ordinate wi 11 show the various excitation frequencies. Since t '\ 
commutes with P and Q, the vibrational motion does not couple~t 
all to the motion of the electron orbital, and we find for the de
viation oQ = Q-QO from the minima QO = ±QJT-F/mw~ the equation of 
motion 

oQ + w~ oQ = 0 (3.4) 

with unperturbed vibrational frequency wS: A motion of the elec
tron orbit·al has no effect on the ionic motion. The low-frequency 
vibronic transition 6Evibr can thus certainly not be excited by a 
force acting on the coordinate Q. This result is due to the fact 
that no tunnelling occurs between the two parabola. The equations 
of motion for ~±, on the other hand, 

2i A Q ~ ± (3.5) 

couple to the vibrational coordinate Q. However, for strong JT
effect, Q fluctuates only little about the minima Q5' and the main 
part of the motion of the electronic pseudospin £ consists in a 
precession with frequency 

(3.6) 

corresponding to the vertical (Franck-Condon-like) transition in 
Figure 3a: The ionic motion has on~y a small effect on the electron 
state, consisting in a small modulation of the precession frequen
cy. The vibronic transition 6Evibr can thus neither be excited by 
a force acting on the electron orbitals. An operator associated 
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with the vibronic transition ~Evibr is obtained by coupling the 
pseudospin-flip operator 1it with the vibrational translation ope
rators (llionic configuration-flip operators II) 

(3.7) 

One finds indeed 

t( ~ T ). = ± Zi F Q (~T) ,g ± ± JT ~± ± (3.8) 

i.e. a precession with the vibronic frequency ~Evibr = Z F QJT. 

In the cooperative system, the vibrational excitation gives 
rise to an optical-phonon band, which in this model is not influen
ced at all by the transition. The electronic excitation remains lo
cal in character, and is split by the molecular field F. The vibro
nic excitation will for T < Tc give rise to a vibron band which be
comes soft as T ~ Tc. For T > Tc the molecular field vanishes, 
yielding ~Evibr = O. In a realistic system, there will occur ther
mally activated hopping between the two degenerate states ~ = ±l, 
giving rise to a vibronic relaxation band which becomes soft as 
T ~ Tc. The decoupling of the phonons from the electronic motion 
can be formally taken into account by a transformation to displa
ced phonon coordinates oQ and pseudospin variables S± = £ ±T±, 
S3 = ~3 /37,38/. One then obtains an interacting Ising system 
completely decoupled from the optical-phonon band /38/, and the 
vibronic excitations become the spinwaves of this model. 

In order to excite the vibronic mode, one would have to couple 
an external probe to the operators ~+T+, i.e. the coupling would 
have to have matrix elements betweenth; ground states in each of 
the two parabola. This appears impossible in the strong JT case 
considered here, where the two wave functions are spatially well 
separated. There will therefore probably exist no method for di
rect observation of this vihronic mode. But indirect methods can 
be found: the splitting ~Evibr has been observed in TmV04 by op
tical transitions from the split doublet ground state to a high
lying singlet /39/. The results displayed in Figure 4 show clearly 
the expected softening. Another method consists in splitting the 
electronic degeneracy by a static magnetic field, which changes 
the system into a pseudo-JT system treated in Section 3.5. Then 
tunnelling takes place between the two parabola, and the vibronic 
transition can be excited by EPR /19/. 

In crystals of this type, the JT ion can couple both to the 
Sl mode and the Sz mode, and it depends on the coupling constants 
and the interactions which coupling determines the phase transi-
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Figure 4: Ground-state splitting of TmV04 as function of tempera
ture. Circles from optical absorption, crosses from mag
netic measurements. (After /39/). 

tion. In TmV04 there seems to occur an interesting competition bet
ween these two coupling schemes /lSb/. 

3.2. E x £ Coupling 

where 

The linear JT coupling has the form 

V(l) (Q) 
=JT 

(-1 0) 
~e = - ~ = ° 1· , 

(3.9) 

(3.10) 

are electronic operators of E symmetry acting on the two-dimensio
nal E-Hilbert space,with respect to a basis transforming as 

(3.11) 

The potential energy surface of y5i)(g) + Vharm(g)1et is the well
known Mexican hat (Figure Sa). In this case, there exists a strong 
dynamic coupling between the ionic configuration Q and the elec
tronic state: When 9 = Q (cos~, sin~) is turned by an angle ~~, 
the electronic state vector in the two-dimensional Hilbert space 
rotates by -~~/2. Thus, by a full rotation of g, the electronic 
wave function changes sign, and so does the vibrational amplitude 
X(Q) in order to make the total vibronic wave function invariant. 
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Figure 5: 

a b 

Potential-energy surface V(Qa,QE) for E B E coupling. 
a: ~S.p + Vharm 1e~ ("Mexican hat") 

b: Warping by V(T2) + VP) 1 ("tricorn") =.1 ann =e~ 

J> 
2Q 

a b 

Figure 6: Vibronic energy levels for E B E coupling. 
a: Splitting of the rotator levels of the Mexican hat 

by ~5t) + V i~~ ~e ~ • 
b: Level shift with field in a-direction 
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This "anticyclic" boundary condition X(<P+27T) = -X(<P) has important 
consequences for the ordering of the energy levels of ~JT: One ob
tains doubly degenerate rotator eigenvalues for the motion in the 
brim of the hat corresponding to half-integer quantum numbers 
m = ± 1/2, ± 3/2, ... /27/. 

Second-order JT coupling xli) (g) and third-order anharmonic 
terms Vi~~(g) gives rise to a warping of the brim, changing the 
hat into a tricorn with three minima (Figure 5b). Correspondingly, 
the doubly degenerate rotator eigenvalues for the vibronic motion 
in the brim change as shown in Figure 6a into triplets correspon-
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ding to states localized in these three m1n1ma, which are split in
to doublets and singlets because of tunnelling between the minima. 
Contrary to ordinary potential problems, we obtain on account of 
the anticyclic boundary condition a ground-state doublet and an 
excited singlet, separated by a tunnel splitting 3 n/2. 

We assume the excitation energy ~ to the next higher triplet 
to be large compared to kTc ' and describe the vibronic motion in 
terms of 5 = 1 pseudospin operators acting on the lowest vibronic 
triplet /26/. The Hamiltonian of the JT complex takes the form 

where 
given 

H = - .!. n [i25 -(52_52)] - F Q -F Q 
JT 2 x x y a a £ £ ' 

(3.12) 

the coordinates Qa' Q£ are in the strong localization limit 
by 

Qa = .!. (2-3 52) 
2 z ' 

1 -
Q = - 13 5 

£ 2 z 
(3.13) 

The shift of the eigenvalues with a field in the a-direction is 
shown in Figure 6b. The distribution of the vibrational amplitude 
over the three valleys is schematically indicated for the different 
states. In the n ~ 0 limit, this model goes over into the three
states Potts model /29/. 

In cooperative systems, the transitions between these levels 

Figure 7: Collective vibronic modes for ferrodistortively coupled 
E a £ complexes (After /26/). 
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give rise to strongly temperature-dependent vibronic bands. This 
behaviour was studied for the phase transitions occurring in a sy
stem consisting of a simple cubic arrangement of JT complexes 
/26-29/. Figure 7 shows the results for the case of a ferrodistor
tive transition /26/ which is necessarily discontinuous (see Sec
tion 2.3). The bands obtained are easily associated with transi
tions between the levels of Figure 6b, for T > Tc at F = 0 and for 
T < Tc at F = Fmol(T) > O. An important result is the fact that 
none of these finite-frequency modes is the soft mode associated 
with the stability limits Tl , T2 of the two phases. In the high
temperature phase, it is the zero-frequency transition within the 
ground state doublet which will give rise to a soft relaxational 
mode. In the low-temperature phase, on the other hand, coupling to 
the energy will yield a soft heat-diffusion mode, because of the 
discontinuous nature of the transition /40,41/. 

In the case of antiferrodistortive interactions, there exist 
two competing low-temperature phases of tetragonal symmetry, the 
a-phase with the sublattice distortions in one of the three equi
valent a directions, and the E phase with sublattice distortions 
which close to Tc are along one of the E directions, but cant to
wards the two closest a directions with decreasing T (see the in
serts in Figure 8) /28,29/. The a phase is favoured by tunnelling 
and at T f 0 also by entropy. Therefore, in the absence of further 
couplings, the a phase is stable at all temperatures up to the 

.15 

.1 

~
E 

a-structure 
Qe 

cubic 

o 
o T-

Figure 8: Phase diagram for antiferrodistortively coupled E B E 

complexes with piezodistortive coupling. (Full line: 
~=vR/4, dashed line: ~=O) (After /28,29/). 
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critical temperature Tc where a continuous phase transition occurs 
to the cubic phase. However, both phases have a ferrodistortive 
component and show therefore piezodistortive coupling (2.27) to 
strain which favours the £ phase. The resulting phase diagram is 
displayed in Figure 8. (Preliminary results for the Q = 0 case 
reported in Ref. /27/ contain an error). One finds that the e phase 
is stable for low values, and the £ phase is stable for high va
lues of the coupling constant g. The two phases are separated by 
continuous phase transitions to an intermediate phase of ortho
rhombic symmetry existing in a very narrow region. Thus, below a 
critical value of the coupling constant, the e structure is stable 
up to Tc where it undergoes a continuous transition to the cubic 
phase. In an adjacent narrow range of g, one finds the intermediate 
phase at low temperatures. For larger values of g, the £ structure 
is stable at low temperatures, and up to a second critical value 
of g there occurs with increasing temperature first a continuous 
transition to the intermediate phase and at a slightly higher tem
perature another continuous transition to the e phase. For still 
larger values of g, the £ phase remains stable up to the conti
nuous transition to the cubic phase at Tc' 

The temperature dependence of the collective modes is shown 
in Figure 9. The number of modes is now twice as large as in the 
ferrodistortive case, because the two sublattices experience dif-

.5 

Figure 9: Collective vibronic modes for antiferrodistortively coup
led E B £ complexes with piezodistortive coupling 
(Q = vR/4, g2/2c = 0.075 vR)' (After /28/). 



THEORY OF JAHN·TELLER TRANSITIONS 265 

ferent molecular fields. For T > Tc, the soft mode is again a re
laxation mode originating from the zero-frequency transition 
within the ground state doublet. For T < Tc' we now find a dynamic 
soft mode which hybridizes with other modes already at temperatu
res close to Tc. 

All modes consist of coupled vibrational and electronic mo
tions. The temperature dependence of their oscillator strengths 
and of the relative sublattice amplitudes is discussed in detail 
in Ref. /28/. In addition to the vibronic excitations, there will 
occur interesting elastic anomalies on account of the piezodistor
tive coupling. Experimental investigations of the dynamics of such 
E B E systems appear highly desirable. 

3.3. T B E Coupling 

In this case, the linear JT coupling has the form 

(3.14) 

where 

[
/3/2 0 0] 

E T = 0 -/3/2 0 
- ,E 0 0 0 

(3.15) 

are electronic operators of E symmetry acting on the threedimen
sional T-Hilbert space. The potential energy surface consists of 

a b 

Figure 10: T B E coupling. 
a: Potential-energy surface V(Qa,QE) 
b: Shift of vibronic energy levels with field in 

a-direction 
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three shifted paraboloids, each belonging to a fixed electronic 
state (Figure lOa). Since the two electronic operators commute, 
the vibronic eigenvalue problem separates into three independent 

harmo:iC o::::1:tir:2;:'; :'::~;h:it: :::~n{V;~I;:+l/lF') (3.16) 
n e: (-~Fe-V3Fe:) 

displayed in Figure lOb. 

This case is thus very similar to the E B S case discussed 
in Section 3.1. One finds the same types of transitions: Vibra
tional transitions tWe: giving rise to an optical-phonon band, 
electronic Franck-Condon like transitions of local character, 
and vibronic transitions ~Evibr between the ground states of the 
three parabola which constitute the soft modes, and which will be 
as difficult to excite directly as in the E B S case. By a trans
formation to displaced phonon coordinates, the system can be 
transformed into a three-states Potts model completely decoupled 
from the optical-phonon band. 

3.4. T B T2 Coupling 

This case is described by a linear JT coupling 

V(l)=-A (Q'I- +Q! +Q,.=l:,.) 
=JT T ~ ~ l; n =n .,., 

(3.17) 

with electronic operators 

a b 
Figure 11: Potential-energy 

coupling 
surface V(Ql;,Qn,QI:) for T B T2 

a: Minima of V(Ql;,Qn,QI:) 
b: The three sheets of V(Ql;,Qn,Qz:) 

at </> = Tf/4 
as function of ~ 
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(3.18) 

of T symmetry acting on the threedimensional T-Hilbert space. Be
cause they do not commute, this case is similar to the E B £ case 
discussed in Section 3.2. However, the potential-energy surface is 
anisotropic already in the absence of higher-order coupling. It 
has minima for Q along (1,1,1), (1,-1,-1), (-1,1,-1), (-1,-1,1) in 
T2 configuratio~ space (Figure lla), which correspond to trigonal 
distortions of the ligand configuration. The potential-energy sur
face consists of three sheets, two of which penetrating each other 
in any of the eight (Ill) directions. Figure lIb shows a cross 
section through the surface along the meridian ~ = n/4. 

This case has not been studied in much detail. The nature of 
the lowest vibronic modes is discussed in Ref. /42/. If the minima 
of V(Q) are sufficiently deep, one expects a ground state quartet 
corre~ponding to wave functions localized in the four minima, which 
is split into a low-lying triplet and an excited singlet due to 
tunnelling between the minima, in a manner analogous to the E B £ 

case (Figure 6a). If all other states have excitation energies 
> kTc ' one may construct an S = 3/2 pseudospin model for the vi
bronic motion. In the cooperative system, the transitions within 
this quartet will again give rise to bands of strongly temperatu
re dependent collective modes. In the limit of zero tunnel split
ting, the model goes over into a four-states Potts model. 

In aT-type JT crystal, the JT ions can couple both to the 
£ mode and the T2 mode, and it depends on the coupling parameters 
and the interactions which of the two coupling schemes determines 
the transition. For suitable values of the parameters, there may 
occur an interesting competition between these two cases. 

3.5. (A+B) B S Pseudo-JT Coupling 

One may visualize the two electronic states as the components 
ofanE doublet split by a small distortion of the crystal field 
from higher symmetry. The single-cell pseudo-JT Hamiltonian 

H = (..l p2 + 1. Mw2 Q2)1 - /::,. t - AQ t - FQ1. (3.19) 
=JT 2M 2 S =e.Q. ::: 1 =3 =e.Q. 

then contains a term Y/::, = -/::,El describing this electro?ty ground
state splitting 2/::', in addit10n to the linear JT term YJT = -AQ ~3' 
The potential energy "surface" is shown in Figure l2a. Now, there
occurs tunnelling between the two minima, and the vibronic states 
are split already in zero field (Figure l2b). If all higher exci-
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Figure 12: (A+B) B S coupling (Pseudo-JT effect) 
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Figure 13: Collective vibronic modes for (A+B) B S pseudo-JT 
effect 

ted states have excitation energies > kT c ' the vibronic motion can 
be described in terms of S = V2 pseudospin operators acting on the 
vibronic ground state doublet with tunnel splitting n. The pseudo
JT Hamiltonian then takes the form 

(3.20) 

which is the same as that used for hydrogen-bonded ferroe1ectrics 
/43/ and for magnetic singlet-singlet crystal-field transitions 
/44/. 

For the cooperative system, this model becomes the Ising mo
del with a transverse field, which shows a continuous phase tran
sition. The tunnelling excitations give rise to a band of collec
tive tunnelling modes (pseudospin waves) which become soft at the 
transition (Figure 13). 
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LOCAL JAHN-TELLER EFFECT AT A STRUCTURAL PHASE TRANSITION 
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ABSTRACT 

We consider a Jahn-Teller (JT) impurity ion with a doublet electro
nic ground state of E -symmetry at a lattice site of cubic symme
try and investigate t~e critical enhancement of the local JT-effect 
caused by the vibronic coupling to the soft mode of a structural 
phase transition of the host crystal. Furthermore, we study the 
temperature-dependence of the strain field around the JT-centre 
induced by the local JT-effect. 

1. INTRODUCTION 

Commonly, the JT-effect of JT-impurities in crystals is des
cribed in terms of a phenomenological cluster model /1/, which 
takes into account only the coupling of the electronic state of 
the JT ion to the vibrational modes of the cluster consisting of 
its ligands, but disregards lattice-dynamical interactions with 
the rest of the crystal. Recently, progress has been made by trea
ting the more realistic problem of coupling to the continuum of 
phonon modes of the host crystal (multimode JT-effect) /2,3/. It 
was shown, that the properties of the JT-impurity become modified 
due to the vibronic coupling to such a continuous phonon spectrum 
of the host crystal as compared with the coupling to the single 
mode of the simplified quasi-molecular description of the cluster 
model. Within the framework of harmonic lattice theory these ef
fects are expected to be ordinarily rather small, because the in
duced JT-distortion extends only over a few lattice distances. 
However, if the JT-distortion couples to the soft mode of a struc-
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tural phase transition of the host crystal, the range of distortion 
increases as the critical temperature Tc is approached, and one ob
tains a strong, temperature-dependent enhancement of the local JT
effect. We show that due to this enhancement an initially weak JT
effect changes into a strong JT-effect close to the transition 
temperature. This behaviour is reflected in a characteristic tem
perature-dependence of the reduction factors p and q of the Ham
effect /1/, which measure the influence of the JT-effect on the 
EPR-spectrum. 

2. MULTIMODE JT-EFFECT 

In order to study these effects,we consider a cubic crystal 
composed of separate octahedral ionic complexes, the distortions 
of which are described in terms of local normal coordinates gt 
transforming according to the irreducible representations of the 
cubic point group associated with the lattice-sites ~. In the centre 
of the octahedron at t = 0, we assume the JT-impurity with a doub
let electronic ground-state (Wt=O a, Wt=o €) of Eg-symmetry, which 
is linearly coupled to the local ~ormal coordinates (Qt=o,a, Qt=O,€) 
of the octahedron at lattice site ~ = ° only. Qt=o a and Qt=O,€ 
which transform in the same way as the electronic ~ave functions, 
on the other hand, interact lattice-dynamically with local normal 
coordinates of neighbouring octahedra, so that the localized elec
tronic state is indirectly coupled to the whole lattice. In the 
following, we assume that the host crystal undergoes a displacive 
structural phase transition with a soft optical phonon branch com
posed of local normal coordinates of type Qt = (Qt a' Qt €) at eve
ry lattice site. We take only the soft phonon bran~h intb account, 
and restrict the discussion to the high temperature phase T > Tc • 
In the basis spanned by the electronic wave functions, the Hamil
tonian we then consider reads, 

H = ..!. ~ {p2+n2(T)Q2_LVQ·Q H + vgo=O·~ 
2 t -t s -t a -t -t+~a - ~ 

(1) 

rt={pt a,Pt €) are the momenta conjugate to the coordinates gt, 
and ~ ~ (oa:o€) are the Pauli spin matrices with 

(-1 0) 
o 1 

Here, we have described the host crystal by an effective harmonic 
Hamiltonian with a temperature-dependent effective single-particle 
Einstein frequency ns{T), an approximation usually applied in the 
theory of displacive structural phase transition /4/ and well justi
fied for the study of the local JT-effect in the high-temperature 
phase. v and V are, respectively, the interaction coefficient of a 
bilinear, isotropic nearest-neighbour interaction and the local 
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JT-coupling constant. Due to the local JT-interaction, the transla
tional symmetry of the system is broken and the Hamiltonian (1) 
cannot be diagonalized directly with the help of a Fourier trans
formation to phonon coordinates. The only symmetry operations which 
leave the system invariant are those belonging to the cubic point 
group at the JT-impurity site. In order to take account of the re
duced symmetry, we introduce so-called symmetry-adapted coordinates 
/5,6/ which are irreducible Eg-linear combinations of the degene
rate local normal coordinates (Q~ e,Q~ E) belonging to the star of 
a lattice vector ~. One finds that in general the star of a lattice 
vector ~ is associated with four pairs of degenerate symmetry-adap
ted coordinates. In the case of isotropic nearest-neighbour inter
action, however, only one pair plays a role in the study of the lo
cal JT-coupling. This pair is given by the totally symmetric linear 
combination of local normal coordinates of type Q~ e and Q~ E' res
pectively, at each member of the star. Performing a final Fourier 
transformation to symmetry-adapted phonon coordinates qq associated 
with the star of the wave vector q, the vibronic Hamiltonian (1) 
is then transformed into the so-called multimode JT-Hamiltonian, 
where the localized electronic doublet is coupled to the continuum 
of the qq' 

(2) 

We consider a ferrodistortive transition and assume a Debye disper
sion 

for the soft optical phonon branch with a MFA-type temperature 
dependence 

3.CRITICAL ENHANCEMENT 

To treat the multimode JT-problem (2), we apply the method 
described by Englman and Halperin /3/. The Hamiltonian (2) is se
parated by an orthogonal transformation qq' K = LqAq'qqq K_into 
three parts: An effective-single-frequency jT-Ham~ltoniart HJT, an 
uncoupled harmonic part Hharm' and a part H' which for a proper 
choice of the transformation A is coupled only weakly to the elec
tronic states, 
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H = flfl ff(T){~2(p21+q21}1 + K ff(T)q ocr} + Hh + HI. (3) e ~ ~ ~ e ~ 1 ~ arm 

The transformed mode q = LqA q , represents some kind of inter
action mode strongly affected1ftyqthe JT-coupling. Its spacial ex
tension is no longer restricted to the immediate nearest neighbours 
of the JT-impurity ion as in the simple cluster description. The 
effective frequency and the effective JT-coupling constant, asso
ciated with the interaction mode are given by 

wKA 
q q lq 

The transformation ~ is determined by minimizing the free energy 
calculated with a density matrix p = z-lexp{-a(H~T+Hharm)}' It is 
further assumed that the first excited state of HJT has excitation 
energy »kT. Then, the coefficients A1q ar~ found by minimizing 
the ground state energy EJT(fleff,Keff) of HJT. Working out the va
riational calculation, we obtain the following result /Fig. 1/. 
For high temperatures, we assume a weak JT-effect: the minimum of 
the harmonic potential energy is only slightly lowered by the JT
interaction, and the gain in JT-stabilization energy EJT is smaller 
then the zero-point energy 1~weff' As the temperature is lowered, 
the JT-energy increases while the zero-point energy of oscillation 
decreases, and below a certain temperature Tl the gain in JT-stabi
lization energy will become larger than the zero-point energy of 

E JT <~t weff 

(weak JT-effect) 

> > > T 
c 

........... --=:::::::::jt:;;2~~==:::~W eff > E JT 

(str6ng JT-effect) 

Fig. 1: Critical enhancement of the local JT-effect 
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oscillation, i.e. the weak JT-effect turns into a strong JT-effect. 
It turns out that this change occurs for a temperature close to Tc ' 

Fig. 2 depicts the temperature dependence of the effective JT-coup
ling constant Keff(T). 

The variation from an initially weak JT-effect to a strong JT
effect as the temperature approaches Tc is reflected in a characte
ristic temperature dependence of the reduction factors p and q of 
the Ham effect III (Fig. 3). For the weak JT-effect, at high tempe
ratures, p and q are approximately equal to one. As the temperature 
is lowered the JT-effect increases and p and q decrease. For T = Tc , 
we finally end up with a strong JT effect, and p and q take on the 
limit values q = V2 and p = o. 

We have furthermore calculated the spatial extension of the 
JT-induced distortion given by the effective interaction mode ~l 
around the local JT-centre. We find that for T # Tc ' it falls off 
with an Ornstein-Zernicke law <Qe(~» ~ (l/~)exp(-~/~), where ~ is 
the correlation length of the lattice distortions associated with 
the soft optical phonon branch of the host crystal. It is the di
vergence of ~ at I.c which gives rise to the enhancement of the lo
cal JT-effect described above. At T = Tc ' on the other hand, the 
spatial dependence is governed by a power law depending on the ef
fective JT-coupling constant Keff(T=T c). It should be noted that 

2 
Keff 

5 

4 

3 

2 

0.5 
2 2 w /(vqD)~(T-T ) 
o c 

Fig. 2: Effective JT-coupling constant Keff(T) 
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p,q 

O. 

0.5 2 2 
w /(vqD)e:(T-T ) 

o c 

Fig. 3: Temperature variation of the reduction factors p and q. 

this is the distortion field associated with the optical phonon co
ordinates only. Because of the lattice-dynamical coupling to the 
acoustical phonon coordinates there will occur in addition an ela
stic strain field falling off with a power law already for T ; Tc' 
This contribution is, however, not expected to show a critical be
haviour in our model of a soft optical phonon. 
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OPTICAL STUDIES OF JAHN-TELLER TRANSITIONS 

R. T. Harley 

Clarendon Laboratory, Parks Road, Oxford, England 

1. INTRODUCTION 

In this chapter we shall consider examples from three areas; 
firstly isolated 3-d transition metal ions which show localised 
Jahn-Teller (JT) effects;. secondly, rare-earth crystals showing 
simple cooperative Jahn-Teller (CJT) phase transitions; and 
finally, examples of more complicated cooperative effects. For 
each of these systems the low lying electronic and vibrational 
excitations interact strongly and the coupled modes are of funda
mental importance. They can be investigated directly by infra-red 
absorption and by scattering of light or neutrons and indirectly 
as splittings in optical absorption and fluorescence spectra. We 
shall describe results of optical experiments. 

2. 3d-TRANSITION METAL IONS 

According to the Jahn-Teller theorem (see refs. I to 4 and 
Chapter by H. Thomas in this volume) a symmetrical configuration 
of a molecule or ionic complex in a solid with orbitally degene
rate electronic ground state is unstable because a distortion to 
lower symmetry must exist capable of producing a linear splitting. 
The system will therefore distort until reduction in energy of the 
lowest level (EJT) is just balanced by increased elastic energy, 
as indicated by Qo in Fig. la. In principle the distortion will 
fluctuate thermally between energetically equivalent configurations 
(e.g. ±Qo in Fig. la) so that the ground state degeneracy is 
unchanged. However the fluctuations may be sufficiently slow that 
a static distortion is observed experimentally. 

277 
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w w w 

(c) 

Fig. I. Electronic energies (W) as a function of distortion co
ordinate for (a) coupling of one-dimensional distortion (Q) to an 
electronic doublet (ExS) and for coupling of two-dimensional dis
tortion (Q2,Q3) to (b) a doublet (Exs) and (c) a triplet (Txs). 

JT interactions may be classified according to the degeneracy 
of the electronic state and dimensionality of distortion involved. 
Figure 1 illustrates schematically three possibilities denoted ExS, 
Exs and EXT, where Roman and Greek letters indicate respectively 
the electronic and distortional degeneracies. We consider below 
experiments on 3d ions with Exs and EXT couplings and in later 
sections rare-earths coupled to one-dimensional distortions. 

The d-orbitals of a 3d-ion in a cubic crystal are split by 
crystal field and Coulomb effects into singlets (A) which can show 
no JT effect and into doublets (E) and triplets (T) which can. 
These orbital states may have spin degeneracy. Strong JT effects 
occur for E states in octahedral and T states in tetrahedral 
environments (I) and in general coupling to two-dimensional 
distortions is predominant. 

The low lying excitations of such a complex are determined by 
the combined effects of JT coupling and spin-orbit interaction; 
extra splittings may also occur if the crystal field is other than 
cubic. In general this leads to considerable complication but we 
shall consider here two simple illustrative examples. 

Cu 2+;CaO 

In CaO, Cu 2+ occupies an octahedral site and has a 2E ground 
state. There is a strong Jahn-Teller coupling to two-dimensional 
modes of distortion (Exs) and since the spin-orbit interaction 
cannot split an orbital doublet in first order it can be neglected. 
If the nuclear motion is harmonic, then the electronic levels as a 
function of displacements may be represented by the surface in 
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Fig. Ib where Q2 and Q3 represent the two components of £ mode dis
tortion. This is simply the surface formed by revolving the dia
gram for a one dimensional distortion (Fig. la) about the vertical 
axis. The excitations are found by including the nuclear kinetic 
energy in the calculation and they correspond to rotational energy 
levels in (Q2,Q3) space, each of which is doubly degenerate (see 
ref. I). The nuclear and electronic motions are dynamically 
coupled to give vibronic excitations (see discussion by H. Thomas 
in this volume). 

Anharmonicity and higher order JT couplings cause local minima 
at 1200 intervals in the circular trough of Fig. Ib corresponding 
to compression or extension of the complex along the cube axes and 
lead to splittings of the rotational levels. The results of a 
calculation for various values of anharmonicity assuming EJT large 
are shown in Fig. 2a and the Raman spectrum of CaO:Cu2+ together 
with the transition assignments in Fig. 2b (5). Analysis of the 
spectra gave values of anharmonic barrier height (28) = 43 em-I, 
EJT = 6000 em-I, and effective vibrational frequency nw - 350 em-I. 
Similar measurements for Ni3+:AI203 gave 28 = 120 em-I 
EJT = 1100 em-I and nw - 465 cm- f (6). 

35 (al (b) 
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Fig. 2. (a) Calculated quasi-rotational energy levels above the 
doublet (E) ground state for (Ex£) coupling as a function of 
anharmonicity (8). (b) Raman spectrum of CaO:Cu2+ at 4.2 K with 
lines assigned to trans1t10ns in (a); the measured frequencies 
indicate 8 ~ 4.3a and a = 5.2 em-I (Ref. 5). 
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If the anharmonicity is large (Fig. 2a) the ground state 
becomes triply degenerate. This corresponds to the case of very 
deep potential minima in the trough of Fig. Ib with the complex 
confined to one of them. For smaller values of anharmonicity a 
splitting develops due to tunneling between minima. For CaO:Cu2+ 
this tunneling splitting is - 4 cm- I (see Fig. 2b) and for 
Ni3+:A1203 - 60 cm- I 

Our second example is Ti3+ in A1203 which shows TXE coupling. 
The site symmetr~ is predominantly octahedral with a small trigonal 
component and Ti + has a 2T2 ground state showing weak JT coupling 
(see ref. I). The triplet may couple to both two and three
dimensional distortions, but in practice the latter may be 
neglected. Figure I (c) shows the splitting of an electronic tri
plet as a function of two-dimensional distortions (Q2,Q3); there 
are three disconnected minima at 1200 intervals corresponding to 
distortions along the cubic axes. The system will be confined to 
one of these and its low lying excitations are pure vibrations 
about the displaced equilibrium configuration which may be repre
sented crudely by a series of harmonic oscillator levels with 
spacing Ow (see chapter by H. Thomas). Small perturbations due to 
spin-orbit coupling and anharmonicity may mix the electronic and 
vibrational motions and allow tunneling between minima comparable 
to the case of Cu2+:CaO discussed above. For Ti3+ however the JT 
coupling is weak compared with spin-orbit and trigonal crystal 
field effects and the Raman spectrum (Fig. 3a) (7) shows little 
resemblance to that of Cu 2+ (Fig. 2b). Fig. 3(b) summarises the 
situation (8); from the right hand side (columns 7-5) it shows the 
sequence of calculated splittings of the free ion state omitting 
the JT (vibronic) coupling and from the left (columns 1-4) 
including it. The observed splittings which have energies 01 and 
02 are a compromise between the splittings calculated for zero JT 
coupling (column 5) and strong JT coupling (column 3). In the 
latter case the ground state is a triplet corresponding to the 
three independent distorted configurations of Fig. I (c). This 
reduction of spin-orbit and trigonal field splittings due to the 
vibronic character of the states favoured by JT coupling is an 
example of the Ham effect (1,2). The excitations of Ti3+ and V4+ 
in Al203 have also been observed using infra-red techniques (9). 

Few experiments of the type illustrated in Figs. 2 and 3 in 
which the excitations of isolated JT ions are observed directly 
have been performed so far and there is likely to be increasing 
interest in them. There is a wide variety of ions and host crystals 
to investigate. At high concentrations interaction between the 
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Fig. 3. (a) Raman spectrum of Ti3+:A1203 at 10 K (Ref. 7). 

557 

(b) Illustration of the origin of the observed transitions 01 and 
02 discussed in text (Ref. 8). 

individual JT complexes can occur and measurements as a function of 
both temperature and concentration will be interesting. Theoretical 
treatments of cooperative systems of 3d transition metal ions often 
consider only a ground triplet split by tunneling (see ref. 10 and 
chapter by H. Thomas in this volume); it is clear from figure 2 
that this may not be adequate if the transition temperature is 
greater than - 20 K. 

3. COOPERATIVE JAHN-TELLER EFFECTS IN RARE-EARTH CRYSTALS 

The second order structural phase transitions in rare-earth 
vanadates and arsenates (ReV04 and ReAs04 where Re is Tm3+, Dy3+ or 
Tb3+) are particularly clear examples of cooperative Jahn-Teller 
(CJT) effects (4). JT distortions associated with individual rare
earth ions interact because they share ligands and this results in 
a cooperative instability of the entire crystal. The excitations 
of the system consist of coupled electronic and phonon modes 
(which have been called 'vibrons' (4)) and the phase transition is 
accompanied by strong temperature dependence of these modes. 
Optical methods of investigating these modes are illustrated in 
Fig. 4. Raman and infra-red transitions (A) give energies near 
k = O. A Brillouin-zone-average of the vibron energy may be 
obtained from the separation of optical absorption lines due to 
transitions C and B to a highly excited electronic state, assumed 
to have no dispersion. This average is expected to be very close 
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Fig. 4. Schematic diagram of dispersion curves in a CJT system. 
A is a Raman or infra-red transition; C is an optical transition 
from the ground state; B is an optical transition from a low-lying 
'vibron' mode. 

to the uncoupled electronic transition energy (11,4). These cry
stals are tetragonal (D4h) at high temperatures and below the 
transition temperature (TD) orthorhombic (D2h) with two molecules 
per unit cell in both phases. The distortion is one-dimensional; 
BIg (B2 at the rare earth site) for Dy3+ or B2g (BI) for Tb3+ 
and Tm3+ (I 2) . 

Fig. 5 shows the temperature dependence of the lower elect
ronic states observed as splittings in optical absorption spectra 

(a) TmV04 (C) TbV04 

Fig. 5. Low-lying electronic levels of rare-earth ions in ReV04 
crystals above (right) and below TD (left). The levels for ReAs04 
are similar. 
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Table I. Transition Temperatures in ReV04 and ReAs04 

Tm Dy Tb 

V04 As04 V04 As04 V04 As04 

TD (measured) 2.14(14) 6.04 (15) 14.0(12) 11.2(16) 33.5(17) 25.5(18) 

TD (calc.)* 2.14 6.35 19. I -17 34.5 28 

TN (measured) - - 3.05 2.44 0.51 I. 35 

* Calculated from electronic level splittings using molecular field 
theory. 

(4); Tm3+ and Tb3+ are non-Kramers ions whereas Dy3+ is a Kramers 
ion. Molecular field theory may be used to calculate values of TD 
from the observed splittings for T + 0 (12). These are compared 
with experimental values of TD in Table I; the correlation of 
calculated and measured values of TD shows that electronic energy 
drives the transitions. However a close look at Table I shows 
that Tm and Tb compounds obey molecular field theory much better 
than Dy. This and other evidence (13) shows that the dominant 
site-site interaction is virtually infinite range for Tm and Tb 
but nearest neighbour only for Dy. (Dy and Tb compounds order 
antiferromagnetically at very low temperatures (see Table I).) 

Optic phonon modes of BIg or B2g symmetry at k ~ 0 observed by 
Raman scattering have very little temperature dependence, although 
the phase transitions involve lattice distortions of these sym
metries (12). To a first approximation the JT interaction causes 
a shift of the origin of vibration without changing the frequency. 
The process is analogous to that for the isolated complex of 
Fig. la in which the JT effect shifts the origin of the parabolic 
potential without altering its shape. 

The doubly degenerate (Eg) optic phonons of the tetragonal 
phase show small splittings below TD which are proportional to the 
orthorhombic distortion and are due to anharmonic effects (Fig. 
6(a)). They can be used to monitor the distortion and hence the 
order parameter of the transitions; solid curves in Fig. 6(a) are 
derived from molecular field theory (12). Measurement of optical 
birefringence is a more precise method for monitoring the dis
tortion very close to TD' Fig. 6(b) shows results for TbV04 and 
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Fig. 6. (a) Measured splitting (points) of Eg optic phonon modes 
of TbV04 due to CJT distortion compared with molecular field theory 
(curves) (Ref. 12). (b) Log-log plot of temperature dependent 
birefringence (r) of TbV04 and DyV04 (Ref. 13). 

DyV04 which have exponents of 0.50 ± .03 and 0.34 ± .03 respectively 
(13). These values are consistent with long-range interactions in 
TbV04 and short-range in DyV04. The reason for the dominance of 
short-range interactions in DyV04 is not known. As discussed by 
J. K. Kjems in this volume, renormalization group theory predicts 
(44) a classical value of exponent asymptotically close to TD so 
it appears that the measurements (Fig. 6(b» have not reached this 
region. 

Low lying coupled electronic-phonon modes or vibrons can be 
observed by both infra-red absorption and Raman scattering. TbV04 
is a good illustrative example; Fig. 7(a) shows typical Raman 
spectra (12) and Fig. 7(b) the temperature dependence of both Raman 
and infra-red (17) vibron frequencies. The upper Raman line (open 
circles) which is that displayed in Fig. 7(a) originates from 
uncoupled electronic transitions indicated by a circle in the inset. 
The infra-red line (solid circles) is also thought (17) to be 
associated with this transition; there is a 17 cm- I Davydov split
ting between the Raman and infra-red vibron frequencies because the 
even parity (Raman) mode is linearly coupled to both optic and 
acoustic modes near k = 0 whereas the odd parity (infra-red) mode 
is coupled to optic modes only (17). The solid curves in Fig. 7(b) 
are the results of calculations based on molecular field and random 
phase approximations (12). 
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(b) Temperature dependence of Raman (open symbols) and infra-red 
(solid circles) spectra of TbV04. Electronic transitions involved 
are indicated in insert. Solid curves are molecular field and 
R.P.A. theory (Refs. 12 and 17). 

Interaction between the even parity vibrons and acoustic modes 
near k = ° causes dramatic changes in the acoustic slopes associated 
with the transition (19,20) (Fig. 8). For nyV04 (Fig. 8(a» the 
elastic constants at ultrasonic and Brillouin scattering frequencies 
are the same but there is a marked difference for TbV04 (Fig. 8(b». 
A static elastic constant is the ultimate soft mode (!(CII-CI2) for 
ny and C66 for Tm and Tb compounds), and measurements at ultrasonic 
frequencies (-10 MHz) are in the static regime. The difference 
between ultrasonic and Brillouin measurements in TbV04 is caused by 
coupling of the acoustic mode to electronic transitions between the 
doublet levels of Tb3+ (Fig. 5(c». Above Tn the electronic tran
sition is centred at zero frequency and it will have a width ~w. 
Measurements made at low frequencies (w « ~w) see the full acoustic 
softening at Tn, whereas at higher frequencies (w > ~w) there will 
be only a partial softening caused by coupling to transitions 
between the singlet levels (Fig. 5(c» which give rise to the 
'vibron' at - 20 cm- I (Fig. 7(b». The frequency of Brillouin 
measurements is apparently comparable to ~w because the experi
mental curve (Fig. 8(b» lies between the fully softened ultrasonic 
curve and the value CI computed for w > ~w; a value of 8.4 GHz has 
been deduced for the 'single ion' value of ~w and this will be 
expected to show critical narrowing at Tn due to cooperative 
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Fig. 8. Elastic constants measured using Brillouin scattering 
(open circles) and ultrasonics (solid circles) for (a) OyV04, 
(b) TbV04' Curves in (b) are molecular field and R.P.A. theory 
for w > ~w (CI ), w - ~w (C(w» and w « ~w (CS) (Ref. 20). 

effects (20). A zero frequency mode which shows some of the 
expected features has been observed by neutron scattering in TbV04 
(ref. 21 and seminar by S. R. P. Smith in this volume) and study 
of Fig. Sa shows that in Tm compounds there should be a similar 
zero frequency mode above TO which would give rise to frequency 
dependent elastic constants. 

Applied magnetic fields may help or inhibit CJT distortions. 
In TmV04 and TmAs04 the ground doublet (Fig. Sa) may be split by a 
magnetic field parallel to the c-axis or by crystallographic JT 
distortion; these two perturbations have different symmetry and 
are mutually exclusive. As a field is applied below TO the JT 
distortion is reduced and eventually becomes zero when the 
magnetic energy (gSH where g - 10) just cancels the energy 
associated with the CJT distortion (II). The splitting of elect
ronic levels (Fig. 9(a» is constant at low fields and shows a 
normal linear increase at high fields (22). Fig. 9(b) shows the 
behaviour of the JT distortion monitored by splitting of an Eg 
optic phonon mode. The quenching of the field dependence of the 
levels at low fields by the JT coupling (Fig. 9(a» may be regarded 
as a rather unusual example of the Ham effect (section 2). 

Oy and Tb compounds have large g-values in the ab plane which 
lead to enhancement of JT distortions by applied fields. Figure 
10 shows measurements of Eg phonon splittings (proportional to 
orthorhombic distortion) for OyV04 up to 13 T; substantial dis
tortions can be induced well above TO (23). At temperatures above 
TO the two Kramers doublets of Oy (Fig. S(b» have equal g-values 
(-10) but as T + 0, due to JT admixture of the wavefunctions below 
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Fig. 9. Magnetic field dependence in TmAs04 of (a) electronic 
levels observed by optical absorption (Ref. 22) and (b) splitting 
of an Eg phonon mode due to CJT distortion observed by Raman 
scatterlng (Ref. I I). 
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Fig. 10. Magnetic field dependence of Eg phonon splitting in 
DyV04 (Ref. 23). 
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TD, the g-value of the lower state becomes -20 and that of the 
upper state -0 (12,24). Thus at finite temperatures the system 
can gain energy, when a field is applied, by undergoing a dis
tortion which increases the g-value of the lower doublet and so 
decreases the ground state energy. A similar argument can be 
applied to Tb (25). A mechanism of this type may be responsible 
for the magnetic field induced splittings observed in optic phonon 
modes of other rare-earth crystals notably CeF3 (26). Although no 
cooperative transition occurs a JT interaction may nevertheless be 
present. 

Interesting phenomena are observed when the JT ions are 
diluted with inactive ions. Fig. II shows measurements of tran
sition temperatures for mixed crystals DYpYI-pV04 and TbpGdI-~V04 
compared with molecular field theory in which the molecular f1eld 
parameter is scaled linearly with concentration of JT active ions 
(27). This gives a good description of Tb/GdV04 for which site
site interactions are long range (solid curve Fig. lIb) but not 
for Dy/YV04 (Fig. Ila) which has short-range interactions. The 
results for Tb/GdV04 (Fig. lIb) show that over a narrow range of 
composition near p = .35 the crystal undergoes two transitions. 
The energy level scheme of Tb3+ in the undistorted phase (Fig. 5c) 
has a singlet lowest with a doublet at - 9 cm- I and the strength 
of the CJT coupling or equivalently Tb concentration (p) in the 
mixed crystal must exceed a threshold before a distortion will 
occur at T = O. However just before this threshold is reached 

TD 
40 

16 (a) Dy/YV04 (b) Tb/GdVO" 

__ molecular 

12 + field. 

+ 
8 + 20 + 

Fig. II. Dependence of TD on concentration of JT ions (p) in 
(a) DYpYI_~V04 and (b) TbpGdl_~V04. Solid curves are scaled 
molecular field theory (Ref. 27). 
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Fig. 12. Variation of Eg phonon splitting (proportional to orthor
hombic distortion) in TbpGd1_pV04 (Ref. 27). 

distortion is energetically favoured at a non-zero temperature which 
populates the 9 em-I doublet; at higher temperatures populations of 
all the levels increase and the distortion is suppressed. Variation 
of the distortion with composition and temperature is shown in 
Figure 12. Measurements of one of the Raman active vibron modes in 
Tb/GdV04 crystals are shown in Fig. 13 (cf. Fig. 7b) and compared 
with calculations in the scaled molecular field and random phase 
approximations. 

4. OPTICAL STUDIES OF COMPLICATED JAHN-TELLER TRANSITIONS 

(a) U02 has cubic fluorite structure at high temperature and 
undergoes simultaneous cooperative Jahn-Teller distortion and 
magnetic ordering at TN = 30.8 K resulting from the triplet ground
state of U4+ (28). Recent experiments (29) have shown that the 
CJT distortion involves a zone-boundary mode and therefore the 
existing microscopic theory of the transition (28) must be modified. 
The atomic displacements below TN (see Fig. 14) correspond to an 
XS+ optic phonon mode which is observed at 233 em-I by Raman (30) 
and neutron scattering (31) and generates a T2g symmetry distortion 
at the U4+ site. This mode shows little temperature dependence. 
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Fig. 13. Measured frequencies of the vibron in TbpGdl_pV04 due to 
transitions indicated by the circle in the insert to Fig. 7(b). 
Solid and dashed curves are molecular field and R.P.A. theory for 
two different choices of parameters (Ref. 27). 
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Fig. 14. <001> projection of low temperature structure of U02. 
Oxygen atoms (large circles) are in the plane and uranium atoms 
a/4 above (small solid circles) and below (small open circles). 
The values of ~ is 0.014 R. Arrows indicate a possible arrangement 
of U4+ magnetic moments (Ref. 29). 
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Fig. IS. Temperature dependence of electronic excitations in U02 
in (a) Raman spectra (Ref. 30), and (b) neutron scattering in the 
[~,E;,I-E;J direction (Ref. 32). 

Phonon and electronic (spin-wave) excitations have been 
measured using neutron scattering (31,32), infra-red (28) and 
Raman scattering (30). The strongest feature in the Raman spectra 
(Fig. 15a) softens below TN and corresponding behaviour is observed 
for a spin-wave at the X-point of the high temperature cell in the 
neutron spectrum (origin in Fig. 15b). This temperature dependence 
is compared with that of magnetic Bragg intensity in Fig. 16. The 
elastic constant C44 measured by ultrasonics softens by 24% between 
240 K and TN (34). 

The new results for U02 suggest that the transltlon is more 
nearly second order than was previously believed and that the mag
netic order may be of the four-sublattice type. Above TN the 
strongest electron-phonon interaction must occur on the zone-bound
ary but there must also be substantial coupling to acoustic modes 
at the zone-centre which gives rise to the anomaly in C44 at TN' 

(b) PrAI03 has a distorted perovskite structure and undergoes 
phase transitions at 210 K and lSI K caused by interaction of Pr3+ 
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Fig. 16. Temperature dependence of X-point electronic mode of U02 
observed by Raman and neutron scattering and of the intensity of a 
magnetic Bragg reflection (Refs. 32,33). 

electronic states with small staggered rotations of the AI06 units 
and accompanying lattice strains (35,36). A third transition at 
118.5 K (37) probably involves similar interactions (see below). 
Splittings of the 3H4 ground multiplet observed by optical fluor
escence can be accounted for quite accurately by calculations (38) 
(Fig. 17) in which the crystalline electric field at the Pr3+ site 
is modified by including effects of AI06 rotations and lattice 
strains measured directly by neutron diffraction (36) and e.s.r. 
(39). The resultant AI06 rotation (_90 ) is almost independent of 
temperature; above 210 K its axis is along DIIJ, between 210 K 
and 151 K along DOIJ and below lSI K it swings continuously 
towards [001] approaching this direction asymptotically as T + O. 

The temperature dependence of excitations observed by Raman 
scattering is shown in Fig. 18 (40). Brillouin scattering measure
ments (37.41) show that the transitions at lSI K and 118.5 K are 
accompanied by soft acoustic modes which may be linearly coupled 
to the Raman mode which lies lowest at each temperature. 

The splitting of the lowest two Pr3+ levels (BI and AI in Fig. 
17) associated with the lSI K transition is analagous to the 
behaviour of the levels in DyV04 (Fig. 5b) and the temperature 
dependences of the Raman excitations (40) (BI in Fig. 18) and the 
elastic constant (41,36) are quite well accounted for by the theory 
developed for DyV04 (12, see chapter by K. J. Kjems in this volume). 
Transitions between the electronic levels (BI and AI Fig. 17) 
couple linearly to an optic phonon of BI symmetry resulting in two 
vibron modes (BI in Fig. 18). The lower branch is c0upled to the 
acoustic mode which is the soft mode at lSI K. At 118.5 K the 
lowest Raman mode (Fig. 18) is a pure phonon with eigenvector ~y 
(staggered rotation of AI06 about [OIOJ) (40) which may couple 
linearly to strain eyz (42). This will cause a renormalisation of 
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Fig. 17. Electronic energy levels of 3H4 multiplet of Pr3+ in 
PrAI03 (a) measured using optical fluorescence (Ref. 35) and Raman 
scattering (Ref. 38), and (b) calculated as described in the text 
(Ref. 38). 
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Fig. 18. Frequency of low-lying modes in the Raman spectrum of 
PrAI03' x, y and z refer to the cube axes and z' and x' are at 
450 to the cube axes in the [OIOJ plane. Modes marked BI are 
coupled electron-phonon modes and B2 is a pure phonon mode (Ref. 
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the elastic constant C44 given by 

c 2 -2 
C44 = C44 - Const. ~zw (I) 

where w is the frequency of the lowest Raman mode (Fig. 18) and ~z 
is the static component of AI06 rotation along [OOIJ. This 
expression with the constant chosen to make C44 zero at 118.S K, 
is compared with the Brillouin measurements in Fig. 19 (43). The 
very asymmetric shape is caused by the temperature dependence of 
~z which increases continuously below lSI K (see above). The 
measured elastic constant is actually !(C44+CSS) whereas the 
calculation is for C44; a more detailed calculation would probably 
remove this discrepancy. 

5. CONCLUSION 

Optical and infra-red techniques are extremely useful for the 
study of excitations in Jahn-Teller systems. Crystals containing 
rare-earth ions for which the electron-phonon interaction involves 
one dimensional distortions and is relatively weak have received 
most attention and can be described by quite simple theoretical 
models. Further measurements of the odd-parity vibron modes in 
rare-earth systems and their contributions to dielectric behaviour 
(see Seminar by D. R. Taylor in this volume) and of effects of J.T. 
couplings involving two-dimensional distortions would be interest
ing. By contrast 3d-ions which have much stronger interactions 
have not been investigated extensively; the excitations of isolated 
3d complexes and effects of cooperative interactions will probably 
be subjects of increasing interest in the future. 
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Experiment a. 

~ _ Calculation 

:;: 
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.!!l .. c: 
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Fig. 19. Brillouin scattering measurements of !(C44+CSS) for PrAI03 
(points, Ref. 37) compared with calculation of C44 (curve) using 
eq. I (Ref. 43). 
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ELECTRIC SUSCEPTIBILITY STUDIES OF COOPERATIVE JAHN-TELLER 

ORDERING IN RARE-EARTH CRYSTALS 

D. R. Taylor 

Clarendon Laboratory Oxford University, U.K. and 

Queen's Univ., Kingston, Canada (permanent address) 

The study of dielectric anomalies at structural phase tran
sitions, for many years a standard technique, has only recently 
been applied to Jahn-Teller (JT) phase transitions. A number of 
interesting results have already been obtained, some of which will 
be described below. They include the identification of novel JT 
behaviour in PrCl3 and some of its isomorphs 1-3, and the obser
vation of interesting dielectric anomalies in previously studied 
JT systems such as DyV044 and CeESS (ES = ethyl sulphate). For 
convenience only rare-earth insulating JT systems will be 
discussed. Many of their properties have been reviewed in 
lectures by Harley, by Kjems, and by Stinchcombe at this conference, 
and in an article by Gehring and Gehring6 • 

Consider first the conditions under which a significant 
electric dipole moment (EDM) can occur at the site of a rare-earth 
ion. The point symmetry must of course be non-centric, but if the 
low-temperature ordering of the crystal is to be affected the ion 
must also have degenerate or approximately degenerate electronic 
levels. The latter case does not further restrict the symmetry, 
but for exact degeneracy the symmetry cannot be too low. For the 
important case of non-Kramers doublet levels Muller7 showed that 
an EDM occurs for only seven point groups: C3, C3v, C3h, D3, D3h, 
D2d, S4' The existence of an EDM implies a linear splitting of 
the electronic levels in an applied electric field. In addition 
it should be clear that ions satisfying the above conditions are 
JT active, although the converse is not true. 

PrCI3' PrCl3 is representative of a number of compounds con
taining Pr-ions in threefold symmetr9 in which electric dipole 
splittings were first investigated8,. The ground state is a non-

297 
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Kramers doublet transforming as the E' representation of the C3h 
point group. The symmetric product [E' x E'J = A' + E'. The 
doublet can therefore be split by a magnetic field Hz parallel to 
the threefold axis, which transforms like A', and electric field 
components Ex, Ey which transform like E'. It is convenient to 8 9 
describe these splittings by an effective spin S = ~ Hamiltonian ' : 

x = g 8H S + y(E S + E S ) z z z x x y y 
(I) 

where y is the "uncorrected" EDM (if Ex, Ey are laboratory fields). 
Eqn. (1) shows the formal similarity of electric and magnetic 
dipole moments in these systems, but leaves unanswered questions 
about the physical origin and typical magnitude of y. The major 
contribution to y can be visualized as follows: Ex or Ey distort 
the rare earth site by displacing anions and cations in opposite 
directions. This removes the threefold symmetry and consequently 
splits the electronic doublet in proportion to the field. The 
magnitude of y will depend on the electronic wave functions but is 
typically comparable to~ and sometimes much greater than, the 
magnetic dipole moment lu 

In PrCl~ the Pr ground doublets will also be split by dis
tortins of E symmetry. These distortions will be coupled by the 
lattice and this can be described in terms of an effective spin
spin interaction6 by transforming the electron-phonon Hamiltonian 
as described in the lecture by Stinchcombe. Since the distortion 
mode is an E' doublet the interaction takes the XY form II 

~ _ (i j + sisj) .n. •• -J .. SS 
1J 1J X X Y Y 

(2) 

Such an interaction has been directly confirmed by EPR measure
ments I2 on diluted PrC13 , which also established the magnitude 
Jij ~ 2 cm- I for nearest neighbours. Each Pr has two nearest 
ne1ghbours along the threefold axis and it is clear that more 
distant interactions are small since the low-temperature properties 
show marked one-dimensional behaviour. For example the specific 
heat shows a broad maximum which is fit quite well by the XY 
chain specific heat I ,I2, followed by a narrow spike indicating long
range ordering at only 0.4 K. Since Ex and Ey couple to the E' dis
tortions as described above the E' distortions carry an EDM. The 
JT ordering is therefore expected to be antiferroelectric, and this 
was confirmed by electric susceptibility measurements l as shown in 
fig. 1. Above the broad maximum due to short-range ordering the 
data are fitted to the high-temperature series for the I-D XY sus
ceptibility, yielding J = 2.0 cm- I in agreement with other experi
ments. The data also determine the EDM y (y = 6.6 x 10-31 C.mI ,2), 
and it turns out that the nearest-neighbour interaction agrees in 
magnitude with the point electric dipole-dipole interaction: 
J - y2/4~£oR3. As yet the symmetry of the low temperature phase 
has not been determined, but the distortion is expected to be E2g 
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Fig. I. Electric susceptibility of Prel3 

or Elu with the unit cell doubled along the threefold axis. In 
summary Prel3 has some unique properties compared to JT systems 
previously studied, in particular the quasi I-D antiferroelectric 
ordering. On the other hand the low ordering temperature is incon
venient for structural studies. Similar behaviour has been observed 
in PrES2, which shows the same I-D ordering but no long-range order 
down to -0.06 K, and in PrBr3 , which has a phase transition at 
0.37 K. 

DyV04. One of the most extensively-studied JT systems, DyV04 
differs in many ways from Prel3' The Dy ions are at D2d sites, and 
their lowest energy levels are two nearly degenerate Kramers doub
lets. At the 14 K phase transition a BIg lattice distortion occurs, 
corresponding to a B2 distortion at Dy sites. Because the distor
tion mode is a singlet the effective spin-spin interactions are 
Ising rather than XY. There is reason to expect a dielectric 
anomaly in this system because D2d symmetry allows an EDM parallel 
to the tetragonal axis, and this EDM belongs to the B2 represent
ation. Hence the B2 distortion carries an EDM which is therefore 
an order parameter. Recently the electric susceptibility of DyV04 
was measured4 ,!3 with results as shown in fig. 2. This curve 
resembles the typical "parallel" mafnetic susceptibility in a 3-D 
antiferromagnet and was interpreted in terms of improper antiferro
electric ordering; that is the EDM's of the two Dy ions in each unit 
cell order antiparallel but the unit cell is not doubled. This con
clusion is reinforced by the relatively large Dy EDM in this crystal. 
The high-temperature data of fig. 2 indicate y- 10-30 em!3, which, 
together with the lattice structure suggests strong antiparallel 
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Fig. 2. Electric susceptibility of DyV04 

nearest-neighbour electric dipole interactions. There is consider
able experimental evidence, as discussed by Harley and Kjems in 
their lectures, that the spin-spin interactions in DyV04 are very 
short-range, in contrast to other JT systems, such as TmV04 which 
undergoes a different distortion and which clearly has long range 
interactions. It is interesting that in both DyV04 and PrCl3 where 
electric dipole ordering occurs the effective spin-spin interactions 
are short-range. 

CeES. The Ce electronic levels in CeES resemble those in 
DyV04: two Kramers doublets separated by only a few cm- I . The JT 
behaviour of CeES is entirely different however because the Ce 
levels couple most strongly to a uniform (AI) lattice distortion. 
This behaviour l4 , originally proposed to explain the specific heat 
anomaly, is only possible in systems with accidental degeneracy 
because separation of the levels can be increased, and hence the 
total energy lowered, by a change in unit cell parameters without 
lowering the symmetry. The effective spin-spin coupling in this 
case is that of an Ising interaction in a longitudinal fieldS. No 
phase transition occurs: the doublet separation and the lattice 
strain increase monotonically from high- to low-temperature limitsl4. 
Although in this case no electric dipole ordering occurs, electric 
susceptibility is a useful probe because an electric field perpen
dicular to the hexagonal axis couples the two non-Kramers doublets 
and hence allows their separation to be monitored. Using mean 
field theoryS the electric susceptibility is given by 

(Ny2/2~) tanh(~/2kT) (3) 
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where 6 is the separation between the doublets. 6 varies with 
temperature according to l4 

(4) 

where 600 and 6 are the high- and low-temperature limits. This 
gives XE a "shgrper" temperature dependence than if 6 is constant 
(no JT coupling) just as the specific heat peak is sharper than a 
simple Schottky peakl4. Electric susceptibility measurements5 
confirm this interpretation and give reasonable quantitative 
agreement with the specific heat results l4 • 

In summary, in JT systems where the crystal symmetry allows 
electric dipole coupling between degenerate or nearly degenerate 
crystal field levels the electric susceptibility technique is a 
very effective probe of JT distortions. 

REFERENCES 

I. J.P. Harrison, J.P. Hessler, D.R. Taylor, Phys. Rev. B14,2979 
(1976) • 

2. J.T. Folinsbee, J.P. Harrison, D.B. McColl, D.R. Taylor, J. 
Phys. C 10,743 (1977). 

3. D.R. Taylor,- J.P. Harrison, D.B. ticColl, Physica B6-BBB,1164 
(1977) • 

4. H. Unoki, T. Sakudo, Phys. Rev. Letters 3~ 137 (1977). 
5. D.R. Taylor et al (to be published). --
6. G.A. Gehring, K.A. Gehring, Rep. Prog. Phys. 3B, I (1975). 
7. K.A. Muller, Phys. Rev. 171, 350 (196B). --
B. F.r.B. Williams, Proc. Phys. Soc. 91, 111(1967). 
9. J.W. Culvahouse, D.P. Schinke, D.L-.-Foster, Phys. Rev. Letters 

IB, 117 (1967). 
10. J.~ Culvahouse, L. Pfortmiller, D.P. Schinke, J. Appl. Phys. 

39, 690 (I 96B) • 
II. E.-Pytte, Phys. Rev. BB, 3954 (1973). 
12. J.W. Culvahouse, L. Pfortmiller, Bull. Am. Phys. Soc. ~, 394 

(1970). 
13. R.T. Harley, D.R. Taylor (to be published). 
14. J.R. Fletcher, F.W. Sheard, Solid St. Commun. ~, 1403 (1971). 



NEUTRON SCATTERING STUDIES OF THE COOPERATIVE 

JAHN-TELLER EFFECT 

J.K. Kjems 

Research Establishment Ris¢ 

DK-4ooo Roskilde, Denmark 

ABSTRACT 

The results of neutron scattering studies of the 
Jahn-Teller transiti~ns in Pr~lO~, TbV0 4 , TmV0 4 , TmAs0 4 , 
a~d PrCu 2 are summar1zed: I~ 1S found that RPA ~heory 
glves an excellent descr1pt1on of both the stat1c and 
dynamic behaviour of these systems. Within this theory 
the momentum dependences of the effective electron-pho
non coupling parameters have been derived from the 
measurements on PrAIO and TmV0 4 , and in the latter case 
an excellent agreemen~ is found with the results of a 
similar analysis of ultrasonic and Brillouin scattering 
experiments. The soft phonon response in both PrAI0 3 
an~ TbVO h c~ntains a diverging quasielastic component 
Wh1Ch only 1n the case of TbV0 4 can be accounted for by 
the RPA theory adapted by Smith for this problem. 

Lectures presented at the NATO Advanced Study Institute, 
Geilo, Norway, April 1977. 

302 



NEUTRON SCATTERING STUDIES OF JAHN·TELLER 303 

1. INTRODUCTION 

The cooperative Jahn-Teller Effect (CJTE) has many 
fascinating aspects and the efforts that have been de
voted to this subject have often had quite different 
motivations. One may view the CJTE as a basic mechanism 
for structural phase transitions belonging to the class 
of pseudo-spin-phonon coupled systems which also in-. , 
duces the hydrogen bonded ferroelectr~cs and molecular 
crystal systemslwhere the pseudo-spin relates to the 
proton positions and the molecular orientations, re
spectively. In the CJTE-systems the driving force for 
the phase transition can be readily identified. The 
free energy of the electronic system with a degenerate 
or near degenerate ground state is reduced by lowering 
of the local symmetry around the Jahn-Teller active 
ions. The electronic energy gain is linear in the dis
tortions whereas the balancing elastic energy has a 
quadratic dependence so at low enough temperatures the 
total free energy will be minimized by a finite distor
tion. The coupling between the lattice deformations and 
the electronic degrees of freedom can be pictured as an 
effective quadrupole-quadropole interaction mediated by 
the phonons3 in analogy to the usual Rudermann-Kittel 

exchange interaction in metals where the electrons play 
the roles of the go-betweens. As in the magnetic case 
it is a useful first approximation to neglect the micro
scopic origin of the interactions and to work with model 
Hamiltonians which then describe the thermodynamics of 
the phase transitions quite well on the basis of effec
tive ion-ion interaction parameters. Regarded in this 
manner the simplest Jahn-Teller systems are realizations 
of the 3-dimensional Ising model with or without a 
transverse field. 

The CJTE systems differ from the usual magnetic 
systems in the sense that the energy bands of the inter
action mediators, the phonons, overlap with the energies 
of the localized electronic excitations and this gives 
rise to strong mode mixing3 which in turn enables accu
rate measurements of the electron-phonon coupling matrix 
elements including their q-dependence~ 

A variety of experimental methods have been applied 
in the study of the CJTE. They range from bulk methods 
like specific heat, susceptibility and thermal expansion 
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measurements to the use of microscopic probes like x
ray, neutron and light scattering as well as resonance 
and ultrasonic methods. These notes focus on the results 
that have been obtained by the use of neutron scattering 
to characterize both the static and the dynamic prop
erties of systems that display the CJTE. The theoretical 
background is to a large extent covered in the lectures 
by Stinchcombe at this school and also in the recent re
view articles by Gehring and Gehring5 and by Fulde~ Thus 
the theoretical discussions in this paper will be lim
ited to what is needed in order to comprehend the ana
lysis of the data that are presented. 

The systems that so far have been studied in vari
ous degrees of detail by neutron scattering all contain 
rare earth i~ns and they are thea insulators prA10; (TD = 
151 K), TbV0 4 (T D = 33 K), TmV0 4 (TD = 2.1 K), ana 
TmAs0 4 (TD = 6.0 K) and the metallic compound PrCu 2 
(TD = 8.0 K). The experimental results for these systems 
are reviewed with the following organization of these 
notes. First the properties of the neutron as a spectro
scopic tool is summarized followed by a short descrip
tion of the zoology of the crystal structures and sym
metries of the systems involved. Then follows a short 
theoretical discussion aimed at the fixing of the nomen
clature. The experiments are then summarized beginning 
with the static and critical properties followed by the 
results for the normal modes and the mode mixing. Final
ly some conclusions are drawn together with some guesses 
at what may result from the continued studies. 

2. THE NEUTRON PROBE 

All the known Jahn-Teller transitions involve zone 
centre modes and so neutron scattering is only one of 
many tools that can be applied. The first spectroscopic 
studies were.made usinf Raman and Brillouin scattering 
and ultrason~c methods. The power of the neutron probe 
lies partly in the fact that excitations can be followed 
throughout the Brillouin zone and partly in the versa
tility of neutron spectrometry which allows you to study 
both the structural changes through Bragg diffraction 
and the excitation spectrum with the same set-up. The 
neutron couples both to the translational degrees of 
freedom of the atoms in the crystal and to the elec
tronic degrees of freedom of the Jahn-Teller ions. The 
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deformations of the unit cell that result from a CJT
transition give rise to shifts in the positions of Bragg 
peaks and the internal displacements of atoms within the 
unit cell can in principle be detected through intensity 
changes. An alternative method to determine ths internal 
displacements that result from a CJTE-transition is im
purity ESR by which one can monitor the orientation of 
the electric field gradient tensor at the impurity site. 
This method has been very successful in the study of 
the 151 K transition in PrAI0 3 as will be discussed 
later. 

The change in the electronic energy levels can in 
some cases be observed directly via magnetic dipole 
transitions which couple to the neutron moment. The 
cross section for such processes is given in the non 
interacting limit by the "crystal field" formulae 9 

2 
= N(1.91 e 

2mc 2 

, -+- -+- -+-
where gJ is the Lande factor, f the form factor, K=k.-k f 
the momentum transfer, and p the occupation probabiiity 
for the <nl electronic statenin the J m~9ifold with the 
energy En. The energy transfer is hw = 2M (k~-k~). Mn 

n 
is the neutron mass and m the electron mass. J L m the 
component of the total angular momentum operator perpen
dicular to the momentum transfer ~. It should be stress
ed that the polarization information is given in the 
negative sense that the component parallel to the momen
tum transfer does not contribute to the scattering. The 
cross section for crystal field transitions changes if 
there is noticeable dispersion due to ion-ion inter
actions and as an example we quote the result for a JZ 
transitio~with a dipole matrix element a and energy 
splitting 2l::. 

~= 
ClQClw 

-+-
where W is the angle between the z-axis and K. E is the 
dispersed energy of the mode given by the RPA formulae 
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-+ 
where J(K) is the Fourier transform of the ion-ion in-
teraction. More general expressions for a many level 
system with interactions have been worked out by Fulde 

12. I?, 1'1 
and Peschel, Young and by Buyers. 

The phonon cross section has some characteristic 
differences compared to the magnetic cross section. The 
one phonon creation cross section9 is given by 

= (2'IT) 3 k f I 
2v k. w 

o 1 

+i;.;. Il:a. e J 
. J 
J 

-+ -+ (-+) 2 K·U. K 

J I 
1M":"" 

J 

I 

l_e- hWB 
-2W 

e 

-+ 
with U.(K) being the eigenvector for the .th atom for 
the moae in question. It is important to liote that in 
general the phonon scattering increases with the square 
of the momentum transfer whereas the magnetic cross 
sections decrease with the form factor. This can be used 
together with the different temperature dependences to 
identify the origin of the observed scattering. 

As we shall see later the CJTE leads to mixed crys
tal field-phonon modes and in principle this could give 
rise to interesting interference effects. However, 1n 
most cases only one of the modes has an appreciable 
cross section and when the modes mix they "share" this 
scattering power and may both become observable in cer
tain regions of the Brillouin zone. 

3.SYMMETRIES AND CRYSTAL FIELDS 

One of the keys to the understanding of the CJTE is 
the way in which the symmetry of the crystalline elec
tric field at the active ion sites determines the elec
tronic levels, the crystal field splittings. For a num
ber of years this has been an active field of research 
on its own and a large number of materials have been 

• IS" • 
character1zed. In cases of h1gh local symmetry only few 
parameters are needed to define the crystal field Hamil-
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tonian 

I 
n=2,4,6 
m=-n,n 

where Bm are the crystal field parameters, X the re-
n . . 0 ~ 

duced matrlx elements tabulated by Elllot and Stevens, 
and Om(J) are the angular momentum operator equivalents. 
The agtual number of parameters needed in the different 
crystallographic phases one for example encounters in a 
system like PrA10 3 are the followin~: 

0h,2; D3 ,6; C2v ,9; Cs ,15; and D2d ,5. 

u 
w 
VI 

0 
0 
10 

a:: 
w 
Q.. 

VI 
t-
Z 
=> 
0 
u 

100 

0 

100 

PrCU2 
(0.75.2.01 
T = 5.2 K 

T =9.9 K 

(0.75.0.0) 
T= 6.0 K 

0 

T=9.8 K 

o ~ __ ~ ____ -L ____ ~ __ ~~ __ -L __ ~ 

o 1.0 2.0 0 1.0 2.0 3.0 
ENERGY TRANSFER (meV) 

Fig. 1. Left hand side: Constant Q scans at (0.75,2,0) 
at 5.2 K and 9.9 K in PrCu . 
Right hand side: Constant a scan at (0.75,0,0) 
at 5.6 K and 9.8 K in PrCu2 . 
The Jahn-Teller transition occurs at TD = 8 K. 
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Hence it ~s often necessary to make some simplifying as
sumptions in order to arrive at a qualitative descrip-

~ tion as it was done for PrAI0 3 by Lyons et al. 

As an exam~le we discuss the crystal field level 
diagram for Pr+3 3H4 in orthorhombic, C2v ' symmetry. 
This pertains both to PrAI0 3 and to PrCu2 above TD . In 
the low C2~ symmetry, which contains two mirrorplanes 
and a two-fold axis, the ninefold multiplet is split 
into 9 singlets, namely 3Al + 2A2 + 2Bl + 2B2. As an 
example of an observed transition Fig. 1 shows some re
cent inelastic neutron constant Q-scans obtained with 
a single crystal of PrCu2 which was oriented'with the 
a-b plane in the scattering plane of the spectrometer. 
The scans refer to the same point (0.75,0,0) in the 
reduced Brillouin zone with different polarizations. 
The strong transition at 1.3 meV in Fig. l.a disappears 
when K is directed along the a* axis, Fig. l.b. Hence 
one concludes that this transition is induced by the 
JX component of the total angular momentum operator. 
One then deduces that the two levels connected must be 
either AI-B2 or A2-Bl. Unfortunately, this piece of 
information is clearly insufficient to make level as
signments, but hopefully with enough data collected 
one can make some realistic attempts. Fig. 1 also 
shows that the phase transition at 8 K essentially 
leaves the strong JX transition unaffected whereas the 
much weaker JY or JZ transitions in Fig. l.b are shifted 
appreciably in energy. Tentatively, the present results 
are interpreted to give a crystal field level scheme 
for the lowest 4 levels in PrCu2 as indicated in Fig. 2 
together with the much more firmly established results 
for the other CJTE-systems. 

In PrAI03 a combination of fluorescence, neutron 
and Raman spectroscopy paired with model calculations 
have resulted in a detailed understanding of the full 
level scheme (see figure 17 in the proceeding paper 
by Harley). At TD = 151 K only the Bl transition between 
the low~st two that couples to the lattice and drives 
the phase transitions. 
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Fig. 2. 

PrAIO] 
To=151 K 

ENERGIES IN meV 

iiJia 1.0 
0.4 

TbV04 
To=33K 

TmAs04 
To=6.0K 

TmVO, 
To= 2.1 K 

7.5 

Schematic representation of the change in the 
lowest electronic energy levels for the CJTE 
systems that so far have been investigated by 
neutron scattering. 

4.THEORY 
, 

The theory developed by Ellioti et ale for a two 
level system with a splitting, 2~, is briefly summarized. 
The interaction with the lattice is expressed as a lin
ear coupling between electric quadrupole operators, often 
in a pseudospin representation, and the normal modes of 
the lattice of compatible symmetry. 

H = 

+ 

+ 
n,k,p 

\' + + 
+L ~ W (k)(a +a + + ~) 
k,p P p,k p,k 

+ ~L SX 
n 

n 

( 6 ) 

where SZ and SX are the pseudospin operators re~resent
ing two n electr8nic states at the energie! ±~, a ptkis 
the operator for a phonon of wavevector k, band p and 
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frequency W (t) and ~ (t) denotes the corresponding Jahn
Teller coup~ing. The Retailed solutions of this Hamil
tonian are discussed in the paper by Stinchcombe. The 
first step is a displaced oscillator transformation 
which gives 

+ + + + 1 X 
H = Y ~ W (k)(y +y + + ~) - ) J(k) S+S ++~N2 S i P p,k p,k ~ k -k 0 

where + 
~ (k) 

yp,k = a + + 12 S~ (7) 
p,k .1l Wp(k) 

k 

and 2 

+ + 
K (k) 

I~E(k)1 
L 

-1 
L+Kp(k) = ,fi , J(k) = K (k) - N p + p 

W (k) P p,k p 

This shows that the linear Jahn-Teller coupling gives 
rise to an effective quadrupole-quadrupole interaction, 
J(k), which here includes the static strain contribu
tions. As a first approximation for the static proper
ties one ignores the non-commutation of the displaced 
oscillator and the transverse field parts of Eq. 6 and 
simply treats the Ising model in a transverse field via 
molecular field theory. The essential results are the 
following I,!> 

( a) TD is defined by 

~ ~ 

J(O) 
= tanh(kT ) 

D 
( b) Below TD the order parameter <SZ> is 

<SZ> J(O) <SZ> w 
= tanh(kT) w 

where 

w2 = J 2 (O)<Sz> +~2 and <SX> = ~ tanh(R-) 
W kT 

(c) Ir the elastic strain energy is taken 
then the equilibrium strain 1S 

<e> = 4 K (O)<Sz>/V C 
a 0 

( 8) 

given by 

( 9 ) 

as 1.NV Ce 2 
4 0 

(10 ) 

and similarly for the optic mode displacements 
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<Q > = - K (a)<sz>/Mw 2 (a) a a 

311 

(11) 

The results for the dynamics are quoted later under 
the discussion of the mixed modes. 

5. STATIC AND CRITICAL PROPERTIES 

The temperature dependence of the order parameter 
belo~ TD ha~ been thoroughly ~tudied in PrAI0 3 . :he 
statlc straln has been determlned from the tWlnnlng pat
terns that evolves due to domain formatio~below T . 
The optic phonon order paramete~Ohas been deduced ~rom 
measurement~30: the.electric field gradient tensor 
around a Gd lmpurlty as sensed by ESR and the elec
tronic order parameter, as manifested in the splitting, 

10,11,2.0 • 
2W, has been measur~§ by fluorescence relatlve to the 
3p state of the Pr ion. Fig. 3 summarizes all these 

o . .. 
results on normallzed scales together wlth the slmplest 
mean field calculation~ The internal consistency be
tween these different measurements of the temperature 

z . 
dependence of <S > offers strong support to the baslc 

Fig. 3. 

0: 
~ 0.8 ... 
:::Ii 
<l 
0: 
<l 
Q. 0.6 
0: ... 
~ o 
a ::l 0.4 
:; 
<l 
:::Ii 
0: 
o 
Z 0.2 

• STRAIN ORDER PARAMETER 

o OPTICAL PHONON O. P. 

o ELECTRONIC O.P. 

THEORY 

TlTe 

The experimentally determined order parameters 
in PrAla displayed on normalized scales. The 
full lin~ illustrates the results of the 
simplest mean field calculation for a two 
level system. 
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physical assumptions in the theory of the CJTE. The dis
crepancy between the mean field calculation and the ex
p~rim~n~al :esul~s for PrA10 3 i~ probabl~ due to over
s1mp11f1cat10ns 1n the descrlpt10n of th1s rather com
plicated system. For the simpler TmV0 4 system Segmuller 
et al~lfind complete agreement between the mean field 
calculation of the strain order parameter and the re
sults of an X-ray experiment. 

The critical exponent, 8, for the order parameter 
has been determined for PrA10~, TbV04~ TmAs0 4 and TmvO~' 
and in all cases one finds 8 = 0.50. The only CJTE sys
tem that does not conform to this picture is DYV04~~ 
where Harley found 8 = 0.34 using birefringence as a 
probe. The fact that all but one CJTE-systems display 
the classical exponent e = 0.5 has often been ascribed 
to the long range nature of the strain mediated inter-

t · H . ~ ac 10ns. owever, as ~olnted out by Cowley and by Als-
Nielsen and Birgeneau~this may be too naive. More ri
gorous arguments can be made on basis of renormaliza
tion group theory paired with the GinzburgS criterion and 
the concept of marginal dimensionality, d*. In order 
to obtain a self-consistent picture within mean field 
theory Ginzburg stated that below the transition tempera
ture the fluctuations in the order parameter,oa, aver
aged over a suitable region, Q, should be small com
pared to the averaged order parameter, aQ . 

The suitable region lS the one spanned by the correla
tion length, t;, and it js the real space counterpart 
of the volume in reciprocal space determined by the 
half value of the critical susceptibility, K • The key 
point is that the volume of the correlated r~gions in 
real space may diverge more rapidly than t;d in cases 
where the interactions are anisotropic. 

~ oc ~d+m 
~Gt; ~ m>o 

The marginal dimensionality 1S defined by 

d* = (y'+28)/v'-m 

d* = (1+2·~)/~-m = 4-m (mean field exponents) 

where y', e, and v' are the usual critical indices for 
susceptibility, order parameter, and correlation 
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{3-Bross 

Fig. 4. 

y 

K 

24 
Examples of the shapes of the half height 
contours of the susceptibility in reciprocal 
space and the corresponding correlated regions 
in real space for 3 model systems with marginal 
dimensionalities d* = 4 (B-brass), d* = 3 
(LiTbF 4 ) and d* = 2 (PrAl0 3 and other Jahn
Teller systems). 

length, respectively. The Ginzburg criterion can then 
be expressed as follows. The molecular field theory is 
self-consistent if d > d* and not for d < d*. For d = 
d* there are logarithmic corrections to the mean field 
results. Examples of the shape of K and the corre
sponding correlated regions in realqspace are shown in 
Fig. 4 for 3 model systems. The first is B-brass a d = 
3 Ising system with isotropic interactions. Here m = 0 
and d* = 4 so mean field theory fails. The second ex
ample is LiTbF 4 , a dipolar coupled Ising ferromagnet 
where m = 1 d* = d = 3, and experiments have shown very 
beautifully that the exact renormalization group theory 
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applies. The third example shown in Fig. 4 is PrAIO 
which represents the class of transition of interes~ in 
the present context. Here the fluctuations are confined 
to the lines in reciprocal space along which the acous
tic anomalies occur. In real space the correlated vol
umes have "pan-cake" shape, and their volume diverges 
as ~d+2 i.e. m = 2. ~ measures the thickness of the 
"pan-cake". Hence d* = 2 and mean field theory is ex
pected to be exact. Indeed one finds that the all Jahn
Teller system discussed here displays classical expo
nent with the notable exception of DyVO I • The non-clas
sical result for DyVO h is quite puzzling, and we intend 
to check it using diffraction methods. 

6. NORMAL AND MIXED MODES 

The coupling of the electronic mode often called 
the vibron or the quadrupole exciton to the lattice 
modes have been observed directly in prAlo;, TbVO~ and 
in TmV.O u ~ The RPA solution for the unperturbed quadru
pole mode is given by Eq. 5 and in the simplest picture 

• -+ 
the frequency of thls mode at k = 0 tends to zero as TD 
is approached. However, the two first terms in the Ha
miltonian, Eq. 9, do not commute and this gives rise to 
mode mixing and anticrossing between the lattice modes 
and the electronic mode. Ultimately it is the acoustic 
mode that becomes the soft mode at the transition. This 
was first demonstrated experimentally for DyV0 4U bY 
Melcher and Scott who also studied TmVo:? The acoustic 
anomalies in TbV04~have been studied by Sandercock et al. 
using ultrasonics and Brillouin scattering and the same 

• 11 '" probes have been applled to PrCu2 and PrAIO~, respect-
ively. The first neutron scatterlng study of the acoustic 
dispersion in a CJTE-system was the measurement of the 
L3-branch in PrAlo;which is shown in Fig. 5. 

-+ The RPA solution for the mixed mode frequencies, 
w(k), was derived by Elliott et al. and for > TD the 
result is contained in the equation 

( 12) 

where wand w refer to the unperturbed vibron and 
phonon frequengies, respectively. In the limit of small 
IkJ the frequency of the mode with predominantly acous-
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tic character is given by 

( 13 ) 

This expreSSlon has been applied to PrA10 at vari
ous temperatures and the results are shown as ~he broken 
lines labelled 2, 3 and 4 in Fig. 5 where the lines mar
ked 1 and 210 K served to establish the parameter values. 

Fig. 5. 
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E 2.0 
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Pr AL 03'~3(k.o.k) 

o 151K(I) 
• 161 K (2) 
A 170K (3) 
• 200K (4) 

DISPERSION 
AT 210K 

00 0.02 0.04 
REDUCED WAVEVECTOR. k 

The observed dispersion of the Bl acoustic mode 
in the orthorhombic phase.of PrA 03 at diffe
rent temperatures. There lS an abrupt struc
tural change to a rhombohedral structure at 
205 K and the CJTE transition is at 151 K. 
T~r unit of the reduced wavevector is 2TI/3.76 
A . 



T
m

v
o

".
4

-S
k

 

4-
0 

L 
H

:O
 

10
0 ~ 
v ~
 

."-"'"
 

~ 
-"

 
't

 
E

 

~ 
0 
r/

\ 
q=O·

~ 
~
 

50
 

" 

I 
i a-a

 

...
 

4-
0 

II
I !i
 

-
.., 

0
-
-
"
-
-
0

 

8 
;l

 f
\.i

\-
j 

2-
0 

o 
L

 
q

=
0

·4
0

 

50
 
~
 

o 
. 

.0
 

_ 0
 

• 

0-
2 

2-
0 

4-
0 

F
ig

u
re

 6
. 

E
N

E
 R

G
Y 

TR
A

N
S

FE
R

 (m
eV

) 

~=
_\
_5
cm
'.
I1
= 

\-
ec

m
-I

 

0-
4 

a-a
 

0-
2 

0·
4 

W
A

V
E 

V
EC

TO
R

 
(r

lu
l 

F
ig

u
re

 7
. 

IS
 

10
 

,,
4

1
0

,'
"

0
1

1
1 

1
5

' 
K

 
M

O
D

E
S

 
O

F
 

.,
 S

Y
M

M
E

T
R

Y
 

II
 f

 f
lu

}
 

F
ig

u
re

 8
. 

F
ig

. 
6

. 
O

b
se

rv
ed

 s
p

e
c
tr

a
 f

o
r 

th
e
 B

l 
a
c
o

u
st

ic
 

ph
on

on
 
in

 T
m

V
04

 
p

ro
p

ag
at

io
n

 a
lo

n
g

 
(1

00
) 

an
d 

p
o

la
ri

z
e
d

 
al

o
n

g
 

(0
1

0
).

 
T

he
 

zo
ne

 b
o

u
n

d
ar

y
 i

s
 
a
t 

q 
=

 
1

.0
. 

T
he

 
ph

on
on

 a
n

ti
c
ro

ss
e
s 

th
e
 

Z
ee

m
an

 
s
p

li
t 

d
o

u
b

le
t 

g
ro

u
n

d
 

st
a
te

 a
t 

2D
 
=

 g
~
B
H
 
=

 2
.7

 m
eV

. 
F

ig
. 

7
. 

T
he

 
m

ix
ed

 m
od

e 
d

is
p

e
rs

io
n

 i
n

 T
m

V
04

 
a
t 

4
.5

 K
 f

o
r 

e
x

te
rn

a
l 

fi
e
ld

 a
lo

n
g

 c
 

w
it

h
 t

h
e
 s

tr
e
n

g
th

s 
in

d
ic

a
te

d
 o

n 
th

e
 f

ig
u

re
. 

T
he

 
fu

ll
 
c
ir

c
le

s 
co

rr
es

p
o

n
d

 t
o

 t
h

e
 p

ea
k

 p
o

si
ti

o
n

s 
in

 t
h

e
 i

n
e
la

st
ic

 
sc

an
s.

 
T

he
 
fu

ll
 
li

n
e
s 

co
rr

es
p

o
n

d
 t

o
 
c
a
lc

u
la

ti
o

n
s 

w
it

h
 g

 
=

 1
0

.6
, 

C
66

 
=

 1
.9

0
x I

O
l
l
 e

rg
/c

m
2

, 
p 

=
 6

.8
0

 g
/c

m
3

, 
K

a(
O

) 
=

 
1

.8
 c

m
-l

 
an

d 
J(

O
) 

=
 
+

0
.3

 c
m

-l
• 

T
he

 
b

ro
k

en
 l

in
e
s 

il
lu

s
tr

a
te

 t
h

e
 u

n
p

er
tu

rb
ed

 p
ho

no
n 

d
is

p
e
r

si
o

n
 a

n
d

 t
h

e
 

Z
ee

m
an

 
s
p

li
tt

in
g

, 
re

sp
e
c
ti

v
e
ly

. 
F

ig
. 

8
. 

D
is

p
er

si
o

n
 o

f 
th

e
 m

ix
ed

 m
od

es
 

o
f 

B
l 

sy
m

m
et

ry
 i

n
 P

rA
l0

3 
a
t 

T
 =

 T
D

 
=

 1
51

 K
. 

~
 

0
. ~
 

1"
 " c..

. 
m

 
3:

 
en

 



NEUTRON SCATTERING STUDIES OF JAHN-TELLER 317 

The anticrossing of the acoustic mode and the qua
drupole exciton in TmVo 48 was obser¥ed with an applied 
field along the tetragonal axis, c . This resulted in a 

finite splitting 2b = g~ H of the ground doublet. Fig. 
6 shows the typical Shif~s in the intensities from the 
lower to the upper branch one observes with increasing 
wavevector. Fig. 7 shows the observed dispersion curves 
together with the calculated ones based on Eq. 15 using 
the parameters derived from the acoustic anomaly. The 
corresponding results for PrAI0 3 showing all three 
modes involved are shown in Fig. 8. 

I . 7 
n the measurements on TbV0 4 Hutchlngs et al. found 

a strong feature in their spectra a~ zero energy trans
fe~, which d~verged as T.~.TD an~ I~I ~ o. Th:y ascribed 
thls scatterlng to transltlons wlthln the exclted doub
let (see Fig. 2) and the following formulae was derived 
for the wavevector dependence of the central peak in
tensity 

I(k)a (14) 

Here they used a Green's function formalism akin to the 
one used by Buyers in his description of singlet ground 
state dynamics. 

= 
tanh(13ll) cosh13ll 

b l+cosh13ll 

and 

8 
l+cosh13ll 

are single ion susceptibilities arising from the assumed 
equal strength transitions between the singlets at 0 and 
2D and within the doublet at D. 
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Both the anticrossing dispersion curves and the 
central peak scattering can in principle be used to 
derive experim~ntally determined effective interaction 
parameters K (k) and Fig. 9 shows the results of such 
analysis for a TmV0 4 . This Iql-independent result, which 
is consistent with the parameter that was derived in 

• .;).7. • 
the ultrason~c exper~ment, conf~rms that the coupl~ng 
to the acoustic mode is proportional to the strain pro
duced by the phonon mode as given by the Debye-model. 

Fig. 9. 

I 0·40 

!i 
~ 0·30 

§ 
u 0·20 

t7i 
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"" 

0·0 0·1 0·2 

o - 42-7kG 
o - 25·8kG 
.. - 34·9kG 

0·3 0·4 
q (flu) 

Wavevector dependence of the CJTE-coupling 
parameters for TmV0 4 as determined from the 
exper~mental data shown in Fig. 7 and the 
use of Eq. 15. 

7. DISCUSSION 

The overall agreement between the simple mean 
field and RPA theories and the experimental observa
tions including the temperature dependences is remark
ably good. For instance one finds for the prototype 
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CJTE-system TmVO h that onl~ two, now well ~nown, para
meters are needed to descrlbe all the detalls of the 
field and temperature dependences of such varied ~uan-

- - 2!!J z.I A () -tltles as the order parameter· il T,H , the elastlc con-
stant~; Ch6 (H,T), the susceptibilitl~ X(T).1 t!~e specific 
hea~oC (T) and the mixed-mode fre~uencies~w(k,H,T) in 

.v 
the fleld and temperature ranges where the ground doub-
let can be regarded as isolated. This is probably a 
conse~uence of the limited role played by the fluctua
tions in these systems which also makes Landau theory 
correct for critical exponents. However, there are mani
festations of some fluctuations, namely the central 
peak scattering as observed in TbVO: and less pronounced 
in prAlo;. The theoretical descriptlon by Hutchings et 
al. does not.apply to PrA10 3 since th~r~ are no degener
ate electronlc levels above T . Surprlslngly, one does 
not find similar central peak~scattering near Tn in 
neither TmV04 not in TmAs04. Based on E~. 17 one would 
expect to observe scattering with intensity ~ 11k as 
T + TD in TmAs04. The actual observed scattering falls 
off much more rapidly and it is confined to the qy dir
ection within the instrumental resolution of qx = ±O.Ol 
rlu. This could indicate that the scattering in TmAs04 
originates in· changes in the mosaic distribution as TD 
is approached. The paper presented by M~llenbach at this 
ASI lends support to this interpretation. 

Another aspect of the analysis of the CJTE-systems 
is the understanding of the interaction parameters and 
their underlying microscopic mechanisms. DohJ'has 
pointed out that second order strain effects may be 
important for these systems and Fulde6 has suggested that 
in the metallic systems the interaction with the con
duction electrons also gives rise to quadrupole coup
lings. In this context a system like PrCu 2 may hold 
some essential clues to be unravelled by skilled 
searchers although the complexity of the level scheme 
may prevent any definite conclusions. 

Further detailed studies of the soft phonon re
sponse in these systems may also be warranted since 
they could shed light upon the related magnetic problem 
of ordering in singlet ground state systems where a 
similar insufficient understanding persists for the re
lative roles of soft mode and central peak contributions 
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to the generalized susceptibility. As an amusing final 
point we note that the CJTE-systems that order magneti
cally presumably are the simplest examples of singlet 
ground state systems so they may hold the key to the 
solutions of this problem in more than one sense. 
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GAMMA-RAY DIFFRACTION STUDIES OF THE MOSAIC 
DISTRIBUTION IN TmAs04 NEAR THE COOPERATIVE 
JAHN-TELLER TRANSITION AT 6 K 

K. M~llenbach and J.K. Kjems 

Ris~ National Laboratory 
DK-4ooo Roskilde, Denmark 

S. H. Smith 

Clarendon Laboratory 
Oxford University, England 

ABSTRACT 

The structural cooperative Jahn-Teller phase trans
f~rmatio~ in TmAs?4 has been studied using ~a~ma-ray 
dlffractlon. PreClse measurements of the crltlcal ex
ponent, S, confirms the earlier reported classical value 
S = O.50±.03. Precurser effects in the mosaic structure 
of the sample are observed as TD is approached from 
above. 

The static and dynamic properties of the cooperat
lve Jahn-Teller effect have been well characterized by 
the application.of a varirt2 of experimental m~thods to 
the rare earth lnsulators ' . Recently a new hlgh re~ol
ution gamma-diffraction technique has been developed 
which allows for very accurate determination of the mo
saic distribution of single crystals. In structural phase 
transitions where strain is an order-parameter one often 
finds twinning patterns which can be directly related to 
the magnitude of the strain and hence an accurate mea
surement of these patterns near TD can yield the criti
cal behaviour of the order-parameter. Here we report on 
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a study of the cooperative phase-transition in TmAs0 4 
at TD = 6 K using this technique. We find that the order
parameter has a classical index 8 = 0.50 and maybe more 
interestingly that there are clear precurser effects 
observable in the mosaic distribution as TD is ap
proached from above. 

The experiment was done using a gamma-ray diffrac
tometer similar to the one described by Schneider 3 • 
412 keV gamma-radiation from a 125 ci Au-foil is colli
mated in a single slit beam-defining system. The lower 
limit to the angular width of the primary beam is 15 
sec of arc. The instrument takes advantages of4the typi
cal small-angle scattering resolution function : A re
latively poor resolution along the momentum transfer 
vector, K, and an extreme narrow resolution perpendicu
lar to K. The high energy of the gamma-rays makes the 
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Examples of mosaic distributions 
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T< To 

ROCKING ANGLE 

of the (200) reflection 
the right hand side 
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scattering probability per unit path length in the crys
tal small giving a negligible secondary extinction and 
a very small primary extinction. These characteristics 
make this instrument well suited for a study of the 
Jahn-Teller phase-transition. The TmAs0 4 sample in this 
experiment had the size 1.5 x 1.5 x 10 mm 3 , and was 
grown in the Clarendon Laboratory. 

The phase-transition in TmAs04 is driven by the 
coupling of the electronic E-doublet of the tetragonal 
phase to the B2g strain. As the orthorhombic distor
tion proceeds a twinning pattern evolves which gives 
rise to a splitting of the mosaic distribution of the 
(200)-Bragg reflection. The splitting is proportional to 
the B2 strain 5 . Examples of mosaic distributions are 
shown ~n fig. 1. In the right-hand-side picture the 
method of measurement of the twinning angle is indicated. 
The ideal twinning pattern consists of three equally 
spaced peaks. The outer ones originate from domains with 
(020) twinning planes and the centre peak from (200) 
twinning planes. In our measurements the centre peak was 
also split, probably due to external strains. In figure 
2 we show the twinning angle as a function of tempera
ture. These data together with neutron measurements show 
that for 10- 1 . > l-T/T D > 5 • 10- 4 the twinning angle 
follows the slmple power law 

/'; '" (l-T/T )0.50±0.03 
D 

6.130 K. 

Changes 1n the crystal mosaic structure can be ob
served above TD both on cooling and heating of the 
sample. One finds both a broadening of the rocking
curve and a decrease in the peak intensity on approach
ing :D from abo:e. This is sh~wn in :he righ:-hand-side 
of f1gure 2. Th1S phenomenon 1S cons1stent w1th neutron 
scattering observations. The present measurements can
not distinguish between the possible origins of the ob
served changes in the mosaic structure above TD. As TD 
is a~proached the elast~c constant C44 te~ds to zero . 
and 1f the crystal has 1nternal stresses 1t may relax 1n 
the observed fashion. In a more speculative interpreta
tion one could relate the relaxation to the fluctuations 
of the quadrupole moments although at present we have no 
evidence for any dynamical effects. 
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Fig. 2. 
Left-hand-side: The splitting angle of the (200) mosaic 
distribution as a function of temperature (V). Right
hand-side: The peak intensity of the (200) reflection 
above TD (0). The dash~d line at the bo~tom indicates 
the precurser changes ln the observed wldth. 
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THE CENTRAL PEAK IN Tb VO 4 

S.R.P. Smith* and M.T. Hutchingst 
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Colchester, Essex, U.K. 
tMaterials Physics Division 
Harwell Didcot, Oxon., U.K. 

A central peak (i .e. a low frequency anomaly) has been observed 
in neutron scattering experiments on TbV04 above the Jahn-Teller 
phase transition at T = 33 K (1). The measurements provide what 
is probably at presen~ the most clearly understood example of a 
central peak occurring in a structural phase transition, though the 
frequency width has still to be measured directly. 

1 1 b3+. f . 1 The owest evels of T cons~st 0 two s~ng ets separated by 
a splitting 2£ = .49 THz, with a degenerate doublet midway between 
them (2). The mode of distortion at the phase transition 
(B2 at ~ = 0) has roughly equal matrix elements between the singlet 
levgls and within the levels of the doublet. Thus, one expects an 
anomalous response near zero frequency in measurements which 
involve a coupling to the electronic doublet, and because this 
coupling is directly involved in the phase transition, one also 
expects to observe critical effects near TD in such measurements. 
The central peak in the neutron scattering measurements is there
fore an illustration of the anomalous low frequency response of the 
doublet, and this condition is similarly illustrated by elastic 
constant measurements of C66 (3), which show that at ultrasonic 
(10 MHz) frequencies, the elastic constant falls to zero at TD, but 
remains finite in the Brillouin scattering (~ 10 GHz) measurements 
(2) • 

Fig. lea) shows how the central peak grows as T falls towards 
TD, and also shows the softening of the acoustic phonon along [OIOJ 
and transversely polarized along [IOOJ; more detailed scans of the 
central peak are given in Fig. l(b). The width of the peak is 
determined by the instrumental resolution. The variation with 
temperature of the central peak intensity vs. ~ is shown in 
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Fig. 2(a) and at T = Tn in Fig. 2(b). The measurements are 
restricted by Bragg contamination at low q , but demonstrate the 
type of divergence expected in the intensity as T + Tn and ~ + o. 
The peak is strongly localised along the [OlOJ axis, with a width 
perpendicular to the axis of ~qx ~ .015 r.l.u. at T = Tn' 
.9. (0, 1.95, 0). 

The measurements have been analysed using the theoretical 
techniques of linear response function theory, as discussed by 
Stinchcombe (4). In the mean field a~~roximation, one can write 
the single site susceptibility for Tb (for T > Tn) as 

11 (w) = 
s 

2 2 2 4£ gl /(4£ - w) + f 2 g2 1 (f2 - iw) 

where gl and g2 are the static susceptibilities of the singlets 
and the double~ respectively, and f2 is the frequency width of 
the doublet response (~ 10 GHz). From this (using, for example, 
eqs. (38) and (46) of Stinchcombe's paper), one can write the 
coupled acoustic phonon response near the central peak 
(w « w ,£) as 

q 

G (q,w)= aa -
«'c++ c . c++ c » 

q -q' q -q 
2 fLl-~<'9)(gl+g2)J -iw[l-j(~)glJ 
w q fIl-J<.~)(gl +g2)J -iw [t-J(~) glJ 

where J(~) is the total Jahn-Teller coupling, and 1(q)=J(~)-Ka(~)' 
where K (q) is the coupling to the acoustic phonon branch. 
This re~uTt shows that the central peak has a width 

which tends to zero as q + 0 and T + T , when 1 - J(O)(gl + g )=0. 
Unfortunately, the critical narrowing o¥ the linewidth cannot ~e 
resolved because of the frequency resolution of the spectrometers 
(.012 THz for IN2 and .022 THz for IN3 at ILL, Grenoble), but the 
validity of the analysis has been checked by convoluting the 
theoretical expressions for the central peak response with the 
instrumental response, as shown by the solid curve~ in Fig.l(b), 
assuming that J(q) has the form J(q) ~ J(O)(l - aq ) for q along 
[OlOJ. Further comparisons are given in ref. (1). The agreement 
between theory and experiment is satisfactory at each temperature; 
the details of the temperature dependence are qualitatively correct, 
though there are difficulties in obtaining quantitative agreement 
which may be partly due to the problems associated with the 
convolution procedure. 

One concludes from this work that the mechanism for and des
cription of the central peak in TbV04 are satisfactorily understood. 
One can expect this type of central peak in any phase transition 
in which the mode of distortion (the "soft mode") couples to a 
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Fig. 1. (a) Neutron groups observed on IN3 scanning energy 
transfer at Q = (4.0, 0.25,0). 

Fig. 2. 

(b) Central peak-scans (with background subtracted) at four 
values of Q and five temperatures. The solid lines are 
the results of convoluting the theoretical response 
with the instrumental resolution function (IN3). 
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degenerate electronic doublet (as is often illustrated, of course, 
in magnetic phase transitions). It is also significant that the 
localisation of the central peak response along <010> axes 
indicates that the effective exchange coupling J .. is long range 
in {010} planes, which is consistent with the su~~ess of 
classical mean field theory in describing the behaviour of 
TbV04 (2). 
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THE NATURE OF THE EIGENFUNCTIONS IN A STRONGLY COUPLED JAHN-TELLER 

PROBLEM 

Mary Jane Shultz 
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I. INTRODUCTION 

In the lectures of Stinchcombe, Harley, Thomas, and Kjems we 
have heard about the role of the cooperative Jahn-Teller effect in 
driving a phase transition. These lectures have dealt primarily 
with doubly degenerate electronic states coupled to either nonde
generate or double degenerate vibrational modes. (For an introduc
tion to the Jahn-Teller effect, see the lecture of Professor Thomas 
in this volume.) In this seminar we are interested in the nature 
of the wavefunctions for a single Jahn-Teller complex which exhibits 
strong coupling between a triply degenerate electronic state and a 
triply degenerate vibrational mode (TXT). The nature of these wave
func tions is of interest because, as Professor Thomas said, "The 
excitations of the single Jahn-Teller complexes give rise to bands 
of collective modes, and an analysis of the collective modes re
quires a thorough understanding of the excitations of a single 
complex." 

The purpose of this seminar is to give a physical understanding 
of what the eigenfunctions and distorted configurations look like, 
rather than to present a detailed calculation. Those readers who 
are interested in the details are referred to a recent paper by 
Shultz and Silbey[l]. The organization of this seminar is as fol
lows. The next section describes the physical setting for the TXT 
Jahn-Teller problem; the third section describes the Hamiltonian and 
details the effect of the electron-phonon coupling on the electronic 
state; the fourth section describes the spectral calculation; and 
the last section presents the summary and conclusions. 
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II. THE PHYSICAL SETTING 

We are interested in calculating the absorption spectrum for 
an S+P transition in octahedral symmetry. An example of this tran
sition occurs in the alkali halide phosphors. These are simple 
cubic crystals like NaCI with a few of the Na+ ions replaced by 
heavy metal impurities such as In+ or TI+. Since the electron asso
ciated with these impurities is fairly well localized on the impurity 
center, we will employ the quasimolecular approximation. That is, 
we will assume that the electronic state is only affected by motion 
of the impurity and its six nearest halide neighbors. Due to the 
localization mentioned above, this is a fairly good approximation. 

Since the P excited state is triply degenerate in octahedral 
symmetry, it will have a linear Jahn-Teller interaction with the 
vibrational modes of the ligands giving structure to the absorption 
spectrum. From group theory it is known[2] that the triply degen
erate excited state will couple to the a lg , Eg , and L2g vibrational 
modes. However, since coupling to the a lg and Eg modes is trivial, 
we will treat coupling to the L2g vibrational modes only. These 
modes are shown in Fig.la-c. Note particularly the combination mode 
Qq + Qs + Q6. This combination corresponds to motion of the six 
halide ligands toward one of the cubic diagonals as shoWn in Fig.ld. 
In this configuration one expects that the electronic state Px + Py 
+ Pz will have a lower energy than the two orthogonal states, be
cause an electron in this orbital will spend more time near the 
three halide ligands. In fact, it is a balance between this elec
tronic energy lowering and the halide-halide repulsion which deter
mines the minimum point of the adiabatic potential surface. 

The details of the adiabatic potential surface are in fact 
fairly complicated[3,4]. However, the important features are the 
four minimum points in configuration space which are displaced from 
the origin in the directions 1=(1,1,1), 11=(-1,-1,1), 111=(-1,1,-1) 
and IV=(1,-1,-1). These configurations correspond to distortions 
of the octahedron along one of the four cubic diagonals and are the 
four trigonal distortions referred to by Professor Thomas in his 
lecture. We shall refer to this surface again later when generating 
approximate eigenfunctions for the strong coupling case. First, 
however, we will present the Hamiltonian for the excited P state and 
indicate how the electron-phonon coupling affects the electronic 
state. 

+ ~ .-:;f ~ - " .. 
( 0) (b) (c) (d) 

Fig. la-c: The L2 Normal Modes. (a) Qq (b) Qs (c) Qq + Qs + Q6· 
Fig. ld: Distorte3 Configuration for Large Finite k. 
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III. THE HAMILTONIAN 

The Hamiltonian for the TXT Jahn-Teller interaction has been 
derived using group theory by earlier authors[Jj and is given in 
second quantized notation as H = Ho + V where 

t t t 
Ho = (b~b~ + bsbs + b6b6 + 3/2)~ (1) 

t t t 
V (kw/I2)[(b~ + b~)~l + (b s + bS)~2 + (b 6 + b6)~3] 

= 100 ~o 1 o~ 
000 . 

In this notation, the operator bj(b!) destroys (creates) a quantum 
of vibrational excitation in mode Qj , k is a unitless coupling con
stant which represents the relative energy of interaction between 
the electronic and vibrational modes, and the matrices are written 
with respect to the electronic orbitals Px' Py' Pz' Since the 
matrices ~l' ~2' ~3 do not commute, this Hamiltonian entails a non
trivial coupling between the electronic and vibrational modes. 

To appreciate the effect of this electron phonon coupling on 
the electronic state, it is useful to think in the terms of scatter
ing theory. That is, if we put an electron in the Px orbital at 
time zero and let the interaction V act repeatedly, what happens to 
the electron? The answer is shown schematically below 

(2) 

When V acts a single time, the electron is scattered from the Px 
orbital into the Py and Pz orbitals with a coefficient that depends 
on the value of the Qs and Q6 vibrational modes. Similarly, when V 
acts again, the electron is scattered out of the orbital that it 
was in and into the remaining two. This coupling makes the problem 
difficult to solve when k is large, because then the eigenfunctions 
of Ho are not very close to eigenfunctions of H. 

In the next section we will develop a canonical transformation 
which will generate a basis of approximate eigenfunctions. We will 
then use these eigenfunctions to calculate the absorption spectrum. 
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IV. ABSORPTION SPECTRUM 
The absorption spectrum for a dipole allowed transition can be 

written in terms of the electronic autocorrelation function as [5] 
00 3 t 

I(n) = 2 Re J dt exp(in t) L: <C. (t)Ci > (3) 
o i=l 1 

t where Ci(C i ) destroys (creates) an electron in orbital i. Thus, we 
need to know the time evolution of the electronic operator Ci ' or 
equivalently the time evolution of the electronic state. But 
remember that the time evolution is given by 

Ci(t) = exp(iHt) Ci exp(-iHt). (4) 

Thus, if the electronic orbitals were eigenfunctions of H, we would 
be finished. However, the electronic orbitals are not eigenfunc
tions of H. In fact, for the strongly coupled case, they are not 
even close. (This is a direct result of the breakdown of the Born 
Oppenheimer Approximation.) The idea for calculating the absorption 
spectrum, then, is to find a set of wavefunctions such that Ho/~ Ef. 
These wavefunctions are then related to the electronic wavefunctions 
and the spectrum is calculated. 

The approximate wavefunctions are generated by looking at the 
adiabatic potential surface. The important feature of the potential 
surface is that it has four minimum points which are displaced from 
the origin by an amount proportional to k and which are separated by 
barriers of height proportional to k2. Thus, for infinite k, the 
molecule cannot get from one configuration to another. Therefore, 
we first solve for the wavefunction in each well independently. 

We calculate the separate well wavefunctions in two steps. 
Firstly, we displace the origin of the vibrational coordinant system 
with a canonical transformation which is analogous to a phonon shift 
operator. Secondly, we make a transformation which accounts for the 
difference in potential felt by an electron localized between the 
halides and one localized in the perpendicular directions. The 
resulting first order wavefunctions localized in well I are 

inm.l/, n m .I/,-t l !.: 
$1 = exp(S)(a.1) (0. 2 ) (0. 3) Ci O>/(n!m!.I/,!) 2 (5) 

where 1 t 1 t -t- t 
S = -k{(2/3)~(a.3- a.3)~ + (1/6)~(C2C2 + C3c3)(a. 3- 0. 3) 

~ -t- -t- t } -(2) (C 2 C2 - C3C3) (0.1- 0.1) 

(3)-~(C1 + C2 + C3), C2 

!.: 
(6)-2(C 1 - 2C 2 + C3 ), 

-!.: 
0. 1 (6) 2(-b 4 + 2b s- b s )' 

!.: 
(2)-2(-b 4 + b s)' 

!.: 
0.3 = (3)-2(b 4 + b s + bs )· 
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Here 10> is the electron-phonon vacuum state. Ignoring the exp(S) 
term, this wavefunction is merely a Born Oppenheimer product of an 
electronic state times a vibrational state. The exp(S) factor is 
the phonon dressing of the electronic state and is a direct result 
of the breakdown of the Born Oppenheimer Approximation. 

Wavefunctions localized in the other wells are similarly cal
culated, and we have the following important results for the lowest 
energy set of wavefunctions. Firstly, the interwell overlap 
vanishes for large k 

lim (ljJlnmJ/,lljJl'n'm'J/,'> = a 
k+oo J K 

JiK (6) 

Secondly, the interwell interaction energy decreases with k 

Finally, the second order wavefunctions are nearly eigenfunctions 
for large k 

lim (ljJlnmJ/,IH_E IljJlnmJ/,>/<ljJlnmJ/,l1/JlnmJ/,>« W (8) 
k+oo J exact J J J 

where Eexact is the known asymptotic energy. These results indicate 
that in the limit of strong electron phonon coupling, our separated 
well model is a good one. 

The final step is to recover the full octahedral symmetry of 
the original problem by forming appropriate (un-normalized) func
tions which transform as irreducible representations of the octa
hedral group by combining states of the four wells. For example, 
for the lowest A2 and Ti states, we have 

{
1/JI + 1/JII - 1/J III - 1/J1V} 

~T = t ljJI - ljJII + ljJIII - ljJIV 
1 (9) 

1/J1 - 1/J11 - ljJIII + 1/JIV 
1 

~A = 2 (ljJI + 1/J11 + ljJIII + ljJIV) 
2 

Using these wavefunctions, we calculate the matrix elements of the 
total Hamiltonian to second order and find a singlet triplet 
splitting of [6] 

EA - E 
2 Ti 

(272/243) e w exp(-8k2/9) (10) 

Note that due to the octahedral symmetry of the original problem, 
the lowest state remains a triplet independent of k. The above 
result (valid asymptotically for k+oo) is in good agreement with the 
result 0.8 k2w exp(-0.8k2) given by Caner and Englman [7] as a 
reasonable fit of their numerical data for k~ 2.5 . 
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h ~,A, ... 
o 1 2 -5 0 5 -5 0 5 10 
(0) (b) (c) 

Fig. 2: Absorption Spectra. Solid lines are numerical results of 
Englman et al.[8], bar spectra are this calculation. Energy is in 
units of w. (a) k=l, kBT=O; (b) k=2.3, kBT=O; (c) k=2.3, kBT=0.5. 

Finally, we use the above wavefunctions to calculate the ab
sorbtion spectrum and find the spectra shown in Fig.2. (For details 
of the spectral calculation, see[l].) Fig.2 compares our spectra 
with the exact numerical spectra of Englman et al.[8] and we find 
good agreement even for fairly small k. Further, the analytical 
formula has the advantage of being valid for larger values of k. 

V. SUMMARY AND CONCLUSIONS 

In this work we have used a canonical transformation technique 
to generate approximate eigenfunctions for a strong coupling problem. 
This transformation can be viewed as replacing the description of 
the motion of the strongly coupled individual electrons and nuclei 
by a description in terms of weakly interacting collective modes. 
After transformation, the interaction parameter is k2 exp(-k2 ); 

therefore, even for large k, the perturbation is small. 

Using the transformed Hamiltonian, we have derived analytic 
expressions for the asymptotic eigenvalues and for the spectral 
density. In both cases we find good agreement with earlier 
numerical results [7,8]. 
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COOPERATIVE PSEUDO JAHN TELLER MODEL OF THE SEqUENCE OF FERRO

ELASTIC TRANSITIONS IN BARIUM SODIUM NIOBATE 

D. Paquet 

Centre National d'Etudes des Telecommunications 

196 rue de Paris, 92220 Bagneux (France) 

Barium sodium niobate (Ba2NaNbSOlS or BSN) has recently been 
shown (1) to posses four phases, whose labellin~ temperature sta
bility range and most probable space symmetries are listed in 
Table I. In this paper we will point attention only on the three 
lower temperature polar phases. The room temperature one is a 
ferroelastic orthorhombic mm2 phase sandwiched between two tetra
gonal phases of same point symmetry 4mm which, moreover, are expec
ted to belong to the same space symmetry. 

Fig. 1 shows the temperature behaviour of the birefringence 
~nab and the spontaneous strain e6 obtained from the work of Schneck 
et al. (1). The two phase transitions display first order (hystere
sis) and diffused characters. The diffuseness has been attributed 
(2) to the local disorder of the cations in the structure. 

The high temperature phase transition has been studied by 
Brillouin scattering (3). The difference between elastic constants 
(CI 1-C22) associated to the onset of the spontaneous strain e6 does 
not go monotonically to zero on heating the crystal to the transi
tion temperature (Fig. 2). Toledano (4) has shown that this anoma
lous behaviour is due to the fact that the phase transition is of 
the improper type : the order parameter is not the spontaneous 
strain, but a physical quantity transforming as an irreducible 
representation of the paraelastic space group situated at the Z 
point of the Brillouin zone boundary of the P4bm space group. The 
phase transition is thus associated to a breakdown of the transla
tional symmetry corresponding to a doubling of the unit cell along 
the polar c-axis. This prediction has been checked using X-ray 
diffraction (5) : the intensity of the superstructure line vanishes 
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Phase labelling Temperature range Space group 

I T > 858 K P4/mbm 

II 858 K > T > 573 K P4bm 

III 573 K > T > 105 K Ccm2 1 

IV T < 105 K P4bm 

Table I - Different stable phases of BSN 

15 10\ (~) 15 a 

10 1. 
"'>;;" 

~ . 

Fig. I - Temperature dependence of the birefringence ~nab in the 
(001) plane (dotted line) and of the spontaneous strain (b-a)/a 
(solid line). (From Ref. I). 
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Fig. 2 - Compared variations of the optical and elastic anisotropies 
in the (001) plane. Both should decrease in a proper ferroelastic. 
They show opposite variations in the improper ferroelastic transi
tion of BSN . (From Ref. 2). 
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at 573 K, and exhibits also a spread of the transition temperatu
re. 

The low temperature ferroelastic phase transition has been 
recently discovered by Schneck et al.(I). Birefringence and pyro
electric measurements show that below "lOS K the crystal recovers a 
tetragonal symmetry and remains polar. X-ray print indicates that 
it belongs to the 4/mmm Laue class. Its point symmetry is thus 4mm, 
as confirmed by nonlinear optics experiments. Assuming that Landau 
theory can be used to describe this phase transition, the space 
group of the low temperature phase must be a supergroup of the 
ferroelastic phase one. Every supergroup of Ccm2 1 corresponding to 
the 4mm point symmetry is associated to an increase of the transla
tional symmetry, and among those satisfying the Landau-Lifschitz 
criteria, the only one compatible with a continuous change in the 
positions of the various atoms is P4bm. The two ferroelastic phase 
transitions thus appear as completely symmetrical, the two extreme
phases (II and IV) being identical. 

This sequence of two inverse ferroelastic phase transitions 
is puzzling because, while entropy is expected to be an increasing 
function of temperature, the "configurational" entropy decreases 
with increasing temperature at the low temperature phase transition. 
Hence in phase IV, an "internal" degree of freedom, different from 
atomic vibrations, should order to compensate the excess of confi
gurational entropy. We assume that this internal degree of freedom 
is of electronic nature. A careful analysis of the tungsten bronze 
structure of BSN (6) (Fig. 3) actually shows that the onset of the 
spontaneous strain corresponds to tilts of the oxygen octahedra 
surrounding the niobium atoms. Though all the octahedra in the te
tragonal unit cell are non equivalent, they all undergo the same 
distortion (a rt rotation and ~ r~ shear), and the cooperative 
onset of these octahedral distortions builds up a bidimensional 
crystal normal mode possessing the same symmetry properties as the 
abstract order parameter deduced from the phenomenological theory. 
We thus believe that the ferroelastic transitions are driven by the 
cooperative tilt of the oxygen octahedra induced by a Jahn-Teller 
interaction between the octahedral vibrations and some d-electrons 
localized on the niobium ions (7). 

If one accepts that BSN is a pure ionic compound, then one 
finds that the d states of the Nb s+ ion are empty. However several 
experimental and theoretical data show that, in oxygen octahedra 
ferroelectrics, the effective charge of the transition metal ion is 
substantially reduced from its formal value. Infrared absorption in 
LiNb03 (8), where the oxygen octahedra have exactly the same dimen(9) 
sions as in BSN, leads to an effective charge of +3.2. Some SrTi03 
band calculations assume highly correlated eLectrons in the same 
octahedral unit. We thus built up an effective hamiltonian for the 
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Fig. 3 - Schematic representation of the distorted tungsten bronze 
structure of BSN at room temperature. Left: half unit cell. In the 
consecutive half cell along 1001 I, the tilt of the octahedra and 
the positions os the shaded barium atoms are inverted. Right : two 
consecutive octahedra along the 10011 axis. The c-parameter corres
ponds to two octahedra heights. 
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Fig. 4 - Splitting of the electronic energy levels of the Nb3+ ion 
in phases I (site symmetry m3m) , II and IV (site symmetry 4mm) and 
III (site symmetry m). 
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octahedral units whose levels exhibit the same symmetry properties 
as those of two correlated d electrons in the crystal field at the 
niobium site. We found a nine-dimension manyfold, as sketched in 
Fig. 4, described by the local hamiltonian 

where hso' hp' 01, 02 are electronic operators corresponding respec
tively to the spin orbit interaction, the tetragonal part of the 
crystal field induced by the spontaneous polarization of the crystal, 
and the coupling to the bidimensional (ql,q2) octahedral distortion. 
~, d and a are constants measuring the strength of these interac
tions. It must be outlined that, in the paraelastic phases, where 
the Nb site symmetry is 4mm, the ground state is a singlet, due to 
the tetragonal components of the crystal field induced by the 
spontaneous polarization. 

The hamiltonian of the whole crystal becomes 

H L {2~ 
j=I,2 

Mw2 
+ --

2 

+ L 
J/"a. 

{ ~ h (J/"a.) + d h (J/"a.) + a so p L 
j=1,2 

O.(J/"a.) q.(J/"a.)} 
J J 

The first term corresponds to the energy of the bidimensional crys
tal normal mode, the second one to the elastic energy associated 
with the spontaneous strain e6' the third one to the coupling 
between the spontaneous strain and the normal mode, the last one to 
the sum over each individual octahedral unit (J/"a.) of the local 
hamiltonians. This total hamiltonian, though more complicated, is 
very similar to the one discussed by Stinchcomb in his lecture. 
Using the same technics (displaced operators, neglect of the self 
energy and of the non commutation of the OJ with hso and hp' mean 
field approximation), we obtain the single site hamiltonian: 

h 
m 

with bo noa /Mw2, no being the number of Jahn Teller active ions 
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Fig. 5 - Different behaviours of the order parameter < 0 > versus 
temperature, depending on the relative values of s, d, boo The 
experimental behaviour of BSN corresponds to case e. 

in the tetragonal unit cell. The individual octahedral distortions 
and the spontaneous strain are then given by : 

q(£,a) 

3gb o 

b 
o 

a 

The mean field self consistency equation has been solved in a com
puter, and a phase diagram has been drawn. Six different behaviours 
have been found (Fig. 5) depending on the relative values of s , d, 
bo : zero, one, or two phase transitions, of first or second order 
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type. The three coefficients have been fitted, with physical mean
ingful values, to describe the two first order ferroelastic phase 
transitions occuring in BSN. 

The model predicts that an electric field applied along the 
polar axis would change the strength of the tetragonal component 
of the crystal field (d) and thus change the transition temperatu
res (Fig. 6). A similar effect, due to the change of the bo coef
ficient by substitution of the Nb atoms by non Jahn-Teller active 
ions, must occur (Fig. 7). These experiments will be performed to 
test the model. 

As a conclusion we shall emphasize that the occurence of the 
low temperature phase transition strongly depends on the polarity 
of the crystal : the tetragonal crystal field splits the five fold 
degenerate cubic ground state ; the latter becomes a singlet. The 
electron-vibration coupling thus occurs through pseudo Jahn-Teller 
effect. At very low temperature the ground state alone is occupied 

'which does not induce any distorsion. However, as this state is a 
singlet, the electronic entropy vanishes, and the system "stores" 
the order. At higher temperatures, higher states are occupied, and 
the cooperative onset of the octahedral distortions occurs through 
pseudo Jahn-Teller coupling. Then at much higher temperatures, the 
increase of the electronic entropy overcomes the decrease in ener
gy, which leads to a minimum of the free energy for zero distor
tion. This process is quite similar to the one discussed by R.T. 
Harley for Tb Gd) V04 in his lecture. 

p -p 

600 4m,m 

400 

200 -

-----
4mm 

.270 .150 150 300 

Fig. 6 - Ferroelastic transition temperatures vs applied electric 
field along 100)1. Dashed line: first order phase transition; 
solid line : second order phase transition. 
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Fig. 7 - Ferroelastic transition temperatures vs ·concentration of 
Jahn-Teller inactive impurities substituted to the niobium atoms. 
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. SINGLE ION AND COOPERATIVE JAHN-TELLER EFFECT 

FOR A NEARLY DEGENERATE E DOUBLET 

L.F. Feiner 

Philips Research Laboratories 

Eindhoven, The Net~erlands 

ABSTRACT 

Single ion behaviour in Fe:CoCr2S4 and cooperative behaviour 
in FeCr2S4 of Fe2+ are treated within a model where this Jahn
Teller (JT) ion interacts with local displacements and which takes 
full account of the spin-orbit splitting of the electronic ground 
doublet. Calculated static properties are compared with experiment. 
The discussion includes qualitative effects due to the splitting 
of the ground doublet and the problem as to what extent the 
strengths of spin-orbit coupling, single ion JT coupling, and 
interaction between JT complexes can be estimated separately. 

1. PHYSICAL SYSTEM AND MODEL 

Experimental information is available on two very similar 
compounds, one (Fe:CoCr2S4) where Fe2+ acts as an isolated Jahn 
Teller (JT) impurity, and the other one (FeCr2S4) where the Fe2+ 
ions interact and take part in a cooperative JT effect [1]. I wish 
to investigate whether it is possible to describe both single ion 
and cooperative behaviour with one coherent model. 

Both materials have the normal spinel structure with Fe2+ at 
the ~urelY cubic tetrahedral site, at the center of a tetrahedron 
of S - ions. We notice that each S2- is ligand to at most one 
Fe2+, and that in FeCr2S4 the Fe2+ ions build up a diamond lattice, 
which consists of two interlacing Bravais lattices. Below 175 K the 
compounds are magnetically ordered and each Fe2+ experiences a 
magnetic exchange field Hex from the Cr3+ ions, which is directed 
along one of the cubic axes. Consequently [21. the cubic crystal 
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field splits the 5D free ion groundstate of Fe2+ into a higher 
5T2 and a lower 5E multiplet, separated by about 3500 K, while the 
spin degeneracy is removed by Hex' which splits the magnetic sub
levels by about 300 K. Second order spin-orbit interaction between 
E and T2 states finally separates the components of the electronic 
grounddoublet by 2 OLS, which is about 50 K. 

The experimental information consists of (i) 57Fe Mossbauer 
measurements, which, when analyzed on the basis of the usual spin 
Hamiltonian, yield the magnetic hyperfine field Hhf and the com
ponents of the electric field gradient (EFG) Vxx ' Vyy and Vzz at 
the Fe nucleus [1J, (ii) specific heat measurements on FeCr2S4 [31. 

To describe the local static properties of the Fe2+ ion at 
low temperatures I assume (i) that it is sufficient to take into 
account only the JT active nearly degenerate E grounddoublet, and 
(ii) that the (cubic invariant) interaction of the JT ion is only 
with the E-type vibrations of the ion's own S2- tetrahedron. This 
gives the following Hamiltonian for a single Fe2+ ion in Fe:CoCr2S4: 

Hsingle = 1\.w U (Pal. + PEl. + qal. + q/) 

+ k (qe 0"6 + q£ OE) - 6 O"'e ], ( 1 ) 

where O"e and oe are the usual pseudo spin operators, i. e. Pauli 
matrices - crZ and rrx acting on the electronic states Ee and E( [4], 
itw is the vibrational energy quantum, and k and 8 = 6LS/liw are dimen
sionless parameters characterizing the strength of the JT coupling 
and the spin-orbit splitting, respectively. In the present case of E 
states in tetrahedral coordination where the JT coupling is only 
weak or intermediate, it is important to include the spin-orbit 
splitting right from the beginning. 

To treat the interacting Fe2+ ions in FeCr2S4 I assume that 
the [Fe2+S2-4] complexes (i) are described each by the same 
Hamiltonian as in the single ion case, and (ii) are now coupled by 
lattice dynamical forces between the displacements of S2- ions in 
complexes that are nearest neighbour to each other. In order to 
have cubic invariance (apart from the spin-orbit term) the total 
Hamiltonian is then 

where A is a dimensionless force constant characterizing the 
strength of the interaction between complexes. 

Crystal field theory [51 yields Hhf = A - B(O"a) , V zz = C <0"6) , 
(Vxx - VYY)/ V3 = C<cr£), where A, Band C are constants. Therefore 
the task is to calculate the thermal averages of the electronic 
pseudo spin operators. 
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2. CALCULATIONS, RESULTS AND DISCUSSION 

For the single ion case I have performed numerical diagonali
zations of Hamiltonian (1) using the familiar basis of electronic
vibrational product states [4J. For k,1.5 and Sf 0.3 inclusion of 
states with up to 7 vibrational quanta was sufficient to obtain an 
accuracy better than 0.5% in the thermal averages. 

The low temperature behaviour can be understood qualitatively 
by looking at the lowest two levels. Consider the JT interaction 
first. It changes the exactly degenerate electronic states Ee and 
EE into degenerate vibronic states "i-e and "'f'e, thereby reducing 
the magnitude of the pseudo spin operators by the Ham factor q. 
Secondly, the spin-orbit splitting splits the states but also 
changes their wavefunctions by mixing the vibronic state te (~e) with 
higher lying states of A1 (A2) symmetry. It thereby shifts the 
values of ~ in the two states by the same amount, b. For kBTAiw~ 0.3 
we find, with an accuracy of a few percent, 

where 6/hw '::t q·S is half the splitting, and b~b,(k)'S , while 
<~E) = 0 by symmetry. The result (3) is, due to the constant b, 
qualitatively different from the result of static crystal field 
theory. Quantitatively, b can become about one third of q for k~ 1 
and 8 ~ 0.2. 

For the case of interacting ions I have performed a molecular 
field calculation assuming (i) that the coupling is antiferrodis
tortive, i.e. "-)0, and (ii) that ordering takes place in two sub
lattices. For a JT complex, say In sublattice 1, feeling the average 
displacements of its neighbours in sublattice 2, one gets a molecular 
field Hamiltonian 

}{ mf +- . _ [1 (1. 2 
1 = rw.J 2 Pe1 + P£1 

+ k ( <lei 0"91 + qe1 (Tel) - S 0"91 

+ g «O"e.1> O"e1 + (<Te2.) CJ£1) 

- zA.g «(5""81> <:rei + < O"e1 > erE1 ) , (4) 

where g = ZA.k2/(1-(ZA)2), z (=4) is the number of nearest neighbours, 
and the carets indicate displaced coordinates. The fourth term in 
Eq. (4) represents antiferrodistortive coupling of the XY type between 
the pseudo spins on the two sublattices, the fifth term additional 
ferrodistortive intrasublattice coupling, while the spin-orbit 
splitting acts as an external field in the XY plane. In contrast with 
the usual treatment [6] involving displaced phonons and retaining only 
the resulting coupling between the pseudo spins, I have taken the JT 
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interaction into account, in the same way as in the single ion case. 
This inclusion of local dynamics makes the details of the temperature 
dependence different from those of the analogous magnetic system. The 
qualitative features, though, are the same. At high temperatures, we 
have a paradistortive phase where the averaged sublattice pseudo spin 
vectors <a~ 2 are equal and along the e direction preferred by the 
field 6. Upo~ lowering the temperature <ere> increases until at a tem
perature TD it reaches the value O/2g. Here a second order phase 
transition occurs a~~er which <ere> remains constant, while ~ compo
nents of <~)i now develop, of equal magnitude but opposite direction 
on the two sublattices. 

The accuracy of the experimental data is not sufficient to de
termine the parameters uniquely. A typical example of a fit is given 
in Fig. 1 for the electric field gradient and in Fig. 2 for the hyper
fine field. Here, first the model parameters k, S and ~ and the 
constant C have been chosen such as to reproduce the single ion EFG 
data, and then the parameter z~ has been determined from the value of 

.4 

:2 

o 

k: 1.25 
6: 0.08 
zl: 0.095 

tlw: 325 K 
C : 8.09 mmlsec 

o 

°0~------~~------~6--------~2~------~' .08 .1 . 4 .32 
kgT/tlw 

Fig. 1: Calculated (curves) thermal averages of the pseudo spin 
operators and measured (dots, circles) electric field gradient 
as a function of temperature. Single ion: (O"e>=-x-, • (Fe: CoCr2S4) ; 
interacting ions: (0"&>=-*-, o(FeCr2S4); (0"£>=-+- ,~(FeCr2S4). 
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Vzz in FeCr2S4 at T = O. The constants A and B have been fixed from 
the T = 0 values of Hhf in the two compounds. The data allow the 
range O. 7%k~ 1 .25, o. 06~cS~0. 10. The corresponding value for 'hwvaries 
between 225 K and 450 K, but OLS is always between 22 K and 28 K. 
Both results can be compared with experiments for similar compounds: 
from optical absorption measurements [7] 8LS~28 K, from an analysis 
of Raman and infrared data [~ ~ is estimated to be of the order of 
300 K. In addition, the values obtained for A (258 kG), B (280 kG) 
and C (8.09 mm/s) are in satisfactory agreement with crystal field 
calculations [5] without the need to invoke strong covalency. 

The calculated temperature dependence of <~6) and <~€> shows 
qualitative agreement with the EFG data on FeCr2S4. The lower values 
and weaker temperature dependence of Vzz in FeCr2S4 compared with 
Fe:CoCr2S4 are explained as consequences of the cooperative effect. 
The calculated value of Vxx - Vyy at 4 K agrees quantitatively. In 
fact the model explains, why at low T the EFG has axial symmetry in 
Fe:CoCr2S4 and not in FeCr2S4- It also explains that at low T the 
hyperfine field decreases strongly in Fe:CoCr2S4 (where the agreement 
is quantitative), but not in FeCr2S4. 

200 

(!) 
oX 

" ~ -150 
QI 
c k= 1.25 -'- 6 = 0.08 QI 
Q. 
>. Z ~= 0.095 ::r:: 

100 A = 258 kG 
B = 280 kG 
~= 325 K 

500 20 40 60 80 100 
Temperature (K) 

Fig. 2: Calculated (curves) and measured (dots, circles) hyperfine 
field as a function of temperature; • is Fe:CoCr2S4, 0= FeCr2S4. 
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On the other hand, the calculated transition temperature is much 
higher than the experimental value 9.25 K, obtained in specific heat 
measurements [3]. For the parameters used in the figures one calcu
lates 22 K, and this is the main cause for the quantitative disagree
ment in the EFG above the transition. The discrepancy is partly due 
to the use of the molecular field approximation in a situation where 
the interaction is assumed to be of short range. But even multipli
cation with a correction factor appropriate for an XY model with four 
neighbours yields 13.5 K. 

3. CONCLUSIONS 

The local dynamics associated with a purely electronic splitting 
in a JT system can have a qualitative effect even on static proper
ties. If one tries to get quantitative information about the para
meters describing such a system, it may be dangerous to neglect this 
dynamics. 

The single JT ion system Fe:CoCr2S4 and the interacting JT ions 
system FeCr2S4 can be reasonably well described within one model with 
quite satisfactory values of the parameters. However, as to the 
determination of these parameters separately, the spin-orbit splitting 
is well determined, whereas the other parameters have a rather large 
range of possible values. 
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I. Introduction 

The importance of correlations between electrons in a metal 
has been pointed out 40 years ago. Though band calculations which 
treat the interaction of electrons through a self consistent poten
tial provides a good description of most atoms and solids, they 
are unable to explain why a theoretical crystalline array of mono
valent atoms would either be a good conductor or an insulator depen
ding on the distance d between atoms. First treatment of this effect 
was proposed in 1949 by N.F. Mott 1• He showed that one gets an in
sulator until the density of electrons is such that they screen the 
Coulomb interaction ; there should be a critical density when the 
screening is large enough so that electrons are no more bound to 
the positive ions, this in turn would improve the effectiveness of 
the screening. One thus expects a quite sharp transition which can 
be estimated at a density N such that 

N1/3 a = 0.2 o 

where a is the Bohr radiu~ of localized electrons. Another approach 
was putOforward by Hubbard • He introduces a Hamiltonian which takes 
into account the repulsion U between two electrons on the same site, 
and the transfer energy T which represents the overlap between or
bitals on different sites and thus the ability of electrons to hop 
from one site to the next. The larger TIU, the easier one forms a 
conduction band. A crystalline array with adjustable interatomic 
spacing has not been studied yet. Nature provides us with solids 
which do demonstrate a metal-non metal transition but they also 
show a simultaneous structural transition due to electron-vibration 
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interaction ; they are too much coupled to differentiate the ef
fects and causes of each. On the other hand there exists a class 
of materials which undergo a purely electronic transition : the 
doped semiconductors. The radius of electron orbital is so large 
(around 20 ~) that the transition occurs at a very small density 
(around 1017 cm-3), one does not expect the lattice to be sensitive 
to a concentration. of impurity of 10-5. A lot of work has been do
ne on Si doped with P donors. The transition happens where expec
ted, and it has been studied by a variety of experiments (see ref. 
3 and following papers). There is a conduction which does not re
quire any activation energy, so that even at low temperature Si:P 
has most of the properties of a metal. 

However it still does not correspond to the theoretical model 
donors are introduced in a random way and distance between sites 
can only be determined statiscally. Near critical concentration 
electron may hop between close-by sites but may find regions where 
the distance is too large to jump and thus conduction might not 
occur through a macroscopic crystal. Coexistence of two phases (a 
conducting and a non conducting one) in the s~e crystal is contro
versial. Magnetic susceptibility measurements can be interpreted 
as showing such a coexistence but it was demonstrated5 that taking 
correlations into proper account, could lead to similar results. 

The experiments we are going to describe shed some light on 
this problem. CdS has the simplifying feature that being a direct 
gap semiconductor wave functions of electrons are simple to descri
be when si conduction band minimum is on the edge of Brillouin zone. 

We will first review the basic properties of CdS before going 
into the detail of the calculation of spin flip Raman Scattering 
(SFRS). Emphasis will be given on SFRS linewidth since it gives a 
direct estimate of the diffusion of electrons in the vicinity of 
the Matt transition. Results obtained by Faraday rotation will al
so be presented. 

II. Basic properties of Cadmium Sulfide 

CdS is a hexagonal crystal (wurtzite structure~. Optical pro
perties of "pure" CdS have been extensively studied so that a great 
deal is known about the detailed structure of the conduction and 
valence band together with the excitonic levels. 

The CdS crystal has some covalent character but for simplicity 
let us assume that it is ionic so that orbitals for electron can be 
thought of being localized either on cation Cd++ or anion S--. Then 
the highest occupied levels are the 3 p electrons of the S-- ion. 
The next level is a 5 s orbital on the Cd++. From these levels one 
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Fig. 1 Band structure of Cadmium Sulfide 
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builds up bands shown in fig. 1 the 3 p level is actually split by 
the combined action of spin orbit interaction leaving a J = 3/2 
highest and J = 1/2 lowest and the crystal field of hexagonal sym
metry : this leaves 3 doublets rg (or A) r7 (or B) r7 (or C) .res
pectively 16 and 57 meV from each other. The A valence band 1S thus 
made up of electrons whose orbital momentum and spin are parallel 
to the C-axis of the crystal. The maximum of each band is obtained 
at the center of the Brillouin zone i.e. t = O. The effective mass 
is roughly equal to mo, mass of the electron. 

The conduction band, made up from the 5 s orbital has its mi
nimum at t = O. It lies at Eg = 2.58 eV above the A valence band 
maximum. The effective mass m* is much lighter, almost isotropic 
with m- = 0.19 m. Detailed calculations show that there is a mixing 
of valence band and conduction band (this is often carried out 
through the so called k.p approximation), this results in a orbital 
magnetic moment which appears as a modification of the g factor of 
the conduction electron from its g = 2 expected value. In small 
gap materials this can be huge (g = 50 for In Sb). For CdS the g
shift is much smaller and it was found that gil = 1.79 while g~ = 
1.77. 

!~E~!:!~L!!:!!:!~ 

If an impurity enters the crystal substitutionnally, it should 
have the same electric charge that the ion it substitutes for. Ho
wever it usually has a tendency to keep a closed shells electronic 
structure. For instance when In SUbstitutes for Cd++, it first loo
ses 3 electrons to become In+++. This would leave the equivalent 
of one positive charge which will attract a conduction electron if 
any is available. If the dielectric constant of the lattice is lar
ge the Coulomb force will be very attenuated and the lowest bound 
state will actua6ly be very loosely bound (30 meV for CdS). The ra
dius is aQ = 28 A, so that the electron spend so little time on the 
impurity 1tself that it is almost insensitive to its chemical natu
re : the difference, the central cell correction, between different 
donors accounts for no more than a few percent in the binding ener
gy. Radius ao and binding energy En are estimated directly from the 
values of the effective mass m* and the- dielectric constant e:, in 
the same way as for the hydrogen atom, so that the ground state is 
similar to a 1 s hydrogenic wavefunction and 

112 m* e 4 
ao = e: m* e2 En = e: 2 2h2 

tz:EtEt_~~<:.i1Lqq 

Excitation of an electron from the top of valence band to the 
bottom of conduction band results in a very strong absorption of 
light as soon as ~w > Eg : this is the fundamental absorption. But 
the electron can be attracted to the hole left in the valence band 
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forming bound states with bydrogenic behaviour. The binding energy 
being 28 meV, recombination of electron and hole will generally 
lead to the emission of light at Eg - 28 meV ; similarly there is 
absorption at this frequency. 

Bound exciton 

The free exciton is neutral, still it can be attracted to a 
neutral donor in the same way two hydrogen atoms link together to 
form a hydrogen molecule. The corresponding excited state is rough
ly 8 meV below the free exciton (2.547 eV) : this can be conside
red as one excited state of the neutral donor. Depending on the 
valence band A or B which the hole belongs to, there can be two 
such excited levels corresponding to emission lines called 12 and 
I2B respectively. Excitation consists in taking one electron from a 
valence band, putting it next to the electron of the donor, so that 
they will have spins antiparallel.The symmetry properties of the 
complex so formed are thus primarily the ones displayed by the va
lence band the hole belongs to. For Spin Flip Raman Scattering, 
these excited states will be the virtual states which will allow 
matrix elements of electric dipole operator to be taken. Their 
value has been evaluated either from direct absorption measurement7 
correlated to concentration of donors or from the lifetime of the 
exciton8 : it happens to be extremely large since it corresponds 
to an oscillator strength f = 10 or 6. It is to be remembered that 
the sum of all oscillator strengths of a n electron system is equal 
to n. The huge value of f is connected to the fact that during op
tical excitation not only the electron promoted from the valence 
band but also the closed shells electrons which are responsible for 
the dielectric constant, are involved. 

III. Spin Flip Scattering 

Spin Flip Raman Scattering was detected by Thomas and Hopfield 
in CdS7 in a dilute sample. First linewidth studies were performed 
by Scott, Damen and Fleury9. The ground state of the donor has a 
spin equal to 1/2 and upon application of a magnetic field H it 
splits into two sublevels which we will call la> and Ib> separated 
by a Zeeman energy 

nwz = gllBH• 

Since g = 1.8, a 10 kG field yields a 25 GHz splitting. 

If a spin is in the la> state it can scatter a incident pho
ton at frequency wL and wavevector kL ; a photon is emitted at fre
quency wL- Wz while the spin goes to state Ib>. Two lines are indeed 
d:tected Stokes at wL-wZ and Anti Stokes at WL+WZ. They are propor
t10nnal respectively to the population of each state, their ratio 
is the Boltzmann factor exp bwZ/kT which is typically 1.5 at 2 K and 
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10 kGauss. 

For the experiment the CdS crystal is cooled at low tempera
ture and laser light is focussed on to it. Scattered light at an 
angle e from the incident beam is collected by a lens, passed 
through a Fabry Perot, and then frequency analyzed with the help 
of a small pinhole. Optimum resolution can be 30 MHz. Signal to 
noise ratio is improved, when needed, by photon counting and mul
tichannel analyser. The index of the crystal being very large 
n # 3, the viewing angle corresponds closely to the perpendicular 
to the exit face, so that bevels had to be cut in the crystals 
to allow large variations of e. 

To determine the maynitude of the scattering we will use a 
semi classical treatment O. The electric field of the incident 
beam EL cos wL t admixes some excited states In> in the ground 
state wavefunctions la> and Ib> with energy hWa and hwt, which 
become : .... 

(1) I~a> = e-iwat+~{la> - i E 
n 

where ~ is a random phase constant. 

<nIEL·erla> . t 
In> . e-1wL } 

E -E -ow n a L 

states I a> and 
~a and ~b dis-

Though no electric dipole could appear between 
Ib> because they have the same parity, the modified 
play matrix elements of et, for instance 

<aIEL·etln><nle~lb> 
(2) <l)Jale~l~b> = E e-i(WL wb+Wa) t + i~ 

n En - Ea - hWL 
+ a similar term with e+i(WL+Wb-Wa)t + i~ 

In the classical treatment of spontaneous emission of radia
tion one also calculates a dipole matrix element between an exci
ted and a ground state : the existence of such an oscillating 
dipole gives rise to emission of light at its frequency during 
the transition between the two states. The same applies here but 
light will be emitted at frequency wL + wta while the system goes 
from state la> to state Ib>. The random phase factor $ represents 
the fact that oscillating dipoles are incoherent, thus one will 
add emitted power by each spin instead of emitted electric field. 
One can then define a cross section for spontaneous Raman Scatte
ring so that intensity of scattered radiation per unit solid an
gle in a direction n is given as a function of incident intensi
ty IL and length 1 of the region of the crystal under study : 

IS = N 1 do 
•• dQ 

where N is the concentration of scattering centers, that is neu
tral donors. 
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One can get a simpli~ing view of the problem by introducing 
a so-called Raman dipole D which operates in the 2-dimensional 
manifold of the unperturbed states a(t) = la> e-~wat-~~ and b(t) = 
Ib> e-~Wbt such that for instance 

(3) <wb(t)le"t:lwa(t» = <b(t)ln(2)la(t» 

In most general fashion the components of any such operator 
may be expressed in terms of Pauli a matrices for a spin S = 1/2 

( 4) = .... -iwLt Q E "I e-iWLt + C C 
t. a··k EL· o. e +..,. Li • • 
ij ~J ~ J ~k 

For cubic symmetry this expression simplifies greatly, giving 

.... .... (-iwLt ) *.. -iwLt . = 0 x EL a e + C.C. + (B ~L I e + C.C.) 

where 

(6) a = L i <alexln><nlezlb> 
2 E -E -bw n n a L 

In equ. (5), B represents the usual polarizability which gives 
rise to the index of the crystal as well as Rayleigh scattering. 
Radiation of the dipole D can be calculated classically and yield 
a ~aman.electric field ER polarized parallel to TI, the intensity 
be~ng g~ven by 

(7) ~~ = 4 lal 2 ~ 
Though expression (5) is valid only for cubic symmetry, and is a 
little more complicated for hexagonal symmetry as for CdS, it gives 
the salient features observed in this case. Due to the vector pro
duct d x EL Raman Scattering will be polarized perpendicular to the 
laser polarisation ; a typical configuration would then be for ins
tance tL / / U / / if, ER / / tix -L H so that 0 will have matrix ele
ment between fa> and Ib>. At this point nothing has been said upon 
the wavevector of light, though obviously it cannot be parallel to 
the electric field. 

An important point to stress is the energy denominator : if 
the frequency of the laser is such that bWL almost matches the dif
ference in energy between the ground state and one excited state 
In> the v~lue of do/~Q is enhanced. This happens to be case when 
the 4880 A line of an Ar ion laser is usedosince the excited state 
corresponding to the 12 line lies at 4867 A. The cross section is 
so large that real forward scattering has in some cases been detec
ted though the exciting beam actually goes through the detection 
system. The so-called Rayleigh scattering is often smaller than the 
Raman Scattering. A typical values of dO/dQ is 2.10- 18 cm2• Now we 
are in position to understand how the light can flip a spin though 
there is no direct interaction between an electric field and a spin. 
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This occurs because the excited state In> carries the orbital mo
mentum of the p.like valence band for which there is a strong spin 
orbit interaction. The state In> is a superposition of spin up and 
spin down wave functions and thus can be connected to both la> and 
Ib> through electric dipole, giving a non-zero value of Q. If all 
spin orbit states In> were degenerate (no spin orbit interaction) 
all the contributions of different In> would cancel out. 

IV. Study of the SFRS linewidth 

If the donor electron is localized, then the SFRS linewidth 
should simply reflect the EPR linewidth, be it due to inhomogeneous 
broadening (strains or local fields) or homogeneous broadening (re
laxation time T2 or T1). This has been verified for a sample with 
concentration 10+17 where the linewidth of 0.003 cm-1 is indepen
dent of scattering angle and also equal to the measured EPR line
width. 

On the other hand if the electron moves with velocity ~, then 
the Raman line will have an additional Dogpl~r shift : it experien
ces a laser frequency Doppler shifted by KL'v and radiates at an 
angle e a Raman frequency which will be shifted by -tS.~' so that 
~Dop = q.~ if q is the scattering vector q = tL - tS. For electron 
velocities of v '" 107 cm s-l corresponding to Fermi velocities 
for the concentrations used AVDoP '" 1012 Hz. On the other hand, the 
electrons undergo collisions at a rate Tc approaching 1014 s-1 so 
that Doppler shift is collisionally narrowed giving rise to a dif
fusionnal line whose effective linewidth is given by 

~V ff = 4w(6vD )2 T e op c 

A uniform repartition of the velocities on the Fermi surface 
yields an angular average 

2 VF2 e 2 2 
(10) (~V ) = - (2 sin -) k and 

Dop 3V 2 2 
16w F . 2 e 

(11) ~Veff = -3- -;:r-S1n '2 Tc 

!!~~~~~~~_~~~£~iE~i~~_~f_~h~_~~~~_!i~~~i~~h~~ 
We have derived a formula giving what we called Raman dipole n2 , this dipole interacts with the radiation field at its frequency 

giving rise to emission as we have seen. This interaction can be 
expressed by the Hamiltonian 

if we introduce the spatial dependence of the radiation field one 
will obtain terms of the form : 
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Jt o( } l.0++ 
( ) . + (+ +) e-l. wL-wR + q r -_ +0 ±+H 

13 SF = 0 EL x ER 
+ + + 

where again q = kL - kR• 

The effect of the radiation will then be the same as a magne
tic field interacting with the spins. When the field is constant 
the effect of the interaction depends on the static susceptibility 
X , for an oscillating magnetic field H1 cos w1t like the one used 
f8r magnetic resonance one would need define a susceptibility at 
w1 ; O. Here we introduce a susceptibility X(w,q}(as ~ r~sponse to 
a field with time and space dependence H+ = H e-l. t+~ ?J. 

Still the q value corresponding to the wavelength of light 0.5 
p is large compared to the average inter electron spacing or to the 
Bohr radius of a donor. Under such conditions one expects that the 
spin transverse magnetization ~ can be described by a modified 
Bloch equation of the form : 

+ + + 
dM + + M - XoH 2 + ilia + 

(14) dt + i Ws M T2 -- - Ds V M = ~ Mo H 

where w = wa - ~ is the precession induced by the static field 
while p~/~ H+ is ~he one induced by the oscillating H+, T2 is a 
transverse spin-relaxation time. Ds is the spatial spin diffusion 
constant. 

a plane wave 

= H + e-i(qr-wt}, 
o 

eq (14) has the solution 

(-ws + k) XO H+ M+ = ________ ~2~ ________ _ 

(w-w ) + i(--T1 + D q2} 
s 2 s 

from which it follows that 

+ (-ws + ~) Xo 
X (q,w) = 1 2 

(w-w ) + i(Ti + D q } 
s 2 s 

( 16) 

For magnetic resonance it is well known that imaginary part 
of susceptibility gives rise to absorption, that is real transi
tions. For the same reasons Im X+ will describe the actual depen
dence of spin flip scattering; the linewidth follows : 

( 17) y = --T1 + D q2 
2 s 

We must emphasize the fact that Ds introduced phenomenologically 
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in eq (14) can represent either a real motion or electrons carrying 
their spin (particle dirrusion n) or pure spin dirrusion as would 
occur in case or localized electrons interacting via dipole dipole 
coupling. In that sense eq (14) is more general than eq (11) but 
the pure spin dirrusion introduced appears dirricult to evaluate 
in a random system. 

We have so rar demonstrated the userulness or SFRS in that it 
gives direct inrormation upon the motion or the particles scatte
ring the light. One major advantage is its selectivity: at the 
Stokes rrequency only donors can participate, that would not be 
true ror conventional Rayleigh scattering. We will see later that 
Faraday rotation has also this advantage and we will make use or 
it. Berore going into the results obtained by SFRS let us review 
the main experiments showing unambiguously the Mott transition 
in CdS. 

The occurence of Mott transition is displayed very clearly by 
conductivity measurements taken at Helilm temperature on samples 
of difrerent concentrations 12 : this is seen in rigure (3) where 
over a range extending between N = 1018 to N = 1017 cm-3 the con
ductivity drops by more than 4 orders of magnitude. Above N = 9 1017 
cro-3 the number of carriers as determined by Hall effect 13 is almost 
insensitive to temperature (see fig. 4). In this regime the electrons 
are derinetely moving in a not completely filled band like they would 
in a metal. Below N = 5 1017 cm-3 on the other hand the number of 
carriers reflects a thermal activation from bound states, behaving 
like semiconductors though the dependence in temperature is more 
compli cated. 

Fig. 3 
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Fig. 4a Hall coefficients of different CdS samples. The labelling 
of samples is the same as in fig. 4b. Concentration is 2 1017 
for sample G ; H = 4.5 1017 , I = 1.6 1018 , J = 2.5 1018 
(from ref. 13) 

Experiments performed on the NMR of the 113Cd isotope 13 reveals 
more precise feature of the transition on the metallic side. The 
Knight Shift (fig. 4b) has an expected Nl/3 dependence on concen
tration when N > 2 1018• Then the sample has all the caracteris
tics of a metallic sample: the impurity band formed around 9 1017 
cm-3 merges with the conduction band. 

The diffusional scattering is already clearly present at a 
concentration N = 2.4 1017 cm-3 which lies at the onset of Mott 
transition and still has a semiconductor behaviour. The SFRS line
width is shown in fig. 5 for forward scattering e = O(q = 0) and 
e = 90°. At e = 90°, hv = 300 MHz whereas for e = 0, hv = 60 MHz 
including an instrumental linewidth of 30 MHz. The q2 dependence 
of hv is illustrated in fig. 6 for a more metallic sample with 
N = 1.4 1018 for scattering angles close to the forward direction. 
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SFRS in a sample with N = 2.4 10 17• The lower portion of fig. 5a 
shows Stokes and Anti Stokes on an expanded scale. Fig. 5a is 90° 
scattering, Fig. 5b is 0° ~cattering.Both are taken with the same 
resolution 
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Fig. 6 : Linewidth of small angle forward scattering illustrating 
the diffusional motion of carriers via the q2 dependence 
of the linewidth when N = 1.4 1018 and T = 1.6 K 

The linewidth can be evaluated using relation (11) when the 
impurity band has merged into the conduction band so that vF can 
be deduced from the electron concentration N, and effective mass 
m* : 

( 18) 

T can in turn be deduced from resistivity measurement (12) since 
c 

m* (19) p =--
Ne2T 

So equation (11) caE be rewritten in that case 

6.1015 -1 
(20) ~V = 1/3 cm 

p N 
P is in n cm and N in cm-3 

The increased diffusional motion with increasing N and metal
lic character is illustrated in Table I where the results are com
pared with Eq (20). The agreement which is reasonable down to N = 
2.4 1017 is much better than could be hoped. Below 1018 one does 
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n 

A 1.0 x 

B 2.4 x 

C 5.0 x 

D 1.4 x 

E 4.0 x 

Table I 

p(2K) tJ.'Veff(calc) tJ.'V (cm- 1) 
ohm-cm meas 

cm-1 e = 90° 
T = 2K 

1017 > 105 0.003 

1017 20.0 0.016 0.008 

1017 0.25 0.125 

1018 0.1 1.9 2.0 

1019 0.0014 45 14 

Comparison of measured SFRS linewidths with tJ.'V ff 
calculated from eq (4), where p is in ohm-cm e 
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not expect an effective mass formalism to be applicable since the 
impurity band has certainly a more complicated shape. Besides va
riation of linewidth by a factor of two are observed in different 
regions of the same sample. This is undoubtedly due to even slight 
inhomogeneities in concentration since tJ.'V varies so rapidly with 
N in this regime. It should be emphasized that the SFRS technique 
probes a region of the sample that in our case is of the order of 
100 microns. Such variation of N are of course averaged in a typi
cal transport measurement. Nevertheless there is clear evidence of 
increasing diffusion with increasing N though more detailed theo
retical calculations are needed to understand the Mott transition 
region. 

v. Measu~ement of Xo by Faraday rotation 

In addition to the off diagonal component of the dipole n(2) 
in eq (5) which gives rise to SFRS there is a diagonal part asso
ciated with a • This corresponds to a dipole radiating at the same 
frequency wL ~ut rotated with respect to the incident polarization. 
For instance 

This rotated dipole gives rise to a Faraday rotation 14 per 
unit length along z given by 

(22) 1 = .8Jl N ex <oz> 1 n 
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Since the susceptibility is proportionnal to the derivative of 
the magnetization <oz> with respect to H, then the specific rotation 
R = d/dH (~/l) is proportionnal to X. 

As a can be made extremely large for the donors by choosing 
near resonant light excitation as described for the SFRS, one has 
a way of measuring very selectively the X of the donors independent 
of other magnetic impurity present in the sample. In figure 7a is 
shown the transmission of linearly polarized light through the sam
ple as detected through a polaroid. The separation between peaks 
is plotted versus H in fig. 7b. There is a small temperature inde
pendent rotation n, due to interband transitions which is substrac
ted to give spin Faraday rotation ~ - n. This quantity follows a 
Brillouin function for S = 1/2 and g = 1.79 as expected for the do
nors in CdS. When R is studied as a function of temperature, a plot 
of l/R versus T yields an antiferromagn~tic Curie-Weiss e of 0.30 K 
(the same results are found using 4965 A excitation although the 
rotations are smaller). This would suggest searching for a spin 
glass at lower temperatures. 

_5040 
(/) 
W 

~ 4320 
<.!> 
w 
03600 
z 

5 2880 
~ g 2160 
a:: -
60 1440 

720 

T= 1.63°K 
4880Ao 

(b) 

SAMPLE THICKNESS"' 1.05 mm 
N = 7 X 1016/CC 

2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 
H (KILOGAUSS) 

Fig. 7 Faraday Rotation for localized centers N = 7 1016 cm-3 
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In the very metallic region, for example with N = 6 x 1018 , X 
shows no saturation with H and is independent of T as one would ex
pect from a Pauli susceptibility. However, in the metallic transi
tion region, X displays both temperature dependent as well as tem
perature inde~endent components. This is illustrated in Fig. 8 for 
N = 1.4 x 1016• This temperature dependent component increases with 
decreasing concentration and is fairly dominant when N = 2.4 x 1017 • 

The ve.riation of R with temperature, T, mirrors the variation 
of susceptibility with T in a given sample. To determine the abso
lute value of X, however, one needs specific knowledge of the quan
tity ex in eq (6). This may be easily calculated" in the insulating 
limit where there is only one significant excited level correspon
ding to an exciton bound to the neutr~l donor (I2) whose position 
and oscillator strength is well knowno• Using this exciton level 
the calculated ex agrees very well with the magnitude of the rota
tion observed in fig. (8). However, as one crosses to the metallic 
regions with increasing concentration, the bound exciton loses mea
ning and the question arises as to the changing spectrum of the 
electron-hole excitation. In the case of the very metallic samples, 
the lowest such excitation corresponds to the energy needed to pro
mote an electron from the top of the valence band to the Fermi level 
now in the conduction band, and the oscillator strength is spread 
out among the unoccupied states. The most feasible way to determine 
ex in this case would be experimentally by measuring the optical 
absorption spectrum. However, beyond the transition on the metallic 
side even up to N ~ 2 x 1018 , it is observed that the luminescence 
feature corresponding to electron-hole recombination does not move 
and while it broadens somewhat, its width still remains small com
pared to the 5 meV separation from the laser line. Therefore, up to 
n ~ 1018 we tentatively take ex to be the same as in the dilute 
limit for our analysis of absolute X in this region. 

Thus if we compare the absolute magnitude of the temperature 
dependent component of the rotation for N = 1.4 x 1018 to that 
found per localized spin in the insulating region for N = 7 x 1016 
we find that the temEerature dependent part in fig. 8 corresponds 
to approximately 1016 electrons with free moments or 1% of the 
total. The same figure is arrived at by comparing the ratio of the 
temperature dependent and temperature independent parts assuming 
the latter to be Pauli like with a degeneracy temperature TF = 2650 K 
corresponding to N = 1.4 x 1015• By contrast, for the N = 2.4 x 1017 
sample which shows only a very small temperature independent sus
ceptibility, an analysis of X in terms Xp + Xc w shows that the 
number of Curie-Weiss electrons is comparable to·the number of 
Pauli like electrops. Very similar results for X were obtained 
by Quirt and Marko 4 for si : P. 
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VI. Discussion of results 

Some may be inclined to interpret the two components X and 
Xc V that are observed as arising from well defined microsgopic 
reg~ons of metallic and insulating material with nondiffusing elec
trons respectively, associated with the clustering due to basic 
statistical randomness in donor positions. However, we will now 
present evidence that there are no nondiffusing spins beyond the 
metallic transition which seems to argue against the simultaneous 
coexistence of two such phases. If there were nondiffusing spins 
imbedded in a metallic matrix, we would certainly expect their 
number to be greatest close to the M-liM transition point as for 
example in the sample with N = 2.4 x 1017. If one looked at 90° 
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scattering in such a sample, one would expect to see a narrow line 
with no an~lar dependence, superimposed on the broader di~~usional 
line with q2 dependence. However, one always sees only a single 
line with q2 dependence as shown in fig. 2a and no evidence for 
nondiffusing carriers. This is further illustrated in fig. 6 where 
again the narrow line observed at e = 0 broadens continuouslY as 
q2 with increasing angle about e = O. We are inclined to believe 
that the temperature component of X is coming from electrons in 
singly occupied sites of the correlated electron motion4,5. Becau
se of randomness some or all of these singly occupied sites may 
even have fixed positions in space. However, the electrons in 
these singly occupied sites are still in dynamic equilibrium with 
the rest o~ the electron sea and leave this site to be filled by 
another carrier replacing it. Equivalently stated, the electrons 
on singly occupied sites are Anderson local moments or Friedel 
virtual bound states which while giving rise to a Xc.w. still have 
diffusive character in the SFRS. 
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ELECTRON PHONON INTERACTIONS AND CHARGE ORDERING IN INSULATORS 

Y. Yamada 
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I. CHARGE ORDERING IN INSULATORS 

There are various kinds of crystals which undergo structural 
phase transitions upon change of any external r.ircumstances, 
especially of temperature. These structural transitions are 
understood in terms of the instability of the lattice against some 
particular atomic displacement field, or phonon mode. Since it is 
obvious that a harmonic phonon system can not become unstable by 
change of temperature, some sort of interaction of harmonic phonons 
with some physical variables would be needed to trigger the phase 
transition. 

In this lecture, let us take up localized electron system as 
the variable to trigger the phase transitions through the 
interaction with phonons. In this case, the ordering in the dis
tributions of local charge density takes place below the transition 
temperature along with the condensation of a particular phonon mode. 
This is certainly in contrast to the topics concerning charge 
density waves in metals where the charge ordering is seen in 
itinerant electron system. 

In the case of insulators, the electron associated with the 
ordering is more or less localized in space. Therefore, each 
electron can be specified by the site number rather than the wave 
vector K as is done in itinerant electron case. 

The charge ordering process in insulators is generally 
considered to be as follows: In higher symmetry phase, there is a 
fluctuating part op in the charge density of the localized 
electrons, and, due to some sort of interactions between these 

370 
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fluctuating parts at different sites, a cooperati~e ordering of 
charge density will set in when the external circumstances such as 
temperature, pressure etc. are varied. 

It would be convenient to expand the fluctuating part of the 
charge density localized at a site in spherical harmonics as 
follows: 

The coeffiants of the £'th terms are associate with the tensor 
components of 2£ multipoles: 

(1) 

(2) 

We may categorize the various types of charge order into "grades" 
by specifying the lowest order fluctuating term which 'freezes' 
in the low temperature phase as is shown in Table I. The most 
widely observed charge order is, of course, the case of 1st grade 
ordering, namely the dipolar ordering. Ferroelectric or antiferro
electric ordering fall into this class. 

However, we can consider the case of even lower grade: the 
Q'th grade ordering. In this case, the total charge, integrated 
around each site, itself is fluctuating in the higher symmetry 
phase. Various kinds of mixed valence systems such as Fe304, SmS, 
etc. would be categorized as belonging to this class. Later, we 
will discuss FegOq as an example of this class in some detail. On 
the other hand, we may also consider the cases of higher grades 
than dipolar ordering. In fact, from this stand point, various 
kinds of Jahn-Teller ordering is categorized as quadrapolar ordering. 
We will discuss this type charge ordering by taking up the case of 
K2PbCu(N02)6 as an example. 

TABLE I 
Classification of the charge ordering associated with local 
electronic state, with respect to the lowest multipoles appearing 
in the ordered phase. 

r---
grade multipole example 

Qth monopole mixed valence systems 

1st dipole ferroelectrics, antiferroelectrics 

2nd quadrupole Jahn-Teller systems 

--- --- ---
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Whatever the grade of the charge order is, the most important 
characteristic of the ordering of localized electron, as compared 
with itinerant electron case, consists in that the energy eigen
states of electrons are consisted of well separated discrete levels. 
And the eigenstates relevant to the phase transition are restricted 
to the ones with excitation energies comparable to or less than 
kTc, Tc being the transition temperature. Usually only several 
eigenstates should be considered. In such the case, the pseudospin 
description of the electronic system is very useful. 

We expand the electronic potential with respect to small 
atomic displacements, or more properly with respect to phonons. 
Then we can go through the procedure to obtain 'coupled pseudospin
phonon formalism' describing localized electron-phonon system. 
This procedure has been extensively discussed in the separate 
lectures in this seminarl,2. 

One of the advantage of introducing pseudospins to describe 
local electronic state is that the property of cooperative 
ordering of "real spin system under various conditions are 
extensively investigated in connection with the study of magnetic 
materials. Hence, there are good chances that we can directly 
infer what will happen in our pseudospin system by making analogy 
with the corresponding real spin system. We will see later a good 
example where such analogy works well. 

We concentrate ourselves to the lowest order bilinear coupling 
between pseudospins and phonons: 

(3) 

where the spin operator o£ describes the state of electron 
localized at £'site, Qk,s is the amplitude of phonon mode specified 
by the wave vector k and the branch number s. The property of the 
linearly coupled spin-phonon systems is discussed extensively in 
the separate lecture in this seminarl. The exchange of phonons 
gives rise to an effective spin-spin interaction causing 
spontaneous ordering of spin system below a critical temperature 
Tc , accompanied by a distortion of the lattice or a condensation 
of phonon mode. 

In the following, we discuss two typical examples of the 
charge ordering of 2nd grade and Q'th grade. In both cases, it is 
shown that the pseudospin-phonon formalism can be worked out, 
though the physical contents for the 'pseudospin' is not the same. 
Thus, we try to view these phase transitions on a more or less 
unified stand point. 
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II. SECOND GRADE ORDERING: JAHN-TELLER ORDERING IN K2 PbCu(N02)6 

II'l Introduction 

The crystal of K2PbCu(N02)6 belongs to the isomorphous crystal 
system generally expressed as R2MCU(N02)6, where R=K, Rb, Cs, Tl 
and M=Ca, Sr, Ba, Pb. These crystals con$ain octahedral CU(N02)6 
complex in common. As is well known, Cu2 ion in a cubic crystal 
field is Jahn-Teller active, whence Cu(N02)6 group has the tendency 
to became slightly distorted from the regular octahedron. Not only 
that, the crystal lattice as a whole would became distorted due to 
the interactions between local distortions. In fact, some of the 
,crystals undergo phase transitions which is considered to be 
associated with the cooperative Jahn-Teller effect. 

In particular, the system R2PbCu(N02)6 is very interesting in 
that it exhibits successive phase transitions~,4,5,6 K2PbCu (N02)6 
being the typical example~,4 In this section, we try to understand 
the property of this sequencial cooperative Jahn-Teller ordering, 
as one of the interesting example of 2nd grade ordering, on the 
general basis discussed in the preveous section. 

II.2 Successive Phase Transitions 

The undistorted 'prototype' structure7 is depicted in Fig. 1. 
It belongs to cubic system (space group F3m) and Ni(N02)6 complex 
sitting at the corner of the cell forms the regular octahedron.+ 
It is well known that when Ni+cu, the local 3d electrons of Cu2 
ion strongly couple to local distortions with Eg symmetry, 
conventionally specified as the Q2-mode and the Q3-mode~ The 
electronic state is represented in terms of Pauli spin operators 
aX and aZ, and the stable ground state is expressed as a 'circle' 
in the two-dimensional aX_az plane. In the pseudospin description, 
the cubic phase corresponds to the case when the spin direction is 
not fixed and a~ at the ~'th site is fluctuating around the circle. 

The crystal of K2PbCu(N02)6 has the undistorted cubic struc
ture at room temperature. This crystal undergoes two phase 
transitions at 280 0 K and 273°K successively~,4 The lower 
temperature phases are reported to have pseudotetragona19 unit cell 
with c/a<l. In order to understand overall feature of successive 
transitions, we show the precise measurement of the temperature 
variations of X-ray scattering angles of two fundamental reflections 
in Fig. 2. The intermediate phase (Phase II) is known to have 
tetragonal cell, while the lowest temperature phase, strictly 
speaking, has a lattice symmetry lower than orthothombic. 

It is interesting to compare these with the temperature 
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Fig. 1 The undistorted 'prototype' structure of R2MNi(NOz)6. 
When Ni~u, the octahedral CU(N02)6 complex tends to be distorted 
due to Jahn-Teller effect. 

d d f b Ol o f 2 + 0 4 ,10 epen ence 0 ESR a sorptlon lnes 0 Cu lons. We see that 
there is a fairly good correspondence between the lattice 
distortion and the 3d electronic state of Cu ions, which indicates 
the important role of Jahn-Teller effect in these phase transition.s. 

Recently, we have carried out precise structural measurements 
in Phase II and Phase IIIll ,12 using X-rays and neutrons, which 
have revealed interesting features involved in these phase 
transitions. 

II·3 Phase III 
Phase 

Canted Pseudospin Structure, Antiferrodistortive 
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Fig. 2. Temperature dependences of the diffraction angle of the 
two fundamental Bragg reflections: (1200)c and (880)c in cubic 
indices. Phase II is indexed by a tetragonal lattice while 
Phase III by a monoclinic lattice. 
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In Phase III, we have observed the super lattice reflections 
at (H±I/2, K±I/2, L±I/2) in cubic indices, namely at L-points of 
the Brillouin zone of fcc unit cell. This will imply that some of 
the L zone-boundary phonon modes condenses in Phase III. Therefore 
we look for the L zone-boundary modes which are compatible with the 
local Q2- and the Q3-mode. Following convensional symmetry 
analysis, we find that the L3- and the Ls-mode are the possible 
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Jahn-Teller active phonons, whose displacement pattern are depicted 
in Fig. 3. We can easily see the local Q3-mode is compatible with 
this L-mode. The structure analysis including super lattice 
reflections confirmed this displacement pattern. 

This is an antiferrodistortive structure, where in one sub
lattice the a-axis is the direction of tetragonal elongation of the 
octahedron formed by Cu(N02)6 complex while in the other the b-axis 
becomes the direction of elongation. In terms of the pseudospin 
description of local electronic configuration, this structure may 
be characterized as the 'canted spin' structure as is illustrated 
in Fig. 4. 

Concerning the electronic state of Phase III, there have been 
very interesting debates between 2 groups based on ESR measurements. 
Reinen et a16 ,13 assumes 'locally elongated' configuration implying 
that the wave function ~g=2Z2_x2_y2 should be taken as the ground 
state. The uniform contraction of the lattice (c/a<l) is attained 
by taking local unique axis along the a-axis or the b-axis alte
natively. (antiferrodistortive state) . 

On the other hand, Harrowfield 4 ,14 assumes 'locally contracted' 
configuration as the ground state. In this case, each ionic group 
contracts along the tetragonal unique axis, thus the uniform 
contraction of the lattice is attained simply by the ferrodistortive 
state. It is interesting that, as far as the 'averaged' property 
is concerned, these two models are equally good to explain the 
anisotropy of the g-tensor observed by ESR experiments. Our 
structural analysis is certainly consistent with Reinen's picture. 

11·4 Phase III : 'Fan' Spin Structure, Incommensurate Phase 

The property of Phase II is more interesting. We have per
formed neutron diffraction experiments in Phase II. The most 
remarkable point is that, in addition to the uniform bulk 
contraction, we have observed satellite reflections at (H±0.425, 
K±0.425, O)c in cubic indices. That is, Phase II is considered as 
an 'incommensurate' phase. In Fig. 5,_ the diffraction pattern in 
(001) zone is schematically shown. 

The model for the static structure in this phase would be 
that the local Jahn-Teller distortion is modulated along [110] with 
/ko/=0.425. We look for phonons on E-line (k=[~~O]) which is 
compatible with the local Q~- and Q3-mode. The symmetry property 
of the low frequency acoustic phonons on E-line is summarized in 
Table II. We assumed that the most probable candidate of the 
phonon mode which is condensed in Phase II is TAl-mode, propagating 
along [110] and polarized along [110]. The structure based on this 
model is illustrated in Fig. 3. A preliminary structure analysis 
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~2mode(q=O.42) 
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L2±L+3 mode 
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• Cu 
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Fig. 3 Model structures in the low temperature phases. 
Phase II (upper figure): Jahn-Teller active phonon mode (TAl-mode) 
with wave vector ko=(0.425, 0.425, 0) is 'freezed'. This is an 
incommensurate phase. 
Phase III (lower figure): Jahn-Teller active zone boundary mode 
(k=1/2 1/2 1/2) is 'freezed'. This is an antiferrodistortive 
(commensurate) phase. 
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Fig. 4 Pseudospin descriptions of the low temperature phases. 
Phase II : a fan spin structure. The spin direction (the 
electronic state) in the aX-az plane changes from site to site 
sinusoidally leaving a tetragonal contraction «az><O) as the 
average. 
Phase III : a canted spin structure. In one sublattice, the 
octahedron is elongated along the a-axis while in the other it is 
elongated along the b-axis. 

TABLE II 

Symmetry property of the little group of k=[~~O] (E-line) of Fm3m. 
The compatibility of the local Jahn-Teller mode with these 
irreducible representations are also given in the third column. 

O~(E)=mm2 E C2d m md local phonon 
Z r--- -.... -----. 

Al EI 1 1 1 1 Q3 LA 

A2 E3 1 1 -1 -1 

BI E2 1 -1 1 -1 Q2 TAl 

B2 E4 1 -1 -1 1 TA2 
------
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Fig. 5 The neutron diffraction pattern in (001) zone observed in 
Phase II. Many satellite reflections appeared around each 
fundamental reflections. Size of the solid circles roughly the 
observed intensity ratio between various satellites. 

has shown that this is consistent with the observed intensity 
distribution of satellites. 

It is worthwhile to point out that in terms of pseudospin 
description, this phase is expressed as a 'fan' spin structure. 
(See Fig. 4) In Phase II, it has the modulated local distortion 
of the Q3-mode as well as the uniform distortion of the Q2-mode. 
Therefore the orientation of the 'pseudospin' in the two dimensional 
aX_az plane changes from site to site, which will result in the 
'fan' spin structure. Such the structure has been studied in real 
spin system, and it is known that when a helical spin system is 
brought under the influence of external magnetic field perpendic
ular to the screw axis, this type structure is stabi1ized15 . 
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Fig. 6 Observed X-ray critical diffuse scattering around (880)c 
obtained in Phase I. Strong anisotropy at the r-point suggests 
that the interaction between local distortions are of long range. 

Later, we will discuss the correspondence between our 'fan 
pseudospin' system and the fan structure in real spin systems. 

From lattice dynamical point of view, this picture would imply 
the softening of the TAl branch particularly at k:[0.4, 0.4, 0] 
avobe the transition temperature. We tried to observe softening 
of TAl branch along k=[~~O]. However, we could not observe any 
well defined TAl-mode above the upper transition point. Instead, 
as is often the case, strong quasielastic streaks were observed 
running along the <110> directions. Fig. 6 shows the intensity 
contours of observed X-ray diffuse scattering around (880) 
reflection. Particularly we notice the characteristic 'pinching' 
in the contour around f-point (the origin of the Brillouin zone) • 
This pattern is very similar to that observed in ferroelectric 
substance such as KDp16. This correspondence is more than 
accidental. It is known that when the interaction between local 
distortions is via elastic strains, it falls off as l/r~, exactly 
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the same as electrostatic dipolar interaction. Such the long range 
forces, when Fouier transformed, always gives rise to the singlarity 
at the f-point. Therefore, we consider that the critical fluctu
ations is in fact mainly associated with the transverse acoustic 
mode. 

11·5 Summary and Discussions 

summarizing, the successive phase transitions in K2 PbCu{N02)6 
have been studied by precise X~ray and neutron scattering 
measurements. The experimental results can be interpreted as 
sequencial cooperative Jahn-Teller phase transitions. In the 
intermediate phase, the local Jahn-Teller distortions are modulated 
with the wave vector ko={O.42, 0.42, 0). In the lowest temperature 
phase, it has an antiferrodistortive phase where the axis of local 
tetragonal elongation alternates from site to site. From the 
structural view point the successive phase transitions in this 
crystal is characterized as normal+incommensurate+commensurate 
structural transitions which is accompanied by cubic+pseudo
tetragonal+pseudomonoclinic bulk distortion. On the other hand, 
the change of the electronic state of the Jahn-Teller active Cu2+ 
ion is characterized as para+fan+canted spin ordering. 

The most conspicuous feature in the successive phase tran
sitions of K2PbCu{N02)b is the appearance of incommensurate phase 
where the local Jahn-Teller mode propagates with incommensurate 
wave vector ko. It has been shown that in two dimensional Q2-Q3 
plane, this structure corresponds to a 'fan structure' given in 
Fig. 4. It is known that in the magnetic system, this type of 
spin structure is realized when a helical spin system is brought 
into uniform magnetic field perpendicular to the screw axis. On 
the other hand, it is also well known that the 3d electronic state 
of Cu2+ ion in cubic crystalline field is completely described by 
Pauli spin operators, which is called 'pseudospins'. It would be 
interesting to look for formal correspondence between our 
'pseudospin' system and real spin system and whence deduce the 
origin of stability of the 'fan pseudospin' structure by comparing 
with the real spins. 

We begin with the well known Jahn-Teller hamiltonian, 

(4) 

where cri and+cri are Pauli spin operators to describle 3d electronic 
state of Cu2 ions at the t'site. On E-line {[~~O] in the Brillouin 
zone, these local modes are compatible with phonon modes belonging 
to Bl (L3) and Al (Ll) irreducible representations. Therefore, 
these local modes are expanded with respect to phonon modes as 
follows: 
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x Z 
H ~ g 0 (~o R, + 110 R, ) 

+ ~ I. gk'~3 x ik·rR, 
+ c.c.) 

R,k,I:3 fi 
(Qk'~3oR,e (5) 

+ ~ I. 
gk,~l (Q oZeik·rR, + c.c.) 

R, k,J:l iN k,~! R, 

where, we have included the coupling to uniform strains: 
~.exx-eyy' 11=2ezz-exx-eyy. The importance of the role of strains 
has been pointed out by Kanamori17 and Elliott et al18 . Among 
these, we only retain the most important terms which become 
condensed in the low temperature phase to obtain 

In the molecular field approximation, we may introduce the 
following effective 'pseudomagnetic fields' 

Z _ 
Ho = -go<l1> 

(6) 

(7) 

(8) 

(8' ) 

H~ is a uniform 'pseudofield' while Hko 1 is a staggered pseudo
field modulated with wave vector ko. MaKing use of these 
expressions we have 

Z Z 
H = -a H 

JT R, 0 
(9) 

which corresponds to the hamiltonian studied by Nagamiya15 to 
investigate fan structure in the real spin system, where H: and 
HkoR, mean uniform external magnetic field and the staggered 
exchange field. The only difference is that in Eq. (9), H~ stands 
for the spontaneous strain, not the applied field. To make this 
point consistent, we should introduce a higher order anharmonic 
interaction : 

(10) 
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By the suitable choice of parameters go, gko' and A, we should be 
able to obtain the self consistent solution to stabilize the fan 
pseudospin structure. 

III. ZEROTH GRADE ORDERING IN Fe304 

111;1 Introduction 

The 123 K phase transition of magnetite is one of the 'time 
honored' problemes which has been the subject of extensive studies 
since Verwey19 proposed the existance of 'charge ordering' below 
the transition in 1941. The 'charge order' means that the total 
charge integrated around each particular site alternates from site 
to site. Thus, in the framework given in §l, this falls into the 
case of O'th grade ordering. 

The crystal structure of Fe304 in the high temperature phase 
is so called 'inverse spinel' type. The tetrahedrally coordinated 
A-sites are solely 0rcupied by Fe 3+ ions, while the octahedral B
sites accomodate Fe 2 ions and the remaining Fe 3 ions at random 
with equal probability. Large electrical conductivity of this 
substance at room temperature is considered to be due to hopping 
of d-electrons within the disordered B-sites. It is this disorder 
that causes the 123 K phase transition. 

The important characteristic of the 123 K phase transition is 
that the electrical conductivity decreases by factor of 10- 2 at 
the transition. 20 Based on this fact, Verwey proposed the ordering 
of charges within the octahedral site below the transition 

2+ 3+ temperature which eliminates the disorder of Fe and Fe , whence 
explains the drastic decrease of the conductivity. The 'frozen' 
charge ordering scheme proposed by Verwey is explained in Fig. 7. 
In this ordering, the unit cell remains unchanged. 

However, recent observations on this phase transition by 3 24 
electron diffraction2l , neutron diffraction22 , Mossbauer effec£ ' 
and magnetic resonance24 ,25 have casted doubt on the validity of 
the Verwey type charge ordering scheme. The details of historic 
aspects of the experimental progress have been discussed in the 
seperate lecture. 26 

As is illustrated in there, the electron diffraction pattern2l 
exhibits some super structure lines indicating that the unit cell 
in the low temperature phase is doubled along the cubic principal 
axes. Moreover the neutron diffraction experiments 22 have shown 
that the doubling of the unit cell is mainly caused by small dis
placements of atoms. This strongly suggests that some internal 
lattice mode is associated with this phase transition. 
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• Fe 2+ o Fe 3+ 

Fig. 7. The charge ordering ~cheme proposed by verweyl. Two 
atomic planes occupied by Fe~ and Fe 3 alternates successively 
along the z-direction. Cubic unit cell is not doubled in this 
ordering scheme. 

When combined with the existence of the charge ordering below 
Tv' the phase transition temperature, these considerations 
naturally lead to the assumption that the interaction between 
electrons and phonons is playing the crucial role in this phase 
transition. The important implication of the above assumption is 
that the charge density fluctuation which is coupled to the 
unstable phonon mode is also an 'internal' mode modulated by the 
same wave length (twice the cubic unit cell length). 

In the following, we try to understand the 123 K transition 
in Fe30~ on the basis that this phase transition is viewed as the 
instability of a coupled charge density-phonon mode driven by the 
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coupling between local electrons and phonons?7 

III·2 Symmetry Property of The Phonon Field and The Charge Density 
Field 

The observed neutron critical scattering has shown strong 
peaks at (H, 0, L±1/2] reciprocal lattice points accompanied by 
ridge-like streaks running along [001] direction28 . This suggests 
that the relevant phonon modes which become unstable at the phase 
transition have the wave vector k=(OO~) (specified as ~-points in 
the reciprocal space). Especially, the mode with k=(OO 1/2) will 
become condensed in the low temperature phase as is confirmed by 
the electron diffraction and the neutron diffraction measurements. 
Therefore we begin with examining the symmetry property of the 
phonon field as well as the charge density field at ~-points in 
the cubic reciprocal space. 

Phonon Field 

7 
The little group of k=(OO~) of space gro~p 0h has five 

irreducible representations denoted by ~l' ~2, ~3' ~4' and ~5. 
Among these, ~5 is a two dimensional representation and the others 
are all one dimensional, ~l being the identity representation. 
The 42 phonon branches are characterized by the following symmetry 
properties, 

(11) 

Among these phonon branches, the ~5-modes are particularly 
important for the later discussions. It should be pointed out 
that all the singlet modes share the common feature in the pattern 
of displacement in that the atom pair which is related by two fold 
axis along [001] moves out of phase, while in the ~5-mode, they 
move in phase as is seen in Fig, 8. It should be also mentioned 
that for an arbitrary value of k=(OO~), the atomic displacement is 
modulated along [001] direction with the corresponding wave length 
a/~. Thus, for the particular case of k=(OO 1/2), the wavelength 
is twice the cubic unit cell dimension along the c-axis. 

Charge Density Field 

The electrons which are associated with the 123 K phase 
transition are a pair of excess 3d-electrons coming from two Fe2 + 
ions per primitive cell located at octahedral sites. Since the 
magnetic ordering has been attained at this temperature, the spin 
degeneracy is already lifted. Therefore, there are four orbitals 
per primitive cell to accommodate these two electrons. 

As for the electronic states of these electrons above Tv' 
there are evidences29 ,30,31 that these electrons are localized at 
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Fig. 8. Schematic discription of the displacement pattern as well 
as the charge density pattern with the symmetry ~!. This pattern is 
modulated along the z-axis with an arbitrary wave vector. 
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each site rather than forming bands, thus glv1ng rise to a hopping 
disorder in charge density at the octahedral sites. We take this 
standpoint and consider the symmetry property of the localized 
charge density fluctuations. First we assume the condition of 2 
local charge neutrality within the unit cell (Anderson's condition1 
is satisfied. We have then six configurations of two electrons in 
the unit cell as is given in Fig. 9. The pattern of charge density 
waves with an arbitrary wave vector k is obtained by multiplying 
the phase factor e ik . ri . We are especially interested in the modes 
with k=[OO~l. Along this particular line, the allowed charge 
density patterns are further limited 33 to cases (c)-(f) in Fig. 9. 

We may define the charge density fluctuation operator as 
follows: 

+ op = c C - 1/2 
mm 

m = 1, 2, 3,4 ( 12) 

+ . where CmCm 1S the number operator of the 3d electron localized at 
m'th site in the unit cell. The relevant two electron states 
(c) - (f) in Fig. 9, will be given by: 11010>, 11001>, 10110> and 
10101>, in terms of the eigen functions for these number operators 
as is illustrated in Fig. 9. We then symmetrize this charge 
density fluctuation field (a scaler field), so that the pattern of 
the charge density with wave vector k will belong to one of the 
irreducible representations of the same little group 6 as phonons 
does. 

It is shown that we can construct the following symmetrized 
'charge density modes' 

op(6d OP! + opz + op~ + op" - 2 

op(6,,) OPl + OP2 (OP3+0P,,) 

op(6~) OPl - OP2 
(13) 

OP(6;) OP3 - op" 

Among these, only the 6 5 -modes have non-zero eigenvalues when 
operated on the above defined four eigenstates. By taking these 
four eigenfunctions as basis vectors, we have 

op(6~) = 

c 
0 0 

j) 1 0 
0 -1 
0 0 

(14) 

0 
0 0 

j) -1 0 
0 1 
0 0 

(15) 
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Namely, we have deduced (4-dimensional) pseudospin representations 
to express charge density fluctuation field. 

It is worthwhile to point out that ask+O, the 64 -and the 
6 5 -modes become degenerate to form r25 (triplly degenerate) mode, 
and the charge density pattern proposed by Verwey is exactly one 
of these triplly degenerate modes. It should be also noted that in 
the case of the 6s-mode condensation, there is a particular 
complication involved. Since the 6 5 is doublly degenerate any 
linear combination of these two modes is equally stable. In order 
to eliminate this ambiguity, we have to take into account the 
higher order interaction. 

111·3 Pseudospin-phonon Formalism and Neutron Scattering Cross 
Sections 

We assume that the bilinear coupling between the phonon field 
and the charge density field is important to trigger the phase 
transition. The interaction hamiltonian is then generally given 
by a a 

H. = L: L: g n n I ,OP n un I I ' 
lnt £ m £'m'a hmh m hm h m 

a=x, y, z, (16) 

a 
where u£' m is the a-component of the displacement vector at site 
(£ 'm ') . 

11100) 10011) 

11010) 11001) 10110> 10101) 

Fig. 9. Possible charge configurations satisfying the local charge 
neutrality condition. The state vectors corresponding to each 
configuration are given below each cubes. 
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Making use of the pseudospin representations of the charge 
density operator, we rewrite the above expression into the familiar 
pseudospin-phonon formalism, 

Hint = ~ ~ (k,L\s) {Oz (k,L\~) Q (k,L\~) + ° (k,L\~) Q (k,L\~)} (17) 

Here, 
1 

(18) 

IN 

The general property of such the coupled system has been discussed 
extensively elsewhere. Namely, by a suitable choice of the 
coupling parameter, the system undergoes the phase transition, 
below which the ordering of 'pseudospins' (the charge density) and 
the condensation of the phonon take place at the same time. It is 
predicted that the symmetry of both charge density mode and the 
phonon mode should belong L\s-type. In particular the pattern of 
the charge density below Tv should be as given in Fig. 8. 

Let us consider the experiments to verify the above model. 
The neutron scattering cross sections at T~Tv is particularly 
interesting from the following reason. As has been stated, the 
spin degeneracy is already lifted in the temperature region in 
question. Hence, the charge density ordering is always accompanied 
by the same ordering of magnetic spin density distribution. 
Therefore, both the atomic displacement and the charge ordering 
are detectable by neutrons as nuclear and magnetic scattering 
respectively. These scattering cross sections are expressed as 

d 2 0 
d0.dw 

d 2 0 

d0.dw 

nuc 

N 
mag 

2 
e'l.y 

mc 
L I·· S 12 '" 
i Fm(k) ~OO(k,w) 

s 
Here, ¢QQ and ¢ stand for the spectral densities of the 
correlation fung~ions of phonons and pseudospins; 

s f < 
>eiwtdt 

¢QQ(k,W) Q(k, 0) Q (!<. , s, t) s, 

s J < 
z z > iwt 

¢OO(k,w) O(k, 0) O(k, s, t) 
e dt 

s, 

(19) 

( 20) 

(21) 

( 22) 

Below Tv' these simply give~ O(k-kh±ko)O(w). F~(k) and F~(k) are 
the structure factors due tonnuclear displacements and charge 
(magnetic spin) distributions belonging to the symmetry s 
respectively. They are explicitly given by 
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F~(k) j ik·r· 
(k·e ) e J 

k,s 

where bm is the neutron scattering amplitude, Mm the mass and 
eo~,S) is the polarization vector of the m'th atom. And 

h sOh ° f 2+ ° dO 1 were Sm lS t e magnetlc moment 0 Fe lon perpen lCU ar to 
k, f(k) is the magnetic form factor. 

( 23) 

(24) 

Therefore, in principle, we can determine, by analizing the 
intensity distribution of the super lattice reflections, what is 
the pattern of the charge ordering as well as that of the atomic 
displacements in the actual crystal. 

III·4 Summary 

(1) We have seen that in Fe304, a charge ordering and lattice 
distortion take place at the same time. The atomic displacement 
field as seen by neutron scattering is associated with the phonon 
mode at the middle of the L-line (K=OO 1/2) , not the uniform (zone 
center) mode. 

(2) Assuming electron-phonon coupling scheme similar to polaron 
(namely linear coupling between charge density and local atomic 
displac~ment) , the effective interaction hamiltonian is formally 
reduced to pseudospin-phonon coupling, whose property is extensive
ly investigated. 

(3) Starting from this hamiltonian, we have predicted a possible 
charge ordering pattern, the 6s-type ordering. 

(4) It has been also pointed out that in order to investigate 
such the coupled charge-displacement field, neutron scattering 
technique is particularly powerful, because neutron wave can 'sense' 
atomic displacements through nuclear interaction, and charge 
density (magnetic spin density) through magnetic interaction. 

The detailes of the experimental results recently performed 
on this material will be discussed by Shirane in the separate 
lecture26 • 
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* THE VERWEY TRANSITION IN MAGNETITE 

G. Shirane 

Brookhaven National Laboratory 

Upton, New York 11973 U. S. A. 

We will first review the characteristics of the Verwey tran
sition in magnetite at 123 K. An ordering takes place among Fe2+ 
and Fe 3+ ions on the octahedral sites of the inverse spinel struc
ture, accompanied by a sudden change of electrical resistivity. 
We shall discuss in some detail recent neutron scattering measure
ments at Brookhaven in collaboration with Chikazumi's group at the 
University of Tokyo. 

I. INTRODUCTION 

The Verwey transition in magnetite is one of the oldest pro
blems in magnetism as well as in phase transitions. 1 We shall re
view a part of this complex problem from the viewpoint of electron
phonon interactions, the topic of this conference. In the first 
lecture, we shall survey the historical background up to 1973. 
The second lecture concerns recent neutron scattering experiments 
carried out at Brookhaven in collaboration with Professor Chikazumi's 
group at the University of Tokyo. 

Let us start by discussing the major characteristics of this 
phase transition at 123 K. At higher temperatures, magnetite has 
the inverse spinel structure, a structure which many technically 
important magnetic materials possess. The unit cell contains 8 
Fe304 units, 8 Fe 3+ on the tetrahedral sites and the random dis
tribution of 8 Fe2+ and 8 Fe 3+ ions on the octahedral sites. A 

* Work performed under the auspices of the U. S. Energy Research 
and Development Administration. 
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very pronounced phase transition has been observed around Tv=123 K. 
The most dramatic anomaly is in resistivity, as shown in the most 
recent data (Fig. 1) in Chikazumi's review article. 2 It has a 
high conductivity for T>TV' but it becomes a reasonably good 
insulator below TV' 

Verwey 1 proposed a model, thirty years ago, that this phase 
transition is caused by an electronic charge ordering among the 
Fe 2+ and Fe 3+ ions on the octahedral sites. This ordering scheme 
is shown in Fig. 2 together with the concomitant orthorhombic sym
metry. This is a very simple and attractive model which implies 
that alternate layers (or strings) of Fe2+ and Fe 3+ are stacked 
along the c axis. Subsequent magnetic 3, dilatometric, and x-ray4 
measurements all appeared to support the orthorhombic symmetry 
required by the Verwey model. Then in 1958, Hamilton 5 presented 
the most convincing evidence in his celebrated neutron scattering 
paper.A magnetic cross section was observed at (002) below TV 

§ 

CONDUCTIVITY 
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Fig. 1. Temperature dependence of conductivity for Fe304 along 
the cubic [100]. (Ref. 2). 
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Fig. 2. The Verwey ordering scheme together with the resulting 
orthorhombic symmetry. 
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where none is allowed above TV. At that point, the problem appeared 
to be completely solved. 

Since then, many new experimental results have been reported 
which indicate that some basic modification is needed to the ori
ginal Verwey model. The most important discovery was reported 
by Samuelsen et a1 6 in 1968. In their neutron diffraction experi
ment below TV' they observed satellites at reciprocal-lattice 
points with half integer such as (4 0 ~). This study, as well as 
independent electron diffraction work by Yamada et al 7 both re
ported that such satellites appear only along the orthorhombic c 
axis. In particular, Samuelsen et al noted that the satellite in
tensities are proportional to Q2, where Q is a reciprocal lattice 
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vector. Based on this fact they concluded that the satellites 
result mainly from atomic displacements and they are not directly 
due to the magnetic ordering of Fe 2+ and Fe 3+. Other experiments 
such as NMR and MHssbauer measurements showed the existence of 
more than two nonequivalent octahedral sites below TV' There was 
other experimental evidence to indicate that the low temperature 
symmetry is lower than orthorhombic. 

II. CRYSTAL AND SYMMETRY 

Let us now examine more closely the crystallographic aspect 
of this problem. Figs. 3 and 4 are taken from Chikazumi's review 
article2 and demonstrate the crystallographic notation used in 
this talk. The unit cell below TV has a nearly rhombohedral shape 
as shown in Fig. 4, though the true symmetry is monoclinic or 
lower. We may use two types of cell description: (A) Pseudo
rhombohedral cell with [001] axis as the unique magnetic c axis 
and [110] axis as the monoclinic b axis. In this, a = 90° - 0.16°. 
(B) Pseudomonoclinic cell with the common c axis with the rhombo
hedral cell. 

There are two types of twins: i) c axis zig-zag (c* common) 
as shown in Fig. 3 and ii) monoclinic a and b axes rotated. One 
can view these domains as 4 different <Ill> directions of the 
rhombohedral cell. These twinnings have caused considerable dif
ficulty and confusion in the interpretation of experimental re
sults. A truly un twinned crystal has been obtained recently by 
Chikazumi's group by a combined field cooling and a squeezing 
operation. 2 ,8 It has been known for some time that the magnetic 

Fig. 3. Twinning of Fe304 and the squeezing technique to create 
an untwinned crystal. (Refs. 2 and 8). 
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Fig. 4. Low temperature unit cell of magnetite. abc refers to 
the monoclinic axes. (Ref. 2). 

c axis can be aligned by an <100> magnetic field through TV. If 
one puts tight aluminum rings aroung the <Ill> axis, then this 
particular rhombohedral elongation will be established. For neu
tron scattering purposes, a cylindrical crystal (3mm in diameter 
and 6mm in length) was successfully made into a 99% untwinned 
crystal. 

There is an additional advantage to these squeezed crystals. 
In order to separate out magnetic compoJ,ents from nuclear scatter
ing,one has to apply a magnetic field below TV. In a field cooled 
crystal (without squeezing) the c axis tends to follow the field 
direction. The desired experimental condition is to reorient the 
spin direction without changing the c axis. This is realized in 
the squeezed monocrystal and thus we can experimentally separate 
out small magnetic components. 

The rhombohedral cell shape was properly identified by early 
x-ray studies9 but was disregarded in favor of the orthorhombic 
assignment by the single cryst~.l studies. 4 More recent x-raylO 
as well as neutron diffraction studies 11 ,12 have now clearly es
tablished the rhombohedral cell shape. 

A series of neutron scattering experiments have been ca.rried 
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out as a joint project between the University of Tokyo and Brook
haven. In the following we shall discuss in some detail the re
sults of these measurements. 

III. CRITICAL SCATTERING 

When our neutron scattering work was initiated, the c-axis 
doubling was already established. We, however, assumed that the 
basic magnetic ordering was already firmly established by 
Hamilton's neutron experiment. It appeared that the transition 
is accompanied by atomic displacements as clearly established by 
Samuelsen et al. 6 The key experiment was to look for critical 
scattering at both reflections, the (40~) type due to atomic dis
placements and the magnetic (002) reflection. This could give us 
a clue to the true order parameter of this complex phase tran
sition. As we will see later, the (002) reflection has been 
absent at all temperatures! But this is the story after. 

One crystallographic piece of inforrr.ation. The space group 
above TV is Fd3m; reflections such as (200), (600), and (420) are 
missing because of space group requirements. The Verwey ordering 
scheme requires (002) type magnetic reflections appear as one can 
easily see in Fig. 2. 

Fig. 5 depicts a typical example of critical scattering re
ported by Fujii et al. 13 The sharp increase of the (40~) type 
reflection is limited to a narrow temperature range above TV. It 
shows the typical divergence toward Tc' which is a few degrees 
below TV (see Fig. 10). The critical scattering was measured at 
several Brillouin zones and shown, in general, to be quite similar 
to tho~ of the satellite below TV. 

Yamada l4 proposed a model to explain this critical scatter
ing based upon an electron phonon coupling. This model involves 
the 65 phonon mode as shown in Fig. 6. Ionic shifts of oxygen and 
Fe ions are such that they give a larger space for Fe 2+ ions and 
a smaller space for Fe 3+. The most important result of the Yamada 
model is the charge ordering scheme which differs from that pre
dicted by the Verwey model. The Fe 3+ ions are not forming chains 
in c planes but both Fe 2+ and Fe 3+ form alternate chains as shown 
in Fig. 6. Since the Yamada model modulates a charge density wave 
along the c axis, it creates grey (disordered) layers as well. 

There is a unique and simple prediction of the Yamada model 
for the magnetic cross section due to the spin ordering below TV. 
The (002) type should be missing and the (20~) type reflection 
should show the main magnetic scattering. This prediction, how
ever, is only partially fulfilled. Before discussing the low 
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temperature study, we describe an additional type of diffuse 
scattering which is widely distributed in q space over a large 
temperature range, as shown in Fig. 7 and 8. This type of dif
fuse streak was first recognized by Chiba et al lS in their elec
tron diffraction study. A detailed study was carried out by 
Shapiro et al 16 on a large magnetite crystal. Somewhat surprising
ly, this scattering showed one-dimensional nature along the <001> 
direction. It shows a gradual temperature dependence (Fig. 9) 
with extrapolated divergence at 106 K. 

At present, we can offer only a qualitative picture for this 
diffuse scattering and its relation to the sharp critical peak 
described above. A major feature of the profile can be explained 
by an elongated correlation range based upon the Yamada model. 
The shape of the elliptical cross section is determined by the 
shape of the l-D "clusters." This correlation grows with little 
change of shape for wide temperature range (see Fig. 10). Only at 
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Fig. 6. The Yamada model based upon the ~5 phonon mode. ~4 cor
responds to the Verwey model. (Ref. 14). 

a few degrees above TV' the 3-D critical scattering sets in, peak
ing at positions corresponding to low temperature satellites. The 
latter behavior is shown for (40~) by the steep broken line in 
Fig. 10. 

IV. STRUCTURE BELOW TV 

It is essential to have a reliable knowledge of the low tem
perature structure to establish the charge ordering scheme in 
magnetite. As it turned out, this is a difficult and complex 
problem. Moreover, there is one important aspect of the analysis 
we did not fully appreciate at the outset. 12 In ordinary magnetic 
structure determination, one uses the magnetic structure factor 
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-+-+ 
i(Q·r.) 

L liP. e J 
J 

(1) 
j 

-+ 
where Q = a*h + b*k + c*~, and r. atomic position and liP. is due 
to magnetic modulation, namely J ±0.5~B for the differedce be
tween the Fe 2+ and Fe 3+ magnetic moments. Usually we can use the 

-+ 
cubic parameter r. and neglect the higher order effect of atomic 
shift lI j at TV' J 

For magnetite we have to use a more complete formula. This 
originates from the unusual situation that the spin modulation liP. 
is superposed on a much larger average component P, correspondingJ 

to 4.5~B' Now (1) becomes 

F = 
M 

Expanding 

F(Q) 

-+ -+ -+ 
iQ' (r .+1'1.) 

\ (P + liP.) e J J 
L. J 
j 

in lI. we obtain 

'U 
= 

J -+-+ -+-+ 

L 
iQ·r. iQ·r. 

e J L e J P + liP. 
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j J 
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Fig. 10. Comparison of temperature dependence of 1-D diffuse peak 
at (8,0,0.75) and 3-D critical scattering at (40~). (Ref. 16). 



404 

The last term cannot be ignored for 
siderably larger than ~p.' Thus we 
know ~. accurately enougfi. 

J 

G. SHIRANE 

magnetite because P is con
can establish ~P. only if we 

J 

Three types of neutron scattering experiments have been car
ried out so far for this purpose: (1) High resolution data were 
obtained for selected reflections, in particular (002) and (20~) 
to establish magnetic scattering below Tv. Measurements were 
carried out on a "regular" field cooled 12 as well as "squeezed" 
field cooled crystals. 18 (2) A polarized beam study on selected 
reflections from squeezed monocrystal. 17 Structure analysis at 
78 K utilizing 1400 reflections. 18 Only the part (1) has been 
published and the other two are now in the process of final data 
analysis. 

Table I lists some examples of the high resolution scattering 
experiment. The attempt here is to establish reliably a weak 
scattering cross section in the presence of much stronger reflec
tions. The most crucial part of the experiment was to eliminate 
simultaneous reflections (see Fig. 11). Table I includes two 
simple charge ordering schemes, the Verwey model and the AB model. 
The latter is calculated for the double c axis. The Yamada model 
is a more general AB type modulation based upon the specific pho
non mode coupling. 

We have not yet established a satisfactory charge ordering 
scheme below TV' We can, however, rule out some models unambi
guously because of very low limits established in this experiment. 
First of all, the original Verwey ordering scheme is ruled out 
because of extremely low limits set for the magnetic cross sections 
for (402) and (002). The Chikazumi-Chiba model 19 is also ruled 
out. Previous neutron data must have been severely distorted by 
simultaneous reflections. 

In Table I, FM2 (cal) for AB model (Fig. 12) involves only ~PJ' -++ 
terms and not iP(Q'~j) terms. Agreement with observed is less than 
satisfactory and, in particular, (20~) poses the vital disagree
ment. In fact, we have yet to prove that any part of the magnetic 
cross secti.ons is due to_t~e+spin modulation ~P., and not to the 
magneto-distortive term P(Q'~')' Table I demonstrates that the 
observed magnetic cross secti6ns are quite weak. It is conceivable, 
though very unlikely, that large magnetic peaks exist outside of 
(hOR,) and (hhR,) zones. If the actual spin modulation is less than 
0.15~B' compared with full 0.5~ , then the corresponding magnetic 
intensity (~~p2)would be difficHlt to detect. 

Preliminary results of the current structure analysis 18 show 
several pronising aspects. (1) The f1.'s have been determined by 
least square analysis without any prJassumed model. Yet they 
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Table I 

Comparison of FM2(obs) with two model calculations. These 
are put into absolute units of millibarns per cubic unit cell 
(Ref. 12). FM2(cal) assumes full Fe2+ - Fe 3+ modulations of 
±0.5~B· Total F2(obs), nuclear plus magnetic, are given for (400) 
and (40~) for comparison. 

hOR, 

402 
002 

20~ 
20l~ 
202~ 

400 
40~ 

< 16 
< 26 

< 72 

'" 300 

'" 400 

F2(obs) 

4 x 106 

1.3 x 104 

Verwey 
model 

10,500 
17,980 

FM2(cal) 

AB 
model 

3,500 
3,100 
2,400 

possess essential features of the Yamada model. (2) The magnetic 
cross sections based upon this structure give good agreement with 
the recent polarized beam experiment. 17 (3) The Fe atoms on the 
octahedral sites may be divided into different kinds with respect 
to their distances to surrounding oxygens, in accord with NMR and 
MBssbauer measurements. 20 - 22 The final step to the spin modulation 
is still missing. 
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CDW, see charge density wave 
Central peak 69,83,139,197,238,239, 

Correlation function 69,71,72, 
102 

Correlation length 69,70,83,99, 
103,105,.148,197,198,399 

Coulomb correlations 4 
Coulomb interaction 3,5i,71,104, 

123,138,144 
Crystal-field, energy 246 

spli tting 248 
Cyclotron frequency 58 

Davydov splitting 284 
d-bands 17 
Defect (and superconductivity) 

188 
Discommensuration (see also 

SOliton) 104,140 
Dispersion interaction 4,39 
Disproportionation 120 

319,327-30 Elastic constant softening 197 
Chain modulation 78 Electron-electron interaction 
Charge density wave, general 25, 90,92,113,202,204 

60,62,66-88,88-106,107-36, Electron entropy 38,145 
137-41'142-9'1~2'196'205'398 Electron screening 51 
and dis1ocatio 1 0 Electron-phonon interaction, 
and phonons 26, 9 general 10,112 
coherence length 105,131,140 conductors 13 
commensurate 115,127 insulators 12,370-92 
excitations 120,150-2 spectral function 207 
impurity effect 140 superconductors 187,196, 
incommensurate 115,127,138 202 207 
potential 90 Epitaxy 36,37 

Charge ordering 370-92,393-408 Entropy, configurational 339 
Charge transfer 80 electron 38,145 
Cohesion 8,44 phonon 38,39,131,146,198 
Concentration modulation 17 Equivalence class 176 
Core repulsion 5J. Exchange interaction 4 
Correlation energy 110,113 Extinction 325 
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Fermi surface, general 13,19,24, 
112 
nesting 13,14,15,24,53,60,113, 
114,142,143,204 
soft mode 15 

Ferroelctric, displacive 218 
order-disorder 215 
tunnelling 215,230 

Feynman integral approach 70 
Forces, interatomic 3 

interchain 69 
Forward scattering 87 
Frank-Condon transition 258,266 
Frohlich model 210 

Ginzburg-Landau theory, see Landau 
Gorkov model 18,194-9 

Ham effect 272,280,286,347 
Hartree approximation 3 
Heat capacity jump 146,147 
-"elical magnetism 6,379 
Hopping integral 198 
Hume Rothery-Jones phase 16 

Improper translation 166 
Impurity,correlation 69,83 

effect on CDW 140 
pinning 61 

Incommensurable structure (phase), 
see modulated structure 

Insulator 21 
Insulator, baud type 23 
Interaction, see forces, and 

potentials 
Interatomic forces 3 
Intercalation 108 
Interchain coupling 69,84,196 
Ion-electron-ion interaction 51 
Ionic solid 3 

Jahn-Teller effect, general 245-
270 
band type 12,18,194-199 
c-onfigurations 247 
cooperative 210,277-96,297-
301,302-22,323,337-44,345-50 
critical properties 238,273,311 
dynamics 228 

INDEX 

single ion (local) 246, 
271-6,277-96,331-6,345-50 
statics 222,311,323 
systems 213,371 

Kinematic approximation 10 
Kohn anomaly 14,15,38,52,66, 

68,79,80,117,147 
giant 60 

Kondo problem 97,100 
Kramers ion 247 

Labbe-Friedel model 18,194-9 
LCAO approximation 40,206 
Landau level 57 
Landau(-Ginzburg) theory 73, 

137-41 
Layered structures 88,107-36 
Lewis base 108 
I-,igand distortion 257 
Lock-in energy 139,141 

transition 62,77,139,141,381 
Luttinger-Tomanaga model 99 

MagneGic group 163 
Marginal dimensionality 312 
Martensitic transformation 

194-9 
Materials, A-15 181-93,194-9 

AgCd 17 
Al 53 
AuCu 17 
Ba2 NaNbsOls 337-44 
CdS 351-69 
CeES 300 
Cr 53, 114 
Cu 53 
Cu:CaO 2 r r8 
CuZn 17 
DyAs04 281 
DyV04 220,281,299 
Fe :CoCr2's4 345 
FeCr2S4 345 
,,'e30 383-90,393-408 
HfC 201 
KCP 18,29,61,66,150 
KDP 224 
K2PbCu(NOp)e 373-82 
KTa03 211 



INDEX 

LiNb03 339 
LiTbF4 313 
Mo-Re 188 
Na 51 
Na2C03 178 
NaN02 210 
Nb 53,55,56,60 
Nb3Al 
NbC 200 
Nb3Ge 188 
Nb-Mo 53 
NbN 200 
Nb3-xSb"Sn 197 
NbSe2 61, j2,107-32 
Nb3Sn 55,181-193,194,198 
Ni:A1203 280 
Pb 53 
PrAl03 230,291,302-22 
PrC13 297 
PrCU2 302-22 
Sr'i'i03 339 
TaC 201 
Tal- X Nb::S2 126 
TaS2 107-32 
TaSe2 61,62,107-32 
Tal-xTixSe2 126,127 
Tal-x VxS2 126 
Tal-xVxSe2 128 
Tal- x ZrxSe2 123 
TbAs04 281 
TbxGdl-x V04 236 
TbV04 281,309,327-30 
Ti : A12 03 280 
TiC 201 
TiN 200 
TiO 201 
TmAs04 213,220,281,302-22,323-6 
TmV04 213,220,260,281,302-22 
TTF-TCNQ 18,61,66,170 
U02 289 
V3Ga 187 
V3Ge 187 
VN 201 
VSe2 116 
V3Si 181-93,194,198 
W 23 

Matsubara time 69 
Mean field approximation 3,67,85, 

104,105 

Mixed modes ?06.?14 
Modulated structure, ger~ral 

6,7,17,18,153-71,172-
180, 376 
magnetic 162,163,166,403 
space group 156 
symmetry translation 156 

Molecular solid 3 
Mott localization 125 
Mott transition 5,351-69 

Nesting, see Fermi surface 
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One-dimensional bands 195 
One-dimensional conductors 66, 

88 
One-dimensional systems 66, 

68,82 
Organic chain 66 

p-d hybridization 200-8 
Peierls distortion 182 
Peierls mechanism 80,142,194 
Peierls state 66 
Peierls transition 66,73,74, 

142,195,210 
Phase fluctuation, see phason 
Phase locking (of CDW) 36 
Phase mode, see p~ason 
Phase modulation (of CDW) 36 
Phase transition, general 1-2 

antiferrodistorti"iie 254 
commensurate-lncommensur-
ate 62,77,101,139,141,381 
ferrodistortive 254 
ferroelastic 337-44 
incommensurate ~ normal 
139,381 
Mott type 3,5,351-69 
Peierls type 66,73,79 
Verwey type 383,393 

Phason, 37,69,70,73,83,145, 
151,179 

Phonon entropy 38,131,146,198 
Phonon-phonon scattering 55 
Piezo-distortive coupling 256 
Plasmon 111,204 
Plastic pl-:ase 5 
Point-group 158,161,162,175 
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Polaron 125 
Potential, charge density wave 90 

core repulsion 51 
Coulomb 51 
electron-ion-electron 51 
electron screening 51 

Potts model 262 
Projection operator 160 
Pseudo-spin method 209-44,370-92 
Pseudo-spin order parameter 239 
Pseudo-spin structures 374-81 
Pseudo-spin waves 225,229,232 
Pyroelectric group 164 

Quadrupole exciton 314 
Quadrupole-quadrupole interaction 

303 

Rare gases 3 

Screening 24,29 
Sine-Gordon equation 88-106 
Shear waves and electrons 21 
Short range order 39 
Slater-Tokagi model 217 
Soft mode 5,21,22,81,139,152,327 
s p covalent 8 
s p hybrid 41 
s p metal 40 
Spin-phonon system 212 
Spin wave (pseudo-type) 225,229, 

232 
Stacking fault 17 
Standard basis 174 
Superconductivity 55,66,109,181-

93,194-9,200-8 
Susceptibility, generalized 25, 

113,129 
electric 207-301 

Superspace group 174,178,179 
Symmetry operation 155 
Symmetry translation 155 

Tight binding 20,26 
Tricorn potential 261 
Tunnelling mode 229,268 

Umklapp 67,77,100 

INDEX 

Van Hove anomaly 12,15,22,38 
Vibron 229,248,253,264,271, 

290,314 
Vibronic correlation 254 
Vibron-phonon mixing 230 
Vibronic transition 259 
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